cbe04bead360f732ff29b5bfb042465d24eade9b
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73
74 #include <fcntl.h>
75 #include <string.h>
76 #include "gdb_assert.h"
77 #include <sys/types.h>
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
85 static unsigned int dwarf2_read_debug = 0;
86
87 /* When non-zero, dump DIEs after they are read in. */
88 static unsigned int dwarf2_die_debug = 0;
89
90 /* When non-zero, cross-check physname against demangler. */
91 static int check_physname = 0;
92
93 /* When non-zero, do not reject deprecated .gdb_index sections. */
94 static int use_deprecated_index_sections = 0;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 /* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100 static int dwarf2_locexpr_index;
101 static int dwarf2_loclist_index;
102 static int dwarf2_locexpr_block_index;
103 static int dwarf2_loclist_block_index;
104
105 /* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
121 struct dwarf2_section_info
122 {
123 union
124 {
125 /* If this is a real section, the bfd section. */
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
128 section. */
129 struct dwarf2_section_info *containing_section;
130 } s;
131 /* Pointer to section data, only valid if readin. */
132 const gdb_byte *buffer;
133 /* The size of the section, real or virtual. */
134 bfd_size_type size;
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
138 /* True if we have tried to read this section. */
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
143 };
144
145 typedef struct dwarf2_section_info dwarf2_section_info_def;
146 DEF_VEC_O (dwarf2_section_info_def);
147
148 /* All offsets in the index are of this type. It must be
149 architecture-independent. */
150 typedef uint32_t offset_type;
151
152 DEF_VEC_I (offset_type);
153
154 /* Ensure only legit values are used. */
155 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
170 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178 struct mapped_index
179 {
180 /* Index data format version. */
181 int version;
182
183 /* The total length of the buffer. */
184 off_t total_size;
185
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
188
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
191
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
194
195 /* Size in slots, each slot is 2 offset_types. */
196 offset_type symbol_table_slots;
197
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200 };
201
202 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203 DEF_VEC_P (dwarf2_per_cu_ptr);
204
205 /* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
208 struct dwarf2_per_objfile
209 {
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
215 struct dwarf2_section_info macro;
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
218 struct dwarf2_section_info addr;
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
221 struct dwarf2_section_info gdb_index;
222
223 VEC (dwarf2_section_info_def) *types;
224
225 /* Back link. */
226 struct objfile *objfile;
227
228 /* Table of all the compilation units. This is used to locate
229 the target compilation unit of a particular reference. */
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
235 /* The number of .debug_types-related CUs. */
236 int n_type_units;
237
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
240 struct signatured_type **all_type_units;
241
242 /* The number of entries in all_type_unit_groups. */
243 int n_type_unit_groups;
244
245 /* Table of type unit groups.
246 This exists to make it easy to iterate over all CUs and TU groups. */
247 struct type_unit_group **all_type_unit_groups;
248
249 /* Table of struct type_unit_group objects.
250 The hash key is the DW_AT_stmt_list value. */
251 htab_t type_unit_groups;
252
253 /* A table mapping .debug_types signatures to its signatured_type entry.
254 This is NULL if the .debug_types section hasn't been read in yet. */
255 htab_t signatured_types;
256
257 /* Type unit statistics, to see how well the scaling improvements
258 are doing. */
259 struct tu_stats
260 {
261 int nr_uniq_abbrev_tables;
262 int nr_symtabs;
263 int nr_symtab_sharers;
264 int nr_stmt_less_type_units;
265 } tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
288
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
291 unsigned char using_index;
292
293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
294 struct mapped_index *index_table;
295
296 /* When using index_table, this keeps track of all quick_file_names entries.
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
303 htab_t quick_file_names_table;
304
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
308
309 /* Table mapping type DIEs to their struct type *.
310 This is NULL if not allocated yet.
311 The mapping is done via (CU/TU + DIE offset) -> type. */
312 htab_t die_type_hash;
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
316 };
317
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320 /* Default names of the debugging sections. */
321
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
326 {
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341 };
342
343 /* List of DWO/DWP sections. */
344
345 static const struct dwop_section_names
346 {
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358 }
359 dwop_section_names =
360 {
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372 };
373
374 /* local data types */
375
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
379 {
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399 };
400
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
404 {
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419 };
420
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
423
424 /* Internal state when decoding a particular compilation unit. */
425 struct dwarf2_cu
426 {
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554 };
555
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560 struct dwarf2_per_cu_data
561 {
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When using partial symbol tables, the 'psymtab' field is active.
619 Otherwise the 'quick' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 };
650
651 /* Entry in the signatured_types hash table. */
652
653 struct signatured_type
654 {
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688 };
689
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
692
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696 struct stmt_list_hash
697 {
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703 };
704
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708 struct type_unit_group
709 {
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The primary symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the primary symtab. */
726 struct symtab *primary_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744 };
745
746 /* These sections are what may appear in a (real or virtual) DWO file. */
747
748 struct dwo_sections
749 {
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760 };
761
762 /* CUs/TUs in DWP/DWO files. */
763
764 struct dwo_unit
765 {
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783 };
784
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789 enum dwp_v2_section_ids
790 {
791 DW_SECT_MIN = 1
792 };
793
794 /* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805 struct dwo_file
806 {
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835 };
836
837 /* These sections are what may appear in a DWP file. */
838
839 struct dwp_sections
840 {
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862 };
863
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867 struct virtual_v1_dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878 };
879
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885 struct virtual_v2_dwo_sections
886 {
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909 };
910
911 /* Contents of DWP hash tables. */
912
913 struct dwp_hash_table
914 {
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940 };
941
942 /* Data for one DWP file. */
943
944 struct dwp_file
945 {
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972 };
973
974 /* This represents a '.dwz' file. */
975
976 struct dwz_file
977 {
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988 };
989
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995 struct die_reader_specs
996 {
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018 };
1019
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027 /* The line number information for a compilation unit (found in the
1028 .debug_line section) begins with a "statement program header",
1029 which contains the following information. */
1030 struct line_header
1031 {
1032 unsigned int total_length;
1033 unsigned short version;
1034 unsigned int header_length;
1035 unsigned char minimum_instruction_length;
1036 unsigned char maximum_ops_per_instruction;
1037 unsigned char default_is_stmt;
1038 int line_base;
1039 unsigned char line_range;
1040 unsigned char opcode_base;
1041
1042 /* standard_opcode_lengths[i] is the number of operands for the
1043 standard opcode whose value is i. This means that
1044 standard_opcode_lengths[0] is unused, and the last meaningful
1045 element is standard_opcode_lengths[opcode_base - 1]. */
1046 unsigned char *standard_opcode_lengths;
1047
1048 /* The include_directories table. NOTE! These strings are not
1049 allocated with xmalloc; instead, they are pointers into
1050 debug_line_buffer. If you try to free them, `free' will get
1051 indigestion. */
1052 unsigned int num_include_dirs, include_dirs_size;
1053 const char **include_dirs;
1054
1055 /* The file_names table. NOTE! These strings are not allocated
1056 with xmalloc; instead, they are pointers into debug_line_buffer.
1057 Don't try to free them directly. */
1058 unsigned int num_file_names, file_names_size;
1059 struct file_entry
1060 {
1061 const char *name;
1062 unsigned int dir_index;
1063 unsigned int mod_time;
1064 unsigned int length;
1065 int included_p; /* Non-zero if referenced by the Line Number Program. */
1066 struct symtab *symtab; /* The associated symbol table, if any. */
1067 } *file_names;
1068
1069 /* The start and end of the statement program following this
1070 header. These point into dwarf2_per_objfile->line_buffer. */
1071 const gdb_byte *statement_program_start, *statement_program_end;
1072 };
1073
1074 /* When we construct a partial symbol table entry we only
1075 need this much information. */
1076 struct partial_die_info
1077 {
1078 /* Offset of this DIE. */
1079 sect_offset offset;
1080
1081 /* DWARF-2 tag for this DIE. */
1082 ENUM_BITFIELD(dwarf_tag) tag : 16;
1083
1084 /* Assorted flags describing the data found in this DIE. */
1085 unsigned int has_children : 1;
1086 unsigned int is_external : 1;
1087 unsigned int is_declaration : 1;
1088 unsigned int has_type : 1;
1089 unsigned int has_specification : 1;
1090 unsigned int has_pc_info : 1;
1091 unsigned int may_be_inlined : 1;
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
1103 /* Flag set if fixup_partial_die has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
1112 /* The name of this DIE. Normally the value of DW_AT_name, but
1113 sometimes a default name for unnamed DIEs. */
1114 const char *name;
1115
1116 /* The linkage name, if present. */
1117 const char *linkage_name;
1118
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
1122 const char *scope;
1123
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset offset;
1132 } d;
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1135 CORE_ADDR lowpc;
1136 CORE_ADDR highpc;
1137
1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1139 DW_AT_sibling, if any. */
1140 /* NOTE: This member isn't strictly necessary, read_partial_die could
1141 return DW_AT_sibling values to its caller load_partial_dies. */
1142 const gdb_byte *sibling;
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
1147 sect_offset spec_offset;
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent, *die_child, *die_sibling;
1152 };
1153
1154 /* This data structure holds the information of an abbrev. */
1155 struct abbrev_info
1156 {
1157 unsigned int number; /* number identifying abbrev */
1158 enum dwarf_tag tag; /* dwarf tag */
1159 unsigned short has_children; /* boolean */
1160 unsigned short num_attrs; /* number of attributes */
1161 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1162 struct abbrev_info *next; /* next in chain */
1163 };
1164
1165 struct attr_abbrev
1166 {
1167 ENUM_BITFIELD(dwarf_attribute) name : 16;
1168 ENUM_BITFIELD(dwarf_form) form : 16;
1169 };
1170
1171 /* Size of abbrev_table.abbrev_hash_table. */
1172 #define ABBREV_HASH_SIZE 121
1173
1174 /* Top level data structure to contain an abbreviation table. */
1175
1176 struct abbrev_table
1177 {
1178 /* Where the abbrev table came from.
1179 This is used as a sanity check when the table is used. */
1180 sect_offset offset;
1181
1182 /* Storage for the abbrev table. */
1183 struct obstack abbrev_obstack;
1184
1185 /* Hash table of abbrevs.
1186 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1187 It could be statically allocated, but the previous code didn't so we
1188 don't either. */
1189 struct abbrev_info **abbrevs;
1190 };
1191
1192 /* Attributes have a name and a value. */
1193 struct attribute
1194 {
1195 ENUM_BITFIELD(dwarf_attribute) name : 16;
1196 ENUM_BITFIELD(dwarf_form) form : 15;
1197
1198 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1199 field should be in u.str (existing only for DW_STRING) but it is kept
1200 here for better struct attribute alignment. */
1201 unsigned int string_is_canonical : 1;
1202
1203 union
1204 {
1205 const char *str;
1206 struct dwarf_block *blk;
1207 ULONGEST unsnd;
1208 LONGEST snd;
1209 CORE_ADDR addr;
1210 ULONGEST signature;
1211 }
1212 u;
1213 };
1214
1215 /* This data structure holds a complete die structure. */
1216 struct die_info
1217 {
1218 /* DWARF-2 tag for this DIE. */
1219 ENUM_BITFIELD(dwarf_tag) tag : 16;
1220
1221 /* Number of attributes */
1222 unsigned char num_attrs;
1223
1224 /* True if we're presently building the full type name for the
1225 type derived from this DIE. */
1226 unsigned char building_fullname : 1;
1227
1228 /* Abbrev number */
1229 unsigned int abbrev;
1230
1231 /* Offset in .debug_info or .debug_types section. */
1232 sect_offset offset;
1233
1234 /* The dies in a compilation unit form an n-ary tree. PARENT
1235 points to this die's parent; CHILD points to the first child of
1236 this node; and all the children of a given node are chained
1237 together via their SIBLING fields. */
1238 struct die_info *child; /* Its first child, if any. */
1239 struct die_info *sibling; /* Its next sibling, if any. */
1240 struct die_info *parent; /* Its parent, if any. */
1241
1242 /* An array of attributes, with NUM_ATTRS elements. There may be
1243 zero, but it's not common and zero-sized arrays are not
1244 sufficiently portable C. */
1245 struct attribute attrs[1];
1246 };
1247
1248 /* Get at parts of an attribute structure. */
1249
1250 #define DW_STRING(attr) ((attr)->u.str)
1251 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1252 #define DW_UNSND(attr) ((attr)->u.unsnd)
1253 #define DW_BLOCK(attr) ((attr)->u.blk)
1254 #define DW_SND(attr) ((attr)->u.snd)
1255 #define DW_ADDR(attr) ((attr)->u.addr)
1256 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1257
1258 /* Blocks are a bunch of untyped bytes. */
1259 struct dwarf_block
1260 {
1261 size_t size;
1262
1263 /* Valid only if SIZE is not zero. */
1264 const gdb_byte *data;
1265 };
1266
1267 #ifndef ATTR_ALLOC_CHUNK
1268 #define ATTR_ALLOC_CHUNK 4
1269 #endif
1270
1271 /* Allocate fields for structs, unions and enums in this size. */
1272 #ifndef DW_FIELD_ALLOC_CHUNK
1273 #define DW_FIELD_ALLOC_CHUNK 4
1274 #endif
1275
1276 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1277 but this would require a corresponding change in unpack_field_as_long
1278 and friends. */
1279 static int bits_per_byte = 8;
1280
1281 /* The routines that read and process dies for a C struct or C++ class
1282 pass lists of data member fields and lists of member function fields
1283 in an instance of a field_info structure, as defined below. */
1284 struct field_info
1285 {
1286 /* List of data member and baseclasses fields. */
1287 struct nextfield
1288 {
1289 struct nextfield *next;
1290 int accessibility;
1291 int virtuality;
1292 struct field field;
1293 }
1294 *fields, *baseclasses;
1295
1296 /* Number of fields (including baseclasses). */
1297 int nfields;
1298
1299 /* Number of baseclasses. */
1300 int nbaseclasses;
1301
1302 /* Set if the accesibility of one of the fields is not public. */
1303 int non_public_fields;
1304
1305 /* Member function fields array, entries are allocated in the order they
1306 are encountered in the object file. */
1307 struct nextfnfield
1308 {
1309 struct nextfnfield *next;
1310 struct fn_field fnfield;
1311 }
1312 *fnfields;
1313
1314 /* Member function fieldlist array, contains name of possibly overloaded
1315 member function, number of overloaded member functions and a pointer
1316 to the head of the member function field chain. */
1317 struct fnfieldlist
1318 {
1319 const char *name;
1320 int length;
1321 struct nextfnfield *head;
1322 }
1323 *fnfieldlists;
1324
1325 /* Number of entries in the fnfieldlists array. */
1326 int nfnfields;
1327
1328 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1329 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1330 struct typedef_field_list
1331 {
1332 struct typedef_field field;
1333 struct typedef_field_list *next;
1334 }
1335 *typedef_field_list;
1336 unsigned typedef_field_list_count;
1337 };
1338
1339 /* One item on the queue of compilation units to read in full symbols
1340 for. */
1341 struct dwarf2_queue_item
1342 {
1343 struct dwarf2_per_cu_data *per_cu;
1344 enum language pretend_language;
1345 struct dwarf2_queue_item *next;
1346 };
1347
1348 /* The current queue. */
1349 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1350
1351 /* Loaded secondary compilation units are kept in memory until they
1352 have not been referenced for the processing of this many
1353 compilation units. Set this to zero to disable caching. Cache
1354 sizes of up to at least twenty will improve startup time for
1355 typical inter-CU-reference binaries, at an obvious memory cost. */
1356 static int dwarf2_max_cache_age = 5;
1357 static void
1358 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1359 struct cmd_list_element *c, const char *value)
1360 {
1361 fprintf_filtered (file, _("The upper bound on the age of cached "
1362 "dwarf2 compilation units is %s.\n"),
1363 value);
1364 }
1365 \f
1366 /* local function prototypes */
1367
1368 static const char *get_section_name (const struct dwarf2_section_info *);
1369
1370 static const char *get_section_file_name (const struct dwarf2_section_info *);
1371
1372 static void dwarf2_locate_sections (bfd *, asection *, void *);
1373
1374 static void dwarf2_find_base_address (struct die_info *die,
1375 struct dwarf2_cu *cu);
1376
1377 static struct partial_symtab *create_partial_symtab
1378 (struct dwarf2_per_cu_data *per_cu, const char *name);
1379
1380 static void dwarf2_build_psymtabs_hard (struct objfile *);
1381
1382 static void scan_partial_symbols (struct partial_die_info *,
1383 CORE_ADDR *, CORE_ADDR *,
1384 int, struct dwarf2_cu *);
1385
1386 static void add_partial_symbol (struct partial_die_info *,
1387 struct dwarf2_cu *);
1388
1389 static void add_partial_namespace (struct partial_die_info *pdi,
1390 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1391 int need_pc, struct dwarf2_cu *cu);
1392
1393 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1394 CORE_ADDR *highpc, int need_pc,
1395 struct dwarf2_cu *cu);
1396
1397 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1398 struct dwarf2_cu *cu);
1399
1400 static void add_partial_subprogram (struct partial_die_info *pdi,
1401 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1402 int need_pc, struct dwarf2_cu *cu);
1403
1404 static void dwarf2_read_symtab (struct partial_symtab *,
1405 struct objfile *);
1406
1407 static void psymtab_to_symtab_1 (struct partial_symtab *);
1408
1409 static struct abbrev_info *abbrev_table_lookup_abbrev
1410 (const struct abbrev_table *, unsigned int);
1411
1412 static struct abbrev_table *abbrev_table_read_table
1413 (struct dwarf2_section_info *, sect_offset);
1414
1415 static void abbrev_table_free (struct abbrev_table *);
1416
1417 static void abbrev_table_free_cleanup (void *);
1418
1419 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1420 struct dwarf2_section_info *);
1421
1422 static void dwarf2_free_abbrev_table (void *);
1423
1424 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1425
1426 static struct partial_die_info *load_partial_dies
1427 (const struct die_reader_specs *, const gdb_byte *, int);
1428
1429 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1430 struct partial_die_info *,
1431 struct abbrev_info *,
1432 unsigned int,
1433 const gdb_byte *);
1434
1435 static struct partial_die_info *find_partial_die (sect_offset, int,
1436 struct dwarf2_cu *);
1437
1438 static void fixup_partial_die (struct partial_die_info *,
1439 struct dwarf2_cu *);
1440
1441 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1442 struct attribute *, struct attr_abbrev *,
1443 const gdb_byte *);
1444
1445 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1446
1447 static int read_1_signed_byte (bfd *, const gdb_byte *);
1448
1449 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1450
1451 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1452
1453 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1454
1455 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1456 unsigned int *);
1457
1458 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1459
1460 static LONGEST read_checked_initial_length_and_offset
1461 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1462 unsigned int *, unsigned int *);
1463
1464 static LONGEST read_offset (bfd *, const gdb_byte *,
1465 const struct comp_unit_head *,
1466 unsigned int *);
1467
1468 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1469
1470 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1471 sect_offset);
1472
1473 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1474
1475 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1476
1477 static const char *read_indirect_string (bfd *, const gdb_byte *,
1478 const struct comp_unit_head *,
1479 unsigned int *);
1480
1481 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1482
1483 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1486
1487 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1488 const gdb_byte *,
1489 unsigned int *);
1490
1491 static const char *read_str_index (const struct die_reader_specs *reader,
1492 struct dwarf2_cu *cu, ULONGEST str_index);
1493
1494 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1495
1496 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1497 struct dwarf2_cu *);
1498
1499 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1500 unsigned int);
1501
1502 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1503 struct dwarf2_cu *cu);
1504
1505 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1506
1507 static struct die_info *die_specification (struct die_info *die,
1508 struct dwarf2_cu **);
1509
1510 static void free_line_header (struct line_header *lh);
1511
1512 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1513 struct dwarf2_cu *cu);
1514
1515 static void dwarf_decode_lines (struct line_header *, const char *,
1516 struct dwarf2_cu *, struct partial_symtab *,
1517 int);
1518
1519 static void dwarf2_start_subfile (const char *, const char *, const char *);
1520
1521 static void dwarf2_start_symtab (struct dwarf2_cu *,
1522 const char *, const char *, CORE_ADDR);
1523
1524 static struct symbol *new_symbol (struct die_info *, struct type *,
1525 struct dwarf2_cu *);
1526
1527 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1528 struct dwarf2_cu *, struct symbol *);
1529
1530 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1531 struct dwarf2_cu *);
1532
1533 static void dwarf2_const_value_attr (const struct attribute *attr,
1534 struct type *type,
1535 const char *name,
1536 struct obstack *obstack,
1537 struct dwarf2_cu *cu, LONGEST *value,
1538 const gdb_byte **bytes,
1539 struct dwarf2_locexpr_baton **baton);
1540
1541 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1542
1543 static int need_gnat_info (struct dwarf2_cu *);
1544
1545 static struct type *die_descriptive_type (struct die_info *,
1546 struct dwarf2_cu *);
1547
1548 static void set_descriptive_type (struct type *, struct die_info *,
1549 struct dwarf2_cu *);
1550
1551 static struct type *die_containing_type (struct die_info *,
1552 struct dwarf2_cu *);
1553
1554 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1555 struct dwarf2_cu *);
1556
1557 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1558
1559 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1560
1561 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1562
1563 static char *typename_concat (struct obstack *obs, const char *prefix,
1564 const char *suffix, int physname,
1565 struct dwarf2_cu *cu);
1566
1567 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1568
1569 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1570
1571 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1572
1573 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1574
1575 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1576
1577 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1578 struct dwarf2_cu *, struct partial_symtab *);
1579
1580 static int dwarf2_get_pc_bounds (struct die_info *,
1581 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1582 struct partial_symtab *);
1583
1584 static void get_scope_pc_bounds (struct die_info *,
1585 CORE_ADDR *, CORE_ADDR *,
1586 struct dwarf2_cu *);
1587
1588 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1589 CORE_ADDR, struct dwarf2_cu *);
1590
1591 static void dwarf2_add_field (struct field_info *, struct die_info *,
1592 struct dwarf2_cu *);
1593
1594 static void dwarf2_attach_fields_to_type (struct field_info *,
1595 struct type *, struct dwarf2_cu *);
1596
1597 static void dwarf2_add_member_fn (struct field_info *,
1598 struct die_info *, struct type *,
1599 struct dwarf2_cu *);
1600
1601 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1602 struct type *,
1603 struct dwarf2_cu *);
1604
1605 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1606
1607 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1608
1609 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1610
1611 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1612
1613 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1614
1615 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1616
1617 static struct type *read_module_type (struct die_info *die,
1618 struct dwarf2_cu *cu);
1619
1620 static const char *namespace_name (struct die_info *die,
1621 int *is_anonymous, struct dwarf2_cu *);
1622
1623 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1624
1625 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1626
1627 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1628 struct dwarf2_cu *);
1629
1630 static struct die_info *read_die_and_siblings_1
1631 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1632 struct die_info *);
1633
1634 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1635 const gdb_byte *info_ptr,
1636 const gdb_byte **new_info_ptr,
1637 struct die_info *parent);
1638
1639 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1640 struct die_info **, const gdb_byte *,
1641 int *, int);
1642
1643 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1644 struct die_info **, const gdb_byte *,
1645 int *);
1646
1647 static void process_die (struct die_info *, struct dwarf2_cu *);
1648
1649 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1650 struct obstack *);
1651
1652 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1653
1654 static const char *dwarf2_full_name (const char *name,
1655 struct die_info *die,
1656 struct dwarf2_cu *cu);
1657
1658 static const char *dwarf2_physname (const char *name, struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
1661 static struct die_info *dwarf2_extension (struct die_info *die,
1662 struct dwarf2_cu **);
1663
1664 static const char *dwarf_tag_name (unsigned int);
1665
1666 static const char *dwarf_attr_name (unsigned int);
1667
1668 static const char *dwarf_form_name (unsigned int);
1669
1670 static char *dwarf_bool_name (unsigned int);
1671
1672 static const char *dwarf_type_encoding_name (unsigned int);
1673
1674 static struct die_info *sibling_die (struct die_info *);
1675
1676 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1677
1678 static void dump_die_for_error (struct die_info *);
1679
1680 static void dump_die_1 (struct ui_file *, int level, int max_level,
1681 struct die_info *);
1682
1683 /*static*/ void dump_die (struct die_info *, int max_level);
1684
1685 static void store_in_ref_table (struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1689
1690 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1691
1692 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1693 const struct attribute *,
1694 struct dwarf2_cu **);
1695
1696 static struct die_info *follow_die_ref (struct die_info *,
1697 const struct attribute *,
1698 struct dwarf2_cu **);
1699
1700 static struct die_info *follow_die_sig (struct die_info *,
1701 const struct attribute *,
1702 struct dwarf2_cu **);
1703
1704 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1705 struct dwarf2_cu *);
1706
1707 static struct type *get_DW_AT_signature_type (struct die_info *,
1708 const struct attribute *,
1709 struct dwarf2_cu *);
1710
1711 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1712
1713 static void read_signatured_type (struct signatured_type *);
1714
1715 static struct type_unit_group *get_type_unit_group
1716 (struct dwarf2_cu *, const struct attribute *);
1717
1718 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1719
1720 /* memory allocation interface */
1721
1722 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1723
1724 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1725
1726 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1727 const char *, int);
1728
1729 static int attr_form_is_block (const struct attribute *);
1730
1731 static int attr_form_is_section_offset (const struct attribute *);
1732
1733 static int attr_form_is_constant (const struct attribute *);
1734
1735 static int attr_form_is_ref (const struct attribute *);
1736
1737 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1738 struct dwarf2_loclist_baton *baton,
1739 const struct attribute *attr);
1740
1741 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1742 struct symbol *sym,
1743 struct dwarf2_cu *cu,
1744 int is_block);
1745
1746 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1747 const gdb_byte *info_ptr,
1748 struct abbrev_info *abbrev);
1749
1750 static void free_stack_comp_unit (void *);
1751
1752 static hashval_t partial_die_hash (const void *item);
1753
1754 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1755
1756 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1757 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1758
1759 static void init_one_comp_unit (struct dwarf2_cu *cu,
1760 struct dwarf2_per_cu_data *per_cu);
1761
1762 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1763 struct die_info *comp_unit_die,
1764 enum language pretend_language);
1765
1766 static void free_heap_comp_unit (void *);
1767
1768 static void free_cached_comp_units (void *);
1769
1770 static void age_cached_comp_units (void);
1771
1772 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1773
1774 static struct type *set_die_type (struct die_info *, struct type *,
1775 struct dwarf2_cu *);
1776
1777 static void create_all_comp_units (struct objfile *);
1778
1779 static int create_all_type_units (struct objfile *);
1780
1781 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1782 enum language);
1783
1784 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1785 enum language);
1786
1787 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1788 enum language);
1789
1790 static void dwarf2_add_dependence (struct dwarf2_cu *,
1791 struct dwarf2_per_cu_data *);
1792
1793 static void dwarf2_mark (struct dwarf2_cu *);
1794
1795 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1796
1797 static struct type *get_die_type_at_offset (sect_offset,
1798 struct dwarf2_per_cu_data *);
1799
1800 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1801
1802 static void dwarf2_release_queue (void *dummy);
1803
1804 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1805 enum language pretend_language);
1806
1807 static void process_queue (void);
1808
1809 static void find_file_and_directory (struct die_info *die,
1810 struct dwarf2_cu *cu,
1811 const char **name, const char **comp_dir);
1812
1813 static char *file_full_name (int file, struct line_header *lh,
1814 const char *comp_dir);
1815
1816 static const gdb_byte *read_and_check_comp_unit_head
1817 (struct comp_unit_head *header,
1818 struct dwarf2_section_info *section,
1819 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1820 int is_debug_types_section);
1821
1822 static void init_cutu_and_read_dies
1823 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1824 int use_existing_cu, int keep,
1825 die_reader_func_ftype *die_reader_func, void *data);
1826
1827 static void init_cutu_and_read_dies_simple
1828 (struct dwarf2_per_cu_data *this_cu,
1829 die_reader_func_ftype *die_reader_func, void *data);
1830
1831 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1832
1833 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1834
1835 static struct dwo_unit *lookup_dwo_unit_in_dwp
1836 (struct dwp_file *dwp_file, const char *comp_dir,
1837 ULONGEST signature, int is_debug_types);
1838
1839 static struct dwp_file *get_dwp_file (void);
1840
1841 static struct dwo_unit *lookup_dwo_comp_unit
1842 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1843
1844 static struct dwo_unit *lookup_dwo_type_unit
1845 (struct signatured_type *, const char *, const char *);
1846
1847 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1848
1849 static void free_dwo_file_cleanup (void *);
1850
1851 static void process_cu_includes (void);
1852
1853 static void check_producer (struct dwarf2_cu *cu);
1854 \f
1855 /* Various complaints about symbol reading that don't abort the process. */
1856
1857 static void
1858 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1859 {
1860 complaint (&symfile_complaints,
1861 _("statement list doesn't fit in .debug_line section"));
1862 }
1863
1864 static void
1865 dwarf2_debug_line_missing_file_complaint (void)
1866 {
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line data without a file"));
1869 }
1870
1871 static void
1872 dwarf2_debug_line_missing_end_sequence_complaint (void)
1873 {
1874 complaint (&symfile_complaints,
1875 _(".debug_line section has line "
1876 "program sequence without an end"));
1877 }
1878
1879 static void
1880 dwarf2_complex_location_expr_complaint (void)
1881 {
1882 complaint (&symfile_complaints, _("location expression too complex"));
1883 }
1884
1885 static void
1886 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1887 int arg3)
1888 {
1889 complaint (&symfile_complaints,
1890 _("const value length mismatch for '%s', got %d, expected %d"),
1891 arg1, arg2, arg3);
1892 }
1893
1894 static void
1895 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1896 {
1897 complaint (&symfile_complaints,
1898 _("debug info runs off end of %s section"
1899 " [in module %s]"),
1900 get_section_name (section),
1901 get_section_file_name (section));
1902 }
1903
1904 static void
1905 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1906 {
1907 complaint (&symfile_complaints,
1908 _("macro debug info contains a "
1909 "malformed macro definition:\n`%s'"),
1910 arg1);
1911 }
1912
1913 static void
1914 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1915 {
1916 complaint (&symfile_complaints,
1917 _("invalid attribute class or form for '%s' in '%s'"),
1918 arg1, arg2);
1919 }
1920 \f
1921 #if WORDS_BIGENDIAN
1922
1923 /* Convert VALUE between big- and little-endian. */
1924 static offset_type
1925 byte_swap (offset_type value)
1926 {
1927 offset_type result;
1928
1929 result = (value & 0xff) << 24;
1930 result |= (value & 0xff00) << 8;
1931 result |= (value & 0xff0000) >> 8;
1932 result |= (value & 0xff000000) >> 24;
1933 return result;
1934 }
1935
1936 #define MAYBE_SWAP(V) byte_swap (V)
1937
1938 #else
1939 #define MAYBE_SWAP(V) (V)
1940 #endif /* WORDS_BIGENDIAN */
1941
1942 /* The suffix for an index file. */
1943 #define INDEX_SUFFIX ".gdb-index"
1944
1945 /* Try to locate the sections we need for DWARF 2 debugging
1946 information and return true if we have enough to do something.
1947 NAMES points to the dwarf2 section names, or is NULL if the standard
1948 ELF names are used. */
1949
1950 int
1951 dwarf2_has_info (struct objfile *objfile,
1952 const struct dwarf2_debug_sections *names)
1953 {
1954 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1955 if (!dwarf2_per_objfile)
1956 {
1957 /* Initialize per-objfile state. */
1958 struct dwarf2_per_objfile *data
1959 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1960
1961 memset (data, 0, sizeof (*data));
1962 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1963 dwarf2_per_objfile = data;
1964
1965 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1966 (void *) names);
1967 dwarf2_per_objfile->objfile = objfile;
1968 }
1969 return (!dwarf2_per_objfile->info.is_virtual
1970 && dwarf2_per_objfile->info.s.asection != NULL
1971 && !dwarf2_per_objfile->abbrev.is_virtual
1972 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1973 }
1974
1975 /* Return the containing section of virtual section SECTION. */
1976
1977 static struct dwarf2_section_info *
1978 get_containing_section (const struct dwarf2_section_info *section)
1979 {
1980 gdb_assert (section->is_virtual);
1981 return section->s.containing_section;
1982 }
1983
1984 /* Return the bfd owner of SECTION. */
1985
1986 static struct bfd *
1987 get_section_bfd_owner (const struct dwarf2_section_info *section)
1988 {
1989 if (section->is_virtual)
1990 {
1991 section = get_containing_section (section);
1992 gdb_assert (!section->is_virtual);
1993 }
1994 return section->s.asection->owner;
1995 }
1996
1997 /* Return the bfd section of SECTION.
1998 Returns NULL if the section is not present. */
1999
2000 static asection *
2001 get_section_bfd_section (const struct dwarf2_section_info *section)
2002 {
2003 if (section->is_virtual)
2004 {
2005 section = get_containing_section (section);
2006 gdb_assert (!section->is_virtual);
2007 }
2008 return section->s.asection;
2009 }
2010
2011 /* Return the name of SECTION. */
2012
2013 static const char *
2014 get_section_name (const struct dwarf2_section_info *section)
2015 {
2016 asection *sectp = get_section_bfd_section (section);
2017
2018 gdb_assert (sectp != NULL);
2019 return bfd_section_name (get_section_bfd_owner (section), sectp);
2020 }
2021
2022 /* Return the name of the file SECTION is in. */
2023
2024 static const char *
2025 get_section_file_name (const struct dwarf2_section_info *section)
2026 {
2027 bfd *abfd = get_section_bfd_owner (section);
2028
2029 return bfd_get_filename (abfd);
2030 }
2031
2032 /* Return the id of SECTION.
2033 Returns 0 if SECTION doesn't exist. */
2034
2035 static int
2036 get_section_id (const struct dwarf2_section_info *section)
2037 {
2038 asection *sectp = get_section_bfd_section (section);
2039
2040 if (sectp == NULL)
2041 return 0;
2042 return sectp->id;
2043 }
2044
2045 /* Return the flags of SECTION.
2046 SECTION (or containing section if this is a virtual section) must exist. */
2047
2048 static int
2049 get_section_flags (const struct dwarf2_section_info *section)
2050 {
2051 asection *sectp = get_section_bfd_section (section);
2052
2053 gdb_assert (sectp != NULL);
2054 return bfd_get_section_flags (sectp->owner, sectp);
2055 }
2056
2057 /* When loading sections, we look either for uncompressed section or for
2058 compressed section names. */
2059
2060 static int
2061 section_is_p (const char *section_name,
2062 const struct dwarf2_section_names *names)
2063 {
2064 if (names->normal != NULL
2065 && strcmp (section_name, names->normal) == 0)
2066 return 1;
2067 if (names->compressed != NULL
2068 && strcmp (section_name, names->compressed) == 0)
2069 return 1;
2070 return 0;
2071 }
2072
2073 /* This function is mapped across the sections and remembers the
2074 offset and size of each of the debugging sections we are interested
2075 in. */
2076
2077 static void
2078 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2079 {
2080 const struct dwarf2_debug_sections *names;
2081 flagword aflag = bfd_get_section_flags (abfd, sectp);
2082
2083 if (vnames == NULL)
2084 names = &dwarf2_elf_names;
2085 else
2086 names = (const struct dwarf2_debug_sections *) vnames;
2087
2088 if ((aflag & SEC_HAS_CONTENTS) == 0)
2089 {
2090 }
2091 else if (section_is_p (sectp->name, &names->info))
2092 {
2093 dwarf2_per_objfile->info.s.asection = sectp;
2094 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2095 }
2096 else if (section_is_p (sectp->name, &names->abbrev))
2097 {
2098 dwarf2_per_objfile->abbrev.s.asection = sectp;
2099 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2100 }
2101 else if (section_is_p (sectp->name, &names->line))
2102 {
2103 dwarf2_per_objfile->line.s.asection = sectp;
2104 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2105 }
2106 else if (section_is_p (sectp->name, &names->loc))
2107 {
2108 dwarf2_per_objfile->loc.s.asection = sectp;
2109 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2110 }
2111 else if (section_is_p (sectp->name, &names->macinfo))
2112 {
2113 dwarf2_per_objfile->macinfo.s.asection = sectp;
2114 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2115 }
2116 else if (section_is_p (sectp->name, &names->macro))
2117 {
2118 dwarf2_per_objfile->macro.s.asection = sectp;
2119 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2120 }
2121 else if (section_is_p (sectp->name, &names->str))
2122 {
2123 dwarf2_per_objfile->str.s.asection = sectp;
2124 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2125 }
2126 else if (section_is_p (sectp->name, &names->addr))
2127 {
2128 dwarf2_per_objfile->addr.s.asection = sectp;
2129 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2130 }
2131 else if (section_is_p (sectp->name, &names->frame))
2132 {
2133 dwarf2_per_objfile->frame.s.asection = sectp;
2134 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2135 }
2136 else if (section_is_p (sectp->name, &names->eh_frame))
2137 {
2138 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2139 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2140 }
2141 else if (section_is_p (sectp->name, &names->ranges))
2142 {
2143 dwarf2_per_objfile->ranges.s.asection = sectp;
2144 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2145 }
2146 else if (section_is_p (sectp->name, &names->types))
2147 {
2148 struct dwarf2_section_info type_section;
2149
2150 memset (&type_section, 0, sizeof (type_section));
2151 type_section.s.asection = sectp;
2152 type_section.size = bfd_get_section_size (sectp);
2153
2154 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2155 &type_section);
2156 }
2157 else if (section_is_p (sectp->name, &names->gdb_index))
2158 {
2159 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2160 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2161 }
2162
2163 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2164 && bfd_section_vma (abfd, sectp) == 0)
2165 dwarf2_per_objfile->has_section_at_zero = 1;
2166 }
2167
2168 /* A helper function that decides whether a section is empty,
2169 or not present. */
2170
2171 static int
2172 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2173 {
2174 if (section->is_virtual)
2175 return section->size == 0;
2176 return section->s.asection == NULL || section->size == 0;
2177 }
2178
2179 /* Read the contents of the section INFO.
2180 OBJFILE is the main object file, but not necessarily the file where
2181 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2182 of the DWO file.
2183 If the section is compressed, uncompress it before returning. */
2184
2185 static void
2186 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2187 {
2188 asection *sectp;
2189 bfd *abfd;
2190 gdb_byte *buf, *retbuf;
2191
2192 if (info->readin)
2193 return;
2194 info->buffer = NULL;
2195 info->readin = 1;
2196
2197 if (dwarf2_section_empty_p (info))
2198 return;
2199
2200 sectp = get_section_bfd_section (info);
2201
2202 /* If this is a virtual section we need to read in the real one first. */
2203 if (info->is_virtual)
2204 {
2205 struct dwarf2_section_info *containing_section =
2206 get_containing_section (info);
2207
2208 gdb_assert (sectp != NULL);
2209 if ((sectp->flags & SEC_RELOC) != 0)
2210 {
2211 error (_("Dwarf Error: DWP format V2 with relocations is not"
2212 " supported in section %s [in module %s]"),
2213 get_section_name (info), get_section_file_name (info));
2214 }
2215 dwarf2_read_section (objfile, containing_section);
2216 /* Other code should have already caught virtual sections that don't
2217 fit. */
2218 gdb_assert (info->virtual_offset + info->size
2219 <= containing_section->size);
2220 /* If the real section is empty or there was a problem reading the
2221 section we shouldn't get here. */
2222 gdb_assert (containing_section->buffer != NULL);
2223 info->buffer = containing_section->buffer + info->virtual_offset;
2224 return;
2225 }
2226
2227 /* If the section has relocations, we must read it ourselves.
2228 Otherwise we attach it to the BFD. */
2229 if ((sectp->flags & SEC_RELOC) == 0)
2230 {
2231 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2232 return;
2233 }
2234
2235 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2236 info->buffer = buf;
2237
2238 /* When debugging .o files, we may need to apply relocations; see
2239 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2240 We never compress sections in .o files, so we only need to
2241 try this when the section is not compressed. */
2242 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2243 if (retbuf != NULL)
2244 {
2245 info->buffer = retbuf;
2246 return;
2247 }
2248
2249 abfd = get_section_bfd_owner (info);
2250 gdb_assert (abfd != NULL);
2251
2252 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2253 || bfd_bread (buf, info->size, abfd) != info->size)
2254 {
2255 error (_("Dwarf Error: Can't read DWARF data"
2256 " in section %s [in module %s]"),
2257 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2258 }
2259 }
2260
2261 /* A helper function that returns the size of a section in a safe way.
2262 If you are positive that the section has been read before using the
2263 size, then it is safe to refer to the dwarf2_section_info object's
2264 "size" field directly. In other cases, you must call this
2265 function, because for compressed sections the size field is not set
2266 correctly until the section has been read. */
2267
2268 static bfd_size_type
2269 dwarf2_section_size (struct objfile *objfile,
2270 struct dwarf2_section_info *info)
2271 {
2272 if (!info->readin)
2273 dwarf2_read_section (objfile, info);
2274 return info->size;
2275 }
2276
2277 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2278 SECTION_NAME. */
2279
2280 void
2281 dwarf2_get_section_info (struct objfile *objfile,
2282 enum dwarf2_section_enum sect,
2283 asection **sectp, const gdb_byte **bufp,
2284 bfd_size_type *sizep)
2285 {
2286 struct dwarf2_per_objfile *data
2287 = objfile_data (objfile, dwarf2_objfile_data_key);
2288 struct dwarf2_section_info *info;
2289
2290 /* We may see an objfile without any DWARF, in which case we just
2291 return nothing. */
2292 if (data == NULL)
2293 {
2294 *sectp = NULL;
2295 *bufp = NULL;
2296 *sizep = 0;
2297 return;
2298 }
2299 switch (sect)
2300 {
2301 case DWARF2_DEBUG_FRAME:
2302 info = &data->frame;
2303 break;
2304 case DWARF2_EH_FRAME:
2305 info = &data->eh_frame;
2306 break;
2307 default:
2308 gdb_assert_not_reached ("unexpected section");
2309 }
2310
2311 dwarf2_read_section (objfile, info);
2312
2313 *sectp = get_section_bfd_section (info);
2314 *bufp = info->buffer;
2315 *sizep = info->size;
2316 }
2317
2318 /* A helper function to find the sections for a .dwz file. */
2319
2320 static void
2321 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2322 {
2323 struct dwz_file *dwz_file = arg;
2324
2325 /* Note that we only support the standard ELF names, because .dwz
2326 is ELF-only (at the time of writing). */
2327 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2328 {
2329 dwz_file->abbrev.s.asection = sectp;
2330 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2331 }
2332 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2333 {
2334 dwz_file->info.s.asection = sectp;
2335 dwz_file->info.size = bfd_get_section_size (sectp);
2336 }
2337 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2338 {
2339 dwz_file->str.s.asection = sectp;
2340 dwz_file->str.size = bfd_get_section_size (sectp);
2341 }
2342 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2343 {
2344 dwz_file->line.s.asection = sectp;
2345 dwz_file->line.size = bfd_get_section_size (sectp);
2346 }
2347 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2348 {
2349 dwz_file->macro.s.asection = sectp;
2350 dwz_file->macro.size = bfd_get_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2353 {
2354 dwz_file->gdb_index.s.asection = sectp;
2355 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2356 }
2357 }
2358
2359 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2360 there is no .gnu_debugaltlink section in the file. Error if there
2361 is such a section but the file cannot be found. */
2362
2363 static struct dwz_file *
2364 dwarf2_get_dwz_file (void)
2365 {
2366 bfd *dwz_bfd;
2367 char *data;
2368 struct cleanup *cleanup;
2369 const char *filename;
2370 struct dwz_file *result;
2371 bfd_size_type buildid_len_arg;
2372 size_t buildid_len;
2373 bfd_byte *buildid;
2374
2375 if (dwarf2_per_objfile->dwz_file != NULL)
2376 return dwarf2_per_objfile->dwz_file;
2377
2378 bfd_set_error (bfd_error_no_error);
2379 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2380 &buildid_len_arg, &buildid);
2381 if (data == NULL)
2382 {
2383 if (bfd_get_error () == bfd_error_no_error)
2384 return NULL;
2385 error (_("could not read '.gnu_debugaltlink' section: %s"),
2386 bfd_errmsg (bfd_get_error ()));
2387 }
2388 cleanup = make_cleanup (xfree, data);
2389 make_cleanup (xfree, buildid);
2390
2391 buildid_len = (size_t) buildid_len_arg;
2392
2393 filename = (const char *) data;
2394 if (!IS_ABSOLUTE_PATH (filename))
2395 {
2396 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2397 char *rel;
2398
2399 make_cleanup (xfree, abs);
2400 abs = ldirname (abs);
2401 make_cleanup (xfree, abs);
2402
2403 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2404 make_cleanup (xfree, rel);
2405 filename = rel;
2406 }
2407
2408 /* First try the file name given in the section. If that doesn't
2409 work, try to use the build-id instead. */
2410 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2411 if (dwz_bfd != NULL)
2412 {
2413 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2414 {
2415 gdb_bfd_unref (dwz_bfd);
2416 dwz_bfd = NULL;
2417 }
2418 }
2419
2420 if (dwz_bfd == NULL)
2421 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2422
2423 if (dwz_bfd == NULL)
2424 error (_("could not find '.gnu_debugaltlink' file for %s"),
2425 objfile_name (dwarf2_per_objfile->objfile));
2426
2427 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2428 struct dwz_file);
2429 result->dwz_bfd = dwz_bfd;
2430
2431 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2432
2433 do_cleanups (cleanup);
2434
2435 dwarf2_per_objfile->dwz_file = result;
2436 return result;
2437 }
2438 \f
2439 /* DWARF quick_symbols_functions support. */
2440
2441 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2442 unique line tables, so we maintain a separate table of all .debug_line
2443 derived entries to support the sharing.
2444 All the quick functions need is the list of file names. We discard the
2445 line_header when we're done and don't need to record it here. */
2446 struct quick_file_names
2447 {
2448 /* The data used to construct the hash key. */
2449 struct stmt_list_hash hash;
2450
2451 /* The number of entries in file_names, real_names. */
2452 unsigned int num_file_names;
2453
2454 /* The file names from the line table, after being run through
2455 file_full_name. */
2456 const char **file_names;
2457
2458 /* The file names from the line table after being run through
2459 gdb_realpath. These are computed lazily. */
2460 const char **real_names;
2461 };
2462
2463 /* When using the index (and thus not using psymtabs), each CU has an
2464 object of this type. This is used to hold information needed by
2465 the various "quick" methods. */
2466 struct dwarf2_per_cu_quick_data
2467 {
2468 /* The file table. This can be NULL if there was no file table
2469 or it's currently not read in.
2470 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2471 struct quick_file_names *file_names;
2472
2473 /* The corresponding symbol table. This is NULL if symbols for this
2474 CU have not yet been read. */
2475 struct symtab *symtab;
2476
2477 /* A temporary mark bit used when iterating over all CUs in
2478 expand_symtabs_matching. */
2479 unsigned int mark : 1;
2480
2481 /* True if we've tried to read the file table and found there isn't one.
2482 There will be no point in trying to read it again next time. */
2483 unsigned int no_file_data : 1;
2484 };
2485
2486 /* Utility hash function for a stmt_list_hash. */
2487
2488 static hashval_t
2489 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2490 {
2491 hashval_t v = 0;
2492
2493 if (stmt_list_hash->dwo_unit != NULL)
2494 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2495 v += stmt_list_hash->line_offset.sect_off;
2496 return v;
2497 }
2498
2499 /* Utility equality function for a stmt_list_hash. */
2500
2501 static int
2502 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2503 const struct stmt_list_hash *rhs)
2504 {
2505 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2506 return 0;
2507 if (lhs->dwo_unit != NULL
2508 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2509 return 0;
2510
2511 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2512 }
2513
2514 /* Hash function for a quick_file_names. */
2515
2516 static hashval_t
2517 hash_file_name_entry (const void *e)
2518 {
2519 const struct quick_file_names *file_data = e;
2520
2521 return hash_stmt_list_entry (&file_data->hash);
2522 }
2523
2524 /* Equality function for a quick_file_names. */
2525
2526 static int
2527 eq_file_name_entry (const void *a, const void *b)
2528 {
2529 const struct quick_file_names *ea = a;
2530 const struct quick_file_names *eb = b;
2531
2532 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2533 }
2534
2535 /* Delete function for a quick_file_names. */
2536
2537 static void
2538 delete_file_name_entry (void *e)
2539 {
2540 struct quick_file_names *file_data = e;
2541 int i;
2542
2543 for (i = 0; i < file_data->num_file_names; ++i)
2544 {
2545 xfree ((void*) file_data->file_names[i]);
2546 if (file_data->real_names)
2547 xfree ((void*) file_data->real_names[i]);
2548 }
2549
2550 /* The space for the struct itself lives on objfile_obstack,
2551 so we don't free it here. */
2552 }
2553
2554 /* Create a quick_file_names hash table. */
2555
2556 static htab_t
2557 create_quick_file_names_table (unsigned int nr_initial_entries)
2558 {
2559 return htab_create_alloc (nr_initial_entries,
2560 hash_file_name_entry, eq_file_name_entry,
2561 delete_file_name_entry, xcalloc, xfree);
2562 }
2563
2564 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2565 have to be created afterwards. You should call age_cached_comp_units after
2566 processing PER_CU->CU. dw2_setup must have been already called. */
2567
2568 static void
2569 load_cu (struct dwarf2_per_cu_data *per_cu)
2570 {
2571 if (per_cu->is_debug_types)
2572 load_full_type_unit (per_cu);
2573 else
2574 load_full_comp_unit (per_cu, language_minimal);
2575
2576 gdb_assert (per_cu->cu != NULL);
2577
2578 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2579 }
2580
2581 /* Read in the symbols for PER_CU. */
2582
2583 static void
2584 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2585 {
2586 struct cleanup *back_to;
2587
2588 /* Skip type_unit_groups, reading the type units they contain
2589 is handled elsewhere. */
2590 if (IS_TYPE_UNIT_GROUP (per_cu))
2591 return;
2592
2593 back_to = make_cleanup (dwarf2_release_queue, NULL);
2594
2595 if (dwarf2_per_objfile->using_index
2596 ? per_cu->v.quick->symtab == NULL
2597 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2598 {
2599 queue_comp_unit (per_cu, language_minimal);
2600 load_cu (per_cu);
2601
2602 /* If we just loaded a CU from a DWO, and we're working with an index
2603 that may badly handle TUs, load all the TUs in that DWO as well.
2604 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2605 if (!per_cu->is_debug_types
2606 && per_cu->cu->dwo_unit != NULL
2607 && dwarf2_per_objfile->index_table != NULL
2608 && dwarf2_per_objfile->index_table->version <= 7
2609 /* DWP files aren't supported yet. */
2610 && get_dwp_file () == NULL)
2611 queue_and_load_all_dwo_tus (per_cu);
2612 }
2613
2614 process_queue ();
2615
2616 /* Age the cache, releasing compilation units that have not
2617 been used recently. */
2618 age_cached_comp_units ();
2619
2620 do_cleanups (back_to);
2621 }
2622
2623 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2624 the objfile from which this CU came. Returns the resulting symbol
2625 table. */
2626
2627 static struct symtab *
2628 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2629 {
2630 gdb_assert (dwarf2_per_objfile->using_index);
2631 if (!per_cu->v.quick->symtab)
2632 {
2633 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2634 increment_reading_symtab ();
2635 dw2_do_instantiate_symtab (per_cu);
2636 process_cu_includes ();
2637 do_cleanups (back_to);
2638 }
2639 return per_cu->v.quick->symtab;
2640 }
2641
2642 /* Return the CU given its index.
2643
2644 This is intended for loops like:
2645
2646 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2647 + dwarf2_per_objfile->n_type_units); ++i)
2648 {
2649 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2650
2651 ...;
2652 }
2653 */
2654
2655 static struct dwarf2_per_cu_data *
2656 dw2_get_cu (int index)
2657 {
2658 if (index >= dwarf2_per_objfile->n_comp_units)
2659 {
2660 index -= dwarf2_per_objfile->n_comp_units;
2661 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2662 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2663 }
2664
2665 return dwarf2_per_objfile->all_comp_units[index];
2666 }
2667
2668 /* Return the primary CU given its index.
2669 The difference between this function and dw2_get_cu is in the handling
2670 of type units (TUs). Here we return the type_unit_group object.
2671
2672 This is intended for loops like:
2673
2674 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2675 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2676 {
2677 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2678
2679 ...;
2680 }
2681 */
2682
2683 static struct dwarf2_per_cu_data *
2684 dw2_get_primary_cu (int index)
2685 {
2686 if (index >= dwarf2_per_objfile->n_comp_units)
2687 {
2688 index -= dwarf2_per_objfile->n_comp_units;
2689 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2690 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2691 }
2692
2693 return dwarf2_per_objfile->all_comp_units[index];
2694 }
2695
2696 /* A helper for create_cus_from_index that handles a given list of
2697 CUs. */
2698
2699 static void
2700 create_cus_from_index_list (struct objfile *objfile,
2701 const gdb_byte *cu_list, offset_type n_elements,
2702 struct dwarf2_section_info *section,
2703 int is_dwz,
2704 int base_offset)
2705 {
2706 offset_type i;
2707
2708 for (i = 0; i < n_elements; i += 2)
2709 {
2710 struct dwarf2_per_cu_data *the_cu;
2711 ULONGEST offset, length;
2712
2713 gdb_static_assert (sizeof (ULONGEST) >= 8);
2714 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2715 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2716 cu_list += 2 * 8;
2717
2718 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2719 struct dwarf2_per_cu_data);
2720 the_cu->offset.sect_off = offset;
2721 the_cu->length = length;
2722 the_cu->objfile = objfile;
2723 the_cu->section = section;
2724 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2725 struct dwarf2_per_cu_quick_data);
2726 the_cu->is_dwz = is_dwz;
2727 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2728 }
2729 }
2730
2731 /* Read the CU list from the mapped index, and use it to create all
2732 the CU objects for this objfile. */
2733
2734 static void
2735 create_cus_from_index (struct objfile *objfile,
2736 const gdb_byte *cu_list, offset_type cu_list_elements,
2737 const gdb_byte *dwz_list, offset_type dwz_elements)
2738 {
2739 struct dwz_file *dwz;
2740
2741 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2742 dwarf2_per_objfile->all_comp_units
2743 = obstack_alloc (&objfile->objfile_obstack,
2744 dwarf2_per_objfile->n_comp_units
2745 * sizeof (struct dwarf2_per_cu_data *));
2746
2747 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2748 &dwarf2_per_objfile->info, 0, 0);
2749
2750 if (dwz_elements == 0)
2751 return;
2752
2753 dwz = dwarf2_get_dwz_file ();
2754 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2755 cu_list_elements / 2);
2756 }
2757
2758 /* Create the signatured type hash table from the index. */
2759
2760 static void
2761 create_signatured_type_table_from_index (struct objfile *objfile,
2762 struct dwarf2_section_info *section,
2763 const gdb_byte *bytes,
2764 offset_type elements)
2765 {
2766 offset_type i;
2767 htab_t sig_types_hash;
2768
2769 dwarf2_per_objfile->n_type_units = elements / 3;
2770 dwarf2_per_objfile->all_type_units
2771 = xmalloc (dwarf2_per_objfile->n_type_units
2772 * sizeof (struct signatured_type *));
2773
2774 sig_types_hash = allocate_signatured_type_table (objfile);
2775
2776 for (i = 0; i < elements; i += 3)
2777 {
2778 struct signatured_type *sig_type;
2779 ULONGEST offset, type_offset_in_tu, signature;
2780 void **slot;
2781
2782 gdb_static_assert (sizeof (ULONGEST) >= 8);
2783 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2784 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2785 BFD_ENDIAN_LITTLE);
2786 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2787 bytes += 3 * 8;
2788
2789 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2790 struct signatured_type);
2791 sig_type->signature = signature;
2792 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2793 sig_type->per_cu.is_debug_types = 1;
2794 sig_type->per_cu.section = section;
2795 sig_type->per_cu.offset.sect_off = offset;
2796 sig_type->per_cu.objfile = objfile;
2797 sig_type->per_cu.v.quick
2798 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2799 struct dwarf2_per_cu_quick_data);
2800
2801 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2802 *slot = sig_type;
2803
2804 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2805 }
2806
2807 dwarf2_per_objfile->signatured_types = sig_types_hash;
2808 }
2809
2810 /* Read the address map data from the mapped index, and use it to
2811 populate the objfile's psymtabs_addrmap. */
2812
2813 static void
2814 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2815 {
2816 const gdb_byte *iter, *end;
2817 struct obstack temp_obstack;
2818 struct addrmap *mutable_map;
2819 struct cleanup *cleanup;
2820 CORE_ADDR baseaddr;
2821
2822 obstack_init (&temp_obstack);
2823 cleanup = make_cleanup_obstack_free (&temp_obstack);
2824 mutable_map = addrmap_create_mutable (&temp_obstack);
2825
2826 iter = index->address_table;
2827 end = iter + index->address_table_size;
2828
2829 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2830
2831 while (iter < end)
2832 {
2833 ULONGEST hi, lo, cu_index;
2834 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2835 iter += 8;
2836 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2837 iter += 8;
2838 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2839 iter += 4;
2840
2841 if (lo > hi)
2842 {
2843 complaint (&symfile_complaints,
2844 _(".gdb_index address table has invalid range (%s - %s)"),
2845 hex_string (lo), hex_string (hi));
2846 continue;
2847 }
2848
2849 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2850 {
2851 complaint (&symfile_complaints,
2852 _(".gdb_index address table has invalid CU number %u"),
2853 (unsigned) cu_index);
2854 continue;
2855 }
2856
2857 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2858 dw2_get_cu (cu_index));
2859 }
2860
2861 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2862 &objfile->objfile_obstack);
2863 do_cleanups (cleanup);
2864 }
2865
2866 /* The hash function for strings in the mapped index. This is the same as
2867 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2868 implementation. This is necessary because the hash function is tied to the
2869 format of the mapped index file. The hash values do not have to match with
2870 SYMBOL_HASH_NEXT.
2871
2872 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2873
2874 static hashval_t
2875 mapped_index_string_hash (int index_version, const void *p)
2876 {
2877 const unsigned char *str = (const unsigned char *) p;
2878 hashval_t r = 0;
2879 unsigned char c;
2880
2881 while ((c = *str++) != 0)
2882 {
2883 if (index_version >= 5)
2884 c = tolower (c);
2885 r = r * 67 + c - 113;
2886 }
2887
2888 return r;
2889 }
2890
2891 /* Find a slot in the mapped index INDEX for the object named NAME.
2892 If NAME is found, set *VEC_OUT to point to the CU vector in the
2893 constant pool and return 1. If NAME cannot be found, return 0. */
2894
2895 static int
2896 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2897 offset_type **vec_out)
2898 {
2899 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2900 offset_type hash;
2901 offset_type slot, step;
2902 int (*cmp) (const char *, const char *);
2903
2904 if (current_language->la_language == language_cplus
2905 || current_language->la_language == language_java
2906 || current_language->la_language == language_fortran)
2907 {
2908 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2909 not contain any. */
2910 const char *paren = strchr (name, '(');
2911
2912 if (paren)
2913 {
2914 char *dup;
2915
2916 dup = xmalloc (paren - name + 1);
2917 memcpy (dup, name, paren - name);
2918 dup[paren - name] = 0;
2919
2920 make_cleanup (xfree, dup);
2921 name = dup;
2922 }
2923 }
2924
2925 /* Index version 4 did not support case insensitive searches. But the
2926 indices for case insensitive languages are built in lowercase, therefore
2927 simulate our NAME being searched is also lowercased. */
2928 hash = mapped_index_string_hash ((index->version == 4
2929 && case_sensitivity == case_sensitive_off
2930 ? 5 : index->version),
2931 name);
2932
2933 slot = hash & (index->symbol_table_slots - 1);
2934 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2935 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2936
2937 for (;;)
2938 {
2939 /* Convert a slot number to an offset into the table. */
2940 offset_type i = 2 * slot;
2941 const char *str;
2942 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2943 {
2944 do_cleanups (back_to);
2945 return 0;
2946 }
2947
2948 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2949 if (!cmp (name, str))
2950 {
2951 *vec_out = (offset_type *) (index->constant_pool
2952 + MAYBE_SWAP (index->symbol_table[i + 1]));
2953 do_cleanups (back_to);
2954 return 1;
2955 }
2956
2957 slot = (slot + step) & (index->symbol_table_slots - 1);
2958 }
2959 }
2960
2961 /* A helper function that reads the .gdb_index from SECTION and fills
2962 in MAP. FILENAME is the name of the file containing the section;
2963 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2964 ok to use deprecated sections.
2965
2966 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2967 out parameters that are filled in with information about the CU and
2968 TU lists in the section.
2969
2970 Returns 1 if all went well, 0 otherwise. */
2971
2972 static int
2973 read_index_from_section (struct objfile *objfile,
2974 const char *filename,
2975 int deprecated_ok,
2976 struct dwarf2_section_info *section,
2977 struct mapped_index *map,
2978 const gdb_byte **cu_list,
2979 offset_type *cu_list_elements,
2980 const gdb_byte **types_list,
2981 offset_type *types_list_elements)
2982 {
2983 const gdb_byte *addr;
2984 offset_type version;
2985 offset_type *metadata;
2986 int i;
2987
2988 if (dwarf2_section_empty_p (section))
2989 return 0;
2990
2991 /* Older elfutils strip versions could keep the section in the main
2992 executable while splitting it for the separate debug info file. */
2993 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
2994 return 0;
2995
2996 dwarf2_read_section (objfile, section);
2997
2998 addr = section->buffer;
2999 /* Version check. */
3000 version = MAYBE_SWAP (*(offset_type *) addr);
3001 /* Versions earlier than 3 emitted every copy of a psymbol. This
3002 causes the index to behave very poorly for certain requests. Version 3
3003 contained incomplete addrmap. So, it seems better to just ignore such
3004 indices. */
3005 if (version < 4)
3006 {
3007 static int warning_printed = 0;
3008 if (!warning_printed)
3009 {
3010 warning (_("Skipping obsolete .gdb_index section in %s."),
3011 filename);
3012 warning_printed = 1;
3013 }
3014 return 0;
3015 }
3016 /* Index version 4 uses a different hash function than index version
3017 5 and later.
3018
3019 Versions earlier than 6 did not emit psymbols for inlined
3020 functions. Using these files will cause GDB not to be able to
3021 set breakpoints on inlined functions by name, so we ignore these
3022 indices unless the user has done
3023 "set use-deprecated-index-sections on". */
3024 if (version < 6 && !deprecated_ok)
3025 {
3026 static int warning_printed = 0;
3027 if (!warning_printed)
3028 {
3029 warning (_("\
3030 Skipping deprecated .gdb_index section in %s.\n\
3031 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3032 to use the section anyway."),
3033 filename);
3034 warning_printed = 1;
3035 }
3036 return 0;
3037 }
3038 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3039 of the TU (for symbols coming from TUs),
3040 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3041 Plus gold-generated indices can have duplicate entries for global symbols,
3042 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3043 These are just performance bugs, and we can't distinguish gdb-generated
3044 indices from gold-generated ones, so issue no warning here. */
3045
3046 /* Indexes with higher version than the one supported by GDB may be no
3047 longer backward compatible. */
3048 if (version > 8)
3049 return 0;
3050
3051 map->version = version;
3052 map->total_size = section->size;
3053
3054 metadata = (offset_type *) (addr + sizeof (offset_type));
3055
3056 i = 0;
3057 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3058 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3059 / 8);
3060 ++i;
3061
3062 *types_list = addr + MAYBE_SWAP (metadata[i]);
3063 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3064 - MAYBE_SWAP (metadata[i]))
3065 / 8);
3066 ++i;
3067
3068 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3069 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3070 - MAYBE_SWAP (metadata[i]));
3071 ++i;
3072
3073 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3074 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3075 - MAYBE_SWAP (metadata[i]))
3076 / (2 * sizeof (offset_type)));
3077 ++i;
3078
3079 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3080
3081 return 1;
3082 }
3083
3084
3085 /* Read the index file. If everything went ok, initialize the "quick"
3086 elements of all the CUs and return 1. Otherwise, return 0. */
3087
3088 static int
3089 dwarf2_read_index (struct objfile *objfile)
3090 {
3091 struct mapped_index local_map, *map;
3092 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3093 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3094 struct dwz_file *dwz;
3095
3096 if (!read_index_from_section (objfile, objfile_name (objfile),
3097 use_deprecated_index_sections,
3098 &dwarf2_per_objfile->gdb_index, &local_map,
3099 &cu_list, &cu_list_elements,
3100 &types_list, &types_list_elements))
3101 return 0;
3102
3103 /* Don't use the index if it's empty. */
3104 if (local_map.symbol_table_slots == 0)
3105 return 0;
3106
3107 /* If there is a .dwz file, read it so we can get its CU list as
3108 well. */
3109 dwz = dwarf2_get_dwz_file ();
3110 if (dwz != NULL)
3111 {
3112 struct mapped_index dwz_map;
3113 const gdb_byte *dwz_types_ignore;
3114 offset_type dwz_types_elements_ignore;
3115
3116 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3117 1,
3118 &dwz->gdb_index, &dwz_map,
3119 &dwz_list, &dwz_list_elements,
3120 &dwz_types_ignore,
3121 &dwz_types_elements_ignore))
3122 {
3123 warning (_("could not read '.gdb_index' section from %s; skipping"),
3124 bfd_get_filename (dwz->dwz_bfd));
3125 return 0;
3126 }
3127 }
3128
3129 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3130 dwz_list_elements);
3131
3132 if (types_list_elements)
3133 {
3134 struct dwarf2_section_info *section;
3135
3136 /* We can only handle a single .debug_types when we have an
3137 index. */
3138 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3139 return 0;
3140
3141 section = VEC_index (dwarf2_section_info_def,
3142 dwarf2_per_objfile->types, 0);
3143
3144 create_signatured_type_table_from_index (objfile, section, types_list,
3145 types_list_elements);
3146 }
3147
3148 create_addrmap_from_index (objfile, &local_map);
3149
3150 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3151 *map = local_map;
3152
3153 dwarf2_per_objfile->index_table = map;
3154 dwarf2_per_objfile->using_index = 1;
3155 dwarf2_per_objfile->quick_file_names_table =
3156 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3157
3158 return 1;
3159 }
3160
3161 /* A helper for the "quick" functions which sets the global
3162 dwarf2_per_objfile according to OBJFILE. */
3163
3164 static void
3165 dw2_setup (struct objfile *objfile)
3166 {
3167 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3168 gdb_assert (dwarf2_per_objfile);
3169 }
3170
3171 /* die_reader_func for dw2_get_file_names. */
3172
3173 static void
3174 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3175 const gdb_byte *info_ptr,
3176 struct die_info *comp_unit_die,
3177 int has_children,
3178 void *data)
3179 {
3180 struct dwarf2_cu *cu = reader->cu;
3181 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3182 struct objfile *objfile = dwarf2_per_objfile->objfile;
3183 struct dwarf2_per_cu_data *lh_cu;
3184 struct line_header *lh;
3185 struct attribute *attr;
3186 int i;
3187 const char *name, *comp_dir;
3188 void **slot;
3189 struct quick_file_names *qfn;
3190 unsigned int line_offset;
3191
3192 gdb_assert (! this_cu->is_debug_types);
3193
3194 /* Our callers never want to match partial units -- instead they
3195 will match the enclosing full CU. */
3196 if (comp_unit_die->tag == DW_TAG_partial_unit)
3197 {
3198 this_cu->v.quick->no_file_data = 1;
3199 return;
3200 }
3201
3202 lh_cu = this_cu;
3203 lh = NULL;
3204 slot = NULL;
3205 line_offset = 0;
3206
3207 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3208 if (attr)
3209 {
3210 struct quick_file_names find_entry;
3211
3212 line_offset = DW_UNSND (attr);
3213
3214 /* We may have already read in this line header (TU line header sharing).
3215 If we have we're done. */
3216 find_entry.hash.dwo_unit = cu->dwo_unit;
3217 find_entry.hash.line_offset.sect_off = line_offset;
3218 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3219 &find_entry, INSERT);
3220 if (*slot != NULL)
3221 {
3222 lh_cu->v.quick->file_names = *slot;
3223 return;
3224 }
3225
3226 lh = dwarf_decode_line_header (line_offset, cu);
3227 }
3228 if (lh == NULL)
3229 {
3230 lh_cu->v.quick->no_file_data = 1;
3231 return;
3232 }
3233
3234 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3235 qfn->hash.dwo_unit = cu->dwo_unit;
3236 qfn->hash.line_offset.sect_off = line_offset;
3237 gdb_assert (slot != NULL);
3238 *slot = qfn;
3239
3240 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3241
3242 qfn->num_file_names = lh->num_file_names;
3243 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3244 lh->num_file_names * sizeof (char *));
3245 for (i = 0; i < lh->num_file_names; ++i)
3246 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3247 qfn->real_names = NULL;
3248
3249 free_line_header (lh);
3250
3251 lh_cu->v.quick->file_names = qfn;
3252 }
3253
3254 /* A helper for the "quick" functions which attempts to read the line
3255 table for THIS_CU. */
3256
3257 static struct quick_file_names *
3258 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3259 {
3260 /* This should never be called for TUs. */
3261 gdb_assert (! this_cu->is_debug_types);
3262 /* Nor type unit groups. */
3263 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3264
3265 if (this_cu->v.quick->file_names != NULL)
3266 return this_cu->v.quick->file_names;
3267 /* If we know there is no line data, no point in looking again. */
3268 if (this_cu->v.quick->no_file_data)
3269 return NULL;
3270
3271 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3272
3273 if (this_cu->v.quick->no_file_data)
3274 return NULL;
3275 return this_cu->v.quick->file_names;
3276 }
3277
3278 /* A helper for the "quick" functions which computes and caches the
3279 real path for a given file name from the line table. */
3280
3281 static const char *
3282 dw2_get_real_path (struct objfile *objfile,
3283 struct quick_file_names *qfn, int index)
3284 {
3285 if (qfn->real_names == NULL)
3286 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3287 qfn->num_file_names, char *);
3288
3289 if (qfn->real_names[index] == NULL)
3290 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3291
3292 return qfn->real_names[index];
3293 }
3294
3295 static struct symtab *
3296 dw2_find_last_source_symtab (struct objfile *objfile)
3297 {
3298 int index;
3299
3300 dw2_setup (objfile);
3301 index = dwarf2_per_objfile->n_comp_units - 1;
3302 return dw2_instantiate_symtab (dw2_get_cu (index));
3303 }
3304
3305 /* Traversal function for dw2_forget_cached_source_info. */
3306
3307 static int
3308 dw2_free_cached_file_names (void **slot, void *info)
3309 {
3310 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3311
3312 if (file_data->real_names)
3313 {
3314 int i;
3315
3316 for (i = 0; i < file_data->num_file_names; ++i)
3317 {
3318 xfree ((void*) file_data->real_names[i]);
3319 file_data->real_names[i] = NULL;
3320 }
3321 }
3322
3323 return 1;
3324 }
3325
3326 static void
3327 dw2_forget_cached_source_info (struct objfile *objfile)
3328 {
3329 dw2_setup (objfile);
3330
3331 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3332 dw2_free_cached_file_names, NULL);
3333 }
3334
3335 /* Helper function for dw2_map_symtabs_matching_filename that expands
3336 the symtabs and calls the iterator. */
3337
3338 static int
3339 dw2_map_expand_apply (struct objfile *objfile,
3340 struct dwarf2_per_cu_data *per_cu,
3341 const char *name, const char *real_path,
3342 int (*callback) (struct symtab *, void *),
3343 void *data)
3344 {
3345 struct symtab *last_made = objfile->symtabs;
3346
3347 /* Don't visit already-expanded CUs. */
3348 if (per_cu->v.quick->symtab)
3349 return 0;
3350
3351 /* This may expand more than one symtab, and we want to iterate over
3352 all of them. */
3353 dw2_instantiate_symtab (per_cu);
3354
3355 return iterate_over_some_symtabs (name, real_path, callback, data,
3356 objfile->symtabs, last_made);
3357 }
3358
3359 /* Implementation of the map_symtabs_matching_filename method. */
3360
3361 static int
3362 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3363 const char *real_path,
3364 int (*callback) (struct symtab *, void *),
3365 void *data)
3366 {
3367 int i;
3368 const char *name_basename = lbasename (name);
3369
3370 dw2_setup (objfile);
3371
3372 /* The rule is CUs specify all the files, including those used by
3373 any TU, so there's no need to scan TUs here. */
3374
3375 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3376 {
3377 int j;
3378 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3379 struct quick_file_names *file_data;
3380
3381 /* We only need to look at symtabs not already expanded. */
3382 if (per_cu->v.quick->symtab)
3383 continue;
3384
3385 file_data = dw2_get_file_names (per_cu);
3386 if (file_data == NULL)
3387 continue;
3388
3389 for (j = 0; j < file_data->num_file_names; ++j)
3390 {
3391 const char *this_name = file_data->file_names[j];
3392 const char *this_real_name;
3393
3394 if (compare_filenames_for_search (this_name, name))
3395 {
3396 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3397 callback, data))
3398 return 1;
3399 continue;
3400 }
3401
3402 /* Before we invoke realpath, which can get expensive when many
3403 files are involved, do a quick comparison of the basenames. */
3404 if (! basenames_may_differ
3405 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3406 continue;
3407
3408 this_real_name = dw2_get_real_path (objfile, file_data, j);
3409 if (compare_filenames_for_search (this_real_name, name))
3410 {
3411 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3412 callback, data))
3413 return 1;
3414 continue;
3415 }
3416
3417 if (real_path != NULL)
3418 {
3419 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3420 gdb_assert (IS_ABSOLUTE_PATH (name));
3421 if (this_real_name != NULL
3422 && FILENAME_CMP (real_path, this_real_name) == 0)
3423 {
3424 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3425 callback, data))
3426 return 1;
3427 continue;
3428 }
3429 }
3430 }
3431 }
3432
3433 return 0;
3434 }
3435
3436 /* Struct used to manage iterating over all CUs looking for a symbol. */
3437
3438 struct dw2_symtab_iterator
3439 {
3440 /* The internalized form of .gdb_index. */
3441 struct mapped_index *index;
3442 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3443 int want_specific_block;
3444 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3445 Unused if !WANT_SPECIFIC_BLOCK. */
3446 int block_index;
3447 /* The kind of symbol we're looking for. */
3448 domain_enum domain;
3449 /* The list of CUs from the index entry of the symbol,
3450 or NULL if not found. */
3451 offset_type *vec;
3452 /* The next element in VEC to look at. */
3453 int next;
3454 /* The number of elements in VEC, or zero if there is no match. */
3455 int length;
3456 /* Have we seen a global version of the symbol?
3457 If so we can ignore all further global instances.
3458 This is to work around gold/15646, inefficient gold-generated
3459 indices. */
3460 int global_seen;
3461 };
3462
3463 /* Initialize the index symtab iterator ITER.
3464 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3465 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3466
3467 static void
3468 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3469 struct mapped_index *index,
3470 int want_specific_block,
3471 int block_index,
3472 domain_enum domain,
3473 const char *name)
3474 {
3475 iter->index = index;
3476 iter->want_specific_block = want_specific_block;
3477 iter->block_index = block_index;
3478 iter->domain = domain;
3479 iter->next = 0;
3480 iter->global_seen = 0;
3481
3482 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3483 iter->length = MAYBE_SWAP (*iter->vec);
3484 else
3485 {
3486 iter->vec = NULL;
3487 iter->length = 0;
3488 }
3489 }
3490
3491 /* Return the next matching CU or NULL if there are no more. */
3492
3493 static struct dwarf2_per_cu_data *
3494 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3495 {
3496 for ( ; iter->next < iter->length; ++iter->next)
3497 {
3498 offset_type cu_index_and_attrs =
3499 MAYBE_SWAP (iter->vec[iter->next + 1]);
3500 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3501 struct dwarf2_per_cu_data *per_cu;
3502 int want_static = iter->block_index != GLOBAL_BLOCK;
3503 /* This value is only valid for index versions >= 7. */
3504 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3505 gdb_index_symbol_kind symbol_kind =
3506 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3507 /* Only check the symbol attributes if they're present.
3508 Indices prior to version 7 don't record them,
3509 and indices >= 7 may elide them for certain symbols
3510 (gold does this). */
3511 int attrs_valid =
3512 (iter->index->version >= 7
3513 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3514
3515 /* Don't crash on bad data. */
3516 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3517 + dwarf2_per_objfile->n_type_units))
3518 {
3519 complaint (&symfile_complaints,
3520 _(".gdb_index entry has bad CU index"
3521 " [in module %s]"),
3522 objfile_name (dwarf2_per_objfile->objfile));
3523 continue;
3524 }
3525
3526 per_cu = dw2_get_cu (cu_index);
3527
3528 /* Skip if already read in. */
3529 if (per_cu->v.quick->symtab)
3530 continue;
3531
3532 /* Check static vs global. */
3533 if (attrs_valid)
3534 {
3535 if (iter->want_specific_block
3536 && want_static != is_static)
3537 continue;
3538 /* Work around gold/15646. */
3539 if (!is_static && iter->global_seen)
3540 continue;
3541 if (!is_static)
3542 iter->global_seen = 1;
3543 }
3544
3545 /* Only check the symbol's kind if it has one. */
3546 if (attrs_valid)
3547 {
3548 switch (iter->domain)
3549 {
3550 case VAR_DOMAIN:
3551 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3552 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3553 /* Some types are also in VAR_DOMAIN. */
3554 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3555 continue;
3556 break;
3557 case STRUCT_DOMAIN:
3558 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3559 continue;
3560 break;
3561 case LABEL_DOMAIN:
3562 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3563 continue;
3564 break;
3565 default:
3566 break;
3567 }
3568 }
3569
3570 ++iter->next;
3571 return per_cu;
3572 }
3573
3574 return NULL;
3575 }
3576
3577 static struct symtab *
3578 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3579 const char *name, domain_enum domain)
3580 {
3581 struct symtab *stab_best = NULL;
3582 struct mapped_index *index;
3583
3584 dw2_setup (objfile);
3585
3586 index = dwarf2_per_objfile->index_table;
3587
3588 /* index is NULL if OBJF_READNOW. */
3589 if (index)
3590 {
3591 struct dw2_symtab_iterator iter;
3592 struct dwarf2_per_cu_data *per_cu;
3593
3594 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3595
3596 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3597 {
3598 struct symbol *sym = NULL;
3599 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3600
3601 /* Some caution must be observed with overloaded functions
3602 and methods, since the index will not contain any overload
3603 information (but NAME might contain it). */
3604 if (stab->primary)
3605 {
3606 struct blockvector *bv = BLOCKVECTOR (stab);
3607 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3608
3609 sym = lookup_block_symbol (block, name, domain);
3610 }
3611
3612 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3613 {
3614 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3615 return stab;
3616
3617 stab_best = stab;
3618 }
3619
3620 /* Keep looking through other CUs. */
3621 }
3622 }
3623
3624 return stab_best;
3625 }
3626
3627 static void
3628 dw2_print_stats (struct objfile *objfile)
3629 {
3630 int i, total, count;
3631
3632 dw2_setup (objfile);
3633 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3634 count = 0;
3635 for (i = 0; i < total; ++i)
3636 {
3637 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3638
3639 if (!per_cu->v.quick->symtab)
3640 ++count;
3641 }
3642 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3643 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3644 }
3645
3646 /* This dumps minimal information about the index.
3647 It is called via "mt print objfiles".
3648 One use is to verify .gdb_index has been loaded by the
3649 gdb.dwarf2/gdb-index.exp testcase. */
3650
3651 static void
3652 dw2_dump (struct objfile *objfile)
3653 {
3654 dw2_setup (objfile);
3655 gdb_assert (dwarf2_per_objfile->using_index);
3656 printf_filtered (".gdb_index:");
3657 if (dwarf2_per_objfile->index_table != NULL)
3658 {
3659 printf_filtered (" version %d\n",
3660 dwarf2_per_objfile->index_table->version);
3661 }
3662 else
3663 printf_filtered (" faked for \"readnow\"\n");
3664 printf_filtered ("\n");
3665 }
3666
3667 static void
3668 dw2_relocate (struct objfile *objfile,
3669 const struct section_offsets *new_offsets,
3670 const struct section_offsets *delta)
3671 {
3672 /* There's nothing to relocate here. */
3673 }
3674
3675 static void
3676 dw2_expand_symtabs_for_function (struct objfile *objfile,
3677 const char *func_name)
3678 {
3679 struct mapped_index *index;
3680
3681 dw2_setup (objfile);
3682
3683 index = dwarf2_per_objfile->index_table;
3684
3685 /* index is NULL if OBJF_READNOW. */
3686 if (index)
3687 {
3688 struct dw2_symtab_iterator iter;
3689 struct dwarf2_per_cu_data *per_cu;
3690
3691 /* Note: It doesn't matter what we pass for block_index here. */
3692 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3693 func_name);
3694
3695 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3696 dw2_instantiate_symtab (per_cu);
3697 }
3698 }
3699
3700 static void
3701 dw2_expand_all_symtabs (struct objfile *objfile)
3702 {
3703 int i;
3704
3705 dw2_setup (objfile);
3706
3707 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3708 + dwarf2_per_objfile->n_type_units); ++i)
3709 {
3710 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3711
3712 dw2_instantiate_symtab (per_cu);
3713 }
3714 }
3715
3716 static void
3717 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3718 const char *fullname)
3719 {
3720 int i;
3721
3722 dw2_setup (objfile);
3723
3724 /* We don't need to consider type units here.
3725 This is only called for examining code, e.g. expand_line_sal.
3726 There can be an order of magnitude (or more) more type units
3727 than comp units, and we avoid them if we can. */
3728
3729 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3730 {
3731 int j;
3732 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3733 struct quick_file_names *file_data;
3734
3735 /* We only need to look at symtabs not already expanded. */
3736 if (per_cu->v.quick->symtab)
3737 continue;
3738
3739 file_data = dw2_get_file_names (per_cu);
3740 if (file_data == NULL)
3741 continue;
3742
3743 for (j = 0; j < file_data->num_file_names; ++j)
3744 {
3745 const char *this_fullname = file_data->file_names[j];
3746
3747 if (filename_cmp (this_fullname, fullname) == 0)
3748 {
3749 dw2_instantiate_symtab (per_cu);
3750 break;
3751 }
3752 }
3753 }
3754 }
3755
3756 static void
3757 dw2_map_matching_symbols (struct objfile *objfile,
3758 const char * name, domain_enum namespace,
3759 int global,
3760 int (*callback) (struct block *,
3761 struct symbol *, void *),
3762 void *data, symbol_compare_ftype *match,
3763 symbol_compare_ftype *ordered_compare)
3764 {
3765 /* Currently unimplemented; used for Ada. The function can be called if the
3766 current language is Ada for a non-Ada objfile using GNU index. As Ada
3767 does not look for non-Ada symbols this function should just return. */
3768 }
3769
3770 static void
3771 dw2_expand_symtabs_matching
3772 (struct objfile *objfile,
3773 int (*file_matcher) (const char *, void *, int basenames),
3774 int (*name_matcher) (const char *, void *),
3775 enum search_domain kind,
3776 void *data)
3777 {
3778 int i;
3779 offset_type iter;
3780 struct mapped_index *index;
3781
3782 dw2_setup (objfile);
3783
3784 /* index_table is NULL if OBJF_READNOW. */
3785 if (!dwarf2_per_objfile->index_table)
3786 return;
3787 index = dwarf2_per_objfile->index_table;
3788
3789 if (file_matcher != NULL)
3790 {
3791 struct cleanup *cleanup;
3792 htab_t visited_found, visited_not_found;
3793
3794 visited_found = htab_create_alloc (10,
3795 htab_hash_pointer, htab_eq_pointer,
3796 NULL, xcalloc, xfree);
3797 cleanup = make_cleanup_htab_delete (visited_found);
3798 visited_not_found = htab_create_alloc (10,
3799 htab_hash_pointer, htab_eq_pointer,
3800 NULL, xcalloc, xfree);
3801 make_cleanup_htab_delete (visited_not_found);
3802
3803 /* The rule is CUs specify all the files, including those used by
3804 any TU, so there's no need to scan TUs here. */
3805
3806 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3807 {
3808 int j;
3809 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3810 struct quick_file_names *file_data;
3811 void **slot;
3812
3813 per_cu->v.quick->mark = 0;
3814
3815 /* We only need to look at symtabs not already expanded. */
3816 if (per_cu->v.quick->symtab)
3817 continue;
3818
3819 file_data = dw2_get_file_names (per_cu);
3820 if (file_data == NULL)
3821 continue;
3822
3823 if (htab_find (visited_not_found, file_data) != NULL)
3824 continue;
3825 else if (htab_find (visited_found, file_data) != NULL)
3826 {
3827 per_cu->v.quick->mark = 1;
3828 continue;
3829 }
3830
3831 for (j = 0; j < file_data->num_file_names; ++j)
3832 {
3833 const char *this_real_name;
3834
3835 if (file_matcher (file_data->file_names[j], data, 0))
3836 {
3837 per_cu->v.quick->mark = 1;
3838 break;
3839 }
3840
3841 /* Before we invoke realpath, which can get expensive when many
3842 files are involved, do a quick comparison of the basenames. */
3843 if (!basenames_may_differ
3844 && !file_matcher (lbasename (file_data->file_names[j]),
3845 data, 1))
3846 continue;
3847
3848 this_real_name = dw2_get_real_path (objfile, file_data, j);
3849 if (file_matcher (this_real_name, data, 0))
3850 {
3851 per_cu->v.quick->mark = 1;
3852 break;
3853 }
3854 }
3855
3856 slot = htab_find_slot (per_cu->v.quick->mark
3857 ? visited_found
3858 : visited_not_found,
3859 file_data, INSERT);
3860 *slot = file_data;
3861 }
3862
3863 do_cleanups (cleanup);
3864 }
3865
3866 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3867 {
3868 offset_type idx = 2 * iter;
3869 const char *name;
3870 offset_type *vec, vec_len, vec_idx;
3871 int global_seen = 0;
3872
3873 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3874 continue;
3875
3876 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3877
3878 if (! (*name_matcher) (name, data))
3879 continue;
3880
3881 /* The name was matched, now expand corresponding CUs that were
3882 marked. */
3883 vec = (offset_type *) (index->constant_pool
3884 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3885 vec_len = MAYBE_SWAP (vec[0]);
3886 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3887 {
3888 struct dwarf2_per_cu_data *per_cu;
3889 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3890 /* This value is only valid for index versions >= 7. */
3891 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3892 gdb_index_symbol_kind symbol_kind =
3893 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3894 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3895 /* Only check the symbol attributes if they're present.
3896 Indices prior to version 7 don't record them,
3897 and indices >= 7 may elide them for certain symbols
3898 (gold does this). */
3899 int attrs_valid =
3900 (index->version >= 7
3901 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3902
3903 /* Work around gold/15646. */
3904 if (attrs_valid)
3905 {
3906 if (!is_static && global_seen)
3907 continue;
3908 if (!is_static)
3909 global_seen = 1;
3910 }
3911
3912 /* Only check the symbol's kind if it has one. */
3913 if (attrs_valid)
3914 {
3915 switch (kind)
3916 {
3917 case VARIABLES_DOMAIN:
3918 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3919 continue;
3920 break;
3921 case FUNCTIONS_DOMAIN:
3922 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3923 continue;
3924 break;
3925 case TYPES_DOMAIN:
3926 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3927 continue;
3928 break;
3929 default:
3930 break;
3931 }
3932 }
3933
3934 /* Don't crash on bad data. */
3935 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3936 + dwarf2_per_objfile->n_type_units))
3937 {
3938 complaint (&symfile_complaints,
3939 _(".gdb_index entry has bad CU index"
3940 " [in module %s]"), objfile_name (objfile));
3941 continue;
3942 }
3943
3944 per_cu = dw2_get_cu (cu_index);
3945 if (file_matcher == NULL || per_cu->v.quick->mark)
3946 dw2_instantiate_symtab (per_cu);
3947 }
3948 }
3949 }
3950
3951 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3952 symtab. */
3953
3954 static struct symtab *
3955 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3956 {
3957 int i;
3958
3959 if (BLOCKVECTOR (symtab) != NULL
3960 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3961 return symtab;
3962
3963 if (symtab->includes == NULL)
3964 return NULL;
3965
3966 for (i = 0; symtab->includes[i]; ++i)
3967 {
3968 struct symtab *s = symtab->includes[i];
3969
3970 s = recursively_find_pc_sect_symtab (s, pc);
3971 if (s != NULL)
3972 return s;
3973 }
3974
3975 return NULL;
3976 }
3977
3978 static struct symtab *
3979 dw2_find_pc_sect_symtab (struct objfile *objfile,
3980 struct minimal_symbol *msymbol,
3981 CORE_ADDR pc,
3982 struct obj_section *section,
3983 int warn_if_readin)
3984 {
3985 struct dwarf2_per_cu_data *data;
3986 struct symtab *result;
3987
3988 dw2_setup (objfile);
3989
3990 if (!objfile->psymtabs_addrmap)
3991 return NULL;
3992
3993 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3994 if (!data)
3995 return NULL;
3996
3997 if (warn_if_readin && data->v.quick->symtab)
3998 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3999 paddress (get_objfile_arch (objfile), pc));
4000
4001 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4002 gdb_assert (result != NULL);
4003 return result;
4004 }
4005
4006 static void
4007 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4008 void *data, int need_fullname)
4009 {
4010 int i;
4011 struct cleanup *cleanup;
4012 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4013 NULL, xcalloc, xfree);
4014
4015 cleanup = make_cleanup_htab_delete (visited);
4016 dw2_setup (objfile);
4017
4018 /* The rule is CUs specify all the files, including those used by
4019 any TU, so there's no need to scan TUs here.
4020 We can ignore file names coming from already-expanded CUs. */
4021
4022 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4023 {
4024 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4025
4026 if (per_cu->v.quick->symtab)
4027 {
4028 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4029 INSERT);
4030
4031 *slot = per_cu->v.quick->file_names;
4032 }
4033 }
4034
4035 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4036 {
4037 int j;
4038 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
4039 struct quick_file_names *file_data;
4040 void **slot;
4041
4042 /* We only need to look at symtabs not already expanded. */
4043 if (per_cu->v.quick->symtab)
4044 continue;
4045
4046 file_data = dw2_get_file_names (per_cu);
4047 if (file_data == NULL)
4048 continue;
4049
4050 slot = htab_find_slot (visited, file_data, INSERT);
4051 if (*slot)
4052 {
4053 /* Already visited. */
4054 continue;
4055 }
4056 *slot = file_data;
4057
4058 for (j = 0; j < file_data->num_file_names; ++j)
4059 {
4060 const char *this_real_name;
4061
4062 if (need_fullname)
4063 this_real_name = dw2_get_real_path (objfile, file_data, j);
4064 else
4065 this_real_name = NULL;
4066 (*fun) (file_data->file_names[j], this_real_name, data);
4067 }
4068 }
4069
4070 do_cleanups (cleanup);
4071 }
4072
4073 static int
4074 dw2_has_symbols (struct objfile *objfile)
4075 {
4076 return 1;
4077 }
4078
4079 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4080 {
4081 dw2_has_symbols,
4082 dw2_find_last_source_symtab,
4083 dw2_forget_cached_source_info,
4084 dw2_map_symtabs_matching_filename,
4085 dw2_lookup_symbol,
4086 dw2_print_stats,
4087 dw2_dump,
4088 dw2_relocate,
4089 dw2_expand_symtabs_for_function,
4090 dw2_expand_all_symtabs,
4091 dw2_expand_symtabs_with_fullname,
4092 dw2_map_matching_symbols,
4093 dw2_expand_symtabs_matching,
4094 dw2_find_pc_sect_symtab,
4095 dw2_map_symbol_filenames
4096 };
4097
4098 /* Initialize for reading DWARF for this objfile. Return 0 if this
4099 file will use psymtabs, or 1 if using the GNU index. */
4100
4101 int
4102 dwarf2_initialize_objfile (struct objfile *objfile)
4103 {
4104 /* If we're about to read full symbols, don't bother with the
4105 indices. In this case we also don't care if some other debug
4106 format is making psymtabs, because they are all about to be
4107 expanded anyway. */
4108 if ((objfile->flags & OBJF_READNOW))
4109 {
4110 int i;
4111
4112 dwarf2_per_objfile->using_index = 1;
4113 create_all_comp_units (objfile);
4114 create_all_type_units (objfile);
4115 dwarf2_per_objfile->quick_file_names_table =
4116 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4117
4118 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4119 + dwarf2_per_objfile->n_type_units); ++i)
4120 {
4121 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4122
4123 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4124 struct dwarf2_per_cu_quick_data);
4125 }
4126
4127 /* Return 1 so that gdb sees the "quick" functions. However,
4128 these functions will be no-ops because we will have expanded
4129 all symtabs. */
4130 return 1;
4131 }
4132
4133 if (dwarf2_read_index (objfile))
4134 return 1;
4135
4136 return 0;
4137 }
4138
4139 \f
4140
4141 /* Build a partial symbol table. */
4142
4143 void
4144 dwarf2_build_psymtabs (struct objfile *objfile)
4145 {
4146 volatile struct gdb_exception except;
4147
4148 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4149 {
4150 init_psymbol_list (objfile, 1024);
4151 }
4152
4153 TRY_CATCH (except, RETURN_MASK_ERROR)
4154 {
4155 /* This isn't really ideal: all the data we allocate on the
4156 objfile's obstack is still uselessly kept around. However,
4157 freeing it seems unsafe. */
4158 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4159
4160 dwarf2_build_psymtabs_hard (objfile);
4161 discard_cleanups (cleanups);
4162 }
4163 if (except.reason < 0)
4164 exception_print (gdb_stderr, except);
4165 }
4166
4167 /* Return the total length of the CU described by HEADER. */
4168
4169 static unsigned int
4170 get_cu_length (const struct comp_unit_head *header)
4171 {
4172 return header->initial_length_size + header->length;
4173 }
4174
4175 /* Return TRUE if OFFSET is within CU_HEADER. */
4176
4177 static inline int
4178 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4179 {
4180 sect_offset bottom = { cu_header->offset.sect_off };
4181 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4182
4183 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4184 }
4185
4186 /* Find the base address of the compilation unit for range lists and
4187 location lists. It will normally be specified by DW_AT_low_pc.
4188 In DWARF-3 draft 4, the base address could be overridden by
4189 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4190 compilation units with discontinuous ranges. */
4191
4192 static void
4193 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4194 {
4195 struct attribute *attr;
4196
4197 cu->base_known = 0;
4198 cu->base_address = 0;
4199
4200 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4201 if (attr)
4202 {
4203 cu->base_address = DW_ADDR (attr);
4204 cu->base_known = 1;
4205 }
4206 else
4207 {
4208 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4209 if (attr)
4210 {
4211 cu->base_address = DW_ADDR (attr);
4212 cu->base_known = 1;
4213 }
4214 }
4215 }
4216
4217 /* Read in the comp unit header information from the debug_info at info_ptr.
4218 NOTE: This leaves members offset, first_die_offset to be filled in
4219 by the caller. */
4220
4221 static const gdb_byte *
4222 read_comp_unit_head (struct comp_unit_head *cu_header,
4223 const gdb_byte *info_ptr, bfd *abfd)
4224 {
4225 int signed_addr;
4226 unsigned int bytes_read;
4227
4228 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4229 cu_header->initial_length_size = bytes_read;
4230 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4231 info_ptr += bytes_read;
4232 cu_header->version = read_2_bytes (abfd, info_ptr);
4233 info_ptr += 2;
4234 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4235 &bytes_read);
4236 info_ptr += bytes_read;
4237 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4238 info_ptr += 1;
4239 signed_addr = bfd_get_sign_extend_vma (abfd);
4240 if (signed_addr < 0)
4241 internal_error (__FILE__, __LINE__,
4242 _("read_comp_unit_head: dwarf from non elf file"));
4243 cu_header->signed_addr_p = signed_addr;
4244
4245 return info_ptr;
4246 }
4247
4248 /* Helper function that returns the proper abbrev section for
4249 THIS_CU. */
4250
4251 static struct dwarf2_section_info *
4252 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4253 {
4254 struct dwarf2_section_info *abbrev;
4255
4256 if (this_cu->is_dwz)
4257 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4258 else
4259 abbrev = &dwarf2_per_objfile->abbrev;
4260
4261 return abbrev;
4262 }
4263
4264 /* Subroutine of read_and_check_comp_unit_head and
4265 read_and_check_type_unit_head to simplify them.
4266 Perform various error checking on the header. */
4267
4268 static void
4269 error_check_comp_unit_head (struct comp_unit_head *header,
4270 struct dwarf2_section_info *section,
4271 struct dwarf2_section_info *abbrev_section)
4272 {
4273 bfd *abfd = get_section_bfd_owner (section);
4274 const char *filename = get_section_file_name (section);
4275
4276 if (header->version != 2 && header->version != 3 && header->version != 4)
4277 error (_("Dwarf Error: wrong version in compilation unit header "
4278 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4279 filename);
4280
4281 if (header->abbrev_offset.sect_off
4282 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4283 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4284 "(offset 0x%lx + 6) [in module %s]"),
4285 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4286 filename);
4287
4288 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4289 avoid potential 32-bit overflow. */
4290 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4291 > section->size)
4292 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4293 "(offset 0x%lx + 0) [in module %s]"),
4294 (long) header->length, (long) header->offset.sect_off,
4295 filename);
4296 }
4297
4298 /* Read in a CU/TU header and perform some basic error checking.
4299 The contents of the header are stored in HEADER.
4300 The result is a pointer to the start of the first DIE. */
4301
4302 static const gdb_byte *
4303 read_and_check_comp_unit_head (struct comp_unit_head *header,
4304 struct dwarf2_section_info *section,
4305 struct dwarf2_section_info *abbrev_section,
4306 const gdb_byte *info_ptr,
4307 int is_debug_types_section)
4308 {
4309 const gdb_byte *beg_of_comp_unit = info_ptr;
4310 bfd *abfd = get_section_bfd_owner (section);
4311
4312 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4313
4314 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4315
4316 /* If we're reading a type unit, skip over the signature and
4317 type_offset fields. */
4318 if (is_debug_types_section)
4319 info_ptr += 8 /*signature*/ + header->offset_size;
4320
4321 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4322
4323 error_check_comp_unit_head (header, section, abbrev_section);
4324
4325 return info_ptr;
4326 }
4327
4328 /* Read in the types comp unit header information from .debug_types entry at
4329 types_ptr. The result is a pointer to one past the end of the header. */
4330
4331 static const gdb_byte *
4332 read_and_check_type_unit_head (struct comp_unit_head *header,
4333 struct dwarf2_section_info *section,
4334 struct dwarf2_section_info *abbrev_section,
4335 const gdb_byte *info_ptr,
4336 ULONGEST *signature,
4337 cu_offset *type_offset_in_tu)
4338 {
4339 const gdb_byte *beg_of_comp_unit = info_ptr;
4340 bfd *abfd = get_section_bfd_owner (section);
4341
4342 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4343
4344 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4345
4346 /* If we're reading a type unit, skip over the signature and
4347 type_offset fields. */
4348 if (signature != NULL)
4349 *signature = read_8_bytes (abfd, info_ptr);
4350 info_ptr += 8;
4351 if (type_offset_in_tu != NULL)
4352 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4353 header->offset_size);
4354 info_ptr += header->offset_size;
4355
4356 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4357
4358 error_check_comp_unit_head (header, section, abbrev_section);
4359
4360 return info_ptr;
4361 }
4362
4363 /* Fetch the abbreviation table offset from a comp or type unit header. */
4364
4365 static sect_offset
4366 read_abbrev_offset (struct dwarf2_section_info *section,
4367 sect_offset offset)
4368 {
4369 bfd *abfd = get_section_bfd_owner (section);
4370 const gdb_byte *info_ptr;
4371 unsigned int length, initial_length_size, offset_size;
4372 sect_offset abbrev_offset;
4373
4374 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4375 info_ptr = section->buffer + offset.sect_off;
4376 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4377 offset_size = initial_length_size == 4 ? 4 : 8;
4378 info_ptr += initial_length_size + 2 /*version*/;
4379 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4380 return abbrev_offset;
4381 }
4382
4383 /* Allocate a new partial symtab for file named NAME and mark this new
4384 partial symtab as being an include of PST. */
4385
4386 static void
4387 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4388 struct objfile *objfile)
4389 {
4390 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4391
4392 if (!IS_ABSOLUTE_PATH (subpst->filename))
4393 {
4394 /* It shares objfile->objfile_obstack. */
4395 subpst->dirname = pst->dirname;
4396 }
4397
4398 subpst->section_offsets = pst->section_offsets;
4399 subpst->textlow = 0;
4400 subpst->texthigh = 0;
4401
4402 subpst->dependencies = (struct partial_symtab **)
4403 obstack_alloc (&objfile->objfile_obstack,
4404 sizeof (struct partial_symtab *));
4405 subpst->dependencies[0] = pst;
4406 subpst->number_of_dependencies = 1;
4407
4408 subpst->globals_offset = 0;
4409 subpst->n_global_syms = 0;
4410 subpst->statics_offset = 0;
4411 subpst->n_static_syms = 0;
4412 subpst->symtab = NULL;
4413 subpst->read_symtab = pst->read_symtab;
4414 subpst->readin = 0;
4415
4416 /* No private part is necessary for include psymtabs. This property
4417 can be used to differentiate between such include psymtabs and
4418 the regular ones. */
4419 subpst->read_symtab_private = NULL;
4420 }
4421
4422 /* Read the Line Number Program data and extract the list of files
4423 included by the source file represented by PST. Build an include
4424 partial symtab for each of these included files. */
4425
4426 static void
4427 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4428 struct die_info *die,
4429 struct partial_symtab *pst)
4430 {
4431 struct line_header *lh = NULL;
4432 struct attribute *attr;
4433
4434 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4435 if (attr)
4436 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4437 if (lh == NULL)
4438 return; /* No linetable, so no includes. */
4439
4440 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4441 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4442
4443 free_line_header (lh);
4444 }
4445
4446 static hashval_t
4447 hash_signatured_type (const void *item)
4448 {
4449 const struct signatured_type *sig_type = item;
4450
4451 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4452 return sig_type->signature;
4453 }
4454
4455 static int
4456 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4457 {
4458 const struct signatured_type *lhs = item_lhs;
4459 const struct signatured_type *rhs = item_rhs;
4460
4461 return lhs->signature == rhs->signature;
4462 }
4463
4464 /* Allocate a hash table for signatured types. */
4465
4466 static htab_t
4467 allocate_signatured_type_table (struct objfile *objfile)
4468 {
4469 return htab_create_alloc_ex (41,
4470 hash_signatured_type,
4471 eq_signatured_type,
4472 NULL,
4473 &objfile->objfile_obstack,
4474 hashtab_obstack_allocate,
4475 dummy_obstack_deallocate);
4476 }
4477
4478 /* A helper function to add a signatured type CU to a table. */
4479
4480 static int
4481 add_signatured_type_cu_to_table (void **slot, void *datum)
4482 {
4483 struct signatured_type *sigt = *slot;
4484 struct signatured_type ***datap = datum;
4485
4486 **datap = sigt;
4487 ++*datap;
4488
4489 return 1;
4490 }
4491
4492 /* Create the hash table of all entries in the .debug_types
4493 (or .debug_types.dwo) section(s).
4494 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4495 otherwise it is NULL.
4496
4497 The result is a pointer to the hash table or NULL if there are no types.
4498
4499 Note: This function processes DWO files only, not DWP files. */
4500
4501 static htab_t
4502 create_debug_types_hash_table (struct dwo_file *dwo_file,
4503 VEC (dwarf2_section_info_def) *types)
4504 {
4505 struct objfile *objfile = dwarf2_per_objfile->objfile;
4506 htab_t types_htab = NULL;
4507 int ix;
4508 struct dwarf2_section_info *section;
4509 struct dwarf2_section_info *abbrev_section;
4510
4511 if (VEC_empty (dwarf2_section_info_def, types))
4512 return NULL;
4513
4514 abbrev_section = (dwo_file != NULL
4515 ? &dwo_file->sections.abbrev
4516 : &dwarf2_per_objfile->abbrev);
4517
4518 if (dwarf2_read_debug)
4519 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4520 dwo_file ? ".dwo" : "",
4521 get_section_file_name (abbrev_section));
4522
4523 for (ix = 0;
4524 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4525 ++ix)
4526 {
4527 bfd *abfd;
4528 const gdb_byte *info_ptr, *end_ptr;
4529
4530 dwarf2_read_section (objfile, section);
4531 info_ptr = section->buffer;
4532
4533 if (info_ptr == NULL)
4534 continue;
4535
4536 /* We can't set abfd until now because the section may be empty or
4537 not present, in which case the bfd is unknown. */
4538 abfd = get_section_bfd_owner (section);
4539
4540 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4541 because we don't need to read any dies: the signature is in the
4542 header. */
4543
4544 end_ptr = info_ptr + section->size;
4545 while (info_ptr < end_ptr)
4546 {
4547 sect_offset offset;
4548 cu_offset type_offset_in_tu;
4549 ULONGEST signature;
4550 struct signatured_type *sig_type;
4551 struct dwo_unit *dwo_tu;
4552 void **slot;
4553 const gdb_byte *ptr = info_ptr;
4554 struct comp_unit_head header;
4555 unsigned int length;
4556
4557 offset.sect_off = ptr - section->buffer;
4558
4559 /* We need to read the type's signature in order to build the hash
4560 table, but we don't need anything else just yet. */
4561
4562 ptr = read_and_check_type_unit_head (&header, section,
4563 abbrev_section, ptr,
4564 &signature, &type_offset_in_tu);
4565
4566 length = get_cu_length (&header);
4567
4568 /* Skip dummy type units. */
4569 if (ptr >= info_ptr + length
4570 || peek_abbrev_code (abfd, ptr) == 0)
4571 {
4572 info_ptr += length;
4573 continue;
4574 }
4575
4576 if (types_htab == NULL)
4577 {
4578 if (dwo_file)
4579 types_htab = allocate_dwo_unit_table (objfile);
4580 else
4581 types_htab = allocate_signatured_type_table (objfile);
4582 }
4583
4584 if (dwo_file)
4585 {
4586 sig_type = NULL;
4587 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4588 struct dwo_unit);
4589 dwo_tu->dwo_file = dwo_file;
4590 dwo_tu->signature = signature;
4591 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4592 dwo_tu->section = section;
4593 dwo_tu->offset = offset;
4594 dwo_tu->length = length;
4595 }
4596 else
4597 {
4598 /* N.B.: type_offset is not usable if this type uses a DWO file.
4599 The real type_offset is in the DWO file. */
4600 dwo_tu = NULL;
4601 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4602 struct signatured_type);
4603 sig_type->signature = signature;
4604 sig_type->type_offset_in_tu = type_offset_in_tu;
4605 sig_type->per_cu.objfile = objfile;
4606 sig_type->per_cu.is_debug_types = 1;
4607 sig_type->per_cu.section = section;
4608 sig_type->per_cu.offset = offset;
4609 sig_type->per_cu.length = length;
4610 }
4611
4612 slot = htab_find_slot (types_htab,
4613 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4614 INSERT);
4615 gdb_assert (slot != NULL);
4616 if (*slot != NULL)
4617 {
4618 sect_offset dup_offset;
4619
4620 if (dwo_file)
4621 {
4622 const struct dwo_unit *dup_tu = *slot;
4623
4624 dup_offset = dup_tu->offset;
4625 }
4626 else
4627 {
4628 const struct signatured_type *dup_tu = *slot;
4629
4630 dup_offset = dup_tu->per_cu.offset;
4631 }
4632
4633 complaint (&symfile_complaints,
4634 _("debug type entry at offset 0x%x is duplicate to"
4635 " the entry at offset 0x%x, signature %s"),
4636 offset.sect_off, dup_offset.sect_off,
4637 hex_string (signature));
4638 }
4639 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4640
4641 if (dwarf2_read_debug > 1)
4642 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4643 offset.sect_off,
4644 hex_string (signature));
4645
4646 info_ptr += length;
4647 }
4648 }
4649
4650 return types_htab;
4651 }
4652
4653 /* Create the hash table of all entries in the .debug_types section,
4654 and initialize all_type_units.
4655 The result is zero if there is an error (e.g. missing .debug_types section),
4656 otherwise non-zero. */
4657
4658 static int
4659 create_all_type_units (struct objfile *objfile)
4660 {
4661 htab_t types_htab;
4662 struct signatured_type **iter;
4663
4664 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4665 if (types_htab == NULL)
4666 {
4667 dwarf2_per_objfile->signatured_types = NULL;
4668 return 0;
4669 }
4670
4671 dwarf2_per_objfile->signatured_types = types_htab;
4672
4673 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4674 dwarf2_per_objfile->all_type_units
4675 = xmalloc (dwarf2_per_objfile->n_type_units
4676 * sizeof (struct signatured_type *));
4677 iter = &dwarf2_per_objfile->all_type_units[0];
4678 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4679 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4680 == dwarf2_per_objfile->n_type_units);
4681
4682 return 1;
4683 }
4684
4685 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4686 Fill in SIG_ENTRY with DWO_ENTRY. */
4687
4688 static void
4689 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4690 struct signatured_type *sig_entry,
4691 struct dwo_unit *dwo_entry)
4692 {
4693 /* Make sure we're not clobbering something we don't expect to. */
4694 gdb_assert (! sig_entry->per_cu.queued);
4695 gdb_assert (sig_entry->per_cu.cu == NULL);
4696 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4697 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4698 gdb_assert (sig_entry->signature == dwo_entry->signature);
4699 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4700 gdb_assert (sig_entry->type_unit_group == NULL);
4701 gdb_assert (sig_entry->dwo_unit == NULL);
4702
4703 sig_entry->per_cu.section = dwo_entry->section;
4704 sig_entry->per_cu.offset = dwo_entry->offset;
4705 sig_entry->per_cu.length = dwo_entry->length;
4706 sig_entry->per_cu.reading_dwo_directly = 1;
4707 sig_entry->per_cu.objfile = objfile;
4708 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4709 sig_entry->dwo_unit = dwo_entry;
4710 }
4711
4712 /* Subroutine of lookup_signatured_type.
4713 If we haven't read the TU yet, create the signatured_type data structure
4714 for a TU to be read in directly from a DWO file, bypassing the stub.
4715 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4716 using .gdb_index, then when reading a CU we want to stay in the DWO file
4717 containing that CU. Otherwise we could end up reading several other DWO
4718 files (due to comdat folding) to process the transitive closure of all the
4719 mentioned TUs, and that can be slow. The current DWO file will have every
4720 type signature that it needs.
4721 We only do this for .gdb_index because in the psymtab case we already have
4722 to read all the DWOs to build the type unit groups. */
4723
4724 static struct signatured_type *
4725 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4726 {
4727 struct objfile *objfile = dwarf2_per_objfile->objfile;
4728 struct dwo_file *dwo_file;
4729 struct dwo_unit find_dwo_entry, *dwo_entry;
4730 struct signatured_type find_sig_entry, *sig_entry;
4731
4732 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4733
4734 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4735 dwo_unit of the TU itself. */
4736 dwo_file = cu->dwo_unit->dwo_file;
4737
4738 /* We only ever need to read in one copy of a signatured type.
4739 Just use the global signatured_types array. If this is the first time
4740 we're reading this type, replace the recorded data from .gdb_index with
4741 this TU. */
4742
4743 if (dwarf2_per_objfile->signatured_types == NULL)
4744 return NULL;
4745 find_sig_entry.signature = sig;
4746 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4747 if (sig_entry == NULL)
4748 return NULL;
4749
4750 /* We can get here with the TU already read, *or* in the process of being
4751 read. Don't reassign it if that's the case. Also note that if the TU is
4752 already being read, it may not have come from a DWO, the program may be
4753 a mix of Fission-compiled code and non-Fission-compiled code. */
4754 /* Have we already tried to read this TU? */
4755 if (sig_entry->per_cu.tu_read)
4756 return sig_entry;
4757
4758 /* Ok, this is the first time we're reading this TU. */
4759 if (dwo_file->tus == NULL)
4760 return NULL;
4761 find_dwo_entry.signature = sig;
4762 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4763 if (dwo_entry == NULL)
4764 return NULL;
4765
4766 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4767 sig_entry->per_cu.tu_read = 1;
4768 return sig_entry;
4769 }
4770
4771 /* Subroutine of lookup_dwp_signatured_type.
4772 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4773
4774 static struct signatured_type *
4775 add_type_unit (ULONGEST sig)
4776 {
4777 struct objfile *objfile = dwarf2_per_objfile->objfile;
4778 int n_type_units = dwarf2_per_objfile->n_type_units;
4779 struct signatured_type *sig_type;
4780 void **slot;
4781
4782 ++n_type_units;
4783 dwarf2_per_objfile->all_type_units =
4784 xrealloc (dwarf2_per_objfile->all_type_units,
4785 n_type_units * sizeof (struct signatured_type *));
4786 dwarf2_per_objfile->n_type_units = n_type_units;
4787 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4788 struct signatured_type);
4789 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4790 sig_type->signature = sig;
4791 sig_type->per_cu.is_debug_types = 1;
4792 sig_type->per_cu.v.quick =
4793 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4794 struct dwarf2_per_cu_quick_data);
4795 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4796 sig_type, INSERT);
4797 gdb_assert (*slot == NULL);
4798 *slot = sig_type;
4799 /* The rest of sig_type must be filled in by the caller. */
4800 return sig_type;
4801 }
4802
4803 /* Subroutine of lookup_signatured_type.
4804 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4805 then try the DWP file.
4806 Normally this "can't happen", but if there's a bug in signature
4807 generation and/or the DWP file is built incorrectly, it can happen.
4808 Using the type directly from the DWP file means we don't have the stub
4809 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4810 not critical. [Eventually the stub may go away for type units anyway.] */
4811
4812 static struct signatured_type *
4813 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4814 {
4815 struct objfile *objfile = dwarf2_per_objfile->objfile;
4816 struct dwp_file *dwp_file = get_dwp_file ();
4817 struct dwo_unit *dwo_entry;
4818 struct signatured_type find_sig_entry, *sig_entry;
4819
4820 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4821 gdb_assert (dwp_file != NULL);
4822
4823 if (dwarf2_per_objfile->signatured_types != NULL)
4824 {
4825 find_sig_entry.signature = sig;
4826 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4827 &find_sig_entry);
4828 if (sig_entry != NULL)
4829 return sig_entry;
4830 }
4831
4832 /* This is the "shouldn't happen" case.
4833 Try the DWP file and hope for the best. */
4834 if (dwp_file->tus == NULL)
4835 return NULL;
4836 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4837 sig, 1 /* is_debug_types */);
4838 if (dwo_entry == NULL)
4839 return NULL;
4840
4841 sig_entry = add_type_unit (sig);
4842 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4843
4844 /* The caller will signal a complaint if we return NULL.
4845 Here we don't return NULL but we still want to complain. */
4846 complaint (&symfile_complaints,
4847 _("Bad type signature %s referenced by %s at 0x%x,"
4848 " coping by using copy in DWP [in module %s]"),
4849 hex_string (sig),
4850 cu->per_cu->is_debug_types ? "TU" : "CU",
4851 cu->per_cu->offset.sect_off,
4852 objfile_name (objfile));
4853
4854 return sig_entry;
4855 }
4856
4857 /* Lookup a signature based type for DW_FORM_ref_sig8.
4858 Returns NULL if signature SIG is not present in the table.
4859 It is up to the caller to complain about this. */
4860
4861 static struct signatured_type *
4862 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4863 {
4864 if (cu->dwo_unit
4865 && dwarf2_per_objfile->using_index)
4866 {
4867 /* We're in a DWO/DWP file, and we're using .gdb_index.
4868 These cases require special processing. */
4869 if (get_dwp_file () == NULL)
4870 return lookup_dwo_signatured_type (cu, sig);
4871 else
4872 return lookup_dwp_signatured_type (cu, sig);
4873 }
4874 else
4875 {
4876 struct signatured_type find_entry, *entry;
4877
4878 if (dwarf2_per_objfile->signatured_types == NULL)
4879 return NULL;
4880 find_entry.signature = sig;
4881 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4882 return entry;
4883 }
4884 }
4885 \f
4886 /* Low level DIE reading support. */
4887
4888 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4889
4890 static void
4891 init_cu_die_reader (struct die_reader_specs *reader,
4892 struct dwarf2_cu *cu,
4893 struct dwarf2_section_info *section,
4894 struct dwo_file *dwo_file)
4895 {
4896 gdb_assert (section->readin && section->buffer != NULL);
4897 reader->abfd = get_section_bfd_owner (section);
4898 reader->cu = cu;
4899 reader->dwo_file = dwo_file;
4900 reader->die_section = section;
4901 reader->buffer = section->buffer;
4902 reader->buffer_end = section->buffer + section->size;
4903 reader->comp_dir = NULL;
4904 }
4905
4906 /* Subroutine of init_cutu_and_read_dies to simplify it.
4907 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4908 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4909 already.
4910
4911 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4912 from it to the DIE in the DWO. If NULL we are skipping the stub.
4913 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4914 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4915 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4916 COMP_DIR must be non-NULL.
4917 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4918 are filled in with the info of the DIE from the DWO file.
4919 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4920 provided an abbrev table to use.
4921 The result is non-zero if a valid (non-dummy) DIE was found. */
4922
4923 static int
4924 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4925 struct dwo_unit *dwo_unit,
4926 int abbrev_table_provided,
4927 struct die_info *stub_comp_unit_die,
4928 const char *stub_comp_dir,
4929 struct die_reader_specs *result_reader,
4930 const gdb_byte **result_info_ptr,
4931 struct die_info **result_comp_unit_die,
4932 int *result_has_children)
4933 {
4934 struct objfile *objfile = dwarf2_per_objfile->objfile;
4935 struct dwarf2_cu *cu = this_cu->cu;
4936 struct dwarf2_section_info *section;
4937 bfd *abfd;
4938 const gdb_byte *begin_info_ptr, *info_ptr;
4939 const char *comp_dir_string;
4940 ULONGEST signature; /* Or dwo_id. */
4941 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4942 int i,num_extra_attrs;
4943 struct dwarf2_section_info *dwo_abbrev_section;
4944 struct attribute *attr;
4945 struct attribute comp_dir_attr;
4946 struct die_info *comp_unit_die;
4947
4948 /* Both can't be provided. */
4949 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4950
4951 /* These attributes aren't processed until later:
4952 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4953 However, the attribute is found in the stub which we won't have later.
4954 In order to not impose this complication on the rest of the code,
4955 we read them here and copy them to the DWO CU/TU die. */
4956
4957 stmt_list = NULL;
4958 low_pc = NULL;
4959 high_pc = NULL;
4960 ranges = NULL;
4961 comp_dir = NULL;
4962
4963 if (stub_comp_unit_die != NULL)
4964 {
4965 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4966 DWO file. */
4967 if (! this_cu->is_debug_types)
4968 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4969 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4970 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4971 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4972 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4973
4974 /* There should be a DW_AT_addr_base attribute here (if needed).
4975 We need the value before we can process DW_FORM_GNU_addr_index. */
4976 cu->addr_base = 0;
4977 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4978 if (attr)
4979 cu->addr_base = DW_UNSND (attr);
4980
4981 /* There should be a DW_AT_ranges_base attribute here (if needed).
4982 We need the value before we can process DW_AT_ranges. */
4983 cu->ranges_base = 0;
4984 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4985 if (attr)
4986 cu->ranges_base = DW_UNSND (attr);
4987 }
4988 else if (stub_comp_dir != NULL)
4989 {
4990 /* Reconstruct the comp_dir attribute to simplify the code below. */
4991 comp_dir = (struct attribute *)
4992 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4993 comp_dir->name = DW_AT_comp_dir;
4994 comp_dir->form = DW_FORM_string;
4995 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4996 DW_STRING (comp_dir) = stub_comp_dir;
4997 }
4998
4999 /* Set up for reading the DWO CU/TU. */
5000 cu->dwo_unit = dwo_unit;
5001 section = dwo_unit->section;
5002 dwarf2_read_section (objfile, section);
5003 abfd = get_section_bfd_owner (section);
5004 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5005 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5006 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5007
5008 if (this_cu->is_debug_types)
5009 {
5010 ULONGEST header_signature;
5011 cu_offset type_offset_in_tu;
5012 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5013
5014 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5015 dwo_abbrev_section,
5016 info_ptr,
5017 &header_signature,
5018 &type_offset_in_tu);
5019 /* This is not an assert because it can be caused by bad debug info. */
5020 if (sig_type->signature != header_signature)
5021 {
5022 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5023 " TU at offset 0x%x [in module %s]"),
5024 hex_string (sig_type->signature),
5025 hex_string (header_signature),
5026 dwo_unit->offset.sect_off,
5027 bfd_get_filename (abfd));
5028 }
5029 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5030 /* For DWOs coming from DWP files, we don't know the CU length
5031 nor the type's offset in the TU until now. */
5032 dwo_unit->length = get_cu_length (&cu->header);
5033 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5034
5035 /* Establish the type offset that can be used to lookup the type.
5036 For DWO files, we don't know it until now. */
5037 sig_type->type_offset_in_section.sect_off =
5038 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5039 }
5040 else
5041 {
5042 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5043 dwo_abbrev_section,
5044 info_ptr, 0);
5045 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5046 /* For DWOs coming from DWP files, we don't know the CU length
5047 until now. */
5048 dwo_unit->length = get_cu_length (&cu->header);
5049 }
5050
5051 /* Replace the CU's original abbrev table with the DWO's.
5052 Reminder: We can't read the abbrev table until we've read the header. */
5053 if (abbrev_table_provided)
5054 {
5055 /* Don't free the provided abbrev table, the caller of
5056 init_cutu_and_read_dies owns it. */
5057 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5058 /* Ensure the DWO abbrev table gets freed. */
5059 make_cleanup (dwarf2_free_abbrev_table, cu);
5060 }
5061 else
5062 {
5063 dwarf2_free_abbrev_table (cu);
5064 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5065 /* Leave any existing abbrev table cleanup as is. */
5066 }
5067
5068 /* Read in the die, but leave space to copy over the attributes
5069 from the stub. This has the benefit of simplifying the rest of
5070 the code - all the work to maintain the illusion of a single
5071 DW_TAG_{compile,type}_unit DIE is done here. */
5072 num_extra_attrs = ((stmt_list != NULL)
5073 + (low_pc != NULL)
5074 + (high_pc != NULL)
5075 + (ranges != NULL)
5076 + (comp_dir != NULL));
5077 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5078 result_has_children, num_extra_attrs);
5079
5080 /* Copy over the attributes from the stub to the DIE we just read in. */
5081 comp_unit_die = *result_comp_unit_die;
5082 i = comp_unit_die->num_attrs;
5083 if (stmt_list != NULL)
5084 comp_unit_die->attrs[i++] = *stmt_list;
5085 if (low_pc != NULL)
5086 comp_unit_die->attrs[i++] = *low_pc;
5087 if (high_pc != NULL)
5088 comp_unit_die->attrs[i++] = *high_pc;
5089 if (ranges != NULL)
5090 comp_unit_die->attrs[i++] = *ranges;
5091 if (comp_dir != NULL)
5092 comp_unit_die->attrs[i++] = *comp_dir;
5093 comp_unit_die->num_attrs += num_extra_attrs;
5094
5095 if (dwarf2_die_debug)
5096 {
5097 fprintf_unfiltered (gdb_stdlog,
5098 "Read die from %s@0x%x of %s:\n",
5099 get_section_name (section),
5100 (unsigned) (begin_info_ptr - section->buffer),
5101 bfd_get_filename (abfd));
5102 dump_die (comp_unit_die, dwarf2_die_debug);
5103 }
5104
5105 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5106 TUs by skipping the stub and going directly to the entry in the DWO file.
5107 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5108 to get it via circuitous means. Blech. */
5109 if (comp_dir != NULL)
5110 result_reader->comp_dir = DW_STRING (comp_dir);
5111
5112 /* Skip dummy compilation units. */
5113 if (info_ptr >= begin_info_ptr + dwo_unit->length
5114 || peek_abbrev_code (abfd, info_ptr) == 0)
5115 return 0;
5116
5117 *result_info_ptr = info_ptr;
5118 return 1;
5119 }
5120
5121 /* Subroutine of init_cutu_and_read_dies to simplify it.
5122 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5123 Returns NULL if the specified DWO unit cannot be found. */
5124
5125 static struct dwo_unit *
5126 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5127 struct die_info *comp_unit_die)
5128 {
5129 struct dwarf2_cu *cu = this_cu->cu;
5130 struct attribute *attr;
5131 ULONGEST signature;
5132 struct dwo_unit *dwo_unit;
5133 const char *comp_dir, *dwo_name;
5134
5135 gdb_assert (cu != NULL);
5136
5137 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5138 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5139 gdb_assert (attr != NULL);
5140 dwo_name = DW_STRING (attr);
5141 comp_dir = NULL;
5142 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5143 if (attr)
5144 comp_dir = DW_STRING (attr);
5145
5146 if (this_cu->is_debug_types)
5147 {
5148 struct signatured_type *sig_type;
5149
5150 /* Since this_cu is the first member of struct signatured_type,
5151 we can go from a pointer to one to a pointer to the other. */
5152 sig_type = (struct signatured_type *) this_cu;
5153 signature = sig_type->signature;
5154 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5155 }
5156 else
5157 {
5158 struct attribute *attr;
5159
5160 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5161 if (! attr)
5162 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5163 " [in module %s]"),
5164 dwo_name, objfile_name (this_cu->objfile));
5165 signature = DW_UNSND (attr);
5166 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5167 signature);
5168 }
5169
5170 return dwo_unit;
5171 }
5172
5173 /* Subroutine of init_cutu_and_read_dies to simplify it.
5174 Read a TU directly from a DWO file, bypassing the stub. */
5175
5176 static void
5177 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5178 die_reader_func_ftype *die_reader_func,
5179 void *data)
5180 {
5181 struct dwarf2_cu *cu;
5182 struct signatured_type *sig_type;
5183 struct cleanup *cleanups, *free_cu_cleanup;
5184 struct die_reader_specs reader;
5185 const gdb_byte *info_ptr;
5186 struct die_info *comp_unit_die;
5187 int has_children;
5188
5189 /* Verify we can do the following downcast, and that we have the
5190 data we need. */
5191 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5192 sig_type = (struct signatured_type *) this_cu;
5193 gdb_assert (sig_type->dwo_unit != NULL);
5194
5195 cleanups = make_cleanup (null_cleanup, NULL);
5196
5197 gdb_assert (this_cu->cu == NULL);
5198 cu = xmalloc (sizeof (*cu));
5199 init_one_comp_unit (cu, this_cu);
5200 /* If an error occurs while loading, release our storage. */
5201 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5202
5203 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5204 0 /* abbrev_table_provided */,
5205 NULL /* stub_comp_unit_die */,
5206 sig_type->dwo_unit->dwo_file->comp_dir,
5207 &reader, &info_ptr,
5208 &comp_unit_die, &has_children) == 0)
5209 {
5210 /* Dummy die. */
5211 do_cleanups (cleanups);
5212 return;
5213 }
5214
5215 /* All the "real" work is done here. */
5216 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5217
5218 /* This duplicates some code in init_cutu_and_read_dies,
5219 but the alternative is making the latter more complex.
5220 This function is only for the special case of using DWO files directly:
5221 no point in overly complicating the general case just to handle this. */
5222 if (keep)
5223 {
5224 /* We've successfully allocated this compilation unit. Let our
5225 caller clean it up when finished with it. */
5226 discard_cleanups (free_cu_cleanup);
5227
5228 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5229 So we have to manually free the abbrev table. */
5230 dwarf2_free_abbrev_table (cu);
5231
5232 /* Link this CU into read_in_chain. */
5233 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5234 dwarf2_per_objfile->read_in_chain = this_cu;
5235 }
5236 else
5237 do_cleanups (free_cu_cleanup);
5238
5239 do_cleanups (cleanups);
5240 }
5241
5242 /* Initialize a CU (or TU) and read its DIEs.
5243 If the CU defers to a DWO file, read the DWO file as well.
5244
5245 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5246 Otherwise the table specified in the comp unit header is read in and used.
5247 This is an optimization for when we already have the abbrev table.
5248
5249 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5250 Otherwise, a new CU is allocated with xmalloc.
5251
5252 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5253 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5254
5255 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5256 linker) then DIE_READER_FUNC will not get called. */
5257
5258 static void
5259 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5260 struct abbrev_table *abbrev_table,
5261 int use_existing_cu, int keep,
5262 die_reader_func_ftype *die_reader_func,
5263 void *data)
5264 {
5265 struct objfile *objfile = dwarf2_per_objfile->objfile;
5266 struct dwarf2_section_info *section = this_cu->section;
5267 bfd *abfd = get_section_bfd_owner (section);
5268 struct dwarf2_cu *cu;
5269 const gdb_byte *begin_info_ptr, *info_ptr;
5270 struct die_reader_specs reader;
5271 struct die_info *comp_unit_die;
5272 int has_children;
5273 struct attribute *attr;
5274 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5275 struct signatured_type *sig_type = NULL;
5276 struct dwarf2_section_info *abbrev_section;
5277 /* Non-zero if CU currently points to a DWO file and we need to
5278 reread it. When this happens we need to reread the skeleton die
5279 before we can reread the DWO file (this only applies to CUs, not TUs). */
5280 int rereading_dwo_cu = 0;
5281
5282 if (dwarf2_die_debug)
5283 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5284 this_cu->is_debug_types ? "type" : "comp",
5285 this_cu->offset.sect_off);
5286
5287 if (use_existing_cu)
5288 gdb_assert (keep);
5289
5290 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5291 file (instead of going through the stub), short-circuit all of this. */
5292 if (this_cu->reading_dwo_directly)
5293 {
5294 /* Narrow down the scope of possibilities to have to understand. */
5295 gdb_assert (this_cu->is_debug_types);
5296 gdb_assert (abbrev_table == NULL);
5297 gdb_assert (!use_existing_cu);
5298 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5299 return;
5300 }
5301
5302 cleanups = make_cleanup (null_cleanup, NULL);
5303
5304 /* This is cheap if the section is already read in. */
5305 dwarf2_read_section (objfile, section);
5306
5307 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5308
5309 abbrev_section = get_abbrev_section_for_cu (this_cu);
5310
5311 if (use_existing_cu && this_cu->cu != NULL)
5312 {
5313 cu = this_cu->cu;
5314
5315 /* If this CU is from a DWO file we need to start over, we need to
5316 refetch the attributes from the skeleton CU.
5317 This could be optimized by retrieving those attributes from when we
5318 were here the first time: the previous comp_unit_die was stored in
5319 comp_unit_obstack. But there's no data yet that we need this
5320 optimization. */
5321 if (cu->dwo_unit != NULL)
5322 rereading_dwo_cu = 1;
5323 }
5324 else
5325 {
5326 /* If !use_existing_cu, this_cu->cu must be NULL. */
5327 gdb_assert (this_cu->cu == NULL);
5328
5329 cu = xmalloc (sizeof (*cu));
5330 init_one_comp_unit (cu, this_cu);
5331
5332 /* If an error occurs while loading, release our storage. */
5333 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5334 }
5335
5336 /* Get the header. */
5337 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5338 {
5339 /* We already have the header, there's no need to read it in again. */
5340 info_ptr += cu->header.first_die_offset.cu_off;
5341 }
5342 else
5343 {
5344 if (this_cu->is_debug_types)
5345 {
5346 ULONGEST signature;
5347 cu_offset type_offset_in_tu;
5348
5349 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5350 abbrev_section, info_ptr,
5351 &signature,
5352 &type_offset_in_tu);
5353
5354 /* Since per_cu is the first member of struct signatured_type,
5355 we can go from a pointer to one to a pointer to the other. */
5356 sig_type = (struct signatured_type *) this_cu;
5357 gdb_assert (sig_type->signature == signature);
5358 gdb_assert (sig_type->type_offset_in_tu.cu_off
5359 == type_offset_in_tu.cu_off);
5360 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5361
5362 /* LENGTH has not been set yet for type units if we're
5363 using .gdb_index. */
5364 this_cu->length = get_cu_length (&cu->header);
5365
5366 /* Establish the type offset that can be used to lookup the type. */
5367 sig_type->type_offset_in_section.sect_off =
5368 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5369 }
5370 else
5371 {
5372 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5373 abbrev_section,
5374 info_ptr, 0);
5375
5376 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5377 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5378 }
5379 }
5380
5381 /* Skip dummy compilation units. */
5382 if (info_ptr >= begin_info_ptr + this_cu->length
5383 || peek_abbrev_code (abfd, info_ptr) == 0)
5384 {
5385 do_cleanups (cleanups);
5386 return;
5387 }
5388
5389 /* If we don't have them yet, read the abbrevs for this compilation unit.
5390 And if we need to read them now, make sure they're freed when we're
5391 done. Note that it's important that if the CU had an abbrev table
5392 on entry we don't free it when we're done: Somewhere up the call stack
5393 it may be in use. */
5394 if (abbrev_table != NULL)
5395 {
5396 gdb_assert (cu->abbrev_table == NULL);
5397 gdb_assert (cu->header.abbrev_offset.sect_off
5398 == abbrev_table->offset.sect_off);
5399 cu->abbrev_table = abbrev_table;
5400 }
5401 else if (cu->abbrev_table == NULL)
5402 {
5403 dwarf2_read_abbrevs (cu, abbrev_section);
5404 make_cleanup (dwarf2_free_abbrev_table, cu);
5405 }
5406 else if (rereading_dwo_cu)
5407 {
5408 dwarf2_free_abbrev_table (cu);
5409 dwarf2_read_abbrevs (cu, abbrev_section);
5410 }
5411
5412 /* Read the top level CU/TU die. */
5413 init_cu_die_reader (&reader, cu, section, NULL);
5414 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5415
5416 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5417 from the DWO file.
5418 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5419 DWO CU, that this test will fail (the attribute will not be present). */
5420 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5421 if (attr)
5422 {
5423 struct dwo_unit *dwo_unit;
5424 struct die_info *dwo_comp_unit_die;
5425
5426 if (has_children)
5427 {
5428 complaint (&symfile_complaints,
5429 _("compilation unit with DW_AT_GNU_dwo_name"
5430 " has children (offset 0x%x) [in module %s]"),
5431 this_cu->offset.sect_off, bfd_get_filename (abfd));
5432 }
5433 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5434 if (dwo_unit != NULL)
5435 {
5436 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5437 abbrev_table != NULL,
5438 comp_unit_die, NULL,
5439 &reader, &info_ptr,
5440 &dwo_comp_unit_die, &has_children) == 0)
5441 {
5442 /* Dummy die. */
5443 do_cleanups (cleanups);
5444 return;
5445 }
5446 comp_unit_die = dwo_comp_unit_die;
5447 }
5448 else
5449 {
5450 /* Yikes, we couldn't find the rest of the DIE, we only have
5451 the stub. A complaint has already been logged. There's
5452 not much more we can do except pass on the stub DIE to
5453 die_reader_func. We don't want to throw an error on bad
5454 debug info. */
5455 }
5456 }
5457
5458 /* All of the above is setup for this call. Yikes. */
5459 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5460
5461 /* Done, clean up. */
5462 if (free_cu_cleanup != NULL)
5463 {
5464 if (keep)
5465 {
5466 /* We've successfully allocated this compilation unit. Let our
5467 caller clean it up when finished with it. */
5468 discard_cleanups (free_cu_cleanup);
5469
5470 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5471 So we have to manually free the abbrev table. */
5472 dwarf2_free_abbrev_table (cu);
5473
5474 /* Link this CU into read_in_chain. */
5475 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5476 dwarf2_per_objfile->read_in_chain = this_cu;
5477 }
5478 else
5479 do_cleanups (free_cu_cleanup);
5480 }
5481
5482 do_cleanups (cleanups);
5483 }
5484
5485 /* Read CU/TU THIS_CU in section SECTION,
5486 but do not follow DW_AT_GNU_dwo_name if present.
5487 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5488 to have already done the lookup to find the DWO/DWP file).
5489
5490 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5491 THIS_CU->is_debug_types, but nothing else.
5492
5493 We fill in THIS_CU->length.
5494
5495 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5496 linker) then DIE_READER_FUNC will not get called.
5497
5498 THIS_CU->cu is always freed when done.
5499 This is done in order to not leave THIS_CU->cu in a state where we have
5500 to care whether it refers to the "main" CU or the DWO CU. */
5501
5502 static void
5503 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5504 struct dwarf2_section_info *abbrev_section,
5505 struct dwo_file *dwo_file,
5506 die_reader_func_ftype *die_reader_func,
5507 void *data)
5508 {
5509 struct objfile *objfile = dwarf2_per_objfile->objfile;
5510 struct dwarf2_section_info *section = this_cu->section;
5511 bfd *abfd = get_section_bfd_owner (section);
5512 struct dwarf2_cu cu;
5513 const gdb_byte *begin_info_ptr, *info_ptr;
5514 struct die_reader_specs reader;
5515 struct cleanup *cleanups;
5516 struct die_info *comp_unit_die;
5517 int has_children;
5518
5519 if (dwarf2_die_debug)
5520 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5521 this_cu->is_debug_types ? "type" : "comp",
5522 this_cu->offset.sect_off);
5523
5524 gdb_assert (this_cu->cu == NULL);
5525
5526 /* This is cheap if the section is already read in. */
5527 dwarf2_read_section (objfile, section);
5528
5529 init_one_comp_unit (&cu, this_cu);
5530
5531 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5532
5533 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5534 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5535 abbrev_section, info_ptr,
5536 this_cu->is_debug_types);
5537
5538 this_cu->length = get_cu_length (&cu.header);
5539
5540 /* Skip dummy compilation units. */
5541 if (info_ptr >= begin_info_ptr + this_cu->length
5542 || peek_abbrev_code (abfd, info_ptr) == 0)
5543 {
5544 do_cleanups (cleanups);
5545 return;
5546 }
5547
5548 dwarf2_read_abbrevs (&cu, abbrev_section);
5549 make_cleanup (dwarf2_free_abbrev_table, &cu);
5550
5551 init_cu_die_reader (&reader, &cu, section, dwo_file);
5552 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5553
5554 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5555
5556 do_cleanups (cleanups);
5557 }
5558
5559 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5560 does not lookup the specified DWO file.
5561 This cannot be used to read DWO files.
5562
5563 THIS_CU->cu is always freed when done.
5564 This is done in order to not leave THIS_CU->cu in a state where we have
5565 to care whether it refers to the "main" CU or the DWO CU.
5566 We can revisit this if the data shows there's a performance issue. */
5567
5568 static void
5569 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5570 die_reader_func_ftype *die_reader_func,
5571 void *data)
5572 {
5573 init_cutu_and_read_dies_no_follow (this_cu,
5574 get_abbrev_section_for_cu (this_cu),
5575 NULL,
5576 die_reader_func, data);
5577 }
5578 \f
5579 /* Type Unit Groups.
5580
5581 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5582 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5583 so that all types coming from the same compilation (.o file) are grouped
5584 together. A future step could be to put the types in the same symtab as
5585 the CU the types ultimately came from. */
5586
5587 static hashval_t
5588 hash_type_unit_group (const void *item)
5589 {
5590 const struct type_unit_group *tu_group = item;
5591
5592 return hash_stmt_list_entry (&tu_group->hash);
5593 }
5594
5595 static int
5596 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5597 {
5598 const struct type_unit_group *lhs = item_lhs;
5599 const struct type_unit_group *rhs = item_rhs;
5600
5601 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5602 }
5603
5604 /* Allocate a hash table for type unit groups. */
5605
5606 static htab_t
5607 allocate_type_unit_groups_table (void)
5608 {
5609 return htab_create_alloc_ex (3,
5610 hash_type_unit_group,
5611 eq_type_unit_group,
5612 NULL,
5613 &dwarf2_per_objfile->objfile->objfile_obstack,
5614 hashtab_obstack_allocate,
5615 dummy_obstack_deallocate);
5616 }
5617
5618 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5619 partial symtabs. We combine several TUs per psymtab to not let the size
5620 of any one psymtab grow too big. */
5621 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5622 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5623
5624 /* Helper routine for get_type_unit_group.
5625 Create the type_unit_group object used to hold one or more TUs. */
5626
5627 static struct type_unit_group *
5628 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5629 {
5630 struct objfile *objfile = dwarf2_per_objfile->objfile;
5631 struct dwarf2_per_cu_data *per_cu;
5632 struct type_unit_group *tu_group;
5633
5634 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5635 struct type_unit_group);
5636 per_cu = &tu_group->per_cu;
5637 per_cu->objfile = objfile;
5638
5639 if (dwarf2_per_objfile->using_index)
5640 {
5641 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5642 struct dwarf2_per_cu_quick_data);
5643 }
5644 else
5645 {
5646 unsigned int line_offset = line_offset_struct.sect_off;
5647 struct partial_symtab *pst;
5648 char *name;
5649
5650 /* Give the symtab a useful name for debug purposes. */
5651 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5652 name = xstrprintf ("<type_units_%d>",
5653 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5654 else
5655 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5656
5657 pst = create_partial_symtab (per_cu, name);
5658 pst->anonymous = 1;
5659
5660 xfree (name);
5661 }
5662
5663 tu_group->hash.dwo_unit = cu->dwo_unit;
5664 tu_group->hash.line_offset = line_offset_struct;
5665
5666 return tu_group;
5667 }
5668
5669 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5670 STMT_LIST is a DW_AT_stmt_list attribute. */
5671
5672 static struct type_unit_group *
5673 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5674 {
5675 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5676 struct type_unit_group *tu_group;
5677 void **slot;
5678 unsigned int line_offset;
5679 struct type_unit_group type_unit_group_for_lookup;
5680
5681 if (dwarf2_per_objfile->type_unit_groups == NULL)
5682 {
5683 dwarf2_per_objfile->type_unit_groups =
5684 allocate_type_unit_groups_table ();
5685 }
5686
5687 /* Do we need to create a new group, or can we use an existing one? */
5688
5689 if (stmt_list)
5690 {
5691 line_offset = DW_UNSND (stmt_list);
5692 ++tu_stats->nr_symtab_sharers;
5693 }
5694 else
5695 {
5696 /* Ugh, no stmt_list. Rare, but we have to handle it.
5697 We can do various things here like create one group per TU or
5698 spread them over multiple groups to split up the expansion work.
5699 To avoid worst case scenarios (too many groups or too large groups)
5700 we, umm, group them in bunches. */
5701 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5702 | (tu_stats->nr_stmt_less_type_units
5703 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5704 ++tu_stats->nr_stmt_less_type_units;
5705 }
5706
5707 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5708 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5709 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5710 &type_unit_group_for_lookup, INSERT);
5711 if (*slot != NULL)
5712 {
5713 tu_group = *slot;
5714 gdb_assert (tu_group != NULL);
5715 }
5716 else
5717 {
5718 sect_offset line_offset_struct;
5719
5720 line_offset_struct.sect_off = line_offset;
5721 tu_group = create_type_unit_group (cu, line_offset_struct);
5722 *slot = tu_group;
5723 ++tu_stats->nr_symtabs;
5724 }
5725
5726 return tu_group;
5727 }
5728
5729 /* Struct used to sort TUs by their abbreviation table offset. */
5730
5731 struct tu_abbrev_offset
5732 {
5733 struct signatured_type *sig_type;
5734 sect_offset abbrev_offset;
5735 };
5736
5737 /* Helper routine for build_type_unit_groups, passed to qsort. */
5738
5739 static int
5740 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5741 {
5742 const struct tu_abbrev_offset * const *a = ap;
5743 const struct tu_abbrev_offset * const *b = bp;
5744 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5745 unsigned int boff = (*b)->abbrev_offset.sect_off;
5746
5747 return (aoff > boff) - (aoff < boff);
5748 }
5749
5750 /* A helper function to add a type_unit_group to a table. */
5751
5752 static int
5753 add_type_unit_group_to_table (void **slot, void *datum)
5754 {
5755 struct type_unit_group *tu_group = *slot;
5756 struct type_unit_group ***datap = datum;
5757
5758 **datap = tu_group;
5759 ++*datap;
5760
5761 return 1;
5762 }
5763
5764 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5765 each one passing FUNC,DATA.
5766
5767 The efficiency is because we sort TUs by the abbrev table they use and
5768 only read each abbrev table once. In one program there are 200K TUs
5769 sharing 8K abbrev tables.
5770
5771 The main purpose of this function is to support building the
5772 dwarf2_per_objfile->type_unit_groups table.
5773 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5774 can collapse the search space by grouping them by stmt_list.
5775 The savings can be significant, in the same program from above the 200K TUs
5776 share 8K stmt_list tables.
5777
5778 FUNC is expected to call get_type_unit_group, which will create the
5779 struct type_unit_group if necessary and add it to
5780 dwarf2_per_objfile->type_unit_groups. */
5781
5782 static void
5783 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5784 {
5785 struct objfile *objfile = dwarf2_per_objfile->objfile;
5786 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5787 struct cleanup *cleanups;
5788 struct abbrev_table *abbrev_table;
5789 sect_offset abbrev_offset;
5790 struct tu_abbrev_offset *sorted_by_abbrev;
5791 struct type_unit_group **iter;
5792 int i;
5793
5794 /* It's up to the caller to not call us multiple times. */
5795 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5796
5797 if (dwarf2_per_objfile->n_type_units == 0)
5798 return;
5799
5800 /* TUs typically share abbrev tables, and there can be way more TUs than
5801 abbrev tables. Sort by abbrev table to reduce the number of times we
5802 read each abbrev table in.
5803 Alternatives are to punt or to maintain a cache of abbrev tables.
5804 This is simpler and efficient enough for now.
5805
5806 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5807 symtab to use). Typically TUs with the same abbrev offset have the same
5808 stmt_list value too so in practice this should work well.
5809
5810 The basic algorithm here is:
5811
5812 sort TUs by abbrev table
5813 for each TU with same abbrev table:
5814 read abbrev table if first user
5815 read TU top level DIE
5816 [IWBN if DWO skeletons had DW_AT_stmt_list]
5817 call FUNC */
5818
5819 if (dwarf2_read_debug)
5820 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5821
5822 /* Sort in a separate table to maintain the order of all_type_units
5823 for .gdb_index: TU indices directly index all_type_units. */
5824 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5825 dwarf2_per_objfile->n_type_units);
5826 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5827 {
5828 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5829
5830 sorted_by_abbrev[i].sig_type = sig_type;
5831 sorted_by_abbrev[i].abbrev_offset =
5832 read_abbrev_offset (sig_type->per_cu.section,
5833 sig_type->per_cu.offset);
5834 }
5835 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5836 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5837 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5838
5839 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5840 called any number of times, so we don't reset tu_stats here. */
5841
5842 abbrev_offset.sect_off = ~(unsigned) 0;
5843 abbrev_table = NULL;
5844 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5845
5846 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5847 {
5848 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5849
5850 /* Switch to the next abbrev table if necessary. */
5851 if (abbrev_table == NULL
5852 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5853 {
5854 if (abbrev_table != NULL)
5855 {
5856 abbrev_table_free (abbrev_table);
5857 /* Reset to NULL in case abbrev_table_read_table throws
5858 an error: abbrev_table_free_cleanup will get called. */
5859 abbrev_table = NULL;
5860 }
5861 abbrev_offset = tu->abbrev_offset;
5862 abbrev_table =
5863 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5864 abbrev_offset);
5865 ++tu_stats->nr_uniq_abbrev_tables;
5866 }
5867
5868 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5869 func, data);
5870 }
5871
5872 /* type_unit_groups can be NULL if there is an error in the debug info.
5873 Just create an empty table so the rest of gdb doesn't have to watch
5874 for this error case. */
5875 if (dwarf2_per_objfile->type_unit_groups == NULL)
5876 {
5877 dwarf2_per_objfile->type_unit_groups =
5878 allocate_type_unit_groups_table ();
5879 dwarf2_per_objfile->n_type_unit_groups = 0;
5880 }
5881
5882 /* Create a vector of pointers to primary type units to make it easy to
5883 iterate over them and CUs. See dw2_get_primary_cu. */
5884 dwarf2_per_objfile->n_type_unit_groups =
5885 htab_elements (dwarf2_per_objfile->type_unit_groups);
5886 dwarf2_per_objfile->all_type_unit_groups =
5887 obstack_alloc (&objfile->objfile_obstack,
5888 dwarf2_per_objfile->n_type_unit_groups
5889 * sizeof (struct type_unit_group *));
5890 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5891 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5892 add_type_unit_group_to_table, &iter);
5893 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5894 == dwarf2_per_objfile->n_type_unit_groups);
5895
5896 do_cleanups (cleanups);
5897
5898 if (dwarf2_read_debug)
5899 {
5900 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5901 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5902 dwarf2_per_objfile->n_type_units);
5903 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5904 tu_stats->nr_uniq_abbrev_tables);
5905 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5906 tu_stats->nr_symtabs);
5907 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5908 tu_stats->nr_symtab_sharers);
5909 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5910 tu_stats->nr_stmt_less_type_units);
5911 }
5912 }
5913 \f
5914 /* Partial symbol tables. */
5915
5916 /* Create a psymtab named NAME and assign it to PER_CU.
5917
5918 The caller must fill in the following details:
5919 dirname, textlow, texthigh. */
5920
5921 static struct partial_symtab *
5922 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5923 {
5924 struct objfile *objfile = per_cu->objfile;
5925 struct partial_symtab *pst;
5926
5927 pst = start_psymtab_common (objfile, objfile->section_offsets,
5928 name, 0,
5929 objfile->global_psymbols.next,
5930 objfile->static_psymbols.next);
5931
5932 pst->psymtabs_addrmap_supported = 1;
5933
5934 /* This is the glue that links PST into GDB's symbol API. */
5935 pst->read_symtab_private = per_cu;
5936 pst->read_symtab = dwarf2_read_symtab;
5937 per_cu->v.psymtab = pst;
5938
5939 return pst;
5940 }
5941
5942 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5943 type. */
5944
5945 struct process_psymtab_comp_unit_data
5946 {
5947 /* True if we are reading a DW_TAG_partial_unit. */
5948
5949 int want_partial_unit;
5950
5951 /* The "pretend" language that is used if the CU doesn't declare a
5952 language. */
5953
5954 enum language pretend_language;
5955 };
5956
5957 /* die_reader_func for process_psymtab_comp_unit. */
5958
5959 static void
5960 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5961 const gdb_byte *info_ptr,
5962 struct die_info *comp_unit_die,
5963 int has_children,
5964 void *data)
5965 {
5966 struct dwarf2_cu *cu = reader->cu;
5967 struct objfile *objfile = cu->objfile;
5968 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5969 struct attribute *attr;
5970 CORE_ADDR baseaddr;
5971 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5972 struct partial_symtab *pst;
5973 int has_pc_info;
5974 const char *filename;
5975 struct process_psymtab_comp_unit_data *info = data;
5976
5977 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5978 return;
5979
5980 gdb_assert (! per_cu->is_debug_types);
5981
5982 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5983
5984 cu->list_in_scope = &file_symbols;
5985
5986 /* Allocate a new partial symbol table structure. */
5987 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5988 if (attr == NULL || !DW_STRING (attr))
5989 filename = "";
5990 else
5991 filename = DW_STRING (attr);
5992
5993 pst = create_partial_symtab (per_cu, filename);
5994
5995 /* This must be done before calling dwarf2_build_include_psymtabs. */
5996 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5997 if (attr != NULL)
5998 pst->dirname = DW_STRING (attr);
5999
6000 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6001
6002 dwarf2_find_base_address (comp_unit_die, cu);
6003
6004 /* Possibly set the default values of LOWPC and HIGHPC from
6005 `DW_AT_ranges'. */
6006 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6007 &best_highpc, cu, pst);
6008 if (has_pc_info == 1 && best_lowpc < best_highpc)
6009 /* Store the contiguous range if it is not empty; it can be empty for
6010 CUs with no code. */
6011 addrmap_set_empty (objfile->psymtabs_addrmap,
6012 best_lowpc + baseaddr,
6013 best_highpc + baseaddr - 1, pst);
6014
6015 /* Check if comp unit has_children.
6016 If so, read the rest of the partial symbols from this comp unit.
6017 If not, there's no more debug_info for this comp unit. */
6018 if (has_children)
6019 {
6020 struct partial_die_info *first_die;
6021 CORE_ADDR lowpc, highpc;
6022
6023 lowpc = ((CORE_ADDR) -1);
6024 highpc = ((CORE_ADDR) 0);
6025
6026 first_die = load_partial_dies (reader, info_ptr, 1);
6027
6028 scan_partial_symbols (first_die, &lowpc, &highpc,
6029 ! has_pc_info, cu);
6030
6031 /* If we didn't find a lowpc, set it to highpc to avoid
6032 complaints from `maint check'. */
6033 if (lowpc == ((CORE_ADDR) -1))
6034 lowpc = highpc;
6035
6036 /* If the compilation unit didn't have an explicit address range,
6037 then use the information extracted from its child dies. */
6038 if (! has_pc_info)
6039 {
6040 best_lowpc = lowpc;
6041 best_highpc = highpc;
6042 }
6043 }
6044 pst->textlow = best_lowpc + baseaddr;
6045 pst->texthigh = best_highpc + baseaddr;
6046
6047 pst->n_global_syms = objfile->global_psymbols.next -
6048 (objfile->global_psymbols.list + pst->globals_offset);
6049 pst->n_static_syms = objfile->static_psymbols.next -
6050 (objfile->static_psymbols.list + pst->statics_offset);
6051 sort_pst_symbols (objfile, pst);
6052
6053 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6054 {
6055 int i;
6056 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6057 struct dwarf2_per_cu_data *iter;
6058
6059 /* Fill in 'dependencies' here; we fill in 'users' in a
6060 post-pass. */
6061 pst->number_of_dependencies = len;
6062 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6063 len * sizeof (struct symtab *));
6064 for (i = 0;
6065 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6066 i, iter);
6067 ++i)
6068 pst->dependencies[i] = iter->v.psymtab;
6069
6070 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6071 }
6072
6073 /* Get the list of files included in the current compilation unit,
6074 and build a psymtab for each of them. */
6075 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6076
6077 if (dwarf2_read_debug)
6078 {
6079 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6080
6081 fprintf_unfiltered (gdb_stdlog,
6082 "Psymtab for %s unit @0x%x: %s - %s"
6083 ", %d global, %d static syms\n",
6084 per_cu->is_debug_types ? "type" : "comp",
6085 per_cu->offset.sect_off,
6086 paddress (gdbarch, pst->textlow),
6087 paddress (gdbarch, pst->texthigh),
6088 pst->n_global_syms, pst->n_static_syms);
6089 }
6090 }
6091
6092 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6093 Process compilation unit THIS_CU for a psymtab. */
6094
6095 static void
6096 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6097 int want_partial_unit,
6098 enum language pretend_language)
6099 {
6100 struct process_psymtab_comp_unit_data info;
6101
6102 /* If this compilation unit was already read in, free the
6103 cached copy in order to read it in again. This is
6104 necessary because we skipped some symbols when we first
6105 read in the compilation unit (see load_partial_dies).
6106 This problem could be avoided, but the benefit is unclear. */
6107 if (this_cu->cu != NULL)
6108 free_one_cached_comp_unit (this_cu);
6109
6110 gdb_assert (! this_cu->is_debug_types);
6111 info.want_partial_unit = want_partial_unit;
6112 info.pretend_language = pretend_language;
6113 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6114 process_psymtab_comp_unit_reader,
6115 &info);
6116
6117 /* Age out any secondary CUs. */
6118 age_cached_comp_units ();
6119 }
6120
6121 /* Reader function for build_type_psymtabs. */
6122
6123 static void
6124 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6125 const gdb_byte *info_ptr,
6126 struct die_info *type_unit_die,
6127 int has_children,
6128 void *data)
6129 {
6130 struct objfile *objfile = dwarf2_per_objfile->objfile;
6131 struct dwarf2_cu *cu = reader->cu;
6132 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6133 struct signatured_type *sig_type;
6134 struct type_unit_group *tu_group;
6135 struct attribute *attr;
6136 struct partial_die_info *first_die;
6137 CORE_ADDR lowpc, highpc;
6138 struct partial_symtab *pst;
6139
6140 gdb_assert (data == NULL);
6141 gdb_assert (per_cu->is_debug_types);
6142 sig_type = (struct signatured_type *) per_cu;
6143
6144 if (! has_children)
6145 return;
6146
6147 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6148 tu_group = get_type_unit_group (cu, attr);
6149
6150 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6151
6152 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6153 cu->list_in_scope = &file_symbols;
6154 pst = create_partial_symtab (per_cu, "");
6155 pst->anonymous = 1;
6156
6157 first_die = load_partial_dies (reader, info_ptr, 1);
6158
6159 lowpc = (CORE_ADDR) -1;
6160 highpc = (CORE_ADDR) 0;
6161 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6162
6163 pst->n_global_syms = objfile->global_psymbols.next -
6164 (objfile->global_psymbols.list + pst->globals_offset);
6165 pst->n_static_syms = objfile->static_psymbols.next -
6166 (objfile->static_psymbols.list + pst->statics_offset);
6167 sort_pst_symbols (objfile, pst);
6168 }
6169
6170 /* Traversal function for build_type_psymtabs. */
6171
6172 static int
6173 build_type_psymtab_dependencies (void **slot, void *info)
6174 {
6175 struct objfile *objfile = dwarf2_per_objfile->objfile;
6176 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6177 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6178 struct partial_symtab *pst = per_cu->v.psymtab;
6179 int len = VEC_length (sig_type_ptr, tu_group->tus);
6180 struct signatured_type *iter;
6181 int i;
6182
6183 gdb_assert (len > 0);
6184 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6185
6186 pst->number_of_dependencies = len;
6187 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6188 len * sizeof (struct psymtab *));
6189 for (i = 0;
6190 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6191 ++i)
6192 {
6193 gdb_assert (iter->per_cu.is_debug_types);
6194 pst->dependencies[i] = iter->per_cu.v.psymtab;
6195 iter->type_unit_group = tu_group;
6196 }
6197
6198 VEC_free (sig_type_ptr, tu_group->tus);
6199
6200 return 1;
6201 }
6202
6203 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6204 Build partial symbol tables for the .debug_types comp-units. */
6205
6206 static void
6207 build_type_psymtabs (struct objfile *objfile)
6208 {
6209 if (! create_all_type_units (objfile))
6210 return;
6211
6212 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6213
6214 /* Now that all TUs have been processed we can fill in the dependencies. */
6215 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6216 build_type_psymtab_dependencies, NULL);
6217 }
6218
6219 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6220
6221 static void
6222 psymtabs_addrmap_cleanup (void *o)
6223 {
6224 struct objfile *objfile = o;
6225
6226 objfile->psymtabs_addrmap = NULL;
6227 }
6228
6229 /* Compute the 'user' field for each psymtab in OBJFILE. */
6230
6231 static void
6232 set_partial_user (struct objfile *objfile)
6233 {
6234 int i;
6235
6236 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6237 {
6238 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6239 struct partial_symtab *pst = per_cu->v.psymtab;
6240 int j;
6241
6242 if (pst == NULL)
6243 continue;
6244
6245 for (j = 0; j < pst->number_of_dependencies; ++j)
6246 {
6247 /* Set the 'user' field only if it is not already set. */
6248 if (pst->dependencies[j]->user == NULL)
6249 pst->dependencies[j]->user = pst;
6250 }
6251 }
6252 }
6253
6254 /* Build the partial symbol table by doing a quick pass through the
6255 .debug_info and .debug_abbrev sections. */
6256
6257 static void
6258 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6259 {
6260 struct cleanup *back_to, *addrmap_cleanup;
6261 struct obstack temp_obstack;
6262 int i;
6263
6264 if (dwarf2_read_debug)
6265 {
6266 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6267 objfile_name (objfile));
6268 }
6269
6270 dwarf2_per_objfile->reading_partial_symbols = 1;
6271
6272 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6273
6274 /* Any cached compilation units will be linked by the per-objfile
6275 read_in_chain. Make sure to free them when we're done. */
6276 back_to = make_cleanup (free_cached_comp_units, NULL);
6277
6278 build_type_psymtabs (objfile);
6279
6280 create_all_comp_units (objfile);
6281
6282 /* Create a temporary address map on a temporary obstack. We later
6283 copy this to the final obstack. */
6284 obstack_init (&temp_obstack);
6285 make_cleanup_obstack_free (&temp_obstack);
6286 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6287 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6288
6289 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6290 {
6291 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6292
6293 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6294 }
6295
6296 set_partial_user (objfile);
6297
6298 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6299 &objfile->objfile_obstack);
6300 discard_cleanups (addrmap_cleanup);
6301
6302 do_cleanups (back_to);
6303
6304 if (dwarf2_read_debug)
6305 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6306 objfile_name (objfile));
6307 }
6308
6309 /* die_reader_func for load_partial_comp_unit. */
6310
6311 static void
6312 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6313 const gdb_byte *info_ptr,
6314 struct die_info *comp_unit_die,
6315 int has_children,
6316 void *data)
6317 {
6318 struct dwarf2_cu *cu = reader->cu;
6319
6320 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6321
6322 /* Check if comp unit has_children.
6323 If so, read the rest of the partial symbols from this comp unit.
6324 If not, there's no more debug_info for this comp unit. */
6325 if (has_children)
6326 load_partial_dies (reader, info_ptr, 0);
6327 }
6328
6329 /* Load the partial DIEs for a secondary CU into memory.
6330 This is also used when rereading a primary CU with load_all_dies. */
6331
6332 static void
6333 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6334 {
6335 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6336 load_partial_comp_unit_reader, NULL);
6337 }
6338
6339 static void
6340 read_comp_units_from_section (struct objfile *objfile,
6341 struct dwarf2_section_info *section,
6342 unsigned int is_dwz,
6343 int *n_allocated,
6344 int *n_comp_units,
6345 struct dwarf2_per_cu_data ***all_comp_units)
6346 {
6347 const gdb_byte *info_ptr;
6348 bfd *abfd = get_section_bfd_owner (section);
6349
6350 if (dwarf2_read_debug)
6351 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6352 get_section_name (section),
6353 get_section_file_name (section));
6354
6355 dwarf2_read_section (objfile, section);
6356
6357 info_ptr = section->buffer;
6358
6359 while (info_ptr < section->buffer + section->size)
6360 {
6361 unsigned int length, initial_length_size;
6362 struct dwarf2_per_cu_data *this_cu;
6363 sect_offset offset;
6364
6365 offset.sect_off = info_ptr - section->buffer;
6366
6367 /* Read just enough information to find out where the next
6368 compilation unit is. */
6369 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6370
6371 /* Save the compilation unit for later lookup. */
6372 this_cu = obstack_alloc (&objfile->objfile_obstack,
6373 sizeof (struct dwarf2_per_cu_data));
6374 memset (this_cu, 0, sizeof (*this_cu));
6375 this_cu->offset = offset;
6376 this_cu->length = length + initial_length_size;
6377 this_cu->is_dwz = is_dwz;
6378 this_cu->objfile = objfile;
6379 this_cu->section = section;
6380
6381 if (*n_comp_units == *n_allocated)
6382 {
6383 *n_allocated *= 2;
6384 *all_comp_units = xrealloc (*all_comp_units,
6385 *n_allocated
6386 * sizeof (struct dwarf2_per_cu_data *));
6387 }
6388 (*all_comp_units)[*n_comp_units] = this_cu;
6389 ++*n_comp_units;
6390
6391 info_ptr = info_ptr + this_cu->length;
6392 }
6393 }
6394
6395 /* Create a list of all compilation units in OBJFILE.
6396 This is only done for -readnow and building partial symtabs. */
6397
6398 static void
6399 create_all_comp_units (struct objfile *objfile)
6400 {
6401 int n_allocated;
6402 int n_comp_units;
6403 struct dwarf2_per_cu_data **all_comp_units;
6404 struct dwz_file *dwz;
6405
6406 n_comp_units = 0;
6407 n_allocated = 10;
6408 all_comp_units = xmalloc (n_allocated
6409 * sizeof (struct dwarf2_per_cu_data *));
6410
6411 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6412 &n_allocated, &n_comp_units, &all_comp_units);
6413
6414 dwz = dwarf2_get_dwz_file ();
6415 if (dwz != NULL)
6416 read_comp_units_from_section (objfile, &dwz->info, 1,
6417 &n_allocated, &n_comp_units,
6418 &all_comp_units);
6419
6420 dwarf2_per_objfile->all_comp_units
6421 = obstack_alloc (&objfile->objfile_obstack,
6422 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6423 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6424 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6425 xfree (all_comp_units);
6426 dwarf2_per_objfile->n_comp_units = n_comp_units;
6427 }
6428
6429 /* Process all loaded DIEs for compilation unit CU, starting at
6430 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6431 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6432 DW_AT_ranges). If NEED_PC is set, then this function will set
6433 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6434 and record the covered ranges in the addrmap. */
6435
6436 static void
6437 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6438 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6439 {
6440 struct partial_die_info *pdi;
6441
6442 /* Now, march along the PDI's, descending into ones which have
6443 interesting children but skipping the children of the other ones,
6444 until we reach the end of the compilation unit. */
6445
6446 pdi = first_die;
6447
6448 while (pdi != NULL)
6449 {
6450 fixup_partial_die (pdi, cu);
6451
6452 /* Anonymous namespaces or modules have no name but have interesting
6453 children, so we need to look at them. Ditto for anonymous
6454 enums. */
6455
6456 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6457 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6458 || pdi->tag == DW_TAG_imported_unit)
6459 {
6460 switch (pdi->tag)
6461 {
6462 case DW_TAG_subprogram:
6463 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6464 break;
6465 case DW_TAG_constant:
6466 case DW_TAG_variable:
6467 case DW_TAG_typedef:
6468 case DW_TAG_union_type:
6469 if (!pdi->is_declaration)
6470 {
6471 add_partial_symbol (pdi, cu);
6472 }
6473 break;
6474 case DW_TAG_class_type:
6475 case DW_TAG_interface_type:
6476 case DW_TAG_structure_type:
6477 if (!pdi->is_declaration)
6478 {
6479 add_partial_symbol (pdi, cu);
6480 }
6481 break;
6482 case DW_TAG_enumeration_type:
6483 if (!pdi->is_declaration)
6484 add_partial_enumeration (pdi, cu);
6485 break;
6486 case DW_TAG_base_type:
6487 case DW_TAG_subrange_type:
6488 /* File scope base type definitions are added to the partial
6489 symbol table. */
6490 add_partial_symbol (pdi, cu);
6491 break;
6492 case DW_TAG_namespace:
6493 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6494 break;
6495 case DW_TAG_module:
6496 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6497 break;
6498 case DW_TAG_imported_unit:
6499 {
6500 struct dwarf2_per_cu_data *per_cu;
6501
6502 /* For now we don't handle imported units in type units. */
6503 if (cu->per_cu->is_debug_types)
6504 {
6505 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6506 " supported in type units [in module %s]"),
6507 objfile_name (cu->objfile));
6508 }
6509
6510 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6511 pdi->is_dwz,
6512 cu->objfile);
6513
6514 /* Go read the partial unit, if needed. */
6515 if (per_cu->v.psymtab == NULL)
6516 process_psymtab_comp_unit (per_cu, 1, cu->language);
6517
6518 VEC_safe_push (dwarf2_per_cu_ptr,
6519 cu->per_cu->imported_symtabs, per_cu);
6520 }
6521 break;
6522 case DW_TAG_imported_declaration:
6523 add_partial_symbol (pdi, cu);
6524 break;
6525 default:
6526 break;
6527 }
6528 }
6529
6530 /* If the die has a sibling, skip to the sibling. */
6531
6532 pdi = pdi->die_sibling;
6533 }
6534 }
6535
6536 /* Functions used to compute the fully scoped name of a partial DIE.
6537
6538 Normally, this is simple. For C++, the parent DIE's fully scoped
6539 name is concatenated with "::" and the partial DIE's name. For
6540 Java, the same thing occurs except that "." is used instead of "::".
6541 Enumerators are an exception; they use the scope of their parent
6542 enumeration type, i.e. the name of the enumeration type is not
6543 prepended to the enumerator.
6544
6545 There are two complexities. One is DW_AT_specification; in this
6546 case "parent" means the parent of the target of the specification,
6547 instead of the direct parent of the DIE. The other is compilers
6548 which do not emit DW_TAG_namespace; in this case we try to guess
6549 the fully qualified name of structure types from their members'
6550 linkage names. This must be done using the DIE's children rather
6551 than the children of any DW_AT_specification target. We only need
6552 to do this for structures at the top level, i.e. if the target of
6553 any DW_AT_specification (if any; otherwise the DIE itself) does not
6554 have a parent. */
6555
6556 /* Compute the scope prefix associated with PDI's parent, in
6557 compilation unit CU. The result will be allocated on CU's
6558 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6559 field. NULL is returned if no prefix is necessary. */
6560 static const char *
6561 partial_die_parent_scope (struct partial_die_info *pdi,
6562 struct dwarf2_cu *cu)
6563 {
6564 const char *grandparent_scope;
6565 struct partial_die_info *parent, *real_pdi;
6566
6567 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6568 then this means the parent of the specification DIE. */
6569
6570 real_pdi = pdi;
6571 while (real_pdi->has_specification)
6572 real_pdi = find_partial_die (real_pdi->spec_offset,
6573 real_pdi->spec_is_dwz, cu);
6574
6575 parent = real_pdi->die_parent;
6576 if (parent == NULL)
6577 return NULL;
6578
6579 if (parent->scope_set)
6580 return parent->scope;
6581
6582 fixup_partial_die (parent, cu);
6583
6584 grandparent_scope = partial_die_parent_scope (parent, cu);
6585
6586 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6587 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6588 Work around this problem here. */
6589 if (cu->language == language_cplus
6590 && parent->tag == DW_TAG_namespace
6591 && strcmp (parent->name, "::") == 0
6592 && grandparent_scope == NULL)
6593 {
6594 parent->scope = NULL;
6595 parent->scope_set = 1;
6596 return NULL;
6597 }
6598
6599 if (pdi->tag == DW_TAG_enumerator)
6600 /* Enumerators should not get the name of the enumeration as a prefix. */
6601 parent->scope = grandparent_scope;
6602 else if (parent->tag == DW_TAG_namespace
6603 || parent->tag == DW_TAG_module
6604 || parent->tag == DW_TAG_structure_type
6605 || parent->tag == DW_TAG_class_type
6606 || parent->tag == DW_TAG_interface_type
6607 || parent->tag == DW_TAG_union_type
6608 || parent->tag == DW_TAG_enumeration_type)
6609 {
6610 if (grandparent_scope == NULL)
6611 parent->scope = parent->name;
6612 else
6613 parent->scope = typename_concat (&cu->comp_unit_obstack,
6614 grandparent_scope,
6615 parent->name, 0, cu);
6616 }
6617 else
6618 {
6619 /* FIXME drow/2004-04-01: What should we be doing with
6620 function-local names? For partial symbols, we should probably be
6621 ignoring them. */
6622 complaint (&symfile_complaints,
6623 _("unhandled containing DIE tag %d for DIE at %d"),
6624 parent->tag, pdi->offset.sect_off);
6625 parent->scope = grandparent_scope;
6626 }
6627
6628 parent->scope_set = 1;
6629 return parent->scope;
6630 }
6631
6632 /* Return the fully scoped name associated with PDI, from compilation unit
6633 CU. The result will be allocated with malloc. */
6634
6635 static char *
6636 partial_die_full_name (struct partial_die_info *pdi,
6637 struct dwarf2_cu *cu)
6638 {
6639 const char *parent_scope;
6640
6641 /* If this is a template instantiation, we can not work out the
6642 template arguments from partial DIEs. So, unfortunately, we have
6643 to go through the full DIEs. At least any work we do building
6644 types here will be reused if full symbols are loaded later. */
6645 if (pdi->has_template_arguments)
6646 {
6647 fixup_partial_die (pdi, cu);
6648
6649 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6650 {
6651 struct die_info *die;
6652 struct attribute attr;
6653 struct dwarf2_cu *ref_cu = cu;
6654
6655 /* DW_FORM_ref_addr is using section offset. */
6656 attr.name = 0;
6657 attr.form = DW_FORM_ref_addr;
6658 attr.u.unsnd = pdi->offset.sect_off;
6659 die = follow_die_ref (NULL, &attr, &ref_cu);
6660
6661 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6662 }
6663 }
6664
6665 parent_scope = partial_die_parent_scope (pdi, cu);
6666 if (parent_scope == NULL)
6667 return NULL;
6668 else
6669 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6670 }
6671
6672 static void
6673 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6674 {
6675 struct objfile *objfile = cu->objfile;
6676 CORE_ADDR addr = 0;
6677 const char *actual_name = NULL;
6678 CORE_ADDR baseaddr;
6679 char *built_actual_name;
6680
6681 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6682
6683 built_actual_name = partial_die_full_name (pdi, cu);
6684 if (built_actual_name != NULL)
6685 actual_name = built_actual_name;
6686
6687 if (actual_name == NULL)
6688 actual_name = pdi->name;
6689
6690 switch (pdi->tag)
6691 {
6692 case DW_TAG_subprogram:
6693 if (pdi->is_external || cu->language == language_ada)
6694 {
6695 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6696 of the global scope. But in Ada, we want to be able to access
6697 nested procedures globally. So all Ada subprograms are stored
6698 in the global scope. */
6699 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6700 mst_text, objfile); */
6701 add_psymbol_to_list (actual_name, strlen (actual_name),
6702 built_actual_name != NULL,
6703 VAR_DOMAIN, LOC_BLOCK,
6704 &objfile->global_psymbols,
6705 0, pdi->lowpc + baseaddr,
6706 cu->language, objfile);
6707 }
6708 else
6709 {
6710 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6711 mst_file_text, objfile); */
6712 add_psymbol_to_list (actual_name, strlen (actual_name),
6713 built_actual_name != NULL,
6714 VAR_DOMAIN, LOC_BLOCK,
6715 &objfile->static_psymbols,
6716 0, pdi->lowpc + baseaddr,
6717 cu->language, objfile);
6718 }
6719 break;
6720 case DW_TAG_constant:
6721 {
6722 struct psymbol_allocation_list *list;
6723
6724 if (pdi->is_external)
6725 list = &objfile->global_psymbols;
6726 else
6727 list = &objfile->static_psymbols;
6728 add_psymbol_to_list (actual_name, strlen (actual_name),
6729 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6730 list, 0, 0, cu->language, objfile);
6731 }
6732 break;
6733 case DW_TAG_variable:
6734 if (pdi->d.locdesc)
6735 addr = decode_locdesc (pdi->d.locdesc, cu);
6736
6737 if (pdi->d.locdesc
6738 && addr == 0
6739 && !dwarf2_per_objfile->has_section_at_zero)
6740 {
6741 /* A global or static variable may also have been stripped
6742 out by the linker if unused, in which case its address
6743 will be nullified; do not add such variables into partial
6744 symbol table then. */
6745 }
6746 else if (pdi->is_external)
6747 {
6748 /* Global Variable.
6749 Don't enter into the minimal symbol tables as there is
6750 a minimal symbol table entry from the ELF symbols already.
6751 Enter into partial symbol table if it has a location
6752 descriptor or a type.
6753 If the location descriptor is missing, new_symbol will create
6754 a LOC_UNRESOLVED symbol, the address of the variable will then
6755 be determined from the minimal symbol table whenever the variable
6756 is referenced.
6757 The address for the partial symbol table entry is not
6758 used by GDB, but it comes in handy for debugging partial symbol
6759 table building. */
6760
6761 if (pdi->d.locdesc || pdi->has_type)
6762 add_psymbol_to_list (actual_name, strlen (actual_name),
6763 built_actual_name != NULL,
6764 VAR_DOMAIN, LOC_STATIC,
6765 &objfile->global_psymbols,
6766 0, addr + baseaddr,
6767 cu->language, objfile);
6768 }
6769 else
6770 {
6771 /* Static Variable. Skip symbols without location descriptors. */
6772 if (pdi->d.locdesc == NULL)
6773 {
6774 xfree (built_actual_name);
6775 return;
6776 }
6777 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6778 mst_file_data, objfile); */
6779 add_psymbol_to_list (actual_name, strlen (actual_name),
6780 built_actual_name != NULL,
6781 VAR_DOMAIN, LOC_STATIC,
6782 &objfile->static_psymbols,
6783 0, addr + baseaddr,
6784 cu->language, objfile);
6785 }
6786 break;
6787 case DW_TAG_typedef:
6788 case DW_TAG_base_type:
6789 case DW_TAG_subrange_type:
6790 add_psymbol_to_list (actual_name, strlen (actual_name),
6791 built_actual_name != NULL,
6792 VAR_DOMAIN, LOC_TYPEDEF,
6793 &objfile->static_psymbols,
6794 0, (CORE_ADDR) 0, cu->language, objfile);
6795 break;
6796 case DW_TAG_imported_declaration:
6797 case DW_TAG_namespace:
6798 add_psymbol_to_list (actual_name, strlen (actual_name),
6799 built_actual_name != NULL,
6800 VAR_DOMAIN, LOC_TYPEDEF,
6801 &objfile->global_psymbols,
6802 0, (CORE_ADDR) 0, cu->language, objfile);
6803 break;
6804 case DW_TAG_module:
6805 add_psymbol_to_list (actual_name, strlen (actual_name),
6806 built_actual_name != NULL,
6807 MODULE_DOMAIN, LOC_TYPEDEF,
6808 &objfile->global_psymbols,
6809 0, (CORE_ADDR) 0, cu->language, objfile);
6810 break;
6811 case DW_TAG_class_type:
6812 case DW_TAG_interface_type:
6813 case DW_TAG_structure_type:
6814 case DW_TAG_union_type:
6815 case DW_TAG_enumeration_type:
6816 /* Skip external references. The DWARF standard says in the section
6817 about "Structure, Union, and Class Type Entries": "An incomplete
6818 structure, union or class type is represented by a structure,
6819 union or class entry that does not have a byte size attribute
6820 and that has a DW_AT_declaration attribute." */
6821 if (!pdi->has_byte_size && pdi->is_declaration)
6822 {
6823 xfree (built_actual_name);
6824 return;
6825 }
6826
6827 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6828 static vs. global. */
6829 add_psymbol_to_list (actual_name, strlen (actual_name),
6830 built_actual_name != NULL,
6831 STRUCT_DOMAIN, LOC_TYPEDEF,
6832 (cu->language == language_cplus
6833 || cu->language == language_java)
6834 ? &objfile->global_psymbols
6835 : &objfile->static_psymbols,
6836 0, (CORE_ADDR) 0, cu->language, objfile);
6837
6838 break;
6839 case DW_TAG_enumerator:
6840 add_psymbol_to_list (actual_name, strlen (actual_name),
6841 built_actual_name != NULL,
6842 VAR_DOMAIN, LOC_CONST,
6843 (cu->language == language_cplus
6844 || cu->language == language_java)
6845 ? &objfile->global_psymbols
6846 : &objfile->static_psymbols,
6847 0, (CORE_ADDR) 0, cu->language, objfile);
6848 break;
6849 default:
6850 break;
6851 }
6852
6853 xfree (built_actual_name);
6854 }
6855
6856 /* Read a partial die corresponding to a namespace; also, add a symbol
6857 corresponding to that namespace to the symbol table. NAMESPACE is
6858 the name of the enclosing namespace. */
6859
6860 static void
6861 add_partial_namespace (struct partial_die_info *pdi,
6862 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6863 int need_pc, struct dwarf2_cu *cu)
6864 {
6865 /* Add a symbol for the namespace. */
6866
6867 add_partial_symbol (pdi, cu);
6868
6869 /* Now scan partial symbols in that namespace. */
6870
6871 if (pdi->has_children)
6872 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6873 }
6874
6875 /* Read a partial die corresponding to a Fortran module. */
6876
6877 static void
6878 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6879 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6880 {
6881 /* Add a symbol for the namespace. */
6882
6883 add_partial_symbol (pdi, cu);
6884
6885 /* Now scan partial symbols in that module. */
6886
6887 if (pdi->has_children)
6888 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6889 }
6890
6891 /* Read a partial die corresponding to a subprogram and create a partial
6892 symbol for that subprogram. When the CU language allows it, this
6893 routine also defines a partial symbol for each nested subprogram
6894 that this subprogram contains.
6895
6896 DIE my also be a lexical block, in which case we simply search
6897 recursively for suprograms defined inside that lexical block.
6898 Again, this is only performed when the CU language allows this
6899 type of definitions. */
6900
6901 static void
6902 add_partial_subprogram (struct partial_die_info *pdi,
6903 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6904 int need_pc, struct dwarf2_cu *cu)
6905 {
6906 if (pdi->tag == DW_TAG_subprogram)
6907 {
6908 if (pdi->has_pc_info)
6909 {
6910 if (pdi->lowpc < *lowpc)
6911 *lowpc = pdi->lowpc;
6912 if (pdi->highpc > *highpc)
6913 *highpc = pdi->highpc;
6914 if (need_pc)
6915 {
6916 CORE_ADDR baseaddr;
6917 struct objfile *objfile = cu->objfile;
6918
6919 baseaddr = ANOFFSET (objfile->section_offsets,
6920 SECT_OFF_TEXT (objfile));
6921 addrmap_set_empty (objfile->psymtabs_addrmap,
6922 pdi->lowpc + baseaddr,
6923 pdi->highpc - 1 + baseaddr,
6924 cu->per_cu->v.psymtab);
6925 }
6926 }
6927
6928 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6929 {
6930 if (!pdi->is_declaration)
6931 /* Ignore subprogram DIEs that do not have a name, they are
6932 illegal. Do not emit a complaint at this point, we will
6933 do so when we convert this psymtab into a symtab. */
6934 if (pdi->name)
6935 add_partial_symbol (pdi, cu);
6936 }
6937 }
6938
6939 if (! pdi->has_children)
6940 return;
6941
6942 if (cu->language == language_ada)
6943 {
6944 pdi = pdi->die_child;
6945 while (pdi != NULL)
6946 {
6947 fixup_partial_die (pdi, cu);
6948 if (pdi->tag == DW_TAG_subprogram
6949 || pdi->tag == DW_TAG_lexical_block)
6950 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6951 pdi = pdi->die_sibling;
6952 }
6953 }
6954 }
6955
6956 /* Read a partial die corresponding to an enumeration type. */
6957
6958 static void
6959 add_partial_enumeration (struct partial_die_info *enum_pdi,
6960 struct dwarf2_cu *cu)
6961 {
6962 struct partial_die_info *pdi;
6963
6964 if (enum_pdi->name != NULL)
6965 add_partial_symbol (enum_pdi, cu);
6966
6967 pdi = enum_pdi->die_child;
6968 while (pdi)
6969 {
6970 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6971 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6972 else
6973 add_partial_symbol (pdi, cu);
6974 pdi = pdi->die_sibling;
6975 }
6976 }
6977
6978 /* Return the initial uleb128 in the die at INFO_PTR. */
6979
6980 static unsigned int
6981 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6982 {
6983 unsigned int bytes_read;
6984
6985 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6986 }
6987
6988 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6989 Return the corresponding abbrev, or NULL if the number is zero (indicating
6990 an empty DIE). In either case *BYTES_READ will be set to the length of
6991 the initial number. */
6992
6993 static struct abbrev_info *
6994 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6995 struct dwarf2_cu *cu)
6996 {
6997 bfd *abfd = cu->objfile->obfd;
6998 unsigned int abbrev_number;
6999 struct abbrev_info *abbrev;
7000
7001 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7002
7003 if (abbrev_number == 0)
7004 return NULL;
7005
7006 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7007 if (!abbrev)
7008 {
7009 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7010 abbrev_number, bfd_get_filename (abfd));
7011 }
7012
7013 return abbrev;
7014 }
7015
7016 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7017 Returns a pointer to the end of a series of DIEs, terminated by an empty
7018 DIE. Any children of the skipped DIEs will also be skipped. */
7019
7020 static const gdb_byte *
7021 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7022 {
7023 struct dwarf2_cu *cu = reader->cu;
7024 struct abbrev_info *abbrev;
7025 unsigned int bytes_read;
7026
7027 while (1)
7028 {
7029 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7030 if (abbrev == NULL)
7031 return info_ptr + bytes_read;
7032 else
7033 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7034 }
7035 }
7036
7037 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7038 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7039 abbrev corresponding to that skipped uleb128 should be passed in
7040 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7041 children. */
7042
7043 static const gdb_byte *
7044 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7045 struct abbrev_info *abbrev)
7046 {
7047 unsigned int bytes_read;
7048 struct attribute attr;
7049 bfd *abfd = reader->abfd;
7050 struct dwarf2_cu *cu = reader->cu;
7051 const gdb_byte *buffer = reader->buffer;
7052 const gdb_byte *buffer_end = reader->buffer_end;
7053 const gdb_byte *start_info_ptr = info_ptr;
7054 unsigned int form, i;
7055
7056 for (i = 0; i < abbrev->num_attrs; i++)
7057 {
7058 /* The only abbrev we care about is DW_AT_sibling. */
7059 if (abbrev->attrs[i].name == DW_AT_sibling)
7060 {
7061 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7062 if (attr.form == DW_FORM_ref_addr)
7063 complaint (&symfile_complaints,
7064 _("ignoring absolute DW_AT_sibling"));
7065 else
7066 {
7067 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7068 const gdb_byte *sibling_ptr = buffer + off;
7069
7070 if (sibling_ptr < info_ptr)
7071 complaint (&symfile_complaints,
7072 _("DW_AT_sibling points backwards"));
7073 else
7074 return sibling_ptr;
7075 }
7076 }
7077
7078 /* If it isn't DW_AT_sibling, skip this attribute. */
7079 form = abbrev->attrs[i].form;
7080 skip_attribute:
7081 switch (form)
7082 {
7083 case DW_FORM_ref_addr:
7084 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7085 and later it is offset sized. */
7086 if (cu->header.version == 2)
7087 info_ptr += cu->header.addr_size;
7088 else
7089 info_ptr += cu->header.offset_size;
7090 break;
7091 case DW_FORM_GNU_ref_alt:
7092 info_ptr += cu->header.offset_size;
7093 break;
7094 case DW_FORM_addr:
7095 info_ptr += cu->header.addr_size;
7096 break;
7097 case DW_FORM_data1:
7098 case DW_FORM_ref1:
7099 case DW_FORM_flag:
7100 info_ptr += 1;
7101 break;
7102 case DW_FORM_flag_present:
7103 break;
7104 case DW_FORM_data2:
7105 case DW_FORM_ref2:
7106 info_ptr += 2;
7107 break;
7108 case DW_FORM_data4:
7109 case DW_FORM_ref4:
7110 info_ptr += 4;
7111 break;
7112 case DW_FORM_data8:
7113 case DW_FORM_ref8:
7114 case DW_FORM_ref_sig8:
7115 info_ptr += 8;
7116 break;
7117 case DW_FORM_string:
7118 read_direct_string (abfd, info_ptr, &bytes_read);
7119 info_ptr += bytes_read;
7120 break;
7121 case DW_FORM_sec_offset:
7122 case DW_FORM_strp:
7123 case DW_FORM_GNU_strp_alt:
7124 info_ptr += cu->header.offset_size;
7125 break;
7126 case DW_FORM_exprloc:
7127 case DW_FORM_block:
7128 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7129 info_ptr += bytes_read;
7130 break;
7131 case DW_FORM_block1:
7132 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7133 break;
7134 case DW_FORM_block2:
7135 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7136 break;
7137 case DW_FORM_block4:
7138 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7139 break;
7140 case DW_FORM_sdata:
7141 case DW_FORM_udata:
7142 case DW_FORM_ref_udata:
7143 case DW_FORM_GNU_addr_index:
7144 case DW_FORM_GNU_str_index:
7145 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7146 break;
7147 case DW_FORM_indirect:
7148 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7149 info_ptr += bytes_read;
7150 /* We need to continue parsing from here, so just go back to
7151 the top. */
7152 goto skip_attribute;
7153
7154 default:
7155 error (_("Dwarf Error: Cannot handle %s "
7156 "in DWARF reader [in module %s]"),
7157 dwarf_form_name (form),
7158 bfd_get_filename (abfd));
7159 }
7160 }
7161
7162 if (abbrev->has_children)
7163 return skip_children (reader, info_ptr);
7164 else
7165 return info_ptr;
7166 }
7167
7168 /* Locate ORIG_PDI's sibling.
7169 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7170
7171 static const gdb_byte *
7172 locate_pdi_sibling (const struct die_reader_specs *reader,
7173 struct partial_die_info *orig_pdi,
7174 const gdb_byte *info_ptr)
7175 {
7176 /* Do we know the sibling already? */
7177
7178 if (orig_pdi->sibling)
7179 return orig_pdi->sibling;
7180
7181 /* Are there any children to deal with? */
7182
7183 if (!orig_pdi->has_children)
7184 return info_ptr;
7185
7186 /* Skip the children the long way. */
7187
7188 return skip_children (reader, info_ptr);
7189 }
7190
7191 /* Expand this partial symbol table into a full symbol table. SELF is
7192 not NULL. */
7193
7194 static void
7195 dwarf2_read_symtab (struct partial_symtab *self,
7196 struct objfile *objfile)
7197 {
7198 if (self->readin)
7199 {
7200 warning (_("bug: psymtab for %s is already read in."),
7201 self->filename);
7202 }
7203 else
7204 {
7205 if (info_verbose)
7206 {
7207 printf_filtered (_("Reading in symbols for %s..."),
7208 self->filename);
7209 gdb_flush (gdb_stdout);
7210 }
7211
7212 /* Restore our global data. */
7213 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7214
7215 /* If this psymtab is constructed from a debug-only objfile, the
7216 has_section_at_zero flag will not necessarily be correct. We
7217 can get the correct value for this flag by looking at the data
7218 associated with the (presumably stripped) associated objfile. */
7219 if (objfile->separate_debug_objfile_backlink)
7220 {
7221 struct dwarf2_per_objfile *dpo_backlink
7222 = objfile_data (objfile->separate_debug_objfile_backlink,
7223 dwarf2_objfile_data_key);
7224
7225 dwarf2_per_objfile->has_section_at_zero
7226 = dpo_backlink->has_section_at_zero;
7227 }
7228
7229 dwarf2_per_objfile->reading_partial_symbols = 0;
7230
7231 psymtab_to_symtab_1 (self);
7232
7233 /* Finish up the debug error message. */
7234 if (info_verbose)
7235 printf_filtered (_("done.\n"));
7236 }
7237
7238 process_cu_includes ();
7239 }
7240 \f
7241 /* Reading in full CUs. */
7242
7243 /* Add PER_CU to the queue. */
7244
7245 static void
7246 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7247 enum language pretend_language)
7248 {
7249 struct dwarf2_queue_item *item;
7250
7251 per_cu->queued = 1;
7252 item = xmalloc (sizeof (*item));
7253 item->per_cu = per_cu;
7254 item->pretend_language = pretend_language;
7255 item->next = NULL;
7256
7257 if (dwarf2_queue == NULL)
7258 dwarf2_queue = item;
7259 else
7260 dwarf2_queue_tail->next = item;
7261
7262 dwarf2_queue_tail = item;
7263 }
7264
7265 /* If PER_CU is not yet queued, add it to the queue.
7266 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7267 dependency.
7268 The result is non-zero if PER_CU was queued, otherwise the result is zero
7269 meaning either PER_CU is already queued or it is already loaded.
7270
7271 N.B. There is an invariant here that if a CU is queued then it is loaded.
7272 The caller is required to load PER_CU if we return non-zero. */
7273
7274 static int
7275 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7276 struct dwarf2_per_cu_data *per_cu,
7277 enum language pretend_language)
7278 {
7279 /* We may arrive here during partial symbol reading, if we need full
7280 DIEs to process an unusual case (e.g. template arguments). Do
7281 not queue PER_CU, just tell our caller to load its DIEs. */
7282 if (dwarf2_per_objfile->reading_partial_symbols)
7283 {
7284 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7285 return 1;
7286 return 0;
7287 }
7288
7289 /* Mark the dependence relation so that we don't flush PER_CU
7290 too early. */
7291 if (dependent_cu != NULL)
7292 dwarf2_add_dependence (dependent_cu, per_cu);
7293
7294 /* If it's already on the queue, we have nothing to do. */
7295 if (per_cu->queued)
7296 return 0;
7297
7298 /* If the compilation unit is already loaded, just mark it as
7299 used. */
7300 if (per_cu->cu != NULL)
7301 {
7302 per_cu->cu->last_used = 0;
7303 return 0;
7304 }
7305
7306 /* Add it to the queue. */
7307 queue_comp_unit (per_cu, pretend_language);
7308
7309 return 1;
7310 }
7311
7312 /* Process the queue. */
7313
7314 static void
7315 process_queue (void)
7316 {
7317 struct dwarf2_queue_item *item, *next_item;
7318
7319 if (dwarf2_read_debug)
7320 {
7321 fprintf_unfiltered (gdb_stdlog,
7322 "Expanding one or more symtabs of objfile %s ...\n",
7323 objfile_name (dwarf2_per_objfile->objfile));
7324 }
7325
7326 /* The queue starts out with one item, but following a DIE reference
7327 may load a new CU, adding it to the end of the queue. */
7328 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7329 {
7330 if (dwarf2_per_objfile->using_index
7331 ? !item->per_cu->v.quick->symtab
7332 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7333 {
7334 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7335 unsigned int debug_print_threshold;
7336 char buf[100];
7337
7338 if (per_cu->is_debug_types)
7339 {
7340 struct signatured_type *sig_type =
7341 (struct signatured_type *) per_cu;
7342
7343 sprintf (buf, "TU %s at offset 0x%x",
7344 hex_string (sig_type->signature),
7345 per_cu->offset.sect_off);
7346 /* There can be 100s of TUs.
7347 Only print them in verbose mode. */
7348 debug_print_threshold = 2;
7349 }
7350 else
7351 {
7352 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7353 debug_print_threshold = 1;
7354 }
7355
7356 if (dwarf2_read_debug >= debug_print_threshold)
7357 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7358
7359 if (per_cu->is_debug_types)
7360 process_full_type_unit (per_cu, item->pretend_language);
7361 else
7362 process_full_comp_unit (per_cu, item->pretend_language);
7363
7364 if (dwarf2_read_debug >= debug_print_threshold)
7365 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7366 }
7367
7368 item->per_cu->queued = 0;
7369 next_item = item->next;
7370 xfree (item);
7371 }
7372
7373 dwarf2_queue_tail = NULL;
7374
7375 if (dwarf2_read_debug)
7376 {
7377 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7378 objfile_name (dwarf2_per_objfile->objfile));
7379 }
7380 }
7381
7382 /* Free all allocated queue entries. This function only releases anything if
7383 an error was thrown; if the queue was processed then it would have been
7384 freed as we went along. */
7385
7386 static void
7387 dwarf2_release_queue (void *dummy)
7388 {
7389 struct dwarf2_queue_item *item, *last;
7390
7391 item = dwarf2_queue;
7392 while (item)
7393 {
7394 /* Anything still marked queued is likely to be in an
7395 inconsistent state, so discard it. */
7396 if (item->per_cu->queued)
7397 {
7398 if (item->per_cu->cu != NULL)
7399 free_one_cached_comp_unit (item->per_cu);
7400 item->per_cu->queued = 0;
7401 }
7402
7403 last = item;
7404 item = item->next;
7405 xfree (last);
7406 }
7407
7408 dwarf2_queue = dwarf2_queue_tail = NULL;
7409 }
7410
7411 /* Read in full symbols for PST, and anything it depends on. */
7412
7413 static void
7414 psymtab_to_symtab_1 (struct partial_symtab *pst)
7415 {
7416 struct dwarf2_per_cu_data *per_cu;
7417 int i;
7418
7419 if (pst->readin)
7420 return;
7421
7422 for (i = 0; i < pst->number_of_dependencies; i++)
7423 if (!pst->dependencies[i]->readin
7424 && pst->dependencies[i]->user == NULL)
7425 {
7426 /* Inform about additional files that need to be read in. */
7427 if (info_verbose)
7428 {
7429 /* FIXME: i18n: Need to make this a single string. */
7430 fputs_filtered (" ", gdb_stdout);
7431 wrap_here ("");
7432 fputs_filtered ("and ", gdb_stdout);
7433 wrap_here ("");
7434 printf_filtered ("%s...", pst->dependencies[i]->filename);
7435 wrap_here (""); /* Flush output. */
7436 gdb_flush (gdb_stdout);
7437 }
7438 psymtab_to_symtab_1 (pst->dependencies[i]);
7439 }
7440
7441 per_cu = pst->read_symtab_private;
7442
7443 if (per_cu == NULL)
7444 {
7445 /* It's an include file, no symbols to read for it.
7446 Everything is in the parent symtab. */
7447 pst->readin = 1;
7448 return;
7449 }
7450
7451 dw2_do_instantiate_symtab (per_cu);
7452 }
7453
7454 /* Trivial hash function for die_info: the hash value of a DIE
7455 is its offset in .debug_info for this objfile. */
7456
7457 static hashval_t
7458 die_hash (const void *item)
7459 {
7460 const struct die_info *die = item;
7461
7462 return die->offset.sect_off;
7463 }
7464
7465 /* Trivial comparison function for die_info structures: two DIEs
7466 are equal if they have the same offset. */
7467
7468 static int
7469 die_eq (const void *item_lhs, const void *item_rhs)
7470 {
7471 const struct die_info *die_lhs = item_lhs;
7472 const struct die_info *die_rhs = item_rhs;
7473
7474 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7475 }
7476
7477 /* die_reader_func for load_full_comp_unit.
7478 This is identical to read_signatured_type_reader,
7479 but is kept separate for now. */
7480
7481 static void
7482 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7483 const gdb_byte *info_ptr,
7484 struct die_info *comp_unit_die,
7485 int has_children,
7486 void *data)
7487 {
7488 struct dwarf2_cu *cu = reader->cu;
7489 enum language *language_ptr = data;
7490
7491 gdb_assert (cu->die_hash == NULL);
7492 cu->die_hash =
7493 htab_create_alloc_ex (cu->header.length / 12,
7494 die_hash,
7495 die_eq,
7496 NULL,
7497 &cu->comp_unit_obstack,
7498 hashtab_obstack_allocate,
7499 dummy_obstack_deallocate);
7500
7501 if (has_children)
7502 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7503 &info_ptr, comp_unit_die);
7504 cu->dies = comp_unit_die;
7505 /* comp_unit_die is not stored in die_hash, no need. */
7506
7507 /* We try not to read any attributes in this function, because not
7508 all CUs needed for references have been loaded yet, and symbol
7509 table processing isn't initialized. But we have to set the CU language,
7510 or we won't be able to build types correctly.
7511 Similarly, if we do not read the producer, we can not apply
7512 producer-specific interpretation. */
7513 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7514 }
7515
7516 /* Load the DIEs associated with PER_CU into memory. */
7517
7518 static void
7519 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7520 enum language pretend_language)
7521 {
7522 gdb_assert (! this_cu->is_debug_types);
7523
7524 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7525 load_full_comp_unit_reader, &pretend_language);
7526 }
7527
7528 /* Add a DIE to the delayed physname list. */
7529
7530 static void
7531 add_to_method_list (struct type *type, int fnfield_index, int index,
7532 const char *name, struct die_info *die,
7533 struct dwarf2_cu *cu)
7534 {
7535 struct delayed_method_info mi;
7536 mi.type = type;
7537 mi.fnfield_index = fnfield_index;
7538 mi.index = index;
7539 mi.name = name;
7540 mi.die = die;
7541 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7542 }
7543
7544 /* A cleanup for freeing the delayed method list. */
7545
7546 static void
7547 free_delayed_list (void *ptr)
7548 {
7549 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7550 if (cu->method_list != NULL)
7551 {
7552 VEC_free (delayed_method_info, cu->method_list);
7553 cu->method_list = NULL;
7554 }
7555 }
7556
7557 /* Compute the physnames of any methods on the CU's method list.
7558
7559 The computation of method physnames is delayed in order to avoid the
7560 (bad) condition that one of the method's formal parameters is of an as yet
7561 incomplete type. */
7562
7563 static void
7564 compute_delayed_physnames (struct dwarf2_cu *cu)
7565 {
7566 int i;
7567 struct delayed_method_info *mi;
7568 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7569 {
7570 const char *physname;
7571 struct fn_fieldlist *fn_flp
7572 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7573 physname = dwarf2_physname (mi->name, mi->die, cu);
7574 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7575 }
7576 }
7577
7578 /* Go objects should be embedded in a DW_TAG_module DIE,
7579 and it's not clear if/how imported objects will appear.
7580 To keep Go support simple until that's worked out,
7581 go back through what we've read and create something usable.
7582 We could do this while processing each DIE, and feels kinda cleaner,
7583 but that way is more invasive.
7584 This is to, for example, allow the user to type "p var" or "b main"
7585 without having to specify the package name, and allow lookups
7586 of module.object to work in contexts that use the expression
7587 parser. */
7588
7589 static void
7590 fixup_go_packaging (struct dwarf2_cu *cu)
7591 {
7592 char *package_name = NULL;
7593 struct pending *list;
7594 int i;
7595
7596 for (list = global_symbols; list != NULL; list = list->next)
7597 {
7598 for (i = 0; i < list->nsyms; ++i)
7599 {
7600 struct symbol *sym = list->symbol[i];
7601
7602 if (SYMBOL_LANGUAGE (sym) == language_go
7603 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7604 {
7605 char *this_package_name = go_symbol_package_name (sym);
7606
7607 if (this_package_name == NULL)
7608 continue;
7609 if (package_name == NULL)
7610 package_name = this_package_name;
7611 else
7612 {
7613 if (strcmp (package_name, this_package_name) != 0)
7614 complaint (&symfile_complaints,
7615 _("Symtab %s has objects from two different Go packages: %s and %s"),
7616 (SYMBOL_SYMTAB (sym)
7617 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7618 : objfile_name (cu->objfile)),
7619 this_package_name, package_name);
7620 xfree (this_package_name);
7621 }
7622 }
7623 }
7624 }
7625
7626 if (package_name != NULL)
7627 {
7628 struct objfile *objfile = cu->objfile;
7629 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7630 package_name,
7631 strlen (package_name));
7632 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7633 saved_package_name, objfile);
7634 struct symbol *sym;
7635
7636 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7637
7638 sym = allocate_symbol (objfile);
7639 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7640 SYMBOL_SET_NAMES (sym, saved_package_name,
7641 strlen (saved_package_name), 0, objfile);
7642 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7643 e.g., "main" finds the "main" module and not C's main(). */
7644 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7645 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7646 SYMBOL_TYPE (sym) = type;
7647
7648 add_symbol_to_list (sym, &global_symbols);
7649
7650 xfree (package_name);
7651 }
7652 }
7653
7654 /* Return the symtab for PER_CU. This works properly regardless of
7655 whether we're using the index or psymtabs. */
7656
7657 static struct symtab *
7658 get_symtab (struct dwarf2_per_cu_data *per_cu)
7659 {
7660 return (dwarf2_per_objfile->using_index
7661 ? per_cu->v.quick->symtab
7662 : per_cu->v.psymtab->symtab);
7663 }
7664
7665 /* A helper function for computing the list of all symbol tables
7666 included by PER_CU. */
7667
7668 static void
7669 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7670 htab_t all_children, htab_t all_type_symtabs,
7671 struct dwarf2_per_cu_data *per_cu,
7672 struct symtab *immediate_parent)
7673 {
7674 void **slot;
7675 int ix;
7676 struct symtab *symtab;
7677 struct dwarf2_per_cu_data *iter;
7678
7679 slot = htab_find_slot (all_children, per_cu, INSERT);
7680 if (*slot != NULL)
7681 {
7682 /* This inclusion and its children have been processed. */
7683 return;
7684 }
7685
7686 *slot = per_cu;
7687 /* Only add a CU if it has a symbol table. */
7688 symtab = get_symtab (per_cu);
7689 if (symtab != NULL)
7690 {
7691 /* If this is a type unit only add its symbol table if we haven't
7692 seen it yet (type unit per_cu's can share symtabs). */
7693 if (per_cu->is_debug_types)
7694 {
7695 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7696 if (*slot == NULL)
7697 {
7698 *slot = symtab;
7699 VEC_safe_push (symtab_ptr, *result, symtab);
7700 if (symtab->user == NULL)
7701 symtab->user = immediate_parent;
7702 }
7703 }
7704 else
7705 {
7706 VEC_safe_push (symtab_ptr, *result, symtab);
7707 if (symtab->user == NULL)
7708 symtab->user = immediate_parent;
7709 }
7710 }
7711
7712 for (ix = 0;
7713 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7714 ++ix)
7715 {
7716 recursively_compute_inclusions (result, all_children,
7717 all_type_symtabs, iter, symtab);
7718 }
7719 }
7720
7721 /* Compute the symtab 'includes' fields for the symtab related to
7722 PER_CU. */
7723
7724 static void
7725 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7726 {
7727 gdb_assert (! per_cu->is_debug_types);
7728
7729 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7730 {
7731 int ix, len;
7732 struct dwarf2_per_cu_data *per_cu_iter;
7733 struct symtab *symtab_iter;
7734 VEC (symtab_ptr) *result_symtabs = NULL;
7735 htab_t all_children, all_type_symtabs;
7736 struct symtab *symtab = get_symtab (per_cu);
7737
7738 /* If we don't have a symtab, we can just skip this case. */
7739 if (symtab == NULL)
7740 return;
7741
7742 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7743 NULL, xcalloc, xfree);
7744 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7745 NULL, xcalloc, xfree);
7746
7747 for (ix = 0;
7748 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7749 ix, per_cu_iter);
7750 ++ix)
7751 {
7752 recursively_compute_inclusions (&result_symtabs, all_children,
7753 all_type_symtabs, per_cu_iter,
7754 symtab);
7755 }
7756
7757 /* Now we have a transitive closure of all the included symtabs. */
7758 len = VEC_length (symtab_ptr, result_symtabs);
7759 symtab->includes
7760 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7761 (len + 1) * sizeof (struct symtab *));
7762 for (ix = 0;
7763 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7764 ++ix)
7765 symtab->includes[ix] = symtab_iter;
7766 symtab->includes[len] = NULL;
7767
7768 VEC_free (symtab_ptr, result_symtabs);
7769 htab_delete (all_children);
7770 htab_delete (all_type_symtabs);
7771 }
7772 }
7773
7774 /* Compute the 'includes' field for the symtabs of all the CUs we just
7775 read. */
7776
7777 static void
7778 process_cu_includes (void)
7779 {
7780 int ix;
7781 struct dwarf2_per_cu_data *iter;
7782
7783 for (ix = 0;
7784 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7785 ix, iter);
7786 ++ix)
7787 {
7788 if (! iter->is_debug_types)
7789 compute_symtab_includes (iter);
7790 }
7791
7792 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7793 }
7794
7795 /* Generate full symbol information for PER_CU, whose DIEs have
7796 already been loaded into memory. */
7797
7798 static void
7799 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7800 enum language pretend_language)
7801 {
7802 struct dwarf2_cu *cu = per_cu->cu;
7803 struct objfile *objfile = per_cu->objfile;
7804 CORE_ADDR lowpc, highpc;
7805 struct symtab *symtab;
7806 struct cleanup *back_to, *delayed_list_cleanup;
7807 CORE_ADDR baseaddr;
7808 struct block *static_block;
7809
7810 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7811
7812 buildsym_init ();
7813 back_to = make_cleanup (really_free_pendings, NULL);
7814 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7815
7816 cu->list_in_scope = &file_symbols;
7817
7818 cu->language = pretend_language;
7819 cu->language_defn = language_def (cu->language);
7820
7821 /* Do line number decoding in read_file_scope () */
7822 process_die (cu->dies, cu);
7823
7824 /* For now fudge the Go package. */
7825 if (cu->language == language_go)
7826 fixup_go_packaging (cu);
7827
7828 /* Now that we have processed all the DIEs in the CU, all the types
7829 should be complete, and it should now be safe to compute all of the
7830 physnames. */
7831 compute_delayed_physnames (cu);
7832 do_cleanups (delayed_list_cleanup);
7833
7834 /* Some compilers don't define a DW_AT_high_pc attribute for the
7835 compilation unit. If the DW_AT_high_pc is missing, synthesize
7836 it, by scanning the DIE's below the compilation unit. */
7837 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7838
7839 static_block
7840 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7841
7842 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7843 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7844 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7845 addrmap to help ensure it has an accurate map of pc values belonging to
7846 this comp unit. */
7847 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7848
7849 symtab = end_symtab_from_static_block (static_block, objfile,
7850 SECT_OFF_TEXT (objfile), 0);
7851
7852 if (symtab != NULL)
7853 {
7854 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7855
7856 /* Set symtab language to language from DW_AT_language. If the
7857 compilation is from a C file generated by language preprocessors, do
7858 not set the language if it was already deduced by start_subfile. */
7859 if (!(cu->language == language_c && symtab->language != language_c))
7860 symtab->language = cu->language;
7861
7862 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7863 produce DW_AT_location with location lists but it can be possibly
7864 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7865 there were bugs in prologue debug info, fixed later in GCC-4.5
7866 by "unwind info for epilogues" patch (which is not directly related).
7867
7868 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7869 needed, it would be wrong due to missing DW_AT_producer there.
7870
7871 Still one can confuse GDB by using non-standard GCC compilation
7872 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7873 */
7874 if (cu->has_loclist && gcc_4_minor >= 5)
7875 symtab->locations_valid = 1;
7876
7877 if (gcc_4_minor >= 5)
7878 symtab->epilogue_unwind_valid = 1;
7879
7880 symtab->call_site_htab = cu->call_site_htab;
7881 }
7882
7883 if (dwarf2_per_objfile->using_index)
7884 per_cu->v.quick->symtab = symtab;
7885 else
7886 {
7887 struct partial_symtab *pst = per_cu->v.psymtab;
7888 pst->symtab = symtab;
7889 pst->readin = 1;
7890 }
7891
7892 /* Push it for inclusion processing later. */
7893 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7894
7895 do_cleanups (back_to);
7896 }
7897
7898 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7899 already been loaded into memory. */
7900
7901 static void
7902 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7903 enum language pretend_language)
7904 {
7905 struct dwarf2_cu *cu = per_cu->cu;
7906 struct objfile *objfile = per_cu->objfile;
7907 struct symtab *symtab;
7908 struct cleanup *back_to, *delayed_list_cleanup;
7909 struct signatured_type *sig_type;
7910
7911 gdb_assert (per_cu->is_debug_types);
7912 sig_type = (struct signatured_type *) per_cu;
7913
7914 buildsym_init ();
7915 back_to = make_cleanup (really_free_pendings, NULL);
7916 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7917
7918 cu->list_in_scope = &file_symbols;
7919
7920 cu->language = pretend_language;
7921 cu->language_defn = language_def (cu->language);
7922
7923 /* The symbol tables are set up in read_type_unit_scope. */
7924 process_die (cu->dies, cu);
7925
7926 /* For now fudge the Go package. */
7927 if (cu->language == language_go)
7928 fixup_go_packaging (cu);
7929
7930 /* Now that we have processed all the DIEs in the CU, all the types
7931 should be complete, and it should now be safe to compute all of the
7932 physnames. */
7933 compute_delayed_physnames (cu);
7934 do_cleanups (delayed_list_cleanup);
7935
7936 /* TUs share symbol tables.
7937 If this is the first TU to use this symtab, complete the construction
7938 of it with end_expandable_symtab. Otherwise, complete the addition of
7939 this TU's symbols to the existing symtab. */
7940 if (sig_type->type_unit_group->primary_symtab == NULL)
7941 {
7942 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7943 sig_type->type_unit_group->primary_symtab = symtab;
7944
7945 if (symtab != NULL)
7946 {
7947 /* Set symtab language to language from DW_AT_language. If the
7948 compilation is from a C file generated by language preprocessors,
7949 do not set the language if it was already deduced by
7950 start_subfile. */
7951 if (!(cu->language == language_c && symtab->language != language_c))
7952 symtab->language = cu->language;
7953 }
7954 }
7955 else
7956 {
7957 augment_type_symtab (objfile,
7958 sig_type->type_unit_group->primary_symtab);
7959 symtab = sig_type->type_unit_group->primary_symtab;
7960 }
7961
7962 if (dwarf2_per_objfile->using_index)
7963 per_cu->v.quick->symtab = symtab;
7964 else
7965 {
7966 struct partial_symtab *pst = per_cu->v.psymtab;
7967 pst->symtab = symtab;
7968 pst->readin = 1;
7969 }
7970
7971 do_cleanups (back_to);
7972 }
7973
7974 /* Process an imported unit DIE. */
7975
7976 static void
7977 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7978 {
7979 struct attribute *attr;
7980
7981 /* For now we don't handle imported units in type units. */
7982 if (cu->per_cu->is_debug_types)
7983 {
7984 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7985 " supported in type units [in module %s]"),
7986 objfile_name (cu->objfile));
7987 }
7988
7989 attr = dwarf2_attr (die, DW_AT_import, cu);
7990 if (attr != NULL)
7991 {
7992 struct dwarf2_per_cu_data *per_cu;
7993 struct symtab *imported_symtab;
7994 sect_offset offset;
7995 int is_dwz;
7996
7997 offset = dwarf2_get_ref_die_offset (attr);
7998 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7999 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8000
8001 /* If necessary, add it to the queue and load its DIEs. */
8002 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8003 load_full_comp_unit (per_cu, cu->language);
8004
8005 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8006 per_cu);
8007 }
8008 }
8009
8010 /* Process a die and its children. */
8011
8012 static void
8013 process_die (struct die_info *die, struct dwarf2_cu *cu)
8014 {
8015 switch (die->tag)
8016 {
8017 case DW_TAG_padding:
8018 break;
8019 case DW_TAG_compile_unit:
8020 case DW_TAG_partial_unit:
8021 read_file_scope (die, cu);
8022 break;
8023 case DW_TAG_type_unit:
8024 read_type_unit_scope (die, cu);
8025 break;
8026 case DW_TAG_subprogram:
8027 case DW_TAG_inlined_subroutine:
8028 read_func_scope (die, cu);
8029 break;
8030 case DW_TAG_lexical_block:
8031 case DW_TAG_try_block:
8032 case DW_TAG_catch_block:
8033 read_lexical_block_scope (die, cu);
8034 break;
8035 case DW_TAG_GNU_call_site:
8036 read_call_site_scope (die, cu);
8037 break;
8038 case DW_TAG_class_type:
8039 case DW_TAG_interface_type:
8040 case DW_TAG_structure_type:
8041 case DW_TAG_union_type:
8042 process_structure_scope (die, cu);
8043 break;
8044 case DW_TAG_enumeration_type:
8045 process_enumeration_scope (die, cu);
8046 break;
8047
8048 /* These dies have a type, but processing them does not create
8049 a symbol or recurse to process the children. Therefore we can
8050 read them on-demand through read_type_die. */
8051 case DW_TAG_subroutine_type:
8052 case DW_TAG_set_type:
8053 case DW_TAG_array_type:
8054 case DW_TAG_pointer_type:
8055 case DW_TAG_ptr_to_member_type:
8056 case DW_TAG_reference_type:
8057 case DW_TAG_string_type:
8058 break;
8059
8060 case DW_TAG_base_type:
8061 case DW_TAG_subrange_type:
8062 case DW_TAG_typedef:
8063 /* Add a typedef symbol for the type definition, if it has a
8064 DW_AT_name. */
8065 new_symbol (die, read_type_die (die, cu), cu);
8066 break;
8067 case DW_TAG_common_block:
8068 read_common_block (die, cu);
8069 break;
8070 case DW_TAG_common_inclusion:
8071 break;
8072 case DW_TAG_namespace:
8073 cu->processing_has_namespace_info = 1;
8074 read_namespace (die, cu);
8075 break;
8076 case DW_TAG_module:
8077 cu->processing_has_namespace_info = 1;
8078 read_module (die, cu);
8079 break;
8080 case DW_TAG_imported_declaration:
8081 cu->processing_has_namespace_info = 1;
8082 if (read_namespace_alias (die, cu))
8083 break;
8084 /* The declaration is not a global namespace alias: fall through. */
8085 case DW_TAG_imported_module:
8086 cu->processing_has_namespace_info = 1;
8087 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8088 || cu->language != language_fortran))
8089 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8090 dwarf_tag_name (die->tag));
8091 read_import_statement (die, cu);
8092 break;
8093
8094 case DW_TAG_imported_unit:
8095 process_imported_unit_die (die, cu);
8096 break;
8097
8098 default:
8099 new_symbol (die, NULL, cu);
8100 break;
8101 }
8102 }
8103 \f
8104 /* DWARF name computation. */
8105
8106 /* A helper function for dwarf2_compute_name which determines whether DIE
8107 needs to have the name of the scope prepended to the name listed in the
8108 die. */
8109
8110 static int
8111 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8112 {
8113 struct attribute *attr;
8114
8115 switch (die->tag)
8116 {
8117 case DW_TAG_namespace:
8118 case DW_TAG_typedef:
8119 case DW_TAG_class_type:
8120 case DW_TAG_interface_type:
8121 case DW_TAG_structure_type:
8122 case DW_TAG_union_type:
8123 case DW_TAG_enumeration_type:
8124 case DW_TAG_enumerator:
8125 case DW_TAG_subprogram:
8126 case DW_TAG_member:
8127 case DW_TAG_imported_declaration:
8128 return 1;
8129
8130 case DW_TAG_variable:
8131 case DW_TAG_constant:
8132 /* We only need to prefix "globally" visible variables. These include
8133 any variable marked with DW_AT_external or any variable that
8134 lives in a namespace. [Variables in anonymous namespaces
8135 require prefixing, but they are not DW_AT_external.] */
8136
8137 if (dwarf2_attr (die, DW_AT_specification, cu))
8138 {
8139 struct dwarf2_cu *spec_cu = cu;
8140
8141 return die_needs_namespace (die_specification (die, &spec_cu),
8142 spec_cu);
8143 }
8144
8145 attr = dwarf2_attr (die, DW_AT_external, cu);
8146 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8147 && die->parent->tag != DW_TAG_module)
8148 return 0;
8149 /* A variable in a lexical block of some kind does not need a
8150 namespace, even though in C++ such variables may be external
8151 and have a mangled name. */
8152 if (die->parent->tag == DW_TAG_lexical_block
8153 || die->parent->tag == DW_TAG_try_block
8154 || die->parent->tag == DW_TAG_catch_block
8155 || die->parent->tag == DW_TAG_subprogram)
8156 return 0;
8157 return 1;
8158
8159 default:
8160 return 0;
8161 }
8162 }
8163
8164 /* Retrieve the last character from a mem_file. */
8165
8166 static void
8167 do_ui_file_peek_last (void *object, const char *buffer, long length)
8168 {
8169 char *last_char_p = (char *) object;
8170
8171 if (length > 0)
8172 *last_char_p = buffer[length - 1];
8173 }
8174
8175 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8176 compute the physname for the object, which include a method's:
8177 - formal parameters (C++/Java),
8178 - receiver type (Go),
8179 - return type (Java).
8180
8181 The term "physname" is a bit confusing.
8182 For C++, for example, it is the demangled name.
8183 For Go, for example, it's the mangled name.
8184
8185 For Ada, return the DIE's linkage name rather than the fully qualified
8186 name. PHYSNAME is ignored..
8187
8188 The result is allocated on the objfile_obstack and canonicalized. */
8189
8190 static const char *
8191 dwarf2_compute_name (const char *name,
8192 struct die_info *die, struct dwarf2_cu *cu,
8193 int physname)
8194 {
8195 struct objfile *objfile = cu->objfile;
8196
8197 if (name == NULL)
8198 name = dwarf2_name (die, cu);
8199
8200 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8201 compute it by typename_concat inside GDB. */
8202 if (cu->language == language_ada
8203 || (cu->language == language_fortran && physname))
8204 {
8205 /* For Ada unit, we prefer the linkage name over the name, as
8206 the former contains the exported name, which the user expects
8207 to be able to reference. Ideally, we want the user to be able
8208 to reference this entity using either natural or linkage name,
8209 but we haven't started looking at this enhancement yet. */
8210 struct attribute *attr;
8211
8212 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8213 if (attr == NULL)
8214 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8215 if (attr && DW_STRING (attr))
8216 return DW_STRING (attr);
8217 }
8218
8219 /* These are the only languages we know how to qualify names in. */
8220 if (name != NULL
8221 && (cu->language == language_cplus || cu->language == language_java
8222 || cu->language == language_fortran))
8223 {
8224 if (die_needs_namespace (die, cu))
8225 {
8226 long length;
8227 const char *prefix;
8228 struct ui_file *buf;
8229
8230 prefix = determine_prefix (die, cu);
8231 buf = mem_fileopen ();
8232 if (*prefix != '\0')
8233 {
8234 char *prefixed_name = typename_concat (NULL, prefix, name,
8235 physname, cu);
8236
8237 fputs_unfiltered (prefixed_name, buf);
8238 xfree (prefixed_name);
8239 }
8240 else
8241 fputs_unfiltered (name, buf);
8242
8243 /* Template parameters may be specified in the DIE's DW_AT_name, or
8244 as children with DW_TAG_template_type_param or
8245 DW_TAG_value_type_param. If the latter, add them to the name
8246 here. If the name already has template parameters, then
8247 skip this step; some versions of GCC emit both, and
8248 it is more efficient to use the pre-computed name.
8249
8250 Something to keep in mind about this process: it is very
8251 unlikely, or in some cases downright impossible, to produce
8252 something that will match the mangled name of a function.
8253 If the definition of the function has the same debug info,
8254 we should be able to match up with it anyway. But fallbacks
8255 using the minimal symbol, for instance to find a method
8256 implemented in a stripped copy of libstdc++, will not work.
8257 If we do not have debug info for the definition, we will have to
8258 match them up some other way.
8259
8260 When we do name matching there is a related problem with function
8261 templates; two instantiated function templates are allowed to
8262 differ only by their return types, which we do not add here. */
8263
8264 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8265 {
8266 struct attribute *attr;
8267 struct die_info *child;
8268 int first = 1;
8269
8270 die->building_fullname = 1;
8271
8272 for (child = die->child; child != NULL; child = child->sibling)
8273 {
8274 struct type *type;
8275 LONGEST value;
8276 const gdb_byte *bytes;
8277 struct dwarf2_locexpr_baton *baton;
8278 struct value *v;
8279
8280 if (child->tag != DW_TAG_template_type_param
8281 && child->tag != DW_TAG_template_value_param)
8282 continue;
8283
8284 if (first)
8285 {
8286 fputs_unfiltered ("<", buf);
8287 first = 0;
8288 }
8289 else
8290 fputs_unfiltered (", ", buf);
8291
8292 attr = dwarf2_attr (child, DW_AT_type, cu);
8293 if (attr == NULL)
8294 {
8295 complaint (&symfile_complaints,
8296 _("template parameter missing DW_AT_type"));
8297 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8298 continue;
8299 }
8300 type = die_type (child, cu);
8301
8302 if (child->tag == DW_TAG_template_type_param)
8303 {
8304 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8305 continue;
8306 }
8307
8308 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8309 if (attr == NULL)
8310 {
8311 complaint (&symfile_complaints,
8312 _("template parameter missing "
8313 "DW_AT_const_value"));
8314 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8315 continue;
8316 }
8317
8318 dwarf2_const_value_attr (attr, type, name,
8319 &cu->comp_unit_obstack, cu,
8320 &value, &bytes, &baton);
8321
8322 if (TYPE_NOSIGN (type))
8323 /* GDB prints characters as NUMBER 'CHAR'. If that's
8324 changed, this can use value_print instead. */
8325 c_printchar (value, type, buf);
8326 else
8327 {
8328 struct value_print_options opts;
8329
8330 if (baton != NULL)
8331 v = dwarf2_evaluate_loc_desc (type, NULL,
8332 baton->data,
8333 baton->size,
8334 baton->per_cu);
8335 else if (bytes != NULL)
8336 {
8337 v = allocate_value (type);
8338 memcpy (value_contents_writeable (v), bytes,
8339 TYPE_LENGTH (type));
8340 }
8341 else
8342 v = value_from_longest (type, value);
8343
8344 /* Specify decimal so that we do not depend on
8345 the radix. */
8346 get_formatted_print_options (&opts, 'd');
8347 opts.raw = 1;
8348 value_print (v, buf, &opts);
8349 release_value (v);
8350 value_free (v);
8351 }
8352 }
8353
8354 die->building_fullname = 0;
8355
8356 if (!first)
8357 {
8358 /* Close the argument list, with a space if necessary
8359 (nested templates). */
8360 char last_char = '\0';
8361 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8362 if (last_char == '>')
8363 fputs_unfiltered (" >", buf);
8364 else
8365 fputs_unfiltered (">", buf);
8366 }
8367 }
8368
8369 /* For Java and C++ methods, append formal parameter type
8370 information, if PHYSNAME. */
8371
8372 if (physname && die->tag == DW_TAG_subprogram
8373 && (cu->language == language_cplus
8374 || cu->language == language_java))
8375 {
8376 struct type *type = read_type_die (die, cu);
8377
8378 c_type_print_args (type, buf, 1, cu->language,
8379 &type_print_raw_options);
8380
8381 if (cu->language == language_java)
8382 {
8383 /* For java, we must append the return type to method
8384 names. */
8385 if (die->tag == DW_TAG_subprogram)
8386 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8387 0, 0, &type_print_raw_options);
8388 }
8389 else if (cu->language == language_cplus)
8390 {
8391 /* Assume that an artificial first parameter is
8392 "this", but do not crash if it is not. RealView
8393 marks unnamed (and thus unused) parameters as
8394 artificial; there is no way to differentiate
8395 the two cases. */
8396 if (TYPE_NFIELDS (type) > 0
8397 && TYPE_FIELD_ARTIFICIAL (type, 0)
8398 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8399 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8400 0))))
8401 fputs_unfiltered (" const", buf);
8402 }
8403 }
8404
8405 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8406 &length);
8407 ui_file_delete (buf);
8408
8409 if (cu->language == language_cplus)
8410 {
8411 const char *cname
8412 = dwarf2_canonicalize_name (name, cu,
8413 &objfile->objfile_obstack);
8414
8415 if (cname != NULL)
8416 name = cname;
8417 }
8418 }
8419 }
8420
8421 return name;
8422 }
8423
8424 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8425 If scope qualifiers are appropriate they will be added. The result
8426 will be allocated on the objfile_obstack, or NULL if the DIE does
8427 not have a name. NAME may either be from a previous call to
8428 dwarf2_name or NULL.
8429
8430 The output string will be canonicalized (if C++/Java). */
8431
8432 static const char *
8433 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8434 {
8435 return dwarf2_compute_name (name, die, cu, 0);
8436 }
8437
8438 /* Construct a physname for the given DIE in CU. NAME may either be
8439 from a previous call to dwarf2_name or NULL. The result will be
8440 allocated on the objfile_objstack or NULL if the DIE does not have a
8441 name.
8442
8443 The output string will be canonicalized (if C++/Java). */
8444
8445 static const char *
8446 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8447 {
8448 struct objfile *objfile = cu->objfile;
8449 struct attribute *attr;
8450 const char *retval, *mangled = NULL, *canon = NULL;
8451 struct cleanup *back_to;
8452 int need_copy = 1;
8453
8454 /* In this case dwarf2_compute_name is just a shortcut not building anything
8455 on its own. */
8456 if (!die_needs_namespace (die, cu))
8457 return dwarf2_compute_name (name, die, cu, 1);
8458
8459 back_to = make_cleanup (null_cleanup, NULL);
8460
8461 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8462 if (!attr)
8463 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8464
8465 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8466 has computed. */
8467 if (attr && DW_STRING (attr))
8468 {
8469 char *demangled;
8470
8471 mangled = DW_STRING (attr);
8472
8473 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8474 type. It is easier for GDB users to search for such functions as
8475 `name(params)' than `long name(params)'. In such case the minimal
8476 symbol names do not match the full symbol names but for template
8477 functions there is never a need to look up their definition from their
8478 declaration so the only disadvantage remains the minimal symbol
8479 variant `long name(params)' does not have the proper inferior type.
8480 */
8481
8482 if (cu->language == language_go)
8483 {
8484 /* This is a lie, but we already lie to the caller new_symbol_full.
8485 new_symbol_full assumes we return the mangled name.
8486 This just undoes that lie until things are cleaned up. */
8487 demangled = NULL;
8488 }
8489 else
8490 {
8491 demangled = gdb_demangle (mangled,
8492 (DMGL_PARAMS | DMGL_ANSI
8493 | (cu->language == language_java
8494 ? DMGL_JAVA | DMGL_RET_POSTFIX
8495 : DMGL_RET_DROP)));
8496 }
8497 if (demangled)
8498 {
8499 make_cleanup (xfree, demangled);
8500 canon = demangled;
8501 }
8502 else
8503 {
8504 canon = mangled;
8505 need_copy = 0;
8506 }
8507 }
8508
8509 if (canon == NULL || check_physname)
8510 {
8511 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8512
8513 if (canon != NULL && strcmp (physname, canon) != 0)
8514 {
8515 /* It may not mean a bug in GDB. The compiler could also
8516 compute DW_AT_linkage_name incorrectly. But in such case
8517 GDB would need to be bug-to-bug compatible. */
8518
8519 complaint (&symfile_complaints,
8520 _("Computed physname <%s> does not match demangled <%s> "
8521 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8522 physname, canon, mangled, die->offset.sect_off,
8523 objfile_name (objfile));
8524
8525 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8526 is available here - over computed PHYSNAME. It is safer
8527 against both buggy GDB and buggy compilers. */
8528
8529 retval = canon;
8530 }
8531 else
8532 {
8533 retval = physname;
8534 need_copy = 0;
8535 }
8536 }
8537 else
8538 retval = canon;
8539
8540 if (need_copy)
8541 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8542
8543 do_cleanups (back_to);
8544 return retval;
8545 }
8546
8547 /* Inspect DIE in CU for a namespace alias. If one exists, record
8548 a new symbol for it.
8549
8550 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8551
8552 static int
8553 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8554 {
8555 struct attribute *attr;
8556
8557 /* If the die does not have a name, this is not a namespace
8558 alias. */
8559 attr = dwarf2_attr (die, DW_AT_name, cu);
8560 if (attr != NULL)
8561 {
8562 int num;
8563 struct die_info *d = die;
8564 struct dwarf2_cu *imported_cu = cu;
8565
8566 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8567 keep inspecting DIEs until we hit the underlying import. */
8568 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8569 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8570 {
8571 attr = dwarf2_attr (d, DW_AT_import, cu);
8572 if (attr == NULL)
8573 break;
8574
8575 d = follow_die_ref (d, attr, &imported_cu);
8576 if (d->tag != DW_TAG_imported_declaration)
8577 break;
8578 }
8579
8580 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8581 {
8582 complaint (&symfile_complaints,
8583 _("DIE at 0x%x has too many recursively imported "
8584 "declarations"), d->offset.sect_off);
8585 return 0;
8586 }
8587
8588 if (attr != NULL)
8589 {
8590 struct type *type;
8591 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8592
8593 type = get_die_type_at_offset (offset, cu->per_cu);
8594 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8595 {
8596 /* This declaration is a global namespace alias. Add
8597 a symbol for it whose type is the aliased namespace. */
8598 new_symbol (die, type, cu);
8599 return 1;
8600 }
8601 }
8602 }
8603
8604 return 0;
8605 }
8606
8607 /* Read the import statement specified by the given die and record it. */
8608
8609 static void
8610 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8611 {
8612 struct objfile *objfile = cu->objfile;
8613 struct attribute *import_attr;
8614 struct die_info *imported_die, *child_die;
8615 struct dwarf2_cu *imported_cu;
8616 const char *imported_name;
8617 const char *imported_name_prefix;
8618 const char *canonical_name;
8619 const char *import_alias;
8620 const char *imported_declaration = NULL;
8621 const char *import_prefix;
8622 VEC (const_char_ptr) *excludes = NULL;
8623 struct cleanup *cleanups;
8624
8625 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8626 if (import_attr == NULL)
8627 {
8628 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8629 dwarf_tag_name (die->tag));
8630 return;
8631 }
8632
8633 imported_cu = cu;
8634 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8635 imported_name = dwarf2_name (imported_die, imported_cu);
8636 if (imported_name == NULL)
8637 {
8638 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8639
8640 The import in the following code:
8641 namespace A
8642 {
8643 typedef int B;
8644 }
8645
8646 int main ()
8647 {
8648 using A::B;
8649 B b;
8650 return b;
8651 }
8652
8653 ...
8654 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8655 <52> DW_AT_decl_file : 1
8656 <53> DW_AT_decl_line : 6
8657 <54> DW_AT_import : <0x75>
8658 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8659 <59> DW_AT_name : B
8660 <5b> DW_AT_decl_file : 1
8661 <5c> DW_AT_decl_line : 2
8662 <5d> DW_AT_type : <0x6e>
8663 ...
8664 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8665 <76> DW_AT_byte_size : 4
8666 <77> DW_AT_encoding : 5 (signed)
8667
8668 imports the wrong die ( 0x75 instead of 0x58 ).
8669 This case will be ignored until the gcc bug is fixed. */
8670 return;
8671 }
8672
8673 /* Figure out the local name after import. */
8674 import_alias = dwarf2_name (die, cu);
8675
8676 /* Figure out where the statement is being imported to. */
8677 import_prefix = determine_prefix (die, cu);
8678
8679 /* Figure out what the scope of the imported die is and prepend it
8680 to the name of the imported die. */
8681 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8682
8683 if (imported_die->tag != DW_TAG_namespace
8684 && imported_die->tag != DW_TAG_module)
8685 {
8686 imported_declaration = imported_name;
8687 canonical_name = imported_name_prefix;
8688 }
8689 else if (strlen (imported_name_prefix) > 0)
8690 canonical_name = obconcat (&objfile->objfile_obstack,
8691 imported_name_prefix, "::", imported_name,
8692 (char *) NULL);
8693 else
8694 canonical_name = imported_name;
8695
8696 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8697
8698 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8699 for (child_die = die->child; child_die && child_die->tag;
8700 child_die = sibling_die (child_die))
8701 {
8702 /* DWARF-4: A Fortran use statement with a “rename list” may be
8703 represented by an imported module entry with an import attribute
8704 referring to the module and owned entries corresponding to those
8705 entities that are renamed as part of being imported. */
8706
8707 if (child_die->tag != DW_TAG_imported_declaration)
8708 {
8709 complaint (&symfile_complaints,
8710 _("child DW_TAG_imported_declaration expected "
8711 "- DIE at 0x%x [in module %s]"),
8712 child_die->offset.sect_off, objfile_name (objfile));
8713 continue;
8714 }
8715
8716 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8717 if (import_attr == NULL)
8718 {
8719 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8720 dwarf_tag_name (child_die->tag));
8721 continue;
8722 }
8723
8724 imported_cu = cu;
8725 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8726 &imported_cu);
8727 imported_name = dwarf2_name (imported_die, imported_cu);
8728 if (imported_name == NULL)
8729 {
8730 complaint (&symfile_complaints,
8731 _("child DW_TAG_imported_declaration has unknown "
8732 "imported name - DIE at 0x%x [in module %s]"),
8733 child_die->offset.sect_off, objfile_name (objfile));
8734 continue;
8735 }
8736
8737 VEC_safe_push (const_char_ptr, excludes, imported_name);
8738
8739 process_die (child_die, cu);
8740 }
8741
8742 cp_add_using_directive (import_prefix,
8743 canonical_name,
8744 import_alias,
8745 imported_declaration,
8746 excludes,
8747 0,
8748 &objfile->objfile_obstack);
8749
8750 do_cleanups (cleanups);
8751 }
8752
8753 /* Cleanup function for handle_DW_AT_stmt_list. */
8754
8755 static void
8756 free_cu_line_header (void *arg)
8757 {
8758 struct dwarf2_cu *cu = arg;
8759
8760 free_line_header (cu->line_header);
8761 cu->line_header = NULL;
8762 }
8763
8764 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8765 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8766 this, it was first present in GCC release 4.3.0. */
8767
8768 static int
8769 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8770 {
8771 if (!cu->checked_producer)
8772 check_producer (cu);
8773
8774 return cu->producer_is_gcc_lt_4_3;
8775 }
8776
8777 static void
8778 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8779 const char **name, const char **comp_dir)
8780 {
8781 struct attribute *attr;
8782
8783 *name = NULL;
8784 *comp_dir = NULL;
8785
8786 /* Find the filename. Do not use dwarf2_name here, since the filename
8787 is not a source language identifier. */
8788 attr = dwarf2_attr (die, DW_AT_name, cu);
8789 if (attr)
8790 {
8791 *name = DW_STRING (attr);
8792 }
8793
8794 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8795 if (attr)
8796 *comp_dir = DW_STRING (attr);
8797 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8798 && IS_ABSOLUTE_PATH (*name))
8799 {
8800 char *d = ldirname (*name);
8801
8802 *comp_dir = d;
8803 if (d != NULL)
8804 make_cleanup (xfree, d);
8805 }
8806 if (*comp_dir != NULL)
8807 {
8808 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8809 directory, get rid of it. */
8810 char *cp = strchr (*comp_dir, ':');
8811
8812 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8813 *comp_dir = cp + 1;
8814 }
8815
8816 if (*name == NULL)
8817 *name = "<unknown>";
8818 }
8819
8820 /* Handle DW_AT_stmt_list for a compilation unit.
8821 DIE is the DW_TAG_compile_unit die for CU.
8822 COMP_DIR is the compilation directory.
8823 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8824
8825 static void
8826 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8827 const char *comp_dir) /* ARI: editCase function */
8828 {
8829 struct attribute *attr;
8830
8831 gdb_assert (! cu->per_cu->is_debug_types);
8832
8833 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8834 if (attr)
8835 {
8836 unsigned int line_offset = DW_UNSND (attr);
8837 struct line_header *line_header
8838 = dwarf_decode_line_header (line_offset, cu);
8839
8840 if (line_header)
8841 {
8842 cu->line_header = line_header;
8843 make_cleanup (free_cu_line_header, cu);
8844 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8845 }
8846 }
8847 }
8848
8849 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8850
8851 static void
8852 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8853 {
8854 struct objfile *objfile = dwarf2_per_objfile->objfile;
8855 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8856 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8857 CORE_ADDR highpc = ((CORE_ADDR) 0);
8858 struct attribute *attr;
8859 const char *name = NULL;
8860 const char *comp_dir = NULL;
8861 struct die_info *child_die;
8862 bfd *abfd = objfile->obfd;
8863 CORE_ADDR baseaddr;
8864
8865 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8866
8867 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8868
8869 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8870 from finish_block. */
8871 if (lowpc == ((CORE_ADDR) -1))
8872 lowpc = highpc;
8873 lowpc += baseaddr;
8874 highpc += baseaddr;
8875
8876 find_file_and_directory (die, cu, &name, &comp_dir);
8877
8878 prepare_one_comp_unit (cu, die, cu->language);
8879
8880 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8881 standardised yet. As a workaround for the language detection we fall
8882 back to the DW_AT_producer string. */
8883 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8884 cu->language = language_opencl;
8885
8886 /* Similar hack for Go. */
8887 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8888 set_cu_language (DW_LANG_Go, cu);
8889
8890 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8891
8892 /* Decode line number information if present. We do this before
8893 processing child DIEs, so that the line header table is available
8894 for DW_AT_decl_file. */
8895 handle_DW_AT_stmt_list (die, cu, comp_dir);
8896
8897 /* Process all dies in compilation unit. */
8898 if (die->child != NULL)
8899 {
8900 child_die = die->child;
8901 while (child_die && child_die->tag)
8902 {
8903 process_die (child_die, cu);
8904 child_die = sibling_die (child_die);
8905 }
8906 }
8907
8908 /* Decode macro information, if present. Dwarf 2 macro information
8909 refers to information in the line number info statement program
8910 header, so we can only read it if we've read the header
8911 successfully. */
8912 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8913 if (attr && cu->line_header)
8914 {
8915 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8916 complaint (&symfile_complaints,
8917 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8918
8919 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8920 }
8921 else
8922 {
8923 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8924 if (attr && cu->line_header)
8925 {
8926 unsigned int macro_offset = DW_UNSND (attr);
8927
8928 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8929 }
8930 }
8931
8932 do_cleanups (back_to);
8933 }
8934
8935 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8936 Create the set of symtabs used by this TU, or if this TU is sharing
8937 symtabs with another TU and the symtabs have already been created
8938 then restore those symtabs in the line header.
8939 We don't need the pc/line-number mapping for type units. */
8940
8941 static void
8942 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8943 {
8944 struct objfile *objfile = dwarf2_per_objfile->objfile;
8945 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8946 struct type_unit_group *tu_group;
8947 int first_time;
8948 struct line_header *lh;
8949 struct attribute *attr;
8950 unsigned int i, line_offset;
8951 struct signatured_type *sig_type;
8952
8953 gdb_assert (per_cu->is_debug_types);
8954 sig_type = (struct signatured_type *) per_cu;
8955
8956 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8957
8958 /* If we're using .gdb_index (includes -readnow) then
8959 per_cu->type_unit_group may not have been set up yet. */
8960 if (sig_type->type_unit_group == NULL)
8961 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8962 tu_group = sig_type->type_unit_group;
8963
8964 /* If we've already processed this stmt_list there's no real need to
8965 do it again, we could fake it and just recreate the part we need
8966 (file name,index -> symtab mapping). If data shows this optimization
8967 is useful we can do it then. */
8968 first_time = tu_group->primary_symtab == NULL;
8969
8970 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8971 debug info. */
8972 lh = NULL;
8973 if (attr != NULL)
8974 {
8975 line_offset = DW_UNSND (attr);
8976 lh = dwarf_decode_line_header (line_offset, cu);
8977 }
8978 if (lh == NULL)
8979 {
8980 if (first_time)
8981 dwarf2_start_symtab (cu, "", NULL, 0);
8982 else
8983 {
8984 gdb_assert (tu_group->symtabs == NULL);
8985 restart_symtab (0);
8986 }
8987 /* Note: The primary symtab will get allocated at the end. */
8988 return;
8989 }
8990
8991 cu->line_header = lh;
8992 make_cleanup (free_cu_line_header, cu);
8993
8994 if (first_time)
8995 {
8996 dwarf2_start_symtab (cu, "", NULL, 0);
8997
8998 tu_group->num_symtabs = lh->num_file_names;
8999 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9000
9001 for (i = 0; i < lh->num_file_names; ++i)
9002 {
9003 const char *dir = NULL;
9004 struct file_entry *fe = &lh->file_names[i];
9005
9006 if (fe->dir_index)
9007 dir = lh->include_dirs[fe->dir_index - 1];
9008 dwarf2_start_subfile (fe->name, dir, NULL);
9009
9010 /* Note: We don't have to watch for the main subfile here, type units
9011 don't have DW_AT_name. */
9012
9013 if (current_subfile->symtab == NULL)
9014 {
9015 /* NOTE: start_subfile will recognize when it's been passed
9016 a file it has already seen. So we can't assume there's a
9017 simple mapping from lh->file_names to subfiles,
9018 lh->file_names may contain dups. */
9019 current_subfile->symtab = allocate_symtab (current_subfile->name,
9020 objfile);
9021 }
9022
9023 fe->symtab = current_subfile->symtab;
9024 tu_group->symtabs[i] = fe->symtab;
9025 }
9026 }
9027 else
9028 {
9029 restart_symtab (0);
9030
9031 for (i = 0; i < lh->num_file_names; ++i)
9032 {
9033 struct file_entry *fe = &lh->file_names[i];
9034
9035 fe->symtab = tu_group->symtabs[i];
9036 }
9037 }
9038
9039 /* The main symtab is allocated last. Type units don't have DW_AT_name
9040 so they don't have a "real" (so to speak) symtab anyway.
9041 There is later code that will assign the main symtab to all symbols
9042 that don't have one. We need to handle the case of a symbol with a
9043 missing symtab (DW_AT_decl_file) anyway. */
9044 }
9045
9046 /* Process DW_TAG_type_unit.
9047 For TUs we want to skip the first top level sibling if it's not the
9048 actual type being defined by this TU. In this case the first top
9049 level sibling is there to provide context only. */
9050
9051 static void
9052 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9053 {
9054 struct die_info *child_die;
9055
9056 prepare_one_comp_unit (cu, die, language_minimal);
9057
9058 /* Initialize (or reinitialize) the machinery for building symtabs.
9059 We do this before processing child DIEs, so that the line header table
9060 is available for DW_AT_decl_file. */
9061 setup_type_unit_groups (die, cu);
9062
9063 if (die->child != NULL)
9064 {
9065 child_die = die->child;
9066 while (child_die && child_die->tag)
9067 {
9068 process_die (child_die, cu);
9069 child_die = sibling_die (child_die);
9070 }
9071 }
9072 }
9073 \f
9074 /* DWO/DWP files.
9075
9076 http://gcc.gnu.org/wiki/DebugFission
9077 http://gcc.gnu.org/wiki/DebugFissionDWP
9078
9079 To simplify handling of both DWO files ("object" files with the DWARF info)
9080 and DWP files (a file with the DWOs packaged up into one file), we treat
9081 DWP files as having a collection of virtual DWO files. */
9082
9083 static hashval_t
9084 hash_dwo_file (const void *item)
9085 {
9086 const struct dwo_file *dwo_file = item;
9087 hashval_t hash;
9088
9089 hash = htab_hash_string (dwo_file->dwo_name);
9090 if (dwo_file->comp_dir != NULL)
9091 hash += htab_hash_string (dwo_file->comp_dir);
9092 return hash;
9093 }
9094
9095 static int
9096 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9097 {
9098 const struct dwo_file *lhs = item_lhs;
9099 const struct dwo_file *rhs = item_rhs;
9100
9101 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9102 return 0;
9103 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9104 return lhs->comp_dir == rhs->comp_dir;
9105 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9106 }
9107
9108 /* Allocate a hash table for DWO files. */
9109
9110 static htab_t
9111 allocate_dwo_file_hash_table (void)
9112 {
9113 struct objfile *objfile = dwarf2_per_objfile->objfile;
9114
9115 return htab_create_alloc_ex (41,
9116 hash_dwo_file,
9117 eq_dwo_file,
9118 NULL,
9119 &objfile->objfile_obstack,
9120 hashtab_obstack_allocate,
9121 dummy_obstack_deallocate);
9122 }
9123
9124 /* Lookup DWO file DWO_NAME. */
9125
9126 static void **
9127 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9128 {
9129 struct dwo_file find_entry;
9130 void **slot;
9131
9132 if (dwarf2_per_objfile->dwo_files == NULL)
9133 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9134
9135 memset (&find_entry, 0, sizeof (find_entry));
9136 find_entry.dwo_name = dwo_name;
9137 find_entry.comp_dir = comp_dir;
9138 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9139
9140 return slot;
9141 }
9142
9143 static hashval_t
9144 hash_dwo_unit (const void *item)
9145 {
9146 const struct dwo_unit *dwo_unit = item;
9147
9148 /* This drops the top 32 bits of the id, but is ok for a hash. */
9149 return dwo_unit->signature;
9150 }
9151
9152 static int
9153 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9154 {
9155 const struct dwo_unit *lhs = item_lhs;
9156 const struct dwo_unit *rhs = item_rhs;
9157
9158 /* The signature is assumed to be unique within the DWO file.
9159 So while object file CU dwo_id's always have the value zero,
9160 that's OK, assuming each object file DWO file has only one CU,
9161 and that's the rule for now. */
9162 return lhs->signature == rhs->signature;
9163 }
9164
9165 /* Allocate a hash table for DWO CUs,TUs.
9166 There is one of these tables for each of CUs,TUs for each DWO file. */
9167
9168 static htab_t
9169 allocate_dwo_unit_table (struct objfile *objfile)
9170 {
9171 /* Start out with a pretty small number.
9172 Generally DWO files contain only one CU and maybe some TUs. */
9173 return htab_create_alloc_ex (3,
9174 hash_dwo_unit,
9175 eq_dwo_unit,
9176 NULL,
9177 &objfile->objfile_obstack,
9178 hashtab_obstack_allocate,
9179 dummy_obstack_deallocate);
9180 }
9181
9182 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9183
9184 struct create_dwo_cu_data
9185 {
9186 struct dwo_file *dwo_file;
9187 struct dwo_unit dwo_unit;
9188 };
9189
9190 /* die_reader_func for create_dwo_cu. */
9191
9192 static void
9193 create_dwo_cu_reader (const struct die_reader_specs *reader,
9194 const gdb_byte *info_ptr,
9195 struct die_info *comp_unit_die,
9196 int has_children,
9197 void *datap)
9198 {
9199 struct dwarf2_cu *cu = reader->cu;
9200 struct objfile *objfile = dwarf2_per_objfile->objfile;
9201 sect_offset offset = cu->per_cu->offset;
9202 struct dwarf2_section_info *section = cu->per_cu->section;
9203 struct create_dwo_cu_data *data = datap;
9204 struct dwo_file *dwo_file = data->dwo_file;
9205 struct dwo_unit *dwo_unit = &data->dwo_unit;
9206 struct attribute *attr;
9207
9208 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9209 if (attr == NULL)
9210 {
9211 complaint (&symfile_complaints,
9212 _("Dwarf Error: debug entry at offset 0x%x is missing"
9213 " its dwo_id [in module %s]"),
9214 offset.sect_off, dwo_file->dwo_name);
9215 return;
9216 }
9217
9218 dwo_unit->dwo_file = dwo_file;
9219 dwo_unit->signature = DW_UNSND (attr);
9220 dwo_unit->section = section;
9221 dwo_unit->offset = offset;
9222 dwo_unit->length = cu->per_cu->length;
9223
9224 if (dwarf2_read_debug)
9225 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9226 offset.sect_off, hex_string (dwo_unit->signature));
9227 }
9228
9229 /* Create the dwo_unit for the lone CU in DWO_FILE.
9230 Note: This function processes DWO files only, not DWP files. */
9231
9232 static struct dwo_unit *
9233 create_dwo_cu (struct dwo_file *dwo_file)
9234 {
9235 struct objfile *objfile = dwarf2_per_objfile->objfile;
9236 struct dwarf2_section_info *section = &dwo_file->sections.info;
9237 bfd *abfd;
9238 htab_t cu_htab;
9239 const gdb_byte *info_ptr, *end_ptr;
9240 struct create_dwo_cu_data create_dwo_cu_data;
9241 struct dwo_unit *dwo_unit;
9242
9243 dwarf2_read_section (objfile, section);
9244 info_ptr = section->buffer;
9245
9246 if (info_ptr == NULL)
9247 return NULL;
9248
9249 /* We can't set abfd until now because the section may be empty or
9250 not present, in which case section->asection will be NULL. */
9251 abfd = get_section_bfd_owner (section);
9252
9253 if (dwarf2_read_debug)
9254 {
9255 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9256 get_section_name (section),
9257 get_section_file_name (section));
9258 }
9259
9260 create_dwo_cu_data.dwo_file = dwo_file;
9261 dwo_unit = NULL;
9262
9263 end_ptr = info_ptr + section->size;
9264 while (info_ptr < end_ptr)
9265 {
9266 struct dwarf2_per_cu_data per_cu;
9267
9268 memset (&create_dwo_cu_data.dwo_unit, 0,
9269 sizeof (create_dwo_cu_data.dwo_unit));
9270 memset (&per_cu, 0, sizeof (per_cu));
9271 per_cu.objfile = objfile;
9272 per_cu.is_debug_types = 0;
9273 per_cu.offset.sect_off = info_ptr - section->buffer;
9274 per_cu.section = section;
9275
9276 init_cutu_and_read_dies_no_follow (&per_cu,
9277 &dwo_file->sections.abbrev,
9278 dwo_file,
9279 create_dwo_cu_reader,
9280 &create_dwo_cu_data);
9281
9282 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9283 {
9284 /* If we've already found one, complain. We only support one
9285 because having more than one requires hacking the dwo_name of
9286 each to match, which is highly unlikely to happen. */
9287 if (dwo_unit != NULL)
9288 {
9289 complaint (&symfile_complaints,
9290 _("Multiple CUs in DWO file %s [in module %s]"),
9291 dwo_file->dwo_name, objfile_name (objfile));
9292 break;
9293 }
9294
9295 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9296 *dwo_unit = create_dwo_cu_data.dwo_unit;
9297 }
9298
9299 info_ptr += per_cu.length;
9300 }
9301
9302 return dwo_unit;
9303 }
9304
9305 /* DWP file .debug_{cu,tu}_index section format:
9306 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9307
9308 DWP Version 1:
9309
9310 Both index sections have the same format, and serve to map a 64-bit
9311 signature to a set of section numbers. Each section begins with a header,
9312 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9313 indexes, and a pool of 32-bit section numbers. The index sections will be
9314 aligned at 8-byte boundaries in the file.
9315
9316 The index section header consists of:
9317
9318 V, 32 bit version number
9319 -, 32 bits unused
9320 N, 32 bit number of compilation units or type units in the index
9321 M, 32 bit number of slots in the hash table
9322
9323 Numbers are recorded using the byte order of the application binary.
9324
9325 The hash table begins at offset 16 in the section, and consists of an array
9326 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9327 order of the application binary). Unused slots in the hash table are 0.
9328 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9329
9330 The parallel table begins immediately after the hash table
9331 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9332 array of 32-bit indexes (using the byte order of the application binary),
9333 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9334 table contains a 32-bit index into the pool of section numbers. For unused
9335 hash table slots, the corresponding entry in the parallel table will be 0.
9336
9337 The pool of section numbers begins immediately following the hash table
9338 (at offset 16 + 12 * M from the beginning of the section). The pool of
9339 section numbers consists of an array of 32-bit words (using the byte order
9340 of the application binary). Each item in the array is indexed starting
9341 from 0. The hash table entry provides the index of the first section
9342 number in the set. Additional section numbers in the set follow, and the
9343 set is terminated by a 0 entry (section number 0 is not used in ELF).
9344
9345 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9346 section must be the first entry in the set, and the .debug_abbrev.dwo must
9347 be the second entry. Other members of the set may follow in any order.
9348
9349 ---
9350
9351 DWP Version 2:
9352
9353 DWP Version 2 combines all the .debug_info, etc. sections into one,
9354 and the entries in the index tables are now offsets into these sections.
9355 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9356 section.
9357
9358 Index Section Contents:
9359 Header
9360 Hash Table of Signatures dwp_hash_table.hash_table
9361 Parallel Table of Indices dwp_hash_table.unit_table
9362 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9363 Table of Section Sizes dwp_hash_table.v2.sizes
9364
9365 The index section header consists of:
9366
9367 V, 32 bit version number
9368 L, 32 bit number of columns in the table of section offsets
9369 N, 32 bit number of compilation units or type units in the index
9370 M, 32 bit number of slots in the hash table
9371
9372 Numbers are recorded using the byte order of the application binary.
9373
9374 The hash table has the same format as version 1.
9375 The parallel table of indices has the same format as version 1,
9376 except that the entries are origin-1 indices into the table of sections
9377 offsets and the table of section sizes.
9378
9379 The table of offsets begins immediately following the parallel table
9380 (at offset 16 + 12 * M from the beginning of the section). The table is
9381 a two-dimensional array of 32-bit words (using the byte order of the
9382 application binary), with L columns and N+1 rows, in row-major order.
9383 Each row in the array is indexed starting from 0. The first row provides
9384 a key to the remaining rows: each column in this row provides an identifier
9385 for a debug section, and the offsets in the same column of subsequent rows
9386 refer to that section. The section identifiers are:
9387
9388 DW_SECT_INFO 1 .debug_info.dwo
9389 DW_SECT_TYPES 2 .debug_types.dwo
9390 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9391 DW_SECT_LINE 4 .debug_line.dwo
9392 DW_SECT_LOC 5 .debug_loc.dwo
9393 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9394 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9395 DW_SECT_MACRO 8 .debug_macro.dwo
9396
9397 The offsets provided by the CU and TU index sections are the base offsets
9398 for the contributions made by each CU or TU to the corresponding section
9399 in the package file. Each CU and TU header contains an abbrev_offset
9400 field, used to find the abbreviations table for that CU or TU within the
9401 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9402 be interpreted as relative to the base offset given in the index section.
9403 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9404 should be interpreted as relative to the base offset for .debug_line.dwo,
9405 and offsets into other debug sections obtained from DWARF attributes should
9406 also be interpreted as relative to the corresponding base offset.
9407
9408 The table of sizes begins immediately following the table of offsets.
9409 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9410 with L columns and N rows, in row-major order. Each row in the array is
9411 indexed starting from 1 (row 0 is shared by the two tables).
9412
9413 ---
9414
9415 Hash table lookup is handled the same in version 1 and 2:
9416
9417 We assume that N and M will not exceed 2^32 - 1.
9418 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9419
9420 Given a 64-bit compilation unit signature or a type signature S, an entry
9421 in the hash table is located as follows:
9422
9423 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9424 the low-order k bits all set to 1.
9425
9426 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9427
9428 3) If the hash table entry at index H matches the signature, use that
9429 entry. If the hash table entry at index H is unused (all zeroes),
9430 terminate the search: the signature is not present in the table.
9431
9432 4) Let H = (H + H') modulo M. Repeat at Step 3.
9433
9434 Because M > N and H' and M are relatively prime, the search is guaranteed
9435 to stop at an unused slot or find the match. */
9436
9437 /* Create a hash table to map DWO IDs to their CU/TU entry in
9438 .debug_{info,types}.dwo in DWP_FILE.
9439 Returns NULL if there isn't one.
9440 Note: This function processes DWP files only, not DWO files. */
9441
9442 static struct dwp_hash_table *
9443 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9444 {
9445 struct objfile *objfile = dwarf2_per_objfile->objfile;
9446 bfd *dbfd = dwp_file->dbfd;
9447 const gdb_byte *index_ptr, *index_end;
9448 struct dwarf2_section_info *index;
9449 uint32_t version, nr_columns, nr_units, nr_slots;
9450 struct dwp_hash_table *htab;
9451
9452 if (is_debug_types)
9453 index = &dwp_file->sections.tu_index;
9454 else
9455 index = &dwp_file->sections.cu_index;
9456
9457 if (dwarf2_section_empty_p (index))
9458 return NULL;
9459 dwarf2_read_section (objfile, index);
9460
9461 index_ptr = index->buffer;
9462 index_end = index_ptr + index->size;
9463
9464 version = read_4_bytes (dbfd, index_ptr);
9465 index_ptr += 4;
9466 if (version == 2)
9467 nr_columns = read_4_bytes (dbfd, index_ptr);
9468 else
9469 nr_columns = 0;
9470 index_ptr += 4;
9471 nr_units = read_4_bytes (dbfd, index_ptr);
9472 index_ptr += 4;
9473 nr_slots = read_4_bytes (dbfd, index_ptr);
9474 index_ptr += 4;
9475
9476 if (version != 1 && version != 2)
9477 {
9478 error (_("Dwarf Error: unsupported DWP file version (%s)"
9479 " [in module %s]"),
9480 pulongest (version), dwp_file->name);
9481 }
9482 if (nr_slots != (nr_slots & -nr_slots))
9483 {
9484 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9485 " is not power of 2 [in module %s]"),
9486 pulongest (nr_slots), dwp_file->name);
9487 }
9488
9489 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9490 htab->version = version;
9491 htab->nr_columns = nr_columns;
9492 htab->nr_units = nr_units;
9493 htab->nr_slots = nr_slots;
9494 htab->hash_table = index_ptr;
9495 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9496
9497 /* Exit early if the table is empty. */
9498 if (nr_slots == 0 || nr_units == 0
9499 || (version == 2 && nr_columns == 0))
9500 {
9501 /* All must be zero. */
9502 if (nr_slots != 0 || nr_units != 0
9503 || (version == 2 && nr_columns != 0))
9504 {
9505 complaint (&symfile_complaints,
9506 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9507 " all zero [in modules %s]"),
9508 dwp_file->name);
9509 }
9510 return htab;
9511 }
9512
9513 if (version == 1)
9514 {
9515 htab->section_pool.v1.indices =
9516 htab->unit_table + sizeof (uint32_t) * nr_slots;
9517 /* It's harder to decide whether the section is too small in v1.
9518 V1 is deprecated anyway so we punt. */
9519 }
9520 else
9521 {
9522 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9523 int *ids = htab->section_pool.v2.section_ids;
9524 /* Reverse map for error checking. */
9525 int ids_seen[DW_SECT_MAX + 1];
9526 int i;
9527
9528 if (nr_columns < 2)
9529 {
9530 error (_("Dwarf Error: bad DWP hash table, too few columns"
9531 " in section table [in module %s]"),
9532 dwp_file->name);
9533 }
9534 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9535 {
9536 error (_("Dwarf Error: bad DWP hash table, too many columns"
9537 " in section table [in module %s]"),
9538 dwp_file->name);
9539 }
9540 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9541 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9542 for (i = 0; i < nr_columns; ++i)
9543 {
9544 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9545
9546 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9547 {
9548 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9549 " in section table [in module %s]"),
9550 id, dwp_file->name);
9551 }
9552 if (ids_seen[id] != -1)
9553 {
9554 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9555 " id %d in section table [in module %s]"),
9556 id, dwp_file->name);
9557 }
9558 ids_seen[id] = i;
9559 ids[i] = id;
9560 }
9561 /* Must have exactly one info or types section. */
9562 if (((ids_seen[DW_SECT_INFO] != -1)
9563 + (ids_seen[DW_SECT_TYPES] != -1))
9564 != 1)
9565 {
9566 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9567 " DWO info/types section [in module %s]"),
9568 dwp_file->name);
9569 }
9570 /* Must have an abbrev section. */
9571 if (ids_seen[DW_SECT_ABBREV] == -1)
9572 {
9573 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9574 " section [in module %s]"),
9575 dwp_file->name);
9576 }
9577 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9578 htab->section_pool.v2.sizes =
9579 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9580 * nr_units * nr_columns);
9581 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9582 * nr_units * nr_columns))
9583 > index_end)
9584 {
9585 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9586 " [in module %s]"),
9587 dwp_file->name);
9588 }
9589 }
9590
9591 return htab;
9592 }
9593
9594 /* Update SECTIONS with the data from SECTP.
9595
9596 This function is like the other "locate" section routines that are
9597 passed to bfd_map_over_sections, but in this context the sections to
9598 read comes from the DWP V1 hash table, not the full ELF section table.
9599
9600 The result is non-zero for success, or zero if an error was found. */
9601
9602 static int
9603 locate_v1_virtual_dwo_sections (asection *sectp,
9604 struct virtual_v1_dwo_sections *sections)
9605 {
9606 const struct dwop_section_names *names = &dwop_section_names;
9607
9608 if (section_is_p (sectp->name, &names->abbrev_dwo))
9609 {
9610 /* There can be only one. */
9611 if (sections->abbrev.s.asection != NULL)
9612 return 0;
9613 sections->abbrev.s.asection = sectp;
9614 sections->abbrev.size = bfd_get_section_size (sectp);
9615 }
9616 else if (section_is_p (sectp->name, &names->info_dwo)
9617 || section_is_p (sectp->name, &names->types_dwo))
9618 {
9619 /* There can be only one. */
9620 if (sections->info_or_types.s.asection != NULL)
9621 return 0;
9622 sections->info_or_types.s.asection = sectp;
9623 sections->info_or_types.size = bfd_get_section_size (sectp);
9624 }
9625 else if (section_is_p (sectp->name, &names->line_dwo))
9626 {
9627 /* There can be only one. */
9628 if (sections->line.s.asection != NULL)
9629 return 0;
9630 sections->line.s.asection = sectp;
9631 sections->line.size = bfd_get_section_size (sectp);
9632 }
9633 else if (section_is_p (sectp->name, &names->loc_dwo))
9634 {
9635 /* There can be only one. */
9636 if (sections->loc.s.asection != NULL)
9637 return 0;
9638 sections->loc.s.asection = sectp;
9639 sections->loc.size = bfd_get_section_size (sectp);
9640 }
9641 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9642 {
9643 /* There can be only one. */
9644 if (sections->macinfo.s.asection != NULL)
9645 return 0;
9646 sections->macinfo.s.asection = sectp;
9647 sections->macinfo.size = bfd_get_section_size (sectp);
9648 }
9649 else if (section_is_p (sectp->name, &names->macro_dwo))
9650 {
9651 /* There can be only one. */
9652 if (sections->macro.s.asection != NULL)
9653 return 0;
9654 sections->macro.s.asection = sectp;
9655 sections->macro.size = bfd_get_section_size (sectp);
9656 }
9657 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9658 {
9659 /* There can be only one. */
9660 if (sections->str_offsets.s.asection != NULL)
9661 return 0;
9662 sections->str_offsets.s.asection = sectp;
9663 sections->str_offsets.size = bfd_get_section_size (sectp);
9664 }
9665 else
9666 {
9667 /* No other kind of section is valid. */
9668 return 0;
9669 }
9670
9671 return 1;
9672 }
9673
9674 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9675 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9676 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9677 This is for DWP version 1 files. */
9678
9679 static struct dwo_unit *
9680 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9681 uint32_t unit_index,
9682 const char *comp_dir,
9683 ULONGEST signature, int is_debug_types)
9684 {
9685 struct objfile *objfile = dwarf2_per_objfile->objfile;
9686 const struct dwp_hash_table *dwp_htab =
9687 is_debug_types ? dwp_file->tus : dwp_file->cus;
9688 bfd *dbfd = dwp_file->dbfd;
9689 const char *kind = is_debug_types ? "TU" : "CU";
9690 struct dwo_file *dwo_file;
9691 struct dwo_unit *dwo_unit;
9692 struct virtual_v1_dwo_sections sections;
9693 void **dwo_file_slot;
9694 char *virtual_dwo_name;
9695 struct dwarf2_section_info *cutu;
9696 struct cleanup *cleanups;
9697 int i;
9698
9699 gdb_assert (dwp_file->version == 1);
9700
9701 if (dwarf2_read_debug)
9702 {
9703 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9704 kind,
9705 pulongest (unit_index), hex_string (signature),
9706 dwp_file->name);
9707 }
9708
9709 /* Fetch the sections of this DWO unit.
9710 Put a limit on the number of sections we look for so that bad data
9711 doesn't cause us to loop forever. */
9712
9713 #define MAX_NR_V1_DWO_SECTIONS \
9714 (1 /* .debug_info or .debug_types */ \
9715 + 1 /* .debug_abbrev */ \
9716 + 1 /* .debug_line */ \
9717 + 1 /* .debug_loc */ \
9718 + 1 /* .debug_str_offsets */ \
9719 + 1 /* .debug_macro or .debug_macinfo */ \
9720 + 1 /* trailing zero */)
9721
9722 memset (&sections, 0, sizeof (sections));
9723 cleanups = make_cleanup (null_cleanup, 0);
9724
9725 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9726 {
9727 asection *sectp;
9728 uint32_t section_nr =
9729 read_4_bytes (dbfd,
9730 dwp_htab->section_pool.v1.indices
9731 + (unit_index + i) * sizeof (uint32_t));
9732
9733 if (section_nr == 0)
9734 break;
9735 if (section_nr >= dwp_file->num_sections)
9736 {
9737 error (_("Dwarf Error: bad DWP hash table, section number too large"
9738 " [in module %s]"),
9739 dwp_file->name);
9740 }
9741
9742 sectp = dwp_file->elf_sections[section_nr];
9743 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9744 {
9745 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9746 " [in module %s]"),
9747 dwp_file->name);
9748 }
9749 }
9750
9751 if (i < 2
9752 || dwarf2_section_empty_p (&sections.info_or_types)
9753 || dwarf2_section_empty_p (&sections.abbrev))
9754 {
9755 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9756 " [in module %s]"),
9757 dwp_file->name);
9758 }
9759 if (i == MAX_NR_V1_DWO_SECTIONS)
9760 {
9761 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9762 " [in module %s]"),
9763 dwp_file->name);
9764 }
9765
9766 /* It's easier for the rest of the code if we fake a struct dwo_file and
9767 have dwo_unit "live" in that. At least for now.
9768
9769 The DWP file can be made up of a random collection of CUs and TUs.
9770 However, for each CU + set of TUs that came from the same original DWO
9771 file, we can combine them back into a virtual DWO file to save space
9772 (fewer struct dwo_file objects to allocate). Remember that for really
9773 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9774
9775 virtual_dwo_name =
9776 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9777 get_section_id (&sections.abbrev),
9778 get_section_id (&sections.line),
9779 get_section_id (&sections.loc),
9780 get_section_id (&sections.str_offsets));
9781 make_cleanup (xfree, virtual_dwo_name);
9782 /* Can we use an existing virtual DWO file? */
9783 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9784 /* Create one if necessary. */
9785 if (*dwo_file_slot == NULL)
9786 {
9787 if (dwarf2_read_debug)
9788 {
9789 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9790 virtual_dwo_name);
9791 }
9792 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9793 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9794 virtual_dwo_name,
9795 strlen (virtual_dwo_name));
9796 dwo_file->comp_dir = comp_dir;
9797 dwo_file->sections.abbrev = sections.abbrev;
9798 dwo_file->sections.line = sections.line;
9799 dwo_file->sections.loc = sections.loc;
9800 dwo_file->sections.macinfo = sections.macinfo;
9801 dwo_file->sections.macro = sections.macro;
9802 dwo_file->sections.str_offsets = sections.str_offsets;
9803 /* The "str" section is global to the entire DWP file. */
9804 dwo_file->sections.str = dwp_file->sections.str;
9805 /* The info or types section is assigned below to dwo_unit,
9806 there's no need to record it in dwo_file.
9807 Also, we can't simply record type sections in dwo_file because
9808 we record a pointer into the vector in dwo_unit. As we collect more
9809 types we'll grow the vector and eventually have to reallocate space
9810 for it, invalidating all copies of pointers into the previous
9811 contents. */
9812 *dwo_file_slot = dwo_file;
9813 }
9814 else
9815 {
9816 if (dwarf2_read_debug)
9817 {
9818 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9819 virtual_dwo_name);
9820 }
9821 dwo_file = *dwo_file_slot;
9822 }
9823 do_cleanups (cleanups);
9824
9825 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9826 dwo_unit->dwo_file = dwo_file;
9827 dwo_unit->signature = signature;
9828 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9829 sizeof (struct dwarf2_section_info));
9830 *dwo_unit->section = sections.info_or_types;
9831 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9832
9833 return dwo_unit;
9834 }
9835
9836 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9837 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9838 piece within that section used by a TU/CU, return a virtual section
9839 of just that piece. */
9840
9841 static struct dwarf2_section_info
9842 create_dwp_v2_section (struct dwarf2_section_info *section,
9843 bfd_size_type offset, bfd_size_type size)
9844 {
9845 struct dwarf2_section_info result;
9846 asection *sectp;
9847
9848 gdb_assert (section != NULL);
9849 gdb_assert (!section->is_virtual);
9850
9851 memset (&result, 0, sizeof (result));
9852 result.s.containing_section = section;
9853 result.is_virtual = 1;
9854
9855 if (size == 0)
9856 return result;
9857
9858 sectp = get_section_bfd_section (section);
9859
9860 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9861 bounds of the real section. This is a pretty-rare event, so just
9862 flag an error (easier) instead of a warning and trying to cope. */
9863 if (sectp == NULL
9864 || offset + size > bfd_get_section_size (sectp))
9865 {
9866 bfd *abfd = sectp->owner;
9867
9868 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9869 " in section %s [in module %s]"),
9870 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9871 objfile_name (dwarf2_per_objfile->objfile));
9872 }
9873
9874 result.virtual_offset = offset;
9875 result.size = size;
9876 return result;
9877 }
9878
9879 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9880 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9881 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9882 This is for DWP version 2 files. */
9883
9884 static struct dwo_unit *
9885 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9886 uint32_t unit_index,
9887 const char *comp_dir,
9888 ULONGEST signature, int is_debug_types)
9889 {
9890 struct objfile *objfile = dwarf2_per_objfile->objfile;
9891 const struct dwp_hash_table *dwp_htab =
9892 is_debug_types ? dwp_file->tus : dwp_file->cus;
9893 bfd *dbfd = dwp_file->dbfd;
9894 const char *kind = is_debug_types ? "TU" : "CU";
9895 struct dwo_file *dwo_file;
9896 struct dwo_unit *dwo_unit;
9897 struct virtual_v2_dwo_sections sections;
9898 void **dwo_file_slot;
9899 char *virtual_dwo_name;
9900 struct dwarf2_section_info *cutu;
9901 struct cleanup *cleanups;
9902 int i;
9903
9904 gdb_assert (dwp_file->version == 2);
9905
9906 if (dwarf2_read_debug)
9907 {
9908 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9909 kind,
9910 pulongest (unit_index), hex_string (signature),
9911 dwp_file->name);
9912 }
9913
9914 /* Fetch the section offsets of this DWO unit. */
9915
9916 memset (&sections, 0, sizeof (sections));
9917 cleanups = make_cleanup (null_cleanup, 0);
9918
9919 for (i = 0; i < dwp_htab->nr_columns; ++i)
9920 {
9921 uint32_t offset = read_4_bytes (dbfd,
9922 dwp_htab->section_pool.v2.offsets
9923 + (((unit_index - 1) * dwp_htab->nr_columns
9924 + i)
9925 * sizeof (uint32_t)));
9926 uint32_t size = read_4_bytes (dbfd,
9927 dwp_htab->section_pool.v2.sizes
9928 + (((unit_index - 1) * dwp_htab->nr_columns
9929 + i)
9930 * sizeof (uint32_t)));
9931
9932 switch (dwp_htab->section_pool.v2.section_ids[i])
9933 {
9934 case DW_SECT_INFO:
9935 case DW_SECT_TYPES:
9936 sections.info_or_types_offset = offset;
9937 sections.info_or_types_size = size;
9938 break;
9939 case DW_SECT_ABBREV:
9940 sections.abbrev_offset = offset;
9941 sections.abbrev_size = size;
9942 break;
9943 case DW_SECT_LINE:
9944 sections.line_offset = offset;
9945 sections.line_size = size;
9946 break;
9947 case DW_SECT_LOC:
9948 sections.loc_offset = offset;
9949 sections.loc_size = size;
9950 break;
9951 case DW_SECT_STR_OFFSETS:
9952 sections.str_offsets_offset = offset;
9953 sections.str_offsets_size = size;
9954 break;
9955 case DW_SECT_MACINFO:
9956 sections.macinfo_offset = offset;
9957 sections.macinfo_size = size;
9958 break;
9959 case DW_SECT_MACRO:
9960 sections.macro_offset = offset;
9961 sections.macro_size = size;
9962 break;
9963 }
9964 }
9965
9966 /* It's easier for the rest of the code if we fake a struct dwo_file and
9967 have dwo_unit "live" in that. At least for now.
9968
9969 The DWP file can be made up of a random collection of CUs and TUs.
9970 However, for each CU + set of TUs that came from the same original DWO
9971 file, we can combine them back into a virtual DWO file to save space
9972 (fewer struct dwo_file objects to allocate). Remember that for really
9973 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9974
9975 virtual_dwo_name =
9976 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
9977 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
9978 (long) (sections.line_size ? sections.line_offset : 0),
9979 (long) (sections.loc_size ? sections.loc_offset : 0),
9980 (long) (sections.str_offsets_size
9981 ? sections.str_offsets_offset : 0));
9982 make_cleanup (xfree, virtual_dwo_name);
9983 /* Can we use an existing virtual DWO file? */
9984 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9985 /* Create one if necessary. */
9986 if (*dwo_file_slot == NULL)
9987 {
9988 if (dwarf2_read_debug)
9989 {
9990 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9991 virtual_dwo_name);
9992 }
9993 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9994 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9995 virtual_dwo_name,
9996 strlen (virtual_dwo_name));
9997 dwo_file->comp_dir = comp_dir;
9998 dwo_file->sections.abbrev =
9999 create_dwp_v2_section (&dwp_file->sections.abbrev,
10000 sections.abbrev_offset, sections.abbrev_size);
10001 dwo_file->sections.line =
10002 create_dwp_v2_section (&dwp_file->sections.line,
10003 sections.line_offset, sections.line_size);
10004 dwo_file->sections.loc =
10005 create_dwp_v2_section (&dwp_file->sections.loc,
10006 sections.loc_offset, sections.loc_size);
10007 dwo_file->sections.macinfo =
10008 create_dwp_v2_section (&dwp_file->sections.macinfo,
10009 sections.macinfo_offset, sections.macinfo_size);
10010 dwo_file->sections.macro =
10011 create_dwp_v2_section (&dwp_file->sections.macro,
10012 sections.macro_offset, sections.macro_size);
10013 dwo_file->sections.str_offsets =
10014 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10015 sections.str_offsets_offset,
10016 sections.str_offsets_size);
10017 /* The "str" section is global to the entire DWP file. */
10018 dwo_file->sections.str = dwp_file->sections.str;
10019 /* The info or types section is assigned below to dwo_unit,
10020 there's no need to record it in dwo_file.
10021 Also, we can't simply record type sections in dwo_file because
10022 we record a pointer into the vector in dwo_unit. As we collect more
10023 types we'll grow the vector and eventually have to reallocate space
10024 for it, invalidating all copies of pointers into the previous
10025 contents. */
10026 *dwo_file_slot = dwo_file;
10027 }
10028 else
10029 {
10030 if (dwarf2_read_debug)
10031 {
10032 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10033 virtual_dwo_name);
10034 }
10035 dwo_file = *dwo_file_slot;
10036 }
10037 do_cleanups (cleanups);
10038
10039 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10040 dwo_unit->dwo_file = dwo_file;
10041 dwo_unit->signature = signature;
10042 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10043 sizeof (struct dwarf2_section_info));
10044 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10045 ? &dwp_file->sections.types
10046 : &dwp_file->sections.info,
10047 sections.info_or_types_offset,
10048 sections.info_or_types_size);
10049 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10050
10051 return dwo_unit;
10052 }
10053
10054 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10055 Returns NULL if the signature isn't found. */
10056
10057 static struct dwo_unit *
10058 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10059 ULONGEST signature, int is_debug_types)
10060 {
10061 const struct dwp_hash_table *dwp_htab =
10062 is_debug_types ? dwp_file->tus : dwp_file->cus;
10063 bfd *dbfd = dwp_file->dbfd;
10064 uint32_t mask = dwp_htab->nr_slots - 1;
10065 uint32_t hash = signature & mask;
10066 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10067 unsigned int i;
10068 void **slot;
10069 struct dwo_unit find_dwo_cu, *dwo_cu;
10070
10071 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10072 find_dwo_cu.signature = signature;
10073 slot = htab_find_slot (is_debug_types
10074 ? dwp_file->loaded_tus
10075 : dwp_file->loaded_cus,
10076 &find_dwo_cu, INSERT);
10077
10078 if (*slot != NULL)
10079 return *slot;
10080
10081 /* Use a for loop so that we don't loop forever on bad debug info. */
10082 for (i = 0; i < dwp_htab->nr_slots; ++i)
10083 {
10084 ULONGEST signature_in_table;
10085
10086 signature_in_table =
10087 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10088 if (signature_in_table == signature)
10089 {
10090 uint32_t unit_index =
10091 read_4_bytes (dbfd,
10092 dwp_htab->unit_table + hash * sizeof (uint32_t));
10093
10094 if (dwp_file->version == 1)
10095 {
10096 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10097 comp_dir, signature,
10098 is_debug_types);
10099 }
10100 else
10101 {
10102 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10103 comp_dir, signature,
10104 is_debug_types);
10105 }
10106 return *slot;
10107 }
10108 if (signature_in_table == 0)
10109 return NULL;
10110 hash = (hash + hash2) & mask;
10111 }
10112
10113 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10114 " [in module %s]"),
10115 dwp_file->name);
10116 }
10117
10118 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10119 Open the file specified by FILE_NAME and hand it off to BFD for
10120 preliminary analysis. Return a newly initialized bfd *, which
10121 includes a canonicalized copy of FILE_NAME.
10122 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10123 SEARCH_CWD is true if the current directory is to be searched.
10124 It will be searched before debug-file-directory.
10125 If unable to find/open the file, return NULL.
10126 NOTE: This function is derived from symfile_bfd_open. */
10127
10128 static bfd *
10129 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10130 {
10131 bfd *sym_bfd;
10132 int desc, flags;
10133 char *absolute_name;
10134 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10135 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10136 to debug_file_directory. */
10137 char *search_path;
10138 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10139
10140 if (search_cwd)
10141 {
10142 if (*debug_file_directory != '\0')
10143 search_path = concat (".", dirname_separator_string,
10144 debug_file_directory, NULL);
10145 else
10146 search_path = xstrdup (".");
10147 }
10148 else
10149 search_path = xstrdup (debug_file_directory);
10150
10151 flags = OPF_RETURN_REALPATH;
10152 if (is_dwp)
10153 flags |= OPF_SEARCH_IN_PATH;
10154 desc = openp (search_path, flags, file_name,
10155 O_RDONLY | O_BINARY, &absolute_name);
10156 xfree (search_path);
10157 if (desc < 0)
10158 return NULL;
10159
10160 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10161 xfree (absolute_name);
10162 if (sym_bfd == NULL)
10163 return NULL;
10164 bfd_set_cacheable (sym_bfd, 1);
10165
10166 if (!bfd_check_format (sym_bfd, bfd_object))
10167 {
10168 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10169 return NULL;
10170 }
10171
10172 return sym_bfd;
10173 }
10174
10175 /* Try to open DWO file FILE_NAME.
10176 COMP_DIR is the DW_AT_comp_dir attribute.
10177 The result is the bfd handle of the file.
10178 If there is a problem finding or opening the file, return NULL.
10179 Upon success, the canonicalized path of the file is stored in the bfd,
10180 same as symfile_bfd_open. */
10181
10182 static bfd *
10183 open_dwo_file (const char *file_name, const char *comp_dir)
10184 {
10185 bfd *abfd;
10186
10187 if (IS_ABSOLUTE_PATH (file_name))
10188 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10189
10190 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10191
10192 if (comp_dir != NULL)
10193 {
10194 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10195
10196 /* NOTE: If comp_dir is a relative path, this will also try the
10197 search path, which seems useful. */
10198 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10199 xfree (path_to_try);
10200 if (abfd != NULL)
10201 return abfd;
10202 }
10203
10204 /* That didn't work, try debug-file-directory, which, despite its name,
10205 is a list of paths. */
10206
10207 if (*debug_file_directory == '\0')
10208 return NULL;
10209
10210 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10211 }
10212
10213 /* This function is mapped across the sections and remembers the offset and
10214 size of each of the DWO debugging sections we are interested in. */
10215
10216 static void
10217 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10218 {
10219 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10220 const struct dwop_section_names *names = &dwop_section_names;
10221
10222 if (section_is_p (sectp->name, &names->abbrev_dwo))
10223 {
10224 dwo_sections->abbrev.s.asection = sectp;
10225 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10226 }
10227 else if (section_is_p (sectp->name, &names->info_dwo))
10228 {
10229 dwo_sections->info.s.asection = sectp;
10230 dwo_sections->info.size = bfd_get_section_size (sectp);
10231 }
10232 else if (section_is_p (sectp->name, &names->line_dwo))
10233 {
10234 dwo_sections->line.s.asection = sectp;
10235 dwo_sections->line.size = bfd_get_section_size (sectp);
10236 }
10237 else if (section_is_p (sectp->name, &names->loc_dwo))
10238 {
10239 dwo_sections->loc.s.asection = sectp;
10240 dwo_sections->loc.size = bfd_get_section_size (sectp);
10241 }
10242 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10243 {
10244 dwo_sections->macinfo.s.asection = sectp;
10245 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10246 }
10247 else if (section_is_p (sectp->name, &names->macro_dwo))
10248 {
10249 dwo_sections->macro.s.asection = sectp;
10250 dwo_sections->macro.size = bfd_get_section_size (sectp);
10251 }
10252 else if (section_is_p (sectp->name, &names->str_dwo))
10253 {
10254 dwo_sections->str.s.asection = sectp;
10255 dwo_sections->str.size = bfd_get_section_size (sectp);
10256 }
10257 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10258 {
10259 dwo_sections->str_offsets.s.asection = sectp;
10260 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10261 }
10262 else if (section_is_p (sectp->name, &names->types_dwo))
10263 {
10264 struct dwarf2_section_info type_section;
10265
10266 memset (&type_section, 0, sizeof (type_section));
10267 type_section.s.asection = sectp;
10268 type_section.size = bfd_get_section_size (sectp);
10269 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10270 &type_section);
10271 }
10272 }
10273
10274 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10275 by PER_CU. This is for the non-DWP case.
10276 The result is NULL if DWO_NAME can't be found. */
10277
10278 static struct dwo_file *
10279 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10280 const char *dwo_name, const char *comp_dir)
10281 {
10282 struct objfile *objfile = dwarf2_per_objfile->objfile;
10283 struct dwo_file *dwo_file;
10284 bfd *dbfd;
10285 struct cleanup *cleanups;
10286
10287 dbfd = open_dwo_file (dwo_name, comp_dir);
10288 if (dbfd == NULL)
10289 {
10290 if (dwarf2_read_debug)
10291 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10292 return NULL;
10293 }
10294 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10295 dwo_file->dwo_name = dwo_name;
10296 dwo_file->comp_dir = comp_dir;
10297 dwo_file->dbfd = dbfd;
10298
10299 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10300
10301 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10302
10303 dwo_file->cu = create_dwo_cu (dwo_file);
10304
10305 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10306 dwo_file->sections.types);
10307
10308 discard_cleanups (cleanups);
10309
10310 if (dwarf2_read_debug)
10311 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10312
10313 return dwo_file;
10314 }
10315
10316 /* This function is mapped across the sections and remembers the offset and
10317 size of each of the DWP debugging sections common to version 1 and 2 that
10318 we are interested in. */
10319
10320 static void
10321 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10322 void *dwp_file_ptr)
10323 {
10324 struct dwp_file *dwp_file = dwp_file_ptr;
10325 const struct dwop_section_names *names = &dwop_section_names;
10326 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10327
10328 /* Record the ELF section number for later lookup: this is what the
10329 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10330 gdb_assert (elf_section_nr < dwp_file->num_sections);
10331 dwp_file->elf_sections[elf_section_nr] = sectp;
10332
10333 /* Look for specific sections that we need. */
10334 if (section_is_p (sectp->name, &names->str_dwo))
10335 {
10336 dwp_file->sections.str.s.asection = sectp;
10337 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10338 }
10339 else if (section_is_p (sectp->name, &names->cu_index))
10340 {
10341 dwp_file->sections.cu_index.s.asection = sectp;
10342 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10343 }
10344 else if (section_is_p (sectp->name, &names->tu_index))
10345 {
10346 dwp_file->sections.tu_index.s.asection = sectp;
10347 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10348 }
10349 }
10350
10351 /* This function is mapped across the sections and remembers the offset and
10352 size of each of the DWP version 2 debugging sections that we are interested
10353 in. This is split into a separate function because we don't know if we
10354 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10355
10356 static void
10357 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10358 {
10359 struct dwp_file *dwp_file = dwp_file_ptr;
10360 const struct dwop_section_names *names = &dwop_section_names;
10361 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10362
10363 /* Record the ELF section number for later lookup: this is what the
10364 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10365 gdb_assert (elf_section_nr < dwp_file->num_sections);
10366 dwp_file->elf_sections[elf_section_nr] = sectp;
10367
10368 /* Look for specific sections that we need. */
10369 if (section_is_p (sectp->name, &names->abbrev_dwo))
10370 {
10371 dwp_file->sections.abbrev.s.asection = sectp;
10372 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10373 }
10374 else if (section_is_p (sectp->name, &names->info_dwo))
10375 {
10376 dwp_file->sections.info.s.asection = sectp;
10377 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10378 }
10379 else if (section_is_p (sectp->name, &names->line_dwo))
10380 {
10381 dwp_file->sections.line.s.asection = sectp;
10382 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10383 }
10384 else if (section_is_p (sectp->name, &names->loc_dwo))
10385 {
10386 dwp_file->sections.loc.s.asection = sectp;
10387 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10388 }
10389 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10390 {
10391 dwp_file->sections.macinfo.s.asection = sectp;
10392 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10393 }
10394 else if (section_is_p (sectp->name, &names->macro_dwo))
10395 {
10396 dwp_file->sections.macro.s.asection = sectp;
10397 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10398 }
10399 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10400 {
10401 dwp_file->sections.str_offsets.s.asection = sectp;
10402 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10403 }
10404 else if (section_is_p (sectp->name, &names->types_dwo))
10405 {
10406 dwp_file->sections.types.s.asection = sectp;
10407 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10408 }
10409 }
10410
10411 /* Hash function for dwp_file loaded CUs/TUs. */
10412
10413 static hashval_t
10414 hash_dwp_loaded_cutus (const void *item)
10415 {
10416 const struct dwo_unit *dwo_unit = item;
10417
10418 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10419 return dwo_unit->signature;
10420 }
10421
10422 /* Equality function for dwp_file loaded CUs/TUs. */
10423
10424 static int
10425 eq_dwp_loaded_cutus (const void *a, const void *b)
10426 {
10427 const struct dwo_unit *dua = a;
10428 const struct dwo_unit *dub = b;
10429
10430 return dua->signature == dub->signature;
10431 }
10432
10433 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10434
10435 static htab_t
10436 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10437 {
10438 return htab_create_alloc_ex (3,
10439 hash_dwp_loaded_cutus,
10440 eq_dwp_loaded_cutus,
10441 NULL,
10442 &objfile->objfile_obstack,
10443 hashtab_obstack_allocate,
10444 dummy_obstack_deallocate);
10445 }
10446
10447 /* Try to open DWP file FILE_NAME.
10448 The result is the bfd handle of the file.
10449 If there is a problem finding or opening the file, return NULL.
10450 Upon success, the canonicalized path of the file is stored in the bfd,
10451 same as symfile_bfd_open. */
10452
10453 static bfd *
10454 open_dwp_file (const char *file_name)
10455 {
10456 bfd *abfd;
10457
10458 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10459 if (abfd != NULL)
10460 return abfd;
10461
10462 /* Work around upstream bug 15652.
10463 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10464 [Whether that's a "bug" is debatable, but it is getting in our way.]
10465 We have no real idea where the dwp file is, because gdb's realpath-ing
10466 of the executable's path may have discarded the needed info.
10467 [IWBN if the dwp file name was recorded in the executable, akin to
10468 .gnu_debuglink, but that doesn't exist yet.]
10469 Strip the directory from FILE_NAME and search again. */
10470 if (*debug_file_directory != '\0')
10471 {
10472 /* Don't implicitly search the current directory here.
10473 If the user wants to search "." to handle this case,
10474 it must be added to debug-file-directory. */
10475 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10476 0 /*search_cwd*/);
10477 }
10478
10479 return NULL;
10480 }
10481
10482 /* Initialize the use of the DWP file for the current objfile.
10483 By convention the name of the DWP file is ${objfile}.dwp.
10484 The result is NULL if it can't be found. */
10485
10486 static struct dwp_file *
10487 open_and_init_dwp_file (void)
10488 {
10489 struct objfile *objfile = dwarf2_per_objfile->objfile;
10490 struct dwp_file *dwp_file;
10491 char *dwp_name;
10492 bfd *dbfd;
10493 struct cleanup *cleanups;
10494
10495 /* Try to find first .dwp for the binary file before any symbolic links
10496 resolving. */
10497 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10498 cleanups = make_cleanup (xfree, dwp_name);
10499
10500 dbfd = open_dwp_file (dwp_name);
10501 if (dbfd == NULL
10502 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10503 {
10504 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10505 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10506 make_cleanup (xfree, dwp_name);
10507 dbfd = open_dwp_file (dwp_name);
10508 }
10509
10510 if (dbfd == NULL)
10511 {
10512 if (dwarf2_read_debug)
10513 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10514 do_cleanups (cleanups);
10515 return NULL;
10516 }
10517 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10518 dwp_file->name = bfd_get_filename (dbfd);
10519 dwp_file->dbfd = dbfd;
10520 do_cleanups (cleanups);
10521
10522 /* +1: section 0 is unused */
10523 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10524 dwp_file->elf_sections =
10525 OBSTACK_CALLOC (&objfile->objfile_obstack,
10526 dwp_file->num_sections, asection *);
10527
10528 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10529
10530 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10531
10532 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10533
10534 /* The DWP file version is stored in the hash table. Oh well. */
10535 if (dwp_file->cus->version != dwp_file->tus->version)
10536 {
10537 /* Technically speaking, we should try to limp along, but this is
10538 pretty bizarre. */
10539 error (_("Dwarf Error: DWP file CU version %d doesn't match"
10540 " TU version %d [in DWP file %s]"),
10541 dwp_file->cus->version, dwp_file->tus->version, dwp_name);
10542 }
10543 dwp_file->version = dwp_file->cus->version;
10544
10545 if (dwp_file->version == 2)
10546 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10547
10548 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10549 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10550
10551 if (dwarf2_read_debug)
10552 {
10553 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10554 fprintf_unfiltered (gdb_stdlog,
10555 " %s CUs, %s TUs\n",
10556 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10557 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10558 }
10559
10560 return dwp_file;
10561 }
10562
10563 /* Wrapper around open_and_init_dwp_file, only open it once. */
10564
10565 static struct dwp_file *
10566 get_dwp_file (void)
10567 {
10568 if (! dwarf2_per_objfile->dwp_checked)
10569 {
10570 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10571 dwarf2_per_objfile->dwp_checked = 1;
10572 }
10573 return dwarf2_per_objfile->dwp_file;
10574 }
10575
10576 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10577 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10578 or in the DWP file for the objfile, referenced by THIS_UNIT.
10579 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10580 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10581
10582 This is called, for example, when wanting to read a variable with a
10583 complex location. Therefore we don't want to do file i/o for every call.
10584 Therefore we don't want to look for a DWO file on every call.
10585 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10586 then we check if we've already seen DWO_NAME, and only THEN do we check
10587 for a DWO file.
10588
10589 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10590 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10591
10592 static struct dwo_unit *
10593 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10594 const char *dwo_name, const char *comp_dir,
10595 ULONGEST signature, int is_debug_types)
10596 {
10597 struct objfile *objfile = dwarf2_per_objfile->objfile;
10598 const char *kind = is_debug_types ? "TU" : "CU";
10599 void **dwo_file_slot;
10600 struct dwo_file *dwo_file;
10601 struct dwp_file *dwp_file;
10602
10603 /* First see if there's a DWP file.
10604 If we have a DWP file but didn't find the DWO inside it, don't
10605 look for the original DWO file. It makes gdb behave differently
10606 depending on whether one is debugging in the build tree. */
10607
10608 dwp_file = get_dwp_file ();
10609 if (dwp_file != NULL)
10610 {
10611 const struct dwp_hash_table *dwp_htab =
10612 is_debug_types ? dwp_file->tus : dwp_file->cus;
10613
10614 if (dwp_htab != NULL)
10615 {
10616 struct dwo_unit *dwo_cutu =
10617 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10618 signature, is_debug_types);
10619
10620 if (dwo_cutu != NULL)
10621 {
10622 if (dwarf2_read_debug)
10623 {
10624 fprintf_unfiltered (gdb_stdlog,
10625 "Virtual DWO %s %s found: @%s\n",
10626 kind, hex_string (signature),
10627 host_address_to_string (dwo_cutu));
10628 }
10629 return dwo_cutu;
10630 }
10631 }
10632 }
10633 else
10634 {
10635 /* No DWP file, look for the DWO file. */
10636
10637 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10638 if (*dwo_file_slot == NULL)
10639 {
10640 /* Read in the file and build a table of the CUs/TUs it contains. */
10641 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10642 }
10643 /* NOTE: This will be NULL if unable to open the file. */
10644 dwo_file = *dwo_file_slot;
10645
10646 if (dwo_file != NULL)
10647 {
10648 struct dwo_unit *dwo_cutu = NULL;
10649
10650 if (is_debug_types && dwo_file->tus)
10651 {
10652 struct dwo_unit find_dwo_cutu;
10653
10654 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10655 find_dwo_cutu.signature = signature;
10656 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10657 }
10658 else if (!is_debug_types && dwo_file->cu)
10659 {
10660 if (signature == dwo_file->cu->signature)
10661 dwo_cutu = dwo_file->cu;
10662 }
10663
10664 if (dwo_cutu != NULL)
10665 {
10666 if (dwarf2_read_debug)
10667 {
10668 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10669 kind, dwo_name, hex_string (signature),
10670 host_address_to_string (dwo_cutu));
10671 }
10672 return dwo_cutu;
10673 }
10674 }
10675 }
10676
10677 /* We didn't find it. This could mean a dwo_id mismatch, or
10678 someone deleted the DWO/DWP file, or the search path isn't set up
10679 correctly to find the file. */
10680
10681 if (dwarf2_read_debug)
10682 {
10683 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10684 kind, dwo_name, hex_string (signature));
10685 }
10686
10687 /* This is a warning and not a complaint because it can be caused by
10688 pilot error (e.g., user accidentally deleting the DWO). */
10689 {
10690 /* Print the name of the DWP file if we looked there, helps the user
10691 better diagnose the problem. */
10692 char *dwp_text = NULL;
10693 struct cleanup *cleanups;
10694
10695 if (dwp_file != NULL)
10696 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10697 cleanups = make_cleanup (xfree, dwp_text);
10698
10699 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10700 " [in module %s]"),
10701 kind, dwo_name, hex_string (signature),
10702 dwp_text != NULL ? dwp_text : "",
10703 this_unit->is_debug_types ? "TU" : "CU",
10704 this_unit->offset.sect_off, objfile_name (objfile));
10705
10706 do_cleanups (cleanups);
10707 }
10708 return NULL;
10709 }
10710
10711 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10712 See lookup_dwo_cutu_unit for details. */
10713
10714 static struct dwo_unit *
10715 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10716 const char *dwo_name, const char *comp_dir,
10717 ULONGEST signature)
10718 {
10719 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10720 }
10721
10722 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10723 See lookup_dwo_cutu_unit for details. */
10724
10725 static struct dwo_unit *
10726 lookup_dwo_type_unit (struct signatured_type *this_tu,
10727 const char *dwo_name, const char *comp_dir)
10728 {
10729 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10730 }
10731
10732 /* Traversal function for queue_and_load_all_dwo_tus. */
10733
10734 static int
10735 queue_and_load_dwo_tu (void **slot, void *info)
10736 {
10737 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10738 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10739 ULONGEST signature = dwo_unit->signature;
10740 struct signatured_type *sig_type =
10741 lookup_dwo_signatured_type (per_cu->cu, signature);
10742
10743 if (sig_type != NULL)
10744 {
10745 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10746
10747 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10748 a real dependency of PER_CU on SIG_TYPE. That is detected later
10749 while processing PER_CU. */
10750 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10751 load_full_type_unit (sig_cu);
10752 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10753 }
10754
10755 return 1;
10756 }
10757
10758 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10759 The DWO may have the only definition of the type, though it may not be
10760 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10761 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10762
10763 static void
10764 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10765 {
10766 struct dwo_unit *dwo_unit;
10767 struct dwo_file *dwo_file;
10768
10769 gdb_assert (!per_cu->is_debug_types);
10770 gdb_assert (get_dwp_file () == NULL);
10771 gdb_assert (per_cu->cu != NULL);
10772
10773 dwo_unit = per_cu->cu->dwo_unit;
10774 gdb_assert (dwo_unit != NULL);
10775
10776 dwo_file = dwo_unit->dwo_file;
10777 if (dwo_file->tus != NULL)
10778 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10779 }
10780
10781 /* Free all resources associated with DWO_FILE.
10782 Close the DWO file and munmap the sections.
10783 All memory should be on the objfile obstack. */
10784
10785 static void
10786 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10787 {
10788 int ix;
10789 struct dwarf2_section_info *section;
10790
10791 /* Note: dbfd is NULL for virtual DWO files. */
10792 gdb_bfd_unref (dwo_file->dbfd);
10793
10794 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10795 }
10796
10797 /* Wrapper for free_dwo_file for use in cleanups. */
10798
10799 static void
10800 free_dwo_file_cleanup (void *arg)
10801 {
10802 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10803 struct objfile *objfile = dwarf2_per_objfile->objfile;
10804
10805 free_dwo_file (dwo_file, objfile);
10806 }
10807
10808 /* Traversal function for free_dwo_files. */
10809
10810 static int
10811 free_dwo_file_from_slot (void **slot, void *info)
10812 {
10813 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10814 struct objfile *objfile = (struct objfile *) info;
10815
10816 free_dwo_file (dwo_file, objfile);
10817
10818 return 1;
10819 }
10820
10821 /* Free all resources associated with DWO_FILES. */
10822
10823 static void
10824 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10825 {
10826 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10827 }
10828 \f
10829 /* Read in various DIEs. */
10830
10831 /* qsort helper for inherit_abstract_dies. */
10832
10833 static int
10834 unsigned_int_compar (const void *ap, const void *bp)
10835 {
10836 unsigned int a = *(unsigned int *) ap;
10837 unsigned int b = *(unsigned int *) bp;
10838
10839 return (a > b) - (b > a);
10840 }
10841
10842 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10843 Inherit only the children of the DW_AT_abstract_origin DIE not being
10844 already referenced by DW_AT_abstract_origin from the children of the
10845 current DIE. */
10846
10847 static void
10848 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10849 {
10850 struct die_info *child_die;
10851 unsigned die_children_count;
10852 /* CU offsets which were referenced by children of the current DIE. */
10853 sect_offset *offsets;
10854 sect_offset *offsets_end, *offsetp;
10855 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10856 struct die_info *origin_die;
10857 /* Iterator of the ORIGIN_DIE children. */
10858 struct die_info *origin_child_die;
10859 struct cleanup *cleanups;
10860 struct attribute *attr;
10861 struct dwarf2_cu *origin_cu;
10862 struct pending **origin_previous_list_in_scope;
10863
10864 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10865 if (!attr)
10866 return;
10867
10868 /* Note that following die references may follow to a die in a
10869 different cu. */
10870
10871 origin_cu = cu;
10872 origin_die = follow_die_ref (die, attr, &origin_cu);
10873
10874 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10875 symbols in. */
10876 origin_previous_list_in_scope = origin_cu->list_in_scope;
10877 origin_cu->list_in_scope = cu->list_in_scope;
10878
10879 if (die->tag != origin_die->tag
10880 && !(die->tag == DW_TAG_inlined_subroutine
10881 && origin_die->tag == DW_TAG_subprogram))
10882 complaint (&symfile_complaints,
10883 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
10884 die->offset.sect_off, origin_die->offset.sect_off);
10885
10886 child_die = die->child;
10887 die_children_count = 0;
10888 while (child_die && child_die->tag)
10889 {
10890 child_die = sibling_die (child_die);
10891 die_children_count++;
10892 }
10893 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10894 cleanups = make_cleanup (xfree, offsets);
10895
10896 offsets_end = offsets;
10897 child_die = die->child;
10898 while (child_die && child_die->tag)
10899 {
10900 /* For each CHILD_DIE, find the corresponding child of
10901 ORIGIN_DIE. If there is more than one layer of
10902 DW_AT_abstract_origin, follow them all; there shouldn't be,
10903 but GCC versions at least through 4.4 generate this (GCC PR
10904 40573). */
10905 struct die_info *child_origin_die = child_die;
10906 struct dwarf2_cu *child_origin_cu = cu;
10907
10908 while (1)
10909 {
10910 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10911 child_origin_cu);
10912 if (attr == NULL)
10913 break;
10914 child_origin_die = follow_die_ref (child_origin_die, attr,
10915 &child_origin_cu);
10916 }
10917
10918 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10919 counterpart may exist. */
10920 if (child_origin_die != child_die)
10921 {
10922 if (child_die->tag != child_origin_die->tag
10923 && !(child_die->tag == DW_TAG_inlined_subroutine
10924 && child_origin_die->tag == DW_TAG_subprogram))
10925 complaint (&symfile_complaints,
10926 _("Child DIE 0x%x and its abstract origin 0x%x have "
10927 "different tags"), child_die->offset.sect_off,
10928 child_origin_die->offset.sect_off);
10929 if (child_origin_die->parent != origin_die)
10930 complaint (&symfile_complaints,
10931 _("Child DIE 0x%x and its abstract origin 0x%x have "
10932 "different parents"), child_die->offset.sect_off,
10933 child_origin_die->offset.sect_off);
10934 else
10935 *offsets_end++ = child_origin_die->offset;
10936 }
10937 child_die = sibling_die (child_die);
10938 }
10939 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10940 unsigned_int_compar);
10941 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
10942 if (offsetp[-1].sect_off == offsetp->sect_off)
10943 complaint (&symfile_complaints,
10944 _("Multiple children of DIE 0x%x refer "
10945 "to DIE 0x%x as their abstract origin"),
10946 die->offset.sect_off, offsetp->sect_off);
10947
10948 offsetp = offsets;
10949 origin_child_die = origin_die->child;
10950 while (origin_child_die && origin_child_die->tag)
10951 {
10952 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
10953 while (offsetp < offsets_end
10954 && offsetp->sect_off < origin_child_die->offset.sect_off)
10955 offsetp++;
10956 if (offsetp >= offsets_end
10957 || offsetp->sect_off > origin_child_die->offset.sect_off)
10958 {
10959 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
10960 process_die (origin_child_die, origin_cu);
10961 }
10962 origin_child_die = sibling_die (origin_child_die);
10963 }
10964 origin_cu->list_in_scope = origin_previous_list_in_scope;
10965
10966 do_cleanups (cleanups);
10967 }
10968
10969 static void
10970 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
10971 {
10972 struct objfile *objfile = cu->objfile;
10973 struct context_stack *new;
10974 CORE_ADDR lowpc;
10975 CORE_ADDR highpc;
10976 struct die_info *child_die;
10977 struct attribute *attr, *call_line, *call_file;
10978 const char *name;
10979 CORE_ADDR baseaddr;
10980 struct block *block;
10981 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10982 VEC (symbolp) *template_args = NULL;
10983 struct template_symbol *templ_func = NULL;
10984
10985 if (inlined_func)
10986 {
10987 /* If we do not have call site information, we can't show the
10988 caller of this inlined function. That's too confusing, so
10989 only use the scope for local variables. */
10990 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10991 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10992 if (call_line == NULL || call_file == NULL)
10993 {
10994 read_lexical_block_scope (die, cu);
10995 return;
10996 }
10997 }
10998
10999 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11000
11001 name = dwarf2_name (die, cu);
11002
11003 /* Ignore functions with missing or empty names. These are actually
11004 illegal according to the DWARF standard. */
11005 if (name == NULL)
11006 {
11007 complaint (&symfile_complaints,
11008 _("missing name for subprogram DIE at %d"),
11009 die->offset.sect_off);
11010 return;
11011 }
11012
11013 /* Ignore functions with missing or invalid low and high pc attributes. */
11014 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11015 {
11016 attr = dwarf2_attr (die, DW_AT_external, cu);
11017 if (!attr || !DW_UNSND (attr))
11018 complaint (&symfile_complaints,
11019 _("cannot get low and high bounds "
11020 "for subprogram DIE at %d"),
11021 die->offset.sect_off);
11022 return;
11023 }
11024
11025 lowpc += baseaddr;
11026 highpc += baseaddr;
11027
11028 /* If we have any template arguments, then we must allocate a
11029 different sort of symbol. */
11030 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11031 {
11032 if (child_die->tag == DW_TAG_template_type_param
11033 || child_die->tag == DW_TAG_template_value_param)
11034 {
11035 templ_func = allocate_template_symbol (objfile);
11036 templ_func->base.is_cplus_template_function = 1;
11037 break;
11038 }
11039 }
11040
11041 new = push_context (0, lowpc);
11042 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11043 (struct symbol *) templ_func);
11044
11045 /* If there is a location expression for DW_AT_frame_base, record
11046 it. */
11047 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11048 if (attr)
11049 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11050
11051 cu->list_in_scope = &local_symbols;
11052
11053 if (die->child != NULL)
11054 {
11055 child_die = die->child;
11056 while (child_die && child_die->tag)
11057 {
11058 if (child_die->tag == DW_TAG_template_type_param
11059 || child_die->tag == DW_TAG_template_value_param)
11060 {
11061 struct symbol *arg = new_symbol (child_die, NULL, cu);
11062
11063 if (arg != NULL)
11064 VEC_safe_push (symbolp, template_args, arg);
11065 }
11066 else
11067 process_die (child_die, cu);
11068 child_die = sibling_die (child_die);
11069 }
11070 }
11071
11072 inherit_abstract_dies (die, cu);
11073
11074 /* If we have a DW_AT_specification, we might need to import using
11075 directives from the context of the specification DIE. See the
11076 comment in determine_prefix. */
11077 if (cu->language == language_cplus
11078 && dwarf2_attr (die, DW_AT_specification, cu))
11079 {
11080 struct dwarf2_cu *spec_cu = cu;
11081 struct die_info *spec_die = die_specification (die, &spec_cu);
11082
11083 while (spec_die)
11084 {
11085 child_die = spec_die->child;
11086 while (child_die && child_die->tag)
11087 {
11088 if (child_die->tag == DW_TAG_imported_module)
11089 process_die (child_die, spec_cu);
11090 child_die = sibling_die (child_die);
11091 }
11092
11093 /* In some cases, GCC generates specification DIEs that
11094 themselves contain DW_AT_specification attributes. */
11095 spec_die = die_specification (spec_die, &spec_cu);
11096 }
11097 }
11098
11099 new = pop_context ();
11100 /* Make a block for the local symbols within. */
11101 block = finish_block (new->name, &local_symbols, new->old_blocks,
11102 lowpc, highpc, objfile);
11103
11104 /* For C++, set the block's scope. */
11105 if ((cu->language == language_cplus || cu->language == language_fortran)
11106 && cu->processing_has_namespace_info)
11107 block_set_scope (block, determine_prefix (die, cu),
11108 &objfile->objfile_obstack);
11109
11110 /* If we have address ranges, record them. */
11111 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11112
11113 /* Attach template arguments to function. */
11114 if (! VEC_empty (symbolp, template_args))
11115 {
11116 gdb_assert (templ_func != NULL);
11117
11118 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11119 templ_func->template_arguments
11120 = obstack_alloc (&objfile->objfile_obstack,
11121 (templ_func->n_template_arguments
11122 * sizeof (struct symbol *)));
11123 memcpy (templ_func->template_arguments,
11124 VEC_address (symbolp, template_args),
11125 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11126 VEC_free (symbolp, template_args);
11127 }
11128
11129 /* In C++, we can have functions nested inside functions (e.g., when
11130 a function declares a class that has methods). This means that
11131 when we finish processing a function scope, we may need to go
11132 back to building a containing block's symbol lists. */
11133 local_symbols = new->locals;
11134 using_directives = new->using_directives;
11135
11136 /* If we've finished processing a top-level function, subsequent
11137 symbols go in the file symbol list. */
11138 if (outermost_context_p ())
11139 cu->list_in_scope = &file_symbols;
11140 }
11141
11142 /* Process all the DIES contained within a lexical block scope. Start
11143 a new scope, process the dies, and then close the scope. */
11144
11145 static void
11146 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11147 {
11148 struct objfile *objfile = cu->objfile;
11149 struct context_stack *new;
11150 CORE_ADDR lowpc, highpc;
11151 struct die_info *child_die;
11152 CORE_ADDR baseaddr;
11153
11154 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11155
11156 /* Ignore blocks with missing or invalid low and high pc attributes. */
11157 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11158 as multiple lexical blocks? Handling children in a sane way would
11159 be nasty. Might be easier to properly extend generic blocks to
11160 describe ranges. */
11161 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11162 return;
11163 lowpc += baseaddr;
11164 highpc += baseaddr;
11165
11166 push_context (0, lowpc);
11167 if (die->child != NULL)
11168 {
11169 child_die = die->child;
11170 while (child_die && child_die->tag)
11171 {
11172 process_die (child_die, cu);
11173 child_die = sibling_die (child_die);
11174 }
11175 }
11176 new = pop_context ();
11177
11178 if (local_symbols != NULL || using_directives != NULL)
11179 {
11180 struct block *block
11181 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11182 highpc, objfile);
11183
11184 /* Note that recording ranges after traversing children, as we
11185 do here, means that recording a parent's ranges entails
11186 walking across all its children's ranges as they appear in
11187 the address map, which is quadratic behavior.
11188
11189 It would be nicer to record the parent's ranges before
11190 traversing its children, simply overriding whatever you find
11191 there. But since we don't even decide whether to create a
11192 block until after we've traversed its children, that's hard
11193 to do. */
11194 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11195 }
11196 local_symbols = new->locals;
11197 using_directives = new->using_directives;
11198 }
11199
11200 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11201
11202 static void
11203 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11204 {
11205 struct objfile *objfile = cu->objfile;
11206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11207 CORE_ADDR pc, baseaddr;
11208 struct attribute *attr;
11209 struct call_site *call_site, call_site_local;
11210 void **slot;
11211 int nparams;
11212 struct die_info *child_die;
11213
11214 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11215
11216 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11217 if (!attr)
11218 {
11219 complaint (&symfile_complaints,
11220 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11221 "DIE 0x%x [in module %s]"),
11222 die->offset.sect_off, objfile_name (objfile));
11223 return;
11224 }
11225 pc = DW_ADDR (attr) + baseaddr;
11226
11227 if (cu->call_site_htab == NULL)
11228 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11229 NULL, &objfile->objfile_obstack,
11230 hashtab_obstack_allocate, NULL);
11231 call_site_local.pc = pc;
11232 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11233 if (*slot != NULL)
11234 {
11235 complaint (&symfile_complaints,
11236 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11237 "DIE 0x%x [in module %s]"),
11238 paddress (gdbarch, pc), die->offset.sect_off,
11239 objfile_name (objfile));
11240 return;
11241 }
11242
11243 /* Count parameters at the caller. */
11244
11245 nparams = 0;
11246 for (child_die = die->child; child_die && child_die->tag;
11247 child_die = sibling_die (child_die))
11248 {
11249 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11250 {
11251 complaint (&symfile_complaints,
11252 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11253 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11254 child_die->tag, child_die->offset.sect_off,
11255 objfile_name (objfile));
11256 continue;
11257 }
11258
11259 nparams++;
11260 }
11261
11262 call_site = obstack_alloc (&objfile->objfile_obstack,
11263 (sizeof (*call_site)
11264 + (sizeof (*call_site->parameter)
11265 * (nparams - 1))));
11266 *slot = call_site;
11267 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11268 call_site->pc = pc;
11269
11270 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11271 {
11272 struct die_info *func_die;
11273
11274 /* Skip also over DW_TAG_inlined_subroutine. */
11275 for (func_die = die->parent;
11276 func_die && func_die->tag != DW_TAG_subprogram
11277 && func_die->tag != DW_TAG_subroutine_type;
11278 func_die = func_die->parent);
11279
11280 /* DW_AT_GNU_all_call_sites is a superset
11281 of DW_AT_GNU_all_tail_call_sites. */
11282 if (func_die
11283 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11284 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11285 {
11286 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11287 not complete. But keep CALL_SITE for look ups via call_site_htab,
11288 both the initial caller containing the real return address PC and
11289 the final callee containing the current PC of a chain of tail
11290 calls do not need to have the tail call list complete. But any
11291 function candidate for a virtual tail call frame searched via
11292 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11293 determined unambiguously. */
11294 }
11295 else
11296 {
11297 struct type *func_type = NULL;
11298
11299 if (func_die)
11300 func_type = get_die_type (func_die, cu);
11301 if (func_type != NULL)
11302 {
11303 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11304
11305 /* Enlist this call site to the function. */
11306 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11307 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11308 }
11309 else
11310 complaint (&symfile_complaints,
11311 _("Cannot find function owning DW_TAG_GNU_call_site "
11312 "DIE 0x%x [in module %s]"),
11313 die->offset.sect_off, objfile_name (objfile));
11314 }
11315 }
11316
11317 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11318 if (attr == NULL)
11319 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11320 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11321 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11322 /* Keep NULL DWARF_BLOCK. */;
11323 else if (attr_form_is_block (attr))
11324 {
11325 struct dwarf2_locexpr_baton *dlbaton;
11326
11327 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11328 dlbaton->data = DW_BLOCK (attr)->data;
11329 dlbaton->size = DW_BLOCK (attr)->size;
11330 dlbaton->per_cu = cu->per_cu;
11331
11332 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11333 }
11334 else if (attr_form_is_ref (attr))
11335 {
11336 struct dwarf2_cu *target_cu = cu;
11337 struct die_info *target_die;
11338
11339 target_die = follow_die_ref (die, attr, &target_cu);
11340 gdb_assert (target_cu->objfile == objfile);
11341 if (die_is_declaration (target_die, target_cu))
11342 {
11343 const char *target_physname = NULL;
11344 struct attribute *target_attr;
11345
11346 /* Prefer the mangled name; otherwise compute the demangled one. */
11347 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11348 if (target_attr == NULL)
11349 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11350 target_cu);
11351 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11352 target_physname = DW_STRING (target_attr);
11353 else
11354 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11355 if (target_physname == NULL)
11356 complaint (&symfile_complaints,
11357 _("DW_AT_GNU_call_site_target target DIE has invalid "
11358 "physname, for referencing DIE 0x%x [in module %s]"),
11359 die->offset.sect_off, objfile_name (objfile));
11360 else
11361 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11362 }
11363 else
11364 {
11365 CORE_ADDR lowpc;
11366
11367 /* DW_AT_entry_pc should be preferred. */
11368 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11369 complaint (&symfile_complaints,
11370 _("DW_AT_GNU_call_site_target target DIE has invalid "
11371 "low pc, for referencing DIE 0x%x [in module %s]"),
11372 die->offset.sect_off, objfile_name (objfile));
11373 else
11374 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11375 }
11376 }
11377 else
11378 complaint (&symfile_complaints,
11379 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11380 "block nor reference, for DIE 0x%x [in module %s]"),
11381 die->offset.sect_off, objfile_name (objfile));
11382
11383 call_site->per_cu = cu->per_cu;
11384
11385 for (child_die = die->child;
11386 child_die && child_die->tag;
11387 child_die = sibling_die (child_die))
11388 {
11389 struct call_site_parameter *parameter;
11390 struct attribute *loc, *origin;
11391
11392 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11393 {
11394 /* Already printed the complaint above. */
11395 continue;
11396 }
11397
11398 gdb_assert (call_site->parameter_count < nparams);
11399 parameter = &call_site->parameter[call_site->parameter_count];
11400
11401 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11402 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11403 register is contained in DW_AT_GNU_call_site_value. */
11404
11405 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11406 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11407 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11408 {
11409 sect_offset offset;
11410
11411 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11412 offset = dwarf2_get_ref_die_offset (origin);
11413 if (!offset_in_cu_p (&cu->header, offset))
11414 {
11415 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11416 binding can be done only inside one CU. Such referenced DIE
11417 therefore cannot be even moved to DW_TAG_partial_unit. */
11418 complaint (&symfile_complaints,
11419 _("DW_AT_abstract_origin offset is not in CU for "
11420 "DW_TAG_GNU_call_site child DIE 0x%x "
11421 "[in module %s]"),
11422 child_die->offset.sect_off, objfile_name (objfile));
11423 continue;
11424 }
11425 parameter->u.param_offset.cu_off = (offset.sect_off
11426 - cu->header.offset.sect_off);
11427 }
11428 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11429 {
11430 complaint (&symfile_complaints,
11431 _("No DW_FORM_block* DW_AT_location for "
11432 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11433 child_die->offset.sect_off, objfile_name (objfile));
11434 continue;
11435 }
11436 else
11437 {
11438 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11439 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11440 if (parameter->u.dwarf_reg != -1)
11441 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11442 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11443 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11444 &parameter->u.fb_offset))
11445 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11446 else
11447 {
11448 complaint (&symfile_complaints,
11449 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11450 "for DW_FORM_block* DW_AT_location is supported for "
11451 "DW_TAG_GNU_call_site child DIE 0x%x "
11452 "[in module %s]"),
11453 child_die->offset.sect_off, objfile_name (objfile));
11454 continue;
11455 }
11456 }
11457
11458 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11459 if (!attr_form_is_block (attr))
11460 {
11461 complaint (&symfile_complaints,
11462 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11463 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11464 child_die->offset.sect_off, objfile_name (objfile));
11465 continue;
11466 }
11467 parameter->value = DW_BLOCK (attr)->data;
11468 parameter->value_size = DW_BLOCK (attr)->size;
11469
11470 /* Parameters are not pre-cleared by memset above. */
11471 parameter->data_value = NULL;
11472 parameter->data_value_size = 0;
11473 call_site->parameter_count++;
11474
11475 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11476 if (attr)
11477 {
11478 if (!attr_form_is_block (attr))
11479 complaint (&symfile_complaints,
11480 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11481 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11482 child_die->offset.sect_off, objfile_name (objfile));
11483 else
11484 {
11485 parameter->data_value = DW_BLOCK (attr)->data;
11486 parameter->data_value_size = DW_BLOCK (attr)->size;
11487 }
11488 }
11489 }
11490 }
11491
11492 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11493 Return 1 if the attributes are present and valid, otherwise, return 0.
11494 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11495
11496 static int
11497 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11498 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11499 struct partial_symtab *ranges_pst)
11500 {
11501 struct objfile *objfile = cu->objfile;
11502 struct comp_unit_head *cu_header = &cu->header;
11503 bfd *obfd = objfile->obfd;
11504 unsigned int addr_size = cu_header->addr_size;
11505 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11506 /* Base address selection entry. */
11507 CORE_ADDR base;
11508 int found_base;
11509 unsigned int dummy;
11510 const gdb_byte *buffer;
11511 CORE_ADDR marker;
11512 int low_set;
11513 CORE_ADDR low = 0;
11514 CORE_ADDR high = 0;
11515 CORE_ADDR baseaddr;
11516
11517 found_base = cu->base_known;
11518 base = cu->base_address;
11519
11520 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11521 if (offset >= dwarf2_per_objfile->ranges.size)
11522 {
11523 complaint (&symfile_complaints,
11524 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11525 offset);
11526 return 0;
11527 }
11528 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11529
11530 /* Read in the largest possible address. */
11531 marker = read_address (obfd, buffer, cu, &dummy);
11532 if ((marker & mask) == mask)
11533 {
11534 /* If we found the largest possible address, then
11535 read the base address. */
11536 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11537 buffer += 2 * addr_size;
11538 offset += 2 * addr_size;
11539 found_base = 1;
11540 }
11541
11542 low_set = 0;
11543
11544 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11545
11546 while (1)
11547 {
11548 CORE_ADDR range_beginning, range_end;
11549
11550 range_beginning = read_address (obfd, buffer, cu, &dummy);
11551 buffer += addr_size;
11552 range_end = read_address (obfd, buffer, cu, &dummy);
11553 buffer += addr_size;
11554 offset += 2 * addr_size;
11555
11556 /* An end of list marker is a pair of zero addresses. */
11557 if (range_beginning == 0 && range_end == 0)
11558 /* Found the end of list entry. */
11559 break;
11560
11561 /* Each base address selection entry is a pair of 2 values.
11562 The first is the largest possible address, the second is
11563 the base address. Check for a base address here. */
11564 if ((range_beginning & mask) == mask)
11565 {
11566 /* If we found the largest possible address, then
11567 read the base address. */
11568 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11569 found_base = 1;
11570 continue;
11571 }
11572
11573 if (!found_base)
11574 {
11575 /* We have no valid base address for the ranges
11576 data. */
11577 complaint (&symfile_complaints,
11578 _("Invalid .debug_ranges data (no base address)"));
11579 return 0;
11580 }
11581
11582 if (range_beginning > range_end)
11583 {
11584 /* Inverted range entries are invalid. */
11585 complaint (&symfile_complaints,
11586 _("Invalid .debug_ranges data (inverted range)"));
11587 return 0;
11588 }
11589
11590 /* Empty range entries have no effect. */
11591 if (range_beginning == range_end)
11592 continue;
11593
11594 range_beginning += base;
11595 range_end += base;
11596
11597 /* A not-uncommon case of bad debug info.
11598 Don't pollute the addrmap with bad data. */
11599 if (range_beginning + baseaddr == 0
11600 && !dwarf2_per_objfile->has_section_at_zero)
11601 {
11602 complaint (&symfile_complaints,
11603 _(".debug_ranges entry has start address of zero"
11604 " [in module %s]"), objfile_name (objfile));
11605 continue;
11606 }
11607
11608 if (ranges_pst != NULL)
11609 addrmap_set_empty (objfile->psymtabs_addrmap,
11610 range_beginning + baseaddr,
11611 range_end - 1 + baseaddr,
11612 ranges_pst);
11613
11614 /* FIXME: This is recording everything as a low-high
11615 segment of consecutive addresses. We should have a
11616 data structure for discontiguous block ranges
11617 instead. */
11618 if (! low_set)
11619 {
11620 low = range_beginning;
11621 high = range_end;
11622 low_set = 1;
11623 }
11624 else
11625 {
11626 if (range_beginning < low)
11627 low = range_beginning;
11628 if (range_end > high)
11629 high = range_end;
11630 }
11631 }
11632
11633 if (! low_set)
11634 /* If the first entry is an end-of-list marker, the range
11635 describes an empty scope, i.e. no instructions. */
11636 return 0;
11637
11638 if (low_return)
11639 *low_return = low;
11640 if (high_return)
11641 *high_return = high;
11642 return 1;
11643 }
11644
11645 /* Get low and high pc attributes from a die. Return 1 if the attributes
11646 are present and valid, otherwise, return 0. Return -1 if the range is
11647 discontinuous, i.e. derived from DW_AT_ranges information. */
11648
11649 static int
11650 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11651 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11652 struct partial_symtab *pst)
11653 {
11654 struct attribute *attr;
11655 struct attribute *attr_high;
11656 CORE_ADDR low = 0;
11657 CORE_ADDR high = 0;
11658 int ret = 0;
11659
11660 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11661 if (attr_high)
11662 {
11663 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11664 if (attr)
11665 {
11666 low = DW_ADDR (attr);
11667 if (attr_high->form == DW_FORM_addr
11668 || attr_high->form == DW_FORM_GNU_addr_index)
11669 high = DW_ADDR (attr_high);
11670 else
11671 high = low + DW_UNSND (attr_high);
11672 }
11673 else
11674 /* Found high w/o low attribute. */
11675 return 0;
11676
11677 /* Found consecutive range of addresses. */
11678 ret = 1;
11679 }
11680 else
11681 {
11682 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11683 if (attr != NULL)
11684 {
11685 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11686 We take advantage of the fact that DW_AT_ranges does not appear
11687 in DW_TAG_compile_unit of DWO files. */
11688 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11689 unsigned int ranges_offset = (DW_UNSND (attr)
11690 + (need_ranges_base
11691 ? cu->ranges_base
11692 : 0));
11693
11694 /* Value of the DW_AT_ranges attribute is the offset in the
11695 .debug_ranges section. */
11696 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11697 return 0;
11698 /* Found discontinuous range of addresses. */
11699 ret = -1;
11700 }
11701 }
11702
11703 /* read_partial_die has also the strict LOW < HIGH requirement. */
11704 if (high <= low)
11705 return 0;
11706
11707 /* When using the GNU linker, .gnu.linkonce. sections are used to
11708 eliminate duplicate copies of functions and vtables and such.
11709 The linker will arbitrarily choose one and discard the others.
11710 The AT_*_pc values for such functions refer to local labels in
11711 these sections. If the section from that file was discarded, the
11712 labels are not in the output, so the relocs get a value of 0.
11713 If this is a discarded function, mark the pc bounds as invalid,
11714 so that GDB will ignore it. */
11715 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11716 return 0;
11717
11718 *lowpc = low;
11719 if (highpc)
11720 *highpc = high;
11721 return ret;
11722 }
11723
11724 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11725 its low and high PC addresses. Do nothing if these addresses could not
11726 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11727 and HIGHPC to the high address if greater than HIGHPC. */
11728
11729 static void
11730 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11731 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11732 struct dwarf2_cu *cu)
11733 {
11734 CORE_ADDR low, high;
11735 struct die_info *child = die->child;
11736
11737 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11738 {
11739 *lowpc = min (*lowpc, low);
11740 *highpc = max (*highpc, high);
11741 }
11742
11743 /* If the language does not allow nested subprograms (either inside
11744 subprograms or lexical blocks), we're done. */
11745 if (cu->language != language_ada)
11746 return;
11747
11748 /* Check all the children of the given DIE. If it contains nested
11749 subprograms, then check their pc bounds. Likewise, we need to
11750 check lexical blocks as well, as they may also contain subprogram
11751 definitions. */
11752 while (child && child->tag)
11753 {
11754 if (child->tag == DW_TAG_subprogram
11755 || child->tag == DW_TAG_lexical_block)
11756 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11757 child = sibling_die (child);
11758 }
11759 }
11760
11761 /* Get the low and high pc's represented by the scope DIE, and store
11762 them in *LOWPC and *HIGHPC. If the correct values can't be
11763 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11764
11765 static void
11766 get_scope_pc_bounds (struct die_info *die,
11767 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11768 struct dwarf2_cu *cu)
11769 {
11770 CORE_ADDR best_low = (CORE_ADDR) -1;
11771 CORE_ADDR best_high = (CORE_ADDR) 0;
11772 CORE_ADDR current_low, current_high;
11773
11774 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11775 {
11776 best_low = current_low;
11777 best_high = current_high;
11778 }
11779 else
11780 {
11781 struct die_info *child = die->child;
11782
11783 while (child && child->tag)
11784 {
11785 switch (child->tag) {
11786 case DW_TAG_subprogram:
11787 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11788 break;
11789 case DW_TAG_namespace:
11790 case DW_TAG_module:
11791 /* FIXME: carlton/2004-01-16: Should we do this for
11792 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11793 that current GCC's always emit the DIEs corresponding
11794 to definitions of methods of classes as children of a
11795 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11796 the DIEs giving the declarations, which could be
11797 anywhere). But I don't see any reason why the
11798 standards says that they have to be there. */
11799 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11800
11801 if (current_low != ((CORE_ADDR) -1))
11802 {
11803 best_low = min (best_low, current_low);
11804 best_high = max (best_high, current_high);
11805 }
11806 break;
11807 default:
11808 /* Ignore. */
11809 break;
11810 }
11811
11812 child = sibling_die (child);
11813 }
11814 }
11815
11816 *lowpc = best_low;
11817 *highpc = best_high;
11818 }
11819
11820 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11821 in DIE. */
11822
11823 static void
11824 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11825 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11826 {
11827 struct objfile *objfile = cu->objfile;
11828 struct attribute *attr;
11829 struct attribute *attr_high;
11830
11831 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11832 if (attr_high)
11833 {
11834 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11835 if (attr)
11836 {
11837 CORE_ADDR low = DW_ADDR (attr);
11838 CORE_ADDR high;
11839 if (attr_high->form == DW_FORM_addr
11840 || attr_high->form == DW_FORM_GNU_addr_index)
11841 high = DW_ADDR (attr_high);
11842 else
11843 high = low + DW_UNSND (attr_high);
11844
11845 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11846 }
11847 }
11848
11849 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11850 if (attr)
11851 {
11852 bfd *obfd = objfile->obfd;
11853 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11854 We take advantage of the fact that DW_AT_ranges does not appear
11855 in DW_TAG_compile_unit of DWO files. */
11856 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11857
11858 /* The value of the DW_AT_ranges attribute is the offset of the
11859 address range list in the .debug_ranges section. */
11860 unsigned long offset = (DW_UNSND (attr)
11861 + (need_ranges_base ? cu->ranges_base : 0));
11862 const gdb_byte *buffer;
11863
11864 /* For some target architectures, but not others, the
11865 read_address function sign-extends the addresses it returns.
11866 To recognize base address selection entries, we need a
11867 mask. */
11868 unsigned int addr_size = cu->header.addr_size;
11869 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11870
11871 /* The base address, to which the next pair is relative. Note
11872 that this 'base' is a DWARF concept: most entries in a range
11873 list are relative, to reduce the number of relocs against the
11874 debugging information. This is separate from this function's
11875 'baseaddr' argument, which GDB uses to relocate debugging
11876 information from a shared library based on the address at
11877 which the library was loaded. */
11878 CORE_ADDR base = cu->base_address;
11879 int base_known = cu->base_known;
11880
11881 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11882 if (offset >= dwarf2_per_objfile->ranges.size)
11883 {
11884 complaint (&symfile_complaints,
11885 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11886 offset);
11887 return;
11888 }
11889 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11890
11891 for (;;)
11892 {
11893 unsigned int bytes_read;
11894 CORE_ADDR start, end;
11895
11896 start = read_address (obfd, buffer, cu, &bytes_read);
11897 buffer += bytes_read;
11898 end = read_address (obfd, buffer, cu, &bytes_read);
11899 buffer += bytes_read;
11900
11901 /* Did we find the end of the range list? */
11902 if (start == 0 && end == 0)
11903 break;
11904
11905 /* Did we find a base address selection entry? */
11906 else if ((start & base_select_mask) == base_select_mask)
11907 {
11908 base = end;
11909 base_known = 1;
11910 }
11911
11912 /* We found an ordinary address range. */
11913 else
11914 {
11915 if (!base_known)
11916 {
11917 complaint (&symfile_complaints,
11918 _("Invalid .debug_ranges data "
11919 "(no base address)"));
11920 return;
11921 }
11922
11923 if (start > end)
11924 {
11925 /* Inverted range entries are invalid. */
11926 complaint (&symfile_complaints,
11927 _("Invalid .debug_ranges data "
11928 "(inverted range)"));
11929 return;
11930 }
11931
11932 /* Empty range entries have no effect. */
11933 if (start == end)
11934 continue;
11935
11936 start += base + baseaddr;
11937 end += base + baseaddr;
11938
11939 /* A not-uncommon case of bad debug info.
11940 Don't pollute the addrmap with bad data. */
11941 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11942 {
11943 complaint (&symfile_complaints,
11944 _(".debug_ranges entry has start address of zero"
11945 " [in module %s]"), objfile_name (objfile));
11946 continue;
11947 }
11948
11949 record_block_range (block, start, end - 1);
11950 }
11951 }
11952 }
11953 }
11954
11955 /* Check whether the producer field indicates either of GCC < 4.6, or the
11956 Intel C/C++ compiler, and cache the result in CU. */
11957
11958 static void
11959 check_producer (struct dwarf2_cu *cu)
11960 {
11961 const char *cs;
11962 int major, minor, release;
11963
11964 if (cu->producer == NULL)
11965 {
11966 /* For unknown compilers expect their behavior is DWARF version
11967 compliant.
11968
11969 GCC started to support .debug_types sections by -gdwarf-4 since
11970 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11971 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11972 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11973 interpreted incorrectly by GDB now - GCC PR debug/48229. */
11974 }
11975 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
11976 {
11977 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11978
11979 cs = &cu->producer[strlen ("GNU ")];
11980 while (*cs && !isdigit (*cs))
11981 cs++;
11982 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11983 {
11984 /* Not recognized as GCC. */
11985 }
11986 else
11987 {
11988 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11989 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11990 }
11991 }
11992 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11993 cu->producer_is_icc = 1;
11994 else
11995 {
11996 /* For other non-GCC compilers, expect their behavior is DWARF version
11997 compliant. */
11998 }
11999
12000 cu->checked_producer = 1;
12001 }
12002
12003 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12004 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12005 during 4.6.0 experimental. */
12006
12007 static int
12008 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12009 {
12010 if (!cu->checked_producer)
12011 check_producer (cu);
12012
12013 return cu->producer_is_gxx_lt_4_6;
12014 }
12015
12016 /* Return the default accessibility type if it is not overriden by
12017 DW_AT_accessibility. */
12018
12019 static enum dwarf_access_attribute
12020 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12021 {
12022 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12023 {
12024 /* The default DWARF 2 accessibility for members is public, the default
12025 accessibility for inheritance is private. */
12026
12027 if (die->tag != DW_TAG_inheritance)
12028 return DW_ACCESS_public;
12029 else
12030 return DW_ACCESS_private;
12031 }
12032 else
12033 {
12034 /* DWARF 3+ defines the default accessibility a different way. The same
12035 rules apply now for DW_TAG_inheritance as for the members and it only
12036 depends on the container kind. */
12037
12038 if (die->parent->tag == DW_TAG_class_type)
12039 return DW_ACCESS_private;
12040 else
12041 return DW_ACCESS_public;
12042 }
12043 }
12044
12045 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12046 offset. If the attribute was not found return 0, otherwise return
12047 1. If it was found but could not properly be handled, set *OFFSET
12048 to 0. */
12049
12050 static int
12051 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12052 LONGEST *offset)
12053 {
12054 struct attribute *attr;
12055
12056 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12057 if (attr != NULL)
12058 {
12059 *offset = 0;
12060
12061 /* Note that we do not check for a section offset first here.
12062 This is because DW_AT_data_member_location is new in DWARF 4,
12063 so if we see it, we can assume that a constant form is really
12064 a constant and not a section offset. */
12065 if (attr_form_is_constant (attr))
12066 *offset = dwarf2_get_attr_constant_value (attr, 0);
12067 else if (attr_form_is_section_offset (attr))
12068 dwarf2_complex_location_expr_complaint ();
12069 else if (attr_form_is_block (attr))
12070 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12071 else
12072 dwarf2_complex_location_expr_complaint ();
12073
12074 return 1;
12075 }
12076
12077 return 0;
12078 }
12079
12080 /* Add an aggregate field to the field list. */
12081
12082 static void
12083 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12084 struct dwarf2_cu *cu)
12085 {
12086 struct objfile *objfile = cu->objfile;
12087 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12088 struct nextfield *new_field;
12089 struct attribute *attr;
12090 struct field *fp;
12091 const char *fieldname = "";
12092
12093 /* Allocate a new field list entry and link it in. */
12094 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12095 make_cleanup (xfree, new_field);
12096 memset (new_field, 0, sizeof (struct nextfield));
12097
12098 if (die->tag == DW_TAG_inheritance)
12099 {
12100 new_field->next = fip->baseclasses;
12101 fip->baseclasses = new_field;
12102 }
12103 else
12104 {
12105 new_field->next = fip->fields;
12106 fip->fields = new_field;
12107 }
12108 fip->nfields++;
12109
12110 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12111 if (attr)
12112 new_field->accessibility = DW_UNSND (attr);
12113 else
12114 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12115 if (new_field->accessibility != DW_ACCESS_public)
12116 fip->non_public_fields = 1;
12117
12118 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12119 if (attr)
12120 new_field->virtuality = DW_UNSND (attr);
12121 else
12122 new_field->virtuality = DW_VIRTUALITY_none;
12123
12124 fp = &new_field->field;
12125
12126 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12127 {
12128 LONGEST offset;
12129
12130 /* Data member other than a C++ static data member. */
12131
12132 /* Get type of field. */
12133 fp->type = die_type (die, cu);
12134
12135 SET_FIELD_BITPOS (*fp, 0);
12136
12137 /* Get bit size of field (zero if none). */
12138 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12139 if (attr)
12140 {
12141 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12142 }
12143 else
12144 {
12145 FIELD_BITSIZE (*fp) = 0;
12146 }
12147
12148 /* Get bit offset of field. */
12149 if (handle_data_member_location (die, cu, &offset))
12150 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12151 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12152 if (attr)
12153 {
12154 if (gdbarch_bits_big_endian (gdbarch))
12155 {
12156 /* For big endian bits, the DW_AT_bit_offset gives the
12157 additional bit offset from the MSB of the containing
12158 anonymous object to the MSB of the field. We don't
12159 have to do anything special since we don't need to
12160 know the size of the anonymous object. */
12161 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12162 }
12163 else
12164 {
12165 /* For little endian bits, compute the bit offset to the
12166 MSB of the anonymous object, subtract off the number of
12167 bits from the MSB of the field to the MSB of the
12168 object, and then subtract off the number of bits of
12169 the field itself. The result is the bit offset of
12170 the LSB of the field. */
12171 int anonymous_size;
12172 int bit_offset = DW_UNSND (attr);
12173
12174 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12175 if (attr)
12176 {
12177 /* The size of the anonymous object containing
12178 the bit field is explicit, so use the
12179 indicated size (in bytes). */
12180 anonymous_size = DW_UNSND (attr);
12181 }
12182 else
12183 {
12184 /* The size of the anonymous object containing
12185 the bit field must be inferred from the type
12186 attribute of the data member containing the
12187 bit field. */
12188 anonymous_size = TYPE_LENGTH (fp->type);
12189 }
12190 SET_FIELD_BITPOS (*fp,
12191 (FIELD_BITPOS (*fp)
12192 + anonymous_size * bits_per_byte
12193 - bit_offset - FIELD_BITSIZE (*fp)));
12194 }
12195 }
12196
12197 /* Get name of field. */
12198 fieldname = dwarf2_name (die, cu);
12199 if (fieldname == NULL)
12200 fieldname = "";
12201
12202 /* The name is already allocated along with this objfile, so we don't
12203 need to duplicate it for the type. */
12204 fp->name = fieldname;
12205
12206 /* Change accessibility for artificial fields (e.g. virtual table
12207 pointer or virtual base class pointer) to private. */
12208 if (dwarf2_attr (die, DW_AT_artificial, cu))
12209 {
12210 FIELD_ARTIFICIAL (*fp) = 1;
12211 new_field->accessibility = DW_ACCESS_private;
12212 fip->non_public_fields = 1;
12213 }
12214 }
12215 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12216 {
12217 /* C++ static member. */
12218
12219 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12220 is a declaration, but all versions of G++ as of this writing
12221 (so through at least 3.2.1) incorrectly generate
12222 DW_TAG_variable tags. */
12223
12224 const char *physname;
12225
12226 /* Get name of field. */
12227 fieldname = dwarf2_name (die, cu);
12228 if (fieldname == NULL)
12229 return;
12230
12231 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12232 if (attr
12233 /* Only create a symbol if this is an external value.
12234 new_symbol checks this and puts the value in the global symbol
12235 table, which we want. If it is not external, new_symbol
12236 will try to put the value in cu->list_in_scope which is wrong. */
12237 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12238 {
12239 /* A static const member, not much different than an enum as far as
12240 we're concerned, except that we can support more types. */
12241 new_symbol (die, NULL, cu);
12242 }
12243
12244 /* Get physical name. */
12245 physname = dwarf2_physname (fieldname, die, cu);
12246
12247 /* The name is already allocated along with this objfile, so we don't
12248 need to duplicate it for the type. */
12249 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12250 FIELD_TYPE (*fp) = die_type (die, cu);
12251 FIELD_NAME (*fp) = fieldname;
12252 }
12253 else if (die->tag == DW_TAG_inheritance)
12254 {
12255 LONGEST offset;
12256
12257 /* C++ base class field. */
12258 if (handle_data_member_location (die, cu, &offset))
12259 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12260 FIELD_BITSIZE (*fp) = 0;
12261 FIELD_TYPE (*fp) = die_type (die, cu);
12262 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12263 fip->nbaseclasses++;
12264 }
12265 }
12266
12267 /* Add a typedef defined in the scope of the FIP's class. */
12268
12269 static void
12270 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12271 struct dwarf2_cu *cu)
12272 {
12273 struct objfile *objfile = cu->objfile;
12274 struct typedef_field_list *new_field;
12275 struct attribute *attr;
12276 struct typedef_field *fp;
12277 char *fieldname = "";
12278
12279 /* Allocate a new field list entry and link it in. */
12280 new_field = xzalloc (sizeof (*new_field));
12281 make_cleanup (xfree, new_field);
12282
12283 gdb_assert (die->tag == DW_TAG_typedef);
12284
12285 fp = &new_field->field;
12286
12287 /* Get name of field. */
12288 fp->name = dwarf2_name (die, cu);
12289 if (fp->name == NULL)
12290 return;
12291
12292 fp->type = read_type_die (die, cu);
12293
12294 new_field->next = fip->typedef_field_list;
12295 fip->typedef_field_list = new_field;
12296 fip->typedef_field_list_count++;
12297 }
12298
12299 /* Create the vector of fields, and attach it to the type. */
12300
12301 static void
12302 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12303 struct dwarf2_cu *cu)
12304 {
12305 int nfields = fip->nfields;
12306
12307 /* Record the field count, allocate space for the array of fields,
12308 and create blank accessibility bitfields if necessary. */
12309 TYPE_NFIELDS (type) = nfields;
12310 TYPE_FIELDS (type) = (struct field *)
12311 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12312 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12313
12314 if (fip->non_public_fields && cu->language != language_ada)
12315 {
12316 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12317
12318 TYPE_FIELD_PRIVATE_BITS (type) =
12319 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12320 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12321
12322 TYPE_FIELD_PROTECTED_BITS (type) =
12323 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12324 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12325
12326 TYPE_FIELD_IGNORE_BITS (type) =
12327 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12328 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12329 }
12330
12331 /* If the type has baseclasses, allocate and clear a bit vector for
12332 TYPE_FIELD_VIRTUAL_BITS. */
12333 if (fip->nbaseclasses && cu->language != language_ada)
12334 {
12335 int num_bytes = B_BYTES (fip->nbaseclasses);
12336 unsigned char *pointer;
12337
12338 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12339 pointer = TYPE_ALLOC (type, num_bytes);
12340 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12341 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12342 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12343 }
12344
12345 /* Copy the saved-up fields into the field vector. Start from the head of
12346 the list, adding to the tail of the field array, so that they end up in
12347 the same order in the array in which they were added to the list. */
12348 while (nfields-- > 0)
12349 {
12350 struct nextfield *fieldp;
12351
12352 if (fip->fields)
12353 {
12354 fieldp = fip->fields;
12355 fip->fields = fieldp->next;
12356 }
12357 else
12358 {
12359 fieldp = fip->baseclasses;
12360 fip->baseclasses = fieldp->next;
12361 }
12362
12363 TYPE_FIELD (type, nfields) = fieldp->field;
12364 switch (fieldp->accessibility)
12365 {
12366 case DW_ACCESS_private:
12367 if (cu->language != language_ada)
12368 SET_TYPE_FIELD_PRIVATE (type, nfields);
12369 break;
12370
12371 case DW_ACCESS_protected:
12372 if (cu->language != language_ada)
12373 SET_TYPE_FIELD_PROTECTED (type, nfields);
12374 break;
12375
12376 case DW_ACCESS_public:
12377 break;
12378
12379 default:
12380 /* Unknown accessibility. Complain and treat it as public. */
12381 {
12382 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12383 fieldp->accessibility);
12384 }
12385 break;
12386 }
12387 if (nfields < fip->nbaseclasses)
12388 {
12389 switch (fieldp->virtuality)
12390 {
12391 case DW_VIRTUALITY_virtual:
12392 case DW_VIRTUALITY_pure_virtual:
12393 if (cu->language == language_ada)
12394 error (_("unexpected virtuality in component of Ada type"));
12395 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12396 break;
12397 }
12398 }
12399 }
12400 }
12401
12402 /* Return true if this member function is a constructor, false
12403 otherwise. */
12404
12405 static int
12406 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12407 {
12408 const char *fieldname;
12409 const char *typename;
12410 int len;
12411
12412 if (die->parent == NULL)
12413 return 0;
12414
12415 if (die->parent->tag != DW_TAG_structure_type
12416 && die->parent->tag != DW_TAG_union_type
12417 && die->parent->tag != DW_TAG_class_type)
12418 return 0;
12419
12420 fieldname = dwarf2_name (die, cu);
12421 typename = dwarf2_name (die->parent, cu);
12422 if (fieldname == NULL || typename == NULL)
12423 return 0;
12424
12425 len = strlen (fieldname);
12426 return (strncmp (fieldname, typename, len) == 0
12427 && (typename[len] == '\0' || typename[len] == '<'));
12428 }
12429
12430 /* Add a member function to the proper fieldlist. */
12431
12432 static void
12433 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12434 struct type *type, struct dwarf2_cu *cu)
12435 {
12436 struct objfile *objfile = cu->objfile;
12437 struct attribute *attr;
12438 struct fnfieldlist *flp;
12439 int i;
12440 struct fn_field *fnp;
12441 const char *fieldname;
12442 struct nextfnfield *new_fnfield;
12443 struct type *this_type;
12444 enum dwarf_access_attribute accessibility;
12445
12446 if (cu->language == language_ada)
12447 error (_("unexpected member function in Ada type"));
12448
12449 /* Get name of member function. */
12450 fieldname = dwarf2_name (die, cu);
12451 if (fieldname == NULL)
12452 return;
12453
12454 /* Look up member function name in fieldlist. */
12455 for (i = 0; i < fip->nfnfields; i++)
12456 {
12457 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12458 break;
12459 }
12460
12461 /* Create new list element if necessary. */
12462 if (i < fip->nfnfields)
12463 flp = &fip->fnfieldlists[i];
12464 else
12465 {
12466 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12467 {
12468 fip->fnfieldlists = (struct fnfieldlist *)
12469 xrealloc (fip->fnfieldlists,
12470 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12471 * sizeof (struct fnfieldlist));
12472 if (fip->nfnfields == 0)
12473 make_cleanup (free_current_contents, &fip->fnfieldlists);
12474 }
12475 flp = &fip->fnfieldlists[fip->nfnfields];
12476 flp->name = fieldname;
12477 flp->length = 0;
12478 flp->head = NULL;
12479 i = fip->nfnfields++;
12480 }
12481
12482 /* Create a new member function field and chain it to the field list
12483 entry. */
12484 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12485 make_cleanup (xfree, new_fnfield);
12486 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12487 new_fnfield->next = flp->head;
12488 flp->head = new_fnfield;
12489 flp->length++;
12490
12491 /* Fill in the member function field info. */
12492 fnp = &new_fnfield->fnfield;
12493
12494 /* Delay processing of the physname until later. */
12495 if (cu->language == language_cplus || cu->language == language_java)
12496 {
12497 add_to_method_list (type, i, flp->length - 1, fieldname,
12498 die, cu);
12499 }
12500 else
12501 {
12502 const char *physname = dwarf2_physname (fieldname, die, cu);
12503 fnp->physname = physname ? physname : "";
12504 }
12505
12506 fnp->type = alloc_type (objfile);
12507 this_type = read_type_die (die, cu);
12508 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12509 {
12510 int nparams = TYPE_NFIELDS (this_type);
12511
12512 /* TYPE is the domain of this method, and THIS_TYPE is the type
12513 of the method itself (TYPE_CODE_METHOD). */
12514 smash_to_method_type (fnp->type, type,
12515 TYPE_TARGET_TYPE (this_type),
12516 TYPE_FIELDS (this_type),
12517 TYPE_NFIELDS (this_type),
12518 TYPE_VARARGS (this_type));
12519
12520 /* Handle static member functions.
12521 Dwarf2 has no clean way to discern C++ static and non-static
12522 member functions. G++ helps GDB by marking the first
12523 parameter for non-static member functions (which is the this
12524 pointer) as artificial. We obtain this information from
12525 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12526 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12527 fnp->voffset = VOFFSET_STATIC;
12528 }
12529 else
12530 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12531 dwarf2_full_name (fieldname, die, cu));
12532
12533 /* Get fcontext from DW_AT_containing_type if present. */
12534 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12535 fnp->fcontext = die_containing_type (die, cu);
12536
12537 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12538 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12539
12540 /* Get accessibility. */
12541 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12542 if (attr)
12543 accessibility = DW_UNSND (attr);
12544 else
12545 accessibility = dwarf2_default_access_attribute (die, cu);
12546 switch (accessibility)
12547 {
12548 case DW_ACCESS_private:
12549 fnp->is_private = 1;
12550 break;
12551 case DW_ACCESS_protected:
12552 fnp->is_protected = 1;
12553 break;
12554 }
12555
12556 /* Check for artificial methods. */
12557 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12558 if (attr && DW_UNSND (attr) != 0)
12559 fnp->is_artificial = 1;
12560
12561 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12562
12563 /* Get index in virtual function table if it is a virtual member
12564 function. For older versions of GCC, this is an offset in the
12565 appropriate virtual table, as specified by DW_AT_containing_type.
12566 For everyone else, it is an expression to be evaluated relative
12567 to the object address. */
12568
12569 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12570 if (attr)
12571 {
12572 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12573 {
12574 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12575 {
12576 /* Old-style GCC. */
12577 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12578 }
12579 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12580 || (DW_BLOCK (attr)->size > 1
12581 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12582 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12583 {
12584 struct dwarf_block blk;
12585 int offset;
12586
12587 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12588 ? 1 : 2);
12589 blk.size = DW_BLOCK (attr)->size - offset;
12590 blk.data = DW_BLOCK (attr)->data + offset;
12591 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12592 if ((fnp->voffset % cu->header.addr_size) != 0)
12593 dwarf2_complex_location_expr_complaint ();
12594 else
12595 fnp->voffset /= cu->header.addr_size;
12596 fnp->voffset += 2;
12597 }
12598 else
12599 dwarf2_complex_location_expr_complaint ();
12600
12601 if (!fnp->fcontext)
12602 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12603 }
12604 else if (attr_form_is_section_offset (attr))
12605 {
12606 dwarf2_complex_location_expr_complaint ();
12607 }
12608 else
12609 {
12610 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12611 fieldname);
12612 }
12613 }
12614 else
12615 {
12616 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12617 if (attr && DW_UNSND (attr))
12618 {
12619 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12620 complaint (&symfile_complaints,
12621 _("Member function \"%s\" (offset %d) is virtual "
12622 "but the vtable offset is not specified"),
12623 fieldname, die->offset.sect_off);
12624 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12625 TYPE_CPLUS_DYNAMIC (type) = 1;
12626 }
12627 }
12628 }
12629
12630 /* Create the vector of member function fields, and attach it to the type. */
12631
12632 static void
12633 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12634 struct dwarf2_cu *cu)
12635 {
12636 struct fnfieldlist *flp;
12637 int i;
12638
12639 if (cu->language == language_ada)
12640 error (_("unexpected member functions in Ada type"));
12641
12642 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12643 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12644 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12645
12646 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12647 {
12648 struct nextfnfield *nfp = flp->head;
12649 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12650 int k;
12651
12652 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12653 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12654 fn_flp->fn_fields = (struct fn_field *)
12655 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12656 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12657 fn_flp->fn_fields[k] = nfp->fnfield;
12658 }
12659
12660 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12661 }
12662
12663 /* Returns non-zero if NAME is the name of a vtable member in CU's
12664 language, zero otherwise. */
12665 static int
12666 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12667 {
12668 static const char vptr[] = "_vptr";
12669 static const char vtable[] = "vtable";
12670
12671 /* Look for the C++ and Java forms of the vtable. */
12672 if ((cu->language == language_java
12673 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12674 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12675 && is_cplus_marker (name[sizeof (vptr) - 1])))
12676 return 1;
12677
12678 return 0;
12679 }
12680
12681 /* GCC outputs unnamed structures that are really pointers to member
12682 functions, with the ABI-specified layout. If TYPE describes
12683 such a structure, smash it into a member function type.
12684
12685 GCC shouldn't do this; it should just output pointer to member DIEs.
12686 This is GCC PR debug/28767. */
12687
12688 static void
12689 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12690 {
12691 struct type *pfn_type, *domain_type, *new_type;
12692
12693 /* Check for a structure with no name and two children. */
12694 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12695 return;
12696
12697 /* Check for __pfn and __delta members. */
12698 if (TYPE_FIELD_NAME (type, 0) == NULL
12699 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12700 || TYPE_FIELD_NAME (type, 1) == NULL
12701 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12702 return;
12703
12704 /* Find the type of the method. */
12705 pfn_type = TYPE_FIELD_TYPE (type, 0);
12706 if (pfn_type == NULL
12707 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12708 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12709 return;
12710
12711 /* Look for the "this" argument. */
12712 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12713 if (TYPE_NFIELDS (pfn_type) == 0
12714 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12715 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12716 return;
12717
12718 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12719 new_type = alloc_type (objfile);
12720 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12721 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12722 TYPE_VARARGS (pfn_type));
12723 smash_to_methodptr_type (type, new_type);
12724 }
12725
12726 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12727 (icc). */
12728
12729 static int
12730 producer_is_icc (struct dwarf2_cu *cu)
12731 {
12732 if (!cu->checked_producer)
12733 check_producer (cu);
12734
12735 return cu->producer_is_icc;
12736 }
12737
12738 /* Called when we find the DIE that starts a structure or union scope
12739 (definition) to create a type for the structure or union. Fill in
12740 the type's name and general properties; the members will not be
12741 processed until process_structure_scope.
12742
12743 NOTE: we need to call these functions regardless of whether or not the
12744 DIE has a DW_AT_name attribute, since it might be an anonymous
12745 structure or union. This gets the type entered into our set of
12746 user defined types.
12747
12748 However, if the structure is incomplete (an opaque struct/union)
12749 then suppress creating a symbol table entry for it since gdb only
12750 wants to find the one with the complete definition. Note that if
12751 it is complete, we just call new_symbol, which does it's own
12752 checking about whether the struct/union is anonymous or not (and
12753 suppresses creating a symbol table entry itself). */
12754
12755 static struct type *
12756 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12757 {
12758 struct objfile *objfile = cu->objfile;
12759 struct type *type;
12760 struct attribute *attr;
12761 const char *name;
12762
12763 /* If the definition of this type lives in .debug_types, read that type.
12764 Don't follow DW_AT_specification though, that will take us back up
12765 the chain and we want to go down. */
12766 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12767 if (attr)
12768 {
12769 type = get_DW_AT_signature_type (die, attr, cu);
12770
12771 /* The type's CU may not be the same as CU.
12772 Ensure TYPE is recorded with CU in die_type_hash. */
12773 return set_die_type (die, type, cu);
12774 }
12775
12776 type = alloc_type (objfile);
12777 INIT_CPLUS_SPECIFIC (type);
12778
12779 name = dwarf2_name (die, cu);
12780 if (name != NULL)
12781 {
12782 if (cu->language == language_cplus
12783 || cu->language == language_java)
12784 {
12785 const char *full_name = dwarf2_full_name (name, die, cu);
12786
12787 /* dwarf2_full_name might have already finished building the DIE's
12788 type. If so, there is no need to continue. */
12789 if (get_die_type (die, cu) != NULL)
12790 return get_die_type (die, cu);
12791
12792 TYPE_TAG_NAME (type) = full_name;
12793 if (die->tag == DW_TAG_structure_type
12794 || die->tag == DW_TAG_class_type)
12795 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12796 }
12797 else
12798 {
12799 /* The name is already allocated along with this objfile, so
12800 we don't need to duplicate it for the type. */
12801 TYPE_TAG_NAME (type) = name;
12802 if (die->tag == DW_TAG_class_type)
12803 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12804 }
12805 }
12806
12807 if (die->tag == DW_TAG_structure_type)
12808 {
12809 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12810 }
12811 else if (die->tag == DW_TAG_union_type)
12812 {
12813 TYPE_CODE (type) = TYPE_CODE_UNION;
12814 }
12815 else
12816 {
12817 TYPE_CODE (type) = TYPE_CODE_CLASS;
12818 }
12819
12820 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12821 TYPE_DECLARED_CLASS (type) = 1;
12822
12823 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12824 if (attr)
12825 {
12826 TYPE_LENGTH (type) = DW_UNSND (attr);
12827 }
12828 else
12829 {
12830 TYPE_LENGTH (type) = 0;
12831 }
12832
12833 if (producer_is_icc (cu))
12834 {
12835 /* ICC does not output the required DW_AT_declaration
12836 on incomplete types, but gives them a size of zero. */
12837 }
12838 else
12839 TYPE_STUB_SUPPORTED (type) = 1;
12840
12841 if (die_is_declaration (die, cu))
12842 TYPE_STUB (type) = 1;
12843 else if (attr == NULL && die->child == NULL
12844 && producer_is_realview (cu->producer))
12845 /* RealView does not output the required DW_AT_declaration
12846 on incomplete types. */
12847 TYPE_STUB (type) = 1;
12848
12849 /* We need to add the type field to the die immediately so we don't
12850 infinitely recurse when dealing with pointers to the structure
12851 type within the structure itself. */
12852 set_die_type (die, type, cu);
12853
12854 /* set_die_type should be already done. */
12855 set_descriptive_type (type, die, cu);
12856
12857 return type;
12858 }
12859
12860 /* Finish creating a structure or union type, including filling in
12861 its members and creating a symbol for it. */
12862
12863 static void
12864 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12865 {
12866 struct objfile *objfile = cu->objfile;
12867 struct die_info *child_die = die->child;
12868 struct type *type;
12869
12870 type = get_die_type (die, cu);
12871 if (type == NULL)
12872 type = read_structure_type (die, cu);
12873
12874 if (die->child != NULL && ! die_is_declaration (die, cu))
12875 {
12876 struct field_info fi;
12877 struct die_info *child_die;
12878 VEC (symbolp) *template_args = NULL;
12879 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
12880
12881 memset (&fi, 0, sizeof (struct field_info));
12882
12883 child_die = die->child;
12884
12885 while (child_die && child_die->tag)
12886 {
12887 if (child_die->tag == DW_TAG_member
12888 || child_die->tag == DW_TAG_variable)
12889 {
12890 /* NOTE: carlton/2002-11-05: A C++ static data member
12891 should be a DW_TAG_member that is a declaration, but
12892 all versions of G++ as of this writing (so through at
12893 least 3.2.1) incorrectly generate DW_TAG_variable
12894 tags for them instead. */
12895 dwarf2_add_field (&fi, child_die, cu);
12896 }
12897 else if (child_die->tag == DW_TAG_subprogram)
12898 {
12899 /* C++ member function. */
12900 dwarf2_add_member_fn (&fi, child_die, type, cu);
12901 }
12902 else if (child_die->tag == DW_TAG_inheritance)
12903 {
12904 /* C++ base class field. */
12905 dwarf2_add_field (&fi, child_die, cu);
12906 }
12907 else if (child_die->tag == DW_TAG_typedef)
12908 dwarf2_add_typedef (&fi, child_die, cu);
12909 else if (child_die->tag == DW_TAG_template_type_param
12910 || child_die->tag == DW_TAG_template_value_param)
12911 {
12912 struct symbol *arg = new_symbol (child_die, NULL, cu);
12913
12914 if (arg != NULL)
12915 VEC_safe_push (symbolp, template_args, arg);
12916 }
12917
12918 child_die = sibling_die (child_die);
12919 }
12920
12921 /* Attach template arguments to type. */
12922 if (! VEC_empty (symbolp, template_args))
12923 {
12924 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12925 TYPE_N_TEMPLATE_ARGUMENTS (type)
12926 = VEC_length (symbolp, template_args);
12927 TYPE_TEMPLATE_ARGUMENTS (type)
12928 = obstack_alloc (&objfile->objfile_obstack,
12929 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12930 * sizeof (struct symbol *)));
12931 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12932 VEC_address (symbolp, template_args),
12933 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12934 * sizeof (struct symbol *)));
12935 VEC_free (symbolp, template_args);
12936 }
12937
12938 /* Attach fields and member functions to the type. */
12939 if (fi.nfields)
12940 dwarf2_attach_fields_to_type (&fi, type, cu);
12941 if (fi.nfnfields)
12942 {
12943 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
12944
12945 /* Get the type which refers to the base class (possibly this
12946 class itself) which contains the vtable pointer for the current
12947 class from the DW_AT_containing_type attribute. This use of
12948 DW_AT_containing_type is a GNU extension. */
12949
12950 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12951 {
12952 struct type *t = die_containing_type (die, cu);
12953
12954 TYPE_VPTR_BASETYPE (type) = t;
12955 if (type == t)
12956 {
12957 int i;
12958
12959 /* Our own class provides vtbl ptr. */
12960 for (i = TYPE_NFIELDS (t) - 1;
12961 i >= TYPE_N_BASECLASSES (t);
12962 --i)
12963 {
12964 const char *fieldname = TYPE_FIELD_NAME (t, i);
12965
12966 if (is_vtable_name (fieldname, cu))
12967 {
12968 TYPE_VPTR_FIELDNO (type) = i;
12969 break;
12970 }
12971 }
12972
12973 /* Complain if virtual function table field not found. */
12974 if (i < TYPE_N_BASECLASSES (t))
12975 complaint (&symfile_complaints,
12976 _("virtual function table pointer "
12977 "not found when defining class '%s'"),
12978 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12979 "");
12980 }
12981 else
12982 {
12983 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12984 }
12985 }
12986 else if (cu->producer
12987 && strncmp (cu->producer,
12988 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12989 {
12990 /* The IBM XLC compiler does not provide direct indication
12991 of the containing type, but the vtable pointer is
12992 always named __vfp. */
12993
12994 int i;
12995
12996 for (i = TYPE_NFIELDS (type) - 1;
12997 i >= TYPE_N_BASECLASSES (type);
12998 --i)
12999 {
13000 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13001 {
13002 TYPE_VPTR_FIELDNO (type) = i;
13003 TYPE_VPTR_BASETYPE (type) = type;
13004 break;
13005 }
13006 }
13007 }
13008 }
13009
13010 /* Copy fi.typedef_field_list linked list elements content into the
13011 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13012 if (fi.typedef_field_list)
13013 {
13014 int i = fi.typedef_field_list_count;
13015
13016 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13017 TYPE_TYPEDEF_FIELD_ARRAY (type)
13018 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13019 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13020
13021 /* Reverse the list order to keep the debug info elements order. */
13022 while (--i >= 0)
13023 {
13024 struct typedef_field *dest, *src;
13025
13026 dest = &TYPE_TYPEDEF_FIELD (type, i);
13027 src = &fi.typedef_field_list->field;
13028 fi.typedef_field_list = fi.typedef_field_list->next;
13029 *dest = *src;
13030 }
13031 }
13032
13033 do_cleanups (back_to);
13034
13035 if (HAVE_CPLUS_STRUCT (type))
13036 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13037 }
13038
13039 quirk_gcc_member_function_pointer (type, objfile);
13040
13041 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13042 snapshots) has been known to create a die giving a declaration
13043 for a class that has, as a child, a die giving a definition for a
13044 nested class. So we have to process our children even if the
13045 current die is a declaration. Normally, of course, a declaration
13046 won't have any children at all. */
13047
13048 while (child_die != NULL && child_die->tag)
13049 {
13050 if (child_die->tag == DW_TAG_member
13051 || child_die->tag == DW_TAG_variable
13052 || child_die->tag == DW_TAG_inheritance
13053 || child_die->tag == DW_TAG_template_value_param
13054 || child_die->tag == DW_TAG_template_type_param)
13055 {
13056 /* Do nothing. */
13057 }
13058 else
13059 process_die (child_die, cu);
13060
13061 child_die = sibling_die (child_die);
13062 }
13063
13064 /* Do not consider external references. According to the DWARF standard,
13065 these DIEs are identified by the fact that they have no byte_size
13066 attribute, and a declaration attribute. */
13067 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13068 || !die_is_declaration (die, cu))
13069 new_symbol (die, type, cu);
13070 }
13071
13072 /* Given a DW_AT_enumeration_type die, set its type. We do not
13073 complete the type's fields yet, or create any symbols. */
13074
13075 static struct type *
13076 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13077 {
13078 struct objfile *objfile = cu->objfile;
13079 struct type *type;
13080 struct attribute *attr;
13081 const char *name;
13082
13083 /* If the definition of this type lives in .debug_types, read that type.
13084 Don't follow DW_AT_specification though, that will take us back up
13085 the chain and we want to go down. */
13086 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13087 if (attr)
13088 {
13089 type = get_DW_AT_signature_type (die, attr, cu);
13090
13091 /* The type's CU may not be the same as CU.
13092 Ensure TYPE is recorded with CU in die_type_hash. */
13093 return set_die_type (die, type, cu);
13094 }
13095
13096 type = alloc_type (objfile);
13097
13098 TYPE_CODE (type) = TYPE_CODE_ENUM;
13099 name = dwarf2_full_name (NULL, die, cu);
13100 if (name != NULL)
13101 TYPE_TAG_NAME (type) = name;
13102
13103 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13104 if (attr)
13105 {
13106 TYPE_LENGTH (type) = DW_UNSND (attr);
13107 }
13108 else
13109 {
13110 TYPE_LENGTH (type) = 0;
13111 }
13112
13113 /* The enumeration DIE can be incomplete. In Ada, any type can be
13114 declared as private in the package spec, and then defined only
13115 inside the package body. Such types are known as Taft Amendment
13116 Types. When another package uses such a type, an incomplete DIE
13117 may be generated by the compiler. */
13118 if (die_is_declaration (die, cu))
13119 TYPE_STUB (type) = 1;
13120
13121 return set_die_type (die, type, cu);
13122 }
13123
13124 /* Given a pointer to a die which begins an enumeration, process all
13125 the dies that define the members of the enumeration, and create the
13126 symbol for the enumeration type.
13127
13128 NOTE: We reverse the order of the element list. */
13129
13130 static void
13131 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13132 {
13133 struct type *this_type;
13134
13135 this_type = get_die_type (die, cu);
13136 if (this_type == NULL)
13137 this_type = read_enumeration_type (die, cu);
13138
13139 if (die->child != NULL)
13140 {
13141 struct die_info *child_die;
13142 struct symbol *sym;
13143 struct field *fields = NULL;
13144 int num_fields = 0;
13145 int unsigned_enum = 1;
13146 const char *name;
13147 int flag_enum = 1;
13148 ULONGEST mask = 0;
13149
13150 child_die = die->child;
13151 while (child_die && child_die->tag)
13152 {
13153 if (child_die->tag != DW_TAG_enumerator)
13154 {
13155 process_die (child_die, cu);
13156 }
13157 else
13158 {
13159 name = dwarf2_name (child_die, cu);
13160 if (name)
13161 {
13162 sym = new_symbol (child_die, this_type, cu);
13163 if (SYMBOL_VALUE (sym) < 0)
13164 {
13165 unsigned_enum = 0;
13166 flag_enum = 0;
13167 }
13168 else if ((mask & SYMBOL_VALUE (sym)) != 0)
13169 flag_enum = 0;
13170 else
13171 mask |= SYMBOL_VALUE (sym);
13172
13173 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13174 {
13175 fields = (struct field *)
13176 xrealloc (fields,
13177 (num_fields + DW_FIELD_ALLOC_CHUNK)
13178 * sizeof (struct field));
13179 }
13180
13181 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13182 FIELD_TYPE (fields[num_fields]) = NULL;
13183 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13184 FIELD_BITSIZE (fields[num_fields]) = 0;
13185
13186 num_fields++;
13187 }
13188 }
13189
13190 child_die = sibling_die (child_die);
13191 }
13192
13193 if (num_fields)
13194 {
13195 TYPE_NFIELDS (this_type) = num_fields;
13196 TYPE_FIELDS (this_type) = (struct field *)
13197 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13198 memcpy (TYPE_FIELDS (this_type), fields,
13199 sizeof (struct field) * num_fields);
13200 xfree (fields);
13201 }
13202 if (unsigned_enum)
13203 TYPE_UNSIGNED (this_type) = 1;
13204 if (flag_enum)
13205 TYPE_FLAG_ENUM (this_type) = 1;
13206 }
13207
13208 /* If we are reading an enum from a .debug_types unit, and the enum
13209 is a declaration, and the enum is not the signatured type in the
13210 unit, then we do not want to add a symbol for it. Adding a
13211 symbol would in some cases obscure the true definition of the
13212 enum, giving users an incomplete type when the definition is
13213 actually available. Note that we do not want to do this for all
13214 enums which are just declarations, because C++0x allows forward
13215 enum declarations. */
13216 if (cu->per_cu->is_debug_types
13217 && die_is_declaration (die, cu))
13218 {
13219 struct signatured_type *sig_type;
13220
13221 sig_type = (struct signatured_type *) cu->per_cu;
13222 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13223 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13224 return;
13225 }
13226
13227 new_symbol (die, this_type, cu);
13228 }
13229
13230 /* Extract all information from a DW_TAG_array_type DIE and put it in
13231 the DIE's type field. For now, this only handles one dimensional
13232 arrays. */
13233
13234 static struct type *
13235 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13236 {
13237 struct objfile *objfile = cu->objfile;
13238 struct die_info *child_die;
13239 struct type *type;
13240 struct type *element_type, *range_type, *index_type;
13241 struct type **range_types = NULL;
13242 struct attribute *attr;
13243 int ndim = 0;
13244 struct cleanup *back_to;
13245 const char *name;
13246
13247 element_type = die_type (die, cu);
13248
13249 /* The die_type call above may have already set the type for this DIE. */
13250 type = get_die_type (die, cu);
13251 if (type)
13252 return type;
13253
13254 /* Irix 6.2 native cc creates array types without children for
13255 arrays with unspecified length. */
13256 if (die->child == NULL)
13257 {
13258 index_type = objfile_type (objfile)->builtin_int;
13259 range_type = create_range_type (NULL, index_type, 0, -1);
13260 type = create_array_type (NULL, element_type, range_type);
13261 return set_die_type (die, type, cu);
13262 }
13263
13264 back_to = make_cleanup (null_cleanup, NULL);
13265 child_die = die->child;
13266 while (child_die && child_die->tag)
13267 {
13268 if (child_die->tag == DW_TAG_subrange_type)
13269 {
13270 struct type *child_type = read_type_die (child_die, cu);
13271
13272 if (child_type != NULL)
13273 {
13274 /* The range type was succesfully read. Save it for the
13275 array type creation. */
13276 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13277 {
13278 range_types = (struct type **)
13279 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13280 * sizeof (struct type *));
13281 if (ndim == 0)
13282 make_cleanup (free_current_contents, &range_types);
13283 }
13284 range_types[ndim++] = child_type;
13285 }
13286 }
13287 child_die = sibling_die (child_die);
13288 }
13289
13290 /* Dwarf2 dimensions are output from left to right, create the
13291 necessary array types in backwards order. */
13292
13293 type = element_type;
13294
13295 if (read_array_order (die, cu) == DW_ORD_col_major)
13296 {
13297 int i = 0;
13298
13299 while (i < ndim)
13300 type = create_array_type (NULL, type, range_types[i++]);
13301 }
13302 else
13303 {
13304 while (ndim-- > 0)
13305 type = create_array_type (NULL, type, range_types[ndim]);
13306 }
13307
13308 /* Understand Dwarf2 support for vector types (like they occur on
13309 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13310 array type. This is not part of the Dwarf2/3 standard yet, but a
13311 custom vendor extension. The main difference between a regular
13312 array and the vector variant is that vectors are passed by value
13313 to functions. */
13314 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13315 if (attr)
13316 make_vector_type (type);
13317
13318 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13319 implementation may choose to implement triple vectors using this
13320 attribute. */
13321 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13322 if (attr)
13323 {
13324 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13325 TYPE_LENGTH (type) = DW_UNSND (attr);
13326 else
13327 complaint (&symfile_complaints,
13328 _("DW_AT_byte_size for array type smaller "
13329 "than the total size of elements"));
13330 }
13331
13332 name = dwarf2_name (die, cu);
13333 if (name)
13334 TYPE_NAME (type) = name;
13335
13336 /* Install the type in the die. */
13337 set_die_type (die, type, cu);
13338
13339 /* set_die_type should be already done. */
13340 set_descriptive_type (type, die, cu);
13341
13342 do_cleanups (back_to);
13343
13344 return type;
13345 }
13346
13347 static enum dwarf_array_dim_ordering
13348 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13349 {
13350 struct attribute *attr;
13351
13352 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13353
13354 if (attr) return DW_SND (attr);
13355
13356 /* GNU F77 is a special case, as at 08/2004 array type info is the
13357 opposite order to the dwarf2 specification, but data is still
13358 laid out as per normal fortran.
13359
13360 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13361 version checking. */
13362
13363 if (cu->language == language_fortran
13364 && cu->producer && strstr (cu->producer, "GNU F77"))
13365 {
13366 return DW_ORD_row_major;
13367 }
13368
13369 switch (cu->language_defn->la_array_ordering)
13370 {
13371 case array_column_major:
13372 return DW_ORD_col_major;
13373 case array_row_major:
13374 default:
13375 return DW_ORD_row_major;
13376 };
13377 }
13378
13379 /* Extract all information from a DW_TAG_set_type DIE and put it in
13380 the DIE's type field. */
13381
13382 static struct type *
13383 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13384 {
13385 struct type *domain_type, *set_type;
13386 struct attribute *attr;
13387
13388 domain_type = die_type (die, cu);
13389
13390 /* The die_type call above may have already set the type for this DIE. */
13391 set_type = get_die_type (die, cu);
13392 if (set_type)
13393 return set_type;
13394
13395 set_type = create_set_type (NULL, domain_type);
13396
13397 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13398 if (attr)
13399 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13400
13401 return set_die_type (die, set_type, cu);
13402 }
13403
13404 /* A helper for read_common_block that creates a locexpr baton.
13405 SYM is the symbol which we are marking as computed.
13406 COMMON_DIE is the DIE for the common block.
13407 COMMON_LOC is the location expression attribute for the common
13408 block itself.
13409 MEMBER_LOC is the location expression attribute for the particular
13410 member of the common block that we are processing.
13411 CU is the CU from which the above come. */
13412
13413 static void
13414 mark_common_block_symbol_computed (struct symbol *sym,
13415 struct die_info *common_die,
13416 struct attribute *common_loc,
13417 struct attribute *member_loc,
13418 struct dwarf2_cu *cu)
13419 {
13420 struct objfile *objfile = dwarf2_per_objfile->objfile;
13421 struct dwarf2_locexpr_baton *baton;
13422 gdb_byte *ptr;
13423 unsigned int cu_off;
13424 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13425 LONGEST offset = 0;
13426
13427 gdb_assert (common_loc && member_loc);
13428 gdb_assert (attr_form_is_block (common_loc));
13429 gdb_assert (attr_form_is_block (member_loc)
13430 || attr_form_is_constant (member_loc));
13431
13432 baton = obstack_alloc (&objfile->objfile_obstack,
13433 sizeof (struct dwarf2_locexpr_baton));
13434 baton->per_cu = cu->per_cu;
13435 gdb_assert (baton->per_cu);
13436
13437 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13438
13439 if (attr_form_is_constant (member_loc))
13440 {
13441 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13442 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13443 }
13444 else
13445 baton->size += DW_BLOCK (member_loc)->size;
13446
13447 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13448 baton->data = ptr;
13449
13450 *ptr++ = DW_OP_call4;
13451 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13452 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13453 ptr += 4;
13454
13455 if (attr_form_is_constant (member_loc))
13456 {
13457 *ptr++ = DW_OP_addr;
13458 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13459 ptr += cu->header.addr_size;
13460 }
13461 else
13462 {
13463 /* We have to copy the data here, because DW_OP_call4 will only
13464 use a DW_AT_location attribute. */
13465 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13466 ptr += DW_BLOCK (member_loc)->size;
13467 }
13468
13469 *ptr++ = DW_OP_plus;
13470 gdb_assert (ptr - baton->data == baton->size);
13471
13472 SYMBOL_LOCATION_BATON (sym) = baton;
13473 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13474 }
13475
13476 /* Create appropriate locally-scoped variables for all the
13477 DW_TAG_common_block entries. Also create a struct common_block
13478 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13479 is used to sepate the common blocks name namespace from regular
13480 variable names. */
13481
13482 static void
13483 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13484 {
13485 struct attribute *attr;
13486
13487 attr = dwarf2_attr (die, DW_AT_location, cu);
13488 if (attr)
13489 {
13490 /* Support the .debug_loc offsets. */
13491 if (attr_form_is_block (attr))
13492 {
13493 /* Ok. */
13494 }
13495 else if (attr_form_is_section_offset (attr))
13496 {
13497 dwarf2_complex_location_expr_complaint ();
13498 attr = NULL;
13499 }
13500 else
13501 {
13502 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13503 "common block member");
13504 attr = NULL;
13505 }
13506 }
13507
13508 if (die->child != NULL)
13509 {
13510 struct objfile *objfile = cu->objfile;
13511 struct die_info *child_die;
13512 size_t n_entries = 0, size;
13513 struct common_block *common_block;
13514 struct symbol *sym;
13515
13516 for (child_die = die->child;
13517 child_die && child_die->tag;
13518 child_die = sibling_die (child_die))
13519 ++n_entries;
13520
13521 size = (sizeof (struct common_block)
13522 + (n_entries - 1) * sizeof (struct symbol *));
13523 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13524 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13525 common_block->n_entries = 0;
13526
13527 for (child_die = die->child;
13528 child_die && child_die->tag;
13529 child_die = sibling_die (child_die))
13530 {
13531 /* Create the symbol in the DW_TAG_common_block block in the current
13532 symbol scope. */
13533 sym = new_symbol (child_die, NULL, cu);
13534 if (sym != NULL)
13535 {
13536 struct attribute *member_loc;
13537
13538 common_block->contents[common_block->n_entries++] = sym;
13539
13540 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13541 cu);
13542 if (member_loc)
13543 {
13544 /* GDB has handled this for a long time, but it is
13545 not specified by DWARF. It seems to have been
13546 emitted by gfortran at least as recently as:
13547 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13548 complaint (&symfile_complaints,
13549 _("Variable in common block has "
13550 "DW_AT_data_member_location "
13551 "- DIE at 0x%x [in module %s]"),
13552 child_die->offset.sect_off,
13553 objfile_name (cu->objfile));
13554
13555 if (attr_form_is_section_offset (member_loc))
13556 dwarf2_complex_location_expr_complaint ();
13557 else if (attr_form_is_constant (member_loc)
13558 || attr_form_is_block (member_loc))
13559 {
13560 if (attr)
13561 mark_common_block_symbol_computed (sym, die, attr,
13562 member_loc, cu);
13563 }
13564 else
13565 dwarf2_complex_location_expr_complaint ();
13566 }
13567 }
13568 }
13569
13570 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13571 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13572 }
13573 }
13574
13575 /* Create a type for a C++ namespace. */
13576
13577 static struct type *
13578 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13579 {
13580 struct objfile *objfile = cu->objfile;
13581 const char *previous_prefix, *name;
13582 int is_anonymous;
13583 struct type *type;
13584
13585 /* For extensions, reuse the type of the original namespace. */
13586 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13587 {
13588 struct die_info *ext_die;
13589 struct dwarf2_cu *ext_cu = cu;
13590
13591 ext_die = dwarf2_extension (die, &ext_cu);
13592 type = read_type_die (ext_die, ext_cu);
13593
13594 /* EXT_CU may not be the same as CU.
13595 Ensure TYPE is recorded with CU in die_type_hash. */
13596 return set_die_type (die, type, cu);
13597 }
13598
13599 name = namespace_name (die, &is_anonymous, cu);
13600
13601 /* Now build the name of the current namespace. */
13602
13603 previous_prefix = determine_prefix (die, cu);
13604 if (previous_prefix[0] != '\0')
13605 name = typename_concat (&objfile->objfile_obstack,
13606 previous_prefix, name, 0, cu);
13607
13608 /* Create the type. */
13609 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13610 objfile);
13611 TYPE_NAME (type) = name;
13612 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13613
13614 return set_die_type (die, type, cu);
13615 }
13616
13617 /* Read a C++ namespace. */
13618
13619 static void
13620 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13621 {
13622 struct objfile *objfile = cu->objfile;
13623 int is_anonymous;
13624
13625 /* Add a symbol associated to this if we haven't seen the namespace
13626 before. Also, add a using directive if it's an anonymous
13627 namespace. */
13628
13629 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13630 {
13631 struct type *type;
13632
13633 type = read_type_die (die, cu);
13634 new_symbol (die, type, cu);
13635
13636 namespace_name (die, &is_anonymous, cu);
13637 if (is_anonymous)
13638 {
13639 const char *previous_prefix = determine_prefix (die, cu);
13640
13641 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13642 NULL, NULL, 0, &objfile->objfile_obstack);
13643 }
13644 }
13645
13646 if (die->child != NULL)
13647 {
13648 struct die_info *child_die = die->child;
13649
13650 while (child_die && child_die->tag)
13651 {
13652 process_die (child_die, cu);
13653 child_die = sibling_die (child_die);
13654 }
13655 }
13656 }
13657
13658 /* Read a Fortran module as type. This DIE can be only a declaration used for
13659 imported module. Still we need that type as local Fortran "use ... only"
13660 declaration imports depend on the created type in determine_prefix. */
13661
13662 static struct type *
13663 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13664 {
13665 struct objfile *objfile = cu->objfile;
13666 const char *module_name;
13667 struct type *type;
13668
13669 module_name = dwarf2_name (die, cu);
13670 if (!module_name)
13671 complaint (&symfile_complaints,
13672 _("DW_TAG_module has no name, offset 0x%x"),
13673 die->offset.sect_off);
13674 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13675
13676 /* determine_prefix uses TYPE_TAG_NAME. */
13677 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13678
13679 return set_die_type (die, type, cu);
13680 }
13681
13682 /* Read a Fortran module. */
13683
13684 static void
13685 read_module (struct die_info *die, struct dwarf2_cu *cu)
13686 {
13687 struct die_info *child_die = die->child;
13688 struct type *type;
13689
13690 type = read_type_die (die, cu);
13691 new_symbol (die, type, cu);
13692
13693 while (child_die && child_die->tag)
13694 {
13695 process_die (child_die, cu);
13696 child_die = sibling_die (child_die);
13697 }
13698 }
13699
13700 /* Return the name of the namespace represented by DIE. Set
13701 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13702 namespace. */
13703
13704 static const char *
13705 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13706 {
13707 struct die_info *current_die;
13708 const char *name = NULL;
13709
13710 /* Loop through the extensions until we find a name. */
13711
13712 for (current_die = die;
13713 current_die != NULL;
13714 current_die = dwarf2_extension (die, &cu))
13715 {
13716 name = dwarf2_name (current_die, cu);
13717 if (name != NULL)
13718 break;
13719 }
13720
13721 /* Is it an anonymous namespace? */
13722
13723 *is_anonymous = (name == NULL);
13724 if (*is_anonymous)
13725 name = CP_ANONYMOUS_NAMESPACE_STR;
13726
13727 return name;
13728 }
13729
13730 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13731 the user defined type vector. */
13732
13733 static struct type *
13734 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13735 {
13736 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13737 struct comp_unit_head *cu_header = &cu->header;
13738 struct type *type;
13739 struct attribute *attr_byte_size;
13740 struct attribute *attr_address_class;
13741 int byte_size, addr_class;
13742 struct type *target_type;
13743
13744 target_type = die_type (die, cu);
13745
13746 /* The die_type call above may have already set the type for this DIE. */
13747 type = get_die_type (die, cu);
13748 if (type)
13749 return type;
13750
13751 type = lookup_pointer_type (target_type);
13752
13753 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13754 if (attr_byte_size)
13755 byte_size = DW_UNSND (attr_byte_size);
13756 else
13757 byte_size = cu_header->addr_size;
13758
13759 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13760 if (attr_address_class)
13761 addr_class = DW_UNSND (attr_address_class);
13762 else
13763 addr_class = DW_ADDR_none;
13764
13765 /* If the pointer size or address class is different than the
13766 default, create a type variant marked as such and set the
13767 length accordingly. */
13768 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
13769 {
13770 if (gdbarch_address_class_type_flags_p (gdbarch))
13771 {
13772 int type_flags;
13773
13774 type_flags = gdbarch_address_class_type_flags
13775 (gdbarch, byte_size, addr_class);
13776 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13777 == 0);
13778 type = make_type_with_address_space (type, type_flags);
13779 }
13780 else if (TYPE_LENGTH (type) != byte_size)
13781 {
13782 complaint (&symfile_complaints,
13783 _("invalid pointer size %d"), byte_size);
13784 }
13785 else
13786 {
13787 /* Should we also complain about unhandled address classes? */
13788 }
13789 }
13790
13791 TYPE_LENGTH (type) = byte_size;
13792 return set_die_type (die, type, cu);
13793 }
13794
13795 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13796 the user defined type vector. */
13797
13798 static struct type *
13799 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
13800 {
13801 struct type *type;
13802 struct type *to_type;
13803 struct type *domain;
13804
13805 to_type = die_type (die, cu);
13806 domain = die_containing_type (die, cu);
13807
13808 /* The calls above may have already set the type for this DIE. */
13809 type = get_die_type (die, cu);
13810 if (type)
13811 return type;
13812
13813 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13814 type = lookup_methodptr_type (to_type);
13815 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13816 {
13817 struct type *new_type = alloc_type (cu->objfile);
13818
13819 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13820 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13821 TYPE_VARARGS (to_type));
13822 type = lookup_methodptr_type (new_type);
13823 }
13824 else
13825 type = lookup_memberptr_type (to_type, domain);
13826
13827 return set_die_type (die, type, cu);
13828 }
13829
13830 /* Extract all information from a DW_TAG_reference_type DIE and add to
13831 the user defined type vector. */
13832
13833 static struct type *
13834 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
13835 {
13836 struct comp_unit_head *cu_header = &cu->header;
13837 struct type *type, *target_type;
13838 struct attribute *attr;
13839
13840 target_type = die_type (die, cu);
13841
13842 /* The die_type call above may have already set the type for this DIE. */
13843 type = get_die_type (die, cu);
13844 if (type)
13845 return type;
13846
13847 type = lookup_reference_type (target_type);
13848 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13849 if (attr)
13850 {
13851 TYPE_LENGTH (type) = DW_UNSND (attr);
13852 }
13853 else
13854 {
13855 TYPE_LENGTH (type) = cu_header->addr_size;
13856 }
13857 return set_die_type (die, type, cu);
13858 }
13859
13860 static struct type *
13861 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
13862 {
13863 struct type *base_type, *cv_type;
13864
13865 base_type = die_type (die, cu);
13866
13867 /* The die_type call above may have already set the type for this DIE. */
13868 cv_type = get_die_type (die, cu);
13869 if (cv_type)
13870 return cv_type;
13871
13872 /* In case the const qualifier is applied to an array type, the element type
13873 is so qualified, not the array type (section 6.7.3 of C99). */
13874 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
13875 {
13876 struct type *el_type, *inner_array;
13877
13878 base_type = copy_type (base_type);
13879 inner_array = base_type;
13880
13881 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
13882 {
13883 TYPE_TARGET_TYPE (inner_array) =
13884 copy_type (TYPE_TARGET_TYPE (inner_array));
13885 inner_array = TYPE_TARGET_TYPE (inner_array);
13886 }
13887
13888 el_type = TYPE_TARGET_TYPE (inner_array);
13889 TYPE_TARGET_TYPE (inner_array) =
13890 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
13891
13892 return set_die_type (die, base_type, cu);
13893 }
13894
13895 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
13896 return set_die_type (die, cv_type, cu);
13897 }
13898
13899 static struct type *
13900 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
13901 {
13902 struct type *base_type, *cv_type;
13903
13904 base_type = die_type (die, cu);
13905
13906 /* The die_type call above may have already set the type for this DIE. */
13907 cv_type = get_die_type (die, cu);
13908 if (cv_type)
13909 return cv_type;
13910
13911 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
13912 return set_die_type (die, cv_type, cu);
13913 }
13914
13915 /* Handle DW_TAG_restrict_type. */
13916
13917 static struct type *
13918 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
13919 {
13920 struct type *base_type, *cv_type;
13921
13922 base_type = die_type (die, cu);
13923
13924 /* The die_type call above may have already set the type for this DIE. */
13925 cv_type = get_die_type (die, cu);
13926 if (cv_type)
13927 return cv_type;
13928
13929 cv_type = make_restrict_type (base_type);
13930 return set_die_type (die, cv_type, cu);
13931 }
13932
13933 /* Extract all information from a DW_TAG_string_type DIE and add to
13934 the user defined type vector. It isn't really a user defined type,
13935 but it behaves like one, with other DIE's using an AT_user_def_type
13936 attribute to reference it. */
13937
13938 static struct type *
13939 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
13940 {
13941 struct objfile *objfile = cu->objfile;
13942 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13943 struct type *type, *range_type, *index_type, *char_type;
13944 struct attribute *attr;
13945 unsigned int length;
13946
13947 attr = dwarf2_attr (die, DW_AT_string_length, cu);
13948 if (attr)
13949 {
13950 length = DW_UNSND (attr);
13951 }
13952 else
13953 {
13954 /* Check for the DW_AT_byte_size attribute. */
13955 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13956 if (attr)
13957 {
13958 length = DW_UNSND (attr);
13959 }
13960 else
13961 {
13962 length = 1;
13963 }
13964 }
13965
13966 index_type = objfile_type (objfile)->builtin_int;
13967 range_type = create_range_type (NULL, index_type, 1, length);
13968 char_type = language_string_char_type (cu->language_defn, gdbarch);
13969 type = create_string_type (NULL, char_type, range_type);
13970
13971 return set_die_type (die, type, cu);
13972 }
13973
13974 /* Assuming that DIE corresponds to a function, returns nonzero
13975 if the function is prototyped. */
13976
13977 static int
13978 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13979 {
13980 struct attribute *attr;
13981
13982 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13983 if (attr && (DW_UNSND (attr) != 0))
13984 return 1;
13985
13986 /* The DWARF standard implies that the DW_AT_prototyped attribute
13987 is only meaninful for C, but the concept also extends to other
13988 languages that allow unprototyped functions (Eg: Objective C).
13989 For all other languages, assume that functions are always
13990 prototyped. */
13991 if (cu->language != language_c
13992 && cu->language != language_objc
13993 && cu->language != language_opencl)
13994 return 1;
13995
13996 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13997 prototyped and unprototyped functions; default to prototyped,
13998 since that is more common in modern code (and RealView warns
13999 about unprototyped functions). */
14000 if (producer_is_realview (cu->producer))
14001 return 1;
14002
14003 return 0;
14004 }
14005
14006 /* Handle DIES due to C code like:
14007
14008 struct foo
14009 {
14010 int (*funcp)(int a, long l);
14011 int b;
14012 };
14013
14014 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14015
14016 static struct type *
14017 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14018 {
14019 struct objfile *objfile = cu->objfile;
14020 struct type *type; /* Type that this function returns. */
14021 struct type *ftype; /* Function that returns above type. */
14022 struct attribute *attr;
14023
14024 type = die_type (die, cu);
14025
14026 /* The die_type call above may have already set the type for this DIE. */
14027 ftype = get_die_type (die, cu);
14028 if (ftype)
14029 return ftype;
14030
14031 ftype = lookup_function_type (type);
14032
14033 if (prototyped_function_p (die, cu))
14034 TYPE_PROTOTYPED (ftype) = 1;
14035
14036 /* Store the calling convention in the type if it's available in
14037 the subroutine die. Otherwise set the calling convention to
14038 the default value DW_CC_normal. */
14039 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14040 if (attr)
14041 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14042 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14043 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14044 else
14045 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14046
14047 /* We need to add the subroutine type to the die immediately so
14048 we don't infinitely recurse when dealing with parameters
14049 declared as the same subroutine type. */
14050 set_die_type (die, ftype, cu);
14051
14052 if (die->child != NULL)
14053 {
14054 struct type *void_type = objfile_type (objfile)->builtin_void;
14055 struct die_info *child_die;
14056 int nparams, iparams;
14057
14058 /* Count the number of parameters.
14059 FIXME: GDB currently ignores vararg functions, but knows about
14060 vararg member functions. */
14061 nparams = 0;
14062 child_die = die->child;
14063 while (child_die && child_die->tag)
14064 {
14065 if (child_die->tag == DW_TAG_formal_parameter)
14066 nparams++;
14067 else if (child_die->tag == DW_TAG_unspecified_parameters)
14068 TYPE_VARARGS (ftype) = 1;
14069 child_die = sibling_die (child_die);
14070 }
14071
14072 /* Allocate storage for parameters and fill them in. */
14073 TYPE_NFIELDS (ftype) = nparams;
14074 TYPE_FIELDS (ftype) = (struct field *)
14075 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14076
14077 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14078 even if we error out during the parameters reading below. */
14079 for (iparams = 0; iparams < nparams; iparams++)
14080 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14081
14082 iparams = 0;
14083 child_die = die->child;
14084 while (child_die && child_die->tag)
14085 {
14086 if (child_die->tag == DW_TAG_formal_parameter)
14087 {
14088 struct type *arg_type;
14089
14090 /* DWARF version 2 has no clean way to discern C++
14091 static and non-static member functions. G++ helps
14092 GDB by marking the first parameter for non-static
14093 member functions (which is the this pointer) as
14094 artificial. We pass this information to
14095 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14096
14097 DWARF version 3 added DW_AT_object_pointer, which GCC
14098 4.5 does not yet generate. */
14099 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14100 if (attr)
14101 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14102 else
14103 {
14104 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14105
14106 /* GCC/43521: In java, the formal parameter
14107 "this" is sometimes not marked with DW_AT_artificial. */
14108 if (cu->language == language_java)
14109 {
14110 const char *name = dwarf2_name (child_die, cu);
14111
14112 if (name && !strcmp (name, "this"))
14113 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14114 }
14115 }
14116 arg_type = die_type (child_die, cu);
14117
14118 /* RealView does not mark THIS as const, which the testsuite
14119 expects. GCC marks THIS as const in method definitions,
14120 but not in the class specifications (GCC PR 43053). */
14121 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14122 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14123 {
14124 int is_this = 0;
14125 struct dwarf2_cu *arg_cu = cu;
14126 const char *name = dwarf2_name (child_die, cu);
14127
14128 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14129 if (attr)
14130 {
14131 /* If the compiler emits this, use it. */
14132 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14133 is_this = 1;
14134 }
14135 else if (name && strcmp (name, "this") == 0)
14136 /* Function definitions will have the argument names. */
14137 is_this = 1;
14138 else if (name == NULL && iparams == 0)
14139 /* Declarations may not have the names, so like
14140 elsewhere in GDB, assume an artificial first
14141 argument is "this". */
14142 is_this = 1;
14143
14144 if (is_this)
14145 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14146 arg_type, 0);
14147 }
14148
14149 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14150 iparams++;
14151 }
14152 child_die = sibling_die (child_die);
14153 }
14154 }
14155
14156 return ftype;
14157 }
14158
14159 static struct type *
14160 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14161 {
14162 struct objfile *objfile = cu->objfile;
14163 const char *name = NULL;
14164 struct type *this_type, *target_type;
14165
14166 name = dwarf2_full_name (NULL, die, cu);
14167 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14168 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14169 TYPE_NAME (this_type) = name;
14170 set_die_type (die, this_type, cu);
14171 target_type = die_type (die, cu);
14172 if (target_type != this_type)
14173 TYPE_TARGET_TYPE (this_type) = target_type;
14174 else
14175 {
14176 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14177 spec and cause infinite loops in GDB. */
14178 complaint (&symfile_complaints,
14179 _("Self-referential DW_TAG_typedef "
14180 "- DIE at 0x%x [in module %s]"),
14181 die->offset.sect_off, objfile_name (objfile));
14182 TYPE_TARGET_TYPE (this_type) = NULL;
14183 }
14184 return this_type;
14185 }
14186
14187 /* Find a representation of a given base type and install
14188 it in the TYPE field of the die. */
14189
14190 static struct type *
14191 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14192 {
14193 struct objfile *objfile = cu->objfile;
14194 struct type *type;
14195 struct attribute *attr;
14196 int encoding = 0, size = 0;
14197 const char *name;
14198 enum type_code code = TYPE_CODE_INT;
14199 int type_flags = 0;
14200 struct type *target_type = NULL;
14201
14202 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14203 if (attr)
14204 {
14205 encoding = DW_UNSND (attr);
14206 }
14207 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14208 if (attr)
14209 {
14210 size = DW_UNSND (attr);
14211 }
14212 name = dwarf2_name (die, cu);
14213 if (!name)
14214 {
14215 complaint (&symfile_complaints,
14216 _("DW_AT_name missing from DW_TAG_base_type"));
14217 }
14218
14219 switch (encoding)
14220 {
14221 case DW_ATE_address:
14222 /* Turn DW_ATE_address into a void * pointer. */
14223 code = TYPE_CODE_PTR;
14224 type_flags |= TYPE_FLAG_UNSIGNED;
14225 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14226 break;
14227 case DW_ATE_boolean:
14228 code = TYPE_CODE_BOOL;
14229 type_flags |= TYPE_FLAG_UNSIGNED;
14230 break;
14231 case DW_ATE_complex_float:
14232 code = TYPE_CODE_COMPLEX;
14233 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14234 break;
14235 case DW_ATE_decimal_float:
14236 code = TYPE_CODE_DECFLOAT;
14237 break;
14238 case DW_ATE_float:
14239 code = TYPE_CODE_FLT;
14240 break;
14241 case DW_ATE_signed:
14242 break;
14243 case DW_ATE_unsigned:
14244 type_flags |= TYPE_FLAG_UNSIGNED;
14245 if (cu->language == language_fortran
14246 && name
14247 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14248 code = TYPE_CODE_CHAR;
14249 break;
14250 case DW_ATE_signed_char:
14251 if (cu->language == language_ada || cu->language == language_m2
14252 || cu->language == language_pascal
14253 || cu->language == language_fortran)
14254 code = TYPE_CODE_CHAR;
14255 break;
14256 case DW_ATE_unsigned_char:
14257 if (cu->language == language_ada || cu->language == language_m2
14258 || cu->language == language_pascal
14259 || cu->language == language_fortran)
14260 code = TYPE_CODE_CHAR;
14261 type_flags |= TYPE_FLAG_UNSIGNED;
14262 break;
14263 case DW_ATE_UTF:
14264 /* We just treat this as an integer and then recognize the
14265 type by name elsewhere. */
14266 break;
14267
14268 default:
14269 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14270 dwarf_type_encoding_name (encoding));
14271 break;
14272 }
14273
14274 type = init_type (code, size, type_flags, NULL, objfile);
14275 TYPE_NAME (type) = name;
14276 TYPE_TARGET_TYPE (type) = target_type;
14277
14278 if (name && strcmp (name, "char") == 0)
14279 TYPE_NOSIGN (type) = 1;
14280
14281 return set_die_type (die, type, cu);
14282 }
14283
14284 /* Read the given DW_AT_subrange DIE. */
14285
14286 static struct type *
14287 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14288 {
14289 struct type *base_type, *orig_base_type;
14290 struct type *range_type;
14291 struct attribute *attr;
14292 LONGEST low, high;
14293 int low_default_is_valid;
14294 const char *name;
14295 LONGEST negative_mask;
14296
14297 orig_base_type = die_type (die, cu);
14298 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14299 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14300 creating the range type, but we use the result of check_typedef
14301 when examining properties of the type. */
14302 base_type = check_typedef (orig_base_type);
14303
14304 /* The die_type call above may have already set the type for this DIE. */
14305 range_type = get_die_type (die, cu);
14306 if (range_type)
14307 return range_type;
14308
14309 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14310 omitting DW_AT_lower_bound. */
14311 switch (cu->language)
14312 {
14313 case language_c:
14314 case language_cplus:
14315 low = 0;
14316 low_default_is_valid = 1;
14317 break;
14318 case language_fortran:
14319 low = 1;
14320 low_default_is_valid = 1;
14321 break;
14322 case language_d:
14323 case language_java:
14324 case language_objc:
14325 low = 0;
14326 low_default_is_valid = (cu->header.version >= 4);
14327 break;
14328 case language_ada:
14329 case language_m2:
14330 case language_pascal:
14331 low = 1;
14332 low_default_is_valid = (cu->header.version >= 4);
14333 break;
14334 default:
14335 low = 0;
14336 low_default_is_valid = 0;
14337 break;
14338 }
14339
14340 /* FIXME: For variable sized arrays either of these could be
14341 a variable rather than a constant value. We'll allow it,
14342 but we don't know how to handle it. */
14343 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14344 if (attr)
14345 low = dwarf2_get_attr_constant_value (attr, low);
14346 else if (!low_default_is_valid)
14347 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14348 "- DIE at 0x%x [in module %s]"),
14349 die->offset.sect_off, objfile_name (cu->objfile));
14350
14351 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14352 if (attr)
14353 {
14354 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
14355 {
14356 /* GCC encodes arrays with unspecified or dynamic length
14357 with a DW_FORM_block1 attribute or a reference attribute.
14358 FIXME: GDB does not yet know how to handle dynamic
14359 arrays properly, treat them as arrays with unspecified
14360 length for now.
14361
14362 FIXME: jimb/2003-09-22: GDB does not really know
14363 how to handle arrays of unspecified length
14364 either; we just represent them as zero-length
14365 arrays. Choose an appropriate upper bound given
14366 the lower bound we've computed above. */
14367 high = low - 1;
14368 }
14369 else
14370 high = dwarf2_get_attr_constant_value (attr, 1);
14371 }
14372 else
14373 {
14374 attr = dwarf2_attr (die, DW_AT_count, cu);
14375 if (attr)
14376 {
14377 int count = dwarf2_get_attr_constant_value (attr, 1);
14378 high = low + count - 1;
14379 }
14380 else
14381 {
14382 /* Unspecified array length. */
14383 high = low - 1;
14384 }
14385 }
14386
14387 /* Dwarf-2 specifications explicitly allows to create subrange types
14388 without specifying a base type.
14389 In that case, the base type must be set to the type of
14390 the lower bound, upper bound or count, in that order, if any of these
14391 three attributes references an object that has a type.
14392 If no base type is found, the Dwarf-2 specifications say that
14393 a signed integer type of size equal to the size of an address should
14394 be used.
14395 For the following C code: `extern char gdb_int [];'
14396 GCC produces an empty range DIE.
14397 FIXME: muller/2010-05-28: Possible references to object for low bound,
14398 high bound or count are not yet handled by this code. */
14399 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14400 {
14401 struct objfile *objfile = cu->objfile;
14402 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14403 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14404 struct type *int_type = objfile_type (objfile)->builtin_int;
14405
14406 /* Test "int", "long int", and "long long int" objfile types,
14407 and select the first one having a size above or equal to the
14408 architecture address size. */
14409 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14410 base_type = int_type;
14411 else
14412 {
14413 int_type = objfile_type (objfile)->builtin_long;
14414 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14415 base_type = int_type;
14416 else
14417 {
14418 int_type = objfile_type (objfile)->builtin_long_long;
14419 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14420 base_type = int_type;
14421 }
14422 }
14423 }
14424
14425 negative_mask =
14426 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14427 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
14428 low |= negative_mask;
14429 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
14430 high |= negative_mask;
14431
14432 range_type = create_range_type (NULL, orig_base_type, low, high);
14433
14434 /* Mark arrays with dynamic length at least as an array of unspecified
14435 length. GDB could check the boundary but before it gets implemented at
14436 least allow accessing the array elements. */
14437 if (attr && attr_form_is_block (attr))
14438 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14439
14440 /* Ada expects an empty array on no boundary attributes. */
14441 if (attr == NULL && cu->language != language_ada)
14442 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14443
14444 name = dwarf2_name (die, cu);
14445 if (name)
14446 TYPE_NAME (range_type) = name;
14447
14448 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14449 if (attr)
14450 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14451
14452 set_die_type (die, range_type, cu);
14453
14454 /* set_die_type should be already done. */
14455 set_descriptive_type (range_type, die, cu);
14456
14457 return range_type;
14458 }
14459
14460 static struct type *
14461 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14462 {
14463 struct type *type;
14464
14465 /* For now, we only support the C meaning of an unspecified type: void. */
14466
14467 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14468 TYPE_NAME (type) = dwarf2_name (die, cu);
14469
14470 return set_die_type (die, type, cu);
14471 }
14472
14473 /* Read a single die and all its descendents. Set the die's sibling
14474 field to NULL; set other fields in the die correctly, and set all
14475 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14476 location of the info_ptr after reading all of those dies. PARENT
14477 is the parent of the die in question. */
14478
14479 static struct die_info *
14480 read_die_and_children (const struct die_reader_specs *reader,
14481 const gdb_byte *info_ptr,
14482 const gdb_byte **new_info_ptr,
14483 struct die_info *parent)
14484 {
14485 struct die_info *die;
14486 const gdb_byte *cur_ptr;
14487 int has_children;
14488
14489 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14490 if (die == NULL)
14491 {
14492 *new_info_ptr = cur_ptr;
14493 return NULL;
14494 }
14495 store_in_ref_table (die, reader->cu);
14496
14497 if (has_children)
14498 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14499 else
14500 {
14501 die->child = NULL;
14502 *new_info_ptr = cur_ptr;
14503 }
14504
14505 die->sibling = NULL;
14506 die->parent = parent;
14507 return die;
14508 }
14509
14510 /* Read a die, all of its descendents, and all of its siblings; set
14511 all of the fields of all of the dies correctly. Arguments are as
14512 in read_die_and_children. */
14513
14514 static struct die_info *
14515 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14516 const gdb_byte *info_ptr,
14517 const gdb_byte **new_info_ptr,
14518 struct die_info *parent)
14519 {
14520 struct die_info *first_die, *last_sibling;
14521 const gdb_byte *cur_ptr;
14522
14523 cur_ptr = info_ptr;
14524 first_die = last_sibling = NULL;
14525
14526 while (1)
14527 {
14528 struct die_info *die
14529 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14530
14531 if (die == NULL)
14532 {
14533 *new_info_ptr = cur_ptr;
14534 return first_die;
14535 }
14536
14537 if (!first_die)
14538 first_die = die;
14539 else
14540 last_sibling->sibling = die;
14541
14542 last_sibling = die;
14543 }
14544 }
14545
14546 /* Read a die, all of its descendents, and all of its siblings; set
14547 all of the fields of all of the dies correctly. Arguments are as
14548 in read_die_and_children.
14549 This the main entry point for reading a DIE and all its children. */
14550
14551 static struct die_info *
14552 read_die_and_siblings (const struct die_reader_specs *reader,
14553 const gdb_byte *info_ptr,
14554 const gdb_byte **new_info_ptr,
14555 struct die_info *parent)
14556 {
14557 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14558 new_info_ptr, parent);
14559
14560 if (dwarf2_die_debug)
14561 {
14562 fprintf_unfiltered (gdb_stdlog,
14563 "Read die from %s@0x%x of %s:\n",
14564 get_section_name (reader->die_section),
14565 (unsigned) (info_ptr - reader->die_section->buffer),
14566 bfd_get_filename (reader->abfd));
14567 dump_die (die, dwarf2_die_debug);
14568 }
14569
14570 return die;
14571 }
14572
14573 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14574 attributes.
14575 The caller is responsible for filling in the extra attributes
14576 and updating (*DIEP)->num_attrs.
14577 Set DIEP to point to a newly allocated die with its information,
14578 except for its child, sibling, and parent fields.
14579 Set HAS_CHILDREN to tell whether the die has children or not. */
14580
14581 static const gdb_byte *
14582 read_full_die_1 (const struct die_reader_specs *reader,
14583 struct die_info **diep, const gdb_byte *info_ptr,
14584 int *has_children, int num_extra_attrs)
14585 {
14586 unsigned int abbrev_number, bytes_read, i;
14587 sect_offset offset;
14588 struct abbrev_info *abbrev;
14589 struct die_info *die;
14590 struct dwarf2_cu *cu = reader->cu;
14591 bfd *abfd = reader->abfd;
14592
14593 offset.sect_off = info_ptr - reader->buffer;
14594 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14595 info_ptr += bytes_read;
14596 if (!abbrev_number)
14597 {
14598 *diep = NULL;
14599 *has_children = 0;
14600 return info_ptr;
14601 }
14602
14603 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14604 if (!abbrev)
14605 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14606 abbrev_number,
14607 bfd_get_filename (abfd));
14608
14609 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14610 die->offset = offset;
14611 die->tag = abbrev->tag;
14612 die->abbrev = abbrev_number;
14613
14614 /* Make the result usable.
14615 The caller needs to update num_attrs after adding the extra
14616 attributes. */
14617 die->num_attrs = abbrev->num_attrs;
14618
14619 for (i = 0; i < abbrev->num_attrs; ++i)
14620 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14621 info_ptr);
14622
14623 *diep = die;
14624 *has_children = abbrev->has_children;
14625 return info_ptr;
14626 }
14627
14628 /* Read a die and all its attributes.
14629 Set DIEP to point to a newly allocated die with its information,
14630 except for its child, sibling, and parent fields.
14631 Set HAS_CHILDREN to tell whether the die has children or not. */
14632
14633 static const gdb_byte *
14634 read_full_die (const struct die_reader_specs *reader,
14635 struct die_info **diep, const gdb_byte *info_ptr,
14636 int *has_children)
14637 {
14638 const gdb_byte *result;
14639
14640 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14641
14642 if (dwarf2_die_debug)
14643 {
14644 fprintf_unfiltered (gdb_stdlog,
14645 "Read die from %s@0x%x of %s:\n",
14646 get_section_name (reader->die_section),
14647 (unsigned) (info_ptr - reader->die_section->buffer),
14648 bfd_get_filename (reader->abfd));
14649 dump_die (*diep, dwarf2_die_debug);
14650 }
14651
14652 return result;
14653 }
14654 \f
14655 /* Abbreviation tables.
14656
14657 In DWARF version 2, the description of the debugging information is
14658 stored in a separate .debug_abbrev section. Before we read any
14659 dies from a section we read in all abbreviations and install them
14660 in a hash table. */
14661
14662 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14663
14664 static struct abbrev_info *
14665 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14666 {
14667 struct abbrev_info *abbrev;
14668
14669 abbrev = (struct abbrev_info *)
14670 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14671 memset (abbrev, 0, sizeof (struct abbrev_info));
14672 return abbrev;
14673 }
14674
14675 /* Add an abbreviation to the table. */
14676
14677 static void
14678 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14679 unsigned int abbrev_number,
14680 struct abbrev_info *abbrev)
14681 {
14682 unsigned int hash_number;
14683
14684 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14685 abbrev->next = abbrev_table->abbrevs[hash_number];
14686 abbrev_table->abbrevs[hash_number] = abbrev;
14687 }
14688
14689 /* Look up an abbrev in the table.
14690 Returns NULL if the abbrev is not found. */
14691
14692 static struct abbrev_info *
14693 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14694 unsigned int abbrev_number)
14695 {
14696 unsigned int hash_number;
14697 struct abbrev_info *abbrev;
14698
14699 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14700 abbrev = abbrev_table->abbrevs[hash_number];
14701
14702 while (abbrev)
14703 {
14704 if (abbrev->number == abbrev_number)
14705 return abbrev;
14706 abbrev = abbrev->next;
14707 }
14708 return NULL;
14709 }
14710
14711 /* Read in an abbrev table. */
14712
14713 static struct abbrev_table *
14714 abbrev_table_read_table (struct dwarf2_section_info *section,
14715 sect_offset offset)
14716 {
14717 struct objfile *objfile = dwarf2_per_objfile->objfile;
14718 bfd *abfd = get_section_bfd_owner (section);
14719 struct abbrev_table *abbrev_table;
14720 const gdb_byte *abbrev_ptr;
14721 struct abbrev_info *cur_abbrev;
14722 unsigned int abbrev_number, bytes_read, abbrev_name;
14723 unsigned int abbrev_form;
14724 struct attr_abbrev *cur_attrs;
14725 unsigned int allocated_attrs;
14726
14727 abbrev_table = XNEW (struct abbrev_table);
14728 abbrev_table->offset = offset;
14729 obstack_init (&abbrev_table->abbrev_obstack);
14730 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14731 (ABBREV_HASH_SIZE
14732 * sizeof (struct abbrev_info *)));
14733 memset (abbrev_table->abbrevs, 0,
14734 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
14735
14736 dwarf2_read_section (objfile, section);
14737 abbrev_ptr = section->buffer + offset.sect_off;
14738 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14739 abbrev_ptr += bytes_read;
14740
14741 allocated_attrs = ATTR_ALLOC_CHUNK;
14742 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
14743
14744 /* Loop until we reach an abbrev number of 0. */
14745 while (abbrev_number)
14746 {
14747 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
14748
14749 /* read in abbrev header */
14750 cur_abbrev->number = abbrev_number;
14751 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14752 abbrev_ptr += bytes_read;
14753 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14754 abbrev_ptr += 1;
14755
14756 /* now read in declarations */
14757 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14758 abbrev_ptr += bytes_read;
14759 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14760 abbrev_ptr += bytes_read;
14761 while (abbrev_name)
14762 {
14763 if (cur_abbrev->num_attrs == allocated_attrs)
14764 {
14765 allocated_attrs += ATTR_ALLOC_CHUNK;
14766 cur_attrs
14767 = xrealloc (cur_attrs, (allocated_attrs
14768 * sizeof (struct attr_abbrev)));
14769 }
14770
14771 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14772 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
14773 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14774 abbrev_ptr += bytes_read;
14775 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14776 abbrev_ptr += bytes_read;
14777 }
14778
14779 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
14780 (cur_abbrev->num_attrs
14781 * sizeof (struct attr_abbrev)));
14782 memcpy (cur_abbrev->attrs, cur_attrs,
14783 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14784
14785 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
14786
14787 /* Get next abbreviation.
14788 Under Irix6 the abbreviations for a compilation unit are not
14789 always properly terminated with an abbrev number of 0.
14790 Exit loop if we encounter an abbreviation which we have
14791 already read (which means we are about to read the abbreviations
14792 for the next compile unit) or if the end of the abbreviation
14793 table is reached. */
14794 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
14795 break;
14796 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14797 abbrev_ptr += bytes_read;
14798 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
14799 break;
14800 }
14801
14802 xfree (cur_attrs);
14803 return abbrev_table;
14804 }
14805
14806 /* Free the resources held by ABBREV_TABLE. */
14807
14808 static void
14809 abbrev_table_free (struct abbrev_table *abbrev_table)
14810 {
14811 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14812 xfree (abbrev_table);
14813 }
14814
14815 /* Same as abbrev_table_free but as a cleanup.
14816 We pass in a pointer to the pointer to the table so that we can
14817 set the pointer to NULL when we're done. It also simplifies
14818 build_type_unit_groups. */
14819
14820 static void
14821 abbrev_table_free_cleanup (void *table_ptr)
14822 {
14823 struct abbrev_table **abbrev_table_ptr = table_ptr;
14824
14825 if (*abbrev_table_ptr != NULL)
14826 abbrev_table_free (*abbrev_table_ptr);
14827 *abbrev_table_ptr = NULL;
14828 }
14829
14830 /* Read the abbrev table for CU from ABBREV_SECTION. */
14831
14832 static void
14833 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14834 struct dwarf2_section_info *abbrev_section)
14835 {
14836 cu->abbrev_table =
14837 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14838 }
14839
14840 /* Release the memory used by the abbrev table for a compilation unit. */
14841
14842 static void
14843 dwarf2_free_abbrev_table (void *ptr_to_cu)
14844 {
14845 struct dwarf2_cu *cu = ptr_to_cu;
14846
14847 if (cu->abbrev_table != NULL)
14848 abbrev_table_free (cu->abbrev_table);
14849 /* Set this to NULL so that we SEGV if we try to read it later,
14850 and also because free_comp_unit verifies this is NULL. */
14851 cu->abbrev_table = NULL;
14852 }
14853 \f
14854 /* Returns nonzero if TAG represents a type that we might generate a partial
14855 symbol for. */
14856
14857 static int
14858 is_type_tag_for_partial (int tag)
14859 {
14860 switch (tag)
14861 {
14862 #if 0
14863 /* Some types that would be reasonable to generate partial symbols for,
14864 that we don't at present. */
14865 case DW_TAG_array_type:
14866 case DW_TAG_file_type:
14867 case DW_TAG_ptr_to_member_type:
14868 case DW_TAG_set_type:
14869 case DW_TAG_string_type:
14870 case DW_TAG_subroutine_type:
14871 #endif
14872 case DW_TAG_base_type:
14873 case DW_TAG_class_type:
14874 case DW_TAG_interface_type:
14875 case DW_TAG_enumeration_type:
14876 case DW_TAG_structure_type:
14877 case DW_TAG_subrange_type:
14878 case DW_TAG_typedef:
14879 case DW_TAG_union_type:
14880 return 1;
14881 default:
14882 return 0;
14883 }
14884 }
14885
14886 /* Load all DIEs that are interesting for partial symbols into memory. */
14887
14888 static struct partial_die_info *
14889 load_partial_dies (const struct die_reader_specs *reader,
14890 const gdb_byte *info_ptr, int building_psymtab)
14891 {
14892 struct dwarf2_cu *cu = reader->cu;
14893 struct objfile *objfile = cu->objfile;
14894 struct partial_die_info *part_die;
14895 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
14896 struct abbrev_info *abbrev;
14897 unsigned int bytes_read;
14898 unsigned int load_all = 0;
14899 int nesting_level = 1;
14900
14901 parent_die = NULL;
14902 last_die = NULL;
14903
14904 gdb_assert (cu->per_cu != NULL);
14905 if (cu->per_cu->load_all_dies)
14906 load_all = 1;
14907
14908 cu->partial_dies
14909 = htab_create_alloc_ex (cu->header.length / 12,
14910 partial_die_hash,
14911 partial_die_eq,
14912 NULL,
14913 &cu->comp_unit_obstack,
14914 hashtab_obstack_allocate,
14915 dummy_obstack_deallocate);
14916
14917 part_die = obstack_alloc (&cu->comp_unit_obstack,
14918 sizeof (struct partial_die_info));
14919
14920 while (1)
14921 {
14922 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
14923
14924 /* A NULL abbrev means the end of a series of children. */
14925 if (abbrev == NULL)
14926 {
14927 if (--nesting_level == 0)
14928 {
14929 /* PART_DIE was probably the last thing allocated on the
14930 comp_unit_obstack, so we could call obstack_free
14931 here. We don't do that because the waste is small,
14932 and will be cleaned up when we're done with this
14933 compilation unit. This way, we're also more robust
14934 against other users of the comp_unit_obstack. */
14935 return first_die;
14936 }
14937 info_ptr += bytes_read;
14938 last_die = parent_die;
14939 parent_die = parent_die->die_parent;
14940 continue;
14941 }
14942
14943 /* Check for template arguments. We never save these; if
14944 they're seen, we just mark the parent, and go on our way. */
14945 if (parent_die != NULL
14946 && cu->language == language_cplus
14947 && (abbrev->tag == DW_TAG_template_type_param
14948 || abbrev->tag == DW_TAG_template_value_param))
14949 {
14950 parent_die->has_template_arguments = 1;
14951
14952 if (!load_all)
14953 {
14954 /* We don't need a partial DIE for the template argument. */
14955 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14956 continue;
14957 }
14958 }
14959
14960 /* We only recurse into c++ subprograms looking for template arguments.
14961 Skip their other children. */
14962 if (!load_all
14963 && cu->language == language_cplus
14964 && parent_die != NULL
14965 && parent_die->tag == DW_TAG_subprogram)
14966 {
14967 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14968 continue;
14969 }
14970
14971 /* Check whether this DIE is interesting enough to save. Normally
14972 we would not be interested in members here, but there may be
14973 later variables referencing them via DW_AT_specification (for
14974 static members). */
14975 if (!load_all
14976 && !is_type_tag_for_partial (abbrev->tag)
14977 && abbrev->tag != DW_TAG_constant
14978 && abbrev->tag != DW_TAG_enumerator
14979 && abbrev->tag != DW_TAG_subprogram
14980 && abbrev->tag != DW_TAG_lexical_block
14981 && abbrev->tag != DW_TAG_variable
14982 && abbrev->tag != DW_TAG_namespace
14983 && abbrev->tag != DW_TAG_module
14984 && abbrev->tag != DW_TAG_member
14985 && abbrev->tag != DW_TAG_imported_unit
14986 && abbrev->tag != DW_TAG_imported_declaration)
14987 {
14988 /* Otherwise we skip to the next sibling, if any. */
14989 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14990 continue;
14991 }
14992
14993 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
14994 info_ptr);
14995
14996 /* This two-pass algorithm for processing partial symbols has a
14997 high cost in cache pressure. Thus, handle some simple cases
14998 here which cover the majority of C partial symbols. DIEs
14999 which neither have specification tags in them, nor could have
15000 specification tags elsewhere pointing at them, can simply be
15001 processed and discarded.
15002
15003 This segment is also optional; scan_partial_symbols and
15004 add_partial_symbol will handle these DIEs if we chain
15005 them in normally. When compilers which do not emit large
15006 quantities of duplicate debug information are more common,
15007 this code can probably be removed. */
15008
15009 /* Any complete simple types at the top level (pretty much all
15010 of them, for a language without namespaces), can be processed
15011 directly. */
15012 if (parent_die == NULL
15013 && part_die->has_specification == 0
15014 && part_die->is_declaration == 0
15015 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15016 || part_die->tag == DW_TAG_base_type
15017 || part_die->tag == DW_TAG_subrange_type))
15018 {
15019 if (building_psymtab && part_die->name != NULL)
15020 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15021 VAR_DOMAIN, LOC_TYPEDEF,
15022 &objfile->static_psymbols,
15023 0, (CORE_ADDR) 0, cu->language, objfile);
15024 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15025 continue;
15026 }
15027
15028 /* The exception for DW_TAG_typedef with has_children above is
15029 a workaround of GCC PR debug/47510. In the case of this complaint
15030 type_name_no_tag_or_error will error on such types later.
15031
15032 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15033 it could not find the child DIEs referenced later, this is checked
15034 above. In correct DWARF DW_TAG_typedef should have no children. */
15035
15036 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15037 complaint (&symfile_complaints,
15038 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15039 "- DIE at 0x%x [in module %s]"),
15040 part_die->offset.sect_off, objfile_name (objfile));
15041
15042 /* If we're at the second level, and we're an enumerator, and
15043 our parent has no specification (meaning possibly lives in a
15044 namespace elsewhere), then we can add the partial symbol now
15045 instead of queueing it. */
15046 if (part_die->tag == DW_TAG_enumerator
15047 && parent_die != NULL
15048 && parent_die->die_parent == NULL
15049 && parent_die->tag == DW_TAG_enumeration_type
15050 && parent_die->has_specification == 0)
15051 {
15052 if (part_die->name == NULL)
15053 complaint (&symfile_complaints,
15054 _("malformed enumerator DIE ignored"));
15055 else if (building_psymtab)
15056 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15057 VAR_DOMAIN, LOC_CONST,
15058 (cu->language == language_cplus
15059 || cu->language == language_java)
15060 ? &objfile->global_psymbols
15061 : &objfile->static_psymbols,
15062 0, (CORE_ADDR) 0, cu->language, objfile);
15063
15064 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15065 continue;
15066 }
15067
15068 /* We'll save this DIE so link it in. */
15069 part_die->die_parent = parent_die;
15070 part_die->die_sibling = NULL;
15071 part_die->die_child = NULL;
15072
15073 if (last_die && last_die == parent_die)
15074 last_die->die_child = part_die;
15075 else if (last_die)
15076 last_die->die_sibling = part_die;
15077
15078 last_die = part_die;
15079
15080 if (first_die == NULL)
15081 first_die = part_die;
15082
15083 /* Maybe add the DIE to the hash table. Not all DIEs that we
15084 find interesting need to be in the hash table, because we
15085 also have the parent/sibling/child chains; only those that we
15086 might refer to by offset later during partial symbol reading.
15087
15088 For now this means things that might have be the target of a
15089 DW_AT_specification, DW_AT_abstract_origin, or
15090 DW_AT_extension. DW_AT_extension will refer only to
15091 namespaces; DW_AT_abstract_origin refers to functions (and
15092 many things under the function DIE, but we do not recurse
15093 into function DIEs during partial symbol reading) and
15094 possibly variables as well; DW_AT_specification refers to
15095 declarations. Declarations ought to have the DW_AT_declaration
15096 flag. It happens that GCC forgets to put it in sometimes, but
15097 only for functions, not for types.
15098
15099 Adding more things than necessary to the hash table is harmless
15100 except for the performance cost. Adding too few will result in
15101 wasted time in find_partial_die, when we reread the compilation
15102 unit with load_all_dies set. */
15103
15104 if (load_all
15105 || abbrev->tag == DW_TAG_constant
15106 || abbrev->tag == DW_TAG_subprogram
15107 || abbrev->tag == DW_TAG_variable
15108 || abbrev->tag == DW_TAG_namespace
15109 || part_die->is_declaration)
15110 {
15111 void **slot;
15112
15113 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15114 part_die->offset.sect_off, INSERT);
15115 *slot = part_die;
15116 }
15117
15118 part_die = obstack_alloc (&cu->comp_unit_obstack,
15119 sizeof (struct partial_die_info));
15120
15121 /* For some DIEs we want to follow their children (if any). For C
15122 we have no reason to follow the children of structures; for other
15123 languages we have to, so that we can get at method physnames
15124 to infer fully qualified class names, for DW_AT_specification,
15125 and for C++ template arguments. For C++, we also look one level
15126 inside functions to find template arguments (if the name of the
15127 function does not already contain the template arguments).
15128
15129 For Ada, we need to scan the children of subprograms and lexical
15130 blocks as well because Ada allows the definition of nested
15131 entities that could be interesting for the debugger, such as
15132 nested subprograms for instance. */
15133 if (last_die->has_children
15134 && (load_all
15135 || last_die->tag == DW_TAG_namespace
15136 || last_die->tag == DW_TAG_module
15137 || last_die->tag == DW_TAG_enumeration_type
15138 || (cu->language == language_cplus
15139 && last_die->tag == DW_TAG_subprogram
15140 && (last_die->name == NULL
15141 || strchr (last_die->name, '<') == NULL))
15142 || (cu->language != language_c
15143 && (last_die->tag == DW_TAG_class_type
15144 || last_die->tag == DW_TAG_interface_type
15145 || last_die->tag == DW_TAG_structure_type
15146 || last_die->tag == DW_TAG_union_type))
15147 || (cu->language == language_ada
15148 && (last_die->tag == DW_TAG_subprogram
15149 || last_die->tag == DW_TAG_lexical_block))))
15150 {
15151 nesting_level++;
15152 parent_die = last_die;
15153 continue;
15154 }
15155
15156 /* Otherwise we skip to the next sibling, if any. */
15157 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15158
15159 /* Back to the top, do it again. */
15160 }
15161 }
15162
15163 /* Read a minimal amount of information into the minimal die structure. */
15164
15165 static const gdb_byte *
15166 read_partial_die (const struct die_reader_specs *reader,
15167 struct partial_die_info *part_die,
15168 struct abbrev_info *abbrev, unsigned int abbrev_len,
15169 const gdb_byte *info_ptr)
15170 {
15171 struct dwarf2_cu *cu = reader->cu;
15172 struct objfile *objfile = cu->objfile;
15173 const gdb_byte *buffer = reader->buffer;
15174 unsigned int i;
15175 struct attribute attr;
15176 int has_low_pc_attr = 0;
15177 int has_high_pc_attr = 0;
15178 int high_pc_relative = 0;
15179
15180 memset (part_die, 0, sizeof (struct partial_die_info));
15181
15182 part_die->offset.sect_off = info_ptr - buffer;
15183
15184 info_ptr += abbrev_len;
15185
15186 if (abbrev == NULL)
15187 return info_ptr;
15188
15189 part_die->tag = abbrev->tag;
15190 part_die->has_children = abbrev->has_children;
15191
15192 for (i = 0; i < abbrev->num_attrs; ++i)
15193 {
15194 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15195
15196 /* Store the data if it is of an attribute we want to keep in a
15197 partial symbol table. */
15198 switch (attr.name)
15199 {
15200 case DW_AT_name:
15201 switch (part_die->tag)
15202 {
15203 case DW_TAG_compile_unit:
15204 case DW_TAG_partial_unit:
15205 case DW_TAG_type_unit:
15206 /* Compilation units have a DW_AT_name that is a filename, not
15207 a source language identifier. */
15208 case DW_TAG_enumeration_type:
15209 case DW_TAG_enumerator:
15210 /* These tags always have simple identifiers already; no need
15211 to canonicalize them. */
15212 part_die->name = DW_STRING (&attr);
15213 break;
15214 default:
15215 part_die->name
15216 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15217 &objfile->objfile_obstack);
15218 break;
15219 }
15220 break;
15221 case DW_AT_linkage_name:
15222 case DW_AT_MIPS_linkage_name:
15223 /* Note that both forms of linkage name might appear. We
15224 assume they will be the same, and we only store the last
15225 one we see. */
15226 if (cu->language == language_ada)
15227 part_die->name = DW_STRING (&attr);
15228 part_die->linkage_name = DW_STRING (&attr);
15229 break;
15230 case DW_AT_low_pc:
15231 has_low_pc_attr = 1;
15232 part_die->lowpc = DW_ADDR (&attr);
15233 break;
15234 case DW_AT_high_pc:
15235 has_high_pc_attr = 1;
15236 if (attr.form == DW_FORM_addr
15237 || attr.form == DW_FORM_GNU_addr_index)
15238 part_die->highpc = DW_ADDR (&attr);
15239 else
15240 {
15241 high_pc_relative = 1;
15242 part_die->highpc = DW_UNSND (&attr);
15243 }
15244 break;
15245 case DW_AT_location:
15246 /* Support the .debug_loc offsets. */
15247 if (attr_form_is_block (&attr))
15248 {
15249 part_die->d.locdesc = DW_BLOCK (&attr);
15250 }
15251 else if (attr_form_is_section_offset (&attr))
15252 {
15253 dwarf2_complex_location_expr_complaint ();
15254 }
15255 else
15256 {
15257 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15258 "partial symbol information");
15259 }
15260 break;
15261 case DW_AT_external:
15262 part_die->is_external = DW_UNSND (&attr);
15263 break;
15264 case DW_AT_declaration:
15265 part_die->is_declaration = DW_UNSND (&attr);
15266 break;
15267 case DW_AT_type:
15268 part_die->has_type = 1;
15269 break;
15270 case DW_AT_abstract_origin:
15271 case DW_AT_specification:
15272 case DW_AT_extension:
15273 part_die->has_specification = 1;
15274 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15275 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15276 || cu->per_cu->is_dwz);
15277 break;
15278 case DW_AT_sibling:
15279 /* Ignore absolute siblings, they might point outside of
15280 the current compile unit. */
15281 if (attr.form == DW_FORM_ref_addr)
15282 complaint (&symfile_complaints,
15283 _("ignoring absolute DW_AT_sibling"));
15284 else
15285 {
15286 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15287 const gdb_byte *sibling_ptr = buffer + off;
15288
15289 if (sibling_ptr < info_ptr)
15290 complaint (&symfile_complaints,
15291 _("DW_AT_sibling points backwards"));
15292 else
15293 part_die->sibling = sibling_ptr;
15294 }
15295 break;
15296 case DW_AT_byte_size:
15297 part_die->has_byte_size = 1;
15298 break;
15299 case DW_AT_calling_convention:
15300 /* DWARF doesn't provide a way to identify a program's source-level
15301 entry point. DW_AT_calling_convention attributes are only meant
15302 to describe functions' calling conventions.
15303
15304 However, because it's a necessary piece of information in
15305 Fortran, and because DW_CC_program is the only piece of debugging
15306 information whose definition refers to a 'main program' at all,
15307 several compilers have begun marking Fortran main programs with
15308 DW_CC_program --- even when those functions use the standard
15309 calling conventions.
15310
15311 So until DWARF specifies a way to provide this information and
15312 compilers pick up the new representation, we'll support this
15313 practice. */
15314 if (DW_UNSND (&attr) == DW_CC_program
15315 && cu->language == language_fortran)
15316 {
15317 set_main_name (part_die->name);
15318
15319 /* As this DIE has a static linkage the name would be difficult
15320 to look up later. */
15321 language_of_main = language_fortran;
15322 }
15323 break;
15324 case DW_AT_inline:
15325 if (DW_UNSND (&attr) == DW_INL_inlined
15326 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15327 part_die->may_be_inlined = 1;
15328 break;
15329
15330 case DW_AT_import:
15331 if (part_die->tag == DW_TAG_imported_unit)
15332 {
15333 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15334 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15335 || cu->per_cu->is_dwz);
15336 }
15337 break;
15338
15339 default:
15340 break;
15341 }
15342 }
15343
15344 if (high_pc_relative)
15345 part_die->highpc += part_die->lowpc;
15346
15347 if (has_low_pc_attr && has_high_pc_attr)
15348 {
15349 /* When using the GNU linker, .gnu.linkonce. sections are used to
15350 eliminate duplicate copies of functions and vtables and such.
15351 The linker will arbitrarily choose one and discard the others.
15352 The AT_*_pc values for such functions refer to local labels in
15353 these sections. If the section from that file was discarded, the
15354 labels are not in the output, so the relocs get a value of 0.
15355 If this is a discarded function, mark the pc bounds as invalid,
15356 so that GDB will ignore it. */
15357 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15358 {
15359 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15360
15361 complaint (&symfile_complaints,
15362 _("DW_AT_low_pc %s is zero "
15363 "for DIE at 0x%x [in module %s]"),
15364 paddress (gdbarch, part_die->lowpc),
15365 part_die->offset.sect_off, objfile_name (objfile));
15366 }
15367 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15368 else if (part_die->lowpc >= part_die->highpc)
15369 {
15370 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15371
15372 complaint (&symfile_complaints,
15373 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15374 "for DIE at 0x%x [in module %s]"),
15375 paddress (gdbarch, part_die->lowpc),
15376 paddress (gdbarch, part_die->highpc),
15377 part_die->offset.sect_off, objfile_name (objfile));
15378 }
15379 else
15380 part_die->has_pc_info = 1;
15381 }
15382
15383 return info_ptr;
15384 }
15385
15386 /* Find a cached partial DIE at OFFSET in CU. */
15387
15388 static struct partial_die_info *
15389 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15390 {
15391 struct partial_die_info *lookup_die = NULL;
15392 struct partial_die_info part_die;
15393
15394 part_die.offset = offset;
15395 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15396 offset.sect_off);
15397
15398 return lookup_die;
15399 }
15400
15401 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15402 except in the case of .debug_types DIEs which do not reference
15403 outside their CU (they do however referencing other types via
15404 DW_FORM_ref_sig8). */
15405
15406 static struct partial_die_info *
15407 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15408 {
15409 struct objfile *objfile = cu->objfile;
15410 struct dwarf2_per_cu_data *per_cu = NULL;
15411 struct partial_die_info *pd = NULL;
15412
15413 if (offset_in_dwz == cu->per_cu->is_dwz
15414 && offset_in_cu_p (&cu->header, offset))
15415 {
15416 pd = find_partial_die_in_comp_unit (offset, cu);
15417 if (pd != NULL)
15418 return pd;
15419 /* We missed recording what we needed.
15420 Load all dies and try again. */
15421 per_cu = cu->per_cu;
15422 }
15423 else
15424 {
15425 /* TUs don't reference other CUs/TUs (except via type signatures). */
15426 if (cu->per_cu->is_debug_types)
15427 {
15428 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15429 " external reference to offset 0x%lx [in module %s].\n"),
15430 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15431 bfd_get_filename (objfile->obfd));
15432 }
15433 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15434 objfile);
15435
15436 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15437 load_partial_comp_unit (per_cu);
15438
15439 per_cu->cu->last_used = 0;
15440 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15441 }
15442
15443 /* If we didn't find it, and not all dies have been loaded,
15444 load them all and try again. */
15445
15446 if (pd == NULL && per_cu->load_all_dies == 0)
15447 {
15448 per_cu->load_all_dies = 1;
15449
15450 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15451 THIS_CU->cu may already be in use. So we can't just free it and
15452 replace its DIEs with the ones we read in. Instead, we leave those
15453 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15454 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15455 set. */
15456 load_partial_comp_unit (per_cu);
15457
15458 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15459 }
15460
15461 if (pd == NULL)
15462 internal_error (__FILE__, __LINE__,
15463 _("could not find partial DIE 0x%x "
15464 "in cache [from module %s]\n"),
15465 offset.sect_off, bfd_get_filename (objfile->obfd));
15466 return pd;
15467 }
15468
15469 /* See if we can figure out if the class lives in a namespace. We do
15470 this by looking for a member function; its demangled name will
15471 contain namespace info, if there is any. */
15472
15473 static void
15474 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15475 struct dwarf2_cu *cu)
15476 {
15477 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15478 what template types look like, because the demangler
15479 frequently doesn't give the same name as the debug info. We
15480 could fix this by only using the demangled name to get the
15481 prefix (but see comment in read_structure_type). */
15482
15483 struct partial_die_info *real_pdi;
15484 struct partial_die_info *child_pdi;
15485
15486 /* If this DIE (this DIE's specification, if any) has a parent, then
15487 we should not do this. We'll prepend the parent's fully qualified
15488 name when we create the partial symbol. */
15489
15490 real_pdi = struct_pdi;
15491 while (real_pdi->has_specification)
15492 real_pdi = find_partial_die (real_pdi->spec_offset,
15493 real_pdi->spec_is_dwz, cu);
15494
15495 if (real_pdi->die_parent != NULL)
15496 return;
15497
15498 for (child_pdi = struct_pdi->die_child;
15499 child_pdi != NULL;
15500 child_pdi = child_pdi->die_sibling)
15501 {
15502 if (child_pdi->tag == DW_TAG_subprogram
15503 && child_pdi->linkage_name != NULL)
15504 {
15505 char *actual_class_name
15506 = language_class_name_from_physname (cu->language_defn,
15507 child_pdi->linkage_name);
15508 if (actual_class_name != NULL)
15509 {
15510 struct_pdi->name
15511 = obstack_copy0 (&cu->objfile->objfile_obstack,
15512 actual_class_name,
15513 strlen (actual_class_name));
15514 xfree (actual_class_name);
15515 }
15516 break;
15517 }
15518 }
15519 }
15520
15521 /* Adjust PART_DIE before generating a symbol for it. This function
15522 may set the is_external flag or change the DIE's name. */
15523
15524 static void
15525 fixup_partial_die (struct partial_die_info *part_die,
15526 struct dwarf2_cu *cu)
15527 {
15528 /* Once we've fixed up a die, there's no point in doing so again.
15529 This also avoids a memory leak if we were to call
15530 guess_partial_die_structure_name multiple times. */
15531 if (part_die->fixup_called)
15532 return;
15533
15534 /* If we found a reference attribute and the DIE has no name, try
15535 to find a name in the referred to DIE. */
15536
15537 if (part_die->name == NULL && part_die->has_specification)
15538 {
15539 struct partial_die_info *spec_die;
15540
15541 spec_die = find_partial_die (part_die->spec_offset,
15542 part_die->spec_is_dwz, cu);
15543
15544 fixup_partial_die (spec_die, cu);
15545
15546 if (spec_die->name)
15547 {
15548 part_die->name = spec_die->name;
15549
15550 /* Copy DW_AT_external attribute if it is set. */
15551 if (spec_die->is_external)
15552 part_die->is_external = spec_die->is_external;
15553 }
15554 }
15555
15556 /* Set default names for some unnamed DIEs. */
15557
15558 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15559 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15560
15561 /* If there is no parent die to provide a namespace, and there are
15562 children, see if we can determine the namespace from their linkage
15563 name. */
15564 if (cu->language == language_cplus
15565 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15566 && part_die->die_parent == NULL
15567 && part_die->has_children
15568 && (part_die->tag == DW_TAG_class_type
15569 || part_die->tag == DW_TAG_structure_type
15570 || part_die->tag == DW_TAG_union_type))
15571 guess_partial_die_structure_name (part_die, cu);
15572
15573 /* GCC might emit a nameless struct or union that has a linkage
15574 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15575 if (part_die->name == NULL
15576 && (part_die->tag == DW_TAG_class_type
15577 || part_die->tag == DW_TAG_interface_type
15578 || part_die->tag == DW_TAG_structure_type
15579 || part_die->tag == DW_TAG_union_type)
15580 && part_die->linkage_name != NULL)
15581 {
15582 char *demangled;
15583
15584 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15585 if (demangled)
15586 {
15587 const char *base;
15588
15589 /* Strip any leading namespaces/classes, keep only the base name.
15590 DW_AT_name for named DIEs does not contain the prefixes. */
15591 base = strrchr (demangled, ':');
15592 if (base && base > demangled && base[-1] == ':')
15593 base++;
15594 else
15595 base = demangled;
15596
15597 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15598 base, strlen (base));
15599 xfree (demangled);
15600 }
15601 }
15602
15603 part_die->fixup_called = 1;
15604 }
15605
15606 /* Read an attribute value described by an attribute form. */
15607
15608 static const gdb_byte *
15609 read_attribute_value (const struct die_reader_specs *reader,
15610 struct attribute *attr, unsigned form,
15611 const gdb_byte *info_ptr)
15612 {
15613 struct dwarf2_cu *cu = reader->cu;
15614 bfd *abfd = reader->abfd;
15615 struct comp_unit_head *cu_header = &cu->header;
15616 unsigned int bytes_read;
15617 struct dwarf_block *blk;
15618
15619 attr->form = form;
15620 switch (form)
15621 {
15622 case DW_FORM_ref_addr:
15623 if (cu->header.version == 2)
15624 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15625 else
15626 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15627 &cu->header, &bytes_read);
15628 info_ptr += bytes_read;
15629 break;
15630 case DW_FORM_GNU_ref_alt:
15631 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15632 info_ptr += bytes_read;
15633 break;
15634 case DW_FORM_addr:
15635 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15636 info_ptr += bytes_read;
15637 break;
15638 case DW_FORM_block2:
15639 blk = dwarf_alloc_block (cu);
15640 blk->size = read_2_bytes (abfd, info_ptr);
15641 info_ptr += 2;
15642 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15643 info_ptr += blk->size;
15644 DW_BLOCK (attr) = blk;
15645 break;
15646 case DW_FORM_block4:
15647 blk = dwarf_alloc_block (cu);
15648 blk->size = read_4_bytes (abfd, info_ptr);
15649 info_ptr += 4;
15650 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15651 info_ptr += blk->size;
15652 DW_BLOCK (attr) = blk;
15653 break;
15654 case DW_FORM_data2:
15655 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15656 info_ptr += 2;
15657 break;
15658 case DW_FORM_data4:
15659 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15660 info_ptr += 4;
15661 break;
15662 case DW_FORM_data8:
15663 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15664 info_ptr += 8;
15665 break;
15666 case DW_FORM_sec_offset:
15667 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15668 info_ptr += bytes_read;
15669 break;
15670 case DW_FORM_string:
15671 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15672 DW_STRING_IS_CANONICAL (attr) = 0;
15673 info_ptr += bytes_read;
15674 break;
15675 case DW_FORM_strp:
15676 if (!cu->per_cu->is_dwz)
15677 {
15678 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15679 &bytes_read);
15680 DW_STRING_IS_CANONICAL (attr) = 0;
15681 info_ptr += bytes_read;
15682 break;
15683 }
15684 /* FALLTHROUGH */
15685 case DW_FORM_GNU_strp_alt:
15686 {
15687 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15688 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15689 &bytes_read);
15690
15691 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15692 DW_STRING_IS_CANONICAL (attr) = 0;
15693 info_ptr += bytes_read;
15694 }
15695 break;
15696 case DW_FORM_exprloc:
15697 case DW_FORM_block:
15698 blk = dwarf_alloc_block (cu);
15699 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15700 info_ptr += bytes_read;
15701 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15702 info_ptr += blk->size;
15703 DW_BLOCK (attr) = blk;
15704 break;
15705 case DW_FORM_block1:
15706 blk = dwarf_alloc_block (cu);
15707 blk->size = read_1_byte (abfd, info_ptr);
15708 info_ptr += 1;
15709 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15710 info_ptr += blk->size;
15711 DW_BLOCK (attr) = blk;
15712 break;
15713 case DW_FORM_data1:
15714 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15715 info_ptr += 1;
15716 break;
15717 case DW_FORM_flag:
15718 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15719 info_ptr += 1;
15720 break;
15721 case DW_FORM_flag_present:
15722 DW_UNSND (attr) = 1;
15723 break;
15724 case DW_FORM_sdata:
15725 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15726 info_ptr += bytes_read;
15727 break;
15728 case DW_FORM_udata:
15729 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15730 info_ptr += bytes_read;
15731 break;
15732 case DW_FORM_ref1:
15733 DW_UNSND (attr) = (cu->header.offset.sect_off
15734 + read_1_byte (abfd, info_ptr));
15735 info_ptr += 1;
15736 break;
15737 case DW_FORM_ref2:
15738 DW_UNSND (attr) = (cu->header.offset.sect_off
15739 + read_2_bytes (abfd, info_ptr));
15740 info_ptr += 2;
15741 break;
15742 case DW_FORM_ref4:
15743 DW_UNSND (attr) = (cu->header.offset.sect_off
15744 + read_4_bytes (abfd, info_ptr));
15745 info_ptr += 4;
15746 break;
15747 case DW_FORM_ref8:
15748 DW_UNSND (attr) = (cu->header.offset.sect_off
15749 + read_8_bytes (abfd, info_ptr));
15750 info_ptr += 8;
15751 break;
15752 case DW_FORM_ref_sig8:
15753 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
15754 info_ptr += 8;
15755 break;
15756 case DW_FORM_ref_udata:
15757 DW_UNSND (attr) = (cu->header.offset.sect_off
15758 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
15759 info_ptr += bytes_read;
15760 break;
15761 case DW_FORM_indirect:
15762 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15763 info_ptr += bytes_read;
15764 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
15765 break;
15766 case DW_FORM_GNU_addr_index:
15767 if (reader->dwo_file == NULL)
15768 {
15769 /* For now flag a hard error.
15770 Later we can turn this into a complaint. */
15771 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15772 dwarf_form_name (form),
15773 bfd_get_filename (abfd));
15774 }
15775 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15776 info_ptr += bytes_read;
15777 break;
15778 case DW_FORM_GNU_str_index:
15779 if (reader->dwo_file == NULL)
15780 {
15781 /* For now flag a hard error.
15782 Later we can turn this into a complaint if warranted. */
15783 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15784 dwarf_form_name (form),
15785 bfd_get_filename (abfd));
15786 }
15787 {
15788 ULONGEST str_index =
15789 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15790
15791 DW_STRING (attr) = read_str_index (reader, cu, str_index);
15792 DW_STRING_IS_CANONICAL (attr) = 0;
15793 info_ptr += bytes_read;
15794 }
15795 break;
15796 default:
15797 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
15798 dwarf_form_name (form),
15799 bfd_get_filename (abfd));
15800 }
15801
15802 /* Super hack. */
15803 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
15804 attr->form = DW_FORM_GNU_ref_alt;
15805
15806 /* We have seen instances where the compiler tried to emit a byte
15807 size attribute of -1 which ended up being encoded as an unsigned
15808 0xffffffff. Although 0xffffffff is technically a valid size value,
15809 an object of this size seems pretty unlikely so we can relatively
15810 safely treat these cases as if the size attribute was invalid and
15811 treat them as zero by default. */
15812 if (attr->name == DW_AT_byte_size
15813 && form == DW_FORM_data4
15814 && DW_UNSND (attr) >= 0xffffffff)
15815 {
15816 complaint
15817 (&symfile_complaints,
15818 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15819 hex_string (DW_UNSND (attr)));
15820 DW_UNSND (attr) = 0;
15821 }
15822
15823 return info_ptr;
15824 }
15825
15826 /* Read an attribute described by an abbreviated attribute. */
15827
15828 static const gdb_byte *
15829 read_attribute (const struct die_reader_specs *reader,
15830 struct attribute *attr, struct attr_abbrev *abbrev,
15831 const gdb_byte *info_ptr)
15832 {
15833 attr->name = abbrev->name;
15834 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
15835 }
15836
15837 /* Read dwarf information from a buffer. */
15838
15839 static unsigned int
15840 read_1_byte (bfd *abfd, const gdb_byte *buf)
15841 {
15842 return bfd_get_8 (abfd, buf);
15843 }
15844
15845 static int
15846 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
15847 {
15848 return bfd_get_signed_8 (abfd, buf);
15849 }
15850
15851 static unsigned int
15852 read_2_bytes (bfd *abfd, const gdb_byte *buf)
15853 {
15854 return bfd_get_16 (abfd, buf);
15855 }
15856
15857 static int
15858 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
15859 {
15860 return bfd_get_signed_16 (abfd, buf);
15861 }
15862
15863 static unsigned int
15864 read_4_bytes (bfd *abfd, const gdb_byte *buf)
15865 {
15866 return bfd_get_32 (abfd, buf);
15867 }
15868
15869 static int
15870 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
15871 {
15872 return bfd_get_signed_32 (abfd, buf);
15873 }
15874
15875 static ULONGEST
15876 read_8_bytes (bfd *abfd, const gdb_byte *buf)
15877 {
15878 return bfd_get_64 (abfd, buf);
15879 }
15880
15881 static CORE_ADDR
15882 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
15883 unsigned int *bytes_read)
15884 {
15885 struct comp_unit_head *cu_header = &cu->header;
15886 CORE_ADDR retval = 0;
15887
15888 if (cu_header->signed_addr_p)
15889 {
15890 switch (cu_header->addr_size)
15891 {
15892 case 2:
15893 retval = bfd_get_signed_16 (abfd, buf);
15894 break;
15895 case 4:
15896 retval = bfd_get_signed_32 (abfd, buf);
15897 break;
15898 case 8:
15899 retval = bfd_get_signed_64 (abfd, buf);
15900 break;
15901 default:
15902 internal_error (__FILE__, __LINE__,
15903 _("read_address: bad switch, signed [in module %s]"),
15904 bfd_get_filename (abfd));
15905 }
15906 }
15907 else
15908 {
15909 switch (cu_header->addr_size)
15910 {
15911 case 2:
15912 retval = bfd_get_16 (abfd, buf);
15913 break;
15914 case 4:
15915 retval = bfd_get_32 (abfd, buf);
15916 break;
15917 case 8:
15918 retval = bfd_get_64 (abfd, buf);
15919 break;
15920 default:
15921 internal_error (__FILE__, __LINE__,
15922 _("read_address: bad switch, "
15923 "unsigned [in module %s]"),
15924 bfd_get_filename (abfd));
15925 }
15926 }
15927
15928 *bytes_read = cu_header->addr_size;
15929 return retval;
15930 }
15931
15932 /* Read the initial length from a section. The (draft) DWARF 3
15933 specification allows the initial length to take up either 4 bytes
15934 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
15935 bytes describe the length and all offsets will be 8 bytes in length
15936 instead of 4.
15937
15938 An older, non-standard 64-bit format is also handled by this
15939 function. The older format in question stores the initial length
15940 as an 8-byte quantity without an escape value. Lengths greater
15941 than 2^32 aren't very common which means that the initial 4 bytes
15942 is almost always zero. Since a length value of zero doesn't make
15943 sense for the 32-bit format, this initial zero can be considered to
15944 be an escape value which indicates the presence of the older 64-bit
15945 format. As written, the code can't detect (old format) lengths
15946 greater than 4GB. If it becomes necessary to handle lengths
15947 somewhat larger than 4GB, we could allow other small values (such
15948 as the non-sensical values of 1, 2, and 3) to also be used as
15949 escape values indicating the presence of the old format.
15950
15951 The value returned via bytes_read should be used to increment the
15952 relevant pointer after calling read_initial_length().
15953
15954 [ Note: read_initial_length() and read_offset() are based on the
15955 document entitled "DWARF Debugging Information Format", revision
15956 3, draft 8, dated November 19, 2001. This document was obtained
15957 from:
15958
15959 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
15960
15961 This document is only a draft and is subject to change. (So beware.)
15962
15963 Details regarding the older, non-standard 64-bit format were
15964 determined empirically by examining 64-bit ELF files produced by
15965 the SGI toolchain on an IRIX 6.5 machine.
15966
15967 - Kevin, July 16, 2002
15968 ] */
15969
15970 static LONGEST
15971 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
15972 {
15973 LONGEST length = bfd_get_32 (abfd, buf);
15974
15975 if (length == 0xffffffff)
15976 {
15977 length = bfd_get_64 (abfd, buf + 4);
15978 *bytes_read = 12;
15979 }
15980 else if (length == 0)
15981 {
15982 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
15983 length = bfd_get_64 (abfd, buf);
15984 *bytes_read = 8;
15985 }
15986 else
15987 {
15988 *bytes_read = 4;
15989 }
15990
15991 return length;
15992 }
15993
15994 /* Cover function for read_initial_length.
15995 Returns the length of the object at BUF, and stores the size of the
15996 initial length in *BYTES_READ and stores the size that offsets will be in
15997 *OFFSET_SIZE.
15998 If the initial length size is not equivalent to that specified in
15999 CU_HEADER then issue a complaint.
16000 This is useful when reading non-comp-unit headers. */
16001
16002 static LONGEST
16003 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16004 const struct comp_unit_head *cu_header,
16005 unsigned int *bytes_read,
16006 unsigned int *offset_size)
16007 {
16008 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16009
16010 gdb_assert (cu_header->initial_length_size == 4
16011 || cu_header->initial_length_size == 8
16012 || cu_header->initial_length_size == 12);
16013
16014 if (cu_header->initial_length_size != *bytes_read)
16015 complaint (&symfile_complaints,
16016 _("intermixed 32-bit and 64-bit DWARF sections"));
16017
16018 *offset_size = (*bytes_read == 4) ? 4 : 8;
16019 return length;
16020 }
16021
16022 /* Read an offset from the data stream. The size of the offset is
16023 given by cu_header->offset_size. */
16024
16025 static LONGEST
16026 read_offset (bfd *abfd, const gdb_byte *buf,
16027 const struct comp_unit_head *cu_header,
16028 unsigned int *bytes_read)
16029 {
16030 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16031
16032 *bytes_read = cu_header->offset_size;
16033 return offset;
16034 }
16035
16036 /* Read an offset from the data stream. */
16037
16038 static LONGEST
16039 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16040 {
16041 LONGEST retval = 0;
16042
16043 switch (offset_size)
16044 {
16045 case 4:
16046 retval = bfd_get_32 (abfd, buf);
16047 break;
16048 case 8:
16049 retval = bfd_get_64 (abfd, buf);
16050 break;
16051 default:
16052 internal_error (__FILE__, __LINE__,
16053 _("read_offset_1: bad switch [in module %s]"),
16054 bfd_get_filename (abfd));
16055 }
16056
16057 return retval;
16058 }
16059
16060 static const gdb_byte *
16061 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16062 {
16063 /* If the size of a host char is 8 bits, we can return a pointer
16064 to the buffer, otherwise we have to copy the data to a buffer
16065 allocated on the temporary obstack. */
16066 gdb_assert (HOST_CHAR_BIT == 8);
16067 return buf;
16068 }
16069
16070 static const char *
16071 read_direct_string (bfd *abfd, const gdb_byte *buf,
16072 unsigned int *bytes_read_ptr)
16073 {
16074 /* If the size of a host char is 8 bits, we can return a pointer
16075 to the string, otherwise we have to copy the string to a buffer
16076 allocated on the temporary obstack. */
16077 gdb_assert (HOST_CHAR_BIT == 8);
16078 if (*buf == '\0')
16079 {
16080 *bytes_read_ptr = 1;
16081 return NULL;
16082 }
16083 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16084 return (const char *) buf;
16085 }
16086
16087 static const char *
16088 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16089 {
16090 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16091 if (dwarf2_per_objfile->str.buffer == NULL)
16092 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16093 bfd_get_filename (abfd));
16094 if (str_offset >= dwarf2_per_objfile->str.size)
16095 error (_("DW_FORM_strp pointing outside of "
16096 ".debug_str section [in module %s]"),
16097 bfd_get_filename (abfd));
16098 gdb_assert (HOST_CHAR_BIT == 8);
16099 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16100 return NULL;
16101 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16102 }
16103
16104 /* Read a string at offset STR_OFFSET in the .debug_str section from
16105 the .dwz file DWZ. Throw an error if the offset is too large. If
16106 the string consists of a single NUL byte, return NULL; otherwise
16107 return a pointer to the string. */
16108
16109 static const char *
16110 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16111 {
16112 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16113
16114 if (dwz->str.buffer == NULL)
16115 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16116 "section [in module %s]"),
16117 bfd_get_filename (dwz->dwz_bfd));
16118 if (str_offset >= dwz->str.size)
16119 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16120 ".debug_str section [in module %s]"),
16121 bfd_get_filename (dwz->dwz_bfd));
16122 gdb_assert (HOST_CHAR_BIT == 8);
16123 if (dwz->str.buffer[str_offset] == '\0')
16124 return NULL;
16125 return (const char *) (dwz->str.buffer + str_offset);
16126 }
16127
16128 static const char *
16129 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16130 const struct comp_unit_head *cu_header,
16131 unsigned int *bytes_read_ptr)
16132 {
16133 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16134
16135 return read_indirect_string_at_offset (abfd, str_offset);
16136 }
16137
16138 static ULONGEST
16139 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16140 unsigned int *bytes_read_ptr)
16141 {
16142 ULONGEST result;
16143 unsigned int num_read;
16144 int i, shift;
16145 unsigned char byte;
16146
16147 result = 0;
16148 shift = 0;
16149 num_read = 0;
16150 i = 0;
16151 while (1)
16152 {
16153 byte = bfd_get_8 (abfd, buf);
16154 buf++;
16155 num_read++;
16156 result |= ((ULONGEST) (byte & 127) << shift);
16157 if ((byte & 128) == 0)
16158 {
16159 break;
16160 }
16161 shift += 7;
16162 }
16163 *bytes_read_ptr = num_read;
16164 return result;
16165 }
16166
16167 static LONGEST
16168 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16169 unsigned int *bytes_read_ptr)
16170 {
16171 LONGEST result;
16172 int i, shift, num_read;
16173 unsigned char byte;
16174
16175 result = 0;
16176 shift = 0;
16177 num_read = 0;
16178 i = 0;
16179 while (1)
16180 {
16181 byte = bfd_get_8 (abfd, buf);
16182 buf++;
16183 num_read++;
16184 result |= ((LONGEST) (byte & 127) << shift);
16185 shift += 7;
16186 if ((byte & 128) == 0)
16187 {
16188 break;
16189 }
16190 }
16191 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16192 result |= -(((LONGEST) 1) << shift);
16193 *bytes_read_ptr = num_read;
16194 return result;
16195 }
16196
16197 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16198 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16199 ADDR_SIZE is the size of addresses from the CU header. */
16200
16201 static CORE_ADDR
16202 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16203 {
16204 struct objfile *objfile = dwarf2_per_objfile->objfile;
16205 bfd *abfd = objfile->obfd;
16206 const gdb_byte *info_ptr;
16207
16208 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16209 if (dwarf2_per_objfile->addr.buffer == NULL)
16210 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16211 objfile_name (objfile));
16212 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16213 error (_("DW_FORM_addr_index pointing outside of "
16214 ".debug_addr section [in module %s]"),
16215 objfile_name (objfile));
16216 info_ptr = (dwarf2_per_objfile->addr.buffer
16217 + addr_base + addr_index * addr_size);
16218 if (addr_size == 4)
16219 return bfd_get_32 (abfd, info_ptr);
16220 else
16221 return bfd_get_64 (abfd, info_ptr);
16222 }
16223
16224 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16225
16226 static CORE_ADDR
16227 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16228 {
16229 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16230 }
16231
16232 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16233
16234 static CORE_ADDR
16235 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16236 unsigned int *bytes_read)
16237 {
16238 bfd *abfd = cu->objfile->obfd;
16239 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16240
16241 return read_addr_index (cu, addr_index);
16242 }
16243
16244 /* Data structure to pass results from dwarf2_read_addr_index_reader
16245 back to dwarf2_read_addr_index. */
16246
16247 struct dwarf2_read_addr_index_data
16248 {
16249 ULONGEST addr_base;
16250 int addr_size;
16251 };
16252
16253 /* die_reader_func for dwarf2_read_addr_index. */
16254
16255 static void
16256 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16257 const gdb_byte *info_ptr,
16258 struct die_info *comp_unit_die,
16259 int has_children,
16260 void *data)
16261 {
16262 struct dwarf2_cu *cu = reader->cu;
16263 struct dwarf2_read_addr_index_data *aidata =
16264 (struct dwarf2_read_addr_index_data *) data;
16265
16266 aidata->addr_base = cu->addr_base;
16267 aidata->addr_size = cu->header.addr_size;
16268 }
16269
16270 /* Given an index in .debug_addr, fetch the value.
16271 NOTE: This can be called during dwarf expression evaluation,
16272 long after the debug information has been read, and thus per_cu->cu
16273 may no longer exist. */
16274
16275 CORE_ADDR
16276 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16277 unsigned int addr_index)
16278 {
16279 struct objfile *objfile = per_cu->objfile;
16280 struct dwarf2_cu *cu = per_cu->cu;
16281 ULONGEST addr_base;
16282 int addr_size;
16283
16284 /* This is intended to be called from outside this file. */
16285 dw2_setup (objfile);
16286
16287 /* We need addr_base and addr_size.
16288 If we don't have PER_CU->cu, we have to get it.
16289 Nasty, but the alternative is storing the needed info in PER_CU,
16290 which at this point doesn't seem justified: it's not clear how frequently
16291 it would get used and it would increase the size of every PER_CU.
16292 Entry points like dwarf2_per_cu_addr_size do a similar thing
16293 so we're not in uncharted territory here.
16294 Alas we need to be a bit more complicated as addr_base is contained
16295 in the DIE.
16296
16297 We don't need to read the entire CU(/TU).
16298 We just need the header and top level die.
16299
16300 IWBN to use the aging mechanism to let us lazily later discard the CU.
16301 For now we skip this optimization. */
16302
16303 if (cu != NULL)
16304 {
16305 addr_base = cu->addr_base;
16306 addr_size = cu->header.addr_size;
16307 }
16308 else
16309 {
16310 struct dwarf2_read_addr_index_data aidata;
16311
16312 /* Note: We can't use init_cutu_and_read_dies_simple here,
16313 we need addr_base. */
16314 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16315 dwarf2_read_addr_index_reader, &aidata);
16316 addr_base = aidata.addr_base;
16317 addr_size = aidata.addr_size;
16318 }
16319
16320 return read_addr_index_1 (addr_index, addr_base, addr_size);
16321 }
16322
16323 /* Given a DW_FORM_GNU_str_index, fetch the string.
16324 This is only used by the Fission support. */
16325
16326 static const char *
16327 read_str_index (const struct die_reader_specs *reader,
16328 struct dwarf2_cu *cu, ULONGEST str_index)
16329 {
16330 struct objfile *objfile = dwarf2_per_objfile->objfile;
16331 const char *dwo_name = objfile_name (objfile);
16332 bfd *abfd = objfile->obfd;
16333 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16334 struct dwarf2_section_info *str_offsets_section =
16335 &reader->dwo_file->sections.str_offsets;
16336 const gdb_byte *info_ptr;
16337 ULONGEST str_offset;
16338 static const char form_name[] = "DW_FORM_GNU_str_index";
16339
16340 dwarf2_read_section (objfile, str_section);
16341 dwarf2_read_section (objfile, str_offsets_section);
16342 if (str_section->buffer == NULL)
16343 error (_("%s used without .debug_str.dwo section"
16344 " in CU at offset 0x%lx [in module %s]"),
16345 form_name, (long) cu->header.offset.sect_off, dwo_name);
16346 if (str_offsets_section->buffer == NULL)
16347 error (_("%s used without .debug_str_offsets.dwo section"
16348 " in CU at offset 0x%lx [in module %s]"),
16349 form_name, (long) cu->header.offset.sect_off, dwo_name);
16350 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16351 error (_("%s pointing outside of .debug_str_offsets.dwo"
16352 " section in CU at offset 0x%lx [in module %s]"),
16353 form_name, (long) cu->header.offset.sect_off, dwo_name);
16354 info_ptr = (str_offsets_section->buffer
16355 + str_index * cu->header.offset_size);
16356 if (cu->header.offset_size == 4)
16357 str_offset = bfd_get_32 (abfd, info_ptr);
16358 else
16359 str_offset = bfd_get_64 (abfd, info_ptr);
16360 if (str_offset >= str_section->size)
16361 error (_("Offset from %s pointing outside of"
16362 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16363 form_name, (long) cu->header.offset.sect_off, dwo_name);
16364 return (const char *) (str_section->buffer + str_offset);
16365 }
16366
16367 /* Return the length of an LEB128 number in BUF. */
16368
16369 static int
16370 leb128_size (const gdb_byte *buf)
16371 {
16372 const gdb_byte *begin = buf;
16373 gdb_byte byte;
16374
16375 while (1)
16376 {
16377 byte = *buf++;
16378 if ((byte & 128) == 0)
16379 return buf - begin;
16380 }
16381 }
16382
16383 static void
16384 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16385 {
16386 switch (lang)
16387 {
16388 case DW_LANG_C89:
16389 case DW_LANG_C99:
16390 case DW_LANG_C:
16391 case DW_LANG_UPC:
16392 cu->language = language_c;
16393 break;
16394 case DW_LANG_C_plus_plus:
16395 cu->language = language_cplus;
16396 break;
16397 case DW_LANG_D:
16398 cu->language = language_d;
16399 break;
16400 case DW_LANG_Fortran77:
16401 case DW_LANG_Fortran90:
16402 case DW_LANG_Fortran95:
16403 cu->language = language_fortran;
16404 break;
16405 case DW_LANG_Go:
16406 cu->language = language_go;
16407 break;
16408 case DW_LANG_Mips_Assembler:
16409 cu->language = language_asm;
16410 break;
16411 case DW_LANG_Java:
16412 cu->language = language_java;
16413 break;
16414 case DW_LANG_Ada83:
16415 case DW_LANG_Ada95:
16416 cu->language = language_ada;
16417 break;
16418 case DW_LANG_Modula2:
16419 cu->language = language_m2;
16420 break;
16421 case DW_LANG_Pascal83:
16422 cu->language = language_pascal;
16423 break;
16424 case DW_LANG_ObjC:
16425 cu->language = language_objc;
16426 break;
16427 case DW_LANG_Cobol74:
16428 case DW_LANG_Cobol85:
16429 default:
16430 cu->language = language_minimal;
16431 break;
16432 }
16433 cu->language_defn = language_def (cu->language);
16434 }
16435
16436 /* Return the named attribute or NULL if not there. */
16437
16438 static struct attribute *
16439 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16440 {
16441 for (;;)
16442 {
16443 unsigned int i;
16444 struct attribute *spec = NULL;
16445
16446 for (i = 0; i < die->num_attrs; ++i)
16447 {
16448 if (die->attrs[i].name == name)
16449 return &die->attrs[i];
16450 if (die->attrs[i].name == DW_AT_specification
16451 || die->attrs[i].name == DW_AT_abstract_origin)
16452 spec = &die->attrs[i];
16453 }
16454
16455 if (!spec)
16456 break;
16457
16458 die = follow_die_ref (die, spec, &cu);
16459 }
16460
16461 return NULL;
16462 }
16463
16464 /* Return the named attribute or NULL if not there,
16465 but do not follow DW_AT_specification, etc.
16466 This is for use in contexts where we're reading .debug_types dies.
16467 Following DW_AT_specification, DW_AT_abstract_origin will take us
16468 back up the chain, and we want to go down. */
16469
16470 static struct attribute *
16471 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16472 {
16473 unsigned int i;
16474
16475 for (i = 0; i < die->num_attrs; ++i)
16476 if (die->attrs[i].name == name)
16477 return &die->attrs[i];
16478
16479 return NULL;
16480 }
16481
16482 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16483 and holds a non-zero value. This function should only be used for
16484 DW_FORM_flag or DW_FORM_flag_present attributes. */
16485
16486 static int
16487 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16488 {
16489 struct attribute *attr = dwarf2_attr (die, name, cu);
16490
16491 return (attr && DW_UNSND (attr));
16492 }
16493
16494 static int
16495 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16496 {
16497 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16498 which value is non-zero. However, we have to be careful with
16499 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16500 (via dwarf2_flag_true_p) follows this attribute. So we may
16501 end up accidently finding a declaration attribute that belongs
16502 to a different DIE referenced by the specification attribute,
16503 even though the given DIE does not have a declaration attribute. */
16504 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16505 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16506 }
16507
16508 /* Return the die giving the specification for DIE, if there is
16509 one. *SPEC_CU is the CU containing DIE on input, and the CU
16510 containing the return value on output. If there is no
16511 specification, but there is an abstract origin, that is
16512 returned. */
16513
16514 static struct die_info *
16515 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16516 {
16517 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16518 *spec_cu);
16519
16520 if (spec_attr == NULL)
16521 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16522
16523 if (spec_attr == NULL)
16524 return NULL;
16525 else
16526 return follow_die_ref (die, spec_attr, spec_cu);
16527 }
16528
16529 /* Free the line_header structure *LH, and any arrays and strings it
16530 refers to.
16531 NOTE: This is also used as a "cleanup" function. */
16532
16533 static void
16534 free_line_header (struct line_header *lh)
16535 {
16536 if (lh->standard_opcode_lengths)
16537 xfree (lh->standard_opcode_lengths);
16538
16539 /* Remember that all the lh->file_names[i].name pointers are
16540 pointers into debug_line_buffer, and don't need to be freed. */
16541 if (lh->file_names)
16542 xfree (lh->file_names);
16543
16544 /* Similarly for the include directory names. */
16545 if (lh->include_dirs)
16546 xfree (lh->include_dirs);
16547
16548 xfree (lh);
16549 }
16550
16551 /* Add an entry to LH's include directory table. */
16552
16553 static void
16554 add_include_dir (struct line_header *lh, const char *include_dir)
16555 {
16556 /* Grow the array if necessary. */
16557 if (lh->include_dirs_size == 0)
16558 {
16559 lh->include_dirs_size = 1; /* for testing */
16560 lh->include_dirs = xmalloc (lh->include_dirs_size
16561 * sizeof (*lh->include_dirs));
16562 }
16563 else if (lh->num_include_dirs >= lh->include_dirs_size)
16564 {
16565 lh->include_dirs_size *= 2;
16566 lh->include_dirs = xrealloc (lh->include_dirs,
16567 (lh->include_dirs_size
16568 * sizeof (*lh->include_dirs)));
16569 }
16570
16571 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16572 }
16573
16574 /* Add an entry to LH's file name table. */
16575
16576 static void
16577 add_file_name (struct line_header *lh,
16578 const char *name,
16579 unsigned int dir_index,
16580 unsigned int mod_time,
16581 unsigned int length)
16582 {
16583 struct file_entry *fe;
16584
16585 /* Grow the array if necessary. */
16586 if (lh->file_names_size == 0)
16587 {
16588 lh->file_names_size = 1; /* for testing */
16589 lh->file_names = xmalloc (lh->file_names_size
16590 * sizeof (*lh->file_names));
16591 }
16592 else if (lh->num_file_names >= lh->file_names_size)
16593 {
16594 lh->file_names_size *= 2;
16595 lh->file_names = xrealloc (lh->file_names,
16596 (lh->file_names_size
16597 * sizeof (*lh->file_names)));
16598 }
16599
16600 fe = &lh->file_names[lh->num_file_names++];
16601 fe->name = name;
16602 fe->dir_index = dir_index;
16603 fe->mod_time = mod_time;
16604 fe->length = length;
16605 fe->included_p = 0;
16606 fe->symtab = NULL;
16607 }
16608
16609 /* A convenience function to find the proper .debug_line section for a
16610 CU. */
16611
16612 static struct dwarf2_section_info *
16613 get_debug_line_section (struct dwarf2_cu *cu)
16614 {
16615 struct dwarf2_section_info *section;
16616
16617 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16618 DWO file. */
16619 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16620 section = &cu->dwo_unit->dwo_file->sections.line;
16621 else if (cu->per_cu->is_dwz)
16622 {
16623 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16624
16625 section = &dwz->line;
16626 }
16627 else
16628 section = &dwarf2_per_objfile->line;
16629
16630 return section;
16631 }
16632
16633 /* Read the statement program header starting at OFFSET in
16634 .debug_line, or .debug_line.dwo. Return a pointer
16635 to a struct line_header, allocated using xmalloc.
16636
16637 NOTE: the strings in the include directory and file name tables of
16638 the returned object point into the dwarf line section buffer,
16639 and must not be freed. */
16640
16641 static struct line_header *
16642 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16643 {
16644 struct cleanup *back_to;
16645 struct line_header *lh;
16646 const gdb_byte *line_ptr;
16647 unsigned int bytes_read, offset_size;
16648 int i;
16649 const char *cur_dir, *cur_file;
16650 struct dwarf2_section_info *section;
16651 bfd *abfd;
16652
16653 section = get_debug_line_section (cu);
16654 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16655 if (section->buffer == NULL)
16656 {
16657 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16658 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16659 else
16660 complaint (&symfile_complaints, _("missing .debug_line section"));
16661 return 0;
16662 }
16663
16664 /* We can't do this until we know the section is non-empty.
16665 Only then do we know we have such a section. */
16666 abfd = get_section_bfd_owner (section);
16667
16668 /* Make sure that at least there's room for the total_length field.
16669 That could be 12 bytes long, but we're just going to fudge that. */
16670 if (offset + 4 >= section->size)
16671 {
16672 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16673 return 0;
16674 }
16675
16676 lh = xmalloc (sizeof (*lh));
16677 memset (lh, 0, sizeof (*lh));
16678 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16679 (void *) lh);
16680
16681 line_ptr = section->buffer + offset;
16682
16683 /* Read in the header. */
16684 lh->total_length =
16685 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16686 &bytes_read, &offset_size);
16687 line_ptr += bytes_read;
16688 if (line_ptr + lh->total_length > (section->buffer + section->size))
16689 {
16690 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16691 do_cleanups (back_to);
16692 return 0;
16693 }
16694 lh->statement_program_end = line_ptr + lh->total_length;
16695 lh->version = read_2_bytes (abfd, line_ptr);
16696 line_ptr += 2;
16697 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16698 line_ptr += offset_size;
16699 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16700 line_ptr += 1;
16701 if (lh->version >= 4)
16702 {
16703 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16704 line_ptr += 1;
16705 }
16706 else
16707 lh->maximum_ops_per_instruction = 1;
16708
16709 if (lh->maximum_ops_per_instruction == 0)
16710 {
16711 lh->maximum_ops_per_instruction = 1;
16712 complaint (&symfile_complaints,
16713 _("invalid maximum_ops_per_instruction "
16714 "in `.debug_line' section"));
16715 }
16716
16717 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16718 line_ptr += 1;
16719 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16720 line_ptr += 1;
16721 lh->line_range = read_1_byte (abfd, line_ptr);
16722 line_ptr += 1;
16723 lh->opcode_base = read_1_byte (abfd, line_ptr);
16724 line_ptr += 1;
16725 lh->standard_opcode_lengths
16726 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
16727
16728 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16729 for (i = 1; i < lh->opcode_base; ++i)
16730 {
16731 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16732 line_ptr += 1;
16733 }
16734
16735 /* Read directory table. */
16736 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16737 {
16738 line_ptr += bytes_read;
16739 add_include_dir (lh, cur_dir);
16740 }
16741 line_ptr += bytes_read;
16742
16743 /* Read file name table. */
16744 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16745 {
16746 unsigned int dir_index, mod_time, length;
16747
16748 line_ptr += bytes_read;
16749 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16750 line_ptr += bytes_read;
16751 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16752 line_ptr += bytes_read;
16753 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16754 line_ptr += bytes_read;
16755
16756 add_file_name (lh, cur_file, dir_index, mod_time, length);
16757 }
16758 line_ptr += bytes_read;
16759 lh->statement_program_start = line_ptr;
16760
16761 if (line_ptr > (section->buffer + section->size))
16762 complaint (&symfile_complaints,
16763 _("line number info header doesn't "
16764 "fit in `.debug_line' section"));
16765
16766 discard_cleanups (back_to);
16767 return lh;
16768 }
16769
16770 /* Subroutine of dwarf_decode_lines to simplify it.
16771 Return the file name of the psymtab for included file FILE_INDEX
16772 in line header LH of PST.
16773 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16774 If space for the result is malloc'd, it will be freed by a cleanup.
16775 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16776
16777 The function creates dangling cleanup registration. */
16778
16779 static const char *
16780 psymtab_include_file_name (const struct line_header *lh, int file_index,
16781 const struct partial_symtab *pst,
16782 const char *comp_dir)
16783 {
16784 const struct file_entry fe = lh->file_names [file_index];
16785 const char *include_name = fe.name;
16786 const char *include_name_to_compare = include_name;
16787 const char *dir_name = NULL;
16788 const char *pst_filename;
16789 char *copied_name = NULL;
16790 int file_is_pst;
16791
16792 if (fe.dir_index)
16793 dir_name = lh->include_dirs[fe.dir_index - 1];
16794
16795 if (!IS_ABSOLUTE_PATH (include_name)
16796 && (dir_name != NULL || comp_dir != NULL))
16797 {
16798 /* Avoid creating a duplicate psymtab for PST.
16799 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16800 Before we do the comparison, however, we need to account
16801 for DIR_NAME and COMP_DIR.
16802 First prepend dir_name (if non-NULL). If we still don't
16803 have an absolute path prepend comp_dir (if non-NULL).
16804 However, the directory we record in the include-file's
16805 psymtab does not contain COMP_DIR (to match the
16806 corresponding symtab(s)).
16807
16808 Example:
16809
16810 bash$ cd /tmp
16811 bash$ gcc -g ./hello.c
16812 include_name = "hello.c"
16813 dir_name = "."
16814 DW_AT_comp_dir = comp_dir = "/tmp"
16815 DW_AT_name = "./hello.c" */
16816
16817 if (dir_name != NULL)
16818 {
16819 char *tem = concat (dir_name, SLASH_STRING,
16820 include_name, (char *)NULL);
16821
16822 make_cleanup (xfree, tem);
16823 include_name = tem;
16824 include_name_to_compare = include_name;
16825 }
16826 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16827 {
16828 char *tem = concat (comp_dir, SLASH_STRING,
16829 include_name, (char *)NULL);
16830
16831 make_cleanup (xfree, tem);
16832 include_name_to_compare = tem;
16833 }
16834 }
16835
16836 pst_filename = pst->filename;
16837 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16838 {
16839 copied_name = concat (pst->dirname, SLASH_STRING,
16840 pst_filename, (char *)NULL);
16841 pst_filename = copied_name;
16842 }
16843
16844 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
16845
16846 if (copied_name != NULL)
16847 xfree (copied_name);
16848
16849 if (file_is_pst)
16850 return NULL;
16851 return include_name;
16852 }
16853
16854 /* Ignore this record_line request. */
16855
16856 static void
16857 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16858 {
16859 return;
16860 }
16861
16862 /* Subroutine of dwarf_decode_lines to simplify it.
16863 Process the line number information in LH. */
16864
16865 static void
16866 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16867 struct dwarf2_cu *cu, struct partial_symtab *pst)
16868 {
16869 const gdb_byte *line_ptr, *extended_end;
16870 const gdb_byte *line_end;
16871 unsigned int bytes_read, extended_len;
16872 unsigned char op_code, extended_op, adj_opcode;
16873 CORE_ADDR baseaddr;
16874 struct objfile *objfile = cu->objfile;
16875 bfd *abfd = objfile->obfd;
16876 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16877 const int decode_for_pst_p = (pst != NULL);
16878 struct subfile *last_subfile = NULL;
16879 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
16880 = record_line;
16881
16882 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16883
16884 line_ptr = lh->statement_program_start;
16885 line_end = lh->statement_program_end;
16886
16887 /* Read the statement sequences until there's nothing left. */
16888 while (line_ptr < line_end)
16889 {
16890 /* state machine registers */
16891 CORE_ADDR address = 0;
16892 unsigned int file = 1;
16893 unsigned int line = 1;
16894 unsigned int column = 0;
16895 int is_stmt = lh->default_is_stmt;
16896 int basic_block = 0;
16897 int end_sequence = 0;
16898 CORE_ADDR addr;
16899 unsigned char op_index = 0;
16900
16901 if (!decode_for_pst_p && lh->num_file_names >= file)
16902 {
16903 /* Start a subfile for the current file of the state machine. */
16904 /* lh->include_dirs and lh->file_names are 0-based, but the
16905 directory and file name numbers in the statement program
16906 are 1-based. */
16907 struct file_entry *fe = &lh->file_names[file - 1];
16908 const char *dir = NULL;
16909
16910 if (fe->dir_index)
16911 dir = lh->include_dirs[fe->dir_index - 1];
16912
16913 dwarf2_start_subfile (fe->name, dir, comp_dir);
16914 }
16915
16916 /* Decode the table. */
16917 while (!end_sequence)
16918 {
16919 op_code = read_1_byte (abfd, line_ptr);
16920 line_ptr += 1;
16921 if (line_ptr > line_end)
16922 {
16923 dwarf2_debug_line_missing_end_sequence_complaint ();
16924 break;
16925 }
16926
16927 if (op_code >= lh->opcode_base)
16928 {
16929 /* Special operand. */
16930 adj_opcode = op_code - lh->opcode_base;
16931 address += (((op_index + (adj_opcode / lh->line_range))
16932 / lh->maximum_ops_per_instruction)
16933 * lh->minimum_instruction_length);
16934 op_index = ((op_index + (adj_opcode / lh->line_range))
16935 % lh->maximum_ops_per_instruction);
16936 line += lh->line_base + (adj_opcode % lh->line_range);
16937 if (lh->num_file_names < file || file == 0)
16938 dwarf2_debug_line_missing_file_complaint ();
16939 /* For now we ignore lines not starting on an
16940 instruction boundary. */
16941 else if (op_index == 0)
16942 {
16943 lh->file_names[file - 1].included_p = 1;
16944 if (!decode_for_pst_p && is_stmt)
16945 {
16946 if (last_subfile != current_subfile)
16947 {
16948 addr = gdbarch_addr_bits_remove (gdbarch, address);
16949 if (last_subfile)
16950 (*p_record_line) (last_subfile, 0, addr);
16951 last_subfile = current_subfile;
16952 }
16953 /* Append row to matrix using current values. */
16954 addr = gdbarch_addr_bits_remove (gdbarch, address);
16955 (*p_record_line) (current_subfile, line, addr);
16956 }
16957 }
16958 basic_block = 0;
16959 }
16960 else switch (op_code)
16961 {
16962 case DW_LNS_extended_op:
16963 extended_len = read_unsigned_leb128 (abfd, line_ptr,
16964 &bytes_read);
16965 line_ptr += bytes_read;
16966 extended_end = line_ptr + extended_len;
16967 extended_op = read_1_byte (abfd, line_ptr);
16968 line_ptr += 1;
16969 switch (extended_op)
16970 {
16971 case DW_LNE_end_sequence:
16972 p_record_line = record_line;
16973 end_sequence = 1;
16974 break;
16975 case DW_LNE_set_address:
16976 address = read_address (abfd, line_ptr, cu, &bytes_read);
16977
16978 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
16979 {
16980 /* This line table is for a function which has been
16981 GCd by the linker. Ignore it. PR gdb/12528 */
16982
16983 long line_offset
16984 = line_ptr - get_debug_line_section (cu)->buffer;
16985
16986 complaint (&symfile_complaints,
16987 _(".debug_line address at offset 0x%lx is 0 "
16988 "[in module %s]"),
16989 line_offset, objfile_name (objfile));
16990 p_record_line = noop_record_line;
16991 }
16992
16993 op_index = 0;
16994 line_ptr += bytes_read;
16995 address += baseaddr;
16996 break;
16997 case DW_LNE_define_file:
16998 {
16999 const char *cur_file;
17000 unsigned int dir_index, mod_time, length;
17001
17002 cur_file = read_direct_string (abfd, line_ptr,
17003 &bytes_read);
17004 line_ptr += bytes_read;
17005 dir_index =
17006 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17007 line_ptr += bytes_read;
17008 mod_time =
17009 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17010 line_ptr += bytes_read;
17011 length =
17012 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17013 line_ptr += bytes_read;
17014 add_file_name (lh, cur_file, dir_index, mod_time, length);
17015 }
17016 break;
17017 case DW_LNE_set_discriminator:
17018 /* The discriminator is not interesting to the debugger;
17019 just ignore it. */
17020 line_ptr = extended_end;
17021 break;
17022 default:
17023 complaint (&symfile_complaints,
17024 _("mangled .debug_line section"));
17025 return;
17026 }
17027 /* Make sure that we parsed the extended op correctly. If e.g.
17028 we expected a different address size than the producer used,
17029 we may have read the wrong number of bytes. */
17030 if (line_ptr != extended_end)
17031 {
17032 complaint (&symfile_complaints,
17033 _("mangled .debug_line section"));
17034 return;
17035 }
17036 break;
17037 case DW_LNS_copy:
17038 if (lh->num_file_names < file || file == 0)
17039 dwarf2_debug_line_missing_file_complaint ();
17040 else
17041 {
17042 lh->file_names[file - 1].included_p = 1;
17043 if (!decode_for_pst_p && is_stmt)
17044 {
17045 if (last_subfile != current_subfile)
17046 {
17047 addr = gdbarch_addr_bits_remove (gdbarch, address);
17048 if (last_subfile)
17049 (*p_record_line) (last_subfile, 0, addr);
17050 last_subfile = current_subfile;
17051 }
17052 addr = gdbarch_addr_bits_remove (gdbarch, address);
17053 (*p_record_line) (current_subfile, line, addr);
17054 }
17055 }
17056 basic_block = 0;
17057 break;
17058 case DW_LNS_advance_pc:
17059 {
17060 CORE_ADDR adjust
17061 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17062
17063 address += (((op_index + adjust)
17064 / lh->maximum_ops_per_instruction)
17065 * lh->minimum_instruction_length);
17066 op_index = ((op_index + adjust)
17067 % lh->maximum_ops_per_instruction);
17068 line_ptr += bytes_read;
17069 }
17070 break;
17071 case DW_LNS_advance_line:
17072 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17073 line_ptr += bytes_read;
17074 break;
17075 case DW_LNS_set_file:
17076 {
17077 /* The arrays lh->include_dirs and lh->file_names are
17078 0-based, but the directory and file name numbers in
17079 the statement program are 1-based. */
17080 struct file_entry *fe;
17081 const char *dir = NULL;
17082
17083 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17084 line_ptr += bytes_read;
17085 if (lh->num_file_names < file || file == 0)
17086 dwarf2_debug_line_missing_file_complaint ();
17087 else
17088 {
17089 fe = &lh->file_names[file - 1];
17090 if (fe->dir_index)
17091 dir = lh->include_dirs[fe->dir_index - 1];
17092 if (!decode_for_pst_p)
17093 {
17094 last_subfile = current_subfile;
17095 dwarf2_start_subfile (fe->name, dir, comp_dir);
17096 }
17097 }
17098 }
17099 break;
17100 case DW_LNS_set_column:
17101 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17102 line_ptr += bytes_read;
17103 break;
17104 case DW_LNS_negate_stmt:
17105 is_stmt = (!is_stmt);
17106 break;
17107 case DW_LNS_set_basic_block:
17108 basic_block = 1;
17109 break;
17110 /* Add to the address register of the state machine the
17111 address increment value corresponding to special opcode
17112 255. I.e., this value is scaled by the minimum
17113 instruction length since special opcode 255 would have
17114 scaled the increment. */
17115 case DW_LNS_const_add_pc:
17116 {
17117 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17118
17119 address += (((op_index + adjust)
17120 / lh->maximum_ops_per_instruction)
17121 * lh->minimum_instruction_length);
17122 op_index = ((op_index + adjust)
17123 % lh->maximum_ops_per_instruction);
17124 }
17125 break;
17126 case DW_LNS_fixed_advance_pc:
17127 address += read_2_bytes (abfd, line_ptr);
17128 op_index = 0;
17129 line_ptr += 2;
17130 break;
17131 default:
17132 {
17133 /* Unknown standard opcode, ignore it. */
17134 int i;
17135
17136 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17137 {
17138 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17139 line_ptr += bytes_read;
17140 }
17141 }
17142 }
17143 }
17144 if (lh->num_file_names < file || file == 0)
17145 dwarf2_debug_line_missing_file_complaint ();
17146 else
17147 {
17148 lh->file_names[file - 1].included_p = 1;
17149 if (!decode_for_pst_p)
17150 {
17151 addr = gdbarch_addr_bits_remove (gdbarch, address);
17152 (*p_record_line) (current_subfile, 0, addr);
17153 }
17154 }
17155 }
17156 }
17157
17158 /* Decode the Line Number Program (LNP) for the given line_header
17159 structure and CU. The actual information extracted and the type
17160 of structures created from the LNP depends on the value of PST.
17161
17162 1. If PST is NULL, then this procedure uses the data from the program
17163 to create all necessary symbol tables, and their linetables.
17164
17165 2. If PST is not NULL, this procedure reads the program to determine
17166 the list of files included by the unit represented by PST, and
17167 builds all the associated partial symbol tables.
17168
17169 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17170 It is used for relative paths in the line table.
17171 NOTE: When processing partial symtabs (pst != NULL),
17172 comp_dir == pst->dirname.
17173
17174 NOTE: It is important that psymtabs have the same file name (via strcmp)
17175 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17176 symtab we don't use it in the name of the psymtabs we create.
17177 E.g. expand_line_sal requires this when finding psymtabs to expand.
17178 A good testcase for this is mb-inline.exp. */
17179
17180 static void
17181 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17182 struct dwarf2_cu *cu, struct partial_symtab *pst,
17183 int want_line_info)
17184 {
17185 struct objfile *objfile = cu->objfile;
17186 const int decode_for_pst_p = (pst != NULL);
17187 struct subfile *first_subfile = current_subfile;
17188
17189 if (want_line_info)
17190 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17191
17192 if (decode_for_pst_p)
17193 {
17194 int file_index;
17195
17196 /* Now that we're done scanning the Line Header Program, we can
17197 create the psymtab of each included file. */
17198 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17199 if (lh->file_names[file_index].included_p == 1)
17200 {
17201 const char *include_name =
17202 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17203 if (include_name != NULL)
17204 dwarf2_create_include_psymtab (include_name, pst, objfile);
17205 }
17206 }
17207 else
17208 {
17209 /* Make sure a symtab is created for every file, even files
17210 which contain only variables (i.e. no code with associated
17211 line numbers). */
17212 int i;
17213
17214 for (i = 0; i < lh->num_file_names; i++)
17215 {
17216 const char *dir = NULL;
17217 struct file_entry *fe;
17218
17219 fe = &lh->file_names[i];
17220 if (fe->dir_index)
17221 dir = lh->include_dirs[fe->dir_index - 1];
17222 dwarf2_start_subfile (fe->name, dir, comp_dir);
17223
17224 /* Skip the main file; we don't need it, and it must be
17225 allocated last, so that it will show up before the
17226 non-primary symtabs in the objfile's symtab list. */
17227 if (current_subfile == first_subfile)
17228 continue;
17229
17230 if (current_subfile->symtab == NULL)
17231 current_subfile->symtab = allocate_symtab (current_subfile->name,
17232 objfile);
17233 fe->symtab = current_subfile->symtab;
17234 }
17235 }
17236 }
17237
17238 /* Start a subfile for DWARF. FILENAME is the name of the file and
17239 DIRNAME the name of the source directory which contains FILENAME
17240 or NULL if not known. COMP_DIR is the compilation directory for the
17241 linetable's compilation unit or NULL if not known.
17242 This routine tries to keep line numbers from identical absolute and
17243 relative file names in a common subfile.
17244
17245 Using the `list' example from the GDB testsuite, which resides in
17246 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17247 of /srcdir/list0.c yields the following debugging information for list0.c:
17248
17249 DW_AT_name: /srcdir/list0.c
17250 DW_AT_comp_dir: /compdir
17251 files.files[0].name: list0.h
17252 files.files[0].dir: /srcdir
17253 files.files[1].name: list0.c
17254 files.files[1].dir: /srcdir
17255
17256 The line number information for list0.c has to end up in a single
17257 subfile, so that `break /srcdir/list0.c:1' works as expected.
17258 start_subfile will ensure that this happens provided that we pass the
17259 concatenation of files.files[1].dir and files.files[1].name as the
17260 subfile's name. */
17261
17262 static void
17263 dwarf2_start_subfile (const char *filename, const char *dirname,
17264 const char *comp_dir)
17265 {
17266 char *copy = NULL;
17267
17268 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17269 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17270 second argument to start_subfile. To be consistent, we do the
17271 same here. In order not to lose the line information directory,
17272 we concatenate it to the filename when it makes sense.
17273 Note that the Dwarf3 standard says (speaking of filenames in line
17274 information): ``The directory index is ignored for file names
17275 that represent full path names''. Thus ignoring dirname in the
17276 `else' branch below isn't an issue. */
17277
17278 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17279 {
17280 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17281 filename = copy;
17282 }
17283
17284 start_subfile (filename, comp_dir);
17285
17286 if (copy != NULL)
17287 xfree (copy);
17288 }
17289
17290 /* Start a symtab for DWARF.
17291 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17292
17293 static void
17294 dwarf2_start_symtab (struct dwarf2_cu *cu,
17295 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17296 {
17297 start_symtab (name, comp_dir, low_pc);
17298 record_debugformat ("DWARF 2");
17299 record_producer (cu->producer);
17300
17301 /* We assume that we're processing GCC output. */
17302 processing_gcc_compilation = 2;
17303
17304 cu->processing_has_namespace_info = 0;
17305 }
17306
17307 static void
17308 var_decode_location (struct attribute *attr, struct symbol *sym,
17309 struct dwarf2_cu *cu)
17310 {
17311 struct objfile *objfile = cu->objfile;
17312 struct comp_unit_head *cu_header = &cu->header;
17313
17314 /* NOTE drow/2003-01-30: There used to be a comment and some special
17315 code here to turn a symbol with DW_AT_external and a
17316 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17317 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17318 with some versions of binutils) where shared libraries could have
17319 relocations against symbols in their debug information - the
17320 minimal symbol would have the right address, but the debug info
17321 would not. It's no longer necessary, because we will explicitly
17322 apply relocations when we read in the debug information now. */
17323
17324 /* A DW_AT_location attribute with no contents indicates that a
17325 variable has been optimized away. */
17326 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17327 {
17328 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17329 return;
17330 }
17331
17332 /* Handle one degenerate form of location expression specially, to
17333 preserve GDB's previous behavior when section offsets are
17334 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17335 then mark this symbol as LOC_STATIC. */
17336
17337 if (attr_form_is_block (attr)
17338 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17339 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17340 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17341 && (DW_BLOCK (attr)->size
17342 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17343 {
17344 unsigned int dummy;
17345
17346 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17347 SYMBOL_VALUE_ADDRESS (sym) =
17348 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17349 else
17350 SYMBOL_VALUE_ADDRESS (sym) =
17351 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17352 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17353 fixup_symbol_section (sym, objfile);
17354 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17355 SYMBOL_SECTION (sym));
17356 return;
17357 }
17358
17359 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17360 expression evaluator, and use LOC_COMPUTED only when necessary
17361 (i.e. when the value of a register or memory location is
17362 referenced, or a thread-local block, etc.). Then again, it might
17363 not be worthwhile. I'm assuming that it isn't unless performance
17364 or memory numbers show me otherwise. */
17365
17366 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17367
17368 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17369 cu->has_loclist = 1;
17370 }
17371
17372 /* Given a pointer to a DWARF information entry, figure out if we need
17373 to make a symbol table entry for it, and if so, create a new entry
17374 and return a pointer to it.
17375 If TYPE is NULL, determine symbol type from the die, otherwise
17376 used the passed type.
17377 If SPACE is not NULL, use it to hold the new symbol. If it is
17378 NULL, allocate a new symbol on the objfile's obstack. */
17379
17380 static struct symbol *
17381 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17382 struct symbol *space)
17383 {
17384 struct objfile *objfile = cu->objfile;
17385 struct symbol *sym = NULL;
17386 const char *name;
17387 struct attribute *attr = NULL;
17388 struct attribute *attr2 = NULL;
17389 CORE_ADDR baseaddr;
17390 struct pending **list_to_add = NULL;
17391
17392 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17393
17394 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17395
17396 name = dwarf2_name (die, cu);
17397 if (name)
17398 {
17399 const char *linkagename;
17400 int suppress_add = 0;
17401
17402 if (space)
17403 sym = space;
17404 else
17405 sym = allocate_symbol (objfile);
17406 OBJSTAT (objfile, n_syms++);
17407
17408 /* Cache this symbol's name and the name's demangled form (if any). */
17409 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17410 linkagename = dwarf2_physname (name, die, cu);
17411 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17412
17413 /* Fortran does not have mangling standard and the mangling does differ
17414 between gfortran, iFort etc. */
17415 if (cu->language == language_fortran
17416 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17417 symbol_set_demangled_name (&(sym->ginfo),
17418 dwarf2_full_name (name, die, cu),
17419 NULL);
17420
17421 /* Default assumptions.
17422 Use the passed type or decode it from the die. */
17423 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17424 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17425 if (type != NULL)
17426 SYMBOL_TYPE (sym) = type;
17427 else
17428 SYMBOL_TYPE (sym) = die_type (die, cu);
17429 attr = dwarf2_attr (die,
17430 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17431 cu);
17432 if (attr)
17433 {
17434 SYMBOL_LINE (sym) = DW_UNSND (attr);
17435 }
17436
17437 attr = dwarf2_attr (die,
17438 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17439 cu);
17440 if (attr)
17441 {
17442 int file_index = DW_UNSND (attr);
17443
17444 if (cu->line_header == NULL
17445 || file_index > cu->line_header->num_file_names)
17446 complaint (&symfile_complaints,
17447 _("file index out of range"));
17448 else if (file_index > 0)
17449 {
17450 struct file_entry *fe;
17451
17452 fe = &cu->line_header->file_names[file_index - 1];
17453 SYMBOL_SYMTAB (sym) = fe->symtab;
17454 }
17455 }
17456
17457 switch (die->tag)
17458 {
17459 case DW_TAG_label:
17460 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17461 if (attr)
17462 {
17463 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
17464 }
17465 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17466 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17467 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17468 add_symbol_to_list (sym, cu->list_in_scope);
17469 break;
17470 case DW_TAG_subprogram:
17471 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17472 finish_block. */
17473 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17474 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17475 if ((attr2 && (DW_UNSND (attr2) != 0))
17476 || cu->language == language_ada)
17477 {
17478 /* Subprograms marked external are stored as a global symbol.
17479 Ada subprograms, whether marked external or not, are always
17480 stored as a global symbol, because we want to be able to
17481 access them globally. For instance, we want to be able
17482 to break on a nested subprogram without having to
17483 specify the context. */
17484 list_to_add = &global_symbols;
17485 }
17486 else
17487 {
17488 list_to_add = cu->list_in_scope;
17489 }
17490 break;
17491 case DW_TAG_inlined_subroutine:
17492 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17493 finish_block. */
17494 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17495 SYMBOL_INLINED (sym) = 1;
17496 list_to_add = cu->list_in_scope;
17497 break;
17498 case DW_TAG_template_value_param:
17499 suppress_add = 1;
17500 /* Fall through. */
17501 case DW_TAG_constant:
17502 case DW_TAG_variable:
17503 case DW_TAG_member:
17504 /* Compilation with minimal debug info may result in
17505 variables with missing type entries. Change the
17506 misleading `void' type to something sensible. */
17507 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17508 SYMBOL_TYPE (sym)
17509 = objfile_type (objfile)->nodebug_data_symbol;
17510
17511 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17512 /* In the case of DW_TAG_member, we should only be called for
17513 static const members. */
17514 if (die->tag == DW_TAG_member)
17515 {
17516 /* dwarf2_add_field uses die_is_declaration,
17517 so we do the same. */
17518 gdb_assert (die_is_declaration (die, cu));
17519 gdb_assert (attr);
17520 }
17521 if (attr)
17522 {
17523 dwarf2_const_value (attr, sym, cu);
17524 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17525 if (!suppress_add)
17526 {
17527 if (attr2 && (DW_UNSND (attr2) != 0))
17528 list_to_add = &global_symbols;
17529 else
17530 list_to_add = cu->list_in_scope;
17531 }
17532 break;
17533 }
17534 attr = dwarf2_attr (die, DW_AT_location, cu);
17535 if (attr)
17536 {
17537 var_decode_location (attr, sym, cu);
17538 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17539
17540 /* Fortran explicitly imports any global symbols to the local
17541 scope by DW_TAG_common_block. */
17542 if (cu->language == language_fortran && die->parent
17543 && die->parent->tag == DW_TAG_common_block)
17544 attr2 = NULL;
17545
17546 if (SYMBOL_CLASS (sym) == LOC_STATIC
17547 && SYMBOL_VALUE_ADDRESS (sym) == 0
17548 && !dwarf2_per_objfile->has_section_at_zero)
17549 {
17550 /* When a static variable is eliminated by the linker,
17551 the corresponding debug information is not stripped
17552 out, but the variable address is set to null;
17553 do not add such variables into symbol table. */
17554 }
17555 else if (attr2 && (DW_UNSND (attr2) != 0))
17556 {
17557 /* Workaround gfortran PR debug/40040 - it uses
17558 DW_AT_location for variables in -fPIC libraries which may
17559 get overriden by other libraries/executable and get
17560 a different address. Resolve it by the minimal symbol
17561 which may come from inferior's executable using copy
17562 relocation. Make this workaround only for gfortran as for
17563 other compilers GDB cannot guess the minimal symbol
17564 Fortran mangling kind. */
17565 if (cu->language == language_fortran && die->parent
17566 && die->parent->tag == DW_TAG_module
17567 && cu->producer
17568 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17569 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17570
17571 /* A variable with DW_AT_external is never static,
17572 but it may be block-scoped. */
17573 list_to_add = (cu->list_in_scope == &file_symbols
17574 ? &global_symbols : cu->list_in_scope);
17575 }
17576 else
17577 list_to_add = cu->list_in_scope;
17578 }
17579 else
17580 {
17581 /* We do not know the address of this symbol.
17582 If it is an external symbol and we have type information
17583 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17584 The address of the variable will then be determined from
17585 the minimal symbol table whenever the variable is
17586 referenced. */
17587 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17588
17589 /* Fortran explicitly imports any global symbols to the local
17590 scope by DW_TAG_common_block. */
17591 if (cu->language == language_fortran && die->parent
17592 && die->parent->tag == DW_TAG_common_block)
17593 {
17594 /* SYMBOL_CLASS doesn't matter here because
17595 read_common_block is going to reset it. */
17596 if (!suppress_add)
17597 list_to_add = cu->list_in_scope;
17598 }
17599 else if (attr2 && (DW_UNSND (attr2) != 0)
17600 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17601 {
17602 /* A variable with DW_AT_external is never static, but it
17603 may be block-scoped. */
17604 list_to_add = (cu->list_in_scope == &file_symbols
17605 ? &global_symbols : cu->list_in_scope);
17606
17607 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17608 }
17609 else if (!die_is_declaration (die, cu))
17610 {
17611 /* Use the default LOC_OPTIMIZED_OUT class. */
17612 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17613 if (!suppress_add)
17614 list_to_add = cu->list_in_scope;
17615 }
17616 }
17617 break;
17618 case DW_TAG_formal_parameter:
17619 /* If we are inside a function, mark this as an argument. If
17620 not, we might be looking at an argument to an inlined function
17621 when we do not have enough information to show inlined frames;
17622 pretend it's a local variable in that case so that the user can
17623 still see it. */
17624 if (context_stack_depth > 0
17625 && context_stack[context_stack_depth - 1].name != NULL)
17626 SYMBOL_IS_ARGUMENT (sym) = 1;
17627 attr = dwarf2_attr (die, DW_AT_location, cu);
17628 if (attr)
17629 {
17630 var_decode_location (attr, sym, cu);
17631 }
17632 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17633 if (attr)
17634 {
17635 dwarf2_const_value (attr, sym, cu);
17636 }
17637
17638 list_to_add = cu->list_in_scope;
17639 break;
17640 case DW_TAG_unspecified_parameters:
17641 /* From varargs functions; gdb doesn't seem to have any
17642 interest in this information, so just ignore it for now.
17643 (FIXME?) */
17644 break;
17645 case DW_TAG_template_type_param:
17646 suppress_add = 1;
17647 /* Fall through. */
17648 case DW_TAG_class_type:
17649 case DW_TAG_interface_type:
17650 case DW_TAG_structure_type:
17651 case DW_TAG_union_type:
17652 case DW_TAG_set_type:
17653 case DW_TAG_enumeration_type:
17654 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17655 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17656
17657 {
17658 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17659 really ever be static objects: otherwise, if you try
17660 to, say, break of a class's method and you're in a file
17661 which doesn't mention that class, it won't work unless
17662 the check for all static symbols in lookup_symbol_aux
17663 saves you. See the OtherFileClass tests in
17664 gdb.c++/namespace.exp. */
17665
17666 if (!suppress_add)
17667 {
17668 list_to_add = (cu->list_in_scope == &file_symbols
17669 && (cu->language == language_cplus
17670 || cu->language == language_java)
17671 ? &global_symbols : cu->list_in_scope);
17672
17673 /* The semantics of C++ state that "struct foo {
17674 ... }" also defines a typedef for "foo". A Java
17675 class declaration also defines a typedef for the
17676 class. */
17677 if (cu->language == language_cplus
17678 || cu->language == language_java
17679 || cu->language == language_ada)
17680 {
17681 /* The symbol's name is already allocated along
17682 with this objfile, so we don't need to
17683 duplicate it for the type. */
17684 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17685 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17686 }
17687 }
17688 }
17689 break;
17690 case DW_TAG_typedef:
17691 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17692 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17693 list_to_add = cu->list_in_scope;
17694 break;
17695 case DW_TAG_base_type:
17696 case DW_TAG_subrange_type:
17697 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17698 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17699 list_to_add = cu->list_in_scope;
17700 break;
17701 case DW_TAG_enumerator:
17702 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17703 if (attr)
17704 {
17705 dwarf2_const_value (attr, sym, cu);
17706 }
17707 {
17708 /* NOTE: carlton/2003-11-10: See comment above in the
17709 DW_TAG_class_type, etc. block. */
17710
17711 list_to_add = (cu->list_in_scope == &file_symbols
17712 && (cu->language == language_cplus
17713 || cu->language == language_java)
17714 ? &global_symbols : cu->list_in_scope);
17715 }
17716 break;
17717 case DW_TAG_imported_declaration:
17718 case DW_TAG_namespace:
17719 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17720 list_to_add = &global_symbols;
17721 break;
17722 case DW_TAG_module:
17723 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17724 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
17725 list_to_add = &global_symbols;
17726 break;
17727 case DW_TAG_common_block:
17728 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
17729 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17730 add_symbol_to_list (sym, cu->list_in_scope);
17731 break;
17732 default:
17733 /* Not a tag we recognize. Hopefully we aren't processing
17734 trash data, but since we must specifically ignore things
17735 we don't recognize, there is nothing else we should do at
17736 this point. */
17737 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
17738 dwarf_tag_name (die->tag));
17739 break;
17740 }
17741
17742 if (suppress_add)
17743 {
17744 sym->hash_next = objfile->template_symbols;
17745 objfile->template_symbols = sym;
17746 list_to_add = NULL;
17747 }
17748
17749 if (list_to_add != NULL)
17750 add_symbol_to_list (sym, list_to_add);
17751
17752 /* For the benefit of old versions of GCC, check for anonymous
17753 namespaces based on the demangled name. */
17754 if (!cu->processing_has_namespace_info
17755 && cu->language == language_cplus)
17756 cp_scan_for_anonymous_namespaces (sym, objfile);
17757 }
17758 return (sym);
17759 }
17760
17761 /* A wrapper for new_symbol_full that always allocates a new symbol. */
17762
17763 static struct symbol *
17764 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17765 {
17766 return new_symbol_full (die, type, cu, NULL);
17767 }
17768
17769 /* Given an attr with a DW_FORM_dataN value in host byte order,
17770 zero-extend it as appropriate for the symbol's type. The DWARF
17771 standard (v4) is not entirely clear about the meaning of using
17772 DW_FORM_dataN for a constant with a signed type, where the type is
17773 wider than the data. The conclusion of a discussion on the DWARF
17774 list was that this is unspecified. We choose to always zero-extend
17775 because that is the interpretation long in use by GCC. */
17776
17777 static gdb_byte *
17778 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
17779 struct dwarf2_cu *cu, LONGEST *value, int bits)
17780 {
17781 struct objfile *objfile = cu->objfile;
17782 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17783 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
17784 LONGEST l = DW_UNSND (attr);
17785
17786 if (bits < sizeof (*value) * 8)
17787 {
17788 l &= ((LONGEST) 1 << bits) - 1;
17789 *value = l;
17790 }
17791 else if (bits == sizeof (*value) * 8)
17792 *value = l;
17793 else
17794 {
17795 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17796 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17797 return bytes;
17798 }
17799
17800 return NULL;
17801 }
17802
17803 /* Read a constant value from an attribute. Either set *VALUE, or if
17804 the value does not fit in *VALUE, set *BYTES - either already
17805 allocated on the objfile obstack, or newly allocated on OBSTACK,
17806 or, set *BATON, if we translated the constant to a location
17807 expression. */
17808
17809 static void
17810 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
17811 const char *name, struct obstack *obstack,
17812 struct dwarf2_cu *cu,
17813 LONGEST *value, const gdb_byte **bytes,
17814 struct dwarf2_locexpr_baton **baton)
17815 {
17816 struct objfile *objfile = cu->objfile;
17817 struct comp_unit_head *cu_header = &cu->header;
17818 struct dwarf_block *blk;
17819 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17820 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17821
17822 *value = 0;
17823 *bytes = NULL;
17824 *baton = NULL;
17825
17826 switch (attr->form)
17827 {
17828 case DW_FORM_addr:
17829 case DW_FORM_GNU_addr_index:
17830 {
17831 gdb_byte *data;
17832
17833 if (TYPE_LENGTH (type) != cu_header->addr_size)
17834 dwarf2_const_value_length_mismatch_complaint (name,
17835 cu_header->addr_size,
17836 TYPE_LENGTH (type));
17837 /* Symbols of this form are reasonably rare, so we just
17838 piggyback on the existing location code rather than writing
17839 a new implementation of symbol_computed_ops. */
17840 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
17841 (*baton)->per_cu = cu->per_cu;
17842 gdb_assert ((*baton)->per_cu);
17843
17844 (*baton)->size = 2 + cu_header->addr_size;
17845 data = obstack_alloc (obstack, (*baton)->size);
17846 (*baton)->data = data;
17847
17848 data[0] = DW_OP_addr;
17849 store_unsigned_integer (&data[1], cu_header->addr_size,
17850 byte_order, DW_ADDR (attr));
17851 data[cu_header->addr_size + 1] = DW_OP_stack_value;
17852 }
17853 break;
17854 case DW_FORM_string:
17855 case DW_FORM_strp:
17856 case DW_FORM_GNU_str_index:
17857 case DW_FORM_GNU_strp_alt:
17858 /* DW_STRING is already allocated on the objfile obstack, point
17859 directly to it. */
17860 *bytes = (const gdb_byte *) DW_STRING (attr);
17861 break;
17862 case DW_FORM_block1:
17863 case DW_FORM_block2:
17864 case DW_FORM_block4:
17865 case DW_FORM_block:
17866 case DW_FORM_exprloc:
17867 blk = DW_BLOCK (attr);
17868 if (TYPE_LENGTH (type) != blk->size)
17869 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17870 TYPE_LENGTH (type));
17871 *bytes = blk->data;
17872 break;
17873
17874 /* The DW_AT_const_value attributes are supposed to carry the
17875 symbol's value "represented as it would be on the target
17876 architecture." By the time we get here, it's already been
17877 converted to host endianness, so we just need to sign- or
17878 zero-extend it as appropriate. */
17879 case DW_FORM_data1:
17880 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
17881 break;
17882 case DW_FORM_data2:
17883 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
17884 break;
17885 case DW_FORM_data4:
17886 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
17887 break;
17888 case DW_FORM_data8:
17889 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
17890 break;
17891
17892 case DW_FORM_sdata:
17893 *value = DW_SND (attr);
17894 break;
17895
17896 case DW_FORM_udata:
17897 *value = DW_UNSND (attr);
17898 break;
17899
17900 default:
17901 complaint (&symfile_complaints,
17902 _("unsupported const value attribute form: '%s'"),
17903 dwarf_form_name (attr->form));
17904 *value = 0;
17905 break;
17906 }
17907 }
17908
17909
17910 /* Copy constant value from an attribute to a symbol. */
17911
17912 static void
17913 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
17914 struct dwarf2_cu *cu)
17915 {
17916 struct objfile *objfile = cu->objfile;
17917 struct comp_unit_head *cu_header = &cu->header;
17918 LONGEST value;
17919 const gdb_byte *bytes;
17920 struct dwarf2_locexpr_baton *baton;
17921
17922 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
17923 SYMBOL_PRINT_NAME (sym),
17924 &objfile->objfile_obstack, cu,
17925 &value, &bytes, &baton);
17926
17927 if (baton != NULL)
17928 {
17929 SYMBOL_LOCATION_BATON (sym) = baton;
17930 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
17931 }
17932 else if (bytes != NULL)
17933 {
17934 SYMBOL_VALUE_BYTES (sym) = bytes;
17935 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
17936 }
17937 else
17938 {
17939 SYMBOL_VALUE (sym) = value;
17940 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
17941 }
17942 }
17943
17944 /* Return the type of the die in question using its DW_AT_type attribute. */
17945
17946 static struct type *
17947 die_type (struct die_info *die, struct dwarf2_cu *cu)
17948 {
17949 struct attribute *type_attr;
17950
17951 type_attr = dwarf2_attr (die, DW_AT_type, cu);
17952 if (!type_attr)
17953 {
17954 /* A missing DW_AT_type represents a void type. */
17955 return objfile_type (cu->objfile)->builtin_void;
17956 }
17957
17958 return lookup_die_type (die, type_attr, cu);
17959 }
17960
17961 /* True iff CU's producer generates GNAT Ada auxiliary information
17962 that allows to find parallel types through that information instead
17963 of having to do expensive parallel lookups by type name. */
17964
17965 static int
17966 need_gnat_info (struct dwarf2_cu *cu)
17967 {
17968 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
17969 of GNAT produces this auxiliary information, without any indication
17970 that it is produced. Part of enhancing the FSF version of GNAT
17971 to produce that information will be to put in place an indicator
17972 that we can use in order to determine whether the descriptive type
17973 info is available or not. One suggestion that has been made is
17974 to use a new attribute, attached to the CU die. For now, assume
17975 that the descriptive type info is not available. */
17976 return 0;
17977 }
17978
17979 /* Return the auxiliary type of the die in question using its
17980 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
17981 attribute is not present. */
17982
17983 static struct type *
17984 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
17985 {
17986 struct attribute *type_attr;
17987
17988 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
17989 if (!type_attr)
17990 return NULL;
17991
17992 return lookup_die_type (die, type_attr, cu);
17993 }
17994
17995 /* If DIE has a descriptive_type attribute, then set the TYPE's
17996 descriptive type accordingly. */
17997
17998 static void
17999 set_descriptive_type (struct type *type, struct die_info *die,
18000 struct dwarf2_cu *cu)
18001 {
18002 struct type *descriptive_type = die_descriptive_type (die, cu);
18003
18004 if (descriptive_type)
18005 {
18006 ALLOCATE_GNAT_AUX_TYPE (type);
18007 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18008 }
18009 }
18010
18011 /* Return the containing type of the die in question using its
18012 DW_AT_containing_type attribute. */
18013
18014 static struct type *
18015 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18016 {
18017 struct attribute *type_attr;
18018
18019 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18020 if (!type_attr)
18021 error (_("Dwarf Error: Problem turning containing type into gdb type "
18022 "[in module %s]"), objfile_name (cu->objfile));
18023
18024 return lookup_die_type (die, type_attr, cu);
18025 }
18026
18027 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18028
18029 static struct type *
18030 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18031 {
18032 struct objfile *objfile = dwarf2_per_objfile->objfile;
18033 char *message, *saved;
18034
18035 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18036 objfile_name (objfile),
18037 cu->header.offset.sect_off,
18038 die->offset.sect_off);
18039 saved = obstack_copy0 (&objfile->objfile_obstack,
18040 message, strlen (message));
18041 xfree (message);
18042
18043 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18044 }
18045
18046 /* Look up the type of DIE in CU using its type attribute ATTR.
18047 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18048 DW_AT_containing_type.
18049 If there is no type substitute an error marker. */
18050
18051 static struct type *
18052 lookup_die_type (struct die_info *die, const struct attribute *attr,
18053 struct dwarf2_cu *cu)
18054 {
18055 struct objfile *objfile = cu->objfile;
18056 struct type *this_type;
18057
18058 gdb_assert (attr->name == DW_AT_type
18059 || attr->name == DW_AT_GNAT_descriptive_type
18060 || attr->name == DW_AT_containing_type);
18061
18062 /* First see if we have it cached. */
18063
18064 if (attr->form == DW_FORM_GNU_ref_alt)
18065 {
18066 struct dwarf2_per_cu_data *per_cu;
18067 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18068
18069 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18070 this_type = get_die_type_at_offset (offset, per_cu);
18071 }
18072 else if (attr_form_is_ref (attr))
18073 {
18074 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18075
18076 this_type = get_die_type_at_offset (offset, cu->per_cu);
18077 }
18078 else if (attr->form == DW_FORM_ref_sig8)
18079 {
18080 ULONGEST signature = DW_SIGNATURE (attr);
18081
18082 return get_signatured_type (die, signature, cu);
18083 }
18084 else
18085 {
18086 complaint (&symfile_complaints,
18087 _("Dwarf Error: Bad type attribute %s in DIE"
18088 " at 0x%x [in module %s]"),
18089 dwarf_attr_name (attr->name), die->offset.sect_off,
18090 objfile_name (objfile));
18091 return build_error_marker_type (cu, die);
18092 }
18093
18094 /* If not cached we need to read it in. */
18095
18096 if (this_type == NULL)
18097 {
18098 struct die_info *type_die = NULL;
18099 struct dwarf2_cu *type_cu = cu;
18100
18101 if (attr_form_is_ref (attr))
18102 type_die = follow_die_ref (die, attr, &type_cu);
18103 if (type_die == NULL)
18104 return build_error_marker_type (cu, die);
18105 /* If we find the type now, it's probably because the type came
18106 from an inter-CU reference and the type's CU got expanded before
18107 ours. */
18108 this_type = read_type_die (type_die, type_cu);
18109 }
18110
18111 /* If we still don't have a type use an error marker. */
18112
18113 if (this_type == NULL)
18114 return build_error_marker_type (cu, die);
18115
18116 return this_type;
18117 }
18118
18119 /* Return the type in DIE, CU.
18120 Returns NULL for invalid types.
18121
18122 This first does a lookup in die_type_hash,
18123 and only reads the die in if necessary.
18124
18125 NOTE: This can be called when reading in partial or full symbols. */
18126
18127 static struct type *
18128 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18129 {
18130 struct type *this_type;
18131
18132 this_type = get_die_type (die, cu);
18133 if (this_type)
18134 return this_type;
18135
18136 return read_type_die_1 (die, cu);
18137 }
18138
18139 /* Read the type in DIE, CU.
18140 Returns NULL for invalid types. */
18141
18142 static struct type *
18143 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18144 {
18145 struct type *this_type = NULL;
18146
18147 switch (die->tag)
18148 {
18149 case DW_TAG_class_type:
18150 case DW_TAG_interface_type:
18151 case DW_TAG_structure_type:
18152 case DW_TAG_union_type:
18153 this_type = read_structure_type (die, cu);
18154 break;
18155 case DW_TAG_enumeration_type:
18156 this_type = read_enumeration_type (die, cu);
18157 break;
18158 case DW_TAG_subprogram:
18159 case DW_TAG_subroutine_type:
18160 case DW_TAG_inlined_subroutine:
18161 this_type = read_subroutine_type (die, cu);
18162 break;
18163 case DW_TAG_array_type:
18164 this_type = read_array_type (die, cu);
18165 break;
18166 case DW_TAG_set_type:
18167 this_type = read_set_type (die, cu);
18168 break;
18169 case DW_TAG_pointer_type:
18170 this_type = read_tag_pointer_type (die, cu);
18171 break;
18172 case DW_TAG_ptr_to_member_type:
18173 this_type = read_tag_ptr_to_member_type (die, cu);
18174 break;
18175 case DW_TAG_reference_type:
18176 this_type = read_tag_reference_type (die, cu);
18177 break;
18178 case DW_TAG_const_type:
18179 this_type = read_tag_const_type (die, cu);
18180 break;
18181 case DW_TAG_volatile_type:
18182 this_type = read_tag_volatile_type (die, cu);
18183 break;
18184 case DW_TAG_restrict_type:
18185 this_type = read_tag_restrict_type (die, cu);
18186 break;
18187 case DW_TAG_string_type:
18188 this_type = read_tag_string_type (die, cu);
18189 break;
18190 case DW_TAG_typedef:
18191 this_type = read_typedef (die, cu);
18192 break;
18193 case DW_TAG_subrange_type:
18194 this_type = read_subrange_type (die, cu);
18195 break;
18196 case DW_TAG_base_type:
18197 this_type = read_base_type (die, cu);
18198 break;
18199 case DW_TAG_unspecified_type:
18200 this_type = read_unspecified_type (die, cu);
18201 break;
18202 case DW_TAG_namespace:
18203 this_type = read_namespace_type (die, cu);
18204 break;
18205 case DW_TAG_module:
18206 this_type = read_module_type (die, cu);
18207 break;
18208 default:
18209 complaint (&symfile_complaints,
18210 _("unexpected tag in read_type_die: '%s'"),
18211 dwarf_tag_name (die->tag));
18212 break;
18213 }
18214
18215 return this_type;
18216 }
18217
18218 /* See if we can figure out if the class lives in a namespace. We do
18219 this by looking for a member function; its demangled name will
18220 contain namespace info, if there is any.
18221 Return the computed name or NULL.
18222 Space for the result is allocated on the objfile's obstack.
18223 This is the full-die version of guess_partial_die_structure_name.
18224 In this case we know DIE has no useful parent. */
18225
18226 static char *
18227 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18228 {
18229 struct die_info *spec_die;
18230 struct dwarf2_cu *spec_cu;
18231 struct die_info *child;
18232
18233 spec_cu = cu;
18234 spec_die = die_specification (die, &spec_cu);
18235 if (spec_die != NULL)
18236 {
18237 die = spec_die;
18238 cu = spec_cu;
18239 }
18240
18241 for (child = die->child;
18242 child != NULL;
18243 child = child->sibling)
18244 {
18245 if (child->tag == DW_TAG_subprogram)
18246 {
18247 struct attribute *attr;
18248
18249 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18250 if (attr == NULL)
18251 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18252 if (attr != NULL)
18253 {
18254 char *actual_name
18255 = language_class_name_from_physname (cu->language_defn,
18256 DW_STRING (attr));
18257 char *name = NULL;
18258
18259 if (actual_name != NULL)
18260 {
18261 const char *die_name = dwarf2_name (die, cu);
18262
18263 if (die_name != NULL
18264 && strcmp (die_name, actual_name) != 0)
18265 {
18266 /* Strip off the class name from the full name.
18267 We want the prefix. */
18268 int die_name_len = strlen (die_name);
18269 int actual_name_len = strlen (actual_name);
18270
18271 /* Test for '::' as a sanity check. */
18272 if (actual_name_len > die_name_len + 2
18273 && actual_name[actual_name_len
18274 - die_name_len - 1] == ':')
18275 name =
18276 obstack_copy0 (&cu->objfile->objfile_obstack,
18277 actual_name,
18278 actual_name_len - die_name_len - 2);
18279 }
18280 }
18281 xfree (actual_name);
18282 return name;
18283 }
18284 }
18285 }
18286
18287 return NULL;
18288 }
18289
18290 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18291 prefix part in such case. See
18292 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18293
18294 static char *
18295 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18296 {
18297 struct attribute *attr;
18298 char *base;
18299
18300 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18301 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18302 return NULL;
18303
18304 attr = dwarf2_attr (die, DW_AT_name, cu);
18305 if (attr != NULL && DW_STRING (attr) != NULL)
18306 return NULL;
18307
18308 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18309 if (attr == NULL)
18310 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18311 if (attr == NULL || DW_STRING (attr) == NULL)
18312 return NULL;
18313
18314 /* dwarf2_name had to be already called. */
18315 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18316
18317 /* Strip the base name, keep any leading namespaces/classes. */
18318 base = strrchr (DW_STRING (attr), ':');
18319 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18320 return "";
18321
18322 return obstack_copy0 (&cu->objfile->objfile_obstack,
18323 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18324 }
18325
18326 /* Return the name of the namespace/class that DIE is defined within,
18327 or "" if we can't tell. The caller should not xfree the result.
18328
18329 For example, if we're within the method foo() in the following
18330 code:
18331
18332 namespace N {
18333 class C {
18334 void foo () {
18335 }
18336 };
18337 }
18338
18339 then determine_prefix on foo's die will return "N::C". */
18340
18341 static const char *
18342 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18343 {
18344 struct die_info *parent, *spec_die;
18345 struct dwarf2_cu *spec_cu;
18346 struct type *parent_type;
18347 char *retval;
18348
18349 if (cu->language != language_cplus && cu->language != language_java
18350 && cu->language != language_fortran)
18351 return "";
18352
18353 retval = anonymous_struct_prefix (die, cu);
18354 if (retval)
18355 return retval;
18356
18357 /* We have to be careful in the presence of DW_AT_specification.
18358 For example, with GCC 3.4, given the code
18359
18360 namespace N {
18361 void foo() {
18362 // Definition of N::foo.
18363 }
18364 }
18365
18366 then we'll have a tree of DIEs like this:
18367
18368 1: DW_TAG_compile_unit
18369 2: DW_TAG_namespace // N
18370 3: DW_TAG_subprogram // declaration of N::foo
18371 4: DW_TAG_subprogram // definition of N::foo
18372 DW_AT_specification // refers to die #3
18373
18374 Thus, when processing die #4, we have to pretend that we're in
18375 the context of its DW_AT_specification, namely the contex of die
18376 #3. */
18377 spec_cu = cu;
18378 spec_die = die_specification (die, &spec_cu);
18379 if (spec_die == NULL)
18380 parent = die->parent;
18381 else
18382 {
18383 parent = spec_die->parent;
18384 cu = spec_cu;
18385 }
18386
18387 if (parent == NULL)
18388 return "";
18389 else if (parent->building_fullname)
18390 {
18391 const char *name;
18392 const char *parent_name;
18393
18394 /* It has been seen on RealView 2.2 built binaries,
18395 DW_TAG_template_type_param types actually _defined_ as
18396 children of the parent class:
18397
18398 enum E {};
18399 template class <class Enum> Class{};
18400 Class<enum E> class_e;
18401
18402 1: DW_TAG_class_type (Class)
18403 2: DW_TAG_enumeration_type (E)
18404 3: DW_TAG_enumerator (enum1:0)
18405 3: DW_TAG_enumerator (enum2:1)
18406 ...
18407 2: DW_TAG_template_type_param
18408 DW_AT_type DW_FORM_ref_udata (E)
18409
18410 Besides being broken debug info, it can put GDB into an
18411 infinite loop. Consider:
18412
18413 When we're building the full name for Class<E>, we'll start
18414 at Class, and go look over its template type parameters,
18415 finding E. We'll then try to build the full name of E, and
18416 reach here. We're now trying to build the full name of E,
18417 and look over the parent DIE for containing scope. In the
18418 broken case, if we followed the parent DIE of E, we'd again
18419 find Class, and once again go look at its template type
18420 arguments, etc., etc. Simply don't consider such parent die
18421 as source-level parent of this die (it can't be, the language
18422 doesn't allow it), and break the loop here. */
18423 name = dwarf2_name (die, cu);
18424 parent_name = dwarf2_name (parent, cu);
18425 complaint (&symfile_complaints,
18426 _("template param type '%s' defined within parent '%s'"),
18427 name ? name : "<unknown>",
18428 parent_name ? parent_name : "<unknown>");
18429 return "";
18430 }
18431 else
18432 switch (parent->tag)
18433 {
18434 case DW_TAG_namespace:
18435 parent_type = read_type_die (parent, cu);
18436 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18437 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18438 Work around this problem here. */
18439 if (cu->language == language_cplus
18440 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18441 return "";
18442 /* We give a name to even anonymous namespaces. */
18443 return TYPE_TAG_NAME (parent_type);
18444 case DW_TAG_class_type:
18445 case DW_TAG_interface_type:
18446 case DW_TAG_structure_type:
18447 case DW_TAG_union_type:
18448 case DW_TAG_module:
18449 parent_type = read_type_die (parent, cu);
18450 if (TYPE_TAG_NAME (parent_type) != NULL)
18451 return TYPE_TAG_NAME (parent_type);
18452 else
18453 /* An anonymous structure is only allowed non-static data
18454 members; no typedefs, no member functions, et cetera.
18455 So it does not need a prefix. */
18456 return "";
18457 case DW_TAG_compile_unit:
18458 case DW_TAG_partial_unit:
18459 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18460 if (cu->language == language_cplus
18461 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18462 && die->child != NULL
18463 && (die->tag == DW_TAG_class_type
18464 || die->tag == DW_TAG_structure_type
18465 || die->tag == DW_TAG_union_type))
18466 {
18467 char *name = guess_full_die_structure_name (die, cu);
18468 if (name != NULL)
18469 return name;
18470 }
18471 return "";
18472 default:
18473 return determine_prefix (parent, cu);
18474 }
18475 }
18476
18477 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18478 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18479 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18480 an obconcat, otherwise allocate storage for the result. The CU argument is
18481 used to determine the language and hence, the appropriate separator. */
18482
18483 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18484
18485 static char *
18486 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18487 int physname, struct dwarf2_cu *cu)
18488 {
18489 const char *lead = "";
18490 const char *sep;
18491
18492 if (suffix == NULL || suffix[0] == '\0'
18493 || prefix == NULL || prefix[0] == '\0')
18494 sep = "";
18495 else if (cu->language == language_java)
18496 sep = ".";
18497 else if (cu->language == language_fortran && physname)
18498 {
18499 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18500 DW_AT_MIPS_linkage_name is preferred and used instead. */
18501
18502 lead = "__";
18503 sep = "_MOD_";
18504 }
18505 else
18506 sep = "::";
18507
18508 if (prefix == NULL)
18509 prefix = "";
18510 if (suffix == NULL)
18511 suffix = "";
18512
18513 if (obs == NULL)
18514 {
18515 char *retval
18516 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18517
18518 strcpy (retval, lead);
18519 strcat (retval, prefix);
18520 strcat (retval, sep);
18521 strcat (retval, suffix);
18522 return retval;
18523 }
18524 else
18525 {
18526 /* We have an obstack. */
18527 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18528 }
18529 }
18530
18531 /* Return sibling of die, NULL if no sibling. */
18532
18533 static struct die_info *
18534 sibling_die (struct die_info *die)
18535 {
18536 return die->sibling;
18537 }
18538
18539 /* Get name of a die, return NULL if not found. */
18540
18541 static const char *
18542 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18543 struct obstack *obstack)
18544 {
18545 if (name && cu->language == language_cplus)
18546 {
18547 char *canon_name = cp_canonicalize_string (name);
18548
18549 if (canon_name != NULL)
18550 {
18551 if (strcmp (canon_name, name) != 0)
18552 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18553 xfree (canon_name);
18554 }
18555 }
18556
18557 return name;
18558 }
18559
18560 /* Get name of a die, return NULL if not found. */
18561
18562 static const char *
18563 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18564 {
18565 struct attribute *attr;
18566
18567 attr = dwarf2_attr (die, DW_AT_name, cu);
18568 if ((!attr || !DW_STRING (attr))
18569 && die->tag != DW_TAG_class_type
18570 && die->tag != DW_TAG_interface_type
18571 && die->tag != DW_TAG_structure_type
18572 && die->tag != DW_TAG_union_type)
18573 return NULL;
18574
18575 switch (die->tag)
18576 {
18577 case DW_TAG_compile_unit:
18578 case DW_TAG_partial_unit:
18579 /* Compilation units have a DW_AT_name that is a filename, not
18580 a source language identifier. */
18581 case DW_TAG_enumeration_type:
18582 case DW_TAG_enumerator:
18583 /* These tags always have simple identifiers already; no need
18584 to canonicalize them. */
18585 return DW_STRING (attr);
18586
18587 case DW_TAG_subprogram:
18588 /* Java constructors will all be named "<init>", so return
18589 the class name when we see this special case. */
18590 if (cu->language == language_java
18591 && DW_STRING (attr) != NULL
18592 && strcmp (DW_STRING (attr), "<init>") == 0)
18593 {
18594 struct dwarf2_cu *spec_cu = cu;
18595 struct die_info *spec_die;
18596
18597 /* GCJ will output '<init>' for Java constructor names.
18598 For this special case, return the name of the parent class. */
18599
18600 /* GCJ may output suprogram DIEs with AT_specification set.
18601 If so, use the name of the specified DIE. */
18602 spec_die = die_specification (die, &spec_cu);
18603 if (spec_die != NULL)
18604 return dwarf2_name (spec_die, spec_cu);
18605
18606 do
18607 {
18608 die = die->parent;
18609 if (die->tag == DW_TAG_class_type)
18610 return dwarf2_name (die, cu);
18611 }
18612 while (die->tag != DW_TAG_compile_unit
18613 && die->tag != DW_TAG_partial_unit);
18614 }
18615 break;
18616
18617 case DW_TAG_class_type:
18618 case DW_TAG_interface_type:
18619 case DW_TAG_structure_type:
18620 case DW_TAG_union_type:
18621 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18622 structures or unions. These were of the form "._%d" in GCC 4.1,
18623 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18624 and GCC 4.4. We work around this problem by ignoring these. */
18625 if (attr && DW_STRING (attr)
18626 && (strncmp (DW_STRING (attr), "._", 2) == 0
18627 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18628 return NULL;
18629
18630 /* GCC might emit a nameless typedef that has a linkage name. See
18631 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18632 if (!attr || DW_STRING (attr) == NULL)
18633 {
18634 char *demangled = NULL;
18635
18636 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18637 if (attr == NULL)
18638 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18639
18640 if (attr == NULL || DW_STRING (attr) == NULL)
18641 return NULL;
18642
18643 /* Avoid demangling DW_STRING (attr) the second time on a second
18644 call for the same DIE. */
18645 if (!DW_STRING_IS_CANONICAL (attr))
18646 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18647
18648 if (demangled)
18649 {
18650 char *base;
18651
18652 /* FIXME: we already did this for the partial symbol... */
18653 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18654 demangled, strlen (demangled));
18655 DW_STRING_IS_CANONICAL (attr) = 1;
18656 xfree (demangled);
18657
18658 /* Strip any leading namespaces/classes, keep only the base name.
18659 DW_AT_name for named DIEs does not contain the prefixes. */
18660 base = strrchr (DW_STRING (attr), ':');
18661 if (base && base > DW_STRING (attr) && base[-1] == ':')
18662 return &base[1];
18663 else
18664 return DW_STRING (attr);
18665 }
18666 }
18667 break;
18668
18669 default:
18670 break;
18671 }
18672
18673 if (!DW_STRING_IS_CANONICAL (attr))
18674 {
18675 DW_STRING (attr)
18676 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18677 &cu->objfile->objfile_obstack);
18678 DW_STRING_IS_CANONICAL (attr) = 1;
18679 }
18680 return DW_STRING (attr);
18681 }
18682
18683 /* Return the die that this die in an extension of, or NULL if there
18684 is none. *EXT_CU is the CU containing DIE on input, and the CU
18685 containing the return value on output. */
18686
18687 static struct die_info *
18688 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
18689 {
18690 struct attribute *attr;
18691
18692 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
18693 if (attr == NULL)
18694 return NULL;
18695
18696 return follow_die_ref (die, attr, ext_cu);
18697 }
18698
18699 /* Convert a DIE tag into its string name. */
18700
18701 static const char *
18702 dwarf_tag_name (unsigned tag)
18703 {
18704 const char *name = get_DW_TAG_name (tag);
18705
18706 if (name == NULL)
18707 return "DW_TAG_<unknown>";
18708
18709 return name;
18710 }
18711
18712 /* Convert a DWARF attribute code into its string name. */
18713
18714 static const char *
18715 dwarf_attr_name (unsigned attr)
18716 {
18717 const char *name;
18718
18719 #ifdef MIPS /* collides with DW_AT_HP_block_index */
18720 if (attr == DW_AT_MIPS_fde)
18721 return "DW_AT_MIPS_fde";
18722 #else
18723 if (attr == DW_AT_HP_block_index)
18724 return "DW_AT_HP_block_index";
18725 #endif
18726
18727 name = get_DW_AT_name (attr);
18728
18729 if (name == NULL)
18730 return "DW_AT_<unknown>";
18731
18732 return name;
18733 }
18734
18735 /* Convert a DWARF value form code into its string name. */
18736
18737 static const char *
18738 dwarf_form_name (unsigned form)
18739 {
18740 const char *name = get_DW_FORM_name (form);
18741
18742 if (name == NULL)
18743 return "DW_FORM_<unknown>";
18744
18745 return name;
18746 }
18747
18748 static char *
18749 dwarf_bool_name (unsigned mybool)
18750 {
18751 if (mybool)
18752 return "TRUE";
18753 else
18754 return "FALSE";
18755 }
18756
18757 /* Convert a DWARF type code into its string name. */
18758
18759 static const char *
18760 dwarf_type_encoding_name (unsigned enc)
18761 {
18762 const char *name = get_DW_ATE_name (enc);
18763
18764 if (name == NULL)
18765 return "DW_ATE_<unknown>";
18766
18767 return name;
18768 }
18769
18770 static void
18771 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
18772 {
18773 unsigned int i;
18774
18775 print_spaces (indent, f);
18776 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
18777 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
18778
18779 if (die->parent != NULL)
18780 {
18781 print_spaces (indent, f);
18782 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
18783 die->parent->offset.sect_off);
18784 }
18785
18786 print_spaces (indent, f);
18787 fprintf_unfiltered (f, " has children: %s\n",
18788 dwarf_bool_name (die->child != NULL));
18789
18790 print_spaces (indent, f);
18791 fprintf_unfiltered (f, " attributes:\n");
18792
18793 for (i = 0; i < die->num_attrs; ++i)
18794 {
18795 print_spaces (indent, f);
18796 fprintf_unfiltered (f, " %s (%s) ",
18797 dwarf_attr_name (die->attrs[i].name),
18798 dwarf_form_name (die->attrs[i].form));
18799
18800 switch (die->attrs[i].form)
18801 {
18802 case DW_FORM_addr:
18803 case DW_FORM_GNU_addr_index:
18804 fprintf_unfiltered (f, "address: ");
18805 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
18806 break;
18807 case DW_FORM_block2:
18808 case DW_FORM_block4:
18809 case DW_FORM_block:
18810 case DW_FORM_block1:
18811 fprintf_unfiltered (f, "block: size %s",
18812 pulongest (DW_BLOCK (&die->attrs[i])->size));
18813 break;
18814 case DW_FORM_exprloc:
18815 fprintf_unfiltered (f, "expression: size %s",
18816 pulongest (DW_BLOCK (&die->attrs[i])->size));
18817 break;
18818 case DW_FORM_ref_addr:
18819 fprintf_unfiltered (f, "ref address: ");
18820 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18821 break;
18822 case DW_FORM_GNU_ref_alt:
18823 fprintf_unfiltered (f, "alt ref address: ");
18824 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18825 break;
18826 case DW_FORM_ref1:
18827 case DW_FORM_ref2:
18828 case DW_FORM_ref4:
18829 case DW_FORM_ref8:
18830 case DW_FORM_ref_udata:
18831 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
18832 (long) (DW_UNSND (&die->attrs[i])));
18833 break;
18834 case DW_FORM_data1:
18835 case DW_FORM_data2:
18836 case DW_FORM_data4:
18837 case DW_FORM_data8:
18838 case DW_FORM_udata:
18839 case DW_FORM_sdata:
18840 fprintf_unfiltered (f, "constant: %s",
18841 pulongest (DW_UNSND (&die->attrs[i])));
18842 break;
18843 case DW_FORM_sec_offset:
18844 fprintf_unfiltered (f, "section offset: %s",
18845 pulongest (DW_UNSND (&die->attrs[i])));
18846 break;
18847 case DW_FORM_ref_sig8:
18848 fprintf_unfiltered (f, "signature: %s",
18849 hex_string (DW_SIGNATURE (&die->attrs[i])));
18850 break;
18851 case DW_FORM_string:
18852 case DW_FORM_strp:
18853 case DW_FORM_GNU_str_index:
18854 case DW_FORM_GNU_strp_alt:
18855 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
18856 DW_STRING (&die->attrs[i])
18857 ? DW_STRING (&die->attrs[i]) : "",
18858 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
18859 break;
18860 case DW_FORM_flag:
18861 if (DW_UNSND (&die->attrs[i]))
18862 fprintf_unfiltered (f, "flag: TRUE");
18863 else
18864 fprintf_unfiltered (f, "flag: FALSE");
18865 break;
18866 case DW_FORM_flag_present:
18867 fprintf_unfiltered (f, "flag: TRUE");
18868 break;
18869 case DW_FORM_indirect:
18870 /* The reader will have reduced the indirect form to
18871 the "base form" so this form should not occur. */
18872 fprintf_unfiltered (f,
18873 "unexpected attribute form: DW_FORM_indirect");
18874 break;
18875 default:
18876 fprintf_unfiltered (f, "unsupported attribute form: %d.",
18877 die->attrs[i].form);
18878 break;
18879 }
18880 fprintf_unfiltered (f, "\n");
18881 }
18882 }
18883
18884 static void
18885 dump_die_for_error (struct die_info *die)
18886 {
18887 dump_die_shallow (gdb_stderr, 0, die);
18888 }
18889
18890 static void
18891 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
18892 {
18893 int indent = level * 4;
18894
18895 gdb_assert (die != NULL);
18896
18897 if (level >= max_level)
18898 return;
18899
18900 dump_die_shallow (f, indent, die);
18901
18902 if (die->child != NULL)
18903 {
18904 print_spaces (indent, f);
18905 fprintf_unfiltered (f, " Children:");
18906 if (level + 1 < max_level)
18907 {
18908 fprintf_unfiltered (f, "\n");
18909 dump_die_1 (f, level + 1, max_level, die->child);
18910 }
18911 else
18912 {
18913 fprintf_unfiltered (f,
18914 " [not printed, max nesting level reached]\n");
18915 }
18916 }
18917
18918 if (die->sibling != NULL && level > 0)
18919 {
18920 dump_die_1 (f, level, max_level, die->sibling);
18921 }
18922 }
18923
18924 /* This is called from the pdie macro in gdbinit.in.
18925 It's not static so gcc will keep a copy callable from gdb. */
18926
18927 void
18928 dump_die (struct die_info *die, int max_level)
18929 {
18930 dump_die_1 (gdb_stdlog, 0, max_level, die);
18931 }
18932
18933 static void
18934 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
18935 {
18936 void **slot;
18937
18938 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
18939 INSERT);
18940
18941 *slot = die;
18942 }
18943
18944 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
18945 required kind. */
18946
18947 static sect_offset
18948 dwarf2_get_ref_die_offset (const struct attribute *attr)
18949 {
18950 sect_offset retval = { DW_UNSND (attr) };
18951
18952 if (attr_form_is_ref (attr))
18953 return retval;
18954
18955 retval.sect_off = 0;
18956 complaint (&symfile_complaints,
18957 _("unsupported die ref attribute form: '%s'"),
18958 dwarf_form_name (attr->form));
18959 return retval;
18960 }
18961
18962 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
18963 * the value held by the attribute is not constant. */
18964
18965 static LONGEST
18966 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
18967 {
18968 if (attr->form == DW_FORM_sdata)
18969 return DW_SND (attr);
18970 else if (attr->form == DW_FORM_udata
18971 || attr->form == DW_FORM_data1
18972 || attr->form == DW_FORM_data2
18973 || attr->form == DW_FORM_data4
18974 || attr->form == DW_FORM_data8)
18975 return DW_UNSND (attr);
18976 else
18977 {
18978 complaint (&symfile_complaints,
18979 _("Attribute value is not a constant (%s)"),
18980 dwarf_form_name (attr->form));
18981 return default_value;
18982 }
18983 }
18984
18985 /* Follow reference or signature attribute ATTR of SRC_DIE.
18986 On entry *REF_CU is the CU of SRC_DIE.
18987 On exit *REF_CU is the CU of the result. */
18988
18989 static struct die_info *
18990 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
18991 struct dwarf2_cu **ref_cu)
18992 {
18993 struct die_info *die;
18994
18995 if (attr_form_is_ref (attr))
18996 die = follow_die_ref (src_die, attr, ref_cu);
18997 else if (attr->form == DW_FORM_ref_sig8)
18998 die = follow_die_sig (src_die, attr, ref_cu);
18999 else
19000 {
19001 dump_die_for_error (src_die);
19002 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19003 objfile_name ((*ref_cu)->objfile));
19004 }
19005
19006 return die;
19007 }
19008
19009 /* Follow reference OFFSET.
19010 On entry *REF_CU is the CU of the source die referencing OFFSET.
19011 On exit *REF_CU is the CU of the result.
19012 Returns NULL if OFFSET is invalid. */
19013
19014 static struct die_info *
19015 follow_die_offset (sect_offset offset, int offset_in_dwz,
19016 struct dwarf2_cu **ref_cu)
19017 {
19018 struct die_info temp_die;
19019 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19020
19021 gdb_assert (cu->per_cu != NULL);
19022
19023 target_cu = cu;
19024
19025 if (cu->per_cu->is_debug_types)
19026 {
19027 /* .debug_types CUs cannot reference anything outside their CU.
19028 If they need to, they have to reference a signatured type via
19029 DW_FORM_ref_sig8. */
19030 if (! offset_in_cu_p (&cu->header, offset))
19031 return NULL;
19032 }
19033 else if (offset_in_dwz != cu->per_cu->is_dwz
19034 || ! offset_in_cu_p (&cu->header, offset))
19035 {
19036 struct dwarf2_per_cu_data *per_cu;
19037
19038 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19039 cu->objfile);
19040
19041 /* If necessary, add it to the queue and load its DIEs. */
19042 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19043 load_full_comp_unit (per_cu, cu->language);
19044
19045 target_cu = per_cu->cu;
19046 }
19047 else if (cu->dies == NULL)
19048 {
19049 /* We're loading full DIEs during partial symbol reading. */
19050 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19051 load_full_comp_unit (cu->per_cu, language_minimal);
19052 }
19053
19054 *ref_cu = target_cu;
19055 temp_die.offset = offset;
19056 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19057 }
19058
19059 /* Follow reference attribute ATTR of SRC_DIE.
19060 On entry *REF_CU is the CU of SRC_DIE.
19061 On exit *REF_CU is the CU of the result. */
19062
19063 static struct die_info *
19064 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19065 struct dwarf2_cu **ref_cu)
19066 {
19067 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19068 struct dwarf2_cu *cu = *ref_cu;
19069 struct die_info *die;
19070
19071 die = follow_die_offset (offset,
19072 (attr->form == DW_FORM_GNU_ref_alt
19073 || cu->per_cu->is_dwz),
19074 ref_cu);
19075 if (!die)
19076 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19077 "at 0x%x [in module %s]"),
19078 offset.sect_off, src_die->offset.sect_off,
19079 objfile_name (cu->objfile));
19080
19081 return die;
19082 }
19083
19084 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19085 Returned value is intended for DW_OP_call*. Returned
19086 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19087
19088 struct dwarf2_locexpr_baton
19089 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19090 struct dwarf2_per_cu_data *per_cu,
19091 CORE_ADDR (*get_frame_pc) (void *baton),
19092 void *baton)
19093 {
19094 struct dwarf2_cu *cu;
19095 struct die_info *die;
19096 struct attribute *attr;
19097 struct dwarf2_locexpr_baton retval;
19098
19099 dw2_setup (per_cu->objfile);
19100
19101 if (per_cu->cu == NULL)
19102 load_cu (per_cu);
19103 cu = per_cu->cu;
19104
19105 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19106 if (!die)
19107 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19108 offset.sect_off, objfile_name (per_cu->objfile));
19109
19110 attr = dwarf2_attr (die, DW_AT_location, cu);
19111 if (!attr)
19112 {
19113 /* DWARF: "If there is no such attribute, then there is no effect.".
19114 DATA is ignored if SIZE is 0. */
19115
19116 retval.data = NULL;
19117 retval.size = 0;
19118 }
19119 else if (attr_form_is_section_offset (attr))
19120 {
19121 struct dwarf2_loclist_baton loclist_baton;
19122 CORE_ADDR pc = (*get_frame_pc) (baton);
19123 size_t size;
19124
19125 fill_in_loclist_baton (cu, &loclist_baton, attr);
19126
19127 retval.data = dwarf2_find_location_expression (&loclist_baton,
19128 &size, pc);
19129 retval.size = size;
19130 }
19131 else
19132 {
19133 if (!attr_form_is_block (attr))
19134 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19135 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19136 offset.sect_off, objfile_name (per_cu->objfile));
19137
19138 retval.data = DW_BLOCK (attr)->data;
19139 retval.size = DW_BLOCK (attr)->size;
19140 }
19141 retval.per_cu = cu->per_cu;
19142
19143 age_cached_comp_units ();
19144
19145 return retval;
19146 }
19147
19148 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19149 offset. */
19150
19151 struct dwarf2_locexpr_baton
19152 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19153 struct dwarf2_per_cu_data *per_cu,
19154 CORE_ADDR (*get_frame_pc) (void *baton),
19155 void *baton)
19156 {
19157 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19158
19159 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19160 }
19161
19162 /* Write a constant of a given type as target-ordered bytes into
19163 OBSTACK. */
19164
19165 static const gdb_byte *
19166 write_constant_as_bytes (struct obstack *obstack,
19167 enum bfd_endian byte_order,
19168 struct type *type,
19169 ULONGEST value,
19170 LONGEST *len)
19171 {
19172 gdb_byte *result;
19173
19174 *len = TYPE_LENGTH (type);
19175 result = obstack_alloc (obstack, *len);
19176 store_unsigned_integer (result, *len, byte_order, value);
19177
19178 return result;
19179 }
19180
19181 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19182 pointer to the constant bytes and set LEN to the length of the
19183 data. If memory is needed, allocate it on OBSTACK. If the DIE
19184 does not have a DW_AT_const_value, return NULL. */
19185
19186 const gdb_byte *
19187 dwarf2_fetch_constant_bytes (sect_offset offset,
19188 struct dwarf2_per_cu_data *per_cu,
19189 struct obstack *obstack,
19190 LONGEST *len)
19191 {
19192 struct dwarf2_cu *cu;
19193 struct die_info *die;
19194 struct attribute *attr;
19195 const gdb_byte *result = NULL;
19196 struct type *type;
19197 LONGEST value;
19198 enum bfd_endian byte_order;
19199
19200 dw2_setup (per_cu->objfile);
19201
19202 if (per_cu->cu == NULL)
19203 load_cu (per_cu);
19204 cu = per_cu->cu;
19205
19206 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19207 if (!die)
19208 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19209 offset.sect_off, objfile_name (per_cu->objfile));
19210
19211
19212 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19213 if (attr == NULL)
19214 return NULL;
19215
19216 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19217 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19218
19219 switch (attr->form)
19220 {
19221 case DW_FORM_addr:
19222 case DW_FORM_GNU_addr_index:
19223 {
19224 gdb_byte *tem;
19225
19226 *len = cu->header.addr_size;
19227 tem = obstack_alloc (obstack, *len);
19228 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19229 result = tem;
19230 }
19231 break;
19232 case DW_FORM_string:
19233 case DW_FORM_strp:
19234 case DW_FORM_GNU_str_index:
19235 case DW_FORM_GNU_strp_alt:
19236 /* DW_STRING is already allocated on the objfile obstack, point
19237 directly to it. */
19238 result = (const gdb_byte *) DW_STRING (attr);
19239 *len = strlen (DW_STRING (attr));
19240 break;
19241 case DW_FORM_block1:
19242 case DW_FORM_block2:
19243 case DW_FORM_block4:
19244 case DW_FORM_block:
19245 case DW_FORM_exprloc:
19246 result = DW_BLOCK (attr)->data;
19247 *len = DW_BLOCK (attr)->size;
19248 break;
19249
19250 /* The DW_AT_const_value attributes are supposed to carry the
19251 symbol's value "represented as it would be on the target
19252 architecture." By the time we get here, it's already been
19253 converted to host endianness, so we just need to sign- or
19254 zero-extend it as appropriate. */
19255 case DW_FORM_data1:
19256 type = die_type (die, cu);
19257 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19258 if (result == NULL)
19259 result = write_constant_as_bytes (obstack, byte_order,
19260 type, value, len);
19261 break;
19262 case DW_FORM_data2:
19263 type = die_type (die, cu);
19264 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19265 if (result == NULL)
19266 result = write_constant_as_bytes (obstack, byte_order,
19267 type, value, len);
19268 break;
19269 case DW_FORM_data4:
19270 type = die_type (die, cu);
19271 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19272 if (result == NULL)
19273 result = write_constant_as_bytes (obstack, byte_order,
19274 type, value, len);
19275 break;
19276 case DW_FORM_data8:
19277 type = die_type (die, cu);
19278 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19279 if (result == NULL)
19280 result = write_constant_as_bytes (obstack, byte_order,
19281 type, value, len);
19282 break;
19283
19284 case DW_FORM_sdata:
19285 type = die_type (die, cu);
19286 result = write_constant_as_bytes (obstack, byte_order,
19287 type, DW_SND (attr), len);
19288 break;
19289
19290 case DW_FORM_udata:
19291 type = die_type (die, cu);
19292 result = write_constant_as_bytes (obstack, byte_order,
19293 type, DW_UNSND (attr), len);
19294 break;
19295
19296 default:
19297 complaint (&symfile_complaints,
19298 _("unsupported const value attribute form: '%s'"),
19299 dwarf_form_name (attr->form));
19300 break;
19301 }
19302
19303 return result;
19304 }
19305
19306 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19307 PER_CU. */
19308
19309 struct type *
19310 dwarf2_get_die_type (cu_offset die_offset,
19311 struct dwarf2_per_cu_data *per_cu)
19312 {
19313 sect_offset die_offset_sect;
19314
19315 dw2_setup (per_cu->objfile);
19316
19317 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19318 return get_die_type_at_offset (die_offset_sect, per_cu);
19319 }
19320
19321 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19322 On entry *REF_CU is the CU of SRC_DIE.
19323 On exit *REF_CU is the CU of the result.
19324 Returns NULL if the referenced DIE isn't found. */
19325
19326 static struct die_info *
19327 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19328 struct dwarf2_cu **ref_cu)
19329 {
19330 struct objfile *objfile = (*ref_cu)->objfile;
19331 struct die_info temp_die;
19332 struct dwarf2_cu *sig_cu;
19333 struct die_info *die;
19334
19335 /* While it might be nice to assert sig_type->type == NULL here,
19336 we can get here for DW_AT_imported_declaration where we need
19337 the DIE not the type. */
19338
19339 /* If necessary, add it to the queue and load its DIEs. */
19340
19341 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19342 read_signatured_type (sig_type);
19343
19344 sig_cu = sig_type->per_cu.cu;
19345 gdb_assert (sig_cu != NULL);
19346 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19347 temp_die.offset = sig_type->type_offset_in_section;
19348 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19349 temp_die.offset.sect_off);
19350 if (die)
19351 {
19352 /* For .gdb_index version 7 keep track of included TUs.
19353 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19354 if (dwarf2_per_objfile->index_table != NULL
19355 && dwarf2_per_objfile->index_table->version <= 7)
19356 {
19357 VEC_safe_push (dwarf2_per_cu_ptr,
19358 (*ref_cu)->per_cu->imported_symtabs,
19359 sig_cu->per_cu);
19360 }
19361
19362 *ref_cu = sig_cu;
19363 return die;
19364 }
19365
19366 return NULL;
19367 }
19368
19369 /* Follow signatured type referenced by ATTR in SRC_DIE.
19370 On entry *REF_CU is the CU of SRC_DIE.
19371 On exit *REF_CU is the CU of the result.
19372 The result is the DIE of the type.
19373 If the referenced type cannot be found an error is thrown. */
19374
19375 static struct die_info *
19376 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19377 struct dwarf2_cu **ref_cu)
19378 {
19379 ULONGEST signature = DW_SIGNATURE (attr);
19380 struct signatured_type *sig_type;
19381 struct die_info *die;
19382
19383 gdb_assert (attr->form == DW_FORM_ref_sig8);
19384
19385 sig_type = lookup_signatured_type (*ref_cu, signature);
19386 /* sig_type will be NULL if the signatured type is missing from
19387 the debug info. */
19388 if (sig_type == NULL)
19389 {
19390 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19391 " from DIE at 0x%x [in module %s]"),
19392 hex_string (signature), src_die->offset.sect_off,
19393 objfile_name ((*ref_cu)->objfile));
19394 }
19395
19396 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19397 if (die == NULL)
19398 {
19399 dump_die_for_error (src_die);
19400 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19401 " from DIE at 0x%x [in module %s]"),
19402 hex_string (signature), src_die->offset.sect_off,
19403 objfile_name ((*ref_cu)->objfile));
19404 }
19405
19406 return die;
19407 }
19408
19409 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19410 reading in and processing the type unit if necessary. */
19411
19412 static struct type *
19413 get_signatured_type (struct die_info *die, ULONGEST signature,
19414 struct dwarf2_cu *cu)
19415 {
19416 struct signatured_type *sig_type;
19417 struct dwarf2_cu *type_cu;
19418 struct die_info *type_die;
19419 struct type *type;
19420
19421 sig_type = lookup_signatured_type (cu, signature);
19422 /* sig_type will be NULL if the signatured type is missing from
19423 the debug info. */
19424 if (sig_type == NULL)
19425 {
19426 complaint (&symfile_complaints,
19427 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19428 " from DIE at 0x%x [in module %s]"),
19429 hex_string (signature), die->offset.sect_off,
19430 objfile_name (dwarf2_per_objfile->objfile));
19431 return build_error_marker_type (cu, die);
19432 }
19433
19434 /* If we already know the type we're done. */
19435 if (sig_type->type != NULL)
19436 return sig_type->type;
19437
19438 type_cu = cu;
19439 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19440 if (type_die != NULL)
19441 {
19442 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19443 is created. This is important, for example, because for c++ classes
19444 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19445 type = read_type_die (type_die, type_cu);
19446 if (type == NULL)
19447 {
19448 complaint (&symfile_complaints,
19449 _("Dwarf Error: Cannot build signatured type %s"
19450 " referenced from DIE at 0x%x [in module %s]"),
19451 hex_string (signature), die->offset.sect_off,
19452 objfile_name (dwarf2_per_objfile->objfile));
19453 type = build_error_marker_type (cu, die);
19454 }
19455 }
19456 else
19457 {
19458 complaint (&symfile_complaints,
19459 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19460 " from DIE at 0x%x [in module %s]"),
19461 hex_string (signature), die->offset.sect_off,
19462 objfile_name (dwarf2_per_objfile->objfile));
19463 type = build_error_marker_type (cu, die);
19464 }
19465 sig_type->type = type;
19466
19467 return type;
19468 }
19469
19470 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19471 reading in and processing the type unit if necessary. */
19472
19473 static struct type *
19474 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19475 struct dwarf2_cu *cu) /* ARI: editCase function */
19476 {
19477 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19478 if (attr_form_is_ref (attr))
19479 {
19480 struct dwarf2_cu *type_cu = cu;
19481 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19482
19483 return read_type_die (type_die, type_cu);
19484 }
19485 else if (attr->form == DW_FORM_ref_sig8)
19486 {
19487 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19488 }
19489 else
19490 {
19491 complaint (&symfile_complaints,
19492 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19493 " at 0x%x [in module %s]"),
19494 dwarf_form_name (attr->form), die->offset.sect_off,
19495 objfile_name (dwarf2_per_objfile->objfile));
19496 return build_error_marker_type (cu, die);
19497 }
19498 }
19499
19500 /* Load the DIEs associated with type unit PER_CU into memory. */
19501
19502 static void
19503 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19504 {
19505 struct signatured_type *sig_type;
19506
19507 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19508 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19509
19510 /* We have the per_cu, but we need the signatured_type.
19511 Fortunately this is an easy translation. */
19512 gdb_assert (per_cu->is_debug_types);
19513 sig_type = (struct signatured_type *) per_cu;
19514
19515 gdb_assert (per_cu->cu == NULL);
19516
19517 read_signatured_type (sig_type);
19518
19519 gdb_assert (per_cu->cu != NULL);
19520 }
19521
19522 /* die_reader_func for read_signatured_type.
19523 This is identical to load_full_comp_unit_reader,
19524 but is kept separate for now. */
19525
19526 static void
19527 read_signatured_type_reader (const struct die_reader_specs *reader,
19528 const gdb_byte *info_ptr,
19529 struct die_info *comp_unit_die,
19530 int has_children,
19531 void *data)
19532 {
19533 struct dwarf2_cu *cu = reader->cu;
19534
19535 gdb_assert (cu->die_hash == NULL);
19536 cu->die_hash =
19537 htab_create_alloc_ex (cu->header.length / 12,
19538 die_hash,
19539 die_eq,
19540 NULL,
19541 &cu->comp_unit_obstack,
19542 hashtab_obstack_allocate,
19543 dummy_obstack_deallocate);
19544
19545 if (has_children)
19546 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19547 &info_ptr, comp_unit_die);
19548 cu->dies = comp_unit_die;
19549 /* comp_unit_die is not stored in die_hash, no need. */
19550
19551 /* We try not to read any attributes in this function, because not
19552 all CUs needed for references have been loaded yet, and symbol
19553 table processing isn't initialized. But we have to set the CU language,
19554 or we won't be able to build types correctly.
19555 Similarly, if we do not read the producer, we can not apply
19556 producer-specific interpretation. */
19557 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19558 }
19559
19560 /* Read in a signatured type and build its CU and DIEs.
19561 If the type is a stub for the real type in a DWO file,
19562 read in the real type from the DWO file as well. */
19563
19564 static void
19565 read_signatured_type (struct signatured_type *sig_type)
19566 {
19567 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19568
19569 gdb_assert (per_cu->is_debug_types);
19570 gdb_assert (per_cu->cu == NULL);
19571
19572 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19573 read_signatured_type_reader, NULL);
19574 sig_type->per_cu.tu_read = 1;
19575 }
19576
19577 /* Decode simple location descriptions.
19578 Given a pointer to a dwarf block that defines a location, compute
19579 the location and return the value.
19580
19581 NOTE drow/2003-11-18: This function is called in two situations
19582 now: for the address of static or global variables (partial symbols
19583 only) and for offsets into structures which are expected to be
19584 (more or less) constant. The partial symbol case should go away,
19585 and only the constant case should remain. That will let this
19586 function complain more accurately. A few special modes are allowed
19587 without complaint for global variables (for instance, global
19588 register values and thread-local values).
19589
19590 A location description containing no operations indicates that the
19591 object is optimized out. The return value is 0 for that case.
19592 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19593 callers will only want a very basic result and this can become a
19594 complaint.
19595
19596 Note that stack[0] is unused except as a default error return. */
19597
19598 static CORE_ADDR
19599 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19600 {
19601 struct objfile *objfile = cu->objfile;
19602 size_t i;
19603 size_t size = blk->size;
19604 const gdb_byte *data = blk->data;
19605 CORE_ADDR stack[64];
19606 int stacki;
19607 unsigned int bytes_read, unsnd;
19608 gdb_byte op;
19609
19610 i = 0;
19611 stacki = 0;
19612 stack[stacki] = 0;
19613 stack[++stacki] = 0;
19614
19615 while (i < size)
19616 {
19617 op = data[i++];
19618 switch (op)
19619 {
19620 case DW_OP_lit0:
19621 case DW_OP_lit1:
19622 case DW_OP_lit2:
19623 case DW_OP_lit3:
19624 case DW_OP_lit4:
19625 case DW_OP_lit5:
19626 case DW_OP_lit6:
19627 case DW_OP_lit7:
19628 case DW_OP_lit8:
19629 case DW_OP_lit9:
19630 case DW_OP_lit10:
19631 case DW_OP_lit11:
19632 case DW_OP_lit12:
19633 case DW_OP_lit13:
19634 case DW_OP_lit14:
19635 case DW_OP_lit15:
19636 case DW_OP_lit16:
19637 case DW_OP_lit17:
19638 case DW_OP_lit18:
19639 case DW_OP_lit19:
19640 case DW_OP_lit20:
19641 case DW_OP_lit21:
19642 case DW_OP_lit22:
19643 case DW_OP_lit23:
19644 case DW_OP_lit24:
19645 case DW_OP_lit25:
19646 case DW_OP_lit26:
19647 case DW_OP_lit27:
19648 case DW_OP_lit28:
19649 case DW_OP_lit29:
19650 case DW_OP_lit30:
19651 case DW_OP_lit31:
19652 stack[++stacki] = op - DW_OP_lit0;
19653 break;
19654
19655 case DW_OP_reg0:
19656 case DW_OP_reg1:
19657 case DW_OP_reg2:
19658 case DW_OP_reg3:
19659 case DW_OP_reg4:
19660 case DW_OP_reg5:
19661 case DW_OP_reg6:
19662 case DW_OP_reg7:
19663 case DW_OP_reg8:
19664 case DW_OP_reg9:
19665 case DW_OP_reg10:
19666 case DW_OP_reg11:
19667 case DW_OP_reg12:
19668 case DW_OP_reg13:
19669 case DW_OP_reg14:
19670 case DW_OP_reg15:
19671 case DW_OP_reg16:
19672 case DW_OP_reg17:
19673 case DW_OP_reg18:
19674 case DW_OP_reg19:
19675 case DW_OP_reg20:
19676 case DW_OP_reg21:
19677 case DW_OP_reg22:
19678 case DW_OP_reg23:
19679 case DW_OP_reg24:
19680 case DW_OP_reg25:
19681 case DW_OP_reg26:
19682 case DW_OP_reg27:
19683 case DW_OP_reg28:
19684 case DW_OP_reg29:
19685 case DW_OP_reg30:
19686 case DW_OP_reg31:
19687 stack[++stacki] = op - DW_OP_reg0;
19688 if (i < size)
19689 dwarf2_complex_location_expr_complaint ();
19690 break;
19691
19692 case DW_OP_regx:
19693 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19694 i += bytes_read;
19695 stack[++stacki] = unsnd;
19696 if (i < size)
19697 dwarf2_complex_location_expr_complaint ();
19698 break;
19699
19700 case DW_OP_addr:
19701 stack[++stacki] = read_address (objfile->obfd, &data[i],
19702 cu, &bytes_read);
19703 i += bytes_read;
19704 break;
19705
19706 case DW_OP_const1u:
19707 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19708 i += 1;
19709 break;
19710
19711 case DW_OP_const1s:
19712 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19713 i += 1;
19714 break;
19715
19716 case DW_OP_const2u:
19717 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19718 i += 2;
19719 break;
19720
19721 case DW_OP_const2s:
19722 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19723 i += 2;
19724 break;
19725
19726 case DW_OP_const4u:
19727 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19728 i += 4;
19729 break;
19730
19731 case DW_OP_const4s:
19732 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19733 i += 4;
19734 break;
19735
19736 case DW_OP_const8u:
19737 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19738 i += 8;
19739 break;
19740
19741 case DW_OP_constu:
19742 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19743 &bytes_read);
19744 i += bytes_read;
19745 break;
19746
19747 case DW_OP_consts:
19748 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19749 i += bytes_read;
19750 break;
19751
19752 case DW_OP_dup:
19753 stack[stacki + 1] = stack[stacki];
19754 stacki++;
19755 break;
19756
19757 case DW_OP_plus:
19758 stack[stacki - 1] += stack[stacki];
19759 stacki--;
19760 break;
19761
19762 case DW_OP_plus_uconst:
19763 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19764 &bytes_read);
19765 i += bytes_read;
19766 break;
19767
19768 case DW_OP_minus:
19769 stack[stacki - 1] -= stack[stacki];
19770 stacki--;
19771 break;
19772
19773 case DW_OP_deref:
19774 /* If we're not the last op, then we definitely can't encode
19775 this using GDB's address_class enum. This is valid for partial
19776 global symbols, although the variable's address will be bogus
19777 in the psymtab. */
19778 if (i < size)
19779 dwarf2_complex_location_expr_complaint ();
19780 break;
19781
19782 case DW_OP_GNU_push_tls_address:
19783 /* The top of the stack has the offset from the beginning
19784 of the thread control block at which the variable is located. */
19785 /* Nothing should follow this operator, so the top of stack would
19786 be returned. */
19787 /* This is valid for partial global symbols, but the variable's
19788 address will be bogus in the psymtab. Make it always at least
19789 non-zero to not look as a variable garbage collected by linker
19790 which have DW_OP_addr 0. */
19791 if (i < size)
19792 dwarf2_complex_location_expr_complaint ();
19793 stack[stacki]++;
19794 break;
19795
19796 case DW_OP_GNU_uninit:
19797 break;
19798
19799 case DW_OP_GNU_addr_index:
19800 case DW_OP_GNU_const_index:
19801 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19802 &bytes_read);
19803 i += bytes_read;
19804 break;
19805
19806 default:
19807 {
19808 const char *name = get_DW_OP_name (op);
19809
19810 if (name)
19811 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19812 name);
19813 else
19814 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19815 op);
19816 }
19817
19818 return (stack[stacki]);
19819 }
19820
19821 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19822 outside of the allocated space. Also enforce minimum>0. */
19823 if (stacki >= ARRAY_SIZE (stack) - 1)
19824 {
19825 complaint (&symfile_complaints,
19826 _("location description stack overflow"));
19827 return 0;
19828 }
19829
19830 if (stacki <= 0)
19831 {
19832 complaint (&symfile_complaints,
19833 _("location description stack underflow"));
19834 return 0;
19835 }
19836 }
19837 return (stack[stacki]);
19838 }
19839
19840 /* memory allocation interface */
19841
19842 static struct dwarf_block *
19843 dwarf_alloc_block (struct dwarf2_cu *cu)
19844 {
19845 struct dwarf_block *blk;
19846
19847 blk = (struct dwarf_block *)
19848 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
19849 return (blk);
19850 }
19851
19852 static struct die_info *
19853 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
19854 {
19855 struct die_info *die;
19856 size_t size = sizeof (struct die_info);
19857
19858 if (num_attrs > 1)
19859 size += (num_attrs - 1) * sizeof (struct attribute);
19860
19861 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
19862 memset (die, 0, sizeof (struct die_info));
19863 return (die);
19864 }
19865
19866 \f
19867 /* Macro support. */
19868
19869 /* Return file name relative to the compilation directory of file number I in
19870 *LH's file name table. The result is allocated using xmalloc; the caller is
19871 responsible for freeing it. */
19872
19873 static char *
19874 file_file_name (int file, struct line_header *lh)
19875 {
19876 /* Is the file number a valid index into the line header's file name
19877 table? Remember that file numbers start with one, not zero. */
19878 if (1 <= file && file <= lh->num_file_names)
19879 {
19880 struct file_entry *fe = &lh->file_names[file - 1];
19881
19882 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
19883 return xstrdup (fe->name);
19884 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
19885 fe->name, NULL);
19886 }
19887 else
19888 {
19889 /* The compiler produced a bogus file number. We can at least
19890 record the macro definitions made in the file, even if we
19891 won't be able to find the file by name. */
19892 char fake_name[80];
19893
19894 xsnprintf (fake_name, sizeof (fake_name),
19895 "<bad macro file number %d>", file);
19896
19897 complaint (&symfile_complaints,
19898 _("bad file number in macro information (%d)"),
19899 file);
19900
19901 return xstrdup (fake_name);
19902 }
19903 }
19904
19905 /* Return the full name of file number I in *LH's file name table.
19906 Use COMP_DIR as the name of the current directory of the
19907 compilation. The result is allocated using xmalloc; the caller is
19908 responsible for freeing it. */
19909 static char *
19910 file_full_name (int file, struct line_header *lh, const char *comp_dir)
19911 {
19912 /* Is the file number a valid index into the line header's file name
19913 table? Remember that file numbers start with one, not zero. */
19914 if (1 <= file && file <= lh->num_file_names)
19915 {
19916 char *relative = file_file_name (file, lh);
19917
19918 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
19919 return relative;
19920 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
19921 }
19922 else
19923 return file_file_name (file, lh);
19924 }
19925
19926
19927 static struct macro_source_file *
19928 macro_start_file (int file, int line,
19929 struct macro_source_file *current_file,
19930 const char *comp_dir,
19931 struct line_header *lh, struct objfile *objfile)
19932 {
19933 /* File name relative to the compilation directory of this source file. */
19934 char *file_name = file_file_name (file, lh);
19935
19936 if (! current_file)
19937 {
19938 /* Note: We don't create a macro table for this compilation unit
19939 at all until we actually get a filename. */
19940 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
19941
19942 /* If we have no current file, then this must be the start_file
19943 directive for the compilation unit's main source file. */
19944 current_file = macro_set_main (macro_table, file_name);
19945 macro_define_special (macro_table);
19946 }
19947 else
19948 current_file = macro_include (current_file, line, file_name);
19949
19950 xfree (file_name);
19951
19952 return current_file;
19953 }
19954
19955
19956 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
19957 followed by a null byte. */
19958 static char *
19959 copy_string (const char *buf, int len)
19960 {
19961 char *s = xmalloc (len + 1);
19962
19963 memcpy (s, buf, len);
19964 s[len] = '\0';
19965 return s;
19966 }
19967
19968
19969 static const char *
19970 consume_improper_spaces (const char *p, const char *body)
19971 {
19972 if (*p == ' ')
19973 {
19974 complaint (&symfile_complaints,
19975 _("macro definition contains spaces "
19976 "in formal argument list:\n`%s'"),
19977 body);
19978
19979 while (*p == ' ')
19980 p++;
19981 }
19982
19983 return p;
19984 }
19985
19986
19987 static void
19988 parse_macro_definition (struct macro_source_file *file, int line,
19989 const char *body)
19990 {
19991 const char *p;
19992
19993 /* The body string takes one of two forms. For object-like macro
19994 definitions, it should be:
19995
19996 <macro name> " " <definition>
19997
19998 For function-like macro definitions, it should be:
19999
20000 <macro name> "() " <definition>
20001 or
20002 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20003
20004 Spaces may appear only where explicitly indicated, and in the
20005 <definition>.
20006
20007 The Dwarf 2 spec says that an object-like macro's name is always
20008 followed by a space, but versions of GCC around March 2002 omit
20009 the space when the macro's definition is the empty string.
20010
20011 The Dwarf 2 spec says that there should be no spaces between the
20012 formal arguments in a function-like macro's formal argument list,
20013 but versions of GCC around March 2002 include spaces after the
20014 commas. */
20015
20016
20017 /* Find the extent of the macro name. The macro name is terminated
20018 by either a space or null character (for an object-like macro) or
20019 an opening paren (for a function-like macro). */
20020 for (p = body; *p; p++)
20021 if (*p == ' ' || *p == '(')
20022 break;
20023
20024 if (*p == ' ' || *p == '\0')
20025 {
20026 /* It's an object-like macro. */
20027 int name_len = p - body;
20028 char *name = copy_string (body, name_len);
20029 const char *replacement;
20030
20031 if (*p == ' ')
20032 replacement = body + name_len + 1;
20033 else
20034 {
20035 dwarf2_macro_malformed_definition_complaint (body);
20036 replacement = body + name_len;
20037 }
20038
20039 macro_define_object (file, line, name, replacement);
20040
20041 xfree (name);
20042 }
20043 else if (*p == '(')
20044 {
20045 /* It's a function-like macro. */
20046 char *name = copy_string (body, p - body);
20047 int argc = 0;
20048 int argv_size = 1;
20049 char **argv = xmalloc (argv_size * sizeof (*argv));
20050
20051 p++;
20052
20053 p = consume_improper_spaces (p, body);
20054
20055 /* Parse the formal argument list. */
20056 while (*p && *p != ')')
20057 {
20058 /* Find the extent of the current argument name. */
20059 const char *arg_start = p;
20060
20061 while (*p && *p != ',' && *p != ')' && *p != ' ')
20062 p++;
20063
20064 if (! *p || p == arg_start)
20065 dwarf2_macro_malformed_definition_complaint (body);
20066 else
20067 {
20068 /* Make sure argv has room for the new argument. */
20069 if (argc >= argv_size)
20070 {
20071 argv_size *= 2;
20072 argv = xrealloc (argv, argv_size * sizeof (*argv));
20073 }
20074
20075 argv[argc++] = copy_string (arg_start, p - arg_start);
20076 }
20077
20078 p = consume_improper_spaces (p, body);
20079
20080 /* Consume the comma, if present. */
20081 if (*p == ',')
20082 {
20083 p++;
20084
20085 p = consume_improper_spaces (p, body);
20086 }
20087 }
20088
20089 if (*p == ')')
20090 {
20091 p++;
20092
20093 if (*p == ' ')
20094 /* Perfectly formed definition, no complaints. */
20095 macro_define_function (file, line, name,
20096 argc, (const char **) argv,
20097 p + 1);
20098 else if (*p == '\0')
20099 {
20100 /* Complain, but do define it. */
20101 dwarf2_macro_malformed_definition_complaint (body);
20102 macro_define_function (file, line, name,
20103 argc, (const char **) argv,
20104 p);
20105 }
20106 else
20107 /* Just complain. */
20108 dwarf2_macro_malformed_definition_complaint (body);
20109 }
20110 else
20111 /* Just complain. */
20112 dwarf2_macro_malformed_definition_complaint (body);
20113
20114 xfree (name);
20115 {
20116 int i;
20117
20118 for (i = 0; i < argc; i++)
20119 xfree (argv[i]);
20120 }
20121 xfree (argv);
20122 }
20123 else
20124 dwarf2_macro_malformed_definition_complaint (body);
20125 }
20126
20127 /* Skip some bytes from BYTES according to the form given in FORM.
20128 Returns the new pointer. */
20129
20130 static const gdb_byte *
20131 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20132 enum dwarf_form form,
20133 unsigned int offset_size,
20134 struct dwarf2_section_info *section)
20135 {
20136 unsigned int bytes_read;
20137
20138 switch (form)
20139 {
20140 case DW_FORM_data1:
20141 case DW_FORM_flag:
20142 ++bytes;
20143 break;
20144
20145 case DW_FORM_data2:
20146 bytes += 2;
20147 break;
20148
20149 case DW_FORM_data4:
20150 bytes += 4;
20151 break;
20152
20153 case DW_FORM_data8:
20154 bytes += 8;
20155 break;
20156
20157 case DW_FORM_string:
20158 read_direct_string (abfd, bytes, &bytes_read);
20159 bytes += bytes_read;
20160 break;
20161
20162 case DW_FORM_sec_offset:
20163 case DW_FORM_strp:
20164 case DW_FORM_GNU_strp_alt:
20165 bytes += offset_size;
20166 break;
20167
20168 case DW_FORM_block:
20169 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20170 bytes += bytes_read;
20171 break;
20172
20173 case DW_FORM_block1:
20174 bytes += 1 + read_1_byte (abfd, bytes);
20175 break;
20176 case DW_FORM_block2:
20177 bytes += 2 + read_2_bytes (abfd, bytes);
20178 break;
20179 case DW_FORM_block4:
20180 bytes += 4 + read_4_bytes (abfd, bytes);
20181 break;
20182
20183 case DW_FORM_sdata:
20184 case DW_FORM_udata:
20185 case DW_FORM_GNU_addr_index:
20186 case DW_FORM_GNU_str_index:
20187 bytes = gdb_skip_leb128 (bytes, buffer_end);
20188 if (bytes == NULL)
20189 {
20190 dwarf2_section_buffer_overflow_complaint (section);
20191 return NULL;
20192 }
20193 break;
20194
20195 default:
20196 {
20197 complain:
20198 complaint (&symfile_complaints,
20199 _("invalid form 0x%x in `%s'"),
20200 form, get_section_name (section));
20201 return NULL;
20202 }
20203 }
20204
20205 return bytes;
20206 }
20207
20208 /* A helper for dwarf_decode_macros that handles skipping an unknown
20209 opcode. Returns an updated pointer to the macro data buffer; or,
20210 on error, issues a complaint and returns NULL. */
20211
20212 static const gdb_byte *
20213 skip_unknown_opcode (unsigned int opcode,
20214 const gdb_byte **opcode_definitions,
20215 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20216 bfd *abfd,
20217 unsigned int offset_size,
20218 struct dwarf2_section_info *section)
20219 {
20220 unsigned int bytes_read, i;
20221 unsigned long arg;
20222 const gdb_byte *defn;
20223
20224 if (opcode_definitions[opcode] == NULL)
20225 {
20226 complaint (&symfile_complaints,
20227 _("unrecognized DW_MACFINO opcode 0x%x"),
20228 opcode);
20229 return NULL;
20230 }
20231
20232 defn = opcode_definitions[opcode];
20233 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20234 defn += bytes_read;
20235
20236 for (i = 0; i < arg; ++i)
20237 {
20238 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20239 section);
20240 if (mac_ptr == NULL)
20241 {
20242 /* skip_form_bytes already issued the complaint. */
20243 return NULL;
20244 }
20245 }
20246
20247 return mac_ptr;
20248 }
20249
20250 /* A helper function which parses the header of a macro section.
20251 If the macro section is the extended (for now called "GNU") type,
20252 then this updates *OFFSET_SIZE. Returns a pointer to just after
20253 the header, or issues a complaint and returns NULL on error. */
20254
20255 static const gdb_byte *
20256 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20257 bfd *abfd,
20258 const gdb_byte *mac_ptr,
20259 unsigned int *offset_size,
20260 int section_is_gnu)
20261 {
20262 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20263
20264 if (section_is_gnu)
20265 {
20266 unsigned int version, flags;
20267
20268 version = read_2_bytes (abfd, mac_ptr);
20269 if (version != 4)
20270 {
20271 complaint (&symfile_complaints,
20272 _("unrecognized version `%d' in .debug_macro section"),
20273 version);
20274 return NULL;
20275 }
20276 mac_ptr += 2;
20277
20278 flags = read_1_byte (abfd, mac_ptr);
20279 ++mac_ptr;
20280 *offset_size = (flags & 1) ? 8 : 4;
20281
20282 if ((flags & 2) != 0)
20283 /* We don't need the line table offset. */
20284 mac_ptr += *offset_size;
20285
20286 /* Vendor opcode descriptions. */
20287 if ((flags & 4) != 0)
20288 {
20289 unsigned int i, count;
20290
20291 count = read_1_byte (abfd, mac_ptr);
20292 ++mac_ptr;
20293 for (i = 0; i < count; ++i)
20294 {
20295 unsigned int opcode, bytes_read;
20296 unsigned long arg;
20297
20298 opcode = read_1_byte (abfd, mac_ptr);
20299 ++mac_ptr;
20300 opcode_definitions[opcode] = mac_ptr;
20301 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20302 mac_ptr += bytes_read;
20303 mac_ptr += arg;
20304 }
20305 }
20306 }
20307
20308 return mac_ptr;
20309 }
20310
20311 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20312 including DW_MACRO_GNU_transparent_include. */
20313
20314 static void
20315 dwarf_decode_macro_bytes (bfd *abfd,
20316 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20317 struct macro_source_file *current_file,
20318 struct line_header *lh, const char *comp_dir,
20319 struct dwarf2_section_info *section,
20320 int section_is_gnu, int section_is_dwz,
20321 unsigned int offset_size,
20322 struct objfile *objfile,
20323 htab_t include_hash)
20324 {
20325 enum dwarf_macro_record_type macinfo_type;
20326 int at_commandline;
20327 const gdb_byte *opcode_definitions[256];
20328
20329 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20330 &offset_size, section_is_gnu);
20331 if (mac_ptr == NULL)
20332 {
20333 /* We already issued a complaint. */
20334 return;
20335 }
20336
20337 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20338 GDB is still reading the definitions from command line. First
20339 DW_MACINFO_start_file will need to be ignored as it was already executed
20340 to create CURRENT_FILE for the main source holding also the command line
20341 definitions. On first met DW_MACINFO_start_file this flag is reset to
20342 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20343
20344 at_commandline = 1;
20345
20346 do
20347 {
20348 /* Do we at least have room for a macinfo type byte? */
20349 if (mac_ptr >= mac_end)
20350 {
20351 dwarf2_section_buffer_overflow_complaint (section);
20352 break;
20353 }
20354
20355 macinfo_type = read_1_byte (abfd, mac_ptr);
20356 mac_ptr++;
20357
20358 /* Note that we rely on the fact that the corresponding GNU and
20359 DWARF constants are the same. */
20360 switch (macinfo_type)
20361 {
20362 /* A zero macinfo type indicates the end of the macro
20363 information. */
20364 case 0:
20365 break;
20366
20367 case DW_MACRO_GNU_define:
20368 case DW_MACRO_GNU_undef:
20369 case DW_MACRO_GNU_define_indirect:
20370 case DW_MACRO_GNU_undef_indirect:
20371 case DW_MACRO_GNU_define_indirect_alt:
20372 case DW_MACRO_GNU_undef_indirect_alt:
20373 {
20374 unsigned int bytes_read;
20375 int line;
20376 const char *body;
20377 int is_define;
20378
20379 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20380 mac_ptr += bytes_read;
20381
20382 if (macinfo_type == DW_MACRO_GNU_define
20383 || macinfo_type == DW_MACRO_GNU_undef)
20384 {
20385 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20386 mac_ptr += bytes_read;
20387 }
20388 else
20389 {
20390 LONGEST str_offset;
20391
20392 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20393 mac_ptr += offset_size;
20394
20395 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20396 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20397 || section_is_dwz)
20398 {
20399 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20400
20401 body = read_indirect_string_from_dwz (dwz, str_offset);
20402 }
20403 else
20404 body = read_indirect_string_at_offset (abfd, str_offset);
20405 }
20406
20407 is_define = (macinfo_type == DW_MACRO_GNU_define
20408 || macinfo_type == DW_MACRO_GNU_define_indirect
20409 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20410 if (! current_file)
20411 {
20412 /* DWARF violation as no main source is present. */
20413 complaint (&symfile_complaints,
20414 _("debug info with no main source gives macro %s "
20415 "on line %d: %s"),
20416 is_define ? _("definition") : _("undefinition"),
20417 line, body);
20418 break;
20419 }
20420 if ((line == 0 && !at_commandline)
20421 || (line != 0 && at_commandline))
20422 complaint (&symfile_complaints,
20423 _("debug info gives %s macro %s with %s line %d: %s"),
20424 at_commandline ? _("command-line") : _("in-file"),
20425 is_define ? _("definition") : _("undefinition"),
20426 line == 0 ? _("zero") : _("non-zero"), line, body);
20427
20428 if (is_define)
20429 parse_macro_definition (current_file, line, body);
20430 else
20431 {
20432 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20433 || macinfo_type == DW_MACRO_GNU_undef_indirect
20434 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20435 macro_undef (current_file, line, body);
20436 }
20437 }
20438 break;
20439
20440 case DW_MACRO_GNU_start_file:
20441 {
20442 unsigned int bytes_read;
20443 int line, file;
20444
20445 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20446 mac_ptr += bytes_read;
20447 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20448 mac_ptr += bytes_read;
20449
20450 if ((line == 0 && !at_commandline)
20451 || (line != 0 && at_commandline))
20452 complaint (&symfile_complaints,
20453 _("debug info gives source %d included "
20454 "from %s at %s line %d"),
20455 file, at_commandline ? _("command-line") : _("file"),
20456 line == 0 ? _("zero") : _("non-zero"), line);
20457
20458 if (at_commandline)
20459 {
20460 /* This DW_MACRO_GNU_start_file was executed in the
20461 pass one. */
20462 at_commandline = 0;
20463 }
20464 else
20465 current_file = macro_start_file (file, line,
20466 current_file, comp_dir,
20467 lh, objfile);
20468 }
20469 break;
20470
20471 case DW_MACRO_GNU_end_file:
20472 if (! current_file)
20473 complaint (&symfile_complaints,
20474 _("macro debug info has an unmatched "
20475 "`close_file' directive"));
20476 else
20477 {
20478 current_file = current_file->included_by;
20479 if (! current_file)
20480 {
20481 enum dwarf_macro_record_type next_type;
20482
20483 /* GCC circa March 2002 doesn't produce the zero
20484 type byte marking the end of the compilation
20485 unit. Complain if it's not there, but exit no
20486 matter what. */
20487
20488 /* Do we at least have room for a macinfo type byte? */
20489 if (mac_ptr >= mac_end)
20490 {
20491 dwarf2_section_buffer_overflow_complaint (section);
20492 return;
20493 }
20494
20495 /* We don't increment mac_ptr here, so this is just
20496 a look-ahead. */
20497 next_type = read_1_byte (abfd, mac_ptr);
20498 if (next_type != 0)
20499 complaint (&symfile_complaints,
20500 _("no terminating 0-type entry for "
20501 "macros in `.debug_macinfo' section"));
20502
20503 return;
20504 }
20505 }
20506 break;
20507
20508 case DW_MACRO_GNU_transparent_include:
20509 case DW_MACRO_GNU_transparent_include_alt:
20510 {
20511 LONGEST offset;
20512 void **slot;
20513 bfd *include_bfd = abfd;
20514 struct dwarf2_section_info *include_section = section;
20515 struct dwarf2_section_info alt_section;
20516 const gdb_byte *include_mac_end = mac_end;
20517 int is_dwz = section_is_dwz;
20518 const gdb_byte *new_mac_ptr;
20519
20520 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20521 mac_ptr += offset_size;
20522
20523 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20524 {
20525 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20526
20527 dwarf2_read_section (dwarf2_per_objfile->objfile,
20528 &dwz->macro);
20529
20530 include_section = &dwz->macro;
20531 include_bfd = get_section_bfd_owner (include_section);
20532 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20533 is_dwz = 1;
20534 }
20535
20536 new_mac_ptr = include_section->buffer + offset;
20537 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20538
20539 if (*slot != NULL)
20540 {
20541 /* This has actually happened; see
20542 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20543 complaint (&symfile_complaints,
20544 _("recursive DW_MACRO_GNU_transparent_include in "
20545 ".debug_macro section"));
20546 }
20547 else
20548 {
20549 *slot = (void *) new_mac_ptr;
20550
20551 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20552 include_mac_end, current_file,
20553 lh, comp_dir,
20554 section, section_is_gnu, is_dwz,
20555 offset_size, objfile, include_hash);
20556
20557 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20558 }
20559 }
20560 break;
20561
20562 case DW_MACINFO_vendor_ext:
20563 if (!section_is_gnu)
20564 {
20565 unsigned int bytes_read;
20566 int constant;
20567
20568 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20569 mac_ptr += bytes_read;
20570 read_direct_string (abfd, mac_ptr, &bytes_read);
20571 mac_ptr += bytes_read;
20572
20573 /* We don't recognize any vendor extensions. */
20574 break;
20575 }
20576 /* FALLTHROUGH */
20577
20578 default:
20579 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20580 mac_ptr, mac_end, abfd, offset_size,
20581 section);
20582 if (mac_ptr == NULL)
20583 return;
20584 break;
20585 }
20586 } while (macinfo_type != 0);
20587 }
20588
20589 static void
20590 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20591 const char *comp_dir, int section_is_gnu)
20592 {
20593 struct objfile *objfile = dwarf2_per_objfile->objfile;
20594 struct line_header *lh = cu->line_header;
20595 bfd *abfd;
20596 const gdb_byte *mac_ptr, *mac_end;
20597 struct macro_source_file *current_file = 0;
20598 enum dwarf_macro_record_type macinfo_type;
20599 unsigned int offset_size = cu->header.offset_size;
20600 const gdb_byte *opcode_definitions[256];
20601 struct cleanup *cleanup;
20602 htab_t include_hash;
20603 void **slot;
20604 struct dwarf2_section_info *section;
20605 const char *section_name;
20606
20607 if (cu->dwo_unit != NULL)
20608 {
20609 if (section_is_gnu)
20610 {
20611 section = &cu->dwo_unit->dwo_file->sections.macro;
20612 section_name = ".debug_macro.dwo";
20613 }
20614 else
20615 {
20616 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20617 section_name = ".debug_macinfo.dwo";
20618 }
20619 }
20620 else
20621 {
20622 if (section_is_gnu)
20623 {
20624 section = &dwarf2_per_objfile->macro;
20625 section_name = ".debug_macro";
20626 }
20627 else
20628 {
20629 section = &dwarf2_per_objfile->macinfo;
20630 section_name = ".debug_macinfo";
20631 }
20632 }
20633
20634 dwarf2_read_section (objfile, section);
20635 if (section->buffer == NULL)
20636 {
20637 complaint (&symfile_complaints, _("missing %s section"), section_name);
20638 return;
20639 }
20640 abfd = get_section_bfd_owner (section);
20641
20642 /* First pass: Find the name of the base filename.
20643 This filename is needed in order to process all macros whose definition
20644 (or undefinition) comes from the command line. These macros are defined
20645 before the first DW_MACINFO_start_file entry, and yet still need to be
20646 associated to the base file.
20647
20648 To determine the base file name, we scan the macro definitions until we
20649 reach the first DW_MACINFO_start_file entry. We then initialize
20650 CURRENT_FILE accordingly so that any macro definition found before the
20651 first DW_MACINFO_start_file can still be associated to the base file. */
20652
20653 mac_ptr = section->buffer + offset;
20654 mac_end = section->buffer + section->size;
20655
20656 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20657 &offset_size, section_is_gnu);
20658 if (mac_ptr == NULL)
20659 {
20660 /* We already issued a complaint. */
20661 return;
20662 }
20663
20664 do
20665 {
20666 /* Do we at least have room for a macinfo type byte? */
20667 if (mac_ptr >= mac_end)
20668 {
20669 /* Complaint is printed during the second pass as GDB will probably
20670 stop the first pass earlier upon finding
20671 DW_MACINFO_start_file. */
20672 break;
20673 }
20674
20675 macinfo_type = read_1_byte (abfd, mac_ptr);
20676 mac_ptr++;
20677
20678 /* Note that we rely on the fact that the corresponding GNU and
20679 DWARF constants are the same. */
20680 switch (macinfo_type)
20681 {
20682 /* A zero macinfo type indicates the end of the macro
20683 information. */
20684 case 0:
20685 break;
20686
20687 case DW_MACRO_GNU_define:
20688 case DW_MACRO_GNU_undef:
20689 /* Only skip the data by MAC_PTR. */
20690 {
20691 unsigned int bytes_read;
20692
20693 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20694 mac_ptr += bytes_read;
20695 read_direct_string (abfd, mac_ptr, &bytes_read);
20696 mac_ptr += bytes_read;
20697 }
20698 break;
20699
20700 case DW_MACRO_GNU_start_file:
20701 {
20702 unsigned int bytes_read;
20703 int line, file;
20704
20705 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20706 mac_ptr += bytes_read;
20707 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20708 mac_ptr += bytes_read;
20709
20710 current_file = macro_start_file (file, line, current_file,
20711 comp_dir, lh, objfile);
20712 }
20713 break;
20714
20715 case DW_MACRO_GNU_end_file:
20716 /* No data to skip by MAC_PTR. */
20717 break;
20718
20719 case DW_MACRO_GNU_define_indirect:
20720 case DW_MACRO_GNU_undef_indirect:
20721 case DW_MACRO_GNU_define_indirect_alt:
20722 case DW_MACRO_GNU_undef_indirect_alt:
20723 {
20724 unsigned int bytes_read;
20725
20726 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20727 mac_ptr += bytes_read;
20728 mac_ptr += offset_size;
20729 }
20730 break;
20731
20732 case DW_MACRO_GNU_transparent_include:
20733 case DW_MACRO_GNU_transparent_include_alt:
20734 /* Note that, according to the spec, a transparent include
20735 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20736 skip this opcode. */
20737 mac_ptr += offset_size;
20738 break;
20739
20740 case DW_MACINFO_vendor_ext:
20741 /* Only skip the data by MAC_PTR. */
20742 if (!section_is_gnu)
20743 {
20744 unsigned int bytes_read;
20745
20746 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20747 mac_ptr += bytes_read;
20748 read_direct_string (abfd, mac_ptr, &bytes_read);
20749 mac_ptr += bytes_read;
20750 }
20751 /* FALLTHROUGH */
20752
20753 default:
20754 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20755 mac_ptr, mac_end, abfd, offset_size,
20756 section);
20757 if (mac_ptr == NULL)
20758 return;
20759 break;
20760 }
20761 } while (macinfo_type != 0 && current_file == NULL);
20762
20763 /* Second pass: Process all entries.
20764
20765 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20766 command-line macro definitions/undefinitions. This flag is unset when we
20767 reach the first DW_MACINFO_start_file entry. */
20768
20769 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20770 NULL, xcalloc, xfree);
20771 cleanup = make_cleanup_htab_delete (include_hash);
20772 mac_ptr = section->buffer + offset;
20773 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
20774 *slot = (void *) mac_ptr;
20775 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
20776 current_file, lh, comp_dir, section,
20777 section_is_gnu, 0,
20778 offset_size, objfile, include_hash);
20779 do_cleanups (cleanup);
20780 }
20781
20782 /* Check if the attribute's form is a DW_FORM_block*
20783 if so return true else false. */
20784
20785 static int
20786 attr_form_is_block (const struct attribute *attr)
20787 {
20788 return (attr == NULL ? 0 :
20789 attr->form == DW_FORM_block1
20790 || attr->form == DW_FORM_block2
20791 || attr->form == DW_FORM_block4
20792 || attr->form == DW_FORM_block
20793 || attr->form == DW_FORM_exprloc);
20794 }
20795
20796 /* Return non-zero if ATTR's value is a section offset --- classes
20797 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20798 You may use DW_UNSND (attr) to retrieve such offsets.
20799
20800 Section 7.5.4, "Attribute Encodings", explains that no attribute
20801 may have a value that belongs to more than one of these classes; it
20802 would be ambiguous if we did, because we use the same forms for all
20803 of them. */
20804
20805 static int
20806 attr_form_is_section_offset (const struct attribute *attr)
20807 {
20808 return (attr->form == DW_FORM_data4
20809 || attr->form == DW_FORM_data8
20810 || attr->form == DW_FORM_sec_offset);
20811 }
20812
20813 /* Return non-zero if ATTR's value falls in the 'constant' class, or
20814 zero otherwise. When this function returns true, you can apply
20815 dwarf2_get_attr_constant_value to it.
20816
20817 However, note that for some attributes you must check
20818 attr_form_is_section_offset before using this test. DW_FORM_data4
20819 and DW_FORM_data8 are members of both the constant class, and of
20820 the classes that contain offsets into other debug sections
20821 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20822 that, if an attribute's can be either a constant or one of the
20823 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20824 taken as section offsets, not constants. */
20825
20826 static int
20827 attr_form_is_constant (const struct attribute *attr)
20828 {
20829 switch (attr->form)
20830 {
20831 case DW_FORM_sdata:
20832 case DW_FORM_udata:
20833 case DW_FORM_data1:
20834 case DW_FORM_data2:
20835 case DW_FORM_data4:
20836 case DW_FORM_data8:
20837 return 1;
20838 default:
20839 return 0;
20840 }
20841 }
20842
20843
20844 /* DW_ADDR is always stored already as sect_offset; despite for the forms
20845 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20846
20847 static int
20848 attr_form_is_ref (const struct attribute *attr)
20849 {
20850 switch (attr->form)
20851 {
20852 case DW_FORM_ref_addr:
20853 case DW_FORM_ref1:
20854 case DW_FORM_ref2:
20855 case DW_FORM_ref4:
20856 case DW_FORM_ref8:
20857 case DW_FORM_ref_udata:
20858 case DW_FORM_GNU_ref_alt:
20859 return 1;
20860 default:
20861 return 0;
20862 }
20863 }
20864
20865 /* Return the .debug_loc section to use for CU.
20866 For DWO files use .debug_loc.dwo. */
20867
20868 static struct dwarf2_section_info *
20869 cu_debug_loc_section (struct dwarf2_cu *cu)
20870 {
20871 if (cu->dwo_unit)
20872 return &cu->dwo_unit->dwo_file->sections.loc;
20873 return &dwarf2_per_objfile->loc;
20874 }
20875
20876 /* A helper function that fills in a dwarf2_loclist_baton. */
20877
20878 static void
20879 fill_in_loclist_baton (struct dwarf2_cu *cu,
20880 struct dwarf2_loclist_baton *baton,
20881 const struct attribute *attr)
20882 {
20883 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20884
20885 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20886
20887 baton->per_cu = cu->per_cu;
20888 gdb_assert (baton->per_cu);
20889 /* We don't know how long the location list is, but make sure we
20890 don't run off the edge of the section. */
20891 baton->size = section->size - DW_UNSND (attr);
20892 baton->data = section->buffer + DW_UNSND (attr);
20893 baton->base_address = cu->base_address;
20894 baton->from_dwo = cu->dwo_unit != NULL;
20895 }
20896
20897 static void
20898 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
20899 struct dwarf2_cu *cu, int is_block)
20900 {
20901 struct objfile *objfile = dwarf2_per_objfile->objfile;
20902 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20903
20904 if (attr_form_is_section_offset (attr)
20905 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
20906 the section. If so, fall through to the complaint in the
20907 other branch. */
20908 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
20909 {
20910 struct dwarf2_loclist_baton *baton;
20911
20912 baton = obstack_alloc (&objfile->objfile_obstack,
20913 sizeof (struct dwarf2_loclist_baton));
20914
20915 fill_in_loclist_baton (cu, baton, attr);
20916
20917 if (cu->base_known == 0)
20918 complaint (&symfile_complaints,
20919 _("Location list used without "
20920 "specifying the CU base address."));
20921
20922 SYMBOL_ACLASS_INDEX (sym) = (is_block
20923 ? dwarf2_loclist_block_index
20924 : dwarf2_loclist_index);
20925 SYMBOL_LOCATION_BATON (sym) = baton;
20926 }
20927 else
20928 {
20929 struct dwarf2_locexpr_baton *baton;
20930
20931 baton = obstack_alloc (&objfile->objfile_obstack,
20932 sizeof (struct dwarf2_locexpr_baton));
20933 baton->per_cu = cu->per_cu;
20934 gdb_assert (baton->per_cu);
20935
20936 if (attr_form_is_block (attr))
20937 {
20938 /* Note that we're just copying the block's data pointer
20939 here, not the actual data. We're still pointing into the
20940 info_buffer for SYM's objfile; right now we never release
20941 that buffer, but when we do clean up properly this may
20942 need to change. */
20943 baton->size = DW_BLOCK (attr)->size;
20944 baton->data = DW_BLOCK (attr)->data;
20945 }
20946 else
20947 {
20948 dwarf2_invalid_attrib_class_complaint ("location description",
20949 SYMBOL_NATURAL_NAME (sym));
20950 baton->size = 0;
20951 }
20952
20953 SYMBOL_ACLASS_INDEX (sym) = (is_block
20954 ? dwarf2_locexpr_block_index
20955 : dwarf2_locexpr_index);
20956 SYMBOL_LOCATION_BATON (sym) = baton;
20957 }
20958 }
20959
20960 /* Return the OBJFILE associated with the compilation unit CU. If CU
20961 came from a separate debuginfo file, then the master objfile is
20962 returned. */
20963
20964 struct objfile *
20965 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
20966 {
20967 struct objfile *objfile = per_cu->objfile;
20968
20969 /* Return the master objfile, so that we can report and look up the
20970 correct file containing this variable. */
20971 if (objfile->separate_debug_objfile_backlink)
20972 objfile = objfile->separate_debug_objfile_backlink;
20973
20974 return objfile;
20975 }
20976
20977 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
20978 (CU_HEADERP is unused in such case) or prepare a temporary copy at
20979 CU_HEADERP first. */
20980
20981 static const struct comp_unit_head *
20982 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
20983 struct dwarf2_per_cu_data *per_cu)
20984 {
20985 const gdb_byte *info_ptr;
20986
20987 if (per_cu->cu)
20988 return &per_cu->cu->header;
20989
20990 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
20991
20992 memset (cu_headerp, 0, sizeof (*cu_headerp));
20993 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
20994
20995 return cu_headerp;
20996 }
20997
20998 /* Return the address size given in the compilation unit header for CU. */
20999
21000 int
21001 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21002 {
21003 struct comp_unit_head cu_header_local;
21004 const struct comp_unit_head *cu_headerp;
21005
21006 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21007
21008 return cu_headerp->addr_size;
21009 }
21010
21011 /* Return the offset size given in the compilation unit header for CU. */
21012
21013 int
21014 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21015 {
21016 struct comp_unit_head cu_header_local;
21017 const struct comp_unit_head *cu_headerp;
21018
21019 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21020
21021 return cu_headerp->offset_size;
21022 }
21023
21024 /* See its dwarf2loc.h declaration. */
21025
21026 int
21027 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21028 {
21029 struct comp_unit_head cu_header_local;
21030 const struct comp_unit_head *cu_headerp;
21031
21032 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21033
21034 if (cu_headerp->version == 2)
21035 return cu_headerp->addr_size;
21036 else
21037 return cu_headerp->offset_size;
21038 }
21039
21040 /* Return the text offset of the CU. The returned offset comes from
21041 this CU's objfile. If this objfile came from a separate debuginfo
21042 file, then the offset may be different from the corresponding
21043 offset in the parent objfile. */
21044
21045 CORE_ADDR
21046 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21047 {
21048 struct objfile *objfile = per_cu->objfile;
21049
21050 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21051 }
21052
21053 /* Locate the .debug_info compilation unit from CU's objfile which contains
21054 the DIE at OFFSET. Raises an error on failure. */
21055
21056 static struct dwarf2_per_cu_data *
21057 dwarf2_find_containing_comp_unit (sect_offset offset,
21058 unsigned int offset_in_dwz,
21059 struct objfile *objfile)
21060 {
21061 struct dwarf2_per_cu_data *this_cu;
21062 int low, high;
21063 const sect_offset *cu_off;
21064
21065 low = 0;
21066 high = dwarf2_per_objfile->n_comp_units - 1;
21067 while (high > low)
21068 {
21069 struct dwarf2_per_cu_data *mid_cu;
21070 int mid = low + (high - low) / 2;
21071
21072 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21073 cu_off = &mid_cu->offset;
21074 if (mid_cu->is_dwz > offset_in_dwz
21075 || (mid_cu->is_dwz == offset_in_dwz
21076 && cu_off->sect_off >= offset.sect_off))
21077 high = mid;
21078 else
21079 low = mid + 1;
21080 }
21081 gdb_assert (low == high);
21082 this_cu = dwarf2_per_objfile->all_comp_units[low];
21083 cu_off = &this_cu->offset;
21084 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21085 {
21086 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21087 error (_("Dwarf Error: could not find partial DIE containing "
21088 "offset 0x%lx [in module %s]"),
21089 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21090
21091 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21092 <= offset.sect_off);
21093 return dwarf2_per_objfile->all_comp_units[low-1];
21094 }
21095 else
21096 {
21097 this_cu = dwarf2_per_objfile->all_comp_units[low];
21098 if (low == dwarf2_per_objfile->n_comp_units - 1
21099 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21100 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21101 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21102 return this_cu;
21103 }
21104 }
21105
21106 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21107
21108 static void
21109 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21110 {
21111 memset (cu, 0, sizeof (*cu));
21112 per_cu->cu = cu;
21113 cu->per_cu = per_cu;
21114 cu->objfile = per_cu->objfile;
21115 obstack_init (&cu->comp_unit_obstack);
21116 }
21117
21118 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21119
21120 static void
21121 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21122 enum language pretend_language)
21123 {
21124 struct attribute *attr;
21125
21126 /* Set the language we're debugging. */
21127 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21128 if (attr)
21129 set_cu_language (DW_UNSND (attr), cu);
21130 else
21131 {
21132 cu->language = pretend_language;
21133 cu->language_defn = language_def (cu->language);
21134 }
21135
21136 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21137 if (attr)
21138 cu->producer = DW_STRING (attr);
21139 }
21140
21141 /* Release one cached compilation unit, CU. We unlink it from the tree
21142 of compilation units, but we don't remove it from the read_in_chain;
21143 the caller is responsible for that.
21144 NOTE: DATA is a void * because this function is also used as a
21145 cleanup routine. */
21146
21147 static void
21148 free_heap_comp_unit (void *data)
21149 {
21150 struct dwarf2_cu *cu = data;
21151
21152 gdb_assert (cu->per_cu != NULL);
21153 cu->per_cu->cu = NULL;
21154 cu->per_cu = NULL;
21155
21156 obstack_free (&cu->comp_unit_obstack, NULL);
21157
21158 xfree (cu);
21159 }
21160
21161 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21162 when we're finished with it. We can't free the pointer itself, but be
21163 sure to unlink it from the cache. Also release any associated storage. */
21164
21165 static void
21166 free_stack_comp_unit (void *data)
21167 {
21168 struct dwarf2_cu *cu = data;
21169
21170 gdb_assert (cu->per_cu != NULL);
21171 cu->per_cu->cu = NULL;
21172 cu->per_cu = NULL;
21173
21174 obstack_free (&cu->comp_unit_obstack, NULL);
21175 cu->partial_dies = NULL;
21176 }
21177
21178 /* Free all cached compilation units. */
21179
21180 static void
21181 free_cached_comp_units (void *data)
21182 {
21183 struct dwarf2_per_cu_data *per_cu, **last_chain;
21184
21185 per_cu = dwarf2_per_objfile->read_in_chain;
21186 last_chain = &dwarf2_per_objfile->read_in_chain;
21187 while (per_cu != NULL)
21188 {
21189 struct dwarf2_per_cu_data *next_cu;
21190
21191 next_cu = per_cu->cu->read_in_chain;
21192
21193 free_heap_comp_unit (per_cu->cu);
21194 *last_chain = next_cu;
21195
21196 per_cu = next_cu;
21197 }
21198 }
21199
21200 /* Increase the age counter on each cached compilation unit, and free
21201 any that are too old. */
21202
21203 static void
21204 age_cached_comp_units (void)
21205 {
21206 struct dwarf2_per_cu_data *per_cu, **last_chain;
21207
21208 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21209 per_cu = dwarf2_per_objfile->read_in_chain;
21210 while (per_cu != NULL)
21211 {
21212 per_cu->cu->last_used ++;
21213 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21214 dwarf2_mark (per_cu->cu);
21215 per_cu = per_cu->cu->read_in_chain;
21216 }
21217
21218 per_cu = dwarf2_per_objfile->read_in_chain;
21219 last_chain = &dwarf2_per_objfile->read_in_chain;
21220 while (per_cu != NULL)
21221 {
21222 struct dwarf2_per_cu_data *next_cu;
21223
21224 next_cu = per_cu->cu->read_in_chain;
21225
21226 if (!per_cu->cu->mark)
21227 {
21228 free_heap_comp_unit (per_cu->cu);
21229 *last_chain = next_cu;
21230 }
21231 else
21232 last_chain = &per_cu->cu->read_in_chain;
21233
21234 per_cu = next_cu;
21235 }
21236 }
21237
21238 /* Remove a single compilation unit from the cache. */
21239
21240 static void
21241 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21242 {
21243 struct dwarf2_per_cu_data *per_cu, **last_chain;
21244
21245 per_cu = dwarf2_per_objfile->read_in_chain;
21246 last_chain = &dwarf2_per_objfile->read_in_chain;
21247 while (per_cu != NULL)
21248 {
21249 struct dwarf2_per_cu_data *next_cu;
21250
21251 next_cu = per_cu->cu->read_in_chain;
21252
21253 if (per_cu == target_per_cu)
21254 {
21255 free_heap_comp_unit (per_cu->cu);
21256 per_cu->cu = NULL;
21257 *last_chain = next_cu;
21258 break;
21259 }
21260 else
21261 last_chain = &per_cu->cu->read_in_chain;
21262
21263 per_cu = next_cu;
21264 }
21265 }
21266
21267 /* Release all extra memory associated with OBJFILE. */
21268
21269 void
21270 dwarf2_free_objfile (struct objfile *objfile)
21271 {
21272 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21273
21274 if (dwarf2_per_objfile == NULL)
21275 return;
21276
21277 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21278 free_cached_comp_units (NULL);
21279
21280 if (dwarf2_per_objfile->quick_file_names_table)
21281 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21282
21283 /* Everything else should be on the objfile obstack. */
21284 }
21285
21286 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21287 We store these in a hash table separate from the DIEs, and preserve them
21288 when the DIEs are flushed out of cache.
21289
21290 The CU "per_cu" pointer is needed because offset alone is not enough to
21291 uniquely identify the type. A file may have multiple .debug_types sections,
21292 or the type may come from a DWO file. Furthermore, while it's more logical
21293 to use per_cu->section+offset, with Fission the section with the data is in
21294 the DWO file but we don't know that section at the point we need it.
21295 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21296 because we can enter the lookup routine, get_die_type_at_offset, from
21297 outside this file, and thus won't necessarily have PER_CU->cu.
21298 Fortunately, PER_CU is stable for the life of the objfile. */
21299
21300 struct dwarf2_per_cu_offset_and_type
21301 {
21302 const struct dwarf2_per_cu_data *per_cu;
21303 sect_offset offset;
21304 struct type *type;
21305 };
21306
21307 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21308
21309 static hashval_t
21310 per_cu_offset_and_type_hash (const void *item)
21311 {
21312 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21313
21314 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21315 }
21316
21317 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21318
21319 static int
21320 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21321 {
21322 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21323 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21324
21325 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21326 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21327 }
21328
21329 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21330 table if necessary. For convenience, return TYPE.
21331
21332 The DIEs reading must have careful ordering to:
21333 * Not cause infite loops trying to read in DIEs as a prerequisite for
21334 reading current DIE.
21335 * Not trying to dereference contents of still incompletely read in types
21336 while reading in other DIEs.
21337 * Enable referencing still incompletely read in types just by a pointer to
21338 the type without accessing its fields.
21339
21340 Therefore caller should follow these rules:
21341 * Try to fetch any prerequisite types we may need to build this DIE type
21342 before building the type and calling set_die_type.
21343 * After building type call set_die_type for current DIE as soon as
21344 possible before fetching more types to complete the current type.
21345 * Make the type as complete as possible before fetching more types. */
21346
21347 static struct type *
21348 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21349 {
21350 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21351 struct objfile *objfile = cu->objfile;
21352
21353 /* For Ada types, make sure that the gnat-specific data is always
21354 initialized (if not already set). There are a few types where
21355 we should not be doing so, because the type-specific area is
21356 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21357 where the type-specific area is used to store the floatformat).
21358 But this is not a problem, because the gnat-specific information
21359 is actually not needed for these types. */
21360 if (need_gnat_info (cu)
21361 && TYPE_CODE (type) != TYPE_CODE_FUNC
21362 && TYPE_CODE (type) != TYPE_CODE_FLT
21363 && !HAVE_GNAT_AUX_INFO (type))
21364 INIT_GNAT_SPECIFIC (type);
21365
21366 if (dwarf2_per_objfile->die_type_hash == NULL)
21367 {
21368 dwarf2_per_objfile->die_type_hash =
21369 htab_create_alloc_ex (127,
21370 per_cu_offset_and_type_hash,
21371 per_cu_offset_and_type_eq,
21372 NULL,
21373 &objfile->objfile_obstack,
21374 hashtab_obstack_allocate,
21375 dummy_obstack_deallocate);
21376 }
21377
21378 ofs.per_cu = cu->per_cu;
21379 ofs.offset = die->offset;
21380 ofs.type = type;
21381 slot = (struct dwarf2_per_cu_offset_and_type **)
21382 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21383 if (*slot)
21384 complaint (&symfile_complaints,
21385 _("A problem internal to GDB: DIE 0x%x has type already set"),
21386 die->offset.sect_off);
21387 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21388 **slot = ofs;
21389 return type;
21390 }
21391
21392 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21393 or return NULL if the die does not have a saved type. */
21394
21395 static struct type *
21396 get_die_type_at_offset (sect_offset offset,
21397 struct dwarf2_per_cu_data *per_cu)
21398 {
21399 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21400
21401 if (dwarf2_per_objfile->die_type_hash == NULL)
21402 return NULL;
21403
21404 ofs.per_cu = per_cu;
21405 ofs.offset = offset;
21406 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21407 if (slot)
21408 return slot->type;
21409 else
21410 return NULL;
21411 }
21412
21413 /* Look up the type for DIE in CU in die_type_hash,
21414 or return NULL if DIE does not have a saved type. */
21415
21416 static struct type *
21417 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21418 {
21419 return get_die_type_at_offset (die->offset, cu->per_cu);
21420 }
21421
21422 /* Add a dependence relationship from CU to REF_PER_CU. */
21423
21424 static void
21425 dwarf2_add_dependence (struct dwarf2_cu *cu,
21426 struct dwarf2_per_cu_data *ref_per_cu)
21427 {
21428 void **slot;
21429
21430 if (cu->dependencies == NULL)
21431 cu->dependencies
21432 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21433 NULL, &cu->comp_unit_obstack,
21434 hashtab_obstack_allocate,
21435 dummy_obstack_deallocate);
21436
21437 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21438 if (*slot == NULL)
21439 *slot = ref_per_cu;
21440 }
21441
21442 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21443 Set the mark field in every compilation unit in the
21444 cache that we must keep because we are keeping CU. */
21445
21446 static int
21447 dwarf2_mark_helper (void **slot, void *data)
21448 {
21449 struct dwarf2_per_cu_data *per_cu;
21450
21451 per_cu = (struct dwarf2_per_cu_data *) *slot;
21452
21453 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21454 reading of the chain. As such dependencies remain valid it is not much
21455 useful to track and undo them during QUIT cleanups. */
21456 if (per_cu->cu == NULL)
21457 return 1;
21458
21459 if (per_cu->cu->mark)
21460 return 1;
21461 per_cu->cu->mark = 1;
21462
21463 if (per_cu->cu->dependencies != NULL)
21464 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21465
21466 return 1;
21467 }
21468
21469 /* Set the mark field in CU and in every other compilation unit in the
21470 cache that we must keep because we are keeping CU. */
21471
21472 static void
21473 dwarf2_mark (struct dwarf2_cu *cu)
21474 {
21475 if (cu->mark)
21476 return;
21477 cu->mark = 1;
21478 if (cu->dependencies != NULL)
21479 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21480 }
21481
21482 static void
21483 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21484 {
21485 while (per_cu)
21486 {
21487 per_cu->cu->mark = 0;
21488 per_cu = per_cu->cu->read_in_chain;
21489 }
21490 }
21491
21492 /* Trivial hash function for partial_die_info: the hash value of a DIE
21493 is its offset in .debug_info for this objfile. */
21494
21495 static hashval_t
21496 partial_die_hash (const void *item)
21497 {
21498 const struct partial_die_info *part_die = item;
21499
21500 return part_die->offset.sect_off;
21501 }
21502
21503 /* Trivial comparison function for partial_die_info structures: two DIEs
21504 are equal if they have the same offset. */
21505
21506 static int
21507 partial_die_eq (const void *item_lhs, const void *item_rhs)
21508 {
21509 const struct partial_die_info *part_die_lhs = item_lhs;
21510 const struct partial_die_info *part_die_rhs = item_rhs;
21511
21512 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21513 }
21514
21515 static struct cmd_list_element *set_dwarf2_cmdlist;
21516 static struct cmd_list_element *show_dwarf2_cmdlist;
21517
21518 static void
21519 set_dwarf2_cmd (char *args, int from_tty)
21520 {
21521 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21522 }
21523
21524 static void
21525 show_dwarf2_cmd (char *args, int from_tty)
21526 {
21527 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21528 }
21529
21530 /* Free data associated with OBJFILE, if necessary. */
21531
21532 static void
21533 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21534 {
21535 struct dwarf2_per_objfile *data = d;
21536 int ix;
21537
21538 /* Make sure we don't accidentally use dwarf2_per_objfile while
21539 cleaning up. */
21540 dwarf2_per_objfile = NULL;
21541
21542 for (ix = 0; ix < data->n_comp_units; ++ix)
21543 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21544
21545 for (ix = 0; ix < data->n_type_units; ++ix)
21546 VEC_free (dwarf2_per_cu_ptr,
21547 data->all_type_units[ix]->per_cu.imported_symtabs);
21548 xfree (data->all_type_units);
21549
21550 VEC_free (dwarf2_section_info_def, data->types);
21551
21552 if (data->dwo_files)
21553 free_dwo_files (data->dwo_files, objfile);
21554 if (data->dwp_file)
21555 gdb_bfd_unref (data->dwp_file->dbfd);
21556
21557 if (data->dwz_file && data->dwz_file->dwz_bfd)
21558 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21559 }
21560
21561 \f
21562 /* The "save gdb-index" command. */
21563
21564 /* The contents of the hash table we create when building the string
21565 table. */
21566 struct strtab_entry
21567 {
21568 offset_type offset;
21569 const char *str;
21570 };
21571
21572 /* Hash function for a strtab_entry.
21573
21574 Function is used only during write_hash_table so no index format backward
21575 compatibility is needed. */
21576
21577 static hashval_t
21578 hash_strtab_entry (const void *e)
21579 {
21580 const struct strtab_entry *entry = e;
21581 return mapped_index_string_hash (INT_MAX, entry->str);
21582 }
21583
21584 /* Equality function for a strtab_entry. */
21585
21586 static int
21587 eq_strtab_entry (const void *a, const void *b)
21588 {
21589 const struct strtab_entry *ea = a;
21590 const struct strtab_entry *eb = b;
21591 return !strcmp (ea->str, eb->str);
21592 }
21593
21594 /* Create a strtab_entry hash table. */
21595
21596 static htab_t
21597 create_strtab (void)
21598 {
21599 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21600 xfree, xcalloc, xfree);
21601 }
21602
21603 /* Add a string to the constant pool. Return the string's offset in
21604 host order. */
21605
21606 static offset_type
21607 add_string (htab_t table, struct obstack *cpool, const char *str)
21608 {
21609 void **slot;
21610 struct strtab_entry entry;
21611 struct strtab_entry *result;
21612
21613 entry.str = str;
21614 slot = htab_find_slot (table, &entry, INSERT);
21615 if (*slot)
21616 result = *slot;
21617 else
21618 {
21619 result = XNEW (struct strtab_entry);
21620 result->offset = obstack_object_size (cpool);
21621 result->str = str;
21622 obstack_grow_str0 (cpool, str);
21623 *slot = result;
21624 }
21625 return result->offset;
21626 }
21627
21628 /* An entry in the symbol table. */
21629 struct symtab_index_entry
21630 {
21631 /* The name of the symbol. */
21632 const char *name;
21633 /* The offset of the name in the constant pool. */
21634 offset_type index_offset;
21635 /* A sorted vector of the indices of all the CUs that hold an object
21636 of this name. */
21637 VEC (offset_type) *cu_indices;
21638 };
21639
21640 /* The symbol table. This is a power-of-2-sized hash table. */
21641 struct mapped_symtab
21642 {
21643 offset_type n_elements;
21644 offset_type size;
21645 struct symtab_index_entry **data;
21646 };
21647
21648 /* Hash function for a symtab_index_entry. */
21649
21650 static hashval_t
21651 hash_symtab_entry (const void *e)
21652 {
21653 const struct symtab_index_entry *entry = e;
21654 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21655 sizeof (offset_type) * VEC_length (offset_type,
21656 entry->cu_indices),
21657 0);
21658 }
21659
21660 /* Equality function for a symtab_index_entry. */
21661
21662 static int
21663 eq_symtab_entry (const void *a, const void *b)
21664 {
21665 const struct symtab_index_entry *ea = a;
21666 const struct symtab_index_entry *eb = b;
21667 int len = VEC_length (offset_type, ea->cu_indices);
21668 if (len != VEC_length (offset_type, eb->cu_indices))
21669 return 0;
21670 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21671 VEC_address (offset_type, eb->cu_indices),
21672 sizeof (offset_type) * len);
21673 }
21674
21675 /* Destroy a symtab_index_entry. */
21676
21677 static void
21678 delete_symtab_entry (void *p)
21679 {
21680 struct symtab_index_entry *entry = p;
21681 VEC_free (offset_type, entry->cu_indices);
21682 xfree (entry);
21683 }
21684
21685 /* Create a hash table holding symtab_index_entry objects. */
21686
21687 static htab_t
21688 create_symbol_hash_table (void)
21689 {
21690 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21691 delete_symtab_entry, xcalloc, xfree);
21692 }
21693
21694 /* Create a new mapped symtab object. */
21695
21696 static struct mapped_symtab *
21697 create_mapped_symtab (void)
21698 {
21699 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21700 symtab->n_elements = 0;
21701 symtab->size = 1024;
21702 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21703 return symtab;
21704 }
21705
21706 /* Destroy a mapped_symtab. */
21707
21708 static void
21709 cleanup_mapped_symtab (void *p)
21710 {
21711 struct mapped_symtab *symtab = p;
21712 /* The contents of the array are freed when the other hash table is
21713 destroyed. */
21714 xfree (symtab->data);
21715 xfree (symtab);
21716 }
21717
21718 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
21719 the slot.
21720
21721 Function is used only during write_hash_table so no index format backward
21722 compatibility is needed. */
21723
21724 static struct symtab_index_entry **
21725 find_slot (struct mapped_symtab *symtab, const char *name)
21726 {
21727 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
21728
21729 index = hash & (symtab->size - 1);
21730 step = ((hash * 17) & (symtab->size - 1)) | 1;
21731
21732 for (;;)
21733 {
21734 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21735 return &symtab->data[index];
21736 index = (index + step) & (symtab->size - 1);
21737 }
21738 }
21739
21740 /* Expand SYMTAB's hash table. */
21741
21742 static void
21743 hash_expand (struct mapped_symtab *symtab)
21744 {
21745 offset_type old_size = symtab->size;
21746 offset_type i;
21747 struct symtab_index_entry **old_entries = symtab->data;
21748
21749 symtab->size *= 2;
21750 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21751
21752 for (i = 0; i < old_size; ++i)
21753 {
21754 if (old_entries[i])
21755 {
21756 struct symtab_index_entry **slot = find_slot (symtab,
21757 old_entries[i]->name);
21758 *slot = old_entries[i];
21759 }
21760 }
21761
21762 xfree (old_entries);
21763 }
21764
21765 /* Add an entry to SYMTAB. NAME is the name of the symbol.
21766 CU_INDEX is the index of the CU in which the symbol appears.
21767 IS_STATIC is one if the symbol is static, otherwise zero (global). */
21768
21769 static void
21770 add_index_entry (struct mapped_symtab *symtab, const char *name,
21771 int is_static, gdb_index_symbol_kind kind,
21772 offset_type cu_index)
21773 {
21774 struct symtab_index_entry **slot;
21775 offset_type cu_index_and_attrs;
21776
21777 ++symtab->n_elements;
21778 if (4 * symtab->n_elements / 3 >= symtab->size)
21779 hash_expand (symtab);
21780
21781 slot = find_slot (symtab, name);
21782 if (!*slot)
21783 {
21784 *slot = XNEW (struct symtab_index_entry);
21785 (*slot)->name = name;
21786 /* index_offset is set later. */
21787 (*slot)->cu_indices = NULL;
21788 }
21789
21790 cu_index_and_attrs = 0;
21791 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21792 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21793 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21794
21795 /* We don't want to record an index value twice as we want to avoid the
21796 duplication.
21797 We process all global symbols and then all static symbols
21798 (which would allow us to avoid the duplication by only having to check
21799 the last entry pushed), but a symbol could have multiple kinds in one CU.
21800 To keep things simple we don't worry about the duplication here and
21801 sort and uniqufy the list after we've processed all symbols. */
21802 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21803 }
21804
21805 /* qsort helper routine for uniquify_cu_indices. */
21806
21807 static int
21808 offset_type_compare (const void *ap, const void *bp)
21809 {
21810 offset_type a = *(offset_type *) ap;
21811 offset_type b = *(offset_type *) bp;
21812
21813 return (a > b) - (b > a);
21814 }
21815
21816 /* Sort and remove duplicates of all symbols' cu_indices lists. */
21817
21818 static void
21819 uniquify_cu_indices (struct mapped_symtab *symtab)
21820 {
21821 int i;
21822
21823 for (i = 0; i < symtab->size; ++i)
21824 {
21825 struct symtab_index_entry *entry = symtab->data[i];
21826
21827 if (entry
21828 && entry->cu_indices != NULL)
21829 {
21830 unsigned int next_to_insert, next_to_check;
21831 offset_type last_value;
21832
21833 qsort (VEC_address (offset_type, entry->cu_indices),
21834 VEC_length (offset_type, entry->cu_indices),
21835 sizeof (offset_type), offset_type_compare);
21836
21837 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21838 next_to_insert = 1;
21839 for (next_to_check = 1;
21840 next_to_check < VEC_length (offset_type, entry->cu_indices);
21841 ++next_to_check)
21842 {
21843 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21844 != last_value)
21845 {
21846 last_value = VEC_index (offset_type, entry->cu_indices,
21847 next_to_check);
21848 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21849 last_value);
21850 ++next_to_insert;
21851 }
21852 }
21853 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21854 }
21855 }
21856 }
21857
21858 /* Add a vector of indices to the constant pool. */
21859
21860 static offset_type
21861 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
21862 struct symtab_index_entry *entry)
21863 {
21864 void **slot;
21865
21866 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
21867 if (!*slot)
21868 {
21869 offset_type len = VEC_length (offset_type, entry->cu_indices);
21870 offset_type val = MAYBE_SWAP (len);
21871 offset_type iter;
21872 int i;
21873
21874 *slot = entry;
21875 entry->index_offset = obstack_object_size (cpool);
21876
21877 obstack_grow (cpool, &val, sizeof (val));
21878 for (i = 0;
21879 VEC_iterate (offset_type, entry->cu_indices, i, iter);
21880 ++i)
21881 {
21882 val = MAYBE_SWAP (iter);
21883 obstack_grow (cpool, &val, sizeof (val));
21884 }
21885 }
21886 else
21887 {
21888 struct symtab_index_entry *old_entry = *slot;
21889 entry->index_offset = old_entry->index_offset;
21890 entry = old_entry;
21891 }
21892 return entry->index_offset;
21893 }
21894
21895 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
21896 constant pool entries going into the obstack CPOOL. */
21897
21898 static void
21899 write_hash_table (struct mapped_symtab *symtab,
21900 struct obstack *output, struct obstack *cpool)
21901 {
21902 offset_type i;
21903 htab_t symbol_hash_table;
21904 htab_t str_table;
21905
21906 symbol_hash_table = create_symbol_hash_table ();
21907 str_table = create_strtab ();
21908
21909 /* We add all the index vectors to the constant pool first, to
21910 ensure alignment is ok. */
21911 for (i = 0; i < symtab->size; ++i)
21912 {
21913 if (symtab->data[i])
21914 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
21915 }
21916
21917 /* Now write out the hash table. */
21918 for (i = 0; i < symtab->size; ++i)
21919 {
21920 offset_type str_off, vec_off;
21921
21922 if (symtab->data[i])
21923 {
21924 str_off = add_string (str_table, cpool, symtab->data[i]->name);
21925 vec_off = symtab->data[i]->index_offset;
21926 }
21927 else
21928 {
21929 /* While 0 is a valid constant pool index, it is not valid
21930 to have 0 for both offsets. */
21931 str_off = 0;
21932 vec_off = 0;
21933 }
21934
21935 str_off = MAYBE_SWAP (str_off);
21936 vec_off = MAYBE_SWAP (vec_off);
21937
21938 obstack_grow (output, &str_off, sizeof (str_off));
21939 obstack_grow (output, &vec_off, sizeof (vec_off));
21940 }
21941
21942 htab_delete (str_table);
21943 htab_delete (symbol_hash_table);
21944 }
21945
21946 /* Struct to map psymtab to CU index in the index file. */
21947 struct psymtab_cu_index_map
21948 {
21949 struct partial_symtab *psymtab;
21950 unsigned int cu_index;
21951 };
21952
21953 static hashval_t
21954 hash_psymtab_cu_index (const void *item)
21955 {
21956 const struct psymtab_cu_index_map *map = item;
21957
21958 return htab_hash_pointer (map->psymtab);
21959 }
21960
21961 static int
21962 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
21963 {
21964 const struct psymtab_cu_index_map *lhs = item_lhs;
21965 const struct psymtab_cu_index_map *rhs = item_rhs;
21966
21967 return lhs->psymtab == rhs->psymtab;
21968 }
21969
21970 /* Helper struct for building the address table. */
21971 struct addrmap_index_data
21972 {
21973 struct objfile *objfile;
21974 struct obstack *addr_obstack;
21975 htab_t cu_index_htab;
21976
21977 /* Non-zero if the previous_* fields are valid.
21978 We can't write an entry until we see the next entry (since it is only then
21979 that we know the end of the entry). */
21980 int previous_valid;
21981 /* Index of the CU in the table of all CUs in the index file. */
21982 unsigned int previous_cu_index;
21983 /* Start address of the CU. */
21984 CORE_ADDR previous_cu_start;
21985 };
21986
21987 /* Write an address entry to OBSTACK. */
21988
21989 static void
21990 add_address_entry (struct objfile *objfile, struct obstack *obstack,
21991 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
21992 {
21993 offset_type cu_index_to_write;
21994 gdb_byte addr[8];
21995 CORE_ADDR baseaddr;
21996
21997 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21998
21999 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22000 obstack_grow (obstack, addr, 8);
22001 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22002 obstack_grow (obstack, addr, 8);
22003 cu_index_to_write = MAYBE_SWAP (cu_index);
22004 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22005 }
22006
22007 /* Worker function for traversing an addrmap to build the address table. */
22008
22009 static int
22010 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22011 {
22012 struct addrmap_index_data *data = datap;
22013 struct partial_symtab *pst = obj;
22014
22015 if (data->previous_valid)
22016 add_address_entry (data->objfile, data->addr_obstack,
22017 data->previous_cu_start, start_addr,
22018 data->previous_cu_index);
22019
22020 data->previous_cu_start = start_addr;
22021 if (pst != NULL)
22022 {
22023 struct psymtab_cu_index_map find_map, *map;
22024 find_map.psymtab = pst;
22025 map = htab_find (data->cu_index_htab, &find_map);
22026 gdb_assert (map != NULL);
22027 data->previous_cu_index = map->cu_index;
22028 data->previous_valid = 1;
22029 }
22030 else
22031 data->previous_valid = 0;
22032
22033 return 0;
22034 }
22035
22036 /* Write OBJFILE's address map to OBSTACK.
22037 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22038 in the index file. */
22039
22040 static void
22041 write_address_map (struct objfile *objfile, struct obstack *obstack,
22042 htab_t cu_index_htab)
22043 {
22044 struct addrmap_index_data addrmap_index_data;
22045
22046 /* When writing the address table, we have to cope with the fact that
22047 the addrmap iterator only provides the start of a region; we have to
22048 wait until the next invocation to get the start of the next region. */
22049
22050 addrmap_index_data.objfile = objfile;
22051 addrmap_index_data.addr_obstack = obstack;
22052 addrmap_index_data.cu_index_htab = cu_index_htab;
22053 addrmap_index_data.previous_valid = 0;
22054
22055 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22056 &addrmap_index_data);
22057
22058 /* It's highly unlikely the last entry (end address = 0xff...ff)
22059 is valid, but we should still handle it.
22060 The end address is recorded as the start of the next region, but that
22061 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22062 anyway. */
22063 if (addrmap_index_data.previous_valid)
22064 add_address_entry (objfile, obstack,
22065 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22066 addrmap_index_data.previous_cu_index);
22067 }
22068
22069 /* Return the symbol kind of PSYM. */
22070
22071 static gdb_index_symbol_kind
22072 symbol_kind (struct partial_symbol *psym)
22073 {
22074 domain_enum domain = PSYMBOL_DOMAIN (psym);
22075 enum address_class aclass = PSYMBOL_CLASS (psym);
22076
22077 switch (domain)
22078 {
22079 case VAR_DOMAIN:
22080 switch (aclass)
22081 {
22082 case LOC_BLOCK:
22083 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22084 case LOC_TYPEDEF:
22085 return GDB_INDEX_SYMBOL_KIND_TYPE;
22086 case LOC_COMPUTED:
22087 case LOC_CONST_BYTES:
22088 case LOC_OPTIMIZED_OUT:
22089 case LOC_STATIC:
22090 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22091 case LOC_CONST:
22092 /* Note: It's currently impossible to recognize psyms as enum values
22093 short of reading the type info. For now punt. */
22094 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22095 default:
22096 /* There are other LOC_FOO values that one might want to classify
22097 as variables, but dwarf2read.c doesn't currently use them. */
22098 return GDB_INDEX_SYMBOL_KIND_OTHER;
22099 }
22100 case STRUCT_DOMAIN:
22101 return GDB_INDEX_SYMBOL_KIND_TYPE;
22102 default:
22103 return GDB_INDEX_SYMBOL_KIND_OTHER;
22104 }
22105 }
22106
22107 /* Add a list of partial symbols to SYMTAB. */
22108
22109 static void
22110 write_psymbols (struct mapped_symtab *symtab,
22111 htab_t psyms_seen,
22112 struct partial_symbol **psymp,
22113 int count,
22114 offset_type cu_index,
22115 int is_static)
22116 {
22117 for (; count-- > 0; ++psymp)
22118 {
22119 struct partial_symbol *psym = *psymp;
22120 void **slot;
22121
22122 if (SYMBOL_LANGUAGE (psym) == language_ada)
22123 error (_("Ada is not currently supported by the index"));
22124
22125 /* Only add a given psymbol once. */
22126 slot = htab_find_slot (psyms_seen, psym, INSERT);
22127 if (!*slot)
22128 {
22129 gdb_index_symbol_kind kind = symbol_kind (psym);
22130
22131 *slot = psym;
22132 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22133 is_static, kind, cu_index);
22134 }
22135 }
22136 }
22137
22138 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22139 exception if there is an error. */
22140
22141 static void
22142 write_obstack (FILE *file, struct obstack *obstack)
22143 {
22144 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22145 file)
22146 != obstack_object_size (obstack))
22147 error (_("couldn't data write to file"));
22148 }
22149
22150 /* Unlink a file if the argument is not NULL. */
22151
22152 static void
22153 unlink_if_set (void *p)
22154 {
22155 char **filename = p;
22156 if (*filename)
22157 unlink (*filename);
22158 }
22159
22160 /* A helper struct used when iterating over debug_types. */
22161 struct signatured_type_index_data
22162 {
22163 struct objfile *objfile;
22164 struct mapped_symtab *symtab;
22165 struct obstack *types_list;
22166 htab_t psyms_seen;
22167 int cu_index;
22168 };
22169
22170 /* A helper function that writes a single signatured_type to an
22171 obstack. */
22172
22173 static int
22174 write_one_signatured_type (void **slot, void *d)
22175 {
22176 struct signatured_type_index_data *info = d;
22177 struct signatured_type *entry = (struct signatured_type *) *slot;
22178 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22179 gdb_byte val[8];
22180
22181 write_psymbols (info->symtab,
22182 info->psyms_seen,
22183 info->objfile->global_psymbols.list
22184 + psymtab->globals_offset,
22185 psymtab->n_global_syms, info->cu_index,
22186 0);
22187 write_psymbols (info->symtab,
22188 info->psyms_seen,
22189 info->objfile->static_psymbols.list
22190 + psymtab->statics_offset,
22191 psymtab->n_static_syms, info->cu_index,
22192 1);
22193
22194 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22195 entry->per_cu.offset.sect_off);
22196 obstack_grow (info->types_list, val, 8);
22197 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22198 entry->type_offset_in_tu.cu_off);
22199 obstack_grow (info->types_list, val, 8);
22200 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22201 obstack_grow (info->types_list, val, 8);
22202
22203 ++info->cu_index;
22204
22205 return 1;
22206 }
22207
22208 /* Recurse into all "included" dependencies and write their symbols as
22209 if they appeared in this psymtab. */
22210
22211 static void
22212 recursively_write_psymbols (struct objfile *objfile,
22213 struct partial_symtab *psymtab,
22214 struct mapped_symtab *symtab,
22215 htab_t psyms_seen,
22216 offset_type cu_index)
22217 {
22218 int i;
22219
22220 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22221 if (psymtab->dependencies[i]->user != NULL)
22222 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22223 symtab, psyms_seen, cu_index);
22224
22225 write_psymbols (symtab,
22226 psyms_seen,
22227 objfile->global_psymbols.list + psymtab->globals_offset,
22228 psymtab->n_global_syms, cu_index,
22229 0);
22230 write_psymbols (symtab,
22231 psyms_seen,
22232 objfile->static_psymbols.list + psymtab->statics_offset,
22233 psymtab->n_static_syms, cu_index,
22234 1);
22235 }
22236
22237 /* Create an index file for OBJFILE in the directory DIR. */
22238
22239 static void
22240 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22241 {
22242 struct cleanup *cleanup;
22243 char *filename, *cleanup_filename;
22244 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22245 struct obstack cu_list, types_cu_list;
22246 int i;
22247 FILE *out_file;
22248 struct mapped_symtab *symtab;
22249 offset_type val, size_of_contents, total_len;
22250 struct stat st;
22251 htab_t psyms_seen;
22252 htab_t cu_index_htab;
22253 struct psymtab_cu_index_map *psymtab_cu_index_map;
22254
22255 if (dwarf2_per_objfile->using_index)
22256 error (_("Cannot use an index to create the index"));
22257
22258 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22259 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22260
22261 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22262 return;
22263
22264 if (stat (objfile_name (objfile), &st) < 0)
22265 perror_with_name (objfile_name (objfile));
22266
22267 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22268 INDEX_SUFFIX, (char *) NULL);
22269 cleanup = make_cleanup (xfree, filename);
22270
22271 out_file = gdb_fopen_cloexec (filename, "wb");
22272 if (!out_file)
22273 error (_("Can't open `%s' for writing"), filename);
22274
22275 cleanup_filename = filename;
22276 make_cleanup (unlink_if_set, &cleanup_filename);
22277
22278 symtab = create_mapped_symtab ();
22279 make_cleanup (cleanup_mapped_symtab, symtab);
22280
22281 obstack_init (&addr_obstack);
22282 make_cleanup_obstack_free (&addr_obstack);
22283
22284 obstack_init (&cu_list);
22285 make_cleanup_obstack_free (&cu_list);
22286
22287 obstack_init (&types_cu_list);
22288 make_cleanup_obstack_free (&types_cu_list);
22289
22290 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22291 NULL, xcalloc, xfree);
22292 make_cleanup_htab_delete (psyms_seen);
22293
22294 /* While we're scanning CU's create a table that maps a psymtab pointer
22295 (which is what addrmap records) to its index (which is what is recorded
22296 in the index file). This will later be needed to write the address
22297 table. */
22298 cu_index_htab = htab_create_alloc (100,
22299 hash_psymtab_cu_index,
22300 eq_psymtab_cu_index,
22301 NULL, xcalloc, xfree);
22302 make_cleanup_htab_delete (cu_index_htab);
22303 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22304 xmalloc (sizeof (struct psymtab_cu_index_map)
22305 * dwarf2_per_objfile->n_comp_units);
22306 make_cleanup (xfree, psymtab_cu_index_map);
22307
22308 /* The CU list is already sorted, so we don't need to do additional
22309 work here. Also, the debug_types entries do not appear in
22310 all_comp_units, but only in their own hash table. */
22311 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22312 {
22313 struct dwarf2_per_cu_data *per_cu
22314 = dwarf2_per_objfile->all_comp_units[i];
22315 struct partial_symtab *psymtab = per_cu->v.psymtab;
22316 gdb_byte val[8];
22317 struct psymtab_cu_index_map *map;
22318 void **slot;
22319
22320 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22321 It may be referenced from a local scope but in such case it does not
22322 need to be present in .gdb_index. */
22323 if (psymtab == NULL)
22324 continue;
22325
22326 if (psymtab->user == NULL)
22327 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22328
22329 map = &psymtab_cu_index_map[i];
22330 map->psymtab = psymtab;
22331 map->cu_index = i;
22332 slot = htab_find_slot (cu_index_htab, map, INSERT);
22333 gdb_assert (slot != NULL);
22334 gdb_assert (*slot == NULL);
22335 *slot = map;
22336
22337 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22338 per_cu->offset.sect_off);
22339 obstack_grow (&cu_list, val, 8);
22340 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22341 obstack_grow (&cu_list, val, 8);
22342 }
22343
22344 /* Dump the address map. */
22345 write_address_map (objfile, &addr_obstack, cu_index_htab);
22346
22347 /* Write out the .debug_type entries, if any. */
22348 if (dwarf2_per_objfile->signatured_types)
22349 {
22350 struct signatured_type_index_data sig_data;
22351
22352 sig_data.objfile = objfile;
22353 sig_data.symtab = symtab;
22354 sig_data.types_list = &types_cu_list;
22355 sig_data.psyms_seen = psyms_seen;
22356 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22357 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22358 write_one_signatured_type, &sig_data);
22359 }
22360
22361 /* Now that we've processed all symbols we can shrink their cu_indices
22362 lists. */
22363 uniquify_cu_indices (symtab);
22364
22365 obstack_init (&constant_pool);
22366 make_cleanup_obstack_free (&constant_pool);
22367 obstack_init (&symtab_obstack);
22368 make_cleanup_obstack_free (&symtab_obstack);
22369 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22370
22371 obstack_init (&contents);
22372 make_cleanup_obstack_free (&contents);
22373 size_of_contents = 6 * sizeof (offset_type);
22374 total_len = size_of_contents;
22375
22376 /* The version number. */
22377 val = MAYBE_SWAP (8);
22378 obstack_grow (&contents, &val, sizeof (val));
22379
22380 /* The offset of the CU list from the start of the file. */
22381 val = MAYBE_SWAP (total_len);
22382 obstack_grow (&contents, &val, sizeof (val));
22383 total_len += obstack_object_size (&cu_list);
22384
22385 /* The offset of the types CU list from the start of the file. */
22386 val = MAYBE_SWAP (total_len);
22387 obstack_grow (&contents, &val, sizeof (val));
22388 total_len += obstack_object_size (&types_cu_list);
22389
22390 /* The offset of the address table from the start of the file. */
22391 val = MAYBE_SWAP (total_len);
22392 obstack_grow (&contents, &val, sizeof (val));
22393 total_len += obstack_object_size (&addr_obstack);
22394
22395 /* The offset of the symbol table from the start of the file. */
22396 val = MAYBE_SWAP (total_len);
22397 obstack_grow (&contents, &val, sizeof (val));
22398 total_len += obstack_object_size (&symtab_obstack);
22399
22400 /* The offset of the constant pool from the start of the file. */
22401 val = MAYBE_SWAP (total_len);
22402 obstack_grow (&contents, &val, sizeof (val));
22403 total_len += obstack_object_size (&constant_pool);
22404
22405 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22406
22407 write_obstack (out_file, &contents);
22408 write_obstack (out_file, &cu_list);
22409 write_obstack (out_file, &types_cu_list);
22410 write_obstack (out_file, &addr_obstack);
22411 write_obstack (out_file, &symtab_obstack);
22412 write_obstack (out_file, &constant_pool);
22413
22414 fclose (out_file);
22415
22416 /* We want to keep the file, so we set cleanup_filename to NULL
22417 here. See unlink_if_set. */
22418 cleanup_filename = NULL;
22419
22420 do_cleanups (cleanup);
22421 }
22422
22423 /* Implementation of the `save gdb-index' command.
22424
22425 Note that the file format used by this command is documented in the
22426 GDB manual. Any changes here must be documented there. */
22427
22428 static void
22429 save_gdb_index_command (char *arg, int from_tty)
22430 {
22431 struct objfile *objfile;
22432
22433 if (!arg || !*arg)
22434 error (_("usage: save gdb-index DIRECTORY"));
22435
22436 ALL_OBJFILES (objfile)
22437 {
22438 struct stat st;
22439
22440 /* If the objfile does not correspond to an actual file, skip it. */
22441 if (stat (objfile_name (objfile), &st) < 0)
22442 continue;
22443
22444 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22445 if (dwarf2_per_objfile)
22446 {
22447 volatile struct gdb_exception except;
22448
22449 TRY_CATCH (except, RETURN_MASK_ERROR)
22450 {
22451 write_psymtabs_to_index (objfile, arg);
22452 }
22453 if (except.reason < 0)
22454 exception_fprintf (gdb_stderr, except,
22455 _("Error while writing index for `%s': "),
22456 objfile_name (objfile));
22457 }
22458 }
22459 }
22460
22461 \f
22462
22463 int dwarf2_always_disassemble;
22464
22465 static void
22466 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22467 struct cmd_list_element *c, const char *value)
22468 {
22469 fprintf_filtered (file,
22470 _("Whether to always disassemble "
22471 "DWARF expressions is %s.\n"),
22472 value);
22473 }
22474
22475 static void
22476 show_check_physname (struct ui_file *file, int from_tty,
22477 struct cmd_list_element *c, const char *value)
22478 {
22479 fprintf_filtered (file,
22480 _("Whether to check \"physname\" is %s.\n"),
22481 value);
22482 }
22483
22484 void _initialize_dwarf2_read (void);
22485
22486 void
22487 _initialize_dwarf2_read (void)
22488 {
22489 struct cmd_list_element *c;
22490
22491 dwarf2_objfile_data_key
22492 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22493
22494 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22495 Set DWARF 2 specific variables.\n\
22496 Configure DWARF 2 variables such as the cache size"),
22497 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22498 0/*allow-unknown*/, &maintenance_set_cmdlist);
22499
22500 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22501 Show DWARF 2 specific variables\n\
22502 Show DWARF 2 variables such as the cache size"),
22503 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22504 0/*allow-unknown*/, &maintenance_show_cmdlist);
22505
22506 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22507 &dwarf2_max_cache_age, _("\
22508 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22509 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22510 A higher limit means that cached compilation units will be stored\n\
22511 in memory longer, and more total memory will be used. Zero disables\n\
22512 caching, which can slow down startup."),
22513 NULL,
22514 show_dwarf2_max_cache_age,
22515 &set_dwarf2_cmdlist,
22516 &show_dwarf2_cmdlist);
22517
22518 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22519 &dwarf2_always_disassemble, _("\
22520 Set whether `info address' always disassembles DWARF expressions."), _("\
22521 Show whether `info address' always disassembles DWARF expressions."), _("\
22522 When enabled, DWARF expressions are always printed in an assembly-like\n\
22523 syntax. When disabled, expressions will be printed in a more\n\
22524 conversational style, when possible."),
22525 NULL,
22526 show_dwarf2_always_disassemble,
22527 &set_dwarf2_cmdlist,
22528 &show_dwarf2_cmdlist);
22529
22530 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22531 Set debugging of the dwarf2 reader."), _("\
22532 Show debugging of the dwarf2 reader."), _("\
22533 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22534 reading and symtab expansion. A value of 1 (one) provides basic\n\
22535 information. A value greater than 1 provides more verbose information."),
22536 NULL,
22537 NULL,
22538 &setdebuglist, &showdebuglist);
22539
22540 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22541 Set debugging of the dwarf2 DIE reader."), _("\
22542 Show debugging of the dwarf2 DIE reader."), _("\
22543 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22544 The value is the maximum depth to print."),
22545 NULL,
22546 NULL,
22547 &setdebuglist, &showdebuglist);
22548
22549 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22550 Set cross-checking of \"physname\" code against demangler."), _("\
22551 Show cross-checking of \"physname\" code against demangler."), _("\
22552 When enabled, GDB's internal \"physname\" code is checked against\n\
22553 the demangler."),
22554 NULL, show_check_physname,
22555 &setdebuglist, &showdebuglist);
22556
22557 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22558 no_class, &use_deprecated_index_sections, _("\
22559 Set whether to use deprecated gdb_index sections."), _("\
22560 Show whether to use deprecated gdb_index sections."), _("\
22561 When enabled, deprecated .gdb_index sections are used anyway.\n\
22562 Normally they are ignored either because of a missing feature or\n\
22563 performance issue.\n\
22564 Warning: This option must be enabled before gdb reads the file."),
22565 NULL,
22566 NULL,
22567 &setlist, &showlist);
22568
22569 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22570 _("\
22571 Save a gdb-index file.\n\
22572 Usage: save gdb-index DIRECTORY"),
22573 &save_cmdlist);
22574 set_cmd_completer (c, filename_completer);
22575
22576 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22577 &dwarf2_locexpr_funcs);
22578 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22579 &dwarf2_loclist_funcs);
22580
22581 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22582 &dwarf2_block_frame_base_locexpr_funcs);
22583 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22584 &dwarf2_block_frame_base_loclist_funcs);
22585 }
This page took 0.472355 seconds and 3 git commands to generate.