2013-08-07 Raunaq Bathija <raunaq12@in.ibm.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72
73 #include <fcntl.h>
74 #include "gdb_string.h"
75 #include "gdb_assert.h"
76 #include <sys/types.h>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static int dwarf2_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
87
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
90
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
93
94 static const struct objfile_data *dwarf2_objfile_data_key;
95
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
102
103 struct dwarf2_section_info
104 {
105 asection *asection;
106 const gdb_byte *buffer;
107 bfd_size_type size;
108 /* True if we have tried to read this section. */
109 int readin;
110 };
111
112 typedef struct dwarf2_section_info dwarf2_section_info_def;
113 DEF_VEC_O (dwarf2_section_info_def);
114
115 /* All offsets in the index are of this type. It must be
116 architecture-independent. */
117 typedef uint32_t offset_type;
118
119 DEF_VEC_I (offset_type);
120
121 /* Ensure only legit values are used. */
122 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128 /* Ensure only legit values are used. */
129 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
137 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
143 /* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145 struct mapped_index
146 {
147 /* Index data format version. */
148 int version;
149
150 /* The total length of the buffer. */
151 off_t total_size;
152
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
158
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
161
162 /* Size in slots, each slot is 2 offset_types. */
163 offset_type symbol_table_slots;
164
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167 };
168
169 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170 DEF_VEC_P (dwarf2_per_cu_ptr);
171
172 /* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
175 struct dwarf2_per_objfile
176 {
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
182 struct dwarf2_section_info macro;
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
185 struct dwarf2_section_info addr;
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
188 struct dwarf2_section_info gdb_index;
189
190 VEC (dwarf2_section_info_def) *types;
191
192 /* Back link. */
193 struct objfile *objfile;
194
195 /* Table of all the compilation units. This is used to locate
196 the target compilation unit of a particular reference. */
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
202 /* The number of .debug_types-related CUs. */
203 int n_type_units;
204
205 /* The .debug_types-related CUs (TUs).
206 This is stored in malloc space because we may realloc it. */
207 struct signatured_type **all_type_units;
208
209 /* The number of entries in all_type_unit_groups. */
210 int n_type_unit_groups;
211
212 /* Table of type unit groups.
213 This exists to make it easy to iterate over all CUs and TU groups. */
214 struct type_unit_group **all_type_unit_groups;
215
216 /* Table of struct type_unit_group objects.
217 The hash key is the DW_AT_stmt_list value. */
218 htab_t type_unit_groups;
219
220 /* A table mapping .debug_types signatures to its signatured_type entry.
221 This is NULL if the .debug_types section hasn't been read in yet. */
222 htab_t signatured_types;
223
224 /* Type unit statistics, to see how well the scaling improvements
225 are doing. */
226 struct tu_stats
227 {
228 int nr_uniq_abbrev_tables;
229 int nr_symtabs;
230 int nr_symtab_sharers;
231 int nr_stmt_less_type_units;
232 } tu_stats;
233
234 /* A chain of compilation units that are currently read in, so that
235 they can be freed later. */
236 struct dwarf2_per_cu_data *read_in_chain;
237
238 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
239 This is NULL if the table hasn't been allocated yet. */
240 htab_t dwo_files;
241
242 /* Non-zero if we've check for whether there is a DWP file. */
243 int dwp_checked;
244
245 /* The DWP file if there is one, or NULL. */
246 struct dwp_file *dwp_file;
247
248 /* The shared '.dwz' file, if one exists. This is used when the
249 original data was compressed using 'dwz -m'. */
250 struct dwz_file *dwz_file;
251
252 /* A flag indicating wether this objfile has a section loaded at a
253 VMA of 0. */
254 int has_section_at_zero;
255
256 /* True if we are using the mapped index,
257 or we are faking it for OBJF_READNOW's sake. */
258 unsigned char using_index;
259
260 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
261 struct mapped_index *index_table;
262
263 /* When using index_table, this keeps track of all quick_file_names entries.
264 TUs typically share line table entries with a CU, so we maintain a
265 separate table of all line table entries to support the sharing.
266 Note that while there can be way more TUs than CUs, we've already
267 sorted all the TUs into "type unit groups", grouped by their
268 DW_AT_stmt_list value. Therefore the only sharing done here is with a
269 CU and its associated TU group if there is one. */
270 htab_t quick_file_names_table;
271
272 /* Set during partial symbol reading, to prevent queueing of full
273 symbols. */
274 int reading_partial_symbols;
275
276 /* Table mapping type DIEs to their struct type *.
277 This is NULL if not allocated yet.
278 The mapping is done via (CU/TU + DIE offset) -> type. */
279 htab_t die_type_hash;
280
281 /* The CUs we recently read. */
282 VEC (dwarf2_per_cu_ptr) *just_read_cus;
283 };
284
285 static struct dwarf2_per_objfile *dwarf2_per_objfile;
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_macinfo", ".zdebug_macinfo" },
299 { ".debug_macro", ".zdebug_macro" },
300 { ".debug_str", ".zdebug_str" },
301 { ".debug_ranges", ".zdebug_ranges" },
302 { ".debug_types", ".zdebug_types" },
303 { ".debug_addr", ".zdebug_addr" },
304 { ".debug_frame", ".zdebug_frame" },
305 { ".eh_frame", NULL },
306 { ".gdb_index", ".zgdb_index" },
307 23
308 };
309
310 /* List of DWO/DWP sections. */
311
312 static const struct dwop_section_names
313 {
314 struct dwarf2_section_names abbrev_dwo;
315 struct dwarf2_section_names info_dwo;
316 struct dwarf2_section_names line_dwo;
317 struct dwarf2_section_names loc_dwo;
318 struct dwarf2_section_names macinfo_dwo;
319 struct dwarf2_section_names macro_dwo;
320 struct dwarf2_section_names str_dwo;
321 struct dwarf2_section_names str_offsets_dwo;
322 struct dwarf2_section_names types_dwo;
323 struct dwarf2_section_names cu_index;
324 struct dwarf2_section_names tu_index;
325 }
326 dwop_section_names =
327 {
328 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
329 { ".debug_info.dwo", ".zdebug_info.dwo" },
330 { ".debug_line.dwo", ".zdebug_line.dwo" },
331 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
332 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
333 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
334 { ".debug_str.dwo", ".zdebug_str.dwo" },
335 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
336 { ".debug_types.dwo", ".zdebug_types.dwo" },
337 { ".debug_cu_index", ".zdebug_cu_index" },
338 { ".debug_tu_index", ".zdebug_tu_index" },
339 };
340
341 /* local data types */
342
343 /* The data in a compilation unit header, after target2host
344 translation, looks like this. */
345 struct comp_unit_head
346 {
347 unsigned int length;
348 short version;
349 unsigned char addr_size;
350 unsigned char signed_addr_p;
351 sect_offset abbrev_offset;
352
353 /* Size of file offsets; either 4 or 8. */
354 unsigned int offset_size;
355
356 /* Size of the length field; either 4 or 12. */
357 unsigned int initial_length_size;
358
359 /* Offset to the first byte of this compilation unit header in the
360 .debug_info section, for resolving relative reference dies. */
361 sect_offset offset;
362
363 /* Offset to first die in this cu from the start of the cu.
364 This will be the first byte following the compilation unit header. */
365 cu_offset first_die_offset;
366 };
367
368 /* Type used for delaying computation of method physnames.
369 See comments for compute_delayed_physnames. */
370 struct delayed_method_info
371 {
372 /* The type to which the method is attached, i.e., its parent class. */
373 struct type *type;
374
375 /* The index of the method in the type's function fieldlists. */
376 int fnfield_index;
377
378 /* The index of the method in the fieldlist. */
379 int index;
380
381 /* The name of the DIE. */
382 const char *name;
383
384 /* The DIE associated with this method. */
385 struct die_info *die;
386 };
387
388 typedef struct delayed_method_info delayed_method_info;
389 DEF_VEC_O (delayed_method_info);
390
391 /* Internal state when decoding a particular compilation unit. */
392 struct dwarf2_cu
393 {
394 /* The objfile containing this compilation unit. */
395 struct objfile *objfile;
396
397 /* The header of the compilation unit. */
398 struct comp_unit_head header;
399
400 /* Base address of this compilation unit. */
401 CORE_ADDR base_address;
402
403 /* Non-zero if base_address has been set. */
404 int base_known;
405
406 /* The language we are debugging. */
407 enum language language;
408 const struct language_defn *language_defn;
409
410 const char *producer;
411
412 /* The generic symbol table building routines have separate lists for
413 file scope symbols and all all other scopes (local scopes). So
414 we need to select the right one to pass to add_symbol_to_list().
415 We do it by keeping a pointer to the correct list in list_in_scope.
416
417 FIXME: The original dwarf code just treated the file scope as the
418 first local scope, and all other local scopes as nested local
419 scopes, and worked fine. Check to see if we really need to
420 distinguish these in buildsym.c. */
421 struct pending **list_in_scope;
422
423 /* The abbrev table for this CU.
424 Normally this points to the abbrev table in the objfile.
425 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
426 struct abbrev_table *abbrev_table;
427
428 /* Hash table holding all the loaded partial DIEs
429 with partial_die->offset.SECT_OFF as hash. */
430 htab_t partial_dies;
431
432 /* Storage for things with the same lifetime as this read-in compilation
433 unit, including partial DIEs. */
434 struct obstack comp_unit_obstack;
435
436 /* When multiple dwarf2_cu structures are living in memory, this field
437 chains them all together, so that they can be released efficiently.
438 We will probably also want a generation counter so that most-recently-used
439 compilation units are cached... */
440 struct dwarf2_per_cu_data *read_in_chain;
441
442 /* Backchain to our per_cu entry if the tree has been built. */
443 struct dwarf2_per_cu_data *per_cu;
444
445 /* How many compilation units ago was this CU last referenced? */
446 int last_used;
447
448 /* A hash table of DIE cu_offset for following references with
449 die_info->offset.sect_off as hash. */
450 htab_t die_hash;
451
452 /* Full DIEs if read in. */
453 struct die_info *dies;
454
455 /* A set of pointers to dwarf2_per_cu_data objects for compilation
456 units referenced by this one. Only set during full symbol processing;
457 partial symbol tables do not have dependencies. */
458 htab_t dependencies;
459
460 /* Header data from the line table, during full symbol processing. */
461 struct line_header *line_header;
462
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 VEC (delayed_method_info) *method_list;
466
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab;
469
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
479 struct dwo_unit *dwo_unit;
480
481 /* The DW_AT_addr_base attribute if present, zero otherwise
482 (zero is a valid value though).
483 Note this value comes from the stub CU/TU's DIE. */
484 ULONGEST addr_base;
485
486 /* The DW_AT_ranges_base attribute if present, zero otherwise
487 (zero is a valid value though).
488 Note this value comes from the stub CU/TU's DIE.
489 Also note that the value is zero in the non-DWO case so this value can
490 be used without needing to know whether DWO files are in use or not.
491 N.B. This does not apply to DW_AT_ranges appearing in
492 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
493 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
494 DW_AT_ranges_base *would* have to be applied, and we'd have to care
495 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
496 ULONGEST ranges_base;
497
498 /* Mark used when releasing cached dies. */
499 unsigned int mark : 1;
500
501 /* This CU references .debug_loc. See the symtab->locations_valid field.
502 This test is imperfect as there may exist optimized debug code not using
503 any location list and still facing inlining issues if handled as
504 unoptimized code. For a future better test see GCC PR other/32998. */
505 unsigned int has_loclist : 1;
506
507 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
508 if all the producer_is_* fields are valid. This information is cached
509 because profiling CU expansion showed excessive time spent in
510 producer_is_gxx_lt_4_6. */
511 unsigned int checked_producer : 1;
512 unsigned int producer_is_gxx_lt_4_6 : 1;
513 unsigned int producer_is_gcc_lt_4_3 : 1;
514 unsigned int producer_is_icc : 1;
515
516 /* When set, the file that we're processing is known to have
517 debugging info for C++ namespaces. GCC 3.3.x did not produce
518 this information, but later versions do. */
519
520 unsigned int processing_has_namespace_info : 1;
521 };
522
523 /* Persistent data held for a compilation unit, even when not
524 processing it. We put a pointer to this structure in the
525 read_symtab_private field of the psymtab. */
526
527 struct dwarf2_per_cu_data
528 {
529 /* The start offset and length of this compilation unit.
530 NOTE: Unlike comp_unit_head.length, this length includes
531 initial_length_size.
532 If the DIE refers to a DWO file, this is always of the original die,
533 not the DWO file. */
534 sect_offset offset;
535 unsigned int length;
536
537 /* Flag indicating this compilation unit will be read in before
538 any of the current compilation units are processed. */
539 unsigned int queued : 1;
540
541 /* This flag will be set when reading partial DIEs if we need to load
542 absolutely all DIEs for this compilation unit, instead of just the ones
543 we think are interesting. It gets set if we look for a DIE in the
544 hash table and don't find it. */
545 unsigned int load_all_dies : 1;
546
547 /* Non-zero if this CU is from .debug_types.
548 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
549 this is non-zero. */
550 unsigned int is_debug_types : 1;
551
552 /* Non-zero if this CU is from the .dwz file. */
553 unsigned int is_dwz : 1;
554
555 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
556 This flag is only valid if is_debug_types is true.
557 We can't read a CU directly from a DWO file: There are required
558 attributes in the stub. */
559 unsigned int reading_dwo_directly : 1;
560
561 /* Non-zero if the TU has been read.
562 This is used to assist the "Stay in DWO Optimization" for Fission:
563 When reading a DWO, it's faster to read TUs from the DWO instead of
564 fetching them from random other DWOs (due to comdat folding).
565 If the TU has already been read, the optimization is unnecessary
566 (and unwise - we don't want to change where gdb thinks the TU lives
567 "midflight").
568 This flag is only valid if is_debug_types is true. */
569 unsigned int tu_read : 1;
570
571 /* The section this CU/TU lives in.
572 If the DIE refers to a DWO file, this is always the original die,
573 not the DWO file. */
574 struct dwarf2_section_info *section;
575
576 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
577 of the CU cache it gets reset to NULL again. */
578 struct dwarf2_cu *cu;
579
580 /* The corresponding objfile.
581 Normally we can get the objfile from dwarf2_per_objfile.
582 However we can enter this file with just a "per_cu" handle. */
583 struct objfile *objfile;
584
585 /* When using partial symbol tables, the 'psymtab' field is active.
586 Otherwise the 'quick' field is active. */
587 union
588 {
589 /* The partial symbol table associated with this compilation unit,
590 or NULL for unread partial units. */
591 struct partial_symtab *psymtab;
592
593 /* Data needed by the "quick" functions. */
594 struct dwarf2_per_cu_quick_data *quick;
595 } v;
596
597 /* The CUs we import using DW_TAG_imported_unit. This is filled in
598 while reading psymtabs, used to compute the psymtab dependencies,
599 and then cleared. Then it is filled in again while reading full
600 symbols, and only deleted when the objfile is destroyed.
601
602 This is also used to work around a difference between the way gold
603 generates .gdb_index version <=7 and the way gdb does. Arguably this
604 is a gold bug. For symbols coming from TUs, gold records in the index
605 the CU that includes the TU instead of the TU itself. This breaks
606 dw2_lookup_symbol: It assumes that if the index says symbol X lives
607 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
608 will find X. Alas TUs live in their own symtab, so after expanding CU Y
609 we need to look in TU Z to find X. Fortunately, this is akin to
610 DW_TAG_imported_unit, so we just use the same mechanism: For
611 .gdb_index version <=7 this also records the TUs that the CU referred
612 to. Concurrently with this change gdb was modified to emit version 8
613 indices so we only pay a price for gold generated indices. */
614 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
615 };
616
617 /* Entry in the signatured_types hash table. */
618
619 struct signatured_type
620 {
621 /* The "per_cu" object of this type.
622 This struct is used iff per_cu.is_debug_types.
623 N.B.: This is the first member so that it's easy to convert pointers
624 between them. */
625 struct dwarf2_per_cu_data per_cu;
626
627 /* The type's signature. */
628 ULONGEST signature;
629
630 /* Offset in the TU of the type's DIE, as read from the TU header.
631 If this TU is a DWO stub and the definition lives in a DWO file
632 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
633 cu_offset type_offset_in_tu;
634
635 /* Offset in the section of the type's DIE.
636 If the definition lives in a DWO file, this is the offset in the
637 .debug_types.dwo section.
638 The value is zero until the actual value is known.
639 Zero is otherwise not a valid section offset. */
640 sect_offset type_offset_in_section;
641
642 /* Type units are grouped by their DW_AT_stmt_list entry so that they
643 can share them. This points to the containing symtab. */
644 struct type_unit_group *type_unit_group;
645
646 /* The type.
647 The first time we encounter this type we fully read it in and install it
648 in the symbol tables. Subsequent times we only need the type. */
649 struct type *type;
650
651 /* Containing DWO unit.
652 This field is valid iff per_cu.reading_dwo_directly. */
653 struct dwo_unit *dwo_unit;
654 };
655
656 typedef struct signatured_type *sig_type_ptr;
657 DEF_VEC_P (sig_type_ptr);
658
659 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
660 This includes type_unit_group and quick_file_names. */
661
662 struct stmt_list_hash
663 {
664 /* The DWO unit this table is from or NULL if there is none. */
665 struct dwo_unit *dwo_unit;
666
667 /* Offset in .debug_line or .debug_line.dwo. */
668 sect_offset line_offset;
669 };
670
671 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
672 an object of this type. */
673
674 struct type_unit_group
675 {
676 /* dwarf2read.c's main "handle" on a TU symtab.
677 To simplify things we create an artificial CU that "includes" all the
678 type units using this stmt_list so that the rest of the code still has
679 a "per_cu" handle on the symtab.
680 This PER_CU is recognized by having no section. */
681 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
682 struct dwarf2_per_cu_data per_cu;
683
684 /* The TUs that share this DW_AT_stmt_list entry.
685 This is added to while parsing type units to build partial symtabs,
686 and is deleted afterwards and not used again. */
687 VEC (sig_type_ptr) *tus;
688
689 /* The primary symtab.
690 Type units in a group needn't all be defined in the same source file,
691 so we create an essentially anonymous symtab as the primary symtab. */
692 struct symtab *primary_symtab;
693
694 /* The data used to construct the hash key. */
695 struct stmt_list_hash hash;
696
697 /* The number of symtabs from the line header.
698 The value here must match line_header.num_file_names. */
699 unsigned int num_symtabs;
700
701 /* The symbol tables for this TU (obtained from the files listed in
702 DW_AT_stmt_list).
703 WARNING: The order of entries here must match the order of entries
704 in the line header. After the first TU using this type_unit_group, the
705 line header for the subsequent TUs is recreated from this. This is done
706 because we need to use the same symtabs for each TU using the same
707 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
708 there's no guarantee the line header doesn't have duplicate entries. */
709 struct symtab **symtabs;
710 };
711
712 /* These sections are what may appear in a DWO file. */
713
714 struct dwo_sections
715 {
716 struct dwarf2_section_info abbrev;
717 struct dwarf2_section_info line;
718 struct dwarf2_section_info loc;
719 struct dwarf2_section_info macinfo;
720 struct dwarf2_section_info macro;
721 struct dwarf2_section_info str;
722 struct dwarf2_section_info str_offsets;
723 /* In the case of a virtual DWO file, these two are unused. */
724 struct dwarf2_section_info info;
725 VEC (dwarf2_section_info_def) *types;
726 };
727
728 /* CUs/TUs in DWP/DWO files. */
729
730 struct dwo_unit
731 {
732 /* Backlink to the containing struct dwo_file. */
733 struct dwo_file *dwo_file;
734
735 /* The "id" that distinguishes this CU/TU.
736 .debug_info calls this "dwo_id", .debug_types calls this "signature".
737 Since signatures came first, we stick with it for consistency. */
738 ULONGEST signature;
739
740 /* The section this CU/TU lives in, in the DWO file. */
741 struct dwarf2_section_info *section;
742
743 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
744 sect_offset offset;
745 unsigned int length;
746
747 /* For types, offset in the type's DIE of the type defined by this TU. */
748 cu_offset type_offset_in_tu;
749 };
750
751 /* Data for one DWO file.
752 This includes virtual DWO files that have been packaged into a
753 DWP file. */
754
755 struct dwo_file
756 {
757 /* The DW_AT_GNU_dwo_name attribute.
758 For virtual DWO files the name is constructed from the section offsets
759 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
760 from related CU+TUs. */
761 const char *dwo_name;
762
763 /* The DW_AT_comp_dir attribute. */
764 const char *comp_dir;
765
766 /* The bfd, when the file is open. Otherwise this is NULL.
767 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
768 bfd *dbfd;
769
770 /* Section info for this file. */
771 struct dwo_sections sections;
772
773 /* The CU in the file.
774 We only support one because having more than one requires hacking the
775 dwo_name of each to match, which is highly unlikely to happen.
776 Doing this means all TUs can share comp_dir: We also assume that
777 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
778 struct dwo_unit *cu;
779
780 /* Table of TUs in the file.
781 Each element is a struct dwo_unit. */
782 htab_t tus;
783 };
784
785 /* These sections are what may appear in a DWP file. */
786
787 struct dwp_sections
788 {
789 struct dwarf2_section_info str;
790 struct dwarf2_section_info cu_index;
791 struct dwarf2_section_info tu_index;
792 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
793 by section number. We don't need to record them here. */
794 };
795
796 /* These sections are what may appear in a virtual DWO file. */
797
798 struct virtual_dwo_sections
799 {
800 struct dwarf2_section_info abbrev;
801 struct dwarf2_section_info line;
802 struct dwarf2_section_info loc;
803 struct dwarf2_section_info macinfo;
804 struct dwarf2_section_info macro;
805 struct dwarf2_section_info str_offsets;
806 /* Each DWP hash table entry records one CU or one TU.
807 That is recorded here, and copied to dwo_unit.section. */
808 struct dwarf2_section_info info_or_types;
809 };
810
811 /* Contents of DWP hash tables. */
812
813 struct dwp_hash_table
814 {
815 uint32_t nr_units, nr_slots;
816 const gdb_byte *hash_table, *unit_table, *section_pool;
817 };
818
819 /* Data for one DWP file. */
820
821 struct dwp_file
822 {
823 /* Name of the file. */
824 const char *name;
825
826 /* The bfd. */
827 bfd *dbfd;
828
829 /* Section info for this file. */
830 struct dwp_sections sections;
831
832 /* Table of CUs in the file. */
833 const struct dwp_hash_table *cus;
834
835 /* Table of TUs in the file. */
836 const struct dwp_hash_table *tus;
837
838 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
839 htab_t loaded_cutus;
840
841 /* Table to map ELF section numbers to their sections. */
842 unsigned int num_sections;
843 asection **elf_sections;
844 };
845
846 /* This represents a '.dwz' file. */
847
848 struct dwz_file
849 {
850 /* A dwz file can only contain a few sections. */
851 struct dwarf2_section_info abbrev;
852 struct dwarf2_section_info info;
853 struct dwarf2_section_info str;
854 struct dwarf2_section_info line;
855 struct dwarf2_section_info macro;
856 struct dwarf2_section_info gdb_index;
857
858 /* The dwz's BFD. */
859 bfd *dwz_bfd;
860 };
861
862 /* Struct used to pass misc. parameters to read_die_and_children, et
863 al. which are used for both .debug_info and .debug_types dies.
864 All parameters here are unchanging for the life of the call. This
865 struct exists to abstract away the constant parameters of die reading. */
866
867 struct die_reader_specs
868 {
869 /* die_section->asection->owner. */
870 bfd* abfd;
871
872 /* The CU of the DIE we are parsing. */
873 struct dwarf2_cu *cu;
874
875 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
876 struct dwo_file *dwo_file;
877
878 /* The section the die comes from.
879 This is either .debug_info or .debug_types, or the .dwo variants. */
880 struct dwarf2_section_info *die_section;
881
882 /* die_section->buffer. */
883 const gdb_byte *buffer;
884
885 /* The end of the buffer. */
886 const gdb_byte *buffer_end;
887
888 /* The value of the DW_AT_comp_dir attribute. */
889 const char *comp_dir;
890 };
891
892 /* Type of function passed to init_cutu_and_read_dies, et.al. */
893 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
894 const gdb_byte *info_ptr,
895 struct die_info *comp_unit_die,
896 int has_children,
897 void *data);
898
899 /* The line number information for a compilation unit (found in the
900 .debug_line section) begins with a "statement program header",
901 which contains the following information. */
902 struct line_header
903 {
904 unsigned int total_length;
905 unsigned short version;
906 unsigned int header_length;
907 unsigned char minimum_instruction_length;
908 unsigned char maximum_ops_per_instruction;
909 unsigned char default_is_stmt;
910 int line_base;
911 unsigned char line_range;
912 unsigned char opcode_base;
913
914 /* standard_opcode_lengths[i] is the number of operands for the
915 standard opcode whose value is i. This means that
916 standard_opcode_lengths[0] is unused, and the last meaningful
917 element is standard_opcode_lengths[opcode_base - 1]. */
918 unsigned char *standard_opcode_lengths;
919
920 /* The include_directories table. NOTE! These strings are not
921 allocated with xmalloc; instead, they are pointers into
922 debug_line_buffer. If you try to free them, `free' will get
923 indigestion. */
924 unsigned int num_include_dirs, include_dirs_size;
925 const char **include_dirs;
926
927 /* The file_names table. NOTE! These strings are not allocated
928 with xmalloc; instead, they are pointers into debug_line_buffer.
929 Don't try to free them directly. */
930 unsigned int num_file_names, file_names_size;
931 struct file_entry
932 {
933 const char *name;
934 unsigned int dir_index;
935 unsigned int mod_time;
936 unsigned int length;
937 int included_p; /* Non-zero if referenced by the Line Number Program. */
938 struct symtab *symtab; /* The associated symbol table, if any. */
939 } *file_names;
940
941 /* The start and end of the statement program following this
942 header. These point into dwarf2_per_objfile->line_buffer. */
943 const gdb_byte *statement_program_start, *statement_program_end;
944 };
945
946 /* When we construct a partial symbol table entry we only
947 need this much information. */
948 struct partial_die_info
949 {
950 /* Offset of this DIE. */
951 sect_offset offset;
952
953 /* DWARF-2 tag for this DIE. */
954 ENUM_BITFIELD(dwarf_tag) tag : 16;
955
956 /* Assorted flags describing the data found in this DIE. */
957 unsigned int has_children : 1;
958 unsigned int is_external : 1;
959 unsigned int is_declaration : 1;
960 unsigned int has_type : 1;
961 unsigned int has_specification : 1;
962 unsigned int has_pc_info : 1;
963 unsigned int may_be_inlined : 1;
964
965 /* Flag set if the SCOPE field of this structure has been
966 computed. */
967 unsigned int scope_set : 1;
968
969 /* Flag set if the DIE has a byte_size attribute. */
970 unsigned int has_byte_size : 1;
971
972 /* Flag set if any of the DIE's children are template arguments. */
973 unsigned int has_template_arguments : 1;
974
975 /* Flag set if fixup_partial_die has been called on this die. */
976 unsigned int fixup_called : 1;
977
978 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
979 unsigned int is_dwz : 1;
980
981 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
982 unsigned int spec_is_dwz : 1;
983
984 /* The name of this DIE. Normally the value of DW_AT_name, but
985 sometimes a default name for unnamed DIEs. */
986 const char *name;
987
988 /* The linkage name, if present. */
989 const char *linkage_name;
990
991 /* The scope to prepend to our children. This is generally
992 allocated on the comp_unit_obstack, so will disappear
993 when this compilation unit leaves the cache. */
994 const char *scope;
995
996 /* Some data associated with the partial DIE. The tag determines
997 which field is live. */
998 union
999 {
1000 /* The location description associated with this DIE, if any. */
1001 struct dwarf_block *locdesc;
1002 /* The offset of an import, for DW_TAG_imported_unit. */
1003 sect_offset offset;
1004 } d;
1005
1006 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1007 CORE_ADDR lowpc;
1008 CORE_ADDR highpc;
1009
1010 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1011 DW_AT_sibling, if any. */
1012 /* NOTE: This member isn't strictly necessary, read_partial_die could
1013 return DW_AT_sibling values to its caller load_partial_dies. */
1014 const gdb_byte *sibling;
1015
1016 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1017 DW_AT_specification (or DW_AT_abstract_origin or
1018 DW_AT_extension). */
1019 sect_offset spec_offset;
1020
1021 /* Pointers to this DIE's parent, first child, and next sibling,
1022 if any. */
1023 struct partial_die_info *die_parent, *die_child, *die_sibling;
1024 };
1025
1026 /* This data structure holds the information of an abbrev. */
1027 struct abbrev_info
1028 {
1029 unsigned int number; /* number identifying abbrev */
1030 enum dwarf_tag tag; /* dwarf tag */
1031 unsigned short has_children; /* boolean */
1032 unsigned short num_attrs; /* number of attributes */
1033 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1034 struct abbrev_info *next; /* next in chain */
1035 };
1036
1037 struct attr_abbrev
1038 {
1039 ENUM_BITFIELD(dwarf_attribute) name : 16;
1040 ENUM_BITFIELD(dwarf_form) form : 16;
1041 };
1042
1043 /* Size of abbrev_table.abbrev_hash_table. */
1044 #define ABBREV_HASH_SIZE 121
1045
1046 /* Top level data structure to contain an abbreviation table. */
1047
1048 struct abbrev_table
1049 {
1050 /* Where the abbrev table came from.
1051 This is used as a sanity check when the table is used. */
1052 sect_offset offset;
1053
1054 /* Storage for the abbrev table. */
1055 struct obstack abbrev_obstack;
1056
1057 /* Hash table of abbrevs.
1058 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1059 It could be statically allocated, but the previous code didn't so we
1060 don't either. */
1061 struct abbrev_info **abbrevs;
1062 };
1063
1064 /* Attributes have a name and a value. */
1065 struct attribute
1066 {
1067 ENUM_BITFIELD(dwarf_attribute) name : 16;
1068 ENUM_BITFIELD(dwarf_form) form : 15;
1069
1070 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1071 field should be in u.str (existing only for DW_STRING) but it is kept
1072 here for better struct attribute alignment. */
1073 unsigned int string_is_canonical : 1;
1074
1075 union
1076 {
1077 const char *str;
1078 struct dwarf_block *blk;
1079 ULONGEST unsnd;
1080 LONGEST snd;
1081 CORE_ADDR addr;
1082 ULONGEST signature;
1083 }
1084 u;
1085 };
1086
1087 /* This data structure holds a complete die structure. */
1088 struct die_info
1089 {
1090 /* DWARF-2 tag for this DIE. */
1091 ENUM_BITFIELD(dwarf_tag) tag : 16;
1092
1093 /* Number of attributes */
1094 unsigned char num_attrs;
1095
1096 /* True if we're presently building the full type name for the
1097 type derived from this DIE. */
1098 unsigned char building_fullname : 1;
1099
1100 /* Abbrev number */
1101 unsigned int abbrev;
1102
1103 /* Offset in .debug_info or .debug_types section. */
1104 sect_offset offset;
1105
1106 /* The dies in a compilation unit form an n-ary tree. PARENT
1107 points to this die's parent; CHILD points to the first child of
1108 this node; and all the children of a given node are chained
1109 together via their SIBLING fields. */
1110 struct die_info *child; /* Its first child, if any. */
1111 struct die_info *sibling; /* Its next sibling, if any. */
1112 struct die_info *parent; /* Its parent, if any. */
1113
1114 /* An array of attributes, with NUM_ATTRS elements. There may be
1115 zero, but it's not common and zero-sized arrays are not
1116 sufficiently portable C. */
1117 struct attribute attrs[1];
1118 };
1119
1120 /* Get at parts of an attribute structure. */
1121
1122 #define DW_STRING(attr) ((attr)->u.str)
1123 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1124 #define DW_UNSND(attr) ((attr)->u.unsnd)
1125 #define DW_BLOCK(attr) ((attr)->u.blk)
1126 #define DW_SND(attr) ((attr)->u.snd)
1127 #define DW_ADDR(attr) ((attr)->u.addr)
1128 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1129
1130 /* Blocks are a bunch of untyped bytes. */
1131 struct dwarf_block
1132 {
1133 size_t size;
1134
1135 /* Valid only if SIZE is not zero. */
1136 const gdb_byte *data;
1137 };
1138
1139 #ifndef ATTR_ALLOC_CHUNK
1140 #define ATTR_ALLOC_CHUNK 4
1141 #endif
1142
1143 /* Allocate fields for structs, unions and enums in this size. */
1144 #ifndef DW_FIELD_ALLOC_CHUNK
1145 #define DW_FIELD_ALLOC_CHUNK 4
1146 #endif
1147
1148 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1149 but this would require a corresponding change in unpack_field_as_long
1150 and friends. */
1151 static int bits_per_byte = 8;
1152
1153 /* The routines that read and process dies for a C struct or C++ class
1154 pass lists of data member fields and lists of member function fields
1155 in an instance of a field_info structure, as defined below. */
1156 struct field_info
1157 {
1158 /* List of data member and baseclasses fields. */
1159 struct nextfield
1160 {
1161 struct nextfield *next;
1162 int accessibility;
1163 int virtuality;
1164 struct field field;
1165 }
1166 *fields, *baseclasses;
1167
1168 /* Number of fields (including baseclasses). */
1169 int nfields;
1170
1171 /* Number of baseclasses. */
1172 int nbaseclasses;
1173
1174 /* Set if the accesibility of one of the fields is not public. */
1175 int non_public_fields;
1176
1177 /* Member function fields array, entries are allocated in the order they
1178 are encountered in the object file. */
1179 struct nextfnfield
1180 {
1181 struct nextfnfield *next;
1182 struct fn_field fnfield;
1183 }
1184 *fnfields;
1185
1186 /* Member function fieldlist array, contains name of possibly overloaded
1187 member function, number of overloaded member functions and a pointer
1188 to the head of the member function field chain. */
1189 struct fnfieldlist
1190 {
1191 const char *name;
1192 int length;
1193 struct nextfnfield *head;
1194 }
1195 *fnfieldlists;
1196
1197 /* Number of entries in the fnfieldlists array. */
1198 int nfnfields;
1199
1200 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1201 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1202 struct typedef_field_list
1203 {
1204 struct typedef_field field;
1205 struct typedef_field_list *next;
1206 }
1207 *typedef_field_list;
1208 unsigned typedef_field_list_count;
1209 };
1210
1211 /* One item on the queue of compilation units to read in full symbols
1212 for. */
1213 struct dwarf2_queue_item
1214 {
1215 struct dwarf2_per_cu_data *per_cu;
1216 enum language pretend_language;
1217 struct dwarf2_queue_item *next;
1218 };
1219
1220 /* The current queue. */
1221 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1222
1223 /* Loaded secondary compilation units are kept in memory until they
1224 have not been referenced for the processing of this many
1225 compilation units. Set this to zero to disable caching. Cache
1226 sizes of up to at least twenty will improve startup time for
1227 typical inter-CU-reference binaries, at an obvious memory cost. */
1228 static int dwarf2_max_cache_age = 5;
1229 static void
1230 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1231 struct cmd_list_element *c, const char *value)
1232 {
1233 fprintf_filtered (file, _("The upper bound on the age of cached "
1234 "dwarf2 compilation units is %s.\n"),
1235 value);
1236 }
1237
1238
1239 /* Various complaints about symbol reading that don't abort the process. */
1240
1241 static void
1242 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1243 {
1244 complaint (&symfile_complaints,
1245 _("statement list doesn't fit in .debug_line section"));
1246 }
1247
1248 static void
1249 dwarf2_debug_line_missing_file_complaint (void)
1250 {
1251 complaint (&symfile_complaints,
1252 _(".debug_line section has line data without a file"));
1253 }
1254
1255 static void
1256 dwarf2_debug_line_missing_end_sequence_complaint (void)
1257 {
1258 complaint (&symfile_complaints,
1259 _(".debug_line section has line "
1260 "program sequence without an end"));
1261 }
1262
1263 static void
1264 dwarf2_complex_location_expr_complaint (void)
1265 {
1266 complaint (&symfile_complaints, _("location expression too complex"));
1267 }
1268
1269 static void
1270 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1271 int arg3)
1272 {
1273 complaint (&symfile_complaints,
1274 _("const value length mismatch for '%s', got %d, expected %d"),
1275 arg1, arg2, arg3);
1276 }
1277
1278 static void
1279 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1280 {
1281 complaint (&symfile_complaints,
1282 _("debug info runs off end of %s section"
1283 " [in module %s]"),
1284 section->asection->name,
1285 bfd_get_filename (section->asection->owner));
1286 }
1287
1288 static void
1289 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1290 {
1291 complaint (&symfile_complaints,
1292 _("macro debug info contains a "
1293 "malformed macro definition:\n`%s'"),
1294 arg1);
1295 }
1296
1297 static void
1298 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1299 {
1300 complaint (&symfile_complaints,
1301 _("invalid attribute class or form for '%s' in '%s'"),
1302 arg1, arg2);
1303 }
1304
1305 /* local function prototypes */
1306
1307 static void dwarf2_locate_sections (bfd *, asection *, void *);
1308
1309 static void dwarf2_find_base_address (struct die_info *die,
1310 struct dwarf2_cu *cu);
1311
1312 static struct partial_symtab *create_partial_symtab
1313 (struct dwarf2_per_cu_data *per_cu, const char *name);
1314
1315 static void dwarf2_build_psymtabs_hard (struct objfile *);
1316
1317 static void scan_partial_symbols (struct partial_die_info *,
1318 CORE_ADDR *, CORE_ADDR *,
1319 int, struct dwarf2_cu *);
1320
1321 static void add_partial_symbol (struct partial_die_info *,
1322 struct dwarf2_cu *);
1323
1324 static void add_partial_namespace (struct partial_die_info *pdi,
1325 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1326 int need_pc, struct dwarf2_cu *cu);
1327
1328 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1329 CORE_ADDR *highpc, int need_pc,
1330 struct dwarf2_cu *cu);
1331
1332 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1333 struct dwarf2_cu *cu);
1334
1335 static void add_partial_subprogram (struct partial_die_info *pdi,
1336 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1337 int need_pc, struct dwarf2_cu *cu);
1338
1339 static void dwarf2_read_symtab (struct partial_symtab *,
1340 struct objfile *);
1341
1342 static void psymtab_to_symtab_1 (struct partial_symtab *);
1343
1344 static struct abbrev_info *abbrev_table_lookup_abbrev
1345 (const struct abbrev_table *, unsigned int);
1346
1347 static struct abbrev_table *abbrev_table_read_table
1348 (struct dwarf2_section_info *, sect_offset);
1349
1350 static void abbrev_table_free (struct abbrev_table *);
1351
1352 static void abbrev_table_free_cleanup (void *);
1353
1354 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1355 struct dwarf2_section_info *);
1356
1357 static void dwarf2_free_abbrev_table (void *);
1358
1359 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1360
1361 static struct partial_die_info *load_partial_dies
1362 (const struct die_reader_specs *, const gdb_byte *, int);
1363
1364 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1365 struct partial_die_info *,
1366 struct abbrev_info *,
1367 unsigned int,
1368 const gdb_byte *);
1369
1370 static struct partial_die_info *find_partial_die (sect_offset, int,
1371 struct dwarf2_cu *);
1372
1373 static void fixup_partial_die (struct partial_die_info *,
1374 struct dwarf2_cu *);
1375
1376 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1377 struct attribute *, struct attr_abbrev *,
1378 const gdb_byte *);
1379
1380 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1381
1382 static int read_1_signed_byte (bfd *, const gdb_byte *);
1383
1384 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1385
1386 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1387
1388 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1389
1390 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1391 unsigned int *);
1392
1393 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1394
1395 static LONGEST read_checked_initial_length_and_offset
1396 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1397 unsigned int *, unsigned int *);
1398
1399 static LONGEST read_offset (bfd *, const gdb_byte *,
1400 const struct comp_unit_head *,
1401 unsigned int *);
1402
1403 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1404
1405 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1406 sect_offset);
1407
1408 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1409
1410 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1411
1412 static const char *read_indirect_string (bfd *, const gdb_byte *,
1413 const struct comp_unit_head *,
1414 unsigned int *);
1415
1416 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1417
1418 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1419
1420 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1421
1422 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1423 const gdb_byte *,
1424 unsigned int *);
1425
1426 static const char *read_str_index (const struct die_reader_specs *reader,
1427 struct dwarf2_cu *cu, ULONGEST str_index);
1428
1429 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1430
1431 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1432 struct dwarf2_cu *);
1433
1434 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1435 unsigned int);
1436
1437 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1438 struct dwarf2_cu *cu);
1439
1440 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1441
1442 static struct die_info *die_specification (struct die_info *die,
1443 struct dwarf2_cu **);
1444
1445 static void free_line_header (struct line_header *lh);
1446
1447 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1448 struct dwarf2_cu *cu);
1449
1450 static void dwarf_decode_lines (struct line_header *, const char *,
1451 struct dwarf2_cu *, struct partial_symtab *,
1452 int);
1453
1454 static void dwarf2_start_subfile (const char *, const char *, const char *);
1455
1456 static void dwarf2_start_symtab (struct dwarf2_cu *,
1457 const char *, const char *, CORE_ADDR);
1458
1459 static struct symbol *new_symbol (struct die_info *, struct type *,
1460 struct dwarf2_cu *);
1461
1462 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1463 struct dwarf2_cu *, struct symbol *);
1464
1465 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1466 struct dwarf2_cu *);
1467
1468 static void dwarf2_const_value_attr (const struct attribute *attr,
1469 struct type *type,
1470 const char *name,
1471 struct obstack *obstack,
1472 struct dwarf2_cu *cu, LONGEST *value,
1473 const gdb_byte **bytes,
1474 struct dwarf2_locexpr_baton **baton);
1475
1476 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1477
1478 static int need_gnat_info (struct dwarf2_cu *);
1479
1480 static struct type *die_descriptive_type (struct die_info *,
1481 struct dwarf2_cu *);
1482
1483 static void set_descriptive_type (struct type *, struct die_info *,
1484 struct dwarf2_cu *);
1485
1486 static struct type *die_containing_type (struct die_info *,
1487 struct dwarf2_cu *);
1488
1489 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1490 struct dwarf2_cu *);
1491
1492 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1493
1494 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1495
1496 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1497
1498 static char *typename_concat (struct obstack *obs, const char *prefix,
1499 const char *suffix, int physname,
1500 struct dwarf2_cu *cu);
1501
1502 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1503
1504 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1505
1506 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1507
1508 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1509
1510 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1511
1512 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1513 struct dwarf2_cu *, struct partial_symtab *);
1514
1515 static int dwarf2_get_pc_bounds (struct die_info *,
1516 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1517 struct partial_symtab *);
1518
1519 static void get_scope_pc_bounds (struct die_info *,
1520 CORE_ADDR *, CORE_ADDR *,
1521 struct dwarf2_cu *);
1522
1523 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1524 CORE_ADDR, struct dwarf2_cu *);
1525
1526 static void dwarf2_add_field (struct field_info *, struct die_info *,
1527 struct dwarf2_cu *);
1528
1529 static void dwarf2_attach_fields_to_type (struct field_info *,
1530 struct type *, struct dwarf2_cu *);
1531
1532 static void dwarf2_add_member_fn (struct field_info *,
1533 struct die_info *, struct type *,
1534 struct dwarf2_cu *);
1535
1536 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1537 struct type *,
1538 struct dwarf2_cu *);
1539
1540 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1541
1542 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1543
1544 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1545
1546 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1547
1548 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1549
1550 static struct type *read_module_type (struct die_info *die,
1551 struct dwarf2_cu *cu);
1552
1553 static const char *namespace_name (struct die_info *die,
1554 int *is_anonymous, struct dwarf2_cu *);
1555
1556 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1557
1558 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1559
1560 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1561 struct dwarf2_cu *);
1562
1563 static struct die_info *read_die_and_siblings_1
1564 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1565 struct die_info *);
1566
1567 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1568 const gdb_byte *info_ptr,
1569 const gdb_byte **new_info_ptr,
1570 struct die_info *parent);
1571
1572 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1573 struct die_info **, const gdb_byte *,
1574 int *, int);
1575
1576 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1577 struct die_info **, const gdb_byte *,
1578 int *);
1579
1580 static void process_die (struct die_info *, struct dwarf2_cu *);
1581
1582 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1583 struct obstack *);
1584
1585 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1586
1587 static const char *dwarf2_full_name (const char *name,
1588 struct die_info *die,
1589 struct dwarf2_cu *cu);
1590
1591 static const char *dwarf2_physname (const char *name, struct die_info *die,
1592 struct dwarf2_cu *cu);
1593
1594 static struct die_info *dwarf2_extension (struct die_info *die,
1595 struct dwarf2_cu **);
1596
1597 static const char *dwarf_tag_name (unsigned int);
1598
1599 static const char *dwarf_attr_name (unsigned int);
1600
1601 static const char *dwarf_form_name (unsigned int);
1602
1603 static char *dwarf_bool_name (unsigned int);
1604
1605 static const char *dwarf_type_encoding_name (unsigned int);
1606
1607 static struct die_info *sibling_die (struct die_info *);
1608
1609 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1610
1611 static void dump_die_for_error (struct die_info *);
1612
1613 static void dump_die_1 (struct ui_file *, int level, int max_level,
1614 struct die_info *);
1615
1616 /*static*/ void dump_die (struct die_info *, int max_level);
1617
1618 static void store_in_ref_table (struct die_info *,
1619 struct dwarf2_cu *);
1620
1621 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1622
1623 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1624
1625 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1626 const struct attribute *,
1627 struct dwarf2_cu **);
1628
1629 static struct die_info *follow_die_ref (struct die_info *,
1630 const struct attribute *,
1631 struct dwarf2_cu **);
1632
1633 static struct die_info *follow_die_sig (struct die_info *,
1634 const struct attribute *,
1635 struct dwarf2_cu **);
1636
1637 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1638 struct dwarf2_cu *);
1639
1640 static struct type *get_DW_AT_signature_type (struct die_info *,
1641 const struct attribute *,
1642 struct dwarf2_cu *);
1643
1644 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1645
1646 static void read_signatured_type (struct signatured_type *);
1647
1648 static struct type_unit_group *get_type_unit_group
1649 (struct dwarf2_cu *, const struct attribute *);
1650
1651 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1652
1653 /* memory allocation interface */
1654
1655 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1656
1657 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1658
1659 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1660 const char *, int);
1661
1662 static int attr_form_is_block (const struct attribute *);
1663
1664 static int attr_form_is_section_offset (const struct attribute *);
1665
1666 static int attr_form_is_constant (const struct attribute *);
1667
1668 static int attr_form_is_ref (const struct attribute *);
1669
1670 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1671 struct dwarf2_loclist_baton *baton,
1672 const struct attribute *attr);
1673
1674 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1675 struct symbol *sym,
1676 struct dwarf2_cu *cu,
1677 int is_block);
1678
1679 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1680 const gdb_byte *info_ptr,
1681 struct abbrev_info *abbrev);
1682
1683 static void free_stack_comp_unit (void *);
1684
1685 static hashval_t partial_die_hash (const void *item);
1686
1687 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1688
1689 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1690 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1691
1692 static void init_one_comp_unit (struct dwarf2_cu *cu,
1693 struct dwarf2_per_cu_data *per_cu);
1694
1695 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1696 struct die_info *comp_unit_die,
1697 enum language pretend_language);
1698
1699 static void free_heap_comp_unit (void *);
1700
1701 static void free_cached_comp_units (void *);
1702
1703 static void age_cached_comp_units (void);
1704
1705 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1706
1707 static struct type *set_die_type (struct die_info *, struct type *,
1708 struct dwarf2_cu *);
1709
1710 static void create_all_comp_units (struct objfile *);
1711
1712 static int create_all_type_units (struct objfile *);
1713
1714 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1715 enum language);
1716
1717 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1718 enum language);
1719
1720 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1721 enum language);
1722
1723 static void dwarf2_add_dependence (struct dwarf2_cu *,
1724 struct dwarf2_per_cu_data *);
1725
1726 static void dwarf2_mark (struct dwarf2_cu *);
1727
1728 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1729
1730 static struct type *get_die_type_at_offset (sect_offset,
1731 struct dwarf2_per_cu_data *);
1732
1733 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1734
1735 static void dwarf2_release_queue (void *dummy);
1736
1737 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1738 enum language pretend_language);
1739
1740 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1741 struct dwarf2_per_cu_data *per_cu,
1742 enum language pretend_language);
1743
1744 static void process_queue (void);
1745
1746 static void find_file_and_directory (struct die_info *die,
1747 struct dwarf2_cu *cu,
1748 const char **name, const char **comp_dir);
1749
1750 static char *file_full_name (int file, struct line_header *lh,
1751 const char *comp_dir);
1752
1753 static const gdb_byte *read_and_check_comp_unit_head
1754 (struct comp_unit_head *header,
1755 struct dwarf2_section_info *section,
1756 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1757 int is_debug_types_section);
1758
1759 static void init_cutu_and_read_dies
1760 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1761 int use_existing_cu, int keep,
1762 die_reader_func_ftype *die_reader_func, void *data);
1763
1764 static void init_cutu_and_read_dies_simple
1765 (struct dwarf2_per_cu_data *this_cu,
1766 die_reader_func_ftype *die_reader_func, void *data);
1767
1768 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1769
1770 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1771
1772 static struct dwo_unit *lookup_dwo_in_dwp
1773 (struct dwp_file *dwp_file, const struct dwp_hash_table *htab,
1774 const char *comp_dir, ULONGEST signature, int is_debug_types);
1775
1776 static struct dwp_file *get_dwp_file (void);
1777
1778 static struct dwo_unit *lookup_dwo_comp_unit
1779 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1780
1781 static struct dwo_unit *lookup_dwo_type_unit
1782 (struct signatured_type *, const char *, const char *);
1783
1784 static void free_dwo_file_cleanup (void *);
1785
1786 static void process_cu_includes (void);
1787
1788 static void check_producer (struct dwarf2_cu *cu);
1789
1790 #if WORDS_BIGENDIAN
1791
1792 /* Convert VALUE between big- and little-endian. */
1793 static offset_type
1794 byte_swap (offset_type value)
1795 {
1796 offset_type result;
1797
1798 result = (value & 0xff) << 24;
1799 result |= (value & 0xff00) << 8;
1800 result |= (value & 0xff0000) >> 8;
1801 result |= (value & 0xff000000) >> 24;
1802 return result;
1803 }
1804
1805 #define MAYBE_SWAP(V) byte_swap (V)
1806
1807 #else
1808 #define MAYBE_SWAP(V) (V)
1809 #endif /* WORDS_BIGENDIAN */
1810
1811 /* The suffix for an index file. */
1812 #define INDEX_SUFFIX ".gdb-index"
1813
1814 /* Try to locate the sections we need for DWARF 2 debugging
1815 information and return true if we have enough to do something.
1816 NAMES points to the dwarf2 section names, or is NULL if the standard
1817 ELF names are used. */
1818
1819 int
1820 dwarf2_has_info (struct objfile *objfile,
1821 const struct dwarf2_debug_sections *names)
1822 {
1823 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1824 if (!dwarf2_per_objfile)
1825 {
1826 /* Initialize per-objfile state. */
1827 struct dwarf2_per_objfile *data
1828 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1829
1830 memset (data, 0, sizeof (*data));
1831 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1832 dwarf2_per_objfile = data;
1833
1834 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1835 (void *) names);
1836 dwarf2_per_objfile->objfile = objfile;
1837 }
1838 return (dwarf2_per_objfile->info.asection != NULL
1839 && dwarf2_per_objfile->abbrev.asection != NULL);
1840 }
1841
1842 /* When loading sections, we look either for uncompressed section or for
1843 compressed section names. */
1844
1845 static int
1846 section_is_p (const char *section_name,
1847 const struct dwarf2_section_names *names)
1848 {
1849 if (names->normal != NULL
1850 && strcmp (section_name, names->normal) == 0)
1851 return 1;
1852 if (names->compressed != NULL
1853 && strcmp (section_name, names->compressed) == 0)
1854 return 1;
1855 return 0;
1856 }
1857
1858 /* This function is mapped across the sections and remembers the
1859 offset and size of each of the debugging sections we are interested
1860 in. */
1861
1862 static void
1863 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1864 {
1865 const struct dwarf2_debug_sections *names;
1866 flagword aflag = bfd_get_section_flags (abfd, sectp);
1867
1868 if (vnames == NULL)
1869 names = &dwarf2_elf_names;
1870 else
1871 names = (const struct dwarf2_debug_sections *) vnames;
1872
1873 if ((aflag & SEC_HAS_CONTENTS) == 0)
1874 {
1875 }
1876 else if (section_is_p (sectp->name, &names->info))
1877 {
1878 dwarf2_per_objfile->info.asection = sectp;
1879 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1880 }
1881 else if (section_is_p (sectp->name, &names->abbrev))
1882 {
1883 dwarf2_per_objfile->abbrev.asection = sectp;
1884 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1885 }
1886 else if (section_is_p (sectp->name, &names->line))
1887 {
1888 dwarf2_per_objfile->line.asection = sectp;
1889 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1890 }
1891 else if (section_is_p (sectp->name, &names->loc))
1892 {
1893 dwarf2_per_objfile->loc.asection = sectp;
1894 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1895 }
1896 else if (section_is_p (sectp->name, &names->macinfo))
1897 {
1898 dwarf2_per_objfile->macinfo.asection = sectp;
1899 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1900 }
1901 else if (section_is_p (sectp->name, &names->macro))
1902 {
1903 dwarf2_per_objfile->macro.asection = sectp;
1904 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1905 }
1906 else if (section_is_p (sectp->name, &names->str))
1907 {
1908 dwarf2_per_objfile->str.asection = sectp;
1909 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1910 }
1911 else if (section_is_p (sectp->name, &names->addr))
1912 {
1913 dwarf2_per_objfile->addr.asection = sectp;
1914 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1915 }
1916 else if (section_is_p (sectp->name, &names->frame))
1917 {
1918 dwarf2_per_objfile->frame.asection = sectp;
1919 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1920 }
1921 else if (section_is_p (sectp->name, &names->eh_frame))
1922 {
1923 dwarf2_per_objfile->eh_frame.asection = sectp;
1924 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1925 }
1926 else if (section_is_p (sectp->name, &names->ranges))
1927 {
1928 dwarf2_per_objfile->ranges.asection = sectp;
1929 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1930 }
1931 else if (section_is_p (sectp->name, &names->types))
1932 {
1933 struct dwarf2_section_info type_section;
1934
1935 memset (&type_section, 0, sizeof (type_section));
1936 type_section.asection = sectp;
1937 type_section.size = bfd_get_section_size (sectp);
1938
1939 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1940 &type_section);
1941 }
1942 else if (section_is_p (sectp->name, &names->gdb_index))
1943 {
1944 dwarf2_per_objfile->gdb_index.asection = sectp;
1945 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1946 }
1947
1948 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1949 && bfd_section_vma (abfd, sectp) == 0)
1950 dwarf2_per_objfile->has_section_at_zero = 1;
1951 }
1952
1953 /* A helper function that decides whether a section is empty,
1954 or not present. */
1955
1956 static int
1957 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1958 {
1959 return info->asection == NULL || info->size == 0;
1960 }
1961
1962 /* Read the contents of the section INFO.
1963 OBJFILE is the main object file, but not necessarily the file where
1964 the section comes from. E.g., for DWO files INFO->asection->owner
1965 is the bfd of the DWO file.
1966 If the section is compressed, uncompress it before returning. */
1967
1968 static void
1969 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1970 {
1971 asection *sectp = info->asection;
1972 bfd *abfd;
1973 gdb_byte *buf, *retbuf;
1974 unsigned char header[4];
1975
1976 if (info->readin)
1977 return;
1978 info->buffer = NULL;
1979 info->readin = 1;
1980
1981 if (dwarf2_section_empty_p (info))
1982 return;
1983
1984 abfd = sectp->owner;
1985
1986 /* If the section has relocations, we must read it ourselves.
1987 Otherwise we attach it to the BFD. */
1988 if ((sectp->flags & SEC_RELOC) == 0)
1989 {
1990 info->buffer = gdb_bfd_map_section (sectp, &info->size);
1991 return;
1992 }
1993
1994 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1995 info->buffer = buf;
1996
1997 /* When debugging .o files, we may need to apply relocations; see
1998 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1999 We never compress sections in .o files, so we only need to
2000 try this when the section is not compressed. */
2001 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2002 if (retbuf != NULL)
2003 {
2004 info->buffer = retbuf;
2005 return;
2006 }
2007
2008 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2009 || bfd_bread (buf, info->size, abfd) != info->size)
2010 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
2011 bfd_get_filename (abfd));
2012 }
2013
2014 /* A helper function that returns the size of a section in a safe way.
2015 If you are positive that the section has been read before using the
2016 size, then it is safe to refer to the dwarf2_section_info object's
2017 "size" field directly. In other cases, you must call this
2018 function, because for compressed sections the size field is not set
2019 correctly until the section has been read. */
2020
2021 static bfd_size_type
2022 dwarf2_section_size (struct objfile *objfile,
2023 struct dwarf2_section_info *info)
2024 {
2025 if (!info->readin)
2026 dwarf2_read_section (objfile, info);
2027 return info->size;
2028 }
2029
2030 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2031 SECTION_NAME. */
2032
2033 void
2034 dwarf2_get_section_info (struct objfile *objfile,
2035 enum dwarf2_section_enum sect,
2036 asection **sectp, const gdb_byte **bufp,
2037 bfd_size_type *sizep)
2038 {
2039 struct dwarf2_per_objfile *data
2040 = objfile_data (objfile, dwarf2_objfile_data_key);
2041 struct dwarf2_section_info *info;
2042
2043 /* We may see an objfile without any DWARF, in which case we just
2044 return nothing. */
2045 if (data == NULL)
2046 {
2047 *sectp = NULL;
2048 *bufp = NULL;
2049 *sizep = 0;
2050 return;
2051 }
2052 switch (sect)
2053 {
2054 case DWARF2_DEBUG_FRAME:
2055 info = &data->frame;
2056 break;
2057 case DWARF2_EH_FRAME:
2058 info = &data->eh_frame;
2059 break;
2060 default:
2061 gdb_assert_not_reached ("unexpected section");
2062 }
2063
2064 dwarf2_read_section (objfile, info);
2065
2066 *sectp = info->asection;
2067 *bufp = info->buffer;
2068 *sizep = info->size;
2069 }
2070
2071 /* A helper function to find the sections for a .dwz file. */
2072
2073 static void
2074 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2075 {
2076 struct dwz_file *dwz_file = arg;
2077
2078 /* Note that we only support the standard ELF names, because .dwz
2079 is ELF-only (at the time of writing). */
2080 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2081 {
2082 dwz_file->abbrev.asection = sectp;
2083 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2084 }
2085 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2086 {
2087 dwz_file->info.asection = sectp;
2088 dwz_file->info.size = bfd_get_section_size (sectp);
2089 }
2090 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2091 {
2092 dwz_file->str.asection = sectp;
2093 dwz_file->str.size = bfd_get_section_size (sectp);
2094 }
2095 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2096 {
2097 dwz_file->line.asection = sectp;
2098 dwz_file->line.size = bfd_get_section_size (sectp);
2099 }
2100 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2101 {
2102 dwz_file->macro.asection = sectp;
2103 dwz_file->macro.size = bfd_get_section_size (sectp);
2104 }
2105 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2106 {
2107 dwz_file->gdb_index.asection = sectp;
2108 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2109 }
2110 }
2111
2112 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2113 there is no .gnu_debugaltlink section in the file. Error if there
2114 is such a section but the file cannot be found. */
2115
2116 static struct dwz_file *
2117 dwarf2_get_dwz_file (void)
2118 {
2119 bfd *dwz_bfd;
2120 char *data;
2121 struct cleanup *cleanup;
2122 const char *filename;
2123 struct dwz_file *result;
2124 unsigned long buildid;
2125
2126 if (dwarf2_per_objfile->dwz_file != NULL)
2127 return dwarf2_per_objfile->dwz_file;
2128
2129 bfd_set_error (bfd_error_no_error);
2130 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2131 &buildid);
2132 if (data == NULL)
2133 {
2134 if (bfd_get_error () == bfd_error_no_error)
2135 return NULL;
2136 error (_("could not read '.gnu_debugaltlink' section: %s"),
2137 bfd_errmsg (bfd_get_error ()));
2138 }
2139 cleanup = make_cleanup (xfree, data);
2140
2141 filename = (const char *) data;
2142 if (!IS_ABSOLUTE_PATH (filename))
2143 {
2144 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2145 char *rel;
2146
2147 make_cleanup (xfree, abs);
2148 abs = ldirname (abs);
2149 make_cleanup (xfree, abs);
2150
2151 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2152 make_cleanup (xfree, rel);
2153 filename = rel;
2154 }
2155
2156 /* The format is just a NUL-terminated file name, followed by the
2157 build-id. For now, though, we ignore the build-id. */
2158 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2159 if (dwz_bfd == NULL)
2160 error (_("could not read '%s': %s"), filename,
2161 bfd_errmsg (bfd_get_error ()));
2162
2163 if (!bfd_check_format (dwz_bfd, bfd_object))
2164 {
2165 gdb_bfd_unref (dwz_bfd);
2166 error (_("file '%s' was not usable: %s"), filename,
2167 bfd_errmsg (bfd_get_error ()));
2168 }
2169
2170 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2171 struct dwz_file);
2172 result->dwz_bfd = dwz_bfd;
2173
2174 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2175
2176 do_cleanups (cleanup);
2177
2178 dwarf2_per_objfile->dwz_file = result;
2179 return result;
2180 }
2181 \f
2182 /* DWARF quick_symbols_functions support. */
2183
2184 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2185 unique line tables, so we maintain a separate table of all .debug_line
2186 derived entries to support the sharing.
2187 All the quick functions need is the list of file names. We discard the
2188 line_header when we're done and don't need to record it here. */
2189 struct quick_file_names
2190 {
2191 /* The data used to construct the hash key. */
2192 struct stmt_list_hash hash;
2193
2194 /* The number of entries in file_names, real_names. */
2195 unsigned int num_file_names;
2196
2197 /* The file names from the line table, after being run through
2198 file_full_name. */
2199 const char **file_names;
2200
2201 /* The file names from the line table after being run through
2202 gdb_realpath. These are computed lazily. */
2203 const char **real_names;
2204 };
2205
2206 /* When using the index (and thus not using psymtabs), each CU has an
2207 object of this type. This is used to hold information needed by
2208 the various "quick" methods. */
2209 struct dwarf2_per_cu_quick_data
2210 {
2211 /* The file table. This can be NULL if there was no file table
2212 or it's currently not read in.
2213 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2214 struct quick_file_names *file_names;
2215
2216 /* The corresponding symbol table. This is NULL if symbols for this
2217 CU have not yet been read. */
2218 struct symtab *symtab;
2219
2220 /* A temporary mark bit used when iterating over all CUs in
2221 expand_symtabs_matching. */
2222 unsigned int mark : 1;
2223
2224 /* True if we've tried to read the file table and found there isn't one.
2225 There will be no point in trying to read it again next time. */
2226 unsigned int no_file_data : 1;
2227 };
2228
2229 /* Utility hash function for a stmt_list_hash. */
2230
2231 static hashval_t
2232 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2233 {
2234 hashval_t v = 0;
2235
2236 if (stmt_list_hash->dwo_unit != NULL)
2237 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2238 v += stmt_list_hash->line_offset.sect_off;
2239 return v;
2240 }
2241
2242 /* Utility equality function for a stmt_list_hash. */
2243
2244 static int
2245 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2246 const struct stmt_list_hash *rhs)
2247 {
2248 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2249 return 0;
2250 if (lhs->dwo_unit != NULL
2251 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2252 return 0;
2253
2254 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2255 }
2256
2257 /* Hash function for a quick_file_names. */
2258
2259 static hashval_t
2260 hash_file_name_entry (const void *e)
2261 {
2262 const struct quick_file_names *file_data = e;
2263
2264 return hash_stmt_list_entry (&file_data->hash);
2265 }
2266
2267 /* Equality function for a quick_file_names. */
2268
2269 static int
2270 eq_file_name_entry (const void *a, const void *b)
2271 {
2272 const struct quick_file_names *ea = a;
2273 const struct quick_file_names *eb = b;
2274
2275 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2276 }
2277
2278 /* Delete function for a quick_file_names. */
2279
2280 static void
2281 delete_file_name_entry (void *e)
2282 {
2283 struct quick_file_names *file_data = e;
2284 int i;
2285
2286 for (i = 0; i < file_data->num_file_names; ++i)
2287 {
2288 xfree ((void*) file_data->file_names[i]);
2289 if (file_data->real_names)
2290 xfree ((void*) file_data->real_names[i]);
2291 }
2292
2293 /* The space for the struct itself lives on objfile_obstack,
2294 so we don't free it here. */
2295 }
2296
2297 /* Create a quick_file_names hash table. */
2298
2299 static htab_t
2300 create_quick_file_names_table (unsigned int nr_initial_entries)
2301 {
2302 return htab_create_alloc (nr_initial_entries,
2303 hash_file_name_entry, eq_file_name_entry,
2304 delete_file_name_entry, xcalloc, xfree);
2305 }
2306
2307 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2308 have to be created afterwards. You should call age_cached_comp_units after
2309 processing PER_CU->CU. dw2_setup must have been already called. */
2310
2311 static void
2312 load_cu (struct dwarf2_per_cu_data *per_cu)
2313 {
2314 if (per_cu->is_debug_types)
2315 load_full_type_unit (per_cu);
2316 else
2317 load_full_comp_unit (per_cu, language_minimal);
2318
2319 gdb_assert (per_cu->cu != NULL);
2320
2321 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2322 }
2323
2324 /* Read in the symbols for PER_CU. */
2325
2326 static void
2327 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2328 {
2329 struct cleanup *back_to;
2330
2331 /* Skip type_unit_groups, reading the type units they contain
2332 is handled elsewhere. */
2333 if (IS_TYPE_UNIT_GROUP (per_cu))
2334 return;
2335
2336 back_to = make_cleanup (dwarf2_release_queue, NULL);
2337
2338 if (dwarf2_per_objfile->using_index
2339 ? per_cu->v.quick->symtab == NULL
2340 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2341 {
2342 queue_comp_unit (per_cu, language_minimal);
2343 load_cu (per_cu);
2344 }
2345
2346 process_queue ();
2347
2348 /* Age the cache, releasing compilation units that have not
2349 been used recently. */
2350 age_cached_comp_units ();
2351
2352 do_cleanups (back_to);
2353 }
2354
2355 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2356 the objfile from which this CU came. Returns the resulting symbol
2357 table. */
2358
2359 static struct symtab *
2360 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2361 {
2362 gdb_assert (dwarf2_per_objfile->using_index);
2363 if (!per_cu->v.quick->symtab)
2364 {
2365 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2366 increment_reading_symtab ();
2367 dw2_do_instantiate_symtab (per_cu);
2368 process_cu_includes ();
2369 do_cleanups (back_to);
2370 }
2371 return per_cu->v.quick->symtab;
2372 }
2373
2374 /* Return the CU given its index.
2375
2376 This is intended for loops like:
2377
2378 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2379 + dwarf2_per_objfile->n_type_units); ++i)
2380 {
2381 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2382
2383 ...;
2384 }
2385 */
2386
2387 static struct dwarf2_per_cu_data *
2388 dw2_get_cu (int index)
2389 {
2390 if (index >= dwarf2_per_objfile->n_comp_units)
2391 {
2392 index -= dwarf2_per_objfile->n_comp_units;
2393 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2394 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2395 }
2396
2397 return dwarf2_per_objfile->all_comp_units[index];
2398 }
2399
2400 /* Return the primary CU given its index.
2401 The difference between this function and dw2_get_cu is in the handling
2402 of type units (TUs). Here we return the type_unit_group object.
2403
2404 This is intended for loops like:
2405
2406 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2407 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2408 {
2409 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2410
2411 ...;
2412 }
2413 */
2414
2415 static struct dwarf2_per_cu_data *
2416 dw2_get_primary_cu (int index)
2417 {
2418 if (index >= dwarf2_per_objfile->n_comp_units)
2419 {
2420 index -= dwarf2_per_objfile->n_comp_units;
2421 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2422 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2423 }
2424
2425 return dwarf2_per_objfile->all_comp_units[index];
2426 }
2427
2428 /* A helper for create_cus_from_index that handles a given list of
2429 CUs. */
2430
2431 static void
2432 create_cus_from_index_list (struct objfile *objfile,
2433 const gdb_byte *cu_list, offset_type n_elements,
2434 struct dwarf2_section_info *section,
2435 int is_dwz,
2436 int base_offset)
2437 {
2438 offset_type i;
2439
2440 for (i = 0; i < n_elements; i += 2)
2441 {
2442 struct dwarf2_per_cu_data *the_cu;
2443 ULONGEST offset, length;
2444
2445 gdb_static_assert (sizeof (ULONGEST) >= 8);
2446 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2447 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2448 cu_list += 2 * 8;
2449
2450 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2451 struct dwarf2_per_cu_data);
2452 the_cu->offset.sect_off = offset;
2453 the_cu->length = length;
2454 the_cu->objfile = objfile;
2455 the_cu->section = section;
2456 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2457 struct dwarf2_per_cu_quick_data);
2458 the_cu->is_dwz = is_dwz;
2459 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2460 }
2461 }
2462
2463 /* Read the CU list from the mapped index, and use it to create all
2464 the CU objects for this objfile. */
2465
2466 static void
2467 create_cus_from_index (struct objfile *objfile,
2468 const gdb_byte *cu_list, offset_type cu_list_elements,
2469 const gdb_byte *dwz_list, offset_type dwz_elements)
2470 {
2471 struct dwz_file *dwz;
2472
2473 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2474 dwarf2_per_objfile->all_comp_units
2475 = obstack_alloc (&objfile->objfile_obstack,
2476 dwarf2_per_objfile->n_comp_units
2477 * sizeof (struct dwarf2_per_cu_data *));
2478
2479 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2480 &dwarf2_per_objfile->info, 0, 0);
2481
2482 if (dwz_elements == 0)
2483 return;
2484
2485 dwz = dwarf2_get_dwz_file ();
2486 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2487 cu_list_elements / 2);
2488 }
2489
2490 /* Create the signatured type hash table from the index. */
2491
2492 static void
2493 create_signatured_type_table_from_index (struct objfile *objfile,
2494 struct dwarf2_section_info *section,
2495 const gdb_byte *bytes,
2496 offset_type elements)
2497 {
2498 offset_type i;
2499 htab_t sig_types_hash;
2500
2501 dwarf2_per_objfile->n_type_units = elements / 3;
2502 dwarf2_per_objfile->all_type_units
2503 = xmalloc (dwarf2_per_objfile->n_type_units
2504 * sizeof (struct signatured_type *));
2505
2506 sig_types_hash = allocate_signatured_type_table (objfile);
2507
2508 for (i = 0; i < elements; i += 3)
2509 {
2510 struct signatured_type *sig_type;
2511 ULONGEST offset, type_offset_in_tu, signature;
2512 void **slot;
2513
2514 gdb_static_assert (sizeof (ULONGEST) >= 8);
2515 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2516 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2517 BFD_ENDIAN_LITTLE);
2518 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2519 bytes += 3 * 8;
2520
2521 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2522 struct signatured_type);
2523 sig_type->signature = signature;
2524 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2525 sig_type->per_cu.is_debug_types = 1;
2526 sig_type->per_cu.section = section;
2527 sig_type->per_cu.offset.sect_off = offset;
2528 sig_type->per_cu.objfile = objfile;
2529 sig_type->per_cu.v.quick
2530 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2531 struct dwarf2_per_cu_quick_data);
2532
2533 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2534 *slot = sig_type;
2535
2536 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2537 }
2538
2539 dwarf2_per_objfile->signatured_types = sig_types_hash;
2540 }
2541
2542 /* Read the address map data from the mapped index, and use it to
2543 populate the objfile's psymtabs_addrmap. */
2544
2545 static void
2546 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2547 {
2548 const gdb_byte *iter, *end;
2549 struct obstack temp_obstack;
2550 struct addrmap *mutable_map;
2551 struct cleanup *cleanup;
2552 CORE_ADDR baseaddr;
2553
2554 obstack_init (&temp_obstack);
2555 cleanup = make_cleanup_obstack_free (&temp_obstack);
2556 mutable_map = addrmap_create_mutable (&temp_obstack);
2557
2558 iter = index->address_table;
2559 end = iter + index->address_table_size;
2560
2561 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2562
2563 while (iter < end)
2564 {
2565 ULONGEST hi, lo, cu_index;
2566 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2567 iter += 8;
2568 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2569 iter += 8;
2570 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2571 iter += 4;
2572
2573 if (cu_index < dwarf2_per_objfile->n_comp_units)
2574 {
2575 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2576 dw2_get_cu (cu_index));
2577 }
2578 else
2579 {
2580 complaint (&symfile_complaints,
2581 _(".gdb_index address table has invalid CU number %u"),
2582 (unsigned) cu_index);
2583 }
2584 }
2585
2586 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2587 &objfile->objfile_obstack);
2588 do_cleanups (cleanup);
2589 }
2590
2591 /* The hash function for strings in the mapped index. This is the same as
2592 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2593 implementation. This is necessary because the hash function is tied to the
2594 format of the mapped index file. The hash values do not have to match with
2595 SYMBOL_HASH_NEXT.
2596
2597 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2598
2599 static hashval_t
2600 mapped_index_string_hash (int index_version, const void *p)
2601 {
2602 const unsigned char *str = (const unsigned char *) p;
2603 hashval_t r = 0;
2604 unsigned char c;
2605
2606 while ((c = *str++) != 0)
2607 {
2608 if (index_version >= 5)
2609 c = tolower (c);
2610 r = r * 67 + c - 113;
2611 }
2612
2613 return r;
2614 }
2615
2616 /* Find a slot in the mapped index INDEX for the object named NAME.
2617 If NAME is found, set *VEC_OUT to point to the CU vector in the
2618 constant pool and return 1. If NAME cannot be found, return 0. */
2619
2620 static int
2621 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2622 offset_type **vec_out)
2623 {
2624 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2625 offset_type hash;
2626 offset_type slot, step;
2627 int (*cmp) (const char *, const char *);
2628
2629 if (current_language->la_language == language_cplus
2630 || current_language->la_language == language_java
2631 || current_language->la_language == language_fortran)
2632 {
2633 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2634 not contain any. */
2635 const char *paren = strchr (name, '(');
2636
2637 if (paren)
2638 {
2639 char *dup;
2640
2641 dup = xmalloc (paren - name + 1);
2642 memcpy (dup, name, paren - name);
2643 dup[paren - name] = 0;
2644
2645 make_cleanup (xfree, dup);
2646 name = dup;
2647 }
2648 }
2649
2650 /* Index version 4 did not support case insensitive searches. But the
2651 indices for case insensitive languages are built in lowercase, therefore
2652 simulate our NAME being searched is also lowercased. */
2653 hash = mapped_index_string_hash ((index->version == 4
2654 && case_sensitivity == case_sensitive_off
2655 ? 5 : index->version),
2656 name);
2657
2658 slot = hash & (index->symbol_table_slots - 1);
2659 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2660 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2661
2662 for (;;)
2663 {
2664 /* Convert a slot number to an offset into the table. */
2665 offset_type i = 2 * slot;
2666 const char *str;
2667 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2668 {
2669 do_cleanups (back_to);
2670 return 0;
2671 }
2672
2673 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2674 if (!cmp (name, str))
2675 {
2676 *vec_out = (offset_type *) (index->constant_pool
2677 + MAYBE_SWAP (index->symbol_table[i + 1]));
2678 do_cleanups (back_to);
2679 return 1;
2680 }
2681
2682 slot = (slot + step) & (index->symbol_table_slots - 1);
2683 }
2684 }
2685
2686 /* A helper function that reads the .gdb_index from SECTION and fills
2687 in MAP. FILENAME is the name of the file containing the section;
2688 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2689 ok to use deprecated sections.
2690
2691 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2692 out parameters that are filled in with information about the CU and
2693 TU lists in the section.
2694
2695 Returns 1 if all went well, 0 otherwise. */
2696
2697 static int
2698 read_index_from_section (struct objfile *objfile,
2699 const char *filename,
2700 int deprecated_ok,
2701 struct dwarf2_section_info *section,
2702 struct mapped_index *map,
2703 const gdb_byte **cu_list,
2704 offset_type *cu_list_elements,
2705 const gdb_byte **types_list,
2706 offset_type *types_list_elements)
2707 {
2708 const gdb_byte *addr;
2709 offset_type version;
2710 offset_type *metadata;
2711 int i;
2712
2713 if (dwarf2_section_empty_p (section))
2714 return 0;
2715
2716 /* Older elfutils strip versions could keep the section in the main
2717 executable while splitting it for the separate debug info file. */
2718 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2719 return 0;
2720
2721 dwarf2_read_section (objfile, section);
2722
2723 addr = section->buffer;
2724 /* Version check. */
2725 version = MAYBE_SWAP (*(offset_type *) addr);
2726 /* Versions earlier than 3 emitted every copy of a psymbol. This
2727 causes the index to behave very poorly for certain requests. Version 3
2728 contained incomplete addrmap. So, it seems better to just ignore such
2729 indices. */
2730 if (version < 4)
2731 {
2732 static int warning_printed = 0;
2733 if (!warning_printed)
2734 {
2735 warning (_("Skipping obsolete .gdb_index section in %s."),
2736 filename);
2737 warning_printed = 1;
2738 }
2739 return 0;
2740 }
2741 /* Index version 4 uses a different hash function than index version
2742 5 and later.
2743
2744 Versions earlier than 6 did not emit psymbols for inlined
2745 functions. Using these files will cause GDB not to be able to
2746 set breakpoints on inlined functions by name, so we ignore these
2747 indices unless the user has done
2748 "set use-deprecated-index-sections on". */
2749 if (version < 6 && !deprecated_ok)
2750 {
2751 static int warning_printed = 0;
2752 if (!warning_printed)
2753 {
2754 warning (_("\
2755 Skipping deprecated .gdb_index section in %s.\n\
2756 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2757 to use the section anyway."),
2758 filename);
2759 warning_printed = 1;
2760 }
2761 return 0;
2762 }
2763 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2764 of the TU (for symbols coming from TUs). It's just a performance bug, and
2765 we can't distinguish gdb-generated indices from gold-generated ones, so
2766 nothing to do here. */
2767
2768 /* Indexes with higher version than the one supported by GDB may be no
2769 longer backward compatible. */
2770 if (version > 8)
2771 return 0;
2772
2773 map->version = version;
2774 map->total_size = section->size;
2775
2776 metadata = (offset_type *) (addr + sizeof (offset_type));
2777
2778 i = 0;
2779 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2780 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2781 / 8);
2782 ++i;
2783
2784 *types_list = addr + MAYBE_SWAP (metadata[i]);
2785 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2786 - MAYBE_SWAP (metadata[i]))
2787 / 8);
2788 ++i;
2789
2790 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2791 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2792 - MAYBE_SWAP (metadata[i]));
2793 ++i;
2794
2795 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2796 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2797 - MAYBE_SWAP (metadata[i]))
2798 / (2 * sizeof (offset_type)));
2799 ++i;
2800
2801 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2802
2803 return 1;
2804 }
2805
2806
2807 /* Read the index file. If everything went ok, initialize the "quick"
2808 elements of all the CUs and return 1. Otherwise, return 0. */
2809
2810 static int
2811 dwarf2_read_index (struct objfile *objfile)
2812 {
2813 struct mapped_index local_map, *map;
2814 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2815 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2816 struct dwz_file *dwz;
2817
2818 if (!read_index_from_section (objfile, objfile->name,
2819 use_deprecated_index_sections,
2820 &dwarf2_per_objfile->gdb_index, &local_map,
2821 &cu_list, &cu_list_elements,
2822 &types_list, &types_list_elements))
2823 return 0;
2824
2825 /* Don't use the index if it's empty. */
2826 if (local_map.symbol_table_slots == 0)
2827 return 0;
2828
2829 /* If there is a .dwz file, read it so we can get its CU list as
2830 well. */
2831 dwz = dwarf2_get_dwz_file ();
2832 if (dwz != NULL)
2833 {
2834 struct mapped_index dwz_map;
2835 const gdb_byte *dwz_types_ignore;
2836 offset_type dwz_types_elements_ignore;
2837
2838 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2839 1,
2840 &dwz->gdb_index, &dwz_map,
2841 &dwz_list, &dwz_list_elements,
2842 &dwz_types_ignore,
2843 &dwz_types_elements_ignore))
2844 {
2845 warning (_("could not read '.gdb_index' section from %s; skipping"),
2846 bfd_get_filename (dwz->dwz_bfd));
2847 return 0;
2848 }
2849 }
2850
2851 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2852 dwz_list_elements);
2853
2854 if (types_list_elements)
2855 {
2856 struct dwarf2_section_info *section;
2857
2858 /* We can only handle a single .debug_types when we have an
2859 index. */
2860 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2861 return 0;
2862
2863 section = VEC_index (dwarf2_section_info_def,
2864 dwarf2_per_objfile->types, 0);
2865
2866 create_signatured_type_table_from_index (objfile, section, types_list,
2867 types_list_elements);
2868 }
2869
2870 create_addrmap_from_index (objfile, &local_map);
2871
2872 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2873 *map = local_map;
2874
2875 dwarf2_per_objfile->index_table = map;
2876 dwarf2_per_objfile->using_index = 1;
2877 dwarf2_per_objfile->quick_file_names_table =
2878 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2879
2880 return 1;
2881 }
2882
2883 /* A helper for the "quick" functions which sets the global
2884 dwarf2_per_objfile according to OBJFILE. */
2885
2886 static void
2887 dw2_setup (struct objfile *objfile)
2888 {
2889 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2890 gdb_assert (dwarf2_per_objfile);
2891 }
2892
2893 /* die_reader_func for dw2_get_file_names. */
2894
2895 static void
2896 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2897 const gdb_byte *info_ptr,
2898 struct die_info *comp_unit_die,
2899 int has_children,
2900 void *data)
2901 {
2902 struct dwarf2_cu *cu = reader->cu;
2903 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2904 struct objfile *objfile = dwarf2_per_objfile->objfile;
2905 struct dwarf2_per_cu_data *lh_cu;
2906 struct line_header *lh;
2907 struct attribute *attr;
2908 int i;
2909 const char *name, *comp_dir;
2910 void **slot;
2911 struct quick_file_names *qfn;
2912 unsigned int line_offset;
2913
2914 gdb_assert (! this_cu->is_debug_types);
2915
2916 /* Our callers never want to match partial units -- instead they
2917 will match the enclosing full CU. */
2918 if (comp_unit_die->tag == DW_TAG_partial_unit)
2919 {
2920 this_cu->v.quick->no_file_data = 1;
2921 return;
2922 }
2923
2924 lh_cu = this_cu;
2925 lh = NULL;
2926 slot = NULL;
2927 line_offset = 0;
2928
2929 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2930 if (attr)
2931 {
2932 struct quick_file_names find_entry;
2933
2934 line_offset = DW_UNSND (attr);
2935
2936 /* We may have already read in this line header (TU line header sharing).
2937 If we have we're done. */
2938 find_entry.hash.dwo_unit = cu->dwo_unit;
2939 find_entry.hash.line_offset.sect_off = line_offset;
2940 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2941 &find_entry, INSERT);
2942 if (*slot != NULL)
2943 {
2944 lh_cu->v.quick->file_names = *slot;
2945 return;
2946 }
2947
2948 lh = dwarf_decode_line_header (line_offset, cu);
2949 }
2950 if (lh == NULL)
2951 {
2952 lh_cu->v.quick->no_file_data = 1;
2953 return;
2954 }
2955
2956 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2957 qfn->hash.dwo_unit = cu->dwo_unit;
2958 qfn->hash.line_offset.sect_off = line_offset;
2959 gdb_assert (slot != NULL);
2960 *slot = qfn;
2961
2962 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2963
2964 qfn->num_file_names = lh->num_file_names;
2965 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2966 lh->num_file_names * sizeof (char *));
2967 for (i = 0; i < lh->num_file_names; ++i)
2968 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2969 qfn->real_names = NULL;
2970
2971 free_line_header (lh);
2972
2973 lh_cu->v.quick->file_names = qfn;
2974 }
2975
2976 /* A helper for the "quick" functions which attempts to read the line
2977 table for THIS_CU. */
2978
2979 static struct quick_file_names *
2980 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
2981 {
2982 /* This should never be called for TUs. */
2983 gdb_assert (! this_cu->is_debug_types);
2984 /* Nor type unit groups. */
2985 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
2986
2987 if (this_cu->v.quick->file_names != NULL)
2988 return this_cu->v.quick->file_names;
2989 /* If we know there is no line data, no point in looking again. */
2990 if (this_cu->v.quick->no_file_data)
2991 return NULL;
2992
2993 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2994
2995 if (this_cu->v.quick->no_file_data)
2996 return NULL;
2997 return this_cu->v.quick->file_names;
2998 }
2999
3000 /* A helper for the "quick" functions which computes and caches the
3001 real path for a given file name from the line table. */
3002
3003 static const char *
3004 dw2_get_real_path (struct objfile *objfile,
3005 struct quick_file_names *qfn, int index)
3006 {
3007 if (qfn->real_names == NULL)
3008 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3009 qfn->num_file_names, sizeof (char *));
3010
3011 if (qfn->real_names[index] == NULL)
3012 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3013
3014 return qfn->real_names[index];
3015 }
3016
3017 static struct symtab *
3018 dw2_find_last_source_symtab (struct objfile *objfile)
3019 {
3020 int index;
3021
3022 dw2_setup (objfile);
3023 index = dwarf2_per_objfile->n_comp_units - 1;
3024 return dw2_instantiate_symtab (dw2_get_cu (index));
3025 }
3026
3027 /* Traversal function for dw2_forget_cached_source_info. */
3028
3029 static int
3030 dw2_free_cached_file_names (void **slot, void *info)
3031 {
3032 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3033
3034 if (file_data->real_names)
3035 {
3036 int i;
3037
3038 for (i = 0; i < file_data->num_file_names; ++i)
3039 {
3040 xfree ((void*) file_data->real_names[i]);
3041 file_data->real_names[i] = NULL;
3042 }
3043 }
3044
3045 return 1;
3046 }
3047
3048 static void
3049 dw2_forget_cached_source_info (struct objfile *objfile)
3050 {
3051 dw2_setup (objfile);
3052
3053 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3054 dw2_free_cached_file_names, NULL);
3055 }
3056
3057 /* Helper function for dw2_map_symtabs_matching_filename that expands
3058 the symtabs and calls the iterator. */
3059
3060 static int
3061 dw2_map_expand_apply (struct objfile *objfile,
3062 struct dwarf2_per_cu_data *per_cu,
3063 const char *name, const char *real_path,
3064 int (*callback) (struct symtab *, void *),
3065 void *data)
3066 {
3067 struct symtab *last_made = objfile->symtabs;
3068
3069 /* Don't visit already-expanded CUs. */
3070 if (per_cu->v.quick->symtab)
3071 return 0;
3072
3073 /* This may expand more than one symtab, and we want to iterate over
3074 all of them. */
3075 dw2_instantiate_symtab (per_cu);
3076
3077 return iterate_over_some_symtabs (name, real_path, callback, data,
3078 objfile->symtabs, last_made);
3079 }
3080
3081 /* Implementation of the map_symtabs_matching_filename method. */
3082
3083 static int
3084 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3085 const char *real_path,
3086 int (*callback) (struct symtab *, void *),
3087 void *data)
3088 {
3089 int i;
3090 const char *name_basename = lbasename (name);
3091
3092 dw2_setup (objfile);
3093
3094 /* The rule is CUs specify all the files, including those used by
3095 any TU, so there's no need to scan TUs here. */
3096
3097 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3098 {
3099 int j;
3100 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3101 struct quick_file_names *file_data;
3102
3103 /* We only need to look at symtabs not already expanded. */
3104 if (per_cu->v.quick->symtab)
3105 continue;
3106
3107 file_data = dw2_get_file_names (per_cu);
3108 if (file_data == NULL)
3109 continue;
3110
3111 for (j = 0; j < file_data->num_file_names; ++j)
3112 {
3113 const char *this_name = file_data->file_names[j];
3114 const char *this_real_name;
3115
3116 if (compare_filenames_for_search (this_name, name))
3117 {
3118 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3119 callback, data))
3120 return 1;
3121 continue;
3122 }
3123
3124 /* Before we invoke realpath, which can get expensive when many
3125 files are involved, do a quick comparison of the basenames. */
3126 if (! basenames_may_differ
3127 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3128 continue;
3129
3130 this_real_name = dw2_get_real_path (objfile, file_data, j);
3131 if (compare_filenames_for_search (this_real_name, name))
3132 {
3133 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3134 callback, data))
3135 return 1;
3136 continue;
3137 }
3138
3139 if (real_path != NULL)
3140 {
3141 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3142 gdb_assert (IS_ABSOLUTE_PATH (name));
3143 if (this_real_name != NULL
3144 && FILENAME_CMP (real_path, this_real_name) == 0)
3145 {
3146 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3147 callback, data))
3148 return 1;
3149 continue;
3150 }
3151 }
3152 }
3153 }
3154
3155 return 0;
3156 }
3157
3158 /* Struct used to manage iterating over all CUs looking for a symbol. */
3159
3160 struct dw2_symtab_iterator
3161 {
3162 /* The internalized form of .gdb_index. */
3163 struct mapped_index *index;
3164 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3165 int want_specific_block;
3166 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3167 Unused if !WANT_SPECIFIC_BLOCK. */
3168 int block_index;
3169 /* The kind of symbol we're looking for. */
3170 domain_enum domain;
3171 /* The list of CUs from the index entry of the symbol,
3172 or NULL if not found. */
3173 offset_type *vec;
3174 /* The next element in VEC to look at. */
3175 int next;
3176 /* The number of elements in VEC, or zero if there is no match. */
3177 int length;
3178 };
3179
3180 /* Initialize the index symtab iterator ITER.
3181 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3182 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3183
3184 static void
3185 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3186 struct mapped_index *index,
3187 int want_specific_block,
3188 int block_index,
3189 domain_enum domain,
3190 const char *name)
3191 {
3192 iter->index = index;
3193 iter->want_specific_block = want_specific_block;
3194 iter->block_index = block_index;
3195 iter->domain = domain;
3196 iter->next = 0;
3197
3198 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3199 iter->length = MAYBE_SWAP (*iter->vec);
3200 else
3201 {
3202 iter->vec = NULL;
3203 iter->length = 0;
3204 }
3205 }
3206
3207 /* Return the next matching CU or NULL if there are no more. */
3208
3209 static struct dwarf2_per_cu_data *
3210 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3211 {
3212 for ( ; iter->next < iter->length; ++iter->next)
3213 {
3214 offset_type cu_index_and_attrs =
3215 MAYBE_SWAP (iter->vec[iter->next + 1]);
3216 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3217 struct dwarf2_per_cu_data *per_cu;
3218 int want_static = iter->block_index != GLOBAL_BLOCK;
3219 /* This value is only valid for index versions >= 7. */
3220 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3221 gdb_index_symbol_kind symbol_kind =
3222 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3223 /* Only check the symbol attributes if they're present.
3224 Indices prior to version 7 don't record them,
3225 and indices >= 7 may elide them for certain symbols
3226 (gold does this). */
3227 int attrs_valid =
3228 (iter->index->version >= 7
3229 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3230
3231 /* Don't crash on bad data. */
3232 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3233 + dwarf2_per_objfile->n_type_units))
3234 {
3235 complaint (&symfile_complaints,
3236 _(".gdb_index entry has bad CU index"
3237 " [in module %s]"), dwarf2_per_objfile->objfile->name);
3238 continue;
3239 }
3240
3241 per_cu = dw2_get_cu (cu_index);
3242
3243 /* Skip if already read in. */
3244 if (per_cu->v.quick->symtab)
3245 continue;
3246
3247 if (attrs_valid
3248 && iter->want_specific_block
3249 && want_static != is_static)
3250 continue;
3251
3252 /* Only check the symbol's kind if it has one. */
3253 if (attrs_valid)
3254 {
3255 switch (iter->domain)
3256 {
3257 case VAR_DOMAIN:
3258 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3259 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3260 /* Some types are also in VAR_DOMAIN. */
3261 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3262 continue;
3263 break;
3264 case STRUCT_DOMAIN:
3265 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3266 continue;
3267 break;
3268 case LABEL_DOMAIN:
3269 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3270 continue;
3271 break;
3272 default:
3273 break;
3274 }
3275 }
3276
3277 ++iter->next;
3278 return per_cu;
3279 }
3280
3281 return NULL;
3282 }
3283
3284 static struct symtab *
3285 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3286 const char *name, domain_enum domain)
3287 {
3288 struct symtab *stab_best = NULL;
3289 struct mapped_index *index;
3290
3291 dw2_setup (objfile);
3292
3293 index = dwarf2_per_objfile->index_table;
3294
3295 /* index is NULL if OBJF_READNOW. */
3296 if (index)
3297 {
3298 struct dw2_symtab_iterator iter;
3299 struct dwarf2_per_cu_data *per_cu;
3300
3301 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3302
3303 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3304 {
3305 struct symbol *sym = NULL;
3306 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3307
3308 /* Some caution must be observed with overloaded functions
3309 and methods, since the index will not contain any overload
3310 information (but NAME might contain it). */
3311 if (stab->primary)
3312 {
3313 struct blockvector *bv = BLOCKVECTOR (stab);
3314 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3315
3316 sym = lookup_block_symbol (block, name, domain);
3317 }
3318
3319 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3320 {
3321 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3322 return stab;
3323
3324 stab_best = stab;
3325 }
3326
3327 /* Keep looking through other CUs. */
3328 }
3329 }
3330
3331 return stab_best;
3332 }
3333
3334 static void
3335 dw2_print_stats (struct objfile *objfile)
3336 {
3337 int i, total, count;
3338
3339 dw2_setup (objfile);
3340 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3341 count = 0;
3342 for (i = 0; i < total; ++i)
3343 {
3344 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3345
3346 if (!per_cu->v.quick->symtab)
3347 ++count;
3348 }
3349 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3350 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3351 }
3352
3353 static void
3354 dw2_dump (struct objfile *objfile)
3355 {
3356 /* Nothing worth printing. */
3357 }
3358
3359 static void
3360 dw2_relocate (struct objfile *objfile,
3361 const struct section_offsets *new_offsets,
3362 const struct section_offsets *delta)
3363 {
3364 /* There's nothing to relocate here. */
3365 }
3366
3367 static void
3368 dw2_expand_symtabs_for_function (struct objfile *objfile,
3369 const char *func_name)
3370 {
3371 struct mapped_index *index;
3372
3373 dw2_setup (objfile);
3374
3375 index = dwarf2_per_objfile->index_table;
3376
3377 /* index is NULL if OBJF_READNOW. */
3378 if (index)
3379 {
3380 struct dw2_symtab_iterator iter;
3381 struct dwarf2_per_cu_data *per_cu;
3382
3383 /* Note: It doesn't matter what we pass for block_index here. */
3384 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3385 func_name);
3386
3387 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3388 dw2_instantiate_symtab (per_cu);
3389 }
3390 }
3391
3392 static void
3393 dw2_expand_all_symtabs (struct objfile *objfile)
3394 {
3395 int i;
3396
3397 dw2_setup (objfile);
3398
3399 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3400 + dwarf2_per_objfile->n_type_units); ++i)
3401 {
3402 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3403
3404 dw2_instantiate_symtab (per_cu);
3405 }
3406 }
3407
3408 static void
3409 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3410 const char *fullname)
3411 {
3412 int i;
3413
3414 dw2_setup (objfile);
3415
3416 /* We don't need to consider type units here.
3417 This is only called for examining code, e.g. expand_line_sal.
3418 There can be an order of magnitude (or more) more type units
3419 than comp units, and we avoid them if we can. */
3420
3421 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3422 {
3423 int j;
3424 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3425 struct quick_file_names *file_data;
3426
3427 /* We only need to look at symtabs not already expanded. */
3428 if (per_cu->v.quick->symtab)
3429 continue;
3430
3431 file_data = dw2_get_file_names (per_cu);
3432 if (file_data == NULL)
3433 continue;
3434
3435 for (j = 0; j < file_data->num_file_names; ++j)
3436 {
3437 const char *this_fullname = file_data->file_names[j];
3438
3439 if (filename_cmp (this_fullname, fullname) == 0)
3440 {
3441 dw2_instantiate_symtab (per_cu);
3442 break;
3443 }
3444 }
3445 }
3446 }
3447
3448 /* A helper function for dw2_find_symbol_file that finds the primary
3449 file name for a given CU. This is a die_reader_func. */
3450
3451 static void
3452 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3453 const gdb_byte *info_ptr,
3454 struct die_info *comp_unit_die,
3455 int has_children,
3456 void *data)
3457 {
3458 const char **result_ptr = data;
3459 struct dwarf2_cu *cu = reader->cu;
3460 struct attribute *attr;
3461
3462 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3463 if (attr == NULL)
3464 *result_ptr = NULL;
3465 else
3466 *result_ptr = DW_STRING (attr);
3467 }
3468
3469 static const char *
3470 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3471 {
3472 struct dwarf2_per_cu_data *per_cu;
3473 offset_type *vec;
3474 const char *filename;
3475
3476 dw2_setup (objfile);
3477
3478 /* index_table is NULL if OBJF_READNOW. */
3479 if (!dwarf2_per_objfile->index_table)
3480 {
3481 struct symtab *s;
3482
3483 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3484 {
3485 struct blockvector *bv = BLOCKVECTOR (s);
3486 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3487 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3488
3489 if (sym)
3490 {
3491 /* Only file extension of returned filename is recognized. */
3492 return SYMBOL_SYMTAB (sym)->filename;
3493 }
3494 }
3495 return NULL;
3496 }
3497
3498 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3499 name, &vec))
3500 return NULL;
3501
3502 /* Note that this just looks at the very first one named NAME -- but
3503 actually we are looking for a function. find_main_filename
3504 should be rewritten so that it doesn't require a custom hook. It
3505 could just use the ordinary symbol tables. */
3506 /* vec[0] is the length, which must always be >0. */
3507 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3508
3509 if (per_cu->v.quick->symtab != NULL)
3510 {
3511 /* Only file extension of returned filename is recognized. */
3512 return per_cu->v.quick->symtab->filename;
3513 }
3514
3515 /* Initialize filename in case there's a problem reading the DWARF,
3516 dw2_get_primary_filename_reader may not get called. */
3517 filename = NULL;
3518 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3519 dw2_get_primary_filename_reader, &filename);
3520
3521 /* Only file extension of returned filename is recognized. */
3522 return filename;
3523 }
3524
3525 static void
3526 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3527 struct objfile *objfile, int global,
3528 int (*callback) (struct block *,
3529 struct symbol *, void *),
3530 void *data, symbol_compare_ftype *match,
3531 symbol_compare_ftype *ordered_compare)
3532 {
3533 /* Currently unimplemented; used for Ada. The function can be called if the
3534 current language is Ada for a non-Ada objfile using GNU index. As Ada
3535 does not look for non-Ada symbols this function should just return. */
3536 }
3537
3538 static void
3539 dw2_expand_symtabs_matching
3540 (struct objfile *objfile,
3541 int (*file_matcher) (const char *, void *, int basenames),
3542 int (*name_matcher) (const char *, void *),
3543 enum search_domain kind,
3544 void *data)
3545 {
3546 int i;
3547 offset_type iter;
3548 struct mapped_index *index;
3549
3550 dw2_setup (objfile);
3551
3552 /* index_table is NULL if OBJF_READNOW. */
3553 if (!dwarf2_per_objfile->index_table)
3554 return;
3555 index = dwarf2_per_objfile->index_table;
3556
3557 if (file_matcher != NULL)
3558 {
3559 struct cleanup *cleanup;
3560 htab_t visited_found, visited_not_found;
3561
3562 visited_found = htab_create_alloc (10,
3563 htab_hash_pointer, htab_eq_pointer,
3564 NULL, xcalloc, xfree);
3565 cleanup = make_cleanup_htab_delete (visited_found);
3566 visited_not_found = htab_create_alloc (10,
3567 htab_hash_pointer, htab_eq_pointer,
3568 NULL, xcalloc, xfree);
3569 make_cleanup_htab_delete (visited_not_found);
3570
3571 /* The rule is CUs specify all the files, including those used by
3572 any TU, so there's no need to scan TUs here. */
3573
3574 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3575 {
3576 int j;
3577 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3578 struct quick_file_names *file_data;
3579 void **slot;
3580
3581 per_cu->v.quick->mark = 0;
3582
3583 /* We only need to look at symtabs not already expanded. */
3584 if (per_cu->v.quick->symtab)
3585 continue;
3586
3587 file_data = dw2_get_file_names (per_cu);
3588 if (file_data == NULL)
3589 continue;
3590
3591 if (htab_find (visited_not_found, file_data) != NULL)
3592 continue;
3593 else if (htab_find (visited_found, file_data) != NULL)
3594 {
3595 per_cu->v.quick->mark = 1;
3596 continue;
3597 }
3598
3599 for (j = 0; j < file_data->num_file_names; ++j)
3600 {
3601 const char *this_real_name;
3602
3603 if (file_matcher (file_data->file_names[j], data, 0))
3604 {
3605 per_cu->v.quick->mark = 1;
3606 break;
3607 }
3608
3609 /* Before we invoke realpath, which can get expensive when many
3610 files are involved, do a quick comparison of the basenames. */
3611 if (!basenames_may_differ
3612 && !file_matcher (lbasename (file_data->file_names[j]),
3613 data, 1))
3614 continue;
3615
3616 this_real_name = dw2_get_real_path (objfile, file_data, j);
3617 if (file_matcher (this_real_name, data, 0))
3618 {
3619 per_cu->v.quick->mark = 1;
3620 break;
3621 }
3622 }
3623
3624 slot = htab_find_slot (per_cu->v.quick->mark
3625 ? visited_found
3626 : visited_not_found,
3627 file_data, INSERT);
3628 *slot = file_data;
3629 }
3630
3631 do_cleanups (cleanup);
3632 }
3633
3634 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3635 {
3636 offset_type idx = 2 * iter;
3637 const char *name;
3638 offset_type *vec, vec_len, vec_idx;
3639
3640 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3641 continue;
3642
3643 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3644
3645 if (! (*name_matcher) (name, data))
3646 continue;
3647
3648 /* The name was matched, now expand corresponding CUs that were
3649 marked. */
3650 vec = (offset_type *) (index->constant_pool
3651 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3652 vec_len = MAYBE_SWAP (vec[0]);
3653 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3654 {
3655 struct dwarf2_per_cu_data *per_cu;
3656 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3657 gdb_index_symbol_kind symbol_kind =
3658 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3659 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3660 /* Only check the symbol attributes if they're present.
3661 Indices prior to version 7 don't record them,
3662 and indices >= 7 may elide them for certain symbols
3663 (gold does this). */
3664 int attrs_valid =
3665 (index->version >= 7
3666 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3667
3668 /* Only check the symbol's kind if it has one. */
3669 if (attrs_valid)
3670 {
3671 switch (kind)
3672 {
3673 case VARIABLES_DOMAIN:
3674 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3675 continue;
3676 break;
3677 case FUNCTIONS_DOMAIN:
3678 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3679 continue;
3680 break;
3681 case TYPES_DOMAIN:
3682 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3683 continue;
3684 break;
3685 default:
3686 break;
3687 }
3688 }
3689
3690 /* Don't crash on bad data. */
3691 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3692 + dwarf2_per_objfile->n_type_units))
3693 {
3694 complaint (&symfile_complaints,
3695 _(".gdb_index entry has bad CU index"
3696 " [in module %s]"), objfile->name);
3697 continue;
3698 }
3699
3700 per_cu = dw2_get_cu (cu_index);
3701 if (file_matcher == NULL || per_cu->v.quick->mark)
3702 dw2_instantiate_symtab (per_cu);
3703 }
3704 }
3705 }
3706
3707 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3708 symtab. */
3709
3710 static struct symtab *
3711 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3712 {
3713 int i;
3714
3715 if (BLOCKVECTOR (symtab) != NULL
3716 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3717 return symtab;
3718
3719 if (symtab->includes == NULL)
3720 return NULL;
3721
3722 for (i = 0; symtab->includes[i]; ++i)
3723 {
3724 struct symtab *s = symtab->includes[i];
3725
3726 s = recursively_find_pc_sect_symtab (s, pc);
3727 if (s != NULL)
3728 return s;
3729 }
3730
3731 return NULL;
3732 }
3733
3734 static struct symtab *
3735 dw2_find_pc_sect_symtab (struct objfile *objfile,
3736 struct minimal_symbol *msymbol,
3737 CORE_ADDR pc,
3738 struct obj_section *section,
3739 int warn_if_readin)
3740 {
3741 struct dwarf2_per_cu_data *data;
3742 struct symtab *result;
3743
3744 dw2_setup (objfile);
3745
3746 if (!objfile->psymtabs_addrmap)
3747 return NULL;
3748
3749 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3750 if (!data)
3751 return NULL;
3752
3753 if (warn_if_readin && data->v.quick->symtab)
3754 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3755 paddress (get_objfile_arch (objfile), pc));
3756
3757 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3758 gdb_assert (result != NULL);
3759 return result;
3760 }
3761
3762 static void
3763 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3764 void *data, int need_fullname)
3765 {
3766 int i;
3767 struct cleanup *cleanup;
3768 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3769 NULL, xcalloc, xfree);
3770
3771 cleanup = make_cleanup_htab_delete (visited);
3772 dw2_setup (objfile);
3773
3774 /* The rule is CUs specify all the files, including those used by
3775 any TU, so there's no need to scan TUs here.
3776 We can ignore file names coming from already-expanded CUs. */
3777
3778 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3779 {
3780 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3781
3782 if (per_cu->v.quick->symtab)
3783 {
3784 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3785 INSERT);
3786
3787 *slot = per_cu->v.quick->file_names;
3788 }
3789 }
3790
3791 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3792 {
3793 int j;
3794 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3795 struct quick_file_names *file_data;
3796 void **slot;
3797
3798 /* We only need to look at symtabs not already expanded. */
3799 if (per_cu->v.quick->symtab)
3800 continue;
3801
3802 file_data = dw2_get_file_names (per_cu);
3803 if (file_data == NULL)
3804 continue;
3805
3806 slot = htab_find_slot (visited, file_data, INSERT);
3807 if (*slot)
3808 {
3809 /* Already visited. */
3810 continue;
3811 }
3812 *slot = file_data;
3813
3814 for (j = 0; j < file_data->num_file_names; ++j)
3815 {
3816 const char *this_real_name;
3817
3818 if (need_fullname)
3819 this_real_name = dw2_get_real_path (objfile, file_data, j);
3820 else
3821 this_real_name = NULL;
3822 (*fun) (file_data->file_names[j], this_real_name, data);
3823 }
3824 }
3825
3826 do_cleanups (cleanup);
3827 }
3828
3829 static int
3830 dw2_has_symbols (struct objfile *objfile)
3831 {
3832 return 1;
3833 }
3834
3835 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3836 {
3837 dw2_has_symbols,
3838 dw2_find_last_source_symtab,
3839 dw2_forget_cached_source_info,
3840 dw2_map_symtabs_matching_filename,
3841 dw2_lookup_symbol,
3842 dw2_print_stats,
3843 dw2_dump,
3844 dw2_relocate,
3845 dw2_expand_symtabs_for_function,
3846 dw2_expand_all_symtabs,
3847 dw2_expand_symtabs_with_fullname,
3848 dw2_find_symbol_file,
3849 dw2_map_matching_symbols,
3850 dw2_expand_symtabs_matching,
3851 dw2_find_pc_sect_symtab,
3852 dw2_map_symbol_filenames
3853 };
3854
3855 /* Initialize for reading DWARF for this objfile. Return 0 if this
3856 file will use psymtabs, or 1 if using the GNU index. */
3857
3858 int
3859 dwarf2_initialize_objfile (struct objfile *objfile)
3860 {
3861 /* If we're about to read full symbols, don't bother with the
3862 indices. In this case we also don't care if some other debug
3863 format is making psymtabs, because they are all about to be
3864 expanded anyway. */
3865 if ((objfile->flags & OBJF_READNOW))
3866 {
3867 int i;
3868
3869 dwarf2_per_objfile->using_index = 1;
3870 create_all_comp_units (objfile);
3871 create_all_type_units (objfile);
3872 dwarf2_per_objfile->quick_file_names_table =
3873 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3874
3875 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3876 + dwarf2_per_objfile->n_type_units); ++i)
3877 {
3878 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3879
3880 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3881 struct dwarf2_per_cu_quick_data);
3882 }
3883
3884 /* Return 1 so that gdb sees the "quick" functions. However,
3885 these functions will be no-ops because we will have expanded
3886 all symtabs. */
3887 return 1;
3888 }
3889
3890 if (dwarf2_read_index (objfile))
3891 return 1;
3892
3893 return 0;
3894 }
3895
3896 \f
3897
3898 /* Build a partial symbol table. */
3899
3900 void
3901 dwarf2_build_psymtabs (struct objfile *objfile)
3902 {
3903 volatile struct gdb_exception except;
3904
3905 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3906 {
3907 init_psymbol_list (objfile, 1024);
3908 }
3909
3910 TRY_CATCH (except, RETURN_MASK_ERROR)
3911 {
3912 /* This isn't really ideal: all the data we allocate on the
3913 objfile's obstack is still uselessly kept around. However,
3914 freeing it seems unsafe. */
3915 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3916
3917 dwarf2_build_psymtabs_hard (objfile);
3918 discard_cleanups (cleanups);
3919 }
3920 if (except.reason < 0)
3921 exception_print (gdb_stderr, except);
3922 }
3923
3924 /* Return the total length of the CU described by HEADER. */
3925
3926 static unsigned int
3927 get_cu_length (const struct comp_unit_head *header)
3928 {
3929 return header->initial_length_size + header->length;
3930 }
3931
3932 /* Return TRUE if OFFSET is within CU_HEADER. */
3933
3934 static inline int
3935 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3936 {
3937 sect_offset bottom = { cu_header->offset.sect_off };
3938 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3939
3940 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3941 }
3942
3943 /* Find the base address of the compilation unit for range lists and
3944 location lists. It will normally be specified by DW_AT_low_pc.
3945 In DWARF-3 draft 4, the base address could be overridden by
3946 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3947 compilation units with discontinuous ranges. */
3948
3949 static void
3950 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3951 {
3952 struct attribute *attr;
3953
3954 cu->base_known = 0;
3955 cu->base_address = 0;
3956
3957 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3958 if (attr)
3959 {
3960 cu->base_address = DW_ADDR (attr);
3961 cu->base_known = 1;
3962 }
3963 else
3964 {
3965 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3966 if (attr)
3967 {
3968 cu->base_address = DW_ADDR (attr);
3969 cu->base_known = 1;
3970 }
3971 }
3972 }
3973
3974 /* Read in the comp unit header information from the debug_info at info_ptr.
3975 NOTE: This leaves members offset, first_die_offset to be filled in
3976 by the caller. */
3977
3978 static const gdb_byte *
3979 read_comp_unit_head (struct comp_unit_head *cu_header,
3980 const gdb_byte *info_ptr, bfd *abfd)
3981 {
3982 int signed_addr;
3983 unsigned int bytes_read;
3984
3985 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3986 cu_header->initial_length_size = bytes_read;
3987 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3988 info_ptr += bytes_read;
3989 cu_header->version = read_2_bytes (abfd, info_ptr);
3990 info_ptr += 2;
3991 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3992 &bytes_read);
3993 info_ptr += bytes_read;
3994 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3995 info_ptr += 1;
3996 signed_addr = bfd_get_sign_extend_vma (abfd);
3997 if (signed_addr < 0)
3998 internal_error (__FILE__, __LINE__,
3999 _("read_comp_unit_head: dwarf from non elf file"));
4000 cu_header->signed_addr_p = signed_addr;
4001
4002 return info_ptr;
4003 }
4004
4005 /* Helper function that returns the proper abbrev section for
4006 THIS_CU. */
4007
4008 static struct dwarf2_section_info *
4009 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4010 {
4011 struct dwarf2_section_info *abbrev;
4012
4013 if (this_cu->is_dwz)
4014 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4015 else
4016 abbrev = &dwarf2_per_objfile->abbrev;
4017
4018 return abbrev;
4019 }
4020
4021 /* Subroutine of read_and_check_comp_unit_head and
4022 read_and_check_type_unit_head to simplify them.
4023 Perform various error checking on the header. */
4024
4025 static void
4026 error_check_comp_unit_head (struct comp_unit_head *header,
4027 struct dwarf2_section_info *section,
4028 struct dwarf2_section_info *abbrev_section)
4029 {
4030 bfd *abfd = section->asection->owner;
4031 const char *filename = bfd_get_filename (abfd);
4032
4033 if (header->version != 2 && header->version != 3 && header->version != 4)
4034 error (_("Dwarf Error: wrong version in compilation unit header "
4035 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4036 filename);
4037
4038 if (header->abbrev_offset.sect_off
4039 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4040 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4041 "(offset 0x%lx + 6) [in module %s]"),
4042 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4043 filename);
4044
4045 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4046 avoid potential 32-bit overflow. */
4047 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4048 > section->size)
4049 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4050 "(offset 0x%lx + 0) [in module %s]"),
4051 (long) header->length, (long) header->offset.sect_off,
4052 filename);
4053 }
4054
4055 /* Read in a CU/TU header and perform some basic error checking.
4056 The contents of the header are stored in HEADER.
4057 The result is a pointer to the start of the first DIE. */
4058
4059 static const gdb_byte *
4060 read_and_check_comp_unit_head (struct comp_unit_head *header,
4061 struct dwarf2_section_info *section,
4062 struct dwarf2_section_info *abbrev_section,
4063 const gdb_byte *info_ptr,
4064 int is_debug_types_section)
4065 {
4066 const gdb_byte *beg_of_comp_unit = info_ptr;
4067 bfd *abfd = section->asection->owner;
4068
4069 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4070
4071 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4072
4073 /* If we're reading a type unit, skip over the signature and
4074 type_offset fields. */
4075 if (is_debug_types_section)
4076 info_ptr += 8 /*signature*/ + header->offset_size;
4077
4078 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4079
4080 error_check_comp_unit_head (header, section, abbrev_section);
4081
4082 return info_ptr;
4083 }
4084
4085 /* Read in the types comp unit header information from .debug_types entry at
4086 types_ptr. The result is a pointer to one past the end of the header. */
4087
4088 static const gdb_byte *
4089 read_and_check_type_unit_head (struct comp_unit_head *header,
4090 struct dwarf2_section_info *section,
4091 struct dwarf2_section_info *abbrev_section,
4092 const gdb_byte *info_ptr,
4093 ULONGEST *signature,
4094 cu_offset *type_offset_in_tu)
4095 {
4096 const gdb_byte *beg_of_comp_unit = info_ptr;
4097 bfd *abfd = section->asection->owner;
4098
4099 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4100
4101 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4102
4103 /* If we're reading a type unit, skip over the signature and
4104 type_offset fields. */
4105 if (signature != NULL)
4106 *signature = read_8_bytes (abfd, info_ptr);
4107 info_ptr += 8;
4108 if (type_offset_in_tu != NULL)
4109 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4110 header->offset_size);
4111 info_ptr += header->offset_size;
4112
4113 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4114
4115 error_check_comp_unit_head (header, section, abbrev_section);
4116
4117 return info_ptr;
4118 }
4119
4120 /* Fetch the abbreviation table offset from a comp or type unit header. */
4121
4122 static sect_offset
4123 read_abbrev_offset (struct dwarf2_section_info *section,
4124 sect_offset offset)
4125 {
4126 bfd *abfd = section->asection->owner;
4127 const gdb_byte *info_ptr;
4128 unsigned int length, initial_length_size, offset_size;
4129 sect_offset abbrev_offset;
4130
4131 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4132 info_ptr = section->buffer + offset.sect_off;
4133 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4134 offset_size = initial_length_size == 4 ? 4 : 8;
4135 info_ptr += initial_length_size + 2 /*version*/;
4136 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4137 return abbrev_offset;
4138 }
4139
4140 /* Allocate a new partial symtab for file named NAME and mark this new
4141 partial symtab as being an include of PST. */
4142
4143 static void
4144 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4145 struct objfile *objfile)
4146 {
4147 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4148
4149 if (!IS_ABSOLUTE_PATH (subpst->filename))
4150 {
4151 /* It shares objfile->objfile_obstack. */
4152 subpst->dirname = pst->dirname;
4153 }
4154
4155 subpst->section_offsets = pst->section_offsets;
4156 subpst->textlow = 0;
4157 subpst->texthigh = 0;
4158
4159 subpst->dependencies = (struct partial_symtab **)
4160 obstack_alloc (&objfile->objfile_obstack,
4161 sizeof (struct partial_symtab *));
4162 subpst->dependencies[0] = pst;
4163 subpst->number_of_dependencies = 1;
4164
4165 subpst->globals_offset = 0;
4166 subpst->n_global_syms = 0;
4167 subpst->statics_offset = 0;
4168 subpst->n_static_syms = 0;
4169 subpst->symtab = NULL;
4170 subpst->read_symtab = pst->read_symtab;
4171 subpst->readin = 0;
4172
4173 /* No private part is necessary for include psymtabs. This property
4174 can be used to differentiate between such include psymtabs and
4175 the regular ones. */
4176 subpst->read_symtab_private = NULL;
4177 }
4178
4179 /* Read the Line Number Program data and extract the list of files
4180 included by the source file represented by PST. Build an include
4181 partial symtab for each of these included files. */
4182
4183 static void
4184 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4185 struct die_info *die,
4186 struct partial_symtab *pst)
4187 {
4188 struct line_header *lh = NULL;
4189 struct attribute *attr;
4190
4191 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4192 if (attr)
4193 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4194 if (lh == NULL)
4195 return; /* No linetable, so no includes. */
4196
4197 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4198 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4199
4200 free_line_header (lh);
4201 }
4202
4203 static hashval_t
4204 hash_signatured_type (const void *item)
4205 {
4206 const struct signatured_type *sig_type = item;
4207
4208 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4209 return sig_type->signature;
4210 }
4211
4212 static int
4213 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4214 {
4215 const struct signatured_type *lhs = item_lhs;
4216 const struct signatured_type *rhs = item_rhs;
4217
4218 return lhs->signature == rhs->signature;
4219 }
4220
4221 /* Allocate a hash table for signatured types. */
4222
4223 static htab_t
4224 allocate_signatured_type_table (struct objfile *objfile)
4225 {
4226 return htab_create_alloc_ex (41,
4227 hash_signatured_type,
4228 eq_signatured_type,
4229 NULL,
4230 &objfile->objfile_obstack,
4231 hashtab_obstack_allocate,
4232 dummy_obstack_deallocate);
4233 }
4234
4235 /* A helper function to add a signatured type CU to a table. */
4236
4237 static int
4238 add_signatured_type_cu_to_table (void **slot, void *datum)
4239 {
4240 struct signatured_type *sigt = *slot;
4241 struct signatured_type ***datap = datum;
4242
4243 **datap = sigt;
4244 ++*datap;
4245
4246 return 1;
4247 }
4248
4249 /* Create the hash table of all entries in the .debug_types
4250 (or .debug_types.dwo) section(s).
4251 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4252 otherwise it is NULL.
4253
4254 The result is a pointer to the hash table or NULL if there are no types.
4255
4256 Note: This function processes DWO files only, not DWP files. */
4257
4258 static htab_t
4259 create_debug_types_hash_table (struct dwo_file *dwo_file,
4260 VEC (dwarf2_section_info_def) *types)
4261 {
4262 struct objfile *objfile = dwarf2_per_objfile->objfile;
4263 htab_t types_htab = NULL;
4264 int ix;
4265 struct dwarf2_section_info *section;
4266 struct dwarf2_section_info *abbrev_section;
4267
4268 if (VEC_empty (dwarf2_section_info_def, types))
4269 return NULL;
4270
4271 abbrev_section = (dwo_file != NULL
4272 ? &dwo_file->sections.abbrev
4273 : &dwarf2_per_objfile->abbrev);
4274
4275 if (dwarf2_read_debug)
4276 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4277 dwo_file ? ".dwo" : "",
4278 bfd_get_filename (abbrev_section->asection->owner));
4279
4280 for (ix = 0;
4281 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4282 ++ix)
4283 {
4284 bfd *abfd;
4285 const gdb_byte *info_ptr, *end_ptr;
4286 struct dwarf2_section_info *abbrev_section;
4287
4288 dwarf2_read_section (objfile, section);
4289 info_ptr = section->buffer;
4290
4291 if (info_ptr == NULL)
4292 continue;
4293
4294 /* We can't set abfd until now because the section may be empty or
4295 not present, in which case section->asection will be NULL. */
4296 abfd = section->asection->owner;
4297
4298 if (dwo_file)
4299 abbrev_section = &dwo_file->sections.abbrev;
4300 else
4301 abbrev_section = &dwarf2_per_objfile->abbrev;
4302
4303 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4304 because we don't need to read any dies: the signature is in the
4305 header. */
4306
4307 end_ptr = info_ptr + section->size;
4308 while (info_ptr < end_ptr)
4309 {
4310 sect_offset offset;
4311 cu_offset type_offset_in_tu;
4312 ULONGEST signature;
4313 struct signatured_type *sig_type;
4314 struct dwo_unit *dwo_tu;
4315 void **slot;
4316 const gdb_byte *ptr = info_ptr;
4317 struct comp_unit_head header;
4318 unsigned int length;
4319
4320 offset.sect_off = ptr - section->buffer;
4321
4322 /* We need to read the type's signature in order to build the hash
4323 table, but we don't need anything else just yet. */
4324
4325 ptr = read_and_check_type_unit_head (&header, section,
4326 abbrev_section, ptr,
4327 &signature, &type_offset_in_tu);
4328
4329 length = get_cu_length (&header);
4330
4331 /* Skip dummy type units. */
4332 if (ptr >= info_ptr + length
4333 || peek_abbrev_code (abfd, ptr) == 0)
4334 {
4335 info_ptr += length;
4336 continue;
4337 }
4338
4339 if (types_htab == NULL)
4340 {
4341 if (dwo_file)
4342 types_htab = allocate_dwo_unit_table (objfile);
4343 else
4344 types_htab = allocate_signatured_type_table (objfile);
4345 }
4346
4347 if (dwo_file)
4348 {
4349 sig_type = NULL;
4350 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4351 struct dwo_unit);
4352 dwo_tu->dwo_file = dwo_file;
4353 dwo_tu->signature = signature;
4354 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4355 dwo_tu->section = section;
4356 dwo_tu->offset = offset;
4357 dwo_tu->length = length;
4358 }
4359 else
4360 {
4361 /* N.B.: type_offset is not usable if this type uses a DWO file.
4362 The real type_offset is in the DWO file. */
4363 dwo_tu = NULL;
4364 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4365 struct signatured_type);
4366 sig_type->signature = signature;
4367 sig_type->type_offset_in_tu = type_offset_in_tu;
4368 sig_type->per_cu.objfile = objfile;
4369 sig_type->per_cu.is_debug_types = 1;
4370 sig_type->per_cu.section = section;
4371 sig_type->per_cu.offset = offset;
4372 sig_type->per_cu.length = length;
4373 }
4374
4375 slot = htab_find_slot (types_htab,
4376 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4377 INSERT);
4378 gdb_assert (slot != NULL);
4379 if (*slot != NULL)
4380 {
4381 sect_offset dup_offset;
4382
4383 if (dwo_file)
4384 {
4385 const struct dwo_unit *dup_tu = *slot;
4386
4387 dup_offset = dup_tu->offset;
4388 }
4389 else
4390 {
4391 const struct signatured_type *dup_tu = *slot;
4392
4393 dup_offset = dup_tu->per_cu.offset;
4394 }
4395
4396 complaint (&symfile_complaints,
4397 _("debug type entry at offset 0x%x is duplicate to"
4398 " the entry at offset 0x%x, signature %s"),
4399 offset.sect_off, dup_offset.sect_off,
4400 hex_string (signature));
4401 }
4402 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4403
4404 if (dwarf2_read_debug)
4405 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4406 offset.sect_off,
4407 hex_string (signature));
4408
4409 info_ptr += length;
4410 }
4411 }
4412
4413 return types_htab;
4414 }
4415
4416 /* Create the hash table of all entries in the .debug_types section,
4417 and initialize all_type_units.
4418 The result is zero if there is an error (e.g. missing .debug_types section),
4419 otherwise non-zero. */
4420
4421 static int
4422 create_all_type_units (struct objfile *objfile)
4423 {
4424 htab_t types_htab;
4425 struct signatured_type **iter;
4426
4427 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4428 if (types_htab == NULL)
4429 {
4430 dwarf2_per_objfile->signatured_types = NULL;
4431 return 0;
4432 }
4433
4434 dwarf2_per_objfile->signatured_types = types_htab;
4435
4436 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4437 dwarf2_per_objfile->all_type_units
4438 = xmalloc (dwarf2_per_objfile->n_type_units
4439 * sizeof (struct signatured_type *));
4440 iter = &dwarf2_per_objfile->all_type_units[0];
4441 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4442 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4443 == dwarf2_per_objfile->n_type_units);
4444
4445 return 1;
4446 }
4447
4448 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4449 Fill in SIG_ENTRY with DWO_ENTRY. */
4450
4451 static void
4452 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4453 struct signatured_type *sig_entry,
4454 struct dwo_unit *dwo_entry)
4455 {
4456 /* Make sure we're not clobbering something we don't expect to. */
4457 gdb_assert (! sig_entry->per_cu.queued);
4458 gdb_assert (sig_entry->per_cu.cu == NULL);
4459 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4460 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4461 gdb_assert (sig_entry->signature == dwo_entry->signature);
4462 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4463 gdb_assert (sig_entry->type_unit_group == NULL);
4464 gdb_assert (sig_entry->dwo_unit == NULL);
4465
4466 sig_entry->per_cu.section = dwo_entry->section;
4467 sig_entry->per_cu.offset = dwo_entry->offset;
4468 sig_entry->per_cu.length = dwo_entry->length;
4469 sig_entry->per_cu.reading_dwo_directly = 1;
4470 sig_entry->per_cu.objfile = objfile;
4471 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4472 sig_entry->dwo_unit = dwo_entry;
4473 }
4474
4475 /* Subroutine of lookup_signatured_type.
4476 If we haven't read the TU yet, create the signatured_type data structure
4477 for a TU to be read in directly from a DWO file, bypassing the stub.
4478 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4479 using .gdb_index, then when reading a CU we want to stay in the DWO file
4480 containing that CU. Otherwise we could end up reading several other DWO
4481 files (due to comdat folding) to process the transitive closure of all the
4482 mentioned TUs, and that can be slow. The current DWO file will have every
4483 type signature that it needs.
4484 We only do this for .gdb_index because in the psymtab case we already have
4485 to read all the DWOs to build the type unit groups. */
4486
4487 static struct signatured_type *
4488 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4489 {
4490 struct objfile *objfile = dwarf2_per_objfile->objfile;
4491 struct dwo_file *dwo_file;
4492 struct dwo_unit find_dwo_entry, *dwo_entry;
4493 struct signatured_type find_sig_entry, *sig_entry;
4494
4495 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4496
4497 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4498 dwo_unit of the TU itself. */
4499 dwo_file = cu->dwo_unit->dwo_file;
4500
4501 /* We only ever need to read in one copy of a signatured type.
4502 Just use the global signatured_types array. If this is the first time
4503 we're reading this type, replace the recorded data from .gdb_index with
4504 this TU. */
4505
4506 if (dwarf2_per_objfile->signatured_types == NULL)
4507 return NULL;
4508 find_sig_entry.signature = sig;
4509 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4510 if (sig_entry == NULL)
4511 return NULL;
4512
4513 /* We can get here with the TU already read, *or* in the process of being
4514 read. Don't reassign it if that's the case. Also note that if the TU is
4515 already being read, it may not have come from a DWO, the program may be
4516 a mix of Fission-compiled code and non-Fission-compiled code. */
4517 /* Have we already tried to read this TU? */
4518 if (sig_entry->per_cu.tu_read)
4519 return sig_entry;
4520
4521 /* Ok, this is the first time we're reading this TU. */
4522 if (dwo_file->tus == NULL)
4523 return NULL;
4524 find_dwo_entry.signature = sig;
4525 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4526 if (dwo_entry == NULL)
4527 return NULL;
4528
4529 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4530 return sig_entry;
4531 }
4532
4533 /* Subroutine of lookup_dwp_signatured_type.
4534 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4535
4536 static struct signatured_type *
4537 add_type_unit (ULONGEST sig)
4538 {
4539 struct objfile *objfile = dwarf2_per_objfile->objfile;
4540 int n_type_units = dwarf2_per_objfile->n_type_units;
4541 struct signatured_type *sig_type;
4542 void **slot;
4543
4544 ++n_type_units;
4545 dwarf2_per_objfile->all_type_units =
4546 xrealloc (dwarf2_per_objfile->all_type_units,
4547 n_type_units * sizeof (struct signatured_type *));
4548 dwarf2_per_objfile->n_type_units = n_type_units;
4549 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4550 struct signatured_type);
4551 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4552 sig_type->signature = sig;
4553 sig_type->per_cu.is_debug_types = 1;
4554 sig_type->per_cu.v.quick =
4555 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4556 struct dwarf2_per_cu_quick_data);
4557 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4558 sig_type, INSERT);
4559 gdb_assert (*slot == NULL);
4560 *slot = sig_type;
4561 /* The rest of sig_type must be filled in by the caller. */
4562 return sig_type;
4563 }
4564
4565 /* Subroutine of lookup_signatured_type.
4566 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4567 then try the DWP file.
4568 Normally this "can't happen", but if there's a bug in signature
4569 generation and/or the DWP file is built incorrectly, it can happen.
4570 Using the type directly from the DWP file means we don't have the stub
4571 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4572 not critical. [Eventually the stub may go away for type units anyway.] */
4573
4574 static struct signatured_type *
4575 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4576 {
4577 struct objfile *objfile = dwarf2_per_objfile->objfile;
4578 struct dwp_file *dwp_file = get_dwp_file ();
4579 struct dwo_unit *dwo_entry;
4580 struct signatured_type find_sig_entry, *sig_entry;
4581
4582 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4583 gdb_assert (dwp_file != NULL);
4584
4585 if (dwarf2_per_objfile->signatured_types != NULL)
4586 {
4587 find_sig_entry.signature = sig;
4588 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4589 &find_sig_entry);
4590 if (sig_entry != NULL)
4591 return sig_entry;
4592 }
4593
4594 /* This is the "shouldn't happen" case.
4595 Try the DWP file and hope for the best. */
4596 if (dwp_file->tus == NULL)
4597 return NULL;
4598 dwo_entry = lookup_dwo_in_dwp (dwp_file, dwp_file->tus, NULL,
4599 sig, 1 /* is_debug_types */);
4600 if (dwo_entry == NULL)
4601 return NULL;
4602
4603 sig_entry = add_type_unit (sig);
4604 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4605
4606 /* The caller will signal a complaint if we return NULL.
4607 Here we don't return NULL but we still want to complain. */
4608 complaint (&symfile_complaints,
4609 _("Bad type signature %s referenced by %s at 0x%x,"
4610 " coping by using copy in DWP [in module %s]"),
4611 hex_string (sig),
4612 cu->per_cu->is_debug_types ? "TU" : "CU",
4613 cu->per_cu->offset.sect_off,
4614 objfile->name);
4615
4616 return sig_entry;
4617 }
4618
4619 /* Lookup a signature based type for DW_FORM_ref_sig8.
4620 Returns NULL if signature SIG is not present in the table.
4621 It is up to the caller to complain about this. */
4622
4623 static struct signatured_type *
4624 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4625 {
4626 if (cu->dwo_unit
4627 && dwarf2_per_objfile->using_index)
4628 {
4629 /* We're in a DWO/DWP file, and we're using .gdb_index.
4630 These cases require special processing. */
4631 if (get_dwp_file () == NULL)
4632 return lookup_dwo_signatured_type (cu, sig);
4633 else
4634 return lookup_dwp_signatured_type (cu, sig);
4635 }
4636 else
4637 {
4638 struct signatured_type find_entry, *entry;
4639
4640 if (dwarf2_per_objfile->signatured_types == NULL)
4641 return NULL;
4642 find_entry.signature = sig;
4643 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4644 return entry;
4645 }
4646 }
4647 \f
4648 /* Low level DIE reading support. */
4649
4650 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4651
4652 static void
4653 init_cu_die_reader (struct die_reader_specs *reader,
4654 struct dwarf2_cu *cu,
4655 struct dwarf2_section_info *section,
4656 struct dwo_file *dwo_file)
4657 {
4658 gdb_assert (section->readin && section->buffer != NULL);
4659 reader->abfd = section->asection->owner;
4660 reader->cu = cu;
4661 reader->dwo_file = dwo_file;
4662 reader->die_section = section;
4663 reader->buffer = section->buffer;
4664 reader->buffer_end = section->buffer + section->size;
4665 reader->comp_dir = NULL;
4666 }
4667
4668 /* Subroutine of init_cutu_and_read_dies to simplify it.
4669 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4670 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4671 already.
4672
4673 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4674 from it to the DIE in the DWO. If NULL we are skipping the stub.
4675 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4676 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4677 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4678 COMP_DIR must be non-NULL.
4679 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4680 are filled in with the info of the DIE from the DWO file.
4681 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4682 provided an abbrev table to use.
4683 The result is non-zero if a valid (non-dummy) DIE was found. */
4684
4685 static int
4686 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4687 struct dwo_unit *dwo_unit,
4688 int abbrev_table_provided,
4689 struct die_info *stub_comp_unit_die,
4690 const char *stub_comp_dir,
4691 struct die_reader_specs *result_reader,
4692 const gdb_byte **result_info_ptr,
4693 struct die_info **result_comp_unit_die,
4694 int *result_has_children)
4695 {
4696 struct objfile *objfile = dwarf2_per_objfile->objfile;
4697 struct dwarf2_cu *cu = this_cu->cu;
4698 struct dwarf2_section_info *section;
4699 bfd *abfd;
4700 const gdb_byte *begin_info_ptr, *info_ptr;
4701 const char *comp_dir_string;
4702 ULONGEST signature; /* Or dwo_id. */
4703 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4704 int i,num_extra_attrs;
4705 struct dwarf2_section_info *dwo_abbrev_section;
4706 struct attribute *attr;
4707 struct attribute comp_dir_attr;
4708 struct die_info *comp_unit_die;
4709
4710 /* Both can't be provided. */
4711 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4712
4713 /* These attributes aren't processed until later:
4714 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4715 However, the attribute is found in the stub which we won't have later.
4716 In order to not impose this complication on the rest of the code,
4717 we read them here and copy them to the DWO CU/TU die. */
4718
4719 stmt_list = NULL;
4720 low_pc = NULL;
4721 high_pc = NULL;
4722 ranges = NULL;
4723 comp_dir = NULL;
4724
4725 if (stub_comp_unit_die != NULL)
4726 {
4727 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4728 DWO file. */
4729 if (! this_cu->is_debug_types)
4730 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4731 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4732 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4733 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4734 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4735
4736 /* There should be a DW_AT_addr_base attribute here (if needed).
4737 We need the value before we can process DW_FORM_GNU_addr_index. */
4738 cu->addr_base = 0;
4739 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4740 if (attr)
4741 cu->addr_base = DW_UNSND (attr);
4742
4743 /* There should be a DW_AT_ranges_base attribute here (if needed).
4744 We need the value before we can process DW_AT_ranges. */
4745 cu->ranges_base = 0;
4746 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4747 if (attr)
4748 cu->ranges_base = DW_UNSND (attr);
4749 }
4750 else if (stub_comp_dir != NULL)
4751 {
4752 /* Reconstruct the comp_dir attribute to simplify the code below. */
4753 comp_dir = (struct attribute *)
4754 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4755 comp_dir->name = DW_AT_comp_dir;
4756 comp_dir->form = DW_FORM_string;
4757 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4758 DW_STRING (comp_dir) = stub_comp_dir;
4759 }
4760
4761 /* Set up for reading the DWO CU/TU. */
4762 cu->dwo_unit = dwo_unit;
4763 section = dwo_unit->section;
4764 dwarf2_read_section (objfile, section);
4765 abfd = section->asection->owner;
4766 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4767 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4768 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4769
4770 if (this_cu->is_debug_types)
4771 {
4772 ULONGEST header_signature;
4773 cu_offset type_offset_in_tu;
4774 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4775
4776 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4777 dwo_abbrev_section,
4778 info_ptr,
4779 &header_signature,
4780 &type_offset_in_tu);
4781 /* This is not an assert because it can be caused by bad debug info. */
4782 if (sig_type->signature != header_signature)
4783 {
4784 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4785 " TU at offset 0x%x [in module %s]"),
4786 hex_string (sig_type->signature),
4787 hex_string (header_signature),
4788 dwo_unit->offset.sect_off,
4789 bfd_get_filename (abfd));
4790 }
4791 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4792 /* For DWOs coming from DWP files, we don't know the CU length
4793 nor the type's offset in the TU until now. */
4794 dwo_unit->length = get_cu_length (&cu->header);
4795 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4796
4797 /* Establish the type offset that can be used to lookup the type.
4798 For DWO files, we don't know it until now. */
4799 sig_type->type_offset_in_section.sect_off =
4800 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4801 }
4802 else
4803 {
4804 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4805 dwo_abbrev_section,
4806 info_ptr, 0);
4807 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4808 /* For DWOs coming from DWP files, we don't know the CU length
4809 until now. */
4810 dwo_unit->length = get_cu_length (&cu->header);
4811 }
4812
4813 /* Replace the CU's original abbrev table with the DWO's.
4814 Reminder: We can't read the abbrev table until we've read the header. */
4815 if (abbrev_table_provided)
4816 {
4817 /* Don't free the provided abbrev table, the caller of
4818 init_cutu_and_read_dies owns it. */
4819 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4820 /* Ensure the DWO abbrev table gets freed. */
4821 make_cleanup (dwarf2_free_abbrev_table, cu);
4822 }
4823 else
4824 {
4825 dwarf2_free_abbrev_table (cu);
4826 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4827 /* Leave any existing abbrev table cleanup as is. */
4828 }
4829
4830 /* Read in the die, but leave space to copy over the attributes
4831 from the stub. This has the benefit of simplifying the rest of
4832 the code - all the work to maintain the illusion of a single
4833 DW_TAG_{compile,type}_unit DIE is done here. */
4834 num_extra_attrs = ((stmt_list != NULL)
4835 + (low_pc != NULL)
4836 + (high_pc != NULL)
4837 + (ranges != NULL)
4838 + (comp_dir != NULL));
4839 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4840 result_has_children, num_extra_attrs);
4841
4842 /* Copy over the attributes from the stub to the DIE we just read in. */
4843 comp_unit_die = *result_comp_unit_die;
4844 i = comp_unit_die->num_attrs;
4845 if (stmt_list != NULL)
4846 comp_unit_die->attrs[i++] = *stmt_list;
4847 if (low_pc != NULL)
4848 comp_unit_die->attrs[i++] = *low_pc;
4849 if (high_pc != NULL)
4850 comp_unit_die->attrs[i++] = *high_pc;
4851 if (ranges != NULL)
4852 comp_unit_die->attrs[i++] = *ranges;
4853 if (comp_dir != NULL)
4854 comp_unit_die->attrs[i++] = *comp_dir;
4855 comp_unit_die->num_attrs += num_extra_attrs;
4856
4857 if (dwarf2_die_debug)
4858 {
4859 fprintf_unfiltered (gdb_stdlog,
4860 "Read die from %s@0x%x of %s:\n",
4861 bfd_section_name (abfd, section->asection),
4862 (unsigned) (begin_info_ptr - section->buffer),
4863 bfd_get_filename (abfd));
4864 dump_die (comp_unit_die, dwarf2_die_debug);
4865 }
4866
4867 /* Save the comp_dir attribute. If there is no DWP file then we'll read
4868 TUs by skipping the stub and going directly to the entry in the DWO file.
4869 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
4870 to get it via circuitous means. Blech. */
4871 if (comp_dir != NULL)
4872 result_reader->comp_dir = DW_STRING (comp_dir);
4873
4874 /* Skip dummy compilation units. */
4875 if (info_ptr >= begin_info_ptr + dwo_unit->length
4876 || peek_abbrev_code (abfd, info_ptr) == 0)
4877 return 0;
4878
4879 *result_info_ptr = info_ptr;
4880 return 1;
4881 }
4882
4883 /* Subroutine of init_cutu_and_read_dies to simplify it.
4884 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4885 Returns NULL if the specified DWO unit cannot be found. */
4886
4887 static struct dwo_unit *
4888 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4889 struct die_info *comp_unit_die)
4890 {
4891 struct dwarf2_cu *cu = this_cu->cu;
4892 struct attribute *attr;
4893 ULONGEST signature;
4894 struct dwo_unit *dwo_unit;
4895 const char *comp_dir, *dwo_name;
4896
4897 gdb_assert (cu != NULL);
4898
4899 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4900 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4901 gdb_assert (attr != NULL);
4902 dwo_name = DW_STRING (attr);
4903 comp_dir = NULL;
4904 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4905 if (attr)
4906 comp_dir = DW_STRING (attr);
4907
4908 if (this_cu->is_debug_types)
4909 {
4910 struct signatured_type *sig_type;
4911
4912 /* Since this_cu is the first member of struct signatured_type,
4913 we can go from a pointer to one to a pointer to the other. */
4914 sig_type = (struct signatured_type *) this_cu;
4915 signature = sig_type->signature;
4916 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4917 }
4918 else
4919 {
4920 struct attribute *attr;
4921
4922 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4923 if (! attr)
4924 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4925 " [in module %s]"),
4926 dwo_name, this_cu->objfile->name);
4927 signature = DW_UNSND (attr);
4928 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4929 signature);
4930 }
4931
4932 return dwo_unit;
4933 }
4934
4935 /* Subroutine of init_cutu_and_read_dies to simplify it.
4936 Read a TU directly from a DWO file, bypassing the stub. */
4937
4938 static void
4939 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
4940 die_reader_func_ftype *die_reader_func,
4941 void *data)
4942 {
4943 struct dwarf2_cu *cu;
4944 struct signatured_type *sig_type;
4945 struct cleanup *cleanups, *free_cu_cleanup;
4946 struct die_reader_specs reader;
4947 const gdb_byte *info_ptr;
4948 struct die_info *comp_unit_die;
4949 int has_children;
4950
4951 /* Verify we can do the following downcast, and that we have the
4952 data we need. */
4953 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
4954 sig_type = (struct signatured_type *) this_cu;
4955 gdb_assert (sig_type->dwo_unit != NULL);
4956
4957 cleanups = make_cleanup (null_cleanup, NULL);
4958
4959 gdb_assert (this_cu->cu == NULL);
4960 cu = xmalloc (sizeof (*cu));
4961 init_one_comp_unit (cu, this_cu);
4962 /* If an error occurs while loading, release our storage. */
4963 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4964
4965 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
4966 0 /* abbrev_table_provided */,
4967 NULL /* stub_comp_unit_die */,
4968 sig_type->dwo_unit->dwo_file->comp_dir,
4969 &reader, &info_ptr,
4970 &comp_unit_die, &has_children) == 0)
4971 {
4972 /* Dummy die. */
4973 do_cleanups (cleanups);
4974 return;
4975 }
4976
4977 /* All the "real" work is done here. */
4978 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4979
4980 /* This duplicates some code in init_cutu_and_read_dies,
4981 but the alternative is making the latter more complex.
4982 This function is only for the special case of using DWO files directly:
4983 no point in overly complicating the general case just to handle this. */
4984 if (keep)
4985 {
4986 /* We've successfully allocated this compilation unit. Let our
4987 caller clean it up when finished with it. */
4988 discard_cleanups (free_cu_cleanup);
4989
4990 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4991 So we have to manually free the abbrev table. */
4992 dwarf2_free_abbrev_table (cu);
4993
4994 /* Link this CU into read_in_chain. */
4995 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4996 dwarf2_per_objfile->read_in_chain = this_cu;
4997 }
4998 else
4999 do_cleanups (free_cu_cleanup);
5000
5001 do_cleanups (cleanups);
5002 }
5003
5004 /* Initialize a CU (or TU) and read its DIEs.
5005 If the CU defers to a DWO file, read the DWO file as well.
5006
5007 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5008 Otherwise the table specified in the comp unit header is read in and used.
5009 This is an optimization for when we already have the abbrev table.
5010
5011 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5012 Otherwise, a new CU is allocated with xmalloc.
5013
5014 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5015 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5016
5017 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5018 linker) then DIE_READER_FUNC will not get called. */
5019
5020 static void
5021 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5022 struct abbrev_table *abbrev_table,
5023 int use_existing_cu, int keep,
5024 die_reader_func_ftype *die_reader_func,
5025 void *data)
5026 {
5027 struct objfile *objfile = dwarf2_per_objfile->objfile;
5028 struct dwarf2_section_info *section = this_cu->section;
5029 bfd *abfd = section->asection->owner;
5030 struct dwarf2_cu *cu;
5031 const gdb_byte *begin_info_ptr, *info_ptr;
5032 struct die_reader_specs reader;
5033 struct die_info *comp_unit_die;
5034 int has_children;
5035 struct attribute *attr;
5036 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5037 struct signatured_type *sig_type = NULL;
5038 struct dwarf2_section_info *abbrev_section;
5039 /* Non-zero if CU currently points to a DWO file and we need to
5040 reread it. When this happens we need to reread the skeleton die
5041 before we can reread the DWO file (this only applies to CUs, not TUs). */
5042 int rereading_dwo_cu = 0;
5043
5044 if (dwarf2_die_debug)
5045 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5046 this_cu->is_debug_types ? "type" : "comp",
5047 this_cu->offset.sect_off);
5048
5049 if (use_existing_cu)
5050 gdb_assert (keep);
5051
5052 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5053 file (instead of going through the stub), short-circuit all of this. */
5054 if (this_cu->reading_dwo_directly)
5055 {
5056 /* Narrow down the scope of possibilities to have to understand. */
5057 gdb_assert (this_cu->is_debug_types);
5058 gdb_assert (abbrev_table == NULL);
5059 gdb_assert (!use_existing_cu);
5060 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5061 return;
5062 }
5063
5064 cleanups = make_cleanup (null_cleanup, NULL);
5065
5066 /* This is cheap if the section is already read in. */
5067 dwarf2_read_section (objfile, section);
5068
5069 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5070
5071 abbrev_section = get_abbrev_section_for_cu (this_cu);
5072
5073 if (use_existing_cu && this_cu->cu != NULL)
5074 {
5075 cu = this_cu->cu;
5076
5077 /* If this CU is from a DWO file we need to start over, we need to
5078 refetch the attributes from the skeleton CU.
5079 This could be optimized by retrieving those attributes from when we
5080 were here the first time: the previous comp_unit_die was stored in
5081 comp_unit_obstack. But there's no data yet that we need this
5082 optimization. */
5083 if (cu->dwo_unit != NULL)
5084 rereading_dwo_cu = 1;
5085 }
5086 else
5087 {
5088 /* If !use_existing_cu, this_cu->cu must be NULL. */
5089 gdb_assert (this_cu->cu == NULL);
5090
5091 cu = xmalloc (sizeof (*cu));
5092 init_one_comp_unit (cu, this_cu);
5093
5094 /* If an error occurs while loading, release our storage. */
5095 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5096 }
5097
5098 /* Get the header. */
5099 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5100 {
5101 /* We already have the header, there's no need to read it in again. */
5102 info_ptr += cu->header.first_die_offset.cu_off;
5103 }
5104 else
5105 {
5106 if (this_cu->is_debug_types)
5107 {
5108 ULONGEST signature;
5109 cu_offset type_offset_in_tu;
5110
5111 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5112 abbrev_section, info_ptr,
5113 &signature,
5114 &type_offset_in_tu);
5115
5116 /* Since per_cu is the first member of struct signatured_type,
5117 we can go from a pointer to one to a pointer to the other. */
5118 sig_type = (struct signatured_type *) this_cu;
5119 gdb_assert (sig_type->signature == signature);
5120 gdb_assert (sig_type->type_offset_in_tu.cu_off
5121 == type_offset_in_tu.cu_off);
5122 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5123
5124 /* LENGTH has not been set yet for type units if we're
5125 using .gdb_index. */
5126 this_cu->length = get_cu_length (&cu->header);
5127
5128 /* Establish the type offset that can be used to lookup the type. */
5129 sig_type->type_offset_in_section.sect_off =
5130 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5131 }
5132 else
5133 {
5134 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5135 abbrev_section,
5136 info_ptr, 0);
5137
5138 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5139 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5140 }
5141 }
5142
5143 /* Skip dummy compilation units. */
5144 if (info_ptr >= begin_info_ptr + this_cu->length
5145 || peek_abbrev_code (abfd, info_ptr) == 0)
5146 {
5147 do_cleanups (cleanups);
5148 return;
5149 }
5150
5151 /* If we don't have them yet, read the abbrevs for this compilation unit.
5152 And if we need to read them now, make sure they're freed when we're
5153 done. Note that it's important that if the CU had an abbrev table
5154 on entry we don't free it when we're done: Somewhere up the call stack
5155 it may be in use. */
5156 if (abbrev_table != NULL)
5157 {
5158 gdb_assert (cu->abbrev_table == NULL);
5159 gdb_assert (cu->header.abbrev_offset.sect_off
5160 == abbrev_table->offset.sect_off);
5161 cu->abbrev_table = abbrev_table;
5162 }
5163 else if (cu->abbrev_table == NULL)
5164 {
5165 dwarf2_read_abbrevs (cu, abbrev_section);
5166 make_cleanup (dwarf2_free_abbrev_table, cu);
5167 }
5168 else if (rereading_dwo_cu)
5169 {
5170 dwarf2_free_abbrev_table (cu);
5171 dwarf2_read_abbrevs (cu, abbrev_section);
5172 }
5173
5174 /* Read the top level CU/TU die. */
5175 init_cu_die_reader (&reader, cu, section, NULL);
5176 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5177
5178 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5179 from the DWO file.
5180 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5181 DWO CU, that this test will fail (the attribute will not be present). */
5182 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5183 if (attr)
5184 {
5185 struct dwo_unit *dwo_unit;
5186 struct die_info *dwo_comp_unit_die;
5187
5188 if (has_children)
5189 {
5190 complaint (&symfile_complaints,
5191 _("compilation unit with DW_AT_GNU_dwo_name"
5192 " has children (offset 0x%x) [in module %s]"),
5193 this_cu->offset.sect_off, bfd_get_filename (abfd));
5194 }
5195 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5196 if (dwo_unit != NULL)
5197 {
5198 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5199 abbrev_table != NULL,
5200 comp_unit_die, NULL,
5201 &reader, &info_ptr,
5202 &dwo_comp_unit_die, &has_children) == 0)
5203 {
5204 /* Dummy die. */
5205 do_cleanups (cleanups);
5206 return;
5207 }
5208 comp_unit_die = dwo_comp_unit_die;
5209 }
5210 else
5211 {
5212 /* Yikes, we couldn't find the rest of the DIE, we only have
5213 the stub. A complaint has already been logged. There's
5214 not much more we can do except pass on the stub DIE to
5215 die_reader_func. We don't want to throw an error on bad
5216 debug info. */
5217 }
5218 }
5219
5220 /* All of the above is setup for this call. Yikes. */
5221 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5222
5223 /* Done, clean up. */
5224 if (free_cu_cleanup != NULL)
5225 {
5226 if (keep)
5227 {
5228 /* We've successfully allocated this compilation unit. Let our
5229 caller clean it up when finished with it. */
5230 discard_cleanups (free_cu_cleanup);
5231
5232 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5233 So we have to manually free the abbrev table. */
5234 dwarf2_free_abbrev_table (cu);
5235
5236 /* Link this CU into read_in_chain. */
5237 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5238 dwarf2_per_objfile->read_in_chain = this_cu;
5239 }
5240 else
5241 do_cleanups (free_cu_cleanup);
5242 }
5243
5244 do_cleanups (cleanups);
5245 }
5246
5247 /* Read CU/TU THIS_CU in section SECTION,
5248 but do not follow DW_AT_GNU_dwo_name if present.
5249 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5250 to have already done the lookup to find the DWO/DWP file).
5251
5252 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5253 THIS_CU->is_debug_types, but nothing else.
5254
5255 We fill in THIS_CU->length.
5256
5257 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5258 linker) then DIE_READER_FUNC will not get called.
5259
5260 THIS_CU->cu is always freed when done.
5261 This is done in order to not leave THIS_CU->cu in a state where we have
5262 to care whether it refers to the "main" CU or the DWO CU. */
5263
5264 static void
5265 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5266 struct dwarf2_section_info *abbrev_section,
5267 struct dwo_file *dwo_file,
5268 die_reader_func_ftype *die_reader_func,
5269 void *data)
5270 {
5271 struct objfile *objfile = dwarf2_per_objfile->objfile;
5272 struct dwarf2_section_info *section = this_cu->section;
5273 bfd *abfd = section->asection->owner;
5274 struct dwarf2_cu cu;
5275 const gdb_byte *begin_info_ptr, *info_ptr;
5276 struct die_reader_specs reader;
5277 struct cleanup *cleanups;
5278 struct die_info *comp_unit_die;
5279 int has_children;
5280
5281 if (dwarf2_die_debug)
5282 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5283 this_cu->is_debug_types ? "type" : "comp",
5284 this_cu->offset.sect_off);
5285
5286 gdb_assert (this_cu->cu == NULL);
5287
5288 /* This is cheap if the section is already read in. */
5289 dwarf2_read_section (objfile, section);
5290
5291 init_one_comp_unit (&cu, this_cu);
5292
5293 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5294
5295 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5296 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5297 abbrev_section, info_ptr,
5298 this_cu->is_debug_types);
5299
5300 this_cu->length = get_cu_length (&cu.header);
5301
5302 /* Skip dummy compilation units. */
5303 if (info_ptr >= begin_info_ptr + this_cu->length
5304 || peek_abbrev_code (abfd, info_ptr) == 0)
5305 {
5306 do_cleanups (cleanups);
5307 return;
5308 }
5309
5310 dwarf2_read_abbrevs (&cu, abbrev_section);
5311 make_cleanup (dwarf2_free_abbrev_table, &cu);
5312
5313 init_cu_die_reader (&reader, &cu, section, dwo_file);
5314 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5315
5316 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5317
5318 do_cleanups (cleanups);
5319 }
5320
5321 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5322 does not lookup the specified DWO file.
5323 This cannot be used to read DWO files.
5324
5325 THIS_CU->cu is always freed when done.
5326 This is done in order to not leave THIS_CU->cu in a state where we have
5327 to care whether it refers to the "main" CU or the DWO CU.
5328 We can revisit this if the data shows there's a performance issue. */
5329
5330 static void
5331 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5332 die_reader_func_ftype *die_reader_func,
5333 void *data)
5334 {
5335 init_cutu_and_read_dies_no_follow (this_cu,
5336 get_abbrev_section_for_cu (this_cu),
5337 NULL,
5338 die_reader_func, data);
5339 }
5340 \f
5341 /* Type Unit Groups.
5342
5343 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5344 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5345 so that all types coming from the same compilation (.o file) are grouped
5346 together. A future step could be to put the types in the same symtab as
5347 the CU the types ultimately came from. */
5348
5349 static hashval_t
5350 hash_type_unit_group (const void *item)
5351 {
5352 const struct type_unit_group *tu_group = item;
5353
5354 return hash_stmt_list_entry (&tu_group->hash);
5355 }
5356
5357 static int
5358 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5359 {
5360 const struct type_unit_group *lhs = item_lhs;
5361 const struct type_unit_group *rhs = item_rhs;
5362
5363 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5364 }
5365
5366 /* Allocate a hash table for type unit groups. */
5367
5368 static htab_t
5369 allocate_type_unit_groups_table (void)
5370 {
5371 return htab_create_alloc_ex (3,
5372 hash_type_unit_group,
5373 eq_type_unit_group,
5374 NULL,
5375 &dwarf2_per_objfile->objfile->objfile_obstack,
5376 hashtab_obstack_allocate,
5377 dummy_obstack_deallocate);
5378 }
5379
5380 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5381 partial symtabs. We combine several TUs per psymtab to not let the size
5382 of any one psymtab grow too big. */
5383 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5384 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5385
5386 /* Helper routine for get_type_unit_group.
5387 Create the type_unit_group object used to hold one or more TUs. */
5388
5389 static struct type_unit_group *
5390 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5391 {
5392 struct objfile *objfile = dwarf2_per_objfile->objfile;
5393 struct dwarf2_per_cu_data *per_cu;
5394 struct type_unit_group *tu_group;
5395
5396 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5397 struct type_unit_group);
5398 per_cu = &tu_group->per_cu;
5399 per_cu->objfile = objfile;
5400
5401 if (dwarf2_per_objfile->using_index)
5402 {
5403 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5404 struct dwarf2_per_cu_quick_data);
5405 }
5406 else
5407 {
5408 unsigned int line_offset = line_offset_struct.sect_off;
5409 struct partial_symtab *pst;
5410 char *name;
5411
5412 /* Give the symtab a useful name for debug purposes. */
5413 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5414 name = xstrprintf ("<type_units_%d>",
5415 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5416 else
5417 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5418
5419 pst = create_partial_symtab (per_cu, name);
5420 pst->anonymous = 1;
5421
5422 xfree (name);
5423 }
5424
5425 tu_group->hash.dwo_unit = cu->dwo_unit;
5426 tu_group->hash.line_offset = line_offset_struct;
5427
5428 return tu_group;
5429 }
5430
5431 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5432 STMT_LIST is a DW_AT_stmt_list attribute. */
5433
5434 static struct type_unit_group *
5435 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5436 {
5437 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5438 struct type_unit_group *tu_group;
5439 void **slot;
5440 unsigned int line_offset;
5441 struct type_unit_group type_unit_group_for_lookup;
5442
5443 if (dwarf2_per_objfile->type_unit_groups == NULL)
5444 {
5445 dwarf2_per_objfile->type_unit_groups =
5446 allocate_type_unit_groups_table ();
5447 }
5448
5449 /* Do we need to create a new group, or can we use an existing one? */
5450
5451 if (stmt_list)
5452 {
5453 line_offset = DW_UNSND (stmt_list);
5454 ++tu_stats->nr_symtab_sharers;
5455 }
5456 else
5457 {
5458 /* Ugh, no stmt_list. Rare, but we have to handle it.
5459 We can do various things here like create one group per TU or
5460 spread them over multiple groups to split up the expansion work.
5461 To avoid worst case scenarios (too many groups or too large groups)
5462 we, umm, group them in bunches. */
5463 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5464 | (tu_stats->nr_stmt_less_type_units
5465 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5466 ++tu_stats->nr_stmt_less_type_units;
5467 }
5468
5469 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5470 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5471 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5472 &type_unit_group_for_lookup, INSERT);
5473 if (*slot != NULL)
5474 {
5475 tu_group = *slot;
5476 gdb_assert (tu_group != NULL);
5477 }
5478 else
5479 {
5480 sect_offset line_offset_struct;
5481
5482 line_offset_struct.sect_off = line_offset;
5483 tu_group = create_type_unit_group (cu, line_offset_struct);
5484 *slot = tu_group;
5485 ++tu_stats->nr_symtabs;
5486 }
5487
5488 return tu_group;
5489 }
5490
5491 /* Struct used to sort TUs by their abbreviation table offset. */
5492
5493 struct tu_abbrev_offset
5494 {
5495 struct signatured_type *sig_type;
5496 sect_offset abbrev_offset;
5497 };
5498
5499 /* Helper routine for build_type_unit_groups, passed to qsort. */
5500
5501 static int
5502 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5503 {
5504 const struct tu_abbrev_offset * const *a = ap;
5505 const struct tu_abbrev_offset * const *b = bp;
5506 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5507 unsigned int boff = (*b)->abbrev_offset.sect_off;
5508
5509 return (aoff > boff) - (aoff < boff);
5510 }
5511
5512 /* A helper function to add a type_unit_group to a table. */
5513
5514 static int
5515 add_type_unit_group_to_table (void **slot, void *datum)
5516 {
5517 struct type_unit_group *tu_group = *slot;
5518 struct type_unit_group ***datap = datum;
5519
5520 **datap = tu_group;
5521 ++*datap;
5522
5523 return 1;
5524 }
5525
5526 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5527 each one passing FUNC,DATA.
5528
5529 The efficiency is because we sort TUs by the abbrev table they use and
5530 only read each abbrev table once. In one program there are 200K TUs
5531 sharing 8K abbrev tables.
5532
5533 The main purpose of this function is to support building the
5534 dwarf2_per_objfile->type_unit_groups table.
5535 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5536 can collapse the search space by grouping them by stmt_list.
5537 The savings can be significant, in the same program from above the 200K TUs
5538 share 8K stmt_list tables.
5539
5540 FUNC is expected to call get_type_unit_group, which will create the
5541 struct type_unit_group if necessary and add it to
5542 dwarf2_per_objfile->type_unit_groups. */
5543
5544 static void
5545 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5546 {
5547 struct objfile *objfile = dwarf2_per_objfile->objfile;
5548 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5549 struct cleanup *cleanups;
5550 struct abbrev_table *abbrev_table;
5551 sect_offset abbrev_offset;
5552 struct tu_abbrev_offset *sorted_by_abbrev;
5553 struct type_unit_group **iter;
5554 int i;
5555
5556 /* It's up to the caller to not call us multiple times. */
5557 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5558
5559 if (dwarf2_per_objfile->n_type_units == 0)
5560 return;
5561
5562 /* TUs typically share abbrev tables, and there can be way more TUs than
5563 abbrev tables. Sort by abbrev table to reduce the number of times we
5564 read each abbrev table in.
5565 Alternatives are to punt or to maintain a cache of abbrev tables.
5566 This is simpler and efficient enough for now.
5567
5568 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5569 symtab to use). Typically TUs with the same abbrev offset have the same
5570 stmt_list value too so in practice this should work well.
5571
5572 The basic algorithm here is:
5573
5574 sort TUs by abbrev table
5575 for each TU with same abbrev table:
5576 read abbrev table if first user
5577 read TU top level DIE
5578 [IWBN if DWO skeletons had DW_AT_stmt_list]
5579 call FUNC */
5580
5581 if (dwarf2_read_debug)
5582 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5583
5584 /* Sort in a separate table to maintain the order of all_type_units
5585 for .gdb_index: TU indices directly index all_type_units. */
5586 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5587 dwarf2_per_objfile->n_type_units);
5588 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5589 {
5590 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5591
5592 sorted_by_abbrev[i].sig_type = sig_type;
5593 sorted_by_abbrev[i].abbrev_offset =
5594 read_abbrev_offset (sig_type->per_cu.section,
5595 sig_type->per_cu.offset);
5596 }
5597 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5598 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5599 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5600
5601 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5602 called any number of times, so we don't reset tu_stats here. */
5603
5604 abbrev_offset.sect_off = ~(unsigned) 0;
5605 abbrev_table = NULL;
5606 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5607
5608 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5609 {
5610 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5611
5612 /* Switch to the next abbrev table if necessary. */
5613 if (abbrev_table == NULL
5614 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5615 {
5616 if (abbrev_table != NULL)
5617 {
5618 abbrev_table_free (abbrev_table);
5619 /* Reset to NULL in case abbrev_table_read_table throws
5620 an error: abbrev_table_free_cleanup will get called. */
5621 abbrev_table = NULL;
5622 }
5623 abbrev_offset = tu->abbrev_offset;
5624 abbrev_table =
5625 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5626 abbrev_offset);
5627 ++tu_stats->nr_uniq_abbrev_tables;
5628 }
5629
5630 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5631 func, data);
5632 }
5633
5634 /* type_unit_groups can be NULL if there is an error in the debug info.
5635 Just create an empty table so the rest of gdb doesn't have to watch
5636 for this error case. */
5637 if (dwarf2_per_objfile->type_unit_groups == NULL)
5638 {
5639 dwarf2_per_objfile->type_unit_groups =
5640 allocate_type_unit_groups_table ();
5641 dwarf2_per_objfile->n_type_unit_groups = 0;
5642 }
5643
5644 /* Create a vector of pointers to primary type units to make it easy to
5645 iterate over them and CUs. See dw2_get_primary_cu. */
5646 dwarf2_per_objfile->n_type_unit_groups =
5647 htab_elements (dwarf2_per_objfile->type_unit_groups);
5648 dwarf2_per_objfile->all_type_unit_groups =
5649 obstack_alloc (&objfile->objfile_obstack,
5650 dwarf2_per_objfile->n_type_unit_groups
5651 * sizeof (struct type_unit_group *));
5652 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5653 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5654 add_type_unit_group_to_table, &iter);
5655 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5656 == dwarf2_per_objfile->n_type_unit_groups);
5657
5658 do_cleanups (cleanups);
5659
5660 if (dwarf2_read_debug)
5661 {
5662 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5663 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5664 dwarf2_per_objfile->n_type_units);
5665 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5666 tu_stats->nr_uniq_abbrev_tables);
5667 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5668 tu_stats->nr_symtabs);
5669 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5670 tu_stats->nr_symtab_sharers);
5671 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5672 tu_stats->nr_stmt_less_type_units);
5673 }
5674 }
5675 \f
5676 /* Partial symbol tables. */
5677
5678 /* Create a psymtab named NAME and assign it to PER_CU.
5679
5680 The caller must fill in the following details:
5681 dirname, textlow, texthigh. */
5682
5683 static struct partial_symtab *
5684 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5685 {
5686 struct objfile *objfile = per_cu->objfile;
5687 struct partial_symtab *pst;
5688
5689 pst = start_psymtab_common (objfile, objfile->section_offsets,
5690 name, 0,
5691 objfile->global_psymbols.next,
5692 objfile->static_psymbols.next);
5693
5694 pst->psymtabs_addrmap_supported = 1;
5695
5696 /* This is the glue that links PST into GDB's symbol API. */
5697 pst->read_symtab_private = per_cu;
5698 pst->read_symtab = dwarf2_read_symtab;
5699 per_cu->v.psymtab = pst;
5700
5701 return pst;
5702 }
5703
5704 /* die_reader_func for process_psymtab_comp_unit. */
5705
5706 static void
5707 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5708 const gdb_byte *info_ptr,
5709 struct die_info *comp_unit_die,
5710 int has_children,
5711 void *data)
5712 {
5713 struct dwarf2_cu *cu = reader->cu;
5714 struct objfile *objfile = cu->objfile;
5715 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5716 struct attribute *attr;
5717 CORE_ADDR baseaddr;
5718 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5719 struct partial_symtab *pst;
5720 int has_pc_info;
5721 const char *filename;
5722 int *want_partial_unit_ptr = data;
5723
5724 if (comp_unit_die->tag == DW_TAG_partial_unit
5725 && (want_partial_unit_ptr == NULL
5726 || !*want_partial_unit_ptr))
5727 return;
5728
5729 gdb_assert (! per_cu->is_debug_types);
5730
5731 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5732
5733 cu->list_in_scope = &file_symbols;
5734
5735 /* Allocate a new partial symbol table structure. */
5736 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5737 if (attr == NULL || !DW_STRING (attr))
5738 filename = "";
5739 else
5740 filename = DW_STRING (attr);
5741
5742 pst = create_partial_symtab (per_cu, filename);
5743
5744 /* This must be done before calling dwarf2_build_include_psymtabs. */
5745 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5746 if (attr != NULL)
5747 pst->dirname = DW_STRING (attr);
5748
5749 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5750
5751 dwarf2_find_base_address (comp_unit_die, cu);
5752
5753 /* Possibly set the default values of LOWPC and HIGHPC from
5754 `DW_AT_ranges'. */
5755 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5756 &best_highpc, cu, pst);
5757 if (has_pc_info == 1 && best_lowpc < best_highpc)
5758 /* Store the contiguous range if it is not empty; it can be empty for
5759 CUs with no code. */
5760 addrmap_set_empty (objfile->psymtabs_addrmap,
5761 best_lowpc + baseaddr,
5762 best_highpc + baseaddr - 1, pst);
5763
5764 /* Check if comp unit has_children.
5765 If so, read the rest of the partial symbols from this comp unit.
5766 If not, there's no more debug_info for this comp unit. */
5767 if (has_children)
5768 {
5769 struct partial_die_info *first_die;
5770 CORE_ADDR lowpc, highpc;
5771
5772 lowpc = ((CORE_ADDR) -1);
5773 highpc = ((CORE_ADDR) 0);
5774
5775 first_die = load_partial_dies (reader, info_ptr, 1);
5776
5777 scan_partial_symbols (first_die, &lowpc, &highpc,
5778 ! has_pc_info, cu);
5779
5780 /* If we didn't find a lowpc, set it to highpc to avoid
5781 complaints from `maint check'. */
5782 if (lowpc == ((CORE_ADDR) -1))
5783 lowpc = highpc;
5784
5785 /* If the compilation unit didn't have an explicit address range,
5786 then use the information extracted from its child dies. */
5787 if (! has_pc_info)
5788 {
5789 best_lowpc = lowpc;
5790 best_highpc = highpc;
5791 }
5792 }
5793 pst->textlow = best_lowpc + baseaddr;
5794 pst->texthigh = best_highpc + baseaddr;
5795
5796 pst->n_global_syms = objfile->global_psymbols.next -
5797 (objfile->global_psymbols.list + pst->globals_offset);
5798 pst->n_static_syms = objfile->static_psymbols.next -
5799 (objfile->static_psymbols.list + pst->statics_offset);
5800 sort_pst_symbols (objfile, pst);
5801
5802 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5803 {
5804 int i;
5805 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5806 struct dwarf2_per_cu_data *iter;
5807
5808 /* Fill in 'dependencies' here; we fill in 'users' in a
5809 post-pass. */
5810 pst->number_of_dependencies = len;
5811 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5812 len * sizeof (struct symtab *));
5813 for (i = 0;
5814 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5815 i, iter);
5816 ++i)
5817 pst->dependencies[i] = iter->v.psymtab;
5818
5819 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5820 }
5821
5822 /* Get the list of files included in the current compilation unit,
5823 and build a psymtab for each of them. */
5824 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5825
5826 if (dwarf2_read_debug)
5827 {
5828 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5829
5830 fprintf_unfiltered (gdb_stdlog,
5831 "Psymtab for %s unit @0x%x: %s - %s"
5832 ", %d global, %d static syms\n",
5833 per_cu->is_debug_types ? "type" : "comp",
5834 per_cu->offset.sect_off,
5835 paddress (gdbarch, pst->textlow),
5836 paddress (gdbarch, pst->texthigh),
5837 pst->n_global_syms, pst->n_static_syms);
5838 }
5839 }
5840
5841 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5842 Process compilation unit THIS_CU for a psymtab. */
5843
5844 static void
5845 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5846 int want_partial_unit)
5847 {
5848 /* If this compilation unit was already read in, free the
5849 cached copy in order to read it in again. This is
5850 necessary because we skipped some symbols when we first
5851 read in the compilation unit (see load_partial_dies).
5852 This problem could be avoided, but the benefit is unclear. */
5853 if (this_cu->cu != NULL)
5854 free_one_cached_comp_unit (this_cu);
5855
5856 gdb_assert (! this_cu->is_debug_types);
5857 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5858 process_psymtab_comp_unit_reader,
5859 &want_partial_unit);
5860
5861 /* Age out any secondary CUs. */
5862 age_cached_comp_units ();
5863 }
5864
5865 /* Reader function for build_type_psymtabs. */
5866
5867 static void
5868 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5869 const gdb_byte *info_ptr,
5870 struct die_info *type_unit_die,
5871 int has_children,
5872 void *data)
5873 {
5874 struct objfile *objfile = dwarf2_per_objfile->objfile;
5875 struct dwarf2_cu *cu = reader->cu;
5876 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5877 struct signatured_type *sig_type;
5878 struct type_unit_group *tu_group;
5879 struct attribute *attr;
5880 struct partial_die_info *first_die;
5881 CORE_ADDR lowpc, highpc;
5882 struct partial_symtab *pst;
5883
5884 gdb_assert (data == NULL);
5885 gdb_assert (per_cu->is_debug_types);
5886 sig_type = (struct signatured_type *) per_cu;
5887
5888 if (! has_children)
5889 return;
5890
5891 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5892 tu_group = get_type_unit_group (cu, attr);
5893
5894 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
5895
5896 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5897 cu->list_in_scope = &file_symbols;
5898 pst = create_partial_symtab (per_cu, "");
5899 pst->anonymous = 1;
5900
5901 first_die = load_partial_dies (reader, info_ptr, 1);
5902
5903 lowpc = (CORE_ADDR) -1;
5904 highpc = (CORE_ADDR) 0;
5905 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5906
5907 pst->n_global_syms = objfile->global_psymbols.next -
5908 (objfile->global_psymbols.list + pst->globals_offset);
5909 pst->n_static_syms = objfile->static_psymbols.next -
5910 (objfile->static_psymbols.list + pst->statics_offset);
5911 sort_pst_symbols (objfile, pst);
5912 }
5913
5914 /* Traversal function for build_type_psymtabs. */
5915
5916 static int
5917 build_type_psymtab_dependencies (void **slot, void *info)
5918 {
5919 struct objfile *objfile = dwarf2_per_objfile->objfile;
5920 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5921 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5922 struct partial_symtab *pst = per_cu->v.psymtab;
5923 int len = VEC_length (sig_type_ptr, tu_group->tus);
5924 struct signatured_type *iter;
5925 int i;
5926
5927 gdb_assert (len > 0);
5928 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
5929
5930 pst->number_of_dependencies = len;
5931 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5932 len * sizeof (struct psymtab *));
5933 for (i = 0;
5934 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
5935 ++i)
5936 {
5937 gdb_assert (iter->per_cu.is_debug_types);
5938 pst->dependencies[i] = iter->per_cu.v.psymtab;
5939 iter->type_unit_group = tu_group;
5940 }
5941
5942 VEC_free (sig_type_ptr, tu_group->tus);
5943
5944 return 1;
5945 }
5946
5947 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5948 Build partial symbol tables for the .debug_types comp-units. */
5949
5950 static void
5951 build_type_psymtabs (struct objfile *objfile)
5952 {
5953 if (! create_all_type_units (objfile))
5954 return;
5955
5956 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5957
5958 /* Now that all TUs have been processed we can fill in the dependencies. */
5959 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5960 build_type_psymtab_dependencies, NULL);
5961 }
5962
5963 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5964
5965 static void
5966 psymtabs_addrmap_cleanup (void *o)
5967 {
5968 struct objfile *objfile = o;
5969
5970 objfile->psymtabs_addrmap = NULL;
5971 }
5972
5973 /* Compute the 'user' field for each psymtab in OBJFILE. */
5974
5975 static void
5976 set_partial_user (struct objfile *objfile)
5977 {
5978 int i;
5979
5980 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5981 {
5982 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5983 struct partial_symtab *pst = per_cu->v.psymtab;
5984 int j;
5985
5986 if (pst == NULL)
5987 continue;
5988
5989 for (j = 0; j < pst->number_of_dependencies; ++j)
5990 {
5991 /* Set the 'user' field only if it is not already set. */
5992 if (pst->dependencies[j]->user == NULL)
5993 pst->dependencies[j]->user = pst;
5994 }
5995 }
5996 }
5997
5998 /* Build the partial symbol table by doing a quick pass through the
5999 .debug_info and .debug_abbrev sections. */
6000
6001 static void
6002 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6003 {
6004 struct cleanup *back_to, *addrmap_cleanup;
6005 struct obstack temp_obstack;
6006 int i;
6007
6008 if (dwarf2_read_debug)
6009 {
6010 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6011 objfile->name);
6012 }
6013
6014 dwarf2_per_objfile->reading_partial_symbols = 1;
6015
6016 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6017
6018 /* Any cached compilation units will be linked by the per-objfile
6019 read_in_chain. Make sure to free them when we're done. */
6020 back_to = make_cleanup (free_cached_comp_units, NULL);
6021
6022 build_type_psymtabs (objfile);
6023
6024 create_all_comp_units (objfile);
6025
6026 /* Create a temporary address map on a temporary obstack. We later
6027 copy this to the final obstack. */
6028 obstack_init (&temp_obstack);
6029 make_cleanup_obstack_free (&temp_obstack);
6030 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6031 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6032
6033 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6034 {
6035 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6036
6037 process_psymtab_comp_unit (per_cu, 0);
6038 }
6039
6040 set_partial_user (objfile);
6041
6042 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6043 &objfile->objfile_obstack);
6044 discard_cleanups (addrmap_cleanup);
6045
6046 do_cleanups (back_to);
6047
6048 if (dwarf2_read_debug)
6049 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6050 objfile->name);
6051 }
6052
6053 /* die_reader_func for load_partial_comp_unit. */
6054
6055 static void
6056 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6057 const gdb_byte *info_ptr,
6058 struct die_info *comp_unit_die,
6059 int has_children,
6060 void *data)
6061 {
6062 struct dwarf2_cu *cu = reader->cu;
6063
6064 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6065
6066 /* Check if comp unit has_children.
6067 If so, read the rest of the partial symbols from this comp unit.
6068 If not, there's no more debug_info for this comp unit. */
6069 if (has_children)
6070 load_partial_dies (reader, info_ptr, 0);
6071 }
6072
6073 /* Load the partial DIEs for a secondary CU into memory.
6074 This is also used when rereading a primary CU with load_all_dies. */
6075
6076 static void
6077 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6078 {
6079 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6080 load_partial_comp_unit_reader, NULL);
6081 }
6082
6083 static void
6084 read_comp_units_from_section (struct objfile *objfile,
6085 struct dwarf2_section_info *section,
6086 unsigned int is_dwz,
6087 int *n_allocated,
6088 int *n_comp_units,
6089 struct dwarf2_per_cu_data ***all_comp_units)
6090 {
6091 const gdb_byte *info_ptr;
6092 bfd *abfd = section->asection->owner;
6093
6094 if (dwarf2_read_debug)
6095 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6096 section->asection->name, bfd_get_filename (abfd));
6097
6098 dwarf2_read_section (objfile, section);
6099
6100 info_ptr = section->buffer;
6101
6102 while (info_ptr < section->buffer + section->size)
6103 {
6104 unsigned int length, initial_length_size;
6105 struct dwarf2_per_cu_data *this_cu;
6106 sect_offset offset;
6107
6108 offset.sect_off = info_ptr - section->buffer;
6109
6110 /* Read just enough information to find out where the next
6111 compilation unit is. */
6112 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6113
6114 /* Save the compilation unit for later lookup. */
6115 this_cu = obstack_alloc (&objfile->objfile_obstack,
6116 sizeof (struct dwarf2_per_cu_data));
6117 memset (this_cu, 0, sizeof (*this_cu));
6118 this_cu->offset = offset;
6119 this_cu->length = length + initial_length_size;
6120 this_cu->is_dwz = is_dwz;
6121 this_cu->objfile = objfile;
6122 this_cu->section = section;
6123
6124 if (*n_comp_units == *n_allocated)
6125 {
6126 *n_allocated *= 2;
6127 *all_comp_units = xrealloc (*all_comp_units,
6128 *n_allocated
6129 * sizeof (struct dwarf2_per_cu_data *));
6130 }
6131 (*all_comp_units)[*n_comp_units] = this_cu;
6132 ++*n_comp_units;
6133
6134 info_ptr = info_ptr + this_cu->length;
6135 }
6136 }
6137
6138 /* Create a list of all compilation units in OBJFILE.
6139 This is only done for -readnow and building partial symtabs. */
6140
6141 static void
6142 create_all_comp_units (struct objfile *objfile)
6143 {
6144 int n_allocated;
6145 int n_comp_units;
6146 struct dwarf2_per_cu_data **all_comp_units;
6147 struct dwz_file *dwz;
6148
6149 n_comp_units = 0;
6150 n_allocated = 10;
6151 all_comp_units = xmalloc (n_allocated
6152 * sizeof (struct dwarf2_per_cu_data *));
6153
6154 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6155 &n_allocated, &n_comp_units, &all_comp_units);
6156
6157 dwz = dwarf2_get_dwz_file ();
6158 if (dwz != NULL)
6159 read_comp_units_from_section (objfile, &dwz->info, 1,
6160 &n_allocated, &n_comp_units,
6161 &all_comp_units);
6162
6163 dwarf2_per_objfile->all_comp_units
6164 = obstack_alloc (&objfile->objfile_obstack,
6165 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6166 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6167 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6168 xfree (all_comp_units);
6169 dwarf2_per_objfile->n_comp_units = n_comp_units;
6170 }
6171
6172 /* Process all loaded DIEs for compilation unit CU, starting at
6173 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6174 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6175 DW_AT_ranges). If NEED_PC is set, then this function will set
6176 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6177 and record the covered ranges in the addrmap. */
6178
6179 static void
6180 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6181 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6182 {
6183 struct partial_die_info *pdi;
6184
6185 /* Now, march along the PDI's, descending into ones which have
6186 interesting children but skipping the children of the other ones,
6187 until we reach the end of the compilation unit. */
6188
6189 pdi = first_die;
6190
6191 while (pdi != NULL)
6192 {
6193 fixup_partial_die (pdi, cu);
6194
6195 /* Anonymous namespaces or modules have no name but have interesting
6196 children, so we need to look at them. Ditto for anonymous
6197 enums. */
6198
6199 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6200 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6201 || pdi->tag == DW_TAG_imported_unit)
6202 {
6203 switch (pdi->tag)
6204 {
6205 case DW_TAG_subprogram:
6206 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6207 break;
6208 case DW_TAG_constant:
6209 case DW_TAG_variable:
6210 case DW_TAG_typedef:
6211 case DW_TAG_union_type:
6212 if (!pdi->is_declaration)
6213 {
6214 add_partial_symbol (pdi, cu);
6215 }
6216 break;
6217 case DW_TAG_class_type:
6218 case DW_TAG_interface_type:
6219 case DW_TAG_structure_type:
6220 if (!pdi->is_declaration)
6221 {
6222 add_partial_symbol (pdi, cu);
6223 }
6224 break;
6225 case DW_TAG_enumeration_type:
6226 if (!pdi->is_declaration)
6227 add_partial_enumeration (pdi, cu);
6228 break;
6229 case DW_TAG_base_type:
6230 case DW_TAG_subrange_type:
6231 /* File scope base type definitions are added to the partial
6232 symbol table. */
6233 add_partial_symbol (pdi, cu);
6234 break;
6235 case DW_TAG_namespace:
6236 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6237 break;
6238 case DW_TAG_module:
6239 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6240 break;
6241 case DW_TAG_imported_unit:
6242 {
6243 struct dwarf2_per_cu_data *per_cu;
6244
6245 /* For now we don't handle imported units in type units. */
6246 if (cu->per_cu->is_debug_types)
6247 {
6248 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6249 " supported in type units [in module %s]"),
6250 cu->objfile->name);
6251 }
6252
6253 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6254 pdi->is_dwz,
6255 cu->objfile);
6256
6257 /* Go read the partial unit, if needed. */
6258 if (per_cu->v.psymtab == NULL)
6259 process_psymtab_comp_unit (per_cu, 1);
6260
6261 VEC_safe_push (dwarf2_per_cu_ptr,
6262 cu->per_cu->imported_symtabs, per_cu);
6263 }
6264 break;
6265 default:
6266 break;
6267 }
6268 }
6269
6270 /* If the die has a sibling, skip to the sibling. */
6271
6272 pdi = pdi->die_sibling;
6273 }
6274 }
6275
6276 /* Functions used to compute the fully scoped name of a partial DIE.
6277
6278 Normally, this is simple. For C++, the parent DIE's fully scoped
6279 name is concatenated with "::" and the partial DIE's name. For
6280 Java, the same thing occurs except that "." is used instead of "::".
6281 Enumerators are an exception; they use the scope of their parent
6282 enumeration type, i.e. the name of the enumeration type is not
6283 prepended to the enumerator.
6284
6285 There are two complexities. One is DW_AT_specification; in this
6286 case "parent" means the parent of the target of the specification,
6287 instead of the direct parent of the DIE. The other is compilers
6288 which do not emit DW_TAG_namespace; in this case we try to guess
6289 the fully qualified name of structure types from their members'
6290 linkage names. This must be done using the DIE's children rather
6291 than the children of any DW_AT_specification target. We only need
6292 to do this for structures at the top level, i.e. if the target of
6293 any DW_AT_specification (if any; otherwise the DIE itself) does not
6294 have a parent. */
6295
6296 /* Compute the scope prefix associated with PDI's parent, in
6297 compilation unit CU. The result will be allocated on CU's
6298 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6299 field. NULL is returned if no prefix is necessary. */
6300 static const char *
6301 partial_die_parent_scope (struct partial_die_info *pdi,
6302 struct dwarf2_cu *cu)
6303 {
6304 const char *grandparent_scope;
6305 struct partial_die_info *parent, *real_pdi;
6306
6307 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6308 then this means the parent of the specification DIE. */
6309
6310 real_pdi = pdi;
6311 while (real_pdi->has_specification)
6312 real_pdi = find_partial_die (real_pdi->spec_offset,
6313 real_pdi->spec_is_dwz, cu);
6314
6315 parent = real_pdi->die_parent;
6316 if (parent == NULL)
6317 return NULL;
6318
6319 if (parent->scope_set)
6320 return parent->scope;
6321
6322 fixup_partial_die (parent, cu);
6323
6324 grandparent_scope = partial_die_parent_scope (parent, cu);
6325
6326 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6327 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6328 Work around this problem here. */
6329 if (cu->language == language_cplus
6330 && parent->tag == DW_TAG_namespace
6331 && strcmp (parent->name, "::") == 0
6332 && grandparent_scope == NULL)
6333 {
6334 parent->scope = NULL;
6335 parent->scope_set = 1;
6336 return NULL;
6337 }
6338
6339 if (pdi->tag == DW_TAG_enumerator)
6340 /* Enumerators should not get the name of the enumeration as a prefix. */
6341 parent->scope = grandparent_scope;
6342 else if (parent->tag == DW_TAG_namespace
6343 || parent->tag == DW_TAG_module
6344 || parent->tag == DW_TAG_structure_type
6345 || parent->tag == DW_TAG_class_type
6346 || parent->tag == DW_TAG_interface_type
6347 || parent->tag == DW_TAG_union_type
6348 || parent->tag == DW_TAG_enumeration_type)
6349 {
6350 if (grandparent_scope == NULL)
6351 parent->scope = parent->name;
6352 else
6353 parent->scope = typename_concat (&cu->comp_unit_obstack,
6354 grandparent_scope,
6355 parent->name, 0, cu);
6356 }
6357 else
6358 {
6359 /* FIXME drow/2004-04-01: What should we be doing with
6360 function-local names? For partial symbols, we should probably be
6361 ignoring them. */
6362 complaint (&symfile_complaints,
6363 _("unhandled containing DIE tag %d for DIE at %d"),
6364 parent->tag, pdi->offset.sect_off);
6365 parent->scope = grandparent_scope;
6366 }
6367
6368 parent->scope_set = 1;
6369 return parent->scope;
6370 }
6371
6372 /* Return the fully scoped name associated with PDI, from compilation unit
6373 CU. The result will be allocated with malloc. */
6374
6375 static char *
6376 partial_die_full_name (struct partial_die_info *pdi,
6377 struct dwarf2_cu *cu)
6378 {
6379 const char *parent_scope;
6380
6381 /* If this is a template instantiation, we can not work out the
6382 template arguments from partial DIEs. So, unfortunately, we have
6383 to go through the full DIEs. At least any work we do building
6384 types here will be reused if full symbols are loaded later. */
6385 if (pdi->has_template_arguments)
6386 {
6387 fixup_partial_die (pdi, cu);
6388
6389 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6390 {
6391 struct die_info *die;
6392 struct attribute attr;
6393 struct dwarf2_cu *ref_cu = cu;
6394
6395 /* DW_FORM_ref_addr is using section offset. */
6396 attr.name = 0;
6397 attr.form = DW_FORM_ref_addr;
6398 attr.u.unsnd = pdi->offset.sect_off;
6399 die = follow_die_ref (NULL, &attr, &ref_cu);
6400
6401 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6402 }
6403 }
6404
6405 parent_scope = partial_die_parent_scope (pdi, cu);
6406 if (parent_scope == NULL)
6407 return NULL;
6408 else
6409 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6410 }
6411
6412 static void
6413 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6414 {
6415 struct objfile *objfile = cu->objfile;
6416 CORE_ADDR addr = 0;
6417 const char *actual_name = NULL;
6418 CORE_ADDR baseaddr;
6419 char *built_actual_name;
6420
6421 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6422
6423 built_actual_name = partial_die_full_name (pdi, cu);
6424 if (built_actual_name != NULL)
6425 actual_name = built_actual_name;
6426
6427 if (actual_name == NULL)
6428 actual_name = pdi->name;
6429
6430 switch (pdi->tag)
6431 {
6432 case DW_TAG_subprogram:
6433 if (pdi->is_external || cu->language == language_ada)
6434 {
6435 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6436 of the global scope. But in Ada, we want to be able to access
6437 nested procedures globally. So all Ada subprograms are stored
6438 in the global scope. */
6439 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6440 mst_text, objfile); */
6441 add_psymbol_to_list (actual_name, strlen (actual_name),
6442 built_actual_name != NULL,
6443 VAR_DOMAIN, LOC_BLOCK,
6444 &objfile->global_psymbols,
6445 0, pdi->lowpc + baseaddr,
6446 cu->language, objfile);
6447 }
6448 else
6449 {
6450 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6451 mst_file_text, objfile); */
6452 add_psymbol_to_list (actual_name, strlen (actual_name),
6453 built_actual_name != NULL,
6454 VAR_DOMAIN, LOC_BLOCK,
6455 &objfile->static_psymbols,
6456 0, pdi->lowpc + baseaddr,
6457 cu->language, objfile);
6458 }
6459 break;
6460 case DW_TAG_constant:
6461 {
6462 struct psymbol_allocation_list *list;
6463
6464 if (pdi->is_external)
6465 list = &objfile->global_psymbols;
6466 else
6467 list = &objfile->static_psymbols;
6468 add_psymbol_to_list (actual_name, strlen (actual_name),
6469 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6470 list, 0, 0, cu->language, objfile);
6471 }
6472 break;
6473 case DW_TAG_variable:
6474 if (pdi->d.locdesc)
6475 addr = decode_locdesc (pdi->d.locdesc, cu);
6476
6477 if (pdi->d.locdesc
6478 && addr == 0
6479 && !dwarf2_per_objfile->has_section_at_zero)
6480 {
6481 /* A global or static variable may also have been stripped
6482 out by the linker if unused, in which case its address
6483 will be nullified; do not add such variables into partial
6484 symbol table then. */
6485 }
6486 else if (pdi->is_external)
6487 {
6488 /* Global Variable.
6489 Don't enter into the minimal symbol tables as there is
6490 a minimal symbol table entry from the ELF symbols already.
6491 Enter into partial symbol table if it has a location
6492 descriptor or a type.
6493 If the location descriptor is missing, new_symbol will create
6494 a LOC_UNRESOLVED symbol, the address of the variable will then
6495 be determined from the minimal symbol table whenever the variable
6496 is referenced.
6497 The address for the partial symbol table entry is not
6498 used by GDB, but it comes in handy for debugging partial symbol
6499 table building. */
6500
6501 if (pdi->d.locdesc || pdi->has_type)
6502 add_psymbol_to_list (actual_name, strlen (actual_name),
6503 built_actual_name != NULL,
6504 VAR_DOMAIN, LOC_STATIC,
6505 &objfile->global_psymbols,
6506 0, addr + baseaddr,
6507 cu->language, objfile);
6508 }
6509 else
6510 {
6511 /* Static Variable. Skip symbols without location descriptors. */
6512 if (pdi->d.locdesc == NULL)
6513 {
6514 xfree (built_actual_name);
6515 return;
6516 }
6517 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6518 mst_file_data, objfile); */
6519 add_psymbol_to_list (actual_name, strlen (actual_name),
6520 built_actual_name != NULL,
6521 VAR_DOMAIN, LOC_STATIC,
6522 &objfile->static_psymbols,
6523 0, addr + baseaddr,
6524 cu->language, objfile);
6525 }
6526 break;
6527 case DW_TAG_typedef:
6528 case DW_TAG_base_type:
6529 case DW_TAG_subrange_type:
6530 add_psymbol_to_list (actual_name, strlen (actual_name),
6531 built_actual_name != NULL,
6532 VAR_DOMAIN, LOC_TYPEDEF,
6533 &objfile->static_psymbols,
6534 0, (CORE_ADDR) 0, cu->language, objfile);
6535 break;
6536 case DW_TAG_namespace:
6537 add_psymbol_to_list (actual_name, strlen (actual_name),
6538 built_actual_name != NULL,
6539 VAR_DOMAIN, LOC_TYPEDEF,
6540 &objfile->global_psymbols,
6541 0, (CORE_ADDR) 0, cu->language, objfile);
6542 break;
6543 case DW_TAG_class_type:
6544 case DW_TAG_interface_type:
6545 case DW_TAG_structure_type:
6546 case DW_TAG_union_type:
6547 case DW_TAG_enumeration_type:
6548 /* Skip external references. The DWARF standard says in the section
6549 about "Structure, Union, and Class Type Entries": "An incomplete
6550 structure, union or class type is represented by a structure,
6551 union or class entry that does not have a byte size attribute
6552 and that has a DW_AT_declaration attribute." */
6553 if (!pdi->has_byte_size && pdi->is_declaration)
6554 {
6555 xfree (built_actual_name);
6556 return;
6557 }
6558
6559 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6560 static vs. global. */
6561 add_psymbol_to_list (actual_name, strlen (actual_name),
6562 built_actual_name != NULL,
6563 STRUCT_DOMAIN, LOC_TYPEDEF,
6564 (cu->language == language_cplus
6565 || cu->language == language_java)
6566 ? &objfile->global_psymbols
6567 : &objfile->static_psymbols,
6568 0, (CORE_ADDR) 0, cu->language, objfile);
6569
6570 break;
6571 case DW_TAG_enumerator:
6572 add_psymbol_to_list (actual_name, strlen (actual_name),
6573 built_actual_name != NULL,
6574 VAR_DOMAIN, LOC_CONST,
6575 (cu->language == language_cplus
6576 || cu->language == language_java)
6577 ? &objfile->global_psymbols
6578 : &objfile->static_psymbols,
6579 0, (CORE_ADDR) 0, cu->language, objfile);
6580 break;
6581 default:
6582 break;
6583 }
6584
6585 xfree (built_actual_name);
6586 }
6587
6588 /* Read a partial die corresponding to a namespace; also, add a symbol
6589 corresponding to that namespace to the symbol table. NAMESPACE is
6590 the name of the enclosing namespace. */
6591
6592 static void
6593 add_partial_namespace (struct partial_die_info *pdi,
6594 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6595 int need_pc, struct dwarf2_cu *cu)
6596 {
6597 /* Add a symbol for the namespace. */
6598
6599 add_partial_symbol (pdi, cu);
6600
6601 /* Now scan partial symbols in that namespace. */
6602
6603 if (pdi->has_children)
6604 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6605 }
6606
6607 /* Read a partial die corresponding to a Fortran module. */
6608
6609 static void
6610 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6611 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6612 {
6613 /* Now scan partial symbols in that module. */
6614
6615 if (pdi->has_children)
6616 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6617 }
6618
6619 /* Read a partial die corresponding to a subprogram and create a partial
6620 symbol for that subprogram. When the CU language allows it, this
6621 routine also defines a partial symbol for each nested subprogram
6622 that this subprogram contains.
6623
6624 DIE my also be a lexical block, in which case we simply search
6625 recursively for suprograms defined inside that lexical block.
6626 Again, this is only performed when the CU language allows this
6627 type of definitions. */
6628
6629 static void
6630 add_partial_subprogram (struct partial_die_info *pdi,
6631 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6632 int need_pc, struct dwarf2_cu *cu)
6633 {
6634 if (pdi->tag == DW_TAG_subprogram)
6635 {
6636 if (pdi->has_pc_info)
6637 {
6638 if (pdi->lowpc < *lowpc)
6639 *lowpc = pdi->lowpc;
6640 if (pdi->highpc > *highpc)
6641 *highpc = pdi->highpc;
6642 if (need_pc)
6643 {
6644 CORE_ADDR baseaddr;
6645 struct objfile *objfile = cu->objfile;
6646
6647 baseaddr = ANOFFSET (objfile->section_offsets,
6648 SECT_OFF_TEXT (objfile));
6649 addrmap_set_empty (objfile->psymtabs_addrmap,
6650 pdi->lowpc + baseaddr,
6651 pdi->highpc - 1 + baseaddr,
6652 cu->per_cu->v.psymtab);
6653 }
6654 }
6655
6656 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6657 {
6658 if (!pdi->is_declaration)
6659 /* Ignore subprogram DIEs that do not have a name, they are
6660 illegal. Do not emit a complaint at this point, we will
6661 do so when we convert this psymtab into a symtab. */
6662 if (pdi->name)
6663 add_partial_symbol (pdi, cu);
6664 }
6665 }
6666
6667 if (! pdi->has_children)
6668 return;
6669
6670 if (cu->language == language_ada)
6671 {
6672 pdi = pdi->die_child;
6673 while (pdi != NULL)
6674 {
6675 fixup_partial_die (pdi, cu);
6676 if (pdi->tag == DW_TAG_subprogram
6677 || pdi->tag == DW_TAG_lexical_block)
6678 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6679 pdi = pdi->die_sibling;
6680 }
6681 }
6682 }
6683
6684 /* Read a partial die corresponding to an enumeration type. */
6685
6686 static void
6687 add_partial_enumeration (struct partial_die_info *enum_pdi,
6688 struct dwarf2_cu *cu)
6689 {
6690 struct partial_die_info *pdi;
6691
6692 if (enum_pdi->name != NULL)
6693 add_partial_symbol (enum_pdi, cu);
6694
6695 pdi = enum_pdi->die_child;
6696 while (pdi)
6697 {
6698 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6699 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6700 else
6701 add_partial_symbol (pdi, cu);
6702 pdi = pdi->die_sibling;
6703 }
6704 }
6705
6706 /* Return the initial uleb128 in the die at INFO_PTR. */
6707
6708 static unsigned int
6709 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6710 {
6711 unsigned int bytes_read;
6712
6713 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6714 }
6715
6716 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6717 Return the corresponding abbrev, or NULL if the number is zero (indicating
6718 an empty DIE). In either case *BYTES_READ will be set to the length of
6719 the initial number. */
6720
6721 static struct abbrev_info *
6722 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6723 struct dwarf2_cu *cu)
6724 {
6725 bfd *abfd = cu->objfile->obfd;
6726 unsigned int abbrev_number;
6727 struct abbrev_info *abbrev;
6728
6729 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6730
6731 if (abbrev_number == 0)
6732 return NULL;
6733
6734 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6735 if (!abbrev)
6736 {
6737 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6738 abbrev_number, bfd_get_filename (abfd));
6739 }
6740
6741 return abbrev;
6742 }
6743
6744 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6745 Returns a pointer to the end of a series of DIEs, terminated by an empty
6746 DIE. Any children of the skipped DIEs will also be skipped. */
6747
6748 static const gdb_byte *
6749 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6750 {
6751 struct dwarf2_cu *cu = reader->cu;
6752 struct abbrev_info *abbrev;
6753 unsigned int bytes_read;
6754
6755 while (1)
6756 {
6757 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6758 if (abbrev == NULL)
6759 return info_ptr + bytes_read;
6760 else
6761 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6762 }
6763 }
6764
6765 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6766 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6767 abbrev corresponding to that skipped uleb128 should be passed in
6768 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6769 children. */
6770
6771 static const gdb_byte *
6772 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6773 struct abbrev_info *abbrev)
6774 {
6775 unsigned int bytes_read;
6776 struct attribute attr;
6777 bfd *abfd = reader->abfd;
6778 struct dwarf2_cu *cu = reader->cu;
6779 const gdb_byte *buffer = reader->buffer;
6780 const gdb_byte *buffer_end = reader->buffer_end;
6781 const gdb_byte *start_info_ptr = info_ptr;
6782 unsigned int form, i;
6783
6784 for (i = 0; i < abbrev->num_attrs; i++)
6785 {
6786 /* The only abbrev we care about is DW_AT_sibling. */
6787 if (abbrev->attrs[i].name == DW_AT_sibling)
6788 {
6789 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6790 if (attr.form == DW_FORM_ref_addr)
6791 complaint (&symfile_complaints,
6792 _("ignoring absolute DW_AT_sibling"));
6793 else
6794 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6795 }
6796
6797 /* If it isn't DW_AT_sibling, skip this attribute. */
6798 form = abbrev->attrs[i].form;
6799 skip_attribute:
6800 switch (form)
6801 {
6802 case DW_FORM_ref_addr:
6803 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6804 and later it is offset sized. */
6805 if (cu->header.version == 2)
6806 info_ptr += cu->header.addr_size;
6807 else
6808 info_ptr += cu->header.offset_size;
6809 break;
6810 case DW_FORM_GNU_ref_alt:
6811 info_ptr += cu->header.offset_size;
6812 break;
6813 case DW_FORM_addr:
6814 info_ptr += cu->header.addr_size;
6815 break;
6816 case DW_FORM_data1:
6817 case DW_FORM_ref1:
6818 case DW_FORM_flag:
6819 info_ptr += 1;
6820 break;
6821 case DW_FORM_flag_present:
6822 break;
6823 case DW_FORM_data2:
6824 case DW_FORM_ref2:
6825 info_ptr += 2;
6826 break;
6827 case DW_FORM_data4:
6828 case DW_FORM_ref4:
6829 info_ptr += 4;
6830 break;
6831 case DW_FORM_data8:
6832 case DW_FORM_ref8:
6833 case DW_FORM_ref_sig8:
6834 info_ptr += 8;
6835 break;
6836 case DW_FORM_string:
6837 read_direct_string (abfd, info_ptr, &bytes_read);
6838 info_ptr += bytes_read;
6839 break;
6840 case DW_FORM_sec_offset:
6841 case DW_FORM_strp:
6842 case DW_FORM_GNU_strp_alt:
6843 info_ptr += cu->header.offset_size;
6844 break;
6845 case DW_FORM_exprloc:
6846 case DW_FORM_block:
6847 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6848 info_ptr += bytes_read;
6849 break;
6850 case DW_FORM_block1:
6851 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6852 break;
6853 case DW_FORM_block2:
6854 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6855 break;
6856 case DW_FORM_block4:
6857 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6858 break;
6859 case DW_FORM_sdata:
6860 case DW_FORM_udata:
6861 case DW_FORM_ref_udata:
6862 case DW_FORM_GNU_addr_index:
6863 case DW_FORM_GNU_str_index:
6864 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
6865 break;
6866 case DW_FORM_indirect:
6867 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6868 info_ptr += bytes_read;
6869 /* We need to continue parsing from here, so just go back to
6870 the top. */
6871 goto skip_attribute;
6872
6873 default:
6874 error (_("Dwarf Error: Cannot handle %s "
6875 "in DWARF reader [in module %s]"),
6876 dwarf_form_name (form),
6877 bfd_get_filename (abfd));
6878 }
6879 }
6880
6881 if (abbrev->has_children)
6882 return skip_children (reader, info_ptr);
6883 else
6884 return info_ptr;
6885 }
6886
6887 /* Locate ORIG_PDI's sibling.
6888 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6889
6890 static const gdb_byte *
6891 locate_pdi_sibling (const struct die_reader_specs *reader,
6892 struct partial_die_info *orig_pdi,
6893 const gdb_byte *info_ptr)
6894 {
6895 /* Do we know the sibling already? */
6896
6897 if (orig_pdi->sibling)
6898 return orig_pdi->sibling;
6899
6900 /* Are there any children to deal with? */
6901
6902 if (!orig_pdi->has_children)
6903 return info_ptr;
6904
6905 /* Skip the children the long way. */
6906
6907 return skip_children (reader, info_ptr);
6908 }
6909
6910 /* Expand this partial symbol table into a full symbol table. SELF is
6911 not NULL. */
6912
6913 static void
6914 dwarf2_read_symtab (struct partial_symtab *self,
6915 struct objfile *objfile)
6916 {
6917 if (self->readin)
6918 {
6919 warning (_("bug: psymtab for %s is already read in."),
6920 self->filename);
6921 }
6922 else
6923 {
6924 if (info_verbose)
6925 {
6926 printf_filtered (_("Reading in symbols for %s..."),
6927 self->filename);
6928 gdb_flush (gdb_stdout);
6929 }
6930
6931 /* Restore our global data. */
6932 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6933
6934 /* If this psymtab is constructed from a debug-only objfile, the
6935 has_section_at_zero flag will not necessarily be correct. We
6936 can get the correct value for this flag by looking at the data
6937 associated with the (presumably stripped) associated objfile. */
6938 if (objfile->separate_debug_objfile_backlink)
6939 {
6940 struct dwarf2_per_objfile *dpo_backlink
6941 = objfile_data (objfile->separate_debug_objfile_backlink,
6942 dwarf2_objfile_data_key);
6943
6944 dwarf2_per_objfile->has_section_at_zero
6945 = dpo_backlink->has_section_at_zero;
6946 }
6947
6948 dwarf2_per_objfile->reading_partial_symbols = 0;
6949
6950 psymtab_to_symtab_1 (self);
6951
6952 /* Finish up the debug error message. */
6953 if (info_verbose)
6954 printf_filtered (_("done.\n"));
6955 }
6956
6957 process_cu_includes ();
6958 }
6959 \f
6960 /* Reading in full CUs. */
6961
6962 /* Add PER_CU to the queue. */
6963
6964 static void
6965 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6966 enum language pretend_language)
6967 {
6968 struct dwarf2_queue_item *item;
6969
6970 per_cu->queued = 1;
6971 item = xmalloc (sizeof (*item));
6972 item->per_cu = per_cu;
6973 item->pretend_language = pretend_language;
6974 item->next = NULL;
6975
6976 if (dwarf2_queue == NULL)
6977 dwarf2_queue = item;
6978 else
6979 dwarf2_queue_tail->next = item;
6980
6981 dwarf2_queue_tail = item;
6982 }
6983
6984 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6985 unit and add it to our queue.
6986 The result is non-zero if PER_CU was queued, otherwise the result is zero
6987 meaning either PER_CU is already queued or it is already loaded. */
6988
6989 static int
6990 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6991 struct dwarf2_per_cu_data *per_cu,
6992 enum language pretend_language)
6993 {
6994 /* We may arrive here during partial symbol reading, if we need full
6995 DIEs to process an unusual case (e.g. template arguments). Do
6996 not queue PER_CU, just tell our caller to load its DIEs. */
6997 if (dwarf2_per_objfile->reading_partial_symbols)
6998 {
6999 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7000 return 1;
7001 return 0;
7002 }
7003
7004 /* Mark the dependence relation so that we don't flush PER_CU
7005 too early. */
7006 dwarf2_add_dependence (this_cu, per_cu);
7007
7008 /* If it's already on the queue, we have nothing to do. */
7009 if (per_cu->queued)
7010 return 0;
7011
7012 /* If the compilation unit is already loaded, just mark it as
7013 used. */
7014 if (per_cu->cu != NULL)
7015 {
7016 per_cu->cu->last_used = 0;
7017 return 0;
7018 }
7019
7020 /* Add it to the queue. */
7021 queue_comp_unit (per_cu, pretend_language);
7022
7023 return 1;
7024 }
7025
7026 /* Process the queue. */
7027
7028 static void
7029 process_queue (void)
7030 {
7031 struct dwarf2_queue_item *item, *next_item;
7032
7033 if (dwarf2_read_debug)
7034 {
7035 fprintf_unfiltered (gdb_stdlog,
7036 "Expanding one or more symtabs of objfile %s ...\n",
7037 dwarf2_per_objfile->objfile->name);
7038 }
7039
7040 /* The queue starts out with one item, but following a DIE reference
7041 may load a new CU, adding it to the end of the queue. */
7042 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7043 {
7044 if (dwarf2_per_objfile->using_index
7045 ? !item->per_cu->v.quick->symtab
7046 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7047 {
7048 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7049 char buf[100];
7050
7051 if (per_cu->is_debug_types)
7052 {
7053 struct signatured_type *sig_type =
7054 (struct signatured_type *) per_cu;
7055
7056 sprintf (buf, "TU %s at offset 0x%x",
7057 hex_string (sig_type->signature), per_cu->offset.sect_off);
7058 }
7059 else
7060 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7061
7062 if (dwarf2_read_debug)
7063 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7064
7065 if (per_cu->is_debug_types)
7066 process_full_type_unit (per_cu, item->pretend_language);
7067 else
7068 process_full_comp_unit (per_cu, item->pretend_language);
7069
7070 if (dwarf2_read_debug)
7071 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7072 }
7073
7074 item->per_cu->queued = 0;
7075 next_item = item->next;
7076 xfree (item);
7077 }
7078
7079 dwarf2_queue_tail = NULL;
7080
7081 if (dwarf2_read_debug)
7082 {
7083 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7084 dwarf2_per_objfile->objfile->name);
7085 }
7086 }
7087
7088 /* Free all allocated queue entries. This function only releases anything if
7089 an error was thrown; if the queue was processed then it would have been
7090 freed as we went along. */
7091
7092 static void
7093 dwarf2_release_queue (void *dummy)
7094 {
7095 struct dwarf2_queue_item *item, *last;
7096
7097 item = dwarf2_queue;
7098 while (item)
7099 {
7100 /* Anything still marked queued is likely to be in an
7101 inconsistent state, so discard it. */
7102 if (item->per_cu->queued)
7103 {
7104 if (item->per_cu->cu != NULL)
7105 free_one_cached_comp_unit (item->per_cu);
7106 item->per_cu->queued = 0;
7107 }
7108
7109 last = item;
7110 item = item->next;
7111 xfree (last);
7112 }
7113
7114 dwarf2_queue = dwarf2_queue_tail = NULL;
7115 }
7116
7117 /* Read in full symbols for PST, and anything it depends on. */
7118
7119 static void
7120 psymtab_to_symtab_1 (struct partial_symtab *pst)
7121 {
7122 struct dwarf2_per_cu_data *per_cu;
7123 int i;
7124
7125 if (pst->readin)
7126 return;
7127
7128 for (i = 0; i < pst->number_of_dependencies; i++)
7129 if (!pst->dependencies[i]->readin
7130 && pst->dependencies[i]->user == NULL)
7131 {
7132 /* Inform about additional files that need to be read in. */
7133 if (info_verbose)
7134 {
7135 /* FIXME: i18n: Need to make this a single string. */
7136 fputs_filtered (" ", gdb_stdout);
7137 wrap_here ("");
7138 fputs_filtered ("and ", gdb_stdout);
7139 wrap_here ("");
7140 printf_filtered ("%s...", pst->dependencies[i]->filename);
7141 wrap_here (""); /* Flush output. */
7142 gdb_flush (gdb_stdout);
7143 }
7144 psymtab_to_symtab_1 (pst->dependencies[i]);
7145 }
7146
7147 per_cu = pst->read_symtab_private;
7148
7149 if (per_cu == NULL)
7150 {
7151 /* It's an include file, no symbols to read for it.
7152 Everything is in the parent symtab. */
7153 pst->readin = 1;
7154 return;
7155 }
7156
7157 dw2_do_instantiate_symtab (per_cu);
7158 }
7159
7160 /* Trivial hash function for die_info: the hash value of a DIE
7161 is its offset in .debug_info for this objfile. */
7162
7163 static hashval_t
7164 die_hash (const void *item)
7165 {
7166 const struct die_info *die = item;
7167
7168 return die->offset.sect_off;
7169 }
7170
7171 /* Trivial comparison function for die_info structures: two DIEs
7172 are equal if they have the same offset. */
7173
7174 static int
7175 die_eq (const void *item_lhs, const void *item_rhs)
7176 {
7177 const struct die_info *die_lhs = item_lhs;
7178 const struct die_info *die_rhs = item_rhs;
7179
7180 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7181 }
7182
7183 /* die_reader_func for load_full_comp_unit.
7184 This is identical to read_signatured_type_reader,
7185 but is kept separate for now. */
7186
7187 static void
7188 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7189 const gdb_byte *info_ptr,
7190 struct die_info *comp_unit_die,
7191 int has_children,
7192 void *data)
7193 {
7194 struct dwarf2_cu *cu = reader->cu;
7195 enum language *language_ptr = data;
7196
7197 gdb_assert (cu->die_hash == NULL);
7198 cu->die_hash =
7199 htab_create_alloc_ex (cu->header.length / 12,
7200 die_hash,
7201 die_eq,
7202 NULL,
7203 &cu->comp_unit_obstack,
7204 hashtab_obstack_allocate,
7205 dummy_obstack_deallocate);
7206
7207 if (has_children)
7208 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7209 &info_ptr, comp_unit_die);
7210 cu->dies = comp_unit_die;
7211 /* comp_unit_die is not stored in die_hash, no need. */
7212
7213 /* We try not to read any attributes in this function, because not
7214 all CUs needed for references have been loaded yet, and symbol
7215 table processing isn't initialized. But we have to set the CU language,
7216 or we won't be able to build types correctly.
7217 Similarly, if we do not read the producer, we can not apply
7218 producer-specific interpretation. */
7219 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7220 }
7221
7222 /* Load the DIEs associated with PER_CU into memory. */
7223
7224 static void
7225 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7226 enum language pretend_language)
7227 {
7228 gdb_assert (! this_cu->is_debug_types);
7229
7230 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7231 load_full_comp_unit_reader, &pretend_language);
7232 }
7233
7234 /* Add a DIE to the delayed physname list. */
7235
7236 static void
7237 add_to_method_list (struct type *type, int fnfield_index, int index,
7238 const char *name, struct die_info *die,
7239 struct dwarf2_cu *cu)
7240 {
7241 struct delayed_method_info mi;
7242 mi.type = type;
7243 mi.fnfield_index = fnfield_index;
7244 mi.index = index;
7245 mi.name = name;
7246 mi.die = die;
7247 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7248 }
7249
7250 /* A cleanup for freeing the delayed method list. */
7251
7252 static void
7253 free_delayed_list (void *ptr)
7254 {
7255 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7256 if (cu->method_list != NULL)
7257 {
7258 VEC_free (delayed_method_info, cu->method_list);
7259 cu->method_list = NULL;
7260 }
7261 }
7262
7263 /* Compute the physnames of any methods on the CU's method list.
7264
7265 The computation of method physnames is delayed in order to avoid the
7266 (bad) condition that one of the method's formal parameters is of an as yet
7267 incomplete type. */
7268
7269 static void
7270 compute_delayed_physnames (struct dwarf2_cu *cu)
7271 {
7272 int i;
7273 struct delayed_method_info *mi;
7274 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7275 {
7276 const char *physname;
7277 struct fn_fieldlist *fn_flp
7278 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7279 physname = dwarf2_physname (mi->name, mi->die, cu);
7280 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7281 }
7282 }
7283
7284 /* Go objects should be embedded in a DW_TAG_module DIE,
7285 and it's not clear if/how imported objects will appear.
7286 To keep Go support simple until that's worked out,
7287 go back through what we've read and create something usable.
7288 We could do this while processing each DIE, and feels kinda cleaner,
7289 but that way is more invasive.
7290 This is to, for example, allow the user to type "p var" or "b main"
7291 without having to specify the package name, and allow lookups
7292 of module.object to work in contexts that use the expression
7293 parser. */
7294
7295 static void
7296 fixup_go_packaging (struct dwarf2_cu *cu)
7297 {
7298 char *package_name = NULL;
7299 struct pending *list;
7300 int i;
7301
7302 for (list = global_symbols; list != NULL; list = list->next)
7303 {
7304 for (i = 0; i < list->nsyms; ++i)
7305 {
7306 struct symbol *sym = list->symbol[i];
7307
7308 if (SYMBOL_LANGUAGE (sym) == language_go
7309 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7310 {
7311 char *this_package_name = go_symbol_package_name (sym);
7312
7313 if (this_package_name == NULL)
7314 continue;
7315 if (package_name == NULL)
7316 package_name = this_package_name;
7317 else
7318 {
7319 if (strcmp (package_name, this_package_name) != 0)
7320 complaint (&symfile_complaints,
7321 _("Symtab %s has objects from two different Go packages: %s and %s"),
7322 (SYMBOL_SYMTAB (sym)
7323 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7324 : cu->objfile->name),
7325 this_package_name, package_name);
7326 xfree (this_package_name);
7327 }
7328 }
7329 }
7330 }
7331
7332 if (package_name != NULL)
7333 {
7334 struct objfile *objfile = cu->objfile;
7335 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7336 package_name,
7337 strlen (package_name));
7338 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7339 saved_package_name, objfile);
7340 struct symbol *sym;
7341
7342 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7343
7344 sym = allocate_symbol (objfile);
7345 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7346 SYMBOL_SET_NAMES (sym, saved_package_name,
7347 strlen (saved_package_name), 0, objfile);
7348 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7349 e.g., "main" finds the "main" module and not C's main(). */
7350 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7351 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7352 SYMBOL_TYPE (sym) = type;
7353
7354 add_symbol_to_list (sym, &global_symbols);
7355
7356 xfree (package_name);
7357 }
7358 }
7359
7360 /* Return the symtab for PER_CU. This works properly regardless of
7361 whether we're using the index or psymtabs. */
7362
7363 static struct symtab *
7364 get_symtab (struct dwarf2_per_cu_data *per_cu)
7365 {
7366 return (dwarf2_per_objfile->using_index
7367 ? per_cu->v.quick->symtab
7368 : per_cu->v.psymtab->symtab);
7369 }
7370
7371 /* A helper function for computing the list of all symbol tables
7372 included by PER_CU. */
7373
7374 static void
7375 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7376 htab_t all_children, htab_t all_type_symtabs,
7377 struct dwarf2_per_cu_data *per_cu)
7378 {
7379 void **slot;
7380 int ix;
7381 struct symtab *symtab;
7382 struct dwarf2_per_cu_data *iter;
7383
7384 slot = htab_find_slot (all_children, per_cu, INSERT);
7385 if (*slot != NULL)
7386 {
7387 /* This inclusion and its children have been processed. */
7388 return;
7389 }
7390
7391 *slot = per_cu;
7392 /* Only add a CU if it has a symbol table. */
7393 symtab = get_symtab (per_cu);
7394 if (symtab != NULL)
7395 {
7396 /* If this is a type unit only add its symbol table if we haven't
7397 seen it yet (type unit per_cu's can share symtabs). */
7398 if (per_cu->is_debug_types)
7399 {
7400 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7401 if (*slot == NULL)
7402 {
7403 *slot = symtab;
7404 VEC_safe_push (symtab_ptr, *result, symtab);
7405 }
7406 }
7407 else
7408 VEC_safe_push (symtab_ptr, *result, symtab);
7409 }
7410
7411 for (ix = 0;
7412 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7413 ++ix)
7414 {
7415 recursively_compute_inclusions (result, all_children,
7416 all_type_symtabs, iter);
7417 }
7418 }
7419
7420 /* Compute the symtab 'includes' fields for the symtab related to
7421 PER_CU. */
7422
7423 static void
7424 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7425 {
7426 gdb_assert (! per_cu->is_debug_types);
7427
7428 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7429 {
7430 int ix, len;
7431 struct dwarf2_per_cu_data *per_cu_iter;
7432 struct symtab *symtab_iter;
7433 VEC (symtab_ptr) *result_symtabs = NULL;
7434 htab_t all_children, all_type_symtabs;
7435 struct symtab *symtab = get_symtab (per_cu);
7436
7437 /* If we don't have a symtab, we can just skip this case. */
7438 if (symtab == NULL)
7439 return;
7440
7441 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7442 NULL, xcalloc, xfree);
7443 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7444 NULL, xcalloc, xfree);
7445
7446 for (ix = 0;
7447 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7448 ix, per_cu_iter);
7449 ++ix)
7450 {
7451 recursively_compute_inclusions (&result_symtabs, all_children,
7452 all_type_symtabs, per_cu_iter);
7453 }
7454
7455 /* Now we have a transitive closure of all the included symtabs. */
7456 len = VEC_length (symtab_ptr, result_symtabs);
7457 symtab->includes
7458 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7459 (len + 1) * sizeof (struct symtab *));
7460 for (ix = 0;
7461 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7462 ++ix)
7463 symtab->includes[ix] = symtab_iter;
7464 symtab->includes[len] = NULL;
7465
7466 VEC_free (symtab_ptr, result_symtabs);
7467 htab_delete (all_children);
7468 htab_delete (all_type_symtabs);
7469 }
7470 }
7471
7472 /* Compute the 'includes' field for the symtabs of all the CUs we just
7473 read. */
7474
7475 static void
7476 process_cu_includes (void)
7477 {
7478 int ix;
7479 struct dwarf2_per_cu_data *iter;
7480
7481 for (ix = 0;
7482 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7483 ix, iter);
7484 ++ix)
7485 {
7486 if (! iter->is_debug_types)
7487 compute_symtab_includes (iter);
7488 }
7489
7490 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7491 }
7492
7493 /* Generate full symbol information for PER_CU, whose DIEs have
7494 already been loaded into memory. */
7495
7496 static void
7497 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7498 enum language pretend_language)
7499 {
7500 struct dwarf2_cu *cu = per_cu->cu;
7501 struct objfile *objfile = per_cu->objfile;
7502 CORE_ADDR lowpc, highpc;
7503 struct symtab *symtab;
7504 struct cleanup *back_to, *delayed_list_cleanup;
7505 CORE_ADDR baseaddr;
7506 struct block *static_block;
7507
7508 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7509
7510 buildsym_init ();
7511 back_to = make_cleanup (really_free_pendings, NULL);
7512 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7513
7514 cu->list_in_scope = &file_symbols;
7515
7516 cu->language = pretend_language;
7517 cu->language_defn = language_def (cu->language);
7518
7519 /* Do line number decoding in read_file_scope () */
7520 process_die (cu->dies, cu);
7521
7522 /* For now fudge the Go package. */
7523 if (cu->language == language_go)
7524 fixup_go_packaging (cu);
7525
7526 /* Now that we have processed all the DIEs in the CU, all the types
7527 should be complete, and it should now be safe to compute all of the
7528 physnames. */
7529 compute_delayed_physnames (cu);
7530 do_cleanups (delayed_list_cleanup);
7531
7532 /* Some compilers don't define a DW_AT_high_pc attribute for the
7533 compilation unit. If the DW_AT_high_pc is missing, synthesize
7534 it, by scanning the DIE's below the compilation unit. */
7535 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7536
7537 static_block
7538 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7539
7540 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7541 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7542 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7543 addrmap to help ensure it has an accurate map of pc values belonging to
7544 this comp unit. */
7545 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7546
7547 symtab = end_symtab_from_static_block (static_block, objfile,
7548 SECT_OFF_TEXT (objfile), 0);
7549
7550 if (symtab != NULL)
7551 {
7552 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7553
7554 /* Set symtab language to language from DW_AT_language. If the
7555 compilation is from a C file generated by language preprocessors, do
7556 not set the language if it was already deduced by start_subfile. */
7557 if (!(cu->language == language_c && symtab->language != language_c))
7558 symtab->language = cu->language;
7559
7560 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7561 produce DW_AT_location with location lists but it can be possibly
7562 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7563 there were bugs in prologue debug info, fixed later in GCC-4.5
7564 by "unwind info for epilogues" patch (which is not directly related).
7565
7566 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7567 needed, it would be wrong due to missing DW_AT_producer there.
7568
7569 Still one can confuse GDB by using non-standard GCC compilation
7570 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7571 */
7572 if (cu->has_loclist && gcc_4_minor >= 5)
7573 symtab->locations_valid = 1;
7574
7575 if (gcc_4_minor >= 5)
7576 symtab->epilogue_unwind_valid = 1;
7577
7578 symtab->call_site_htab = cu->call_site_htab;
7579 }
7580
7581 if (dwarf2_per_objfile->using_index)
7582 per_cu->v.quick->symtab = symtab;
7583 else
7584 {
7585 struct partial_symtab *pst = per_cu->v.psymtab;
7586 pst->symtab = symtab;
7587 pst->readin = 1;
7588 }
7589
7590 /* Push it for inclusion processing later. */
7591 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7592
7593 do_cleanups (back_to);
7594 }
7595
7596 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7597 already been loaded into memory. */
7598
7599 static void
7600 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7601 enum language pretend_language)
7602 {
7603 struct dwarf2_cu *cu = per_cu->cu;
7604 struct objfile *objfile = per_cu->objfile;
7605 struct symtab *symtab;
7606 struct cleanup *back_to, *delayed_list_cleanup;
7607 struct signatured_type *sig_type;
7608
7609 gdb_assert (per_cu->is_debug_types);
7610 sig_type = (struct signatured_type *) per_cu;
7611
7612 buildsym_init ();
7613 back_to = make_cleanup (really_free_pendings, NULL);
7614 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7615
7616 cu->list_in_scope = &file_symbols;
7617
7618 cu->language = pretend_language;
7619 cu->language_defn = language_def (cu->language);
7620
7621 /* The symbol tables are set up in read_type_unit_scope. */
7622 process_die (cu->dies, cu);
7623
7624 /* For now fudge the Go package. */
7625 if (cu->language == language_go)
7626 fixup_go_packaging (cu);
7627
7628 /* Now that we have processed all the DIEs in the CU, all the types
7629 should be complete, and it should now be safe to compute all of the
7630 physnames. */
7631 compute_delayed_physnames (cu);
7632 do_cleanups (delayed_list_cleanup);
7633
7634 /* TUs share symbol tables.
7635 If this is the first TU to use this symtab, complete the construction
7636 of it with end_expandable_symtab. Otherwise, complete the addition of
7637 this TU's symbols to the existing symtab. */
7638 if (sig_type->type_unit_group->primary_symtab == NULL)
7639 {
7640 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7641 sig_type->type_unit_group->primary_symtab = symtab;
7642
7643 if (symtab != NULL)
7644 {
7645 /* Set symtab language to language from DW_AT_language. If the
7646 compilation is from a C file generated by language preprocessors,
7647 do not set the language if it was already deduced by
7648 start_subfile. */
7649 if (!(cu->language == language_c && symtab->language != language_c))
7650 symtab->language = cu->language;
7651 }
7652 }
7653 else
7654 {
7655 augment_type_symtab (objfile,
7656 sig_type->type_unit_group->primary_symtab);
7657 symtab = sig_type->type_unit_group->primary_symtab;
7658 }
7659
7660 if (dwarf2_per_objfile->using_index)
7661 per_cu->v.quick->symtab = symtab;
7662 else
7663 {
7664 struct partial_symtab *pst = per_cu->v.psymtab;
7665 pst->symtab = symtab;
7666 pst->readin = 1;
7667 }
7668
7669 do_cleanups (back_to);
7670 }
7671
7672 /* Process an imported unit DIE. */
7673
7674 static void
7675 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7676 {
7677 struct attribute *attr;
7678
7679 /* For now we don't handle imported units in type units. */
7680 if (cu->per_cu->is_debug_types)
7681 {
7682 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7683 " supported in type units [in module %s]"),
7684 cu->objfile->name);
7685 }
7686
7687 attr = dwarf2_attr (die, DW_AT_import, cu);
7688 if (attr != NULL)
7689 {
7690 struct dwarf2_per_cu_data *per_cu;
7691 struct symtab *imported_symtab;
7692 sect_offset offset;
7693 int is_dwz;
7694
7695 offset = dwarf2_get_ref_die_offset (attr);
7696 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7697 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7698
7699 /* Queue the unit, if needed. */
7700 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7701 load_full_comp_unit (per_cu, cu->language);
7702
7703 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7704 per_cu);
7705 }
7706 }
7707
7708 /* Process a die and its children. */
7709
7710 static void
7711 process_die (struct die_info *die, struct dwarf2_cu *cu)
7712 {
7713 switch (die->tag)
7714 {
7715 case DW_TAG_padding:
7716 break;
7717 case DW_TAG_compile_unit:
7718 case DW_TAG_partial_unit:
7719 read_file_scope (die, cu);
7720 break;
7721 case DW_TAG_type_unit:
7722 read_type_unit_scope (die, cu);
7723 break;
7724 case DW_TAG_subprogram:
7725 case DW_TAG_inlined_subroutine:
7726 read_func_scope (die, cu);
7727 break;
7728 case DW_TAG_lexical_block:
7729 case DW_TAG_try_block:
7730 case DW_TAG_catch_block:
7731 read_lexical_block_scope (die, cu);
7732 break;
7733 case DW_TAG_GNU_call_site:
7734 read_call_site_scope (die, cu);
7735 break;
7736 case DW_TAG_class_type:
7737 case DW_TAG_interface_type:
7738 case DW_TAG_structure_type:
7739 case DW_TAG_union_type:
7740 process_structure_scope (die, cu);
7741 break;
7742 case DW_TAG_enumeration_type:
7743 process_enumeration_scope (die, cu);
7744 break;
7745
7746 /* These dies have a type, but processing them does not create
7747 a symbol or recurse to process the children. Therefore we can
7748 read them on-demand through read_type_die. */
7749 case DW_TAG_subroutine_type:
7750 case DW_TAG_set_type:
7751 case DW_TAG_array_type:
7752 case DW_TAG_pointer_type:
7753 case DW_TAG_ptr_to_member_type:
7754 case DW_TAG_reference_type:
7755 case DW_TAG_string_type:
7756 break;
7757
7758 case DW_TAG_base_type:
7759 case DW_TAG_subrange_type:
7760 case DW_TAG_typedef:
7761 /* Add a typedef symbol for the type definition, if it has a
7762 DW_AT_name. */
7763 new_symbol (die, read_type_die (die, cu), cu);
7764 break;
7765 case DW_TAG_common_block:
7766 read_common_block (die, cu);
7767 break;
7768 case DW_TAG_common_inclusion:
7769 break;
7770 case DW_TAG_namespace:
7771 cu->processing_has_namespace_info = 1;
7772 read_namespace (die, cu);
7773 break;
7774 case DW_TAG_module:
7775 cu->processing_has_namespace_info = 1;
7776 read_module (die, cu);
7777 break;
7778 case DW_TAG_imported_declaration:
7779 case DW_TAG_imported_module:
7780 cu->processing_has_namespace_info = 1;
7781 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7782 || cu->language != language_fortran))
7783 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7784 dwarf_tag_name (die->tag));
7785 read_import_statement (die, cu);
7786 break;
7787
7788 case DW_TAG_imported_unit:
7789 process_imported_unit_die (die, cu);
7790 break;
7791
7792 default:
7793 new_symbol (die, NULL, cu);
7794 break;
7795 }
7796 }
7797 \f
7798 /* DWARF name computation. */
7799
7800 /* A helper function for dwarf2_compute_name which determines whether DIE
7801 needs to have the name of the scope prepended to the name listed in the
7802 die. */
7803
7804 static int
7805 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7806 {
7807 struct attribute *attr;
7808
7809 switch (die->tag)
7810 {
7811 case DW_TAG_namespace:
7812 case DW_TAG_typedef:
7813 case DW_TAG_class_type:
7814 case DW_TAG_interface_type:
7815 case DW_TAG_structure_type:
7816 case DW_TAG_union_type:
7817 case DW_TAG_enumeration_type:
7818 case DW_TAG_enumerator:
7819 case DW_TAG_subprogram:
7820 case DW_TAG_member:
7821 return 1;
7822
7823 case DW_TAG_variable:
7824 case DW_TAG_constant:
7825 /* We only need to prefix "globally" visible variables. These include
7826 any variable marked with DW_AT_external or any variable that
7827 lives in a namespace. [Variables in anonymous namespaces
7828 require prefixing, but they are not DW_AT_external.] */
7829
7830 if (dwarf2_attr (die, DW_AT_specification, cu))
7831 {
7832 struct dwarf2_cu *spec_cu = cu;
7833
7834 return die_needs_namespace (die_specification (die, &spec_cu),
7835 spec_cu);
7836 }
7837
7838 attr = dwarf2_attr (die, DW_AT_external, cu);
7839 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7840 && die->parent->tag != DW_TAG_module)
7841 return 0;
7842 /* A variable in a lexical block of some kind does not need a
7843 namespace, even though in C++ such variables may be external
7844 and have a mangled name. */
7845 if (die->parent->tag == DW_TAG_lexical_block
7846 || die->parent->tag == DW_TAG_try_block
7847 || die->parent->tag == DW_TAG_catch_block
7848 || die->parent->tag == DW_TAG_subprogram)
7849 return 0;
7850 return 1;
7851
7852 default:
7853 return 0;
7854 }
7855 }
7856
7857 /* Retrieve the last character from a mem_file. */
7858
7859 static void
7860 do_ui_file_peek_last (void *object, const char *buffer, long length)
7861 {
7862 char *last_char_p = (char *) object;
7863
7864 if (length > 0)
7865 *last_char_p = buffer[length - 1];
7866 }
7867
7868 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7869 compute the physname for the object, which include a method's:
7870 - formal parameters (C++/Java),
7871 - receiver type (Go),
7872 - return type (Java).
7873
7874 The term "physname" is a bit confusing.
7875 For C++, for example, it is the demangled name.
7876 For Go, for example, it's the mangled name.
7877
7878 For Ada, return the DIE's linkage name rather than the fully qualified
7879 name. PHYSNAME is ignored..
7880
7881 The result is allocated on the objfile_obstack and canonicalized. */
7882
7883 static const char *
7884 dwarf2_compute_name (const char *name,
7885 struct die_info *die, struct dwarf2_cu *cu,
7886 int physname)
7887 {
7888 struct objfile *objfile = cu->objfile;
7889
7890 if (name == NULL)
7891 name = dwarf2_name (die, cu);
7892
7893 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7894 compute it by typename_concat inside GDB. */
7895 if (cu->language == language_ada
7896 || (cu->language == language_fortran && physname))
7897 {
7898 /* For Ada unit, we prefer the linkage name over the name, as
7899 the former contains the exported name, which the user expects
7900 to be able to reference. Ideally, we want the user to be able
7901 to reference this entity using either natural or linkage name,
7902 but we haven't started looking at this enhancement yet. */
7903 struct attribute *attr;
7904
7905 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7906 if (attr == NULL)
7907 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7908 if (attr && DW_STRING (attr))
7909 return DW_STRING (attr);
7910 }
7911
7912 /* These are the only languages we know how to qualify names in. */
7913 if (name != NULL
7914 && (cu->language == language_cplus || cu->language == language_java
7915 || cu->language == language_fortran))
7916 {
7917 if (die_needs_namespace (die, cu))
7918 {
7919 long length;
7920 const char *prefix;
7921 struct ui_file *buf;
7922
7923 prefix = determine_prefix (die, cu);
7924 buf = mem_fileopen ();
7925 if (*prefix != '\0')
7926 {
7927 char *prefixed_name = typename_concat (NULL, prefix, name,
7928 physname, cu);
7929
7930 fputs_unfiltered (prefixed_name, buf);
7931 xfree (prefixed_name);
7932 }
7933 else
7934 fputs_unfiltered (name, buf);
7935
7936 /* Template parameters may be specified in the DIE's DW_AT_name, or
7937 as children with DW_TAG_template_type_param or
7938 DW_TAG_value_type_param. If the latter, add them to the name
7939 here. If the name already has template parameters, then
7940 skip this step; some versions of GCC emit both, and
7941 it is more efficient to use the pre-computed name.
7942
7943 Something to keep in mind about this process: it is very
7944 unlikely, or in some cases downright impossible, to produce
7945 something that will match the mangled name of a function.
7946 If the definition of the function has the same debug info,
7947 we should be able to match up with it anyway. But fallbacks
7948 using the minimal symbol, for instance to find a method
7949 implemented in a stripped copy of libstdc++, will not work.
7950 If we do not have debug info for the definition, we will have to
7951 match them up some other way.
7952
7953 When we do name matching there is a related problem with function
7954 templates; two instantiated function templates are allowed to
7955 differ only by their return types, which we do not add here. */
7956
7957 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7958 {
7959 struct attribute *attr;
7960 struct die_info *child;
7961 int first = 1;
7962
7963 die->building_fullname = 1;
7964
7965 for (child = die->child; child != NULL; child = child->sibling)
7966 {
7967 struct type *type;
7968 LONGEST value;
7969 const gdb_byte *bytes;
7970 struct dwarf2_locexpr_baton *baton;
7971 struct value *v;
7972
7973 if (child->tag != DW_TAG_template_type_param
7974 && child->tag != DW_TAG_template_value_param)
7975 continue;
7976
7977 if (first)
7978 {
7979 fputs_unfiltered ("<", buf);
7980 first = 0;
7981 }
7982 else
7983 fputs_unfiltered (", ", buf);
7984
7985 attr = dwarf2_attr (child, DW_AT_type, cu);
7986 if (attr == NULL)
7987 {
7988 complaint (&symfile_complaints,
7989 _("template parameter missing DW_AT_type"));
7990 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7991 continue;
7992 }
7993 type = die_type (child, cu);
7994
7995 if (child->tag == DW_TAG_template_type_param)
7996 {
7997 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7998 continue;
7999 }
8000
8001 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8002 if (attr == NULL)
8003 {
8004 complaint (&symfile_complaints,
8005 _("template parameter missing "
8006 "DW_AT_const_value"));
8007 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8008 continue;
8009 }
8010
8011 dwarf2_const_value_attr (attr, type, name,
8012 &cu->comp_unit_obstack, cu,
8013 &value, &bytes, &baton);
8014
8015 if (TYPE_NOSIGN (type))
8016 /* GDB prints characters as NUMBER 'CHAR'. If that's
8017 changed, this can use value_print instead. */
8018 c_printchar (value, type, buf);
8019 else
8020 {
8021 struct value_print_options opts;
8022
8023 if (baton != NULL)
8024 v = dwarf2_evaluate_loc_desc (type, NULL,
8025 baton->data,
8026 baton->size,
8027 baton->per_cu);
8028 else if (bytes != NULL)
8029 {
8030 v = allocate_value (type);
8031 memcpy (value_contents_writeable (v), bytes,
8032 TYPE_LENGTH (type));
8033 }
8034 else
8035 v = value_from_longest (type, value);
8036
8037 /* Specify decimal so that we do not depend on
8038 the radix. */
8039 get_formatted_print_options (&opts, 'd');
8040 opts.raw = 1;
8041 value_print (v, buf, &opts);
8042 release_value (v);
8043 value_free (v);
8044 }
8045 }
8046
8047 die->building_fullname = 0;
8048
8049 if (!first)
8050 {
8051 /* Close the argument list, with a space if necessary
8052 (nested templates). */
8053 char last_char = '\0';
8054 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8055 if (last_char == '>')
8056 fputs_unfiltered (" >", buf);
8057 else
8058 fputs_unfiltered (">", buf);
8059 }
8060 }
8061
8062 /* For Java and C++ methods, append formal parameter type
8063 information, if PHYSNAME. */
8064
8065 if (physname && die->tag == DW_TAG_subprogram
8066 && (cu->language == language_cplus
8067 || cu->language == language_java))
8068 {
8069 struct type *type = read_type_die (die, cu);
8070
8071 c_type_print_args (type, buf, 1, cu->language,
8072 &type_print_raw_options);
8073
8074 if (cu->language == language_java)
8075 {
8076 /* For java, we must append the return type to method
8077 names. */
8078 if (die->tag == DW_TAG_subprogram)
8079 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8080 0, 0, &type_print_raw_options);
8081 }
8082 else if (cu->language == language_cplus)
8083 {
8084 /* Assume that an artificial first parameter is
8085 "this", but do not crash if it is not. RealView
8086 marks unnamed (and thus unused) parameters as
8087 artificial; there is no way to differentiate
8088 the two cases. */
8089 if (TYPE_NFIELDS (type) > 0
8090 && TYPE_FIELD_ARTIFICIAL (type, 0)
8091 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8092 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8093 0))))
8094 fputs_unfiltered (" const", buf);
8095 }
8096 }
8097
8098 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8099 &length);
8100 ui_file_delete (buf);
8101
8102 if (cu->language == language_cplus)
8103 {
8104 const char *cname
8105 = dwarf2_canonicalize_name (name, cu,
8106 &objfile->objfile_obstack);
8107
8108 if (cname != NULL)
8109 name = cname;
8110 }
8111 }
8112 }
8113
8114 return name;
8115 }
8116
8117 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8118 If scope qualifiers are appropriate they will be added. The result
8119 will be allocated on the objfile_obstack, or NULL if the DIE does
8120 not have a name. NAME may either be from a previous call to
8121 dwarf2_name or NULL.
8122
8123 The output string will be canonicalized (if C++/Java). */
8124
8125 static const char *
8126 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8127 {
8128 return dwarf2_compute_name (name, die, cu, 0);
8129 }
8130
8131 /* Construct a physname for the given DIE in CU. NAME may either be
8132 from a previous call to dwarf2_name or NULL. The result will be
8133 allocated on the objfile_objstack or NULL if the DIE does not have a
8134 name.
8135
8136 The output string will be canonicalized (if C++/Java). */
8137
8138 static const char *
8139 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8140 {
8141 struct objfile *objfile = cu->objfile;
8142 struct attribute *attr;
8143 const char *retval, *mangled = NULL, *canon = NULL;
8144 struct cleanup *back_to;
8145 int need_copy = 1;
8146
8147 /* In this case dwarf2_compute_name is just a shortcut not building anything
8148 on its own. */
8149 if (!die_needs_namespace (die, cu))
8150 return dwarf2_compute_name (name, die, cu, 1);
8151
8152 back_to = make_cleanup (null_cleanup, NULL);
8153
8154 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8155 if (!attr)
8156 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8157
8158 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8159 has computed. */
8160 if (attr && DW_STRING (attr))
8161 {
8162 char *demangled;
8163
8164 mangled = DW_STRING (attr);
8165
8166 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8167 type. It is easier for GDB users to search for such functions as
8168 `name(params)' than `long name(params)'. In such case the minimal
8169 symbol names do not match the full symbol names but for template
8170 functions there is never a need to look up their definition from their
8171 declaration so the only disadvantage remains the minimal symbol
8172 variant `long name(params)' does not have the proper inferior type.
8173 */
8174
8175 if (cu->language == language_go)
8176 {
8177 /* This is a lie, but we already lie to the caller new_symbol_full.
8178 new_symbol_full assumes we return the mangled name.
8179 This just undoes that lie until things are cleaned up. */
8180 demangled = NULL;
8181 }
8182 else
8183 {
8184 demangled = gdb_demangle (mangled,
8185 (DMGL_PARAMS | DMGL_ANSI
8186 | (cu->language == language_java
8187 ? DMGL_JAVA | DMGL_RET_POSTFIX
8188 : DMGL_RET_DROP)));
8189 }
8190 if (demangled)
8191 {
8192 make_cleanup (xfree, demangled);
8193 canon = demangled;
8194 }
8195 else
8196 {
8197 canon = mangled;
8198 need_copy = 0;
8199 }
8200 }
8201
8202 if (canon == NULL || check_physname)
8203 {
8204 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8205
8206 if (canon != NULL && strcmp (physname, canon) != 0)
8207 {
8208 /* It may not mean a bug in GDB. The compiler could also
8209 compute DW_AT_linkage_name incorrectly. But in such case
8210 GDB would need to be bug-to-bug compatible. */
8211
8212 complaint (&symfile_complaints,
8213 _("Computed physname <%s> does not match demangled <%s> "
8214 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8215 physname, canon, mangled, die->offset.sect_off, objfile->name);
8216
8217 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8218 is available here - over computed PHYSNAME. It is safer
8219 against both buggy GDB and buggy compilers. */
8220
8221 retval = canon;
8222 }
8223 else
8224 {
8225 retval = physname;
8226 need_copy = 0;
8227 }
8228 }
8229 else
8230 retval = canon;
8231
8232 if (need_copy)
8233 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8234
8235 do_cleanups (back_to);
8236 return retval;
8237 }
8238
8239 /* Read the import statement specified by the given die and record it. */
8240
8241 static void
8242 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8243 {
8244 struct objfile *objfile = cu->objfile;
8245 struct attribute *import_attr;
8246 struct die_info *imported_die, *child_die;
8247 struct dwarf2_cu *imported_cu;
8248 const char *imported_name;
8249 const char *imported_name_prefix;
8250 const char *canonical_name;
8251 const char *import_alias;
8252 const char *imported_declaration = NULL;
8253 const char *import_prefix;
8254 VEC (const_char_ptr) *excludes = NULL;
8255 struct cleanup *cleanups;
8256
8257 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8258 if (import_attr == NULL)
8259 {
8260 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8261 dwarf_tag_name (die->tag));
8262 return;
8263 }
8264
8265 imported_cu = cu;
8266 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8267 imported_name = dwarf2_name (imported_die, imported_cu);
8268 if (imported_name == NULL)
8269 {
8270 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8271
8272 The import in the following code:
8273 namespace A
8274 {
8275 typedef int B;
8276 }
8277
8278 int main ()
8279 {
8280 using A::B;
8281 B b;
8282 return b;
8283 }
8284
8285 ...
8286 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8287 <52> DW_AT_decl_file : 1
8288 <53> DW_AT_decl_line : 6
8289 <54> DW_AT_import : <0x75>
8290 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8291 <59> DW_AT_name : B
8292 <5b> DW_AT_decl_file : 1
8293 <5c> DW_AT_decl_line : 2
8294 <5d> DW_AT_type : <0x6e>
8295 ...
8296 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8297 <76> DW_AT_byte_size : 4
8298 <77> DW_AT_encoding : 5 (signed)
8299
8300 imports the wrong die ( 0x75 instead of 0x58 ).
8301 This case will be ignored until the gcc bug is fixed. */
8302 return;
8303 }
8304
8305 /* Figure out the local name after import. */
8306 import_alias = dwarf2_name (die, cu);
8307
8308 /* Figure out where the statement is being imported to. */
8309 import_prefix = determine_prefix (die, cu);
8310
8311 /* Figure out what the scope of the imported die is and prepend it
8312 to the name of the imported die. */
8313 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8314
8315 if (imported_die->tag != DW_TAG_namespace
8316 && imported_die->tag != DW_TAG_module)
8317 {
8318 imported_declaration = imported_name;
8319 canonical_name = imported_name_prefix;
8320 }
8321 else if (strlen (imported_name_prefix) > 0)
8322 canonical_name = obconcat (&objfile->objfile_obstack,
8323 imported_name_prefix, "::", imported_name,
8324 (char *) NULL);
8325 else
8326 canonical_name = imported_name;
8327
8328 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8329
8330 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8331 for (child_die = die->child; child_die && child_die->tag;
8332 child_die = sibling_die (child_die))
8333 {
8334 /* DWARF-4: A Fortran use statement with a “rename list” may be
8335 represented by an imported module entry with an import attribute
8336 referring to the module and owned entries corresponding to those
8337 entities that are renamed as part of being imported. */
8338
8339 if (child_die->tag != DW_TAG_imported_declaration)
8340 {
8341 complaint (&symfile_complaints,
8342 _("child DW_TAG_imported_declaration expected "
8343 "- DIE at 0x%x [in module %s]"),
8344 child_die->offset.sect_off, objfile->name);
8345 continue;
8346 }
8347
8348 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8349 if (import_attr == NULL)
8350 {
8351 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8352 dwarf_tag_name (child_die->tag));
8353 continue;
8354 }
8355
8356 imported_cu = cu;
8357 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8358 &imported_cu);
8359 imported_name = dwarf2_name (imported_die, imported_cu);
8360 if (imported_name == NULL)
8361 {
8362 complaint (&symfile_complaints,
8363 _("child DW_TAG_imported_declaration has unknown "
8364 "imported name - DIE at 0x%x [in module %s]"),
8365 child_die->offset.sect_off, objfile->name);
8366 continue;
8367 }
8368
8369 VEC_safe_push (const_char_ptr, excludes, imported_name);
8370
8371 process_die (child_die, cu);
8372 }
8373
8374 cp_add_using_directive (import_prefix,
8375 canonical_name,
8376 import_alias,
8377 imported_declaration,
8378 excludes,
8379 0,
8380 &objfile->objfile_obstack);
8381
8382 do_cleanups (cleanups);
8383 }
8384
8385 /* Cleanup function for handle_DW_AT_stmt_list. */
8386
8387 static void
8388 free_cu_line_header (void *arg)
8389 {
8390 struct dwarf2_cu *cu = arg;
8391
8392 free_line_header (cu->line_header);
8393 cu->line_header = NULL;
8394 }
8395
8396 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8397 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8398 this, it was first present in GCC release 4.3.0. */
8399
8400 static int
8401 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8402 {
8403 if (!cu->checked_producer)
8404 check_producer (cu);
8405
8406 return cu->producer_is_gcc_lt_4_3;
8407 }
8408
8409 static void
8410 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8411 const char **name, const char **comp_dir)
8412 {
8413 struct attribute *attr;
8414
8415 *name = NULL;
8416 *comp_dir = NULL;
8417
8418 /* Find the filename. Do not use dwarf2_name here, since the filename
8419 is not a source language identifier. */
8420 attr = dwarf2_attr (die, DW_AT_name, cu);
8421 if (attr)
8422 {
8423 *name = DW_STRING (attr);
8424 }
8425
8426 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8427 if (attr)
8428 *comp_dir = DW_STRING (attr);
8429 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8430 && IS_ABSOLUTE_PATH (*name))
8431 {
8432 char *d = ldirname (*name);
8433
8434 *comp_dir = d;
8435 if (d != NULL)
8436 make_cleanup (xfree, d);
8437 }
8438 if (*comp_dir != NULL)
8439 {
8440 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8441 directory, get rid of it. */
8442 char *cp = strchr (*comp_dir, ':');
8443
8444 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8445 *comp_dir = cp + 1;
8446 }
8447
8448 if (*name == NULL)
8449 *name = "<unknown>";
8450 }
8451
8452 /* Handle DW_AT_stmt_list for a compilation unit.
8453 DIE is the DW_TAG_compile_unit die for CU.
8454 COMP_DIR is the compilation directory.
8455 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8456
8457 static void
8458 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8459 const char *comp_dir) /* ARI: editCase function */
8460 {
8461 struct attribute *attr;
8462
8463 gdb_assert (! cu->per_cu->is_debug_types);
8464
8465 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8466 if (attr)
8467 {
8468 unsigned int line_offset = DW_UNSND (attr);
8469 struct line_header *line_header
8470 = dwarf_decode_line_header (line_offset, cu);
8471
8472 if (line_header)
8473 {
8474 cu->line_header = line_header;
8475 make_cleanup (free_cu_line_header, cu);
8476 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8477 }
8478 }
8479 }
8480
8481 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8482
8483 static void
8484 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8485 {
8486 struct objfile *objfile = dwarf2_per_objfile->objfile;
8487 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8488 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8489 CORE_ADDR highpc = ((CORE_ADDR) 0);
8490 struct attribute *attr;
8491 const char *name = NULL;
8492 const char *comp_dir = NULL;
8493 struct die_info *child_die;
8494 bfd *abfd = objfile->obfd;
8495 CORE_ADDR baseaddr;
8496
8497 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8498
8499 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8500
8501 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8502 from finish_block. */
8503 if (lowpc == ((CORE_ADDR) -1))
8504 lowpc = highpc;
8505 lowpc += baseaddr;
8506 highpc += baseaddr;
8507
8508 find_file_and_directory (die, cu, &name, &comp_dir);
8509
8510 prepare_one_comp_unit (cu, die, cu->language);
8511
8512 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8513 standardised yet. As a workaround for the language detection we fall
8514 back to the DW_AT_producer string. */
8515 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8516 cu->language = language_opencl;
8517
8518 /* Similar hack for Go. */
8519 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8520 set_cu_language (DW_LANG_Go, cu);
8521
8522 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8523
8524 /* Decode line number information if present. We do this before
8525 processing child DIEs, so that the line header table is available
8526 for DW_AT_decl_file. */
8527 handle_DW_AT_stmt_list (die, cu, comp_dir);
8528
8529 /* Process all dies in compilation unit. */
8530 if (die->child != NULL)
8531 {
8532 child_die = die->child;
8533 while (child_die && child_die->tag)
8534 {
8535 process_die (child_die, cu);
8536 child_die = sibling_die (child_die);
8537 }
8538 }
8539
8540 /* Decode macro information, if present. Dwarf 2 macro information
8541 refers to information in the line number info statement program
8542 header, so we can only read it if we've read the header
8543 successfully. */
8544 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8545 if (attr && cu->line_header)
8546 {
8547 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8548 complaint (&symfile_complaints,
8549 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8550
8551 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8552 }
8553 else
8554 {
8555 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8556 if (attr && cu->line_header)
8557 {
8558 unsigned int macro_offset = DW_UNSND (attr);
8559
8560 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8561 }
8562 }
8563
8564 do_cleanups (back_to);
8565 }
8566
8567 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8568 Create the set of symtabs used by this TU, or if this TU is sharing
8569 symtabs with another TU and the symtabs have already been created
8570 then restore those symtabs in the line header.
8571 We don't need the pc/line-number mapping for type units. */
8572
8573 static void
8574 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8575 {
8576 struct objfile *objfile = dwarf2_per_objfile->objfile;
8577 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8578 struct type_unit_group *tu_group;
8579 int first_time;
8580 struct line_header *lh;
8581 struct attribute *attr;
8582 unsigned int i, line_offset;
8583 struct signatured_type *sig_type;
8584
8585 gdb_assert (per_cu->is_debug_types);
8586 sig_type = (struct signatured_type *) per_cu;
8587
8588 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8589
8590 /* If we're using .gdb_index (includes -readnow) then
8591 per_cu->type_unit_group may not have been set up yet. */
8592 if (sig_type->type_unit_group == NULL)
8593 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8594 tu_group = sig_type->type_unit_group;
8595
8596 /* If we've already processed this stmt_list there's no real need to
8597 do it again, we could fake it and just recreate the part we need
8598 (file name,index -> symtab mapping). If data shows this optimization
8599 is useful we can do it then. */
8600 first_time = tu_group->primary_symtab == NULL;
8601
8602 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8603 debug info. */
8604 lh = NULL;
8605 if (attr != NULL)
8606 {
8607 line_offset = DW_UNSND (attr);
8608 lh = dwarf_decode_line_header (line_offset, cu);
8609 }
8610 if (lh == NULL)
8611 {
8612 if (first_time)
8613 dwarf2_start_symtab (cu, "", NULL, 0);
8614 else
8615 {
8616 gdb_assert (tu_group->symtabs == NULL);
8617 restart_symtab (0);
8618 }
8619 /* Note: The primary symtab will get allocated at the end. */
8620 return;
8621 }
8622
8623 cu->line_header = lh;
8624 make_cleanup (free_cu_line_header, cu);
8625
8626 if (first_time)
8627 {
8628 dwarf2_start_symtab (cu, "", NULL, 0);
8629
8630 tu_group->num_symtabs = lh->num_file_names;
8631 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8632
8633 for (i = 0; i < lh->num_file_names; ++i)
8634 {
8635 const char *dir = NULL;
8636 struct file_entry *fe = &lh->file_names[i];
8637
8638 if (fe->dir_index)
8639 dir = lh->include_dirs[fe->dir_index - 1];
8640 dwarf2_start_subfile (fe->name, dir, NULL);
8641
8642 /* Note: We don't have to watch for the main subfile here, type units
8643 don't have DW_AT_name. */
8644
8645 if (current_subfile->symtab == NULL)
8646 {
8647 /* NOTE: start_subfile will recognize when it's been passed
8648 a file it has already seen. So we can't assume there's a
8649 simple mapping from lh->file_names to subfiles,
8650 lh->file_names may contain dups. */
8651 current_subfile->symtab = allocate_symtab (current_subfile->name,
8652 objfile);
8653 }
8654
8655 fe->symtab = current_subfile->symtab;
8656 tu_group->symtabs[i] = fe->symtab;
8657 }
8658 }
8659 else
8660 {
8661 restart_symtab (0);
8662
8663 for (i = 0; i < lh->num_file_names; ++i)
8664 {
8665 struct file_entry *fe = &lh->file_names[i];
8666
8667 fe->symtab = tu_group->symtabs[i];
8668 }
8669 }
8670
8671 /* The main symtab is allocated last. Type units don't have DW_AT_name
8672 so they don't have a "real" (so to speak) symtab anyway.
8673 There is later code that will assign the main symtab to all symbols
8674 that don't have one. We need to handle the case of a symbol with a
8675 missing symtab (DW_AT_decl_file) anyway. */
8676 }
8677
8678 /* Process DW_TAG_type_unit.
8679 For TUs we want to skip the first top level sibling if it's not the
8680 actual type being defined by this TU. In this case the first top
8681 level sibling is there to provide context only. */
8682
8683 static void
8684 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8685 {
8686 struct die_info *child_die;
8687
8688 prepare_one_comp_unit (cu, die, language_minimal);
8689
8690 /* Initialize (or reinitialize) the machinery for building symtabs.
8691 We do this before processing child DIEs, so that the line header table
8692 is available for DW_AT_decl_file. */
8693 setup_type_unit_groups (die, cu);
8694
8695 if (die->child != NULL)
8696 {
8697 child_die = die->child;
8698 while (child_die && child_die->tag)
8699 {
8700 process_die (child_die, cu);
8701 child_die = sibling_die (child_die);
8702 }
8703 }
8704 }
8705 \f
8706 /* DWO/DWP files.
8707
8708 http://gcc.gnu.org/wiki/DebugFission
8709 http://gcc.gnu.org/wiki/DebugFissionDWP
8710
8711 To simplify handling of both DWO files ("object" files with the DWARF info)
8712 and DWP files (a file with the DWOs packaged up into one file), we treat
8713 DWP files as having a collection of virtual DWO files. */
8714
8715 static hashval_t
8716 hash_dwo_file (const void *item)
8717 {
8718 const struct dwo_file *dwo_file = item;
8719 hashval_t hash;
8720
8721 hash = htab_hash_string (dwo_file->dwo_name);
8722 if (dwo_file->comp_dir != NULL)
8723 hash += htab_hash_string (dwo_file->comp_dir);
8724 return hash;
8725 }
8726
8727 static int
8728 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8729 {
8730 const struct dwo_file *lhs = item_lhs;
8731 const struct dwo_file *rhs = item_rhs;
8732
8733 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8734 return 0;
8735 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8736 return lhs->comp_dir == rhs->comp_dir;
8737 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
8738 }
8739
8740 /* Allocate a hash table for DWO files. */
8741
8742 static htab_t
8743 allocate_dwo_file_hash_table (void)
8744 {
8745 struct objfile *objfile = dwarf2_per_objfile->objfile;
8746
8747 return htab_create_alloc_ex (41,
8748 hash_dwo_file,
8749 eq_dwo_file,
8750 NULL,
8751 &objfile->objfile_obstack,
8752 hashtab_obstack_allocate,
8753 dummy_obstack_deallocate);
8754 }
8755
8756 /* Lookup DWO file DWO_NAME. */
8757
8758 static void **
8759 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
8760 {
8761 struct dwo_file find_entry;
8762 void **slot;
8763
8764 if (dwarf2_per_objfile->dwo_files == NULL)
8765 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8766
8767 memset (&find_entry, 0, sizeof (find_entry));
8768 find_entry.dwo_name = dwo_name;
8769 find_entry.comp_dir = comp_dir;
8770 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8771
8772 return slot;
8773 }
8774
8775 static hashval_t
8776 hash_dwo_unit (const void *item)
8777 {
8778 const struct dwo_unit *dwo_unit = item;
8779
8780 /* This drops the top 32 bits of the id, but is ok for a hash. */
8781 return dwo_unit->signature;
8782 }
8783
8784 static int
8785 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8786 {
8787 const struct dwo_unit *lhs = item_lhs;
8788 const struct dwo_unit *rhs = item_rhs;
8789
8790 /* The signature is assumed to be unique within the DWO file.
8791 So while object file CU dwo_id's always have the value zero,
8792 that's OK, assuming each object file DWO file has only one CU,
8793 and that's the rule for now. */
8794 return lhs->signature == rhs->signature;
8795 }
8796
8797 /* Allocate a hash table for DWO CUs,TUs.
8798 There is one of these tables for each of CUs,TUs for each DWO file. */
8799
8800 static htab_t
8801 allocate_dwo_unit_table (struct objfile *objfile)
8802 {
8803 /* Start out with a pretty small number.
8804 Generally DWO files contain only one CU and maybe some TUs. */
8805 return htab_create_alloc_ex (3,
8806 hash_dwo_unit,
8807 eq_dwo_unit,
8808 NULL,
8809 &objfile->objfile_obstack,
8810 hashtab_obstack_allocate,
8811 dummy_obstack_deallocate);
8812 }
8813
8814 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8815
8816 struct create_dwo_cu_data
8817 {
8818 struct dwo_file *dwo_file;
8819 struct dwo_unit dwo_unit;
8820 };
8821
8822 /* die_reader_func for create_dwo_cu. */
8823
8824 static void
8825 create_dwo_cu_reader (const struct die_reader_specs *reader,
8826 const gdb_byte *info_ptr,
8827 struct die_info *comp_unit_die,
8828 int has_children,
8829 void *datap)
8830 {
8831 struct dwarf2_cu *cu = reader->cu;
8832 struct objfile *objfile = dwarf2_per_objfile->objfile;
8833 sect_offset offset = cu->per_cu->offset;
8834 struct dwarf2_section_info *section = cu->per_cu->section;
8835 struct create_dwo_cu_data *data = datap;
8836 struct dwo_file *dwo_file = data->dwo_file;
8837 struct dwo_unit *dwo_unit = &data->dwo_unit;
8838 struct attribute *attr;
8839
8840 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8841 if (attr == NULL)
8842 {
8843 complaint (&symfile_complaints,
8844 _("Dwarf Error: debug entry at offset 0x%x is missing"
8845 " its dwo_id [in module %s]"),
8846 offset.sect_off, dwo_file->dwo_name);
8847 return;
8848 }
8849
8850 dwo_unit->dwo_file = dwo_file;
8851 dwo_unit->signature = DW_UNSND (attr);
8852 dwo_unit->section = section;
8853 dwo_unit->offset = offset;
8854 dwo_unit->length = cu->per_cu->length;
8855
8856 if (dwarf2_read_debug)
8857 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8858 offset.sect_off, hex_string (dwo_unit->signature));
8859 }
8860
8861 /* Create the dwo_unit for the lone CU in DWO_FILE.
8862 Note: This function processes DWO files only, not DWP files. */
8863
8864 static struct dwo_unit *
8865 create_dwo_cu (struct dwo_file *dwo_file)
8866 {
8867 struct objfile *objfile = dwarf2_per_objfile->objfile;
8868 struct dwarf2_section_info *section = &dwo_file->sections.info;
8869 bfd *abfd;
8870 htab_t cu_htab;
8871 const gdb_byte *info_ptr, *end_ptr;
8872 struct create_dwo_cu_data create_dwo_cu_data;
8873 struct dwo_unit *dwo_unit;
8874
8875 dwarf2_read_section (objfile, section);
8876 info_ptr = section->buffer;
8877
8878 if (info_ptr == NULL)
8879 return NULL;
8880
8881 /* We can't set abfd until now because the section may be empty or
8882 not present, in which case section->asection will be NULL. */
8883 abfd = section->asection->owner;
8884
8885 if (dwarf2_read_debug)
8886 {
8887 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8888 bfd_section_name (abfd, section->asection),
8889 bfd_get_filename (abfd));
8890 }
8891
8892 create_dwo_cu_data.dwo_file = dwo_file;
8893 dwo_unit = NULL;
8894
8895 end_ptr = info_ptr + section->size;
8896 while (info_ptr < end_ptr)
8897 {
8898 struct dwarf2_per_cu_data per_cu;
8899
8900 memset (&create_dwo_cu_data.dwo_unit, 0,
8901 sizeof (create_dwo_cu_data.dwo_unit));
8902 memset (&per_cu, 0, sizeof (per_cu));
8903 per_cu.objfile = objfile;
8904 per_cu.is_debug_types = 0;
8905 per_cu.offset.sect_off = info_ptr - section->buffer;
8906 per_cu.section = section;
8907
8908 init_cutu_and_read_dies_no_follow (&per_cu,
8909 &dwo_file->sections.abbrev,
8910 dwo_file,
8911 create_dwo_cu_reader,
8912 &create_dwo_cu_data);
8913
8914 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8915 {
8916 /* If we've already found one, complain. We only support one
8917 because having more than one requires hacking the dwo_name of
8918 each to match, which is highly unlikely to happen. */
8919 if (dwo_unit != NULL)
8920 {
8921 complaint (&symfile_complaints,
8922 _("Multiple CUs in DWO file %s [in module %s]"),
8923 dwo_file->dwo_name, objfile->name);
8924 break;
8925 }
8926
8927 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8928 *dwo_unit = create_dwo_cu_data.dwo_unit;
8929 }
8930
8931 info_ptr += per_cu.length;
8932 }
8933
8934 return dwo_unit;
8935 }
8936
8937 /* DWP file .debug_{cu,tu}_index section format:
8938 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8939
8940 DWP Version 1:
8941
8942 Both index sections have the same format, and serve to map a 64-bit
8943 signature to a set of section numbers. Each section begins with a header,
8944 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8945 indexes, and a pool of 32-bit section numbers. The index sections will be
8946 aligned at 8-byte boundaries in the file.
8947
8948 The index section header consists of:
8949
8950 V, 32 bit version number
8951 -, 32 bits unused
8952 N, 32 bit number of compilation units or type units in the index
8953 M, 32 bit number of slots in the hash table
8954
8955 Numbers are recorded using the byte order of the application binary.
8956
8957 We assume that N and M will not exceed 2^32 - 1.
8958
8959 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8960
8961 The hash table begins at offset 16 in the section, and consists of an array
8962 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8963 order of the application binary). Unused slots in the hash table are 0.
8964 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8965
8966 The parallel table begins immediately after the hash table
8967 (at offset 16 + 8 * M from the beginning of the section), and consists of an
8968 array of 32-bit indexes (using the byte order of the application binary),
8969 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8970 table contains a 32-bit index into the pool of section numbers. For unused
8971 hash table slots, the corresponding entry in the parallel table will be 0.
8972
8973 Given a 64-bit compilation unit signature or a type signature S, an entry
8974 in the hash table is located as follows:
8975
8976 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8977 the low-order k bits all set to 1.
8978
8979 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8980
8981 3) If the hash table entry at index H matches the signature, use that
8982 entry. If the hash table entry at index H is unused (all zeroes),
8983 terminate the search: the signature is not present in the table.
8984
8985 4) Let H = (H + H') modulo M. Repeat at Step 3.
8986
8987 Because M > N and H' and M are relatively prime, the search is guaranteed
8988 to stop at an unused slot or find the match.
8989
8990 The pool of section numbers begins immediately following the hash table
8991 (at offset 16 + 12 * M from the beginning of the section). The pool of
8992 section numbers consists of an array of 32-bit words (using the byte order
8993 of the application binary). Each item in the array is indexed starting
8994 from 0. The hash table entry provides the index of the first section
8995 number in the set. Additional section numbers in the set follow, and the
8996 set is terminated by a 0 entry (section number 0 is not used in ELF).
8997
8998 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8999 section must be the first entry in the set, and the .debug_abbrev.dwo must
9000 be the second entry. Other members of the set may follow in any order. */
9001
9002 /* Create a hash table to map DWO IDs to their CU/TU entry in
9003 .debug_{info,types}.dwo in DWP_FILE.
9004 Returns NULL if there isn't one.
9005 Note: This function processes DWP files only, not DWO files. */
9006
9007 static struct dwp_hash_table *
9008 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9009 {
9010 struct objfile *objfile = dwarf2_per_objfile->objfile;
9011 bfd *dbfd = dwp_file->dbfd;
9012 const gdb_byte *index_ptr, *index_end;
9013 struct dwarf2_section_info *index;
9014 uint32_t version, nr_units, nr_slots;
9015 struct dwp_hash_table *htab;
9016
9017 if (is_debug_types)
9018 index = &dwp_file->sections.tu_index;
9019 else
9020 index = &dwp_file->sections.cu_index;
9021
9022 if (dwarf2_section_empty_p (index))
9023 return NULL;
9024 dwarf2_read_section (objfile, index);
9025
9026 index_ptr = index->buffer;
9027 index_end = index_ptr + index->size;
9028
9029 version = read_4_bytes (dbfd, index_ptr);
9030 index_ptr += 8; /* Skip the unused word. */
9031 nr_units = read_4_bytes (dbfd, index_ptr);
9032 index_ptr += 4;
9033 nr_slots = read_4_bytes (dbfd, index_ptr);
9034 index_ptr += 4;
9035
9036 if (version != 1)
9037 {
9038 error (_("Dwarf Error: unsupported DWP file version (%s)"
9039 " [in module %s]"),
9040 pulongest (version), dwp_file->name);
9041 }
9042 if (nr_slots != (nr_slots & -nr_slots))
9043 {
9044 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9045 " is not power of 2 [in module %s]"),
9046 pulongest (nr_slots), dwp_file->name);
9047 }
9048
9049 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9050 htab->nr_units = nr_units;
9051 htab->nr_slots = nr_slots;
9052 htab->hash_table = index_ptr;
9053 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9054 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
9055
9056 return htab;
9057 }
9058
9059 /* Update SECTIONS with the data from SECTP.
9060
9061 This function is like the other "locate" section routines that are
9062 passed to bfd_map_over_sections, but in this context the sections to
9063 read comes from the DWP hash table, not the full ELF section table.
9064
9065 The result is non-zero for success, or zero if an error was found. */
9066
9067 static int
9068 locate_virtual_dwo_sections (asection *sectp,
9069 struct virtual_dwo_sections *sections)
9070 {
9071 const struct dwop_section_names *names = &dwop_section_names;
9072
9073 if (section_is_p (sectp->name, &names->abbrev_dwo))
9074 {
9075 /* There can be only one. */
9076 if (sections->abbrev.asection != NULL)
9077 return 0;
9078 sections->abbrev.asection = sectp;
9079 sections->abbrev.size = bfd_get_section_size (sectp);
9080 }
9081 else if (section_is_p (sectp->name, &names->info_dwo)
9082 || section_is_p (sectp->name, &names->types_dwo))
9083 {
9084 /* There can be only one. */
9085 if (sections->info_or_types.asection != NULL)
9086 return 0;
9087 sections->info_or_types.asection = sectp;
9088 sections->info_or_types.size = bfd_get_section_size (sectp);
9089 }
9090 else if (section_is_p (sectp->name, &names->line_dwo))
9091 {
9092 /* There can be only one. */
9093 if (sections->line.asection != NULL)
9094 return 0;
9095 sections->line.asection = sectp;
9096 sections->line.size = bfd_get_section_size (sectp);
9097 }
9098 else if (section_is_p (sectp->name, &names->loc_dwo))
9099 {
9100 /* There can be only one. */
9101 if (sections->loc.asection != NULL)
9102 return 0;
9103 sections->loc.asection = sectp;
9104 sections->loc.size = bfd_get_section_size (sectp);
9105 }
9106 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9107 {
9108 /* There can be only one. */
9109 if (sections->macinfo.asection != NULL)
9110 return 0;
9111 sections->macinfo.asection = sectp;
9112 sections->macinfo.size = bfd_get_section_size (sectp);
9113 }
9114 else if (section_is_p (sectp->name, &names->macro_dwo))
9115 {
9116 /* There can be only one. */
9117 if (sections->macro.asection != NULL)
9118 return 0;
9119 sections->macro.asection = sectp;
9120 sections->macro.size = bfd_get_section_size (sectp);
9121 }
9122 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9123 {
9124 /* There can be only one. */
9125 if (sections->str_offsets.asection != NULL)
9126 return 0;
9127 sections->str_offsets.asection = sectp;
9128 sections->str_offsets.size = bfd_get_section_size (sectp);
9129 }
9130 else
9131 {
9132 /* No other kind of section is valid. */
9133 return 0;
9134 }
9135
9136 return 1;
9137 }
9138
9139 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
9140 HTAB is the hash table from the DWP file.
9141 SECTION_INDEX is the index of the DWO in HTAB.
9142 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
9143
9144 static struct dwo_unit *
9145 create_dwo_in_dwp (struct dwp_file *dwp_file,
9146 const struct dwp_hash_table *htab,
9147 uint32_t section_index,
9148 const char *comp_dir,
9149 ULONGEST signature, int is_debug_types)
9150 {
9151 struct objfile *objfile = dwarf2_per_objfile->objfile;
9152 bfd *dbfd = dwp_file->dbfd;
9153 const char *kind = is_debug_types ? "TU" : "CU";
9154 struct dwo_file *dwo_file;
9155 struct dwo_unit *dwo_unit;
9156 struct virtual_dwo_sections sections;
9157 void **dwo_file_slot;
9158 char *virtual_dwo_name;
9159 struct dwarf2_section_info *cutu;
9160 struct cleanup *cleanups;
9161 int i;
9162
9163 if (dwarf2_read_debug)
9164 {
9165 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP file: %s\n",
9166 kind,
9167 pulongest (section_index), hex_string (signature),
9168 dwp_file->name);
9169 }
9170
9171 /* Fetch the sections of this DWO.
9172 Put a limit on the number of sections we look for so that bad data
9173 doesn't cause us to loop forever. */
9174
9175 #define MAX_NR_DWO_SECTIONS \
9176 (1 /* .debug_info or .debug_types */ \
9177 + 1 /* .debug_abbrev */ \
9178 + 1 /* .debug_line */ \
9179 + 1 /* .debug_loc */ \
9180 + 1 /* .debug_str_offsets */ \
9181 + 1 /* .debug_macro */ \
9182 + 1 /* .debug_macinfo */ \
9183 + 1 /* trailing zero */)
9184
9185 memset (&sections, 0, sizeof (sections));
9186 cleanups = make_cleanup (null_cleanup, 0);
9187
9188 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
9189 {
9190 asection *sectp;
9191 uint32_t section_nr =
9192 read_4_bytes (dbfd,
9193 htab->section_pool
9194 + (section_index + i) * sizeof (uint32_t));
9195
9196 if (section_nr == 0)
9197 break;
9198 if (section_nr >= dwp_file->num_sections)
9199 {
9200 error (_("Dwarf Error: bad DWP hash table, section number too large"
9201 " [in module %s]"),
9202 dwp_file->name);
9203 }
9204
9205 sectp = dwp_file->elf_sections[section_nr];
9206 if (! locate_virtual_dwo_sections (sectp, &sections))
9207 {
9208 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9209 " [in module %s]"),
9210 dwp_file->name);
9211 }
9212 }
9213
9214 if (i < 2
9215 || sections.info_or_types.asection == NULL
9216 || sections.abbrev.asection == NULL)
9217 {
9218 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9219 " [in module %s]"),
9220 dwp_file->name);
9221 }
9222 if (i == MAX_NR_DWO_SECTIONS)
9223 {
9224 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9225 " [in module %s]"),
9226 dwp_file->name);
9227 }
9228
9229 /* It's easier for the rest of the code if we fake a struct dwo_file and
9230 have dwo_unit "live" in that. At least for now.
9231
9232 The DWP file can be made up of a random collection of CUs and TUs.
9233 However, for each CU + set of TUs that came from the same original DWO
9234 file, we want to combine them back into a virtual DWO file to save space
9235 (fewer struct dwo_file objects to allocated). Remember that for really
9236 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9237
9238 virtual_dwo_name =
9239 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9240 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
9241 sections.line.asection ? sections.line.asection->id : 0,
9242 sections.loc.asection ? sections.loc.asection->id : 0,
9243 (sections.str_offsets.asection
9244 ? sections.str_offsets.asection->id
9245 : 0));
9246 make_cleanup (xfree, virtual_dwo_name);
9247 /* Can we use an existing virtual DWO file? */
9248 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9249 /* Create one if necessary. */
9250 if (*dwo_file_slot == NULL)
9251 {
9252 if (dwarf2_read_debug)
9253 {
9254 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9255 virtual_dwo_name);
9256 }
9257 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9258 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9259 virtual_dwo_name,
9260 strlen (virtual_dwo_name));
9261 dwo_file->comp_dir = comp_dir;
9262 dwo_file->sections.abbrev = sections.abbrev;
9263 dwo_file->sections.line = sections.line;
9264 dwo_file->sections.loc = sections.loc;
9265 dwo_file->sections.macinfo = sections.macinfo;
9266 dwo_file->sections.macro = sections.macro;
9267 dwo_file->sections.str_offsets = sections.str_offsets;
9268 /* The "str" section is global to the entire DWP file. */
9269 dwo_file->sections.str = dwp_file->sections.str;
9270 /* The info or types section is assigned later to dwo_unit,
9271 there's no need to record it in dwo_file.
9272 Also, we can't simply record type sections in dwo_file because
9273 we record a pointer into the vector in dwo_unit. As we collect more
9274 types we'll grow the vector and eventually have to reallocate space
9275 for it, invalidating all the pointers into the current copy. */
9276 *dwo_file_slot = dwo_file;
9277 }
9278 else
9279 {
9280 if (dwarf2_read_debug)
9281 {
9282 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9283 virtual_dwo_name);
9284 }
9285 dwo_file = *dwo_file_slot;
9286 }
9287 do_cleanups (cleanups);
9288
9289 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9290 dwo_unit->dwo_file = dwo_file;
9291 dwo_unit->signature = signature;
9292 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9293 sizeof (struct dwarf2_section_info));
9294 *dwo_unit->section = sections.info_or_types;
9295 /* offset, length, type_offset_in_tu are set later. */
9296
9297 return dwo_unit;
9298 }
9299
9300 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
9301
9302 static struct dwo_unit *
9303 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
9304 const struct dwp_hash_table *htab,
9305 const char *comp_dir,
9306 ULONGEST signature, int is_debug_types)
9307 {
9308 bfd *dbfd = dwp_file->dbfd;
9309 uint32_t mask = htab->nr_slots - 1;
9310 uint32_t hash = signature & mask;
9311 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9312 unsigned int i;
9313 void **slot;
9314 struct dwo_unit find_dwo_cu, *dwo_cu;
9315
9316 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9317 find_dwo_cu.signature = signature;
9318 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
9319
9320 if (*slot != NULL)
9321 return *slot;
9322
9323 /* Use a for loop so that we don't loop forever on bad debug info. */
9324 for (i = 0; i < htab->nr_slots; ++i)
9325 {
9326 ULONGEST signature_in_table;
9327
9328 signature_in_table =
9329 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
9330 if (signature_in_table == signature)
9331 {
9332 uint32_t section_index =
9333 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
9334
9335 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
9336 comp_dir, signature, is_debug_types);
9337 return *slot;
9338 }
9339 if (signature_in_table == 0)
9340 return NULL;
9341 hash = (hash + hash2) & mask;
9342 }
9343
9344 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
9345 " [in module %s]"),
9346 dwp_file->name);
9347 }
9348
9349 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
9350 Open the file specified by FILE_NAME and hand it off to BFD for
9351 preliminary analysis. Return a newly initialized bfd *, which
9352 includes a canonicalized copy of FILE_NAME.
9353 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
9354 SEARCH_CWD is true if the current directory is to be searched.
9355 It will be searched before debug-file-directory.
9356 If unable to find/open the file, return NULL.
9357 NOTE: This function is derived from symfile_bfd_open. */
9358
9359 static bfd *
9360 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
9361 {
9362 bfd *sym_bfd;
9363 int desc, flags;
9364 char *absolute_name;
9365 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
9366 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
9367 to debug_file_directory. */
9368 char *search_path;
9369 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
9370
9371 if (search_cwd)
9372 {
9373 if (*debug_file_directory != '\0')
9374 search_path = concat (".", dirname_separator_string,
9375 debug_file_directory, NULL);
9376 else
9377 search_path = xstrdup (".");
9378 }
9379 else
9380 search_path = xstrdup (debug_file_directory);
9381
9382 flags = 0;
9383 if (is_dwp)
9384 flags |= OPF_SEARCH_IN_PATH;
9385 desc = openp (search_path, flags, file_name,
9386 O_RDONLY | O_BINARY, &absolute_name);
9387 xfree (search_path);
9388 if (desc < 0)
9389 return NULL;
9390
9391 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
9392 xfree (absolute_name);
9393 if (sym_bfd == NULL)
9394 return NULL;
9395 bfd_set_cacheable (sym_bfd, 1);
9396
9397 if (!bfd_check_format (sym_bfd, bfd_object))
9398 {
9399 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
9400 return NULL;
9401 }
9402
9403 return sym_bfd;
9404 }
9405
9406 /* Try to open DWO file FILE_NAME.
9407 COMP_DIR is the DW_AT_comp_dir attribute.
9408 The result is the bfd handle of the file.
9409 If there is a problem finding or opening the file, return NULL.
9410 Upon success, the canonicalized path of the file is stored in the bfd,
9411 same as symfile_bfd_open. */
9412
9413 static bfd *
9414 open_dwo_file (const char *file_name, const char *comp_dir)
9415 {
9416 bfd *abfd;
9417
9418 if (IS_ABSOLUTE_PATH (file_name))
9419 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
9420
9421 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
9422
9423 if (comp_dir != NULL)
9424 {
9425 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
9426
9427 /* NOTE: If comp_dir is a relative path, this will also try the
9428 search path, which seems useful. */
9429 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
9430 xfree (path_to_try);
9431 if (abfd != NULL)
9432 return abfd;
9433 }
9434
9435 /* That didn't work, try debug-file-directory, which, despite its name,
9436 is a list of paths. */
9437
9438 if (*debug_file_directory == '\0')
9439 return NULL;
9440
9441 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
9442 }
9443
9444 /* This function is mapped across the sections and remembers the offset and
9445 size of each of the DWO debugging sections we are interested in. */
9446
9447 static void
9448 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9449 {
9450 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9451 const struct dwop_section_names *names = &dwop_section_names;
9452
9453 if (section_is_p (sectp->name, &names->abbrev_dwo))
9454 {
9455 dwo_sections->abbrev.asection = sectp;
9456 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9457 }
9458 else if (section_is_p (sectp->name, &names->info_dwo))
9459 {
9460 dwo_sections->info.asection = sectp;
9461 dwo_sections->info.size = bfd_get_section_size (sectp);
9462 }
9463 else if (section_is_p (sectp->name, &names->line_dwo))
9464 {
9465 dwo_sections->line.asection = sectp;
9466 dwo_sections->line.size = bfd_get_section_size (sectp);
9467 }
9468 else if (section_is_p (sectp->name, &names->loc_dwo))
9469 {
9470 dwo_sections->loc.asection = sectp;
9471 dwo_sections->loc.size = bfd_get_section_size (sectp);
9472 }
9473 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9474 {
9475 dwo_sections->macinfo.asection = sectp;
9476 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9477 }
9478 else if (section_is_p (sectp->name, &names->macro_dwo))
9479 {
9480 dwo_sections->macro.asection = sectp;
9481 dwo_sections->macro.size = bfd_get_section_size (sectp);
9482 }
9483 else if (section_is_p (sectp->name, &names->str_dwo))
9484 {
9485 dwo_sections->str.asection = sectp;
9486 dwo_sections->str.size = bfd_get_section_size (sectp);
9487 }
9488 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9489 {
9490 dwo_sections->str_offsets.asection = sectp;
9491 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9492 }
9493 else if (section_is_p (sectp->name, &names->types_dwo))
9494 {
9495 struct dwarf2_section_info type_section;
9496
9497 memset (&type_section, 0, sizeof (type_section));
9498 type_section.asection = sectp;
9499 type_section.size = bfd_get_section_size (sectp);
9500 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9501 &type_section);
9502 }
9503 }
9504
9505 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
9506 by PER_CU. This is for the non-DWP case.
9507 The result is NULL if DWO_NAME can't be found. */
9508
9509 static struct dwo_file *
9510 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9511 const char *dwo_name, const char *comp_dir)
9512 {
9513 struct objfile *objfile = dwarf2_per_objfile->objfile;
9514 struct dwo_file *dwo_file;
9515 bfd *dbfd;
9516 struct cleanup *cleanups;
9517
9518 dbfd = open_dwo_file (dwo_name, comp_dir);
9519 if (dbfd == NULL)
9520 {
9521 if (dwarf2_read_debug)
9522 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9523 return NULL;
9524 }
9525 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9526 dwo_file->dwo_name = dwo_name;
9527 dwo_file->comp_dir = comp_dir;
9528 dwo_file->dbfd = dbfd;
9529
9530 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9531
9532 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9533
9534 dwo_file->cu = create_dwo_cu (dwo_file);
9535
9536 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9537 dwo_file->sections.types);
9538
9539 discard_cleanups (cleanups);
9540
9541 if (dwarf2_read_debug)
9542 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9543
9544 return dwo_file;
9545 }
9546
9547 /* This function is mapped across the sections and remembers the offset and
9548 size of each of the DWP debugging sections we are interested in. */
9549
9550 static void
9551 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9552 {
9553 struct dwp_file *dwp_file = dwp_file_ptr;
9554 const struct dwop_section_names *names = &dwop_section_names;
9555 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9556
9557 /* Record the ELF section number for later lookup: this is what the
9558 .debug_cu_index,.debug_tu_index tables use. */
9559 gdb_assert (elf_section_nr < dwp_file->num_sections);
9560 dwp_file->elf_sections[elf_section_nr] = sectp;
9561
9562 /* Look for specific sections that we need. */
9563 if (section_is_p (sectp->name, &names->str_dwo))
9564 {
9565 dwp_file->sections.str.asection = sectp;
9566 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9567 }
9568 else if (section_is_p (sectp->name, &names->cu_index))
9569 {
9570 dwp_file->sections.cu_index.asection = sectp;
9571 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9572 }
9573 else if (section_is_p (sectp->name, &names->tu_index))
9574 {
9575 dwp_file->sections.tu_index.asection = sectp;
9576 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9577 }
9578 }
9579
9580 /* Hash function for dwp_file loaded CUs/TUs. */
9581
9582 static hashval_t
9583 hash_dwp_loaded_cutus (const void *item)
9584 {
9585 const struct dwo_unit *dwo_unit = item;
9586
9587 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9588 return dwo_unit->signature;
9589 }
9590
9591 /* Equality function for dwp_file loaded CUs/TUs. */
9592
9593 static int
9594 eq_dwp_loaded_cutus (const void *a, const void *b)
9595 {
9596 const struct dwo_unit *dua = a;
9597 const struct dwo_unit *dub = b;
9598
9599 return dua->signature == dub->signature;
9600 }
9601
9602 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9603
9604 static htab_t
9605 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9606 {
9607 return htab_create_alloc_ex (3,
9608 hash_dwp_loaded_cutus,
9609 eq_dwp_loaded_cutus,
9610 NULL,
9611 &objfile->objfile_obstack,
9612 hashtab_obstack_allocate,
9613 dummy_obstack_deallocate);
9614 }
9615
9616 /* Try to open DWP file FILE_NAME.
9617 The result is the bfd handle of the file.
9618 If there is a problem finding or opening the file, return NULL.
9619 Upon success, the canonicalized path of the file is stored in the bfd,
9620 same as symfile_bfd_open. */
9621
9622 static bfd *
9623 open_dwp_file (const char *file_name)
9624 {
9625 bfd *abfd;
9626
9627 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
9628 if (abfd != NULL)
9629 return abfd;
9630
9631 /* Work around upstream bug 15652.
9632 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
9633 [Whether that's a "bug" is debatable, but it is getting in our way.]
9634 We have no real idea where the dwp file is, because gdb's realpath-ing
9635 of the executable's path may have discarded the needed info.
9636 [IWBN if the dwp file name was recorded in the executable, akin to
9637 .gnu_debuglink, but that doesn't exist yet.]
9638 Strip the directory from FILE_NAME and search again. */
9639 if (*debug_file_directory != '\0')
9640 {
9641 /* Don't implicitly search the current directory here.
9642 If the user wants to search "." to handle this case,
9643 it must be added to debug-file-directory. */
9644 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
9645 0 /*search_cwd*/);
9646 }
9647
9648 return NULL;
9649 }
9650
9651 /* Initialize the use of the DWP file for the current objfile.
9652 By convention the name of the DWP file is ${objfile}.dwp.
9653 The result is NULL if it can't be found. */
9654
9655 static struct dwp_file *
9656 open_and_init_dwp_file (void)
9657 {
9658 struct objfile *objfile = dwarf2_per_objfile->objfile;
9659 struct dwp_file *dwp_file;
9660 char *dwp_name;
9661 bfd *dbfd;
9662 struct cleanup *cleanups;
9663
9664 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9665 cleanups = make_cleanup (xfree, dwp_name);
9666
9667 dbfd = open_dwp_file (dwp_name);
9668 if (dbfd == NULL)
9669 {
9670 if (dwarf2_read_debug)
9671 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9672 do_cleanups (cleanups);
9673 return NULL;
9674 }
9675 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9676 dwp_file->name = bfd_get_filename (dbfd);
9677 dwp_file->dbfd = dbfd;
9678 do_cleanups (cleanups);
9679
9680 /* +1: section 0 is unused */
9681 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9682 dwp_file->elf_sections =
9683 OBSTACK_CALLOC (&objfile->objfile_obstack,
9684 dwp_file->num_sections, asection *);
9685
9686 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9687
9688 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9689
9690 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9691
9692 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9693
9694 if (dwarf2_read_debug)
9695 {
9696 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9697 fprintf_unfiltered (gdb_stdlog,
9698 " %s CUs, %s TUs\n",
9699 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
9700 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
9701 }
9702
9703 return dwp_file;
9704 }
9705
9706 /* Wrapper around open_and_init_dwp_file, only open it once. */
9707
9708 static struct dwp_file *
9709 get_dwp_file (void)
9710 {
9711 if (! dwarf2_per_objfile->dwp_checked)
9712 {
9713 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9714 dwarf2_per_objfile->dwp_checked = 1;
9715 }
9716 return dwarf2_per_objfile->dwp_file;
9717 }
9718
9719 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9720 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9721 or in the DWP file for the objfile, referenced by THIS_UNIT.
9722 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9723 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9724
9725 This is called, for example, when wanting to read a variable with a
9726 complex location. Therefore we don't want to do file i/o for every call.
9727 Therefore we don't want to look for a DWO file on every call.
9728 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9729 then we check if we've already seen DWO_NAME, and only THEN do we check
9730 for a DWO file.
9731
9732 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9733 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9734
9735 static struct dwo_unit *
9736 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9737 const char *dwo_name, const char *comp_dir,
9738 ULONGEST signature, int is_debug_types)
9739 {
9740 struct objfile *objfile = dwarf2_per_objfile->objfile;
9741 const char *kind = is_debug_types ? "TU" : "CU";
9742 void **dwo_file_slot;
9743 struct dwo_file *dwo_file;
9744 struct dwp_file *dwp_file;
9745
9746 /* First see if there's a DWP file.
9747 If we have a DWP file but didn't find the DWO inside it, don't
9748 look for the original DWO file. It makes gdb behave differently
9749 depending on whether one is debugging in the build tree. */
9750
9751 dwp_file = get_dwp_file ();
9752 if (dwp_file != NULL)
9753 {
9754 const struct dwp_hash_table *dwp_htab =
9755 is_debug_types ? dwp_file->tus : dwp_file->cus;
9756
9757 if (dwp_htab != NULL)
9758 {
9759 struct dwo_unit *dwo_cutu =
9760 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9761 signature, is_debug_types);
9762
9763 if (dwo_cutu != NULL)
9764 {
9765 if (dwarf2_read_debug)
9766 {
9767 fprintf_unfiltered (gdb_stdlog,
9768 "Virtual DWO %s %s found: @%s\n",
9769 kind, hex_string (signature),
9770 host_address_to_string (dwo_cutu));
9771 }
9772 return dwo_cutu;
9773 }
9774 }
9775 }
9776 else
9777 {
9778 /* No DWP file, look for the DWO file. */
9779
9780 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9781 if (*dwo_file_slot == NULL)
9782 {
9783 /* Read in the file and build a table of the CUs/TUs it contains. */
9784 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
9785 }
9786 /* NOTE: This will be NULL if unable to open the file. */
9787 dwo_file = *dwo_file_slot;
9788
9789 if (dwo_file != NULL)
9790 {
9791 struct dwo_unit *dwo_cutu = NULL;
9792
9793 if (is_debug_types && dwo_file->tus)
9794 {
9795 struct dwo_unit find_dwo_cutu;
9796
9797 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9798 find_dwo_cutu.signature = signature;
9799 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9800 }
9801 else if (!is_debug_types && dwo_file->cu)
9802 {
9803 if (signature == dwo_file->cu->signature)
9804 dwo_cutu = dwo_file->cu;
9805 }
9806
9807 if (dwo_cutu != NULL)
9808 {
9809 if (dwarf2_read_debug)
9810 {
9811 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9812 kind, dwo_name, hex_string (signature),
9813 host_address_to_string (dwo_cutu));
9814 }
9815 return dwo_cutu;
9816 }
9817 }
9818 }
9819
9820 /* We didn't find it. This could mean a dwo_id mismatch, or
9821 someone deleted the DWO/DWP file, or the search path isn't set up
9822 correctly to find the file. */
9823
9824 if (dwarf2_read_debug)
9825 {
9826 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9827 kind, dwo_name, hex_string (signature));
9828 }
9829
9830 /* This is a warning and not a complaint because it can be caused by
9831 pilot error (e.g., user accidentally deleting the DWO). */
9832 warning (_("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
9833 " [in module %s]"),
9834 kind, dwo_name, hex_string (signature),
9835 this_unit->is_debug_types ? "TU" : "CU",
9836 this_unit->offset.sect_off, objfile->name);
9837 return NULL;
9838 }
9839
9840 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9841 See lookup_dwo_cutu_unit for details. */
9842
9843 static struct dwo_unit *
9844 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9845 const char *dwo_name, const char *comp_dir,
9846 ULONGEST signature)
9847 {
9848 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9849 }
9850
9851 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9852 See lookup_dwo_cutu_unit for details. */
9853
9854 static struct dwo_unit *
9855 lookup_dwo_type_unit (struct signatured_type *this_tu,
9856 const char *dwo_name, const char *comp_dir)
9857 {
9858 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9859 }
9860
9861 /* Free all resources associated with DWO_FILE.
9862 Close the DWO file and munmap the sections.
9863 All memory should be on the objfile obstack. */
9864
9865 static void
9866 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9867 {
9868 int ix;
9869 struct dwarf2_section_info *section;
9870
9871 /* Note: dbfd is NULL for virtual DWO files. */
9872 gdb_bfd_unref (dwo_file->dbfd);
9873
9874 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9875 }
9876
9877 /* Wrapper for free_dwo_file for use in cleanups. */
9878
9879 static void
9880 free_dwo_file_cleanup (void *arg)
9881 {
9882 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9883 struct objfile *objfile = dwarf2_per_objfile->objfile;
9884
9885 free_dwo_file (dwo_file, objfile);
9886 }
9887
9888 /* Traversal function for free_dwo_files. */
9889
9890 static int
9891 free_dwo_file_from_slot (void **slot, void *info)
9892 {
9893 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9894 struct objfile *objfile = (struct objfile *) info;
9895
9896 free_dwo_file (dwo_file, objfile);
9897
9898 return 1;
9899 }
9900
9901 /* Free all resources associated with DWO_FILES. */
9902
9903 static void
9904 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9905 {
9906 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9907 }
9908 \f
9909 /* Read in various DIEs. */
9910
9911 /* qsort helper for inherit_abstract_dies. */
9912
9913 static int
9914 unsigned_int_compar (const void *ap, const void *bp)
9915 {
9916 unsigned int a = *(unsigned int *) ap;
9917 unsigned int b = *(unsigned int *) bp;
9918
9919 return (a > b) - (b > a);
9920 }
9921
9922 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9923 Inherit only the children of the DW_AT_abstract_origin DIE not being
9924 already referenced by DW_AT_abstract_origin from the children of the
9925 current DIE. */
9926
9927 static void
9928 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9929 {
9930 struct die_info *child_die;
9931 unsigned die_children_count;
9932 /* CU offsets which were referenced by children of the current DIE. */
9933 sect_offset *offsets;
9934 sect_offset *offsets_end, *offsetp;
9935 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9936 struct die_info *origin_die;
9937 /* Iterator of the ORIGIN_DIE children. */
9938 struct die_info *origin_child_die;
9939 struct cleanup *cleanups;
9940 struct attribute *attr;
9941 struct dwarf2_cu *origin_cu;
9942 struct pending **origin_previous_list_in_scope;
9943
9944 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9945 if (!attr)
9946 return;
9947
9948 /* Note that following die references may follow to a die in a
9949 different cu. */
9950
9951 origin_cu = cu;
9952 origin_die = follow_die_ref (die, attr, &origin_cu);
9953
9954 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9955 symbols in. */
9956 origin_previous_list_in_scope = origin_cu->list_in_scope;
9957 origin_cu->list_in_scope = cu->list_in_scope;
9958
9959 if (die->tag != origin_die->tag
9960 && !(die->tag == DW_TAG_inlined_subroutine
9961 && origin_die->tag == DW_TAG_subprogram))
9962 complaint (&symfile_complaints,
9963 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9964 die->offset.sect_off, origin_die->offset.sect_off);
9965
9966 child_die = die->child;
9967 die_children_count = 0;
9968 while (child_die && child_die->tag)
9969 {
9970 child_die = sibling_die (child_die);
9971 die_children_count++;
9972 }
9973 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9974 cleanups = make_cleanup (xfree, offsets);
9975
9976 offsets_end = offsets;
9977 child_die = die->child;
9978 while (child_die && child_die->tag)
9979 {
9980 /* For each CHILD_DIE, find the corresponding child of
9981 ORIGIN_DIE. If there is more than one layer of
9982 DW_AT_abstract_origin, follow them all; there shouldn't be,
9983 but GCC versions at least through 4.4 generate this (GCC PR
9984 40573). */
9985 struct die_info *child_origin_die = child_die;
9986 struct dwarf2_cu *child_origin_cu = cu;
9987
9988 while (1)
9989 {
9990 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9991 child_origin_cu);
9992 if (attr == NULL)
9993 break;
9994 child_origin_die = follow_die_ref (child_origin_die, attr,
9995 &child_origin_cu);
9996 }
9997
9998 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9999 counterpart may exist. */
10000 if (child_origin_die != child_die)
10001 {
10002 if (child_die->tag != child_origin_die->tag
10003 && !(child_die->tag == DW_TAG_inlined_subroutine
10004 && child_origin_die->tag == DW_TAG_subprogram))
10005 complaint (&symfile_complaints,
10006 _("Child DIE 0x%x and its abstract origin 0x%x have "
10007 "different tags"), child_die->offset.sect_off,
10008 child_origin_die->offset.sect_off);
10009 if (child_origin_die->parent != origin_die)
10010 complaint (&symfile_complaints,
10011 _("Child DIE 0x%x and its abstract origin 0x%x have "
10012 "different parents"), child_die->offset.sect_off,
10013 child_origin_die->offset.sect_off);
10014 else
10015 *offsets_end++ = child_origin_die->offset;
10016 }
10017 child_die = sibling_die (child_die);
10018 }
10019 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10020 unsigned_int_compar);
10021 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
10022 if (offsetp[-1].sect_off == offsetp->sect_off)
10023 complaint (&symfile_complaints,
10024 _("Multiple children of DIE 0x%x refer "
10025 "to DIE 0x%x as their abstract origin"),
10026 die->offset.sect_off, offsetp->sect_off);
10027
10028 offsetp = offsets;
10029 origin_child_die = origin_die->child;
10030 while (origin_child_die && origin_child_die->tag)
10031 {
10032 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
10033 while (offsetp < offsets_end
10034 && offsetp->sect_off < origin_child_die->offset.sect_off)
10035 offsetp++;
10036 if (offsetp >= offsets_end
10037 || offsetp->sect_off > origin_child_die->offset.sect_off)
10038 {
10039 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
10040 process_die (origin_child_die, origin_cu);
10041 }
10042 origin_child_die = sibling_die (origin_child_die);
10043 }
10044 origin_cu->list_in_scope = origin_previous_list_in_scope;
10045
10046 do_cleanups (cleanups);
10047 }
10048
10049 static void
10050 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
10051 {
10052 struct objfile *objfile = cu->objfile;
10053 struct context_stack *new;
10054 CORE_ADDR lowpc;
10055 CORE_ADDR highpc;
10056 struct die_info *child_die;
10057 struct attribute *attr, *call_line, *call_file;
10058 const char *name;
10059 CORE_ADDR baseaddr;
10060 struct block *block;
10061 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10062 VEC (symbolp) *template_args = NULL;
10063 struct template_symbol *templ_func = NULL;
10064
10065 if (inlined_func)
10066 {
10067 /* If we do not have call site information, we can't show the
10068 caller of this inlined function. That's too confusing, so
10069 only use the scope for local variables. */
10070 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10071 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10072 if (call_line == NULL || call_file == NULL)
10073 {
10074 read_lexical_block_scope (die, cu);
10075 return;
10076 }
10077 }
10078
10079 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10080
10081 name = dwarf2_name (die, cu);
10082
10083 /* Ignore functions with missing or empty names. These are actually
10084 illegal according to the DWARF standard. */
10085 if (name == NULL)
10086 {
10087 complaint (&symfile_complaints,
10088 _("missing name for subprogram DIE at %d"),
10089 die->offset.sect_off);
10090 return;
10091 }
10092
10093 /* Ignore functions with missing or invalid low and high pc attributes. */
10094 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10095 {
10096 attr = dwarf2_attr (die, DW_AT_external, cu);
10097 if (!attr || !DW_UNSND (attr))
10098 complaint (&symfile_complaints,
10099 _("cannot get low and high bounds "
10100 "for subprogram DIE at %d"),
10101 die->offset.sect_off);
10102 return;
10103 }
10104
10105 lowpc += baseaddr;
10106 highpc += baseaddr;
10107
10108 /* If we have any template arguments, then we must allocate a
10109 different sort of symbol. */
10110 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
10111 {
10112 if (child_die->tag == DW_TAG_template_type_param
10113 || child_die->tag == DW_TAG_template_value_param)
10114 {
10115 templ_func = allocate_template_symbol (objfile);
10116 templ_func->base.is_cplus_template_function = 1;
10117 break;
10118 }
10119 }
10120
10121 new = push_context (0, lowpc);
10122 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10123 (struct symbol *) templ_func);
10124
10125 /* If there is a location expression for DW_AT_frame_base, record
10126 it. */
10127 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
10128 if (attr)
10129 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
10130
10131 cu->list_in_scope = &local_symbols;
10132
10133 if (die->child != NULL)
10134 {
10135 child_die = die->child;
10136 while (child_die && child_die->tag)
10137 {
10138 if (child_die->tag == DW_TAG_template_type_param
10139 || child_die->tag == DW_TAG_template_value_param)
10140 {
10141 struct symbol *arg = new_symbol (child_die, NULL, cu);
10142
10143 if (arg != NULL)
10144 VEC_safe_push (symbolp, template_args, arg);
10145 }
10146 else
10147 process_die (child_die, cu);
10148 child_die = sibling_die (child_die);
10149 }
10150 }
10151
10152 inherit_abstract_dies (die, cu);
10153
10154 /* If we have a DW_AT_specification, we might need to import using
10155 directives from the context of the specification DIE. See the
10156 comment in determine_prefix. */
10157 if (cu->language == language_cplus
10158 && dwarf2_attr (die, DW_AT_specification, cu))
10159 {
10160 struct dwarf2_cu *spec_cu = cu;
10161 struct die_info *spec_die = die_specification (die, &spec_cu);
10162
10163 while (spec_die)
10164 {
10165 child_die = spec_die->child;
10166 while (child_die && child_die->tag)
10167 {
10168 if (child_die->tag == DW_TAG_imported_module)
10169 process_die (child_die, spec_cu);
10170 child_die = sibling_die (child_die);
10171 }
10172
10173 /* In some cases, GCC generates specification DIEs that
10174 themselves contain DW_AT_specification attributes. */
10175 spec_die = die_specification (spec_die, &spec_cu);
10176 }
10177 }
10178
10179 new = pop_context ();
10180 /* Make a block for the local symbols within. */
10181 block = finish_block (new->name, &local_symbols, new->old_blocks,
10182 lowpc, highpc, objfile);
10183
10184 /* For C++, set the block's scope. */
10185 if ((cu->language == language_cplus || cu->language == language_fortran)
10186 && cu->processing_has_namespace_info)
10187 block_set_scope (block, determine_prefix (die, cu),
10188 &objfile->objfile_obstack);
10189
10190 /* If we have address ranges, record them. */
10191 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10192
10193 /* Attach template arguments to function. */
10194 if (! VEC_empty (symbolp, template_args))
10195 {
10196 gdb_assert (templ_func != NULL);
10197
10198 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10199 templ_func->template_arguments
10200 = obstack_alloc (&objfile->objfile_obstack,
10201 (templ_func->n_template_arguments
10202 * sizeof (struct symbol *)));
10203 memcpy (templ_func->template_arguments,
10204 VEC_address (symbolp, template_args),
10205 (templ_func->n_template_arguments * sizeof (struct symbol *)));
10206 VEC_free (symbolp, template_args);
10207 }
10208
10209 /* In C++, we can have functions nested inside functions (e.g., when
10210 a function declares a class that has methods). This means that
10211 when we finish processing a function scope, we may need to go
10212 back to building a containing block's symbol lists. */
10213 local_symbols = new->locals;
10214 using_directives = new->using_directives;
10215
10216 /* If we've finished processing a top-level function, subsequent
10217 symbols go in the file symbol list. */
10218 if (outermost_context_p ())
10219 cu->list_in_scope = &file_symbols;
10220 }
10221
10222 /* Process all the DIES contained within a lexical block scope. Start
10223 a new scope, process the dies, and then close the scope. */
10224
10225 static void
10226 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
10227 {
10228 struct objfile *objfile = cu->objfile;
10229 struct context_stack *new;
10230 CORE_ADDR lowpc, highpc;
10231 struct die_info *child_die;
10232 CORE_ADDR baseaddr;
10233
10234 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10235
10236 /* Ignore blocks with missing or invalid low and high pc attributes. */
10237 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
10238 as multiple lexical blocks? Handling children in a sane way would
10239 be nasty. Might be easier to properly extend generic blocks to
10240 describe ranges. */
10241 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10242 return;
10243 lowpc += baseaddr;
10244 highpc += baseaddr;
10245
10246 push_context (0, lowpc);
10247 if (die->child != NULL)
10248 {
10249 child_die = die->child;
10250 while (child_die && child_die->tag)
10251 {
10252 process_die (child_die, cu);
10253 child_die = sibling_die (child_die);
10254 }
10255 }
10256 new = pop_context ();
10257
10258 if (local_symbols != NULL || using_directives != NULL)
10259 {
10260 struct block *block
10261 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
10262 highpc, objfile);
10263
10264 /* Note that recording ranges after traversing children, as we
10265 do here, means that recording a parent's ranges entails
10266 walking across all its children's ranges as they appear in
10267 the address map, which is quadratic behavior.
10268
10269 It would be nicer to record the parent's ranges before
10270 traversing its children, simply overriding whatever you find
10271 there. But since we don't even decide whether to create a
10272 block until after we've traversed its children, that's hard
10273 to do. */
10274 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10275 }
10276 local_symbols = new->locals;
10277 using_directives = new->using_directives;
10278 }
10279
10280 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
10281
10282 static void
10283 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
10284 {
10285 struct objfile *objfile = cu->objfile;
10286 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10287 CORE_ADDR pc, baseaddr;
10288 struct attribute *attr;
10289 struct call_site *call_site, call_site_local;
10290 void **slot;
10291 int nparams;
10292 struct die_info *child_die;
10293
10294 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10295
10296 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10297 if (!attr)
10298 {
10299 complaint (&symfile_complaints,
10300 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
10301 "DIE 0x%x [in module %s]"),
10302 die->offset.sect_off, objfile->name);
10303 return;
10304 }
10305 pc = DW_ADDR (attr) + baseaddr;
10306
10307 if (cu->call_site_htab == NULL)
10308 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
10309 NULL, &objfile->objfile_obstack,
10310 hashtab_obstack_allocate, NULL);
10311 call_site_local.pc = pc;
10312 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
10313 if (*slot != NULL)
10314 {
10315 complaint (&symfile_complaints,
10316 _("Duplicate PC %s for DW_TAG_GNU_call_site "
10317 "DIE 0x%x [in module %s]"),
10318 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
10319 return;
10320 }
10321
10322 /* Count parameters at the caller. */
10323
10324 nparams = 0;
10325 for (child_die = die->child; child_die && child_die->tag;
10326 child_die = sibling_die (child_die))
10327 {
10328 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10329 {
10330 complaint (&symfile_complaints,
10331 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
10332 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10333 child_die->tag, child_die->offset.sect_off, objfile->name);
10334 continue;
10335 }
10336
10337 nparams++;
10338 }
10339
10340 call_site = obstack_alloc (&objfile->objfile_obstack,
10341 (sizeof (*call_site)
10342 + (sizeof (*call_site->parameter)
10343 * (nparams - 1))));
10344 *slot = call_site;
10345 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
10346 call_site->pc = pc;
10347
10348 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
10349 {
10350 struct die_info *func_die;
10351
10352 /* Skip also over DW_TAG_inlined_subroutine. */
10353 for (func_die = die->parent;
10354 func_die && func_die->tag != DW_TAG_subprogram
10355 && func_die->tag != DW_TAG_subroutine_type;
10356 func_die = func_die->parent);
10357
10358 /* DW_AT_GNU_all_call_sites is a superset
10359 of DW_AT_GNU_all_tail_call_sites. */
10360 if (func_die
10361 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
10362 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
10363 {
10364 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
10365 not complete. But keep CALL_SITE for look ups via call_site_htab,
10366 both the initial caller containing the real return address PC and
10367 the final callee containing the current PC of a chain of tail
10368 calls do not need to have the tail call list complete. But any
10369 function candidate for a virtual tail call frame searched via
10370 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
10371 determined unambiguously. */
10372 }
10373 else
10374 {
10375 struct type *func_type = NULL;
10376
10377 if (func_die)
10378 func_type = get_die_type (func_die, cu);
10379 if (func_type != NULL)
10380 {
10381 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
10382
10383 /* Enlist this call site to the function. */
10384 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
10385 TYPE_TAIL_CALL_LIST (func_type) = call_site;
10386 }
10387 else
10388 complaint (&symfile_complaints,
10389 _("Cannot find function owning DW_TAG_GNU_call_site "
10390 "DIE 0x%x [in module %s]"),
10391 die->offset.sect_off, objfile->name);
10392 }
10393 }
10394
10395 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
10396 if (attr == NULL)
10397 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10398 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
10399 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
10400 /* Keep NULL DWARF_BLOCK. */;
10401 else if (attr_form_is_block (attr))
10402 {
10403 struct dwarf2_locexpr_baton *dlbaton;
10404
10405 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
10406 dlbaton->data = DW_BLOCK (attr)->data;
10407 dlbaton->size = DW_BLOCK (attr)->size;
10408 dlbaton->per_cu = cu->per_cu;
10409
10410 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
10411 }
10412 else if (attr_form_is_ref (attr))
10413 {
10414 struct dwarf2_cu *target_cu = cu;
10415 struct die_info *target_die;
10416
10417 target_die = follow_die_ref (die, attr, &target_cu);
10418 gdb_assert (target_cu->objfile == objfile);
10419 if (die_is_declaration (target_die, target_cu))
10420 {
10421 const char *target_physname = NULL;
10422 struct attribute *target_attr;
10423
10424 /* Prefer the mangled name; otherwise compute the demangled one. */
10425 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
10426 if (target_attr == NULL)
10427 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
10428 target_cu);
10429 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
10430 target_physname = DW_STRING (target_attr);
10431 else
10432 target_physname = dwarf2_physname (NULL, target_die, target_cu);
10433 if (target_physname == NULL)
10434 complaint (&symfile_complaints,
10435 _("DW_AT_GNU_call_site_target target DIE has invalid "
10436 "physname, for referencing DIE 0x%x [in module %s]"),
10437 die->offset.sect_off, objfile->name);
10438 else
10439 SET_FIELD_PHYSNAME (call_site->target, target_physname);
10440 }
10441 else
10442 {
10443 CORE_ADDR lowpc;
10444
10445 /* DW_AT_entry_pc should be preferred. */
10446 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
10447 complaint (&symfile_complaints,
10448 _("DW_AT_GNU_call_site_target target DIE has invalid "
10449 "low pc, for referencing DIE 0x%x [in module %s]"),
10450 die->offset.sect_off, objfile->name);
10451 else
10452 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
10453 }
10454 }
10455 else
10456 complaint (&symfile_complaints,
10457 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
10458 "block nor reference, for DIE 0x%x [in module %s]"),
10459 die->offset.sect_off, objfile->name);
10460
10461 call_site->per_cu = cu->per_cu;
10462
10463 for (child_die = die->child;
10464 child_die && child_die->tag;
10465 child_die = sibling_die (child_die))
10466 {
10467 struct call_site_parameter *parameter;
10468 struct attribute *loc, *origin;
10469
10470 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10471 {
10472 /* Already printed the complaint above. */
10473 continue;
10474 }
10475
10476 gdb_assert (call_site->parameter_count < nparams);
10477 parameter = &call_site->parameter[call_site->parameter_count];
10478
10479 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10480 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10481 register is contained in DW_AT_GNU_call_site_value. */
10482
10483 loc = dwarf2_attr (child_die, DW_AT_location, cu);
10484 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10485 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
10486 {
10487 sect_offset offset;
10488
10489 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10490 offset = dwarf2_get_ref_die_offset (origin);
10491 if (!offset_in_cu_p (&cu->header, offset))
10492 {
10493 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10494 binding can be done only inside one CU. Such referenced DIE
10495 therefore cannot be even moved to DW_TAG_partial_unit. */
10496 complaint (&symfile_complaints,
10497 _("DW_AT_abstract_origin offset is not in CU for "
10498 "DW_TAG_GNU_call_site child DIE 0x%x "
10499 "[in module %s]"),
10500 child_die->offset.sect_off, objfile->name);
10501 continue;
10502 }
10503 parameter->u.param_offset.cu_off = (offset.sect_off
10504 - cu->header.offset.sect_off);
10505 }
10506 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
10507 {
10508 complaint (&symfile_complaints,
10509 _("No DW_FORM_block* DW_AT_location for "
10510 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10511 child_die->offset.sect_off, objfile->name);
10512 continue;
10513 }
10514 else
10515 {
10516 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10517 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10518 if (parameter->u.dwarf_reg != -1)
10519 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10520 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10521 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10522 &parameter->u.fb_offset))
10523 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10524 else
10525 {
10526 complaint (&symfile_complaints,
10527 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10528 "for DW_FORM_block* DW_AT_location is supported for "
10529 "DW_TAG_GNU_call_site child DIE 0x%x "
10530 "[in module %s]"),
10531 child_die->offset.sect_off, objfile->name);
10532 continue;
10533 }
10534 }
10535
10536 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10537 if (!attr_form_is_block (attr))
10538 {
10539 complaint (&symfile_complaints,
10540 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10541 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10542 child_die->offset.sect_off, objfile->name);
10543 continue;
10544 }
10545 parameter->value = DW_BLOCK (attr)->data;
10546 parameter->value_size = DW_BLOCK (attr)->size;
10547
10548 /* Parameters are not pre-cleared by memset above. */
10549 parameter->data_value = NULL;
10550 parameter->data_value_size = 0;
10551 call_site->parameter_count++;
10552
10553 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10554 if (attr)
10555 {
10556 if (!attr_form_is_block (attr))
10557 complaint (&symfile_complaints,
10558 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10559 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10560 child_die->offset.sect_off, objfile->name);
10561 else
10562 {
10563 parameter->data_value = DW_BLOCK (attr)->data;
10564 parameter->data_value_size = DW_BLOCK (attr)->size;
10565 }
10566 }
10567 }
10568 }
10569
10570 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
10571 Return 1 if the attributes are present and valid, otherwise, return 0.
10572 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
10573
10574 static int
10575 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
10576 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10577 struct partial_symtab *ranges_pst)
10578 {
10579 struct objfile *objfile = cu->objfile;
10580 struct comp_unit_head *cu_header = &cu->header;
10581 bfd *obfd = objfile->obfd;
10582 unsigned int addr_size = cu_header->addr_size;
10583 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10584 /* Base address selection entry. */
10585 CORE_ADDR base;
10586 int found_base;
10587 unsigned int dummy;
10588 const gdb_byte *buffer;
10589 CORE_ADDR marker;
10590 int low_set;
10591 CORE_ADDR low = 0;
10592 CORE_ADDR high = 0;
10593 CORE_ADDR baseaddr;
10594
10595 found_base = cu->base_known;
10596 base = cu->base_address;
10597
10598 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10599 if (offset >= dwarf2_per_objfile->ranges.size)
10600 {
10601 complaint (&symfile_complaints,
10602 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10603 offset);
10604 return 0;
10605 }
10606 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10607
10608 /* Read in the largest possible address. */
10609 marker = read_address (obfd, buffer, cu, &dummy);
10610 if ((marker & mask) == mask)
10611 {
10612 /* If we found the largest possible address, then
10613 read the base address. */
10614 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10615 buffer += 2 * addr_size;
10616 offset += 2 * addr_size;
10617 found_base = 1;
10618 }
10619
10620 low_set = 0;
10621
10622 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10623
10624 while (1)
10625 {
10626 CORE_ADDR range_beginning, range_end;
10627
10628 range_beginning = read_address (obfd, buffer, cu, &dummy);
10629 buffer += addr_size;
10630 range_end = read_address (obfd, buffer, cu, &dummy);
10631 buffer += addr_size;
10632 offset += 2 * addr_size;
10633
10634 /* An end of list marker is a pair of zero addresses. */
10635 if (range_beginning == 0 && range_end == 0)
10636 /* Found the end of list entry. */
10637 break;
10638
10639 /* Each base address selection entry is a pair of 2 values.
10640 The first is the largest possible address, the second is
10641 the base address. Check for a base address here. */
10642 if ((range_beginning & mask) == mask)
10643 {
10644 /* If we found the largest possible address, then
10645 read the base address. */
10646 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10647 found_base = 1;
10648 continue;
10649 }
10650
10651 if (!found_base)
10652 {
10653 /* We have no valid base address for the ranges
10654 data. */
10655 complaint (&symfile_complaints,
10656 _("Invalid .debug_ranges data (no base address)"));
10657 return 0;
10658 }
10659
10660 if (range_beginning > range_end)
10661 {
10662 /* Inverted range entries are invalid. */
10663 complaint (&symfile_complaints,
10664 _("Invalid .debug_ranges data (inverted range)"));
10665 return 0;
10666 }
10667
10668 /* Empty range entries have no effect. */
10669 if (range_beginning == range_end)
10670 continue;
10671
10672 range_beginning += base;
10673 range_end += base;
10674
10675 /* A not-uncommon case of bad debug info.
10676 Don't pollute the addrmap with bad data. */
10677 if (range_beginning + baseaddr == 0
10678 && !dwarf2_per_objfile->has_section_at_zero)
10679 {
10680 complaint (&symfile_complaints,
10681 _(".debug_ranges entry has start address of zero"
10682 " [in module %s]"), objfile->name);
10683 continue;
10684 }
10685
10686 if (ranges_pst != NULL)
10687 addrmap_set_empty (objfile->psymtabs_addrmap,
10688 range_beginning + baseaddr,
10689 range_end - 1 + baseaddr,
10690 ranges_pst);
10691
10692 /* FIXME: This is recording everything as a low-high
10693 segment of consecutive addresses. We should have a
10694 data structure for discontiguous block ranges
10695 instead. */
10696 if (! low_set)
10697 {
10698 low = range_beginning;
10699 high = range_end;
10700 low_set = 1;
10701 }
10702 else
10703 {
10704 if (range_beginning < low)
10705 low = range_beginning;
10706 if (range_end > high)
10707 high = range_end;
10708 }
10709 }
10710
10711 if (! low_set)
10712 /* If the first entry is an end-of-list marker, the range
10713 describes an empty scope, i.e. no instructions. */
10714 return 0;
10715
10716 if (low_return)
10717 *low_return = low;
10718 if (high_return)
10719 *high_return = high;
10720 return 1;
10721 }
10722
10723 /* Get low and high pc attributes from a die. Return 1 if the attributes
10724 are present and valid, otherwise, return 0. Return -1 if the range is
10725 discontinuous, i.e. derived from DW_AT_ranges information. */
10726
10727 static int
10728 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10729 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10730 struct partial_symtab *pst)
10731 {
10732 struct attribute *attr;
10733 struct attribute *attr_high;
10734 CORE_ADDR low = 0;
10735 CORE_ADDR high = 0;
10736 int ret = 0;
10737
10738 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10739 if (attr_high)
10740 {
10741 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10742 if (attr)
10743 {
10744 low = DW_ADDR (attr);
10745 if (attr_high->form == DW_FORM_addr
10746 || attr_high->form == DW_FORM_GNU_addr_index)
10747 high = DW_ADDR (attr_high);
10748 else
10749 high = low + DW_UNSND (attr_high);
10750 }
10751 else
10752 /* Found high w/o low attribute. */
10753 return 0;
10754
10755 /* Found consecutive range of addresses. */
10756 ret = 1;
10757 }
10758 else
10759 {
10760 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10761 if (attr != NULL)
10762 {
10763 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10764 We take advantage of the fact that DW_AT_ranges does not appear
10765 in DW_TAG_compile_unit of DWO files. */
10766 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10767 unsigned int ranges_offset = (DW_UNSND (attr)
10768 + (need_ranges_base
10769 ? cu->ranges_base
10770 : 0));
10771
10772 /* Value of the DW_AT_ranges attribute is the offset in the
10773 .debug_ranges section. */
10774 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10775 return 0;
10776 /* Found discontinuous range of addresses. */
10777 ret = -1;
10778 }
10779 }
10780
10781 /* read_partial_die has also the strict LOW < HIGH requirement. */
10782 if (high <= low)
10783 return 0;
10784
10785 /* When using the GNU linker, .gnu.linkonce. sections are used to
10786 eliminate duplicate copies of functions and vtables and such.
10787 The linker will arbitrarily choose one and discard the others.
10788 The AT_*_pc values for such functions refer to local labels in
10789 these sections. If the section from that file was discarded, the
10790 labels are not in the output, so the relocs get a value of 0.
10791 If this is a discarded function, mark the pc bounds as invalid,
10792 so that GDB will ignore it. */
10793 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10794 return 0;
10795
10796 *lowpc = low;
10797 if (highpc)
10798 *highpc = high;
10799 return ret;
10800 }
10801
10802 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10803 its low and high PC addresses. Do nothing if these addresses could not
10804 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10805 and HIGHPC to the high address if greater than HIGHPC. */
10806
10807 static void
10808 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10809 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10810 struct dwarf2_cu *cu)
10811 {
10812 CORE_ADDR low, high;
10813 struct die_info *child = die->child;
10814
10815 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10816 {
10817 *lowpc = min (*lowpc, low);
10818 *highpc = max (*highpc, high);
10819 }
10820
10821 /* If the language does not allow nested subprograms (either inside
10822 subprograms or lexical blocks), we're done. */
10823 if (cu->language != language_ada)
10824 return;
10825
10826 /* Check all the children of the given DIE. If it contains nested
10827 subprograms, then check their pc bounds. Likewise, we need to
10828 check lexical blocks as well, as they may also contain subprogram
10829 definitions. */
10830 while (child && child->tag)
10831 {
10832 if (child->tag == DW_TAG_subprogram
10833 || child->tag == DW_TAG_lexical_block)
10834 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10835 child = sibling_die (child);
10836 }
10837 }
10838
10839 /* Get the low and high pc's represented by the scope DIE, and store
10840 them in *LOWPC and *HIGHPC. If the correct values can't be
10841 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10842
10843 static void
10844 get_scope_pc_bounds (struct die_info *die,
10845 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10846 struct dwarf2_cu *cu)
10847 {
10848 CORE_ADDR best_low = (CORE_ADDR) -1;
10849 CORE_ADDR best_high = (CORE_ADDR) 0;
10850 CORE_ADDR current_low, current_high;
10851
10852 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10853 {
10854 best_low = current_low;
10855 best_high = current_high;
10856 }
10857 else
10858 {
10859 struct die_info *child = die->child;
10860
10861 while (child && child->tag)
10862 {
10863 switch (child->tag) {
10864 case DW_TAG_subprogram:
10865 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10866 break;
10867 case DW_TAG_namespace:
10868 case DW_TAG_module:
10869 /* FIXME: carlton/2004-01-16: Should we do this for
10870 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10871 that current GCC's always emit the DIEs corresponding
10872 to definitions of methods of classes as children of a
10873 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10874 the DIEs giving the declarations, which could be
10875 anywhere). But I don't see any reason why the
10876 standards says that they have to be there. */
10877 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10878
10879 if (current_low != ((CORE_ADDR) -1))
10880 {
10881 best_low = min (best_low, current_low);
10882 best_high = max (best_high, current_high);
10883 }
10884 break;
10885 default:
10886 /* Ignore. */
10887 break;
10888 }
10889
10890 child = sibling_die (child);
10891 }
10892 }
10893
10894 *lowpc = best_low;
10895 *highpc = best_high;
10896 }
10897
10898 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10899 in DIE. */
10900
10901 static void
10902 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10903 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10904 {
10905 struct objfile *objfile = cu->objfile;
10906 struct attribute *attr;
10907 struct attribute *attr_high;
10908
10909 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10910 if (attr_high)
10911 {
10912 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10913 if (attr)
10914 {
10915 CORE_ADDR low = DW_ADDR (attr);
10916 CORE_ADDR high;
10917 if (attr_high->form == DW_FORM_addr
10918 || attr_high->form == DW_FORM_GNU_addr_index)
10919 high = DW_ADDR (attr_high);
10920 else
10921 high = low + DW_UNSND (attr_high);
10922
10923 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10924 }
10925 }
10926
10927 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10928 if (attr)
10929 {
10930 bfd *obfd = objfile->obfd;
10931 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10932 We take advantage of the fact that DW_AT_ranges does not appear
10933 in DW_TAG_compile_unit of DWO files. */
10934 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10935
10936 /* The value of the DW_AT_ranges attribute is the offset of the
10937 address range list in the .debug_ranges section. */
10938 unsigned long offset = (DW_UNSND (attr)
10939 + (need_ranges_base ? cu->ranges_base : 0));
10940 const gdb_byte *buffer;
10941
10942 /* For some target architectures, but not others, the
10943 read_address function sign-extends the addresses it returns.
10944 To recognize base address selection entries, we need a
10945 mask. */
10946 unsigned int addr_size = cu->header.addr_size;
10947 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10948
10949 /* The base address, to which the next pair is relative. Note
10950 that this 'base' is a DWARF concept: most entries in a range
10951 list are relative, to reduce the number of relocs against the
10952 debugging information. This is separate from this function's
10953 'baseaddr' argument, which GDB uses to relocate debugging
10954 information from a shared library based on the address at
10955 which the library was loaded. */
10956 CORE_ADDR base = cu->base_address;
10957 int base_known = cu->base_known;
10958
10959 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10960 if (offset >= dwarf2_per_objfile->ranges.size)
10961 {
10962 complaint (&symfile_complaints,
10963 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10964 offset);
10965 return;
10966 }
10967 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10968
10969 for (;;)
10970 {
10971 unsigned int bytes_read;
10972 CORE_ADDR start, end;
10973
10974 start = read_address (obfd, buffer, cu, &bytes_read);
10975 buffer += bytes_read;
10976 end = read_address (obfd, buffer, cu, &bytes_read);
10977 buffer += bytes_read;
10978
10979 /* Did we find the end of the range list? */
10980 if (start == 0 && end == 0)
10981 break;
10982
10983 /* Did we find a base address selection entry? */
10984 else if ((start & base_select_mask) == base_select_mask)
10985 {
10986 base = end;
10987 base_known = 1;
10988 }
10989
10990 /* We found an ordinary address range. */
10991 else
10992 {
10993 if (!base_known)
10994 {
10995 complaint (&symfile_complaints,
10996 _("Invalid .debug_ranges data "
10997 "(no base address)"));
10998 return;
10999 }
11000
11001 if (start > end)
11002 {
11003 /* Inverted range entries are invalid. */
11004 complaint (&symfile_complaints,
11005 _("Invalid .debug_ranges data "
11006 "(inverted range)"));
11007 return;
11008 }
11009
11010 /* Empty range entries have no effect. */
11011 if (start == end)
11012 continue;
11013
11014 start += base + baseaddr;
11015 end += base + baseaddr;
11016
11017 /* A not-uncommon case of bad debug info.
11018 Don't pollute the addrmap with bad data. */
11019 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11020 {
11021 complaint (&symfile_complaints,
11022 _(".debug_ranges entry has start address of zero"
11023 " [in module %s]"), objfile->name);
11024 continue;
11025 }
11026
11027 record_block_range (block, start, end - 1);
11028 }
11029 }
11030 }
11031 }
11032
11033 /* Check whether the producer field indicates either of GCC < 4.6, or the
11034 Intel C/C++ compiler, and cache the result in CU. */
11035
11036 static void
11037 check_producer (struct dwarf2_cu *cu)
11038 {
11039 const char *cs;
11040 int major, minor, release;
11041
11042 if (cu->producer == NULL)
11043 {
11044 /* For unknown compilers expect their behavior is DWARF version
11045 compliant.
11046
11047 GCC started to support .debug_types sections by -gdwarf-4 since
11048 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11049 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11050 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11051 interpreted incorrectly by GDB now - GCC PR debug/48229. */
11052 }
11053 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
11054 {
11055 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11056
11057 cs = &cu->producer[strlen ("GNU ")];
11058 while (*cs && !isdigit (*cs))
11059 cs++;
11060 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11061 {
11062 /* Not recognized as GCC. */
11063 }
11064 else
11065 {
11066 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11067 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11068 }
11069 }
11070 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11071 cu->producer_is_icc = 1;
11072 else
11073 {
11074 /* For other non-GCC compilers, expect their behavior is DWARF version
11075 compliant. */
11076 }
11077
11078 cu->checked_producer = 1;
11079 }
11080
11081 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11082 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11083 during 4.6.0 experimental. */
11084
11085 static int
11086 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11087 {
11088 if (!cu->checked_producer)
11089 check_producer (cu);
11090
11091 return cu->producer_is_gxx_lt_4_6;
11092 }
11093
11094 /* Return the default accessibility type if it is not overriden by
11095 DW_AT_accessibility. */
11096
11097 static enum dwarf_access_attribute
11098 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
11099 {
11100 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
11101 {
11102 /* The default DWARF 2 accessibility for members is public, the default
11103 accessibility for inheritance is private. */
11104
11105 if (die->tag != DW_TAG_inheritance)
11106 return DW_ACCESS_public;
11107 else
11108 return DW_ACCESS_private;
11109 }
11110 else
11111 {
11112 /* DWARF 3+ defines the default accessibility a different way. The same
11113 rules apply now for DW_TAG_inheritance as for the members and it only
11114 depends on the container kind. */
11115
11116 if (die->parent->tag == DW_TAG_class_type)
11117 return DW_ACCESS_private;
11118 else
11119 return DW_ACCESS_public;
11120 }
11121 }
11122
11123 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11124 offset. If the attribute was not found return 0, otherwise return
11125 1. If it was found but could not properly be handled, set *OFFSET
11126 to 0. */
11127
11128 static int
11129 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11130 LONGEST *offset)
11131 {
11132 struct attribute *attr;
11133
11134 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11135 if (attr != NULL)
11136 {
11137 *offset = 0;
11138
11139 /* Note that we do not check for a section offset first here.
11140 This is because DW_AT_data_member_location is new in DWARF 4,
11141 so if we see it, we can assume that a constant form is really
11142 a constant and not a section offset. */
11143 if (attr_form_is_constant (attr))
11144 *offset = dwarf2_get_attr_constant_value (attr, 0);
11145 else if (attr_form_is_section_offset (attr))
11146 dwarf2_complex_location_expr_complaint ();
11147 else if (attr_form_is_block (attr))
11148 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11149 else
11150 dwarf2_complex_location_expr_complaint ();
11151
11152 return 1;
11153 }
11154
11155 return 0;
11156 }
11157
11158 /* Add an aggregate field to the field list. */
11159
11160 static void
11161 dwarf2_add_field (struct field_info *fip, struct die_info *die,
11162 struct dwarf2_cu *cu)
11163 {
11164 struct objfile *objfile = cu->objfile;
11165 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11166 struct nextfield *new_field;
11167 struct attribute *attr;
11168 struct field *fp;
11169 const char *fieldname = "";
11170
11171 /* Allocate a new field list entry and link it in. */
11172 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
11173 make_cleanup (xfree, new_field);
11174 memset (new_field, 0, sizeof (struct nextfield));
11175
11176 if (die->tag == DW_TAG_inheritance)
11177 {
11178 new_field->next = fip->baseclasses;
11179 fip->baseclasses = new_field;
11180 }
11181 else
11182 {
11183 new_field->next = fip->fields;
11184 fip->fields = new_field;
11185 }
11186 fip->nfields++;
11187
11188 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11189 if (attr)
11190 new_field->accessibility = DW_UNSND (attr);
11191 else
11192 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
11193 if (new_field->accessibility != DW_ACCESS_public)
11194 fip->non_public_fields = 1;
11195
11196 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11197 if (attr)
11198 new_field->virtuality = DW_UNSND (attr);
11199 else
11200 new_field->virtuality = DW_VIRTUALITY_none;
11201
11202 fp = &new_field->field;
11203
11204 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
11205 {
11206 LONGEST offset;
11207
11208 /* Data member other than a C++ static data member. */
11209
11210 /* Get type of field. */
11211 fp->type = die_type (die, cu);
11212
11213 SET_FIELD_BITPOS (*fp, 0);
11214
11215 /* Get bit size of field (zero if none). */
11216 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
11217 if (attr)
11218 {
11219 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
11220 }
11221 else
11222 {
11223 FIELD_BITSIZE (*fp) = 0;
11224 }
11225
11226 /* Get bit offset of field. */
11227 if (handle_data_member_location (die, cu, &offset))
11228 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11229 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
11230 if (attr)
11231 {
11232 if (gdbarch_bits_big_endian (gdbarch))
11233 {
11234 /* For big endian bits, the DW_AT_bit_offset gives the
11235 additional bit offset from the MSB of the containing
11236 anonymous object to the MSB of the field. We don't
11237 have to do anything special since we don't need to
11238 know the size of the anonymous object. */
11239 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
11240 }
11241 else
11242 {
11243 /* For little endian bits, compute the bit offset to the
11244 MSB of the anonymous object, subtract off the number of
11245 bits from the MSB of the field to the MSB of the
11246 object, and then subtract off the number of bits of
11247 the field itself. The result is the bit offset of
11248 the LSB of the field. */
11249 int anonymous_size;
11250 int bit_offset = DW_UNSND (attr);
11251
11252 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11253 if (attr)
11254 {
11255 /* The size of the anonymous object containing
11256 the bit field is explicit, so use the
11257 indicated size (in bytes). */
11258 anonymous_size = DW_UNSND (attr);
11259 }
11260 else
11261 {
11262 /* The size of the anonymous object containing
11263 the bit field must be inferred from the type
11264 attribute of the data member containing the
11265 bit field. */
11266 anonymous_size = TYPE_LENGTH (fp->type);
11267 }
11268 SET_FIELD_BITPOS (*fp,
11269 (FIELD_BITPOS (*fp)
11270 + anonymous_size * bits_per_byte
11271 - bit_offset - FIELD_BITSIZE (*fp)));
11272 }
11273 }
11274
11275 /* Get name of field. */
11276 fieldname = dwarf2_name (die, cu);
11277 if (fieldname == NULL)
11278 fieldname = "";
11279
11280 /* The name is already allocated along with this objfile, so we don't
11281 need to duplicate it for the type. */
11282 fp->name = fieldname;
11283
11284 /* Change accessibility for artificial fields (e.g. virtual table
11285 pointer or virtual base class pointer) to private. */
11286 if (dwarf2_attr (die, DW_AT_artificial, cu))
11287 {
11288 FIELD_ARTIFICIAL (*fp) = 1;
11289 new_field->accessibility = DW_ACCESS_private;
11290 fip->non_public_fields = 1;
11291 }
11292 }
11293 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
11294 {
11295 /* C++ static member. */
11296
11297 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
11298 is a declaration, but all versions of G++ as of this writing
11299 (so through at least 3.2.1) incorrectly generate
11300 DW_TAG_variable tags. */
11301
11302 const char *physname;
11303
11304 /* Get name of field. */
11305 fieldname = dwarf2_name (die, cu);
11306 if (fieldname == NULL)
11307 return;
11308
11309 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11310 if (attr
11311 /* Only create a symbol if this is an external value.
11312 new_symbol checks this and puts the value in the global symbol
11313 table, which we want. If it is not external, new_symbol
11314 will try to put the value in cu->list_in_scope which is wrong. */
11315 && dwarf2_flag_true_p (die, DW_AT_external, cu))
11316 {
11317 /* A static const member, not much different than an enum as far as
11318 we're concerned, except that we can support more types. */
11319 new_symbol (die, NULL, cu);
11320 }
11321
11322 /* Get physical name. */
11323 physname = dwarf2_physname (fieldname, die, cu);
11324
11325 /* The name is already allocated along with this objfile, so we don't
11326 need to duplicate it for the type. */
11327 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
11328 FIELD_TYPE (*fp) = die_type (die, cu);
11329 FIELD_NAME (*fp) = fieldname;
11330 }
11331 else if (die->tag == DW_TAG_inheritance)
11332 {
11333 LONGEST offset;
11334
11335 /* C++ base class field. */
11336 if (handle_data_member_location (die, cu, &offset))
11337 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11338 FIELD_BITSIZE (*fp) = 0;
11339 FIELD_TYPE (*fp) = die_type (die, cu);
11340 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
11341 fip->nbaseclasses++;
11342 }
11343 }
11344
11345 /* Add a typedef defined in the scope of the FIP's class. */
11346
11347 static void
11348 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
11349 struct dwarf2_cu *cu)
11350 {
11351 struct objfile *objfile = cu->objfile;
11352 struct typedef_field_list *new_field;
11353 struct attribute *attr;
11354 struct typedef_field *fp;
11355 char *fieldname = "";
11356
11357 /* Allocate a new field list entry and link it in. */
11358 new_field = xzalloc (sizeof (*new_field));
11359 make_cleanup (xfree, new_field);
11360
11361 gdb_assert (die->tag == DW_TAG_typedef);
11362
11363 fp = &new_field->field;
11364
11365 /* Get name of field. */
11366 fp->name = dwarf2_name (die, cu);
11367 if (fp->name == NULL)
11368 return;
11369
11370 fp->type = read_type_die (die, cu);
11371
11372 new_field->next = fip->typedef_field_list;
11373 fip->typedef_field_list = new_field;
11374 fip->typedef_field_list_count++;
11375 }
11376
11377 /* Create the vector of fields, and attach it to the type. */
11378
11379 static void
11380 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
11381 struct dwarf2_cu *cu)
11382 {
11383 int nfields = fip->nfields;
11384
11385 /* Record the field count, allocate space for the array of fields,
11386 and create blank accessibility bitfields if necessary. */
11387 TYPE_NFIELDS (type) = nfields;
11388 TYPE_FIELDS (type) = (struct field *)
11389 TYPE_ALLOC (type, sizeof (struct field) * nfields);
11390 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
11391
11392 if (fip->non_public_fields && cu->language != language_ada)
11393 {
11394 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11395
11396 TYPE_FIELD_PRIVATE_BITS (type) =
11397 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11398 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
11399
11400 TYPE_FIELD_PROTECTED_BITS (type) =
11401 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11402 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
11403
11404 TYPE_FIELD_IGNORE_BITS (type) =
11405 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11406 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
11407 }
11408
11409 /* If the type has baseclasses, allocate and clear a bit vector for
11410 TYPE_FIELD_VIRTUAL_BITS. */
11411 if (fip->nbaseclasses && cu->language != language_ada)
11412 {
11413 int num_bytes = B_BYTES (fip->nbaseclasses);
11414 unsigned char *pointer;
11415
11416 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11417 pointer = TYPE_ALLOC (type, num_bytes);
11418 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
11419 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
11420 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
11421 }
11422
11423 /* Copy the saved-up fields into the field vector. Start from the head of
11424 the list, adding to the tail of the field array, so that they end up in
11425 the same order in the array in which they were added to the list. */
11426 while (nfields-- > 0)
11427 {
11428 struct nextfield *fieldp;
11429
11430 if (fip->fields)
11431 {
11432 fieldp = fip->fields;
11433 fip->fields = fieldp->next;
11434 }
11435 else
11436 {
11437 fieldp = fip->baseclasses;
11438 fip->baseclasses = fieldp->next;
11439 }
11440
11441 TYPE_FIELD (type, nfields) = fieldp->field;
11442 switch (fieldp->accessibility)
11443 {
11444 case DW_ACCESS_private:
11445 if (cu->language != language_ada)
11446 SET_TYPE_FIELD_PRIVATE (type, nfields);
11447 break;
11448
11449 case DW_ACCESS_protected:
11450 if (cu->language != language_ada)
11451 SET_TYPE_FIELD_PROTECTED (type, nfields);
11452 break;
11453
11454 case DW_ACCESS_public:
11455 break;
11456
11457 default:
11458 /* Unknown accessibility. Complain and treat it as public. */
11459 {
11460 complaint (&symfile_complaints, _("unsupported accessibility %d"),
11461 fieldp->accessibility);
11462 }
11463 break;
11464 }
11465 if (nfields < fip->nbaseclasses)
11466 {
11467 switch (fieldp->virtuality)
11468 {
11469 case DW_VIRTUALITY_virtual:
11470 case DW_VIRTUALITY_pure_virtual:
11471 if (cu->language == language_ada)
11472 error (_("unexpected virtuality in component of Ada type"));
11473 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11474 break;
11475 }
11476 }
11477 }
11478 }
11479
11480 /* Return true if this member function is a constructor, false
11481 otherwise. */
11482
11483 static int
11484 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11485 {
11486 const char *fieldname;
11487 const char *typename;
11488 int len;
11489
11490 if (die->parent == NULL)
11491 return 0;
11492
11493 if (die->parent->tag != DW_TAG_structure_type
11494 && die->parent->tag != DW_TAG_union_type
11495 && die->parent->tag != DW_TAG_class_type)
11496 return 0;
11497
11498 fieldname = dwarf2_name (die, cu);
11499 typename = dwarf2_name (die->parent, cu);
11500 if (fieldname == NULL || typename == NULL)
11501 return 0;
11502
11503 len = strlen (fieldname);
11504 return (strncmp (fieldname, typename, len) == 0
11505 && (typename[len] == '\0' || typename[len] == '<'));
11506 }
11507
11508 /* Add a member function to the proper fieldlist. */
11509
11510 static void
11511 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
11512 struct type *type, struct dwarf2_cu *cu)
11513 {
11514 struct objfile *objfile = cu->objfile;
11515 struct attribute *attr;
11516 struct fnfieldlist *flp;
11517 int i;
11518 struct fn_field *fnp;
11519 const char *fieldname;
11520 struct nextfnfield *new_fnfield;
11521 struct type *this_type;
11522 enum dwarf_access_attribute accessibility;
11523
11524 if (cu->language == language_ada)
11525 error (_("unexpected member function in Ada type"));
11526
11527 /* Get name of member function. */
11528 fieldname = dwarf2_name (die, cu);
11529 if (fieldname == NULL)
11530 return;
11531
11532 /* Look up member function name in fieldlist. */
11533 for (i = 0; i < fip->nfnfields; i++)
11534 {
11535 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
11536 break;
11537 }
11538
11539 /* Create new list element if necessary. */
11540 if (i < fip->nfnfields)
11541 flp = &fip->fnfieldlists[i];
11542 else
11543 {
11544 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11545 {
11546 fip->fnfieldlists = (struct fnfieldlist *)
11547 xrealloc (fip->fnfieldlists,
11548 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
11549 * sizeof (struct fnfieldlist));
11550 if (fip->nfnfields == 0)
11551 make_cleanup (free_current_contents, &fip->fnfieldlists);
11552 }
11553 flp = &fip->fnfieldlists[fip->nfnfields];
11554 flp->name = fieldname;
11555 flp->length = 0;
11556 flp->head = NULL;
11557 i = fip->nfnfields++;
11558 }
11559
11560 /* Create a new member function field and chain it to the field list
11561 entry. */
11562 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
11563 make_cleanup (xfree, new_fnfield);
11564 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11565 new_fnfield->next = flp->head;
11566 flp->head = new_fnfield;
11567 flp->length++;
11568
11569 /* Fill in the member function field info. */
11570 fnp = &new_fnfield->fnfield;
11571
11572 /* Delay processing of the physname until later. */
11573 if (cu->language == language_cplus || cu->language == language_java)
11574 {
11575 add_to_method_list (type, i, flp->length - 1, fieldname,
11576 die, cu);
11577 }
11578 else
11579 {
11580 const char *physname = dwarf2_physname (fieldname, die, cu);
11581 fnp->physname = physname ? physname : "";
11582 }
11583
11584 fnp->type = alloc_type (objfile);
11585 this_type = read_type_die (die, cu);
11586 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11587 {
11588 int nparams = TYPE_NFIELDS (this_type);
11589
11590 /* TYPE is the domain of this method, and THIS_TYPE is the type
11591 of the method itself (TYPE_CODE_METHOD). */
11592 smash_to_method_type (fnp->type, type,
11593 TYPE_TARGET_TYPE (this_type),
11594 TYPE_FIELDS (this_type),
11595 TYPE_NFIELDS (this_type),
11596 TYPE_VARARGS (this_type));
11597
11598 /* Handle static member functions.
11599 Dwarf2 has no clean way to discern C++ static and non-static
11600 member functions. G++ helps GDB by marking the first
11601 parameter for non-static member functions (which is the this
11602 pointer) as artificial. We obtain this information from
11603 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11604 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11605 fnp->voffset = VOFFSET_STATIC;
11606 }
11607 else
11608 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11609 dwarf2_full_name (fieldname, die, cu));
11610
11611 /* Get fcontext from DW_AT_containing_type if present. */
11612 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11613 fnp->fcontext = die_containing_type (die, cu);
11614
11615 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11616 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11617
11618 /* Get accessibility. */
11619 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11620 if (attr)
11621 accessibility = DW_UNSND (attr);
11622 else
11623 accessibility = dwarf2_default_access_attribute (die, cu);
11624 switch (accessibility)
11625 {
11626 case DW_ACCESS_private:
11627 fnp->is_private = 1;
11628 break;
11629 case DW_ACCESS_protected:
11630 fnp->is_protected = 1;
11631 break;
11632 }
11633
11634 /* Check for artificial methods. */
11635 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11636 if (attr && DW_UNSND (attr) != 0)
11637 fnp->is_artificial = 1;
11638
11639 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11640
11641 /* Get index in virtual function table if it is a virtual member
11642 function. For older versions of GCC, this is an offset in the
11643 appropriate virtual table, as specified by DW_AT_containing_type.
11644 For everyone else, it is an expression to be evaluated relative
11645 to the object address. */
11646
11647 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11648 if (attr)
11649 {
11650 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11651 {
11652 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11653 {
11654 /* Old-style GCC. */
11655 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11656 }
11657 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11658 || (DW_BLOCK (attr)->size > 1
11659 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11660 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11661 {
11662 struct dwarf_block blk;
11663 int offset;
11664
11665 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11666 ? 1 : 2);
11667 blk.size = DW_BLOCK (attr)->size - offset;
11668 blk.data = DW_BLOCK (attr)->data + offset;
11669 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11670 if ((fnp->voffset % cu->header.addr_size) != 0)
11671 dwarf2_complex_location_expr_complaint ();
11672 else
11673 fnp->voffset /= cu->header.addr_size;
11674 fnp->voffset += 2;
11675 }
11676 else
11677 dwarf2_complex_location_expr_complaint ();
11678
11679 if (!fnp->fcontext)
11680 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11681 }
11682 else if (attr_form_is_section_offset (attr))
11683 {
11684 dwarf2_complex_location_expr_complaint ();
11685 }
11686 else
11687 {
11688 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11689 fieldname);
11690 }
11691 }
11692 else
11693 {
11694 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11695 if (attr && DW_UNSND (attr))
11696 {
11697 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11698 complaint (&symfile_complaints,
11699 _("Member function \"%s\" (offset %d) is virtual "
11700 "but the vtable offset is not specified"),
11701 fieldname, die->offset.sect_off);
11702 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11703 TYPE_CPLUS_DYNAMIC (type) = 1;
11704 }
11705 }
11706 }
11707
11708 /* Create the vector of member function fields, and attach it to the type. */
11709
11710 static void
11711 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11712 struct dwarf2_cu *cu)
11713 {
11714 struct fnfieldlist *flp;
11715 int i;
11716
11717 if (cu->language == language_ada)
11718 error (_("unexpected member functions in Ada type"));
11719
11720 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11721 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11722 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11723
11724 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11725 {
11726 struct nextfnfield *nfp = flp->head;
11727 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11728 int k;
11729
11730 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11731 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11732 fn_flp->fn_fields = (struct fn_field *)
11733 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11734 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11735 fn_flp->fn_fields[k] = nfp->fnfield;
11736 }
11737
11738 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11739 }
11740
11741 /* Returns non-zero if NAME is the name of a vtable member in CU's
11742 language, zero otherwise. */
11743 static int
11744 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11745 {
11746 static const char vptr[] = "_vptr";
11747 static const char vtable[] = "vtable";
11748
11749 /* Look for the C++ and Java forms of the vtable. */
11750 if ((cu->language == language_java
11751 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11752 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11753 && is_cplus_marker (name[sizeof (vptr) - 1])))
11754 return 1;
11755
11756 return 0;
11757 }
11758
11759 /* GCC outputs unnamed structures that are really pointers to member
11760 functions, with the ABI-specified layout. If TYPE describes
11761 such a structure, smash it into a member function type.
11762
11763 GCC shouldn't do this; it should just output pointer to member DIEs.
11764 This is GCC PR debug/28767. */
11765
11766 static void
11767 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11768 {
11769 struct type *pfn_type, *domain_type, *new_type;
11770
11771 /* Check for a structure with no name and two children. */
11772 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11773 return;
11774
11775 /* Check for __pfn and __delta members. */
11776 if (TYPE_FIELD_NAME (type, 0) == NULL
11777 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11778 || TYPE_FIELD_NAME (type, 1) == NULL
11779 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11780 return;
11781
11782 /* Find the type of the method. */
11783 pfn_type = TYPE_FIELD_TYPE (type, 0);
11784 if (pfn_type == NULL
11785 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11786 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11787 return;
11788
11789 /* Look for the "this" argument. */
11790 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11791 if (TYPE_NFIELDS (pfn_type) == 0
11792 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11793 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11794 return;
11795
11796 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11797 new_type = alloc_type (objfile);
11798 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11799 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11800 TYPE_VARARGS (pfn_type));
11801 smash_to_methodptr_type (type, new_type);
11802 }
11803
11804 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11805 (icc). */
11806
11807 static int
11808 producer_is_icc (struct dwarf2_cu *cu)
11809 {
11810 if (!cu->checked_producer)
11811 check_producer (cu);
11812
11813 return cu->producer_is_icc;
11814 }
11815
11816 /* Called when we find the DIE that starts a structure or union scope
11817 (definition) to create a type for the structure or union. Fill in
11818 the type's name and general properties; the members will not be
11819 processed until process_structure_scope.
11820
11821 NOTE: we need to call these functions regardless of whether or not the
11822 DIE has a DW_AT_name attribute, since it might be an anonymous
11823 structure or union. This gets the type entered into our set of
11824 user defined types.
11825
11826 However, if the structure is incomplete (an opaque struct/union)
11827 then suppress creating a symbol table entry for it since gdb only
11828 wants to find the one with the complete definition. Note that if
11829 it is complete, we just call new_symbol, which does it's own
11830 checking about whether the struct/union is anonymous or not (and
11831 suppresses creating a symbol table entry itself). */
11832
11833 static struct type *
11834 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11835 {
11836 struct objfile *objfile = cu->objfile;
11837 struct type *type;
11838 struct attribute *attr;
11839 const char *name;
11840
11841 /* If the definition of this type lives in .debug_types, read that type.
11842 Don't follow DW_AT_specification though, that will take us back up
11843 the chain and we want to go down. */
11844 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11845 if (attr)
11846 {
11847 type = get_DW_AT_signature_type (die, attr, cu);
11848
11849 /* The type's CU may not be the same as CU.
11850 Ensure TYPE is recorded with CU in die_type_hash. */
11851 return set_die_type (die, type, cu);
11852 }
11853
11854 type = alloc_type (objfile);
11855 INIT_CPLUS_SPECIFIC (type);
11856
11857 name = dwarf2_name (die, cu);
11858 if (name != NULL)
11859 {
11860 if (cu->language == language_cplus
11861 || cu->language == language_java)
11862 {
11863 const char *full_name = dwarf2_full_name (name, die, cu);
11864
11865 /* dwarf2_full_name might have already finished building the DIE's
11866 type. If so, there is no need to continue. */
11867 if (get_die_type (die, cu) != NULL)
11868 return get_die_type (die, cu);
11869
11870 TYPE_TAG_NAME (type) = full_name;
11871 if (die->tag == DW_TAG_structure_type
11872 || die->tag == DW_TAG_class_type)
11873 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11874 }
11875 else
11876 {
11877 /* The name is already allocated along with this objfile, so
11878 we don't need to duplicate it for the type. */
11879 TYPE_TAG_NAME (type) = name;
11880 if (die->tag == DW_TAG_class_type)
11881 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11882 }
11883 }
11884
11885 if (die->tag == DW_TAG_structure_type)
11886 {
11887 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11888 }
11889 else if (die->tag == DW_TAG_union_type)
11890 {
11891 TYPE_CODE (type) = TYPE_CODE_UNION;
11892 }
11893 else
11894 {
11895 TYPE_CODE (type) = TYPE_CODE_CLASS;
11896 }
11897
11898 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11899 TYPE_DECLARED_CLASS (type) = 1;
11900
11901 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11902 if (attr)
11903 {
11904 TYPE_LENGTH (type) = DW_UNSND (attr);
11905 }
11906 else
11907 {
11908 TYPE_LENGTH (type) = 0;
11909 }
11910
11911 if (producer_is_icc (cu))
11912 {
11913 /* ICC does not output the required DW_AT_declaration
11914 on incomplete types, but gives them a size of zero. */
11915 }
11916 else
11917 TYPE_STUB_SUPPORTED (type) = 1;
11918
11919 if (die_is_declaration (die, cu))
11920 TYPE_STUB (type) = 1;
11921 else if (attr == NULL && die->child == NULL
11922 && producer_is_realview (cu->producer))
11923 /* RealView does not output the required DW_AT_declaration
11924 on incomplete types. */
11925 TYPE_STUB (type) = 1;
11926
11927 /* We need to add the type field to the die immediately so we don't
11928 infinitely recurse when dealing with pointers to the structure
11929 type within the structure itself. */
11930 set_die_type (die, type, cu);
11931
11932 /* set_die_type should be already done. */
11933 set_descriptive_type (type, die, cu);
11934
11935 return type;
11936 }
11937
11938 /* Finish creating a structure or union type, including filling in
11939 its members and creating a symbol for it. */
11940
11941 static void
11942 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11943 {
11944 struct objfile *objfile = cu->objfile;
11945 struct die_info *child_die = die->child;
11946 struct type *type;
11947
11948 type = get_die_type (die, cu);
11949 if (type == NULL)
11950 type = read_structure_type (die, cu);
11951
11952 if (die->child != NULL && ! die_is_declaration (die, cu))
11953 {
11954 struct field_info fi;
11955 struct die_info *child_die;
11956 VEC (symbolp) *template_args = NULL;
11957 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11958
11959 memset (&fi, 0, sizeof (struct field_info));
11960
11961 child_die = die->child;
11962
11963 while (child_die && child_die->tag)
11964 {
11965 if (child_die->tag == DW_TAG_member
11966 || child_die->tag == DW_TAG_variable)
11967 {
11968 /* NOTE: carlton/2002-11-05: A C++ static data member
11969 should be a DW_TAG_member that is a declaration, but
11970 all versions of G++ as of this writing (so through at
11971 least 3.2.1) incorrectly generate DW_TAG_variable
11972 tags for them instead. */
11973 dwarf2_add_field (&fi, child_die, cu);
11974 }
11975 else if (child_die->tag == DW_TAG_subprogram)
11976 {
11977 /* C++ member function. */
11978 dwarf2_add_member_fn (&fi, child_die, type, cu);
11979 }
11980 else if (child_die->tag == DW_TAG_inheritance)
11981 {
11982 /* C++ base class field. */
11983 dwarf2_add_field (&fi, child_die, cu);
11984 }
11985 else if (child_die->tag == DW_TAG_typedef)
11986 dwarf2_add_typedef (&fi, child_die, cu);
11987 else if (child_die->tag == DW_TAG_template_type_param
11988 || child_die->tag == DW_TAG_template_value_param)
11989 {
11990 struct symbol *arg = new_symbol (child_die, NULL, cu);
11991
11992 if (arg != NULL)
11993 VEC_safe_push (symbolp, template_args, arg);
11994 }
11995
11996 child_die = sibling_die (child_die);
11997 }
11998
11999 /* Attach template arguments to type. */
12000 if (! VEC_empty (symbolp, template_args))
12001 {
12002 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12003 TYPE_N_TEMPLATE_ARGUMENTS (type)
12004 = VEC_length (symbolp, template_args);
12005 TYPE_TEMPLATE_ARGUMENTS (type)
12006 = obstack_alloc (&objfile->objfile_obstack,
12007 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12008 * sizeof (struct symbol *)));
12009 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12010 VEC_address (symbolp, template_args),
12011 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12012 * sizeof (struct symbol *)));
12013 VEC_free (symbolp, template_args);
12014 }
12015
12016 /* Attach fields and member functions to the type. */
12017 if (fi.nfields)
12018 dwarf2_attach_fields_to_type (&fi, type, cu);
12019 if (fi.nfnfields)
12020 {
12021 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
12022
12023 /* Get the type which refers to the base class (possibly this
12024 class itself) which contains the vtable pointer for the current
12025 class from the DW_AT_containing_type attribute. This use of
12026 DW_AT_containing_type is a GNU extension. */
12027
12028 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12029 {
12030 struct type *t = die_containing_type (die, cu);
12031
12032 TYPE_VPTR_BASETYPE (type) = t;
12033 if (type == t)
12034 {
12035 int i;
12036
12037 /* Our own class provides vtbl ptr. */
12038 for (i = TYPE_NFIELDS (t) - 1;
12039 i >= TYPE_N_BASECLASSES (t);
12040 --i)
12041 {
12042 const char *fieldname = TYPE_FIELD_NAME (t, i);
12043
12044 if (is_vtable_name (fieldname, cu))
12045 {
12046 TYPE_VPTR_FIELDNO (type) = i;
12047 break;
12048 }
12049 }
12050
12051 /* Complain if virtual function table field not found. */
12052 if (i < TYPE_N_BASECLASSES (t))
12053 complaint (&symfile_complaints,
12054 _("virtual function table pointer "
12055 "not found when defining class '%s'"),
12056 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12057 "");
12058 }
12059 else
12060 {
12061 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12062 }
12063 }
12064 else if (cu->producer
12065 && strncmp (cu->producer,
12066 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12067 {
12068 /* The IBM XLC compiler does not provide direct indication
12069 of the containing type, but the vtable pointer is
12070 always named __vfp. */
12071
12072 int i;
12073
12074 for (i = TYPE_NFIELDS (type) - 1;
12075 i >= TYPE_N_BASECLASSES (type);
12076 --i)
12077 {
12078 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12079 {
12080 TYPE_VPTR_FIELDNO (type) = i;
12081 TYPE_VPTR_BASETYPE (type) = type;
12082 break;
12083 }
12084 }
12085 }
12086 }
12087
12088 /* Copy fi.typedef_field_list linked list elements content into the
12089 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
12090 if (fi.typedef_field_list)
12091 {
12092 int i = fi.typedef_field_list_count;
12093
12094 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12095 TYPE_TYPEDEF_FIELD_ARRAY (type)
12096 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
12097 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
12098
12099 /* Reverse the list order to keep the debug info elements order. */
12100 while (--i >= 0)
12101 {
12102 struct typedef_field *dest, *src;
12103
12104 dest = &TYPE_TYPEDEF_FIELD (type, i);
12105 src = &fi.typedef_field_list->field;
12106 fi.typedef_field_list = fi.typedef_field_list->next;
12107 *dest = *src;
12108 }
12109 }
12110
12111 do_cleanups (back_to);
12112
12113 if (HAVE_CPLUS_STRUCT (type))
12114 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
12115 }
12116
12117 quirk_gcc_member_function_pointer (type, objfile);
12118
12119 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12120 snapshots) has been known to create a die giving a declaration
12121 for a class that has, as a child, a die giving a definition for a
12122 nested class. So we have to process our children even if the
12123 current die is a declaration. Normally, of course, a declaration
12124 won't have any children at all. */
12125
12126 while (child_die != NULL && child_die->tag)
12127 {
12128 if (child_die->tag == DW_TAG_member
12129 || child_die->tag == DW_TAG_variable
12130 || child_die->tag == DW_TAG_inheritance
12131 || child_die->tag == DW_TAG_template_value_param
12132 || child_die->tag == DW_TAG_template_type_param)
12133 {
12134 /* Do nothing. */
12135 }
12136 else
12137 process_die (child_die, cu);
12138
12139 child_die = sibling_die (child_die);
12140 }
12141
12142 /* Do not consider external references. According to the DWARF standard,
12143 these DIEs are identified by the fact that they have no byte_size
12144 attribute, and a declaration attribute. */
12145 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12146 || !die_is_declaration (die, cu))
12147 new_symbol (die, type, cu);
12148 }
12149
12150 /* Given a DW_AT_enumeration_type die, set its type. We do not
12151 complete the type's fields yet, or create any symbols. */
12152
12153 static struct type *
12154 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
12155 {
12156 struct objfile *objfile = cu->objfile;
12157 struct type *type;
12158 struct attribute *attr;
12159 const char *name;
12160
12161 /* If the definition of this type lives in .debug_types, read that type.
12162 Don't follow DW_AT_specification though, that will take us back up
12163 the chain and we want to go down. */
12164 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12165 if (attr)
12166 {
12167 type = get_DW_AT_signature_type (die, attr, cu);
12168
12169 /* The type's CU may not be the same as CU.
12170 Ensure TYPE is recorded with CU in die_type_hash. */
12171 return set_die_type (die, type, cu);
12172 }
12173
12174 type = alloc_type (objfile);
12175
12176 TYPE_CODE (type) = TYPE_CODE_ENUM;
12177 name = dwarf2_full_name (NULL, die, cu);
12178 if (name != NULL)
12179 TYPE_TAG_NAME (type) = name;
12180
12181 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12182 if (attr)
12183 {
12184 TYPE_LENGTH (type) = DW_UNSND (attr);
12185 }
12186 else
12187 {
12188 TYPE_LENGTH (type) = 0;
12189 }
12190
12191 /* The enumeration DIE can be incomplete. In Ada, any type can be
12192 declared as private in the package spec, and then defined only
12193 inside the package body. Such types are known as Taft Amendment
12194 Types. When another package uses such a type, an incomplete DIE
12195 may be generated by the compiler. */
12196 if (die_is_declaration (die, cu))
12197 TYPE_STUB (type) = 1;
12198
12199 return set_die_type (die, type, cu);
12200 }
12201
12202 /* Given a pointer to a die which begins an enumeration, process all
12203 the dies that define the members of the enumeration, and create the
12204 symbol for the enumeration type.
12205
12206 NOTE: We reverse the order of the element list. */
12207
12208 static void
12209 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
12210 {
12211 struct type *this_type;
12212
12213 this_type = get_die_type (die, cu);
12214 if (this_type == NULL)
12215 this_type = read_enumeration_type (die, cu);
12216
12217 if (die->child != NULL)
12218 {
12219 struct die_info *child_die;
12220 struct symbol *sym;
12221 struct field *fields = NULL;
12222 int num_fields = 0;
12223 int unsigned_enum = 1;
12224 const char *name;
12225 int flag_enum = 1;
12226 ULONGEST mask = 0;
12227
12228 child_die = die->child;
12229 while (child_die && child_die->tag)
12230 {
12231 if (child_die->tag != DW_TAG_enumerator)
12232 {
12233 process_die (child_die, cu);
12234 }
12235 else
12236 {
12237 name = dwarf2_name (child_die, cu);
12238 if (name)
12239 {
12240 sym = new_symbol (child_die, this_type, cu);
12241 if (SYMBOL_VALUE (sym) < 0)
12242 {
12243 unsigned_enum = 0;
12244 flag_enum = 0;
12245 }
12246 else if ((mask & SYMBOL_VALUE (sym)) != 0)
12247 flag_enum = 0;
12248 else
12249 mask |= SYMBOL_VALUE (sym);
12250
12251 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
12252 {
12253 fields = (struct field *)
12254 xrealloc (fields,
12255 (num_fields + DW_FIELD_ALLOC_CHUNK)
12256 * sizeof (struct field));
12257 }
12258
12259 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
12260 FIELD_TYPE (fields[num_fields]) = NULL;
12261 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
12262 FIELD_BITSIZE (fields[num_fields]) = 0;
12263
12264 num_fields++;
12265 }
12266 }
12267
12268 child_die = sibling_die (child_die);
12269 }
12270
12271 if (num_fields)
12272 {
12273 TYPE_NFIELDS (this_type) = num_fields;
12274 TYPE_FIELDS (this_type) = (struct field *)
12275 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
12276 memcpy (TYPE_FIELDS (this_type), fields,
12277 sizeof (struct field) * num_fields);
12278 xfree (fields);
12279 }
12280 if (unsigned_enum)
12281 TYPE_UNSIGNED (this_type) = 1;
12282 if (flag_enum)
12283 TYPE_FLAG_ENUM (this_type) = 1;
12284 }
12285
12286 /* If we are reading an enum from a .debug_types unit, and the enum
12287 is a declaration, and the enum is not the signatured type in the
12288 unit, then we do not want to add a symbol for it. Adding a
12289 symbol would in some cases obscure the true definition of the
12290 enum, giving users an incomplete type when the definition is
12291 actually available. Note that we do not want to do this for all
12292 enums which are just declarations, because C++0x allows forward
12293 enum declarations. */
12294 if (cu->per_cu->is_debug_types
12295 && die_is_declaration (die, cu))
12296 {
12297 struct signatured_type *sig_type;
12298
12299 sig_type = (struct signatured_type *) cu->per_cu;
12300 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
12301 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
12302 return;
12303 }
12304
12305 new_symbol (die, this_type, cu);
12306 }
12307
12308 /* Extract all information from a DW_TAG_array_type DIE and put it in
12309 the DIE's type field. For now, this only handles one dimensional
12310 arrays. */
12311
12312 static struct type *
12313 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
12314 {
12315 struct objfile *objfile = cu->objfile;
12316 struct die_info *child_die;
12317 struct type *type;
12318 struct type *element_type, *range_type, *index_type;
12319 struct type **range_types = NULL;
12320 struct attribute *attr;
12321 int ndim = 0;
12322 struct cleanup *back_to;
12323 const char *name;
12324
12325 element_type = die_type (die, cu);
12326
12327 /* The die_type call above may have already set the type for this DIE. */
12328 type = get_die_type (die, cu);
12329 if (type)
12330 return type;
12331
12332 /* Irix 6.2 native cc creates array types without children for
12333 arrays with unspecified length. */
12334 if (die->child == NULL)
12335 {
12336 index_type = objfile_type (objfile)->builtin_int;
12337 range_type = create_range_type (NULL, index_type, 0, -1);
12338 type = create_array_type (NULL, element_type, range_type);
12339 return set_die_type (die, type, cu);
12340 }
12341
12342 back_to = make_cleanup (null_cleanup, NULL);
12343 child_die = die->child;
12344 while (child_die && child_die->tag)
12345 {
12346 if (child_die->tag == DW_TAG_subrange_type)
12347 {
12348 struct type *child_type = read_type_die (child_die, cu);
12349
12350 if (child_type != NULL)
12351 {
12352 /* The range type was succesfully read. Save it for the
12353 array type creation. */
12354 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
12355 {
12356 range_types = (struct type **)
12357 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
12358 * sizeof (struct type *));
12359 if (ndim == 0)
12360 make_cleanup (free_current_contents, &range_types);
12361 }
12362 range_types[ndim++] = child_type;
12363 }
12364 }
12365 child_die = sibling_die (child_die);
12366 }
12367
12368 /* Dwarf2 dimensions are output from left to right, create the
12369 necessary array types in backwards order. */
12370
12371 type = element_type;
12372
12373 if (read_array_order (die, cu) == DW_ORD_col_major)
12374 {
12375 int i = 0;
12376
12377 while (i < ndim)
12378 type = create_array_type (NULL, type, range_types[i++]);
12379 }
12380 else
12381 {
12382 while (ndim-- > 0)
12383 type = create_array_type (NULL, type, range_types[ndim]);
12384 }
12385
12386 /* Understand Dwarf2 support for vector types (like they occur on
12387 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
12388 array type. This is not part of the Dwarf2/3 standard yet, but a
12389 custom vendor extension. The main difference between a regular
12390 array and the vector variant is that vectors are passed by value
12391 to functions. */
12392 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
12393 if (attr)
12394 make_vector_type (type);
12395
12396 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
12397 implementation may choose to implement triple vectors using this
12398 attribute. */
12399 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12400 if (attr)
12401 {
12402 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
12403 TYPE_LENGTH (type) = DW_UNSND (attr);
12404 else
12405 complaint (&symfile_complaints,
12406 _("DW_AT_byte_size for array type smaller "
12407 "than the total size of elements"));
12408 }
12409
12410 name = dwarf2_name (die, cu);
12411 if (name)
12412 TYPE_NAME (type) = name;
12413
12414 /* Install the type in the die. */
12415 set_die_type (die, type, cu);
12416
12417 /* set_die_type should be already done. */
12418 set_descriptive_type (type, die, cu);
12419
12420 do_cleanups (back_to);
12421
12422 return type;
12423 }
12424
12425 static enum dwarf_array_dim_ordering
12426 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
12427 {
12428 struct attribute *attr;
12429
12430 attr = dwarf2_attr (die, DW_AT_ordering, cu);
12431
12432 if (attr) return DW_SND (attr);
12433
12434 /* GNU F77 is a special case, as at 08/2004 array type info is the
12435 opposite order to the dwarf2 specification, but data is still
12436 laid out as per normal fortran.
12437
12438 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
12439 version checking. */
12440
12441 if (cu->language == language_fortran
12442 && cu->producer && strstr (cu->producer, "GNU F77"))
12443 {
12444 return DW_ORD_row_major;
12445 }
12446
12447 switch (cu->language_defn->la_array_ordering)
12448 {
12449 case array_column_major:
12450 return DW_ORD_col_major;
12451 case array_row_major:
12452 default:
12453 return DW_ORD_row_major;
12454 };
12455 }
12456
12457 /* Extract all information from a DW_TAG_set_type DIE and put it in
12458 the DIE's type field. */
12459
12460 static struct type *
12461 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12462 {
12463 struct type *domain_type, *set_type;
12464 struct attribute *attr;
12465
12466 domain_type = die_type (die, cu);
12467
12468 /* The die_type call above may have already set the type for this DIE. */
12469 set_type = get_die_type (die, cu);
12470 if (set_type)
12471 return set_type;
12472
12473 set_type = create_set_type (NULL, domain_type);
12474
12475 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12476 if (attr)
12477 TYPE_LENGTH (set_type) = DW_UNSND (attr);
12478
12479 return set_die_type (die, set_type, cu);
12480 }
12481
12482 /* A helper for read_common_block that creates a locexpr baton.
12483 SYM is the symbol which we are marking as computed.
12484 COMMON_DIE is the DIE for the common block.
12485 COMMON_LOC is the location expression attribute for the common
12486 block itself.
12487 MEMBER_LOC is the location expression attribute for the particular
12488 member of the common block that we are processing.
12489 CU is the CU from which the above come. */
12490
12491 static void
12492 mark_common_block_symbol_computed (struct symbol *sym,
12493 struct die_info *common_die,
12494 struct attribute *common_loc,
12495 struct attribute *member_loc,
12496 struct dwarf2_cu *cu)
12497 {
12498 struct objfile *objfile = dwarf2_per_objfile->objfile;
12499 struct dwarf2_locexpr_baton *baton;
12500 gdb_byte *ptr;
12501 unsigned int cu_off;
12502 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12503 LONGEST offset = 0;
12504
12505 gdb_assert (common_loc && member_loc);
12506 gdb_assert (attr_form_is_block (common_loc));
12507 gdb_assert (attr_form_is_block (member_loc)
12508 || attr_form_is_constant (member_loc));
12509
12510 baton = obstack_alloc (&objfile->objfile_obstack,
12511 sizeof (struct dwarf2_locexpr_baton));
12512 baton->per_cu = cu->per_cu;
12513 gdb_assert (baton->per_cu);
12514
12515 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12516
12517 if (attr_form_is_constant (member_loc))
12518 {
12519 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12520 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12521 }
12522 else
12523 baton->size += DW_BLOCK (member_loc)->size;
12524
12525 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12526 baton->data = ptr;
12527
12528 *ptr++ = DW_OP_call4;
12529 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12530 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12531 ptr += 4;
12532
12533 if (attr_form_is_constant (member_loc))
12534 {
12535 *ptr++ = DW_OP_addr;
12536 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12537 ptr += cu->header.addr_size;
12538 }
12539 else
12540 {
12541 /* We have to copy the data here, because DW_OP_call4 will only
12542 use a DW_AT_location attribute. */
12543 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12544 ptr += DW_BLOCK (member_loc)->size;
12545 }
12546
12547 *ptr++ = DW_OP_plus;
12548 gdb_assert (ptr - baton->data == baton->size);
12549
12550 SYMBOL_LOCATION_BATON (sym) = baton;
12551 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
12552 }
12553
12554 /* Create appropriate locally-scoped variables for all the
12555 DW_TAG_common_block entries. Also create a struct common_block
12556 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12557 is used to sepate the common blocks name namespace from regular
12558 variable names. */
12559
12560 static void
12561 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
12562 {
12563 struct attribute *attr;
12564
12565 attr = dwarf2_attr (die, DW_AT_location, cu);
12566 if (attr)
12567 {
12568 /* Support the .debug_loc offsets. */
12569 if (attr_form_is_block (attr))
12570 {
12571 /* Ok. */
12572 }
12573 else if (attr_form_is_section_offset (attr))
12574 {
12575 dwarf2_complex_location_expr_complaint ();
12576 attr = NULL;
12577 }
12578 else
12579 {
12580 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12581 "common block member");
12582 attr = NULL;
12583 }
12584 }
12585
12586 if (die->child != NULL)
12587 {
12588 struct objfile *objfile = cu->objfile;
12589 struct die_info *child_die;
12590 size_t n_entries = 0, size;
12591 struct common_block *common_block;
12592 struct symbol *sym;
12593
12594 for (child_die = die->child;
12595 child_die && child_die->tag;
12596 child_die = sibling_die (child_die))
12597 ++n_entries;
12598
12599 size = (sizeof (struct common_block)
12600 + (n_entries - 1) * sizeof (struct symbol *));
12601 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12602 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12603 common_block->n_entries = 0;
12604
12605 for (child_die = die->child;
12606 child_die && child_die->tag;
12607 child_die = sibling_die (child_die))
12608 {
12609 /* Create the symbol in the DW_TAG_common_block block in the current
12610 symbol scope. */
12611 sym = new_symbol (child_die, NULL, cu);
12612 if (sym != NULL)
12613 {
12614 struct attribute *member_loc;
12615
12616 common_block->contents[common_block->n_entries++] = sym;
12617
12618 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12619 cu);
12620 if (member_loc)
12621 {
12622 /* GDB has handled this for a long time, but it is
12623 not specified by DWARF. It seems to have been
12624 emitted by gfortran at least as recently as:
12625 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12626 complaint (&symfile_complaints,
12627 _("Variable in common block has "
12628 "DW_AT_data_member_location "
12629 "- DIE at 0x%x [in module %s]"),
12630 child_die->offset.sect_off, cu->objfile->name);
12631
12632 if (attr_form_is_section_offset (member_loc))
12633 dwarf2_complex_location_expr_complaint ();
12634 else if (attr_form_is_constant (member_loc)
12635 || attr_form_is_block (member_loc))
12636 {
12637 if (attr)
12638 mark_common_block_symbol_computed (sym, die, attr,
12639 member_loc, cu);
12640 }
12641 else
12642 dwarf2_complex_location_expr_complaint ();
12643 }
12644 }
12645 }
12646
12647 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12648 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12649 }
12650 }
12651
12652 /* Create a type for a C++ namespace. */
12653
12654 static struct type *
12655 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12656 {
12657 struct objfile *objfile = cu->objfile;
12658 const char *previous_prefix, *name;
12659 int is_anonymous;
12660 struct type *type;
12661
12662 /* For extensions, reuse the type of the original namespace. */
12663 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12664 {
12665 struct die_info *ext_die;
12666 struct dwarf2_cu *ext_cu = cu;
12667
12668 ext_die = dwarf2_extension (die, &ext_cu);
12669 type = read_type_die (ext_die, ext_cu);
12670
12671 /* EXT_CU may not be the same as CU.
12672 Ensure TYPE is recorded with CU in die_type_hash. */
12673 return set_die_type (die, type, cu);
12674 }
12675
12676 name = namespace_name (die, &is_anonymous, cu);
12677
12678 /* Now build the name of the current namespace. */
12679
12680 previous_prefix = determine_prefix (die, cu);
12681 if (previous_prefix[0] != '\0')
12682 name = typename_concat (&objfile->objfile_obstack,
12683 previous_prefix, name, 0, cu);
12684
12685 /* Create the type. */
12686 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12687 objfile);
12688 TYPE_NAME (type) = name;
12689 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12690
12691 return set_die_type (die, type, cu);
12692 }
12693
12694 /* Read a C++ namespace. */
12695
12696 static void
12697 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12698 {
12699 struct objfile *objfile = cu->objfile;
12700 int is_anonymous;
12701
12702 /* Add a symbol associated to this if we haven't seen the namespace
12703 before. Also, add a using directive if it's an anonymous
12704 namespace. */
12705
12706 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12707 {
12708 struct type *type;
12709
12710 type = read_type_die (die, cu);
12711 new_symbol (die, type, cu);
12712
12713 namespace_name (die, &is_anonymous, cu);
12714 if (is_anonymous)
12715 {
12716 const char *previous_prefix = determine_prefix (die, cu);
12717
12718 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12719 NULL, NULL, 0, &objfile->objfile_obstack);
12720 }
12721 }
12722
12723 if (die->child != NULL)
12724 {
12725 struct die_info *child_die = die->child;
12726
12727 while (child_die && child_die->tag)
12728 {
12729 process_die (child_die, cu);
12730 child_die = sibling_die (child_die);
12731 }
12732 }
12733 }
12734
12735 /* Read a Fortran module as type. This DIE can be only a declaration used for
12736 imported module. Still we need that type as local Fortran "use ... only"
12737 declaration imports depend on the created type in determine_prefix. */
12738
12739 static struct type *
12740 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12741 {
12742 struct objfile *objfile = cu->objfile;
12743 const char *module_name;
12744 struct type *type;
12745
12746 module_name = dwarf2_name (die, cu);
12747 if (!module_name)
12748 complaint (&symfile_complaints,
12749 _("DW_TAG_module has no name, offset 0x%x"),
12750 die->offset.sect_off);
12751 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12752
12753 /* determine_prefix uses TYPE_TAG_NAME. */
12754 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12755
12756 return set_die_type (die, type, cu);
12757 }
12758
12759 /* Read a Fortran module. */
12760
12761 static void
12762 read_module (struct die_info *die, struct dwarf2_cu *cu)
12763 {
12764 struct die_info *child_die = die->child;
12765
12766 while (child_die && child_die->tag)
12767 {
12768 process_die (child_die, cu);
12769 child_die = sibling_die (child_die);
12770 }
12771 }
12772
12773 /* Return the name of the namespace represented by DIE. Set
12774 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12775 namespace. */
12776
12777 static const char *
12778 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12779 {
12780 struct die_info *current_die;
12781 const char *name = NULL;
12782
12783 /* Loop through the extensions until we find a name. */
12784
12785 for (current_die = die;
12786 current_die != NULL;
12787 current_die = dwarf2_extension (die, &cu))
12788 {
12789 name = dwarf2_name (current_die, cu);
12790 if (name != NULL)
12791 break;
12792 }
12793
12794 /* Is it an anonymous namespace? */
12795
12796 *is_anonymous = (name == NULL);
12797 if (*is_anonymous)
12798 name = CP_ANONYMOUS_NAMESPACE_STR;
12799
12800 return name;
12801 }
12802
12803 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12804 the user defined type vector. */
12805
12806 static struct type *
12807 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12808 {
12809 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12810 struct comp_unit_head *cu_header = &cu->header;
12811 struct type *type;
12812 struct attribute *attr_byte_size;
12813 struct attribute *attr_address_class;
12814 int byte_size, addr_class;
12815 struct type *target_type;
12816
12817 target_type = die_type (die, cu);
12818
12819 /* The die_type call above may have already set the type for this DIE. */
12820 type = get_die_type (die, cu);
12821 if (type)
12822 return type;
12823
12824 type = lookup_pointer_type (target_type);
12825
12826 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12827 if (attr_byte_size)
12828 byte_size = DW_UNSND (attr_byte_size);
12829 else
12830 byte_size = cu_header->addr_size;
12831
12832 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12833 if (attr_address_class)
12834 addr_class = DW_UNSND (attr_address_class);
12835 else
12836 addr_class = DW_ADDR_none;
12837
12838 /* If the pointer size or address class is different than the
12839 default, create a type variant marked as such and set the
12840 length accordingly. */
12841 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12842 {
12843 if (gdbarch_address_class_type_flags_p (gdbarch))
12844 {
12845 int type_flags;
12846
12847 type_flags = gdbarch_address_class_type_flags
12848 (gdbarch, byte_size, addr_class);
12849 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12850 == 0);
12851 type = make_type_with_address_space (type, type_flags);
12852 }
12853 else if (TYPE_LENGTH (type) != byte_size)
12854 {
12855 complaint (&symfile_complaints,
12856 _("invalid pointer size %d"), byte_size);
12857 }
12858 else
12859 {
12860 /* Should we also complain about unhandled address classes? */
12861 }
12862 }
12863
12864 TYPE_LENGTH (type) = byte_size;
12865 return set_die_type (die, type, cu);
12866 }
12867
12868 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12869 the user defined type vector. */
12870
12871 static struct type *
12872 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12873 {
12874 struct type *type;
12875 struct type *to_type;
12876 struct type *domain;
12877
12878 to_type = die_type (die, cu);
12879 domain = die_containing_type (die, cu);
12880
12881 /* The calls above may have already set the type for this DIE. */
12882 type = get_die_type (die, cu);
12883 if (type)
12884 return type;
12885
12886 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12887 type = lookup_methodptr_type (to_type);
12888 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12889 {
12890 struct type *new_type = alloc_type (cu->objfile);
12891
12892 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12893 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12894 TYPE_VARARGS (to_type));
12895 type = lookup_methodptr_type (new_type);
12896 }
12897 else
12898 type = lookup_memberptr_type (to_type, domain);
12899
12900 return set_die_type (die, type, cu);
12901 }
12902
12903 /* Extract all information from a DW_TAG_reference_type DIE and add to
12904 the user defined type vector. */
12905
12906 static struct type *
12907 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12908 {
12909 struct comp_unit_head *cu_header = &cu->header;
12910 struct type *type, *target_type;
12911 struct attribute *attr;
12912
12913 target_type = die_type (die, cu);
12914
12915 /* The die_type call above may have already set the type for this DIE. */
12916 type = get_die_type (die, cu);
12917 if (type)
12918 return type;
12919
12920 type = lookup_reference_type (target_type);
12921 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12922 if (attr)
12923 {
12924 TYPE_LENGTH (type) = DW_UNSND (attr);
12925 }
12926 else
12927 {
12928 TYPE_LENGTH (type) = cu_header->addr_size;
12929 }
12930 return set_die_type (die, type, cu);
12931 }
12932
12933 static struct type *
12934 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12935 {
12936 struct type *base_type, *cv_type;
12937
12938 base_type = die_type (die, cu);
12939
12940 /* The die_type call above may have already set the type for this DIE. */
12941 cv_type = get_die_type (die, cu);
12942 if (cv_type)
12943 return cv_type;
12944
12945 /* In case the const qualifier is applied to an array type, the element type
12946 is so qualified, not the array type (section 6.7.3 of C99). */
12947 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12948 {
12949 struct type *el_type, *inner_array;
12950
12951 base_type = copy_type (base_type);
12952 inner_array = base_type;
12953
12954 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12955 {
12956 TYPE_TARGET_TYPE (inner_array) =
12957 copy_type (TYPE_TARGET_TYPE (inner_array));
12958 inner_array = TYPE_TARGET_TYPE (inner_array);
12959 }
12960
12961 el_type = TYPE_TARGET_TYPE (inner_array);
12962 TYPE_TARGET_TYPE (inner_array) =
12963 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12964
12965 return set_die_type (die, base_type, cu);
12966 }
12967
12968 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12969 return set_die_type (die, cv_type, cu);
12970 }
12971
12972 static struct type *
12973 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12974 {
12975 struct type *base_type, *cv_type;
12976
12977 base_type = die_type (die, cu);
12978
12979 /* The die_type call above may have already set the type for this DIE. */
12980 cv_type = get_die_type (die, cu);
12981 if (cv_type)
12982 return cv_type;
12983
12984 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12985 return set_die_type (die, cv_type, cu);
12986 }
12987
12988 /* Handle DW_TAG_restrict_type. */
12989
12990 static struct type *
12991 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12992 {
12993 struct type *base_type, *cv_type;
12994
12995 base_type = die_type (die, cu);
12996
12997 /* The die_type call above may have already set the type for this DIE. */
12998 cv_type = get_die_type (die, cu);
12999 if (cv_type)
13000 return cv_type;
13001
13002 cv_type = make_restrict_type (base_type);
13003 return set_die_type (die, cv_type, cu);
13004 }
13005
13006 /* Extract all information from a DW_TAG_string_type DIE and add to
13007 the user defined type vector. It isn't really a user defined type,
13008 but it behaves like one, with other DIE's using an AT_user_def_type
13009 attribute to reference it. */
13010
13011 static struct type *
13012 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
13013 {
13014 struct objfile *objfile = cu->objfile;
13015 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13016 struct type *type, *range_type, *index_type, *char_type;
13017 struct attribute *attr;
13018 unsigned int length;
13019
13020 attr = dwarf2_attr (die, DW_AT_string_length, cu);
13021 if (attr)
13022 {
13023 length = DW_UNSND (attr);
13024 }
13025 else
13026 {
13027 /* Check for the DW_AT_byte_size attribute. */
13028 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13029 if (attr)
13030 {
13031 length = DW_UNSND (attr);
13032 }
13033 else
13034 {
13035 length = 1;
13036 }
13037 }
13038
13039 index_type = objfile_type (objfile)->builtin_int;
13040 range_type = create_range_type (NULL, index_type, 1, length);
13041 char_type = language_string_char_type (cu->language_defn, gdbarch);
13042 type = create_string_type (NULL, char_type, range_type);
13043
13044 return set_die_type (die, type, cu);
13045 }
13046
13047 /* Assuming that DIE corresponds to a function, returns nonzero
13048 if the function is prototyped. */
13049
13050 static int
13051 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13052 {
13053 struct attribute *attr;
13054
13055 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13056 if (attr && (DW_UNSND (attr) != 0))
13057 return 1;
13058
13059 /* The DWARF standard implies that the DW_AT_prototyped attribute
13060 is only meaninful for C, but the concept also extends to other
13061 languages that allow unprototyped functions (Eg: Objective C).
13062 For all other languages, assume that functions are always
13063 prototyped. */
13064 if (cu->language != language_c
13065 && cu->language != language_objc
13066 && cu->language != language_opencl)
13067 return 1;
13068
13069 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13070 prototyped and unprototyped functions; default to prototyped,
13071 since that is more common in modern code (and RealView warns
13072 about unprototyped functions). */
13073 if (producer_is_realview (cu->producer))
13074 return 1;
13075
13076 return 0;
13077 }
13078
13079 /* Handle DIES due to C code like:
13080
13081 struct foo
13082 {
13083 int (*funcp)(int a, long l);
13084 int b;
13085 };
13086
13087 ('funcp' generates a DW_TAG_subroutine_type DIE). */
13088
13089 static struct type *
13090 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
13091 {
13092 struct objfile *objfile = cu->objfile;
13093 struct type *type; /* Type that this function returns. */
13094 struct type *ftype; /* Function that returns above type. */
13095 struct attribute *attr;
13096
13097 type = die_type (die, cu);
13098
13099 /* The die_type call above may have already set the type for this DIE. */
13100 ftype = get_die_type (die, cu);
13101 if (ftype)
13102 return ftype;
13103
13104 ftype = lookup_function_type (type);
13105
13106 if (prototyped_function_p (die, cu))
13107 TYPE_PROTOTYPED (ftype) = 1;
13108
13109 /* Store the calling convention in the type if it's available in
13110 the subroutine die. Otherwise set the calling convention to
13111 the default value DW_CC_normal. */
13112 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
13113 if (attr)
13114 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13115 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13116 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13117 else
13118 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
13119
13120 /* We need to add the subroutine type to the die immediately so
13121 we don't infinitely recurse when dealing with parameters
13122 declared as the same subroutine type. */
13123 set_die_type (die, ftype, cu);
13124
13125 if (die->child != NULL)
13126 {
13127 struct type *void_type = objfile_type (objfile)->builtin_void;
13128 struct die_info *child_die;
13129 int nparams, iparams;
13130
13131 /* Count the number of parameters.
13132 FIXME: GDB currently ignores vararg functions, but knows about
13133 vararg member functions. */
13134 nparams = 0;
13135 child_die = die->child;
13136 while (child_die && child_die->tag)
13137 {
13138 if (child_die->tag == DW_TAG_formal_parameter)
13139 nparams++;
13140 else if (child_die->tag == DW_TAG_unspecified_parameters)
13141 TYPE_VARARGS (ftype) = 1;
13142 child_die = sibling_die (child_die);
13143 }
13144
13145 /* Allocate storage for parameters and fill them in. */
13146 TYPE_NFIELDS (ftype) = nparams;
13147 TYPE_FIELDS (ftype) = (struct field *)
13148 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
13149
13150 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13151 even if we error out during the parameters reading below. */
13152 for (iparams = 0; iparams < nparams; iparams++)
13153 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13154
13155 iparams = 0;
13156 child_die = die->child;
13157 while (child_die && child_die->tag)
13158 {
13159 if (child_die->tag == DW_TAG_formal_parameter)
13160 {
13161 struct type *arg_type;
13162
13163 /* DWARF version 2 has no clean way to discern C++
13164 static and non-static member functions. G++ helps
13165 GDB by marking the first parameter for non-static
13166 member functions (which is the this pointer) as
13167 artificial. We pass this information to
13168 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13169
13170 DWARF version 3 added DW_AT_object_pointer, which GCC
13171 4.5 does not yet generate. */
13172 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
13173 if (attr)
13174 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13175 else
13176 {
13177 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13178
13179 /* GCC/43521: In java, the formal parameter
13180 "this" is sometimes not marked with DW_AT_artificial. */
13181 if (cu->language == language_java)
13182 {
13183 const char *name = dwarf2_name (child_die, cu);
13184
13185 if (name && !strcmp (name, "this"))
13186 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13187 }
13188 }
13189 arg_type = die_type (child_die, cu);
13190
13191 /* RealView does not mark THIS as const, which the testsuite
13192 expects. GCC marks THIS as const in method definitions,
13193 but not in the class specifications (GCC PR 43053). */
13194 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13195 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13196 {
13197 int is_this = 0;
13198 struct dwarf2_cu *arg_cu = cu;
13199 const char *name = dwarf2_name (child_die, cu);
13200
13201 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
13202 if (attr)
13203 {
13204 /* If the compiler emits this, use it. */
13205 if (follow_die_ref (die, attr, &arg_cu) == child_die)
13206 is_this = 1;
13207 }
13208 else if (name && strcmp (name, "this") == 0)
13209 /* Function definitions will have the argument names. */
13210 is_this = 1;
13211 else if (name == NULL && iparams == 0)
13212 /* Declarations may not have the names, so like
13213 elsewhere in GDB, assume an artificial first
13214 argument is "this". */
13215 is_this = 1;
13216
13217 if (is_this)
13218 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
13219 arg_type, 0);
13220 }
13221
13222 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
13223 iparams++;
13224 }
13225 child_die = sibling_die (child_die);
13226 }
13227 }
13228
13229 return ftype;
13230 }
13231
13232 static struct type *
13233 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
13234 {
13235 struct objfile *objfile = cu->objfile;
13236 const char *name = NULL;
13237 struct type *this_type, *target_type;
13238
13239 name = dwarf2_full_name (NULL, die, cu);
13240 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
13241 TYPE_FLAG_TARGET_STUB, NULL, objfile);
13242 TYPE_NAME (this_type) = name;
13243 set_die_type (die, this_type, cu);
13244 target_type = die_type (die, cu);
13245 if (target_type != this_type)
13246 TYPE_TARGET_TYPE (this_type) = target_type;
13247 else
13248 {
13249 /* Self-referential typedefs are, it seems, not allowed by the DWARF
13250 spec and cause infinite loops in GDB. */
13251 complaint (&symfile_complaints,
13252 _("Self-referential DW_TAG_typedef "
13253 "- DIE at 0x%x [in module %s]"),
13254 die->offset.sect_off, objfile->name);
13255 TYPE_TARGET_TYPE (this_type) = NULL;
13256 }
13257 return this_type;
13258 }
13259
13260 /* Find a representation of a given base type and install
13261 it in the TYPE field of the die. */
13262
13263 static struct type *
13264 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
13265 {
13266 struct objfile *objfile = cu->objfile;
13267 struct type *type;
13268 struct attribute *attr;
13269 int encoding = 0, size = 0;
13270 const char *name;
13271 enum type_code code = TYPE_CODE_INT;
13272 int type_flags = 0;
13273 struct type *target_type = NULL;
13274
13275 attr = dwarf2_attr (die, DW_AT_encoding, cu);
13276 if (attr)
13277 {
13278 encoding = DW_UNSND (attr);
13279 }
13280 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13281 if (attr)
13282 {
13283 size = DW_UNSND (attr);
13284 }
13285 name = dwarf2_name (die, cu);
13286 if (!name)
13287 {
13288 complaint (&symfile_complaints,
13289 _("DW_AT_name missing from DW_TAG_base_type"));
13290 }
13291
13292 switch (encoding)
13293 {
13294 case DW_ATE_address:
13295 /* Turn DW_ATE_address into a void * pointer. */
13296 code = TYPE_CODE_PTR;
13297 type_flags |= TYPE_FLAG_UNSIGNED;
13298 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
13299 break;
13300 case DW_ATE_boolean:
13301 code = TYPE_CODE_BOOL;
13302 type_flags |= TYPE_FLAG_UNSIGNED;
13303 break;
13304 case DW_ATE_complex_float:
13305 code = TYPE_CODE_COMPLEX;
13306 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
13307 break;
13308 case DW_ATE_decimal_float:
13309 code = TYPE_CODE_DECFLOAT;
13310 break;
13311 case DW_ATE_float:
13312 code = TYPE_CODE_FLT;
13313 break;
13314 case DW_ATE_signed:
13315 break;
13316 case DW_ATE_unsigned:
13317 type_flags |= TYPE_FLAG_UNSIGNED;
13318 if (cu->language == language_fortran
13319 && name
13320 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
13321 code = TYPE_CODE_CHAR;
13322 break;
13323 case DW_ATE_signed_char:
13324 if (cu->language == language_ada || cu->language == language_m2
13325 || cu->language == language_pascal
13326 || cu->language == language_fortran)
13327 code = TYPE_CODE_CHAR;
13328 break;
13329 case DW_ATE_unsigned_char:
13330 if (cu->language == language_ada || cu->language == language_m2
13331 || cu->language == language_pascal
13332 || cu->language == language_fortran)
13333 code = TYPE_CODE_CHAR;
13334 type_flags |= TYPE_FLAG_UNSIGNED;
13335 break;
13336 case DW_ATE_UTF:
13337 /* We just treat this as an integer and then recognize the
13338 type by name elsewhere. */
13339 break;
13340
13341 default:
13342 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
13343 dwarf_type_encoding_name (encoding));
13344 break;
13345 }
13346
13347 type = init_type (code, size, type_flags, NULL, objfile);
13348 TYPE_NAME (type) = name;
13349 TYPE_TARGET_TYPE (type) = target_type;
13350
13351 if (name && strcmp (name, "char") == 0)
13352 TYPE_NOSIGN (type) = 1;
13353
13354 return set_die_type (die, type, cu);
13355 }
13356
13357 /* Read the given DW_AT_subrange DIE. */
13358
13359 static struct type *
13360 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
13361 {
13362 struct type *base_type, *orig_base_type;
13363 struct type *range_type;
13364 struct attribute *attr;
13365 LONGEST low, high;
13366 int low_default_is_valid;
13367 const char *name;
13368 LONGEST negative_mask;
13369
13370 orig_base_type = die_type (die, cu);
13371 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
13372 whereas the real type might be. So, we use ORIG_BASE_TYPE when
13373 creating the range type, but we use the result of check_typedef
13374 when examining properties of the type. */
13375 base_type = check_typedef (orig_base_type);
13376
13377 /* The die_type call above may have already set the type for this DIE. */
13378 range_type = get_die_type (die, cu);
13379 if (range_type)
13380 return range_type;
13381
13382 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
13383 omitting DW_AT_lower_bound. */
13384 switch (cu->language)
13385 {
13386 case language_c:
13387 case language_cplus:
13388 low = 0;
13389 low_default_is_valid = 1;
13390 break;
13391 case language_fortran:
13392 low = 1;
13393 low_default_is_valid = 1;
13394 break;
13395 case language_d:
13396 case language_java:
13397 case language_objc:
13398 low = 0;
13399 low_default_is_valid = (cu->header.version >= 4);
13400 break;
13401 case language_ada:
13402 case language_m2:
13403 case language_pascal:
13404 low = 1;
13405 low_default_is_valid = (cu->header.version >= 4);
13406 break;
13407 default:
13408 low = 0;
13409 low_default_is_valid = 0;
13410 break;
13411 }
13412
13413 /* FIXME: For variable sized arrays either of these could be
13414 a variable rather than a constant value. We'll allow it,
13415 but we don't know how to handle it. */
13416 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
13417 if (attr)
13418 low = dwarf2_get_attr_constant_value (attr, low);
13419 else if (!low_default_is_valid)
13420 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
13421 "- DIE at 0x%x [in module %s]"),
13422 die->offset.sect_off, cu->objfile->name);
13423
13424 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
13425 if (attr)
13426 {
13427 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
13428 {
13429 /* GCC encodes arrays with unspecified or dynamic length
13430 with a DW_FORM_block1 attribute or a reference attribute.
13431 FIXME: GDB does not yet know how to handle dynamic
13432 arrays properly, treat them as arrays with unspecified
13433 length for now.
13434
13435 FIXME: jimb/2003-09-22: GDB does not really know
13436 how to handle arrays of unspecified length
13437 either; we just represent them as zero-length
13438 arrays. Choose an appropriate upper bound given
13439 the lower bound we've computed above. */
13440 high = low - 1;
13441 }
13442 else
13443 high = dwarf2_get_attr_constant_value (attr, 1);
13444 }
13445 else
13446 {
13447 attr = dwarf2_attr (die, DW_AT_count, cu);
13448 if (attr)
13449 {
13450 int count = dwarf2_get_attr_constant_value (attr, 1);
13451 high = low + count - 1;
13452 }
13453 else
13454 {
13455 /* Unspecified array length. */
13456 high = low - 1;
13457 }
13458 }
13459
13460 /* Dwarf-2 specifications explicitly allows to create subrange types
13461 without specifying a base type.
13462 In that case, the base type must be set to the type of
13463 the lower bound, upper bound or count, in that order, if any of these
13464 three attributes references an object that has a type.
13465 If no base type is found, the Dwarf-2 specifications say that
13466 a signed integer type of size equal to the size of an address should
13467 be used.
13468 For the following C code: `extern char gdb_int [];'
13469 GCC produces an empty range DIE.
13470 FIXME: muller/2010-05-28: Possible references to object for low bound,
13471 high bound or count are not yet handled by this code. */
13472 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
13473 {
13474 struct objfile *objfile = cu->objfile;
13475 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13476 int addr_size = gdbarch_addr_bit (gdbarch) /8;
13477 struct type *int_type = objfile_type (objfile)->builtin_int;
13478
13479 /* Test "int", "long int", and "long long int" objfile types,
13480 and select the first one having a size above or equal to the
13481 architecture address size. */
13482 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13483 base_type = int_type;
13484 else
13485 {
13486 int_type = objfile_type (objfile)->builtin_long;
13487 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13488 base_type = int_type;
13489 else
13490 {
13491 int_type = objfile_type (objfile)->builtin_long_long;
13492 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13493 base_type = int_type;
13494 }
13495 }
13496 }
13497
13498 negative_mask =
13499 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13500 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13501 low |= negative_mask;
13502 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13503 high |= negative_mask;
13504
13505 range_type = create_range_type (NULL, orig_base_type, low, high);
13506
13507 /* Mark arrays with dynamic length at least as an array of unspecified
13508 length. GDB could check the boundary but before it gets implemented at
13509 least allow accessing the array elements. */
13510 if (attr && attr_form_is_block (attr))
13511 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13512
13513 /* Ada expects an empty array on no boundary attributes. */
13514 if (attr == NULL && cu->language != language_ada)
13515 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13516
13517 name = dwarf2_name (die, cu);
13518 if (name)
13519 TYPE_NAME (range_type) = name;
13520
13521 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13522 if (attr)
13523 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13524
13525 set_die_type (die, range_type, cu);
13526
13527 /* set_die_type should be already done. */
13528 set_descriptive_type (range_type, die, cu);
13529
13530 return range_type;
13531 }
13532
13533 static struct type *
13534 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13535 {
13536 struct type *type;
13537
13538 /* For now, we only support the C meaning of an unspecified type: void. */
13539
13540 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13541 TYPE_NAME (type) = dwarf2_name (die, cu);
13542
13543 return set_die_type (die, type, cu);
13544 }
13545
13546 /* Read a single die and all its descendents. Set the die's sibling
13547 field to NULL; set other fields in the die correctly, and set all
13548 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13549 location of the info_ptr after reading all of those dies. PARENT
13550 is the parent of the die in question. */
13551
13552 static struct die_info *
13553 read_die_and_children (const struct die_reader_specs *reader,
13554 const gdb_byte *info_ptr,
13555 const gdb_byte **new_info_ptr,
13556 struct die_info *parent)
13557 {
13558 struct die_info *die;
13559 const gdb_byte *cur_ptr;
13560 int has_children;
13561
13562 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
13563 if (die == NULL)
13564 {
13565 *new_info_ptr = cur_ptr;
13566 return NULL;
13567 }
13568 store_in_ref_table (die, reader->cu);
13569
13570 if (has_children)
13571 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
13572 else
13573 {
13574 die->child = NULL;
13575 *new_info_ptr = cur_ptr;
13576 }
13577
13578 die->sibling = NULL;
13579 die->parent = parent;
13580 return die;
13581 }
13582
13583 /* Read a die, all of its descendents, and all of its siblings; set
13584 all of the fields of all of the dies correctly. Arguments are as
13585 in read_die_and_children. */
13586
13587 static struct die_info *
13588 read_die_and_siblings_1 (const struct die_reader_specs *reader,
13589 const gdb_byte *info_ptr,
13590 const gdb_byte **new_info_ptr,
13591 struct die_info *parent)
13592 {
13593 struct die_info *first_die, *last_sibling;
13594 const gdb_byte *cur_ptr;
13595
13596 cur_ptr = info_ptr;
13597 first_die = last_sibling = NULL;
13598
13599 while (1)
13600 {
13601 struct die_info *die
13602 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13603
13604 if (die == NULL)
13605 {
13606 *new_info_ptr = cur_ptr;
13607 return first_die;
13608 }
13609
13610 if (!first_die)
13611 first_die = die;
13612 else
13613 last_sibling->sibling = die;
13614
13615 last_sibling = die;
13616 }
13617 }
13618
13619 /* Read a die, all of its descendents, and all of its siblings; set
13620 all of the fields of all of the dies correctly. Arguments are as
13621 in read_die_and_children.
13622 This the main entry point for reading a DIE and all its children. */
13623
13624 static struct die_info *
13625 read_die_and_siblings (const struct die_reader_specs *reader,
13626 const gdb_byte *info_ptr,
13627 const gdb_byte **new_info_ptr,
13628 struct die_info *parent)
13629 {
13630 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13631 new_info_ptr, parent);
13632
13633 if (dwarf2_die_debug)
13634 {
13635 fprintf_unfiltered (gdb_stdlog,
13636 "Read die from %s@0x%x of %s:\n",
13637 bfd_section_name (reader->abfd,
13638 reader->die_section->asection),
13639 (unsigned) (info_ptr - reader->die_section->buffer),
13640 bfd_get_filename (reader->abfd));
13641 dump_die (die, dwarf2_die_debug);
13642 }
13643
13644 return die;
13645 }
13646
13647 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13648 attributes.
13649 The caller is responsible for filling in the extra attributes
13650 and updating (*DIEP)->num_attrs.
13651 Set DIEP to point to a newly allocated die with its information,
13652 except for its child, sibling, and parent fields.
13653 Set HAS_CHILDREN to tell whether the die has children or not. */
13654
13655 static const gdb_byte *
13656 read_full_die_1 (const struct die_reader_specs *reader,
13657 struct die_info **diep, const gdb_byte *info_ptr,
13658 int *has_children, int num_extra_attrs)
13659 {
13660 unsigned int abbrev_number, bytes_read, i;
13661 sect_offset offset;
13662 struct abbrev_info *abbrev;
13663 struct die_info *die;
13664 struct dwarf2_cu *cu = reader->cu;
13665 bfd *abfd = reader->abfd;
13666
13667 offset.sect_off = info_ptr - reader->buffer;
13668 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13669 info_ptr += bytes_read;
13670 if (!abbrev_number)
13671 {
13672 *diep = NULL;
13673 *has_children = 0;
13674 return info_ptr;
13675 }
13676
13677 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13678 if (!abbrev)
13679 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13680 abbrev_number,
13681 bfd_get_filename (abfd));
13682
13683 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13684 die->offset = offset;
13685 die->tag = abbrev->tag;
13686 die->abbrev = abbrev_number;
13687
13688 /* Make the result usable.
13689 The caller needs to update num_attrs after adding the extra
13690 attributes. */
13691 die->num_attrs = abbrev->num_attrs;
13692
13693 for (i = 0; i < abbrev->num_attrs; ++i)
13694 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13695 info_ptr);
13696
13697 *diep = die;
13698 *has_children = abbrev->has_children;
13699 return info_ptr;
13700 }
13701
13702 /* Read a die and all its attributes.
13703 Set DIEP to point to a newly allocated die with its information,
13704 except for its child, sibling, and parent fields.
13705 Set HAS_CHILDREN to tell whether the die has children or not. */
13706
13707 static const gdb_byte *
13708 read_full_die (const struct die_reader_specs *reader,
13709 struct die_info **diep, const gdb_byte *info_ptr,
13710 int *has_children)
13711 {
13712 const gdb_byte *result;
13713
13714 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13715
13716 if (dwarf2_die_debug)
13717 {
13718 fprintf_unfiltered (gdb_stdlog,
13719 "Read die from %s@0x%x of %s:\n",
13720 bfd_section_name (reader->abfd,
13721 reader->die_section->asection),
13722 (unsigned) (info_ptr - reader->die_section->buffer),
13723 bfd_get_filename (reader->abfd));
13724 dump_die (*diep, dwarf2_die_debug);
13725 }
13726
13727 return result;
13728 }
13729 \f
13730 /* Abbreviation tables.
13731
13732 In DWARF version 2, the description of the debugging information is
13733 stored in a separate .debug_abbrev section. Before we read any
13734 dies from a section we read in all abbreviations and install them
13735 in a hash table. */
13736
13737 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13738
13739 static struct abbrev_info *
13740 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13741 {
13742 struct abbrev_info *abbrev;
13743
13744 abbrev = (struct abbrev_info *)
13745 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13746 memset (abbrev, 0, sizeof (struct abbrev_info));
13747 return abbrev;
13748 }
13749
13750 /* Add an abbreviation to the table. */
13751
13752 static void
13753 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13754 unsigned int abbrev_number,
13755 struct abbrev_info *abbrev)
13756 {
13757 unsigned int hash_number;
13758
13759 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13760 abbrev->next = abbrev_table->abbrevs[hash_number];
13761 abbrev_table->abbrevs[hash_number] = abbrev;
13762 }
13763
13764 /* Look up an abbrev in the table.
13765 Returns NULL if the abbrev is not found. */
13766
13767 static struct abbrev_info *
13768 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13769 unsigned int abbrev_number)
13770 {
13771 unsigned int hash_number;
13772 struct abbrev_info *abbrev;
13773
13774 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13775 abbrev = abbrev_table->abbrevs[hash_number];
13776
13777 while (abbrev)
13778 {
13779 if (abbrev->number == abbrev_number)
13780 return abbrev;
13781 abbrev = abbrev->next;
13782 }
13783 return NULL;
13784 }
13785
13786 /* Read in an abbrev table. */
13787
13788 static struct abbrev_table *
13789 abbrev_table_read_table (struct dwarf2_section_info *section,
13790 sect_offset offset)
13791 {
13792 struct objfile *objfile = dwarf2_per_objfile->objfile;
13793 bfd *abfd = section->asection->owner;
13794 struct abbrev_table *abbrev_table;
13795 const gdb_byte *abbrev_ptr;
13796 struct abbrev_info *cur_abbrev;
13797 unsigned int abbrev_number, bytes_read, abbrev_name;
13798 unsigned int abbrev_form;
13799 struct attr_abbrev *cur_attrs;
13800 unsigned int allocated_attrs;
13801
13802 abbrev_table = XMALLOC (struct abbrev_table);
13803 abbrev_table->offset = offset;
13804 obstack_init (&abbrev_table->abbrev_obstack);
13805 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13806 (ABBREV_HASH_SIZE
13807 * sizeof (struct abbrev_info *)));
13808 memset (abbrev_table->abbrevs, 0,
13809 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13810
13811 dwarf2_read_section (objfile, section);
13812 abbrev_ptr = section->buffer + offset.sect_off;
13813 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13814 abbrev_ptr += bytes_read;
13815
13816 allocated_attrs = ATTR_ALLOC_CHUNK;
13817 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13818
13819 /* Loop until we reach an abbrev number of 0. */
13820 while (abbrev_number)
13821 {
13822 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13823
13824 /* read in abbrev header */
13825 cur_abbrev->number = abbrev_number;
13826 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13827 abbrev_ptr += bytes_read;
13828 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13829 abbrev_ptr += 1;
13830
13831 /* now read in declarations */
13832 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13833 abbrev_ptr += bytes_read;
13834 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13835 abbrev_ptr += bytes_read;
13836 while (abbrev_name)
13837 {
13838 if (cur_abbrev->num_attrs == allocated_attrs)
13839 {
13840 allocated_attrs += ATTR_ALLOC_CHUNK;
13841 cur_attrs
13842 = xrealloc (cur_attrs, (allocated_attrs
13843 * sizeof (struct attr_abbrev)));
13844 }
13845
13846 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13847 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13848 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13849 abbrev_ptr += bytes_read;
13850 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13851 abbrev_ptr += bytes_read;
13852 }
13853
13854 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13855 (cur_abbrev->num_attrs
13856 * sizeof (struct attr_abbrev)));
13857 memcpy (cur_abbrev->attrs, cur_attrs,
13858 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13859
13860 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13861
13862 /* Get next abbreviation.
13863 Under Irix6 the abbreviations for a compilation unit are not
13864 always properly terminated with an abbrev number of 0.
13865 Exit loop if we encounter an abbreviation which we have
13866 already read (which means we are about to read the abbreviations
13867 for the next compile unit) or if the end of the abbreviation
13868 table is reached. */
13869 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13870 break;
13871 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13872 abbrev_ptr += bytes_read;
13873 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13874 break;
13875 }
13876
13877 xfree (cur_attrs);
13878 return abbrev_table;
13879 }
13880
13881 /* Free the resources held by ABBREV_TABLE. */
13882
13883 static void
13884 abbrev_table_free (struct abbrev_table *abbrev_table)
13885 {
13886 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13887 xfree (abbrev_table);
13888 }
13889
13890 /* Same as abbrev_table_free but as a cleanup.
13891 We pass in a pointer to the pointer to the table so that we can
13892 set the pointer to NULL when we're done. It also simplifies
13893 build_type_unit_groups. */
13894
13895 static void
13896 abbrev_table_free_cleanup (void *table_ptr)
13897 {
13898 struct abbrev_table **abbrev_table_ptr = table_ptr;
13899
13900 if (*abbrev_table_ptr != NULL)
13901 abbrev_table_free (*abbrev_table_ptr);
13902 *abbrev_table_ptr = NULL;
13903 }
13904
13905 /* Read the abbrev table for CU from ABBREV_SECTION. */
13906
13907 static void
13908 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13909 struct dwarf2_section_info *abbrev_section)
13910 {
13911 cu->abbrev_table =
13912 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13913 }
13914
13915 /* Release the memory used by the abbrev table for a compilation unit. */
13916
13917 static void
13918 dwarf2_free_abbrev_table (void *ptr_to_cu)
13919 {
13920 struct dwarf2_cu *cu = ptr_to_cu;
13921
13922 if (cu->abbrev_table != NULL)
13923 abbrev_table_free (cu->abbrev_table);
13924 /* Set this to NULL so that we SEGV if we try to read it later,
13925 and also because free_comp_unit verifies this is NULL. */
13926 cu->abbrev_table = NULL;
13927 }
13928 \f
13929 /* Returns nonzero if TAG represents a type that we might generate a partial
13930 symbol for. */
13931
13932 static int
13933 is_type_tag_for_partial (int tag)
13934 {
13935 switch (tag)
13936 {
13937 #if 0
13938 /* Some types that would be reasonable to generate partial symbols for,
13939 that we don't at present. */
13940 case DW_TAG_array_type:
13941 case DW_TAG_file_type:
13942 case DW_TAG_ptr_to_member_type:
13943 case DW_TAG_set_type:
13944 case DW_TAG_string_type:
13945 case DW_TAG_subroutine_type:
13946 #endif
13947 case DW_TAG_base_type:
13948 case DW_TAG_class_type:
13949 case DW_TAG_interface_type:
13950 case DW_TAG_enumeration_type:
13951 case DW_TAG_structure_type:
13952 case DW_TAG_subrange_type:
13953 case DW_TAG_typedef:
13954 case DW_TAG_union_type:
13955 return 1;
13956 default:
13957 return 0;
13958 }
13959 }
13960
13961 /* Load all DIEs that are interesting for partial symbols into memory. */
13962
13963 static struct partial_die_info *
13964 load_partial_dies (const struct die_reader_specs *reader,
13965 const gdb_byte *info_ptr, int building_psymtab)
13966 {
13967 struct dwarf2_cu *cu = reader->cu;
13968 struct objfile *objfile = cu->objfile;
13969 struct partial_die_info *part_die;
13970 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13971 struct abbrev_info *abbrev;
13972 unsigned int bytes_read;
13973 unsigned int load_all = 0;
13974 int nesting_level = 1;
13975
13976 parent_die = NULL;
13977 last_die = NULL;
13978
13979 gdb_assert (cu->per_cu != NULL);
13980 if (cu->per_cu->load_all_dies)
13981 load_all = 1;
13982
13983 cu->partial_dies
13984 = htab_create_alloc_ex (cu->header.length / 12,
13985 partial_die_hash,
13986 partial_die_eq,
13987 NULL,
13988 &cu->comp_unit_obstack,
13989 hashtab_obstack_allocate,
13990 dummy_obstack_deallocate);
13991
13992 part_die = obstack_alloc (&cu->comp_unit_obstack,
13993 sizeof (struct partial_die_info));
13994
13995 while (1)
13996 {
13997 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13998
13999 /* A NULL abbrev means the end of a series of children. */
14000 if (abbrev == NULL)
14001 {
14002 if (--nesting_level == 0)
14003 {
14004 /* PART_DIE was probably the last thing allocated on the
14005 comp_unit_obstack, so we could call obstack_free
14006 here. We don't do that because the waste is small,
14007 and will be cleaned up when we're done with this
14008 compilation unit. This way, we're also more robust
14009 against other users of the comp_unit_obstack. */
14010 return first_die;
14011 }
14012 info_ptr += bytes_read;
14013 last_die = parent_die;
14014 parent_die = parent_die->die_parent;
14015 continue;
14016 }
14017
14018 /* Check for template arguments. We never save these; if
14019 they're seen, we just mark the parent, and go on our way. */
14020 if (parent_die != NULL
14021 && cu->language == language_cplus
14022 && (abbrev->tag == DW_TAG_template_type_param
14023 || abbrev->tag == DW_TAG_template_value_param))
14024 {
14025 parent_die->has_template_arguments = 1;
14026
14027 if (!load_all)
14028 {
14029 /* We don't need a partial DIE for the template argument. */
14030 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14031 continue;
14032 }
14033 }
14034
14035 /* We only recurse into c++ subprograms looking for template arguments.
14036 Skip their other children. */
14037 if (!load_all
14038 && cu->language == language_cplus
14039 && parent_die != NULL
14040 && parent_die->tag == DW_TAG_subprogram)
14041 {
14042 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14043 continue;
14044 }
14045
14046 /* Check whether this DIE is interesting enough to save. Normally
14047 we would not be interested in members here, but there may be
14048 later variables referencing them via DW_AT_specification (for
14049 static members). */
14050 if (!load_all
14051 && !is_type_tag_for_partial (abbrev->tag)
14052 && abbrev->tag != DW_TAG_constant
14053 && abbrev->tag != DW_TAG_enumerator
14054 && abbrev->tag != DW_TAG_subprogram
14055 && abbrev->tag != DW_TAG_lexical_block
14056 && abbrev->tag != DW_TAG_variable
14057 && abbrev->tag != DW_TAG_namespace
14058 && abbrev->tag != DW_TAG_module
14059 && abbrev->tag != DW_TAG_member
14060 && abbrev->tag != DW_TAG_imported_unit)
14061 {
14062 /* Otherwise we skip to the next sibling, if any. */
14063 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14064 continue;
14065 }
14066
14067 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
14068 info_ptr);
14069
14070 /* This two-pass algorithm for processing partial symbols has a
14071 high cost in cache pressure. Thus, handle some simple cases
14072 here which cover the majority of C partial symbols. DIEs
14073 which neither have specification tags in them, nor could have
14074 specification tags elsewhere pointing at them, can simply be
14075 processed and discarded.
14076
14077 This segment is also optional; scan_partial_symbols and
14078 add_partial_symbol will handle these DIEs if we chain
14079 them in normally. When compilers which do not emit large
14080 quantities of duplicate debug information are more common,
14081 this code can probably be removed. */
14082
14083 /* Any complete simple types at the top level (pretty much all
14084 of them, for a language without namespaces), can be processed
14085 directly. */
14086 if (parent_die == NULL
14087 && part_die->has_specification == 0
14088 && part_die->is_declaration == 0
14089 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
14090 || part_die->tag == DW_TAG_base_type
14091 || part_die->tag == DW_TAG_subrange_type))
14092 {
14093 if (building_psymtab && part_die->name != NULL)
14094 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14095 VAR_DOMAIN, LOC_TYPEDEF,
14096 &objfile->static_psymbols,
14097 0, (CORE_ADDR) 0, cu->language, objfile);
14098 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14099 continue;
14100 }
14101
14102 /* The exception for DW_TAG_typedef with has_children above is
14103 a workaround of GCC PR debug/47510. In the case of this complaint
14104 type_name_no_tag_or_error will error on such types later.
14105
14106 GDB skipped children of DW_TAG_typedef by the shortcut above and then
14107 it could not find the child DIEs referenced later, this is checked
14108 above. In correct DWARF DW_TAG_typedef should have no children. */
14109
14110 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
14111 complaint (&symfile_complaints,
14112 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
14113 "- DIE at 0x%x [in module %s]"),
14114 part_die->offset.sect_off, objfile->name);
14115
14116 /* If we're at the second level, and we're an enumerator, and
14117 our parent has no specification (meaning possibly lives in a
14118 namespace elsewhere), then we can add the partial symbol now
14119 instead of queueing it. */
14120 if (part_die->tag == DW_TAG_enumerator
14121 && parent_die != NULL
14122 && parent_die->die_parent == NULL
14123 && parent_die->tag == DW_TAG_enumeration_type
14124 && parent_die->has_specification == 0)
14125 {
14126 if (part_die->name == NULL)
14127 complaint (&symfile_complaints,
14128 _("malformed enumerator DIE ignored"));
14129 else if (building_psymtab)
14130 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14131 VAR_DOMAIN, LOC_CONST,
14132 (cu->language == language_cplus
14133 || cu->language == language_java)
14134 ? &objfile->global_psymbols
14135 : &objfile->static_psymbols,
14136 0, (CORE_ADDR) 0, cu->language, objfile);
14137
14138 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14139 continue;
14140 }
14141
14142 /* We'll save this DIE so link it in. */
14143 part_die->die_parent = parent_die;
14144 part_die->die_sibling = NULL;
14145 part_die->die_child = NULL;
14146
14147 if (last_die && last_die == parent_die)
14148 last_die->die_child = part_die;
14149 else if (last_die)
14150 last_die->die_sibling = part_die;
14151
14152 last_die = part_die;
14153
14154 if (first_die == NULL)
14155 first_die = part_die;
14156
14157 /* Maybe add the DIE to the hash table. Not all DIEs that we
14158 find interesting need to be in the hash table, because we
14159 also have the parent/sibling/child chains; only those that we
14160 might refer to by offset later during partial symbol reading.
14161
14162 For now this means things that might have be the target of a
14163 DW_AT_specification, DW_AT_abstract_origin, or
14164 DW_AT_extension. DW_AT_extension will refer only to
14165 namespaces; DW_AT_abstract_origin refers to functions (and
14166 many things under the function DIE, but we do not recurse
14167 into function DIEs during partial symbol reading) and
14168 possibly variables as well; DW_AT_specification refers to
14169 declarations. Declarations ought to have the DW_AT_declaration
14170 flag. It happens that GCC forgets to put it in sometimes, but
14171 only for functions, not for types.
14172
14173 Adding more things than necessary to the hash table is harmless
14174 except for the performance cost. Adding too few will result in
14175 wasted time in find_partial_die, when we reread the compilation
14176 unit with load_all_dies set. */
14177
14178 if (load_all
14179 || abbrev->tag == DW_TAG_constant
14180 || abbrev->tag == DW_TAG_subprogram
14181 || abbrev->tag == DW_TAG_variable
14182 || abbrev->tag == DW_TAG_namespace
14183 || part_die->is_declaration)
14184 {
14185 void **slot;
14186
14187 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
14188 part_die->offset.sect_off, INSERT);
14189 *slot = part_die;
14190 }
14191
14192 part_die = obstack_alloc (&cu->comp_unit_obstack,
14193 sizeof (struct partial_die_info));
14194
14195 /* For some DIEs we want to follow their children (if any). For C
14196 we have no reason to follow the children of structures; for other
14197 languages we have to, so that we can get at method physnames
14198 to infer fully qualified class names, for DW_AT_specification,
14199 and for C++ template arguments. For C++, we also look one level
14200 inside functions to find template arguments (if the name of the
14201 function does not already contain the template arguments).
14202
14203 For Ada, we need to scan the children of subprograms and lexical
14204 blocks as well because Ada allows the definition of nested
14205 entities that could be interesting for the debugger, such as
14206 nested subprograms for instance. */
14207 if (last_die->has_children
14208 && (load_all
14209 || last_die->tag == DW_TAG_namespace
14210 || last_die->tag == DW_TAG_module
14211 || last_die->tag == DW_TAG_enumeration_type
14212 || (cu->language == language_cplus
14213 && last_die->tag == DW_TAG_subprogram
14214 && (last_die->name == NULL
14215 || strchr (last_die->name, '<') == NULL))
14216 || (cu->language != language_c
14217 && (last_die->tag == DW_TAG_class_type
14218 || last_die->tag == DW_TAG_interface_type
14219 || last_die->tag == DW_TAG_structure_type
14220 || last_die->tag == DW_TAG_union_type))
14221 || (cu->language == language_ada
14222 && (last_die->tag == DW_TAG_subprogram
14223 || last_die->tag == DW_TAG_lexical_block))))
14224 {
14225 nesting_level++;
14226 parent_die = last_die;
14227 continue;
14228 }
14229
14230 /* Otherwise we skip to the next sibling, if any. */
14231 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
14232
14233 /* Back to the top, do it again. */
14234 }
14235 }
14236
14237 /* Read a minimal amount of information into the minimal die structure. */
14238
14239 static const gdb_byte *
14240 read_partial_die (const struct die_reader_specs *reader,
14241 struct partial_die_info *part_die,
14242 struct abbrev_info *abbrev, unsigned int abbrev_len,
14243 const gdb_byte *info_ptr)
14244 {
14245 struct dwarf2_cu *cu = reader->cu;
14246 struct objfile *objfile = cu->objfile;
14247 const gdb_byte *buffer = reader->buffer;
14248 unsigned int i;
14249 struct attribute attr;
14250 int has_low_pc_attr = 0;
14251 int has_high_pc_attr = 0;
14252 int high_pc_relative = 0;
14253
14254 memset (part_die, 0, sizeof (struct partial_die_info));
14255
14256 part_die->offset.sect_off = info_ptr - buffer;
14257
14258 info_ptr += abbrev_len;
14259
14260 if (abbrev == NULL)
14261 return info_ptr;
14262
14263 part_die->tag = abbrev->tag;
14264 part_die->has_children = abbrev->has_children;
14265
14266 for (i = 0; i < abbrev->num_attrs; ++i)
14267 {
14268 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
14269
14270 /* Store the data if it is of an attribute we want to keep in a
14271 partial symbol table. */
14272 switch (attr.name)
14273 {
14274 case DW_AT_name:
14275 switch (part_die->tag)
14276 {
14277 case DW_TAG_compile_unit:
14278 case DW_TAG_partial_unit:
14279 case DW_TAG_type_unit:
14280 /* Compilation units have a DW_AT_name that is a filename, not
14281 a source language identifier. */
14282 case DW_TAG_enumeration_type:
14283 case DW_TAG_enumerator:
14284 /* These tags always have simple identifiers already; no need
14285 to canonicalize them. */
14286 part_die->name = DW_STRING (&attr);
14287 break;
14288 default:
14289 part_die->name
14290 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
14291 &objfile->objfile_obstack);
14292 break;
14293 }
14294 break;
14295 case DW_AT_linkage_name:
14296 case DW_AT_MIPS_linkage_name:
14297 /* Note that both forms of linkage name might appear. We
14298 assume they will be the same, and we only store the last
14299 one we see. */
14300 if (cu->language == language_ada)
14301 part_die->name = DW_STRING (&attr);
14302 part_die->linkage_name = DW_STRING (&attr);
14303 break;
14304 case DW_AT_low_pc:
14305 has_low_pc_attr = 1;
14306 part_die->lowpc = DW_ADDR (&attr);
14307 break;
14308 case DW_AT_high_pc:
14309 has_high_pc_attr = 1;
14310 if (attr.form == DW_FORM_addr
14311 || attr.form == DW_FORM_GNU_addr_index)
14312 part_die->highpc = DW_ADDR (&attr);
14313 else
14314 {
14315 high_pc_relative = 1;
14316 part_die->highpc = DW_UNSND (&attr);
14317 }
14318 break;
14319 case DW_AT_location:
14320 /* Support the .debug_loc offsets. */
14321 if (attr_form_is_block (&attr))
14322 {
14323 part_die->d.locdesc = DW_BLOCK (&attr);
14324 }
14325 else if (attr_form_is_section_offset (&attr))
14326 {
14327 dwarf2_complex_location_expr_complaint ();
14328 }
14329 else
14330 {
14331 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14332 "partial symbol information");
14333 }
14334 break;
14335 case DW_AT_external:
14336 part_die->is_external = DW_UNSND (&attr);
14337 break;
14338 case DW_AT_declaration:
14339 part_die->is_declaration = DW_UNSND (&attr);
14340 break;
14341 case DW_AT_type:
14342 part_die->has_type = 1;
14343 break;
14344 case DW_AT_abstract_origin:
14345 case DW_AT_specification:
14346 case DW_AT_extension:
14347 part_die->has_specification = 1;
14348 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
14349 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14350 || cu->per_cu->is_dwz);
14351 break;
14352 case DW_AT_sibling:
14353 /* Ignore absolute siblings, they might point outside of
14354 the current compile unit. */
14355 if (attr.form == DW_FORM_ref_addr)
14356 complaint (&symfile_complaints,
14357 _("ignoring absolute DW_AT_sibling"));
14358 else
14359 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
14360 break;
14361 case DW_AT_byte_size:
14362 part_die->has_byte_size = 1;
14363 break;
14364 case DW_AT_calling_convention:
14365 /* DWARF doesn't provide a way to identify a program's source-level
14366 entry point. DW_AT_calling_convention attributes are only meant
14367 to describe functions' calling conventions.
14368
14369 However, because it's a necessary piece of information in
14370 Fortran, and because DW_CC_program is the only piece of debugging
14371 information whose definition refers to a 'main program' at all,
14372 several compilers have begun marking Fortran main programs with
14373 DW_CC_program --- even when those functions use the standard
14374 calling conventions.
14375
14376 So until DWARF specifies a way to provide this information and
14377 compilers pick up the new representation, we'll support this
14378 practice. */
14379 if (DW_UNSND (&attr) == DW_CC_program
14380 && cu->language == language_fortran)
14381 {
14382 set_main_name (part_die->name);
14383
14384 /* As this DIE has a static linkage the name would be difficult
14385 to look up later. */
14386 language_of_main = language_fortran;
14387 }
14388 break;
14389 case DW_AT_inline:
14390 if (DW_UNSND (&attr) == DW_INL_inlined
14391 || DW_UNSND (&attr) == DW_INL_declared_inlined)
14392 part_die->may_be_inlined = 1;
14393 break;
14394
14395 case DW_AT_import:
14396 if (part_die->tag == DW_TAG_imported_unit)
14397 {
14398 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
14399 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14400 || cu->per_cu->is_dwz);
14401 }
14402 break;
14403
14404 default:
14405 break;
14406 }
14407 }
14408
14409 if (high_pc_relative)
14410 part_die->highpc += part_die->lowpc;
14411
14412 if (has_low_pc_attr && has_high_pc_attr)
14413 {
14414 /* When using the GNU linker, .gnu.linkonce. sections are used to
14415 eliminate duplicate copies of functions and vtables and such.
14416 The linker will arbitrarily choose one and discard the others.
14417 The AT_*_pc values for such functions refer to local labels in
14418 these sections. If the section from that file was discarded, the
14419 labels are not in the output, so the relocs get a value of 0.
14420 If this is a discarded function, mark the pc bounds as invalid,
14421 so that GDB will ignore it. */
14422 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
14423 {
14424 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14425
14426 complaint (&symfile_complaints,
14427 _("DW_AT_low_pc %s is zero "
14428 "for DIE at 0x%x [in module %s]"),
14429 paddress (gdbarch, part_die->lowpc),
14430 part_die->offset.sect_off, objfile->name);
14431 }
14432 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
14433 else if (part_die->lowpc >= part_die->highpc)
14434 {
14435 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14436
14437 complaint (&symfile_complaints,
14438 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
14439 "for DIE at 0x%x [in module %s]"),
14440 paddress (gdbarch, part_die->lowpc),
14441 paddress (gdbarch, part_die->highpc),
14442 part_die->offset.sect_off, objfile->name);
14443 }
14444 else
14445 part_die->has_pc_info = 1;
14446 }
14447
14448 return info_ptr;
14449 }
14450
14451 /* Find a cached partial DIE at OFFSET in CU. */
14452
14453 static struct partial_die_info *
14454 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
14455 {
14456 struct partial_die_info *lookup_die = NULL;
14457 struct partial_die_info part_die;
14458
14459 part_die.offset = offset;
14460 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
14461 offset.sect_off);
14462
14463 return lookup_die;
14464 }
14465
14466 /* Find a partial DIE at OFFSET, which may or may not be in CU,
14467 except in the case of .debug_types DIEs which do not reference
14468 outside their CU (they do however referencing other types via
14469 DW_FORM_ref_sig8). */
14470
14471 static struct partial_die_info *
14472 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
14473 {
14474 struct objfile *objfile = cu->objfile;
14475 struct dwarf2_per_cu_data *per_cu = NULL;
14476 struct partial_die_info *pd = NULL;
14477
14478 if (offset_in_dwz == cu->per_cu->is_dwz
14479 && offset_in_cu_p (&cu->header, offset))
14480 {
14481 pd = find_partial_die_in_comp_unit (offset, cu);
14482 if (pd != NULL)
14483 return pd;
14484 /* We missed recording what we needed.
14485 Load all dies and try again. */
14486 per_cu = cu->per_cu;
14487 }
14488 else
14489 {
14490 /* TUs don't reference other CUs/TUs (except via type signatures). */
14491 if (cu->per_cu->is_debug_types)
14492 {
14493 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14494 " external reference to offset 0x%lx [in module %s].\n"),
14495 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14496 bfd_get_filename (objfile->obfd));
14497 }
14498 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14499 objfile);
14500
14501 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14502 load_partial_comp_unit (per_cu);
14503
14504 per_cu->cu->last_used = 0;
14505 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14506 }
14507
14508 /* If we didn't find it, and not all dies have been loaded,
14509 load them all and try again. */
14510
14511 if (pd == NULL && per_cu->load_all_dies == 0)
14512 {
14513 per_cu->load_all_dies = 1;
14514
14515 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14516 THIS_CU->cu may already be in use. So we can't just free it and
14517 replace its DIEs with the ones we read in. Instead, we leave those
14518 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14519 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14520 set. */
14521 load_partial_comp_unit (per_cu);
14522
14523 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14524 }
14525
14526 if (pd == NULL)
14527 internal_error (__FILE__, __LINE__,
14528 _("could not find partial DIE 0x%x "
14529 "in cache [from module %s]\n"),
14530 offset.sect_off, bfd_get_filename (objfile->obfd));
14531 return pd;
14532 }
14533
14534 /* See if we can figure out if the class lives in a namespace. We do
14535 this by looking for a member function; its demangled name will
14536 contain namespace info, if there is any. */
14537
14538 static void
14539 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14540 struct dwarf2_cu *cu)
14541 {
14542 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14543 what template types look like, because the demangler
14544 frequently doesn't give the same name as the debug info. We
14545 could fix this by only using the demangled name to get the
14546 prefix (but see comment in read_structure_type). */
14547
14548 struct partial_die_info *real_pdi;
14549 struct partial_die_info *child_pdi;
14550
14551 /* If this DIE (this DIE's specification, if any) has a parent, then
14552 we should not do this. We'll prepend the parent's fully qualified
14553 name when we create the partial symbol. */
14554
14555 real_pdi = struct_pdi;
14556 while (real_pdi->has_specification)
14557 real_pdi = find_partial_die (real_pdi->spec_offset,
14558 real_pdi->spec_is_dwz, cu);
14559
14560 if (real_pdi->die_parent != NULL)
14561 return;
14562
14563 for (child_pdi = struct_pdi->die_child;
14564 child_pdi != NULL;
14565 child_pdi = child_pdi->die_sibling)
14566 {
14567 if (child_pdi->tag == DW_TAG_subprogram
14568 && child_pdi->linkage_name != NULL)
14569 {
14570 char *actual_class_name
14571 = language_class_name_from_physname (cu->language_defn,
14572 child_pdi->linkage_name);
14573 if (actual_class_name != NULL)
14574 {
14575 struct_pdi->name
14576 = obstack_copy0 (&cu->objfile->objfile_obstack,
14577 actual_class_name,
14578 strlen (actual_class_name));
14579 xfree (actual_class_name);
14580 }
14581 break;
14582 }
14583 }
14584 }
14585
14586 /* Adjust PART_DIE before generating a symbol for it. This function
14587 may set the is_external flag or change the DIE's name. */
14588
14589 static void
14590 fixup_partial_die (struct partial_die_info *part_die,
14591 struct dwarf2_cu *cu)
14592 {
14593 /* Once we've fixed up a die, there's no point in doing so again.
14594 This also avoids a memory leak if we were to call
14595 guess_partial_die_structure_name multiple times. */
14596 if (part_die->fixup_called)
14597 return;
14598
14599 /* If we found a reference attribute and the DIE has no name, try
14600 to find a name in the referred to DIE. */
14601
14602 if (part_die->name == NULL && part_die->has_specification)
14603 {
14604 struct partial_die_info *spec_die;
14605
14606 spec_die = find_partial_die (part_die->spec_offset,
14607 part_die->spec_is_dwz, cu);
14608
14609 fixup_partial_die (spec_die, cu);
14610
14611 if (spec_die->name)
14612 {
14613 part_die->name = spec_die->name;
14614
14615 /* Copy DW_AT_external attribute if it is set. */
14616 if (spec_die->is_external)
14617 part_die->is_external = spec_die->is_external;
14618 }
14619 }
14620
14621 /* Set default names for some unnamed DIEs. */
14622
14623 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
14624 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
14625
14626 /* If there is no parent die to provide a namespace, and there are
14627 children, see if we can determine the namespace from their linkage
14628 name. */
14629 if (cu->language == language_cplus
14630 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14631 && part_die->die_parent == NULL
14632 && part_die->has_children
14633 && (part_die->tag == DW_TAG_class_type
14634 || part_die->tag == DW_TAG_structure_type
14635 || part_die->tag == DW_TAG_union_type))
14636 guess_partial_die_structure_name (part_die, cu);
14637
14638 /* GCC might emit a nameless struct or union that has a linkage
14639 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14640 if (part_die->name == NULL
14641 && (part_die->tag == DW_TAG_class_type
14642 || part_die->tag == DW_TAG_interface_type
14643 || part_die->tag == DW_TAG_structure_type
14644 || part_die->tag == DW_TAG_union_type)
14645 && part_die->linkage_name != NULL)
14646 {
14647 char *demangled;
14648
14649 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
14650 if (demangled)
14651 {
14652 const char *base;
14653
14654 /* Strip any leading namespaces/classes, keep only the base name.
14655 DW_AT_name for named DIEs does not contain the prefixes. */
14656 base = strrchr (demangled, ':');
14657 if (base && base > demangled && base[-1] == ':')
14658 base++;
14659 else
14660 base = demangled;
14661
14662 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14663 base, strlen (base));
14664 xfree (demangled);
14665 }
14666 }
14667
14668 part_die->fixup_called = 1;
14669 }
14670
14671 /* Read an attribute value described by an attribute form. */
14672
14673 static const gdb_byte *
14674 read_attribute_value (const struct die_reader_specs *reader,
14675 struct attribute *attr, unsigned form,
14676 const gdb_byte *info_ptr)
14677 {
14678 struct dwarf2_cu *cu = reader->cu;
14679 bfd *abfd = reader->abfd;
14680 struct comp_unit_head *cu_header = &cu->header;
14681 unsigned int bytes_read;
14682 struct dwarf_block *blk;
14683
14684 attr->form = form;
14685 switch (form)
14686 {
14687 case DW_FORM_ref_addr:
14688 if (cu->header.version == 2)
14689 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14690 else
14691 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14692 &cu->header, &bytes_read);
14693 info_ptr += bytes_read;
14694 break;
14695 case DW_FORM_GNU_ref_alt:
14696 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14697 info_ptr += bytes_read;
14698 break;
14699 case DW_FORM_addr:
14700 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14701 info_ptr += bytes_read;
14702 break;
14703 case DW_FORM_block2:
14704 blk = dwarf_alloc_block (cu);
14705 blk->size = read_2_bytes (abfd, info_ptr);
14706 info_ptr += 2;
14707 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14708 info_ptr += blk->size;
14709 DW_BLOCK (attr) = blk;
14710 break;
14711 case DW_FORM_block4:
14712 blk = dwarf_alloc_block (cu);
14713 blk->size = read_4_bytes (abfd, info_ptr);
14714 info_ptr += 4;
14715 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14716 info_ptr += blk->size;
14717 DW_BLOCK (attr) = blk;
14718 break;
14719 case DW_FORM_data2:
14720 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14721 info_ptr += 2;
14722 break;
14723 case DW_FORM_data4:
14724 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14725 info_ptr += 4;
14726 break;
14727 case DW_FORM_data8:
14728 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14729 info_ptr += 8;
14730 break;
14731 case DW_FORM_sec_offset:
14732 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14733 info_ptr += bytes_read;
14734 break;
14735 case DW_FORM_string:
14736 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14737 DW_STRING_IS_CANONICAL (attr) = 0;
14738 info_ptr += bytes_read;
14739 break;
14740 case DW_FORM_strp:
14741 if (!cu->per_cu->is_dwz)
14742 {
14743 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14744 &bytes_read);
14745 DW_STRING_IS_CANONICAL (attr) = 0;
14746 info_ptr += bytes_read;
14747 break;
14748 }
14749 /* FALLTHROUGH */
14750 case DW_FORM_GNU_strp_alt:
14751 {
14752 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14753 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14754 &bytes_read);
14755
14756 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14757 DW_STRING_IS_CANONICAL (attr) = 0;
14758 info_ptr += bytes_read;
14759 }
14760 break;
14761 case DW_FORM_exprloc:
14762 case DW_FORM_block:
14763 blk = dwarf_alloc_block (cu);
14764 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14765 info_ptr += bytes_read;
14766 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14767 info_ptr += blk->size;
14768 DW_BLOCK (attr) = blk;
14769 break;
14770 case DW_FORM_block1:
14771 blk = dwarf_alloc_block (cu);
14772 blk->size = read_1_byte (abfd, info_ptr);
14773 info_ptr += 1;
14774 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14775 info_ptr += blk->size;
14776 DW_BLOCK (attr) = blk;
14777 break;
14778 case DW_FORM_data1:
14779 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14780 info_ptr += 1;
14781 break;
14782 case DW_FORM_flag:
14783 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14784 info_ptr += 1;
14785 break;
14786 case DW_FORM_flag_present:
14787 DW_UNSND (attr) = 1;
14788 break;
14789 case DW_FORM_sdata:
14790 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14791 info_ptr += bytes_read;
14792 break;
14793 case DW_FORM_udata:
14794 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14795 info_ptr += bytes_read;
14796 break;
14797 case DW_FORM_ref1:
14798 DW_UNSND (attr) = (cu->header.offset.sect_off
14799 + read_1_byte (abfd, info_ptr));
14800 info_ptr += 1;
14801 break;
14802 case DW_FORM_ref2:
14803 DW_UNSND (attr) = (cu->header.offset.sect_off
14804 + read_2_bytes (abfd, info_ptr));
14805 info_ptr += 2;
14806 break;
14807 case DW_FORM_ref4:
14808 DW_UNSND (attr) = (cu->header.offset.sect_off
14809 + read_4_bytes (abfd, info_ptr));
14810 info_ptr += 4;
14811 break;
14812 case DW_FORM_ref8:
14813 DW_UNSND (attr) = (cu->header.offset.sect_off
14814 + read_8_bytes (abfd, info_ptr));
14815 info_ptr += 8;
14816 break;
14817 case DW_FORM_ref_sig8:
14818 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
14819 info_ptr += 8;
14820 break;
14821 case DW_FORM_ref_udata:
14822 DW_UNSND (attr) = (cu->header.offset.sect_off
14823 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14824 info_ptr += bytes_read;
14825 break;
14826 case DW_FORM_indirect:
14827 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14828 info_ptr += bytes_read;
14829 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14830 break;
14831 case DW_FORM_GNU_addr_index:
14832 if (reader->dwo_file == NULL)
14833 {
14834 /* For now flag a hard error.
14835 Later we can turn this into a complaint. */
14836 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14837 dwarf_form_name (form),
14838 bfd_get_filename (abfd));
14839 }
14840 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14841 info_ptr += bytes_read;
14842 break;
14843 case DW_FORM_GNU_str_index:
14844 if (reader->dwo_file == NULL)
14845 {
14846 /* For now flag a hard error.
14847 Later we can turn this into a complaint if warranted. */
14848 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14849 dwarf_form_name (form),
14850 bfd_get_filename (abfd));
14851 }
14852 {
14853 ULONGEST str_index =
14854 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14855
14856 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14857 DW_STRING_IS_CANONICAL (attr) = 0;
14858 info_ptr += bytes_read;
14859 }
14860 break;
14861 default:
14862 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14863 dwarf_form_name (form),
14864 bfd_get_filename (abfd));
14865 }
14866
14867 /* Super hack. */
14868 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
14869 attr->form = DW_FORM_GNU_ref_alt;
14870
14871 /* We have seen instances where the compiler tried to emit a byte
14872 size attribute of -1 which ended up being encoded as an unsigned
14873 0xffffffff. Although 0xffffffff is technically a valid size value,
14874 an object of this size seems pretty unlikely so we can relatively
14875 safely treat these cases as if the size attribute was invalid and
14876 treat them as zero by default. */
14877 if (attr->name == DW_AT_byte_size
14878 && form == DW_FORM_data4
14879 && DW_UNSND (attr) >= 0xffffffff)
14880 {
14881 complaint
14882 (&symfile_complaints,
14883 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14884 hex_string (DW_UNSND (attr)));
14885 DW_UNSND (attr) = 0;
14886 }
14887
14888 return info_ptr;
14889 }
14890
14891 /* Read an attribute described by an abbreviated attribute. */
14892
14893 static const gdb_byte *
14894 read_attribute (const struct die_reader_specs *reader,
14895 struct attribute *attr, struct attr_abbrev *abbrev,
14896 const gdb_byte *info_ptr)
14897 {
14898 attr->name = abbrev->name;
14899 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14900 }
14901
14902 /* Read dwarf information from a buffer. */
14903
14904 static unsigned int
14905 read_1_byte (bfd *abfd, const gdb_byte *buf)
14906 {
14907 return bfd_get_8 (abfd, buf);
14908 }
14909
14910 static int
14911 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14912 {
14913 return bfd_get_signed_8 (abfd, buf);
14914 }
14915
14916 static unsigned int
14917 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14918 {
14919 return bfd_get_16 (abfd, buf);
14920 }
14921
14922 static int
14923 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14924 {
14925 return bfd_get_signed_16 (abfd, buf);
14926 }
14927
14928 static unsigned int
14929 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14930 {
14931 return bfd_get_32 (abfd, buf);
14932 }
14933
14934 static int
14935 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14936 {
14937 return bfd_get_signed_32 (abfd, buf);
14938 }
14939
14940 static ULONGEST
14941 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14942 {
14943 return bfd_get_64 (abfd, buf);
14944 }
14945
14946 static CORE_ADDR
14947 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
14948 unsigned int *bytes_read)
14949 {
14950 struct comp_unit_head *cu_header = &cu->header;
14951 CORE_ADDR retval = 0;
14952
14953 if (cu_header->signed_addr_p)
14954 {
14955 switch (cu_header->addr_size)
14956 {
14957 case 2:
14958 retval = bfd_get_signed_16 (abfd, buf);
14959 break;
14960 case 4:
14961 retval = bfd_get_signed_32 (abfd, buf);
14962 break;
14963 case 8:
14964 retval = bfd_get_signed_64 (abfd, buf);
14965 break;
14966 default:
14967 internal_error (__FILE__, __LINE__,
14968 _("read_address: bad switch, signed [in module %s]"),
14969 bfd_get_filename (abfd));
14970 }
14971 }
14972 else
14973 {
14974 switch (cu_header->addr_size)
14975 {
14976 case 2:
14977 retval = bfd_get_16 (abfd, buf);
14978 break;
14979 case 4:
14980 retval = bfd_get_32 (abfd, buf);
14981 break;
14982 case 8:
14983 retval = bfd_get_64 (abfd, buf);
14984 break;
14985 default:
14986 internal_error (__FILE__, __LINE__,
14987 _("read_address: bad switch, "
14988 "unsigned [in module %s]"),
14989 bfd_get_filename (abfd));
14990 }
14991 }
14992
14993 *bytes_read = cu_header->addr_size;
14994 return retval;
14995 }
14996
14997 /* Read the initial length from a section. The (draft) DWARF 3
14998 specification allows the initial length to take up either 4 bytes
14999 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
15000 bytes describe the length and all offsets will be 8 bytes in length
15001 instead of 4.
15002
15003 An older, non-standard 64-bit format is also handled by this
15004 function. The older format in question stores the initial length
15005 as an 8-byte quantity without an escape value. Lengths greater
15006 than 2^32 aren't very common which means that the initial 4 bytes
15007 is almost always zero. Since a length value of zero doesn't make
15008 sense for the 32-bit format, this initial zero can be considered to
15009 be an escape value which indicates the presence of the older 64-bit
15010 format. As written, the code can't detect (old format) lengths
15011 greater than 4GB. If it becomes necessary to handle lengths
15012 somewhat larger than 4GB, we could allow other small values (such
15013 as the non-sensical values of 1, 2, and 3) to also be used as
15014 escape values indicating the presence of the old format.
15015
15016 The value returned via bytes_read should be used to increment the
15017 relevant pointer after calling read_initial_length().
15018
15019 [ Note: read_initial_length() and read_offset() are based on the
15020 document entitled "DWARF Debugging Information Format", revision
15021 3, draft 8, dated November 19, 2001. This document was obtained
15022 from:
15023
15024 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
15025
15026 This document is only a draft and is subject to change. (So beware.)
15027
15028 Details regarding the older, non-standard 64-bit format were
15029 determined empirically by examining 64-bit ELF files produced by
15030 the SGI toolchain on an IRIX 6.5 machine.
15031
15032 - Kevin, July 16, 2002
15033 ] */
15034
15035 static LONGEST
15036 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
15037 {
15038 LONGEST length = bfd_get_32 (abfd, buf);
15039
15040 if (length == 0xffffffff)
15041 {
15042 length = bfd_get_64 (abfd, buf + 4);
15043 *bytes_read = 12;
15044 }
15045 else if (length == 0)
15046 {
15047 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
15048 length = bfd_get_64 (abfd, buf);
15049 *bytes_read = 8;
15050 }
15051 else
15052 {
15053 *bytes_read = 4;
15054 }
15055
15056 return length;
15057 }
15058
15059 /* Cover function for read_initial_length.
15060 Returns the length of the object at BUF, and stores the size of the
15061 initial length in *BYTES_READ and stores the size that offsets will be in
15062 *OFFSET_SIZE.
15063 If the initial length size is not equivalent to that specified in
15064 CU_HEADER then issue a complaint.
15065 This is useful when reading non-comp-unit headers. */
15066
15067 static LONGEST
15068 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
15069 const struct comp_unit_head *cu_header,
15070 unsigned int *bytes_read,
15071 unsigned int *offset_size)
15072 {
15073 LONGEST length = read_initial_length (abfd, buf, bytes_read);
15074
15075 gdb_assert (cu_header->initial_length_size == 4
15076 || cu_header->initial_length_size == 8
15077 || cu_header->initial_length_size == 12);
15078
15079 if (cu_header->initial_length_size != *bytes_read)
15080 complaint (&symfile_complaints,
15081 _("intermixed 32-bit and 64-bit DWARF sections"));
15082
15083 *offset_size = (*bytes_read == 4) ? 4 : 8;
15084 return length;
15085 }
15086
15087 /* Read an offset from the data stream. The size of the offset is
15088 given by cu_header->offset_size. */
15089
15090 static LONGEST
15091 read_offset (bfd *abfd, const gdb_byte *buf,
15092 const struct comp_unit_head *cu_header,
15093 unsigned int *bytes_read)
15094 {
15095 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
15096
15097 *bytes_read = cu_header->offset_size;
15098 return offset;
15099 }
15100
15101 /* Read an offset from the data stream. */
15102
15103 static LONGEST
15104 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
15105 {
15106 LONGEST retval = 0;
15107
15108 switch (offset_size)
15109 {
15110 case 4:
15111 retval = bfd_get_32 (abfd, buf);
15112 break;
15113 case 8:
15114 retval = bfd_get_64 (abfd, buf);
15115 break;
15116 default:
15117 internal_error (__FILE__, __LINE__,
15118 _("read_offset_1: bad switch [in module %s]"),
15119 bfd_get_filename (abfd));
15120 }
15121
15122 return retval;
15123 }
15124
15125 static const gdb_byte *
15126 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
15127 {
15128 /* If the size of a host char is 8 bits, we can return a pointer
15129 to the buffer, otherwise we have to copy the data to a buffer
15130 allocated on the temporary obstack. */
15131 gdb_assert (HOST_CHAR_BIT == 8);
15132 return buf;
15133 }
15134
15135 static const char *
15136 read_direct_string (bfd *abfd, const gdb_byte *buf,
15137 unsigned int *bytes_read_ptr)
15138 {
15139 /* If the size of a host char is 8 bits, we can return a pointer
15140 to the string, otherwise we have to copy the string to a buffer
15141 allocated on the temporary obstack. */
15142 gdb_assert (HOST_CHAR_BIT == 8);
15143 if (*buf == '\0')
15144 {
15145 *bytes_read_ptr = 1;
15146 return NULL;
15147 }
15148 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15149 return (const char *) buf;
15150 }
15151
15152 static const char *
15153 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
15154 {
15155 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
15156 if (dwarf2_per_objfile->str.buffer == NULL)
15157 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15158 bfd_get_filename (abfd));
15159 if (str_offset >= dwarf2_per_objfile->str.size)
15160 error (_("DW_FORM_strp pointing outside of "
15161 ".debug_str section [in module %s]"),
15162 bfd_get_filename (abfd));
15163 gdb_assert (HOST_CHAR_BIT == 8);
15164 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
15165 return NULL;
15166 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
15167 }
15168
15169 /* Read a string at offset STR_OFFSET in the .debug_str section from
15170 the .dwz file DWZ. Throw an error if the offset is too large. If
15171 the string consists of a single NUL byte, return NULL; otherwise
15172 return a pointer to the string. */
15173
15174 static const char *
15175 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15176 {
15177 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15178
15179 if (dwz->str.buffer == NULL)
15180 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15181 "section [in module %s]"),
15182 bfd_get_filename (dwz->dwz_bfd));
15183 if (str_offset >= dwz->str.size)
15184 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15185 ".debug_str section [in module %s]"),
15186 bfd_get_filename (dwz->dwz_bfd));
15187 gdb_assert (HOST_CHAR_BIT == 8);
15188 if (dwz->str.buffer[str_offset] == '\0')
15189 return NULL;
15190 return (const char *) (dwz->str.buffer + str_offset);
15191 }
15192
15193 static const char *
15194 read_indirect_string (bfd *abfd, const gdb_byte *buf,
15195 const struct comp_unit_head *cu_header,
15196 unsigned int *bytes_read_ptr)
15197 {
15198 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
15199
15200 return read_indirect_string_at_offset (abfd, str_offset);
15201 }
15202
15203 static ULONGEST
15204 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
15205 unsigned int *bytes_read_ptr)
15206 {
15207 ULONGEST result;
15208 unsigned int num_read;
15209 int i, shift;
15210 unsigned char byte;
15211
15212 result = 0;
15213 shift = 0;
15214 num_read = 0;
15215 i = 0;
15216 while (1)
15217 {
15218 byte = bfd_get_8 (abfd, buf);
15219 buf++;
15220 num_read++;
15221 result |= ((ULONGEST) (byte & 127) << shift);
15222 if ((byte & 128) == 0)
15223 {
15224 break;
15225 }
15226 shift += 7;
15227 }
15228 *bytes_read_ptr = num_read;
15229 return result;
15230 }
15231
15232 static LONGEST
15233 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
15234 unsigned int *bytes_read_ptr)
15235 {
15236 LONGEST result;
15237 int i, shift, num_read;
15238 unsigned char byte;
15239
15240 result = 0;
15241 shift = 0;
15242 num_read = 0;
15243 i = 0;
15244 while (1)
15245 {
15246 byte = bfd_get_8 (abfd, buf);
15247 buf++;
15248 num_read++;
15249 result |= ((LONGEST) (byte & 127) << shift);
15250 shift += 7;
15251 if ((byte & 128) == 0)
15252 {
15253 break;
15254 }
15255 }
15256 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
15257 result |= -(((LONGEST) 1) << shift);
15258 *bytes_read_ptr = num_read;
15259 return result;
15260 }
15261
15262 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
15263 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
15264 ADDR_SIZE is the size of addresses from the CU header. */
15265
15266 static CORE_ADDR
15267 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
15268 {
15269 struct objfile *objfile = dwarf2_per_objfile->objfile;
15270 bfd *abfd = objfile->obfd;
15271 const gdb_byte *info_ptr;
15272
15273 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
15274 if (dwarf2_per_objfile->addr.buffer == NULL)
15275 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
15276 objfile->name);
15277 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
15278 error (_("DW_FORM_addr_index pointing outside of "
15279 ".debug_addr section [in module %s]"),
15280 objfile->name);
15281 info_ptr = (dwarf2_per_objfile->addr.buffer
15282 + addr_base + addr_index * addr_size);
15283 if (addr_size == 4)
15284 return bfd_get_32 (abfd, info_ptr);
15285 else
15286 return bfd_get_64 (abfd, info_ptr);
15287 }
15288
15289 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
15290
15291 static CORE_ADDR
15292 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
15293 {
15294 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
15295 }
15296
15297 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
15298
15299 static CORE_ADDR
15300 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
15301 unsigned int *bytes_read)
15302 {
15303 bfd *abfd = cu->objfile->obfd;
15304 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
15305
15306 return read_addr_index (cu, addr_index);
15307 }
15308
15309 /* Data structure to pass results from dwarf2_read_addr_index_reader
15310 back to dwarf2_read_addr_index. */
15311
15312 struct dwarf2_read_addr_index_data
15313 {
15314 ULONGEST addr_base;
15315 int addr_size;
15316 };
15317
15318 /* die_reader_func for dwarf2_read_addr_index. */
15319
15320 static void
15321 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
15322 const gdb_byte *info_ptr,
15323 struct die_info *comp_unit_die,
15324 int has_children,
15325 void *data)
15326 {
15327 struct dwarf2_cu *cu = reader->cu;
15328 struct dwarf2_read_addr_index_data *aidata =
15329 (struct dwarf2_read_addr_index_data *) data;
15330
15331 aidata->addr_base = cu->addr_base;
15332 aidata->addr_size = cu->header.addr_size;
15333 }
15334
15335 /* Given an index in .debug_addr, fetch the value.
15336 NOTE: This can be called during dwarf expression evaluation,
15337 long after the debug information has been read, and thus per_cu->cu
15338 may no longer exist. */
15339
15340 CORE_ADDR
15341 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
15342 unsigned int addr_index)
15343 {
15344 struct objfile *objfile = per_cu->objfile;
15345 struct dwarf2_cu *cu = per_cu->cu;
15346 ULONGEST addr_base;
15347 int addr_size;
15348
15349 /* This is intended to be called from outside this file. */
15350 dw2_setup (objfile);
15351
15352 /* We need addr_base and addr_size.
15353 If we don't have PER_CU->cu, we have to get it.
15354 Nasty, but the alternative is storing the needed info in PER_CU,
15355 which at this point doesn't seem justified: it's not clear how frequently
15356 it would get used and it would increase the size of every PER_CU.
15357 Entry points like dwarf2_per_cu_addr_size do a similar thing
15358 so we're not in uncharted territory here.
15359 Alas we need to be a bit more complicated as addr_base is contained
15360 in the DIE.
15361
15362 We don't need to read the entire CU(/TU).
15363 We just need the header and top level die.
15364
15365 IWBN to use the aging mechanism to let us lazily later discard the CU.
15366 For now we skip this optimization. */
15367
15368 if (cu != NULL)
15369 {
15370 addr_base = cu->addr_base;
15371 addr_size = cu->header.addr_size;
15372 }
15373 else
15374 {
15375 struct dwarf2_read_addr_index_data aidata;
15376
15377 /* Note: We can't use init_cutu_and_read_dies_simple here,
15378 we need addr_base. */
15379 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
15380 dwarf2_read_addr_index_reader, &aidata);
15381 addr_base = aidata.addr_base;
15382 addr_size = aidata.addr_size;
15383 }
15384
15385 return read_addr_index_1 (addr_index, addr_base, addr_size);
15386 }
15387
15388 /* Given a DW_AT_str_index, fetch the string. */
15389
15390 static const char *
15391 read_str_index (const struct die_reader_specs *reader,
15392 struct dwarf2_cu *cu, ULONGEST str_index)
15393 {
15394 struct objfile *objfile = dwarf2_per_objfile->objfile;
15395 const char *dwo_name = objfile->name;
15396 bfd *abfd = objfile->obfd;
15397 struct dwo_sections *sections = &reader->dwo_file->sections;
15398 const gdb_byte *info_ptr;
15399 ULONGEST str_offset;
15400
15401 dwarf2_read_section (objfile, &sections->str);
15402 dwarf2_read_section (objfile, &sections->str_offsets);
15403 if (sections->str.buffer == NULL)
15404 error (_("DW_FORM_str_index used without .debug_str.dwo section"
15405 " in CU at offset 0x%lx [in module %s]"),
15406 (long) cu->header.offset.sect_off, dwo_name);
15407 if (sections->str_offsets.buffer == NULL)
15408 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
15409 " in CU at offset 0x%lx [in module %s]"),
15410 (long) cu->header.offset.sect_off, dwo_name);
15411 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
15412 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
15413 " section in CU at offset 0x%lx [in module %s]"),
15414 (long) cu->header.offset.sect_off, dwo_name);
15415 info_ptr = (sections->str_offsets.buffer
15416 + str_index * cu->header.offset_size);
15417 if (cu->header.offset_size == 4)
15418 str_offset = bfd_get_32 (abfd, info_ptr);
15419 else
15420 str_offset = bfd_get_64 (abfd, info_ptr);
15421 if (str_offset >= sections->str.size)
15422 error (_("Offset from DW_FORM_str_index pointing outside of"
15423 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
15424 (long) cu->header.offset.sect_off, dwo_name);
15425 return (const char *) (sections->str.buffer + str_offset);
15426 }
15427
15428 /* Return the length of an LEB128 number in BUF. */
15429
15430 static int
15431 leb128_size (const gdb_byte *buf)
15432 {
15433 const gdb_byte *begin = buf;
15434 gdb_byte byte;
15435
15436 while (1)
15437 {
15438 byte = *buf++;
15439 if ((byte & 128) == 0)
15440 return buf - begin;
15441 }
15442 }
15443
15444 static void
15445 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
15446 {
15447 switch (lang)
15448 {
15449 case DW_LANG_C89:
15450 case DW_LANG_C99:
15451 case DW_LANG_C:
15452 case DW_LANG_UPC:
15453 cu->language = language_c;
15454 break;
15455 case DW_LANG_C_plus_plus:
15456 cu->language = language_cplus;
15457 break;
15458 case DW_LANG_D:
15459 cu->language = language_d;
15460 break;
15461 case DW_LANG_Fortran77:
15462 case DW_LANG_Fortran90:
15463 case DW_LANG_Fortran95:
15464 cu->language = language_fortran;
15465 break;
15466 case DW_LANG_Go:
15467 cu->language = language_go;
15468 break;
15469 case DW_LANG_Mips_Assembler:
15470 cu->language = language_asm;
15471 break;
15472 case DW_LANG_Java:
15473 cu->language = language_java;
15474 break;
15475 case DW_LANG_Ada83:
15476 case DW_LANG_Ada95:
15477 cu->language = language_ada;
15478 break;
15479 case DW_LANG_Modula2:
15480 cu->language = language_m2;
15481 break;
15482 case DW_LANG_Pascal83:
15483 cu->language = language_pascal;
15484 break;
15485 case DW_LANG_ObjC:
15486 cu->language = language_objc;
15487 break;
15488 case DW_LANG_Cobol74:
15489 case DW_LANG_Cobol85:
15490 default:
15491 cu->language = language_minimal;
15492 break;
15493 }
15494 cu->language_defn = language_def (cu->language);
15495 }
15496
15497 /* Return the named attribute or NULL if not there. */
15498
15499 static struct attribute *
15500 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
15501 {
15502 for (;;)
15503 {
15504 unsigned int i;
15505 struct attribute *spec = NULL;
15506
15507 for (i = 0; i < die->num_attrs; ++i)
15508 {
15509 if (die->attrs[i].name == name)
15510 return &die->attrs[i];
15511 if (die->attrs[i].name == DW_AT_specification
15512 || die->attrs[i].name == DW_AT_abstract_origin)
15513 spec = &die->attrs[i];
15514 }
15515
15516 if (!spec)
15517 break;
15518
15519 die = follow_die_ref (die, spec, &cu);
15520 }
15521
15522 return NULL;
15523 }
15524
15525 /* Return the named attribute or NULL if not there,
15526 but do not follow DW_AT_specification, etc.
15527 This is for use in contexts where we're reading .debug_types dies.
15528 Following DW_AT_specification, DW_AT_abstract_origin will take us
15529 back up the chain, and we want to go down. */
15530
15531 static struct attribute *
15532 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
15533 {
15534 unsigned int i;
15535
15536 for (i = 0; i < die->num_attrs; ++i)
15537 if (die->attrs[i].name == name)
15538 return &die->attrs[i];
15539
15540 return NULL;
15541 }
15542
15543 /* Return non-zero iff the attribute NAME is defined for the given DIE,
15544 and holds a non-zero value. This function should only be used for
15545 DW_FORM_flag or DW_FORM_flag_present attributes. */
15546
15547 static int
15548 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15549 {
15550 struct attribute *attr = dwarf2_attr (die, name, cu);
15551
15552 return (attr && DW_UNSND (attr));
15553 }
15554
15555 static int
15556 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
15557 {
15558 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15559 which value is non-zero. However, we have to be careful with
15560 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15561 (via dwarf2_flag_true_p) follows this attribute. So we may
15562 end up accidently finding a declaration attribute that belongs
15563 to a different DIE referenced by the specification attribute,
15564 even though the given DIE does not have a declaration attribute. */
15565 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15566 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
15567 }
15568
15569 /* Return the die giving the specification for DIE, if there is
15570 one. *SPEC_CU is the CU containing DIE on input, and the CU
15571 containing the return value on output. If there is no
15572 specification, but there is an abstract origin, that is
15573 returned. */
15574
15575 static struct die_info *
15576 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
15577 {
15578 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15579 *spec_cu);
15580
15581 if (spec_attr == NULL)
15582 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15583
15584 if (spec_attr == NULL)
15585 return NULL;
15586 else
15587 return follow_die_ref (die, spec_attr, spec_cu);
15588 }
15589
15590 /* Free the line_header structure *LH, and any arrays and strings it
15591 refers to.
15592 NOTE: This is also used as a "cleanup" function. */
15593
15594 static void
15595 free_line_header (struct line_header *lh)
15596 {
15597 if (lh->standard_opcode_lengths)
15598 xfree (lh->standard_opcode_lengths);
15599
15600 /* Remember that all the lh->file_names[i].name pointers are
15601 pointers into debug_line_buffer, and don't need to be freed. */
15602 if (lh->file_names)
15603 xfree (lh->file_names);
15604
15605 /* Similarly for the include directory names. */
15606 if (lh->include_dirs)
15607 xfree (lh->include_dirs);
15608
15609 xfree (lh);
15610 }
15611
15612 /* Add an entry to LH's include directory table. */
15613
15614 static void
15615 add_include_dir (struct line_header *lh, const char *include_dir)
15616 {
15617 /* Grow the array if necessary. */
15618 if (lh->include_dirs_size == 0)
15619 {
15620 lh->include_dirs_size = 1; /* for testing */
15621 lh->include_dirs = xmalloc (lh->include_dirs_size
15622 * sizeof (*lh->include_dirs));
15623 }
15624 else if (lh->num_include_dirs >= lh->include_dirs_size)
15625 {
15626 lh->include_dirs_size *= 2;
15627 lh->include_dirs = xrealloc (lh->include_dirs,
15628 (lh->include_dirs_size
15629 * sizeof (*lh->include_dirs)));
15630 }
15631
15632 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15633 }
15634
15635 /* Add an entry to LH's file name table. */
15636
15637 static void
15638 add_file_name (struct line_header *lh,
15639 const char *name,
15640 unsigned int dir_index,
15641 unsigned int mod_time,
15642 unsigned int length)
15643 {
15644 struct file_entry *fe;
15645
15646 /* Grow the array if necessary. */
15647 if (lh->file_names_size == 0)
15648 {
15649 lh->file_names_size = 1; /* for testing */
15650 lh->file_names = xmalloc (lh->file_names_size
15651 * sizeof (*lh->file_names));
15652 }
15653 else if (lh->num_file_names >= lh->file_names_size)
15654 {
15655 lh->file_names_size *= 2;
15656 lh->file_names = xrealloc (lh->file_names,
15657 (lh->file_names_size
15658 * sizeof (*lh->file_names)));
15659 }
15660
15661 fe = &lh->file_names[lh->num_file_names++];
15662 fe->name = name;
15663 fe->dir_index = dir_index;
15664 fe->mod_time = mod_time;
15665 fe->length = length;
15666 fe->included_p = 0;
15667 fe->symtab = NULL;
15668 }
15669
15670 /* A convenience function to find the proper .debug_line section for a
15671 CU. */
15672
15673 static struct dwarf2_section_info *
15674 get_debug_line_section (struct dwarf2_cu *cu)
15675 {
15676 struct dwarf2_section_info *section;
15677
15678 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15679 DWO file. */
15680 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15681 section = &cu->dwo_unit->dwo_file->sections.line;
15682 else if (cu->per_cu->is_dwz)
15683 {
15684 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15685
15686 section = &dwz->line;
15687 }
15688 else
15689 section = &dwarf2_per_objfile->line;
15690
15691 return section;
15692 }
15693
15694 /* Read the statement program header starting at OFFSET in
15695 .debug_line, or .debug_line.dwo. Return a pointer
15696 to a struct line_header, allocated using xmalloc.
15697
15698 NOTE: the strings in the include directory and file name tables of
15699 the returned object point into the dwarf line section buffer,
15700 and must not be freed. */
15701
15702 static struct line_header *
15703 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15704 {
15705 struct cleanup *back_to;
15706 struct line_header *lh;
15707 const gdb_byte *line_ptr;
15708 unsigned int bytes_read, offset_size;
15709 int i;
15710 const char *cur_dir, *cur_file;
15711 struct dwarf2_section_info *section;
15712 bfd *abfd;
15713
15714 section = get_debug_line_section (cu);
15715 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15716 if (section->buffer == NULL)
15717 {
15718 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15719 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15720 else
15721 complaint (&symfile_complaints, _("missing .debug_line section"));
15722 return 0;
15723 }
15724
15725 /* We can't do this until we know the section is non-empty.
15726 Only then do we know we have such a section. */
15727 abfd = section->asection->owner;
15728
15729 /* Make sure that at least there's room for the total_length field.
15730 That could be 12 bytes long, but we're just going to fudge that. */
15731 if (offset + 4 >= section->size)
15732 {
15733 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15734 return 0;
15735 }
15736
15737 lh = xmalloc (sizeof (*lh));
15738 memset (lh, 0, sizeof (*lh));
15739 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15740 (void *) lh);
15741
15742 line_ptr = section->buffer + offset;
15743
15744 /* Read in the header. */
15745 lh->total_length =
15746 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15747 &bytes_read, &offset_size);
15748 line_ptr += bytes_read;
15749 if (line_ptr + lh->total_length > (section->buffer + section->size))
15750 {
15751 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15752 do_cleanups (back_to);
15753 return 0;
15754 }
15755 lh->statement_program_end = line_ptr + lh->total_length;
15756 lh->version = read_2_bytes (abfd, line_ptr);
15757 line_ptr += 2;
15758 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15759 line_ptr += offset_size;
15760 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15761 line_ptr += 1;
15762 if (lh->version >= 4)
15763 {
15764 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15765 line_ptr += 1;
15766 }
15767 else
15768 lh->maximum_ops_per_instruction = 1;
15769
15770 if (lh->maximum_ops_per_instruction == 0)
15771 {
15772 lh->maximum_ops_per_instruction = 1;
15773 complaint (&symfile_complaints,
15774 _("invalid maximum_ops_per_instruction "
15775 "in `.debug_line' section"));
15776 }
15777
15778 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15779 line_ptr += 1;
15780 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15781 line_ptr += 1;
15782 lh->line_range = read_1_byte (abfd, line_ptr);
15783 line_ptr += 1;
15784 lh->opcode_base = read_1_byte (abfd, line_ptr);
15785 line_ptr += 1;
15786 lh->standard_opcode_lengths
15787 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15788
15789 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15790 for (i = 1; i < lh->opcode_base; ++i)
15791 {
15792 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15793 line_ptr += 1;
15794 }
15795
15796 /* Read directory table. */
15797 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15798 {
15799 line_ptr += bytes_read;
15800 add_include_dir (lh, cur_dir);
15801 }
15802 line_ptr += bytes_read;
15803
15804 /* Read file name table. */
15805 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15806 {
15807 unsigned int dir_index, mod_time, length;
15808
15809 line_ptr += bytes_read;
15810 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15811 line_ptr += bytes_read;
15812 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15813 line_ptr += bytes_read;
15814 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15815 line_ptr += bytes_read;
15816
15817 add_file_name (lh, cur_file, dir_index, mod_time, length);
15818 }
15819 line_ptr += bytes_read;
15820 lh->statement_program_start = line_ptr;
15821
15822 if (line_ptr > (section->buffer + section->size))
15823 complaint (&symfile_complaints,
15824 _("line number info header doesn't "
15825 "fit in `.debug_line' section"));
15826
15827 discard_cleanups (back_to);
15828 return lh;
15829 }
15830
15831 /* Subroutine of dwarf_decode_lines to simplify it.
15832 Return the file name of the psymtab for included file FILE_INDEX
15833 in line header LH of PST.
15834 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15835 If space for the result is malloc'd, it will be freed by a cleanup.
15836 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15837
15838 The function creates dangling cleanup registration. */
15839
15840 static const char *
15841 psymtab_include_file_name (const struct line_header *lh, int file_index,
15842 const struct partial_symtab *pst,
15843 const char *comp_dir)
15844 {
15845 const struct file_entry fe = lh->file_names [file_index];
15846 const char *include_name = fe.name;
15847 const char *include_name_to_compare = include_name;
15848 const char *dir_name = NULL;
15849 const char *pst_filename;
15850 char *copied_name = NULL;
15851 int file_is_pst;
15852
15853 if (fe.dir_index)
15854 dir_name = lh->include_dirs[fe.dir_index - 1];
15855
15856 if (!IS_ABSOLUTE_PATH (include_name)
15857 && (dir_name != NULL || comp_dir != NULL))
15858 {
15859 /* Avoid creating a duplicate psymtab for PST.
15860 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15861 Before we do the comparison, however, we need to account
15862 for DIR_NAME and COMP_DIR.
15863 First prepend dir_name (if non-NULL). If we still don't
15864 have an absolute path prepend comp_dir (if non-NULL).
15865 However, the directory we record in the include-file's
15866 psymtab does not contain COMP_DIR (to match the
15867 corresponding symtab(s)).
15868
15869 Example:
15870
15871 bash$ cd /tmp
15872 bash$ gcc -g ./hello.c
15873 include_name = "hello.c"
15874 dir_name = "."
15875 DW_AT_comp_dir = comp_dir = "/tmp"
15876 DW_AT_name = "./hello.c" */
15877
15878 if (dir_name != NULL)
15879 {
15880 char *tem = concat (dir_name, SLASH_STRING,
15881 include_name, (char *)NULL);
15882
15883 make_cleanup (xfree, tem);
15884 include_name = tem;
15885 include_name_to_compare = include_name;
15886 }
15887 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15888 {
15889 char *tem = concat (comp_dir, SLASH_STRING,
15890 include_name, (char *)NULL);
15891
15892 make_cleanup (xfree, tem);
15893 include_name_to_compare = tem;
15894 }
15895 }
15896
15897 pst_filename = pst->filename;
15898 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15899 {
15900 copied_name = concat (pst->dirname, SLASH_STRING,
15901 pst_filename, (char *)NULL);
15902 pst_filename = copied_name;
15903 }
15904
15905 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15906
15907 if (copied_name != NULL)
15908 xfree (copied_name);
15909
15910 if (file_is_pst)
15911 return NULL;
15912 return include_name;
15913 }
15914
15915 /* Ignore this record_line request. */
15916
15917 static void
15918 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15919 {
15920 return;
15921 }
15922
15923 /* Subroutine of dwarf_decode_lines to simplify it.
15924 Process the line number information in LH. */
15925
15926 static void
15927 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15928 struct dwarf2_cu *cu, struct partial_symtab *pst)
15929 {
15930 const gdb_byte *line_ptr, *extended_end;
15931 const gdb_byte *line_end;
15932 unsigned int bytes_read, extended_len;
15933 unsigned char op_code, extended_op, adj_opcode;
15934 CORE_ADDR baseaddr;
15935 struct objfile *objfile = cu->objfile;
15936 bfd *abfd = objfile->obfd;
15937 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15938 const int decode_for_pst_p = (pst != NULL);
15939 struct subfile *last_subfile = NULL;
15940 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15941 = record_line;
15942
15943 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15944
15945 line_ptr = lh->statement_program_start;
15946 line_end = lh->statement_program_end;
15947
15948 /* Read the statement sequences until there's nothing left. */
15949 while (line_ptr < line_end)
15950 {
15951 /* state machine registers */
15952 CORE_ADDR address = 0;
15953 unsigned int file = 1;
15954 unsigned int line = 1;
15955 unsigned int column = 0;
15956 int is_stmt = lh->default_is_stmt;
15957 int basic_block = 0;
15958 int end_sequence = 0;
15959 CORE_ADDR addr;
15960 unsigned char op_index = 0;
15961
15962 if (!decode_for_pst_p && lh->num_file_names >= file)
15963 {
15964 /* Start a subfile for the current file of the state machine. */
15965 /* lh->include_dirs and lh->file_names are 0-based, but the
15966 directory and file name numbers in the statement program
15967 are 1-based. */
15968 struct file_entry *fe = &lh->file_names[file - 1];
15969 const char *dir = NULL;
15970
15971 if (fe->dir_index)
15972 dir = lh->include_dirs[fe->dir_index - 1];
15973
15974 dwarf2_start_subfile (fe->name, dir, comp_dir);
15975 }
15976
15977 /* Decode the table. */
15978 while (!end_sequence)
15979 {
15980 op_code = read_1_byte (abfd, line_ptr);
15981 line_ptr += 1;
15982 if (line_ptr > line_end)
15983 {
15984 dwarf2_debug_line_missing_end_sequence_complaint ();
15985 break;
15986 }
15987
15988 if (op_code >= lh->opcode_base)
15989 {
15990 /* Special operand. */
15991 adj_opcode = op_code - lh->opcode_base;
15992 address += (((op_index + (adj_opcode / lh->line_range))
15993 / lh->maximum_ops_per_instruction)
15994 * lh->minimum_instruction_length);
15995 op_index = ((op_index + (adj_opcode / lh->line_range))
15996 % lh->maximum_ops_per_instruction);
15997 line += lh->line_base + (adj_opcode % lh->line_range);
15998 if (lh->num_file_names < file || file == 0)
15999 dwarf2_debug_line_missing_file_complaint ();
16000 /* For now we ignore lines not starting on an
16001 instruction boundary. */
16002 else if (op_index == 0)
16003 {
16004 lh->file_names[file - 1].included_p = 1;
16005 if (!decode_for_pst_p && is_stmt)
16006 {
16007 if (last_subfile != current_subfile)
16008 {
16009 addr = gdbarch_addr_bits_remove (gdbarch, address);
16010 if (last_subfile)
16011 (*p_record_line) (last_subfile, 0, addr);
16012 last_subfile = current_subfile;
16013 }
16014 /* Append row to matrix using current values. */
16015 addr = gdbarch_addr_bits_remove (gdbarch, address);
16016 (*p_record_line) (current_subfile, line, addr);
16017 }
16018 }
16019 basic_block = 0;
16020 }
16021 else switch (op_code)
16022 {
16023 case DW_LNS_extended_op:
16024 extended_len = read_unsigned_leb128 (abfd, line_ptr,
16025 &bytes_read);
16026 line_ptr += bytes_read;
16027 extended_end = line_ptr + extended_len;
16028 extended_op = read_1_byte (abfd, line_ptr);
16029 line_ptr += 1;
16030 switch (extended_op)
16031 {
16032 case DW_LNE_end_sequence:
16033 p_record_line = record_line;
16034 end_sequence = 1;
16035 break;
16036 case DW_LNE_set_address:
16037 address = read_address (abfd, line_ptr, cu, &bytes_read);
16038
16039 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
16040 {
16041 /* This line table is for a function which has been
16042 GCd by the linker. Ignore it. PR gdb/12528 */
16043
16044 long line_offset
16045 = line_ptr - get_debug_line_section (cu)->buffer;
16046
16047 complaint (&symfile_complaints,
16048 _(".debug_line address at offset 0x%lx is 0 "
16049 "[in module %s]"),
16050 line_offset, objfile->name);
16051 p_record_line = noop_record_line;
16052 }
16053
16054 op_index = 0;
16055 line_ptr += bytes_read;
16056 address += baseaddr;
16057 break;
16058 case DW_LNE_define_file:
16059 {
16060 const char *cur_file;
16061 unsigned int dir_index, mod_time, length;
16062
16063 cur_file = read_direct_string (abfd, line_ptr,
16064 &bytes_read);
16065 line_ptr += bytes_read;
16066 dir_index =
16067 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16068 line_ptr += bytes_read;
16069 mod_time =
16070 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16071 line_ptr += bytes_read;
16072 length =
16073 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16074 line_ptr += bytes_read;
16075 add_file_name (lh, cur_file, dir_index, mod_time, length);
16076 }
16077 break;
16078 case DW_LNE_set_discriminator:
16079 /* The discriminator is not interesting to the debugger;
16080 just ignore it. */
16081 line_ptr = extended_end;
16082 break;
16083 default:
16084 complaint (&symfile_complaints,
16085 _("mangled .debug_line section"));
16086 return;
16087 }
16088 /* Make sure that we parsed the extended op correctly. If e.g.
16089 we expected a different address size than the producer used,
16090 we may have read the wrong number of bytes. */
16091 if (line_ptr != extended_end)
16092 {
16093 complaint (&symfile_complaints,
16094 _("mangled .debug_line section"));
16095 return;
16096 }
16097 break;
16098 case DW_LNS_copy:
16099 if (lh->num_file_names < file || file == 0)
16100 dwarf2_debug_line_missing_file_complaint ();
16101 else
16102 {
16103 lh->file_names[file - 1].included_p = 1;
16104 if (!decode_for_pst_p && is_stmt)
16105 {
16106 if (last_subfile != current_subfile)
16107 {
16108 addr = gdbarch_addr_bits_remove (gdbarch, address);
16109 if (last_subfile)
16110 (*p_record_line) (last_subfile, 0, addr);
16111 last_subfile = current_subfile;
16112 }
16113 addr = gdbarch_addr_bits_remove (gdbarch, address);
16114 (*p_record_line) (current_subfile, line, addr);
16115 }
16116 }
16117 basic_block = 0;
16118 break;
16119 case DW_LNS_advance_pc:
16120 {
16121 CORE_ADDR adjust
16122 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16123
16124 address += (((op_index + adjust)
16125 / lh->maximum_ops_per_instruction)
16126 * lh->minimum_instruction_length);
16127 op_index = ((op_index + adjust)
16128 % lh->maximum_ops_per_instruction);
16129 line_ptr += bytes_read;
16130 }
16131 break;
16132 case DW_LNS_advance_line:
16133 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16134 line_ptr += bytes_read;
16135 break;
16136 case DW_LNS_set_file:
16137 {
16138 /* The arrays lh->include_dirs and lh->file_names are
16139 0-based, but the directory and file name numbers in
16140 the statement program are 1-based. */
16141 struct file_entry *fe;
16142 const char *dir = NULL;
16143
16144 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16145 line_ptr += bytes_read;
16146 if (lh->num_file_names < file || file == 0)
16147 dwarf2_debug_line_missing_file_complaint ();
16148 else
16149 {
16150 fe = &lh->file_names[file - 1];
16151 if (fe->dir_index)
16152 dir = lh->include_dirs[fe->dir_index - 1];
16153 if (!decode_for_pst_p)
16154 {
16155 last_subfile = current_subfile;
16156 dwarf2_start_subfile (fe->name, dir, comp_dir);
16157 }
16158 }
16159 }
16160 break;
16161 case DW_LNS_set_column:
16162 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16163 line_ptr += bytes_read;
16164 break;
16165 case DW_LNS_negate_stmt:
16166 is_stmt = (!is_stmt);
16167 break;
16168 case DW_LNS_set_basic_block:
16169 basic_block = 1;
16170 break;
16171 /* Add to the address register of the state machine the
16172 address increment value corresponding to special opcode
16173 255. I.e., this value is scaled by the minimum
16174 instruction length since special opcode 255 would have
16175 scaled the increment. */
16176 case DW_LNS_const_add_pc:
16177 {
16178 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16179
16180 address += (((op_index + adjust)
16181 / lh->maximum_ops_per_instruction)
16182 * lh->minimum_instruction_length);
16183 op_index = ((op_index + adjust)
16184 % lh->maximum_ops_per_instruction);
16185 }
16186 break;
16187 case DW_LNS_fixed_advance_pc:
16188 address += read_2_bytes (abfd, line_ptr);
16189 op_index = 0;
16190 line_ptr += 2;
16191 break;
16192 default:
16193 {
16194 /* Unknown standard opcode, ignore it. */
16195 int i;
16196
16197 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
16198 {
16199 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16200 line_ptr += bytes_read;
16201 }
16202 }
16203 }
16204 }
16205 if (lh->num_file_names < file || file == 0)
16206 dwarf2_debug_line_missing_file_complaint ();
16207 else
16208 {
16209 lh->file_names[file - 1].included_p = 1;
16210 if (!decode_for_pst_p)
16211 {
16212 addr = gdbarch_addr_bits_remove (gdbarch, address);
16213 (*p_record_line) (current_subfile, 0, addr);
16214 }
16215 }
16216 }
16217 }
16218
16219 /* Decode the Line Number Program (LNP) for the given line_header
16220 structure and CU. The actual information extracted and the type
16221 of structures created from the LNP depends on the value of PST.
16222
16223 1. If PST is NULL, then this procedure uses the data from the program
16224 to create all necessary symbol tables, and their linetables.
16225
16226 2. If PST is not NULL, this procedure reads the program to determine
16227 the list of files included by the unit represented by PST, and
16228 builds all the associated partial symbol tables.
16229
16230 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16231 It is used for relative paths in the line table.
16232 NOTE: When processing partial symtabs (pst != NULL),
16233 comp_dir == pst->dirname.
16234
16235 NOTE: It is important that psymtabs have the same file name (via strcmp)
16236 as the corresponding symtab. Since COMP_DIR is not used in the name of the
16237 symtab we don't use it in the name of the psymtabs we create.
16238 E.g. expand_line_sal requires this when finding psymtabs to expand.
16239 A good testcase for this is mb-inline.exp. */
16240
16241 static void
16242 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
16243 struct dwarf2_cu *cu, struct partial_symtab *pst,
16244 int want_line_info)
16245 {
16246 struct objfile *objfile = cu->objfile;
16247 const int decode_for_pst_p = (pst != NULL);
16248 struct subfile *first_subfile = current_subfile;
16249
16250 if (want_line_info)
16251 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
16252
16253 if (decode_for_pst_p)
16254 {
16255 int file_index;
16256
16257 /* Now that we're done scanning the Line Header Program, we can
16258 create the psymtab of each included file. */
16259 for (file_index = 0; file_index < lh->num_file_names; file_index++)
16260 if (lh->file_names[file_index].included_p == 1)
16261 {
16262 const char *include_name =
16263 psymtab_include_file_name (lh, file_index, pst, comp_dir);
16264 if (include_name != NULL)
16265 dwarf2_create_include_psymtab (include_name, pst, objfile);
16266 }
16267 }
16268 else
16269 {
16270 /* Make sure a symtab is created for every file, even files
16271 which contain only variables (i.e. no code with associated
16272 line numbers). */
16273 int i;
16274
16275 for (i = 0; i < lh->num_file_names; i++)
16276 {
16277 const char *dir = NULL;
16278 struct file_entry *fe;
16279
16280 fe = &lh->file_names[i];
16281 if (fe->dir_index)
16282 dir = lh->include_dirs[fe->dir_index - 1];
16283 dwarf2_start_subfile (fe->name, dir, comp_dir);
16284
16285 /* Skip the main file; we don't need it, and it must be
16286 allocated last, so that it will show up before the
16287 non-primary symtabs in the objfile's symtab list. */
16288 if (current_subfile == first_subfile)
16289 continue;
16290
16291 if (current_subfile->symtab == NULL)
16292 current_subfile->symtab = allocate_symtab (current_subfile->name,
16293 objfile);
16294 fe->symtab = current_subfile->symtab;
16295 }
16296 }
16297 }
16298
16299 /* Start a subfile for DWARF. FILENAME is the name of the file and
16300 DIRNAME the name of the source directory which contains FILENAME
16301 or NULL if not known. COMP_DIR is the compilation directory for the
16302 linetable's compilation unit or NULL if not known.
16303 This routine tries to keep line numbers from identical absolute and
16304 relative file names in a common subfile.
16305
16306 Using the `list' example from the GDB testsuite, which resides in
16307 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
16308 of /srcdir/list0.c yields the following debugging information for list0.c:
16309
16310 DW_AT_name: /srcdir/list0.c
16311 DW_AT_comp_dir: /compdir
16312 files.files[0].name: list0.h
16313 files.files[0].dir: /srcdir
16314 files.files[1].name: list0.c
16315 files.files[1].dir: /srcdir
16316
16317 The line number information for list0.c has to end up in a single
16318 subfile, so that `break /srcdir/list0.c:1' works as expected.
16319 start_subfile will ensure that this happens provided that we pass the
16320 concatenation of files.files[1].dir and files.files[1].name as the
16321 subfile's name. */
16322
16323 static void
16324 dwarf2_start_subfile (const char *filename, const char *dirname,
16325 const char *comp_dir)
16326 {
16327 char *copy = NULL;
16328
16329 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
16330 `start_symtab' will always pass the contents of DW_AT_comp_dir as
16331 second argument to start_subfile. To be consistent, we do the
16332 same here. In order not to lose the line information directory,
16333 we concatenate it to the filename when it makes sense.
16334 Note that the Dwarf3 standard says (speaking of filenames in line
16335 information): ``The directory index is ignored for file names
16336 that represent full path names''. Thus ignoring dirname in the
16337 `else' branch below isn't an issue. */
16338
16339 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
16340 {
16341 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
16342 filename = copy;
16343 }
16344
16345 start_subfile (filename, comp_dir);
16346
16347 if (copy != NULL)
16348 xfree (copy);
16349 }
16350
16351 /* Start a symtab for DWARF.
16352 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
16353
16354 static void
16355 dwarf2_start_symtab (struct dwarf2_cu *cu,
16356 const char *name, const char *comp_dir, CORE_ADDR low_pc)
16357 {
16358 start_symtab (name, comp_dir, low_pc);
16359 record_debugformat ("DWARF 2");
16360 record_producer (cu->producer);
16361
16362 /* We assume that we're processing GCC output. */
16363 processing_gcc_compilation = 2;
16364
16365 cu->processing_has_namespace_info = 0;
16366 }
16367
16368 static void
16369 var_decode_location (struct attribute *attr, struct symbol *sym,
16370 struct dwarf2_cu *cu)
16371 {
16372 struct objfile *objfile = cu->objfile;
16373 struct comp_unit_head *cu_header = &cu->header;
16374
16375 /* NOTE drow/2003-01-30: There used to be a comment and some special
16376 code here to turn a symbol with DW_AT_external and a
16377 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
16378 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
16379 with some versions of binutils) where shared libraries could have
16380 relocations against symbols in their debug information - the
16381 minimal symbol would have the right address, but the debug info
16382 would not. It's no longer necessary, because we will explicitly
16383 apply relocations when we read in the debug information now. */
16384
16385 /* A DW_AT_location attribute with no contents indicates that a
16386 variable has been optimized away. */
16387 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
16388 {
16389 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16390 return;
16391 }
16392
16393 /* Handle one degenerate form of location expression specially, to
16394 preserve GDB's previous behavior when section offsets are
16395 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
16396 then mark this symbol as LOC_STATIC. */
16397
16398 if (attr_form_is_block (attr)
16399 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
16400 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
16401 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
16402 && (DW_BLOCK (attr)->size
16403 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
16404 {
16405 unsigned int dummy;
16406
16407 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
16408 SYMBOL_VALUE_ADDRESS (sym) =
16409 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
16410 else
16411 SYMBOL_VALUE_ADDRESS (sym) =
16412 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
16413 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
16414 fixup_symbol_section (sym, objfile);
16415 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
16416 SYMBOL_SECTION (sym));
16417 return;
16418 }
16419
16420 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
16421 expression evaluator, and use LOC_COMPUTED only when necessary
16422 (i.e. when the value of a register or memory location is
16423 referenced, or a thread-local block, etc.). Then again, it might
16424 not be worthwhile. I'm assuming that it isn't unless performance
16425 or memory numbers show me otherwise. */
16426
16427 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
16428
16429 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
16430 cu->has_loclist = 1;
16431 }
16432
16433 /* Given a pointer to a DWARF information entry, figure out if we need
16434 to make a symbol table entry for it, and if so, create a new entry
16435 and return a pointer to it.
16436 If TYPE is NULL, determine symbol type from the die, otherwise
16437 used the passed type.
16438 If SPACE is not NULL, use it to hold the new symbol. If it is
16439 NULL, allocate a new symbol on the objfile's obstack. */
16440
16441 static struct symbol *
16442 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
16443 struct symbol *space)
16444 {
16445 struct objfile *objfile = cu->objfile;
16446 struct symbol *sym = NULL;
16447 const char *name;
16448 struct attribute *attr = NULL;
16449 struct attribute *attr2 = NULL;
16450 CORE_ADDR baseaddr;
16451 struct pending **list_to_add = NULL;
16452
16453 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
16454
16455 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16456
16457 name = dwarf2_name (die, cu);
16458 if (name)
16459 {
16460 const char *linkagename;
16461 int suppress_add = 0;
16462
16463 if (space)
16464 sym = space;
16465 else
16466 sym = allocate_symbol (objfile);
16467 OBJSTAT (objfile, n_syms++);
16468
16469 /* Cache this symbol's name and the name's demangled form (if any). */
16470 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
16471 linkagename = dwarf2_physname (name, die, cu);
16472 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
16473
16474 /* Fortran does not have mangling standard and the mangling does differ
16475 between gfortran, iFort etc. */
16476 if (cu->language == language_fortran
16477 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
16478 symbol_set_demangled_name (&(sym->ginfo),
16479 dwarf2_full_name (name, die, cu),
16480 NULL);
16481
16482 /* Default assumptions.
16483 Use the passed type or decode it from the die. */
16484 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16485 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16486 if (type != NULL)
16487 SYMBOL_TYPE (sym) = type;
16488 else
16489 SYMBOL_TYPE (sym) = die_type (die, cu);
16490 attr = dwarf2_attr (die,
16491 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16492 cu);
16493 if (attr)
16494 {
16495 SYMBOL_LINE (sym) = DW_UNSND (attr);
16496 }
16497
16498 attr = dwarf2_attr (die,
16499 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16500 cu);
16501 if (attr)
16502 {
16503 int file_index = DW_UNSND (attr);
16504
16505 if (cu->line_header == NULL
16506 || file_index > cu->line_header->num_file_names)
16507 complaint (&symfile_complaints,
16508 _("file index out of range"));
16509 else if (file_index > 0)
16510 {
16511 struct file_entry *fe;
16512
16513 fe = &cu->line_header->file_names[file_index - 1];
16514 SYMBOL_SYMTAB (sym) = fe->symtab;
16515 }
16516 }
16517
16518 switch (die->tag)
16519 {
16520 case DW_TAG_label:
16521 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
16522 if (attr)
16523 {
16524 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16525 }
16526 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16527 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
16528 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
16529 add_symbol_to_list (sym, cu->list_in_scope);
16530 break;
16531 case DW_TAG_subprogram:
16532 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16533 finish_block. */
16534 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16535 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16536 if ((attr2 && (DW_UNSND (attr2) != 0))
16537 || cu->language == language_ada)
16538 {
16539 /* Subprograms marked external are stored as a global symbol.
16540 Ada subprograms, whether marked external or not, are always
16541 stored as a global symbol, because we want to be able to
16542 access them globally. For instance, we want to be able
16543 to break on a nested subprogram without having to
16544 specify the context. */
16545 list_to_add = &global_symbols;
16546 }
16547 else
16548 {
16549 list_to_add = cu->list_in_scope;
16550 }
16551 break;
16552 case DW_TAG_inlined_subroutine:
16553 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16554 finish_block. */
16555 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16556 SYMBOL_INLINED (sym) = 1;
16557 list_to_add = cu->list_in_scope;
16558 break;
16559 case DW_TAG_template_value_param:
16560 suppress_add = 1;
16561 /* Fall through. */
16562 case DW_TAG_constant:
16563 case DW_TAG_variable:
16564 case DW_TAG_member:
16565 /* Compilation with minimal debug info may result in
16566 variables with missing type entries. Change the
16567 misleading `void' type to something sensible. */
16568 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
16569 SYMBOL_TYPE (sym)
16570 = objfile_type (objfile)->nodebug_data_symbol;
16571
16572 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16573 /* In the case of DW_TAG_member, we should only be called for
16574 static const members. */
16575 if (die->tag == DW_TAG_member)
16576 {
16577 /* dwarf2_add_field uses die_is_declaration,
16578 so we do the same. */
16579 gdb_assert (die_is_declaration (die, cu));
16580 gdb_assert (attr);
16581 }
16582 if (attr)
16583 {
16584 dwarf2_const_value (attr, sym, cu);
16585 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16586 if (!suppress_add)
16587 {
16588 if (attr2 && (DW_UNSND (attr2) != 0))
16589 list_to_add = &global_symbols;
16590 else
16591 list_to_add = cu->list_in_scope;
16592 }
16593 break;
16594 }
16595 attr = dwarf2_attr (die, DW_AT_location, cu);
16596 if (attr)
16597 {
16598 var_decode_location (attr, sym, cu);
16599 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16600
16601 /* Fortran explicitly imports any global symbols to the local
16602 scope by DW_TAG_common_block. */
16603 if (cu->language == language_fortran && die->parent
16604 && die->parent->tag == DW_TAG_common_block)
16605 attr2 = NULL;
16606
16607 if (SYMBOL_CLASS (sym) == LOC_STATIC
16608 && SYMBOL_VALUE_ADDRESS (sym) == 0
16609 && !dwarf2_per_objfile->has_section_at_zero)
16610 {
16611 /* When a static variable is eliminated by the linker,
16612 the corresponding debug information is not stripped
16613 out, but the variable address is set to null;
16614 do not add such variables into symbol table. */
16615 }
16616 else if (attr2 && (DW_UNSND (attr2) != 0))
16617 {
16618 /* Workaround gfortran PR debug/40040 - it uses
16619 DW_AT_location for variables in -fPIC libraries which may
16620 get overriden by other libraries/executable and get
16621 a different address. Resolve it by the minimal symbol
16622 which may come from inferior's executable using copy
16623 relocation. Make this workaround only for gfortran as for
16624 other compilers GDB cannot guess the minimal symbol
16625 Fortran mangling kind. */
16626 if (cu->language == language_fortran && die->parent
16627 && die->parent->tag == DW_TAG_module
16628 && cu->producer
16629 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
16630 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16631
16632 /* A variable with DW_AT_external is never static,
16633 but it may be block-scoped. */
16634 list_to_add = (cu->list_in_scope == &file_symbols
16635 ? &global_symbols : cu->list_in_scope);
16636 }
16637 else
16638 list_to_add = cu->list_in_scope;
16639 }
16640 else
16641 {
16642 /* We do not know the address of this symbol.
16643 If it is an external symbol and we have type information
16644 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16645 The address of the variable will then be determined from
16646 the minimal symbol table whenever the variable is
16647 referenced. */
16648 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16649
16650 /* Fortran explicitly imports any global symbols to the local
16651 scope by DW_TAG_common_block. */
16652 if (cu->language == language_fortran && die->parent
16653 && die->parent->tag == DW_TAG_common_block)
16654 {
16655 /* SYMBOL_CLASS doesn't matter here because
16656 read_common_block is going to reset it. */
16657 if (!suppress_add)
16658 list_to_add = cu->list_in_scope;
16659 }
16660 else if (attr2 && (DW_UNSND (attr2) != 0)
16661 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16662 {
16663 /* A variable with DW_AT_external is never static, but it
16664 may be block-scoped. */
16665 list_to_add = (cu->list_in_scope == &file_symbols
16666 ? &global_symbols : cu->list_in_scope);
16667
16668 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16669 }
16670 else if (!die_is_declaration (die, cu))
16671 {
16672 /* Use the default LOC_OPTIMIZED_OUT class. */
16673 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16674 if (!suppress_add)
16675 list_to_add = cu->list_in_scope;
16676 }
16677 }
16678 break;
16679 case DW_TAG_formal_parameter:
16680 /* If we are inside a function, mark this as an argument. If
16681 not, we might be looking at an argument to an inlined function
16682 when we do not have enough information to show inlined frames;
16683 pretend it's a local variable in that case so that the user can
16684 still see it. */
16685 if (context_stack_depth > 0
16686 && context_stack[context_stack_depth - 1].name != NULL)
16687 SYMBOL_IS_ARGUMENT (sym) = 1;
16688 attr = dwarf2_attr (die, DW_AT_location, cu);
16689 if (attr)
16690 {
16691 var_decode_location (attr, sym, cu);
16692 }
16693 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16694 if (attr)
16695 {
16696 dwarf2_const_value (attr, sym, cu);
16697 }
16698
16699 list_to_add = cu->list_in_scope;
16700 break;
16701 case DW_TAG_unspecified_parameters:
16702 /* From varargs functions; gdb doesn't seem to have any
16703 interest in this information, so just ignore it for now.
16704 (FIXME?) */
16705 break;
16706 case DW_TAG_template_type_param:
16707 suppress_add = 1;
16708 /* Fall through. */
16709 case DW_TAG_class_type:
16710 case DW_TAG_interface_type:
16711 case DW_TAG_structure_type:
16712 case DW_TAG_union_type:
16713 case DW_TAG_set_type:
16714 case DW_TAG_enumeration_type:
16715 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16716 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16717
16718 {
16719 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16720 really ever be static objects: otherwise, if you try
16721 to, say, break of a class's method and you're in a file
16722 which doesn't mention that class, it won't work unless
16723 the check for all static symbols in lookup_symbol_aux
16724 saves you. See the OtherFileClass tests in
16725 gdb.c++/namespace.exp. */
16726
16727 if (!suppress_add)
16728 {
16729 list_to_add = (cu->list_in_scope == &file_symbols
16730 && (cu->language == language_cplus
16731 || cu->language == language_java)
16732 ? &global_symbols : cu->list_in_scope);
16733
16734 /* The semantics of C++ state that "struct foo {
16735 ... }" also defines a typedef for "foo". A Java
16736 class declaration also defines a typedef for the
16737 class. */
16738 if (cu->language == language_cplus
16739 || cu->language == language_java
16740 || cu->language == language_ada)
16741 {
16742 /* The symbol's name is already allocated along
16743 with this objfile, so we don't need to
16744 duplicate it for the type. */
16745 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16746 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16747 }
16748 }
16749 }
16750 break;
16751 case DW_TAG_typedef:
16752 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16753 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16754 list_to_add = cu->list_in_scope;
16755 break;
16756 case DW_TAG_base_type:
16757 case DW_TAG_subrange_type:
16758 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16759 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16760 list_to_add = cu->list_in_scope;
16761 break;
16762 case DW_TAG_enumerator:
16763 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16764 if (attr)
16765 {
16766 dwarf2_const_value (attr, sym, cu);
16767 }
16768 {
16769 /* NOTE: carlton/2003-11-10: See comment above in the
16770 DW_TAG_class_type, etc. block. */
16771
16772 list_to_add = (cu->list_in_scope == &file_symbols
16773 && (cu->language == language_cplus
16774 || cu->language == language_java)
16775 ? &global_symbols : cu->list_in_scope);
16776 }
16777 break;
16778 case DW_TAG_namespace:
16779 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16780 list_to_add = &global_symbols;
16781 break;
16782 case DW_TAG_common_block:
16783 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16784 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16785 add_symbol_to_list (sym, cu->list_in_scope);
16786 break;
16787 default:
16788 /* Not a tag we recognize. Hopefully we aren't processing
16789 trash data, but since we must specifically ignore things
16790 we don't recognize, there is nothing else we should do at
16791 this point. */
16792 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16793 dwarf_tag_name (die->tag));
16794 break;
16795 }
16796
16797 if (suppress_add)
16798 {
16799 sym->hash_next = objfile->template_symbols;
16800 objfile->template_symbols = sym;
16801 list_to_add = NULL;
16802 }
16803
16804 if (list_to_add != NULL)
16805 add_symbol_to_list (sym, list_to_add);
16806
16807 /* For the benefit of old versions of GCC, check for anonymous
16808 namespaces based on the demangled name. */
16809 if (!cu->processing_has_namespace_info
16810 && cu->language == language_cplus)
16811 cp_scan_for_anonymous_namespaces (sym, objfile);
16812 }
16813 return (sym);
16814 }
16815
16816 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16817
16818 static struct symbol *
16819 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16820 {
16821 return new_symbol_full (die, type, cu, NULL);
16822 }
16823
16824 /* Given an attr with a DW_FORM_dataN value in host byte order,
16825 zero-extend it as appropriate for the symbol's type. The DWARF
16826 standard (v4) is not entirely clear about the meaning of using
16827 DW_FORM_dataN for a constant with a signed type, where the type is
16828 wider than the data. The conclusion of a discussion on the DWARF
16829 list was that this is unspecified. We choose to always zero-extend
16830 because that is the interpretation long in use by GCC. */
16831
16832 static gdb_byte *
16833 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
16834 struct dwarf2_cu *cu, LONGEST *value, int bits)
16835 {
16836 struct objfile *objfile = cu->objfile;
16837 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16838 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16839 LONGEST l = DW_UNSND (attr);
16840
16841 if (bits < sizeof (*value) * 8)
16842 {
16843 l &= ((LONGEST) 1 << bits) - 1;
16844 *value = l;
16845 }
16846 else if (bits == sizeof (*value) * 8)
16847 *value = l;
16848 else
16849 {
16850 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16851 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16852 return bytes;
16853 }
16854
16855 return NULL;
16856 }
16857
16858 /* Read a constant value from an attribute. Either set *VALUE, or if
16859 the value does not fit in *VALUE, set *BYTES - either already
16860 allocated on the objfile obstack, or newly allocated on OBSTACK,
16861 or, set *BATON, if we translated the constant to a location
16862 expression. */
16863
16864 static void
16865 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
16866 const char *name, struct obstack *obstack,
16867 struct dwarf2_cu *cu,
16868 LONGEST *value, const gdb_byte **bytes,
16869 struct dwarf2_locexpr_baton **baton)
16870 {
16871 struct objfile *objfile = cu->objfile;
16872 struct comp_unit_head *cu_header = &cu->header;
16873 struct dwarf_block *blk;
16874 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16875 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16876
16877 *value = 0;
16878 *bytes = NULL;
16879 *baton = NULL;
16880
16881 switch (attr->form)
16882 {
16883 case DW_FORM_addr:
16884 case DW_FORM_GNU_addr_index:
16885 {
16886 gdb_byte *data;
16887
16888 if (TYPE_LENGTH (type) != cu_header->addr_size)
16889 dwarf2_const_value_length_mismatch_complaint (name,
16890 cu_header->addr_size,
16891 TYPE_LENGTH (type));
16892 /* Symbols of this form are reasonably rare, so we just
16893 piggyback on the existing location code rather than writing
16894 a new implementation of symbol_computed_ops. */
16895 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
16896 (*baton)->per_cu = cu->per_cu;
16897 gdb_assert ((*baton)->per_cu);
16898
16899 (*baton)->size = 2 + cu_header->addr_size;
16900 data = obstack_alloc (obstack, (*baton)->size);
16901 (*baton)->data = data;
16902
16903 data[0] = DW_OP_addr;
16904 store_unsigned_integer (&data[1], cu_header->addr_size,
16905 byte_order, DW_ADDR (attr));
16906 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16907 }
16908 break;
16909 case DW_FORM_string:
16910 case DW_FORM_strp:
16911 case DW_FORM_GNU_str_index:
16912 case DW_FORM_GNU_strp_alt:
16913 /* DW_STRING is already allocated on the objfile obstack, point
16914 directly to it. */
16915 *bytes = (const gdb_byte *) DW_STRING (attr);
16916 break;
16917 case DW_FORM_block1:
16918 case DW_FORM_block2:
16919 case DW_FORM_block4:
16920 case DW_FORM_block:
16921 case DW_FORM_exprloc:
16922 blk = DW_BLOCK (attr);
16923 if (TYPE_LENGTH (type) != blk->size)
16924 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16925 TYPE_LENGTH (type));
16926 *bytes = blk->data;
16927 break;
16928
16929 /* The DW_AT_const_value attributes are supposed to carry the
16930 symbol's value "represented as it would be on the target
16931 architecture." By the time we get here, it's already been
16932 converted to host endianness, so we just need to sign- or
16933 zero-extend it as appropriate. */
16934 case DW_FORM_data1:
16935 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
16936 break;
16937 case DW_FORM_data2:
16938 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
16939 break;
16940 case DW_FORM_data4:
16941 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
16942 break;
16943 case DW_FORM_data8:
16944 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
16945 break;
16946
16947 case DW_FORM_sdata:
16948 *value = DW_SND (attr);
16949 break;
16950
16951 case DW_FORM_udata:
16952 *value = DW_UNSND (attr);
16953 break;
16954
16955 default:
16956 complaint (&symfile_complaints,
16957 _("unsupported const value attribute form: '%s'"),
16958 dwarf_form_name (attr->form));
16959 *value = 0;
16960 break;
16961 }
16962 }
16963
16964
16965 /* Copy constant value from an attribute to a symbol. */
16966
16967 static void
16968 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
16969 struct dwarf2_cu *cu)
16970 {
16971 struct objfile *objfile = cu->objfile;
16972 struct comp_unit_head *cu_header = &cu->header;
16973 LONGEST value;
16974 const gdb_byte *bytes;
16975 struct dwarf2_locexpr_baton *baton;
16976
16977 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16978 SYMBOL_PRINT_NAME (sym),
16979 &objfile->objfile_obstack, cu,
16980 &value, &bytes, &baton);
16981
16982 if (baton != NULL)
16983 {
16984 SYMBOL_LOCATION_BATON (sym) = baton;
16985 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16986 }
16987 else if (bytes != NULL)
16988 {
16989 SYMBOL_VALUE_BYTES (sym) = bytes;
16990 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
16991 }
16992 else
16993 {
16994 SYMBOL_VALUE (sym) = value;
16995 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
16996 }
16997 }
16998
16999 /* Return the type of the die in question using its DW_AT_type attribute. */
17000
17001 static struct type *
17002 die_type (struct die_info *die, struct dwarf2_cu *cu)
17003 {
17004 struct attribute *type_attr;
17005
17006 type_attr = dwarf2_attr (die, DW_AT_type, cu);
17007 if (!type_attr)
17008 {
17009 /* A missing DW_AT_type represents a void type. */
17010 return objfile_type (cu->objfile)->builtin_void;
17011 }
17012
17013 return lookup_die_type (die, type_attr, cu);
17014 }
17015
17016 /* True iff CU's producer generates GNAT Ada auxiliary information
17017 that allows to find parallel types through that information instead
17018 of having to do expensive parallel lookups by type name. */
17019
17020 static int
17021 need_gnat_info (struct dwarf2_cu *cu)
17022 {
17023 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
17024 of GNAT produces this auxiliary information, without any indication
17025 that it is produced. Part of enhancing the FSF version of GNAT
17026 to produce that information will be to put in place an indicator
17027 that we can use in order to determine whether the descriptive type
17028 info is available or not. One suggestion that has been made is
17029 to use a new attribute, attached to the CU die. For now, assume
17030 that the descriptive type info is not available. */
17031 return 0;
17032 }
17033
17034 /* Return the auxiliary type of the die in question using its
17035 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
17036 attribute is not present. */
17037
17038 static struct type *
17039 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
17040 {
17041 struct attribute *type_attr;
17042
17043 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
17044 if (!type_attr)
17045 return NULL;
17046
17047 return lookup_die_type (die, type_attr, cu);
17048 }
17049
17050 /* If DIE has a descriptive_type attribute, then set the TYPE's
17051 descriptive type accordingly. */
17052
17053 static void
17054 set_descriptive_type (struct type *type, struct die_info *die,
17055 struct dwarf2_cu *cu)
17056 {
17057 struct type *descriptive_type = die_descriptive_type (die, cu);
17058
17059 if (descriptive_type)
17060 {
17061 ALLOCATE_GNAT_AUX_TYPE (type);
17062 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
17063 }
17064 }
17065
17066 /* Return the containing type of the die in question using its
17067 DW_AT_containing_type attribute. */
17068
17069 static struct type *
17070 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
17071 {
17072 struct attribute *type_attr;
17073
17074 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
17075 if (!type_attr)
17076 error (_("Dwarf Error: Problem turning containing type into gdb type "
17077 "[in module %s]"), cu->objfile->name);
17078
17079 return lookup_die_type (die, type_attr, cu);
17080 }
17081
17082 /* Return an error marker type to use for the ill formed type in DIE/CU. */
17083
17084 static struct type *
17085 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
17086 {
17087 struct objfile *objfile = dwarf2_per_objfile->objfile;
17088 char *message, *saved;
17089
17090 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
17091 objfile->name,
17092 cu->header.offset.sect_off,
17093 die->offset.sect_off);
17094 saved = obstack_copy0 (&objfile->objfile_obstack,
17095 message, strlen (message));
17096 xfree (message);
17097
17098 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
17099 }
17100
17101 /* Look up the type of DIE in CU using its type attribute ATTR.
17102 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
17103 DW_AT_containing_type.
17104 If there is no type substitute an error marker. */
17105
17106 static struct type *
17107 lookup_die_type (struct die_info *die, const struct attribute *attr,
17108 struct dwarf2_cu *cu)
17109 {
17110 struct objfile *objfile = cu->objfile;
17111 struct type *this_type;
17112
17113 gdb_assert (attr->name == DW_AT_type
17114 || attr->name == DW_AT_GNAT_descriptive_type
17115 || attr->name == DW_AT_containing_type);
17116
17117 /* First see if we have it cached. */
17118
17119 if (attr->form == DW_FORM_GNU_ref_alt)
17120 {
17121 struct dwarf2_per_cu_data *per_cu;
17122 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17123
17124 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17125 this_type = get_die_type_at_offset (offset, per_cu);
17126 }
17127 else if (attr_form_is_ref (attr))
17128 {
17129 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17130
17131 this_type = get_die_type_at_offset (offset, cu->per_cu);
17132 }
17133 else if (attr->form == DW_FORM_ref_sig8)
17134 {
17135 ULONGEST signature = DW_SIGNATURE (attr);
17136
17137 return get_signatured_type (die, signature, cu);
17138 }
17139 else
17140 {
17141 complaint (&symfile_complaints,
17142 _("Dwarf Error: Bad type attribute %s in DIE"
17143 " at 0x%x [in module %s]"),
17144 dwarf_attr_name (attr->name), die->offset.sect_off,
17145 objfile->name);
17146 return build_error_marker_type (cu, die);
17147 }
17148
17149 /* If not cached we need to read it in. */
17150
17151 if (this_type == NULL)
17152 {
17153 struct die_info *type_die = NULL;
17154 struct dwarf2_cu *type_cu = cu;
17155
17156 if (attr_form_is_ref (attr))
17157 type_die = follow_die_ref (die, attr, &type_cu);
17158 if (type_die == NULL)
17159 return build_error_marker_type (cu, die);
17160 /* If we find the type now, it's probably because the type came
17161 from an inter-CU reference and the type's CU got expanded before
17162 ours. */
17163 this_type = read_type_die (type_die, type_cu);
17164 }
17165
17166 /* If we still don't have a type use an error marker. */
17167
17168 if (this_type == NULL)
17169 return build_error_marker_type (cu, die);
17170
17171 return this_type;
17172 }
17173
17174 /* Return the type in DIE, CU.
17175 Returns NULL for invalid types.
17176
17177 This first does a lookup in die_type_hash,
17178 and only reads the die in if necessary.
17179
17180 NOTE: This can be called when reading in partial or full symbols. */
17181
17182 static struct type *
17183 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
17184 {
17185 struct type *this_type;
17186
17187 this_type = get_die_type (die, cu);
17188 if (this_type)
17189 return this_type;
17190
17191 return read_type_die_1 (die, cu);
17192 }
17193
17194 /* Read the type in DIE, CU.
17195 Returns NULL for invalid types. */
17196
17197 static struct type *
17198 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
17199 {
17200 struct type *this_type = NULL;
17201
17202 switch (die->tag)
17203 {
17204 case DW_TAG_class_type:
17205 case DW_TAG_interface_type:
17206 case DW_TAG_structure_type:
17207 case DW_TAG_union_type:
17208 this_type = read_structure_type (die, cu);
17209 break;
17210 case DW_TAG_enumeration_type:
17211 this_type = read_enumeration_type (die, cu);
17212 break;
17213 case DW_TAG_subprogram:
17214 case DW_TAG_subroutine_type:
17215 case DW_TAG_inlined_subroutine:
17216 this_type = read_subroutine_type (die, cu);
17217 break;
17218 case DW_TAG_array_type:
17219 this_type = read_array_type (die, cu);
17220 break;
17221 case DW_TAG_set_type:
17222 this_type = read_set_type (die, cu);
17223 break;
17224 case DW_TAG_pointer_type:
17225 this_type = read_tag_pointer_type (die, cu);
17226 break;
17227 case DW_TAG_ptr_to_member_type:
17228 this_type = read_tag_ptr_to_member_type (die, cu);
17229 break;
17230 case DW_TAG_reference_type:
17231 this_type = read_tag_reference_type (die, cu);
17232 break;
17233 case DW_TAG_const_type:
17234 this_type = read_tag_const_type (die, cu);
17235 break;
17236 case DW_TAG_volatile_type:
17237 this_type = read_tag_volatile_type (die, cu);
17238 break;
17239 case DW_TAG_restrict_type:
17240 this_type = read_tag_restrict_type (die, cu);
17241 break;
17242 case DW_TAG_string_type:
17243 this_type = read_tag_string_type (die, cu);
17244 break;
17245 case DW_TAG_typedef:
17246 this_type = read_typedef (die, cu);
17247 break;
17248 case DW_TAG_subrange_type:
17249 this_type = read_subrange_type (die, cu);
17250 break;
17251 case DW_TAG_base_type:
17252 this_type = read_base_type (die, cu);
17253 break;
17254 case DW_TAG_unspecified_type:
17255 this_type = read_unspecified_type (die, cu);
17256 break;
17257 case DW_TAG_namespace:
17258 this_type = read_namespace_type (die, cu);
17259 break;
17260 case DW_TAG_module:
17261 this_type = read_module_type (die, cu);
17262 break;
17263 default:
17264 complaint (&symfile_complaints,
17265 _("unexpected tag in read_type_die: '%s'"),
17266 dwarf_tag_name (die->tag));
17267 break;
17268 }
17269
17270 return this_type;
17271 }
17272
17273 /* See if we can figure out if the class lives in a namespace. We do
17274 this by looking for a member function; its demangled name will
17275 contain namespace info, if there is any.
17276 Return the computed name or NULL.
17277 Space for the result is allocated on the objfile's obstack.
17278 This is the full-die version of guess_partial_die_structure_name.
17279 In this case we know DIE has no useful parent. */
17280
17281 static char *
17282 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
17283 {
17284 struct die_info *spec_die;
17285 struct dwarf2_cu *spec_cu;
17286 struct die_info *child;
17287
17288 spec_cu = cu;
17289 spec_die = die_specification (die, &spec_cu);
17290 if (spec_die != NULL)
17291 {
17292 die = spec_die;
17293 cu = spec_cu;
17294 }
17295
17296 for (child = die->child;
17297 child != NULL;
17298 child = child->sibling)
17299 {
17300 if (child->tag == DW_TAG_subprogram)
17301 {
17302 struct attribute *attr;
17303
17304 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
17305 if (attr == NULL)
17306 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
17307 if (attr != NULL)
17308 {
17309 char *actual_name
17310 = language_class_name_from_physname (cu->language_defn,
17311 DW_STRING (attr));
17312 char *name = NULL;
17313
17314 if (actual_name != NULL)
17315 {
17316 const char *die_name = dwarf2_name (die, cu);
17317
17318 if (die_name != NULL
17319 && strcmp (die_name, actual_name) != 0)
17320 {
17321 /* Strip off the class name from the full name.
17322 We want the prefix. */
17323 int die_name_len = strlen (die_name);
17324 int actual_name_len = strlen (actual_name);
17325
17326 /* Test for '::' as a sanity check. */
17327 if (actual_name_len > die_name_len + 2
17328 && actual_name[actual_name_len
17329 - die_name_len - 1] == ':')
17330 name =
17331 obstack_copy0 (&cu->objfile->objfile_obstack,
17332 actual_name,
17333 actual_name_len - die_name_len - 2);
17334 }
17335 }
17336 xfree (actual_name);
17337 return name;
17338 }
17339 }
17340 }
17341
17342 return NULL;
17343 }
17344
17345 /* GCC might emit a nameless typedef that has a linkage name. Determine the
17346 prefix part in such case. See
17347 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17348
17349 static char *
17350 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
17351 {
17352 struct attribute *attr;
17353 char *base;
17354
17355 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
17356 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
17357 return NULL;
17358
17359 attr = dwarf2_attr (die, DW_AT_name, cu);
17360 if (attr != NULL && DW_STRING (attr) != NULL)
17361 return NULL;
17362
17363 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17364 if (attr == NULL)
17365 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17366 if (attr == NULL || DW_STRING (attr) == NULL)
17367 return NULL;
17368
17369 /* dwarf2_name had to be already called. */
17370 gdb_assert (DW_STRING_IS_CANONICAL (attr));
17371
17372 /* Strip the base name, keep any leading namespaces/classes. */
17373 base = strrchr (DW_STRING (attr), ':');
17374 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
17375 return "";
17376
17377 return obstack_copy0 (&cu->objfile->objfile_obstack,
17378 DW_STRING (attr), &base[-1] - DW_STRING (attr));
17379 }
17380
17381 /* Return the name of the namespace/class that DIE is defined within,
17382 or "" if we can't tell. The caller should not xfree the result.
17383
17384 For example, if we're within the method foo() in the following
17385 code:
17386
17387 namespace N {
17388 class C {
17389 void foo () {
17390 }
17391 };
17392 }
17393
17394 then determine_prefix on foo's die will return "N::C". */
17395
17396 static const char *
17397 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
17398 {
17399 struct die_info *parent, *spec_die;
17400 struct dwarf2_cu *spec_cu;
17401 struct type *parent_type;
17402 char *retval;
17403
17404 if (cu->language != language_cplus && cu->language != language_java
17405 && cu->language != language_fortran)
17406 return "";
17407
17408 retval = anonymous_struct_prefix (die, cu);
17409 if (retval)
17410 return retval;
17411
17412 /* We have to be careful in the presence of DW_AT_specification.
17413 For example, with GCC 3.4, given the code
17414
17415 namespace N {
17416 void foo() {
17417 // Definition of N::foo.
17418 }
17419 }
17420
17421 then we'll have a tree of DIEs like this:
17422
17423 1: DW_TAG_compile_unit
17424 2: DW_TAG_namespace // N
17425 3: DW_TAG_subprogram // declaration of N::foo
17426 4: DW_TAG_subprogram // definition of N::foo
17427 DW_AT_specification // refers to die #3
17428
17429 Thus, when processing die #4, we have to pretend that we're in
17430 the context of its DW_AT_specification, namely the contex of die
17431 #3. */
17432 spec_cu = cu;
17433 spec_die = die_specification (die, &spec_cu);
17434 if (spec_die == NULL)
17435 parent = die->parent;
17436 else
17437 {
17438 parent = spec_die->parent;
17439 cu = spec_cu;
17440 }
17441
17442 if (parent == NULL)
17443 return "";
17444 else if (parent->building_fullname)
17445 {
17446 const char *name;
17447 const char *parent_name;
17448
17449 /* It has been seen on RealView 2.2 built binaries,
17450 DW_TAG_template_type_param types actually _defined_ as
17451 children of the parent class:
17452
17453 enum E {};
17454 template class <class Enum> Class{};
17455 Class<enum E> class_e;
17456
17457 1: DW_TAG_class_type (Class)
17458 2: DW_TAG_enumeration_type (E)
17459 3: DW_TAG_enumerator (enum1:0)
17460 3: DW_TAG_enumerator (enum2:1)
17461 ...
17462 2: DW_TAG_template_type_param
17463 DW_AT_type DW_FORM_ref_udata (E)
17464
17465 Besides being broken debug info, it can put GDB into an
17466 infinite loop. Consider:
17467
17468 When we're building the full name for Class<E>, we'll start
17469 at Class, and go look over its template type parameters,
17470 finding E. We'll then try to build the full name of E, and
17471 reach here. We're now trying to build the full name of E,
17472 and look over the parent DIE for containing scope. In the
17473 broken case, if we followed the parent DIE of E, we'd again
17474 find Class, and once again go look at its template type
17475 arguments, etc., etc. Simply don't consider such parent die
17476 as source-level parent of this die (it can't be, the language
17477 doesn't allow it), and break the loop here. */
17478 name = dwarf2_name (die, cu);
17479 parent_name = dwarf2_name (parent, cu);
17480 complaint (&symfile_complaints,
17481 _("template param type '%s' defined within parent '%s'"),
17482 name ? name : "<unknown>",
17483 parent_name ? parent_name : "<unknown>");
17484 return "";
17485 }
17486 else
17487 switch (parent->tag)
17488 {
17489 case DW_TAG_namespace:
17490 parent_type = read_type_die (parent, cu);
17491 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17492 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17493 Work around this problem here. */
17494 if (cu->language == language_cplus
17495 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17496 return "";
17497 /* We give a name to even anonymous namespaces. */
17498 return TYPE_TAG_NAME (parent_type);
17499 case DW_TAG_class_type:
17500 case DW_TAG_interface_type:
17501 case DW_TAG_structure_type:
17502 case DW_TAG_union_type:
17503 case DW_TAG_module:
17504 parent_type = read_type_die (parent, cu);
17505 if (TYPE_TAG_NAME (parent_type) != NULL)
17506 return TYPE_TAG_NAME (parent_type);
17507 else
17508 /* An anonymous structure is only allowed non-static data
17509 members; no typedefs, no member functions, et cetera.
17510 So it does not need a prefix. */
17511 return "";
17512 case DW_TAG_compile_unit:
17513 case DW_TAG_partial_unit:
17514 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17515 if (cu->language == language_cplus
17516 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17517 && die->child != NULL
17518 && (die->tag == DW_TAG_class_type
17519 || die->tag == DW_TAG_structure_type
17520 || die->tag == DW_TAG_union_type))
17521 {
17522 char *name = guess_full_die_structure_name (die, cu);
17523 if (name != NULL)
17524 return name;
17525 }
17526 return "";
17527 default:
17528 return determine_prefix (parent, cu);
17529 }
17530 }
17531
17532 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17533 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17534 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17535 an obconcat, otherwise allocate storage for the result. The CU argument is
17536 used to determine the language and hence, the appropriate separator. */
17537
17538 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
17539
17540 static char *
17541 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17542 int physname, struct dwarf2_cu *cu)
17543 {
17544 const char *lead = "";
17545 const char *sep;
17546
17547 if (suffix == NULL || suffix[0] == '\0'
17548 || prefix == NULL || prefix[0] == '\0')
17549 sep = "";
17550 else if (cu->language == language_java)
17551 sep = ".";
17552 else if (cu->language == language_fortran && physname)
17553 {
17554 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17555 DW_AT_MIPS_linkage_name is preferred and used instead. */
17556
17557 lead = "__";
17558 sep = "_MOD_";
17559 }
17560 else
17561 sep = "::";
17562
17563 if (prefix == NULL)
17564 prefix = "";
17565 if (suffix == NULL)
17566 suffix = "";
17567
17568 if (obs == NULL)
17569 {
17570 char *retval
17571 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
17572
17573 strcpy (retval, lead);
17574 strcat (retval, prefix);
17575 strcat (retval, sep);
17576 strcat (retval, suffix);
17577 return retval;
17578 }
17579 else
17580 {
17581 /* We have an obstack. */
17582 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
17583 }
17584 }
17585
17586 /* Return sibling of die, NULL if no sibling. */
17587
17588 static struct die_info *
17589 sibling_die (struct die_info *die)
17590 {
17591 return die->sibling;
17592 }
17593
17594 /* Get name of a die, return NULL if not found. */
17595
17596 static const char *
17597 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
17598 struct obstack *obstack)
17599 {
17600 if (name && cu->language == language_cplus)
17601 {
17602 char *canon_name = cp_canonicalize_string (name);
17603
17604 if (canon_name != NULL)
17605 {
17606 if (strcmp (canon_name, name) != 0)
17607 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
17608 xfree (canon_name);
17609 }
17610 }
17611
17612 return name;
17613 }
17614
17615 /* Get name of a die, return NULL if not found. */
17616
17617 static const char *
17618 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
17619 {
17620 struct attribute *attr;
17621
17622 attr = dwarf2_attr (die, DW_AT_name, cu);
17623 if ((!attr || !DW_STRING (attr))
17624 && die->tag != DW_TAG_class_type
17625 && die->tag != DW_TAG_interface_type
17626 && die->tag != DW_TAG_structure_type
17627 && die->tag != DW_TAG_union_type)
17628 return NULL;
17629
17630 switch (die->tag)
17631 {
17632 case DW_TAG_compile_unit:
17633 case DW_TAG_partial_unit:
17634 /* Compilation units have a DW_AT_name that is a filename, not
17635 a source language identifier. */
17636 case DW_TAG_enumeration_type:
17637 case DW_TAG_enumerator:
17638 /* These tags always have simple identifiers already; no need
17639 to canonicalize them. */
17640 return DW_STRING (attr);
17641
17642 case DW_TAG_subprogram:
17643 /* Java constructors will all be named "<init>", so return
17644 the class name when we see this special case. */
17645 if (cu->language == language_java
17646 && DW_STRING (attr) != NULL
17647 && strcmp (DW_STRING (attr), "<init>") == 0)
17648 {
17649 struct dwarf2_cu *spec_cu = cu;
17650 struct die_info *spec_die;
17651
17652 /* GCJ will output '<init>' for Java constructor names.
17653 For this special case, return the name of the parent class. */
17654
17655 /* GCJ may output suprogram DIEs with AT_specification set.
17656 If so, use the name of the specified DIE. */
17657 spec_die = die_specification (die, &spec_cu);
17658 if (spec_die != NULL)
17659 return dwarf2_name (spec_die, spec_cu);
17660
17661 do
17662 {
17663 die = die->parent;
17664 if (die->tag == DW_TAG_class_type)
17665 return dwarf2_name (die, cu);
17666 }
17667 while (die->tag != DW_TAG_compile_unit
17668 && die->tag != DW_TAG_partial_unit);
17669 }
17670 break;
17671
17672 case DW_TAG_class_type:
17673 case DW_TAG_interface_type:
17674 case DW_TAG_structure_type:
17675 case DW_TAG_union_type:
17676 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17677 structures or unions. These were of the form "._%d" in GCC 4.1,
17678 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17679 and GCC 4.4. We work around this problem by ignoring these. */
17680 if (attr && DW_STRING (attr)
17681 && (strncmp (DW_STRING (attr), "._", 2) == 0
17682 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17683 return NULL;
17684
17685 /* GCC might emit a nameless typedef that has a linkage name. See
17686 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17687 if (!attr || DW_STRING (attr) == NULL)
17688 {
17689 char *demangled = NULL;
17690
17691 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17692 if (attr == NULL)
17693 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17694
17695 if (attr == NULL || DW_STRING (attr) == NULL)
17696 return NULL;
17697
17698 /* Avoid demangling DW_STRING (attr) the second time on a second
17699 call for the same DIE. */
17700 if (!DW_STRING_IS_CANONICAL (attr))
17701 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
17702
17703 if (demangled)
17704 {
17705 char *base;
17706
17707 /* FIXME: we already did this for the partial symbol... */
17708 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17709 demangled, strlen (demangled));
17710 DW_STRING_IS_CANONICAL (attr) = 1;
17711 xfree (demangled);
17712
17713 /* Strip any leading namespaces/classes, keep only the base name.
17714 DW_AT_name for named DIEs does not contain the prefixes. */
17715 base = strrchr (DW_STRING (attr), ':');
17716 if (base && base > DW_STRING (attr) && base[-1] == ':')
17717 return &base[1];
17718 else
17719 return DW_STRING (attr);
17720 }
17721 }
17722 break;
17723
17724 default:
17725 break;
17726 }
17727
17728 if (!DW_STRING_IS_CANONICAL (attr))
17729 {
17730 DW_STRING (attr)
17731 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17732 &cu->objfile->objfile_obstack);
17733 DW_STRING_IS_CANONICAL (attr) = 1;
17734 }
17735 return DW_STRING (attr);
17736 }
17737
17738 /* Return the die that this die in an extension of, or NULL if there
17739 is none. *EXT_CU is the CU containing DIE on input, and the CU
17740 containing the return value on output. */
17741
17742 static struct die_info *
17743 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17744 {
17745 struct attribute *attr;
17746
17747 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17748 if (attr == NULL)
17749 return NULL;
17750
17751 return follow_die_ref (die, attr, ext_cu);
17752 }
17753
17754 /* Convert a DIE tag into its string name. */
17755
17756 static const char *
17757 dwarf_tag_name (unsigned tag)
17758 {
17759 const char *name = get_DW_TAG_name (tag);
17760
17761 if (name == NULL)
17762 return "DW_TAG_<unknown>";
17763
17764 return name;
17765 }
17766
17767 /* Convert a DWARF attribute code into its string name. */
17768
17769 static const char *
17770 dwarf_attr_name (unsigned attr)
17771 {
17772 const char *name;
17773
17774 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17775 if (attr == DW_AT_MIPS_fde)
17776 return "DW_AT_MIPS_fde";
17777 #else
17778 if (attr == DW_AT_HP_block_index)
17779 return "DW_AT_HP_block_index";
17780 #endif
17781
17782 name = get_DW_AT_name (attr);
17783
17784 if (name == NULL)
17785 return "DW_AT_<unknown>";
17786
17787 return name;
17788 }
17789
17790 /* Convert a DWARF value form code into its string name. */
17791
17792 static const char *
17793 dwarf_form_name (unsigned form)
17794 {
17795 const char *name = get_DW_FORM_name (form);
17796
17797 if (name == NULL)
17798 return "DW_FORM_<unknown>";
17799
17800 return name;
17801 }
17802
17803 static char *
17804 dwarf_bool_name (unsigned mybool)
17805 {
17806 if (mybool)
17807 return "TRUE";
17808 else
17809 return "FALSE";
17810 }
17811
17812 /* Convert a DWARF type code into its string name. */
17813
17814 static const char *
17815 dwarf_type_encoding_name (unsigned enc)
17816 {
17817 const char *name = get_DW_ATE_name (enc);
17818
17819 if (name == NULL)
17820 return "DW_ATE_<unknown>";
17821
17822 return name;
17823 }
17824
17825 static void
17826 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17827 {
17828 unsigned int i;
17829
17830 print_spaces (indent, f);
17831 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17832 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17833
17834 if (die->parent != NULL)
17835 {
17836 print_spaces (indent, f);
17837 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17838 die->parent->offset.sect_off);
17839 }
17840
17841 print_spaces (indent, f);
17842 fprintf_unfiltered (f, " has children: %s\n",
17843 dwarf_bool_name (die->child != NULL));
17844
17845 print_spaces (indent, f);
17846 fprintf_unfiltered (f, " attributes:\n");
17847
17848 for (i = 0; i < die->num_attrs; ++i)
17849 {
17850 print_spaces (indent, f);
17851 fprintf_unfiltered (f, " %s (%s) ",
17852 dwarf_attr_name (die->attrs[i].name),
17853 dwarf_form_name (die->attrs[i].form));
17854
17855 switch (die->attrs[i].form)
17856 {
17857 case DW_FORM_addr:
17858 case DW_FORM_GNU_addr_index:
17859 fprintf_unfiltered (f, "address: ");
17860 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17861 break;
17862 case DW_FORM_block2:
17863 case DW_FORM_block4:
17864 case DW_FORM_block:
17865 case DW_FORM_block1:
17866 fprintf_unfiltered (f, "block: size %s",
17867 pulongest (DW_BLOCK (&die->attrs[i])->size));
17868 break;
17869 case DW_FORM_exprloc:
17870 fprintf_unfiltered (f, "expression: size %s",
17871 pulongest (DW_BLOCK (&die->attrs[i])->size));
17872 break;
17873 case DW_FORM_ref_addr:
17874 fprintf_unfiltered (f, "ref address: ");
17875 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17876 break;
17877 case DW_FORM_GNU_ref_alt:
17878 fprintf_unfiltered (f, "alt ref address: ");
17879 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17880 break;
17881 case DW_FORM_ref1:
17882 case DW_FORM_ref2:
17883 case DW_FORM_ref4:
17884 case DW_FORM_ref8:
17885 case DW_FORM_ref_udata:
17886 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17887 (long) (DW_UNSND (&die->attrs[i])));
17888 break;
17889 case DW_FORM_data1:
17890 case DW_FORM_data2:
17891 case DW_FORM_data4:
17892 case DW_FORM_data8:
17893 case DW_FORM_udata:
17894 case DW_FORM_sdata:
17895 fprintf_unfiltered (f, "constant: %s",
17896 pulongest (DW_UNSND (&die->attrs[i])));
17897 break;
17898 case DW_FORM_sec_offset:
17899 fprintf_unfiltered (f, "section offset: %s",
17900 pulongest (DW_UNSND (&die->attrs[i])));
17901 break;
17902 case DW_FORM_ref_sig8:
17903 fprintf_unfiltered (f, "signature: %s",
17904 hex_string (DW_SIGNATURE (&die->attrs[i])));
17905 break;
17906 case DW_FORM_string:
17907 case DW_FORM_strp:
17908 case DW_FORM_GNU_str_index:
17909 case DW_FORM_GNU_strp_alt:
17910 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17911 DW_STRING (&die->attrs[i])
17912 ? DW_STRING (&die->attrs[i]) : "",
17913 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17914 break;
17915 case DW_FORM_flag:
17916 if (DW_UNSND (&die->attrs[i]))
17917 fprintf_unfiltered (f, "flag: TRUE");
17918 else
17919 fprintf_unfiltered (f, "flag: FALSE");
17920 break;
17921 case DW_FORM_flag_present:
17922 fprintf_unfiltered (f, "flag: TRUE");
17923 break;
17924 case DW_FORM_indirect:
17925 /* The reader will have reduced the indirect form to
17926 the "base form" so this form should not occur. */
17927 fprintf_unfiltered (f,
17928 "unexpected attribute form: DW_FORM_indirect");
17929 break;
17930 default:
17931 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17932 die->attrs[i].form);
17933 break;
17934 }
17935 fprintf_unfiltered (f, "\n");
17936 }
17937 }
17938
17939 static void
17940 dump_die_for_error (struct die_info *die)
17941 {
17942 dump_die_shallow (gdb_stderr, 0, die);
17943 }
17944
17945 static void
17946 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17947 {
17948 int indent = level * 4;
17949
17950 gdb_assert (die != NULL);
17951
17952 if (level >= max_level)
17953 return;
17954
17955 dump_die_shallow (f, indent, die);
17956
17957 if (die->child != NULL)
17958 {
17959 print_spaces (indent, f);
17960 fprintf_unfiltered (f, " Children:");
17961 if (level + 1 < max_level)
17962 {
17963 fprintf_unfiltered (f, "\n");
17964 dump_die_1 (f, level + 1, max_level, die->child);
17965 }
17966 else
17967 {
17968 fprintf_unfiltered (f,
17969 " [not printed, max nesting level reached]\n");
17970 }
17971 }
17972
17973 if (die->sibling != NULL && level > 0)
17974 {
17975 dump_die_1 (f, level, max_level, die->sibling);
17976 }
17977 }
17978
17979 /* This is called from the pdie macro in gdbinit.in.
17980 It's not static so gcc will keep a copy callable from gdb. */
17981
17982 void
17983 dump_die (struct die_info *die, int max_level)
17984 {
17985 dump_die_1 (gdb_stdlog, 0, max_level, die);
17986 }
17987
17988 static void
17989 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17990 {
17991 void **slot;
17992
17993 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17994 INSERT);
17995
17996 *slot = die;
17997 }
17998
17999 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
18000 required kind. */
18001
18002 static sect_offset
18003 dwarf2_get_ref_die_offset (const struct attribute *attr)
18004 {
18005 sect_offset retval = { DW_UNSND (attr) };
18006
18007 if (attr_form_is_ref (attr))
18008 return retval;
18009
18010 retval.sect_off = 0;
18011 complaint (&symfile_complaints,
18012 _("unsupported die ref attribute form: '%s'"),
18013 dwarf_form_name (attr->form));
18014 return retval;
18015 }
18016
18017 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
18018 * the value held by the attribute is not constant. */
18019
18020 static LONGEST
18021 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
18022 {
18023 if (attr->form == DW_FORM_sdata)
18024 return DW_SND (attr);
18025 else if (attr->form == DW_FORM_udata
18026 || attr->form == DW_FORM_data1
18027 || attr->form == DW_FORM_data2
18028 || attr->form == DW_FORM_data4
18029 || attr->form == DW_FORM_data8)
18030 return DW_UNSND (attr);
18031 else
18032 {
18033 complaint (&symfile_complaints,
18034 _("Attribute value is not a constant (%s)"),
18035 dwarf_form_name (attr->form));
18036 return default_value;
18037 }
18038 }
18039
18040 /* Follow reference or signature attribute ATTR of SRC_DIE.
18041 On entry *REF_CU is the CU of SRC_DIE.
18042 On exit *REF_CU is the CU of the result. */
18043
18044 static struct die_info *
18045 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
18046 struct dwarf2_cu **ref_cu)
18047 {
18048 struct die_info *die;
18049
18050 if (attr_form_is_ref (attr))
18051 die = follow_die_ref (src_die, attr, ref_cu);
18052 else if (attr->form == DW_FORM_ref_sig8)
18053 die = follow_die_sig (src_die, attr, ref_cu);
18054 else
18055 {
18056 dump_die_for_error (src_die);
18057 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
18058 (*ref_cu)->objfile->name);
18059 }
18060
18061 return die;
18062 }
18063
18064 /* Follow reference OFFSET.
18065 On entry *REF_CU is the CU of the source die referencing OFFSET.
18066 On exit *REF_CU is the CU of the result.
18067 Returns NULL if OFFSET is invalid. */
18068
18069 static struct die_info *
18070 follow_die_offset (sect_offset offset, int offset_in_dwz,
18071 struct dwarf2_cu **ref_cu)
18072 {
18073 struct die_info temp_die;
18074 struct dwarf2_cu *target_cu, *cu = *ref_cu;
18075
18076 gdb_assert (cu->per_cu != NULL);
18077
18078 target_cu = cu;
18079
18080 if (cu->per_cu->is_debug_types)
18081 {
18082 /* .debug_types CUs cannot reference anything outside their CU.
18083 If they need to, they have to reference a signatured type via
18084 DW_FORM_ref_sig8. */
18085 if (! offset_in_cu_p (&cu->header, offset))
18086 return NULL;
18087 }
18088 else if (offset_in_dwz != cu->per_cu->is_dwz
18089 || ! offset_in_cu_p (&cu->header, offset))
18090 {
18091 struct dwarf2_per_cu_data *per_cu;
18092
18093 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18094 cu->objfile);
18095
18096 /* If necessary, add it to the queue and load its DIEs. */
18097 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18098 load_full_comp_unit (per_cu, cu->language);
18099
18100 target_cu = per_cu->cu;
18101 }
18102 else if (cu->dies == NULL)
18103 {
18104 /* We're loading full DIEs during partial symbol reading. */
18105 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
18106 load_full_comp_unit (cu->per_cu, language_minimal);
18107 }
18108
18109 *ref_cu = target_cu;
18110 temp_die.offset = offset;
18111 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
18112 }
18113
18114 /* Follow reference attribute ATTR of SRC_DIE.
18115 On entry *REF_CU is the CU of SRC_DIE.
18116 On exit *REF_CU is the CU of the result. */
18117
18118 static struct die_info *
18119 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
18120 struct dwarf2_cu **ref_cu)
18121 {
18122 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18123 struct dwarf2_cu *cu = *ref_cu;
18124 struct die_info *die;
18125
18126 die = follow_die_offset (offset,
18127 (attr->form == DW_FORM_GNU_ref_alt
18128 || cu->per_cu->is_dwz),
18129 ref_cu);
18130 if (!die)
18131 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18132 "at 0x%x [in module %s]"),
18133 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
18134
18135 return die;
18136 }
18137
18138 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18139 Returned value is intended for DW_OP_call*. Returned
18140 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
18141
18142 struct dwarf2_locexpr_baton
18143 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18144 struct dwarf2_per_cu_data *per_cu,
18145 CORE_ADDR (*get_frame_pc) (void *baton),
18146 void *baton)
18147 {
18148 struct dwarf2_cu *cu;
18149 struct die_info *die;
18150 struct attribute *attr;
18151 struct dwarf2_locexpr_baton retval;
18152
18153 dw2_setup (per_cu->objfile);
18154
18155 if (per_cu->cu == NULL)
18156 load_cu (per_cu);
18157 cu = per_cu->cu;
18158
18159 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18160 if (!die)
18161 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18162 offset.sect_off, per_cu->objfile->name);
18163
18164 attr = dwarf2_attr (die, DW_AT_location, cu);
18165 if (!attr)
18166 {
18167 /* DWARF: "If there is no such attribute, then there is no effect.".
18168 DATA is ignored if SIZE is 0. */
18169
18170 retval.data = NULL;
18171 retval.size = 0;
18172 }
18173 else if (attr_form_is_section_offset (attr))
18174 {
18175 struct dwarf2_loclist_baton loclist_baton;
18176 CORE_ADDR pc = (*get_frame_pc) (baton);
18177 size_t size;
18178
18179 fill_in_loclist_baton (cu, &loclist_baton, attr);
18180
18181 retval.data = dwarf2_find_location_expression (&loclist_baton,
18182 &size, pc);
18183 retval.size = size;
18184 }
18185 else
18186 {
18187 if (!attr_form_is_block (attr))
18188 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18189 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
18190 offset.sect_off, per_cu->objfile->name);
18191
18192 retval.data = DW_BLOCK (attr)->data;
18193 retval.size = DW_BLOCK (attr)->size;
18194 }
18195 retval.per_cu = cu->per_cu;
18196
18197 age_cached_comp_units ();
18198
18199 return retval;
18200 }
18201
18202 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
18203 offset. */
18204
18205 struct dwarf2_locexpr_baton
18206 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
18207 struct dwarf2_per_cu_data *per_cu,
18208 CORE_ADDR (*get_frame_pc) (void *baton),
18209 void *baton)
18210 {
18211 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
18212
18213 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
18214 }
18215
18216 /* Write a constant of a given type as target-ordered bytes into
18217 OBSTACK. */
18218
18219 static const gdb_byte *
18220 write_constant_as_bytes (struct obstack *obstack,
18221 enum bfd_endian byte_order,
18222 struct type *type,
18223 ULONGEST value,
18224 LONGEST *len)
18225 {
18226 gdb_byte *result;
18227
18228 *len = TYPE_LENGTH (type);
18229 result = obstack_alloc (obstack, *len);
18230 store_unsigned_integer (result, *len, byte_order, value);
18231
18232 return result;
18233 }
18234
18235 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
18236 pointer to the constant bytes and set LEN to the length of the
18237 data. If memory is needed, allocate it on OBSTACK. If the DIE
18238 does not have a DW_AT_const_value, return NULL. */
18239
18240 const gdb_byte *
18241 dwarf2_fetch_constant_bytes (sect_offset offset,
18242 struct dwarf2_per_cu_data *per_cu,
18243 struct obstack *obstack,
18244 LONGEST *len)
18245 {
18246 struct dwarf2_cu *cu;
18247 struct die_info *die;
18248 struct attribute *attr;
18249 const gdb_byte *result = NULL;
18250 struct type *type;
18251 LONGEST value;
18252 enum bfd_endian byte_order;
18253
18254 dw2_setup (per_cu->objfile);
18255
18256 if (per_cu->cu == NULL)
18257 load_cu (per_cu);
18258 cu = per_cu->cu;
18259
18260 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18261 if (!die)
18262 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18263 offset.sect_off, per_cu->objfile->name);
18264
18265
18266 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18267 if (attr == NULL)
18268 return NULL;
18269
18270 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
18271 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18272
18273 switch (attr->form)
18274 {
18275 case DW_FORM_addr:
18276 case DW_FORM_GNU_addr_index:
18277 {
18278 gdb_byte *tem;
18279
18280 *len = cu->header.addr_size;
18281 tem = obstack_alloc (obstack, *len);
18282 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
18283 result = tem;
18284 }
18285 break;
18286 case DW_FORM_string:
18287 case DW_FORM_strp:
18288 case DW_FORM_GNU_str_index:
18289 case DW_FORM_GNU_strp_alt:
18290 /* DW_STRING is already allocated on the objfile obstack, point
18291 directly to it. */
18292 result = (const gdb_byte *) DW_STRING (attr);
18293 *len = strlen (DW_STRING (attr));
18294 break;
18295 case DW_FORM_block1:
18296 case DW_FORM_block2:
18297 case DW_FORM_block4:
18298 case DW_FORM_block:
18299 case DW_FORM_exprloc:
18300 result = DW_BLOCK (attr)->data;
18301 *len = DW_BLOCK (attr)->size;
18302 break;
18303
18304 /* The DW_AT_const_value attributes are supposed to carry the
18305 symbol's value "represented as it would be on the target
18306 architecture." By the time we get here, it's already been
18307 converted to host endianness, so we just need to sign- or
18308 zero-extend it as appropriate. */
18309 case DW_FORM_data1:
18310 type = die_type (die, cu);
18311 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
18312 if (result == NULL)
18313 result = write_constant_as_bytes (obstack, byte_order,
18314 type, value, len);
18315 break;
18316 case DW_FORM_data2:
18317 type = die_type (die, cu);
18318 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
18319 if (result == NULL)
18320 result = write_constant_as_bytes (obstack, byte_order,
18321 type, value, len);
18322 break;
18323 case DW_FORM_data4:
18324 type = die_type (die, cu);
18325 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
18326 if (result == NULL)
18327 result = write_constant_as_bytes (obstack, byte_order,
18328 type, value, len);
18329 break;
18330 case DW_FORM_data8:
18331 type = die_type (die, cu);
18332 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
18333 if (result == NULL)
18334 result = write_constant_as_bytes (obstack, byte_order,
18335 type, value, len);
18336 break;
18337
18338 case DW_FORM_sdata:
18339 type = die_type (die, cu);
18340 result = write_constant_as_bytes (obstack, byte_order,
18341 type, DW_SND (attr), len);
18342 break;
18343
18344 case DW_FORM_udata:
18345 type = die_type (die, cu);
18346 result = write_constant_as_bytes (obstack, byte_order,
18347 type, DW_UNSND (attr), len);
18348 break;
18349
18350 default:
18351 complaint (&symfile_complaints,
18352 _("unsupported const value attribute form: '%s'"),
18353 dwarf_form_name (attr->form));
18354 break;
18355 }
18356
18357 return result;
18358 }
18359
18360 /* Return the type of the DIE at DIE_OFFSET in the CU named by
18361 PER_CU. */
18362
18363 struct type *
18364 dwarf2_get_die_type (cu_offset die_offset,
18365 struct dwarf2_per_cu_data *per_cu)
18366 {
18367 sect_offset die_offset_sect;
18368
18369 dw2_setup (per_cu->objfile);
18370
18371 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
18372 return get_die_type_at_offset (die_offset_sect, per_cu);
18373 }
18374
18375 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
18376 On entry *REF_CU is the CU of SRC_DIE.
18377 On exit *REF_CU is the CU of the result.
18378 Returns NULL if the referenced DIE isn't found. */
18379
18380 static struct die_info *
18381 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
18382 struct dwarf2_cu **ref_cu)
18383 {
18384 struct objfile *objfile = (*ref_cu)->objfile;
18385 struct die_info temp_die;
18386 struct dwarf2_cu *sig_cu;
18387 struct die_info *die;
18388
18389 /* While it might be nice to assert sig_type->type == NULL here,
18390 we can get here for DW_AT_imported_declaration where we need
18391 the DIE not the type. */
18392
18393 /* If necessary, add it to the queue and load its DIEs. */
18394
18395 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
18396 read_signatured_type (sig_type);
18397
18398 gdb_assert (sig_type->per_cu.cu != NULL);
18399
18400 sig_cu = sig_type->per_cu.cu;
18401 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
18402 temp_die.offset = sig_type->type_offset_in_section;
18403 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
18404 temp_die.offset.sect_off);
18405 if (die)
18406 {
18407 /* For .gdb_index version 7 keep track of included TUs.
18408 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
18409 if (dwarf2_per_objfile->index_table != NULL
18410 && dwarf2_per_objfile->index_table->version <= 7)
18411 {
18412 VEC_safe_push (dwarf2_per_cu_ptr,
18413 (*ref_cu)->per_cu->imported_symtabs,
18414 sig_cu->per_cu);
18415 }
18416
18417 *ref_cu = sig_cu;
18418 return die;
18419 }
18420
18421 return NULL;
18422 }
18423
18424 /* Follow signatured type referenced by ATTR in SRC_DIE.
18425 On entry *REF_CU is the CU of SRC_DIE.
18426 On exit *REF_CU is the CU of the result.
18427 The result is the DIE of the type.
18428 If the referenced type cannot be found an error is thrown. */
18429
18430 static struct die_info *
18431 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
18432 struct dwarf2_cu **ref_cu)
18433 {
18434 ULONGEST signature = DW_SIGNATURE (attr);
18435 struct signatured_type *sig_type;
18436 struct die_info *die;
18437
18438 gdb_assert (attr->form == DW_FORM_ref_sig8);
18439
18440 sig_type = lookup_signatured_type (*ref_cu, signature);
18441 /* sig_type will be NULL if the signatured type is missing from
18442 the debug info. */
18443 if (sig_type == NULL)
18444 {
18445 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
18446 " from DIE at 0x%x [in module %s]"),
18447 hex_string (signature), src_die->offset.sect_off,
18448 (*ref_cu)->objfile->name);
18449 }
18450
18451 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
18452 if (die == NULL)
18453 {
18454 dump_die_for_error (src_die);
18455 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
18456 " from DIE at 0x%x [in module %s]"),
18457 hex_string (signature), src_die->offset.sect_off,
18458 (*ref_cu)->objfile->name);
18459 }
18460
18461 return die;
18462 }
18463
18464 /* Get the type specified by SIGNATURE referenced in DIE/CU,
18465 reading in and processing the type unit if necessary. */
18466
18467 static struct type *
18468 get_signatured_type (struct die_info *die, ULONGEST signature,
18469 struct dwarf2_cu *cu)
18470 {
18471 struct signatured_type *sig_type;
18472 struct dwarf2_cu *type_cu;
18473 struct die_info *type_die;
18474 struct type *type;
18475
18476 sig_type = lookup_signatured_type (cu, signature);
18477 /* sig_type will be NULL if the signatured type is missing from
18478 the debug info. */
18479 if (sig_type == NULL)
18480 {
18481 complaint (&symfile_complaints,
18482 _("Dwarf Error: Cannot find signatured DIE %s referenced"
18483 " from DIE at 0x%x [in module %s]"),
18484 hex_string (signature), die->offset.sect_off,
18485 dwarf2_per_objfile->objfile->name);
18486 return build_error_marker_type (cu, die);
18487 }
18488
18489 /* If we already know the type we're done. */
18490 if (sig_type->type != NULL)
18491 return sig_type->type;
18492
18493 type_cu = cu;
18494 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
18495 if (type_die != NULL)
18496 {
18497 /* N.B. We need to call get_die_type to ensure only one type for this DIE
18498 is created. This is important, for example, because for c++ classes
18499 we need TYPE_NAME set which is only done by new_symbol. Blech. */
18500 type = read_type_die (type_die, type_cu);
18501 if (type == NULL)
18502 {
18503 complaint (&symfile_complaints,
18504 _("Dwarf Error: Cannot build signatured type %s"
18505 " referenced from DIE at 0x%x [in module %s]"),
18506 hex_string (signature), die->offset.sect_off,
18507 dwarf2_per_objfile->objfile->name);
18508 type = build_error_marker_type (cu, die);
18509 }
18510 }
18511 else
18512 {
18513 complaint (&symfile_complaints,
18514 _("Dwarf Error: Problem reading signatured DIE %s referenced"
18515 " from DIE at 0x%x [in module %s]"),
18516 hex_string (signature), die->offset.sect_off,
18517 dwarf2_per_objfile->objfile->name);
18518 type = build_error_marker_type (cu, die);
18519 }
18520 sig_type->type = type;
18521
18522 return type;
18523 }
18524
18525 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
18526 reading in and processing the type unit if necessary. */
18527
18528 static struct type *
18529 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
18530 struct dwarf2_cu *cu) /* ARI: editCase function */
18531 {
18532 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
18533 if (attr_form_is_ref (attr))
18534 {
18535 struct dwarf2_cu *type_cu = cu;
18536 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
18537
18538 return read_type_die (type_die, type_cu);
18539 }
18540 else if (attr->form == DW_FORM_ref_sig8)
18541 {
18542 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
18543 }
18544 else
18545 {
18546 complaint (&symfile_complaints,
18547 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
18548 " at 0x%x [in module %s]"),
18549 dwarf_form_name (attr->form), die->offset.sect_off,
18550 dwarf2_per_objfile->objfile->name);
18551 return build_error_marker_type (cu, die);
18552 }
18553 }
18554
18555 /* Load the DIEs associated with type unit PER_CU into memory. */
18556
18557 static void
18558 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
18559 {
18560 struct signatured_type *sig_type;
18561
18562 /* Caller is responsible for ensuring type_unit_groups don't get here. */
18563 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
18564
18565 /* We have the per_cu, but we need the signatured_type.
18566 Fortunately this is an easy translation. */
18567 gdb_assert (per_cu->is_debug_types);
18568 sig_type = (struct signatured_type *) per_cu;
18569
18570 gdb_assert (per_cu->cu == NULL);
18571
18572 read_signatured_type (sig_type);
18573
18574 gdb_assert (per_cu->cu != NULL);
18575 }
18576
18577 /* die_reader_func for read_signatured_type.
18578 This is identical to load_full_comp_unit_reader,
18579 but is kept separate for now. */
18580
18581 static void
18582 read_signatured_type_reader (const struct die_reader_specs *reader,
18583 const gdb_byte *info_ptr,
18584 struct die_info *comp_unit_die,
18585 int has_children,
18586 void *data)
18587 {
18588 struct dwarf2_cu *cu = reader->cu;
18589
18590 gdb_assert (cu->die_hash == NULL);
18591 cu->die_hash =
18592 htab_create_alloc_ex (cu->header.length / 12,
18593 die_hash,
18594 die_eq,
18595 NULL,
18596 &cu->comp_unit_obstack,
18597 hashtab_obstack_allocate,
18598 dummy_obstack_deallocate);
18599
18600 if (has_children)
18601 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18602 &info_ptr, comp_unit_die);
18603 cu->dies = comp_unit_die;
18604 /* comp_unit_die is not stored in die_hash, no need. */
18605
18606 /* We try not to read any attributes in this function, because not
18607 all CUs needed for references have been loaded yet, and symbol
18608 table processing isn't initialized. But we have to set the CU language,
18609 or we won't be able to build types correctly.
18610 Similarly, if we do not read the producer, we can not apply
18611 producer-specific interpretation. */
18612 prepare_one_comp_unit (cu, cu->dies, language_minimal);
18613 }
18614
18615 /* Read in a signatured type and build its CU and DIEs.
18616 If the type is a stub for the real type in a DWO file,
18617 read in the real type from the DWO file as well. */
18618
18619 static void
18620 read_signatured_type (struct signatured_type *sig_type)
18621 {
18622 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
18623
18624 gdb_assert (per_cu->is_debug_types);
18625 gdb_assert (per_cu->cu == NULL);
18626
18627 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18628 read_signatured_type_reader, NULL);
18629 sig_type->per_cu.tu_read = 1;
18630 }
18631
18632 /* Decode simple location descriptions.
18633 Given a pointer to a dwarf block that defines a location, compute
18634 the location and return the value.
18635
18636 NOTE drow/2003-11-18: This function is called in two situations
18637 now: for the address of static or global variables (partial symbols
18638 only) and for offsets into structures which are expected to be
18639 (more or less) constant. The partial symbol case should go away,
18640 and only the constant case should remain. That will let this
18641 function complain more accurately. A few special modes are allowed
18642 without complaint for global variables (for instance, global
18643 register values and thread-local values).
18644
18645 A location description containing no operations indicates that the
18646 object is optimized out. The return value is 0 for that case.
18647 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18648 callers will only want a very basic result and this can become a
18649 complaint.
18650
18651 Note that stack[0] is unused except as a default error return. */
18652
18653 static CORE_ADDR
18654 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
18655 {
18656 struct objfile *objfile = cu->objfile;
18657 size_t i;
18658 size_t size = blk->size;
18659 const gdb_byte *data = blk->data;
18660 CORE_ADDR stack[64];
18661 int stacki;
18662 unsigned int bytes_read, unsnd;
18663 gdb_byte op;
18664
18665 i = 0;
18666 stacki = 0;
18667 stack[stacki] = 0;
18668 stack[++stacki] = 0;
18669
18670 while (i < size)
18671 {
18672 op = data[i++];
18673 switch (op)
18674 {
18675 case DW_OP_lit0:
18676 case DW_OP_lit1:
18677 case DW_OP_lit2:
18678 case DW_OP_lit3:
18679 case DW_OP_lit4:
18680 case DW_OP_lit5:
18681 case DW_OP_lit6:
18682 case DW_OP_lit7:
18683 case DW_OP_lit8:
18684 case DW_OP_lit9:
18685 case DW_OP_lit10:
18686 case DW_OP_lit11:
18687 case DW_OP_lit12:
18688 case DW_OP_lit13:
18689 case DW_OP_lit14:
18690 case DW_OP_lit15:
18691 case DW_OP_lit16:
18692 case DW_OP_lit17:
18693 case DW_OP_lit18:
18694 case DW_OP_lit19:
18695 case DW_OP_lit20:
18696 case DW_OP_lit21:
18697 case DW_OP_lit22:
18698 case DW_OP_lit23:
18699 case DW_OP_lit24:
18700 case DW_OP_lit25:
18701 case DW_OP_lit26:
18702 case DW_OP_lit27:
18703 case DW_OP_lit28:
18704 case DW_OP_lit29:
18705 case DW_OP_lit30:
18706 case DW_OP_lit31:
18707 stack[++stacki] = op - DW_OP_lit0;
18708 break;
18709
18710 case DW_OP_reg0:
18711 case DW_OP_reg1:
18712 case DW_OP_reg2:
18713 case DW_OP_reg3:
18714 case DW_OP_reg4:
18715 case DW_OP_reg5:
18716 case DW_OP_reg6:
18717 case DW_OP_reg7:
18718 case DW_OP_reg8:
18719 case DW_OP_reg9:
18720 case DW_OP_reg10:
18721 case DW_OP_reg11:
18722 case DW_OP_reg12:
18723 case DW_OP_reg13:
18724 case DW_OP_reg14:
18725 case DW_OP_reg15:
18726 case DW_OP_reg16:
18727 case DW_OP_reg17:
18728 case DW_OP_reg18:
18729 case DW_OP_reg19:
18730 case DW_OP_reg20:
18731 case DW_OP_reg21:
18732 case DW_OP_reg22:
18733 case DW_OP_reg23:
18734 case DW_OP_reg24:
18735 case DW_OP_reg25:
18736 case DW_OP_reg26:
18737 case DW_OP_reg27:
18738 case DW_OP_reg28:
18739 case DW_OP_reg29:
18740 case DW_OP_reg30:
18741 case DW_OP_reg31:
18742 stack[++stacki] = op - DW_OP_reg0;
18743 if (i < size)
18744 dwarf2_complex_location_expr_complaint ();
18745 break;
18746
18747 case DW_OP_regx:
18748 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18749 i += bytes_read;
18750 stack[++stacki] = unsnd;
18751 if (i < size)
18752 dwarf2_complex_location_expr_complaint ();
18753 break;
18754
18755 case DW_OP_addr:
18756 stack[++stacki] = read_address (objfile->obfd, &data[i],
18757 cu, &bytes_read);
18758 i += bytes_read;
18759 break;
18760
18761 case DW_OP_const1u:
18762 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18763 i += 1;
18764 break;
18765
18766 case DW_OP_const1s:
18767 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18768 i += 1;
18769 break;
18770
18771 case DW_OP_const2u:
18772 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18773 i += 2;
18774 break;
18775
18776 case DW_OP_const2s:
18777 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18778 i += 2;
18779 break;
18780
18781 case DW_OP_const4u:
18782 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18783 i += 4;
18784 break;
18785
18786 case DW_OP_const4s:
18787 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18788 i += 4;
18789 break;
18790
18791 case DW_OP_const8u:
18792 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18793 i += 8;
18794 break;
18795
18796 case DW_OP_constu:
18797 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18798 &bytes_read);
18799 i += bytes_read;
18800 break;
18801
18802 case DW_OP_consts:
18803 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18804 i += bytes_read;
18805 break;
18806
18807 case DW_OP_dup:
18808 stack[stacki + 1] = stack[stacki];
18809 stacki++;
18810 break;
18811
18812 case DW_OP_plus:
18813 stack[stacki - 1] += stack[stacki];
18814 stacki--;
18815 break;
18816
18817 case DW_OP_plus_uconst:
18818 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18819 &bytes_read);
18820 i += bytes_read;
18821 break;
18822
18823 case DW_OP_minus:
18824 stack[stacki - 1] -= stack[stacki];
18825 stacki--;
18826 break;
18827
18828 case DW_OP_deref:
18829 /* If we're not the last op, then we definitely can't encode
18830 this using GDB's address_class enum. This is valid for partial
18831 global symbols, although the variable's address will be bogus
18832 in the psymtab. */
18833 if (i < size)
18834 dwarf2_complex_location_expr_complaint ();
18835 break;
18836
18837 case DW_OP_GNU_push_tls_address:
18838 /* The top of the stack has the offset from the beginning
18839 of the thread control block at which the variable is located. */
18840 /* Nothing should follow this operator, so the top of stack would
18841 be returned. */
18842 /* This is valid for partial global symbols, but the variable's
18843 address will be bogus in the psymtab. Make it always at least
18844 non-zero to not look as a variable garbage collected by linker
18845 which have DW_OP_addr 0. */
18846 if (i < size)
18847 dwarf2_complex_location_expr_complaint ();
18848 stack[stacki]++;
18849 break;
18850
18851 case DW_OP_GNU_uninit:
18852 break;
18853
18854 case DW_OP_GNU_addr_index:
18855 case DW_OP_GNU_const_index:
18856 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18857 &bytes_read);
18858 i += bytes_read;
18859 break;
18860
18861 default:
18862 {
18863 const char *name = get_DW_OP_name (op);
18864
18865 if (name)
18866 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18867 name);
18868 else
18869 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18870 op);
18871 }
18872
18873 return (stack[stacki]);
18874 }
18875
18876 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18877 outside of the allocated space. Also enforce minimum>0. */
18878 if (stacki >= ARRAY_SIZE (stack) - 1)
18879 {
18880 complaint (&symfile_complaints,
18881 _("location description stack overflow"));
18882 return 0;
18883 }
18884
18885 if (stacki <= 0)
18886 {
18887 complaint (&symfile_complaints,
18888 _("location description stack underflow"));
18889 return 0;
18890 }
18891 }
18892 return (stack[stacki]);
18893 }
18894
18895 /* memory allocation interface */
18896
18897 static struct dwarf_block *
18898 dwarf_alloc_block (struct dwarf2_cu *cu)
18899 {
18900 struct dwarf_block *blk;
18901
18902 blk = (struct dwarf_block *)
18903 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18904 return (blk);
18905 }
18906
18907 static struct die_info *
18908 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18909 {
18910 struct die_info *die;
18911 size_t size = sizeof (struct die_info);
18912
18913 if (num_attrs > 1)
18914 size += (num_attrs - 1) * sizeof (struct attribute);
18915
18916 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18917 memset (die, 0, sizeof (struct die_info));
18918 return (die);
18919 }
18920
18921 \f
18922 /* Macro support. */
18923
18924 /* Return file name relative to the compilation directory of file number I in
18925 *LH's file name table. The result is allocated using xmalloc; the caller is
18926 responsible for freeing it. */
18927
18928 static char *
18929 file_file_name (int file, struct line_header *lh)
18930 {
18931 /* Is the file number a valid index into the line header's file name
18932 table? Remember that file numbers start with one, not zero. */
18933 if (1 <= file && file <= lh->num_file_names)
18934 {
18935 struct file_entry *fe = &lh->file_names[file - 1];
18936
18937 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18938 return xstrdup (fe->name);
18939 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18940 fe->name, NULL);
18941 }
18942 else
18943 {
18944 /* The compiler produced a bogus file number. We can at least
18945 record the macro definitions made in the file, even if we
18946 won't be able to find the file by name. */
18947 char fake_name[80];
18948
18949 xsnprintf (fake_name, sizeof (fake_name),
18950 "<bad macro file number %d>", file);
18951
18952 complaint (&symfile_complaints,
18953 _("bad file number in macro information (%d)"),
18954 file);
18955
18956 return xstrdup (fake_name);
18957 }
18958 }
18959
18960 /* Return the full name of file number I in *LH's file name table.
18961 Use COMP_DIR as the name of the current directory of the
18962 compilation. The result is allocated using xmalloc; the caller is
18963 responsible for freeing it. */
18964 static char *
18965 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18966 {
18967 /* Is the file number a valid index into the line header's file name
18968 table? Remember that file numbers start with one, not zero. */
18969 if (1 <= file && file <= lh->num_file_names)
18970 {
18971 char *relative = file_file_name (file, lh);
18972
18973 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18974 return relative;
18975 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18976 }
18977 else
18978 return file_file_name (file, lh);
18979 }
18980
18981
18982 static struct macro_source_file *
18983 macro_start_file (int file, int line,
18984 struct macro_source_file *current_file,
18985 const char *comp_dir,
18986 struct line_header *lh, struct objfile *objfile)
18987 {
18988 /* File name relative to the compilation directory of this source file. */
18989 char *file_name = file_file_name (file, lh);
18990
18991 /* We don't create a macro table for this compilation unit
18992 at all until we actually get a filename. */
18993 if (! pending_macros)
18994 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18995 objfile->per_bfd->macro_cache,
18996 comp_dir);
18997
18998 if (! current_file)
18999 {
19000 /* If we have no current file, then this must be the start_file
19001 directive for the compilation unit's main source file. */
19002 current_file = macro_set_main (pending_macros, file_name);
19003 macro_define_special (pending_macros);
19004 }
19005 else
19006 current_file = macro_include (current_file, line, file_name);
19007
19008 xfree (file_name);
19009
19010 return current_file;
19011 }
19012
19013
19014 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
19015 followed by a null byte. */
19016 static char *
19017 copy_string (const char *buf, int len)
19018 {
19019 char *s = xmalloc (len + 1);
19020
19021 memcpy (s, buf, len);
19022 s[len] = '\0';
19023 return s;
19024 }
19025
19026
19027 static const char *
19028 consume_improper_spaces (const char *p, const char *body)
19029 {
19030 if (*p == ' ')
19031 {
19032 complaint (&symfile_complaints,
19033 _("macro definition contains spaces "
19034 "in formal argument list:\n`%s'"),
19035 body);
19036
19037 while (*p == ' ')
19038 p++;
19039 }
19040
19041 return p;
19042 }
19043
19044
19045 static void
19046 parse_macro_definition (struct macro_source_file *file, int line,
19047 const char *body)
19048 {
19049 const char *p;
19050
19051 /* The body string takes one of two forms. For object-like macro
19052 definitions, it should be:
19053
19054 <macro name> " " <definition>
19055
19056 For function-like macro definitions, it should be:
19057
19058 <macro name> "() " <definition>
19059 or
19060 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
19061
19062 Spaces may appear only where explicitly indicated, and in the
19063 <definition>.
19064
19065 The Dwarf 2 spec says that an object-like macro's name is always
19066 followed by a space, but versions of GCC around March 2002 omit
19067 the space when the macro's definition is the empty string.
19068
19069 The Dwarf 2 spec says that there should be no spaces between the
19070 formal arguments in a function-like macro's formal argument list,
19071 but versions of GCC around March 2002 include spaces after the
19072 commas. */
19073
19074
19075 /* Find the extent of the macro name. The macro name is terminated
19076 by either a space or null character (for an object-like macro) or
19077 an opening paren (for a function-like macro). */
19078 for (p = body; *p; p++)
19079 if (*p == ' ' || *p == '(')
19080 break;
19081
19082 if (*p == ' ' || *p == '\0')
19083 {
19084 /* It's an object-like macro. */
19085 int name_len = p - body;
19086 char *name = copy_string (body, name_len);
19087 const char *replacement;
19088
19089 if (*p == ' ')
19090 replacement = body + name_len + 1;
19091 else
19092 {
19093 dwarf2_macro_malformed_definition_complaint (body);
19094 replacement = body + name_len;
19095 }
19096
19097 macro_define_object (file, line, name, replacement);
19098
19099 xfree (name);
19100 }
19101 else if (*p == '(')
19102 {
19103 /* It's a function-like macro. */
19104 char *name = copy_string (body, p - body);
19105 int argc = 0;
19106 int argv_size = 1;
19107 char **argv = xmalloc (argv_size * sizeof (*argv));
19108
19109 p++;
19110
19111 p = consume_improper_spaces (p, body);
19112
19113 /* Parse the formal argument list. */
19114 while (*p && *p != ')')
19115 {
19116 /* Find the extent of the current argument name. */
19117 const char *arg_start = p;
19118
19119 while (*p && *p != ',' && *p != ')' && *p != ' ')
19120 p++;
19121
19122 if (! *p || p == arg_start)
19123 dwarf2_macro_malformed_definition_complaint (body);
19124 else
19125 {
19126 /* Make sure argv has room for the new argument. */
19127 if (argc >= argv_size)
19128 {
19129 argv_size *= 2;
19130 argv = xrealloc (argv, argv_size * sizeof (*argv));
19131 }
19132
19133 argv[argc++] = copy_string (arg_start, p - arg_start);
19134 }
19135
19136 p = consume_improper_spaces (p, body);
19137
19138 /* Consume the comma, if present. */
19139 if (*p == ',')
19140 {
19141 p++;
19142
19143 p = consume_improper_spaces (p, body);
19144 }
19145 }
19146
19147 if (*p == ')')
19148 {
19149 p++;
19150
19151 if (*p == ' ')
19152 /* Perfectly formed definition, no complaints. */
19153 macro_define_function (file, line, name,
19154 argc, (const char **) argv,
19155 p + 1);
19156 else if (*p == '\0')
19157 {
19158 /* Complain, but do define it. */
19159 dwarf2_macro_malformed_definition_complaint (body);
19160 macro_define_function (file, line, name,
19161 argc, (const char **) argv,
19162 p);
19163 }
19164 else
19165 /* Just complain. */
19166 dwarf2_macro_malformed_definition_complaint (body);
19167 }
19168 else
19169 /* Just complain. */
19170 dwarf2_macro_malformed_definition_complaint (body);
19171
19172 xfree (name);
19173 {
19174 int i;
19175
19176 for (i = 0; i < argc; i++)
19177 xfree (argv[i]);
19178 }
19179 xfree (argv);
19180 }
19181 else
19182 dwarf2_macro_malformed_definition_complaint (body);
19183 }
19184
19185 /* Skip some bytes from BYTES according to the form given in FORM.
19186 Returns the new pointer. */
19187
19188 static const gdb_byte *
19189 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
19190 enum dwarf_form form,
19191 unsigned int offset_size,
19192 struct dwarf2_section_info *section)
19193 {
19194 unsigned int bytes_read;
19195
19196 switch (form)
19197 {
19198 case DW_FORM_data1:
19199 case DW_FORM_flag:
19200 ++bytes;
19201 break;
19202
19203 case DW_FORM_data2:
19204 bytes += 2;
19205 break;
19206
19207 case DW_FORM_data4:
19208 bytes += 4;
19209 break;
19210
19211 case DW_FORM_data8:
19212 bytes += 8;
19213 break;
19214
19215 case DW_FORM_string:
19216 read_direct_string (abfd, bytes, &bytes_read);
19217 bytes += bytes_read;
19218 break;
19219
19220 case DW_FORM_sec_offset:
19221 case DW_FORM_strp:
19222 case DW_FORM_GNU_strp_alt:
19223 bytes += offset_size;
19224 break;
19225
19226 case DW_FORM_block:
19227 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
19228 bytes += bytes_read;
19229 break;
19230
19231 case DW_FORM_block1:
19232 bytes += 1 + read_1_byte (abfd, bytes);
19233 break;
19234 case DW_FORM_block2:
19235 bytes += 2 + read_2_bytes (abfd, bytes);
19236 break;
19237 case DW_FORM_block4:
19238 bytes += 4 + read_4_bytes (abfd, bytes);
19239 break;
19240
19241 case DW_FORM_sdata:
19242 case DW_FORM_udata:
19243 case DW_FORM_GNU_addr_index:
19244 case DW_FORM_GNU_str_index:
19245 bytes = gdb_skip_leb128 (bytes, buffer_end);
19246 if (bytes == NULL)
19247 {
19248 dwarf2_section_buffer_overflow_complaint (section);
19249 return NULL;
19250 }
19251 break;
19252
19253 default:
19254 {
19255 complain:
19256 complaint (&symfile_complaints,
19257 _("invalid form 0x%x in `%s'"),
19258 form,
19259 section->asection->name);
19260 return NULL;
19261 }
19262 }
19263
19264 return bytes;
19265 }
19266
19267 /* A helper for dwarf_decode_macros that handles skipping an unknown
19268 opcode. Returns an updated pointer to the macro data buffer; or,
19269 on error, issues a complaint and returns NULL. */
19270
19271 static const gdb_byte *
19272 skip_unknown_opcode (unsigned int opcode,
19273 const gdb_byte **opcode_definitions,
19274 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19275 bfd *abfd,
19276 unsigned int offset_size,
19277 struct dwarf2_section_info *section)
19278 {
19279 unsigned int bytes_read, i;
19280 unsigned long arg;
19281 const gdb_byte *defn;
19282
19283 if (opcode_definitions[opcode] == NULL)
19284 {
19285 complaint (&symfile_complaints,
19286 _("unrecognized DW_MACFINO opcode 0x%x"),
19287 opcode);
19288 return NULL;
19289 }
19290
19291 defn = opcode_definitions[opcode];
19292 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
19293 defn += bytes_read;
19294
19295 for (i = 0; i < arg; ++i)
19296 {
19297 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
19298 section);
19299 if (mac_ptr == NULL)
19300 {
19301 /* skip_form_bytes already issued the complaint. */
19302 return NULL;
19303 }
19304 }
19305
19306 return mac_ptr;
19307 }
19308
19309 /* A helper function which parses the header of a macro section.
19310 If the macro section is the extended (for now called "GNU") type,
19311 then this updates *OFFSET_SIZE. Returns a pointer to just after
19312 the header, or issues a complaint and returns NULL on error. */
19313
19314 static const gdb_byte *
19315 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
19316 bfd *abfd,
19317 const gdb_byte *mac_ptr,
19318 unsigned int *offset_size,
19319 int section_is_gnu)
19320 {
19321 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
19322
19323 if (section_is_gnu)
19324 {
19325 unsigned int version, flags;
19326
19327 version = read_2_bytes (abfd, mac_ptr);
19328 if (version != 4)
19329 {
19330 complaint (&symfile_complaints,
19331 _("unrecognized version `%d' in .debug_macro section"),
19332 version);
19333 return NULL;
19334 }
19335 mac_ptr += 2;
19336
19337 flags = read_1_byte (abfd, mac_ptr);
19338 ++mac_ptr;
19339 *offset_size = (flags & 1) ? 8 : 4;
19340
19341 if ((flags & 2) != 0)
19342 /* We don't need the line table offset. */
19343 mac_ptr += *offset_size;
19344
19345 /* Vendor opcode descriptions. */
19346 if ((flags & 4) != 0)
19347 {
19348 unsigned int i, count;
19349
19350 count = read_1_byte (abfd, mac_ptr);
19351 ++mac_ptr;
19352 for (i = 0; i < count; ++i)
19353 {
19354 unsigned int opcode, bytes_read;
19355 unsigned long arg;
19356
19357 opcode = read_1_byte (abfd, mac_ptr);
19358 ++mac_ptr;
19359 opcode_definitions[opcode] = mac_ptr;
19360 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19361 mac_ptr += bytes_read;
19362 mac_ptr += arg;
19363 }
19364 }
19365 }
19366
19367 return mac_ptr;
19368 }
19369
19370 /* A helper for dwarf_decode_macros that handles the GNU extensions,
19371 including DW_MACRO_GNU_transparent_include. */
19372
19373 static void
19374 dwarf_decode_macro_bytes (bfd *abfd,
19375 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19376 struct macro_source_file *current_file,
19377 struct line_header *lh, const char *comp_dir,
19378 struct dwarf2_section_info *section,
19379 int section_is_gnu, int section_is_dwz,
19380 unsigned int offset_size,
19381 struct objfile *objfile,
19382 htab_t include_hash)
19383 {
19384 enum dwarf_macro_record_type macinfo_type;
19385 int at_commandline;
19386 const gdb_byte *opcode_definitions[256];
19387
19388 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19389 &offset_size, section_is_gnu);
19390 if (mac_ptr == NULL)
19391 {
19392 /* We already issued a complaint. */
19393 return;
19394 }
19395
19396 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
19397 GDB is still reading the definitions from command line. First
19398 DW_MACINFO_start_file will need to be ignored as it was already executed
19399 to create CURRENT_FILE for the main source holding also the command line
19400 definitions. On first met DW_MACINFO_start_file this flag is reset to
19401 normally execute all the remaining DW_MACINFO_start_file macinfos. */
19402
19403 at_commandline = 1;
19404
19405 do
19406 {
19407 /* Do we at least have room for a macinfo type byte? */
19408 if (mac_ptr >= mac_end)
19409 {
19410 dwarf2_section_buffer_overflow_complaint (section);
19411 break;
19412 }
19413
19414 macinfo_type = read_1_byte (abfd, mac_ptr);
19415 mac_ptr++;
19416
19417 /* Note that we rely on the fact that the corresponding GNU and
19418 DWARF constants are the same. */
19419 switch (macinfo_type)
19420 {
19421 /* A zero macinfo type indicates the end of the macro
19422 information. */
19423 case 0:
19424 break;
19425
19426 case DW_MACRO_GNU_define:
19427 case DW_MACRO_GNU_undef:
19428 case DW_MACRO_GNU_define_indirect:
19429 case DW_MACRO_GNU_undef_indirect:
19430 case DW_MACRO_GNU_define_indirect_alt:
19431 case DW_MACRO_GNU_undef_indirect_alt:
19432 {
19433 unsigned int bytes_read;
19434 int line;
19435 const char *body;
19436 int is_define;
19437
19438 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19439 mac_ptr += bytes_read;
19440
19441 if (macinfo_type == DW_MACRO_GNU_define
19442 || macinfo_type == DW_MACRO_GNU_undef)
19443 {
19444 body = read_direct_string (abfd, mac_ptr, &bytes_read);
19445 mac_ptr += bytes_read;
19446 }
19447 else
19448 {
19449 LONGEST str_offset;
19450
19451 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
19452 mac_ptr += offset_size;
19453
19454 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
19455 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
19456 || section_is_dwz)
19457 {
19458 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19459
19460 body = read_indirect_string_from_dwz (dwz, str_offset);
19461 }
19462 else
19463 body = read_indirect_string_at_offset (abfd, str_offset);
19464 }
19465
19466 is_define = (macinfo_type == DW_MACRO_GNU_define
19467 || macinfo_type == DW_MACRO_GNU_define_indirect
19468 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
19469 if (! current_file)
19470 {
19471 /* DWARF violation as no main source is present. */
19472 complaint (&symfile_complaints,
19473 _("debug info with no main source gives macro %s "
19474 "on line %d: %s"),
19475 is_define ? _("definition") : _("undefinition"),
19476 line, body);
19477 break;
19478 }
19479 if ((line == 0 && !at_commandline)
19480 || (line != 0 && at_commandline))
19481 complaint (&symfile_complaints,
19482 _("debug info gives %s macro %s with %s line %d: %s"),
19483 at_commandline ? _("command-line") : _("in-file"),
19484 is_define ? _("definition") : _("undefinition"),
19485 line == 0 ? _("zero") : _("non-zero"), line, body);
19486
19487 if (is_define)
19488 parse_macro_definition (current_file, line, body);
19489 else
19490 {
19491 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
19492 || macinfo_type == DW_MACRO_GNU_undef_indirect
19493 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
19494 macro_undef (current_file, line, body);
19495 }
19496 }
19497 break;
19498
19499 case DW_MACRO_GNU_start_file:
19500 {
19501 unsigned int bytes_read;
19502 int line, file;
19503
19504 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19505 mac_ptr += bytes_read;
19506 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19507 mac_ptr += bytes_read;
19508
19509 if ((line == 0 && !at_commandline)
19510 || (line != 0 && at_commandline))
19511 complaint (&symfile_complaints,
19512 _("debug info gives source %d included "
19513 "from %s at %s line %d"),
19514 file, at_commandline ? _("command-line") : _("file"),
19515 line == 0 ? _("zero") : _("non-zero"), line);
19516
19517 if (at_commandline)
19518 {
19519 /* This DW_MACRO_GNU_start_file was executed in the
19520 pass one. */
19521 at_commandline = 0;
19522 }
19523 else
19524 current_file = macro_start_file (file, line,
19525 current_file, comp_dir,
19526 lh, objfile);
19527 }
19528 break;
19529
19530 case DW_MACRO_GNU_end_file:
19531 if (! current_file)
19532 complaint (&symfile_complaints,
19533 _("macro debug info has an unmatched "
19534 "`close_file' directive"));
19535 else
19536 {
19537 current_file = current_file->included_by;
19538 if (! current_file)
19539 {
19540 enum dwarf_macro_record_type next_type;
19541
19542 /* GCC circa March 2002 doesn't produce the zero
19543 type byte marking the end of the compilation
19544 unit. Complain if it's not there, but exit no
19545 matter what. */
19546
19547 /* Do we at least have room for a macinfo type byte? */
19548 if (mac_ptr >= mac_end)
19549 {
19550 dwarf2_section_buffer_overflow_complaint (section);
19551 return;
19552 }
19553
19554 /* We don't increment mac_ptr here, so this is just
19555 a look-ahead. */
19556 next_type = read_1_byte (abfd, mac_ptr);
19557 if (next_type != 0)
19558 complaint (&symfile_complaints,
19559 _("no terminating 0-type entry for "
19560 "macros in `.debug_macinfo' section"));
19561
19562 return;
19563 }
19564 }
19565 break;
19566
19567 case DW_MACRO_GNU_transparent_include:
19568 case DW_MACRO_GNU_transparent_include_alt:
19569 {
19570 LONGEST offset;
19571 void **slot;
19572 bfd *include_bfd = abfd;
19573 struct dwarf2_section_info *include_section = section;
19574 struct dwarf2_section_info alt_section;
19575 const gdb_byte *include_mac_end = mac_end;
19576 int is_dwz = section_is_dwz;
19577 const gdb_byte *new_mac_ptr;
19578
19579 offset = read_offset_1 (abfd, mac_ptr, offset_size);
19580 mac_ptr += offset_size;
19581
19582 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
19583 {
19584 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19585
19586 dwarf2_read_section (dwarf2_per_objfile->objfile,
19587 &dwz->macro);
19588
19589 include_bfd = dwz->macro.asection->owner;
19590 include_section = &dwz->macro;
19591 include_mac_end = dwz->macro.buffer + dwz->macro.size;
19592 is_dwz = 1;
19593 }
19594
19595 new_mac_ptr = include_section->buffer + offset;
19596 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
19597
19598 if (*slot != NULL)
19599 {
19600 /* This has actually happened; see
19601 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
19602 complaint (&symfile_complaints,
19603 _("recursive DW_MACRO_GNU_transparent_include in "
19604 ".debug_macro section"));
19605 }
19606 else
19607 {
19608 *slot = (void *) new_mac_ptr;
19609
19610 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
19611 include_mac_end, current_file,
19612 lh, comp_dir,
19613 section, section_is_gnu, is_dwz,
19614 offset_size, objfile, include_hash);
19615
19616 htab_remove_elt (include_hash, (void *) new_mac_ptr);
19617 }
19618 }
19619 break;
19620
19621 case DW_MACINFO_vendor_ext:
19622 if (!section_is_gnu)
19623 {
19624 unsigned int bytes_read;
19625 int constant;
19626
19627 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19628 mac_ptr += bytes_read;
19629 read_direct_string (abfd, mac_ptr, &bytes_read);
19630 mac_ptr += bytes_read;
19631
19632 /* We don't recognize any vendor extensions. */
19633 break;
19634 }
19635 /* FALLTHROUGH */
19636
19637 default:
19638 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19639 mac_ptr, mac_end, abfd, offset_size,
19640 section);
19641 if (mac_ptr == NULL)
19642 return;
19643 break;
19644 }
19645 } while (macinfo_type != 0);
19646 }
19647
19648 static void
19649 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
19650 const char *comp_dir, int section_is_gnu)
19651 {
19652 struct objfile *objfile = dwarf2_per_objfile->objfile;
19653 struct line_header *lh = cu->line_header;
19654 bfd *abfd;
19655 const gdb_byte *mac_ptr, *mac_end;
19656 struct macro_source_file *current_file = 0;
19657 enum dwarf_macro_record_type macinfo_type;
19658 unsigned int offset_size = cu->header.offset_size;
19659 const gdb_byte *opcode_definitions[256];
19660 struct cleanup *cleanup;
19661 htab_t include_hash;
19662 void **slot;
19663 struct dwarf2_section_info *section;
19664 const char *section_name;
19665
19666 if (cu->dwo_unit != NULL)
19667 {
19668 if (section_is_gnu)
19669 {
19670 section = &cu->dwo_unit->dwo_file->sections.macro;
19671 section_name = ".debug_macro.dwo";
19672 }
19673 else
19674 {
19675 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19676 section_name = ".debug_macinfo.dwo";
19677 }
19678 }
19679 else
19680 {
19681 if (section_is_gnu)
19682 {
19683 section = &dwarf2_per_objfile->macro;
19684 section_name = ".debug_macro";
19685 }
19686 else
19687 {
19688 section = &dwarf2_per_objfile->macinfo;
19689 section_name = ".debug_macinfo";
19690 }
19691 }
19692
19693 dwarf2_read_section (objfile, section);
19694 if (section->buffer == NULL)
19695 {
19696 complaint (&symfile_complaints, _("missing %s section"), section_name);
19697 return;
19698 }
19699 abfd = section->asection->owner;
19700
19701 /* First pass: Find the name of the base filename.
19702 This filename is needed in order to process all macros whose definition
19703 (or undefinition) comes from the command line. These macros are defined
19704 before the first DW_MACINFO_start_file entry, and yet still need to be
19705 associated to the base file.
19706
19707 To determine the base file name, we scan the macro definitions until we
19708 reach the first DW_MACINFO_start_file entry. We then initialize
19709 CURRENT_FILE accordingly so that any macro definition found before the
19710 first DW_MACINFO_start_file can still be associated to the base file. */
19711
19712 mac_ptr = section->buffer + offset;
19713 mac_end = section->buffer + section->size;
19714
19715 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19716 &offset_size, section_is_gnu);
19717 if (mac_ptr == NULL)
19718 {
19719 /* We already issued a complaint. */
19720 return;
19721 }
19722
19723 do
19724 {
19725 /* Do we at least have room for a macinfo type byte? */
19726 if (mac_ptr >= mac_end)
19727 {
19728 /* Complaint is printed during the second pass as GDB will probably
19729 stop the first pass earlier upon finding
19730 DW_MACINFO_start_file. */
19731 break;
19732 }
19733
19734 macinfo_type = read_1_byte (abfd, mac_ptr);
19735 mac_ptr++;
19736
19737 /* Note that we rely on the fact that the corresponding GNU and
19738 DWARF constants are the same. */
19739 switch (macinfo_type)
19740 {
19741 /* A zero macinfo type indicates the end of the macro
19742 information. */
19743 case 0:
19744 break;
19745
19746 case DW_MACRO_GNU_define:
19747 case DW_MACRO_GNU_undef:
19748 /* Only skip the data by MAC_PTR. */
19749 {
19750 unsigned int bytes_read;
19751
19752 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19753 mac_ptr += bytes_read;
19754 read_direct_string (abfd, mac_ptr, &bytes_read);
19755 mac_ptr += bytes_read;
19756 }
19757 break;
19758
19759 case DW_MACRO_GNU_start_file:
19760 {
19761 unsigned int bytes_read;
19762 int line, file;
19763
19764 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19765 mac_ptr += bytes_read;
19766 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19767 mac_ptr += bytes_read;
19768
19769 current_file = macro_start_file (file, line, current_file,
19770 comp_dir, lh, objfile);
19771 }
19772 break;
19773
19774 case DW_MACRO_GNU_end_file:
19775 /* No data to skip by MAC_PTR. */
19776 break;
19777
19778 case DW_MACRO_GNU_define_indirect:
19779 case DW_MACRO_GNU_undef_indirect:
19780 case DW_MACRO_GNU_define_indirect_alt:
19781 case DW_MACRO_GNU_undef_indirect_alt:
19782 {
19783 unsigned int bytes_read;
19784
19785 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19786 mac_ptr += bytes_read;
19787 mac_ptr += offset_size;
19788 }
19789 break;
19790
19791 case DW_MACRO_GNU_transparent_include:
19792 case DW_MACRO_GNU_transparent_include_alt:
19793 /* Note that, according to the spec, a transparent include
19794 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19795 skip this opcode. */
19796 mac_ptr += offset_size;
19797 break;
19798
19799 case DW_MACINFO_vendor_ext:
19800 /* Only skip the data by MAC_PTR. */
19801 if (!section_is_gnu)
19802 {
19803 unsigned int bytes_read;
19804
19805 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19806 mac_ptr += bytes_read;
19807 read_direct_string (abfd, mac_ptr, &bytes_read);
19808 mac_ptr += bytes_read;
19809 }
19810 /* FALLTHROUGH */
19811
19812 default:
19813 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19814 mac_ptr, mac_end, abfd, offset_size,
19815 section);
19816 if (mac_ptr == NULL)
19817 return;
19818 break;
19819 }
19820 } while (macinfo_type != 0 && current_file == NULL);
19821
19822 /* Second pass: Process all entries.
19823
19824 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19825 command-line macro definitions/undefinitions. This flag is unset when we
19826 reach the first DW_MACINFO_start_file entry. */
19827
19828 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19829 NULL, xcalloc, xfree);
19830 cleanup = make_cleanup_htab_delete (include_hash);
19831 mac_ptr = section->buffer + offset;
19832 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
19833 *slot = (void *) mac_ptr;
19834 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
19835 current_file, lh, comp_dir, section,
19836 section_is_gnu, 0,
19837 offset_size, objfile, include_hash);
19838 do_cleanups (cleanup);
19839 }
19840
19841 /* Check if the attribute's form is a DW_FORM_block*
19842 if so return true else false. */
19843
19844 static int
19845 attr_form_is_block (const struct attribute *attr)
19846 {
19847 return (attr == NULL ? 0 :
19848 attr->form == DW_FORM_block1
19849 || attr->form == DW_FORM_block2
19850 || attr->form == DW_FORM_block4
19851 || attr->form == DW_FORM_block
19852 || attr->form == DW_FORM_exprloc);
19853 }
19854
19855 /* Return non-zero if ATTR's value is a section offset --- classes
19856 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19857 You may use DW_UNSND (attr) to retrieve such offsets.
19858
19859 Section 7.5.4, "Attribute Encodings", explains that no attribute
19860 may have a value that belongs to more than one of these classes; it
19861 would be ambiguous if we did, because we use the same forms for all
19862 of them. */
19863
19864 static int
19865 attr_form_is_section_offset (const struct attribute *attr)
19866 {
19867 return (attr->form == DW_FORM_data4
19868 || attr->form == DW_FORM_data8
19869 || attr->form == DW_FORM_sec_offset);
19870 }
19871
19872 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19873 zero otherwise. When this function returns true, you can apply
19874 dwarf2_get_attr_constant_value to it.
19875
19876 However, note that for some attributes you must check
19877 attr_form_is_section_offset before using this test. DW_FORM_data4
19878 and DW_FORM_data8 are members of both the constant class, and of
19879 the classes that contain offsets into other debug sections
19880 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19881 that, if an attribute's can be either a constant or one of the
19882 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19883 taken as section offsets, not constants. */
19884
19885 static int
19886 attr_form_is_constant (const struct attribute *attr)
19887 {
19888 switch (attr->form)
19889 {
19890 case DW_FORM_sdata:
19891 case DW_FORM_udata:
19892 case DW_FORM_data1:
19893 case DW_FORM_data2:
19894 case DW_FORM_data4:
19895 case DW_FORM_data8:
19896 return 1;
19897 default:
19898 return 0;
19899 }
19900 }
19901
19902
19903 /* DW_ADDR is always stored already as sect_offset; despite for the forms
19904 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
19905
19906 static int
19907 attr_form_is_ref (const struct attribute *attr)
19908 {
19909 switch (attr->form)
19910 {
19911 case DW_FORM_ref_addr:
19912 case DW_FORM_ref1:
19913 case DW_FORM_ref2:
19914 case DW_FORM_ref4:
19915 case DW_FORM_ref8:
19916 case DW_FORM_ref_udata:
19917 case DW_FORM_GNU_ref_alt:
19918 return 1;
19919 default:
19920 return 0;
19921 }
19922 }
19923
19924 /* Return the .debug_loc section to use for CU.
19925 For DWO files use .debug_loc.dwo. */
19926
19927 static struct dwarf2_section_info *
19928 cu_debug_loc_section (struct dwarf2_cu *cu)
19929 {
19930 if (cu->dwo_unit)
19931 return &cu->dwo_unit->dwo_file->sections.loc;
19932 return &dwarf2_per_objfile->loc;
19933 }
19934
19935 /* A helper function that fills in a dwarf2_loclist_baton. */
19936
19937 static void
19938 fill_in_loclist_baton (struct dwarf2_cu *cu,
19939 struct dwarf2_loclist_baton *baton,
19940 const struct attribute *attr)
19941 {
19942 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19943
19944 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19945
19946 baton->per_cu = cu->per_cu;
19947 gdb_assert (baton->per_cu);
19948 /* We don't know how long the location list is, but make sure we
19949 don't run off the edge of the section. */
19950 baton->size = section->size - DW_UNSND (attr);
19951 baton->data = section->buffer + DW_UNSND (attr);
19952 baton->base_address = cu->base_address;
19953 baton->from_dwo = cu->dwo_unit != NULL;
19954 }
19955
19956 static void
19957 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
19958 struct dwarf2_cu *cu, int is_block)
19959 {
19960 struct objfile *objfile = dwarf2_per_objfile->objfile;
19961 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19962
19963 if (attr_form_is_section_offset (attr)
19964 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19965 the section. If so, fall through to the complaint in the
19966 other branch. */
19967 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19968 {
19969 struct dwarf2_loclist_baton *baton;
19970
19971 baton = obstack_alloc (&objfile->objfile_obstack,
19972 sizeof (struct dwarf2_loclist_baton));
19973
19974 fill_in_loclist_baton (cu, baton, attr);
19975
19976 if (cu->base_known == 0)
19977 complaint (&symfile_complaints,
19978 _("Location list used without "
19979 "specifying the CU base address."));
19980
19981 SYMBOL_ACLASS_INDEX (sym) = (is_block
19982 ? dwarf2_loclist_block_index
19983 : dwarf2_loclist_index);
19984 SYMBOL_LOCATION_BATON (sym) = baton;
19985 }
19986 else
19987 {
19988 struct dwarf2_locexpr_baton *baton;
19989
19990 baton = obstack_alloc (&objfile->objfile_obstack,
19991 sizeof (struct dwarf2_locexpr_baton));
19992 baton->per_cu = cu->per_cu;
19993 gdb_assert (baton->per_cu);
19994
19995 if (attr_form_is_block (attr))
19996 {
19997 /* Note that we're just copying the block's data pointer
19998 here, not the actual data. We're still pointing into the
19999 info_buffer for SYM's objfile; right now we never release
20000 that buffer, but when we do clean up properly this may
20001 need to change. */
20002 baton->size = DW_BLOCK (attr)->size;
20003 baton->data = DW_BLOCK (attr)->data;
20004 }
20005 else
20006 {
20007 dwarf2_invalid_attrib_class_complaint ("location description",
20008 SYMBOL_NATURAL_NAME (sym));
20009 baton->size = 0;
20010 }
20011
20012 SYMBOL_ACLASS_INDEX (sym) = (is_block
20013 ? dwarf2_locexpr_block_index
20014 : dwarf2_locexpr_index);
20015 SYMBOL_LOCATION_BATON (sym) = baton;
20016 }
20017 }
20018
20019 /* Return the OBJFILE associated with the compilation unit CU. If CU
20020 came from a separate debuginfo file, then the master objfile is
20021 returned. */
20022
20023 struct objfile *
20024 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
20025 {
20026 struct objfile *objfile = per_cu->objfile;
20027
20028 /* Return the master objfile, so that we can report and look up the
20029 correct file containing this variable. */
20030 if (objfile->separate_debug_objfile_backlink)
20031 objfile = objfile->separate_debug_objfile_backlink;
20032
20033 return objfile;
20034 }
20035
20036 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
20037 (CU_HEADERP is unused in such case) or prepare a temporary copy at
20038 CU_HEADERP first. */
20039
20040 static const struct comp_unit_head *
20041 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
20042 struct dwarf2_per_cu_data *per_cu)
20043 {
20044 const gdb_byte *info_ptr;
20045
20046 if (per_cu->cu)
20047 return &per_cu->cu->header;
20048
20049 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
20050
20051 memset (cu_headerp, 0, sizeof (*cu_headerp));
20052 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
20053
20054 return cu_headerp;
20055 }
20056
20057 /* Return the address size given in the compilation unit header for CU. */
20058
20059 int
20060 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
20061 {
20062 struct comp_unit_head cu_header_local;
20063 const struct comp_unit_head *cu_headerp;
20064
20065 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20066
20067 return cu_headerp->addr_size;
20068 }
20069
20070 /* Return the offset size given in the compilation unit header for CU. */
20071
20072 int
20073 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
20074 {
20075 struct comp_unit_head cu_header_local;
20076 const struct comp_unit_head *cu_headerp;
20077
20078 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20079
20080 return cu_headerp->offset_size;
20081 }
20082
20083 /* See its dwarf2loc.h declaration. */
20084
20085 int
20086 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
20087 {
20088 struct comp_unit_head cu_header_local;
20089 const struct comp_unit_head *cu_headerp;
20090
20091 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20092
20093 if (cu_headerp->version == 2)
20094 return cu_headerp->addr_size;
20095 else
20096 return cu_headerp->offset_size;
20097 }
20098
20099 /* Return the text offset of the CU. The returned offset comes from
20100 this CU's objfile. If this objfile came from a separate debuginfo
20101 file, then the offset may be different from the corresponding
20102 offset in the parent objfile. */
20103
20104 CORE_ADDR
20105 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
20106 {
20107 struct objfile *objfile = per_cu->objfile;
20108
20109 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20110 }
20111
20112 /* Locate the .debug_info compilation unit from CU's objfile which contains
20113 the DIE at OFFSET. Raises an error on failure. */
20114
20115 static struct dwarf2_per_cu_data *
20116 dwarf2_find_containing_comp_unit (sect_offset offset,
20117 unsigned int offset_in_dwz,
20118 struct objfile *objfile)
20119 {
20120 struct dwarf2_per_cu_data *this_cu;
20121 int low, high;
20122 const sect_offset *cu_off;
20123
20124 low = 0;
20125 high = dwarf2_per_objfile->n_comp_units - 1;
20126 while (high > low)
20127 {
20128 struct dwarf2_per_cu_data *mid_cu;
20129 int mid = low + (high - low) / 2;
20130
20131 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20132 cu_off = &mid_cu->offset;
20133 if (mid_cu->is_dwz > offset_in_dwz
20134 || (mid_cu->is_dwz == offset_in_dwz
20135 && cu_off->sect_off >= offset.sect_off))
20136 high = mid;
20137 else
20138 low = mid + 1;
20139 }
20140 gdb_assert (low == high);
20141 this_cu = dwarf2_per_objfile->all_comp_units[low];
20142 cu_off = &this_cu->offset;
20143 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
20144 {
20145 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
20146 error (_("Dwarf Error: could not find partial DIE containing "
20147 "offset 0x%lx [in module %s]"),
20148 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
20149
20150 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20151 <= offset.sect_off);
20152 return dwarf2_per_objfile->all_comp_units[low-1];
20153 }
20154 else
20155 {
20156 this_cu = dwarf2_per_objfile->all_comp_units[low];
20157 if (low == dwarf2_per_objfile->n_comp_units - 1
20158 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20159 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20160 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
20161 return this_cu;
20162 }
20163 }
20164
20165 /* Initialize dwarf2_cu CU, owned by PER_CU. */
20166
20167 static void
20168 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
20169 {
20170 memset (cu, 0, sizeof (*cu));
20171 per_cu->cu = cu;
20172 cu->per_cu = per_cu;
20173 cu->objfile = per_cu->objfile;
20174 obstack_init (&cu->comp_unit_obstack);
20175 }
20176
20177 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20178
20179 static void
20180 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20181 enum language pretend_language)
20182 {
20183 struct attribute *attr;
20184
20185 /* Set the language we're debugging. */
20186 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20187 if (attr)
20188 set_cu_language (DW_UNSND (attr), cu);
20189 else
20190 {
20191 cu->language = pretend_language;
20192 cu->language_defn = language_def (cu->language);
20193 }
20194
20195 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
20196 if (attr)
20197 cu->producer = DW_STRING (attr);
20198 }
20199
20200 /* Release one cached compilation unit, CU. We unlink it from the tree
20201 of compilation units, but we don't remove it from the read_in_chain;
20202 the caller is responsible for that.
20203 NOTE: DATA is a void * because this function is also used as a
20204 cleanup routine. */
20205
20206 static void
20207 free_heap_comp_unit (void *data)
20208 {
20209 struct dwarf2_cu *cu = data;
20210
20211 gdb_assert (cu->per_cu != NULL);
20212 cu->per_cu->cu = NULL;
20213 cu->per_cu = NULL;
20214
20215 obstack_free (&cu->comp_unit_obstack, NULL);
20216
20217 xfree (cu);
20218 }
20219
20220 /* This cleanup function is passed the address of a dwarf2_cu on the stack
20221 when we're finished with it. We can't free the pointer itself, but be
20222 sure to unlink it from the cache. Also release any associated storage. */
20223
20224 static void
20225 free_stack_comp_unit (void *data)
20226 {
20227 struct dwarf2_cu *cu = data;
20228
20229 gdb_assert (cu->per_cu != NULL);
20230 cu->per_cu->cu = NULL;
20231 cu->per_cu = NULL;
20232
20233 obstack_free (&cu->comp_unit_obstack, NULL);
20234 cu->partial_dies = NULL;
20235 }
20236
20237 /* Free all cached compilation units. */
20238
20239 static void
20240 free_cached_comp_units (void *data)
20241 {
20242 struct dwarf2_per_cu_data *per_cu, **last_chain;
20243
20244 per_cu = dwarf2_per_objfile->read_in_chain;
20245 last_chain = &dwarf2_per_objfile->read_in_chain;
20246 while (per_cu != NULL)
20247 {
20248 struct dwarf2_per_cu_data *next_cu;
20249
20250 next_cu = per_cu->cu->read_in_chain;
20251
20252 free_heap_comp_unit (per_cu->cu);
20253 *last_chain = next_cu;
20254
20255 per_cu = next_cu;
20256 }
20257 }
20258
20259 /* Increase the age counter on each cached compilation unit, and free
20260 any that are too old. */
20261
20262 static void
20263 age_cached_comp_units (void)
20264 {
20265 struct dwarf2_per_cu_data *per_cu, **last_chain;
20266
20267 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
20268 per_cu = dwarf2_per_objfile->read_in_chain;
20269 while (per_cu != NULL)
20270 {
20271 per_cu->cu->last_used ++;
20272 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
20273 dwarf2_mark (per_cu->cu);
20274 per_cu = per_cu->cu->read_in_chain;
20275 }
20276
20277 per_cu = dwarf2_per_objfile->read_in_chain;
20278 last_chain = &dwarf2_per_objfile->read_in_chain;
20279 while (per_cu != NULL)
20280 {
20281 struct dwarf2_per_cu_data *next_cu;
20282
20283 next_cu = per_cu->cu->read_in_chain;
20284
20285 if (!per_cu->cu->mark)
20286 {
20287 free_heap_comp_unit (per_cu->cu);
20288 *last_chain = next_cu;
20289 }
20290 else
20291 last_chain = &per_cu->cu->read_in_chain;
20292
20293 per_cu = next_cu;
20294 }
20295 }
20296
20297 /* Remove a single compilation unit from the cache. */
20298
20299 static void
20300 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
20301 {
20302 struct dwarf2_per_cu_data *per_cu, **last_chain;
20303
20304 per_cu = dwarf2_per_objfile->read_in_chain;
20305 last_chain = &dwarf2_per_objfile->read_in_chain;
20306 while (per_cu != NULL)
20307 {
20308 struct dwarf2_per_cu_data *next_cu;
20309
20310 next_cu = per_cu->cu->read_in_chain;
20311
20312 if (per_cu == target_per_cu)
20313 {
20314 free_heap_comp_unit (per_cu->cu);
20315 per_cu->cu = NULL;
20316 *last_chain = next_cu;
20317 break;
20318 }
20319 else
20320 last_chain = &per_cu->cu->read_in_chain;
20321
20322 per_cu = next_cu;
20323 }
20324 }
20325
20326 /* Release all extra memory associated with OBJFILE. */
20327
20328 void
20329 dwarf2_free_objfile (struct objfile *objfile)
20330 {
20331 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20332
20333 if (dwarf2_per_objfile == NULL)
20334 return;
20335
20336 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
20337 free_cached_comp_units (NULL);
20338
20339 if (dwarf2_per_objfile->quick_file_names_table)
20340 htab_delete (dwarf2_per_objfile->quick_file_names_table);
20341
20342 /* Everything else should be on the objfile obstack. */
20343 }
20344
20345 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
20346 We store these in a hash table separate from the DIEs, and preserve them
20347 when the DIEs are flushed out of cache.
20348
20349 The CU "per_cu" pointer is needed because offset alone is not enough to
20350 uniquely identify the type. A file may have multiple .debug_types sections,
20351 or the type may come from a DWO file. Furthermore, while it's more logical
20352 to use per_cu->section+offset, with Fission the section with the data is in
20353 the DWO file but we don't know that section at the point we need it.
20354 We have to use something in dwarf2_per_cu_data (or the pointer to it)
20355 because we can enter the lookup routine, get_die_type_at_offset, from
20356 outside this file, and thus won't necessarily have PER_CU->cu.
20357 Fortunately, PER_CU is stable for the life of the objfile. */
20358
20359 struct dwarf2_per_cu_offset_and_type
20360 {
20361 const struct dwarf2_per_cu_data *per_cu;
20362 sect_offset offset;
20363 struct type *type;
20364 };
20365
20366 /* Hash function for a dwarf2_per_cu_offset_and_type. */
20367
20368 static hashval_t
20369 per_cu_offset_and_type_hash (const void *item)
20370 {
20371 const struct dwarf2_per_cu_offset_and_type *ofs = item;
20372
20373 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
20374 }
20375
20376 /* Equality function for a dwarf2_per_cu_offset_and_type. */
20377
20378 static int
20379 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
20380 {
20381 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
20382 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
20383
20384 return (ofs_lhs->per_cu == ofs_rhs->per_cu
20385 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
20386 }
20387
20388 /* Set the type associated with DIE to TYPE. Save it in CU's hash
20389 table if necessary. For convenience, return TYPE.
20390
20391 The DIEs reading must have careful ordering to:
20392 * Not cause infite loops trying to read in DIEs as a prerequisite for
20393 reading current DIE.
20394 * Not trying to dereference contents of still incompletely read in types
20395 while reading in other DIEs.
20396 * Enable referencing still incompletely read in types just by a pointer to
20397 the type without accessing its fields.
20398
20399 Therefore caller should follow these rules:
20400 * Try to fetch any prerequisite types we may need to build this DIE type
20401 before building the type and calling set_die_type.
20402 * After building type call set_die_type for current DIE as soon as
20403 possible before fetching more types to complete the current type.
20404 * Make the type as complete as possible before fetching more types. */
20405
20406 static struct type *
20407 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20408 {
20409 struct dwarf2_per_cu_offset_and_type **slot, ofs;
20410 struct objfile *objfile = cu->objfile;
20411
20412 /* For Ada types, make sure that the gnat-specific data is always
20413 initialized (if not already set). There are a few types where
20414 we should not be doing so, because the type-specific area is
20415 already used to hold some other piece of info (eg: TYPE_CODE_FLT
20416 where the type-specific area is used to store the floatformat).
20417 But this is not a problem, because the gnat-specific information
20418 is actually not needed for these types. */
20419 if (need_gnat_info (cu)
20420 && TYPE_CODE (type) != TYPE_CODE_FUNC
20421 && TYPE_CODE (type) != TYPE_CODE_FLT
20422 && !HAVE_GNAT_AUX_INFO (type))
20423 INIT_GNAT_SPECIFIC (type);
20424
20425 if (dwarf2_per_objfile->die_type_hash == NULL)
20426 {
20427 dwarf2_per_objfile->die_type_hash =
20428 htab_create_alloc_ex (127,
20429 per_cu_offset_and_type_hash,
20430 per_cu_offset_and_type_eq,
20431 NULL,
20432 &objfile->objfile_obstack,
20433 hashtab_obstack_allocate,
20434 dummy_obstack_deallocate);
20435 }
20436
20437 ofs.per_cu = cu->per_cu;
20438 ofs.offset = die->offset;
20439 ofs.type = type;
20440 slot = (struct dwarf2_per_cu_offset_and_type **)
20441 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
20442 if (*slot)
20443 complaint (&symfile_complaints,
20444 _("A problem internal to GDB: DIE 0x%x has type already set"),
20445 die->offset.sect_off);
20446 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
20447 **slot = ofs;
20448 return type;
20449 }
20450
20451 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
20452 or return NULL if the die does not have a saved type. */
20453
20454 static struct type *
20455 get_die_type_at_offset (sect_offset offset,
20456 struct dwarf2_per_cu_data *per_cu)
20457 {
20458 struct dwarf2_per_cu_offset_and_type *slot, ofs;
20459
20460 if (dwarf2_per_objfile->die_type_hash == NULL)
20461 return NULL;
20462
20463 ofs.per_cu = per_cu;
20464 ofs.offset = offset;
20465 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
20466 if (slot)
20467 return slot->type;
20468 else
20469 return NULL;
20470 }
20471
20472 /* Look up the type for DIE in CU in die_type_hash,
20473 or return NULL if DIE does not have a saved type. */
20474
20475 static struct type *
20476 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
20477 {
20478 return get_die_type_at_offset (die->offset, cu->per_cu);
20479 }
20480
20481 /* Add a dependence relationship from CU to REF_PER_CU. */
20482
20483 static void
20484 dwarf2_add_dependence (struct dwarf2_cu *cu,
20485 struct dwarf2_per_cu_data *ref_per_cu)
20486 {
20487 void **slot;
20488
20489 if (cu->dependencies == NULL)
20490 cu->dependencies
20491 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
20492 NULL, &cu->comp_unit_obstack,
20493 hashtab_obstack_allocate,
20494 dummy_obstack_deallocate);
20495
20496 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
20497 if (*slot == NULL)
20498 *slot = ref_per_cu;
20499 }
20500
20501 /* Subroutine of dwarf2_mark to pass to htab_traverse.
20502 Set the mark field in every compilation unit in the
20503 cache that we must keep because we are keeping CU. */
20504
20505 static int
20506 dwarf2_mark_helper (void **slot, void *data)
20507 {
20508 struct dwarf2_per_cu_data *per_cu;
20509
20510 per_cu = (struct dwarf2_per_cu_data *) *slot;
20511
20512 /* cu->dependencies references may not yet have been ever read if QUIT aborts
20513 reading of the chain. As such dependencies remain valid it is not much
20514 useful to track and undo them during QUIT cleanups. */
20515 if (per_cu->cu == NULL)
20516 return 1;
20517
20518 if (per_cu->cu->mark)
20519 return 1;
20520 per_cu->cu->mark = 1;
20521
20522 if (per_cu->cu->dependencies != NULL)
20523 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
20524
20525 return 1;
20526 }
20527
20528 /* Set the mark field in CU and in every other compilation unit in the
20529 cache that we must keep because we are keeping CU. */
20530
20531 static void
20532 dwarf2_mark (struct dwarf2_cu *cu)
20533 {
20534 if (cu->mark)
20535 return;
20536 cu->mark = 1;
20537 if (cu->dependencies != NULL)
20538 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
20539 }
20540
20541 static void
20542 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
20543 {
20544 while (per_cu)
20545 {
20546 per_cu->cu->mark = 0;
20547 per_cu = per_cu->cu->read_in_chain;
20548 }
20549 }
20550
20551 /* Trivial hash function for partial_die_info: the hash value of a DIE
20552 is its offset in .debug_info for this objfile. */
20553
20554 static hashval_t
20555 partial_die_hash (const void *item)
20556 {
20557 const struct partial_die_info *part_die = item;
20558
20559 return part_die->offset.sect_off;
20560 }
20561
20562 /* Trivial comparison function for partial_die_info structures: two DIEs
20563 are equal if they have the same offset. */
20564
20565 static int
20566 partial_die_eq (const void *item_lhs, const void *item_rhs)
20567 {
20568 const struct partial_die_info *part_die_lhs = item_lhs;
20569 const struct partial_die_info *part_die_rhs = item_rhs;
20570
20571 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
20572 }
20573
20574 static struct cmd_list_element *set_dwarf2_cmdlist;
20575 static struct cmd_list_element *show_dwarf2_cmdlist;
20576
20577 static void
20578 set_dwarf2_cmd (char *args, int from_tty)
20579 {
20580 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
20581 }
20582
20583 static void
20584 show_dwarf2_cmd (char *args, int from_tty)
20585 {
20586 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
20587 }
20588
20589 /* Free data associated with OBJFILE, if necessary. */
20590
20591 static void
20592 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
20593 {
20594 struct dwarf2_per_objfile *data = d;
20595 int ix;
20596
20597 /* Make sure we don't accidentally use dwarf2_per_objfile while
20598 cleaning up. */
20599 dwarf2_per_objfile = NULL;
20600
20601 for (ix = 0; ix < data->n_comp_units; ++ix)
20602 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
20603
20604 for (ix = 0; ix < data->n_type_units; ++ix)
20605 VEC_free (dwarf2_per_cu_ptr,
20606 data->all_type_units[ix]->per_cu.imported_symtabs);
20607 xfree (data->all_type_units);
20608
20609 VEC_free (dwarf2_section_info_def, data->types);
20610
20611 if (data->dwo_files)
20612 free_dwo_files (data->dwo_files, objfile);
20613 if (data->dwp_file)
20614 gdb_bfd_unref (data->dwp_file->dbfd);
20615
20616 if (data->dwz_file && data->dwz_file->dwz_bfd)
20617 gdb_bfd_unref (data->dwz_file->dwz_bfd);
20618 }
20619
20620 \f
20621 /* The "save gdb-index" command. */
20622
20623 /* The contents of the hash table we create when building the string
20624 table. */
20625 struct strtab_entry
20626 {
20627 offset_type offset;
20628 const char *str;
20629 };
20630
20631 /* Hash function for a strtab_entry.
20632
20633 Function is used only during write_hash_table so no index format backward
20634 compatibility is needed. */
20635
20636 static hashval_t
20637 hash_strtab_entry (const void *e)
20638 {
20639 const struct strtab_entry *entry = e;
20640 return mapped_index_string_hash (INT_MAX, entry->str);
20641 }
20642
20643 /* Equality function for a strtab_entry. */
20644
20645 static int
20646 eq_strtab_entry (const void *a, const void *b)
20647 {
20648 const struct strtab_entry *ea = a;
20649 const struct strtab_entry *eb = b;
20650 return !strcmp (ea->str, eb->str);
20651 }
20652
20653 /* Create a strtab_entry hash table. */
20654
20655 static htab_t
20656 create_strtab (void)
20657 {
20658 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20659 xfree, xcalloc, xfree);
20660 }
20661
20662 /* Add a string to the constant pool. Return the string's offset in
20663 host order. */
20664
20665 static offset_type
20666 add_string (htab_t table, struct obstack *cpool, const char *str)
20667 {
20668 void **slot;
20669 struct strtab_entry entry;
20670 struct strtab_entry *result;
20671
20672 entry.str = str;
20673 slot = htab_find_slot (table, &entry, INSERT);
20674 if (*slot)
20675 result = *slot;
20676 else
20677 {
20678 result = XNEW (struct strtab_entry);
20679 result->offset = obstack_object_size (cpool);
20680 result->str = str;
20681 obstack_grow_str0 (cpool, str);
20682 *slot = result;
20683 }
20684 return result->offset;
20685 }
20686
20687 /* An entry in the symbol table. */
20688 struct symtab_index_entry
20689 {
20690 /* The name of the symbol. */
20691 const char *name;
20692 /* The offset of the name in the constant pool. */
20693 offset_type index_offset;
20694 /* A sorted vector of the indices of all the CUs that hold an object
20695 of this name. */
20696 VEC (offset_type) *cu_indices;
20697 };
20698
20699 /* The symbol table. This is a power-of-2-sized hash table. */
20700 struct mapped_symtab
20701 {
20702 offset_type n_elements;
20703 offset_type size;
20704 struct symtab_index_entry **data;
20705 };
20706
20707 /* Hash function for a symtab_index_entry. */
20708
20709 static hashval_t
20710 hash_symtab_entry (const void *e)
20711 {
20712 const struct symtab_index_entry *entry = e;
20713 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20714 sizeof (offset_type) * VEC_length (offset_type,
20715 entry->cu_indices),
20716 0);
20717 }
20718
20719 /* Equality function for a symtab_index_entry. */
20720
20721 static int
20722 eq_symtab_entry (const void *a, const void *b)
20723 {
20724 const struct symtab_index_entry *ea = a;
20725 const struct symtab_index_entry *eb = b;
20726 int len = VEC_length (offset_type, ea->cu_indices);
20727 if (len != VEC_length (offset_type, eb->cu_indices))
20728 return 0;
20729 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20730 VEC_address (offset_type, eb->cu_indices),
20731 sizeof (offset_type) * len);
20732 }
20733
20734 /* Destroy a symtab_index_entry. */
20735
20736 static void
20737 delete_symtab_entry (void *p)
20738 {
20739 struct symtab_index_entry *entry = p;
20740 VEC_free (offset_type, entry->cu_indices);
20741 xfree (entry);
20742 }
20743
20744 /* Create a hash table holding symtab_index_entry objects. */
20745
20746 static htab_t
20747 create_symbol_hash_table (void)
20748 {
20749 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20750 delete_symtab_entry, xcalloc, xfree);
20751 }
20752
20753 /* Create a new mapped symtab object. */
20754
20755 static struct mapped_symtab *
20756 create_mapped_symtab (void)
20757 {
20758 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20759 symtab->n_elements = 0;
20760 symtab->size = 1024;
20761 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20762 return symtab;
20763 }
20764
20765 /* Destroy a mapped_symtab. */
20766
20767 static void
20768 cleanup_mapped_symtab (void *p)
20769 {
20770 struct mapped_symtab *symtab = p;
20771 /* The contents of the array are freed when the other hash table is
20772 destroyed. */
20773 xfree (symtab->data);
20774 xfree (symtab);
20775 }
20776
20777 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
20778 the slot.
20779
20780 Function is used only during write_hash_table so no index format backward
20781 compatibility is needed. */
20782
20783 static struct symtab_index_entry **
20784 find_slot (struct mapped_symtab *symtab, const char *name)
20785 {
20786 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
20787
20788 index = hash & (symtab->size - 1);
20789 step = ((hash * 17) & (symtab->size - 1)) | 1;
20790
20791 for (;;)
20792 {
20793 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20794 return &symtab->data[index];
20795 index = (index + step) & (symtab->size - 1);
20796 }
20797 }
20798
20799 /* Expand SYMTAB's hash table. */
20800
20801 static void
20802 hash_expand (struct mapped_symtab *symtab)
20803 {
20804 offset_type old_size = symtab->size;
20805 offset_type i;
20806 struct symtab_index_entry **old_entries = symtab->data;
20807
20808 symtab->size *= 2;
20809 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20810
20811 for (i = 0; i < old_size; ++i)
20812 {
20813 if (old_entries[i])
20814 {
20815 struct symtab_index_entry **slot = find_slot (symtab,
20816 old_entries[i]->name);
20817 *slot = old_entries[i];
20818 }
20819 }
20820
20821 xfree (old_entries);
20822 }
20823
20824 /* Add an entry to SYMTAB. NAME is the name of the symbol.
20825 CU_INDEX is the index of the CU in which the symbol appears.
20826 IS_STATIC is one if the symbol is static, otherwise zero (global). */
20827
20828 static void
20829 add_index_entry (struct mapped_symtab *symtab, const char *name,
20830 int is_static, gdb_index_symbol_kind kind,
20831 offset_type cu_index)
20832 {
20833 struct symtab_index_entry **slot;
20834 offset_type cu_index_and_attrs;
20835
20836 ++symtab->n_elements;
20837 if (4 * symtab->n_elements / 3 >= symtab->size)
20838 hash_expand (symtab);
20839
20840 slot = find_slot (symtab, name);
20841 if (!*slot)
20842 {
20843 *slot = XNEW (struct symtab_index_entry);
20844 (*slot)->name = name;
20845 /* index_offset is set later. */
20846 (*slot)->cu_indices = NULL;
20847 }
20848
20849 cu_index_and_attrs = 0;
20850 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20851 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20852 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20853
20854 /* We don't want to record an index value twice as we want to avoid the
20855 duplication.
20856 We process all global symbols and then all static symbols
20857 (which would allow us to avoid the duplication by only having to check
20858 the last entry pushed), but a symbol could have multiple kinds in one CU.
20859 To keep things simple we don't worry about the duplication here and
20860 sort and uniqufy the list after we've processed all symbols. */
20861 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20862 }
20863
20864 /* qsort helper routine for uniquify_cu_indices. */
20865
20866 static int
20867 offset_type_compare (const void *ap, const void *bp)
20868 {
20869 offset_type a = *(offset_type *) ap;
20870 offset_type b = *(offset_type *) bp;
20871
20872 return (a > b) - (b > a);
20873 }
20874
20875 /* Sort and remove duplicates of all symbols' cu_indices lists. */
20876
20877 static void
20878 uniquify_cu_indices (struct mapped_symtab *symtab)
20879 {
20880 int i;
20881
20882 for (i = 0; i < symtab->size; ++i)
20883 {
20884 struct symtab_index_entry *entry = symtab->data[i];
20885
20886 if (entry
20887 && entry->cu_indices != NULL)
20888 {
20889 unsigned int next_to_insert, next_to_check;
20890 offset_type last_value;
20891
20892 qsort (VEC_address (offset_type, entry->cu_indices),
20893 VEC_length (offset_type, entry->cu_indices),
20894 sizeof (offset_type), offset_type_compare);
20895
20896 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20897 next_to_insert = 1;
20898 for (next_to_check = 1;
20899 next_to_check < VEC_length (offset_type, entry->cu_indices);
20900 ++next_to_check)
20901 {
20902 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20903 != last_value)
20904 {
20905 last_value = VEC_index (offset_type, entry->cu_indices,
20906 next_to_check);
20907 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20908 last_value);
20909 ++next_to_insert;
20910 }
20911 }
20912 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20913 }
20914 }
20915 }
20916
20917 /* Add a vector of indices to the constant pool. */
20918
20919 static offset_type
20920 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20921 struct symtab_index_entry *entry)
20922 {
20923 void **slot;
20924
20925 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20926 if (!*slot)
20927 {
20928 offset_type len = VEC_length (offset_type, entry->cu_indices);
20929 offset_type val = MAYBE_SWAP (len);
20930 offset_type iter;
20931 int i;
20932
20933 *slot = entry;
20934 entry->index_offset = obstack_object_size (cpool);
20935
20936 obstack_grow (cpool, &val, sizeof (val));
20937 for (i = 0;
20938 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20939 ++i)
20940 {
20941 val = MAYBE_SWAP (iter);
20942 obstack_grow (cpool, &val, sizeof (val));
20943 }
20944 }
20945 else
20946 {
20947 struct symtab_index_entry *old_entry = *slot;
20948 entry->index_offset = old_entry->index_offset;
20949 entry = old_entry;
20950 }
20951 return entry->index_offset;
20952 }
20953
20954 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20955 constant pool entries going into the obstack CPOOL. */
20956
20957 static void
20958 write_hash_table (struct mapped_symtab *symtab,
20959 struct obstack *output, struct obstack *cpool)
20960 {
20961 offset_type i;
20962 htab_t symbol_hash_table;
20963 htab_t str_table;
20964
20965 symbol_hash_table = create_symbol_hash_table ();
20966 str_table = create_strtab ();
20967
20968 /* We add all the index vectors to the constant pool first, to
20969 ensure alignment is ok. */
20970 for (i = 0; i < symtab->size; ++i)
20971 {
20972 if (symtab->data[i])
20973 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20974 }
20975
20976 /* Now write out the hash table. */
20977 for (i = 0; i < symtab->size; ++i)
20978 {
20979 offset_type str_off, vec_off;
20980
20981 if (symtab->data[i])
20982 {
20983 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20984 vec_off = symtab->data[i]->index_offset;
20985 }
20986 else
20987 {
20988 /* While 0 is a valid constant pool index, it is not valid
20989 to have 0 for both offsets. */
20990 str_off = 0;
20991 vec_off = 0;
20992 }
20993
20994 str_off = MAYBE_SWAP (str_off);
20995 vec_off = MAYBE_SWAP (vec_off);
20996
20997 obstack_grow (output, &str_off, sizeof (str_off));
20998 obstack_grow (output, &vec_off, sizeof (vec_off));
20999 }
21000
21001 htab_delete (str_table);
21002 htab_delete (symbol_hash_table);
21003 }
21004
21005 /* Struct to map psymtab to CU index in the index file. */
21006 struct psymtab_cu_index_map
21007 {
21008 struct partial_symtab *psymtab;
21009 unsigned int cu_index;
21010 };
21011
21012 static hashval_t
21013 hash_psymtab_cu_index (const void *item)
21014 {
21015 const struct psymtab_cu_index_map *map = item;
21016
21017 return htab_hash_pointer (map->psymtab);
21018 }
21019
21020 static int
21021 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
21022 {
21023 const struct psymtab_cu_index_map *lhs = item_lhs;
21024 const struct psymtab_cu_index_map *rhs = item_rhs;
21025
21026 return lhs->psymtab == rhs->psymtab;
21027 }
21028
21029 /* Helper struct for building the address table. */
21030 struct addrmap_index_data
21031 {
21032 struct objfile *objfile;
21033 struct obstack *addr_obstack;
21034 htab_t cu_index_htab;
21035
21036 /* Non-zero if the previous_* fields are valid.
21037 We can't write an entry until we see the next entry (since it is only then
21038 that we know the end of the entry). */
21039 int previous_valid;
21040 /* Index of the CU in the table of all CUs in the index file. */
21041 unsigned int previous_cu_index;
21042 /* Start address of the CU. */
21043 CORE_ADDR previous_cu_start;
21044 };
21045
21046 /* Write an address entry to OBSTACK. */
21047
21048 static void
21049 add_address_entry (struct objfile *objfile, struct obstack *obstack,
21050 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
21051 {
21052 offset_type cu_index_to_write;
21053 gdb_byte addr[8];
21054 CORE_ADDR baseaddr;
21055
21056 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21057
21058 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
21059 obstack_grow (obstack, addr, 8);
21060 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
21061 obstack_grow (obstack, addr, 8);
21062 cu_index_to_write = MAYBE_SWAP (cu_index);
21063 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
21064 }
21065
21066 /* Worker function for traversing an addrmap to build the address table. */
21067
21068 static int
21069 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
21070 {
21071 struct addrmap_index_data *data = datap;
21072 struct partial_symtab *pst = obj;
21073
21074 if (data->previous_valid)
21075 add_address_entry (data->objfile, data->addr_obstack,
21076 data->previous_cu_start, start_addr,
21077 data->previous_cu_index);
21078
21079 data->previous_cu_start = start_addr;
21080 if (pst != NULL)
21081 {
21082 struct psymtab_cu_index_map find_map, *map;
21083 find_map.psymtab = pst;
21084 map = htab_find (data->cu_index_htab, &find_map);
21085 gdb_assert (map != NULL);
21086 data->previous_cu_index = map->cu_index;
21087 data->previous_valid = 1;
21088 }
21089 else
21090 data->previous_valid = 0;
21091
21092 return 0;
21093 }
21094
21095 /* Write OBJFILE's address map to OBSTACK.
21096 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
21097 in the index file. */
21098
21099 static void
21100 write_address_map (struct objfile *objfile, struct obstack *obstack,
21101 htab_t cu_index_htab)
21102 {
21103 struct addrmap_index_data addrmap_index_data;
21104
21105 /* When writing the address table, we have to cope with the fact that
21106 the addrmap iterator only provides the start of a region; we have to
21107 wait until the next invocation to get the start of the next region. */
21108
21109 addrmap_index_data.objfile = objfile;
21110 addrmap_index_data.addr_obstack = obstack;
21111 addrmap_index_data.cu_index_htab = cu_index_htab;
21112 addrmap_index_data.previous_valid = 0;
21113
21114 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
21115 &addrmap_index_data);
21116
21117 /* It's highly unlikely the last entry (end address = 0xff...ff)
21118 is valid, but we should still handle it.
21119 The end address is recorded as the start of the next region, but that
21120 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21121 anyway. */
21122 if (addrmap_index_data.previous_valid)
21123 add_address_entry (objfile, obstack,
21124 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21125 addrmap_index_data.previous_cu_index);
21126 }
21127
21128 /* Return the symbol kind of PSYM. */
21129
21130 static gdb_index_symbol_kind
21131 symbol_kind (struct partial_symbol *psym)
21132 {
21133 domain_enum domain = PSYMBOL_DOMAIN (psym);
21134 enum address_class aclass = PSYMBOL_CLASS (psym);
21135
21136 switch (domain)
21137 {
21138 case VAR_DOMAIN:
21139 switch (aclass)
21140 {
21141 case LOC_BLOCK:
21142 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21143 case LOC_TYPEDEF:
21144 return GDB_INDEX_SYMBOL_KIND_TYPE;
21145 case LOC_COMPUTED:
21146 case LOC_CONST_BYTES:
21147 case LOC_OPTIMIZED_OUT:
21148 case LOC_STATIC:
21149 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21150 case LOC_CONST:
21151 /* Note: It's currently impossible to recognize psyms as enum values
21152 short of reading the type info. For now punt. */
21153 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21154 default:
21155 /* There are other LOC_FOO values that one might want to classify
21156 as variables, but dwarf2read.c doesn't currently use them. */
21157 return GDB_INDEX_SYMBOL_KIND_OTHER;
21158 }
21159 case STRUCT_DOMAIN:
21160 return GDB_INDEX_SYMBOL_KIND_TYPE;
21161 default:
21162 return GDB_INDEX_SYMBOL_KIND_OTHER;
21163 }
21164 }
21165
21166 /* Add a list of partial symbols to SYMTAB. */
21167
21168 static void
21169 write_psymbols (struct mapped_symtab *symtab,
21170 htab_t psyms_seen,
21171 struct partial_symbol **psymp,
21172 int count,
21173 offset_type cu_index,
21174 int is_static)
21175 {
21176 for (; count-- > 0; ++psymp)
21177 {
21178 struct partial_symbol *psym = *psymp;
21179 void **slot;
21180
21181 if (SYMBOL_LANGUAGE (psym) == language_ada)
21182 error (_("Ada is not currently supported by the index"));
21183
21184 /* Only add a given psymbol once. */
21185 slot = htab_find_slot (psyms_seen, psym, INSERT);
21186 if (!*slot)
21187 {
21188 gdb_index_symbol_kind kind = symbol_kind (psym);
21189
21190 *slot = psym;
21191 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21192 is_static, kind, cu_index);
21193 }
21194 }
21195 }
21196
21197 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
21198 exception if there is an error. */
21199
21200 static void
21201 write_obstack (FILE *file, struct obstack *obstack)
21202 {
21203 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
21204 file)
21205 != obstack_object_size (obstack))
21206 error (_("couldn't data write to file"));
21207 }
21208
21209 /* Unlink a file if the argument is not NULL. */
21210
21211 static void
21212 unlink_if_set (void *p)
21213 {
21214 char **filename = p;
21215 if (*filename)
21216 unlink (*filename);
21217 }
21218
21219 /* A helper struct used when iterating over debug_types. */
21220 struct signatured_type_index_data
21221 {
21222 struct objfile *objfile;
21223 struct mapped_symtab *symtab;
21224 struct obstack *types_list;
21225 htab_t psyms_seen;
21226 int cu_index;
21227 };
21228
21229 /* A helper function that writes a single signatured_type to an
21230 obstack. */
21231
21232 static int
21233 write_one_signatured_type (void **slot, void *d)
21234 {
21235 struct signatured_type_index_data *info = d;
21236 struct signatured_type *entry = (struct signatured_type *) *slot;
21237 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
21238 gdb_byte val[8];
21239
21240 write_psymbols (info->symtab,
21241 info->psyms_seen,
21242 info->objfile->global_psymbols.list
21243 + psymtab->globals_offset,
21244 psymtab->n_global_syms, info->cu_index,
21245 0);
21246 write_psymbols (info->symtab,
21247 info->psyms_seen,
21248 info->objfile->static_psymbols.list
21249 + psymtab->statics_offset,
21250 psymtab->n_static_syms, info->cu_index,
21251 1);
21252
21253 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21254 entry->per_cu.offset.sect_off);
21255 obstack_grow (info->types_list, val, 8);
21256 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21257 entry->type_offset_in_tu.cu_off);
21258 obstack_grow (info->types_list, val, 8);
21259 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
21260 obstack_grow (info->types_list, val, 8);
21261
21262 ++info->cu_index;
21263
21264 return 1;
21265 }
21266
21267 /* Recurse into all "included" dependencies and write their symbols as
21268 if they appeared in this psymtab. */
21269
21270 static void
21271 recursively_write_psymbols (struct objfile *objfile,
21272 struct partial_symtab *psymtab,
21273 struct mapped_symtab *symtab,
21274 htab_t psyms_seen,
21275 offset_type cu_index)
21276 {
21277 int i;
21278
21279 for (i = 0; i < psymtab->number_of_dependencies; ++i)
21280 if (psymtab->dependencies[i]->user != NULL)
21281 recursively_write_psymbols (objfile, psymtab->dependencies[i],
21282 symtab, psyms_seen, cu_index);
21283
21284 write_psymbols (symtab,
21285 psyms_seen,
21286 objfile->global_psymbols.list + psymtab->globals_offset,
21287 psymtab->n_global_syms, cu_index,
21288 0);
21289 write_psymbols (symtab,
21290 psyms_seen,
21291 objfile->static_psymbols.list + psymtab->statics_offset,
21292 psymtab->n_static_syms, cu_index,
21293 1);
21294 }
21295
21296 /* Create an index file for OBJFILE in the directory DIR. */
21297
21298 static void
21299 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
21300 {
21301 struct cleanup *cleanup;
21302 char *filename, *cleanup_filename;
21303 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
21304 struct obstack cu_list, types_cu_list;
21305 int i;
21306 FILE *out_file;
21307 struct mapped_symtab *symtab;
21308 offset_type val, size_of_contents, total_len;
21309 struct stat st;
21310 htab_t psyms_seen;
21311 htab_t cu_index_htab;
21312 struct psymtab_cu_index_map *psymtab_cu_index_map;
21313
21314 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
21315 return;
21316
21317 if (dwarf2_per_objfile->using_index)
21318 error (_("Cannot use an index to create the index"));
21319
21320 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
21321 error (_("Cannot make an index when the file has multiple .debug_types sections"));
21322
21323 if (stat (objfile->name, &st) < 0)
21324 perror_with_name (objfile->name);
21325
21326 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
21327 INDEX_SUFFIX, (char *) NULL);
21328 cleanup = make_cleanup (xfree, filename);
21329
21330 out_file = gdb_fopen_cloexec (filename, "wb");
21331 if (!out_file)
21332 error (_("Can't open `%s' for writing"), filename);
21333
21334 cleanup_filename = filename;
21335 make_cleanup (unlink_if_set, &cleanup_filename);
21336
21337 symtab = create_mapped_symtab ();
21338 make_cleanup (cleanup_mapped_symtab, symtab);
21339
21340 obstack_init (&addr_obstack);
21341 make_cleanup_obstack_free (&addr_obstack);
21342
21343 obstack_init (&cu_list);
21344 make_cleanup_obstack_free (&cu_list);
21345
21346 obstack_init (&types_cu_list);
21347 make_cleanup_obstack_free (&types_cu_list);
21348
21349 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
21350 NULL, xcalloc, xfree);
21351 make_cleanup_htab_delete (psyms_seen);
21352
21353 /* While we're scanning CU's create a table that maps a psymtab pointer
21354 (which is what addrmap records) to its index (which is what is recorded
21355 in the index file). This will later be needed to write the address
21356 table. */
21357 cu_index_htab = htab_create_alloc (100,
21358 hash_psymtab_cu_index,
21359 eq_psymtab_cu_index,
21360 NULL, xcalloc, xfree);
21361 make_cleanup_htab_delete (cu_index_htab);
21362 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
21363 xmalloc (sizeof (struct psymtab_cu_index_map)
21364 * dwarf2_per_objfile->n_comp_units);
21365 make_cleanup (xfree, psymtab_cu_index_map);
21366
21367 /* The CU list is already sorted, so we don't need to do additional
21368 work here. Also, the debug_types entries do not appear in
21369 all_comp_units, but only in their own hash table. */
21370 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
21371 {
21372 struct dwarf2_per_cu_data *per_cu
21373 = dwarf2_per_objfile->all_comp_units[i];
21374 struct partial_symtab *psymtab = per_cu->v.psymtab;
21375 gdb_byte val[8];
21376 struct psymtab_cu_index_map *map;
21377 void **slot;
21378
21379 /* CU of a shared file from 'dwz -m' may be unused by this main file.
21380 It may be referenced from a local scope but in such case it does not
21381 need to be present in .gdb_index. */
21382 if (psymtab == NULL)
21383 continue;
21384
21385 if (psymtab->user == NULL)
21386 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
21387
21388 map = &psymtab_cu_index_map[i];
21389 map->psymtab = psymtab;
21390 map->cu_index = i;
21391 slot = htab_find_slot (cu_index_htab, map, INSERT);
21392 gdb_assert (slot != NULL);
21393 gdb_assert (*slot == NULL);
21394 *slot = map;
21395
21396 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21397 per_cu->offset.sect_off);
21398 obstack_grow (&cu_list, val, 8);
21399 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
21400 obstack_grow (&cu_list, val, 8);
21401 }
21402
21403 /* Dump the address map. */
21404 write_address_map (objfile, &addr_obstack, cu_index_htab);
21405
21406 /* Write out the .debug_type entries, if any. */
21407 if (dwarf2_per_objfile->signatured_types)
21408 {
21409 struct signatured_type_index_data sig_data;
21410
21411 sig_data.objfile = objfile;
21412 sig_data.symtab = symtab;
21413 sig_data.types_list = &types_cu_list;
21414 sig_data.psyms_seen = psyms_seen;
21415 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
21416 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
21417 write_one_signatured_type, &sig_data);
21418 }
21419
21420 /* Now that we've processed all symbols we can shrink their cu_indices
21421 lists. */
21422 uniquify_cu_indices (symtab);
21423
21424 obstack_init (&constant_pool);
21425 make_cleanup_obstack_free (&constant_pool);
21426 obstack_init (&symtab_obstack);
21427 make_cleanup_obstack_free (&symtab_obstack);
21428 write_hash_table (symtab, &symtab_obstack, &constant_pool);
21429
21430 obstack_init (&contents);
21431 make_cleanup_obstack_free (&contents);
21432 size_of_contents = 6 * sizeof (offset_type);
21433 total_len = size_of_contents;
21434
21435 /* The version number. */
21436 val = MAYBE_SWAP (8);
21437 obstack_grow (&contents, &val, sizeof (val));
21438
21439 /* The offset of the CU list from the start of the file. */
21440 val = MAYBE_SWAP (total_len);
21441 obstack_grow (&contents, &val, sizeof (val));
21442 total_len += obstack_object_size (&cu_list);
21443
21444 /* The offset of the types CU list from the start of the file. */
21445 val = MAYBE_SWAP (total_len);
21446 obstack_grow (&contents, &val, sizeof (val));
21447 total_len += obstack_object_size (&types_cu_list);
21448
21449 /* The offset of the address table from the start of the file. */
21450 val = MAYBE_SWAP (total_len);
21451 obstack_grow (&contents, &val, sizeof (val));
21452 total_len += obstack_object_size (&addr_obstack);
21453
21454 /* The offset of the symbol table from the start of the file. */
21455 val = MAYBE_SWAP (total_len);
21456 obstack_grow (&contents, &val, sizeof (val));
21457 total_len += obstack_object_size (&symtab_obstack);
21458
21459 /* The offset of the constant pool from the start of the file. */
21460 val = MAYBE_SWAP (total_len);
21461 obstack_grow (&contents, &val, sizeof (val));
21462 total_len += obstack_object_size (&constant_pool);
21463
21464 gdb_assert (obstack_object_size (&contents) == size_of_contents);
21465
21466 write_obstack (out_file, &contents);
21467 write_obstack (out_file, &cu_list);
21468 write_obstack (out_file, &types_cu_list);
21469 write_obstack (out_file, &addr_obstack);
21470 write_obstack (out_file, &symtab_obstack);
21471 write_obstack (out_file, &constant_pool);
21472
21473 fclose (out_file);
21474
21475 /* We want to keep the file, so we set cleanup_filename to NULL
21476 here. See unlink_if_set. */
21477 cleanup_filename = NULL;
21478
21479 do_cleanups (cleanup);
21480 }
21481
21482 /* Implementation of the `save gdb-index' command.
21483
21484 Note that the file format used by this command is documented in the
21485 GDB manual. Any changes here must be documented there. */
21486
21487 static void
21488 save_gdb_index_command (char *arg, int from_tty)
21489 {
21490 struct objfile *objfile;
21491
21492 if (!arg || !*arg)
21493 error (_("usage: save gdb-index DIRECTORY"));
21494
21495 ALL_OBJFILES (objfile)
21496 {
21497 struct stat st;
21498
21499 /* If the objfile does not correspond to an actual file, skip it. */
21500 if (stat (objfile->name, &st) < 0)
21501 continue;
21502
21503 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21504 if (dwarf2_per_objfile)
21505 {
21506 volatile struct gdb_exception except;
21507
21508 TRY_CATCH (except, RETURN_MASK_ERROR)
21509 {
21510 write_psymtabs_to_index (objfile, arg);
21511 }
21512 if (except.reason < 0)
21513 exception_fprintf (gdb_stderr, except,
21514 _("Error while writing index for `%s': "),
21515 objfile->name);
21516 }
21517 }
21518 }
21519
21520 \f
21521
21522 int dwarf2_always_disassemble;
21523
21524 static void
21525 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
21526 struct cmd_list_element *c, const char *value)
21527 {
21528 fprintf_filtered (file,
21529 _("Whether to always disassemble "
21530 "DWARF expressions is %s.\n"),
21531 value);
21532 }
21533
21534 static void
21535 show_check_physname (struct ui_file *file, int from_tty,
21536 struct cmd_list_element *c, const char *value)
21537 {
21538 fprintf_filtered (file,
21539 _("Whether to check \"physname\" is %s.\n"),
21540 value);
21541 }
21542
21543 void _initialize_dwarf2_read (void);
21544
21545 void
21546 _initialize_dwarf2_read (void)
21547 {
21548 struct cmd_list_element *c;
21549
21550 dwarf2_objfile_data_key
21551 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
21552
21553 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
21554 Set DWARF 2 specific variables.\n\
21555 Configure DWARF 2 variables such as the cache size"),
21556 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
21557 0/*allow-unknown*/, &maintenance_set_cmdlist);
21558
21559 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
21560 Show DWARF 2 specific variables\n\
21561 Show DWARF 2 variables such as the cache size"),
21562 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
21563 0/*allow-unknown*/, &maintenance_show_cmdlist);
21564
21565 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
21566 &dwarf2_max_cache_age, _("\
21567 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
21568 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
21569 A higher limit means that cached compilation units will be stored\n\
21570 in memory longer, and more total memory will be used. Zero disables\n\
21571 caching, which can slow down startup."),
21572 NULL,
21573 show_dwarf2_max_cache_age,
21574 &set_dwarf2_cmdlist,
21575 &show_dwarf2_cmdlist);
21576
21577 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
21578 &dwarf2_always_disassemble, _("\
21579 Set whether `info address' always disassembles DWARF expressions."), _("\
21580 Show whether `info address' always disassembles DWARF expressions."), _("\
21581 When enabled, DWARF expressions are always printed in an assembly-like\n\
21582 syntax. When disabled, expressions will be printed in a more\n\
21583 conversational style, when possible."),
21584 NULL,
21585 show_dwarf2_always_disassemble,
21586 &set_dwarf2_cmdlist,
21587 &show_dwarf2_cmdlist);
21588
21589 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
21590 Set debugging of the dwarf2 reader."), _("\
21591 Show debugging of the dwarf2 reader."), _("\
21592 When enabled, debugging messages are printed during dwarf2 reading\n\
21593 and symtab expansion."),
21594 NULL,
21595 NULL,
21596 &setdebuglist, &showdebuglist);
21597
21598 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
21599 Set debugging of the dwarf2 DIE reader."), _("\
21600 Show debugging of the dwarf2 DIE reader."), _("\
21601 When enabled (non-zero), DIEs are dumped after they are read in.\n\
21602 The value is the maximum depth to print."),
21603 NULL,
21604 NULL,
21605 &setdebuglist, &showdebuglist);
21606
21607 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
21608 Set cross-checking of \"physname\" code against demangler."), _("\
21609 Show cross-checking of \"physname\" code against demangler."), _("\
21610 When enabled, GDB's internal \"physname\" code is checked against\n\
21611 the demangler."),
21612 NULL, show_check_physname,
21613 &setdebuglist, &showdebuglist);
21614
21615 add_setshow_boolean_cmd ("use-deprecated-index-sections",
21616 no_class, &use_deprecated_index_sections, _("\
21617 Set whether to use deprecated gdb_index sections."), _("\
21618 Show whether to use deprecated gdb_index sections."), _("\
21619 When enabled, deprecated .gdb_index sections are used anyway.\n\
21620 Normally they are ignored either because of a missing feature or\n\
21621 performance issue.\n\
21622 Warning: This option must be enabled before gdb reads the file."),
21623 NULL,
21624 NULL,
21625 &setlist, &showlist);
21626
21627 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
21628 _("\
21629 Save a gdb-index file.\n\
21630 Usage: save gdb-index DIRECTORY"),
21631 &save_cmdlist);
21632 set_cmd_completer (c, filename_completer);
21633
21634 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21635 &dwarf2_locexpr_funcs);
21636 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21637 &dwarf2_loclist_funcs);
21638
21639 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21640 &dwarf2_block_frame_base_locexpr_funcs);
21641 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21642 &dwarf2_block_frame_base_loclist_funcs);
21643 }
This page took 0.524813 seconds and 4 git commands to generate.