* completer.c (location_completer): Fix typo in comment.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71
72 #include <fcntl.h>
73 #include "gdb_string.h"
74 #include "gdb_assert.h"
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When non-zero, print basic high level tracing messages.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 struct dwarf2_section_info
96 {
97 asection *asection;
98 gdb_byte *buffer;
99 bfd_size_type size;
100 /* True if we have tried to read this section. */
101 int readin;
102 };
103
104 typedef struct dwarf2_section_info dwarf2_section_info_def;
105 DEF_VEC_O (dwarf2_section_info_def);
106
107 /* All offsets in the index are of this type. It must be
108 architecture-independent. */
109 typedef uint32_t offset_type;
110
111 DEF_VEC_I (offset_type);
112
113 /* Ensure only legit values are used. */
114 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
115 do { \
116 gdb_assert ((unsigned int) (value) <= 1); \
117 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
118 } while (0)
119
120 /* Ensure only legit values are used. */
121 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
122 do { \
123 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
124 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
125 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
129 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
132 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
133 } while (0)
134
135 /* A description of the mapped index. The file format is described in
136 a comment by the code that writes the index. */
137 struct mapped_index
138 {
139 /* Index data format version. */
140 int version;
141
142 /* The total length of the buffer. */
143 off_t total_size;
144
145 /* A pointer to the address table data. */
146 const gdb_byte *address_table;
147
148 /* Size of the address table data in bytes. */
149 offset_type address_table_size;
150
151 /* The symbol table, implemented as a hash table. */
152 const offset_type *symbol_table;
153
154 /* Size in slots, each slot is 2 offset_types. */
155 offset_type symbol_table_slots;
156
157 /* A pointer to the constant pool. */
158 const char *constant_pool;
159 };
160
161 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
162 DEF_VEC_P (dwarf2_per_cu_ptr);
163
164 /* Collection of data recorded per objfile.
165 This hangs off of dwarf2_objfile_data_key. */
166
167 struct dwarf2_per_objfile
168 {
169 struct dwarf2_section_info info;
170 struct dwarf2_section_info abbrev;
171 struct dwarf2_section_info line;
172 struct dwarf2_section_info loc;
173 struct dwarf2_section_info macinfo;
174 struct dwarf2_section_info macro;
175 struct dwarf2_section_info str;
176 struct dwarf2_section_info ranges;
177 struct dwarf2_section_info addr;
178 struct dwarf2_section_info frame;
179 struct dwarf2_section_info eh_frame;
180 struct dwarf2_section_info gdb_index;
181
182 VEC (dwarf2_section_info_def) *types;
183
184 /* Back link. */
185 struct objfile *objfile;
186
187 /* Table of all the compilation units. This is used to locate
188 the target compilation unit of a particular reference. */
189 struct dwarf2_per_cu_data **all_comp_units;
190
191 /* The number of compilation units in ALL_COMP_UNITS. */
192 int n_comp_units;
193
194 /* The number of .debug_types-related CUs. */
195 int n_type_units;
196
197 /* The .debug_types-related CUs (TUs). */
198 struct signatured_type **all_type_units;
199
200 /* The number of entries in all_type_unit_groups. */
201 int n_type_unit_groups;
202
203 /* Table of type unit groups.
204 This exists to make it easy to iterate over all CUs and TU groups. */
205 struct type_unit_group **all_type_unit_groups;
206
207 /* Table of struct type_unit_group objects.
208 The hash key is the DW_AT_stmt_list value. */
209 htab_t type_unit_groups;
210
211 /* A table mapping .debug_types signatures to its signatured_type entry.
212 This is NULL if the .debug_types section hasn't been read in yet. */
213 htab_t signatured_types;
214
215 /* Type unit statistics, to see how well the scaling improvements
216 are doing. */
217 struct tu_stats
218 {
219 int nr_uniq_abbrev_tables;
220 int nr_symtabs;
221 int nr_symtab_sharers;
222 int nr_stmt_less_type_units;
223 } tu_stats;
224
225 /* A chain of compilation units that are currently read in, so that
226 they can be freed later. */
227 struct dwarf2_per_cu_data *read_in_chain;
228
229 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
230 This is NULL if the table hasn't been allocated yet. */
231 htab_t dwo_files;
232
233 /* Non-zero if we've check for whether there is a DWP file. */
234 int dwp_checked;
235
236 /* The DWP file if there is one, or NULL. */
237 struct dwp_file *dwp_file;
238
239 /* The shared '.dwz' file, if one exists. This is used when the
240 original data was compressed using 'dwz -m'. */
241 struct dwz_file *dwz_file;
242
243 /* A flag indicating wether this objfile has a section loaded at a
244 VMA of 0. */
245 int has_section_at_zero;
246
247 /* True if we are using the mapped index,
248 or we are faking it for OBJF_READNOW's sake. */
249 unsigned char using_index;
250
251 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
252 struct mapped_index *index_table;
253
254 /* When using index_table, this keeps track of all quick_file_names entries.
255 TUs typically share line table entries with a CU, so we maintain a
256 separate table of all line table entries to support the sharing.
257 Note that while there can be way more TUs than CUs, we've already
258 sorted all the TUs into "type unit groups", grouped by their
259 DW_AT_stmt_list value. Therefore the only sharing done here is with a
260 CU and its associated TU group if there is one. */
261 htab_t quick_file_names_table;
262
263 /* Set during partial symbol reading, to prevent queueing of full
264 symbols. */
265 int reading_partial_symbols;
266
267 /* Table mapping type DIEs to their struct type *.
268 This is NULL if not allocated yet.
269 The mapping is done via (CU/TU signature + DIE offset) -> type. */
270 htab_t die_type_hash;
271
272 /* The CUs we recently read. */
273 VEC (dwarf2_per_cu_ptr) *just_read_cus;
274 };
275
276 static struct dwarf2_per_objfile *dwarf2_per_objfile;
277
278 /* Default names of the debugging sections. */
279
280 /* Note that if the debugging section has been compressed, it might
281 have a name like .zdebug_info. */
282
283 static const struct dwarf2_debug_sections dwarf2_elf_names =
284 {
285 { ".debug_info", ".zdebug_info" },
286 { ".debug_abbrev", ".zdebug_abbrev" },
287 { ".debug_line", ".zdebug_line" },
288 { ".debug_loc", ".zdebug_loc" },
289 { ".debug_macinfo", ".zdebug_macinfo" },
290 { ".debug_macro", ".zdebug_macro" },
291 { ".debug_str", ".zdebug_str" },
292 { ".debug_ranges", ".zdebug_ranges" },
293 { ".debug_types", ".zdebug_types" },
294 { ".debug_addr", ".zdebug_addr" },
295 { ".debug_frame", ".zdebug_frame" },
296 { ".eh_frame", NULL },
297 { ".gdb_index", ".zgdb_index" },
298 23
299 };
300
301 /* List of DWO/DWP sections. */
302
303 static const struct dwop_section_names
304 {
305 struct dwarf2_section_names abbrev_dwo;
306 struct dwarf2_section_names info_dwo;
307 struct dwarf2_section_names line_dwo;
308 struct dwarf2_section_names loc_dwo;
309 struct dwarf2_section_names macinfo_dwo;
310 struct dwarf2_section_names macro_dwo;
311 struct dwarf2_section_names str_dwo;
312 struct dwarf2_section_names str_offsets_dwo;
313 struct dwarf2_section_names types_dwo;
314 struct dwarf2_section_names cu_index;
315 struct dwarf2_section_names tu_index;
316 }
317 dwop_section_names =
318 {
319 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
320 { ".debug_info.dwo", ".zdebug_info.dwo" },
321 { ".debug_line.dwo", ".zdebug_line.dwo" },
322 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
323 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
324 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
325 { ".debug_str.dwo", ".zdebug_str.dwo" },
326 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
327 { ".debug_types.dwo", ".zdebug_types.dwo" },
328 { ".debug_cu_index", ".zdebug_cu_index" },
329 { ".debug_tu_index", ".zdebug_tu_index" },
330 };
331
332 /* local data types */
333
334 /* The data in a compilation unit header, after target2host
335 translation, looks like this. */
336 struct comp_unit_head
337 {
338 unsigned int length;
339 short version;
340 unsigned char addr_size;
341 unsigned char signed_addr_p;
342 sect_offset abbrev_offset;
343
344 /* Size of file offsets; either 4 or 8. */
345 unsigned int offset_size;
346
347 /* Size of the length field; either 4 or 12. */
348 unsigned int initial_length_size;
349
350 /* Offset to the first byte of this compilation unit header in the
351 .debug_info section, for resolving relative reference dies. */
352 sect_offset offset;
353
354 /* Offset to first die in this cu from the start of the cu.
355 This will be the first byte following the compilation unit header. */
356 cu_offset first_die_offset;
357 };
358
359 /* Type used for delaying computation of method physnames.
360 See comments for compute_delayed_physnames. */
361 struct delayed_method_info
362 {
363 /* The type to which the method is attached, i.e., its parent class. */
364 struct type *type;
365
366 /* The index of the method in the type's function fieldlists. */
367 int fnfield_index;
368
369 /* The index of the method in the fieldlist. */
370 int index;
371
372 /* The name of the DIE. */
373 const char *name;
374
375 /* The DIE associated with this method. */
376 struct die_info *die;
377 };
378
379 typedef struct delayed_method_info delayed_method_info;
380 DEF_VEC_O (delayed_method_info);
381
382 /* Internal state when decoding a particular compilation unit. */
383 struct dwarf2_cu
384 {
385 /* The objfile containing this compilation unit. */
386 struct objfile *objfile;
387
388 /* The header of the compilation unit. */
389 struct comp_unit_head header;
390
391 /* Base address of this compilation unit. */
392 CORE_ADDR base_address;
393
394 /* Non-zero if base_address has been set. */
395 int base_known;
396
397 /* The language we are debugging. */
398 enum language language;
399 const struct language_defn *language_defn;
400
401 const char *producer;
402
403 /* The generic symbol table building routines have separate lists for
404 file scope symbols and all all other scopes (local scopes). So
405 we need to select the right one to pass to add_symbol_to_list().
406 We do it by keeping a pointer to the correct list in list_in_scope.
407
408 FIXME: The original dwarf code just treated the file scope as the
409 first local scope, and all other local scopes as nested local
410 scopes, and worked fine. Check to see if we really need to
411 distinguish these in buildsym.c. */
412 struct pending **list_in_scope;
413
414 /* The abbrev table for this CU.
415 Normally this points to the abbrev table in the objfile.
416 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
417 struct abbrev_table *abbrev_table;
418
419 /* Hash table holding all the loaded partial DIEs
420 with partial_die->offset.SECT_OFF as hash. */
421 htab_t partial_dies;
422
423 /* Storage for things with the same lifetime as this read-in compilation
424 unit, including partial DIEs. */
425 struct obstack comp_unit_obstack;
426
427 /* When multiple dwarf2_cu structures are living in memory, this field
428 chains them all together, so that they can be released efficiently.
429 We will probably also want a generation counter so that most-recently-used
430 compilation units are cached... */
431 struct dwarf2_per_cu_data *read_in_chain;
432
433 /* Backchain to our per_cu entry if the tree has been built. */
434 struct dwarf2_per_cu_data *per_cu;
435
436 /* How many compilation units ago was this CU last referenced? */
437 int last_used;
438
439 /* A hash table of DIE cu_offset for following references with
440 die_info->offset.sect_off as hash. */
441 htab_t die_hash;
442
443 /* Full DIEs if read in. */
444 struct die_info *dies;
445
446 /* A set of pointers to dwarf2_per_cu_data objects for compilation
447 units referenced by this one. Only set during full symbol processing;
448 partial symbol tables do not have dependencies. */
449 htab_t dependencies;
450
451 /* Header data from the line table, during full symbol processing. */
452 struct line_header *line_header;
453
454 /* A list of methods which need to have physnames computed
455 after all type information has been read. */
456 VEC (delayed_method_info) *method_list;
457
458 /* To be copied to symtab->call_site_htab. */
459 htab_t call_site_htab;
460
461 /* Non-NULL if this CU came from a DWO file.
462 There is an invariant here that is important to remember:
463 Except for attributes copied from the top level DIE in the "main"
464 (or "stub") file in preparation for reading the DWO file
465 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
466 Either there isn't a DWO file (in which case this is NULL and the point
467 is moot), or there is and either we're not going to read it (in which
468 case this is NULL) or there is and we are reading it (in which case this
469 is non-NULL). */
470 struct dwo_unit *dwo_unit;
471
472 /* The DW_AT_addr_base attribute if present, zero otherwise
473 (zero is a valid value though).
474 Note this value comes from the stub CU/TU's DIE. */
475 ULONGEST addr_base;
476
477 /* The DW_AT_ranges_base attribute if present, zero otherwise
478 (zero is a valid value though).
479 Note this value comes from the stub CU/TU's DIE.
480 Also note that the value is zero in the non-DWO case so this value can
481 be used without needing to know whether DWO files are in use or not.
482 N.B. This does not apply to DW_AT_ranges appearing in
483 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
484 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
485 DW_AT_ranges_base *would* have to be applied, and we'd have to care
486 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
487 ULONGEST ranges_base;
488
489 /* Mark used when releasing cached dies. */
490 unsigned int mark : 1;
491
492 /* This CU references .debug_loc. See the symtab->locations_valid field.
493 This test is imperfect as there may exist optimized debug code not using
494 any location list and still facing inlining issues if handled as
495 unoptimized code. For a future better test see GCC PR other/32998. */
496 unsigned int has_loclist : 1;
497
498 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
499 if all the producer_is_* fields are valid. This information is cached
500 because profiling CU expansion showed excessive time spent in
501 producer_is_gxx_lt_4_6. */
502 unsigned int checked_producer : 1;
503 unsigned int producer_is_gxx_lt_4_6 : 1;
504 unsigned int producer_is_gcc_lt_4_3 : 1;
505 unsigned int producer_is_icc : 1;
506
507 /* When set, the file that we're processing is known to have
508 debugging info for C++ namespaces. GCC 3.3.x did not produce
509 this information, but later versions do. */
510
511 unsigned int processing_has_namespace_info : 1;
512 };
513
514 /* Persistent data held for a compilation unit, even when not
515 processing it. We put a pointer to this structure in the
516 read_symtab_private field of the psymtab. */
517
518 struct dwarf2_per_cu_data
519 {
520 /* The start offset and length of this compilation unit.
521 NOTE: Unlike comp_unit_head.length, this length includes
522 initial_length_size.
523 If the DIE refers to a DWO file, this is always of the original die,
524 not the DWO file. */
525 sect_offset offset;
526 unsigned int length;
527
528 /* Flag indicating this compilation unit will be read in before
529 any of the current compilation units are processed. */
530 unsigned int queued : 1;
531
532 /* This flag will be set when reading partial DIEs if we need to load
533 absolutely all DIEs for this compilation unit, instead of just the ones
534 we think are interesting. It gets set if we look for a DIE in the
535 hash table and don't find it. */
536 unsigned int load_all_dies : 1;
537
538 /* Non-zero if this CU is from .debug_types. */
539 unsigned int is_debug_types : 1;
540
541 /* Non-zero if this CU is from the .dwz file. */
542 unsigned int is_dwz : 1;
543
544 /* The section this CU/TU lives in.
545 If the DIE refers to a DWO file, this is always the original die,
546 not the DWO file. */
547 struct dwarf2_section_info *info_or_types_section;
548
549 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
550 of the CU cache it gets reset to NULL again. */
551 struct dwarf2_cu *cu;
552
553 /* The corresponding objfile.
554 Normally we can get the objfile from dwarf2_per_objfile.
555 However we can enter this file with just a "per_cu" handle. */
556 struct objfile *objfile;
557
558 /* When using partial symbol tables, the 'psymtab' field is active.
559 Otherwise the 'quick' field is active. */
560 union
561 {
562 /* The partial symbol table associated with this compilation unit,
563 or NULL for unread partial units. */
564 struct partial_symtab *psymtab;
565
566 /* Data needed by the "quick" functions. */
567 struct dwarf2_per_cu_quick_data *quick;
568 } v;
569
570 /* The CUs we import using DW_TAG_imported_unit. This is filled in
571 while reading psymtabs, used to compute the psymtab dependencies,
572 and then cleared. Then it is filled in again while reading full
573 symbols, and only deleted when the objfile is destroyed.
574
575 This is also used to work around a difference between the way gold
576 generates .gdb_index version <=7 and the way gdb does. Arguably this
577 is a gold bug. For symbols coming from TUs, gold records in the index
578 the CU that includes the TU instead of the TU itself. This breaks
579 dw2_lookup_symbol: It assumes that if the index says symbol X lives
580 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
581 will find X. Alas TUs live in their own symtab, so after expanding CU Y
582 we need to look in TU Z to find X. Fortunately, this is akin to
583 DW_TAG_imported_unit, so we just use the same mechanism: For
584 .gdb_index version <=7 this also records the TUs that the CU referred
585 to. Concurrently with this change gdb was modified to emit version 8
586 indices so we only pay a price for gold generated indices. */
587 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
588
589 /* Type units are grouped by their DW_AT_stmt_list entry so that they
590 can share them. If this is a TU, this points to the containing
591 symtab. */
592 struct type_unit_group *type_unit_group;
593 };
594
595 /* Entry in the signatured_types hash table. */
596
597 struct signatured_type
598 {
599 /* The "per_cu" object of this type.
600 N.B.: This is the first member so that it's easy to convert pointers
601 between them. */
602 struct dwarf2_per_cu_data per_cu;
603
604 /* The type's signature. */
605 ULONGEST signature;
606
607 /* Offset in the TU of the type's DIE, as read from the TU header.
608 If the definition lives in a DWO file, this value is unusable. */
609 cu_offset type_offset_in_tu;
610
611 /* Offset in the section of the type's DIE.
612 If the definition lives in a DWO file, this is the offset in the
613 .debug_types.dwo section.
614 The value is zero until the actual value is known.
615 Zero is otherwise not a valid section offset. */
616 sect_offset type_offset_in_section;
617 };
618
619 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
620 This includes type_unit_group and quick_file_names. */
621
622 struct stmt_list_hash
623 {
624 /* The DWO unit this table is from or NULL if there is none. */
625 struct dwo_unit *dwo_unit;
626
627 /* Offset in .debug_line or .debug_line.dwo. */
628 sect_offset line_offset;
629 };
630
631 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
632 an object of this type. */
633
634 struct type_unit_group
635 {
636 /* dwarf2read.c's main "handle" on the symtab.
637 To simplify things we create an artificial CU that "includes" all the
638 type units using this stmt_list so that the rest of the code still has
639 a "per_cu" handle on the symtab.
640 This PER_CU is recognized by having no section. */
641 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
642 struct dwarf2_per_cu_data per_cu;
643
644 union
645 {
646 /* The TUs that share this DW_AT_stmt_list entry.
647 This is added to while parsing type units to build partial symtabs,
648 and is deleted afterwards and not used again. */
649 VEC (dwarf2_per_cu_ptr) *tus;
650
651 /* When reading the line table in "quick" functions, we need a real TU.
652 Any will do, we know they all share the same DW_AT_stmt_list entry.
653 For simplicity's sake, we pick the first one. */
654 struct dwarf2_per_cu_data *first_tu;
655 } t;
656
657 /* The primary symtab.
658 Type units in a group needn't all be defined in the same source file,
659 so we create an essentially anonymous symtab as the primary symtab. */
660 struct symtab *primary_symtab;
661
662 /* The data used to construct the hash key. */
663 struct stmt_list_hash hash;
664
665 /* The number of symtabs from the line header.
666 The value here must match line_header.num_file_names. */
667 unsigned int num_symtabs;
668
669 /* The symbol tables for this TU (obtained from the files listed in
670 DW_AT_stmt_list).
671 WARNING: The order of entries here must match the order of entries
672 in the line header. After the first TU using this type_unit_group, the
673 line header for the subsequent TUs is recreated from this. This is done
674 because we need to use the same symtabs for each TU using the same
675 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
676 there's no guarantee the line header doesn't have duplicate entries. */
677 struct symtab **symtabs;
678 };
679
680 /* These sections are what may appear in a DWO file. */
681
682 struct dwo_sections
683 {
684 struct dwarf2_section_info abbrev;
685 struct dwarf2_section_info line;
686 struct dwarf2_section_info loc;
687 struct dwarf2_section_info macinfo;
688 struct dwarf2_section_info macro;
689 struct dwarf2_section_info str;
690 struct dwarf2_section_info str_offsets;
691 /* In the case of a virtual DWO file, these two are unused. */
692 struct dwarf2_section_info info;
693 VEC (dwarf2_section_info_def) *types;
694 };
695
696 /* Common bits of DWO CUs/TUs. */
697
698 struct dwo_unit
699 {
700 /* Backlink to the containing struct dwo_file. */
701 struct dwo_file *dwo_file;
702
703 /* The "id" that distinguishes this CU/TU.
704 .debug_info calls this "dwo_id", .debug_types calls this "signature".
705 Since signatures came first, we stick with it for consistency. */
706 ULONGEST signature;
707
708 /* The section this CU/TU lives in, in the DWO file. */
709 struct dwarf2_section_info *info_or_types_section;
710
711 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
712 sect_offset offset;
713 unsigned int length;
714
715 /* For types, offset in the type's DIE of the type defined by this TU. */
716 cu_offset type_offset_in_tu;
717 };
718
719 /* Data for one DWO file.
720 This includes virtual DWO files that have been packaged into a
721 DWP file. */
722
723 struct dwo_file
724 {
725 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
726 For virtual DWO files the name is constructed from the section offsets
727 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
728 from related CU+TUs. */
729 const char *name;
730
731 /* The bfd, when the file is open. Otherwise this is NULL.
732 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
733 bfd *dbfd;
734
735 /* Section info for this file. */
736 struct dwo_sections sections;
737
738 /* Table of CUs in the file.
739 Each element is a struct dwo_unit. */
740 htab_t cus;
741
742 /* Table of TUs in the file.
743 Each element is a struct dwo_unit. */
744 htab_t tus;
745 };
746
747 /* These sections are what may appear in a DWP file. */
748
749 struct dwp_sections
750 {
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info cu_index;
753 struct dwarf2_section_info tu_index;
754 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
755 by section number. We don't need to record them here. */
756 };
757
758 /* These sections are what may appear in a virtual DWO file. */
759
760 struct virtual_dwo_sections
761 {
762 struct dwarf2_section_info abbrev;
763 struct dwarf2_section_info line;
764 struct dwarf2_section_info loc;
765 struct dwarf2_section_info macinfo;
766 struct dwarf2_section_info macro;
767 struct dwarf2_section_info str_offsets;
768 /* Each DWP hash table entry records one CU or one TU.
769 That is recorded here, and copied to dwo_unit.info_or_types_section. */
770 struct dwarf2_section_info info_or_types;
771 };
772
773 /* Contents of DWP hash tables. */
774
775 struct dwp_hash_table
776 {
777 uint32_t nr_units, nr_slots;
778 const gdb_byte *hash_table, *unit_table, *section_pool;
779 };
780
781 /* Data for one DWP file. */
782
783 struct dwp_file
784 {
785 /* Name of the file. */
786 const char *name;
787
788 /* The bfd, when the file is open. Otherwise this is NULL. */
789 bfd *dbfd;
790
791 /* Section info for this file. */
792 struct dwp_sections sections;
793
794 /* Table of CUs in the file. */
795 const struct dwp_hash_table *cus;
796
797 /* Table of TUs in the file. */
798 const struct dwp_hash_table *tus;
799
800 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
801 htab_t loaded_cutus;
802
803 /* Table to map ELF section numbers to their sections. */
804 unsigned int num_sections;
805 asection **elf_sections;
806 };
807
808 /* This represents a '.dwz' file. */
809
810 struct dwz_file
811 {
812 /* A dwz file can only contain a few sections. */
813 struct dwarf2_section_info abbrev;
814 struct dwarf2_section_info info;
815 struct dwarf2_section_info str;
816 struct dwarf2_section_info line;
817 struct dwarf2_section_info macro;
818 struct dwarf2_section_info gdb_index;
819
820 /* The dwz's BFD. */
821 bfd *dwz_bfd;
822 };
823
824 /* Struct used to pass misc. parameters to read_die_and_children, et
825 al. which are used for both .debug_info and .debug_types dies.
826 All parameters here are unchanging for the life of the call. This
827 struct exists to abstract away the constant parameters of die reading. */
828
829 struct die_reader_specs
830 {
831 /* die_section->asection->owner. */
832 bfd* abfd;
833
834 /* The CU of the DIE we are parsing. */
835 struct dwarf2_cu *cu;
836
837 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
838 struct dwo_file *dwo_file;
839
840 /* The section the die comes from.
841 This is either .debug_info or .debug_types, or the .dwo variants. */
842 struct dwarf2_section_info *die_section;
843
844 /* die_section->buffer. */
845 gdb_byte *buffer;
846
847 /* The end of the buffer. */
848 const gdb_byte *buffer_end;
849 };
850
851 /* Type of function passed to init_cutu_and_read_dies, et.al. */
852 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
853 gdb_byte *info_ptr,
854 struct die_info *comp_unit_die,
855 int has_children,
856 void *data);
857
858 /* The line number information for a compilation unit (found in the
859 .debug_line section) begins with a "statement program header",
860 which contains the following information. */
861 struct line_header
862 {
863 unsigned int total_length;
864 unsigned short version;
865 unsigned int header_length;
866 unsigned char minimum_instruction_length;
867 unsigned char maximum_ops_per_instruction;
868 unsigned char default_is_stmt;
869 int line_base;
870 unsigned char line_range;
871 unsigned char opcode_base;
872
873 /* standard_opcode_lengths[i] is the number of operands for the
874 standard opcode whose value is i. This means that
875 standard_opcode_lengths[0] is unused, and the last meaningful
876 element is standard_opcode_lengths[opcode_base - 1]. */
877 unsigned char *standard_opcode_lengths;
878
879 /* The include_directories table. NOTE! These strings are not
880 allocated with xmalloc; instead, they are pointers into
881 debug_line_buffer. If you try to free them, `free' will get
882 indigestion. */
883 unsigned int num_include_dirs, include_dirs_size;
884 char **include_dirs;
885
886 /* The file_names table. NOTE! These strings are not allocated
887 with xmalloc; instead, they are pointers into debug_line_buffer.
888 Don't try to free them directly. */
889 unsigned int num_file_names, file_names_size;
890 struct file_entry
891 {
892 char *name;
893 unsigned int dir_index;
894 unsigned int mod_time;
895 unsigned int length;
896 int included_p; /* Non-zero if referenced by the Line Number Program. */
897 struct symtab *symtab; /* The associated symbol table, if any. */
898 } *file_names;
899
900 /* The start and end of the statement program following this
901 header. These point into dwarf2_per_objfile->line_buffer. */
902 gdb_byte *statement_program_start, *statement_program_end;
903 };
904
905 /* When we construct a partial symbol table entry we only
906 need this much information. */
907 struct partial_die_info
908 {
909 /* Offset of this DIE. */
910 sect_offset offset;
911
912 /* DWARF-2 tag for this DIE. */
913 ENUM_BITFIELD(dwarf_tag) tag : 16;
914
915 /* Assorted flags describing the data found in this DIE. */
916 unsigned int has_children : 1;
917 unsigned int is_external : 1;
918 unsigned int is_declaration : 1;
919 unsigned int has_type : 1;
920 unsigned int has_specification : 1;
921 unsigned int has_pc_info : 1;
922 unsigned int may_be_inlined : 1;
923
924 /* Flag set if the SCOPE field of this structure has been
925 computed. */
926 unsigned int scope_set : 1;
927
928 /* Flag set if the DIE has a byte_size attribute. */
929 unsigned int has_byte_size : 1;
930
931 /* Flag set if any of the DIE's children are template arguments. */
932 unsigned int has_template_arguments : 1;
933
934 /* Flag set if fixup_partial_die has been called on this die. */
935 unsigned int fixup_called : 1;
936
937 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
938 unsigned int is_dwz : 1;
939
940 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
941 unsigned int spec_is_dwz : 1;
942
943 /* The name of this DIE. Normally the value of DW_AT_name, but
944 sometimes a default name for unnamed DIEs. */
945 const char *name;
946
947 /* The linkage name, if present. */
948 const char *linkage_name;
949
950 /* The scope to prepend to our children. This is generally
951 allocated on the comp_unit_obstack, so will disappear
952 when this compilation unit leaves the cache. */
953 const char *scope;
954
955 /* Some data associated with the partial DIE. The tag determines
956 which field is live. */
957 union
958 {
959 /* The location description associated with this DIE, if any. */
960 struct dwarf_block *locdesc;
961 /* The offset of an import, for DW_TAG_imported_unit. */
962 sect_offset offset;
963 } d;
964
965 /* If HAS_PC_INFO, the PC range associated with this DIE. */
966 CORE_ADDR lowpc;
967 CORE_ADDR highpc;
968
969 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
970 DW_AT_sibling, if any. */
971 /* NOTE: This member isn't strictly necessary, read_partial_die could
972 return DW_AT_sibling values to its caller load_partial_dies. */
973 gdb_byte *sibling;
974
975 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
976 DW_AT_specification (or DW_AT_abstract_origin or
977 DW_AT_extension). */
978 sect_offset spec_offset;
979
980 /* Pointers to this DIE's parent, first child, and next sibling,
981 if any. */
982 struct partial_die_info *die_parent, *die_child, *die_sibling;
983 };
984
985 /* This data structure holds the information of an abbrev. */
986 struct abbrev_info
987 {
988 unsigned int number; /* number identifying abbrev */
989 enum dwarf_tag tag; /* dwarf tag */
990 unsigned short has_children; /* boolean */
991 unsigned short num_attrs; /* number of attributes */
992 struct attr_abbrev *attrs; /* an array of attribute descriptions */
993 struct abbrev_info *next; /* next in chain */
994 };
995
996 struct attr_abbrev
997 {
998 ENUM_BITFIELD(dwarf_attribute) name : 16;
999 ENUM_BITFIELD(dwarf_form) form : 16;
1000 };
1001
1002 /* Size of abbrev_table.abbrev_hash_table. */
1003 #define ABBREV_HASH_SIZE 121
1004
1005 /* Top level data structure to contain an abbreviation table. */
1006
1007 struct abbrev_table
1008 {
1009 /* Where the abbrev table came from.
1010 This is used as a sanity check when the table is used. */
1011 sect_offset offset;
1012
1013 /* Storage for the abbrev table. */
1014 struct obstack abbrev_obstack;
1015
1016 /* Hash table of abbrevs.
1017 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1018 It could be statically allocated, but the previous code didn't so we
1019 don't either. */
1020 struct abbrev_info **abbrevs;
1021 };
1022
1023 /* Attributes have a name and a value. */
1024 struct attribute
1025 {
1026 ENUM_BITFIELD(dwarf_attribute) name : 16;
1027 ENUM_BITFIELD(dwarf_form) form : 15;
1028
1029 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1030 field should be in u.str (existing only for DW_STRING) but it is kept
1031 here for better struct attribute alignment. */
1032 unsigned int string_is_canonical : 1;
1033
1034 union
1035 {
1036 const char *str;
1037 struct dwarf_block *blk;
1038 ULONGEST unsnd;
1039 LONGEST snd;
1040 CORE_ADDR addr;
1041 struct signatured_type *signatured_type;
1042 }
1043 u;
1044 };
1045
1046 /* This data structure holds a complete die structure. */
1047 struct die_info
1048 {
1049 /* DWARF-2 tag for this DIE. */
1050 ENUM_BITFIELD(dwarf_tag) tag : 16;
1051
1052 /* Number of attributes */
1053 unsigned char num_attrs;
1054
1055 /* True if we're presently building the full type name for the
1056 type derived from this DIE. */
1057 unsigned char building_fullname : 1;
1058
1059 /* Abbrev number */
1060 unsigned int abbrev;
1061
1062 /* Offset in .debug_info or .debug_types section. */
1063 sect_offset offset;
1064
1065 /* The dies in a compilation unit form an n-ary tree. PARENT
1066 points to this die's parent; CHILD points to the first child of
1067 this node; and all the children of a given node are chained
1068 together via their SIBLING fields. */
1069 struct die_info *child; /* Its first child, if any. */
1070 struct die_info *sibling; /* Its next sibling, if any. */
1071 struct die_info *parent; /* Its parent, if any. */
1072
1073 /* An array of attributes, with NUM_ATTRS elements. There may be
1074 zero, but it's not common and zero-sized arrays are not
1075 sufficiently portable C. */
1076 struct attribute attrs[1];
1077 };
1078
1079 /* Get at parts of an attribute structure. */
1080
1081 #define DW_STRING(attr) ((attr)->u.str)
1082 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1083 #define DW_UNSND(attr) ((attr)->u.unsnd)
1084 #define DW_BLOCK(attr) ((attr)->u.blk)
1085 #define DW_SND(attr) ((attr)->u.snd)
1086 #define DW_ADDR(attr) ((attr)->u.addr)
1087 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1088
1089 /* Blocks are a bunch of untyped bytes. */
1090 struct dwarf_block
1091 {
1092 size_t size;
1093
1094 /* Valid only if SIZE is not zero. */
1095 gdb_byte *data;
1096 };
1097
1098 #ifndef ATTR_ALLOC_CHUNK
1099 #define ATTR_ALLOC_CHUNK 4
1100 #endif
1101
1102 /* Allocate fields for structs, unions and enums in this size. */
1103 #ifndef DW_FIELD_ALLOC_CHUNK
1104 #define DW_FIELD_ALLOC_CHUNK 4
1105 #endif
1106
1107 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1108 but this would require a corresponding change in unpack_field_as_long
1109 and friends. */
1110 static int bits_per_byte = 8;
1111
1112 /* The routines that read and process dies for a C struct or C++ class
1113 pass lists of data member fields and lists of member function fields
1114 in an instance of a field_info structure, as defined below. */
1115 struct field_info
1116 {
1117 /* List of data member and baseclasses fields. */
1118 struct nextfield
1119 {
1120 struct nextfield *next;
1121 int accessibility;
1122 int virtuality;
1123 struct field field;
1124 }
1125 *fields, *baseclasses;
1126
1127 /* Number of fields (including baseclasses). */
1128 int nfields;
1129
1130 /* Number of baseclasses. */
1131 int nbaseclasses;
1132
1133 /* Set if the accesibility of one of the fields is not public. */
1134 int non_public_fields;
1135
1136 /* Member function fields array, entries are allocated in the order they
1137 are encountered in the object file. */
1138 struct nextfnfield
1139 {
1140 struct nextfnfield *next;
1141 struct fn_field fnfield;
1142 }
1143 *fnfields;
1144
1145 /* Member function fieldlist array, contains name of possibly overloaded
1146 member function, number of overloaded member functions and a pointer
1147 to the head of the member function field chain. */
1148 struct fnfieldlist
1149 {
1150 const char *name;
1151 int length;
1152 struct nextfnfield *head;
1153 }
1154 *fnfieldlists;
1155
1156 /* Number of entries in the fnfieldlists array. */
1157 int nfnfields;
1158
1159 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1160 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1161 struct typedef_field_list
1162 {
1163 struct typedef_field field;
1164 struct typedef_field_list *next;
1165 }
1166 *typedef_field_list;
1167 unsigned typedef_field_list_count;
1168 };
1169
1170 /* One item on the queue of compilation units to read in full symbols
1171 for. */
1172 struct dwarf2_queue_item
1173 {
1174 struct dwarf2_per_cu_data *per_cu;
1175 enum language pretend_language;
1176 struct dwarf2_queue_item *next;
1177 };
1178
1179 /* The current queue. */
1180 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1181
1182 /* Loaded secondary compilation units are kept in memory until they
1183 have not been referenced for the processing of this many
1184 compilation units. Set this to zero to disable caching. Cache
1185 sizes of up to at least twenty will improve startup time for
1186 typical inter-CU-reference binaries, at an obvious memory cost. */
1187 static int dwarf2_max_cache_age = 5;
1188 static void
1189 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1190 struct cmd_list_element *c, const char *value)
1191 {
1192 fprintf_filtered (file, _("The upper bound on the age of cached "
1193 "dwarf2 compilation units is %s.\n"),
1194 value);
1195 }
1196
1197
1198 /* Various complaints about symbol reading that don't abort the process. */
1199
1200 static void
1201 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1202 {
1203 complaint (&symfile_complaints,
1204 _("statement list doesn't fit in .debug_line section"));
1205 }
1206
1207 static void
1208 dwarf2_debug_line_missing_file_complaint (void)
1209 {
1210 complaint (&symfile_complaints,
1211 _(".debug_line section has line data without a file"));
1212 }
1213
1214 static void
1215 dwarf2_debug_line_missing_end_sequence_complaint (void)
1216 {
1217 complaint (&symfile_complaints,
1218 _(".debug_line section has line "
1219 "program sequence without an end"));
1220 }
1221
1222 static void
1223 dwarf2_complex_location_expr_complaint (void)
1224 {
1225 complaint (&symfile_complaints, _("location expression too complex"));
1226 }
1227
1228 static void
1229 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1230 int arg3)
1231 {
1232 complaint (&symfile_complaints,
1233 _("const value length mismatch for '%s', got %d, expected %d"),
1234 arg1, arg2, arg3);
1235 }
1236
1237 static void
1238 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1239 {
1240 complaint (&symfile_complaints,
1241 _("debug info runs off end of %s section"
1242 " [in module %s]"),
1243 section->asection->name,
1244 bfd_get_filename (section->asection->owner));
1245 }
1246
1247 static void
1248 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1249 {
1250 complaint (&symfile_complaints,
1251 _("macro debug info contains a "
1252 "malformed macro definition:\n`%s'"),
1253 arg1);
1254 }
1255
1256 static void
1257 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1258 {
1259 complaint (&symfile_complaints,
1260 _("invalid attribute class or form for '%s' in '%s'"),
1261 arg1, arg2);
1262 }
1263
1264 /* local function prototypes */
1265
1266 static void dwarf2_locate_sections (bfd *, asection *, void *);
1267
1268 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1269 struct objfile *);
1270
1271 static void dwarf2_find_base_address (struct die_info *die,
1272 struct dwarf2_cu *cu);
1273
1274 static void dwarf2_build_psymtabs_hard (struct objfile *);
1275
1276 static void scan_partial_symbols (struct partial_die_info *,
1277 CORE_ADDR *, CORE_ADDR *,
1278 int, struct dwarf2_cu *);
1279
1280 static void add_partial_symbol (struct partial_die_info *,
1281 struct dwarf2_cu *);
1282
1283 static void add_partial_namespace (struct partial_die_info *pdi,
1284 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1285 int need_pc, struct dwarf2_cu *cu);
1286
1287 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1288 CORE_ADDR *highpc, int need_pc,
1289 struct dwarf2_cu *cu);
1290
1291 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1292 struct dwarf2_cu *cu);
1293
1294 static void add_partial_subprogram (struct partial_die_info *pdi,
1295 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1296 int need_pc, struct dwarf2_cu *cu);
1297
1298 static void dwarf2_read_symtab (struct partial_symtab *,
1299 struct objfile *);
1300
1301 static void psymtab_to_symtab_1 (struct partial_symtab *);
1302
1303 static struct abbrev_info *abbrev_table_lookup_abbrev
1304 (const struct abbrev_table *, unsigned int);
1305
1306 static struct abbrev_table *abbrev_table_read_table
1307 (struct dwarf2_section_info *, sect_offset);
1308
1309 static void abbrev_table_free (struct abbrev_table *);
1310
1311 static void abbrev_table_free_cleanup (void *);
1312
1313 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1314 struct dwarf2_section_info *);
1315
1316 static void dwarf2_free_abbrev_table (void *);
1317
1318 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1319
1320 static struct partial_die_info *load_partial_dies
1321 (const struct die_reader_specs *, gdb_byte *, int);
1322
1323 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1324 struct partial_die_info *,
1325 struct abbrev_info *,
1326 unsigned int,
1327 gdb_byte *);
1328
1329 static struct partial_die_info *find_partial_die (sect_offset, int,
1330 struct dwarf2_cu *);
1331
1332 static void fixup_partial_die (struct partial_die_info *,
1333 struct dwarf2_cu *);
1334
1335 static gdb_byte *read_attribute (const struct die_reader_specs *,
1336 struct attribute *, struct attr_abbrev *,
1337 gdb_byte *);
1338
1339 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1340
1341 static int read_1_signed_byte (bfd *, const gdb_byte *);
1342
1343 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1344
1345 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1346
1347 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1348
1349 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1350 unsigned int *);
1351
1352 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1353
1354 static LONGEST read_checked_initial_length_and_offset
1355 (bfd *, gdb_byte *, const struct comp_unit_head *,
1356 unsigned int *, unsigned int *);
1357
1358 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1359 unsigned int *);
1360
1361 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1362
1363 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1364 sect_offset);
1365
1366 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1367
1368 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1369
1370 static char *read_indirect_string (bfd *, gdb_byte *,
1371 const struct comp_unit_head *,
1372 unsigned int *);
1373
1374 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1375
1376 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1377
1378 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1379
1380 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1381 unsigned int *);
1382
1383 static char *read_str_index (const struct die_reader_specs *reader,
1384 struct dwarf2_cu *cu, ULONGEST str_index);
1385
1386 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1387
1388 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1389 struct dwarf2_cu *);
1390
1391 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1392 unsigned int);
1393
1394 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1395 struct dwarf2_cu *cu);
1396
1397 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1398
1399 static struct die_info *die_specification (struct die_info *die,
1400 struct dwarf2_cu **);
1401
1402 static void free_line_header (struct line_header *lh);
1403
1404 static void add_file_name (struct line_header *, char *, unsigned int,
1405 unsigned int, unsigned int);
1406
1407 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1408 struct dwarf2_cu *cu);
1409
1410 static void dwarf_decode_lines (struct line_header *, const char *,
1411 struct dwarf2_cu *, struct partial_symtab *,
1412 int);
1413
1414 static void dwarf2_start_subfile (char *, const char *, const char *);
1415
1416 static void dwarf2_start_symtab (struct dwarf2_cu *,
1417 const char *, const char *, CORE_ADDR);
1418
1419 static struct symbol *new_symbol (struct die_info *, struct type *,
1420 struct dwarf2_cu *);
1421
1422 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1423 struct dwarf2_cu *, struct symbol *);
1424
1425 static void dwarf2_const_value (struct attribute *, struct symbol *,
1426 struct dwarf2_cu *);
1427
1428 static void dwarf2_const_value_attr (struct attribute *attr,
1429 struct type *type,
1430 const char *name,
1431 struct obstack *obstack,
1432 struct dwarf2_cu *cu, LONGEST *value,
1433 gdb_byte **bytes,
1434 struct dwarf2_locexpr_baton **baton);
1435
1436 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1437
1438 static int need_gnat_info (struct dwarf2_cu *);
1439
1440 static struct type *die_descriptive_type (struct die_info *,
1441 struct dwarf2_cu *);
1442
1443 static void set_descriptive_type (struct type *, struct die_info *,
1444 struct dwarf2_cu *);
1445
1446 static struct type *die_containing_type (struct die_info *,
1447 struct dwarf2_cu *);
1448
1449 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1450 struct dwarf2_cu *);
1451
1452 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1453
1454 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1455
1456 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1457
1458 static char *typename_concat (struct obstack *obs, const char *prefix,
1459 const char *suffix, int physname,
1460 struct dwarf2_cu *cu);
1461
1462 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1463
1464 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1465
1466 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1467
1468 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1469
1470 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1471
1472 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1473 struct dwarf2_cu *, struct partial_symtab *);
1474
1475 static int dwarf2_get_pc_bounds (struct die_info *,
1476 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1477 struct partial_symtab *);
1478
1479 static void get_scope_pc_bounds (struct die_info *,
1480 CORE_ADDR *, CORE_ADDR *,
1481 struct dwarf2_cu *);
1482
1483 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1484 CORE_ADDR, struct dwarf2_cu *);
1485
1486 static void dwarf2_add_field (struct field_info *, struct die_info *,
1487 struct dwarf2_cu *);
1488
1489 static void dwarf2_attach_fields_to_type (struct field_info *,
1490 struct type *, struct dwarf2_cu *);
1491
1492 static void dwarf2_add_member_fn (struct field_info *,
1493 struct die_info *, struct type *,
1494 struct dwarf2_cu *);
1495
1496 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1497 struct type *,
1498 struct dwarf2_cu *);
1499
1500 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1501
1502 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1503
1504 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1505
1506 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1507
1508 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1509
1510 static struct type *read_module_type (struct die_info *die,
1511 struct dwarf2_cu *cu);
1512
1513 static const char *namespace_name (struct die_info *die,
1514 int *is_anonymous, struct dwarf2_cu *);
1515
1516 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1517
1518 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1519
1520 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1521 struct dwarf2_cu *);
1522
1523 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1524 gdb_byte *info_ptr,
1525 gdb_byte **new_info_ptr,
1526 struct die_info *parent);
1527
1528 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1529 gdb_byte *info_ptr,
1530 gdb_byte **new_info_ptr,
1531 struct die_info *parent);
1532
1533 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1534 struct die_info **, gdb_byte *, int *, int);
1535
1536 static gdb_byte *read_full_die (const struct die_reader_specs *,
1537 struct die_info **, gdb_byte *, int *);
1538
1539 static void process_die (struct die_info *, struct dwarf2_cu *);
1540
1541 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1542 struct obstack *);
1543
1544 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1545
1546 static const char *dwarf2_full_name (const char *name,
1547 struct die_info *die,
1548 struct dwarf2_cu *cu);
1549
1550 static struct die_info *dwarf2_extension (struct die_info *die,
1551 struct dwarf2_cu **);
1552
1553 static const char *dwarf_tag_name (unsigned int);
1554
1555 static const char *dwarf_attr_name (unsigned int);
1556
1557 static const char *dwarf_form_name (unsigned int);
1558
1559 static char *dwarf_bool_name (unsigned int);
1560
1561 static const char *dwarf_type_encoding_name (unsigned int);
1562
1563 static struct die_info *sibling_die (struct die_info *);
1564
1565 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1566
1567 static void dump_die_for_error (struct die_info *);
1568
1569 static void dump_die_1 (struct ui_file *, int level, int max_level,
1570 struct die_info *);
1571
1572 /*static*/ void dump_die (struct die_info *, int max_level);
1573
1574 static void store_in_ref_table (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static int is_ref_attr (struct attribute *);
1578
1579 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1580
1581 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1582
1583 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1584 struct attribute *,
1585 struct dwarf2_cu **);
1586
1587 static struct die_info *follow_die_ref (struct die_info *,
1588 struct attribute *,
1589 struct dwarf2_cu **);
1590
1591 static struct die_info *follow_die_sig (struct die_info *,
1592 struct attribute *,
1593 struct dwarf2_cu **);
1594
1595 static struct signatured_type *lookup_signatured_type_at_offset
1596 (struct objfile *objfile,
1597 struct dwarf2_section_info *section, sect_offset offset);
1598
1599 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1600
1601 static void read_signatured_type (struct signatured_type *);
1602
1603 static struct type_unit_group *get_type_unit_group
1604 (struct dwarf2_cu *, struct attribute *);
1605
1606 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1607
1608 /* memory allocation interface */
1609
1610 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1611
1612 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1613
1614 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1615 const char *, int);
1616
1617 static int attr_form_is_block (struct attribute *);
1618
1619 static int attr_form_is_section_offset (struct attribute *);
1620
1621 static int attr_form_is_constant (struct attribute *);
1622
1623 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1624 struct dwarf2_loclist_baton *baton,
1625 struct attribute *attr);
1626
1627 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1628 struct symbol *sym,
1629 struct dwarf2_cu *cu);
1630
1631 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1632 gdb_byte *info_ptr,
1633 struct abbrev_info *abbrev);
1634
1635 static void free_stack_comp_unit (void *);
1636
1637 static hashval_t partial_die_hash (const void *item);
1638
1639 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1640
1641 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1642 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1643
1644 static void init_one_comp_unit (struct dwarf2_cu *cu,
1645 struct dwarf2_per_cu_data *per_cu);
1646
1647 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1648 struct die_info *comp_unit_die,
1649 enum language pretend_language);
1650
1651 static void free_heap_comp_unit (void *);
1652
1653 static void free_cached_comp_units (void *);
1654
1655 static void age_cached_comp_units (void);
1656
1657 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1658
1659 static struct type *set_die_type (struct die_info *, struct type *,
1660 struct dwarf2_cu *);
1661
1662 static void create_all_comp_units (struct objfile *);
1663
1664 static int create_all_type_units (struct objfile *);
1665
1666 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1667 enum language);
1668
1669 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1670 enum language);
1671
1672 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1673 enum language);
1674
1675 static void dwarf2_add_dependence (struct dwarf2_cu *,
1676 struct dwarf2_per_cu_data *);
1677
1678 static void dwarf2_mark (struct dwarf2_cu *);
1679
1680 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1681
1682 static struct type *get_die_type_at_offset (sect_offset,
1683 struct dwarf2_per_cu_data *per_cu);
1684
1685 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1686
1687 static void dwarf2_release_queue (void *dummy);
1688
1689 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1690 enum language pretend_language);
1691
1692 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1693 struct dwarf2_per_cu_data *per_cu,
1694 enum language pretend_language);
1695
1696 static void process_queue (void);
1697
1698 static void find_file_and_directory (struct die_info *die,
1699 struct dwarf2_cu *cu,
1700 const char **name, const char **comp_dir);
1701
1702 static char *file_full_name (int file, struct line_header *lh,
1703 const char *comp_dir);
1704
1705 static gdb_byte *read_and_check_comp_unit_head
1706 (struct comp_unit_head *header,
1707 struct dwarf2_section_info *section,
1708 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1709 int is_debug_types_section);
1710
1711 static void init_cutu_and_read_dies
1712 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1713 int use_existing_cu, int keep,
1714 die_reader_func_ftype *die_reader_func, void *data);
1715
1716 static void init_cutu_and_read_dies_simple
1717 (struct dwarf2_per_cu_data *this_cu,
1718 die_reader_func_ftype *die_reader_func, void *data);
1719
1720 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1721
1722 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1723
1724 static struct dwo_unit *lookup_dwo_comp_unit
1725 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1726
1727 static struct dwo_unit *lookup_dwo_type_unit
1728 (struct signatured_type *, const char *, const char *);
1729
1730 static void free_dwo_file_cleanup (void *);
1731
1732 static void process_cu_includes (void);
1733
1734 static void check_producer (struct dwarf2_cu *cu);
1735
1736 #if WORDS_BIGENDIAN
1737
1738 /* Convert VALUE between big- and little-endian. */
1739 static offset_type
1740 byte_swap (offset_type value)
1741 {
1742 offset_type result;
1743
1744 result = (value & 0xff) << 24;
1745 result |= (value & 0xff00) << 8;
1746 result |= (value & 0xff0000) >> 8;
1747 result |= (value & 0xff000000) >> 24;
1748 return result;
1749 }
1750
1751 #define MAYBE_SWAP(V) byte_swap (V)
1752
1753 #else
1754 #define MAYBE_SWAP(V) (V)
1755 #endif /* WORDS_BIGENDIAN */
1756
1757 /* The suffix for an index file. */
1758 #define INDEX_SUFFIX ".gdb-index"
1759
1760 static const char *dwarf2_physname (const char *name, struct die_info *die,
1761 struct dwarf2_cu *cu);
1762
1763 /* Try to locate the sections we need for DWARF 2 debugging
1764 information and return true if we have enough to do something.
1765 NAMES points to the dwarf2 section names, or is NULL if the standard
1766 ELF names are used. */
1767
1768 int
1769 dwarf2_has_info (struct objfile *objfile,
1770 const struct dwarf2_debug_sections *names)
1771 {
1772 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1773 if (!dwarf2_per_objfile)
1774 {
1775 /* Initialize per-objfile state. */
1776 struct dwarf2_per_objfile *data
1777 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1778
1779 memset (data, 0, sizeof (*data));
1780 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1781 dwarf2_per_objfile = data;
1782
1783 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1784 (void *) names);
1785 dwarf2_per_objfile->objfile = objfile;
1786 }
1787 return (dwarf2_per_objfile->info.asection != NULL
1788 && dwarf2_per_objfile->abbrev.asection != NULL);
1789 }
1790
1791 /* When loading sections, we look either for uncompressed section or for
1792 compressed section names. */
1793
1794 static int
1795 section_is_p (const char *section_name,
1796 const struct dwarf2_section_names *names)
1797 {
1798 if (names->normal != NULL
1799 && strcmp (section_name, names->normal) == 0)
1800 return 1;
1801 if (names->compressed != NULL
1802 && strcmp (section_name, names->compressed) == 0)
1803 return 1;
1804 return 0;
1805 }
1806
1807 /* This function is mapped across the sections and remembers the
1808 offset and size of each of the debugging sections we are interested
1809 in. */
1810
1811 static void
1812 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1813 {
1814 const struct dwarf2_debug_sections *names;
1815 flagword aflag = bfd_get_section_flags (abfd, sectp);
1816
1817 if (vnames == NULL)
1818 names = &dwarf2_elf_names;
1819 else
1820 names = (const struct dwarf2_debug_sections *) vnames;
1821
1822 if ((aflag & SEC_HAS_CONTENTS) == 0)
1823 {
1824 }
1825 else if (section_is_p (sectp->name, &names->info))
1826 {
1827 dwarf2_per_objfile->info.asection = sectp;
1828 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1829 }
1830 else if (section_is_p (sectp->name, &names->abbrev))
1831 {
1832 dwarf2_per_objfile->abbrev.asection = sectp;
1833 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1834 }
1835 else if (section_is_p (sectp->name, &names->line))
1836 {
1837 dwarf2_per_objfile->line.asection = sectp;
1838 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1839 }
1840 else if (section_is_p (sectp->name, &names->loc))
1841 {
1842 dwarf2_per_objfile->loc.asection = sectp;
1843 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1844 }
1845 else if (section_is_p (sectp->name, &names->macinfo))
1846 {
1847 dwarf2_per_objfile->macinfo.asection = sectp;
1848 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1849 }
1850 else if (section_is_p (sectp->name, &names->macro))
1851 {
1852 dwarf2_per_objfile->macro.asection = sectp;
1853 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1854 }
1855 else if (section_is_p (sectp->name, &names->str))
1856 {
1857 dwarf2_per_objfile->str.asection = sectp;
1858 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1859 }
1860 else if (section_is_p (sectp->name, &names->addr))
1861 {
1862 dwarf2_per_objfile->addr.asection = sectp;
1863 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1864 }
1865 else if (section_is_p (sectp->name, &names->frame))
1866 {
1867 dwarf2_per_objfile->frame.asection = sectp;
1868 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1869 }
1870 else if (section_is_p (sectp->name, &names->eh_frame))
1871 {
1872 dwarf2_per_objfile->eh_frame.asection = sectp;
1873 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1874 }
1875 else if (section_is_p (sectp->name, &names->ranges))
1876 {
1877 dwarf2_per_objfile->ranges.asection = sectp;
1878 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1879 }
1880 else if (section_is_p (sectp->name, &names->types))
1881 {
1882 struct dwarf2_section_info type_section;
1883
1884 memset (&type_section, 0, sizeof (type_section));
1885 type_section.asection = sectp;
1886 type_section.size = bfd_get_section_size (sectp);
1887
1888 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1889 &type_section);
1890 }
1891 else if (section_is_p (sectp->name, &names->gdb_index))
1892 {
1893 dwarf2_per_objfile->gdb_index.asection = sectp;
1894 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1895 }
1896
1897 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1898 && bfd_section_vma (abfd, sectp) == 0)
1899 dwarf2_per_objfile->has_section_at_zero = 1;
1900 }
1901
1902 /* A helper function that decides whether a section is empty,
1903 or not present. */
1904
1905 static int
1906 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1907 {
1908 return info->asection == NULL || info->size == 0;
1909 }
1910
1911 /* Read the contents of the section INFO.
1912 OBJFILE is the main object file, but not necessarily the file where
1913 the section comes from. E.g., for DWO files INFO->asection->owner
1914 is the bfd of the DWO file.
1915 If the section is compressed, uncompress it before returning. */
1916
1917 static void
1918 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1919 {
1920 asection *sectp = info->asection;
1921 bfd *abfd;
1922 gdb_byte *buf, *retbuf;
1923 unsigned char header[4];
1924
1925 if (info->readin)
1926 return;
1927 info->buffer = NULL;
1928 info->readin = 1;
1929
1930 if (dwarf2_section_empty_p (info))
1931 return;
1932
1933 abfd = sectp->owner;
1934
1935 /* If the section has relocations, we must read it ourselves.
1936 Otherwise we attach it to the BFD. */
1937 if ((sectp->flags & SEC_RELOC) == 0)
1938 {
1939 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1940
1941 /* We have to cast away const here for historical reasons.
1942 Fixing dwarf2read to be const-correct would be quite nice. */
1943 info->buffer = (gdb_byte *) bytes;
1944 return;
1945 }
1946
1947 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1948 info->buffer = buf;
1949
1950 /* When debugging .o files, we may need to apply relocations; see
1951 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1952 We never compress sections in .o files, so we only need to
1953 try this when the section is not compressed. */
1954 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1955 if (retbuf != NULL)
1956 {
1957 info->buffer = retbuf;
1958 return;
1959 }
1960
1961 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1962 || bfd_bread (buf, info->size, abfd) != info->size)
1963 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1964 bfd_get_filename (abfd));
1965 }
1966
1967 /* A helper function that returns the size of a section in a safe way.
1968 If you are positive that the section has been read before using the
1969 size, then it is safe to refer to the dwarf2_section_info object's
1970 "size" field directly. In other cases, you must call this
1971 function, because for compressed sections the size field is not set
1972 correctly until the section has been read. */
1973
1974 static bfd_size_type
1975 dwarf2_section_size (struct objfile *objfile,
1976 struct dwarf2_section_info *info)
1977 {
1978 if (!info->readin)
1979 dwarf2_read_section (objfile, info);
1980 return info->size;
1981 }
1982
1983 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1984 SECTION_NAME. */
1985
1986 void
1987 dwarf2_get_section_info (struct objfile *objfile,
1988 enum dwarf2_section_enum sect,
1989 asection **sectp, gdb_byte **bufp,
1990 bfd_size_type *sizep)
1991 {
1992 struct dwarf2_per_objfile *data
1993 = objfile_data (objfile, dwarf2_objfile_data_key);
1994 struct dwarf2_section_info *info;
1995
1996 /* We may see an objfile without any DWARF, in which case we just
1997 return nothing. */
1998 if (data == NULL)
1999 {
2000 *sectp = NULL;
2001 *bufp = NULL;
2002 *sizep = 0;
2003 return;
2004 }
2005 switch (sect)
2006 {
2007 case DWARF2_DEBUG_FRAME:
2008 info = &data->frame;
2009 break;
2010 case DWARF2_EH_FRAME:
2011 info = &data->eh_frame;
2012 break;
2013 default:
2014 gdb_assert_not_reached ("unexpected section");
2015 }
2016
2017 dwarf2_read_section (objfile, info);
2018
2019 *sectp = info->asection;
2020 *bufp = info->buffer;
2021 *sizep = info->size;
2022 }
2023
2024 /* A helper function to find the sections for a .dwz file. */
2025
2026 static void
2027 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2028 {
2029 struct dwz_file *dwz_file = arg;
2030
2031 /* Note that we only support the standard ELF names, because .dwz
2032 is ELF-only (at the time of writing). */
2033 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2034 {
2035 dwz_file->abbrev.asection = sectp;
2036 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2037 }
2038 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2039 {
2040 dwz_file->info.asection = sectp;
2041 dwz_file->info.size = bfd_get_section_size (sectp);
2042 }
2043 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2044 {
2045 dwz_file->str.asection = sectp;
2046 dwz_file->str.size = bfd_get_section_size (sectp);
2047 }
2048 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2049 {
2050 dwz_file->line.asection = sectp;
2051 dwz_file->line.size = bfd_get_section_size (sectp);
2052 }
2053 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2054 {
2055 dwz_file->macro.asection = sectp;
2056 dwz_file->macro.size = bfd_get_section_size (sectp);
2057 }
2058 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2059 {
2060 dwz_file->gdb_index.asection = sectp;
2061 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2062 }
2063 }
2064
2065 /* Open the separate '.dwz' debug file, if needed. Error if the file
2066 cannot be found. */
2067
2068 static struct dwz_file *
2069 dwarf2_get_dwz_file (void)
2070 {
2071 bfd *abfd, *dwz_bfd;
2072 asection *section;
2073 gdb_byte *data;
2074 struct cleanup *cleanup;
2075 const char *filename;
2076 struct dwz_file *result;
2077
2078 if (dwarf2_per_objfile->dwz_file != NULL)
2079 return dwarf2_per_objfile->dwz_file;
2080
2081 abfd = dwarf2_per_objfile->objfile->obfd;
2082 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2083 if (section == NULL)
2084 error (_("could not find '.gnu_debugaltlink' section"));
2085 if (!bfd_malloc_and_get_section (abfd, section, &data))
2086 error (_("could not read '.gnu_debugaltlink' section: %s"),
2087 bfd_errmsg (bfd_get_error ()));
2088 cleanup = make_cleanup (xfree, data);
2089
2090 filename = data;
2091 if (!IS_ABSOLUTE_PATH (filename))
2092 {
2093 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2094 char *rel;
2095
2096 make_cleanup (xfree, abs);
2097 abs = ldirname (abs);
2098 make_cleanup (xfree, abs);
2099
2100 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2101 make_cleanup (xfree, rel);
2102 filename = rel;
2103 }
2104
2105 /* The format is just a NUL-terminated file name, followed by the
2106 build-id. For now, though, we ignore the build-id. */
2107 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2108 if (dwz_bfd == NULL)
2109 error (_("could not read '%s': %s"), filename,
2110 bfd_errmsg (bfd_get_error ()));
2111
2112 if (!bfd_check_format (dwz_bfd, bfd_object))
2113 {
2114 gdb_bfd_unref (dwz_bfd);
2115 error (_("file '%s' was not usable: %s"), filename,
2116 bfd_errmsg (bfd_get_error ()));
2117 }
2118
2119 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2120 struct dwz_file);
2121 result->dwz_bfd = dwz_bfd;
2122
2123 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2124
2125 do_cleanups (cleanup);
2126
2127 dwarf2_per_objfile->dwz_file = result;
2128 return result;
2129 }
2130 \f
2131 /* DWARF quick_symbols_functions support. */
2132
2133 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2134 unique line tables, so we maintain a separate table of all .debug_line
2135 derived entries to support the sharing.
2136 All the quick functions need is the list of file names. We discard the
2137 line_header when we're done and don't need to record it here. */
2138 struct quick_file_names
2139 {
2140 /* The data used to construct the hash key. */
2141 struct stmt_list_hash hash;
2142
2143 /* The number of entries in file_names, real_names. */
2144 unsigned int num_file_names;
2145
2146 /* The file names from the line table, after being run through
2147 file_full_name. */
2148 const char **file_names;
2149
2150 /* The file names from the line table after being run through
2151 gdb_realpath. These are computed lazily. */
2152 const char **real_names;
2153 };
2154
2155 /* When using the index (and thus not using psymtabs), each CU has an
2156 object of this type. This is used to hold information needed by
2157 the various "quick" methods. */
2158 struct dwarf2_per_cu_quick_data
2159 {
2160 /* The file table. This can be NULL if there was no file table
2161 or it's currently not read in.
2162 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2163 struct quick_file_names *file_names;
2164
2165 /* The corresponding symbol table. This is NULL if symbols for this
2166 CU have not yet been read. */
2167 struct symtab *symtab;
2168
2169 /* A temporary mark bit used when iterating over all CUs in
2170 expand_symtabs_matching. */
2171 unsigned int mark : 1;
2172
2173 /* True if we've tried to read the file table and found there isn't one.
2174 There will be no point in trying to read it again next time. */
2175 unsigned int no_file_data : 1;
2176 };
2177
2178 /* Utility hash function for a stmt_list_hash. */
2179
2180 static hashval_t
2181 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2182 {
2183 hashval_t v = 0;
2184
2185 if (stmt_list_hash->dwo_unit != NULL)
2186 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2187 v += stmt_list_hash->line_offset.sect_off;
2188 return v;
2189 }
2190
2191 /* Utility equality function for a stmt_list_hash. */
2192
2193 static int
2194 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2195 const struct stmt_list_hash *rhs)
2196 {
2197 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2198 return 0;
2199 if (lhs->dwo_unit != NULL
2200 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2201 return 0;
2202
2203 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2204 }
2205
2206 /* Hash function for a quick_file_names. */
2207
2208 static hashval_t
2209 hash_file_name_entry (const void *e)
2210 {
2211 const struct quick_file_names *file_data = e;
2212
2213 return hash_stmt_list_entry (&file_data->hash);
2214 }
2215
2216 /* Equality function for a quick_file_names. */
2217
2218 static int
2219 eq_file_name_entry (const void *a, const void *b)
2220 {
2221 const struct quick_file_names *ea = a;
2222 const struct quick_file_names *eb = b;
2223
2224 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2225 }
2226
2227 /* Delete function for a quick_file_names. */
2228
2229 static void
2230 delete_file_name_entry (void *e)
2231 {
2232 struct quick_file_names *file_data = e;
2233 int i;
2234
2235 for (i = 0; i < file_data->num_file_names; ++i)
2236 {
2237 xfree ((void*) file_data->file_names[i]);
2238 if (file_data->real_names)
2239 xfree ((void*) file_data->real_names[i]);
2240 }
2241
2242 /* The space for the struct itself lives on objfile_obstack,
2243 so we don't free it here. */
2244 }
2245
2246 /* Create a quick_file_names hash table. */
2247
2248 static htab_t
2249 create_quick_file_names_table (unsigned int nr_initial_entries)
2250 {
2251 return htab_create_alloc (nr_initial_entries,
2252 hash_file_name_entry, eq_file_name_entry,
2253 delete_file_name_entry, xcalloc, xfree);
2254 }
2255
2256 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2257 have to be created afterwards. You should call age_cached_comp_units after
2258 processing PER_CU->CU. dw2_setup must have been already called. */
2259
2260 static void
2261 load_cu (struct dwarf2_per_cu_data *per_cu)
2262 {
2263 if (per_cu->is_debug_types)
2264 load_full_type_unit (per_cu);
2265 else
2266 load_full_comp_unit (per_cu, language_minimal);
2267
2268 gdb_assert (per_cu->cu != NULL);
2269
2270 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2271 }
2272
2273 /* Read in the symbols for PER_CU. */
2274
2275 static void
2276 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2277 {
2278 struct cleanup *back_to;
2279
2280 /* Skip type_unit_groups, reading the type units they contain
2281 is handled elsewhere. */
2282 if (IS_TYPE_UNIT_GROUP (per_cu))
2283 return;
2284
2285 back_to = make_cleanup (dwarf2_release_queue, NULL);
2286
2287 if (dwarf2_per_objfile->using_index
2288 ? per_cu->v.quick->symtab == NULL
2289 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2290 {
2291 queue_comp_unit (per_cu, language_minimal);
2292 load_cu (per_cu);
2293 }
2294
2295 process_queue ();
2296
2297 /* Age the cache, releasing compilation units that have not
2298 been used recently. */
2299 age_cached_comp_units ();
2300
2301 do_cleanups (back_to);
2302 }
2303
2304 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2305 the objfile from which this CU came. Returns the resulting symbol
2306 table. */
2307
2308 static struct symtab *
2309 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2310 {
2311 gdb_assert (dwarf2_per_objfile->using_index);
2312 if (!per_cu->v.quick->symtab)
2313 {
2314 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2315 increment_reading_symtab ();
2316 dw2_do_instantiate_symtab (per_cu);
2317 process_cu_includes ();
2318 do_cleanups (back_to);
2319 }
2320 return per_cu->v.quick->symtab;
2321 }
2322
2323 /* Return the CU given its index.
2324
2325 This is intended for loops like:
2326
2327 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2328 + dwarf2_per_objfile->n_type_units); ++i)
2329 {
2330 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2331
2332 ...;
2333 }
2334 */
2335
2336 static struct dwarf2_per_cu_data *
2337 dw2_get_cu (int index)
2338 {
2339 if (index >= dwarf2_per_objfile->n_comp_units)
2340 {
2341 index -= dwarf2_per_objfile->n_comp_units;
2342 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2343 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2344 }
2345
2346 return dwarf2_per_objfile->all_comp_units[index];
2347 }
2348
2349 /* Return the primary CU given its index.
2350 The difference between this function and dw2_get_cu is in the handling
2351 of type units (TUs). Here we return the type_unit_group object.
2352
2353 This is intended for loops like:
2354
2355 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2356 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2357 {
2358 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2359
2360 ...;
2361 }
2362 */
2363
2364 static struct dwarf2_per_cu_data *
2365 dw2_get_primary_cu (int index)
2366 {
2367 if (index >= dwarf2_per_objfile->n_comp_units)
2368 {
2369 index -= dwarf2_per_objfile->n_comp_units;
2370 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2371 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2372 }
2373
2374 return dwarf2_per_objfile->all_comp_units[index];
2375 }
2376
2377 /* A helper for create_cus_from_index that handles a given list of
2378 CUs. */
2379
2380 static void
2381 create_cus_from_index_list (struct objfile *objfile,
2382 const gdb_byte *cu_list, offset_type n_elements,
2383 struct dwarf2_section_info *section,
2384 int is_dwz,
2385 int base_offset)
2386 {
2387 offset_type i;
2388
2389 for (i = 0; i < n_elements; i += 2)
2390 {
2391 struct dwarf2_per_cu_data *the_cu;
2392 ULONGEST offset, length;
2393
2394 gdb_static_assert (sizeof (ULONGEST) >= 8);
2395 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2396 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2397 cu_list += 2 * 8;
2398
2399 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2400 struct dwarf2_per_cu_data);
2401 the_cu->offset.sect_off = offset;
2402 the_cu->length = length;
2403 the_cu->objfile = objfile;
2404 the_cu->info_or_types_section = section;
2405 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2406 struct dwarf2_per_cu_quick_data);
2407 the_cu->is_dwz = is_dwz;
2408 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2409 }
2410 }
2411
2412 /* Read the CU list from the mapped index, and use it to create all
2413 the CU objects for this objfile. */
2414
2415 static void
2416 create_cus_from_index (struct objfile *objfile,
2417 const gdb_byte *cu_list, offset_type cu_list_elements,
2418 const gdb_byte *dwz_list, offset_type dwz_elements)
2419 {
2420 struct dwz_file *dwz;
2421
2422 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2423 dwarf2_per_objfile->all_comp_units
2424 = obstack_alloc (&objfile->objfile_obstack,
2425 dwarf2_per_objfile->n_comp_units
2426 * sizeof (struct dwarf2_per_cu_data *));
2427
2428 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2429 &dwarf2_per_objfile->info, 0, 0);
2430
2431 if (dwz_elements == 0)
2432 return;
2433
2434 dwz = dwarf2_get_dwz_file ();
2435 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2436 cu_list_elements / 2);
2437 }
2438
2439 /* Create the signatured type hash table from the index. */
2440
2441 static void
2442 create_signatured_type_table_from_index (struct objfile *objfile,
2443 struct dwarf2_section_info *section,
2444 const gdb_byte *bytes,
2445 offset_type elements)
2446 {
2447 offset_type i;
2448 htab_t sig_types_hash;
2449
2450 dwarf2_per_objfile->n_type_units = elements / 3;
2451 dwarf2_per_objfile->all_type_units
2452 = obstack_alloc (&objfile->objfile_obstack,
2453 dwarf2_per_objfile->n_type_units
2454 * sizeof (struct signatured_type *));
2455
2456 sig_types_hash = allocate_signatured_type_table (objfile);
2457
2458 for (i = 0; i < elements; i += 3)
2459 {
2460 struct signatured_type *sig_type;
2461 ULONGEST offset, type_offset_in_tu, signature;
2462 void **slot;
2463
2464 gdb_static_assert (sizeof (ULONGEST) >= 8);
2465 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2466 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2467 BFD_ENDIAN_LITTLE);
2468 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2469 bytes += 3 * 8;
2470
2471 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2472 struct signatured_type);
2473 sig_type->signature = signature;
2474 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2475 sig_type->per_cu.is_debug_types = 1;
2476 sig_type->per_cu.info_or_types_section = section;
2477 sig_type->per_cu.offset.sect_off = offset;
2478 sig_type->per_cu.objfile = objfile;
2479 sig_type->per_cu.v.quick
2480 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2481 struct dwarf2_per_cu_quick_data);
2482
2483 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2484 *slot = sig_type;
2485
2486 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2487 }
2488
2489 dwarf2_per_objfile->signatured_types = sig_types_hash;
2490 }
2491
2492 /* Read the address map data from the mapped index, and use it to
2493 populate the objfile's psymtabs_addrmap. */
2494
2495 static void
2496 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2497 {
2498 const gdb_byte *iter, *end;
2499 struct obstack temp_obstack;
2500 struct addrmap *mutable_map;
2501 struct cleanup *cleanup;
2502 CORE_ADDR baseaddr;
2503
2504 obstack_init (&temp_obstack);
2505 cleanup = make_cleanup_obstack_free (&temp_obstack);
2506 mutable_map = addrmap_create_mutable (&temp_obstack);
2507
2508 iter = index->address_table;
2509 end = iter + index->address_table_size;
2510
2511 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2512
2513 while (iter < end)
2514 {
2515 ULONGEST hi, lo, cu_index;
2516 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2517 iter += 8;
2518 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2519 iter += 8;
2520 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2521 iter += 4;
2522
2523 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2524 dw2_get_cu (cu_index));
2525 }
2526
2527 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2528 &objfile->objfile_obstack);
2529 do_cleanups (cleanup);
2530 }
2531
2532 /* The hash function for strings in the mapped index. This is the same as
2533 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2534 implementation. This is necessary because the hash function is tied to the
2535 format of the mapped index file. The hash values do not have to match with
2536 SYMBOL_HASH_NEXT.
2537
2538 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2539
2540 static hashval_t
2541 mapped_index_string_hash (int index_version, const void *p)
2542 {
2543 const unsigned char *str = (const unsigned char *) p;
2544 hashval_t r = 0;
2545 unsigned char c;
2546
2547 while ((c = *str++) != 0)
2548 {
2549 if (index_version >= 5)
2550 c = tolower (c);
2551 r = r * 67 + c - 113;
2552 }
2553
2554 return r;
2555 }
2556
2557 /* Find a slot in the mapped index INDEX for the object named NAME.
2558 If NAME is found, set *VEC_OUT to point to the CU vector in the
2559 constant pool and return 1. If NAME cannot be found, return 0. */
2560
2561 static int
2562 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2563 offset_type **vec_out)
2564 {
2565 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2566 offset_type hash;
2567 offset_type slot, step;
2568 int (*cmp) (const char *, const char *);
2569
2570 if (current_language->la_language == language_cplus
2571 || current_language->la_language == language_java
2572 || current_language->la_language == language_fortran)
2573 {
2574 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2575 not contain any. */
2576 const char *paren = strchr (name, '(');
2577
2578 if (paren)
2579 {
2580 char *dup;
2581
2582 dup = xmalloc (paren - name + 1);
2583 memcpy (dup, name, paren - name);
2584 dup[paren - name] = 0;
2585
2586 make_cleanup (xfree, dup);
2587 name = dup;
2588 }
2589 }
2590
2591 /* Index version 4 did not support case insensitive searches. But the
2592 indices for case insensitive languages are built in lowercase, therefore
2593 simulate our NAME being searched is also lowercased. */
2594 hash = mapped_index_string_hash ((index->version == 4
2595 && case_sensitivity == case_sensitive_off
2596 ? 5 : index->version),
2597 name);
2598
2599 slot = hash & (index->symbol_table_slots - 1);
2600 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2601 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2602
2603 for (;;)
2604 {
2605 /* Convert a slot number to an offset into the table. */
2606 offset_type i = 2 * slot;
2607 const char *str;
2608 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2609 {
2610 do_cleanups (back_to);
2611 return 0;
2612 }
2613
2614 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2615 if (!cmp (name, str))
2616 {
2617 *vec_out = (offset_type *) (index->constant_pool
2618 + MAYBE_SWAP (index->symbol_table[i + 1]));
2619 do_cleanups (back_to);
2620 return 1;
2621 }
2622
2623 slot = (slot + step) & (index->symbol_table_slots - 1);
2624 }
2625 }
2626
2627 /* A helper function that reads the .gdb_index from SECTION and fills
2628 in MAP. FILENAME is the name of the file containing the section;
2629 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2630 ok to use deprecated sections.
2631
2632 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2633 out parameters that are filled in with information about the CU and
2634 TU lists in the section.
2635
2636 Returns 1 if all went well, 0 otherwise. */
2637
2638 static int
2639 read_index_from_section (struct objfile *objfile,
2640 const char *filename,
2641 int deprecated_ok,
2642 struct dwarf2_section_info *section,
2643 struct mapped_index *map,
2644 const gdb_byte **cu_list,
2645 offset_type *cu_list_elements,
2646 const gdb_byte **types_list,
2647 offset_type *types_list_elements)
2648 {
2649 char *addr;
2650 offset_type version;
2651 offset_type *metadata;
2652 int i;
2653
2654 if (dwarf2_section_empty_p (section))
2655 return 0;
2656
2657 /* Older elfutils strip versions could keep the section in the main
2658 executable while splitting it for the separate debug info file. */
2659 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2660 return 0;
2661
2662 dwarf2_read_section (objfile, section);
2663
2664 addr = section->buffer;
2665 /* Version check. */
2666 version = MAYBE_SWAP (*(offset_type *) addr);
2667 /* Versions earlier than 3 emitted every copy of a psymbol. This
2668 causes the index to behave very poorly for certain requests. Version 3
2669 contained incomplete addrmap. So, it seems better to just ignore such
2670 indices. */
2671 if (version < 4)
2672 {
2673 static int warning_printed = 0;
2674 if (!warning_printed)
2675 {
2676 warning (_("Skipping obsolete .gdb_index section in %s."),
2677 filename);
2678 warning_printed = 1;
2679 }
2680 return 0;
2681 }
2682 /* Index version 4 uses a different hash function than index version
2683 5 and later.
2684
2685 Versions earlier than 6 did not emit psymbols for inlined
2686 functions. Using these files will cause GDB not to be able to
2687 set breakpoints on inlined functions by name, so we ignore these
2688 indices unless the user has done
2689 "set use-deprecated-index-sections on". */
2690 if (version < 6 && !deprecated_ok)
2691 {
2692 static int warning_printed = 0;
2693 if (!warning_printed)
2694 {
2695 warning (_("\
2696 Skipping deprecated .gdb_index section in %s.\n\
2697 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2698 to use the section anyway."),
2699 filename);
2700 warning_printed = 1;
2701 }
2702 return 0;
2703 }
2704 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2705 of the TU (for symbols coming from TUs). It's just a performance bug, and
2706 we can't distinguish gdb-generated indices from gold-generated ones, so
2707 nothing to do here. */
2708
2709 /* Indexes with higher version than the one supported by GDB may be no
2710 longer backward compatible. */
2711 if (version > 8)
2712 return 0;
2713
2714 map->version = version;
2715 map->total_size = section->size;
2716
2717 metadata = (offset_type *) (addr + sizeof (offset_type));
2718
2719 i = 0;
2720 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2721 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2722 / 8);
2723 ++i;
2724
2725 *types_list = addr + MAYBE_SWAP (metadata[i]);
2726 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2727 - MAYBE_SWAP (metadata[i]))
2728 / 8);
2729 ++i;
2730
2731 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2732 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2733 - MAYBE_SWAP (metadata[i]));
2734 ++i;
2735
2736 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2737 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2738 - MAYBE_SWAP (metadata[i]))
2739 / (2 * sizeof (offset_type)));
2740 ++i;
2741
2742 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2743
2744 return 1;
2745 }
2746
2747
2748 /* Read the index file. If everything went ok, initialize the "quick"
2749 elements of all the CUs and return 1. Otherwise, return 0. */
2750
2751 static int
2752 dwarf2_read_index (struct objfile *objfile)
2753 {
2754 struct mapped_index local_map, *map;
2755 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2756 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2757
2758 if (!read_index_from_section (objfile, objfile->name,
2759 use_deprecated_index_sections,
2760 &dwarf2_per_objfile->gdb_index, &local_map,
2761 &cu_list, &cu_list_elements,
2762 &types_list, &types_list_elements))
2763 return 0;
2764
2765 /* Don't use the index if it's empty. */
2766 if (local_map.symbol_table_slots == 0)
2767 return 0;
2768
2769 /* If there is a .dwz file, read it so we can get its CU list as
2770 well. */
2771 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2772 {
2773 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2774 struct mapped_index dwz_map;
2775 const gdb_byte *dwz_types_ignore;
2776 offset_type dwz_types_elements_ignore;
2777
2778 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2779 1,
2780 &dwz->gdb_index, &dwz_map,
2781 &dwz_list, &dwz_list_elements,
2782 &dwz_types_ignore,
2783 &dwz_types_elements_ignore))
2784 {
2785 warning (_("could not read '.gdb_index' section from %s; skipping"),
2786 bfd_get_filename (dwz->dwz_bfd));
2787 return 0;
2788 }
2789 }
2790
2791 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2792 dwz_list_elements);
2793
2794 if (types_list_elements)
2795 {
2796 struct dwarf2_section_info *section;
2797
2798 /* We can only handle a single .debug_types when we have an
2799 index. */
2800 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2801 return 0;
2802
2803 section = VEC_index (dwarf2_section_info_def,
2804 dwarf2_per_objfile->types, 0);
2805
2806 create_signatured_type_table_from_index (objfile, section, types_list,
2807 types_list_elements);
2808 }
2809
2810 create_addrmap_from_index (objfile, &local_map);
2811
2812 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2813 *map = local_map;
2814
2815 dwarf2_per_objfile->index_table = map;
2816 dwarf2_per_objfile->using_index = 1;
2817 dwarf2_per_objfile->quick_file_names_table =
2818 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2819
2820 return 1;
2821 }
2822
2823 /* A helper for the "quick" functions which sets the global
2824 dwarf2_per_objfile according to OBJFILE. */
2825
2826 static void
2827 dw2_setup (struct objfile *objfile)
2828 {
2829 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2830 gdb_assert (dwarf2_per_objfile);
2831 }
2832
2833 /* die_reader_func for dw2_get_file_names. */
2834
2835 static void
2836 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2837 gdb_byte *info_ptr,
2838 struct die_info *comp_unit_die,
2839 int has_children,
2840 void *data)
2841 {
2842 struct dwarf2_cu *cu = reader->cu;
2843 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2844 struct objfile *objfile = dwarf2_per_objfile->objfile;
2845 struct dwarf2_per_cu_data *lh_cu;
2846 struct line_header *lh;
2847 struct attribute *attr;
2848 int i;
2849 const char *name, *comp_dir;
2850 void **slot;
2851 struct quick_file_names *qfn;
2852 unsigned int line_offset;
2853
2854 /* Our callers never want to match partial units -- instead they
2855 will match the enclosing full CU. */
2856 if (comp_unit_die->tag == DW_TAG_partial_unit)
2857 {
2858 this_cu->v.quick->no_file_data = 1;
2859 return;
2860 }
2861
2862 /* If we're reading the line header for TUs, store it in the "per_cu"
2863 for tu_group. */
2864 if (this_cu->is_debug_types)
2865 {
2866 struct type_unit_group *tu_group = data;
2867
2868 gdb_assert (tu_group != NULL);
2869 lh_cu = &tu_group->per_cu;
2870 }
2871 else
2872 lh_cu = this_cu;
2873
2874 lh = NULL;
2875 slot = NULL;
2876 line_offset = 0;
2877
2878 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2879 if (attr)
2880 {
2881 struct quick_file_names find_entry;
2882
2883 line_offset = DW_UNSND (attr);
2884
2885 /* We may have already read in this line header (TU line header sharing).
2886 If we have we're done. */
2887 find_entry.hash.dwo_unit = cu->dwo_unit;
2888 find_entry.hash.line_offset.sect_off = line_offset;
2889 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2890 &find_entry, INSERT);
2891 if (*slot != NULL)
2892 {
2893 lh_cu->v.quick->file_names = *slot;
2894 return;
2895 }
2896
2897 lh = dwarf_decode_line_header (line_offset, cu);
2898 }
2899 if (lh == NULL)
2900 {
2901 lh_cu->v.quick->no_file_data = 1;
2902 return;
2903 }
2904
2905 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2906 qfn->hash.dwo_unit = cu->dwo_unit;
2907 qfn->hash.line_offset.sect_off = line_offset;
2908 gdb_assert (slot != NULL);
2909 *slot = qfn;
2910
2911 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2912
2913 qfn->num_file_names = lh->num_file_names;
2914 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2915 lh->num_file_names * sizeof (char *));
2916 for (i = 0; i < lh->num_file_names; ++i)
2917 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2918 qfn->real_names = NULL;
2919
2920 free_line_header (lh);
2921
2922 lh_cu->v.quick->file_names = qfn;
2923 }
2924
2925 /* A helper for the "quick" functions which attempts to read the line
2926 table for THIS_CU. */
2927
2928 static struct quick_file_names *
2929 dw2_get_file_names (struct objfile *objfile,
2930 struct dwarf2_per_cu_data *this_cu)
2931 {
2932 /* For TUs this should only be called on the parent group. */
2933 if (this_cu->is_debug_types)
2934 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2935
2936 if (this_cu->v.quick->file_names != NULL)
2937 return this_cu->v.quick->file_names;
2938 /* If we know there is no line data, no point in looking again. */
2939 if (this_cu->v.quick->no_file_data)
2940 return NULL;
2941
2942 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2943 in the stub for CUs, there's is no need to lookup the DWO file.
2944 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2945 DWO file. */
2946 if (this_cu->is_debug_types)
2947 {
2948 struct type_unit_group *tu_group = this_cu->type_unit_group;
2949
2950 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2951 dw2_get_file_names_reader, tu_group);
2952 }
2953 else
2954 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2955
2956 if (this_cu->v.quick->no_file_data)
2957 return NULL;
2958 return this_cu->v.quick->file_names;
2959 }
2960
2961 /* A helper for the "quick" functions which computes and caches the
2962 real path for a given file name from the line table. */
2963
2964 static const char *
2965 dw2_get_real_path (struct objfile *objfile,
2966 struct quick_file_names *qfn, int index)
2967 {
2968 if (qfn->real_names == NULL)
2969 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2970 qfn->num_file_names, sizeof (char *));
2971
2972 if (qfn->real_names[index] == NULL)
2973 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2974
2975 return qfn->real_names[index];
2976 }
2977
2978 static struct symtab *
2979 dw2_find_last_source_symtab (struct objfile *objfile)
2980 {
2981 int index;
2982
2983 dw2_setup (objfile);
2984 index = dwarf2_per_objfile->n_comp_units - 1;
2985 return dw2_instantiate_symtab (dw2_get_cu (index));
2986 }
2987
2988 /* Traversal function for dw2_forget_cached_source_info. */
2989
2990 static int
2991 dw2_free_cached_file_names (void **slot, void *info)
2992 {
2993 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2994
2995 if (file_data->real_names)
2996 {
2997 int i;
2998
2999 for (i = 0; i < file_data->num_file_names; ++i)
3000 {
3001 xfree ((void*) file_data->real_names[i]);
3002 file_data->real_names[i] = NULL;
3003 }
3004 }
3005
3006 return 1;
3007 }
3008
3009 static void
3010 dw2_forget_cached_source_info (struct objfile *objfile)
3011 {
3012 dw2_setup (objfile);
3013
3014 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3015 dw2_free_cached_file_names, NULL);
3016 }
3017
3018 /* Helper function for dw2_map_symtabs_matching_filename that expands
3019 the symtabs and calls the iterator. */
3020
3021 static int
3022 dw2_map_expand_apply (struct objfile *objfile,
3023 struct dwarf2_per_cu_data *per_cu,
3024 const char *name, const char *real_path,
3025 int (*callback) (struct symtab *, void *),
3026 void *data)
3027 {
3028 struct symtab *last_made = objfile->symtabs;
3029
3030 /* Don't visit already-expanded CUs. */
3031 if (per_cu->v.quick->symtab)
3032 return 0;
3033
3034 /* This may expand more than one symtab, and we want to iterate over
3035 all of them. */
3036 dw2_instantiate_symtab (per_cu);
3037
3038 return iterate_over_some_symtabs (name, real_path, callback, data,
3039 objfile->symtabs, last_made);
3040 }
3041
3042 /* Implementation of the map_symtabs_matching_filename method. */
3043
3044 static int
3045 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3046 const char *real_path,
3047 int (*callback) (struct symtab *, void *),
3048 void *data)
3049 {
3050 int i;
3051 const char *name_basename = lbasename (name);
3052
3053 dw2_setup (objfile);
3054
3055 /* The rule is CUs specify all the files, including those used by
3056 any TU, so there's no need to scan TUs here. */
3057
3058 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3059 {
3060 int j;
3061 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3062 struct quick_file_names *file_data;
3063
3064 /* We only need to look at symtabs not already expanded. */
3065 if (per_cu->v.quick->symtab)
3066 continue;
3067
3068 file_data = dw2_get_file_names (objfile, per_cu);
3069 if (file_data == NULL)
3070 continue;
3071
3072 for (j = 0; j < file_data->num_file_names; ++j)
3073 {
3074 const char *this_name = file_data->file_names[j];
3075 const char *this_real_name;
3076
3077 if (compare_filenames_for_search (this_name, name))
3078 {
3079 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3080 callback, data))
3081 return 1;
3082 }
3083
3084 /* Before we invoke realpath, which can get expensive when many
3085 files are involved, do a quick comparison of the basenames. */
3086 if (! basenames_may_differ
3087 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3088 continue;
3089
3090 this_real_name = dw2_get_real_path (objfile, file_data, j);
3091 if (compare_filenames_for_search (this_real_name, name))
3092 {
3093 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3094 callback, data))
3095 return 1;
3096 }
3097
3098 if (real_path != NULL)
3099 {
3100 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3101 gdb_assert (IS_ABSOLUTE_PATH (name));
3102 if (this_real_name != NULL
3103 && FILENAME_CMP (real_path, this_real_name) == 0)
3104 {
3105 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3106 callback, data))
3107 return 1;
3108 }
3109 }
3110 }
3111 }
3112
3113 return 0;
3114 }
3115
3116 /* Struct used to manage iterating over all CUs looking for a symbol. */
3117
3118 struct dw2_symtab_iterator
3119 {
3120 /* The internalized form of .gdb_index. */
3121 struct mapped_index *index;
3122 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3123 int want_specific_block;
3124 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3125 Unused if !WANT_SPECIFIC_BLOCK. */
3126 int block_index;
3127 /* The kind of symbol we're looking for. */
3128 domain_enum domain;
3129 /* The list of CUs from the index entry of the symbol,
3130 or NULL if not found. */
3131 offset_type *vec;
3132 /* The next element in VEC to look at. */
3133 int next;
3134 /* The number of elements in VEC, or zero if there is no match. */
3135 int length;
3136 };
3137
3138 /* Initialize the index symtab iterator ITER.
3139 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3140 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3141
3142 static void
3143 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3144 struct mapped_index *index,
3145 int want_specific_block,
3146 int block_index,
3147 domain_enum domain,
3148 const char *name)
3149 {
3150 iter->index = index;
3151 iter->want_specific_block = want_specific_block;
3152 iter->block_index = block_index;
3153 iter->domain = domain;
3154 iter->next = 0;
3155
3156 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3157 iter->length = MAYBE_SWAP (*iter->vec);
3158 else
3159 {
3160 iter->vec = NULL;
3161 iter->length = 0;
3162 }
3163 }
3164
3165 /* Return the next matching CU or NULL if there are no more. */
3166
3167 static struct dwarf2_per_cu_data *
3168 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3169 {
3170 for ( ; iter->next < iter->length; ++iter->next)
3171 {
3172 offset_type cu_index_and_attrs =
3173 MAYBE_SWAP (iter->vec[iter->next + 1]);
3174 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3175 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3176 int want_static = iter->block_index != GLOBAL_BLOCK;
3177 /* This value is only valid for index versions >= 7. */
3178 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3179 gdb_index_symbol_kind symbol_kind =
3180 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3181 /* Only check the symbol attributes if they're present.
3182 Indices prior to version 7 don't record them,
3183 and indices >= 7 may elide them for certain symbols
3184 (gold does this). */
3185 int attrs_valid =
3186 (iter->index->version >= 7
3187 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3188
3189 /* Skip if already read in. */
3190 if (per_cu->v.quick->symtab)
3191 continue;
3192
3193 if (attrs_valid
3194 && iter->want_specific_block
3195 && want_static != is_static)
3196 continue;
3197
3198 /* Only check the symbol's kind if it has one. */
3199 if (attrs_valid)
3200 {
3201 switch (iter->domain)
3202 {
3203 case VAR_DOMAIN:
3204 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3205 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3206 /* Some types are also in VAR_DOMAIN. */
3207 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3208 continue;
3209 break;
3210 case STRUCT_DOMAIN:
3211 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3212 continue;
3213 break;
3214 case LABEL_DOMAIN:
3215 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3216 continue;
3217 break;
3218 default:
3219 break;
3220 }
3221 }
3222
3223 ++iter->next;
3224 return per_cu;
3225 }
3226
3227 return NULL;
3228 }
3229
3230 static struct symtab *
3231 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3232 const char *name, domain_enum domain)
3233 {
3234 struct symtab *stab_best = NULL;
3235 struct mapped_index *index;
3236
3237 dw2_setup (objfile);
3238
3239 index = dwarf2_per_objfile->index_table;
3240
3241 /* index is NULL if OBJF_READNOW. */
3242 if (index)
3243 {
3244 struct dw2_symtab_iterator iter;
3245 struct dwarf2_per_cu_data *per_cu;
3246
3247 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3248
3249 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3250 {
3251 struct symbol *sym = NULL;
3252 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3253
3254 /* Some caution must be observed with overloaded functions
3255 and methods, since the index will not contain any overload
3256 information (but NAME might contain it). */
3257 if (stab->primary)
3258 {
3259 struct blockvector *bv = BLOCKVECTOR (stab);
3260 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3261
3262 sym = lookup_block_symbol (block, name, domain);
3263 }
3264
3265 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3266 {
3267 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3268 return stab;
3269
3270 stab_best = stab;
3271 }
3272
3273 /* Keep looking through other CUs. */
3274 }
3275 }
3276
3277 return stab_best;
3278 }
3279
3280 static void
3281 dw2_print_stats (struct objfile *objfile)
3282 {
3283 int i, count;
3284
3285 dw2_setup (objfile);
3286 count = 0;
3287 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3288 + dwarf2_per_objfile->n_type_units); ++i)
3289 {
3290 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3291
3292 if (!per_cu->v.quick->symtab)
3293 ++count;
3294 }
3295 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3296 }
3297
3298 static void
3299 dw2_dump (struct objfile *objfile)
3300 {
3301 /* Nothing worth printing. */
3302 }
3303
3304 static void
3305 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3306 struct section_offsets *delta)
3307 {
3308 /* There's nothing to relocate here. */
3309 }
3310
3311 static void
3312 dw2_expand_symtabs_for_function (struct objfile *objfile,
3313 const char *func_name)
3314 {
3315 struct mapped_index *index;
3316
3317 dw2_setup (objfile);
3318
3319 index = dwarf2_per_objfile->index_table;
3320
3321 /* index is NULL if OBJF_READNOW. */
3322 if (index)
3323 {
3324 struct dw2_symtab_iterator iter;
3325 struct dwarf2_per_cu_data *per_cu;
3326
3327 /* Note: It doesn't matter what we pass for block_index here. */
3328 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3329 func_name);
3330
3331 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3332 dw2_instantiate_symtab (per_cu);
3333 }
3334 }
3335
3336 static void
3337 dw2_expand_all_symtabs (struct objfile *objfile)
3338 {
3339 int i;
3340
3341 dw2_setup (objfile);
3342
3343 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3344 + dwarf2_per_objfile->n_type_units); ++i)
3345 {
3346 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3347
3348 dw2_instantiate_symtab (per_cu);
3349 }
3350 }
3351
3352 static void
3353 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3354 const char *fullname)
3355 {
3356 int i;
3357
3358 dw2_setup (objfile);
3359
3360 /* We don't need to consider type units here.
3361 This is only called for examining code, e.g. expand_line_sal.
3362 There can be an order of magnitude (or more) more type units
3363 than comp units, and we avoid them if we can. */
3364
3365 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3366 {
3367 int j;
3368 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3369 struct quick_file_names *file_data;
3370
3371 /* We only need to look at symtabs not already expanded. */
3372 if (per_cu->v.quick->symtab)
3373 continue;
3374
3375 file_data = dw2_get_file_names (objfile, per_cu);
3376 if (file_data == NULL)
3377 continue;
3378
3379 for (j = 0; j < file_data->num_file_names; ++j)
3380 {
3381 const char *this_fullname = file_data->file_names[j];
3382
3383 if (filename_cmp (this_fullname, fullname) == 0)
3384 {
3385 dw2_instantiate_symtab (per_cu);
3386 break;
3387 }
3388 }
3389 }
3390 }
3391
3392 /* A helper function for dw2_find_symbol_file that finds the primary
3393 file name for a given CU. This is a die_reader_func. */
3394
3395 static void
3396 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3397 gdb_byte *info_ptr,
3398 struct die_info *comp_unit_die,
3399 int has_children,
3400 void *data)
3401 {
3402 const char **result_ptr = data;
3403 struct dwarf2_cu *cu = reader->cu;
3404 struct attribute *attr;
3405
3406 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3407 if (attr == NULL)
3408 *result_ptr = NULL;
3409 else
3410 *result_ptr = DW_STRING (attr);
3411 }
3412
3413 static const char *
3414 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3415 {
3416 struct dwarf2_per_cu_data *per_cu;
3417 offset_type *vec;
3418 const char *filename;
3419
3420 dw2_setup (objfile);
3421
3422 /* index_table is NULL if OBJF_READNOW. */
3423 if (!dwarf2_per_objfile->index_table)
3424 {
3425 struct symtab *s;
3426
3427 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3428 {
3429 struct blockvector *bv = BLOCKVECTOR (s);
3430 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3431 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3432
3433 if (sym)
3434 {
3435 /* Only file extension of returned filename is recognized. */
3436 return SYMBOL_SYMTAB (sym)->filename;
3437 }
3438 }
3439 return NULL;
3440 }
3441
3442 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3443 name, &vec))
3444 return NULL;
3445
3446 /* Note that this just looks at the very first one named NAME -- but
3447 actually we are looking for a function. find_main_filename
3448 should be rewritten so that it doesn't require a custom hook. It
3449 could just use the ordinary symbol tables. */
3450 /* vec[0] is the length, which must always be >0. */
3451 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3452
3453 if (per_cu->v.quick->symtab != NULL)
3454 {
3455 /* Only file extension of returned filename is recognized. */
3456 return per_cu->v.quick->symtab->filename;
3457 }
3458
3459 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3460 dw2_get_primary_filename_reader, &filename);
3461
3462 /* Only file extension of returned filename is recognized. */
3463 return filename;
3464 }
3465
3466 static void
3467 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3468 struct objfile *objfile, int global,
3469 int (*callback) (struct block *,
3470 struct symbol *, void *),
3471 void *data, symbol_compare_ftype *match,
3472 symbol_compare_ftype *ordered_compare)
3473 {
3474 /* Currently unimplemented; used for Ada. The function can be called if the
3475 current language is Ada for a non-Ada objfile using GNU index. As Ada
3476 does not look for non-Ada symbols this function should just return. */
3477 }
3478
3479 static void
3480 dw2_expand_symtabs_matching
3481 (struct objfile *objfile,
3482 int (*file_matcher) (const char *, void *, int basenames),
3483 int (*name_matcher) (const char *, void *),
3484 enum search_domain kind,
3485 void *data)
3486 {
3487 int i;
3488 offset_type iter;
3489 struct mapped_index *index;
3490
3491 dw2_setup (objfile);
3492
3493 /* index_table is NULL if OBJF_READNOW. */
3494 if (!dwarf2_per_objfile->index_table)
3495 return;
3496 index = dwarf2_per_objfile->index_table;
3497
3498 if (file_matcher != NULL)
3499 {
3500 struct cleanup *cleanup;
3501 htab_t visited_found, visited_not_found;
3502
3503 visited_found = htab_create_alloc (10,
3504 htab_hash_pointer, htab_eq_pointer,
3505 NULL, xcalloc, xfree);
3506 cleanup = make_cleanup_htab_delete (visited_found);
3507 visited_not_found = htab_create_alloc (10,
3508 htab_hash_pointer, htab_eq_pointer,
3509 NULL, xcalloc, xfree);
3510 make_cleanup_htab_delete (visited_not_found);
3511
3512 /* The rule is CUs specify all the files, including those used by
3513 any TU, so there's no need to scan TUs here. */
3514
3515 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3516 {
3517 int j;
3518 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3519 struct quick_file_names *file_data;
3520 void **slot;
3521
3522 per_cu->v.quick->mark = 0;
3523
3524 /* We only need to look at symtabs not already expanded. */
3525 if (per_cu->v.quick->symtab)
3526 continue;
3527
3528 file_data = dw2_get_file_names (objfile, per_cu);
3529 if (file_data == NULL)
3530 continue;
3531
3532 if (htab_find (visited_not_found, file_data) != NULL)
3533 continue;
3534 else if (htab_find (visited_found, file_data) != NULL)
3535 {
3536 per_cu->v.quick->mark = 1;
3537 continue;
3538 }
3539
3540 for (j = 0; j < file_data->num_file_names; ++j)
3541 {
3542 const char *this_real_name;
3543
3544 if (file_matcher (file_data->file_names[j], data, 0))
3545 {
3546 per_cu->v.quick->mark = 1;
3547 break;
3548 }
3549
3550 /* Before we invoke realpath, which can get expensive when many
3551 files are involved, do a quick comparison of the basenames. */
3552 if (!basenames_may_differ
3553 && !file_matcher (lbasename (file_data->file_names[j]),
3554 data, 1))
3555 continue;
3556
3557 this_real_name = dw2_get_real_path (objfile, file_data, j);
3558 if (file_matcher (this_real_name, data, 0))
3559 {
3560 per_cu->v.quick->mark = 1;
3561 break;
3562 }
3563 }
3564
3565 slot = htab_find_slot (per_cu->v.quick->mark
3566 ? visited_found
3567 : visited_not_found,
3568 file_data, INSERT);
3569 *slot = file_data;
3570 }
3571
3572 do_cleanups (cleanup);
3573 }
3574
3575 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3576 {
3577 offset_type idx = 2 * iter;
3578 const char *name;
3579 offset_type *vec, vec_len, vec_idx;
3580
3581 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3582 continue;
3583
3584 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3585
3586 if (! (*name_matcher) (name, data))
3587 continue;
3588
3589 /* The name was matched, now expand corresponding CUs that were
3590 marked. */
3591 vec = (offset_type *) (index->constant_pool
3592 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3593 vec_len = MAYBE_SWAP (vec[0]);
3594 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3595 {
3596 struct dwarf2_per_cu_data *per_cu;
3597 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3598 gdb_index_symbol_kind symbol_kind =
3599 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3600 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3601
3602 /* Don't crash on bad data. */
3603 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3604 + dwarf2_per_objfile->n_type_units))
3605 continue;
3606
3607 /* Only check the symbol's kind if it has one.
3608 Indices prior to version 7 don't record it. */
3609 if (index->version >= 7)
3610 {
3611 switch (kind)
3612 {
3613 case VARIABLES_DOMAIN:
3614 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3615 continue;
3616 break;
3617 case FUNCTIONS_DOMAIN:
3618 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3619 continue;
3620 break;
3621 case TYPES_DOMAIN:
3622 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3623 continue;
3624 break;
3625 default:
3626 break;
3627 }
3628 }
3629
3630 per_cu = dw2_get_cu (cu_index);
3631 if (file_matcher == NULL || per_cu->v.quick->mark)
3632 dw2_instantiate_symtab (per_cu);
3633 }
3634 }
3635 }
3636
3637 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3638 symtab. */
3639
3640 static struct symtab *
3641 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3642 {
3643 int i;
3644
3645 if (BLOCKVECTOR (symtab) != NULL
3646 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3647 return symtab;
3648
3649 if (symtab->includes == NULL)
3650 return NULL;
3651
3652 for (i = 0; symtab->includes[i]; ++i)
3653 {
3654 struct symtab *s = symtab->includes[i];
3655
3656 s = recursively_find_pc_sect_symtab (s, pc);
3657 if (s != NULL)
3658 return s;
3659 }
3660
3661 return NULL;
3662 }
3663
3664 static struct symtab *
3665 dw2_find_pc_sect_symtab (struct objfile *objfile,
3666 struct minimal_symbol *msymbol,
3667 CORE_ADDR pc,
3668 struct obj_section *section,
3669 int warn_if_readin)
3670 {
3671 struct dwarf2_per_cu_data *data;
3672 struct symtab *result;
3673
3674 dw2_setup (objfile);
3675
3676 if (!objfile->psymtabs_addrmap)
3677 return NULL;
3678
3679 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3680 if (!data)
3681 return NULL;
3682
3683 if (warn_if_readin && data->v.quick->symtab)
3684 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3685 paddress (get_objfile_arch (objfile), pc));
3686
3687 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3688 gdb_assert (result != NULL);
3689 return result;
3690 }
3691
3692 static void
3693 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3694 void *data, int need_fullname)
3695 {
3696 int i;
3697 struct cleanup *cleanup;
3698 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3699 NULL, xcalloc, xfree);
3700
3701 cleanup = make_cleanup_htab_delete (visited);
3702 dw2_setup (objfile);
3703
3704 /* The rule is CUs specify all the files, including those used by
3705 any TU, so there's no need to scan TUs here.
3706 We can ignore file names coming from already-expanded CUs. */
3707
3708 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3709 {
3710 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3711
3712 if (per_cu->v.quick->symtab)
3713 {
3714 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3715 INSERT);
3716
3717 *slot = per_cu->v.quick->file_names;
3718 }
3719 }
3720
3721 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3722 {
3723 int j;
3724 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3725 struct quick_file_names *file_data;
3726 void **slot;
3727
3728 /* We only need to look at symtabs not already expanded. */
3729 if (per_cu->v.quick->symtab)
3730 continue;
3731
3732 file_data = dw2_get_file_names (objfile, per_cu);
3733 if (file_data == NULL)
3734 continue;
3735
3736 slot = htab_find_slot (visited, file_data, INSERT);
3737 if (*slot)
3738 {
3739 /* Already visited. */
3740 continue;
3741 }
3742 *slot = file_data;
3743
3744 for (j = 0; j < file_data->num_file_names; ++j)
3745 {
3746 const char *this_real_name;
3747
3748 if (need_fullname)
3749 this_real_name = dw2_get_real_path (objfile, file_data, j);
3750 else
3751 this_real_name = NULL;
3752 (*fun) (file_data->file_names[j], this_real_name, data);
3753 }
3754 }
3755
3756 do_cleanups (cleanup);
3757 }
3758
3759 static int
3760 dw2_has_symbols (struct objfile *objfile)
3761 {
3762 return 1;
3763 }
3764
3765 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3766 {
3767 dw2_has_symbols,
3768 dw2_find_last_source_symtab,
3769 dw2_forget_cached_source_info,
3770 dw2_map_symtabs_matching_filename,
3771 dw2_lookup_symbol,
3772 dw2_print_stats,
3773 dw2_dump,
3774 dw2_relocate,
3775 dw2_expand_symtabs_for_function,
3776 dw2_expand_all_symtabs,
3777 dw2_expand_symtabs_with_fullname,
3778 dw2_find_symbol_file,
3779 dw2_map_matching_symbols,
3780 dw2_expand_symtabs_matching,
3781 dw2_find_pc_sect_symtab,
3782 dw2_map_symbol_filenames
3783 };
3784
3785 /* Initialize for reading DWARF for this objfile. Return 0 if this
3786 file will use psymtabs, or 1 if using the GNU index. */
3787
3788 int
3789 dwarf2_initialize_objfile (struct objfile *objfile)
3790 {
3791 /* If we're about to read full symbols, don't bother with the
3792 indices. In this case we also don't care if some other debug
3793 format is making psymtabs, because they are all about to be
3794 expanded anyway. */
3795 if ((objfile->flags & OBJF_READNOW))
3796 {
3797 int i;
3798
3799 dwarf2_per_objfile->using_index = 1;
3800 create_all_comp_units (objfile);
3801 create_all_type_units (objfile);
3802 dwarf2_per_objfile->quick_file_names_table =
3803 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3804
3805 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3806 + dwarf2_per_objfile->n_type_units); ++i)
3807 {
3808 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3809
3810 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3811 struct dwarf2_per_cu_quick_data);
3812 }
3813
3814 /* Return 1 so that gdb sees the "quick" functions. However,
3815 these functions will be no-ops because we will have expanded
3816 all symtabs. */
3817 return 1;
3818 }
3819
3820 if (dwarf2_read_index (objfile))
3821 return 1;
3822
3823 return 0;
3824 }
3825
3826 \f
3827
3828 /* Build a partial symbol table. */
3829
3830 void
3831 dwarf2_build_psymtabs (struct objfile *objfile)
3832 {
3833 volatile struct gdb_exception except;
3834
3835 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3836 {
3837 init_psymbol_list (objfile, 1024);
3838 }
3839
3840 TRY_CATCH (except, RETURN_MASK_ERROR)
3841 {
3842 /* This isn't really ideal: all the data we allocate on the
3843 objfile's obstack is still uselessly kept around. However,
3844 freeing it seems unsafe. */
3845 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3846
3847 dwarf2_build_psymtabs_hard (objfile);
3848 discard_cleanups (cleanups);
3849 }
3850 if (except.reason < 0)
3851 exception_print (gdb_stderr, except);
3852 }
3853
3854 /* Return the total length of the CU described by HEADER. */
3855
3856 static unsigned int
3857 get_cu_length (const struct comp_unit_head *header)
3858 {
3859 return header->initial_length_size + header->length;
3860 }
3861
3862 /* Return TRUE if OFFSET is within CU_HEADER. */
3863
3864 static inline int
3865 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3866 {
3867 sect_offset bottom = { cu_header->offset.sect_off };
3868 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3869
3870 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3871 }
3872
3873 /* Find the base address of the compilation unit for range lists and
3874 location lists. It will normally be specified by DW_AT_low_pc.
3875 In DWARF-3 draft 4, the base address could be overridden by
3876 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3877 compilation units with discontinuous ranges. */
3878
3879 static void
3880 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3881 {
3882 struct attribute *attr;
3883
3884 cu->base_known = 0;
3885 cu->base_address = 0;
3886
3887 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3888 if (attr)
3889 {
3890 cu->base_address = DW_ADDR (attr);
3891 cu->base_known = 1;
3892 }
3893 else
3894 {
3895 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3896 if (attr)
3897 {
3898 cu->base_address = DW_ADDR (attr);
3899 cu->base_known = 1;
3900 }
3901 }
3902 }
3903
3904 /* Read in the comp unit header information from the debug_info at info_ptr.
3905 NOTE: This leaves members offset, first_die_offset to be filled in
3906 by the caller. */
3907
3908 static gdb_byte *
3909 read_comp_unit_head (struct comp_unit_head *cu_header,
3910 gdb_byte *info_ptr, bfd *abfd)
3911 {
3912 int signed_addr;
3913 unsigned int bytes_read;
3914
3915 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3916 cu_header->initial_length_size = bytes_read;
3917 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3918 info_ptr += bytes_read;
3919 cu_header->version = read_2_bytes (abfd, info_ptr);
3920 info_ptr += 2;
3921 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3922 &bytes_read);
3923 info_ptr += bytes_read;
3924 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3925 info_ptr += 1;
3926 signed_addr = bfd_get_sign_extend_vma (abfd);
3927 if (signed_addr < 0)
3928 internal_error (__FILE__, __LINE__,
3929 _("read_comp_unit_head: dwarf from non elf file"));
3930 cu_header->signed_addr_p = signed_addr;
3931
3932 return info_ptr;
3933 }
3934
3935 /* Helper function that returns the proper abbrev section for
3936 THIS_CU. */
3937
3938 static struct dwarf2_section_info *
3939 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3940 {
3941 struct dwarf2_section_info *abbrev;
3942
3943 if (this_cu->is_dwz)
3944 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3945 else
3946 abbrev = &dwarf2_per_objfile->abbrev;
3947
3948 return abbrev;
3949 }
3950
3951 /* Subroutine of read_and_check_comp_unit_head and
3952 read_and_check_type_unit_head to simplify them.
3953 Perform various error checking on the header. */
3954
3955 static void
3956 error_check_comp_unit_head (struct comp_unit_head *header,
3957 struct dwarf2_section_info *section,
3958 struct dwarf2_section_info *abbrev_section)
3959 {
3960 bfd *abfd = section->asection->owner;
3961 const char *filename = bfd_get_filename (abfd);
3962
3963 if (header->version != 2 && header->version != 3 && header->version != 4)
3964 error (_("Dwarf Error: wrong version in compilation unit header "
3965 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3966 filename);
3967
3968 if (header->abbrev_offset.sect_off
3969 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3970 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3971 "(offset 0x%lx + 6) [in module %s]"),
3972 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3973 filename);
3974
3975 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3976 avoid potential 32-bit overflow. */
3977 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3978 > section->size)
3979 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3980 "(offset 0x%lx + 0) [in module %s]"),
3981 (long) header->length, (long) header->offset.sect_off,
3982 filename);
3983 }
3984
3985 /* Read in a CU/TU header and perform some basic error checking.
3986 The contents of the header are stored in HEADER.
3987 The result is a pointer to the start of the first DIE. */
3988
3989 static gdb_byte *
3990 read_and_check_comp_unit_head (struct comp_unit_head *header,
3991 struct dwarf2_section_info *section,
3992 struct dwarf2_section_info *abbrev_section,
3993 gdb_byte *info_ptr,
3994 int is_debug_types_section)
3995 {
3996 gdb_byte *beg_of_comp_unit = info_ptr;
3997 bfd *abfd = section->asection->owner;
3998
3999 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4000
4001 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4002
4003 /* If we're reading a type unit, skip over the signature and
4004 type_offset fields. */
4005 if (is_debug_types_section)
4006 info_ptr += 8 /*signature*/ + header->offset_size;
4007
4008 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4009
4010 error_check_comp_unit_head (header, section, abbrev_section);
4011
4012 return info_ptr;
4013 }
4014
4015 /* Read in the types comp unit header information from .debug_types entry at
4016 types_ptr. The result is a pointer to one past the end of the header. */
4017
4018 static gdb_byte *
4019 read_and_check_type_unit_head (struct comp_unit_head *header,
4020 struct dwarf2_section_info *section,
4021 struct dwarf2_section_info *abbrev_section,
4022 gdb_byte *info_ptr,
4023 ULONGEST *signature,
4024 cu_offset *type_offset_in_tu)
4025 {
4026 gdb_byte *beg_of_comp_unit = info_ptr;
4027 bfd *abfd = section->asection->owner;
4028
4029 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4030
4031 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4032
4033 /* If we're reading a type unit, skip over the signature and
4034 type_offset fields. */
4035 if (signature != NULL)
4036 *signature = read_8_bytes (abfd, info_ptr);
4037 info_ptr += 8;
4038 if (type_offset_in_tu != NULL)
4039 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4040 header->offset_size);
4041 info_ptr += header->offset_size;
4042
4043 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4044
4045 error_check_comp_unit_head (header, section, abbrev_section);
4046
4047 return info_ptr;
4048 }
4049
4050 /* Fetch the abbreviation table offset from a comp or type unit header. */
4051
4052 static sect_offset
4053 read_abbrev_offset (struct dwarf2_section_info *section,
4054 sect_offset offset)
4055 {
4056 bfd *abfd = section->asection->owner;
4057 gdb_byte *info_ptr;
4058 unsigned int length, initial_length_size, offset_size;
4059 sect_offset abbrev_offset;
4060
4061 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4062 info_ptr = section->buffer + offset.sect_off;
4063 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4064 offset_size = initial_length_size == 4 ? 4 : 8;
4065 info_ptr += initial_length_size + 2 /*version*/;
4066 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4067 return abbrev_offset;
4068 }
4069
4070 /* Allocate a new partial symtab for file named NAME and mark this new
4071 partial symtab as being an include of PST. */
4072
4073 static void
4074 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
4075 struct objfile *objfile)
4076 {
4077 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4078
4079 if (!IS_ABSOLUTE_PATH (subpst->filename))
4080 {
4081 /* It shares objfile->objfile_obstack. */
4082 subpst->dirname = pst->dirname;
4083 }
4084
4085 subpst->section_offsets = pst->section_offsets;
4086 subpst->textlow = 0;
4087 subpst->texthigh = 0;
4088
4089 subpst->dependencies = (struct partial_symtab **)
4090 obstack_alloc (&objfile->objfile_obstack,
4091 sizeof (struct partial_symtab *));
4092 subpst->dependencies[0] = pst;
4093 subpst->number_of_dependencies = 1;
4094
4095 subpst->globals_offset = 0;
4096 subpst->n_global_syms = 0;
4097 subpst->statics_offset = 0;
4098 subpst->n_static_syms = 0;
4099 subpst->symtab = NULL;
4100 subpst->read_symtab = pst->read_symtab;
4101 subpst->readin = 0;
4102
4103 /* No private part is necessary for include psymtabs. This property
4104 can be used to differentiate between such include psymtabs and
4105 the regular ones. */
4106 subpst->read_symtab_private = NULL;
4107 }
4108
4109 /* Read the Line Number Program data and extract the list of files
4110 included by the source file represented by PST. Build an include
4111 partial symtab for each of these included files. */
4112
4113 static void
4114 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4115 struct die_info *die,
4116 struct partial_symtab *pst)
4117 {
4118 struct line_header *lh = NULL;
4119 struct attribute *attr;
4120
4121 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4122 if (attr)
4123 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4124 if (lh == NULL)
4125 return; /* No linetable, so no includes. */
4126
4127 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4128 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4129
4130 free_line_header (lh);
4131 }
4132
4133 static hashval_t
4134 hash_signatured_type (const void *item)
4135 {
4136 const struct signatured_type *sig_type = item;
4137
4138 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4139 return sig_type->signature;
4140 }
4141
4142 static int
4143 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4144 {
4145 const struct signatured_type *lhs = item_lhs;
4146 const struct signatured_type *rhs = item_rhs;
4147
4148 return lhs->signature == rhs->signature;
4149 }
4150
4151 /* Allocate a hash table for signatured types. */
4152
4153 static htab_t
4154 allocate_signatured_type_table (struct objfile *objfile)
4155 {
4156 return htab_create_alloc_ex (41,
4157 hash_signatured_type,
4158 eq_signatured_type,
4159 NULL,
4160 &objfile->objfile_obstack,
4161 hashtab_obstack_allocate,
4162 dummy_obstack_deallocate);
4163 }
4164
4165 /* A helper function to add a signatured type CU to a table. */
4166
4167 static int
4168 add_signatured_type_cu_to_table (void **slot, void *datum)
4169 {
4170 struct signatured_type *sigt = *slot;
4171 struct signatured_type ***datap = datum;
4172
4173 **datap = sigt;
4174 ++*datap;
4175
4176 return 1;
4177 }
4178
4179 /* Create the hash table of all entries in the .debug_types section.
4180 DWO_FILE is a pointer to the DWO file for .debug_types.dwo,
4181 NULL otherwise.
4182 Note: This function processes DWO files only, not DWP files.
4183 The result is a pointer to the hash table or NULL if there are
4184 no types. */
4185
4186 static htab_t
4187 create_debug_types_hash_table (struct dwo_file *dwo_file,
4188 VEC (dwarf2_section_info_def) *types)
4189 {
4190 struct objfile *objfile = dwarf2_per_objfile->objfile;
4191 htab_t types_htab = NULL;
4192 int ix;
4193 struct dwarf2_section_info *section;
4194 struct dwarf2_section_info *abbrev_section;
4195
4196 if (VEC_empty (dwarf2_section_info_def, types))
4197 return NULL;
4198
4199 abbrev_section = (dwo_file != NULL
4200 ? &dwo_file->sections.abbrev
4201 : &dwarf2_per_objfile->abbrev);
4202
4203 if (dwarf2_read_debug)
4204 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4205 dwo_file ? ".dwo" : "",
4206 bfd_get_filename (abbrev_section->asection->owner));
4207
4208 for (ix = 0;
4209 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4210 ++ix)
4211 {
4212 bfd *abfd;
4213 gdb_byte *info_ptr, *end_ptr;
4214 struct dwarf2_section_info *abbrev_section;
4215
4216 dwarf2_read_section (objfile, section);
4217 info_ptr = section->buffer;
4218
4219 if (info_ptr == NULL)
4220 continue;
4221
4222 /* We can't set abfd until now because the section may be empty or
4223 not present, in which case section->asection will be NULL. */
4224 abfd = section->asection->owner;
4225
4226 if (dwo_file)
4227 abbrev_section = &dwo_file->sections.abbrev;
4228 else
4229 abbrev_section = &dwarf2_per_objfile->abbrev;
4230
4231 if (types_htab == NULL)
4232 {
4233 if (dwo_file)
4234 types_htab = allocate_dwo_unit_table (objfile);
4235 else
4236 types_htab = allocate_signatured_type_table (objfile);
4237 }
4238
4239 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4240 because we don't need to read any dies: the signature is in the
4241 header. */
4242
4243 end_ptr = info_ptr + section->size;
4244 while (info_ptr < end_ptr)
4245 {
4246 sect_offset offset;
4247 cu_offset type_offset_in_tu;
4248 ULONGEST signature;
4249 struct signatured_type *sig_type;
4250 struct dwo_unit *dwo_tu;
4251 void **slot;
4252 gdb_byte *ptr = info_ptr;
4253 struct comp_unit_head header;
4254 unsigned int length;
4255
4256 offset.sect_off = ptr - section->buffer;
4257
4258 /* We need to read the type's signature in order to build the hash
4259 table, but we don't need anything else just yet. */
4260
4261 ptr = read_and_check_type_unit_head (&header, section,
4262 abbrev_section, ptr,
4263 &signature, &type_offset_in_tu);
4264
4265 length = get_cu_length (&header);
4266
4267 /* Skip dummy type units. */
4268 if (ptr >= info_ptr + length
4269 || peek_abbrev_code (abfd, ptr) == 0)
4270 {
4271 info_ptr += length;
4272 continue;
4273 }
4274
4275 if (dwo_file)
4276 {
4277 sig_type = NULL;
4278 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4279 struct dwo_unit);
4280 dwo_tu->dwo_file = dwo_file;
4281 dwo_tu->signature = signature;
4282 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4283 dwo_tu->info_or_types_section = section;
4284 dwo_tu->offset = offset;
4285 dwo_tu->length = length;
4286 }
4287 else
4288 {
4289 /* N.B.: type_offset is not usable if this type uses a DWO file.
4290 The real type_offset is in the DWO file. */
4291 dwo_tu = NULL;
4292 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4293 struct signatured_type);
4294 sig_type->signature = signature;
4295 sig_type->type_offset_in_tu = type_offset_in_tu;
4296 sig_type->per_cu.objfile = objfile;
4297 sig_type->per_cu.is_debug_types = 1;
4298 sig_type->per_cu.info_or_types_section = section;
4299 sig_type->per_cu.offset = offset;
4300 sig_type->per_cu.length = length;
4301 }
4302
4303 slot = htab_find_slot (types_htab,
4304 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4305 INSERT);
4306 gdb_assert (slot != NULL);
4307 if (*slot != NULL)
4308 {
4309 sect_offset dup_offset;
4310
4311 if (dwo_file)
4312 {
4313 const struct dwo_unit *dup_tu = *slot;
4314
4315 dup_offset = dup_tu->offset;
4316 }
4317 else
4318 {
4319 const struct signatured_type *dup_tu = *slot;
4320
4321 dup_offset = dup_tu->per_cu.offset;
4322 }
4323
4324 complaint (&symfile_complaints,
4325 _("debug type entry at offset 0x%x is duplicate to the "
4326 "entry at offset 0x%x, signature 0x%s"),
4327 offset.sect_off, dup_offset.sect_off,
4328 phex (signature, sizeof (signature)));
4329 }
4330 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4331
4332 if (dwarf2_read_debug)
4333 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4334 offset.sect_off,
4335 phex (signature, sizeof (signature)));
4336
4337 info_ptr += length;
4338 }
4339 }
4340
4341 return types_htab;
4342 }
4343
4344 /* Create the hash table of all entries in the .debug_types section,
4345 and initialize all_type_units.
4346 The result is zero if there is an error (e.g. missing .debug_types section),
4347 otherwise non-zero. */
4348
4349 static int
4350 create_all_type_units (struct objfile *objfile)
4351 {
4352 htab_t types_htab;
4353 struct signatured_type **iter;
4354
4355 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4356 if (types_htab == NULL)
4357 {
4358 dwarf2_per_objfile->signatured_types = NULL;
4359 return 0;
4360 }
4361
4362 dwarf2_per_objfile->signatured_types = types_htab;
4363
4364 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4365 dwarf2_per_objfile->all_type_units
4366 = obstack_alloc (&objfile->objfile_obstack,
4367 dwarf2_per_objfile->n_type_units
4368 * sizeof (struct signatured_type *));
4369 iter = &dwarf2_per_objfile->all_type_units[0];
4370 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4371 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4372 == dwarf2_per_objfile->n_type_units);
4373
4374 return 1;
4375 }
4376
4377 /* Lookup a signature based type for DW_FORM_ref_sig8.
4378 Returns NULL if signature SIG is not present in the table. */
4379
4380 static struct signatured_type *
4381 lookup_signatured_type (ULONGEST sig)
4382 {
4383 struct signatured_type find_entry, *entry;
4384
4385 if (dwarf2_per_objfile->signatured_types == NULL)
4386 {
4387 complaint (&symfile_complaints,
4388 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4389 return NULL;
4390 }
4391
4392 find_entry.signature = sig;
4393 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4394 return entry;
4395 }
4396 \f
4397 /* Low level DIE reading support. */
4398
4399 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4400
4401 static void
4402 init_cu_die_reader (struct die_reader_specs *reader,
4403 struct dwarf2_cu *cu,
4404 struct dwarf2_section_info *section,
4405 struct dwo_file *dwo_file)
4406 {
4407 gdb_assert (section->readin && section->buffer != NULL);
4408 reader->abfd = section->asection->owner;
4409 reader->cu = cu;
4410 reader->dwo_file = dwo_file;
4411 reader->die_section = section;
4412 reader->buffer = section->buffer;
4413 reader->buffer_end = section->buffer + section->size;
4414 }
4415
4416 /* Initialize a CU (or TU) and read its DIEs.
4417 If the CU defers to a DWO file, read the DWO file as well.
4418
4419 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4420 Otherwise the table specified in the comp unit header is read in and used.
4421 This is an optimization for when we already have the abbrev table.
4422
4423 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4424 Otherwise, a new CU is allocated with xmalloc.
4425
4426 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4427 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4428
4429 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4430 linker) then DIE_READER_FUNC will not get called. */
4431
4432 static void
4433 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4434 struct abbrev_table *abbrev_table,
4435 int use_existing_cu, int keep,
4436 die_reader_func_ftype *die_reader_func,
4437 void *data)
4438 {
4439 struct objfile *objfile = dwarf2_per_objfile->objfile;
4440 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4441 bfd *abfd = section->asection->owner;
4442 struct dwarf2_cu *cu;
4443 gdb_byte *begin_info_ptr, *info_ptr;
4444 struct die_reader_specs reader;
4445 struct die_info *comp_unit_die;
4446 int has_children;
4447 struct attribute *attr;
4448 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4449 struct signatured_type *sig_type = NULL;
4450 struct dwarf2_section_info *abbrev_section;
4451 /* Non-zero if CU currently points to a DWO file and we need to
4452 reread it. When this happens we need to reread the skeleton die
4453 before we can reread the DWO file. */
4454 int rereading_dwo_cu = 0;
4455
4456 if (dwarf2_die_debug)
4457 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4458 this_cu->is_debug_types ? "type" : "comp",
4459 this_cu->offset.sect_off);
4460
4461 if (use_existing_cu)
4462 gdb_assert (keep);
4463
4464 cleanups = make_cleanup (null_cleanup, NULL);
4465
4466 /* This is cheap if the section is already read in. */
4467 dwarf2_read_section (objfile, section);
4468
4469 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4470
4471 abbrev_section = get_abbrev_section_for_cu (this_cu);
4472
4473 if (use_existing_cu && this_cu->cu != NULL)
4474 {
4475 cu = this_cu->cu;
4476
4477 /* If this CU is from a DWO file we need to start over, we need to
4478 refetch the attributes from the skeleton CU.
4479 This could be optimized by retrieving those attributes from when we
4480 were here the first time: the previous comp_unit_die was stored in
4481 comp_unit_obstack. But there's no data yet that we need this
4482 optimization. */
4483 if (cu->dwo_unit != NULL)
4484 rereading_dwo_cu = 1;
4485 }
4486 else
4487 {
4488 /* If !use_existing_cu, this_cu->cu must be NULL. */
4489 gdb_assert (this_cu->cu == NULL);
4490
4491 cu = xmalloc (sizeof (*cu));
4492 init_one_comp_unit (cu, this_cu);
4493
4494 /* If an error occurs while loading, release our storage. */
4495 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4496 }
4497
4498 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4499 {
4500 /* We already have the header, there's no need to read it in again. */
4501 info_ptr += cu->header.first_die_offset.cu_off;
4502 }
4503 else
4504 {
4505 if (this_cu->is_debug_types)
4506 {
4507 ULONGEST signature;
4508 cu_offset type_offset_in_tu;
4509
4510 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4511 abbrev_section, info_ptr,
4512 &signature,
4513 &type_offset_in_tu);
4514
4515 /* Since per_cu is the first member of struct signatured_type,
4516 we can go from a pointer to one to a pointer to the other. */
4517 sig_type = (struct signatured_type *) this_cu;
4518 gdb_assert (sig_type->signature == signature);
4519 gdb_assert (sig_type->type_offset_in_tu.cu_off
4520 == type_offset_in_tu.cu_off);
4521 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4522
4523 /* LENGTH has not been set yet for type units if we're
4524 using .gdb_index. */
4525 this_cu->length = get_cu_length (&cu->header);
4526
4527 /* Establish the type offset that can be used to lookup the type. */
4528 sig_type->type_offset_in_section.sect_off =
4529 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4530 }
4531 else
4532 {
4533 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4534 abbrev_section,
4535 info_ptr, 0);
4536
4537 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4538 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4539 }
4540 }
4541
4542 /* Skip dummy compilation units. */
4543 if (info_ptr >= begin_info_ptr + this_cu->length
4544 || peek_abbrev_code (abfd, info_ptr) == 0)
4545 {
4546 do_cleanups (cleanups);
4547 return;
4548 }
4549
4550 /* If we don't have them yet, read the abbrevs for this compilation unit.
4551 And if we need to read them now, make sure they're freed when we're
4552 done. Note that it's important that if the CU had an abbrev table
4553 on entry we don't free it when we're done: Somewhere up the call stack
4554 it may be in use. */
4555 if (abbrev_table != NULL)
4556 {
4557 gdb_assert (cu->abbrev_table == NULL);
4558 gdb_assert (cu->header.abbrev_offset.sect_off
4559 == abbrev_table->offset.sect_off);
4560 cu->abbrev_table = abbrev_table;
4561 }
4562 else if (cu->abbrev_table == NULL)
4563 {
4564 dwarf2_read_abbrevs (cu, abbrev_section);
4565 make_cleanup (dwarf2_free_abbrev_table, cu);
4566 }
4567 else if (rereading_dwo_cu)
4568 {
4569 dwarf2_free_abbrev_table (cu);
4570 dwarf2_read_abbrevs (cu, abbrev_section);
4571 }
4572
4573 /* Read the top level CU/TU die. */
4574 init_cu_die_reader (&reader, cu, section, NULL);
4575 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4576
4577 /* If we have a DWO stub, process it and then read in the DWO file.
4578 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4579 a DWO CU, that this test will fail. */
4580 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4581 if (attr)
4582 {
4583 const char *dwo_name = DW_STRING (attr);
4584 const char *comp_dir_string;
4585 struct dwo_unit *dwo_unit;
4586 ULONGEST signature; /* Or dwo_id. */
4587 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4588 int i,num_extra_attrs;
4589 struct dwarf2_section_info *dwo_abbrev_section;
4590
4591 if (has_children)
4592 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4593 " has children (offset 0x%x) [in module %s]"),
4594 this_cu->offset.sect_off, bfd_get_filename (abfd));
4595
4596 /* These attributes aren't processed until later:
4597 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4598 However, the attribute is found in the stub which we won't have later.
4599 In order to not impose this complication on the rest of the code,
4600 we read them here and copy them to the DWO CU/TU die. */
4601
4602 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4603 DWO file. */
4604 stmt_list = NULL;
4605 if (! this_cu->is_debug_types)
4606 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4607 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4608 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4609 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4610 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4611
4612 /* There should be a DW_AT_addr_base attribute here (if needed).
4613 We need the value before we can process DW_FORM_GNU_addr_index. */
4614 cu->addr_base = 0;
4615 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4616 if (attr)
4617 cu->addr_base = DW_UNSND (attr);
4618
4619 /* There should be a DW_AT_ranges_base attribute here (if needed).
4620 We need the value before we can process DW_AT_ranges. */
4621 cu->ranges_base = 0;
4622 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4623 if (attr)
4624 cu->ranges_base = DW_UNSND (attr);
4625
4626 if (this_cu->is_debug_types)
4627 {
4628 gdb_assert (sig_type != NULL);
4629 signature = sig_type->signature;
4630 }
4631 else
4632 {
4633 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4634 if (! attr)
4635 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4636 dwo_name);
4637 signature = DW_UNSND (attr);
4638 }
4639
4640 /* We may need the comp_dir in order to find the DWO file. */
4641 comp_dir_string = NULL;
4642 if (comp_dir)
4643 comp_dir_string = DW_STRING (comp_dir);
4644
4645 if (this_cu->is_debug_types)
4646 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4647 else
4648 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4649 signature);
4650
4651 if (dwo_unit == NULL)
4652 {
4653 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4654 " with ID %s [in module %s]"),
4655 this_cu->offset.sect_off,
4656 phex (signature, sizeof (signature)),
4657 objfile->name);
4658 }
4659
4660 /* Set up for reading the DWO CU/TU. */
4661 cu->dwo_unit = dwo_unit;
4662 section = dwo_unit->info_or_types_section;
4663 dwarf2_read_section (objfile, section);
4664 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4665 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4666 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4667
4668 if (this_cu->is_debug_types)
4669 {
4670 ULONGEST signature;
4671 cu_offset type_offset_in_tu;
4672
4673 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4674 dwo_abbrev_section,
4675 info_ptr,
4676 &signature,
4677 &type_offset_in_tu);
4678 gdb_assert (sig_type->signature == signature);
4679 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4680 /* For DWOs coming from DWP files, we don't know the CU length
4681 nor the type's offset in the TU until now. */
4682 dwo_unit->length = get_cu_length (&cu->header);
4683 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4684
4685 /* Establish the type offset that can be used to lookup the type.
4686 For DWO files, we don't know it until now. */
4687 sig_type->type_offset_in_section.sect_off =
4688 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4689 }
4690 else
4691 {
4692 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4693 dwo_abbrev_section,
4694 info_ptr, 0);
4695 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4696 /* For DWOs coming from DWP files, we don't know the CU length
4697 until now. */
4698 dwo_unit->length = get_cu_length (&cu->header);
4699 }
4700
4701 /* Discard the original CU's abbrev table, and read the DWO's. */
4702 if (abbrev_table == NULL)
4703 {
4704 dwarf2_free_abbrev_table (cu);
4705 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4706 }
4707 else
4708 {
4709 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4710 make_cleanup (dwarf2_free_abbrev_table, cu);
4711 }
4712
4713 /* Read in the die, but leave space to copy over the attributes
4714 from the stub. This has the benefit of simplifying the rest of
4715 the code - all the real work is done here. */
4716 num_extra_attrs = ((stmt_list != NULL)
4717 + (low_pc != NULL)
4718 + (high_pc != NULL)
4719 + (ranges != NULL)
4720 + (comp_dir != NULL));
4721 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4722 &has_children, num_extra_attrs);
4723
4724 /* Copy over the attributes from the stub to the DWO die. */
4725 i = comp_unit_die->num_attrs;
4726 if (stmt_list != NULL)
4727 comp_unit_die->attrs[i++] = *stmt_list;
4728 if (low_pc != NULL)
4729 comp_unit_die->attrs[i++] = *low_pc;
4730 if (high_pc != NULL)
4731 comp_unit_die->attrs[i++] = *high_pc;
4732 if (ranges != NULL)
4733 comp_unit_die->attrs[i++] = *ranges;
4734 if (comp_dir != NULL)
4735 comp_unit_die->attrs[i++] = *comp_dir;
4736 comp_unit_die->num_attrs += num_extra_attrs;
4737
4738 /* Skip dummy compilation units. */
4739 if (info_ptr >= begin_info_ptr + dwo_unit->length
4740 || peek_abbrev_code (abfd, info_ptr) == 0)
4741 {
4742 do_cleanups (cleanups);
4743 return;
4744 }
4745 }
4746
4747 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4748
4749 if (free_cu_cleanup != NULL)
4750 {
4751 if (keep)
4752 {
4753 /* We've successfully allocated this compilation unit. Let our
4754 caller clean it up when finished with it. */
4755 discard_cleanups (free_cu_cleanup);
4756
4757 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4758 So we have to manually free the abbrev table. */
4759 dwarf2_free_abbrev_table (cu);
4760
4761 /* Link this CU into read_in_chain. */
4762 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4763 dwarf2_per_objfile->read_in_chain = this_cu;
4764 }
4765 else
4766 do_cleanups (free_cu_cleanup);
4767 }
4768
4769 do_cleanups (cleanups);
4770 }
4771
4772 /* Read CU/TU THIS_CU in section SECTION,
4773 but do not follow DW_AT_GNU_dwo_name if present.
4774 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4775 to have already done the lookup to find the DWO/DWP file).
4776
4777 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4778 THIS_CU->is_debug_types, but nothing else.
4779
4780 We fill in THIS_CU->length.
4781
4782 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4783 linker) then DIE_READER_FUNC will not get called.
4784
4785 THIS_CU->cu is always freed when done.
4786 This is done in order to not leave THIS_CU->cu in a state where we have
4787 to care whether it refers to the "main" CU or the DWO CU. */
4788
4789 static void
4790 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4791 struct dwarf2_section_info *abbrev_section,
4792 struct dwo_file *dwo_file,
4793 die_reader_func_ftype *die_reader_func,
4794 void *data)
4795 {
4796 struct objfile *objfile = dwarf2_per_objfile->objfile;
4797 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4798 bfd *abfd = section->asection->owner;
4799 struct dwarf2_cu cu;
4800 gdb_byte *begin_info_ptr, *info_ptr;
4801 struct die_reader_specs reader;
4802 struct cleanup *cleanups;
4803 struct die_info *comp_unit_die;
4804 int has_children;
4805
4806 if (dwarf2_die_debug)
4807 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4808 this_cu->is_debug_types ? "type" : "comp",
4809 this_cu->offset.sect_off);
4810
4811 gdb_assert (this_cu->cu == NULL);
4812
4813 /* This is cheap if the section is already read in. */
4814 dwarf2_read_section (objfile, section);
4815
4816 init_one_comp_unit (&cu, this_cu);
4817
4818 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4819
4820 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4821 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4822 abbrev_section, info_ptr,
4823 this_cu->is_debug_types);
4824
4825 this_cu->length = get_cu_length (&cu.header);
4826
4827 /* Skip dummy compilation units. */
4828 if (info_ptr >= begin_info_ptr + this_cu->length
4829 || peek_abbrev_code (abfd, info_ptr) == 0)
4830 {
4831 do_cleanups (cleanups);
4832 return;
4833 }
4834
4835 dwarf2_read_abbrevs (&cu, abbrev_section);
4836 make_cleanup (dwarf2_free_abbrev_table, &cu);
4837
4838 init_cu_die_reader (&reader, &cu, section, dwo_file);
4839 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4840
4841 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4842
4843 do_cleanups (cleanups);
4844 }
4845
4846 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4847 does not lookup the specified DWO file.
4848 This cannot be used to read DWO files.
4849
4850 THIS_CU->cu is always freed when done.
4851 This is done in order to not leave THIS_CU->cu in a state where we have
4852 to care whether it refers to the "main" CU or the DWO CU.
4853 We can revisit this if the data shows there's a performance issue. */
4854
4855 static void
4856 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4857 die_reader_func_ftype *die_reader_func,
4858 void *data)
4859 {
4860 init_cutu_and_read_dies_no_follow (this_cu,
4861 get_abbrev_section_for_cu (this_cu),
4862 NULL,
4863 die_reader_func, data);
4864 }
4865
4866 /* Create a psymtab named NAME and assign it to PER_CU.
4867
4868 The caller must fill in the following details:
4869 dirname, textlow, texthigh. */
4870
4871 static struct partial_symtab *
4872 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4873 {
4874 struct objfile *objfile = per_cu->objfile;
4875 struct partial_symtab *pst;
4876
4877 pst = start_psymtab_common (objfile, objfile->section_offsets,
4878 name, 0,
4879 objfile->global_psymbols.next,
4880 objfile->static_psymbols.next);
4881
4882 pst->psymtabs_addrmap_supported = 1;
4883
4884 /* This is the glue that links PST into GDB's symbol API. */
4885 pst->read_symtab_private = per_cu;
4886 pst->read_symtab = dwarf2_read_symtab;
4887 per_cu->v.psymtab = pst;
4888
4889 return pst;
4890 }
4891
4892 /* die_reader_func for process_psymtab_comp_unit. */
4893
4894 static void
4895 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4896 gdb_byte *info_ptr,
4897 struct die_info *comp_unit_die,
4898 int has_children,
4899 void *data)
4900 {
4901 struct dwarf2_cu *cu = reader->cu;
4902 struct objfile *objfile = cu->objfile;
4903 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4904 struct attribute *attr;
4905 CORE_ADDR baseaddr;
4906 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4907 struct partial_symtab *pst;
4908 int has_pc_info;
4909 const char *filename;
4910 int *want_partial_unit_ptr = data;
4911
4912 if (comp_unit_die->tag == DW_TAG_partial_unit
4913 && (want_partial_unit_ptr == NULL
4914 || !*want_partial_unit_ptr))
4915 return;
4916
4917 gdb_assert (! per_cu->is_debug_types);
4918
4919 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4920
4921 cu->list_in_scope = &file_symbols;
4922
4923 /* Allocate a new partial symbol table structure. */
4924 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4925 if (attr == NULL || !DW_STRING (attr))
4926 filename = "";
4927 else
4928 filename = DW_STRING (attr);
4929
4930 pst = create_partial_symtab (per_cu, filename);
4931
4932 /* This must be done before calling dwarf2_build_include_psymtabs. */
4933 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4934 if (attr != NULL)
4935 pst->dirname = DW_STRING (attr);
4936
4937 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4938
4939 dwarf2_find_base_address (comp_unit_die, cu);
4940
4941 /* Possibly set the default values of LOWPC and HIGHPC from
4942 `DW_AT_ranges'. */
4943 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4944 &best_highpc, cu, pst);
4945 if (has_pc_info == 1 && best_lowpc < best_highpc)
4946 /* Store the contiguous range if it is not empty; it can be empty for
4947 CUs with no code. */
4948 addrmap_set_empty (objfile->psymtabs_addrmap,
4949 best_lowpc + baseaddr,
4950 best_highpc + baseaddr - 1, pst);
4951
4952 /* Check if comp unit has_children.
4953 If so, read the rest of the partial symbols from this comp unit.
4954 If not, there's no more debug_info for this comp unit. */
4955 if (has_children)
4956 {
4957 struct partial_die_info *first_die;
4958 CORE_ADDR lowpc, highpc;
4959
4960 lowpc = ((CORE_ADDR) -1);
4961 highpc = ((CORE_ADDR) 0);
4962
4963 first_die = load_partial_dies (reader, info_ptr, 1);
4964
4965 scan_partial_symbols (first_die, &lowpc, &highpc,
4966 ! has_pc_info, cu);
4967
4968 /* If we didn't find a lowpc, set it to highpc to avoid
4969 complaints from `maint check'. */
4970 if (lowpc == ((CORE_ADDR) -1))
4971 lowpc = highpc;
4972
4973 /* If the compilation unit didn't have an explicit address range,
4974 then use the information extracted from its child dies. */
4975 if (! has_pc_info)
4976 {
4977 best_lowpc = lowpc;
4978 best_highpc = highpc;
4979 }
4980 }
4981 pst->textlow = best_lowpc + baseaddr;
4982 pst->texthigh = best_highpc + baseaddr;
4983
4984 pst->n_global_syms = objfile->global_psymbols.next -
4985 (objfile->global_psymbols.list + pst->globals_offset);
4986 pst->n_static_syms = objfile->static_psymbols.next -
4987 (objfile->static_psymbols.list + pst->statics_offset);
4988 sort_pst_symbols (objfile, pst);
4989
4990 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
4991 {
4992 int i;
4993 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
4994 struct dwarf2_per_cu_data *iter;
4995
4996 /* Fill in 'dependencies' here; we fill in 'users' in a
4997 post-pass. */
4998 pst->number_of_dependencies = len;
4999 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5000 len * sizeof (struct symtab *));
5001 for (i = 0;
5002 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5003 i, iter);
5004 ++i)
5005 pst->dependencies[i] = iter->v.psymtab;
5006
5007 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5008 }
5009
5010 /* Get the list of files included in the current compilation unit,
5011 and build a psymtab for each of them. */
5012 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5013
5014 if (dwarf2_read_debug)
5015 {
5016 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5017
5018 fprintf_unfiltered (gdb_stdlog,
5019 "Psymtab for %s unit @0x%x: %s - %s"
5020 ", %d global, %d static syms\n",
5021 per_cu->is_debug_types ? "type" : "comp",
5022 per_cu->offset.sect_off,
5023 paddress (gdbarch, pst->textlow),
5024 paddress (gdbarch, pst->texthigh),
5025 pst->n_global_syms, pst->n_static_syms);
5026 }
5027 }
5028
5029 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5030 Process compilation unit THIS_CU for a psymtab. */
5031
5032 static void
5033 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5034 int want_partial_unit)
5035 {
5036 /* If this compilation unit was already read in, free the
5037 cached copy in order to read it in again. This is
5038 necessary because we skipped some symbols when we first
5039 read in the compilation unit (see load_partial_dies).
5040 This problem could be avoided, but the benefit is unclear. */
5041 if (this_cu->cu != NULL)
5042 free_one_cached_comp_unit (this_cu);
5043
5044 gdb_assert (! this_cu->is_debug_types);
5045 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5046 process_psymtab_comp_unit_reader,
5047 &want_partial_unit);
5048
5049 /* Age out any secondary CUs. */
5050 age_cached_comp_units ();
5051 }
5052
5053 static hashval_t
5054 hash_type_unit_group (const void *item)
5055 {
5056 const struct type_unit_group *tu_group = item;
5057
5058 return hash_stmt_list_entry (&tu_group->hash);
5059 }
5060
5061 static int
5062 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5063 {
5064 const struct type_unit_group *lhs = item_lhs;
5065 const struct type_unit_group *rhs = item_rhs;
5066
5067 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5068 }
5069
5070 /* Allocate a hash table for type unit groups. */
5071
5072 static htab_t
5073 allocate_type_unit_groups_table (void)
5074 {
5075 return htab_create_alloc_ex (3,
5076 hash_type_unit_group,
5077 eq_type_unit_group,
5078 NULL,
5079 &dwarf2_per_objfile->objfile->objfile_obstack,
5080 hashtab_obstack_allocate,
5081 dummy_obstack_deallocate);
5082 }
5083
5084 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5085 partial symtabs. We combine several TUs per psymtab to not let the size
5086 of any one psymtab grow too big. */
5087 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5088 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5089
5090 /* Helper routine for get_type_unit_group.
5091 Create the type_unit_group object used to hold one or more TUs. */
5092
5093 static struct type_unit_group *
5094 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5095 {
5096 struct objfile *objfile = dwarf2_per_objfile->objfile;
5097 struct dwarf2_per_cu_data *per_cu;
5098 struct type_unit_group *tu_group;
5099
5100 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5101 struct type_unit_group);
5102 per_cu = &tu_group->per_cu;
5103 per_cu->objfile = objfile;
5104 per_cu->is_debug_types = 1;
5105 per_cu->type_unit_group = tu_group;
5106
5107 if (dwarf2_per_objfile->using_index)
5108 {
5109 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5110 struct dwarf2_per_cu_quick_data);
5111 tu_group->t.first_tu = cu->per_cu;
5112 }
5113 else
5114 {
5115 unsigned int line_offset = line_offset_struct.sect_off;
5116 struct partial_symtab *pst;
5117 char *name;
5118
5119 /* Give the symtab a useful name for debug purposes. */
5120 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5121 name = xstrprintf ("<type_units_%d>",
5122 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5123 else
5124 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5125
5126 pst = create_partial_symtab (per_cu, name);
5127 pst->anonymous = 1;
5128
5129 xfree (name);
5130 }
5131
5132 tu_group->hash.dwo_unit = cu->dwo_unit;
5133 tu_group->hash.line_offset = line_offset_struct;
5134
5135 return tu_group;
5136 }
5137
5138 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5139 STMT_LIST is a DW_AT_stmt_list attribute. */
5140
5141 static struct type_unit_group *
5142 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5143 {
5144 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5145 struct type_unit_group *tu_group;
5146 void **slot;
5147 unsigned int line_offset;
5148 struct type_unit_group type_unit_group_for_lookup;
5149
5150 if (dwarf2_per_objfile->type_unit_groups == NULL)
5151 {
5152 dwarf2_per_objfile->type_unit_groups =
5153 allocate_type_unit_groups_table ();
5154 }
5155
5156 /* Do we need to create a new group, or can we use an existing one? */
5157
5158 if (stmt_list)
5159 {
5160 line_offset = DW_UNSND (stmt_list);
5161 ++tu_stats->nr_symtab_sharers;
5162 }
5163 else
5164 {
5165 /* Ugh, no stmt_list. Rare, but we have to handle it.
5166 We can do various things here like create one group per TU or
5167 spread them over multiple groups to split up the expansion work.
5168 To avoid worst case scenarios (too many groups or too large groups)
5169 we, umm, group them in bunches. */
5170 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5171 | (tu_stats->nr_stmt_less_type_units
5172 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5173 ++tu_stats->nr_stmt_less_type_units;
5174 }
5175
5176 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5177 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5178 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5179 &type_unit_group_for_lookup, INSERT);
5180 if (*slot != NULL)
5181 {
5182 tu_group = *slot;
5183 gdb_assert (tu_group != NULL);
5184 }
5185 else
5186 {
5187 sect_offset line_offset_struct;
5188
5189 line_offset_struct.sect_off = line_offset;
5190 tu_group = create_type_unit_group (cu, line_offset_struct);
5191 *slot = tu_group;
5192 ++tu_stats->nr_symtabs;
5193 }
5194
5195 return tu_group;
5196 }
5197
5198 /* Struct used to sort TUs by their abbreviation table offset. */
5199
5200 struct tu_abbrev_offset
5201 {
5202 struct signatured_type *sig_type;
5203 sect_offset abbrev_offset;
5204 };
5205
5206 /* Helper routine for build_type_unit_groups, passed to qsort. */
5207
5208 static int
5209 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5210 {
5211 const struct tu_abbrev_offset * const *a = ap;
5212 const struct tu_abbrev_offset * const *b = bp;
5213 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5214 unsigned int boff = (*b)->abbrev_offset.sect_off;
5215
5216 return (aoff > boff) - (aoff < boff);
5217 }
5218
5219 /* A helper function to add a type_unit_group to a table. */
5220
5221 static int
5222 add_type_unit_group_to_table (void **slot, void *datum)
5223 {
5224 struct type_unit_group *tu_group = *slot;
5225 struct type_unit_group ***datap = datum;
5226
5227 **datap = tu_group;
5228 ++*datap;
5229
5230 return 1;
5231 }
5232
5233 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5234 each one passing FUNC,DATA.
5235
5236 The efficiency is because we sort TUs by the abbrev table they use and
5237 only read each abbrev table once. In one program there are 200K TUs
5238 sharing 8K abbrev tables.
5239
5240 The main purpose of this function is to support building the
5241 dwarf2_per_objfile->type_unit_groups table.
5242 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5243 can collapse the search space by grouping them by stmt_list.
5244 The savings can be significant, in the same program from above the 200K TUs
5245 share 8K stmt_list tables.
5246
5247 FUNC is expected to call get_type_unit_group, which will create the
5248 struct type_unit_group if necessary and add it to
5249 dwarf2_per_objfile->type_unit_groups. */
5250
5251 static void
5252 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5253 {
5254 struct objfile *objfile = dwarf2_per_objfile->objfile;
5255 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5256 struct cleanup *cleanups;
5257 struct abbrev_table *abbrev_table;
5258 sect_offset abbrev_offset;
5259 struct tu_abbrev_offset *sorted_by_abbrev;
5260 struct type_unit_group **iter;
5261 int i;
5262
5263 /* It's up to the caller to not call us multiple times. */
5264 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5265
5266 if (dwarf2_per_objfile->n_type_units == 0)
5267 return;
5268
5269 /* TUs typically share abbrev tables, and there can be way more TUs than
5270 abbrev tables. Sort by abbrev table to reduce the number of times we
5271 read each abbrev table in.
5272 Alternatives are to punt or to maintain a cache of abbrev tables.
5273 This is simpler and efficient enough for now.
5274
5275 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5276 symtab to use). Typically TUs with the same abbrev offset have the same
5277 stmt_list value too so in practice this should work well.
5278
5279 The basic algorithm here is:
5280
5281 sort TUs by abbrev table
5282 for each TU with same abbrev table:
5283 read abbrev table if first user
5284 read TU top level DIE
5285 [IWBN if DWO skeletons had DW_AT_stmt_list]
5286 call FUNC */
5287
5288 if (dwarf2_read_debug)
5289 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5290
5291 /* Sort in a separate table to maintain the order of all_type_units
5292 for .gdb_index: TU indices directly index all_type_units. */
5293 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5294 dwarf2_per_objfile->n_type_units);
5295 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5296 {
5297 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5298
5299 sorted_by_abbrev[i].sig_type = sig_type;
5300 sorted_by_abbrev[i].abbrev_offset =
5301 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5302 sig_type->per_cu.offset);
5303 }
5304 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5305 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5306 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5307
5308 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5309 called any number of times, so we don't reset tu_stats here. */
5310
5311 abbrev_offset.sect_off = ~(unsigned) 0;
5312 abbrev_table = NULL;
5313 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5314
5315 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5316 {
5317 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5318
5319 /* Switch to the next abbrev table if necessary. */
5320 if (abbrev_table == NULL
5321 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5322 {
5323 if (abbrev_table != NULL)
5324 {
5325 abbrev_table_free (abbrev_table);
5326 /* Reset to NULL in case abbrev_table_read_table throws
5327 an error: abbrev_table_free_cleanup will get called. */
5328 abbrev_table = NULL;
5329 }
5330 abbrev_offset = tu->abbrev_offset;
5331 abbrev_table =
5332 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5333 abbrev_offset);
5334 ++tu_stats->nr_uniq_abbrev_tables;
5335 }
5336
5337 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5338 func, data);
5339 }
5340
5341 /* Create a vector of pointers to primary type units to make it easy to
5342 iterate over them and CUs. See dw2_get_primary_cu. */
5343 dwarf2_per_objfile->n_type_unit_groups =
5344 htab_elements (dwarf2_per_objfile->type_unit_groups);
5345 dwarf2_per_objfile->all_type_unit_groups =
5346 obstack_alloc (&objfile->objfile_obstack,
5347 dwarf2_per_objfile->n_type_unit_groups
5348 * sizeof (struct type_unit_group *));
5349 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5350 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5351 add_type_unit_group_to_table, &iter);
5352 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5353 == dwarf2_per_objfile->n_type_unit_groups);
5354
5355 do_cleanups (cleanups);
5356
5357 if (dwarf2_read_debug)
5358 {
5359 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5360 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5361 dwarf2_per_objfile->n_type_units);
5362 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5363 tu_stats->nr_uniq_abbrev_tables);
5364 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5365 tu_stats->nr_symtabs);
5366 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5367 tu_stats->nr_symtab_sharers);
5368 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5369 tu_stats->nr_stmt_less_type_units);
5370 }
5371 }
5372
5373 /* Reader function for build_type_psymtabs. */
5374
5375 static void
5376 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5377 gdb_byte *info_ptr,
5378 struct die_info *type_unit_die,
5379 int has_children,
5380 void *data)
5381 {
5382 struct objfile *objfile = dwarf2_per_objfile->objfile;
5383 struct dwarf2_cu *cu = reader->cu;
5384 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5385 struct type_unit_group *tu_group;
5386 struct attribute *attr;
5387 struct partial_die_info *first_die;
5388 CORE_ADDR lowpc, highpc;
5389 struct partial_symtab *pst;
5390
5391 gdb_assert (data == NULL);
5392
5393 if (! has_children)
5394 return;
5395
5396 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5397 tu_group = get_type_unit_group (cu, attr);
5398
5399 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5400
5401 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5402 cu->list_in_scope = &file_symbols;
5403 pst = create_partial_symtab (per_cu, "");
5404 pst->anonymous = 1;
5405
5406 first_die = load_partial_dies (reader, info_ptr, 1);
5407
5408 lowpc = (CORE_ADDR) -1;
5409 highpc = (CORE_ADDR) 0;
5410 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5411
5412 pst->n_global_syms = objfile->global_psymbols.next -
5413 (objfile->global_psymbols.list + pst->globals_offset);
5414 pst->n_static_syms = objfile->static_psymbols.next -
5415 (objfile->static_psymbols.list + pst->statics_offset);
5416 sort_pst_symbols (objfile, pst);
5417 }
5418
5419 /* Traversal function for build_type_psymtabs. */
5420
5421 static int
5422 build_type_psymtab_dependencies (void **slot, void *info)
5423 {
5424 struct objfile *objfile = dwarf2_per_objfile->objfile;
5425 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5426 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5427 struct partial_symtab *pst = per_cu->v.psymtab;
5428 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5429 struct dwarf2_per_cu_data *iter;
5430 int i;
5431
5432 gdb_assert (len > 0);
5433
5434 pst->number_of_dependencies = len;
5435 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5436 len * sizeof (struct psymtab *));
5437 for (i = 0;
5438 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5439 ++i)
5440 {
5441 pst->dependencies[i] = iter->v.psymtab;
5442 iter->type_unit_group = tu_group;
5443 }
5444
5445 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5446
5447 return 1;
5448 }
5449
5450 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5451 Build partial symbol tables for the .debug_types comp-units. */
5452
5453 static void
5454 build_type_psymtabs (struct objfile *objfile)
5455 {
5456 if (! create_all_type_units (objfile))
5457 return;
5458
5459 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5460
5461 /* Now that all TUs have been processed we can fill in the dependencies. */
5462 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5463 build_type_psymtab_dependencies, NULL);
5464 }
5465
5466 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5467
5468 static void
5469 psymtabs_addrmap_cleanup (void *o)
5470 {
5471 struct objfile *objfile = o;
5472
5473 objfile->psymtabs_addrmap = NULL;
5474 }
5475
5476 /* Compute the 'user' field for each psymtab in OBJFILE. */
5477
5478 static void
5479 set_partial_user (struct objfile *objfile)
5480 {
5481 int i;
5482
5483 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5484 {
5485 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5486 struct partial_symtab *pst = per_cu->v.psymtab;
5487 int j;
5488
5489 if (pst == NULL)
5490 continue;
5491
5492 for (j = 0; j < pst->number_of_dependencies; ++j)
5493 {
5494 /* Set the 'user' field only if it is not already set. */
5495 if (pst->dependencies[j]->user == NULL)
5496 pst->dependencies[j]->user = pst;
5497 }
5498 }
5499 }
5500
5501 /* Build the partial symbol table by doing a quick pass through the
5502 .debug_info and .debug_abbrev sections. */
5503
5504 static void
5505 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5506 {
5507 struct cleanup *back_to, *addrmap_cleanup;
5508 struct obstack temp_obstack;
5509 int i;
5510
5511 if (dwarf2_read_debug)
5512 {
5513 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5514 objfile->name);
5515 }
5516
5517 dwarf2_per_objfile->reading_partial_symbols = 1;
5518
5519 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5520
5521 /* Any cached compilation units will be linked by the per-objfile
5522 read_in_chain. Make sure to free them when we're done. */
5523 back_to = make_cleanup (free_cached_comp_units, NULL);
5524
5525 build_type_psymtabs (objfile);
5526
5527 create_all_comp_units (objfile);
5528
5529 /* Create a temporary address map on a temporary obstack. We later
5530 copy this to the final obstack. */
5531 obstack_init (&temp_obstack);
5532 make_cleanup_obstack_free (&temp_obstack);
5533 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5534 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5535
5536 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5537 {
5538 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5539
5540 process_psymtab_comp_unit (per_cu, 0);
5541 }
5542
5543 set_partial_user (objfile);
5544
5545 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5546 &objfile->objfile_obstack);
5547 discard_cleanups (addrmap_cleanup);
5548
5549 do_cleanups (back_to);
5550
5551 if (dwarf2_read_debug)
5552 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5553 objfile->name);
5554 }
5555
5556 /* die_reader_func for load_partial_comp_unit. */
5557
5558 static void
5559 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5560 gdb_byte *info_ptr,
5561 struct die_info *comp_unit_die,
5562 int has_children,
5563 void *data)
5564 {
5565 struct dwarf2_cu *cu = reader->cu;
5566
5567 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5568
5569 /* Check if comp unit has_children.
5570 If so, read the rest of the partial symbols from this comp unit.
5571 If not, there's no more debug_info for this comp unit. */
5572 if (has_children)
5573 load_partial_dies (reader, info_ptr, 0);
5574 }
5575
5576 /* Load the partial DIEs for a secondary CU into memory.
5577 This is also used when rereading a primary CU with load_all_dies. */
5578
5579 static void
5580 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5581 {
5582 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5583 load_partial_comp_unit_reader, NULL);
5584 }
5585
5586 static void
5587 read_comp_units_from_section (struct objfile *objfile,
5588 struct dwarf2_section_info *section,
5589 unsigned int is_dwz,
5590 int *n_allocated,
5591 int *n_comp_units,
5592 struct dwarf2_per_cu_data ***all_comp_units)
5593 {
5594 gdb_byte *info_ptr;
5595 bfd *abfd = section->asection->owner;
5596
5597 dwarf2_read_section (objfile, section);
5598
5599 info_ptr = section->buffer;
5600
5601 while (info_ptr < section->buffer + section->size)
5602 {
5603 unsigned int length, initial_length_size;
5604 struct dwarf2_per_cu_data *this_cu;
5605 sect_offset offset;
5606
5607 offset.sect_off = info_ptr - section->buffer;
5608
5609 /* Read just enough information to find out where the next
5610 compilation unit is. */
5611 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5612
5613 /* Save the compilation unit for later lookup. */
5614 this_cu = obstack_alloc (&objfile->objfile_obstack,
5615 sizeof (struct dwarf2_per_cu_data));
5616 memset (this_cu, 0, sizeof (*this_cu));
5617 this_cu->offset = offset;
5618 this_cu->length = length + initial_length_size;
5619 this_cu->is_dwz = is_dwz;
5620 this_cu->objfile = objfile;
5621 this_cu->info_or_types_section = section;
5622
5623 if (*n_comp_units == *n_allocated)
5624 {
5625 *n_allocated *= 2;
5626 *all_comp_units = xrealloc (*all_comp_units,
5627 *n_allocated
5628 * sizeof (struct dwarf2_per_cu_data *));
5629 }
5630 (*all_comp_units)[*n_comp_units] = this_cu;
5631 ++*n_comp_units;
5632
5633 info_ptr = info_ptr + this_cu->length;
5634 }
5635 }
5636
5637 /* Create a list of all compilation units in OBJFILE.
5638 This is only done for -readnow and building partial symtabs. */
5639
5640 static void
5641 create_all_comp_units (struct objfile *objfile)
5642 {
5643 int n_allocated;
5644 int n_comp_units;
5645 struct dwarf2_per_cu_data **all_comp_units;
5646
5647 n_comp_units = 0;
5648 n_allocated = 10;
5649 all_comp_units = xmalloc (n_allocated
5650 * sizeof (struct dwarf2_per_cu_data *));
5651
5652 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5653 &n_allocated, &n_comp_units, &all_comp_units);
5654
5655 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5656 {
5657 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5658
5659 read_comp_units_from_section (objfile, &dwz->info, 1,
5660 &n_allocated, &n_comp_units,
5661 &all_comp_units);
5662 }
5663
5664 dwarf2_per_objfile->all_comp_units
5665 = obstack_alloc (&objfile->objfile_obstack,
5666 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5667 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5668 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5669 xfree (all_comp_units);
5670 dwarf2_per_objfile->n_comp_units = n_comp_units;
5671 }
5672
5673 /* Process all loaded DIEs for compilation unit CU, starting at
5674 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5675 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5676 DW_AT_ranges). If NEED_PC is set, then this function will set
5677 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5678 and record the covered ranges in the addrmap. */
5679
5680 static void
5681 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5682 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5683 {
5684 struct partial_die_info *pdi;
5685
5686 /* Now, march along the PDI's, descending into ones which have
5687 interesting children but skipping the children of the other ones,
5688 until we reach the end of the compilation unit. */
5689
5690 pdi = first_die;
5691
5692 while (pdi != NULL)
5693 {
5694 fixup_partial_die (pdi, cu);
5695
5696 /* Anonymous namespaces or modules have no name but have interesting
5697 children, so we need to look at them. Ditto for anonymous
5698 enums. */
5699
5700 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5701 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5702 || pdi->tag == DW_TAG_imported_unit)
5703 {
5704 switch (pdi->tag)
5705 {
5706 case DW_TAG_subprogram:
5707 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5708 break;
5709 case DW_TAG_constant:
5710 case DW_TAG_variable:
5711 case DW_TAG_typedef:
5712 case DW_TAG_union_type:
5713 if (!pdi->is_declaration)
5714 {
5715 add_partial_symbol (pdi, cu);
5716 }
5717 break;
5718 case DW_TAG_class_type:
5719 case DW_TAG_interface_type:
5720 case DW_TAG_structure_type:
5721 if (!pdi->is_declaration)
5722 {
5723 add_partial_symbol (pdi, cu);
5724 }
5725 break;
5726 case DW_TAG_enumeration_type:
5727 if (!pdi->is_declaration)
5728 add_partial_enumeration (pdi, cu);
5729 break;
5730 case DW_TAG_base_type:
5731 case DW_TAG_subrange_type:
5732 /* File scope base type definitions are added to the partial
5733 symbol table. */
5734 add_partial_symbol (pdi, cu);
5735 break;
5736 case DW_TAG_namespace:
5737 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5738 break;
5739 case DW_TAG_module:
5740 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5741 break;
5742 case DW_TAG_imported_unit:
5743 {
5744 struct dwarf2_per_cu_data *per_cu;
5745
5746 /* For now we don't handle imported units in type units. */
5747 if (cu->per_cu->is_debug_types)
5748 {
5749 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5750 " supported in type units [in module %s]"),
5751 cu->objfile->name);
5752 }
5753
5754 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5755 pdi->is_dwz,
5756 cu->objfile);
5757
5758 /* Go read the partial unit, if needed. */
5759 if (per_cu->v.psymtab == NULL)
5760 process_psymtab_comp_unit (per_cu, 1);
5761
5762 VEC_safe_push (dwarf2_per_cu_ptr,
5763 cu->per_cu->imported_symtabs, per_cu);
5764 }
5765 break;
5766 default:
5767 break;
5768 }
5769 }
5770
5771 /* If the die has a sibling, skip to the sibling. */
5772
5773 pdi = pdi->die_sibling;
5774 }
5775 }
5776
5777 /* Functions used to compute the fully scoped name of a partial DIE.
5778
5779 Normally, this is simple. For C++, the parent DIE's fully scoped
5780 name is concatenated with "::" and the partial DIE's name. For
5781 Java, the same thing occurs except that "." is used instead of "::".
5782 Enumerators are an exception; they use the scope of their parent
5783 enumeration type, i.e. the name of the enumeration type is not
5784 prepended to the enumerator.
5785
5786 There are two complexities. One is DW_AT_specification; in this
5787 case "parent" means the parent of the target of the specification,
5788 instead of the direct parent of the DIE. The other is compilers
5789 which do not emit DW_TAG_namespace; in this case we try to guess
5790 the fully qualified name of structure types from their members'
5791 linkage names. This must be done using the DIE's children rather
5792 than the children of any DW_AT_specification target. We only need
5793 to do this for structures at the top level, i.e. if the target of
5794 any DW_AT_specification (if any; otherwise the DIE itself) does not
5795 have a parent. */
5796
5797 /* Compute the scope prefix associated with PDI's parent, in
5798 compilation unit CU. The result will be allocated on CU's
5799 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5800 field. NULL is returned if no prefix is necessary. */
5801 static const char *
5802 partial_die_parent_scope (struct partial_die_info *pdi,
5803 struct dwarf2_cu *cu)
5804 {
5805 const char *grandparent_scope;
5806 struct partial_die_info *parent, *real_pdi;
5807
5808 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5809 then this means the parent of the specification DIE. */
5810
5811 real_pdi = pdi;
5812 while (real_pdi->has_specification)
5813 real_pdi = find_partial_die (real_pdi->spec_offset,
5814 real_pdi->spec_is_dwz, cu);
5815
5816 parent = real_pdi->die_parent;
5817 if (parent == NULL)
5818 return NULL;
5819
5820 if (parent->scope_set)
5821 return parent->scope;
5822
5823 fixup_partial_die (parent, cu);
5824
5825 grandparent_scope = partial_die_parent_scope (parent, cu);
5826
5827 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5828 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5829 Work around this problem here. */
5830 if (cu->language == language_cplus
5831 && parent->tag == DW_TAG_namespace
5832 && strcmp (parent->name, "::") == 0
5833 && grandparent_scope == NULL)
5834 {
5835 parent->scope = NULL;
5836 parent->scope_set = 1;
5837 return NULL;
5838 }
5839
5840 if (pdi->tag == DW_TAG_enumerator)
5841 /* Enumerators should not get the name of the enumeration as a prefix. */
5842 parent->scope = grandparent_scope;
5843 else if (parent->tag == DW_TAG_namespace
5844 || parent->tag == DW_TAG_module
5845 || parent->tag == DW_TAG_structure_type
5846 || parent->tag == DW_TAG_class_type
5847 || parent->tag == DW_TAG_interface_type
5848 || parent->tag == DW_TAG_union_type
5849 || parent->tag == DW_TAG_enumeration_type)
5850 {
5851 if (grandparent_scope == NULL)
5852 parent->scope = parent->name;
5853 else
5854 parent->scope = typename_concat (&cu->comp_unit_obstack,
5855 grandparent_scope,
5856 parent->name, 0, cu);
5857 }
5858 else
5859 {
5860 /* FIXME drow/2004-04-01: What should we be doing with
5861 function-local names? For partial symbols, we should probably be
5862 ignoring them. */
5863 complaint (&symfile_complaints,
5864 _("unhandled containing DIE tag %d for DIE at %d"),
5865 parent->tag, pdi->offset.sect_off);
5866 parent->scope = grandparent_scope;
5867 }
5868
5869 parent->scope_set = 1;
5870 return parent->scope;
5871 }
5872
5873 /* Return the fully scoped name associated with PDI, from compilation unit
5874 CU. The result will be allocated with malloc. */
5875
5876 static char *
5877 partial_die_full_name (struct partial_die_info *pdi,
5878 struct dwarf2_cu *cu)
5879 {
5880 const char *parent_scope;
5881
5882 /* If this is a template instantiation, we can not work out the
5883 template arguments from partial DIEs. So, unfortunately, we have
5884 to go through the full DIEs. At least any work we do building
5885 types here will be reused if full symbols are loaded later. */
5886 if (pdi->has_template_arguments)
5887 {
5888 fixup_partial_die (pdi, cu);
5889
5890 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5891 {
5892 struct die_info *die;
5893 struct attribute attr;
5894 struct dwarf2_cu *ref_cu = cu;
5895
5896 /* DW_FORM_ref_addr is using section offset. */
5897 attr.name = 0;
5898 attr.form = DW_FORM_ref_addr;
5899 attr.u.unsnd = pdi->offset.sect_off;
5900 die = follow_die_ref (NULL, &attr, &ref_cu);
5901
5902 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5903 }
5904 }
5905
5906 parent_scope = partial_die_parent_scope (pdi, cu);
5907 if (parent_scope == NULL)
5908 return NULL;
5909 else
5910 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5911 }
5912
5913 static void
5914 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5915 {
5916 struct objfile *objfile = cu->objfile;
5917 CORE_ADDR addr = 0;
5918 const char *actual_name = NULL;
5919 CORE_ADDR baseaddr;
5920 char *built_actual_name;
5921
5922 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5923
5924 built_actual_name = partial_die_full_name (pdi, cu);
5925 if (built_actual_name != NULL)
5926 actual_name = built_actual_name;
5927
5928 if (actual_name == NULL)
5929 actual_name = pdi->name;
5930
5931 switch (pdi->tag)
5932 {
5933 case DW_TAG_subprogram:
5934 if (pdi->is_external || cu->language == language_ada)
5935 {
5936 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5937 of the global scope. But in Ada, we want to be able to access
5938 nested procedures globally. So all Ada subprograms are stored
5939 in the global scope. */
5940 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5941 mst_text, objfile); */
5942 add_psymbol_to_list (actual_name, strlen (actual_name),
5943 built_actual_name != NULL,
5944 VAR_DOMAIN, LOC_BLOCK,
5945 &objfile->global_psymbols,
5946 0, pdi->lowpc + baseaddr,
5947 cu->language, objfile);
5948 }
5949 else
5950 {
5951 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5952 mst_file_text, objfile); */
5953 add_psymbol_to_list (actual_name, strlen (actual_name),
5954 built_actual_name != NULL,
5955 VAR_DOMAIN, LOC_BLOCK,
5956 &objfile->static_psymbols,
5957 0, pdi->lowpc + baseaddr,
5958 cu->language, objfile);
5959 }
5960 break;
5961 case DW_TAG_constant:
5962 {
5963 struct psymbol_allocation_list *list;
5964
5965 if (pdi->is_external)
5966 list = &objfile->global_psymbols;
5967 else
5968 list = &objfile->static_psymbols;
5969 add_psymbol_to_list (actual_name, strlen (actual_name),
5970 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
5971 list, 0, 0, cu->language, objfile);
5972 }
5973 break;
5974 case DW_TAG_variable:
5975 if (pdi->d.locdesc)
5976 addr = decode_locdesc (pdi->d.locdesc, cu);
5977
5978 if (pdi->d.locdesc
5979 && addr == 0
5980 && !dwarf2_per_objfile->has_section_at_zero)
5981 {
5982 /* A global or static variable may also have been stripped
5983 out by the linker if unused, in which case its address
5984 will be nullified; do not add such variables into partial
5985 symbol table then. */
5986 }
5987 else if (pdi->is_external)
5988 {
5989 /* Global Variable.
5990 Don't enter into the minimal symbol tables as there is
5991 a minimal symbol table entry from the ELF symbols already.
5992 Enter into partial symbol table if it has a location
5993 descriptor or a type.
5994 If the location descriptor is missing, new_symbol will create
5995 a LOC_UNRESOLVED symbol, the address of the variable will then
5996 be determined from the minimal symbol table whenever the variable
5997 is referenced.
5998 The address for the partial symbol table entry is not
5999 used by GDB, but it comes in handy for debugging partial symbol
6000 table building. */
6001
6002 if (pdi->d.locdesc || pdi->has_type)
6003 add_psymbol_to_list (actual_name, strlen (actual_name),
6004 built_actual_name != NULL,
6005 VAR_DOMAIN, LOC_STATIC,
6006 &objfile->global_psymbols,
6007 0, addr + baseaddr,
6008 cu->language, objfile);
6009 }
6010 else
6011 {
6012 /* Static Variable. Skip symbols without location descriptors. */
6013 if (pdi->d.locdesc == NULL)
6014 {
6015 xfree (built_actual_name);
6016 return;
6017 }
6018 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6019 mst_file_data, objfile); */
6020 add_psymbol_to_list (actual_name, strlen (actual_name),
6021 built_actual_name != NULL,
6022 VAR_DOMAIN, LOC_STATIC,
6023 &objfile->static_psymbols,
6024 0, addr + baseaddr,
6025 cu->language, objfile);
6026 }
6027 break;
6028 case DW_TAG_typedef:
6029 case DW_TAG_base_type:
6030 case DW_TAG_subrange_type:
6031 add_psymbol_to_list (actual_name, strlen (actual_name),
6032 built_actual_name != NULL,
6033 VAR_DOMAIN, LOC_TYPEDEF,
6034 &objfile->static_psymbols,
6035 0, (CORE_ADDR) 0, cu->language, objfile);
6036 break;
6037 case DW_TAG_namespace:
6038 add_psymbol_to_list (actual_name, strlen (actual_name),
6039 built_actual_name != NULL,
6040 VAR_DOMAIN, LOC_TYPEDEF,
6041 &objfile->global_psymbols,
6042 0, (CORE_ADDR) 0, cu->language, objfile);
6043 break;
6044 case DW_TAG_class_type:
6045 case DW_TAG_interface_type:
6046 case DW_TAG_structure_type:
6047 case DW_TAG_union_type:
6048 case DW_TAG_enumeration_type:
6049 /* Skip external references. The DWARF standard says in the section
6050 about "Structure, Union, and Class Type Entries": "An incomplete
6051 structure, union or class type is represented by a structure,
6052 union or class entry that does not have a byte size attribute
6053 and that has a DW_AT_declaration attribute." */
6054 if (!pdi->has_byte_size && pdi->is_declaration)
6055 {
6056 xfree (built_actual_name);
6057 return;
6058 }
6059
6060 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6061 static vs. global. */
6062 add_psymbol_to_list (actual_name, strlen (actual_name),
6063 built_actual_name != NULL,
6064 STRUCT_DOMAIN, LOC_TYPEDEF,
6065 (cu->language == language_cplus
6066 || cu->language == language_java)
6067 ? &objfile->global_psymbols
6068 : &objfile->static_psymbols,
6069 0, (CORE_ADDR) 0, cu->language, objfile);
6070
6071 break;
6072 case DW_TAG_enumerator:
6073 add_psymbol_to_list (actual_name, strlen (actual_name),
6074 built_actual_name != NULL,
6075 VAR_DOMAIN, LOC_CONST,
6076 (cu->language == language_cplus
6077 || cu->language == language_java)
6078 ? &objfile->global_psymbols
6079 : &objfile->static_psymbols,
6080 0, (CORE_ADDR) 0, cu->language, objfile);
6081 break;
6082 default:
6083 break;
6084 }
6085
6086 xfree (built_actual_name);
6087 }
6088
6089 /* Read a partial die corresponding to a namespace; also, add a symbol
6090 corresponding to that namespace to the symbol table. NAMESPACE is
6091 the name of the enclosing namespace. */
6092
6093 static void
6094 add_partial_namespace (struct partial_die_info *pdi,
6095 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6096 int need_pc, struct dwarf2_cu *cu)
6097 {
6098 /* Add a symbol for the namespace. */
6099
6100 add_partial_symbol (pdi, cu);
6101
6102 /* Now scan partial symbols in that namespace. */
6103
6104 if (pdi->has_children)
6105 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6106 }
6107
6108 /* Read a partial die corresponding to a Fortran module. */
6109
6110 static void
6111 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6112 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6113 {
6114 /* Now scan partial symbols in that module. */
6115
6116 if (pdi->has_children)
6117 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6118 }
6119
6120 /* Read a partial die corresponding to a subprogram and create a partial
6121 symbol for that subprogram. When the CU language allows it, this
6122 routine also defines a partial symbol for each nested subprogram
6123 that this subprogram contains.
6124
6125 DIE my also be a lexical block, in which case we simply search
6126 recursively for suprograms defined inside that lexical block.
6127 Again, this is only performed when the CU language allows this
6128 type of definitions. */
6129
6130 static void
6131 add_partial_subprogram (struct partial_die_info *pdi,
6132 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6133 int need_pc, struct dwarf2_cu *cu)
6134 {
6135 if (pdi->tag == DW_TAG_subprogram)
6136 {
6137 if (pdi->has_pc_info)
6138 {
6139 if (pdi->lowpc < *lowpc)
6140 *lowpc = pdi->lowpc;
6141 if (pdi->highpc > *highpc)
6142 *highpc = pdi->highpc;
6143 if (need_pc)
6144 {
6145 CORE_ADDR baseaddr;
6146 struct objfile *objfile = cu->objfile;
6147
6148 baseaddr = ANOFFSET (objfile->section_offsets,
6149 SECT_OFF_TEXT (objfile));
6150 addrmap_set_empty (objfile->psymtabs_addrmap,
6151 pdi->lowpc + baseaddr,
6152 pdi->highpc - 1 + baseaddr,
6153 cu->per_cu->v.psymtab);
6154 }
6155 }
6156
6157 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6158 {
6159 if (!pdi->is_declaration)
6160 /* Ignore subprogram DIEs that do not have a name, they are
6161 illegal. Do not emit a complaint at this point, we will
6162 do so when we convert this psymtab into a symtab. */
6163 if (pdi->name)
6164 add_partial_symbol (pdi, cu);
6165 }
6166 }
6167
6168 if (! pdi->has_children)
6169 return;
6170
6171 if (cu->language == language_ada)
6172 {
6173 pdi = pdi->die_child;
6174 while (pdi != NULL)
6175 {
6176 fixup_partial_die (pdi, cu);
6177 if (pdi->tag == DW_TAG_subprogram
6178 || pdi->tag == DW_TAG_lexical_block)
6179 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6180 pdi = pdi->die_sibling;
6181 }
6182 }
6183 }
6184
6185 /* Read a partial die corresponding to an enumeration type. */
6186
6187 static void
6188 add_partial_enumeration (struct partial_die_info *enum_pdi,
6189 struct dwarf2_cu *cu)
6190 {
6191 struct partial_die_info *pdi;
6192
6193 if (enum_pdi->name != NULL)
6194 add_partial_symbol (enum_pdi, cu);
6195
6196 pdi = enum_pdi->die_child;
6197 while (pdi)
6198 {
6199 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6200 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6201 else
6202 add_partial_symbol (pdi, cu);
6203 pdi = pdi->die_sibling;
6204 }
6205 }
6206
6207 /* Return the initial uleb128 in the die at INFO_PTR. */
6208
6209 static unsigned int
6210 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6211 {
6212 unsigned int bytes_read;
6213
6214 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6215 }
6216
6217 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6218 Return the corresponding abbrev, or NULL if the number is zero (indicating
6219 an empty DIE). In either case *BYTES_READ will be set to the length of
6220 the initial number. */
6221
6222 static struct abbrev_info *
6223 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6224 struct dwarf2_cu *cu)
6225 {
6226 bfd *abfd = cu->objfile->obfd;
6227 unsigned int abbrev_number;
6228 struct abbrev_info *abbrev;
6229
6230 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6231
6232 if (abbrev_number == 0)
6233 return NULL;
6234
6235 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6236 if (!abbrev)
6237 {
6238 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6239 abbrev_number, bfd_get_filename (abfd));
6240 }
6241
6242 return abbrev;
6243 }
6244
6245 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6246 Returns a pointer to the end of a series of DIEs, terminated by an empty
6247 DIE. Any children of the skipped DIEs will also be skipped. */
6248
6249 static gdb_byte *
6250 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6251 {
6252 struct dwarf2_cu *cu = reader->cu;
6253 struct abbrev_info *abbrev;
6254 unsigned int bytes_read;
6255
6256 while (1)
6257 {
6258 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6259 if (abbrev == NULL)
6260 return info_ptr + bytes_read;
6261 else
6262 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6263 }
6264 }
6265
6266 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6267 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6268 abbrev corresponding to that skipped uleb128 should be passed in
6269 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6270 children. */
6271
6272 static gdb_byte *
6273 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6274 struct abbrev_info *abbrev)
6275 {
6276 unsigned int bytes_read;
6277 struct attribute attr;
6278 bfd *abfd = reader->abfd;
6279 struct dwarf2_cu *cu = reader->cu;
6280 gdb_byte *buffer = reader->buffer;
6281 const gdb_byte *buffer_end = reader->buffer_end;
6282 gdb_byte *start_info_ptr = info_ptr;
6283 unsigned int form, i;
6284
6285 for (i = 0; i < abbrev->num_attrs; i++)
6286 {
6287 /* The only abbrev we care about is DW_AT_sibling. */
6288 if (abbrev->attrs[i].name == DW_AT_sibling)
6289 {
6290 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6291 if (attr.form == DW_FORM_ref_addr)
6292 complaint (&symfile_complaints,
6293 _("ignoring absolute DW_AT_sibling"));
6294 else
6295 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6296 }
6297
6298 /* If it isn't DW_AT_sibling, skip this attribute. */
6299 form = abbrev->attrs[i].form;
6300 skip_attribute:
6301 switch (form)
6302 {
6303 case DW_FORM_ref_addr:
6304 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6305 and later it is offset sized. */
6306 if (cu->header.version == 2)
6307 info_ptr += cu->header.addr_size;
6308 else
6309 info_ptr += cu->header.offset_size;
6310 break;
6311 case DW_FORM_GNU_ref_alt:
6312 info_ptr += cu->header.offset_size;
6313 break;
6314 case DW_FORM_addr:
6315 info_ptr += cu->header.addr_size;
6316 break;
6317 case DW_FORM_data1:
6318 case DW_FORM_ref1:
6319 case DW_FORM_flag:
6320 info_ptr += 1;
6321 break;
6322 case DW_FORM_flag_present:
6323 break;
6324 case DW_FORM_data2:
6325 case DW_FORM_ref2:
6326 info_ptr += 2;
6327 break;
6328 case DW_FORM_data4:
6329 case DW_FORM_ref4:
6330 info_ptr += 4;
6331 break;
6332 case DW_FORM_data8:
6333 case DW_FORM_ref8:
6334 case DW_FORM_ref_sig8:
6335 info_ptr += 8;
6336 break;
6337 case DW_FORM_string:
6338 read_direct_string (abfd, info_ptr, &bytes_read);
6339 info_ptr += bytes_read;
6340 break;
6341 case DW_FORM_sec_offset:
6342 case DW_FORM_strp:
6343 case DW_FORM_GNU_strp_alt:
6344 info_ptr += cu->header.offset_size;
6345 break;
6346 case DW_FORM_exprloc:
6347 case DW_FORM_block:
6348 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6349 info_ptr += bytes_read;
6350 break;
6351 case DW_FORM_block1:
6352 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6353 break;
6354 case DW_FORM_block2:
6355 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6356 break;
6357 case DW_FORM_block4:
6358 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6359 break;
6360 case DW_FORM_sdata:
6361 case DW_FORM_udata:
6362 case DW_FORM_ref_udata:
6363 case DW_FORM_GNU_addr_index:
6364 case DW_FORM_GNU_str_index:
6365 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6366 break;
6367 case DW_FORM_indirect:
6368 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6369 info_ptr += bytes_read;
6370 /* We need to continue parsing from here, so just go back to
6371 the top. */
6372 goto skip_attribute;
6373
6374 default:
6375 error (_("Dwarf Error: Cannot handle %s "
6376 "in DWARF reader [in module %s]"),
6377 dwarf_form_name (form),
6378 bfd_get_filename (abfd));
6379 }
6380 }
6381
6382 if (abbrev->has_children)
6383 return skip_children (reader, info_ptr);
6384 else
6385 return info_ptr;
6386 }
6387
6388 /* Locate ORIG_PDI's sibling.
6389 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6390
6391 static gdb_byte *
6392 locate_pdi_sibling (const struct die_reader_specs *reader,
6393 struct partial_die_info *orig_pdi,
6394 gdb_byte *info_ptr)
6395 {
6396 /* Do we know the sibling already? */
6397
6398 if (orig_pdi->sibling)
6399 return orig_pdi->sibling;
6400
6401 /* Are there any children to deal with? */
6402
6403 if (!orig_pdi->has_children)
6404 return info_ptr;
6405
6406 /* Skip the children the long way. */
6407
6408 return skip_children (reader, info_ptr);
6409 }
6410
6411 /* Expand this partial symbol table into a full symbol table. SELF is
6412 not NULL. */
6413
6414 static void
6415 dwarf2_read_symtab (struct partial_symtab *self,
6416 struct objfile *objfile)
6417 {
6418 if (self->readin)
6419 {
6420 warning (_("bug: psymtab for %s is already read in."),
6421 self->filename);
6422 }
6423 else
6424 {
6425 if (info_verbose)
6426 {
6427 printf_filtered (_("Reading in symbols for %s..."),
6428 self->filename);
6429 gdb_flush (gdb_stdout);
6430 }
6431
6432 /* Restore our global data. */
6433 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6434
6435 /* If this psymtab is constructed from a debug-only objfile, the
6436 has_section_at_zero flag will not necessarily be correct. We
6437 can get the correct value for this flag by looking at the data
6438 associated with the (presumably stripped) associated objfile. */
6439 if (objfile->separate_debug_objfile_backlink)
6440 {
6441 struct dwarf2_per_objfile *dpo_backlink
6442 = objfile_data (objfile->separate_debug_objfile_backlink,
6443 dwarf2_objfile_data_key);
6444
6445 dwarf2_per_objfile->has_section_at_zero
6446 = dpo_backlink->has_section_at_zero;
6447 }
6448
6449 dwarf2_per_objfile->reading_partial_symbols = 0;
6450
6451 psymtab_to_symtab_1 (self);
6452
6453 /* Finish up the debug error message. */
6454 if (info_verbose)
6455 printf_filtered (_("done.\n"));
6456 }
6457
6458 process_cu_includes ();
6459 }
6460 \f
6461 /* Reading in full CUs. */
6462
6463 /* Add PER_CU to the queue. */
6464
6465 static void
6466 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6467 enum language pretend_language)
6468 {
6469 struct dwarf2_queue_item *item;
6470
6471 per_cu->queued = 1;
6472 item = xmalloc (sizeof (*item));
6473 item->per_cu = per_cu;
6474 item->pretend_language = pretend_language;
6475 item->next = NULL;
6476
6477 if (dwarf2_queue == NULL)
6478 dwarf2_queue = item;
6479 else
6480 dwarf2_queue_tail->next = item;
6481
6482 dwarf2_queue_tail = item;
6483 }
6484
6485 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6486 unit and add it to our queue.
6487 The result is non-zero if PER_CU was queued, otherwise the result is zero
6488 meaning either PER_CU is already queued or it is already loaded. */
6489
6490 static int
6491 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6492 struct dwarf2_per_cu_data *per_cu,
6493 enum language pretend_language)
6494 {
6495 /* We may arrive here during partial symbol reading, if we need full
6496 DIEs to process an unusual case (e.g. template arguments). Do
6497 not queue PER_CU, just tell our caller to load its DIEs. */
6498 if (dwarf2_per_objfile->reading_partial_symbols)
6499 {
6500 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6501 return 1;
6502 return 0;
6503 }
6504
6505 /* Mark the dependence relation so that we don't flush PER_CU
6506 too early. */
6507 dwarf2_add_dependence (this_cu, per_cu);
6508
6509 /* If it's already on the queue, we have nothing to do. */
6510 if (per_cu->queued)
6511 return 0;
6512
6513 /* If the compilation unit is already loaded, just mark it as
6514 used. */
6515 if (per_cu->cu != NULL)
6516 {
6517 per_cu->cu->last_used = 0;
6518 return 0;
6519 }
6520
6521 /* Add it to the queue. */
6522 queue_comp_unit (per_cu, pretend_language);
6523
6524 return 1;
6525 }
6526
6527 /* Process the queue. */
6528
6529 static void
6530 process_queue (void)
6531 {
6532 struct dwarf2_queue_item *item, *next_item;
6533
6534 if (dwarf2_read_debug)
6535 {
6536 fprintf_unfiltered (gdb_stdlog,
6537 "Expanding one or more symtabs of objfile %s ...\n",
6538 dwarf2_per_objfile->objfile->name);
6539 }
6540
6541 /* The queue starts out with one item, but following a DIE reference
6542 may load a new CU, adding it to the end of the queue. */
6543 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6544 {
6545 if (dwarf2_per_objfile->using_index
6546 ? !item->per_cu->v.quick->symtab
6547 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6548 {
6549 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6550
6551 if (dwarf2_read_debug)
6552 {
6553 fprintf_unfiltered (gdb_stdlog,
6554 "Expanding symtab of %s at offset 0x%x\n",
6555 per_cu->is_debug_types ? "TU" : "CU",
6556 per_cu->offset.sect_off);
6557 }
6558
6559 if (per_cu->is_debug_types)
6560 process_full_type_unit (per_cu, item->pretend_language);
6561 else
6562 process_full_comp_unit (per_cu, item->pretend_language);
6563
6564 if (dwarf2_read_debug)
6565 {
6566 fprintf_unfiltered (gdb_stdlog,
6567 "Done expanding %s at offset 0x%x\n",
6568 per_cu->is_debug_types ? "TU" : "CU",
6569 per_cu->offset.sect_off);
6570 }
6571 }
6572
6573 item->per_cu->queued = 0;
6574 next_item = item->next;
6575 xfree (item);
6576 }
6577
6578 dwarf2_queue_tail = NULL;
6579
6580 if (dwarf2_read_debug)
6581 {
6582 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6583 dwarf2_per_objfile->objfile->name);
6584 }
6585 }
6586
6587 /* Free all allocated queue entries. This function only releases anything if
6588 an error was thrown; if the queue was processed then it would have been
6589 freed as we went along. */
6590
6591 static void
6592 dwarf2_release_queue (void *dummy)
6593 {
6594 struct dwarf2_queue_item *item, *last;
6595
6596 item = dwarf2_queue;
6597 while (item)
6598 {
6599 /* Anything still marked queued is likely to be in an
6600 inconsistent state, so discard it. */
6601 if (item->per_cu->queued)
6602 {
6603 if (item->per_cu->cu != NULL)
6604 free_one_cached_comp_unit (item->per_cu);
6605 item->per_cu->queued = 0;
6606 }
6607
6608 last = item;
6609 item = item->next;
6610 xfree (last);
6611 }
6612
6613 dwarf2_queue = dwarf2_queue_tail = NULL;
6614 }
6615
6616 /* Read in full symbols for PST, and anything it depends on. */
6617
6618 static void
6619 psymtab_to_symtab_1 (struct partial_symtab *pst)
6620 {
6621 struct dwarf2_per_cu_data *per_cu;
6622 int i;
6623
6624 if (pst->readin)
6625 return;
6626
6627 for (i = 0; i < pst->number_of_dependencies; i++)
6628 if (!pst->dependencies[i]->readin
6629 && pst->dependencies[i]->user == NULL)
6630 {
6631 /* Inform about additional files that need to be read in. */
6632 if (info_verbose)
6633 {
6634 /* FIXME: i18n: Need to make this a single string. */
6635 fputs_filtered (" ", gdb_stdout);
6636 wrap_here ("");
6637 fputs_filtered ("and ", gdb_stdout);
6638 wrap_here ("");
6639 printf_filtered ("%s...", pst->dependencies[i]->filename);
6640 wrap_here (""); /* Flush output. */
6641 gdb_flush (gdb_stdout);
6642 }
6643 psymtab_to_symtab_1 (pst->dependencies[i]);
6644 }
6645
6646 per_cu = pst->read_symtab_private;
6647
6648 if (per_cu == NULL)
6649 {
6650 /* It's an include file, no symbols to read for it.
6651 Everything is in the parent symtab. */
6652 pst->readin = 1;
6653 return;
6654 }
6655
6656 dw2_do_instantiate_symtab (per_cu);
6657 }
6658
6659 /* Trivial hash function for die_info: the hash value of a DIE
6660 is its offset in .debug_info for this objfile. */
6661
6662 static hashval_t
6663 die_hash (const void *item)
6664 {
6665 const struct die_info *die = item;
6666
6667 return die->offset.sect_off;
6668 }
6669
6670 /* Trivial comparison function for die_info structures: two DIEs
6671 are equal if they have the same offset. */
6672
6673 static int
6674 die_eq (const void *item_lhs, const void *item_rhs)
6675 {
6676 const struct die_info *die_lhs = item_lhs;
6677 const struct die_info *die_rhs = item_rhs;
6678
6679 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6680 }
6681
6682 /* die_reader_func for load_full_comp_unit.
6683 This is identical to read_signatured_type_reader,
6684 but is kept separate for now. */
6685
6686 static void
6687 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6688 gdb_byte *info_ptr,
6689 struct die_info *comp_unit_die,
6690 int has_children,
6691 void *data)
6692 {
6693 struct dwarf2_cu *cu = reader->cu;
6694 enum language *language_ptr = data;
6695
6696 gdb_assert (cu->die_hash == NULL);
6697 cu->die_hash =
6698 htab_create_alloc_ex (cu->header.length / 12,
6699 die_hash,
6700 die_eq,
6701 NULL,
6702 &cu->comp_unit_obstack,
6703 hashtab_obstack_allocate,
6704 dummy_obstack_deallocate);
6705
6706 if (has_children)
6707 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6708 &info_ptr, comp_unit_die);
6709 cu->dies = comp_unit_die;
6710 /* comp_unit_die is not stored in die_hash, no need. */
6711
6712 /* We try not to read any attributes in this function, because not
6713 all CUs needed for references have been loaded yet, and symbol
6714 table processing isn't initialized. But we have to set the CU language,
6715 or we won't be able to build types correctly.
6716 Similarly, if we do not read the producer, we can not apply
6717 producer-specific interpretation. */
6718 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6719 }
6720
6721 /* Load the DIEs associated with PER_CU into memory. */
6722
6723 static void
6724 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6725 enum language pretend_language)
6726 {
6727 gdb_assert (! this_cu->is_debug_types);
6728
6729 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6730 load_full_comp_unit_reader, &pretend_language);
6731 }
6732
6733 /* Add a DIE to the delayed physname list. */
6734
6735 static void
6736 add_to_method_list (struct type *type, int fnfield_index, int index,
6737 const char *name, struct die_info *die,
6738 struct dwarf2_cu *cu)
6739 {
6740 struct delayed_method_info mi;
6741 mi.type = type;
6742 mi.fnfield_index = fnfield_index;
6743 mi.index = index;
6744 mi.name = name;
6745 mi.die = die;
6746 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6747 }
6748
6749 /* A cleanup for freeing the delayed method list. */
6750
6751 static void
6752 free_delayed_list (void *ptr)
6753 {
6754 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6755 if (cu->method_list != NULL)
6756 {
6757 VEC_free (delayed_method_info, cu->method_list);
6758 cu->method_list = NULL;
6759 }
6760 }
6761
6762 /* Compute the physnames of any methods on the CU's method list.
6763
6764 The computation of method physnames is delayed in order to avoid the
6765 (bad) condition that one of the method's formal parameters is of an as yet
6766 incomplete type. */
6767
6768 static void
6769 compute_delayed_physnames (struct dwarf2_cu *cu)
6770 {
6771 int i;
6772 struct delayed_method_info *mi;
6773 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6774 {
6775 const char *physname;
6776 struct fn_fieldlist *fn_flp
6777 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6778 physname = dwarf2_physname (mi->name, mi->die, cu);
6779 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6780 }
6781 }
6782
6783 /* Go objects should be embedded in a DW_TAG_module DIE,
6784 and it's not clear if/how imported objects will appear.
6785 To keep Go support simple until that's worked out,
6786 go back through what we've read and create something usable.
6787 We could do this while processing each DIE, and feels kinda cleaner,
6788 but that way is more invasive.
6789 This is to, for example, allow the user to type "p var" or "b main"
6790 without having to specify the package name, and allow lookups
6791 of module.object to work in contexts that use the expression
6792 parser. */
6793
6794 static void
6795 fixup_go_packaging (struct dwarf2_cu *cu)
6796 {
6797 char *package_name = NULL;
6798 struct pending *list;
6799 int i;
6800
6801 for (list = global_symbols; list != NULL; list = list->next)
6802 {
6803 for (i = 0; i < list->nsyms; ++i)
6804 {
6805 struct symbol *sym = list->symbol[i];
6806
6807 if (SYMBOL_LANGUAGE (sym) == language_go
6808 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6809 {
6810 char *this_package_name = go_symbol_package_name (sym);
6811
6812 if (this_package_name == NULL)
6813 continue;
6814 if (package_name == NULL)
6815 package_name = this_package_name;
6816 else
6817 {
6818 if (strcmp (package_name, this_package_name) != 0)
6819 complaint (&symfile_complaints,
6820 _("Symtab %s has objects from two different Go packages: %s and %s"),
6821 (SYMBOL_SYMTAB (sym)
6822 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
6823 : cu->objfile->name),
6824 this_package_name, package_name);
6825 xfree (this_package_name);
6826 }
6827 }
6828 }
6829 }
6830
6831 if (package_name != NULL)
6832 {
6833 struct objfile *objfile = cu->objfile;
6834 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
6835 package_name,
6836 strlen (package_name));
6837 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6838 saved_package_name, objfile);
6839 struct symbol *sym;
6840
6841 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6842
6843 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6844 SYMBOL_SET_LANGUAGE (sym, language_go);
6845 SYMBOL_SET_NAMES (sym, saved_package_name,
6846 strlen (saved_package_name), 0, objfile);
6847 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6848 e.g., "main" finds the "main" module and not C's main(). */
6849 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6850 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6851 SYMBOL_TYPE (sym) = type;
6852
6853 add_symbol_to_list (sym, &global_symbols);
6854
6855 xfree (package_name);
6856 }
6857 }
6858
6859 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6860
6861 /* Return the symtab for PER_CU. This works properly regardless of
6862 whether we're using the index or psymtabs. */
6863
6864 static struct symtab *
6865 get_symtab (struct dwarf2_per_cu_data *per_cu)
6866 {
6867 return (dwarf2_per_objfile->using_index
6868 ? per_cu->v.quick->symtab
6869 : per_cu->v.psymtab->symtab);
6870 }
6871
6872 /* A helper function for computing the list of all symbol tables
6873 included by PER_CU. */
6874
6875 static void
6876 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6877 htab_t all_children,
6878 struct dwarf2_per_cu_data *per_cu)
6879 {
6880 void **slot;
6881 int ix;
6882 struct dwarf2_per_cu_data *iter;
6883
6884 slot = htab_find_slot (all_children, per_cu, INSERT);
6885 if (*slot != NULL)
6886 {
6887 /* This inclusion and its children have been processed. */
6888 return;
6889 }
6890
6891 *slot = per_cu;
6892 /* Only add a CU if it has a symbol table. */
6893 if (get_symtab (per_cu) != NULL)
6894 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6895
6896 for (ix = 0;
6897 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
6898 ++ix)
6899 recursively_compute_inclusions (result, all_children, iter);
6900 }
6901
6902 /* Compute the symtab 'includes' fields for the symtab related to
6903 PER_CU. */
6904
6905 static void
6906 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6907 {
6908 gdb_assert (! per_cu->is_debug_types);
6909
6910 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
6911 {
6912 int ix, len;
6913 struct dwarf2_per_cu_data *iter;
6914 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6915 htab_t all_children;
6916 struct symtab *symtab = get_symtab (per_cu);
6917
6918 /* If we don't have a symtab, we can just skip this case. */
6919 if (symtab == NULL)
6920 return;
6921
6922 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6923 NULL, xcalloc, xfree);
6924
6925 for (ix = 0;
6926 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
6927 ix, iter);
6928 ++ix)
6929 recursively_compute_inclusions (&result_children, all_children, iter);
6930
6931 /* Now we have a transitive closure of all the included CUs, and
6932 for .gdb_index version 7 the included TUs, so we can convert it
6933 to a list of symtabs. */
6934 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6935 symtab->includes
6936 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6937 (len + 1) * sizeof (struct symtab *));
6938 for (ix = 0;
6939 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6940 ++ix)
6941 symtab->includes[ix] = get_symtab (iter);
6942 symtab->includes[len] = NULL;
6943
6944 VEC_free (dwarf2_per_cu_ptr, result_children);
6945 htab_delete (all_children);
6946 }
6947 }
6948
6949 /* Compute the 'includes' field for the symtabs of all the CUs we just
6950 read. */
6951
6952 static void
6953 process_cu_includes (void)
6954 {
6955 int ix;
6956 struct dwarf2_per_cu_data *iter;
6957
6958 for (ix = 0;
6959 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6960 ix, iter);
6961 ++ix)
6962 {
6963 if (! iter->is_debug_types)
6964 compute_symtab_includes (iter);
6965 }
6966
6967 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6968 }
6969
6970 /* Generate full symbol information for PER_CU, whose DIEs have
6971 already been loaded into memory. */
6972
6973 static void
6974 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6975 enum language pretend_language)
6976 {
6977 struct dwarf2_cu *cu = per_cu->cu;
6978 struct objfile *objfile = per_cu->objfile;
6979 CORE_ADDR lowpc, highpc;
6980 struct symtab *symtab;
6981 struct cleanup *back_to, *delayed_list_cleanup;
6982 CORE_ADDR baseaddr;
6983 struct block *static_block;
6984
6985 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6986
6987 buildsym_init ();
6988 back_to = make_cleanup (really_free_pendings, NULL);
6989 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6990
6991 cu->list_in_scope = &file_symbols;
6992
6993 cu->language = pretend_language;
6994 cu->language_defn = language_def (cu->language);
6995
6996 /* Do line number decoding in read_file_scope () */
6997 process_die (cu->dies, cu);
6998
6999 /* For now fudge the Go package. */
7000 if (cu->language == language_go)
7001 fixup_go_packaging (cu);
7002
7003 /* Now that we have processed all the DIEs in the CU, all the types
7004 should be complete, and it should now be safe to compute all of the
7005 physnames. */
7006 compute_delayed_physnames (cu);
7007 do_cleanups (delayed_list_cleanup);
7008
7009 /* Some compilers don't define a DW_AT_high_pc attribute for the
7010 compilation unit. If the DW_AT_high_pc is missing, synthesize
7011 it, by scanning the DIE's below the compilation unit. */
7012 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7013
7014 static_block
7015 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
7016 per_cu->imported_symtabs != NULL);
7017
7018 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7019 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7020 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7021 addrmap to help ensure it has an accurate map of pc values belonging to
7022 this comp unit. */
7023 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7024
7025 symtab = end_symtab_from_static_block (static_block, objfile,
7026 SECT_OFF_TEXT (objfile), 0);
7027
7028 if (symtab != NULL)
7029 {
7030 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7031
7032 /* Set symtab language to language from DW_AT_language. If the
7033 compilation is from a C file generated by language preprocessors, do
7034 not set the language if it was already deduced by start_subfile. */
7035 if (!(cu->language == language_c && symtab->language != language_c))
7036 symtab->language = cu->language;
7037
7038 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7039 produce DW_AT_location with location lists but it can be possibly
7040 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7041 there were bugs in prologue debug info, fixed later in GCC-4.5
7042 by "unwind info for epilogues" patch (which is not directly related).
7043
7044 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7045 needed, it would be wrong due to missing DW_AT_producer there.
7046
7047 Still one can confuse GDB by using non-standard GCC compilation
7048 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7049 */
7050 if (cu->has_loclist && gcc_4_minor >= 5)
7051 symtab->locations_valid = 1;
7052
7053 if (gcc_4_minor >= 5)
7054 symtab->epilogue_unwind_valid = 1;
7055
7056 symtab->call_site_htab = cu->call_site_htab;
7057 }
7058
7059 if (dwarf2_per_objfile->using_index)
7060 per_cu->v.quick->symtab = symtab;
7061 else
7062 {
7063 struct partial_symtab *pst = per_cu->v.psymtab;
7064 pst->symtab = symtab;
7065 pst->readin = 1;
7066 }
7067
7068 /* Push it for inclusion processing later. */
7069 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7070
7071 do_cleanups (back_to);
7072 }
7073
7074 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7075 already been loaded into memory. */
7076
7077 static void
7078 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7079 enum language pretend_language)
7080 {
7081 struct dwarf2_cu *cu = per_cu->cu;
7082 struct objfile *objfile = per_cu->objfile;
7083 struct symtab *symtab;
7084 struct cleanup *back_to, *delayed_list_cleanup;
7085
7086 buildsym_init ();
7087 back_to = make_cleanup (really_free_pendings, NULL);
7088 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7089
7090 cu->list_in_scope = &file_symbols;
7091
7092 cu->language = pretend_language;
7093 cu->language_defn = language_def (cu->language);
7094
7095 /* The symbol tables are set up in read_type_unit_scope. */
7096 process_die (cu->dies, cu);
7097
7098 /* For now fudge the Go package. */
7099 if (cu->language == language_go)
7100 fixup_go_packaging (cu);
7101
7102 /* Now that we have processed all the DIEs in the CU, all the types
7103 should be complete, and it should now be safe to compute all of the
7104 physnames. */
7105 compute_delayed_physnames (cu);
7106 do_cleanups (delayed_list_cleanup);
7107
7108 /* TUs share symbol tables.
7109 If this is the first TU to use this symtab, complete the construction
7110 of it with end_expandable_symtab. Otherwise, complete the addition of
7111 this TU's symbols to the existing symtab. */
7112 if (per_cu->type_unit_group->primary_symtab == NULL)
7113 {
7114 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7115 per_cu->type_unit_group->primary_symtab = symtab;
7116
7117 if (symtab != NULL)
7118 {
7119 /* Set symtab language to language from DW_AT_language. If the
7120 compilation is from a C file generated by language preprocessors,
7121 do not set the language if it was already deduced by
7122 start_subfile. */
7123 if (!(cu->language == language_c && symtab->language != language_c))
7124 symtab->language = cu->language;
7125 }
7126 }
7127 else
7128 {
7129 augment_type_symtab (objfile,
7130 per_cu->type_unit_group->primary_symtab);
7131 symtab = per_cu->type_unit_group->primary_symtab;
7132 }
7133
7134 if (dwarf2_per_objfile->using_index)
7135 per_cu->v.quick->symtab = symtab;
7136 else
7137 {
7138 struct partial_symtab *pst = per_cu->v.psymtab;
7139 pst->symtab = symtab;
7140 pst->readin = 1;
7141 }
7142
7143 do_cleanups (back_to);
7144 }
7145
7146 /* Process an imported unit DIE. */
7147
7148 static void
7149 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7150 {
7151 struct attribute *attr;
7152
7153 /* For now we don't handle imported units in type units. */
7154 if (cu->per_cu->is_debug_types)
7155 {
7156 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7157 " supported in type units [in module %s]"),
7158 cu->objfile->name);
7159 }
7160
7161 attr = dwarf2_attr (die, DW_AT_import, cu);
7162 if (attr != NULL)
7163 {
7164 struct dwarf2_per_cu_data *per_cu;
7165 struct symtab *imported_symtab;
7166 sect_offset offset;
7167 int is_dwz;
7168
7169 offset = dwarf2_get_ref_die_offset (attr);
7170 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7171 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7172
7173 /* Queue the unit, if needed. */
7174 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7175 load_full_comp_unit (per_cu, cu->language);
7176
7177 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7178 per_cu);
7179 }
7180 }
7181
7182 /* Process a die and its children. */
7183
7184 static void
7185 process_die (struct die_info *die, struct dwarf2_cu *cu)
7186 {
7187 switch (die->tag)
7188 {
7189 case DW_TAG_padding:
7190 break;
7191 case DW_TAG_compile_unit:
7192 case DW_TAG_partial_unit:
7193 read_file_scope (die, cu);
7194 break;
7195 case DW_TAG_type_unit:
7196 read_type_unit_scope (die, cu);
7197 break;
7198 case DW_TAG_subprogram:
7199 case DW_TAG_inlined_subroutine:
7200 read_func_scope (die, cu);
7201 break;
7202 case DW_TAG_lexical_block:
7203 case DW_TAG_try_block:
7204 case DW_TAG_catch_block:
7205 read_lexical_block_scope (die, cu);
7206 break;
7207 case DW_TAG_GNU_call_site:
7208 read_call_site_scope (die, cu);
7209 break;
7210 case DW_TAG_class_type:
7211 case DW_TAG_interface_type:
7212 case DW_TAG_structure_type:
7213 case DW_TAG_union_type:
7214 process_structure_scope (die, cu);
7215 break;
7216 case DW_TAG_enumeration_type:
7217 process_enumeration_scope (die, cu);
7218 break;
7219
7220 /* These dies have a type, but processing them does not create
7221 a symbol or recurse to process the children. Therefore we can
7222 read them on-demand through read_type_die. */
7223 case DW_TAG_subroutine_type:
7224 case DW_TAG_set_type:
7225 case DW_TAG_array_type:
7226 case DW_TAG_pointer_type:
7227 case DW_TAG_ptr_to_member_type:
7228 case DW_TAG_reference_type:
7229 case DW_TAG_string_type:
7230 break;
7231
7232 case DW_TAG_base_type:
7233 case DW_TAG_subrange_type:
7234 case DW_TAG_typedef:
7235 /* Add a typedef symbol for the type definition, if it has a
7236 DW_AT_name. */
7237 new_symbol (die, read_type_die (die, cu), cu);
7238 break;
7239 case DW_TAG_common_block:
7240 read_common_block (die, cu);
7241 break;
7242 case DW_TAG_common_inclusion:
7243 break;
7244 case DW_TAG_namespace:
7245 cu->processing_has_namespace_info = 1;
7246 read_namespace (die, cu);
7247 break;
7248 case DW_TAG_module:
7249 cu->processing_has_namespace_info = 1;
7250 read_module (die, cu);
7251 break;
7252 case DW_TAG_imported_declaration:
7253 case DW_TAG_imported_module:
7254 cu->processing_has_namespace_info = 1;
7255 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7256 || cu->language != language_fortran))
7257 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7258 dwarf_tag_name (die->tag));
7259 read_import_statement (die, cu);
7260 break;
7261
7262 case DW_TAG_imported_unit:
7263 process_imported_unit_die (die, cu);
7264 break;
7265
7266 default:
7267 new_symbol (die, NULL, cu);
7268 break;
7269 }
7270 }
7271
7272 /* A helper function for dwarf2_compute_name which determines whether DIE
7273 needs to have the name of the scope prepended to the name listed in the
7274 die. */
7275
7276 static int
7277 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7278 {
7279 struct attribute *attr;
7280
7281 switch (die->tag)
7282 {
7283 case DW_TAG_namespace:
7284 case DW_TAG_typedef:
7285 case DW_TAG_class_type:
7286 case DW_TAG_interface_type:
7287 case DW_TAG_structure_type:
7288 case DW_TAG_union_type:
7289 case DW_TAG_enumeration_type:
7290 case DW_TAG_enumerator:
7291 case DW_TAG_subprogram:
7292 case DW_TAG_member:
7293 return 1;
7294
7295 case DW_TAG_variable:
7296 case DW_TAG_constant:
7297 /* We only need to prefix "globally" visible variables. These include
7298 any variable marked with DW_AT_external or any variable that
7299 lives in a namespace. [Variables in anonymous namespaces
7300 require prefixing, but they are not DW_AT_external.] */
7301
7302 if (dwarf2_attr (die, DW_AT_specification, cu))
7303 {
7304 struct dwarf2_cu *spec_cu = cu;
7305
7306 return die_needs_namespace (die_specification (die, &spec_cu),
7307 spec_cu);
7308 }
7309
7310 attr = dwarf2_attr (die, DW_AT_external, cu);
7311 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7312 && die->parent->tag != DW_TAG_module)
7313 return 0;
7314 /* A variable in a lexical block of some kind does not need a
7315 namespace, even though in C++ such variables may be external
7316 and have a mangled name. */
7317 if (die->parent->tag == DW_TAG_lexical_block
7318 || die->parent->tag == DW_TAG_try_block
7319 || die->parent->tag == DW_TAG_catch_block
7320 || die->parent->tag == DW_TAG_subprogram)
7321 return 0;
7322 return 1;
7323
7324 default:
7325 return 0;
7326 }
7327 }
7328
7329 /* Retrieve the last character from a mem_file. */
7330
7331 static void
7332 do_ui_file_peek_last (void *object, const char *buffer, long length)
7333 {
7334 char *last_char_p = (char *) object;
7335
7336 if (length > 0)
7337 *last_char_p = buffer[length - 1];
7338 }
7339
7340 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7341 compute the physname for the object, which include a method's:
7342 - formal parameters (C++/Java),
7343 - receiver type (Go),
7344 - return type (Java).
7345
7346 The term "physname" is a bit confusing.
7347 For C++, for example, it is the demangled name.
7348 For Go, for example, it's the mangled name.
7349
7350 For Ada, return the DIE's linkage name rather than the fully qualified
7351 name. PHYSNAME is ignored..
7352
7353 The result is allocated on the objfile_obstack and canonicalized. */
7354
7355 static const char *
7356 dwarf2_compute_name (const char *name,
7357 struct die_info *die, struct dwarf2_cu *cu,
7358 int physname)
7359 {
7360 struct objfile *objfile = cu->objfile;
7361
7362 if (name == NULL)
7363 name = dwarf2_name (die, cu);
7364
7365 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7366 compute it by typename_concat inside GDB. */
7367 if (cu->language == language_ada
7368 || (cu->language == language_fortran && physname))
7369 {
7370 /* For Ada unit, we prefer the linkage name over the name, as
7371 the former contains the exported name, which the user expects
7372 to be able to reference. Ideally, we want the user to be able
7373 to reference this entity using either natural or linkage name,
7374 but we haven't started looking at this enhancement yet. */
7375 struct attribute *attr;
7376
7377 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7378 if (attr == NULL)
7379 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7380 if (attr && DW_STRING (attr))
7381 return DW_STRING (attr);
7382 }
7383
7384 /* These are the only languages we know how to qualify names in. */
7385 if (name != NULL
7386 && (cu->language == language_cplus || cu->language == language_java
7387 || cu->language == language_fortran))
7388 {
7389 if (die_needs_namespace (die, cu))
7390 {
7391 long length;
7392 const char *prefix;
7393 struct ui_file *buf;
7394
7395 prefix = determine_prefix (die, cu);
7396 buf = mem_fileopen ();
7397 if (*prefix != '\0')
7398 {
7399 char *prefixed_name = typename_concat (NULL, prefix, name,
7400 physname, cu);
7401
7402 fputs_unfiltered (prefixed_name, buf);
7403 xfree (prefixed_name);
7404 }
7405 else
7406 fputs_unfiltered (name, buf);
7407
7408 /* Template parameters may be specified in the DIE's DW_AT_name, or
7409 as children with DW_TAG_template_type_param or
7410 DW_TAG_value_type_param. If the latter, add them to the name
7411 here. If the name already has template parameters, then
7412 skip this step; some versions of GCC emit both, and
7413 it is more efficient to use the pre-computed name.
7414
7415 Something to keep in mind about this process: it is very
7416 unlikely, or in some cases downright impossible, to produce
7417 something that will match the mangled name of a function.
7418 If the definition of the function has the same debug info,
7419 we should be able to match up with it anyway. But fallbacks
7420 using the minimal symbol, for instance to find a method
7421 implemented in a stripped copy of libstdc++, will not work.
7422 If we do not have debug info for the definition, we will have to
7423 match them up some other way.
7424
7425 When we do name matching there is a related problem with function
7426 templates; two instantiated function templates are allowed to
7427 differ only by their return types, which we do not add here. */
7428
7429 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7430 {
7431 struct attribute *attr;
7432 struct die_info *child;
7433 int first = 1;
7434
7435 die->building_fullname = 1;
7436
7437 for (child = die->child; child != NULL; child = child->sibling)
7438 {
7439 struct type *type;
7440 LONGEST value;
7441 gdb_byte *bytes;
7442 struct dwarf2_locexpr_baton *baton;
7443 struct value *v;
7444
7445 if (child->tag != DW_TAG_template_type_param
7446 && child->tag != DW_TAG_template_value_param)
7447 continue;
7448
7449 if (first)
7450 {
7451 fputs_unfiltered ("<", buf);
7452 first = 0;
7453 }
7454 else
7455 fputs_unfiltered (", ", buf);
7456
7457 attr = dwarf2_attr (child, DW_AT_type, cu);
7458 if (attr == NULL)
7459 {
7460 complaint (&symfile_complaints,
7461 _("template parameter missing DW_AT_type"));
7462 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7463 continue;
7464 }
7465 type = die_type (child, cu);
7466
7467 if (child->tag == DW_TAG_template_type_param)
7468 {
7469 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7470 continue;
7471 }
7472
7473 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7474 if (attr == NULL)
7475 {
7476 complaint (&symfile_complaints,
7477 _("template parameter missing "
7478 "DW_AT_const_value"));
7479 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7480 continue;
7481 }
7482
7483 dwarf2_const_value_attr (attr, type, name,
7484 &cu->comp_unit_obstack, cu,
7485 &value, &bytes, &baton);
7486
7487 if (TYPE_NOSIGN (type))
7488 /* GDB prints characters as NUMBER 'CHAR'. If that's
7489 changed, this can use value_print instead. */
7490 c_printchar (value, type, buf);
7491 else
7492 {
7493 struct value_print_options opts;
7494
7495 if (baton != NULL)
7496 v = dwarf2_evaluate_loc_desc (type, NULL,
7497 baton->data,
7498 baton->size,
7499 baton->per_cu);
7500 else if (bytes != NULL)
7501 {
7502 v = allocate_value (type);
7503 memcpy (value_contents_writeable (v), bytes,
7504 TYPE_LENGTH (type));
7505 }
7506 else
7507 v = value_from_longest (type, value);
7508
7509 /* Specify decimal so that we do not depend on
7510 the radix. */
7511 get_formatted_print_options (&opts, 'd');
7512 opts.raw = 1;
7513 value_print (v, buf, &opts);
7514 release_value (v);
7515 value_free (v);
7516 }
7517 }
7518
7519 die->building_fullname = 0;
7520
7521 if (!first)
7522 {
7523 /* Close the argument list, with a space if necessary
7524 (nested templates). */
7525 char last_char = '\0';
7526 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7527 if (last_char == '>')
7528 fputs_unfiltered (" >", buf);
7529 else
7530 fputs_unfiltered (">", buf);
7531 }
7532 }
7533
7534 /* For Java and C++ methods, append formal parameter type
7535 information, if PHYSNAME. */
7536
7537 if (physname && die->tag == DW_TAG_subprogram
7538 && (cu->language == language_cplus
7539 || cu->language == language_java))
7540 {
7541 struct type *type = read_type_die (die, cu);
7542
7543 c_type_print_args (type, buf, 1, cu->language,
7544 &type_print_raw_options);
7545
7546 if (cu->language == language_java)
7547 {
7548 /* For java, we must append the return type to method
7549 names. */
7550 if (die->tag == DW_TAG_subprogram)
7551 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7552 0, 0, &type_print_raw_options);
7553 }
7554 else if (cu->language == language_cplus)
7555 {
7556 /* Assume that an artificial first parameter is
7557 "this", but do not crash if it is not. RealView
7558 marks unnamed (and thus unused) parameters as
7559 artificial; there is no way to differentiate
7560 the two cases. */
7561 if (TYPE_NFIELDS (type) > 0
7562 && TYPE_FIELD_ARTIFICIAL (type, 0)
7563 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7564 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7565 0))))
7566 fputs_unfiltered (" const", buf);
7567 }
7568 }
7569
7570 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7571 &length);
7572 ui_file_delete (buf);
7573
7574 if (cu->language == language_cplus)
7575 {
7576 const char *cname
7577 = dwarf2_canonicalize_name (name, cu,
7578 &objfile->objfile_obstack);
7579
7580 if (cname != NULL)
7581 name = cname;
7582 }
7583 }
7584 }
7585
7586 return name;
7587 }
7588
7589 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7590 If scope qualifiers are appropriate they will be added. The result
7591 will be allocated on the objfile_obstack, or NULL if the DIE does
7592 not have a name. NAME may either be from a previous call to
7593 dwarf2_name or NULL.
7594
7595 The output string will be canonicalized (if C++/Java). */
7596
7597 static const char *
7598 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7599 {
7600 return dwarf2_compute_name (name, die, cu, 0);
7601 }
7602
7603 /* Construct a physname for the given DIE in CU. NAME may either be
7604 from a previous call to dwarf2_name or NULL. The result will be
7605 allocated on the objfile_objstack or NULL if the DIE does not have a
7606 name.
7607
7608 The output string will be canonicalized (if C++/Java). */
7609
7610 static const char *
7611 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7612 {
7613 struct objfile *objfile = cu->objfile;
7614 struct attribute *attr;
7615 const char *retval, *mangled = NULL, *canon = NULL;
7616 struct cleanup *back_to;
7617 int need_copy = 1;
7618
7619 /* In this case dwarf2_compute_name is just a shortcut not building anything
7620 on its own. */
7621 if (!die_needs_namespace (die, cu))
7622 return dwarf2_compute_name (name, die, cu, 1);
7623
7624 back_to = make_cleanup (null_cleanup, NULL);
7625
7626 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7627 if (!attr)
7628 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7629
7630 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7631 has computed. */
7632 if (attr && DW_STRING (attr))
7633 {
7634 char *demangled;
7635
7636 mangled = DW_STRING (attr);
7637
7638 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7639 type. It is easier for GDB users to search for such functions as
7640 `name(params)' than `long name(params)'. In such case the minimal
7641 symbol names do not match the full symbol names but for template
7642 functions there is never a need to look up their definition from their
7643 declaration so the only disadvantage remains the minimal symbol
7644 variant `long name(params)' does not have the proper inferior type.
7645 */
7646
7647 if (cu->language == language_go)
7648 {
7649 /* This is a lie, but we already lie to the caller new_symbol_full.
7650 new_symbol_full assumes we return the mangled name.
7651 This just undoes that lie until things are cleaned up. */
7652 demangled = NULL;
7653 }
7654 else
7655 {
7656 demangled = cplus_demangle (mangled,
7657 (DMGL_PARAMS | DMGL_ANSI
7658 | (cu->language == language_java
7659 ? DMGL_JAVA | DMGL_RET_POSTFIX
7660 : DMGL_RET_DROP)));
7661 }
7662 if (demangled)
7663 {
7664 make_cleanup (xfree, demangled);
7665 canon = demangled;
7666 }
7667 else
7668 {
7669 canon = mangled;
7670 need_copy = 0;
7671 }
7672 }
7673
7674 if (canon == NULL || check_physname)
7675 {
7676 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7677
7678 if (canon != NULL && strcmp (physname, canon) != 0)
7679 {
7680 /* It may not mean a bug in GDB. The compiler could also
7681 compute DW_AT_linkage_name incorrectly. But in such case
7682 GDB would need to be bug-to-bug compatible. */
7683
7684 complaint (&symfile_complaints,
7685 _("Computed physname <%s> does not match demangled <%s> "
7686 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7687 physname, canon, mangled, die->offset.sect_off, objfile->name);
7688
7689 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7690 is available here - over computed PHYSNAME. It is safer
7691 against both buggy GDB and buggy compilers. */
7692
7693 retval = canon;
7694 }
7695 else
7696 {
7697 retval = physname;
7698 need_copy = 0;
7699 }
7700 }
7701 else
7702 retval = canon;
7703
7704 if (need_copy)
7705 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
7706
7707 do_cleanups (back_to);
7708 return retval;
7709 }
7710
7711 /* Read the import statement specified by the given die and record it. */
7712
7713 static void
7714 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7715 {
7716 struct objfile *objfile = cu->objfile;
7717 struct attribute *import_attr;
7718 struct die_info *imported_die, *child_die;
7719 struct dwarf2_cu *imported_cu;
7720 const char *imported_name;
7721 const char *imported_name_prefix;
7722 const char *canonical_name;
7723 const char *import_alias;
7724 const char *imported_declaration = NULL;
7725 const char *import_prefix;
7726 VEC (const_char_ptr) *excludes = NULL;
7727 struct cleanup *cleanups;
7728
7729 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7730 if (import_attr == NULL)
7731 {
7732 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7733 dwarf_tag_name (die->tag));
7734 return;
7735 }
7736
7737 imported_cu = cu;
7738 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7739 imported_name = dwarf2_name (imported_die, imported_cu);
7740 if (imported_name == NULL)
7741 {
7742 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7743
7744 The import in the following code:
7745 namespace A
7746 {
7747 typedef int B;
7748 }
7749
7750 int main ()
7751 {
7752 using A::B;
7753 B b;
7754 return b;
7755 }
7756
7757 ...
7758 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7759 <52> DW_AT_decl_file : 1
7760 <53> DW_AT_decl_line : 6
7761 <54> DW_AT_import : <0x75>
7762 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7763 <59> DW_AT_name : B
7764 <5b> DW_AT_decl_file : 1
7765 <5c> DW_AT_decl_line : 2
7766 <5d> DW_AT_type : <0x6e>
7767 ...
7768 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7769 <76> DW_AT_byte_size : 4
7770 <77> DW_AT_encoding : 5 (signed)
7771
7772 imports the wrong die ( 0x75 instead of 0x58 ).
7773 This case will be ignored until the gcc bug is fixed. */
7774 return;
7775 }
7776
7777 /* Figure out the local name after import. */
7778 import_alias = dwarf2_name (die, cu);
7779
7780 /* Figure out where the statement is being imported to. */
7781 import_prefix = determine_prefix (die, cu);
7782
7783 /* Figure out what the scope of the imported die is and prepend it
7784 to the name of the imported die. */
7785 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7786
7787 if (imported_die->tag != DW_TAG_namespace
7788 && imported_die->tag != DW_TAG_module)
7789 {
7790 imported_declaration = imported_name;
7791 canonical_name = imported_name_prefix;
7792 }
7793 else if (strlen (imported_name_prefix) > 0)
7794 canonical_name = obconcat (&objfile->objfile_obstack,
7795 imported_name_prefix, "::", imported_name,
7796 (char *) NULL);
7797 else
7798 canonical_name = imported_name;
7799
7800 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7801
7802 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7803 for (child_die = die->child; child_die && child_die->tag;
7804 child_die = sibling_die (child_die))
7805 {
7806 /* DWARF-4: A Fortran use statement with a “rename list” may be
7807 represented by an imported module entry with an import attribute
7808 referring to the module and owned entries corresponding to those
7809 entities that are renamed as part of being imported. */
7810
7811 if (child_die->tag != DW_TAG_imported_declaration)
7812 {
7813 complaint (&symfile_complaints,
7814 _("child DW_TAG_imported_declaration expected "
7815 "- DIE at 0x%x [in module %s]"),
7816 child_die->offset.sect_off, objfile->name);
7817 continue;
7818 }
7819
7820 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7821 if (import_attr == NULL)
7822 {
7823 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7824 dwarf_tag_name (child_die->tag));
7825 continue;
7826 }
7827
7828 imported_cu = cu;
7829 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7830 &imported_cu);
7831 imported_name = dwarf2_name (imported_die, imported_cu);
7832 if (imported_name == NULL)
7833 {
7834 complaint (&symfile_complaints,
7835 _("child DW_TAG_imported_declaration has unknown "
7836 "imported name - DIE at 0x%x [in module %s]"),
7837 child_die->offset.sect_off, objfile->name);
7838 continue;
7839 }
7840
7841 VEC_safe_push (const_char_ptr, excludes, imported_name);
7842
7843 process_die (child_die, cu);
7844 }
7845
7846 cp_add_using_directive (import_prefix,
7847 canonical_name,
7848 import_alias,
7849 imported_declaration,
7850 excludes,
7851 0,
7852 &objfile->objfile_obstack);
7853
7854 do_cleanups (cleanups);
7855 }
7856
7857 /* Cleanup function for handle_DW_AT_stmt_list. */
7858
7859 static void
7860 free_cu_line_header (void *arg)
7861 {
7862 struct dwarf2_cu *cu = arg;
7863
7864 free_line_header (cu->line_header);
7865 cu->line_header = NULL;
7866 }
7867
7868 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7869 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7870 this, it was first present in GCC release 4.3.0. */
7871
7872 static int
7873 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7874 {
7875 if (!cu->checked_producer)
7876 check_producer (cu);
7877
7878 return cu->producer_is_gcc_lt_4_3;
7879 }
7880
7881 static void
7882 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7883 const char **name, const char **comp_dir)
7884 {
7885 struct attribute *attr;
7886
7887 *name = NULL;
7888 *comp_dir = NULL;
7889
7890 /* Find the filename. Do not use dwarf2_name here, since the filename
7891 is not a source language identifier. */
7892 attr = dwarf2_attr (die, DW_AT_name, cu);
7893 if (attr)
7894 {
7895 *name = DW_STRING (attr);
7896 }
7897
7898 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7899 if (attr)
7900 *comp_dir = DW_STRING (attr);
7901 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
7902 && IS_ABSOLUTE_PATH (*name))
7903 {
7904 char *d = ldirname (*name);
7905
7906 *comp_dir = d;
7907 if (d != NULL)
7908 make_cleanup (xfree, d);
7909 }
7910 if (*comp_dir != NULL)
7911 {
7912 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7913 directory, get rid of it. */
7914 char *cp = strchr (*comp_dir, ':');
7915
7916 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7917 *comp_dir = cp + 1;
7918 }
7919
7920 if (*name == NULL)
7921 *name = "<unknown>";
7922 }
7923
7924 /* Handle DW_AT_stmt_list for a compilation unit.
7925 DIE is the DW_TAG_compile_unit die for CU.
7926 COMP_DIR is the compilation directory.
7927 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7928
7929 static void
7930 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7931 const char *comp_dir)
7932 {
7933 struct attribute *attr;
7934
7935 gdb_assert (! cu->per_cu->is_debug_types);
7936
7937 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7938 if (attr)
7939 {
7940 unsigned int line_offset = DW_UNSND (attr);
7941 struct line_header *line_header
7942 = dwarf_decode_line_header (line_offset, cu);
7943
7944 if (line_header)
7945 {
7946 cu->line_header = line_header;
7947 make_cleanup (free_cu_line_header, cu);
7948 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7949 }
7950 }
7951 }
7952
7953 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7954
7955 static void
7956 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7957 {
7958 struct objfile *objfile = dwarf2_per_objfile->objfile;
7959 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7960 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7961 CORE_ADDR highpc = ((CORE_ADDR) 0);
7962 struct attribute *attr;
7963 const char *name = NULL;
7964 const char *comp_dir = NULL;
7965 struct die_info *child_die;
7966 bfd *abfd = objfile->obfd;
7967 CORE_ADDR baseaddr;
7968
7969 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7970
7971 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7972
7973 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7974 from finish_block. */
7975 if (lowpc == ((CORE_ADDR) -1))
7976 lowpc = highpc;
7977 lowpc += baseaddr;
7978 highpc += baseaddr;
7979
7980 find_file_and_directory (die, cu, &name, &comp_dir);
7981
7982 prepare_one_comp_unit (cu, die, cu->language);
7983
7984 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7985 standardised yet. As a workaround for the language detection we fall
7986 back to the DW_AT_producer string. */
7987 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7988 cu->language = language_opencl;
7989
7990 /* Similar hack for Go. */
7991 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7992 set_cu_language (DW_LANG_Go, cu);
7993
7994 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
7995
7996 /* Decode line number information if present. We do this before
7997 processing child DIEs, so that the line header table is available
7998 for DW_AT_decl_file. */
7999 handle_DW_AT_stmt_list (die, cu, comp_dir);
8000
8001 /* Process all dies in compilation unit. */
8002 if (die->child != NULL)
8003 {
8004 child_die = die->child;
8005 while (child_die && child_die->tag)
8006 {
8007 process_die (child_die, cu);
8008 child_die = sibling_die (child_die);
8009 }
8010 }
8011
8012 /* Decode macro information, if present. Dwarf 2 macro information
8013 refers to information in the line number info statement program
8014 header, so we can only read it if we've read the header
8015 successfully. */
8016 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8017 if (attr && cu->line_header)
8018 {
8019 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8020 complaint (&symfile_complaints,
8021 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8022
8023 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8024 }
8025 else
8026 {
8027 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8028 if (attr && cu->line_header)
8029 {
8030 unsigned int macro_offset = DW_UNSND (attr);
8031
8032 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8033 }
8034 }
8035
8036 do_cleanups (back_to);
8037 }
8038
8039 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8040 Create the set of symtabs used by this TU, or if this TU is sharing
8041 symtabs with another TU and the symtabs have already been created
8042 then restore those symtabs in the line header.
8043 We don't need the pc/line-number mapping for type units. */
8044
8045 static void
8046 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8047 {
8048 struct objfile *objfile = dwarf2_per_objfile->objfile;
8049 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8050 struct type_unit_group *tu_group;
8051 int first_time;
8052 struct line_header *lh;
8053 struct attribute *attr;
8054 unsigned int i, line_offset;
8055
8056 gdb_assert (per_cu->is_debug_types);
8057
8058 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8059
8060 /* If we're using .gdb_index (includes -readnow) then
8061 per_cu->s.type_unit_group may not have been set up yet. */
8062 if (per_cu->type_unit_group == NULL)
8063 per_cu->type_unit_group = get_type_unit_group (cu, attr);
8064 tu_group = per_cu->type_unit_group;
8065
8066 /* If we've already processed this stmt_list there's no real need to
8067 do it again, we could fake it and just recreate the part we need
8068 (file name,index -> symtab mapping). If data shows this optimization
8069 is useful we can do it then. */
8070 first_time = tu_group->primary_symtab == NULL;
8071
8072 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8073 debug info. */
8074 lh = NULL;
8075 if (attr != NULL)
8076 {
8077 line_offset = DW_UNSND (attr);
8078 lh = dwarf_decode_line_header (line_offset, cu);
8079 }
8080 if (lh == NULL)
8081 {
8082 if (first_time)
8083 dwarf2_start_symtab (cu, "", NULL, 0);
8084 else
8085 {
8086 gdb_assert (tu_group->symtabs == NULL);
8087 restart_symtab (0);
8088 }
8089 /* Note: The primary symtab will get allocated at the end. */
8090 return;
8091 }
8092
8093 cu->line_header = lh;
8094 make_cleanup (free_cu_line_header, cu);
8095
8096 if (first_time)
8097 {
8098 dwarf2_start_symtab (cu, "", NULL, 0);
8099
8100 tu_group->num_symtabs = lh->num_file_names;
8101 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8102
8103 for (i = 0; i < lh->num_file_names; ++i)
8104 {
8105 char *dir = NULL;
8106 struct file_entry *fe = &lh->file_names[i];
8107
8108 if (fe->dir_index)
8109 dir = lh->include_dirs[fe->dir_index - 1];
8110 dwarf2_start_subfile (fe->name, dir, NULL);
8111
8112 /* Note: We don't have to watch for the main subfile here, type units
8113 don't have DW_AT_name. */
8114
8115 if (current_subfile->symtab == NULL)
8116 {
8117 /* NOTE: start_subfile will recognize when it's been passed
8118 a file it has already seen. So we can't assume there's a
8119 simple mapping from lh->file_names to subfiles,
8120 lh->file_names may contain dups. */
8121 current_subfile->symtab = allocate_symtab (current_subfile->name,
8122 objfile);
8123 }
8124
8125 fe->symtab = current_subfile->symtab;
8126 tu_group->symtabs[i] = fe->symtab;
8127 }
8128 }
8129 else
8130 {
8131 restart_symtab (0);
8132
8133 for (i = 0; i < lh->num_file_names; ++i)
8134 {
8135 struct file_entry *fe = &lh->file_names[i];
8136
8137 fe->symtab = tu_group->symtabs[i];
8138 }
8139 }
8140
8141 /* The main symtab is allocated last. Type units don't have DW_AT_name
8142 so they don't have a "real" (so to speak) symtab anyway.
8143 There is later code that will assign the main symtab to all symbols
8144 that don't have one. We need to handle the case of a symbol with a
8145 missing symtab (DW_AT_decl_file) anyway. */
8146 }
8147
8148 /* Process DW_TAG_type_unit.
8149 For TUs we want to skip the first top level sibling if it's not the
8150 actual type being defined by this TU. In this case the first top
8151 level sibling is there to provide context only. */
8152
8153 static void
8154 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8155 {
8156 struct die_info *child_die;
8157
8158 prepare_one_comp_unit (cu, die, language_minimal);
8159
8160 /* Initialize (or reinitialize) the machinery for building symtabs.
8161 We do this before processing child DIEs, so that the line header table
8162 is available for DW_AT_decl_file. */
8163 setup_type_unit_groups (die, cu);
8164
8165 if (die->child != NULL)
8166 {
8167 child_die = die->child;
8168 while (child_die && child_die->tag)
8169 {
8170 process_die (child_die, cu);
8171 child_die = sibling_die (child_die);
8172 }
8173 }
8174 }
8175 \f
8176 /* DWO/DWP files.
8177
8178 http://gcc.gnu.org/wiki/DebugFission
8179 http://gcc.gnu.org/wiki/DebugFissionDWP
8180
8181 To simplify handling of both DWO files ("object" files with the DWARF info)
8182 and DWP files (a file with the DWOs packaged up into one file), we treat
8183 DWP files as having a collection of virtual DWO files. */
8184
8185 static hashval_t
8186 hash_dwo_file (const void *item)
8187 {
8188 const struct dwo_file *dwo_file = item;
8189
8190 return htab_hash_string (dwo_file->name);
8191 }
8192
8193 static int
8194 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8195 {
8196 const struct dwo_file *lhs = item_lhs;
8197 const struct dwo_file *rhs = item_rhs;
8198
8199 return strcmp (lhs->name, rhs->name) == 0;
8200 }
8201
8202 /* Allocate a hash table for DWO files. */
8203
8204 static htab_t
8205 allocate_dwo_file_hash_table (void)
8206 {
8207 struct objfile *objfile = dwarf2_per_objfile->objfile;
8208
8209 return htab_create_alloc_ex (41,
8210 hash_dwo_file,
8211 eq_dwo_file,
8212 NULL,
8213 &objfile->objfile_obstack,
8214 hashtab_obstack_allocate,
8215 dummy_obstack_deallocate);
8216 }
8217
8218 /* Lookup DWO file DWO_NAME. */
8219
8220 static void **
8221 lookup_dwo_file_slot (const char *dwo_name)
8222 {
8223 struct dwo_file find_entry;
8224 void **slot;
8225
8226 if (dwarf2_per_objfile->dwo_files == NULL)
8227 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8228
8229 memset (&find_entry, 0, sizeof (find_entry));
8230 find_entry.name = dwo_name;
8231 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8232
8233 return slot;
8234 }
8235
8236 static hashval_t
8237 hash_dwo_unit (const void *item)
8238 {
8239 const struct dwo_unit *dwo_unit = item;
8240
8241 /* This drops the top 32 bits of the id, but is ok for a hash. */
8242 return dwo_unit->signature;
8243 }
8244
8245 static int
8246 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8247 {
8248 const struct dwo_unit *lhs = item_lhs;
8249 const struct dwo_unit *rhs = item_rhs;
8250
8251 /* The signature is assumed to be unique within the DWO file.
8252 So while object file CU dwo_id's always have the value zero,
8253 that's OK, assuming each object file DWO file has only one CU,
8254 and that's the rule for now. */
8255 return lhs->signature == rhs->signature;
8256 }
8257
8258 /* Allocate a hash table for DWO CUs,TUs.
8259 There is one of these tables for each of CUs,TUs for each DWO file. */
8260
8261 static htab_t
8262 allocate_dwo_unit_table (struct objfile *objfile)
8263 {
8264 /* Start out with a pretty small number.
8265 Generally DWO files contain only one CU and maybe some TUs. */
8266 return htab_create_alloc_ex (3,
8267 hash_dwo_unit,
8268 eq_dwo_unit,
8269 NULL,
8270 &objfile->objfile_obstack,
8271 hashtab_obstack_allocate,
8272 dummy_obstack_deallocate);
8273 }
8274
8275 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8276
8277 struct create_dwo_info_table_data
8278 {
8279 struct dwo_file *dwo_file;
8280 htab_t cu_htab;
8281 };
8282
8283 /* die_reader_func for create_dwo_debug_info_hash_table. */
8284
8285 static void
8286 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8287 gdb_byte *info_ptr,
8288 struct die_info *comp_unit_die,
8289 int has_children,
8290 void *datap)
8291 {
8292 struct dwarf2_cu *cu = reader->cu;
8293 struct objfile *objfile = dwarf2_per_objfile->objfile;
8294 sect_offset offset = cu->per_cu->offset;
8295 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8296 struct create_dwo_info_table_data *data = datap;
8297 struct dwo_file *dwo_file = data->dwo_file;
8298 htab_t cu_htab = data->cu_htab;
8299 void **slot;
8300 struct attribute *attr;
8301 struct dwo_unit *dwo_unit;
8302
8303 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8304 if (attr == NULL)
8305 {
8306 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8307 " its dwo_id [in module %s]"),
8308 offset.sect_off, dwo_file->name);
8309 return;
8310 }
8311
8312 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8313 dwo_unit->dwo_file = dwo_file;
8314 dwo_unit->signature = DW_UNSND (attr);
8315 dwo_unit->info_or_types_section = section;
8316 dwo_unit->offset = offset;
8317 dwo_unit->length = cu->per_cu->length;
8318
8319 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8320 gdb_assert (slot != NULL);
8321 if (*slot != NULL)
8322 {
8323 const struct dwo_unit *dup_dwo_unit = *slot;
8324
8325 complaint (&symfile_complaints,
8326 _("debug entry at offset 0x%x is duplicate to the entry at"
8327 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8328 offset.sect_off, dup_dwo_unit->offset.sect_off,
8329 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8330 dwo_file->name);
8331 }
8332 else
8333 *slot = dwo_unit;
8334
8335 if (dwarf2_read_debug)
8336 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8337 offset.sect_off,
8338 phex (dwo_unit->signature,
8339 sizeof (dwo_unit->signature)));
8340 }
8341
8342 /* Create a hash table to map DWO IDs to their CU entry in
8343 .debug_info.dwo in DWO_FILE.
8344 Note: This function processes DWO files only, not DWP files. */
8345
8346 static htab_t
8347 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8348 {
8349 struct objfile *objfile = dwarf2_per_objfile->objfile;
8350 struct dwarf2_section_info *section = &dwo_file->sections.info;
8351 bfd *abfd;
8352 htab_t cu_htab;
8353 gdb_byte *info_ptr, *end_ptr;
8354 struct create_dwo_info_table_data create_dwo_info_table_data;
8355
8356 dwarf2_read_section (objfile, section);
8357 info_ptr = section->buffer;
8358
8359 if (info_ptr == NULL)
8360 return NULL;
8361
8362 /* We can't set abfd until now because the section may be empty or
8363 not present, in which case section->asection will be NULL. */
8364 abfd = section->asection->owner;
8365
8366 if (dwarf2_read_debug)
8367 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8368 bfd_get_filename (abfd));
8369
8370 cu_htab = allocate_dwo_unit_table (objfile);
8371
8372 create_dwo_info_table_data.dwo_file = dwo_file;
8373 create_dwo_info_table_data.cu_htab = cu_htab;
8374
8375 end_ptr = info_ptr + section->size;
8376 while (info_ptr < end_ptr)
8377 {
8378 struct dwarf2_per_cu_data per_cu;
8379
8380 memset (&per_cu, 0, sizeof (per_cu));
8381 per_cu.objfile = objfile;
8382 per_cu.is_debug_types = 0;
8383 per_cu.offset.sect_off = info_ptr - section->buffer;
8384 per_cu.info_or_types_section = section;
8385
8386 init_cutu_and_read_dies_no_follow (&per_cu,
8387 &dwo_file->sections.abbrev,
8388 dwo_file,
8389 create_dwo_debug_info_hash_table_reader,
8390 &create_dwo_info_table_data);
8391
8392 info_ptr += per_cu.length;
8393 }
8394
8395 return cu_htab;
8396 }
8397
8398 /* DWP file .debug_{cu,tu}_index section format:
8399 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8400
8401 Both index sections have the same format, and serve to map a 64-bit
8402 signature to a set of section numbers. Each section begins with a header,
8403 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8404 indexes, and a pool of 32-bit section numbers. The index sections will be
8405 aligned at 8-byte boundaries in the file.
8406
8407 The index section header contains two unsigned 32-bit values (using the
8408 byte order of the application binary):
8409
8410 N, the number of compilation units or type units in the index
8411 M, the number of slots in the hash table
8412
8413 (We assume that N and M will not exceed 2^32 - 1.)
8414
8415 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8416
8417 The hash table begins at offset 8 in the section, and consists of an array
8418 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8419 order of the application binary). Unused slots in the hash table are 0.
8420 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8421
8422 The parallel table begins immediately after the hash table
8423 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8424 array of 32-bit indexes (using the byte order of the application binary),
8425 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8426 table contains a 32-bit index into the pool of section numbers. For unused
8427 hash table slots, the corresponding entry in the parallel table will be 0.
8428
8429 Given a 64-bit compilation unit signature or a type signature S, an entry
8430 in the hash table is located as follows:
8431
8432 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8433 the low-order k bits all set to 1.
8434
8435 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8436
8437 3) If the hash table entry at index H matches the signature, use that
8438 entry. If the hash table entry at index H is unused (all zeroes),
8439 terminate the search: the signature is not present in the table.
8440
8441 4) Let H = (H + H') modulo M. Repeat at Step 3.
8442
8443 Because M > N and H' and M are relatively prime, the search is guaranteed
8444 to stop at an unused slot or find the match.
8445
8446 The pool of section numbers begins immediately following the hash table
8447 (at offset 8 + 12 * M from the beginning of the section). The pool of
8448 section numbers consists of an array of 32-bit words (using the byte order
8449 of the application binary). Each item in the array is indexed starting
8450 from 0. The hash table entry provides the index of the first section
8451 number in the set. Additional section numbers in the set follow, and the
8452 set is terminated by a 0 entry (section number 0 is not used in ELF).
8453
8454 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8455 section must be the first entry in the set, and the .debug_abbrev.dwo must
8456 be the second entry. Other members of the set may follow in any order. */
8457
8458 /* Create a hash table to map DWO IDs to their CU/TU entry in
8459 .debug_{info,types}.dwo in DWP_FILE.
8460 Returns NULL if there isn't one.
8461 Note: This function processes DWP files only, not DWO files. */
8462
8463 static struct dwp_hash_table *
8464 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8465 {
8466 struct objfile *objfile = dwarf2_per_objfile->objfile;
8467 bfd *dbfd = dwp_file->dbfd;
8468 char *index_ptr, *index_end;
8469 struct dwarf2_section_info *index;
8470 uint32_t version, nr_units, nr_slots;
8471 struct dwp_hash_table *htab;
8472
8473 if (is_debug_types)
8474 index = &dwp_file->sections.tu_index;
8475 else
8476 index = &dwp_file->sections.cu_index;
8477
8478 if (dwarf2_section_empty_p (index))
8479 return NULL;
8480 dwarf2_read_section (objfile, index);
8481
8482 index_ptr = index->buffer;
8483 index_end = index_ptr + index->size;
8484
8485 version = read_4_bytes (dbfd, index_ptr);
8486 index_ptr += 8; /* Skip the unused word. */
8487 nr_units = read_4_bytes (dbfd, index_ptr);
8488 index_ptr += 4;
8489 nr_slots = read_4_bytes (dbfd, index_ptr);
8490 index_ptr += 4;
8491
8492 if (version != 1)
8493 {
8494 error (_("Dwarf Error: unsupported DWP file version (%u)"
8495 " [in module %s]"),
8496 version, dwp_file->name);
8497 }
8498 if (nr_slots != (nr_slots & -nr_slots))
8499 {
8500 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8501 " is not power of 2 [in module %s]"),
8502 nr_slots, dwp_file->name);
8503 }
8504
8505 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8506 htab->nr_units = nr_units;
8507 htab->nr_slots = nr_slots;
8508 htab->hash_table = index_ptr;
8509 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8510 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8511
8512 return htab;
8513 }
8514
8515 /* Update SECTIONS with the data from SECTP.
8516
8517 This function is like the other "locate" section routines that are
8518 passed to bfd_map_over_sections, but in this context the sections to
8519 read comes from the DWP hash table, not the full ELF section table.
8520
8521 The result is non-zero for success, or zero if an error was found. */
8522
8523 static int
8524 locate_virtual_dwo_sections (asection *sectp,
8525 struct virtual_dwo_sections *sections)
8526 {
8527 const struct dwop_section_names *names = &dwop_section_names;
8528
8529 if (section_is_p (sectp->name, &names->abbrev_dwo))
8530 {
8531 /* There can be only one. */
8532 if (sections->abbrev.asection != NULL)
8533 return 0;
8534 sections->abbrev.asection = sectp;
8535 sections->abbrev.size = bfd_get_section_size (sectp);
8536 }
8537 else if (section_is_p (sectp->name, &names->info_dwo)
8538 || section_is_p (sectp->name, &names->types_dwo))
8539 {
8540 /* There can be only one. */
8541 if (sections->info_or_types.asection != NULL)
8542 return 0;
8543 sections->info_or_types.asection = sectp;
8544 sections->info_or_types.size = bfd_get_section_size (sectp);
8545 }
8546 else if (section_is_p (sectp->name, &names->line_dwo))
8547 {
8548 /* There can be only one. */
8549 if (sections->line.asection != NULL)
8550 return 0;
8551 sections->line.asection = sectp;
8552 sections->line.size = bfd_get_section_size (sectp);
8553 }
8554 else if (section_is_p (sectp->name, &names->loc_dwo))
8555 {
8556 /* There can be only one. */
8557 if (sections->loc.asection != NULL)
8558 return 0;
8559 sections->loc.asection = sectp;
8560 sections->loc.size = bfd_get_section_size (sectp);
8561 }
8562 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8563 {
8564 /* There can be only one. */
8565 if (sections->macinfo.asection != NULL)
8566 return 0;
8567 sections->macinfo.asection = sectp;
8568 sections->macinfo.size = bfd_get_section_size (sectp);
8569 }
8570 else if (section_is_p (sectp->name, &names->macro_dwo))
8571 {
8572 /* There can be only one. */
8573 if (sections->macro.asection != NULL)
8574 return 0;
8575 sections->macro.asection = sectp;
8576 sections->macro.size = bfd_get_section_size (sectp);
8577 }
8578 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8579 {
8580 /* There can be only one. */
8581 if (sections->str_offsets.asection != NULL)
8582 return 0;
8583 sections->str_offsets.asection = sectp;
8584 sections->str_offsets.size = bfd_get_section_size (sectp);
8585 }
8586 else
8587 {
8588 /* No other kind of section is valid. */
8589 return 0;
8590 }
8591
8592 return 1;
8593 }
8594
8595 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8596 HTAB is the hash table from the DWP file.
8597 SECTION_INDEX is the index of the DWO in HTAB. */
8598
8599 static struct dwo_unit *
8600 create_dwo_in_dwp (struct dwp_file *dwp_file,
8601 const struct dwp_hash_table *htab,
8602 uint32_t section_index,
8603 ULONGEST signature, int is_debug_types)
8604 {
8605 struct objfile *objfile = dwarf2_per_objfile->objfile;
8606 bfd *dbfd = dwp_file->dbfd;
8607 const char *kind = is_debug_types ? "TU" : "CU";
8608 struct dwo_file *dwo_file;
8609 struct dwo_unit *dwo_unit;
8610 struct virtual_dwo_sections sections;
8611 void **dwo_file_slot;
8612 char *virtual_dwo_name;
8613 struct dwarf2_section_info *cutu;
8614 struct cleanup *cleanups;
8615 int i;
8616
8617 if (dwarf2_read_debug)
8618 {
8619 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8620 kind,
8621 section_index, phex (signature, sizeof (signature)),
8622 dwp_file->name);
8623 }
8624
8625 /* Fetch the sections of this DWO.
8626 Put a limit on the number of sections we look for so that bad data
8627 doesn't cause us to loop forever. */
8628
8629 #define MAX_NR_DWO_SECTIONS \
8630 (1 /* .debug_info or .debug_types */ \
8631 + 1 /* .debug_abbrev */ \
8632 + 1 /* .debug_line */ \
8633 + 1 /* .debug_loc */ \
8634 + 1 /* .debug_str_offsets */ \
8635 + 1 /* .debug_macro */ \
8636 + 1 /* .debug_macinfo */ \
8637 + 1 /* trailing zero */)
8638
8639 memset (&sections, 0, sizeof (sections));
8640 cleanups = make_cleanup (null_cleanup, 0);
8641
8642 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8643 {
8644 asection *sectp;
8645 uint32_t section_nr =
8646 read_4_bytes (dbfd,
8647 htab->section_pool
8648 + (section_index + i) * sizeof (uint32_t));
8649
8650 if (section_nr == 0)
8651 break;
8652 if (section_nr >= dwp_file->num_sections)
8653 {
8654 error (_("Dwarf Error: bad DWP hash table, section number too large"
8655 " [in module %s]"),
8656 dwp_file->name);
8657 }
8658
8659 sectp = dwp_file->elf_sections[section_nr];
8660 if (! locate_virtual_dwo_sections (sectp, &sections))
8661 {
8662 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8663 " [in module %s]"),
8664 dwp_file->name);
8665 }
8666 }
8667
8668 if (i < 2
8669 || sections.info_or_types.asection == NULL
8670 || sections.abbrev.asection == NULL)
8671 {
8672 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8673 " [in module %s]"),
8674 dwp_file->name);
8675 }
8676 if (i == MAX_NR_DWO_SECTIONS)
8677 {
8678 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8679 " [in module %s]"),
8680 dwp_file->name);
8681 }
8682
8683 /* It's easier for the rest of the code if we fake a struct dwo_file and
8684 have dwo_unit "live" in that. At least for now.
8685
8686 The DWP file can be made up of a random collection of CUs and TUs.
8687 However, for each CU + set of TUs that came from the same original DWO
8688 file, we want to combine them back into a virtual DWO file to save space
8689 (fewer struct dwo_file objects to allocated). Remember that for really
8690 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8691
8692 virtual_dwo_name =
8693 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8694 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8695 sections.line.asection ? sections.line.asection->id : 0,
8696 sections.loc.asection ? sections.loc.asection->id : 0,
8697 (sections.str_offsets.asection
8698 ? sections.str_offsets.asection->id
8699 : 0));
8700 make_cleanup (xfree, virtual_dwo_name);
8701 /* Can we use an existing virtual DWO file? */
8702 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8703 /* Create one if necessary. */
8704 if (*dwo_file_slot == NULL)
8705 {
8706 if (dwarf2_read_debug)
8707 {
8708 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8709 virtual_dwo_name);
8710 }
8711 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8712 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8713 virtual_dwo_name,
8714 strlen (virtual_dwo_name));
8715 dwo_file->sections.abbrev = sections.abbrev;
8716 dwo_file->sections.line = sections.line;
8717 dwo_file->sections.loc = sections.loc;
8718 dwo_file->sections.macinfo = sections.macinfo;
8719 dwo_file->sections.macro = sections.macro;
8720 dwo_file->sections.str_offsets = sections.str_offsets;
8721 /* The "str" section is global to the entire DWP file. */
8722 dwo_file->sections.str = dwp_file->sections.str;
8723 /* The info or types section is assigned later to dwo_unit,
8724 there's no need to record it in dwo_file.
8725 Also, we can't simply record type sections in dwo_file because
8726 we record a pointer into the vector in dwo_unit. As we collect more
8727 types we'll grow the vector and eventually have to reallocate space
8728 for it, invalidating all the pointers into the current copy. */
8729 *dwo_file_slot = dwo_file;
8730 }
8731 else
8732 {
8733 if (dwarf2_read_debug)
8734 {
8735 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8736 virtual_dwo_name);
8737 }
8738 dwo_file = *dwo_file_slot;
8739 }
8740 do_cleanups (cleanups);
8741
8742 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8743 dwo_unit->dwo_file = dwo_file;
8744 dwo_unit->signature = signature;
8745 dwo_unit->info_or_types_section =
8746 obstack_alloc (&objfile->objfile_obstack,
8747 sizeof (struct dwarf2_section_info));
8748 *dwo_unit->info_or_types_section = sections.info_or_types;
8749 /* offset, length, type_offset_in_tu are set later. */
8750
8751 return dwo_unit;
8752 }
8753
8754 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8755
8756 static struct dwo_unit *
8757 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8758 const struct dwp_hash_table *htab,
8759 ULONGEST signature, int is_debug_types)
8760 {
8761 bfd *dbfd = dwp_file->dbfd;
8762 uint32_t mask = htab->nr_slots - 1;
8763 uint32_t hash = signature & mask;
8764 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8765 unsigned int i;
8766 void **slot;
8767 struct dwo_unit find_dwo_cu, *dwo_cu;
8768
8769 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8770 find_dwo_cu.signature = signature;
8771 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8772
8773 if (*slot != NULL)
8774 return *slot;
8775
8776 /* Use a for loop so that we don't loop forever on bad debug info. */
8777 for (i = 0; i < htab->nr_slots; ++i)
8778 {
8779 ULONGEST signature_in_table;
8780
8781 signature_in_table =
8782 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8783 if (signature_in_table == signature)
8784 {
8785 uint32_t section_index =
8786 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8787
8788 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8789 signature, is_debug_types);
8790 return *slot;
8791 }
8792 if (signature_in_table == 0)
8793 return NULL;
8794 hash = (hash + hash2) & mask;
8795 }
8796
8797 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8798 " [in module %s]"),
8799 dwp_file->name);
8800 }
8801
8802 /* Subroutine of open_dwop_file to simplify it.
8803 Open the file specified by FILE_NAME and hand it off to BFD for
8804 preliminary analysis. Return a newly initialized bfd *, which
8805 includes a canonicalized copy of FILE_NAME.
8806 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8807 In case of trouble, return NULL.
8808 NOTE: This function is derived from symfile_bfd_open. */
8809
8810 static bfd *
8811 try_open_dwop_file (const char *file_name, int is_dwp)
8812 {
8813 bfd *sym_bfd;
8814 int desc, flags;
8815 char *absolute_name;
8816
8817 flags = OPF_TRY_CWD_FIRST;
8818 if (is_dwp)
8819 flags |= OPF_SEARCH_IN_PATH;
8820 desc = openp (debug_file_directory, flags, file_name,
8821 O_RDONLY | O_BINARY, &absolute_name);
8822 if (desc < 0)
8823 return NULL;
8824
8825 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8826 if (!sym_bfd)
8827 {
8828 xfree (absolute_name);
8829 return NULL;
8830 }
8831 xfree (absolute_name);
8832 bfd_set_cacheable (sym_bfd, 1);
8833
8834 if (!bfd_check_format (sym_bfd, bfd_object))
8835 {
8836 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8837 return NULL;
8838 }
8839
8840 return sym_bfd;
8841 }
8842
8843 /* Try to open DWO/DWP file FILE_NAME.
8844 COMP_DIR is the DW_AT_comp_dir attribute.
8845 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8846 The result is the bfd handle of the file.
8847 If there is a problem finding or opening the file, return NULL.
8848 Upon success, the canonicalized path of the file is stored in the bfd,
8849 same as symfile_bfd_open. */
8850
8851 static bfd *
8852 open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
8853 {
8854 bfd *abfd;
8855
8856 if (IS_ABSOLUTE_PATH (file_name))
8857 return try_open_dwop_file (file_name, is_dwp);
8858
8859 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8860
8861 if (comp_dir != NULL)
8862 {
8863 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8864
8865 /* NOTE: If comp_dir is a relative path, this will also try the
8866 search path, which seems useful. */
8867 abfd = try_open_dwop_file (path_to_try, is_dwp);
8868 xfree (path_to_try);
8869 if (abfd != NULL)
8870 return abfd;
8871 }
8872
8873 /* That didn't work, try debug-file-directory, which, despite its name,
8874 is a list of paths. */
8875
8876 if (*debug_file_directory == '\0')
8877 return NULL;
8878
8879 return try_open_dwop_file (file_name, is_dwp);
8880 }
8881
8882 /* This function is mapped across the sections and remembers the offset and
8883 size of each of the DWO debugging sections we are interested in. */
8884
8885 static void
8886 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8887 {
8888 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8889 const struct dwop_section_names *names = &dwop_section_names;
8890
8891 if (section_is_p (sectp->name, &names->abbrev_dwo))
8892 {
8893 dwo_sections->abbrev.asection = sectp;
8894 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8895 }
8896 else if (section_is_p (sectp->name, &names->info_dwo))
8897 {
8898 dwo_sections->info.asection = sectp;
8899 dwo_sections->info.size = bfd_get_section_size (sectp);
8900 }
8901 else if (section_is_p (sectp->name, &names->line_dwo))
8902 {
8903 dwo_sections->line.asection = sectp;
8904 dwo_sections->line.size = bfd_get_section_size (sectp);
8905 }
8906 else if (section_is_p (sectp->name, &names->loc_dwo))
8907 {
8908 dwo_sections->loc.asection = sectp;
8909 dwo_sections->loc.size = bfd_get_section_size (sectp);
8910 }
8911 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8912 {
8913 dwo_sections->macinfo.asection = sectp;
8914 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8915 }
8916 else if (section_is_p (sectp->name, &names->macro_dwo))
8917 {
8918 dwo_sections->macro.asection = sectp;
8919 dwo_sections->macro.size = bfd_get_section_size (sectp);
8920 }
8921 else if (section_is_p (sectp->name, &names->str_dwo))
8922 {
8923 dwo_sections->str.asection = sectp;
8924 dwo_sections->str.size = bfd_get_section_size (sectp);
8925 }
8926 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8927 {
8928 dwo_sections->str_offsets.asection = sectp;
8929 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8930 }
8931 else if (section_is_p (sectp->name, &names->types_dwo))
8932 {
8933 struct dwarf2_section_info type_section;
8934
8935 memset (&type_section, 0, sizeof (type_section));
8936 type_section.asection = sectp;
8937 type_section.size = bfd_get_section_size (sectp);
8938 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8939 &type_section);
8940 }
8941 }
8942
8943 /* Initialize the use of the DWO file specified by DWO_NAME.
8944 The result is NULL if DWO_NAME can't be found. */
8945
8946 static struct dwo_file *
8947 open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
8948 {
8949 struct objfile *objfile = dwarf2_per_objfile->objfile;
8950 struct dwo_file *dwo_file;
8951 bfd *dbfd;
8952 struct cleanup *cleanups;
8953
8954 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8955 if (dbfd == NULL)
8956 {
8957 if (dwarf2_read_debug)
8958 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8959 return NULL;
8960 }
8961 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8962 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8963 dwo_name, strlen (dwo_name));
8964 dwo_file->dbfd = dbfd;
8965
8966 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8967
8968 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
8969
8970 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
8971
8972 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8973 dwo_file->sections.types);
8974
8975 discard_cleanups (cleanups);
8976
8977 if (dwarf2_read_debug)
8978 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
8979
8980 return dwo_file;
8981 }
8982
8983 /* This function is mapped across the sections and remembers the offset and
8984 size of each of the DWP debugging sections we are interested in. */
8985
8986 static void
8987 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
8988 {
8989 struct dwp_file *dwp_file = dwp_file_ptr;
8990 const struct dwop_section_names *names = &dwop_section_names;
8991 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
8992
8993 /* Record the ELF section number for later lookup: this is what the
8994 .debug_cu_index,.debug_tu_index tables use. */
8995 gdb_assert (elf_section_nr < dwp_file->num_sections);
8996 dwp_file->elf_sections[elf_section_nr] = sectp;
8997
8998 /* Look for specific sections that we need. */
8999 if (section_is_p (sectp->name, &names->str_dwo))
9000 {
9001 dwp_file->sections.str.asection = sectp;
9002 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9003 }
9004 else if (section_is_p (sectp->name, &names->cu_index))
9005 {
9006 dwp_file->sections.cu_index.asection = sectp;
9007 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9008 }
9009 else if (section_is_p (sectp->name, &names->tu_index))
9010 {
9011 dwp_file->sections.tu_index.asection = sectp;
9012 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9013 }
9014 }
9015
9016 /* Hash function for dwp_file loaded CUs/TUs. */
9017
9018 static hashval_t
9019 hash_dwp_loaded_cutus (const void *item)
9020 {
9021 const struct dwo_unit *dwo_unit = item;
9022
9023 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9024 return dwo_unit->signature;
9025 }
9026
9027 /* Equality function for dwp_file loaded CUs/TUs. */
9028
9029 static int
9030 eq_dwp_loaded_cutus (const void *a, const void *b)
9031 {
9032 const struct dwo_unit *dua = a;
9033 const struct dwo_unit *dub = b;
9034
9035 return dua->signature == dub->signature;
9036 }
9037
9038 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9039
9040 static htab_t
9041 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9042 {
9043 return htab_create_alloc_ex (3,
9044 hash_dwp_loaded_cutus,
9045 eq_dwp_loaded_cutus,
9046 NULL,
9047 &objfile->objfile_obstack,
9048 hashtab_obstack_allocate,
9049 dummy_obstack_deallocate);
9050 }
9051
9052 /* Initialize the use of the DWP file for the current objfile.
9053 By convention the name of the DWP file is ${objfile}.dwp.
9054 The result is NULL if it can't be found. */
9055
9056 static struct dwp_file *
9057 open_and_init_dwp_file (const char *comp_dir)
9058 {
9059 struct objfile *objfile = dwarf2_per_objfile->objfile;
9060 struct dwp_file *dwp_file;
9061 char *dwp_name;
9062 bfd *dbfd;
9063 struct cleanup *cleanups;
9064
9065 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9066 cleanups = make_cleanup (xfree, dwp_name);
9067
9068 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
9069 if (dbfd == NULL)
9070 {
9071 if (dwarf2_read_debug)
9072 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9073 do_cleanups (cleanups);
9074 return NULL;
9075 }
9076 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9077 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9078 dwp_name, strlen (dwp_name));
9079 dwp_file->dbfd = dbfd;
9080 do_cleanups (cleanups);
9081
9082 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
9083
9084 /* +1: section 0 is unused */
9085 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9086 dwp_file->elf_sections =
9087 OBSTACK_CALLOC (&objfile->objfile_obstack,
9088 dwp_file->num_sections, asection *);
9089
9090 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9091
9092 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9093
9094 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9095
9096 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9097
9098 discard_cleanups (cleanups);
9099
9100 if (dwarf2_read_debug)
9101 {
9102 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9103 fprintf_unfiltered (gdb_stdlog,
9104 " %u CUs, %u TUs\n",
9105 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9106 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9107 }
9108
9109 return dwp_file;
9110 }
9111
9112 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9113 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9114 or in the DWP file for the objfile, referenced by THIS_UNIT.
9115 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9116 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9117
9118 This is called, for example, when wanting to read a variable with a
9119 complex location. Therefore we don't want to do file i/o for every call.
9120 Therefore we don't want to look for a DWO file on every call.
9121 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9122 then we check if we've already seen DWO_NAME, and only THEN do we check
9123 for a DWO file.
9124
9125 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9126 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9127
9128 static struct dwo_unit *
9129 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9130 const char *dwo_name, const char *comp_dir,
9131 ULONGEST signature, int is_debug_types)
9132 {
9133 struct objfile *objfile = dwarf2_per_objfile->objfile;
9134 const char *kind = is_debug_types ? "TU" : "CU";
9135 void **dwo_file_slot;
9136 struct dwo_file *dwo_file;
9137 struct dwp_file *dwp_file;
9138
9139 /* Have we already read SIGNATURE from a DWP file? */
9140
9141 if (! dwarf2_per_objfile->dwp_checked)
9142 {
9143 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9144 dwarf2_per_objfile->dwp_checked = 1;
9145 }
9146 dwp_file = dwarf2_per_objfile->dwp_file;
9147
9148 if (dwp_file != NULL)
9149 {
9150 const struct dwp_hash_table *dwp_htab =
9151 is_debug_types ? dwp_file->tus : dwp_file->cus;
9152
9153 if (dwp_htab != NULL)
9154 {
9155 struct dwo_unit *dwo_cutu =
9156 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9157
9158 if (dwo_cutu != NULL)
9159 {
9160 if (dwarf2_read_debug)
9161 {
9162 fprintf_unfiltered (gdb_stdlog,
9163 "Virtual DWO %s %s found: @%s\n",
9164 kind, hex_string (signature),
9165 host_address_to_string (dwo_cutu));
9166 }
9167 return dwo_cutu;
9168 }
9169 }
9170 }
9171
9172 /* Have we already seen DWO_NAME? */
9173
9174 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9175 if (*dwo_file_slot == NULL)
9176 {
9177 /* Read in the file and build a table of the DWOs it contains. */
9178 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9179 }
9180 /* NOTE: This will be NULL if unable to open the file. */
9181 dwo_file = *dwo_file_slot;
9182
9183 if (dwo_file != NULL)
9184 {
9185 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9186
9187 if (htab != NULL)
9188 {
9189 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9190
9191 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9192 find_dwo_cutu.signature = signature;
9193 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9194
9195 if (dwo_cutu != NULL)
9196 {
9197 if (dwarf2_read_debug)
9198 {
9199 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9200 kind, dwo_name, hex_string (signature),
9201 host_address_to_string (dwo_cutu));
9202 }
9203 return dwo_cutu;
9204 }
9205 }
9206 }
9207
9208 /* We didn't find it. This could mean a dwo_id mismatch, or
9209 someone deleted the DWO/DWP file, or the search path isn't set up
9210 correctly to find the file. */
9211
9212 if (dwarf2_read_debug)
9213 {
9214 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9215 kind, dwo_name, hex_string (signature));
9216 }
9217
9218 complaint (&symfile_complaints,
9219 _("Could not find DWO CU referenced by CU at offset 0x%x"
9220 " [in module %s]"),
9221 this_unit->offset.sect_off, objfile->name);
9222 return NULL;
9223 }
9224
9225 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9226 See lookup_dwo_cutu_unit for details. */
9227
9228 static struct dwo_unit *
9229 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9230 const char *dwo_name, const char *comp_dir,
9231 ULONGEST signature)
9232 {
9233 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9234 }
9235
9236 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9237 See lookup_dwo_cutu_unit for details. */
9238
9239 static struct dwo_unit *
9240 lookup_dwo_type_unit (struct signatured_type *this_tu,
9241 const char *dwo_name, const char *comp_dir)
9242 {
9243 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9244 }
9245
9246 /* Free all resources associated with DWO_FILE.
9247 Close the DWO file and munmap the sections.
9248 All memory should be on the objfile obstack. */
9249
9250 static void
9251 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9252 {
9253 int ix;
9254 struct dwarf2_section_info *section;
9255
9256 gdb_bfd_unref (dwo_file->dbfd);
9257
9258 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9259 }
9260
9261 /* Wrapper for free_dwo_file for use in cleanups. */
9262
9263 static void
9264 free_dwo_file_cleanup (void *arg)
9265 {
9266 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9267 struct objfile *objfile = dwarf2_per_objfile->objfile;
9268
9269 free_dwo_file (dwo_file, objfile);
9270 }
9271
9272 /* Traversal function for free_dwo_files. */
9273
9274 static int
9275 free_dwo_file_from_slot (void **slot, void *info)
9276 {
9277 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9278 struct objfile *objfile = (struct objfile *) info;
9279
9280 free_dwo_file (dwo_file, objfile);
9281
9282 return 1;
9283 }
9284
9285 /* Free all resources associated with DWO_FILES. */
9286
9287 static void
9288 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9289 {
9290 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9291 }
9292 \f
9293 /* Read in various DIEs. */
9294
9295 /* qsort helper for inherit_abstract_dies. */
9296
9297 static int
9298 unsigned_int_compar (const void *ap, const void *bp)
9299 {
9300 unsigned int a = *(unsigned int *) ap;
9301 unsigned int b = *(unsigned int *) bp;
9302
9303 return (a > b) - (b > a);
9304 }
9305
9306 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9307 Inherit only the children of the DW_AT_abstract_origin DIE not being
9308 already referenced by DW_AT_abstract_origin from the children of the
9309 current DIE. */
9310
9311 static void
9312 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9313 {
9314 struct die_info *child_die;
9315 unsigned die_children_count;
9316 /* CU offsets which were referenced by children of the current DIE. */
9317 sect_offset *offsets;
9318 sect_offset *offsets_end, *offsetp;
9319 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9320 struct die_info *origin_die;
9321 /* Iterator of the ORIGIN_DIE children. */
9322 struct die_info *origin_child_die;
9323 struct cleanup *cleanups;
9324 struct attribute *attr;
9325 struct dwarf2_cu *origin_cu;
9326 struct pending **origin_previous_list_in_scope;
9327
9328 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9329 if (!attr)
9330 return;
9331
9332 /* Note that following die references may follow to a die in a
9333 different cu. */
9334
9335 origin_cu = cu;
9336 origin_die = follow_die_ref (die, attr, &origin_cu);
9337
9338 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9339 symbols in. */
9340 origin_previous_list_in_scope = origin_cu->list_in_scope;
9341 origin_cu->list_in_scope = cu->list_in_scope;
9342
9343 if (die->tag != origin_die->tag
9344 && !(die->tag == DW_TAG_inlined_subroutine
9345 && origin_die->tag == DW_TAG_subprogram))
9346 complaint (&symfile_complaints,
9347 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9348 die->offset.sect_off, origin_die->offset.sect_off);
9349
9350 child_die = die->child;
9351 die_children_count = 0;
9352 while (child_die && child_die->tag)
9353 {
9354 child_die = sibling_die (child_die);
9355 die_children_count++;
9356 }
9357 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9358 cleanups = make_cleanup (xfree, offsets);
9359
9360 offsets_end = offsets;
9361 child_die = die->child;
9362 while (child_die && child_die->tag)
9363 {
9364 /* For each CHILD_DIE, find the corresponding child of
9365 ORIGIN_DIE. If there is more than one layer of
9366 DW_AT_abstract_origin, follow them all; there shouldn't be,
9367 but GCC versions at least through 4.4 generate this (GCC PR
9368 40573). */
9369 struct die_info *child_origin_die = child_die;
9370 struct dwarf2_cu *child_origin_cu = cu;
9371
9372 while (1)
9373 {
9374 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9375 child_origin_cu);
9376 if (attr == NULL)
9377 break;
9378 child_origin_die = follow_die_ref (child_origin_die, attr,
9379 &child_origin_cu);
9380 }
9381
9382 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9383 counterpart may exist. */
9384 if (child_origin_die != child_die)
9385 {
9386 if (child_die->tag != child_origin_die->tag
9387 && !(child_die->tag == DW_TAG_inlined_subroutine
9388 && child_origin_die->tag == DW_TAG_subprogram))
9389 complaint (&symfile_complaints,
9390 _("Child DIE 0x%x and its abstract origin 0x%x have "
9391 "different tags"), child_die->offset.sect_off,
9392 child_origin_die->offset.sect_off);
9393 if (child_origin_die->parent != origin_die)
9394 complaint (&symfile_complaints,
9395 _("Child DIE 0x%x and its abstract origin 0x%x have "
9396 "different parents"), child_die->offset.sect_off,
9397 child_origin_die->offset.sect_off);
9398 else
9399 *offsets_end++ = child_origin_die->offset;
9400 }
9401 child_die = sibling_die (child_die);
9402 }
9403 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9404 unsigned_int_compar);
9405 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9406 if (offsetp[-1].sect_off == offsetp->sect_off)
9407 complaint (&symfile_complaints,
9408 _("Multiple children of DIE 0x%x refer "
9409 "to DIE 0x%x as their abstract origin"),
9410 die->offset.sect_off, offsetp->sect_off);
9411
9412 offsetp = offsets;
9413 origin_child_die = origin_die->child;
9414 while (origin_child_die && origin_child_die->tag)
9415 {
9416 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9417 while (offsetp < offsets_end
9418 && offsetp->sect_off < origin_child_die->offset.sect_off)
9419 offsetp++;
9420 if (offsetp >= offsets_end
9421 || offsetp->sect_off > origin_child_die->offset.sect_off)
9422 {
9423 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9424 process_die (origin_child_die, origin_cu);
9425 }
9426 origin_child_die = sibling_die (origin_child_die);
9427 }
9428 origin_cu->list_in_scope = origin_previous_list_in_scope;
9429
9430 do_cleanups (cleanups);
9431 }
9432
9433 static void
9434 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9435 {
9436 struct objfile *objfile = cu->objfile;
9437 struct context_stack *new;
9438 CORE_ADDR lowpc;
9439 CORE_ADDR highpc;
9440 struct die_info *child_die;
9441 struct attribute *attr, *call_line, *call_file;
9442 const char *name;
9443 CORE_ADDR baseaddr;
9444 struct block *block;
9445 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9446 VEC (symbolp) *template_args = NULL;
9447 struct template_symbol *templ_func = NULL;
9448
9449 if (inlined_func)
9450 {
9451 /* If we do not have call site information, we can't show the
9452 caller of this inlined function. That's too confusing, so
9453 only use the scope for local variables. */
9454 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9455 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9456 if (call_line == NULL || call_file == NULL)
9457 {
9458 read_lexical_block_scope (die, cu);
9459 return;
9460 }
9461 }
9462
9463 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9464
9465 name = dwarf2_name (die, cu);
9466
9467 /* Ignore functions with missing or empty names. These are actually
9468 illegal according to the DWARF standard. */
9469 if (name == NULL)
9470 {
9471 complaint (&symfile_complaints,
9472 _("missing name for subprogram DIE at %d"),
9473 die->offset.sect_off);
9474 return;
9475 }
9476
9477 /* Ignore functions with missing or invalid low and high pc attributes. */
9478 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9479 {
9480 attr = dwarf2_attr (die, DW_AT_external, cu);
9481 if (!attr || !DW_UNSND (attr))
9482 complaint (&symfile_complaints,
9483 _("cannot get low and high bounds "
9484 "for subprogram DIE at %d"),
9485 die->offset.sect_off);
9486 return;
9487 }
9488
9489 lowpc += baseaddr;
9490 highpc += baseaddr;
9491
9492 /* If we have any template arguments, then we must allocate a
9493 different sort of symbol. */
9494 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9495 {
9496 if (child_die->tag == DW_TAG_template_type_param
9497 || child_die->tag == DW_TAG_template_value_param)
9498 {
9499 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9500 struct template_symbol);
9501 templ_func->base.is_cplus_template_function = 1;
9502 break;
9503 }
9504 }
9505
9506 new = push_context (0, lowpc);
9507 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9508 (struct symbol *) templ_func);
9509
9510 /* If there is a location expression for DW_AT_frame_base, record
9511 it. */
9512 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9513 if (attr)
9514 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
9515 expression is being recorded directly in the function's symbol
9516 and not in a separate frame-base object. I guess this hack is
9517 to avoid adding some sort of frame-base adjunct/annex to the
9518 function's symbol :-(. The problem with doing this is that it
9519 results in a function symbol with a location expression that
9520 has nothing to do with the location of the function, ouch! The
9521 relationship should be: a function's symbol has-a frame base; a
9522 frame-base has-a location expression. */
9523 dwarf2_symbol_mark_computed (attr, new->name, cu);
9524
9525 cu->list_in_scope = &local_symbols;
9526
9527 if (die->child != NULL)
9528 {
9529 child_die = die->child;
9530 while (child_die && child_die->tag)
9531 {
9532 if (child_die->tag == DW_TAG_template_type_param
9533 || child_die->tag == DW_TAG_template_value_param)
9534 {
9535 struct symbol *arg = new_symbol (child_die, NULL, cu);
9536
9537 if (arg != NULL)
9538 VEC_safe_push (symbolp, template_args, arg);
9539 }
9540 else
9541 process_die (child_die, cu);
9542 child_die = sibling_die (child_die);
9543 }
9544 }
9545
9546 inherit_abstract_dies (die, cu);
9547
9548 /* If we have a DW_AT_specification, we might need to import using
9549 directives from the context of the specification DIE. See the
9550 comment in determine_prefix. */
9551 if (cu->language == language_cplus
9552 && dwarf2_attr (die, DW_AT_specification, cu))
9553 {
9554 struct dwarf2_cu *spec_cu = cu;
9555 struct die_info *spec_die = die_specification (die, &spec_cu);
9556
9557 while (spec_die)
9558 {
9559 child_die = spec_die->child;
9560 while (child_die && child_die->tag)
9561 {
9562 if (child_die->tag == DW_TAG_imported_module)
9563 process_die (child_die, spec_cu);
9564 child_die = sibling_die (child_die);
9565 }
9566
9567 /* In some cases, GCC generates specification DIEs that
9568 themselves contain DW_AT_specification attributes. */
9569 spec_die = die_specification (spec_die, &spec_cu);
9570 }
9571 }
9572
9573 new = pop_context ();
9574 /* Make a block for the local symbols within. */
9575 block = finish_block (new->name, &local_symbols, new->old_blocks,
9576 lowpc, highpc, objfile);
9577
9578 /* For C++, set the block's scope. */
9579 if ((cu->language == language_cplus || cu->language == language_fortran)
9580 && cu->processing_has_namespace_info)
9581 block_set_scope (block, determine_prefix (die, cu),
9582 &objfile->objfile_obstack);
9583
9584 /* If we have address ranges, record them. */
9585 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9586
9587 /* Attach template arguments to function. */
9588 if (! VEC_empty (symbolp, template_args))
9589 {
9590 gdb_assert (templ_func != NULL);
9591
9592 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9593 templ_func->template_arguments
9594 = obstack_alloc (&objfile->objfile_obstack,
9595 (templ_func->n_template_arguments
9596 * sizeof (struct symbol *)));
9597 memcpy (templ_func->template_arguments,
9598 VEC_address (symbolp, template_args),
9599 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9600 VEC_free (symbolp, template_args);
9601 }
9602
9603 /* In C++, we can have functions nested inside functions (e.g., when
9604 a function declares a class that has methods). This means that
9605 when we finish processing a function scope, we may need to go
9606 back to building a containing block's symbol lists. */
9607 local_symbols = new->locals;
9608 using_directives = new->using_directives;
9609
9610 /* If we've finished processing a top-level function, subsequent
9611 symbols go in the file symbol list. */
9612 if (outermost_context_p ())
9613 cu->list_in_scope = &file_symbols;
9614 }
9615
9616 /* Process all the DIES contained within a lexical block scope. Start
9617 a new scope, process the dies, and then close the scope. */
9618
9619 static void
9620 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9621 {
9622 struct objfile *objfile = cu->objfile;
9623 struct context_stack *new;
9624 CORE_ADDR lowpc, highpc;
9625 struct die_info *child_die;
9626 CORE_ADDR baseaddr;
9627
9628 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9629
9630 /* Ignore blocks with missing or invalid low and high pc attributes. */
9631 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9632 as multiple lexical blocks? Handling children in a sane way would
9633 be nasty. Might be easier to properly extend generic blocks to
9634 describe ranges. */
9635 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9636 return;
9637 lowpc += baseaddr;
9638 highpc += baseaddr;
9639
9640 push_context (0, lowpc);
9641 if (die->child != NULL)
9642 {
9643 child_die = die->child;
9644 while (child_die && child_die->tag)
9645 {
9646 process_die (child_die, cu);
9647 child_die = sibling_die (child_die);
9648 }
9649 }
9650 new = pop_context ();
9651
9652 if (local_symbols != NULL || using_directives != NULL)
9653 {
9654 struct block *block
9655 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9656 highpc, objfile);
9657
9658 /* Note that recording ranges after traversing children, as we
9659 do here, means that recording a parent's ranges entails
9660 walking across all its children's ranges as they appear in
9661 the address map, which is quadratic behavior.
9662
9663 It would be nicer to record the parent's ranges before
9664 traversing its children, simply overriding whatever you find
9665 there. But since we don't even decide whether to create a
9666 block until after we've traversed its children, that's hard
9667 to do. */
9668 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9669 }
9670 local_symbols = new->locals;
9671 using_directives = new->using_directives;
9672 }
9673
9674 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9675
9676 static void
9677 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9678 {
9679 struct objfile *objfile = cu->objfile;
9680 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9681 CORE_ADDR pc, baseaddr;
9682 struct attribute *attr;
9683 struct call_site *call_site, call_site_local;
9684 void **slot;
9685 int nparams;
9686 struct die_info *child_die;
9687
9688 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9689
9690 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9691 if (!attr)
9692 {
9693 complaint (&symfile_complaints,
9694 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9695 "DIE 0x%x [in module %s]"),
9696 die->offset.sect_off, objfile->name);
9697 return;
9698 }
9699 pc = DW_ADDR (attr) + baseaddr;
9700
9701 if (cu->call_site_htab == NULL)
9702 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9703 NULL, &objfile->objfile_obstack,
9704 hashtab_obstack_allocate, NULL);
9705 call_site_local.pc = pc;
9706 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9707 if (*slot != NULL)
9708 {
9709 complaint (&symfile_complaints,
9710 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9711 "DIE 0x%x [in module %s]"),
9712 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9713 return;
9714 }
9715
9716 /* Count parameters at the caller. */
9717
9718 nparams = 0;
9719 for (child_die = die->child; child_die && child_die->tag;
9720 child_die = sibling_die (child_die))
9721 {
9722 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9723 {
9724 complaint (&symfile_complaints,
9725 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9726 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9727 child_die->tag, child_die->offset.sect_off, objfile->name);
9728 continue;
9729 }
9730
9731 nparams++;
9732 }
9733
9734 call_site = obstack_alloc (&objfile->objfile_obstack,
9735 (sizeof (*call_site)
9736 + (sizeof (*call_site->parameter)
9737 * (nparams - 1))));
9738 *slot = call_site;
9739 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9740 call_site->pc = pc;
9741
9742 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9743 {
9744 struct die_info *func_die;
9745
9746 /* Skip also over DW_TAG_inlined_subroutine. */
9747 for (func_die = die->parent;
9748 func_die && func_die->tag != DW_TAG_subprogram
9749 && func_die->tag != DW_TAG_subroutine_type;
9750 func_die = func_die->parent);
9751
9752 /* DW_AT_GNU_all_call_sites is a superset
9753 of DW_AT_GNU_all_tail_call_sites. */
9754 if (func_die
9755 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9756 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9757 {
9758 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9759 not complete. But keep CALL_SITE for look ups via call_site_htab,
9760 both the initial caller containing the real return address PC and
9761 the final callee containing the current PC of a chain of tail
9762 calls do not need to have the tail call list complete. But any
9763 function candidate for a virtual tail call frame searched via
9764 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9765 determined unambiguously. */
9766 }
9767 else
9768 {
9769 struct type *func_type = NULL;
9770
9771 if (func_die)
9772 func_type = get_die_type (func_die, cu);
9773 if (func_type != NULL)
9774 {
9775 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9776
9777 /* Enlist this call site to the function. */
9778 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9779 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9780 }
9781 else
9782 complaint (&symfile_complaints,
9783 _("Cannot find function owning DW_TAG_GNU_call_site "
9784 "DIE 0x%x [in module %s]"),
9785 die->offset.sect_off, objfile->name);
9786 }
9787 }
9788
9789 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9790 if (attr == NULL)
9791 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9792 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9793 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9794 /* Keep NULL DWARF_BLOCK. */;
9795 else if (attr_form_is_block (attr))
9796 {
9797 struct dwarf2_locexpr_baton *dlbaton;
9798
9799 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9800 dlbaton->data = DW_BLOCK (attr)->data;
9801 dlbaton->size = DW_BLOCK (attr)->size;
9802 dlbaton->per_cu = cu->per_cu;
9803
9804 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9805 }
9806 else if (is_ref_attr (attr))
9807 {
9808 struct dwarf2_cu *target_cu = cu;
9809 struct die_info *target_die;
9810
9811 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9812 gdb_assert (target_cu->objfile == objfile);
9813 if (die_is_declaration (target_die, target_cu))
9814 {
9815 const char *target_physname;
9816
9817 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9818 if (target_physname == NULL)
9819 complaint (&symfile_complaints,
9820 _("DW_AT_GNU_call_site_target target DIE has invalid "
9821 "physname, for referencing DIE 0x%x [in module %s]"),
9822 die->offset.sect_off, objfile->name);
9823 else
9824 SET_FIELD_PHYSNAME (call_site->target, target_physname);
9825 }
9826 else
9827 {
9828 CORE_ADDR lowpc;
9829
9830 /* DW_AT_entry_pc should be preferred. */
9831 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9832 complaint (&symfile_complaints,
9833 _("DW_AT_GNU_call_site_target target DIE has invalid "
9834 "low pc, for referencing DIE 0x%x [in module %s]"),
9835 die->offset.sect_off, objfile->name);
9836 else
9837 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9838 }
9839 }
9840 else
9841 complaint (&symfile_complaints,
9842 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9843 "block nor reference, for DIE 0x%x [in module %s]"),
9844 die->offset.sect_off, objfile->name);
9845
9846 call_site->per_cu = cu->per_cu;
9847
9848 for (child_die = die->child;
9849 child_die && child_die->tag;
9850 child_die = sibling_die (child_die))
9851 {
9852 struct call_site_parameter *parameter;
9853 struct attribute *loc, *origin;
9854
9855 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9856 {
9857 /* Already printed the complaint above. */
9858 continue;
9859 }
9860
9861 gdb_assert (call_site->parameter_count < nparams);
9862 parameter = &call_site->parameter[call_site->parameter_count];
9863
9864 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9865 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9866 register is contained in DW_AT_GNU_call_site_value. */
9867
9868 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9869 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9870 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9871 {
9872 sect_offset offset;
9873
9874 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9875 offset = dwarf2_get_ref_die_offset (origin);
9876 if (!offset_in_cu_p (&cu->header, offset))
9877 {
9878 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9879 binding can be done only inside one CU. Such referenced DIE
9880 therefore cannot be even moved to DW_TAG_partial_unit. */
9881 complaint (&symfile_complaints,
9882 _("DW_AT_abstract_origin offset is not in CU for "
9883 "DW_TAG_GNU_call_site child DIE 0x%x "
9884 "[in module %s]"),
9885 child_die->offset.sect_off, objfile->name);
9886 continue;
9887 }
9888 parameter->u.param_offset.cu_off = (offset.sect_off
9889 - cu->header.offset.sect_off);
9890 }
9891 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9892 {
9893 complaint (&symfile_complaints,
9894 _("No DW_FORM_block* DW_AT_location for "
9895 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9896 child_die->offset.sect_off, objfile->name);
9897 continue;
9898 }
9899 else
9900 {
9901 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9902 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9903 if (parameter->u.dwarf_reg != -1)
9904 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9905 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9906 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9907 &parameter->u.fb_offset))
9908 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9909 else
9910 {
9911 complaint (&symfile_complaints,
9912 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9913 "for DW_FORM_block* DW_AT_location is supported for "
9914 "DW_TAG_GNU_call_site child DIE 0x%x "
9915 "[in module %s]"),
9916 child_die->offset.sect_off, objfile->name);
9917 continue;
9918 }
9919 }
9920
9921 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9922 if (!attr_form_is_block (attr))
9923 {
9924 complaint (&symfile_complaints,
9925 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9926 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9927 child_die->offset.sect_off, objfile->name);
9928 continue;
9929 }
9930 parameter->value = DW_BLOCK (attr)->data;
9931 parameter->value_size = DW_BLOCK (attr)->size;
9932
9933 /* Parameters are not pre-cleared by memset above. */
9934 parameter->data_value = NULL;
9935 parameter->data_value_size = 0;
9936 call_site->parameter_count++;
9937
9938 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9939 if (attr)
9940 {
9941 if (!attr_form_is_block (attr))
9942 complaint (&symfile_complaints,
9943 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9944 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9945 child_die->offset.sect_off, objfile->name);
9946 else
9947 {
9948 parameter->data_value = DW_BLOCK (attr)->data;
9949 parameter->data_value_size = DW_BLOCK (attr)->size;
9950 }
9951 }
9952 }
9953 }
9954
9955 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9956 Return 1 if the attributes are present and valid, otherwise, return 0.
9957 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9958
9959 static int
9960 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9961 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9962 struct partial_symtab *ranges_pst)
9963 {
9964 struct objfile *objfile = cu->objfile;
9965 struct comp_unit_head *cu_header = &cu->header;
9966 bfd *obfd = objfile->obfd;
9967 unsigned int addr_size = cu_header->addr_size;
9968 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9969 /* Base address selection entry. */
9970 CORE_ADDR base;
9971 int found_base;
9972 unsigned int dummy;
9973 gdb_byte *buffer;
9974 CORE_ADDR marker;
9975 int low_set;
9976 CORE_ADDR low = 0;
9977 CORE_ADDR high = 0;
9978 CORE_ADDR baseaddr;
9979
9980 found_base = cu->base_known;
9981 base = cu->base_address;
9982
9983 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9984 if (offset >= dwarf2_per_objfile->ranges.size)
9985 {
9986 complaint (&symfile_complaints,
9987 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9988 offset);
9989 return 0;
9990 }
9991 buffer = dwarf2_per_objfile->ranges.buffer + offset;
9992
9993 /* Read in the largest possible address. */
9994 marker = read_address (obfd, buffer, cu, &dummy);
9995 if ((marker & mask) == mask)
9996 {
9997 /* If we found the largest possible address, then
9998 read the base address. */
9999 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10000 buffer += 2 * addr_size;
10001 offset += 2 * addr_size;
10002 found_base = 1;
10003 }
10004
10005 low_set = 0;
10006
10007 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10008
10009 while (1)
10010 {
10011 CORE_ADDR range_beginning, range_end;
10012
10013 range_beginning = read_address (obfd, buffer, cu, &dummy);
10014 buffer += addr_size;
10015 range_end = read_address (obfd, buffer, cu, &dummy);
10016 buffer += addr_size;
10017 offset += 2 * addr_size;
10018
10019 /* An end of list marker is a pair of zero addresses. */
10020 if (range_beginning == 0 && range_end == 0)
10021 /* Found the end of list entry. */
10022 break;
10023
10024 /* Each base address selection entry is a pair of 2 values.
10025 The first is the largest possible address, the second is
10026 the base address. Check for a base address here. */
10027 if ((range_beginning & mask) == mask)
10028 {
10029 /* If we found the largest possible address, then
10030 read the base address. */
10031 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10032 found_base = 1;
10033 continue;
10034 }
10035
10036 if (!found_base)
10037 {
10038 /* We have no valid base address for the ranges
10039 data. */
10040 complaint (&symfile_complaints,
10041 _("Invalid .debug_ranges data (no base address)"));
10042 return 0;
10043 }
10044
10045 if (range_beginning > range_end)
10046 {
10047 /* Inverted range entries are invalid. */
10048 complaint (&symfile_complaints,
10049 _("Invalid .debug_ranges data (inverted range)"));
10050 return 0;
10051 }
10052
10053 /* Empty range entries have no effect. */
10054 if (range_beginning == range_end)
10055 continue;
10056
10057 range_beginning += base;
10058 range_end += base;
10059
10060 /* A not-uncommon case of bad debug info.
10061 Don't pollute the addrmap with bad data. */
10062 if (range_beginning + baseaddr == 0
10063 && !dwarf2_per_objfile->has_section_at_zero)
10064 {
10065 complaint (&symfile_complaints,
10066 _(".debug_ranges entry has start address of zero"
10067 " [in module %s]"), objfile->name);
10068 continue;
10069 }
10070
10071 if (ranges_pst != NULL)
10072 addrmap_set_empty (objfile->psymtabs_addrmap,
10073 range_beginning + baseaddr,
10074 range_end - 1 + baseaddr,
10075 ranges_pst);
10076
10077 /* FIXME: This is recording everything as a low-high
10078 segment of consecutive addresses. We should have a
10079 data structure for discontiguous block ranges
10080 instead. */
10081 if (! low_set)
10082 {
10083 low = range_beginning;
10084 high = range_end;
10085 low_set = 1;
10086 }
10087 else
10088 {
10089 if (range_beginning < low)
10090 low = range_beginning;
10091 if (range_end > high)
10092 high = range_end;
10093 }
10094 }
10095
10096 if (! low_set)
10097 /* If the first entry is an end-of-list marker, the range
10098 describes an empty scope, i.e. no instructions. */
10099 return 0;
10100
10101 if (low_return)
10102 *low_return = low;
10103 if (high_return)
10104 *high_return = high;
10105 return 1;
10106 }
10107
10108 /* Get low and high pc attributes from a die. Return 1 if the attributes
10109 are present and valid, otherwise, return 0. Return -1 if the range is
10110 discontinuous, i.e. derived from DW_AT_ranges information. */
10111
10112 static int
10113 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10114 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10115 struct partial_symtab *pst)
10116 {
10117 struct attribute *attr;
10118 struct attribute *attr_high;
10119 CORE_ADDR low = 0;
10120 CORE_ADDR high = 0;
10121 int ret = 0;
10122
10123 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10124 if (attr_high)
10125 {
10126 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10127 if (attr)
10128 {
10129 low = DW_ADDR (attr);
10130 if (attr_high->form == DW_FORM_addr
10131 || attr_high->form == DW_FORM_GNU_addr_index)
10132 high = DW_ADDR (attr_high);
10133 else
10134 high = low + DW_UNSND (attr_high);
10135 }
10136 else
10137 /* Found high w/o low attribute. */
10138 return 0;
10139
10140 /* Found consecutive range of addresses. */
10141 ret = 1;
10142 }
10143 else
10144 {
10145 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10146 if (attr != NULL)
10147 {
10148 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10149 We take advantage of the fact that DW_AT_ranges does not appear
10150 in DW_TAG_compile_unit of DWO files. */
10151 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10152 unsigned int ranges_offset = (DW_UNSND (attr)
10153 + (need_ranges_base
10154 ? cu->ranges_base
10155 : 0));
10156
10157 /* Value of the DW_AT_ranges attribute is the offset in the
10158 .debug_ranges section. */
10159 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10160 return 0;
10161 /* Found discontinuous range of addresses. */
10162 ret = -1;
10163 }
10164 }
10165
10166 /* read_partial_die has also the strict LOW < HIGH requirement. */
10167 if (high <= low)
10168 return 0;
10169
10170 /* When using the GNU linker, .gnu.linkonce. sections are used to
10171 eliminate duplicate copies of functions and vtables and such.
10172 The linker will arbitrarily choose one and discard the others.
10173 The AT_*_pc values for such functions refer to local labels in
10174 these sections. If the section from that file was discarded, the
10175 labels are not in the output, so the relocs get a value of 0.
10176 If this is a discarded function, mark the pc bounds as invalid,
10177 so that GDB will ignore it. */
10178 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10179 return 0;
10180
10181 *lowpc = low;
10182 if (highpc)
10183 *highpc = high;
10184 return ret;
10185 }
10186
10187 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10188 its low and high PC addresses. Do nothing if these addresses could not
10189 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10190 and HIGHPC to the high address if greater than HIGHPC. */
10191
10192 static void
10193 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10194 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10195 struct dwarf2_cu *cu)
10196 {
10197 CORE_ADDR low, high;
10198 struct die_info *child = die->child;
10199
10200 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10201 {
10202 *lowpc = min (*lowpc, low);
10203 *highpc = max (*highpc, high);
10204 }
10205
10206 /* If the language does not allow nested subprograms (either inside
10207 subprograms or lexical blocks), we're done. */
10208 if (cu->language != language_ada)
10209 return;
10210
10211 /* Check all the children of the given DIE. If it contains nested
10212 subprograms, then check their pc bounds. Likewise, we need to
10213 check lexical blocks as well, as they may also contain subprogram
10214 definitions. */
10215 while (child && child->tag)
10216 {
10217 if (child->tag == DW_TAG_subprogram
10218 || child->tag == DW_TAG_lexical_block)
10219 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10220 child = sibling_die (child);
10221 }
10222 }
10223
10224 /* Get the low and high pc's represented by the scope DIE, and store
10225 them in *LOWPC and *HIGHPC. If the correct values can't be
10226 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10227
10228 static void
10229 get_scope_pc_bounds (struct die_info *die,
10230 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10231 struct dwarf2_cu *cu)
10232 {
10233 CORE_ADDR best_low = (CORE_ADDR) -1;
10234 CORE_ADDR best_high = (CORE_ADDR) 0;
10235 CORE_ADDR current_low, current_high;
10236
10237 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10238 {
10239 best_low = current_low;
10240 best_high = current_high;
10241 }
10242 else
10243 {
10244 struct die_info *child = die->child;
10245
10246 while (child && child->tag)
10247 {
10248 switch (child->tag) {
10249 case DW_TAG_subprogram:
10250 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10251 break;
10252 case DW_TAG_namespace:
10253 case DW_TAG_module:
10254 /* FIXME: carlton/2004-01-16: Should we do this for
10255 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10256 that current GCC's always emit the DIEs corresponding
10257 to definitions of methods of classes as children of a
10258 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10259 the DIEs giving the declarations, which could be
10260 anywhere). But I don't see any reason why the
10261 standards says that they have to be there. */
10262 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10263
10264 if (current_low != ((CORE_ADDR) -1))
10265 {
10266 best_low = min (best_low, current_low);
10267 best_high = max (best_high, current_high);
10268 }
10269 break;
10270 default:
10271 /* Ignore. */
10272 break;
10273 }
10274
10275 child = sibling_die (child);
10276 }
10277 }
10278
10279 *lowpc = best_low;
10280 *highpc = best_high;
10281 }
10282
10283 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10284 in DIE. */
10285
10286 static void
10287 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10288 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10289 {
10290 struct objfile *objfile = cu->objfile;
10291 struct attribute *attr;
10292 struct attribute *attr_high;
10293
10294 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10295 if (attr_high)
10296 {
10297 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10298 if (attr)
10299 {
10300 CORE_ADDR low = DW_ADDR (attr);
10301 CORE_ADDR high;
10302 if (attr_high->form == DW_FORM_addr
10303 || attr_high->form == DW_FORM_GNU_addr_index)
10304 high = DW_ADDR (attr_high);
10305 else
10306 high = low + DW_UNSND (attr_high);
10307
10308 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10309 }
10310 }
10311
10312 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10313 if (attr)
10314 {
10315 bfd *obfd = objfile->obfd;
10316 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10317 We take advantage of the fact that DW_AT_ranges does not appear
10318 in DW_TAG_compile_unit of DWO files. */
10319 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10320
10321 /* The value of the DW_AT_ranges attribute is the offset of the
10322 address range list in the .debug_ranges section. */
10323 unsigned long offset = (DW_UNSND (attr)
10324 + (need_ranges_base ? cu->ranges_base : 0));
10325 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10326
10327 /* For some target architectures, but not others, the
10328 read_address function sign-extends the addresses it returns.
10329 To recognize base address selection entries, we need a
10330 mask. */
10331 unsigned int addr_size = cu->header.addr_size;
10332 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10333
10334 /* The base address, to which the next pair is relative. Note
10335 that this 'base' is a DWARF concept: most entries in a range
10336 list are relative, to reduce the number of relocs against the
10337 debugging information. This is separate from this function's
10338 'baseaddr' argument, which GDB uses to relocate debugging
10339 information from a shared library based on the address at
10340 which the library was loaded. */
10341 CORE_ADDR base = cu->base_address;
10342 int base_known = cu->base_known;
10343
10344 gdb_assert (dwarf2_per_objfile->ranges.readin);
10345 if (offset >= dwarf2_per_objfile->ranges.size)
10346 {
10347 complaint (&symfile_complaints,
10348 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10349 offset);
10350 return;
10351 }
10352
10353 for (;;)
10354 {
10355 unsigned int bytes_read;
10356 CORE_ADDR start, end;
10357
10358 start = read_address (obfd, buffer, cu, &bytes_read);
10359 buffer += bytes_read;
10360 end = read_address (obfd, buffer, cu, &bytes_read);
10361 buffer += bytes_read;
10362
10363 /* Did we find the end of the range list? */
10364 if (start == 0 && end == 0)
10365 break;
10366
10367 /* Did we find a base address selection entry? */
10368 else if ((start & base_select_mask) == base_select_mask)
10369 {
10370 base = end;
10371 base_known = 1;
10372 }
10373
10374 /* We found an ordinary address range. */
10375 else
10376 {
10377 if (!base_known)
10378 {
10379 complaint (&symfile_complaints,
10380 _("Invalid .debug_ranges data "
10381 "(no base address)"));
10382 return;
10383 }
10384
10385 if (start > end)
10386 {
10387 /* Inverted range entries are invalid. */
10388 complaint (&symfile_complaints,
10389 _("Invalid .debug_ranges data "
10390 "(inverted range)"));
10391 return;
10392 }
10393
10394 /* Empty range entries have no effect. */
10395 if (start == end)
10396 continue;
10397
10398 start += base + baseaddr;
10399 end += base + baseaddr;
10400
10401 /* A not-uncommon case of bad debug info.
10402 Don't pollute the addrmap with bad data. */
10403 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10404 {
10405 complaint (&symfile_complaints,
10406 _(".debug_ranges entry has start address of zero"
10407 " [in module %s]"), objfile->name);
10408 continue;
10409 }
10410
10411 record_block_range (block, start, end - 1);
10412 }
10413 }
10414 }
10415 }
10416
10417 /* Check whether the producer field indicates either of GCC < 4.6, or the
10418 Intel C/C++ compiler, and cache the result in CU. */
10419
10420 static void
10421 check_producer (struct dwarf2_cu *cu)
10422 {
10423 const char *cs;
10424 int major, minor, release;
10425
10426 if (cu->producer == NULL)
10427 {
10428 /* For unknown compilers expect their behavior is DWARF version
10429 compliant.
10430
10431 GCC started to support .debug_types sections by -gdwarf-4 since
10432 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10433 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10434 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10435 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10436 }
10437 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10438 {
10439 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10440
10441 cs = &cu->producer[strlen ("GNU ")];
10442 while (*cs && !isdigit (*cs))
10443 cs++;
10444 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10445 {
10446 /* Not recognized as GCC. */
10447 }
10448 else
10449 {
10450 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10451 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10452 }
10453 }
10454 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10455 cu->producer_is_icc = 1;
10456 else
10457 {
10458 /* For other non-GCC compilers, expect their behavior is DWARF version
10459 compliant. */
10460 }
10461
10462 cu->checked_producer = 1;
10463 }
10464
10465 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10466 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10467 during 4.6.0 experimental. */
10468
10469 static int
10470 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10471 {
10472 if (!cu->checked_producer)
10473 check_producer (cu);
10474
10475 return cu->producer_is_gxx_lt_4_6;
10476 }
10477
10478 /* Return the default accessibility type if it is not overriden by
10479 DW_AT_accessibility. */
10480
10481 static enum dwarf_access_attribute
10482 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10483 {
10484 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10485 {
10486 /* The default DWARF 2 accessibility for members is public, the default
10487 accessibility for inheritance is private. */
10488
10489 if (die->tag != DW_TAG_inheritance)
10490 return DW_ACCESS_public;
10491 else
10492 return DW_ACCESS_private;
10493 }
10494 else
10495 {
10496 /* DWARF 3+ defines the default accessibility a different way. The same
10497 rules apply now for DW_TAG_inheritance as for the members and it only
10498 depends on the container kind. */
10499
10500 if (die->parent->tag == DW_TAG_class_type)
10501 return DW_ACCESS_private;
10502 else
10503 return DW_ACCESS_public;
10504 }
10505 }
10506
10507 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10508 offset. If the attribute was not found return 0, otherwise return
10509 1. If it was found but could not properly be handled, set *OFFSET
10510 to 0. */
10511
10512 static int
10513 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10514 LONGEST *offset)
10515 {
10516 struct attribute *attr;
10517
10518 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10519 if (attr != NULL)
10520 {
10521 *offset = 0;
10522
10523 /* Note that we do not check for a section offset first here.
10524 This is because DW_AT_data_member_location is new in DWARF 4,
10525 so if we see it, we can assume that a constant form is really
10526 a constant and not a section offset. */
10527 if (attr_form_is_constant (attr))
10528 *offset = dwarf2_get_attr_constant_value (attr, 0);
10529 else if (attr_form_is_section_offset (attr))
10530 dwarf2_complex_location_expr_complaint ();
10531 else if (attr_form_is_block (attr))
10532 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10533 else
10534 dwarf2_complex_location_expr_complaint ();
10535
10536 return 1;
10537 }
10538
10539 return 0;
10540 }
10541
10542 /* Add an aggregate field to the field list. */
10543
10544 static void
10545 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10546 struct dwarf2_cu *cu)
10547 {
10548 struct objfile *objfile = cu->objfile;
10549 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10550 struct nextfield *new_field;
10551 struct attribute *attr;
10552 struct field *fp;
10553 const char *fieldname = "";
10554
10555 /* Allocate a new field list entry and link it in. */
10556 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10557 make_cleanup (xfree, new_field);
10558 memset (new_field, 0, sizeof (struct nextfield));
10559
10560 if (die->tag == DW_TAG_inheritance)
10561 {
10562 new_field->next = fip->baseclasses;
10563 fip->baseclasses = new_field;
10564 }
10565 else
10566 {
10567 new_field->next = fip->fields;
10568 fip->fields = new_field;
10569 }
10570 fip->nfields++;
10571
10572 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10573 if (attr)
10574 new_field->accessibility = DW_UNSND (attr);
10575 else
10576 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10577 if (new_field->accessibility != DW_ACCESS_public)
10578 fip->non_public_fields = 1;
10579
10580 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10581 if (attr)
10582 new_field->virtuality = DW_UNSND (attr);
10583 else
10584 new_field->virtuality = DW_VIRTUALITY_none;
10585
10586 fp = &new_field->field;
10587
10588 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10589 {
10590 LONGEST offset;
10591
10592 /* Data member other than a C++ static data member. */
10593
10594 /* Get type of field. */
10595 fp->type = die_type (die, cu);
10596
10597 SET_FIELD_BITPOS (*fp, 0);
10598
10599 /* Get bit size of field (zero if none). */
10600 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10601 if (attr)
10602 {
10603 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10604 }
10605 else
10606 {
10607 FIELD_BITSIZE (*fp) = 0;
10608 }
10609
10610 /* Get bit offset of field. */
10611 if (handle_data_member_location (die, cu, &offset))
10612 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10613 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10614 if (attr)
10615 {
10616 if (gdbarch_bits_big_endian (gdbarch))
10617 {
10618 /* For big endian bits, the DW_AT_bit_offset gives the
10619 additional bit offset from the MSB of the containing
10620 anonymous object to the MSB of the field. We don't
10621 have to do anything special since we don't need to
10622 know the size of the anonymous object. */
10623 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10624 }
10625 else
10626 {
10627 /* For little endian bits, compute the bit offset to the
10628 MSB of the anonymous object, subtract off the number of
10629 bits from the MSB of the field to the MSB of the
10630 object, and then subtract off the number of bits of
10631 the field itself. The result is the bit offset of
10632 the LSB of the field. */
10633 int anonymous_size;
10634 int bit_offset = DW_UNSND (attr);
10635
10636 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10637 if (attr)
10638 {
10639 /* The size of the anonymous object containing
10640 the bit field is explicit, so use the
10641 indicated size (in bytes). */
10642 anonymous_size = DW_UNSND (attr);
10643 }
10644 else
10645 {
10646 /* The size of the anonymous object containing
10647 the bit field must be inferred from the type
10648 attribute of the data member containing the
10649 bit field. */
10650 anonymous_size = TYPE_LENGTH (fp->type);
10651 }
10652 SET_FIELD_BITPOS (*fp,
10653 (FIELD_BITPOS (*fp)
10654 + anonymous_size * bits_per_byte
10655 - bit_offset - FIELD_BITSIZE (*fp)));
10656 }
10657 }
10658
10659 /* Get name of field. */
10660 fieldname = dwarf2_name (die, cu);
10661 if (fieldname == NULL)
10662 fieldname = "";
10663
10664 /* The name is already allocated along with this objfile, so we don't
10665 need to duplicate it for the type. */
10666 fp->name = fieldname;
10667
10668 /* Change accessibility for artificial fields (e.g. virtual table
10669 pointer or virtual base class pointer) to private. */
10670 if (dwarf2_attr (die, DW_AT_artificial, cu))
10671 {
10672 FIELD_ARTIFICIAL (*fp) = 1;
10673 new_field->accessibility = DW_ACCESS_private;
10674 fip->non_public_fields = 1;
10675 }
10676 }
10677 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10678 {
10679 /* C++ static member. */
10680
10681 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10682 is a declaration, but all versions of G++ as of this writing
10683 (so through at least 3.2.1) incorrectly generate
10684 DW_TAG_variable tags. */
10685
10686 const char *physname;
10687
10688 /* Get name of field. */
10689 fieldname = dwarf2_name (die, cu);
10690 if (fieldname == NULL)
10691 return;
10692
10693 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10694 if (attr
10695 /* Only create a symbol if this is an external value.
10696 new_symbol checks this and puts the value in the global symbol
10697 table, which we want. If it is not external, new_symbol
10698 will try to put the value in cu->list_in_scope which is wrong. */
10699 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10700 {
10701 /* A static const member, not much different than an enum as far as
10702 we're concerned, except that we can support more types. */
10703 new_symbol (die, NULL, cu);
10704 }
10705
10706 /* Get physical name. */
10707 physname = dwarf2_physname (fieldname, die, cu);
10708
10709 /* The name is already allocated along with this objfile, so we don't
10710 need to duplicate it for the type. */
10711 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10712 FIELD_TYPE (*fp) = die_type (die, cu);
10713 FIELD_NAME (*fp) = fieldname;
10714 }
10715 else if (die->tag == DW_TAG_inheritance)
10716 {
10717 LONGEST offset;
10718
10719 /* C++ base class field. */
10720 if (handle_data_member_location (die, cu, &offset))
10721 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10722 FIELD_BITSIZE (*fp) = 0;
10723 FIELD_TYPE (*fp) = die_type (die, cu);
10724 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10725 fip->nbaseclasses++;
10726 }
10727 }
10728
10729 /* Add a typedef defined in the scope of the FIP's class. */
10730
10731 static void
10732 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10733 struct dwarf2_cu *cu)
10734 {
10735 struct objfile *objfile = cu->objfile;
10736 struct typedef_field_list *new_field;
10737 struct attribute *attr;
10738 struct typedef_field *fp;
10739 char *fieldname = "";
10740
10741 /* Allocate a new field list entry and link it in. */
10742 new_field = xzalloc (sizeof (*new_field));
10743 make_cleanup (xfree, new_field);
10744
10745 gdb_assert (die->tag == DW_TAG_typedef);
10746
10747 fp = &new_field->field;
10748
10749 /* Get name of field. */
10750 fp->name = dwarf2_name (die, cu);
10751 if (fp->name == NULL)
10752 return;
10753
10754 fp->type = read_type_die (die, cu);
10755
10756 new_field->next = fip->typedef_field_list;
10757 fip->typedef_field_list = new_field;
10758 fip->typedef_field_list_count++;
10759 }
10760
10761 /* Create the vector of fields, and attach it to the type. */
10762
10763 static void
10764 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10765 struct dwarf2_cu *cu)
10766 {
10767 int nfields = fip->nfields;
10768
10769 /* Record the field count, allocate space for the array of fields,
10770 and create blank accessibility bitfields if necessary. */
10771 TYPE_NFIELDS (type) = nfields;
10772 TYPE_FIELDS (type) = (struct field *)
10773 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10774 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10775
10776 if (fip->non_public_fields && cu->language != language_ada)
10777 {
10778 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10779
10780 TYPE_FIELD_PRIVATE_BITS (type) =
10781 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10782 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10783
10784 TYPE_FIELD_PROTECTED_BITS (type) =
10785 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10786 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10787
10788 TYPE_FIELD_IGNORE_BITS (type) =
10789 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10790 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10791 }
10792
10793 /* If the type has baseclasses, allocate and clear a bit vector for
10794 TYPE_FIELD_VIRTUAL_BITS. */
10795 if (fip->nbaseclasses && cu->language != language_ada)
10796 {
10797 int num_bytes = B_BYTES (fip->nbaseclasses);
10798 unsigned char *pointer;
10799
10800 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10801 pointer = TYPE_ALLOC (type, num_bytes);
10802 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10803 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10804 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10805 }
10806
10807 /* Copy the saved-up fields into the field vector. Start from the head of
10808 the list, adding to the tail of the field array, so that they end up in
10809 the same order in the array in which they were added to the list. */
10810 while (nfields-- > 0)
10811 {
10812 struct nextfield *fieldp;
10813
10814 if (fip->fields)
10815 {
10816 fieldp = fip->fields;
10817 fip->fields = fieldp->next;
10818 }
10819 else
10820 {
10821 fieldp = fip->baseclasses;
10822 fip->baseclasses = fieldp->next;
10823 }
10824
10825 TYPE_FIELD (type, nfields) = fieldp->field;
10826 switch (fieldp->accessibility)
10827 {
10828 case DW_ACCESS_private:
10829 if (cu->language != language_ada)
10830 SET_TYPE_FIELD_PRIVATE (type, nfields);
10831 break;
10832
10833 case DW_ACCESS_protected:
10834 if (cu->language != language_ada)
10835 SET_TYPE_FIELD_PROTECTED (type, nfields);
10836 break;
10837
10838 case DW_ACCESS_public:
10839 break;
10840
10841 default:
10842 /* Unknown accessibility. Complain and treat it as public. */
10843 {
10844 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10845 fieldp->accessibility);
10846 }
10847 break;
10848 }
10849 if (nfields < fip->nbaseclasses)
10850 {
10851 switch (fieldp->virtuality)
10852 {
10853 case DW_VIRTUALITY_virtual:
10854 case DW_VIRTUALITY_pure_virtual:
10855 if (cu->language == language_ada)
10856 error (_("unexpected virtuality in component of Ada type"));
10857 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10858 break;
10859 }
10860 }
10861 }
10862 }
10863
10864 /* Return true if this member function is a constructor, false
10865 otherwise. */
10866
10867 static int
10868 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
10869 {
10870 const char *fieldname;
10871 const char *typename;
10872 int len;
10873
10874 if (die->parent == NULL)
10875 return 0;
10876
10877 if (die->parent->tag != DW_TAG_structure_type
10878 && die->parent->tag != DW_TAG_union_type
10879 && die->parent->tag != DW_TAG_class_type)
10880 return 0;
10881
10882 fieldname = dwarf2_name (die, cu);
10883 typename = dwarf2_name (die->parent, cu);
10884 if (fieldname == NULL || typename == NULL)
10885 return 0;
10886
10887 len = strlen (fieldname);
10888 return (strncmp (fieldname, typename, len) == 0
10889 && (typename[len] == '\0' || typename[len] == '<'));
10890 }
10891
10892 /* Add a member function to the proper fieldlist. */
10893
10894 static void
10895 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10896 struct type *type, struct dwarf2_cu *cu)
10897 {
10898 struct objfile *objfile = cu->objfile;
10899 struct attribute *attr;
10900 struct fnfieldlist *flp;
10901 int i;
10902 struct fn_field *fnp;
10903 const char *fieldname;
10904 struct nextfnfield *new_fnfield;
10905 struct type *this_type;
10906 enum dwarf_access_attribute accessibility;
10907
10908 if (cu->language == language_ada)
10909 error (_("unexpected member function in Ada type"));
10910
10911 /* Get name of member function. */
10912 fieldname = dwarf2_name (die, cu);
10913 if (fieldname == NULL)
10914 return;
10915
10916 /* Look up member function name in fieldlist. */
10917 for (i = 0; i < fip->nfnfields; i++)
10918 {
10919 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10920 break;
10921 }
10922
10923 /* Create new list element if necessary. */
10924 if (i < fip->nfnfields)
10925 flp = &fip->fnfieldlists[i];
10926 else
10927 {
10928 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10929 {
10930 fip->fnfieldlists = (struct fnfieldlist *)
10931 xrealloc (fip->fnfieldlists,
10932 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10933 * sizeof (struct fnfieldlist));
10934 if (fip->nfnfields == 0)
10935 make_cleanup (free_current_contents, &fip->fnfieldlists);
10936 }
10937 flp = &fip->fnfieldlists[fip->nfnfields];
10938 flp->name = fieldname;
10939 flp->length = 0;
10940 flp->head = NULL;
10941 i = fip->nfnfields++;
10942 }
10943
10944 /* Create a new member function field and chain it to the field list
10945 entry. */
10946 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10947 make_cleanup (xfree, new_fnfield);
10948 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10949 new_fnfield->next = flp->head;
10950 flp->head = new_fnfield;
10951 flp->length++;
10952
10953 /* Fill in the member function field info. */
10954 fnp = &new_fnfield->fnfield;
10955
10956 /* Delay processing of the physname until later. */
10957 if (cu->language == language_cplus || cu->language == language_java)
10958 {
10959 add_to_method_list (type, i, flp->length - 1, fieldname,
10960 die, cu);
10961 }
10962 else
10963 {
10964 const char *physname = dwarf2_physname (fieldname, die, cu);
10965 fnp->physname = physname ? physname : "";
10966 }
10967
10968 fnp->type = alloc_type (objfile);
10969 this_type = read_type_die (die, cu);
10970 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10971 {
10972 int nparams = TYPE_NFIELDS (this_type);
10973
10974 /* TYPE is the domain of this method, and THIS_TYPE is the type
10975 of the method itself (TYPE_CODE_METHOD). */
10976 smash_to_method_type (fnp->type, type,
10977 TYPE_TARGET_TYPE (this_type),
10978 TYPE_FIELDS (this_type),
10979 TYPE_NFIELDS (this_type),
10980 TYPE_VARARGS (this_type));
10981
10982 /* Handle static member functions.
10983 Dwarf2 has no clean way to discern C++ static and non-static
10984 member functions. G++ helps GDB by marking the first
10985 parameter for non-static member functions (which is the this
10986 pointer) as artificial. We obtain this information from
10987 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
10988 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
10989 fnp->voffset = VOFFSET_STATIC;
10990 }
10991 else
10992 complaint (&symfile_complaints, _("member function type missing for '%s'"),
10993 dwarf2_full_name (fieldname, die, cu));
10994
10995 /* Get fcontext from DW_AT_containing_type if present. */
10996 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10997 fnp->fcontext = die_containing_type (die, cu);
10998
10999 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11000 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11001
11002 /* Get accessibility. */
11003 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11004 if (attr)
11005 accessibility = DW_UNSND (attr);
11006 else
11007 accessibility = dwarf2_default_access_attribute (die, cu);
11008 switch (accessibility)
11009 {
11010 case DW_ACCESS_private:
11011 fnp->is_private = 1;
11012 break;
11013 case DW_ACCESS_protected:
11014 fnp->is_protected = 1;
11015 break;
11016 }
11017
11018 /* Check for artificial methods. */
11019 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11020 if (attr && DW_UNSND (attr) != 0)
11021 fnp->is_artificial = 1;
11022
11023 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11024
11025 /* Get index in virtual function table if it is a virtual member
11026 function. For older versions of GCC, this is an offset in the
11027 appropriate virtual table, as specified by DW_AT_containing_type.
11028 For everyone else, it is an expression to be evaluated relative
11029 to the object address. */
11030
11031 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11032 if (attr)
11033 {
11034 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11035 {
11036 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11037 {
11038 /* Old-style GCC. */
11039 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11040 }
11041 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11042 || (DW_BLOCK (attr)->size > 1
11043 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11044 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11045 {
11046 struct dwarf_block blk;
11047 int offset;
11048
11049 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11050 ? 1 : 2);
11051 blk.size = DW_BLOCK (attr)->size - offset;
11052 blk.data = DW_BLOCK (attr)->data + offset;
11053 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11054 if ((fnp->voffset % cu->header.addr_size) != 0)
11055 dwarf2_complex_location_expr_complaint ();
11056 else
11057 fnp->voffset /= cu->header.addr_size;
11058 fnp->voffset += 2;
11059 }
11060 else
11061 dwarf2_complex_location_expr_complaint ();
11062
11063 if (!fnp->fcontext)
11064 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11065 }
11066 else if (attr_form_is_section_offset (attr))
11067 {
11068 dwarf2_complex_location_expr_complaint ();
11069 }
11070 else
11071 {
11072 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11073 fieldname);
11074 }
11075 }
11076 else
11077 {
11078 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11079 if (attr && DW_UNSND (attr))
11080 {
11081 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11082 complaint (&symfile_complaints,
11083 _("Member function \"%s\" (offset %d) is virtual "
11084 "but the vtable offset is not specified"),
11085 fieldname, die->offset.sect_off);
11086 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11087 TYPE_CPLUS_DYNAMIC (type) = 1;
11088 }
11089 }
11090 }
11091
11092 /* Create the vector of member function fields, and attach it to the type. */
11093
11094 static void
11095 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11096 struct dwarf2_cu *cu)
11097 {
11098 struct fnfieldlist *flp;
11099 int i;
11100
11101 if (cu->language == language_ada)
11102 error (_("unexpected member functions in Ada type"));
11103
11104 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11105 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11106 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11107
11108 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11109 {
11110 struct nextfnfield *nfp = flp->head;
11111 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11112 int k;
11113
11114 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11115 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11116 fn_flp->fn_fields = (struct fn_field *)
11117 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11118 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11119 fn_flp->fn_fields[k] = nfp->fnfield;
11120 }
11121
11122 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11123 }
11124
11125 /* Returns non-zero if NAME is the name of a vtable member in CU's
11126 language, zero otherwise. */
11127 static int
11128 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11129 {
11130 static const char vptr[] = "_vptr";
11131 static const char vtable[] = "vtable";
11132
11133 /* Look for the C++ and Java forms of the vtable. */
11134 if ((cu->language == language_java
11135 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11136 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11137 && is_cplus_marker (name[sizeof (vptr) - 1])))
11138 return 1;
11139
11140 return 0;
11141 }
11142
11143 /* GCC outputs unnamed structures that are really pointers to member
11144 functions, with the ABI-specified layout. If TYPE describes
11145 such a structure, smash it into a member function type.
11146
11147 GCC shouldn't do this; it should just output pointer to member DIEs.
11148 This is GCC PR debug/28767. */
11149
11150 static void
11151 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11152 {
11153 struct type *pfn_type, *domain_type, *new_type;
11154
11155 /* Check for a structure with no name and two children. */
11156 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11157 return;
11158
11159 /* Check for __pfn and __delta members. */
11160 if (TYPE_FIELD_NAME (type, 0) == NULL
11161 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11162 || TYPE_FIELD_NAME (type, 1) == NULL
11163 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11164 return;
11165
11166 /* Find the type of the method. */
11167 pfn_type = TYPE_FIELD_TYPE (type, 0);
11168 if (pfn_type == NULL
11169 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11170 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11171 return;
11172
11173 /* Look for the "this" argument. */
11174 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11175 if (TYPE_NFIELDS (pfn_type) == 0
11176 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11177 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11178 return;
11179
11180 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11181 new_type = alloc_type (objfile);
11182 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11183 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11184 TYPE_VARARGS (pfn_type));
11185 smash_to_methodptr_type (type, new_type);
11186 }
11187
11188 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11189 (icc). */
11190
11191 static int
11192 producer_is_icc (struct dwarf2_cu *cu)
11193 {
11194 if (!cu->checked_producer)
11195 check_producer (cu);
11196
11197 return cu->producer_is_icc;
11198 }
11199
11200 /* Called when we find the DIE that starts a structure or union scope
11201 (definition) to create a type for the structure or union. Fill in
11202 the type's name and general properties; the members will not be
11203 processed until process_structure_type.
11204
11205 NOTE: we need to call these functions regardless of whether or not the
11206 DIE has a DW_AT_name attribute, since it might be an anonymous
11207 structure or union. This gets the type entered into our set of
11208 user defined types.
11209
11210 However, if the structure is incomplete (an opaque struct/union)
11211 then suppress creating a symbol table entry for it since gdb only
11212 wants to find the one with the complete definition. Note that if
11213 it is complete, we just call new_symbol, which does it's own
11214 checking about whether the struct/union is anonymous or not (and
11215 suppresses creating a symbol table entry itself). */
11216
11217 static struct type *
11218 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11219 {
11220 struct objfile *objfile = cu->objfile;
11221 struct type *type;
11222 struct attribute *attr;
11223 const char *name;
11224
11225 /* If the definition of this type lives in .debug_types, read that type.
11226 Don't follow DW_AT_specification though, that will take us back up
11227 the chain and we want to go down. */
11228 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11229 if (attr)
11230 {
11231 struct dwarf2_cu *type_cu = cu;
11232 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11233
11234 /* We could just recurse on read_structure_type, but we need to call
11235 get_die_type to ensure only one type for this DIE is created.
11236 This is important, for example, because for c++ classes we need
11237 TYPE_NAME set which is only done by new_symbol. Blech. */
11238 type = read_type_die (type_die, type_cu);
11239
11240 /* TYPE_CU may not be the same as CU.
11241 Ensure TYPE is recorded in CU's type_hash table. */
11242 return set_die_type (die, type, cu);
11243 }
11244
11245 type = alloc_type (objfile);
11246 INIT_CPLUS_SPECIFIC (type);
11247
11248 name = dwarf2_name (die, cu);
11249 if (name != NULL)
11250 {
11251 if (cu->language == language_cplus
11252 || cu->language == language_java)
11253 {
11254 const char *full_name = dwarf2_full_name (name, die, cu);
11255
11256 /* dwarf2_full_name might have already finished building the DIE's
11257 type. If so, there is no need to continue. */
11258 if (get_die_type (die, cu) != NULL)
11259 return get_die_type (die, cu);
11260
11261 TYPE_TAG_NAME (type) = full_name;
11262 if (die->tag == DW_TAG_structure_type
11263 || die->tag == DW_TAG_class_type)
11264 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11265 }
11266 else
11267 {
11268 /* The name is already allocated along with this objfile, so
11269 we don't need to duplicate it for the type. */
11270 TYPE_TAG_NAME (type) = name;
11271 if (die->tag == DW_TAG_class_type)
11272 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11273 }
11274 }
11275
11276 if (die->tag == DW_TAG_structure_type)
11277 {
11278 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11279 }
11280 else if (die->tag == DW_TAG_union_type)
11281 {
11282 TYPE_CODE (type) = TYPE_CODE_UNION;
11283 }
11284 else
11285 {
11286 TYPE_CODE (type) = TYPE_CODE_CLASS;
11287 }
11288
11289 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11290 TYPE_DECLARED_CLASS (type) = 1;
11291
11292 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11293 if (attr)
11294 {
11295 TYPE_LENGTH (type) = DW_UNSND (attr);
11296 }
11297 else
11298 {
11299 TYPE_LENGTH (type) = 0;
11300 }
11301
11302 if (producer_is_icc (cu))
11303 {
11304 /* ICC does not output the required DW_AT_declaration
11305 on incomplete types, but gives them a size of zero. */
11306 }
11307 else
11308 TYPE_STUB_SUPPORTED (type) = 1;
11309
11310 if (die_is_declaration (die, cu))
11311 TYPE_STUB (type) = 1;
11312 else if (attr == NULL && die->child == NULL
11313 && producer_is_realview (cu->producer))
11314 /* RealView does not output the required DW_AT_declaration
11315 on incomplete types. */
11316 TYPE_STUB (type) = 1;
11317
11318 /* We need to add the type field to the die immediately so we don't
11319 infinitely recurse when dealing with pointers to the structure
11320 type within the structure itself. */
11321 set_die_type (die, type, cu);
11322
11323 /* set_die_type should be already done. */
11324 set_descriptive_type (type, die, cu);
11325
11326 return type;
11327 }
11328
11329 /* Finish creating a structure or union type, including filling in
11330 its members and creating a symbol for it. */
11331
11332 static void
11333 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11334 {
11335 struct objfile *objfile = cu->objfile;
11336 struct die_info *child_die = die->child;
11337 struct type *type;
11338
11339 type = get_die_type (die, cu);
11340 if (type == NULL)
11341 type = read_structure_type (die, cu);
11342
11343 if (die->child != NULL && ! die_is_declaration (die, cu))
11344 {
11345 struct field_info fi;
11346 struct die_info *child_die;
11347 VEC (symbolp) *template_args = NULL;
11348 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11349
11350 memset (&fi, 0, sizeof (struct field_info));
11351
11352 child_die = die->child;
11353
11354 while (child_die && child_die->tag)
11355 {
11356 if (child_die->tag == DW_TAG_member
11357 || child_die->tag == DW_TAG_variable)
11358 {
11359 /* NOTE: carlton/2002-11-05: A C++ static data member
11360 should be a DW_TAG_member that is a declaration, but
11361 all versions of G++ as of this writing (so through at
11362 least 3.2.1) incorrectly generate DW_TAG_variable
11363 tags for them instead. */
11364 dwarf2_add_field (&fi, child_die, cu);
11365 }
11366 else if (child_die->tag == DW_TAG_subprogram)
11367 {
11368 /* C++ member function. */
11369 dwarf2_add_member_fn (&fi, child_die, type, cu);
11370 }
11371 else if (child_die->tag == DW_TAG_inheritance)
11372 {
11373 /* C++ base class field. */
11374 dwarf2_add_field (&fi, child_die, cu);
11375 }
11376 else if (child_die->tag == DW_TAG_typedef)
11377 dwarf2_add_typedef (&fi, child_die, cu);
11378 else if (child_die->tag == DW_TAG_template_type_param
11379 || child_die->tag == DW_TAG_template_value_param)
11380 {
11381 struct symbol *arg = new_symbol (child_die, NULL, cu);
11382
11383 if (arg != NULL)
11384 VEC_safe_push (symbolp, template_args, arg);
11385 }
11386
11387 child_die = sibling_die (child_die);
11388 }
11389
11390 /* Attach template arguments to type. */
11391 if (! VEC_empty (symbolp, template_args))
11392 {
11393 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11394 TYPE_N_TEMPLATE_ARGUMENTS (type)
11395 = VEC_length (symbolp, template_args);
11396 TYPE_TEMPLATE_ARGUMENTS (type)
11397 = obstack_alloc (&objfile->objfile_obstack,
11398 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11399 * sizeof (struct symbol *)));
11400 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11401 VEC_address (symbolp, template_args),
11402 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11403 * sizeof (struct symbol *)));
11404 VEC_free (symbolp, template_args);
11405 }
11406
11407 /* Attach fields and member functions to the type. */
11408 if (fi.nfields)
11409 dwarf2_attach_fields_to_type (&fi, type, cu);
11410 if (fi.nfnfields)
11411 {
11412 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11413
11414 /* Get the type which refers to the base class (possibly this
11415 class itself) which contains the vtable pointer for the current
11416 class from the DW_AT_containing_type attribute. This use of
11417 DW_AT_containing_type is a GNU extension. */
11418
11419 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11420 {
11421 struct type *t = die_containing_type (die, cu);
11422
11423 TYPE_VPTR_BASETYPE (type) = t;
11424 if (type == t)
11425 {
11426 int i;
11427
11428 /* Our own class provides vtbl ptr. */
11429 for (i = TYPE_NFIELDS (t) - 1;
11430 i >= TYPE_N_BASECLASSES (t);
11431 --i)
11432 {
11433 const char *fieldname = TYPE_FIELD_NAME (t, i);
11434
11435 if (is_vtable_name (fieldname, cu))
11436 {
11437 TYPE_VPTR_FIELDNO (type) = i;
11438 break;
11439 }
11440 }
11441
11442 /* Complain if virtual function table field not found. */
11443 if (i < TYPE_N_BASECLASSES (t))
11444 complaint (&symfile_complaints,
11445 _("virtual function table pointer "
11446 "not found when defining class '%s'"),
11447 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11448 "");
11449 }
11450 else
11451 {
11452 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11453 }
11454 }
11455 else if (cu->producer
11456 && strncmp (cu->producer,
11457 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11458 {
11459 /* The IBM XLC compiler does not provide direct indication
11460 of the containing type, but the vtable pointer is
11461 always named __vfp. */
11462
11463 int i;
11464
11465 for (i = TYPE_NFIELDS (type) - 1;
11466 i >= TYPE_N_BASECLASSES (type);
11467 --i)
11468 {
11469 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11470 {
11471 TYPE_VPTR_FIELDNO (type) = i;
11472 TYPE_VPTR_BASETYPE (type) = type;
11473 break;
11474 }
11475 }
11476 }
11477 }
11478
11479 /* Copy fi.typedef_field_list linked list elements content into the
11480 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11481 if (fi.typedef_field_list)
11482 {
11483 int i = fi.typedef_field_list_count;
11484
11485 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11486 TYPE_TYPEDEF_FIELD_ARRAY (type)
11487 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11488 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11489
11490 /* Reverse the list order to keep the debug info elements order. */
11491 while (--i >= 0)
11492 {
11493 struct typedef_field *dest, *src;
11494
11495 dest = &TYPE_TYPEDEF_FIELD (type, i);
11496 src = &fi.typedef_field_list->field;
11497 fi.typedef_field_list = fi.typedef_field_list->next;
11498 *dest = *src;
11499 }
11500 }
11501
11502 do_cleanups (back_to);
11503
11504 if (HAVE_CPLUS_STRUCT (type))
11505 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11506 }
11507
11508 quirk_gcc_member_function_pointer (type, objfile);
11509
11510 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11511 snapshots) has been known to create a die giving a declaration
11512 for a class that has, as a child, a die giving a definition for a
11513 nested class. So we have to process our children even if the
11514 current die is a declaration. Normally, of course, a declaration
11515 won't have any children at all. */
11516
11517 while (child_die != NULL && child_die->tag)
11518 {
11519 if (child_die->tag == DW_TAG_member
11520 || child_die->tag == DW_TAG_variable
11521 || child_die->tag == DW_TAG_inheritance
11522 || child_die->tag == DW_TAG_template_value_param
11523 || child_die->tag == DW_TAG_template_type_param)
11524 {
11525 /* Do nothing. */
11526 }
11527 else
11528 process_die (child_die, cu);
11529
11530 child_die = sibling_die (child_die);
11531 }
11532
11533 /* Do not consider external references. According to the DWARF standard,
11534 these DIEs are identified by the fact that they have no byte_size
11535 attribute, and a declaration attribute. */
11536 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11537 || !die_is_declaration (die, cu))
11538 new_symbol (die, type, cu);
11539 }
11540
11541 /* Given a DW_AT_enumeration_type die, set its type. We do not
11542 complete the type's fields yet, or create any symbols. */
11543
11544 static struct type *
11545 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11546 {
11547 struct objfile *objfile = cu->objfile;
11548 struct type *type;
11549 struct attribute *attr;
11550 const char *name;
11551
11552 /* If the definition of this type lives in .debug_types, read that type.
11553 Don't follow DW_AT_specification though, that will take us back up
11554 the chain and we want to go down. */
11555 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11556 if (attr)
11557 {
11558 struct dwarf2_cu *type_cu = cu;
11559 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11560
11561 type = read_type_die (type_die, type_cu);
11562
11563 /* TYPE_CU may not be the same as CU.
11564 Ensure TYPE is recorded in CU's type_hash table. */
11565 return set_die_type (die, type, cu);
11566 }
11567
11568 type = alloc_type (objfile);
11569
11570 TYPE_CODE (type) = TYPE_CODE_ENUM;
11571 name = dwarf2_full_name (NULL, die, cu);
11572 if (name != NULL)
11573 TYPE_TAG_NAME (type) = name;
11574
11575 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11576 if (attr)
11577 {
11578 TYPE_LENGTH (type) = DW_UNSND (attr);
11579 }
11580 else
11581 {
11582 TYPE_LENGTH (type) = 0;
11583 }
11584
11585 /* The enumeration DIE can be incomplete. In Ada, any type can be
11586 declared as private in the package spec, and then defined only
11587 inside the package body. Such types are known as Taft Amendment
11588 Types. When another package uses such a type, an incomplete DIE
11589 may be generated by the compiler. */
11590 if (die_is_declaration (die, cu))
11591 TYPE_STUB (type) = 1;
11592
11593 return set_die_type (die, type, cu);
11594 }
11595
11596 /* Given a pointer to a die which begins an enumeration, process all
11597 the dies that define the members of the enumeration, and create the
11598 symbol for the enumeration type.
11599
11600 NOTE: We reverse the order of the element list. */
11601
11602 static void
11603 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11604 {
11605 struct type *this_type;
11606
11607 this_type = get_die_type (die, cu);
11608 if (this_type == NULL)
11609 this_type = read_enumeration_type (die, cu);
11610
11611 if (die->child != NULL)
11612 {
11613 struct die_info *child_die;
11614 struct symbol *sym;
11615 struct field *fields = NULL;
11616 int num_fields = 0;
11617 int unsigned_enum = 1;
11618 const char *name;
11619 int flag_enum = 1;
11620 ULONGEST mask = 0;
11621
11622 child_die = die->child;
11623 while (child_die && child_die->tag)
11624 {
11625 if (child_die->tag != DW_TAG_enumerator)
11626 {
11627 process_die (child_die, cu);
11628 }
11629 else
11630 {
11631 name = dwarf2_name (child_die, cu);
11632 if (name)
11633 {
11634 sym = new_symbol (child_die, this_type, cu);
11635 if (SYMBOL_VALUE (sym) < 0)
11636 {
11637 unsigned_enum = 0;
11638 flag_enum = 0;
11639 }
11640 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11641 flag_enum = 0;
11642 else
11643 mask |= SYMBOL_VALUE (sym);
11644
11645 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11646 {
11647 fields = (struct field *)
11648 xrealloc (fields,
11649 (num_fields + DW_FIELD_ALLOC_CHUNK)
11650 * sizeof (struct field));
11651 }
11652
11653 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11654 FIELD_TYPE (fields[num_fields]) = NULL;
11655 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11656 FIELD_BITSIZE (fields[num_fields]) = 0;
11657
11658 num_fields++;
11659 }
11660 }
11661
11662 child_die = sibling_die (child_die);
11663 }
11664
11665 if (num_fields)
11666 {
11667 TYPE_NFIELDS (this_type) = num_fields;
11668 TYPE_FIELDS (this_type) = (struct field *)
11669 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11670 memcpy (TYPE_FIELDS (this_type), fields,
11671 sizeof (struct field) * num_fields);
11672 xfree (fields);
11673 }
11674 if (unsigned_enum)
11675 TYPE_UNSIGNED (this_type) = 1;
11676 if (flag_enum)
11677 TYPE_FLAG_ENUM (this_type) = 1;
11678 }
11679
11680 /* If we are reading an enum from a .debug_types unit, and the enum
11681 is a declaration, and the enum is not the signatured type in the
11682 unit, then we do not want to add a symbol for it. Adding a
11683 symbol would in some cases obscure the true definition of the
11684 enum, giving users an incomplete type when the definition is
11685 actually available. Note that we do not want to do this for all
11686 enums which are just declarations, because C++0x allows forward
11687 enum declarations. */
11688 if (cu->per_cu->is_debug_types
11689 && die_is_declaration (die, cu))
11690 {
11691 struct signatured_type *sig_type;
11692
11693 sig_type
11694 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
11695 cu->per_cu->info_or_types_section,
11696 cu->per_cu->offset);
11697 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11698 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11699 return;
11700 }
11701
11702 new_symbol (die, this_type, cu);
11703 }
11704
11705 /* Extract all information from a DW_TAG_array_type DIE and put it in
11706 the DIE's type field. For now, this only handles one dimensional
11707 arrays. */
11708
11709 static struct type *
11710 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11711 {
11712 struct objfile *objfile = cu->objfile;
11713 struct die_info *child_die;
11714 struct type *type;
11715 struct type *element_type, *range_type, *index_type;
11716 struct type **range_types = NULL;
11717 struct attribute *attr;
11718 int ndim = 0;
11719 struct cleanup *back_to;
11720 const char *name;
11721
11722 element_type = die_type (die, cu);
11723
11724 /* The die_type call above may have already set the type for this DIE. */
11725 type = get_die_type (die, cu);
11726 if (type)
11727 return type;
11728
11729 /* Irix 6.2 native cc creates array types without children for
11730 arrays with unspecified length. */
11731 if (die->child == NULL)
11732 {
11733 index_type = objfile_type (objfile)->builtin_int;
11734 range_type = create_range_type (NULL, index_type, 0, -1);
11735 type = create_array_type (NULL, element_type, range_type);
11736 return set_die_type (die, type, cu);
11737 }
11738
11739 back_to = make_cleanup (null_cleanup, NULL);
11740 child_die = die->child;
11741 while (child_die && child_die->tag)
11742 {
11743 if (child_die->tag == DW_TAG_subrange_type)
11744 {
11745 struct type *child_type = read_type_die (child_die, cu);
11746
11747 if (child_type != NULL)
11748 {
11749 /* The range type was succesfully read. Save it for the
11750 array type creation. */
11751 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11752 {
11753 range_types = (struct type **)
11754 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11755 * sizeof (struct type *));
11756 if (ndim == 0)
11757 make_cleanup (free_current_contents, &range_types);
11758 }
11759 range_types[ndim++] = child_type;
11760 }
11761 }
11762 child_die = sibling_die (child_die);
11763 }
11764
11765 /* Dwarf2 dimensions are output from left to right, create the
11766 necessary array types in backwards order. */
11767
11768 type = element_type;
11769
11770 if (read_array_order (die, cu) == DW_ORD_col_major)
11771 {
11772 int i = 0;
11773
11774 while (i < ndim)
11775 type = create_array_type (NULL, type, range_types[i++]);
11776 }
11777 else
11778 {
11779 while (ndim-- > 0)
11780 type = create_array_type (NULL, type, range_types[ndim]);
11781 }
11782
11783 /* Understand Dwarf2 support for vector types (like they occur on
11784 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11785 array type. This is not part of the Dwarf2/3 standard yet, but a
11786 custom vendor extension. The main difference between a regular
11787 array and the vector variant is that vectors are passed by value
11788 to functions. */
11789 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11790 if (attr)
11791 make_vector_type (type);
11792
11793 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11794 implementation may choose to implement triple vectors using this
11795 attribute. */
11796 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11797 if (attr)
11798 {
11799 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11800 TYPE_LENGTH (type) = DW_UNSND (attr);
11801 else
11802 complaint (&symfile_complaints,
11803 _("DW_AT_byte_size for array type smaller "
11804 "than the total size of elements"));
11805 }
11806
11807 name = dwarf2_name (die, cu);
11808 if (name)
11809 TYPE_NAME (type) = name;
11810
11811 /* Install the type in the die. */
11812 set_die_type (die, type, cu);
11813
11814 /* set_die_type should be already done. */
11815 set_descriptive_type (type, die, cu);
11816
11817 do_cleanups (back_to);
11818
11819 return type;
11820 }
11821
11822 static enum dwarf_array_dim_ordering
11823 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11824 {
11825 struct attribute *attr;
11826
11827 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11828
11829 if (attr) return DW_SND (attr);
11830
11831 /* GNU F77 is a special case, as at 08/2004 array type info is the
11832 opposite order to the dwarf2 specification, but data is still
11833 laid out as per normal fortran.
11834
11835 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11836 version checking. */
11837
11838 if (cu->language == language_fortran
11839 && cu->producer && strstr (cu->producer, "GNU F77"))
11840 {
11841 return DW_ORD_row_major;
11842 }
11843
11844 switch (cu->language_defn->la_array_ordering)
11845 {
11846 case array_column_major:
11847 return DW_ORD_col_major;
11848 case array_row_major:
11849 default:
11850 return DW_ORD_row_major;
11851 };
11852 }
11853
11854 /* Extract all information from a DW_TAG_set_type DIE and put it in
11855 the DIE's type field. */
11856
11857 static struct type *
11858 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11859 {
11860 struct type *domain_type, *set_type;
11861 struct attribute *attr;
11862
11863 domain_type = die_type (die, cu);
11864
11865 /* The die_type call above may have already set the type for this DIE. */
11866 set_type = get_die_type (die, cu);
11867 if (set_type)
11868 return set_type;
11869
11870 set_type = create_set_type (NULL, domain_type);
11871
11872 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11873 if (attr)
11874 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11875
11876 return set_die_type (die, set_type, cu);
11877 }
11878
11879 /* A helper for read_common_block that creates a locexpr baton.
11880 SYM is the symbol which we are marking as computed.
11881 COMMON_DIE is the DIE for the common block.
11882 COMMON_LOC is the location expression attribute for the common
11883 block itself.
11884 MEMBER_LOC is the location expression attribute for the particular
11885 member of the common block that we are processing.
11886 CU is the CU from which the above come. */
11887
11888 static void
11889 mark_common_block_symbol_computed (struct symbol *sym,
11890 struct die_info *common_die,
11891 struct attribute *common_loc,
11892 struct attribute *member_loc,
11893 struct dwarf2_cu *cu)
11894 {
11895 struct objfile *objfile = dwarf2_per_objfile->objfile;
11896 struct dwarf2_locexpr_baton *baton;
11897 gdb_byte *ptr;
11898 unsigned int cu_off;
11899 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11900 LONGEST offset = 0;
11901
11902 gdb_assert (common_loc && member_loc);
11903 gdb_assert (attr_form_is_block (common_loc));
11904 gdb_assert (attr_form_is_block (member_loc)
11905 || attr_form_is_constant (member_loc));
11906
11907 baton = obstack_alloc (&objfile->objfile_obstack,
11908 sizeof (struct dwarf2_locexpr_baton));
11909 baton->per_cu = cu->per_cu;
11910 gdb_assert (baton->per_cu);
11911
11912 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11913
11914 if (attr_form_is_constant (member_loc))
11915 {
11916 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11917 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11918 }
11919 else
11920 baton->size += DW_BLOCK (member_loc)->size;
11921
11922 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11923 baton->data = ptr;
11924
11925 *ptr++ = DW_OP_call4;
11926 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11927 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11928 ptr += 4;
11929
11930 if (attr_form_is_constant (member_loc))
11931 {
11932 *ptr++ = DW_OP_addr;
11933 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11934 ptr += cu->header.addr_size;
11935 }
11936 else
11937 {
11938 /* We have to copy the data here, because DW_OP_call4 will only
11939 use a DW_AT_location attribute. */
11940 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11941 ptr += DW_BLOCK (member_loc)->size;
11942 }
11943
11944 *ptr++ = DW_OP_plus;
11945 gdb_assert (ptr - baton->data == baton->size);
11946
11947 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11948 SYMBOL_LOCATION_BATON (sym) = baton;
11949 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11950 }
11951
11952 /* Create appropriate locally-scoped variables for all the
11953 DW_TAG_common_block entries. Also create a struct common_block
11954 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11955 is used to sepate the common blocks name namespace from regular
11956 variable names. */
11957
11958 static void
11959 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11960 {
11961 struct attribute *attr;
11962
11963 attr = dwarf2_attr (die, DW_AT_location, cu);
11964 if (attr)
11965 {
11966 /* Support the .debug_loc offsets. */
11967 if (attr_form_is_block (attr))
11968 {
11969 /* Ok. */
11970 }
11971 else if (attr_form_is_section_offset (attr))
11972 {
11973 dwarf2_complex_location_expr_complaint ();
11974 attr = NULL;
11975 }
11976 else
11977 {
11978 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11979 "common block member");
11980 attr = NULL;
11981 }
11982 }
11983
11984 if (die->child != NULL)
11985 {
11986 struct objfile *objfile = cu->objfile;
11987 struct die_info *child_die;
11988 size_t n_entries = 0, size;
11989 struct common_block *common_block;
11990 struct symbol *sym;
11991
11992 for (child_die = die->child;
11993 child_die && child_die->tag;
11994 child_die = sibling_die (child_die))
11995 ++n_entries;
11996
11997 size = (sizeof (struct common_block)
11998 + (n_entries - 1) * sizeof (struct symbol *));
11999 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12000 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12001 common_block->n_entries = 0;
12002
12003 for (child_die = die->child;
12004 child_die && child_die->tag;
12005 child_die = sibling_die (child_die))
12006 {
12007 /* Create the symbol in the DW_TAG_common_block block in the current
12008 symbol scope. */
12009 sym = new_symbol (child_die, NULL, cu);
12010 if (sym != NULL)
12011 {
12012 struct attribute *member_loc;
12013
12014 common_block->contents[common_block->n_entries++] = sym;
12015
12016 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12017 cu);
12018 if (member_loc)
12019 {
12020 /* GDB has handled this for a long time, but it is
12021 not specified by DWARF. It seems to have been
12022 emitted by gfortran at least as recently as:
12023 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12024 complaint (&symfile_complaints,
12025 _("Variable in common block has "
12026 "DW_AT_data_member_location "
12027 "- DIE at 0x%x [in module %s]"),
12028 child_die->offset.sect_off, cu->objfile->name);
12029
12030 if (attr_form_is_section_offset (member_loc))
12031 dwarf2_complex_location_expr_complaint ();
12032 else if (attr_form_is_constant (member_loc)
12033 || attr_form_is_block (member_loc))
12034 {
12035 if (attr)
12036 mark_common_block_symbol_computed (sym, die, attr,
12037 member_loc, cu);
12038 }
12039 else
12040 dwarf2_complex_location_expr_complaint ();
12041 }
12042 }
12043 }
12044
12045 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12046 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12047 }
12048 }
12049
12050 /* Create a type for a C++ namespace. */
12051
12052 static struct type *
12053 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12054 {
12055 struct objfile *objfile = cu->objfile;
12056 const char *previous_prefix, *name;
12057 int is_anonymous;
12058 struct type *type;
12059
12060 /* For extensions, reuse the type of the original namespace. */
12061 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12062 {
12063 struct die_info *ext_die;
12064 struct dwarf2_cu *ext_cu = cu;
12065
12066 ext_die = dwarf2_extension (die, &ext_cu);
12067 type = read_type_die (ext_die, ext_cu);
12068
12069 /* EXT_CU may not be the same as CU.
12070 Ensure TYPE is recorded in CU's type_hash table. */
12071 return set_die_type (die, type, cu);
12072 }
12073
12074 name = namespace_name (die, &is_anonymous, cu);
12075
12076 /* Now build the name of the current namespace. */
12077
12078 previous_prefix = determine_prefix (die, cu);
12079 if (previous_prefix[0] != '\0')
12080 name = typename_concat (&objfile->objfile_obstack,
12081 previous_prefix, name, 0, cu);
12082
12083 /* Create the type. */
12084 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12085 objfile);
12086 TYPE_NAME (type) = name;
12087 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12088
12089 return set_die_type (die, type, cu);
12090 }
12091
12092 /* Read a C++ namespace. */
12093
12094 static void
12095 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12096 {
12097 struct objfile *objfile = cu->objfile;
12098 int is_anonymous;
12099
12100 /* Add a symbol associated to this if we haven't seen the namespace
12101 before. Also, add a using directive if it's an anonymous
12102 namespace. */
12103
12104 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12105 {
12106 struct type *type;
12107
12108 type = read_type_die (die, cu);
12109 new_symbol (die, type, cu);
12110
12111 namespace_name (die, &is_anonymous, cu);
12112 if (is_anonymous)
12113 {
12114 const char *previous_prefix = determine_prefix (die, cu);
12115
12116 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12117 NULL, NULL, 0, &objfile->objfile_obstack);
12118 }
12119 }
12120
12121 if (die->child != NULL)
12122 {
12123 struct die_info *child_die = die->child;
12124
12125 while (child_die && child_die->tag)
12126 {
12127 process_die (child_die, cu);
12128 child_die = sibling_die (child_die);
12129 }
12130 }
12131 }
12132
12133 /* Read a Fortran module as type. This DIE can be only a declaration used for
12134 imported module. Still we need that type as local Fortran "use ... only"
12135 declaration imports depend on the created type in determine_prefix. */
12136
12137 static struct type *
12138 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12139 {
12140 struct objfile *objfile = cu->objfile;
12141 const char *module_name;
12142 struct type *type;
12143
12144 module_name = dwarf2_name (die, cu);
12145 if (!module_name)
12146 complaint (&symfile_complaints,
12147 _("DW_TAG_module has no name, offset 0x%x"),
12148 die->offset.sect_off);
12149 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12150
12151 /* determine_prefix uses TYPE_TAG_NAME. */
12152 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12153
12154 return set_die_type (die, type, cu);
12155 }
12156
12157 /* Read a Fortran module. */
12158
12159 static void
12160 read_module (struct die_info *die, struct dwarf2_cu *cu)
12161 {
12162 struct die_info *child_die = die->child;
12163
12164 while (child_die && child_die->tag)
12165 {
12166 process_die (child_die, cu);
12167 child_die = sibling_die (child_die);
12168 }
12169 }
12170
12171 /* Return the name of the namespace represented by DIE. Set
12172 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12173 namespace. */
12174
12175 static const char *
12176 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12177 {
12178 struct die_info *current_die;
12179 const char *name = NULL;
12180
12181 /* Loop through the extensions until we find a name. */
12182
12183 for (current_die = die;
12184 current_die != NULL;
12185 current_die = dwarf2_extension (die, &cu))
12186 {
12187 name = dwarf2_name (current_die, cu);
12188 if (name != NULL)
12189 break;
12190 }
12191
12192 /* Is it an anonymous namespace? */
12193
12194 *is_anonymous = (name == NULL);
12195 if (*is_anonymous)
12196 name = CP_ANONYMOUS_NAMESPACE_STR;
12197
12198 return name;
12199 }
12200
12201 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12202 the user defined type vector. */
12203
12204 static struct type *
12205 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12206 {
12207 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12208 struct comp_unit_head *cu_header = &cu->header;
12209 struct type *type;
12210 struct attribute *attr_byte_size;
12211 struct attribute *attr_address_class;
12212 int byte_size, addr_class;
12213 struct type *target_type;
12214
12215 target_type = die_type (die, cu);
12216
12217 /* The die_type call above may have already set the type for this DIE. */
12218 type = get_die_type (die, cu);
12219 if (type)
12220 return type;
12221
12222 type = lookup_pointer_type (target_type);
12223
12224 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12225 if (attr_byte_size)
12226 byte_size = DW_UNSND (attr_byte_size);
12227 else
12228 byte_size = cu_header->addr_size;
12229
12230 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12231 if (attr_address_class)
12232 addr_class = DW_UNSND (attr_address_class);
12233 else
12234 addr_class = DW_ADDR_none;
12235
12236 /* If the pointer size or address class is different than the
12237 default, create a type variant marked as such and set the
12238 length accordingly. */
12239 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12240 {
12241 if (gdbarch_address_class_type_flags_p (gdbarch))
12242 {
12243 int type_flags;
12244
12245 type_flags = gdbarch_address_class_type_flags
12246 (gdbarch, byte_size, addr_class);
12247 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12248 == 0);
12249 type = make_type_with_address_space (type, type_flags);
12250 }
12251 else if (TYPE_LENGTH (type) != byte_size)
12252 {
12253 complaint (&symfile_complaints,
12254 _("invalid pointer size %d"), byte_size);
12255 }
12256 else
12257 {
12258 /* Should we also complain about unhandled address classes? */
12259 }
12260 }
12261
12262 TYPE_LENGTH (type) = byte_size;
12263 return set_die_type (die, type, cu);
12264 }
12265
12266 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12267 the user defined type vector. */
12268
12269 static struct type *
12270 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12271 {
12272 struct type *type;
12273 struct type *to_type;
12274 struct type *domain;
12275
12276 to_type = die_type (die, cu);
12277 domain = die_containing_type (die, cu);
12278
12279 /* The calls above may have already set the type for this DIE. */
12280 type = get_die_type (die, cu);
12281 if (type)
12282 return type;
12283
12284 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12285 type = lookup_methodptr_type (to_type);
12286 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12287 {
12288 struct type *new_type = alloc_type (cu->objfile);
12289
12290 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12291 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12292 TYPE_VARARGS (to_type));
12293 type = lookup_methodptr_type (new_type);
12294 }
12295 else
12296 type = lookup_memberptr_type (to_type, domain);
12297
12298 return set_die_type (die, type, cu);
12299 }
12300
12301 /* Extract all information from a DW_TAG_reference_type DIE and add to
12302 the user defined type vector. */
12303
12304 static struct type *
12305 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12306 {
12307 struct comp_unit_head *cu_header = &cu->header;
12308 struct type *type, *target_type;
12309 struct attribute *attr;
12310
12311 target_type = die_type (die, cu);
12312
12313 /* The die_type call above may have already set the type for this DIE. */
12314 type = get_die_type (die, cu);
12315 if (type)
12316 return type;
12317
12318 type = lookup_reference_type (target_type);
12319 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12320 if (attr)
12321 {
12322 TYPE_LENGTH (type) = DW_UNSND (attr);
12323 }
12324 else
12325 {
12326 TYPE_LENGTH (type) = cu_header->addr_size;
12327 }
12328 return set_die_type (die, type, cu);
12329 }
12330
12331 static struct type *
12332 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12333 {
12334 struct type *base_type, *cv_type;
12335
12336 base_type = die_type (die, cu);
12337
12338 /* The die_type call above may have already set the type for this DIE. */
12339 cv_type = get_die_type (die, cu);
12340 if (cv_type)
12341 return cv_type;
12342
12343 /* In case the const qualifier is applied to an array type, the element type
12344 is so qualified, not the array type (section 6.7.3 of C99). */
12345 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12346 {
12347 struct type *el_type, *inner_array;
12348
12349 base_type = copy_type (base_type);
12350 inner_array = base_type;
12351
12352 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12353 {
12354 TYPE_TARGET_TYPE (inner_array) =
12355 copy_type (TYPE_TARGET_TYPE (inner_array));
12356 inner_array = TYPE_TARGET_TYPE (inner_array);
12357 }
12358
12359 el_type = TYPE_TARGET_TYPE (inner_array);
12360 TYPE_TARGET_TYPE (inner_array) =
12361 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12362
12363 return set_die_type (die, base_type, cu);
12364 }
12365
12366 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12367 return set_die_type (die, cv_type, cu);
12368 }
12369
12370 static struct type *
12371 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12372 {
12373 struct type *base_type, *cv_type;
12374
12375 base_type = die_type (die, cu);
12376
12377 /* The die_type call above may have already set the type for this DIE. */
12378 cv_type = get_die_type (die, cu);
12379 if (cv_type)
12380 return cv_type;
12381
12382 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12383 return set_die_type (die, cv_type, cu);
12384 }
12385
12386 /* Handle DW_TAG_restrict_type. */
12387
12388 static struct type *
12389 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12390 {
12391 struct type *base_type, *cv_type;
12392
12393 base_type = die_type (die, cu);
12394
12395 /* The die_type call above may have already set the type for this DIE. */
12396 cv_type = get_die_type (die, cu);
12397 if (cv_type)
12398 return cv_type;
12399
12400 cv_type = make_restrict_type (base_type);
12401 return set_die_type (die, cv_type, cu);
12402 }
12403
12404 /* Extract all information from a DW_TAG_string_type DIE and add to
12405 the user defined type vector. It isn't really a user defined type,
12406 but it behaves like one, with other DIE's using an AT_user_def_type
12407 attribute to reference it. */
12408
12409 static struct type *
12410 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12411 {
12412 struct objfile *objfile = cu->objfile;
12413 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12414 struct type *type, *range_type, *index_type, *char_type;
12415 struct attribute *attr;
12416 unsigned int length;
12417
12418 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12419 if (attr)
12420 {
12421 length = DW_UNSND (attr);
12422 }
12423 else
12424 {
12425 /* Check for the DW_AT_byte_size attribute. */
12426 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12427 if (attr)
12428 {
12429 length = DW_UNSND (attr);
12430 }
12431 else
12432 {
12433 length = 1;
12434 }
12435 }
12436
12437 index_type = objfile_type (objfile)->builtin_int;
12438 range_type = create_range_type (NULL, index_type, 1, length);
12439 char_type = language_string_char_type (cu->language_defn, gdbarch);
12440 type = create_string_type (NULL, char_type, range_type);
12441
12442 return set_die_type (die, type, cu);
12443 }
12444
12445 /* Handle DIES due to C code like:
12446
12447 struct foo
12448 {
12449 int (*funcp)(int a, long l);
12450 int b;
12451 };
12452
12453 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12454
12455 static struct type *
12456 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12457 {
12458 struct objfile *objfile = cu->objfile;
12459 struct type *type; /* Type that this function returns. */
12460 struct type *ftype; /* Function that returns above type. */
12461 struct attribute *attr;
12462
12463 type = die_type (die, cu);
12464
12465 /* The die_type call above may have already set the type for this DIE. */
12466 ftype = get_die_type (die, cu);
12467 if (ftype)
12468 return ftype;
12469
12470 ftype = lookup_function_type (type);
12471
12472 /* All functions in C++, Pascal and Java have prototypes. */
12473 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12474 if ((attr && (DW_UNSND (attr) != 0))
12475 || cu->language == language_cplus
12476 || cu->language == language_java
12477 || cu->language == language_pascal)
12478 TYPE_PROTOTYPED (ftype) = 1;
12479 else if (producer_is_realview (cu->producer))
12480 /* RealView does not emit DW_AT_prototyped. We can not
12481 distinguish prototyped and unprototyped functions; default to
12482 prototyped, since that is more common in modern code (and
12483 RealView warns about unprototyped functions). */
12484 TYPE_PROTOTYPED (ftype) = 1;
12485
12486 /* Store the calling convention in the type if it's available in
12487 the subroutine die. Otherwise set the calling convention to
12488 the default value DW_CC_normal. */
12489 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12490 if (attr)
12491 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12492 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12493 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12494 else
12495 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12496
12497 /* We need to add the subroutine type to the die immediately so
12498 we don't infinitely recurse when dealing with parameters
12499 declared as the same subroutine type. */
12500 set_die_type (die, ftype, cu);
12501
12502 if (die->child != NULL)
12503 {
12504 struct type *void_type = objfile_type (objfile)->builtin_void;
12505 struct die_info *child_die;
12506 int nparams, iparams;
12507
12508 /* Count the number of parameters.
12509 FIXME: GDB currently ignores vararg functions, but knows about
12510 vararg member functions. */
12511 nparams = 0;
12512 child_die = die->child;
12513 while (child_die && child_die->tag)
12514 {
12515 if (child_die->tag == DW_TAG_formal_parameter)
12516 nparams++;
12517 else if (child_die->tag == DW_TAG_unspecified_parameters)
12518 TYPE_VARARGS (ftype) = 1;
12519 child_die = sibling_die (child_die);
12520 }
12521
12522 /* Allocate storage for parameters and fill them in. */
12523 TYPE_NFIELDS (ftype) = nparams;
12524 TYPE_FIELDS (ftype) = (struct field *)
12525 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12526
12527 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12528 even if we error out during the parameters reading below. */
12529 for (iparams = 0; iparams < nparams; iparams++)
12530 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12531
12532 iparams = 0;
12533 child_die = die->child;
12534 while (child_die && child_die->tag)
12535 {
12536 if (child_die->tag == DW_TAG_formal_parameter)
12537 {
12538 struct type *arg_type;
12539
12540 /* DWARF version 2 has no clean way to discern C++
12541 static and non-static member functions. G++ helps
12542 GDB by marking the first parameter for non-static
12543 member functions (which is the this pointer) as
12544 artificial. We pass this information to
12545 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12546
12547 DWARF version 3 added DW_AT_object_pointer, which GCC
12548 4.5 does not yet generate. */
12549 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12550 if (attr)
12551 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12552 else
12553 {
12554 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12555
12556 /* GCC/43521: In java, the formal parameter
12557 "this" is sometimes not marked with DW_AT_artificial. */
12558 if (cu->language == language_java)
12559 {
12560 const char *name = dwarf2_name (child_die, cu);
12561
12562 if (name && !strcmp (name, "this"))
12563 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12564 }
12565 }
12566 arg_type = die_type (child_die, cu);
12567
12568 /* RealView does not mark THIS as const, which the testsuite
12569 expects. GCC marks THIS as const in method definitions,
12570 but not in the class specifications (GCC PR 43053). */
12571 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12572 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12573 {
12574 int is_this = 0;
12575 struct dwarf2_cu *arg_cu = cu;
12576 const char *name = dwarf2_name (child_die, cu);
12577
12578 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12579 if (attr)
12580 {
12581 /* If the compiler emits this, use it. */
12582 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12583 is_this = 1;
12584 }
12585 else if (name && strcmp (name, "this") == 0)
12586 /* Function definitions will have the argument names. */
12587 is_this = 1;
12588 else if (name == NULL && iparams == 0)
12589 /* Declarations may not have the names, so like
12590 elsewhere in GDB, assume an artificial first
12591 argument is "this". */
12592 is_this = 1;
12593
12594 if (is_this)
12595 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12596 arg_type, 0);
12597 }
12598
12599 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12600 iparams++;
12601 }
12602 child_die = sibling_die (child_die);
12603 }
12604 }
12605
12606 return ftype;
12607 }
12608
12609 static struct type *
12610 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12611 {
12612 struct objfile *objfile = cu->objfile;
12613 const char *name = NULL;
12614 struct type *this_type, *target_type;
12615
12616 name = dwarf2_full_name (NULL, die, cu);
12617 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12618 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12619 TYPE_NAME (this_type) = name;
12620 set_die_type (die, this_type, cu);
12621 target_type = die_type (die, cu);
12622 if (target_type != this_type)
12623 TYPE_TARGET_TYPE (this_type) = target_type;
12624 else
12625 {
12626 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12627 spec and cause infinite loops in GDB. */
12628 complaint (&symfile_complaints,
12629 _("Self-referential DW_TAG_typedef "
12630 "- DIE at 0x%x [in module %s]"),
12631 die->offset.sect_off, objfile->name);
12632 TYPE_TARGET_TYPE (this_type) = NULL;
12633 }
12634 return this_type;
12635 }
12636
12637 /* Find a representation of a given base type and install
12638 it in the TYPE field of the die. */
12639
12640 static struct type *
12641 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12642 {
12643 struct objfile *objfile = cu->objfile;
12644 struct type *type;
12645 struct attribute *attr;
12646 int encoding = 0, size = 0;
12647 const char *name;
12648 enum type_code code = TYPE_CODE_INT;
12649 int type_flags = 0;
12650 struct type *target_type = NULL;
12651
12652 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12653 if (attr)
12654 {
12655 encoding = DW_UNSND (attr);
12656 }
12657 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12658 if (attr)
12659 {
12660 size = DW_UNSND (attr);
12661 }
12662 name = dwarf2_name (die, cu);
12663 if (!name)
12664 {
12665 complaint (&symfile_complaints,
12666 _("DW_AT_name missing from DW_TAG_base_type"));
12667 }
12668
12669 switch (encoding)
12670 {
12671 case DW_ATE_address:
12672 /* Turn DW_ATE_address into a void * pointer. */
12673 code = TYPE_CODE_PTR;
12674 type_flags |= TYPE_FLAG_UNSIGNED;
12675 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12676 break;
12677 case DW_ATE_boolean:
12678 code = TYPE_CODE_BOOL;
12679 type_flags |= TYPE_FLAG_UNSIGNED;
12680 break;
12681 case DW_ATE_complex_float:
12682 code = TYPE_CODE_COMPLEX;
12683 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12684 break;
12685 case DW_ATE_decimal_float:
12686 code = TYPE_CODE_DECFLOAT;
12687 break;
12688 case DW_ATE_float:
12689 code = TYPE_CODE_FLT;
12690 break;
12691 case DW_ATE_signed:
12692 break;
12693 case DW_ATE_unsigned:
12694 type_flags |= TYPE_FLAG_UNSIGNED;
12695 if (cu->language == language_fortran
12696 && name
12697 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12698 code = TYPE_CODE_CHAR;
12699 break;
12700 case DW_ATE_signed_char:
12701 if (cu->language == language_ada || cu->language == language_m2
12702 || cu->language == language_pascal
12703 || cu->language == language_fortran)
12704 code = TYPE_CODE_CHAR;
12705 break;
12706 case DW_ATE_unsigned_char:
12707 if (cu->language == language_ada || cu->language == language_m2
12708 || cu->language == language_pascal
12709 || cu->language == language_fortran)
12710 code = TYPE_CODE_CHAR;
12711 type_flags |= TYPE_FLAG_UNSIGNED;
12712 break;
12713 case DW_ATE_UTF:
12714 /* We just treat this as an integer and then recognize the
12715 type by name elsewhere. */
12716 break;
12717
12718 default:
12719 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12720 dwarf_type_encoding_name (encoding));
12721 break;
12722 }
12723
12724 type = init_type (code, size, type_flags, NULL, objfile);
12725 TYPE_NAME (type) = name;
12726 TYPE_TARGET_TYPE (type) = target_type;
12727
12728 if (name && strcmp (name, "char") == 0)
12729 TYPE_NOSIGN (type) = 1;
12730
12731 return set_die_type (die, type, cu);
12732 }
12733
12734 /* Read the given DW_AT_subrange DIE. */
12735
12736 static struct type *
12737 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12738 {
12739 struct type *base_type;
12740 struct type *range_type;
12741 struct attribute *attr;
12742 LONGEST low, high;
12743 int low_default_is_valid;
12744 const char *name;
12745 LONGEST negative_mask;
12746
12747 base_type = die_type (die, cu);
12748 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
12749 check_typedef (base_type);
12750
12751 /* The die_type call above may have already set the type for this DIE. */
12752 range_type = get_die_type (die, cu);
12753 if (range_type)
12754 return range_type;
12755
12756 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12757 omitting DW_AT_lower_bound. */
12758 switch (cu->language)
12759 {
12760 case language_c:
12761 case language_cplus:
12762 low = 0;
12763 low_default_is_valid = 1;
12764 break;
12765 case language_fortran:
12766 low = 1;
12767 low_default_is_valid = 1;
12768 break;
12769 case language_d:
12770 case language_java:
12771 case language_objc:
12772 low = 0;
12773 low_default_is_valid = (cu->header.version >= 4);
12774 break;
12775 case language_ada:
12776 case language_m2:
12777 case language_pascal:
12778 low = 1;
12779 low_default_is_valid = (cu->header.version >= 4);
12780 break;
12781 default:
12782 low = 0;
12783 low_default_is_valid = 0;
12784 break;
12785 }
12786
12787 /* FIXME: For variable sized arrays either of these could be
12788 a variable rather than a constant value. We'll allow it,
12789 but we don't know how to handle it. */
12790 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12791 if (attr)
12792 low = dwarf2_get_attr_constant_value (attr, low);
12793 else if (!low_default_is_valid)
12794 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12795 "- DIE at 0x%x [in module %s]"),
12796 die->offset.sect_off, cu->objfile->name);
12797
12798 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12799 if (attr)
12800 {
12801 if (attr_form_is_block (attr) || is_ref_attr (attr))
12802 {
12803 /* GCC encodes arrays with unspecified or dynamic length
12804 with a DW_FORM_block1 attribute or a reference attribute.
12805 FIXME: GDB does not yet know how to handle dynamic
12806 arrays properly, treat them as arrays with unspecified
12807 length for now.
12808
12809 FIXME: jimb/2003-09-22: GDB does not really know
12810 how to handle arrays of unspecified length
12811 either; we just represent them as zero-length
12812 arrays. Choose an appropriate upper bound given
12813 the lower bound we've computed above. */
12814 high = low - 1;
12815 }
12816 else
12817 high = dwarf2_get_attr_constant_value (attr, 1);
12818 }
12819 else
12820 {
12821 attr = dwarf2_attr (die, DW_AT_count, cu);
12822 if (attr)
12823 {
12824 int count = dwarf2_get_attr_constant_value (attr, 1);
12825 high = low + count - 1;
12826 }
12827 else
12828 {
12829 /* Unspecified array length. */
12830 high = low - 1;
12831 }
12832 }
12833
12834 /* Dwarf-2 specifications explicitly allows to create subrange types
12835 without specifying a base type.
12836 In that case, the base type must be set to the type of
12837 the lower bound, upper bound or count, in that order, if any of these
12838 three attributes references an object that has a type.
12839 If no base type is found, the Dwarf-2 specifications say that
12840 a signed integer type of size equal to the size of an address should
12841 be used.
12842 For the following C code: `extern char gdb_int [];'
12843 GCC produces an empty range DIE.
12844 FIXME: muller/2010-05-28: Possible references to object for low bound,
12845 high bound or count are not yet handled by this code. */
12846 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12847 {
12848 struct objfile *objfile = cu->objfile;
12849 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12850 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12851 struct type *int_type = objfile_type (objfile)->builtin_int;
12852
12853 /* Test "int", "long int", and "long long int" objfile types,
12854 and select the first one having a size above or equal to the
12855 architecture address size. */
12856 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12857 base_type = int_type;
12858 else
12859 {
12860 int_type = objfile_type (objfile)->builtin_long;
12861 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12862 base_type = int_type;
12863 else
12864 {
12865 int_type = objfile_type (objfile)->builtin_long_long;
12866 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12867 base_type = int_type;
12868 }
12869 }
12870 }
12871
12872 negative_mask =
12873 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12874 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12875 low |= negative_mask;
12876 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12877 high |= negative_mask;
12878
12879 range_type = create_range_type (NULL, base_type, low, high);
12880
12881 /* Mark arrays with dynamic length at least as an array of unspecified
12882 length. GDB could check the boundary but before it gets implemented at
12883 least allow accessing the array elements. */
12884 if (attr && attr_form_is_block (attr))
12885 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12886
12887 /* Ada expects an empty array on no boundary attributes. */
12888 if (attr == NULL && cu->language != language_ada)
12889 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12890
12891 name = dwarf2_name (die, cu);
12892 if (name)
12893 TYPE_NAME (range_type) = name;
12894
12895 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12896 if (attr)
12897 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12898
12899 set_die_type (die, range_type, cu);
12900
12901 /* set_die_type should be already done. */
12902 set_descriptive_type (range_type, die, cu);
12903
12904 return range_type;
12905 }
12906
12907 static struct type *
12908 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12909 {
12910 struct type *type;
12911
12912 /* For now, we only support the C meaning of an unspecified type: void. */
12913
12914 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12915 TYPE_NAME (type) = dwarf2_name (die, cu);
12916
12917 return set_die_type (die, type, cu);
12918 }
12919
12920 /* Read a single die and all its descendents. Set the die's sibling
12921 field to NULL; set other fields in the die correctly, and set all
12922 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12923 location of the info_ptr after reading all of those dies. PARENT
12924 is the parent of the die in question. */
12925
12926 static struct die_info *
12927 read_die_and_children (const struct die_reader_specs *reader,
12928 gdb_byte *info_ptr,
12929 gdb_byte **new_info_ptr,
12930 struct die_info *parent)
12931 {
12932 struct die_info *die;
12933 gdb_byte *cur_ptr;
12934 int has_children;
12935
12936 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
12937 if (die == NULL)
12938 {
12939 *new_info_ptr = cur_ptr;
12940 return NULL;
12941 }
12942 store_in_ref_table (die, reader->cu);
12943
12944 if (has_children)
12945 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
12946 else
12947 {
12948 die->child = NULL;
12949 *new_info_ptr = cur_ptr;
12950 }
12951
12952 die->sibling = NULL;
12953 die->parent = parent;
12954 return die;
12955 }
12956
12957 /* Read a die, all of its descendents, and all of its siblings; set
12958 all of the fields of all of the dies correctly. Arguments are as
12959 in read_die_and_children. */
12960
12961 static struct die_info *
12962 read_die_and_siblings (const struct die_reader_specs *reader,
12963 gdb_byte *info_ptr,
12964 gdb_byte **new_info_ptr,
12965 struct die_info *parent)
12966 {
12967 struct die_info *first_die, *last_sibling;
12968 gdb_byte *cur_ptr;
12969
12970 cur_ptr = info_ptr;
12971 first_die = last_sibling = NULL;
12972
12973 while (1)
12974 {
12975 struct die_info *die
12976 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
12977
12978 if (die == NULL)
12979 {
12980 *new_info_ptr = cur_ptr;
12981 return first_die;
12982 }
12983
12984 if (!first_die)
12985 first_die = die;
12986 else
12987 last_sibling->sibling = die;
12988
12989 last_sibling = die;
12990 }
12991 }
12992
12993 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
12994 attributes.
12995 The caller is responsible for filling in the extra attributes
12996 and updating (*DIEP)->num_attrs.
12997 Set DIEP to point to a newly allocated die with its information,
12998 except for its child, sibling, and parent fields.
12999 Set HAS_CHILDREN to tell whether the die has children or not. */
13000
13001 static gdb_byte *
13002 read_full_die_1 (const struct die_reader_specs *reader,
13003 struct die_info **diep, gdb_byte *info_ptr,
13004 int *has_children, int num_extra_attrs)
13005 {
13006 unsigned int abbrev_number, bytes_read, i;
13007 sect_offset offset;
13008 struct abbrev_info *abbrev;
13009 struct die_info *die;
13010 struct dwarf2_cu *cu = reader->cu;
13011 bfd *abfd = reader->abfd;
13012
13013 offset.sect_off = info_ptr - reader->buffer;
13014 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13015 info_ptr += bytes_read;
13016 if (!abbrev_number)
13017 {
13018 *diep = NULL;
13019 *has_children = 0;
13020 return info_ptr;
13021 }
13022
13023 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13024 if (!abbrev)
13025 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13026 abbrev_number,
13027 bfd_get_filename (abfd));
13028
13029 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13030 die->offset = offset;
13031 die->tag = abbrev->tag;
13032 die->abbrev = abbrev_number;
13033
13034 /* Make the result usable.
13035 The caller needs to update num_attrs after adding the extra
13036 attributes. */
13037 die->num_attrs = abbrev->num_attrs;
13038
13039 for (i = 0; i < abbrev->num_attrs; ++i)
13040 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13041 info_ptr);
13042
13043 *diep = die;
13044 *has_children = abbrev->has_children;
13045 return info_ptr;
13046 }
13047
13048 /* Read a die and all its attributes.
13049 Set DIEP to point to a newly allocated die with its information,
13050 except for its child, sibling, and parent fields.
13051 Set HAS_CHILDREN to tell whether the die has children or not. */
13052
13053 static gdb_byte *
13054 read_full_die (const struct die_reader_specs *reader,
13055 struct die_info **diep, gdb_byte *info_ptr,
13056 int *has_children)
13057 {
13058 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13059 }
13060 \f
13061 /* Abbreviation tables.
13062
13063 In DWARF version 2, the description of the debugging information is
13064 stored in a separate .debug_abbrev section. Before we read any
13065 dies from a section we read in all abbreviations and install them
13066 in a hash table. */
13067
13068 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13069
13070 static struct abbrev_info *
13071 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13072 {
13073 struct abbrev_info *abbrev;
13074
13075 abbrev = (struct abbrev_info *)
13076 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13077 memset (abbrev, 0, sizeof (struct abbrev_info));
13078 return abbrev;
13079 }
13080
13081 /* Add an abbreviation to the table. */
13082
13083 static void
13084 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13085 unsigned int abbrev_number,
13086 struct abbrev_info *abbrev)
13087 {
13088 unsigned int hash_number;
13089
13090 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13091 abbrev->next = abbrev_table->abbrevs[hash_number];
13092 abbrev_table->abbrevs[hash_number] = abbrev;
13093 }
13094
13095 /* Look up an abbrev in the table.
13096 Returns NULL if the abbrev is not found. */
13097
13098 static struct abbrev_info *
13099 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13100 unsigned int abbrev_number)
13101 {
13102 unsigned int hash_number;
13103 struct abbrev_info *abbrev;
13104
13105 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13106 abbrev = abbrev_table->abbrevs[hash_number];
13107
13108 while (abbrev)
13109 {
13110 if (abbrev->number == abbrev_number)
13111 return abbrev;
13112 abbrev = abbrev->next;
13113 }
13114 return NULL;
13115 }
13116
13117 /* Read in an abbrev table. */
13118
13119 static struct abbrev_table *
13120 abbrev_table_read_table (struct dwarf2_section_info *section,
13121 sect_offset offset)
13122 {
13123 struct objfile *objfile = dwarf2_per_objfile->objfile;
13124 bfd *abfd = section->asection->owner;
13125 struct abbrev_table *abbrev_table;
13126 gdb_byte *abbrev_ptr;
13127 struct abbrev_info *cur_abbrev;
13128 unsigned int abbrev_number, bytes_read, abbrev_name;
13129 unsigned int abbrev_form;
13130 struct attr_abbrev *cur_attrs;
13131 unsigned int allocated_attrs;
13132
13133 abbrev_table = XMALLOC (struct abbrev_table);
13134 abbrev_table->offset = offset;
13135 obstack_init (&abbrev_table->abbrev_obstack);
13136 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13137 (ABBREV_HASH_SIZE
13138 * sizeof (struct abbrev_info *)));
13139 memset (abbrev_table->abbrevs, 0,
13140 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13141
13142 dwarf2_read_section (objfile, section);
13143 abbrev_ptr = section->buffer + offset.sect_off;
13144 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13145 abbrev_ptr += bytes_read;
13146
13147 allocated_attrs = ATTR_ALLOC_CHUNK;
13148 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13149
13150 /* Loop until we reach an abbrev number of 0. */
13151 while (abbrev_number)
13152 {
13153 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13154
13155 /* read in abbrev header */
13156 cur_abbrev->number = abbrev_number;
13157 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13158 abbrev_ptr += bytes_read;
13159 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13160 abbrev_ptr += 1;
13161
13162 /* now read in declarations */
13163 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13164 abbrev_ptr += bytes_read;
13165 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13166 abbrev_ptr += bytes_read;
13167 while (abbrev_name)
13168 {
13169 if (cur_abbrev->num_attrs == allocated_attrs)
13170 {
13171 allocated_attrs += ATTR_ALLOC_CHUNK;
13172 cur_attrs
13173 = xrealloc (cur_attrs, (allocated_attrs
13174 * sizeof (struct attr_abbrev)));
13175 }
13176
13177 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13178 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13179 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13180 abbrev_ptr += bytes_read;
13181 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13182 abbrev_ptr += bytes_read;
13183 }
13184
13185 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13186 (cur_abbrev->num_attrs
13187 * sizeof (struct attr_abbrev)));
13188 memcpy (cur_abbrev->attrs, cur_attrs,
13189 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13190
13191 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13192
13193 /* Get next abbreviation.
13194 Under Irix6 the abbreviations for a compilation unit are not
13195 always properly terminated with an abbrev number of 0.
13196 Exit loop if we encounter an abbreviation which we have
13197 already read (which means we are about to read the abbreviations
13198 for the next compile unit) or if the end of the abbreviation
13199 table is reached. */
13200 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13201 break;
13202 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13203 abbrev_ptr += bytes_read;
13204 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13205 break;
13206 }
13207
13208 xfree (cur_attrs);
13209 return abbrev_table;
13210 }
13211
13212 /* Free the resources held by ABBREV_TABLE. */
13213
13214 static void
13215 abbrev_table_free (struct abbrev_table *abbrev_table)
13216 {
13217 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13218 xfree (abbrev_table);
13219 }
13220
13221 /* Same as abbrev_table_free but as a cleanup.
13222 We pass in a pointer to the pointer to the table so that we can
13223 set the pointer to NULL when we're done. It also simplifies
13224 build_type_unit_groups. */
13225
13226 static void
13227 abbrev_table_free_cleanup (void *table_ptr)
13228 {
13229 struct abbrev_table **abbrev_table_ptr = table_ptr;
13230
13231 if (*abbrev_table_ptr != NULL)
13232 abbrev_table_free (*abbrev_table_ptr);
13233 *abbrev_table_ptr = NULL;
13234 }
13235
13236 /* Read the abbrev table for CU from ABBREV_SECTION. */
13237
13238 static void
13239 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13240 struct dwarf2_section_info *abbrev_section)
13241 {
13242 cu->abbrev_table =
13243 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13244 }
13245
13246 /* Release the memory used by the abbrev table for a compilation unit. */
13247
13248 static void
13249 dwarf2_free_abbrev_table (void *ptr_to_cu)
13250 {
13251 struct dwarf2_cu *cu = ptr_to_cu;
13252
13253 abbrev_table_free (cu->abbrev_table);
13254 /* Set this to NULL so that we SEGV if we try to read it later,
13255 and also because free_comp_unit verifies this is NULL. */
13256 cu->abbrev_table = NULL;
13257 }
13258 \f
13259 /* Returns nonzero if TAG represents a type that we might generate a partial
13260 symbol for. */
13261
13262 static int
13263 is_type_tag_for_partial (int tag)
13264 {
13265 switch (tag)
13266 {
13267 #if 0
13268 /* Some types that would be reasonable to generate partial symbols for,
13269 that we don't at present. */
13270 case DW_TAG_array_type:
13271 case DW_TAG_file_type:
13272 case DW_TAG_ptr_to_member_type:
13273 case DW_TAG_set_type:
13274 case DW_TAG_string_type:
13275 case DW_TAG_subroutine_type:
13276 #endif
13277 case DW_TAG_base_type:
13278 case DW_TAG_class_type:
13279 case DW_TAG_interface_type:
13280 case DW_TAG_enumeration_type:
13281 case DW_TAG_structure_type:
13282 case DW_TAG_subrange_type:
13283 case DW_TAG_typedef:
13284 case DW_TAG_union_type:
13285 return 1;
13286 default:
13287 return 0;
13288 }
13289 }
13290
13291 /* Load all DIEs that are interesting for partial symbols into memory. */
13292
13293 static struct partial_die_info *
13294 load_partial_dies (const struct die_reader_specs *reader,
13295 gdb_byte *info_ptr, int building_psymtab)
13296 {
13297 struct dwarf2_cu *cu = reader->cu;
13298 struct objfile *objfile = cu->objfile;
13299 struct partial_die_info *part_die;
13300 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13301 struct abbrev_info *abbrev;
13302 unsigned int bytes_read;
13303 unsigned int load_all = 0;
13304 int nesting_level = 1;
13305
13306 parent_die = NULL;
13307 last_die = NULL;
13308
13309 gdb_assert (cu->per_cu != NULL);
13310 if (cu->per_cu->load_all_dies)
13311 load_all = 1;
13312
13313 cu->partial_dies
13314 = htab_create_alloc_ex (cu->header.length / 12,
13315 partial_die_hash,
13316 partial_die_eq,
13317 NULL,
13318 &cu->comp_unit_obstack,
13319 hashtab_obstack_allocate,
13320 dummy_obstack_deallocate);
13321
13322 part_die = obstack_alloc (&cu->comp_unit_obstack,
13323 sizeof (struct partial_die_info));
13324
13325 while (1)
13326 {
13327 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13328
13329 /* A NULL abbrev means the end of a series of children. */
13330 if (abbrev == NULL)
13331 {
13332 if (--nesting_level == 0)
13333 {
13334 /* PART_DIE was probably the last thing allocated on the
13335 comp_unit_obstack, so we could call obstack_free
13336 here. We don't do that because the waste is small,
13337 and will be cleaned up when we're done with this
13338 compilation unit. This way, we're also more robust
13339 against other users of the comp_unit_obstack. */
13340 return first_die;
13341 }
13342 info_ptr += bytes_read;
13343 last_die = parent_die;
13344 parent_die = parent_die->die_parent;
13345 continue;
13346 }
13347
13348 /* Check for template arguments. We never save these; if
13349 they're seen, we just mark the parent, and go on our way. */
13350 if (parent_die != NULL
13351 && cu->language == language_cplus
13352 && (abbrev->tag == DW_TAG_template_type_param
13353 || abbrev->tag == DW_TAG_template_value_param))
13354 {
13355 parent_die->has_template_arguments = 1;
13356
13357 if (!load_all)
13358 {
13359 /* We don't need a partial DIE for the template argument. */
13360 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13361 continue;
13362 }
13363 }
13364
13365 /* We only recurse into c++ subprograms looking for template arguments.
13366 Skip their other children. */
13367 if (!load_all
13368 && cu->language == language_cplus
13369 && parent_die != NULL
13370 && parent_die->tag == DW_TAG_subprogram)
13371 {
13372 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13373 continue;
13374 }
13375
13376 /* Check whether this DIE is interesting enough to save. Normally
13377 we would not be interested in members here, but there may be
13378 later variables referencing them via DW_AT_specification (for
13379 static members). */
13380 if (!load_all
13381 && !is_type_tag_for_partial (abbrev->tag)
13382 && abbrev->tag != DW_TAG_constant
13383 && abbrev->tag != DW_TAG_enumerator
13384 && abbrev->tag != DW_TAG_subprogram
13385 && abbrev->tag != DW_TAG_lexical_block
13386 && abbrev->tag != DW_TAG_variable
13387 && abbrev->tag != DW_TAG_namespace
13388 && abbrev->tag != DW_TAG_module
13389 && abbrev->tag != DW_TAG_member
13390 && abbrev->tag != DW_TAG_imported_unit)
13391 {
13392 /* Otherwise we skip to the next sibling, if any. */
13393 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13394 continue;
13395 }
13396
13397 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13398 info_ptr);
13399
13400 /* This two-pass algorithm for processing partial symbols has a
13401 high cost in cache pressure. Thus, handle some simple cases
13402 here which cover the majority of C partial symbols. DIEs
13403 which neither have specification tags in them, nor could have
13404 specification tags elsewhere pointing at them, can simply be
13405 processed and discarded.
13406
13407 This segment is also optional; scan_partial_symbols and
13408 add_partial_symbol will handle these DIEs if we chain
13409 them in normally. When compilers which do not emit large
13410 quantities of duplicate debug information are more common,
13411 this code can probably be removed. */
13412
13413 /* Any complete simple types at the top level (pretty much all
13414 of them, for a language without namespaces), can be processed
13415 directly. */
13416 if (parent_die == NULL
13417 && part_die->has_specification == 0
13418 && part_die->is_declaration == 0
13419 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13420 || part_die->tag == DW_TAG_base_type
13421 || part_die->tag == DW_TAG_subrange_type))
13422 {
13423 if (building_psymtab && part_die->name != NULL)
13424 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13425 VAR_DOMAIN, LOC_TYPEDEF,
13426 &objfile->static_psymbols,
13427 0, (CORE_ADDR) 0, cu->language, objfile);
13428 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13429 continue;
13430 }
13431
13432 /* The exception for DW_TAG_typedef with has_children above is
13433 a workaround of GCC PR debug/47510. In the case of this complaint
13434 type_name_no_tag_or_error will error on such types later.
13435
13436 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13437 it could not find the child DIEs referenced later, this is checked
13438 above. In correct DWARF DW_TAG_typedef should have no children. */
13439
13440 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13441 complaint (&symfile_complaints,
13442 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13443 "- DIE at 0x%x [in module %s]"),
13444 part_die->offset.sect_off, objfile->name);
13445
13446 /* If we're at the second level, and we're an enumerator, and
13447 our parent has no specification (meaning possibly lives in a
13448 namespace elsewhere), then we can add the partial symbol now
13449 instead of queueing it. */
13450 if (part_die->tag == DW_TAG_enumerator
13451 && parent_die != NULL
13452 && parent_die->die_parent == NULL
13453 && parent_die->tag == DW_TAG_enumeration_type
13454 && parent_die->has_specification == 0)
13455 {
13456 if (part_die->name == NULL)
13457 complaint (&symfile_complaints,
13458 _("malformed enumerator DIE ignored"));
13459 else if (building_psymtab)
13460 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13461 VAR_DOMAIN, LOC_CONST,
13462 (cu->language == language_cplus
13463 || cu->language == language_java)
13464 ? &objfile->global_psymbols
13465 : &objfile->static_psymbols,
13466 0, (CORE_ADDR) 0, cu->language, objfile);
13467
13468 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13469 continue;
13470 }
13471
13472 /* We'll save this DIE so link it in. */
13473 part_die->die_parent = parent_die;
13474 part_die->die_sibling = NULL;
13475 part_die->die_child = NULL;
13476
13477 if (last_die && last_die == parent_die)
13478 last_die->die_child = part_die;
13479 else if (last_die)
13480 last_die->die_sibling = part_die;
13481
13482 last_die = part_die;
13483
13484 if (first_die == NULL)
13485 first_die = part_die;
13486
13487 /* Maybe add the DIE to the hash table. Not all DIEs that we
13488 find interesting need to be in the hash table, because we
13489 also have the parent/sibling/child chains; only those that we
13490 might refer to by offset later during partial symbol reading.
13491
13492 For now this means things that might have be the target of a
13493 DW_AT_specification, DW_AT_abstract_origin, or
13494 DW_AT_extension. DW_AT_extension will refer only to
13495 namespaces; DW_AT_abstract_origin refers to functions (and
13496 many things under the function DIE, but we do not recurse
13497 into function DIEs during partial symbol reading) and
13498 possibly variables as well; DW_AT_specification refers to
13499 declarations. Declarations ought to have the DW_AT_declaration
13500 flag. It happens that GCC forgets to put it in sometimes, but
13501 only for functions, not for types.
13502
13503 Adding more things than necessary to the hash table is harmless
13504 except for the performance cost. Adding too few will result in
13505 wasted time in find_partial_die, when we reread the compilation
13506 unit with load_all_dies set. */
13507
13508 if (load_all
13509 || abbrev->tag == DW_TAG_constant
13510 || abbrev->tag == DW_TAG_subprogram
13511 || abbrev->tag == DW_TAG_variable
13512 || abbrev->tag == DW_TAG_namespace
13513 || part_die->is_declaration)
13514 {
13515 void **slot;
13516
13517 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13518 part_die->offset.sect_off, INSERT);
13519 *slot = part_die;
13520 }
13521
13522 part_die = obstack_alloc (&cu->comp_unit_obstack,
13523 sizeof (struct partial_die_info));
13524
13525 /* For some DIEs we want to follow their children (if any). For C
13526 we have no reason to follow the children of structures; for other
13527 languages we have to, so that we can get at method physnames
13528 to infer fully qualified class names, for DW_AT_specification,
13529 and for C++ template arguments. For C++, we also look one level
13530 inside functions to find template arguments (if the name of the
13531 function does not already contain the template arguments).
13532
13533 For Ada, we need to scan the children of subprograms and lexical
13534 blocks as well because Ada allows the definition of nested
13535 entities that could be interesting for the debugger, such as
13536 nested subprograms for instance. */
13537 if (last_die->has_children
13538 && (load_all
13539 || last_die->tag == DW_TAG_namespace
13540 || last_die->tag == DW_TAG_module
13541 || last_die->tag == DW_TAG_enumeration_type
13542 || (cu->language == language_cplus
13543 && last_die->tag == DW_TAG_subprogram
13544 && (last_die->name == NULL
13545 || strchr (last_die->name, '<') == NULL))
13546 || (cu->language != language_c
13547 && (last_die->tag == DW_TAG_class_type
13548 || last_die->tag == DW_TAG_interface_type
13549 || last_die->tag == DW_TAG_structure_type
13550 || last_die->tag == DW_TAG_union_type))
13551 || (cu->language == language_ada
13552 && (last_die->tag == DW_TAG_subprogram
13553 || last_die->tag == DW_TAG_lexical_block))))
13554 {
13555 nesting_level++;
13556 parent_die = last_die;
13557 continue;
13558 }
13559
13560 /* Otherwise we skip to the next sibling, if any. */
13561 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13562
13563 /* Back to the top, do it again. */
13564 }
13565 }
13566
13567 /* Read a minimal amount of information into the minimal die structure. */
13568
13569 static gdb_byte *
13570 read_partial_die (const struct die_reader_specs *reader,
13571 struct partial_die_info *part_die,
13572 struct abbrev_info *abbrev, unsigned int abbrev_len,
13573 gdb_byte *info_ptr)
13574 {
13575 struct dwarf2_cu *cu = reader->cu;
13576 struct objfile *objfile = cu->objfile;
13577 gdb_byte *buffer = reader->buffer;
13578 unsigned int i;
13579 struct attribute attr;
13580 int has_low_pc_attr = 0;
13581 int has_high_pc_attr = 0;
13582 int high_pc_relative = 0;
13583
13584 memset (part_die, 0, sizeof (struct partial_die_info));
13585
13586 part_die->offset.sect_off = info_ptr - buffer;
13587
13588 info_ptr += abbrev_len;
13589
13590 if (abbrev == NULL)
13591 return info_ptr;
13592
13593 part_die->tag = abbrev->tag;
13594 part_die->has_children = abbrev->has_children;
13595
13596 for (i = 0; i < abbrev->num_attrs; ++i)
13597 {
13598 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13599
13600 /* Store the data if it is of an attribute we want to keep in a
13601 partial symbol table. */
13602 switch (attr.name)
13603 {
13604 case DW_AT_name:
13605 switch (part_die->tag)
13606 {
13607 case DW_TAG_compile_unit:
13608 case DW_TAG_partial_unit:
13609 case DW_TAG_type_unit:
13610 /* Compilation units have a DW_AT_name that is a filename, not
13611 a source language identifier. */
13612 case DW_TAG_enumeration_type:
13613 case DW_TAG_enumerator:
13614 /* These tags always have simple identifiers already; no need
13615 to canonicalize them. */
13616 part_die->name = DW_STRING (&attr);
13617 break;
13618 default:
13619 part_die->name
13620 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13621 &objfile->objfile_obstack);
13622 break;
13623 }
13624 break;
13625 case DW_AT_linkage_name:
13626 case DW_AT_MIPS_linkage_name:
13627 /* Note that both forms of linkage name might appear. We
13628 assume they will be the same, and we only store the last
13629 one we see. */
13630 if (cu->language == language_ada)
13631 part_die->name = DW_STRING (&attr);
13632 part_die->linkage_name = DW_STRING (&attr);
13633 break;
13634 case DW_AT_low_pc:
13635 has_low_pc_attr = 1;
13636 part_die->lowpc = DW_ADDR (&attr);
13637 break;
13638 case DW_AT_high_pc:
13639 has_high_pc_attr = 1;
13640 if (attr.form == DW_FORM_addr
13641 || attr.form == DW_FORM_GNU_addr_index)
13642 part_die->highpc = DW_ADDR (&attr);
13643 else
13644 {
13645 high_pc_relative = 1;
13646 part_die->highpc = DW_UNSND (&attr);
13647 }
13648 break;
13649 case DW_AT_location:
13650 /* Support the .debug_loc offsets. */
13651 if (attr_form_is_block (&attr))
13652 {
13653 part_die->d.locdesc = DW_BLOCK (&attr);
13654 }
13655 else if (attr_form_is_section_offset (&attr))
13656 {
13657 dwarf2_complex_location_expr_complaint ();
13658 }
13659 else
13660 {
13661 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13662 "partial symbol information");
13663 }
13664 break;
13665 case DW_AT_external:
13666 part_die->is_external = DW_UNSND (&attr);
13667 break;
13668 case DW_AT_declaration:
13669 part_die->is_declaration = DW_UNSND (&attr);
13670 break;
13671 case DW_AT_type:
13672 part_die->has_type = 1;
13673 break;
13674 case DW_AT_abstract_origin:
13675 case DW_AT_specification:
13676 case DW_AT_extension:
13677 part_die->has_specification = 1;
13678 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13679 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13680 || cu->per_cu->is_dwz);
13681 break;
13682 case DW_AT_sibling:
13683 /* Ignore absolute siblings, they might point outside of
13684 the current compile unit. */
13685 if (attr.form == DW_FORM_ref_addr)
13686 complaint (&symfile_complaints,
13687 _("ignoring absolute DW_AT_sibling"));
13688 else
13689 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13690 break;
13691 case DW_AT_byte_size:
13692 part_die->has_byte_size = 1;
13693 break;
13694 case DW_AT_calling_convention:
13695 /* DWARF doesn't provide a way to identify a program's source-level
13696 entry point. DW_AT_calling_convention attributes are only meant
13697 to describe functions' calling conventions.
13698
13699 However, because it's a necessary piece of information in
13700 Fortran, and because DW_CC_program is the only piece of debugging
13701 information whose definition refers to a 'main program' at all,
13702 several compilers have begun marking Fortran main programs with
13703 DW_CC_program --- even when those functions use the standard
13704 calling conventions.
13705
13706 So until DWARF specifies a way to provide this information and
13707 compilers pick up the new representation, we'll support this
13708 practice. */
13709 if (DW_UNSND (&attr) == DW_CC_program
13710 && cu->language == language_fortran)
13711 {
13712 set_main_name (part_die->name);
13713
13714 /* As this DIE has a static linkage the name would be difficult
13715 to look up later. */
13716 language_of_main = language_fortran;
13717 }
13718 break;
13719 case DW_AT_inline:
13720 if (DW_UNSND (&attr) == DW_INL_inlined
13721 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13722 part_die->may_be_inlined = 1;
13723 break;
13724
13725 case DW_AT_import:
13726 if (part_die->tag == DW_TAG_imported_unit)
13727 {
13728 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13729 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13730 || cu->per_cu->is_dwz);
13731 }
13732 break;
13733
13734 default:
13735 break;
13736 }
13737 }
13738
13739 if (high_pc_relative)
13740 part_die->highpc += part_die->lowpc;
13741
13742 if (has_low_pc_attr && has_high_pc_attr)
13743 {
13744 /* When using the GNU linker, .gnu.linkonce. sections are used to
13745 eliminate duplicate copies of functions and vtables and such.
13746 The linker will arbitrarily choose one and discard the others.
13747 The AT_*_pc values for such functions refer to local labels in
13748 these sections. If the section from that file was discarded, the
13749 labels are not in the output, so the relocs get a value of 0.
13750 If this is a discarded function, mark the pc bounds as invalid,
13751 so that GDB will ignore it. */
13752 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13753 {
13754 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13755
13756 complaint (&symfile_complaints,
13757 _("DW_AT_low_pc %s is zero "
13758 "for DIE at 0x%x [in module %s]"),
13759 paddress (gdbarch, part_die->lowpc),
13760 part_die->offset.sect_off, objfile->name);
13761 }
13762 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13763 else if (part_die->lowpc >= part_die->highpc)
13764 {
13765 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13766
13767 complaint (&symfile_complaints,
13768 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13769 "for DIE at 0x%x [in module %s]"),
13770 paddress (gdbarch, part_die->lowpc),
13771 paddress (gdbarch, part_die->highpc),
13772 part_die->offset.sect_off, objfile->name);
13773 }
13774 else
13775 part_die->has_pc_info = 1;
13776 }
13777
13778 return info_ptr;
13779 }
13780
13781 /* Find a cached partial DIE at OFFSET in CU. */
13782
13783 static struct partial_die_info *
13784 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13785 {
13786 struct partial_die_info *lookup_die = NULL;
13787 struct partial_die_info part_die;
13788
13789 part_die.offset = offset;
13790 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13791 offset.sect_off);
13792
13793 return lookup_die;
13794 }
13795
13796 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13797 except in the case of .debug_types DIEs which do not reference
13798 outside their CU (they do however referencing other types via
13799 DW_FORM_ref_sig8). */
13800
13801 static struct partial_die_info *
13802 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13803 {
13804 struct objfile *objfile = cu->objfile;
13805 struct dwarf2_per_cu_data *per_cu = NULL;
13806 struct partial_die_info *pd = NULL;
13807
13808 if (offset_in_dwz == cu->per_cu->is_dwz
13809 && offset_in_cu_p (&cu->header, offset))
13810 {
13811 pd = find_partial_die_in_comp_unit (offset, cu);
13812 if (pd != NULL)
13813 return pd;
13814 /* We missed recording what we needed.
13815 Load all dies and try again. */
13816 per_cu = cu->per_cu;
13817 }
13818 else
13819 {
13820 /* TUs don't reference other CUs/TUs (except via type signatures). */
13821 if (cu->per_cu->is_debug_types)
13822 {
13823 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13824 " external reference to offset 0x%lx [in module %s].\n"),
13825 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13826 bfd_get_filename (objfile->obfd));
13827 }
13828 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13829 objfile);
13830
13831 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13832 load_partial_comp_unit (per_cu);
13833
13834 per_cu->cu->last_used = 0;
13835 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13836 }
13837
13838 /* If we didn't find it, and not all dies have been loaded,
13839 load them all and try again. */
13840
13841 if (pd == NULL && per_cu->load_all_dies == 0)
13842 {
13843 per_cu->load_all_dies = 1;
13844
13845 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13846 THIS_CU->cu may already be in use. So we can't just free it and
13847 replace its DIEs with the ones we read in. Instead, we leave those
13848 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13849 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13850 set. */
13851 load_partial_comp_unit (per_cu);
13852
13853 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13854 }
13855
13856 if (pd == NULL)
13857 internal_error (__FILE__, __LINE__,
13858 _("could not find partial DIE 0x%x "
13859 "in cache [from module %s]\n"),
13860 offset.sect_off, bfd_get_filename (objfile->obfd));
13861 return pd;
13862 }
13863
13864 /* See if we can figure out if the class lives in a namespace. We do
13865 this by looking for a member function; its demangled name will
13866 contain namespace info, if there is any. */
13867
13868 static void
13869 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13870 struct dwarf2_cu *cu)
13871 {
13872 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13873 what template types look like, because the demangler
13874 frequently doesn't give the same name as the debug info. We
13875 could fix this by only using the demangled name to get the
13876 prefix (but see comment in read_structure_type). */
13877
13878 struct partial_die_info *real_pdi;
13879 struct partial_die_info *child_pdi;
13880
13881 /* If this DIE (this DIE's specification, if any) has a parent, then
13882 we should not do this. We'll prepend the parent's fully qualified
13883 name when we create the partial symbol. */
13884
13885 real_pdi = struct_pdi;
13886 while (real_pdi->has_specification)
13887 real_pdi = find_partial_die (real_pdi->spec_offset,
13888 real_pdi->spec_is_dwz, cu);
13889
13890 if (real_pdi->die_parent != NULL)
13891 return;
13892
13893 for (child_pdi = struct_pdi->die_child;
13894 child_pdi != NULL;
13895 child_pdi = child_pdi->die_sibling)
13896 {
13897 if (child_pdi->tag == DW_TAG_subprogram
13898 && child_pdi->linkage_name != NULL)
13899 {
13900 char *actual_class_name
13901 = language_class_name_from_physname (cu->language_defn,
13902 child_pdi->linkage_name);
13903 if (actual_class_name != NULL)
13904 {
13905 struct_pdi->name
13906 = obstack_copy0 (&cu->objfile->objfile_obstack,
13907 actual_class_name,
13908 strlen (actual_class_name));
13909 xfree (actual_class_name);
13910 }
13911 break;
13912 }
13913 }
13914 }
13915
13916 /* Adjust PART_DIE before generating a symbol for it. This function
13917 may set the is_external flag or change the DIE's name. */
13918
13919 static void
13920 fixup_partial_die (struct partial_die_info *part_die,
13921 struct dwarf2_cu *cu)
13922 {
13923 /* Once we've fixed up a die, there's no point in doing so again.
13924 This also avoids a memory leak if we were to call
13925 guess_partial_die_structure_name multiple times. */
13926 if (part_die->fixup_called)
13927 return;
13928
13929 /* If we found a reference attribute and the DIE has no name, try
13930 to find a name in the referred to DIE. */
13931
13932 if (part_die->name == NULL && part_die->has_specification)
13933 {
13934 struct partial_die_info *spec_die;
13935
13936 spec_die = find_partial_die (part_die->spec_offset,
13937 part_die->spec_is_dwz, cu);
13938
13939 fixup_partial_die (spec_die, cu);
13940
13941 if (spec_die->name)
13942 {
13943 part_die->name = spec_die->name;
13944
13945 /* Copy DW_AT_external attribute if it is set. */
13946 if (spec_die->is_external)
13947 part_die->is_external = spec_die->is_external;
13948 }
13949 }
13950
13951 /* Set default names for some unnamed DIEs. */
13952
13953 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
13954 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
13955
13956 /* If there is no parent die to provide a namespace, and there are
13957 children, see if we can determine the namespace from their linkage
13958 name. */
13959 if (cu->language == language_cplus
13960 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
13961 && part_die->die_parent == NULL
13962 && part_die->has_children
13963 && (part_die->tag == DW_TAG_class_type
13964 || part_die->tag == DW_TAG_structure_type
13965 || part_die->tag == DW_TAG_union_type))
13966 guess_partial_die_structure_name (part_die, cu);
13967
13968 /* GCC might emit a nameless struct or union that has a linkage
13969 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13970 if (part_die->name == NULL
13971 && (part_die->tag == DW_TAG_class_type
13972 || part_die->tag == DW_TAG_interface_type
13973 || part_die->tag == DW_TAG_structure_type
13974 || part_die->tag == DW_TAG_union_type)
13975 && part_die->linkage_name != NULL)
13976 {
13977 char *demangled;
13978
13979 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13980 if (demangled)
13981 {
13982 const char *base;
13983
13984 /* Strip any leading namespaces/classes, keep only the base name.
13985 DW_AT_name for named DIEs does not contain the prefixes. */
13986 base = strrchr (demangled, ':');
13987 if (base && base > demangled && base[-1] == ':')
13988 base++;
13989 else
13990 base = demangled;
13991
13992 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
13993 base, strlen (base));
13994 xfree (demangled);
13995 }
13996 }
13997
13998 part_die->fixup_called = 1;
13999 }
14000
14001 /* Read an attribute value described by an attribute form. */
14002
14003 static gdb_byte *
14004 read_attribute_value (const struct die_reader_specs *reader,
14005 struct attribute *attr, unsigned form,
14006 gdb_byte *info_ptr)
14007 {
14008 struct dwarf2_cu *cu = reader->cu;
14009 bfd *abfd = reader->abfd;
14010 struct comp_unit_head *cu_header = &cu->header;
14011 unsigned int bytes_read;
14012 struct dwarf_block *blk;
14013
14014 attr->form = form;
14015 switch (form)
14016 {
14017 case DW_FORM_ref_addr:
14018 if (cu->header.version == 2)
14019 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14020 else
14021 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14022 &cu->header, &bytes_read);
14023 info_ptr += bytes_read;
14024 break;
14025 case DW_FORM_GNU_ref_alt:
14026 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14027 info_ptr += bytes_read;
14028 break;
14029 case DW_FORM_addr:
14030 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14031 info_ptr += bytes_read;
14032 break;
14033 case DW_FORM_block2:
14034 blk = dwarf_alloc_block (cu);
14035 blk->size = read_2_bytes (abfd, info_ptr);
14036 info_ptr += 2;
14037 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14038 info_ptr += blk->size;
14039 DW_BLOCK (attr) = blk;
14040 break;
14041 case DW_FORM_block4:
14042 blk = dwarf_alloc_block (cu);
14043 blk->size = read_4_bytes (abfd, info_ptr);
14044 info_ptr += 4;
14045 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14046 info_ptr += blk->size;
14047 DW_BLOCK (attr) = blk;
14048 break;
14049 case DW_FORM_data2:
14050 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14051 info_ptr += 2;
14052 break;
14053 case DW_FORM_data4:
14054 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14055 info_ptr += 4;
14056 break;
14057 case DW_FORM_data8:
14058 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14059 info_ptr += 8;
14060 break;
14061 case DW_FORM_sec_offset:
14062 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14063 info_ptr += bytes_read;
14064 break;
14065 case DW_FORM_string:
14066 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14067 DW_STRING_IS_CANONICAL (attr) = 0;
14068 info_ptr += bytes_read;
14069 break;
14070 case DW_FORM_strp:
14071 if (!cu->per_cu->is_dwz)
14072 {
14073 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14074 &bytes_read);
14075 DW_STRING_IS_CANONICAL (attr) = 0;
14076 info_ptr += bytes_read;
14077 break;
14078 }
14079 /* FALLTHROUGH */
14080 case DW_FORM_GNU_strp_alt:
14081 {
14082 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14083 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14084 &bytes_read);
14085
14086 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14087 DW_STRING_IS_CANONICAL (attr) = 0;
14088 info_ptr += bytes_read;
14089 }
14090 break;
14091 case DW_FORM_exprloc:
14092 case DW_FORM_block:
14093 blk = dwarf_alloc_block (cu);
14094 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14095 info_ptr += bytes_read;
14096 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14097 info_ptr += blk->size;
14098 DW_BLOCK (attr) = blk;
14099 break;
14100 case DW_FORM_block1:
14101 blk = dwarf_alloc_block (cu);
14102 blk->size = read_1_byte (abfd, info_ptr);
14103 info_ptr += 1;
14104 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14105 info_ptr += blk->size;
14106 DW_BLOCK (attr) = blk;
14107 break;
14108 case DW_FORM_data1:
14109 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14110 info_ptr += 1;
14111 break;
14112 case DW_FORM_flag:
14113 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14114 info_ptr += 1;
14115 break;
14116 case DW_FORM_flag_present:
14117 DW_UNSND (attr) = 1;
14118 break;
14119 case DW_FORM_sdata:
14120 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14121 info_ptr += bytes_read;
14122 break;
14123 case DW_FORM_udata:
14124 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14125 info_ptr += bytes_read;
14126 break;
14127 case DW_FORM_ref1:
14128 DW_UNSND (attr) = (cu->header.offset.sect_off
14129 + read_1_byte (abfd, info_ptr));
14130 info_ptr += 1;
14131 break;
14132 case DW_FORM_ref2:
14133 DW_UNSND (attr) = (cu->header.offset.sect_off
14134 + read_2_bytes (abfd, info_ptr));
14135 info_ptr += 2;
14136 break;
14137 case DW_FORM_ref4:
14138 DW_UNSND (attr) = (cu->header.offset.sect_off
14139 + read_4_bytes (abfd, info_ptr));
14140 info_ptr += 4;
14141 break;
14142 case DW_FORM_ref8:
14143 DW_UNSND (attr) = (cu->header.offset.sect_off
14144 + read_8_bytes (abfd, info_ptr));
14145 info_ptr += 8;
14146 break;
14147 case DW_FORM_ref_sig8:
14148 /* Convert the signature to something we can record in DW_UNSND
14149 for later lookup.
14150 NOTE: This is NULL if the type wasn't found. */
14151 DW_SIGNATURED_TYPE (attr) =
14152 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14153 info_ptr += 8;
14154 break;
14155 case DW_FORM_ref_udata:
14156 DW_UNSND (attr) = (cu->header.offset.sect_off
14157 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14158 info_ptr += bytes_read;
14159 break;
14160 case DW_FORM_indirect:
14161 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14162 info_ptr += bytes_read;
14163 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14164 break;
14165 case DW_FORM_GNU_addr_index:
14166 if (reader->dwo_file == NULL)
14167 {
14168 /* For now flag a hard error.
14169 Later we can turn this into a complaint. */
14170 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14171 dwarf_form_name (form),
14172 bfd_get_filename (abfd));
14173 }
14174 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14175 info_ptr += bytes_read;
14176 break;
14177 case DW_FORM_GNU_str_index:
14178 if (reader->dwo_file == NULL)
14179 {
14180 /* For now flag a hard error.
14181 Later we can turn this into a complaint if warranted. */
14182 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14183 dwarf_form_name (form),
14184 bfd_get_filename (abfd));
14185 }
14186 {
14187 ULONGEST str_index =
14188 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14189
14190 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14191 DW_STRING_IS_CANONICAL (attr) = 0;
14192 info_ptr += bytes_read;
14193 }
14194 break;
14195 default:
14196 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14197 dwarf_form_name (form),
14198 bfd_get_filename (abfd));
14199 }
14200
14201 /* Super hack. */
14202 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14203 attr->form = DW_FORM_GNU_ref_alt;
14204
14205 /* We have seen instances where the compiler tried to emit a byte
14206 size attribute of -1 which ended up being encoded as an unsigned
14207 0xffffffff. Although 0xffffffff is technically a valid size value,
14208 an object of this size seems pretty unlikely so we can relatively
14209 safely treat these cases as if the size attribute was invalid and
14210 treat them as zero by default. */
14211 if (attr->name == DW_AT_byte_size
14212 && form == DW_FORM_data4
14213 && DW_UNSND (attr) >= 0xffffffff)
14214 {
14215 complaint
14216 (&symfile_complaints,
14217 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14218 hex_string (DW_UNSND (attr)));
14219 DW_UNSND (attr) = 0;
14220 }
14221
14222 return info_ptr;
14223 }
14224
14225 /* Read an attribute described by an abbreviated attribute. */
14226
14227 static gdb_byte *
14228 read_attribute (const struct die_reader_specs *reader,
14229 struct attribute *attr, struct attr_abbrev *abbrev,
14230 gdb_byte *info_ptr)
14231 {
14232 attr->name = abbrev->name;
14233 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14234 }
14235
14236 /* Read dwarf information from a buffer. */
14237
14238 static unsigned int
14239 read_1_byte (bfd *abfd, const gdb_byte *buf)
14240 {
14241 return bfd_get_8 (abfd, buf);
14242 }
14243
14244 static int
14245 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14246 {
14247 return bfd_get_signed_8 (abfd, buf);
14248 }
14249
14250 static unsigned int
14251 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14252 {
14253 return bfd_get_16 (abfd, buf);
14254 }
14255
14256 static int
14257 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14258 {
14259 return bfd_get_signed_16 (abfd, buf);
14260 }
14261
14262 static unsigned int
14263 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14264 {
14265 return bfd_get_32 (abfd, buf);
14266 }
14267
14268 static int
14269 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14270 {
14271 return bfd_get_signed_32 (abfd, buf);
14272 }
14273
14274 static ULONGEST
14275 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14276 {
14277 return bfd_get_64 (abfd, buf);
14278 }
14279
14280 static CORE_ADDR
14281 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
14282 unsigned int *bytes_read)
14283 {
14284 struct comp_unit_head *cu_header = &cu->header;
14285 CORE_ADDR retval = 0;
14286
14287 if (cu_header->signed_addr_p)
14288 {
14289 switch (cu_header->addr_size)
14290 {
14291 case 2:
14292 retval = bfd_get_signed_16 (abfd, buf);
14293 break;
14294 case 4:
14295 retval = bfd_get_signed_32 (abfd, buf);
14296 break;
14297 case 8:
14298 retval = bfd_get_signed_64 (abfd, buf);
14299 break;
14300 default:
14301 internal_error (__FILE__, __LINE__,
14302 _("read_address: bad switch, signed [in module %s]"),
14303 bfd_get_filename (abfd));
14304 }
14305 }
14306 else
14307 {
14308 switch (cu_header->addr_size)
14309 {
14310 case 2:
14311 retval = bfd_get_16 (abfd, buf);
14312 break;
14313 case 4:
14314 retval = bfd_get_32 (abfd, buf);
14315 break;
14316 case 8:
14317 retval = bfd_get_64 (abfd, buf);
14318 break;
14319 default:
14320 internal_error (__FILE__, __LINE__,
14321 _("read_address: bad switch, "
14322 "unsigned [in module %s]"),
14323 bfd_get_filename (abfd));
14324 }
14325 }
14326
14327 *bytes_read = cu_header->addr_size;
14328 return retval;
14329 }
14330
14331 /* Read the initial length from a section. The (draft) DWARF 3
14332 specification allows the initial length to take up either 4 bytes
14333 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14334 bytes describe the length and all offsets will be 8 bytes in length
14335 instead of 4.
14336
14337 An older, non-standard 64-bit format is also handled by this
14338 function. The older format in question stores the initial length
14339 as an 8-byte quantity without an escape value. Lengths greater
14340 than 2^32 aren't very common which means that the initial 4 bytes
14341 is almost always zero. Since a length value of zero doesn't make
14342 sense for the 32-bit format, this initial zero can be considered to
14343 be an escape value which indicates the presence of the older 64-bit
14344 format. As written, the code can't detect (old format) lengths
14345 greater than 4GB. If it becomes necessary to handle lengths
14346 somewhat larger than 4GB, we could allow other small values (such
14347 as the non-sensical values of 1, 2, and 3) to also be used as
14348 escape values indicating the presence of the old format.
14349
14350 The value returned via bytes_read should be used to increment the
14351 relevant pointer after calling read_initial_length().
14352
14353 [ Note: read_initial_length() and read_offset() are based on the
14354 document entitled "DWARF Debugging Information Format", revision
14355 3, draft 8, dated November 19, 2001. This document was obtained
14356 from:
14357
14358 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14359
14360 This document is only a draft and is subject to change. (So beware.)
14361
14362 Details regarding the older, non-standard 64-bit format were
14363 determined empirically by examining 64-bit ELF files produced by
14364 the SGI toolchain on an IRIX 6.5 machine.
14365
14366 - Kevin, July 16, 2002
14367 ] */
14368
14369 static LONGEST
14370 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
14371 {
14372 LONGEST length = bfd_get_32 (abfd, buf);
14373
14374 if (length == 0xffffffff)
14375 {
14376 length = bfd_get_64 (abfd, buf + 4);
14377 *bytes_read = 12;
14378 }
14379 else if (length == 0)
14380 {
14381 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14382 length = bfd_get_64 (abfd, buf);
14383 *bytes_read = 8;
14384 }
14385 else
14386 {
14387 *bytes_read = 4;
14388 }
14389
14390 return length;
14391 }
14392
14393 /* Cover function for read_initial_length.
14394 Returns the length of the object at BUF, and stores the size of the
14395 initial length in *BYTES_READ and stores the size that offsets will be in
14396 *OFFSET_SIZE.
14397 If the initial length size is not equivalent to that specified in
14398 CU_HEADER then issue a complaint.
14399 This is useful when reading non-comp-unit headers. */
14400
14401 static LONGEST
14402 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14403 const struct comp_unit_head *cu_header,
14404 unsigned int *bytes_read,
14405 unsigned int *offset_size)
14406 {
14407 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14408
14409 gdb_assert (cu_header->initial_length_size == 4
14410 || cu_header->initial_length_size == 8
14411 || cu_header->initial_length_size == 12);
14412
14413 if (cu_header->initial_length_size != *bytes_read)
14414 complaint (&symfile_complaints,
14415 _("intermixed 32-bit and 64-bit DWARF sections"));
14416
14417 *offset_size = (*bytes_read == 4) ? 4 : 8;
14418 return length;
14419 }
14420
14421 /* Read an offset from the data stream. The size of the offset is
14422 given by cu_header->offset_size. */
14423
14424 static LONGEST
14425 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
14426 unsigned int *bytes_read)
14427 {
14428 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14429
14430 *bytes_read = cu_header->offset_size;
14431 return offset;
14432 }
14433
14434 /* Read an offset from the data stream. */
14435
14436 static LONGEST
14437 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
14438 {
14439 LONGEST retval = 0;
14440
14441 switch (offset_size)
14442 {
14443 case 4:
14444 retval = bfd_get_32 (abfd, buf);
14445 break;
14446 case 8:
14447 retval = bfd_get_64 (abfd, buf);
14448 break;
14449 default:
14450 internal_error (__FILE__, __LINE__,
14451 _("read_offset_1: bad switch [in module %s]"),
14452 bfd_get_filename (abfd));
14453 }
14454
14455 return retval;
14456 }
14457
14458 static gdb_byte *
14459 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
14460 {
14461 /* If the size of a host char is 8 bits, we can return a pointer
14462 to the buffer, otherwise we have to copy the data to a buffer
14463 allocated on the temporary obstack. */
14464 gdb_assert (HOST_CHAR_BIT == 8);
14465 return buf;
14466 }
14467
14468 static char *
14469 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14470 {
14471 /* If the size of a host char is 8 bits, we can return a pointer
14472 to the string, otherwise we have to copy the string to a buffer
14473 allocated on the temporary obstack. */
14474 gdb_assert (HOST_CHAR_BIT == 8);
14475 if (*buf == '\0')
14476 {
14477 *bytes_read_ptr = 1;
14478 return NULL;
14479 }
14480 *bytes_read_ptr = strlen ((char *) buf) + 1;
14481 return (char *) buf;
14482 }
14483
14484 static char *
14485 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14486 {
14487 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14488 if (dwarf2_per_objfile->str.buffer == NULL)
14489 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14490 bfd_get_filename (abfd));
14491 if (str_offset >= dwarf2_per_objfile->str.size)
14492 error (_("DW_FORM_strp pointing outside of "
14493 ".debug_str section [in module %s]"),
14494 bfd_get_filename (abfd));
14495 gdb_assert (HOST_CHAR_BIT == 8);
14496 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14497 return NULL;
14498 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
14499 }
14500
14501 /* Read a string at offset STR_OFFSET in the .debug_str section from
14502 the .dwz file DWZ. Throw an error if the offset is too large. If
14503 the string consists of a single NUL byte, return NULL; otherwise
14504 return a pointer to the string. */
14505
14506 static char *
14507 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14508 {
14509 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14510
14511 if (dwz->str.buffer == NULL)
14512 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14513 "section [in module %s]"),
14514 bfd_get_filename (dwz->dwz_bfd));
14515 if (str_offset >= dwz->str.size)
14516 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14517 ".debug_str section [in module %s]"),
14518 bfd_get_filename (dwz->dwz_bfd));
14519 gdb_assert (HOST_CHAR_BIT == 8);
14520 if (dwz->str.buffer[str_offset] == '\0')
14521 return NULL;
14522 return (char *) (dwz->str.buffer + str_offset);
14523 }
14524
14525 static char *
14526 read_indirect_string (bfd *abfd, gdb_byte *buf,
14527 const struct comp_unit_head *cu_header,
14528 unsigned int *bytes_read_ptr)
14529 {
14530 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14531
14532 return read_indirect_string_at_offset (abfd, str_offset);
14533 }
14534
14535 static ULONGEST
14536 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14537 {
14538 ULONGEST result;
14539 unsigned int num_read;
14540 int i, shift;
14541 unsigned char byte;
14542
14543 result = 0;
14544 shift = 0;
14545 num_read = 0;
14546 i = 0;
14547 while (1)
14548 {
14549 byte = bfd_get_8 (abfd, buf);
14550 buf++;
14551 num_read++;
14552 result |= ((ULONGEST) (byte & 127) << shift);
14553 if ((byte & 128) == 0)
14554 {
14555 break;
14556 }
14557 shift += 7;
14558 }
14559 *bytes_read_ptr = num_read;
14560 return result;
14561 }
14562
14563 static LONGEST
14564 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14565 {
14566 LONGEST result;
14567 int i, shift, num_read;
14568 unsigned char byte;
14569
14570 result = 0;
14571 shift = 0;
14572 num_read = 0;
14573 i = 0;
14574 while (1)
14575 {
14576 byte = bfd_get_8 (abfd, buf);
14577 buf++;
14578 num_read++;
14579 result |= ((LONGEST) (byte & 127) << shift);
14580 shift += 7;
14581 if ((byte & 128) == 0)
14582 {
14583 break;
14584 }
14585 }
14586 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14587 result |= -(((LONGEST) 1) << shift);
14588 *bytes_read_ptr = num_read;
14589 return result;
14590 }
14591
14592 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14593 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14594 ADDR_SIZE is the size of addresses from the CU header. */
14595
14596 static CORE_ADDR
14597 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14598 {
14599 struct objfile *objfile = dwarf2_per_objfile->objfile;
14600 bfd *abfd = objfile->obfd;
14601 const gdb_byte *info_ptr;
14602
14603 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14604 if (dwarf2_per_objfile->addr.buffer == NULL)
14605 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14606 objfile->name);
14607 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14608 error (_("DW_FORM_addr_index pointing outside of "
14609 ".debug_addr section [in module %s]"),
14610 objfile->name);
14611 info_ptr = (dwarf2_per_objfile->addr.buffer
14612 + addr_base + addr_index * addr_size);
14613 if (addr_size == 4)
14614 return bfd_get_32 (abfd, info_ptr);
14615 else
14616 return bfd_get_64 (abfd, info_ptr);
14617 }
14618
14619 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14620
14621 static CORE_ADDR
14622 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14623 {
14624 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14625 }
14626
14627 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14628
14629 static CORE_ADDR
14630 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14631 unsigned int *bytes_read)
14632 {
14633 bfd *abfd = cu->objfile->obfd;
14634 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14635
14636 return read_addr_index (cu, addr_index);
14637 }
14638
14639 /* Data structure to pass results from dwarf2_read_addr_index_reader
14640 back to dwarf2_read_addr_index. */
14641
14642 struct dwarf2_read_addr_index_data
14643 {
14644 ULONGEST addr_base;
14645 int addr_size;
14646 };
14647
14648 /* die_reader_func for dwarf2_read_addr_index. */
14649
14650 static void
14651 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14652 gdb_byte *info_ptr,
14653 struct die_info *comp_unit_die,
14654 int has_children,
14655 void *data)
14656 {
14657 struct dwarf2_cu *cu = reader->cu;
14658 struct dwarf2_read_addr_index_data *aidata =
14659 (struct dwarf2_read_addr_index_data *) data;
14660
14661 aidata->addr_base = cu->addr_base;
14662 aidata->addr_size = cu->header.addr_size;
14663 }
14664
14665 /* Given an index in .debug_addr, fetch the value.
14666 NOTE: This can be called during dwarf expression evaluation,
14667 long after the debug information has been read, and thus per_cu->cu
14668 may no longer exist. */
14669
14670 CORE_ADDR
14671 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14672 unsigned int addr_index)
14673 {
14674 struct objfile *objfile = per_cu->objfile;
14675 struct dwarf2_cu *cu = per_cu->cu;
14676 ULONGEST addr_base;
14677 int addr_size;
14678
14679 /* This is intended to be called from outside this file. */
14680 dw2_setup (objfile);
14681
14682 /* We need addr_base and addr_size.
14683 If we don't have PER_CU->cu, we have to get it.
14684 Nasty, but the alternative is storing the needed info in PER_CU,
14685 which at this point doesn't seem justified: it's not clear how frequently
14686 it would get used and it would increase the size of every PER_CU.
14687 Entry points like dwarf2_per_cu_addr_size do a similar thing
14688 so we're not in uncharted territory here.
14689 Alas we need to be a bit more complicated as addr_base is contained
14690 in the DIE.
14691
14692 We don't need to read the entire CU(/TU).
14693 We just need the header and top level die.
14694
14695 IWBN to use the aging mechanism to let us lazily later discard the CU.
14696 For now we skip this optimization. */
14697
14698 if (cu != NULL)
14699 {
14700 addr_base = cu->addr_base;
14701 addr_size = cu->header.addr_size;
14702 }
14703 else
14704 {
14705 struct dwarf2_read_addr_index_data aidata;
14706
14707 /* Note: We can't use init_cutu_and_read_dies_simple here,
14708 we need addr_base. */
14709 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14710 dwarf2_read_addr_index_reader, &aidata);
14711 addr_base = aidata.addr_base;
14712 addr_size = aidata.addr_size;
14713 }
14714
14715 return read_addr_index_1 (addr_index, addr_base, addr_size);
14716 }
14717
14718 /* Given a DW_AT_str_index, fetch the string. */
14719
14720 static char *
14721 read_str_index (const struct die_reader_specs *reader,
14722 struct dwarf2_cu *cu, ULONGEST str_index)
14723 {
14724 struct objfile *objfile = dwarf2_per_objfile->objfile;
14725 const char *dwo_name = objfile->name;
14726 bfd *abfd = objfile->obfd;
14727 struct dwo_sections *sections = &reader->dwo_file->sections;
14728 gdb_byte *info_ptr;
14729 ULONGEST str_offset;
14730
14731 dwarf2_read_section (objfile, &sections->str);
14732 dwarf2_read_section (objfile, &sections->str_offsets);
14733 if (sections->str.buffer == NULL)
14734 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14735 " in CU at offset 0x%lx [in module %s]"),
14736 (long) cu->header.offset.sect_off, dwo_name);
14737 if (sections->str_offsets.buffer == NULL)
14738 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14739 " in CU at offset 0x%lx [in module %s]"),
14740 (long) cu->header.offset.sect_off, dwo_name);
14741 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14742 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14743 " section in CU at offset 0x%lx [in module %s]"),
14744 (long) cu->header.offset.sect_off, dwo_name);
14745 info_ptr = (sections->str_offsets.buffer
14746 + str_index * cu->header.offset_size);
14747 if (cu->header.offset_size == 4)
14748 str_offset = bfd_get_32 (abfd, info_ptr);
14749 else
14750 str_offset = bfd_get_64 (abfd, info_ptr);
14751 if (str_offset >= sections->str.size)
14752 error (_("Offset from DW_FORM_str_index pointing outside of"
14753 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14754 (long) cu->header.offset.sect_off, dwo_name);
14755 return (char *) (sections->str.buffer + str_offset);
14756 }
14757
14758 /* Return the length of an LEB128 number in BUF. */
14759
14760 static int
14761 leb128_size (const gdb_byte *buf)
14762 {
14763 const gdb_byte *begin = buf;
14764 gdb_byte byte;
14765
14766 while (1)
14767 {
14768 byte = *buf++;
14769 if ((byte & 128) == 0)
14770 return buf - begin;
14771 }
14772 }
14773
14774 static void
14775 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14776 {
14777 switch (lang)
14778 {
14779 case DW_LANG_C89:
14780 case DW_LANG_C99:
14781 case DW_LANG_C:
14782 cu->language = language_c;
14783 break;
14784 case DW_LANG_C_plus_plus:
14785 cu->language = language_cplus;
14786 break;
14787 case DW_LANG_D:
14788 cu->language = language_d;
14789 break;
14790 case DW_LANG_Fortran77:
14791 case DW_LANG_Fortran90:
14792 case DW_LANG_Fortran95:
14793 cu->language = language_fortran;
14794 break;
14795 case DW_LANG_Go:
14796 cu->language = language_go;
14797 break;
14798 case DW_LANG_Mips_Assembler:
14799 cu->language = language_asm;
14800 break;
14801 case DW_LANG_Java:
14802 cu->language = language_java;
14803 break;
14804 case DW_LANG_Ada83:
14805 case DW_LANG_Ada95:
14806 cu->language = language_ada;
14807 break;
14808 case DW_LANG_Modula2:
14809 cu->language = language_m2;
14810 break;
14811 case DW_LANG_Pascal83:
14812 cu->language = language_pascal;
14813 break;
14814 case DW_LANG_ObjC:
14815 cu->language = language_objc;
14816 break;
14817 case DW_LANG_Cobol74:
14818 case DW_LANG_Cobol85:
14819 default:
14820 cu->language = language_minimal;
14821 break;
14822 }
14823 cu->language_defn = language_def (cu->language);
14824 }
14825
14826 /* Return the named attribute or NULL if not there. */
14827
14828 static struct attribute *
14829 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
14830 {
14831 for (;;)
14832 {
14833 unsigned int i;
14834 struct attribute *spec = NULL;
14835
14836 for (i = 0; i < die->num_attrs; ++i)
14837 {
14838 if (die->attrs[i].name == name)
14839 return &die->attrs[i];
14840 if (die->attrs[i].name == DW_AT_specification
14841 || die->attrs[i].name == DW_AT_abstract_origin)
14842 spec = &die->attrs[i];
14843 }
14844
14845 if (!spec)
14846 break;
14847
14848 die = follow_die_ref (die, spec, &cu);
14849 }
14850
14851 return NULL;
14852 }
14853
14854 /* Return the named attribute or NULL if not there,
14855 but do not follow DW_AT_specification, etc.
14856 This is for use in contexts where we're reading .debug_types dies.
14857 Following DW_AT_specification, DW_AT_abstract_origin will take us
14858 back up the chain, and we want to go down. */
14859
14860 static struct attribute *
14861 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
14862 {
14863 unsigned int i;
14864
14865 for (i = 0; i < die->num_attrs; ++i)
14866 if (die->attrs[i].name == name)
14867 return &die->attrs[i];
14868
14869 return NULL;
14870 }
14871
14872 /* Return non-zero iff the attribute NAME is defined for the given DIE,
14873 and holds a non-zero value. This function should only be used for
14874 DW_FORM_flag or DW_FORM_flag_present attributes. */
14875
14876 static int
14877 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14878 {
14879 struct attribute *attr = dwarf2_attr (die, name, cu);
14880
14881 return (attr && DW_UNSND (attr));
14882 }
14883
14884 static int
14885 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
14886 {
14887 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14888 which value is non-zero. However, we have to be careful with
14889 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14890 (via dwarf2_flag_true_p) follows this attribute. So we may
14891 end up accidently finding a declaration attribute that belongs
14892 to a different DIE referenced by the specification attribute,
14893 even though the given DIE does not have a declaration attribute. */
14894 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14895 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
14896 }
14897
14898 /* Return the die giving the specification for DIE, if there is
14899 one. *SPEC_CU is the CU containing DIE on input, and the CU
14900 containing the return value on output. If there is no
14901 specification, but there is an abstract origin, that is
14902 returned. */
14903
14904 static struct die_info *
14905 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
14906 {
14907 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14908 *spec_cu);
14909
14910 if (spec_attr == NULL)
14911 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14912
14913 if (spec_attr == NULL)
14914 return NULL;
14915 else
14916 return follow_die_ref (die, spec_attr, spec_cu);
14917 }
14918
14919 /* Free the line_header structure *LH, and any arrays and strings it
14920 refers to.
14921 NOTE: This is also used as a "cleanup" function. */
14922
14923 static void
14924 free_line_header (struct line_header *lh)
14925 {
14926 if (lh->standard_opcode_lengths)
14927 xfree (lh->standard_opcode_lengths);
14928
14929 /* Remember that all the lh->file_names[i].name pointers are
14930 pointers into debug_line_buffer, and don't need to be freed. */
14931 if (lh->file_names)
14932 xfree (lh->file_names);
14933
14934 /* Similarly for the include directory names. */
14935 if (lh->include_dirs)
14936 xfree (lh->include_dirs);
14937
14938 xfree (lh);
14939 }
14940
14941 /* Add an entry to LH's include directory table. */
14942
14943 static void
14944 add_include_dir (struct line_header *lh, char *include_dir)
14945 {
14946 /* Grow the array if necessary. */
14947 if (lh->include_dirs_size == 0)
14948 {
14949 lh->include_dirs_size = 1; /* for testing */
14950 lh->include_dirs = xmalloc (lh->include_dirs_size
14951 * sizeof (*lh->include_dirs));
14952 }
14953 else if (lh->num_include_dirs >= lh->include_dirs_size)
14954 {
14955 lh->include_dirs_size *= 2;
14956 lh->include_dirs = xrealloc (lh->include_dirs,
14957 (lh->include_dirs_size
14958 * sizeof (*lh->include_dirs)));
14959 }
14960
14961 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14962 }
14963
14964 /* Add an entry to LH's file name table. */
14965
14966 static void
14967 add_file_name (struct line_header *lh,
14968 char *name,
14969 unsigned int dir_index,
14970 unsigned int mod_time,
14971 unsigned int length)
14972 {
14973 struct file_entry *fe;
14974
14975 /* Grow the array if necessary. */
14976 if (lh->file_names_size == 0)
14977 {
14978 lh->file_names_size = 1; /* for testing */
14979 lh->file_names = xmalloc (lh->file_names_size
14980 * sizeof (*lh->file_names));
14981 }
14982 else if (lh->num_file_names >= lh->file_names_size)
14983 {
14984 lh->file_names_size *= 2;
14985 lh->file_names = xrealloc (lh->file_names,
14986 (lh->file_names_size
14987 * sizeof (*lh->file_names)));
14988 }
14989
14990 fe = &lh->file_names[lh->num_file_names++];
14991 fe->name = name;
14992 fe->dir_index = dir_index;
14993 fe->mod_time = mod_time;
14994 fe->length = length;
14995 fe->included_p = 0;
14996 fe->symtab = NULL;
14997 }
14998
14999 /* A convenience function to find the proper .debug_line section for a
15000 CU. */
15001
15002 static struct dwarf2_section_info *
15003 get_debug_line_section (struct dwarf2_cu *cu)
15004 {
15005 struct dwarf2_section_info *section;
15006
15007 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15008 DWO file. */
15009 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15010 section = &cu->dwo_unit->dwo_file->sections.line;
15011 else if (cu->per_cu->is_dwz)
15012 {
15013 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15014
15015 section = &dwz->line;
15016 }
15017 else
15018 section = &dwarf2_per_objfile->line;
15019
15020 return section;
15021 }
15022
15023 /* Read the statement program header starting at OFFSET in
15024 .debug_line, or .debug_line.dwo. Return a pointer
15025 to a struct line_header, allocated using xmalloc.
15026
15027 NOTE: the strings in the include directory and file name tables of
15028 the returned object point into the dwarf line section buffer,
15029 and must not be freed. */
15030
15031 static struct line_header *
15032 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15033 {
15034 struct cleanup *back_to;
15035 struct line_header *lh;
15036 gdb_byte *line_ptr;
15037 unsigned int bytes_read, offset_size;
15038 int i;
15039 char *cur_dir, *cur_file;
15040 struct dwarf2_section_info *section;
15041 bfd *abfd;
15042
15043 section = get_debug_line_section (cu);
15044 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15045 if (section->buffer == NULL)
15046 {
15047 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15048 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15049 else
15050 complaint (&symfile_complaints, _("missing .debug_line section"));
15051 return 0;
15052 }
15053
15054 /* We can't do this until we know the section is non-empty.
15055 Only then do we know we have such a section. */
15056 abfd = section->asection->owner;
15057
15058 /* Make sure that at least there's room for the total_length field.
15059 That could be 12 bytes long, but we're just going to fudge that. */
15060 if (offset + 4 >= section->size)
15061 {
15062 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15063 return 0;
15064 }
15065
15066 lh = xmalloc (sizeof (*lh));
15067 memset (lh, 0, sizeof (*lh));
15068 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15069 (void *) lh);
15070
15071 line_ptr = section->buffer + offset;
15072
15073 /* Read in the header. */
15074 lh->total_length =
15075 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15076 &bytes_read, &offset_size);
15077 line_ptr += bytes_read;
15078 if (line_ptr + lh->total_length > (section->buffer + section->size))
15079 {
15080 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15081 return 0;
15082 }
15083 lh->statement_program_end = line_ptr + lh->total_length;
15084 lh->version = read_2_bytes (abfd, line_ptr);
15085 line_ptr += 2;
15086 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15087 line_ptr += offset_size;
15088 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15089 line_ptr += 1;
15090 if (lh->version >= 4)
15091 {
15092 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15093 line_ptr += 1;
15094 }
15095 else
15096 lh->maximum_ops_per_instruction = 1;
15097
15098 if (lh->maximum_ops_per_instruction == 0)
15099 {
15100 lh->maximum_ops_per_instruction = 1;
15101 complaint (&symfile_complaints,
15102 _("invalid maximum_ops_per_instruction "
15103 "in `.debug_line' section"));
15104 }
15105
15106 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15107 line_ptr += 1;
15108 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15109 line_ptr += 1;
15110 lh->line_range = read_1_byte (abfd, line_ptr);
15111 line_ptr += 1;
15112 lh->opcode_base = read_1_byte (abfd, line_ptr);
15113 line_ptr += 1;
15114 lh->standard_opcode_lengths
15115 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15116
15117 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15118 for (i = 1; i < lh->opcode_base; ++i)
15119 {
15120 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15121 line_ptr += 1;
15122 }
15123
15124 /* Read directory table. */
15125 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15126 {
15127 line_ptr += bytes_read;
15128 add_include_dir (lh, cur_dir);
15129 }
15130 line_ptr += bytes_read;
15131
15132 /* Read file name table. */
15133 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15134 {
15135 unsigned int dir_index, mod_time, length;
15136
15137 line_ptr += bytes_read;
15138 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15139 line_ptr += bytes_read;
15140 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15141 line_ptr += bytes_read;
15142 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15143 line_ptr += bytes_read;
15144
15145 add_file_name (lh, cur_file, dir_index, mod_time, length);
15146 }
15147 line_ptr += bytes_read;
15148 lh->statement_program_start = line_ptr;
15149
15150 if (line_ptr > (section->buffer + section->size))
15151 complaint (&symfile_complaints,
15152 _("line number info header doesn't "
15153 "fit in `.debug_line' section"));
15154
15155 discard_cleanups (back_to);
15156 return lh;
15157 }
15158
15159 /* Subroutine of dwarf_decode_lines to simplify it.
15160 Return the file name of the psymtab for included file FILE_INDEX
15161 in line header LH of PST.
15162 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15163 If space for the result is malloc'd, it will be freed by a cleanup.
15164 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15165
15166 The function creates dangling cleanup registration. */
15167
15168 static char *
15169 psymtab_include_file_name (const struct line_header *lh, int file_index,
15170 const struct partial_symtab *pst,
15171 const char *comp_dir)
15172 {
15173 const struct file_entry fe = lh->file_names [file_index];
15174 char *include_name = fe.name;
15175 char *include_name_to_compare = include_name;
15176 char *dir_name = NULL;
15177 const char *pst_filename;
15178 char *copied_name = NULL;
15179 int file_is_pst;
15180
15181 if (fe.dir_index)
15182 dir_name = lh->include_dirs[fe.dir_index - 1];
15183
15184 if (!IS_ABSOLUTE_PATH (include_name)
15185 && (dir_name != NULL || comp_dir != NULL))
15186 {
15187 /* Avoid creating a duplicate psymtab for PST.
15188 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15189 Before we do the comparison, however, we need to account
15190 for DIR_NAME and COMP_DIR.
15191 First prepend dir_name (if non-NULL). If we still don't
15192 have an absolute path prepend comp_dir (if non-NULL).
15193 However, the directory we record in the include-file's
15194 psymtab does not contain COMP_DIR (to match the
15195 corresponding symtab(s)).
15196
15197 Example:
15198
15199 bash$ cd /tmp
15200 bash$ gcc -g ./hello.c
15201 include_name = "hello.c"
15202 dir_name = "."
15203 DW_AT_comp_dir = comp_dir = "/tmp"
15204 DW_AT_name = "./hello.c" */
15205
15206 if (dir_name != NULL)
15207 {
15208 include_name = concat (dir_name, SLASH_STRING,
15209 include_name, (char *)NULL);
15210 include_name_to_compare = include_name;
15211 make_cleanup (xfree, include_name);
15212 }
15213 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15214 {
15215 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15216 include_name, (char *)NULL);
15217 }
15218 }
15219
15220 pst_filename = pst->filename;
15221 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15222 {
15223 copied_name = concat (pst->dirname, SLASH_STRING,
15224 pst_filename, (char *)NULL);
15225 pst_filename = copied_name;
15226 }
15227
15228 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15229
15230 if (include_name_to_compare != include_name)
15231 xfree (include_name_to_compare);
15232 if (copied_name != NULL)
15233 xfree (copied_name);
15234
15235 if (file_is_pst)
15236 return NULL;
15237 return include_name;
15238 }
15239
15240 /* Ignore this record_line request. */
15241
15242 static void
15243 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15244 {
15245 return;
15246 }
15247
15248 /* Subroutine of dwarf_decode_lines to simplify it.
15249 Process the line number information in LH. */
15250
15251 static void
15252 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15253 struct dwarf2_cu *cu, struct partial_symtab *pst)
15254 {
15255 gdb_byte *line_ptr, *extended_end;
15256 gdb_byte *line_end;
15257 unsigned int bytes_read, extended_len;
15258 unsigned char op_code, extended_op, adj_opcode;
15259 CORE_ADDR baseaddr;
15260 struct objfile *objfile = cu->objfile;
15261 bfd *abfd = objfile->obfd;
15262 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15263 const int decode_for_pst_p = (pst != NULL);
15264 struct subfile *last_subfile = NULL;
15265 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15266 = record_line;
15267
15268 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15269
15270 line_ptr = lh->statement_program_start;
15271 line_end = lh->statement_program_end;
15272
15273 /* Read the statement sequences until there's nothing left. */
15274 while (line_ptr < line_end)
15275 {
15276 /* state machine registers */
15277 CORE_ADDR address = 0;
15278 unsigned int file = 1;
15279 unsigned int line = 1;
15280 unsigned int column = 0;
15281 int is_stmt = lh->default_is_stmt;
15282 int basic_block = 0;
15283 int end_sequence = 0;
15284 CORE_ADDR addr;
15285 unsigned char op_index = 0;
15286
15287 if (!decode_for_pst_p && lh->num_file_names >= file)
15288 {
15289 /* Start a subfile for the current file of the state machine. */
15290 /* lh->include_dirs and lh->file_names are 0-based, but the
15291 directory and file name numbers in the statement program
15292 are 1-based. */
15293 struct file_entry *fe = &lh->file_names[file - 1];
15294 char *dir = NULL;
15295
15296 if (fe->dir_index)
15297 dir = lh->include_dirs[fe->dir_index - 1];
15298
15299 dwarf2_start_subfile (fe->name, dir, comp_dir);
15300 }
15301
15302 /* Decode the table. */
15303 while (!end_sequence)
15304 {
15305 op_code = read_1_byte (abfd, line_ptr);
15306 line_ptr += 1;
15307 if (line_ptr > line_end)
15308 {
15309 dwarf2_debug_line_missing_end_sequence_complaint ();
15310 break;
15311 }
15312
15313 if (op_code >= lh->opcode_base)
15314 {
15315 /* Special operand. */
15316 adj_opcode = op_code - lh->opcode_base;
15317 address += (((op_index + (adj_opcode / lh->line_range))
15318 / lh->maximum_ops_per_instruction)
15319 * lh->minimum_instruction_length);
15320 op_index = ((op_index + (adj_opcode / lh->line_range))
15321 % lh->maximum_ops_per_instruction);
15322 line += lh->line_base + (adj_opcode % lh->line_range);
15323 if (lh->num_file_names < file || file == 0)
15324 dwarf2_debug_line_missing_file_complaint ();
15325 /* For now we ignore lines not starting on an
15326 instruction boundary. */
15327 else if (op_index == 0)
15328 {
15329 lh->file_names[file - 1].included_p = 1;
15330 if (!decode_for_pst_p && is_stmt)
15331 {
15332 if (last_subfile != current_subfile)
15333 {
15334 addr = gdbarch_addr_bits_remove (gdbarch, address);
15335 if (last_subfile)
15336 (*p_record_line) (last_subfile, 0, addr);
15337 last_subfile = current_subfile;
15338 }
15339 /* Append row to matrix using current values. */
15340 addr = gdbarch_addr_bits_remove (gdbarch, address);
15341 (*p_record_line) (current_subfile, line, addr);
15342 }
15343 }
15344 basic_block = 0;
15345 }
15346 else switch (op_code)
15347 {
15348 case DW_LNS_extended_op:
15349 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15350 &bytes_read);
15351 line_ptr += bytes_read;
15352 extended_end = line_ptr + extended_len;
15353 extended_op = read_1_byte (abfd, line_ptr);
15354 line_ptr += 1;
15355 switch (extended_op)
15356 {
15357 case DW_LNE_end_sequence:
15358 p_record_line = record_line;
15359 end_sequence = 1;
15360 break;
15361 case DW_LNE_set_address:
15362 address = read_address (abfd, line_ptr, cu, &bytes_read);
15363
15364 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15365 {
15366 /* This line table is for a function which has been
15367 GCd by the linker. Ignore it. PR gdb/12528 */
15368
15369 long line_offset
15370 = line_ptr - get_debug_line_section (cu)->buffer;
15371
15372 complaint (&symfile_complaints,
15373 _(".debug_line address at offset 0x%lx is 0 "
15374 "[in module %s]"),
15375 line_offset, objfile->name);
15376 p_record_line = noop_record_line;
15377 }
15378
15379 op_index = 0;
15380 line_ptr += bytes_read;
15381 address += baseaddr;
15382 break;
15383 case DW_LNE_define_file:
15384 {
15385 char *cur_file;
15386 unsigned int dir_index, mod_time, length;
15387
15388 cur_file = read_direct_string (abfd, line_ptr,
15389 &bytes_read);
15390 line_ptr += bytes_read;
15391 dir_index =
15392 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15393 line_ptr += bytes_read;
15394 mod_time =
15395 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15396 line_ptr += bytes_read;
15397 length =
15398 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15399 line_ptr += bytes_read;
15400 add_file_name (lh, cur_file, dir_index, mod_time, length);
15401 }
15402 break;
15403 case DW_LNE_set_discriminator:
15404 /* The discriminator is not interesting to the debugger;
15405 just ignore it. */
15406 line_ptr = extended_end;
15407 break;
15408 default:
15409 complaint (&symfile_complaints,
15410 _("mangled .debug_line section"));
15411 return;
15412 }
15413 /* Make sure that we parsed the extended op correctly. If e.g.
15414 we expected a different address size than the producer used,
15415 we may have read the wrong number of bytes. */
15416 if (line_ptr != extended_end)
15417 {
15418 complaint (&symfile_complaints,
15419 _("mangled .debug_line section"));
15420 return;
15421 }
15422 break;
15423 case DW_LNS_copy:
15424 if (lh->num_file_names < file || file == 0)
15425 dwarf2_debug_line_missing_file_complaint ();
15426 else
15427 {
15428 lh->file_names[file - 1].included_p = 1;
15429 if (!decode_for_pst_p && is_stmt)
15430 {
15431 if (last_subfile != current_subfile)
15432 {
15433 addr = gdbarch_addr_bits_remove (gdbarch, address);
15434 if (last_subfile)
15435 (*p_record_line) (last_subfile, 0, addr);
15436 last_subfile = current_subfile;
15437 }
15438 addr = gdbarch_addr_bits_remove (gdbarch, address);
15439 (*p_record_line) (current_subfile, line, addr);
15440 }
15441 }
15442 basic_block = 0;
15443 break;
15444 case DW_LNS_advance_pc:
15445 {
15446 CORE_ADDR adjust
15447 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15448
15449 address += (((op_index + adjust)
15450 / lh->maximum_ops_per_instruction)
15451 * lh->minimum_instruction_length);
15452 op_index = ((op_index + adjust)
15453 % lh->maximum_ops_per_instruction);
15454 line_ptr += bytes_read;
15455 }
15456 break;
15457 case DW_LNS_advance_line:
15458 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15459 line_ptr += bytes_read;
15460 break;
15461 case DW_LNS_set_file:
15462 {
15463 /* The arrays lh->include_dirs and lh->file_names are
15464 0-based, but the directory and file name numbers in
15465 the statement program are 1-based. */
15466 struct file_entry *fe;
15467 char *dir = NULL;
15468
15469 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15470 line_ptr += bytes_read;
15471 if (lh->num_file_names < file || file == 0)
15472 dwarf2_debug_line_missing_file_complaint ();
15473 else
15474 {
15475 fe = &lh->file_names[file - 1];
15476 if (fe->dir_index)
15477 dir = lh->include_dirs[fe->dir_index - 1];
15478 if (!decode_for_pst_p)
15479 {
15480 last_subfile = current_subfile;
15481 dwarf2_start_subfile (fe->name, dir, comp_dir);
15482 }
15483 }
15484 }
15485 break;
15486 case DW_LNS_set_column:
15487 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15488 line_ptr += bytes_read;
15489 break;
15490 case DW_LNS_negate_stmt:
15491 is_stmt = (!is_stmt);
15492 break;
15493 case DW_LNS_set_basic_block:
15494 basic_block = 1;
15495 break;
15496 /* Add to the address register of the state machine the
15497 address increment value corresponding to special opcode
15498 255. I.e., this value is scaled by the minimum
15499 instruction length since special opcode 255 would have
15500 scaled the increment. */
15501 case DW_LNS_const_add_pc:
15502 {
15503 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15504
15505 address += (((op_index + adjust)
15506 / lh->maximum_ops_per_instruction)
15507 * lh->minimum_instruction_length);
15508 op_index = ((op_index + adjust)
15509 % lh->maximum_ops_per_instruction);
15510 }
15511 break;
15512 case DW_LNS_fixed_advance_pc:
15513 address += read_2_bytes (abfd, line_ptr);
15514 op_index = 0;
15515 line_ptr += 2;
15516 break;
15517 default:
15518 {
15519 /* Unknown standard opcode, ignore it. */
15520 int i;
15521
15522 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15523 {
15524 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15525 line_ptr += bytes_read;
15526 }
15527 }
15528 }
15529 }
15530 if (lh->num_file_names < file || file == 0)
15531 dwarf2_debug_line_missing_file_complaint ();
15532 else
15533 {
15534 lh->file_names[file - 1].included_p = 1;
15535 if (!decode_for_pst_p)
15536 {
15537 addr = gdbarch_addr_bits_remove (gdbarch, address);
15538 (*p_record_line) (current_subfile, 0, addr);
15539 }
15540 }
15541 }
15542 }
15543
15544 /* Decode the Line Number Program (LNP) for the given line_header
15545 structure and CU. The actual information extracted and the type
15546 of structures created from the LNP depends on the value of PST.
15547
15548 1. If PST is NULL, then this procedure uses the data from the program
15549 to create all necessary symbol tables, and their linetables.
15550
15551 2. If PST is not NULL, this procedure reads the program to determine
15552 the list of files included by the unit represented by PST, and
15553 builds all the associated partial symbol tables.
15554
15555 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15556 It is used for relative paths in the line table.
15557 NOTE: When processing partial symtabs (pst != NULL),
15558 comp_dir == pst->dirname.
15559
15560 NOTE: It is important that psymtabs have the same file name (via strcmp)
15561 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15562 symtab we don't use it in the name of the psymtabs we create.
15563 E.g. expand_line_sal requires this when finding psymtabs to expand.
15564 A good testcase for this is mb-inline.exp. */
15565
15566 static void
15567 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15568 struct dwarf2_cu *cu, struct partial_symtab *pst,
15569 int want_line_info)
15570 {
15571 struct objfile *objfile = cu->objfile;
15572 const int decode_for_pst_p = (pst != NULL);
15573 struct subfile *first_subfile = current_subfile;
15574
15575 if (want_line_info)
15576 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15577
15578 if (decode_for_pst_p)
15579 {
15580 int file_index;
15581
15582 /* Now that we're done scanning the Line Header Program, we can
15583 create the psymtab of each included file. */
15584 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15585 if (lh->file_names[file_index].included_p == 1)
15586 {
15587 char *include_name =
15588 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15589 if (include_name != NULL)
15590 dwarf2_create_include_psymtab (include_name, pst, objfile);
15591 }
15592 }
15593 else
15594 {
15595 /* Make sure a symtab is created for every file, even files
15596 which contain only variables (i.e. no code with associated
15597 line numbers). */
15598 int i;
15599
15600 for (i = 0; i < lh->num_file_names; i++)
15601 {
15602 char *dir = NULL;
15603 struct file_entry *fe;
15604
15605 fe = &lh->file_names[i];
15606 if (fe->dir_index)
15607 dir = lh->include_dirs[fe->dir_index - 1];
15608 dwarf2_start_subfile (fe->name, dir, comp_dir);
15609
15610 /* Skip the main file; we don't need it, and it must be
15611 allocated last, so that it will show up before the
15612 non-primary symtabs in the objfile's symtab list. */
15613 if (current_subfile == first_subfile)
15614 continue;
15615
15616 if (current_subfile->symtab == NULL)
15617 current_subfile->symtab = allocate_symtab (current_subfile->name,
15618 objfile);
15619 fe->symtab = current_subfile->symtab;
15620 }
15621 }
15622 }
15623
15624 /* Start a subfile for DWARF. FILENAME is the name of the file and
15625 DIRNAME the name of the source directory which contains FILENAME
15626 or NULL if not known. COMP_DIR is the compilation directory for the
15627 linetable's compilation unit or NULL if not known.
15628 This routine tries to keep line numbers from identical absolute and
15629 relative file names in a common subfile.
15630
15631 Using the `list' example from the GDB testsuite, which resides in
15632 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15633 of /srcdir/list0.c yields the following debugging information for list0.c:
15634
15635 DW_AT_name: /srcdir/list0.c
15636 DW_AT_comp_dir: /compdir
15637 files.files[0].name: list0.h
15638 files.files[0].dir: /srcdir
15639 files.files[1].name: list0.c
15640 files.files[1].dir: /srcdir
15641
15642 The line number information for list0.c has to end up in a single
15643 subfile, so that `break /srcdir/list0.c:1' works as expected.
15644 start_subfile will ensure that this happens provided that we pass the
15645 concatenation of files.files[1].dir and files.files[1].name as the
15646 subfile's name. */
15647
15648 static void
15649 dwarf2_start_subfile (char *filename, const char *dirname,
15650 const char *comp_dir)
15651 {
15652 char *fullname;
15653
15654 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15655 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15656 second argument to start_subfile. To be consistent, we do the
15657 same here. In order not to lose the line information directory,
15658 we concatenate it to the filename when it makes sense.
15659 Note that the Dwarf3 standard says (speaking of filenames in line
15660 information): ``The directory index is ignored for file names
15661 that represent full path names''. Thus ignoring dirname in the
15662 `else' branch below isn't an issue. */
15663
15664 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15665 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15666 else
15667 fullname = filename;
15668
15669 start_subfile (fullname, comp_dir);
15670
15671 if (fullname != filename)
15672 xfree (fullname);
15673 }
15674
15675 /* Start a symtab for DWARF.
15676 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15677
15678 static void
15679 dwarf2_start_symtab (struct dwarf2_cu *cu,
15680 const char *name, const char *comp_dir, CORE_ADDR low_pc)
15681 {
15682 start_symtab (name, comp_dir, low_pc);
15683 record_debugformat ("DWARF 2");
15684 record_producer (cu->producer);
15685
15686 /* We assume that we're processing GCC output. */
15687 processing_gcc_compilation = 2;
15688
15689 cu->processing_has_namespace_info = 0;
15690 }
15691
15692 static void
15693 var_decode_location (struct attribute *attr, struct symbol *sym,
15694 struct dwarf2_cu *cu)
15695 {
15696 struct objfile *objfile = cu->objfile;
15697 struct comp_unit_head *cu_header = &cu->header;
15698
15699 /* NOTE drow/2003-01-30: There used to be a comment and some special
15700 code here to turn a symbol with DW_AT_external and a
15701 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15702 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15703 with some versions of binutils) where shared libraries could have
15704 relocations against symbols in their debug information - the
15705 minimal symbol would have the right address, but the debug info
15706 would not. It's no longer necessary, because we will explicitly
15707 apply relocations when we read in the debug information now. */
15708
15709 /* A DW_AT_location attribute with no contents indicates that a
15710 variable has been optimized away. */
15711 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15712 {
15713 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15714 return;
15715 }
15716
15717 /* Handle one degenerate form of location expression specially, to
15718 preserve GDB's previous behavior when section offsets are
15719 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15720 then mark this symbol as LOC_STATIC. */
15721
15722 if (attr_form_is_block (attr)
15723 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15724 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15725 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15726 && (DW_BLOCK (attr)->size
15727 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15728 {
15729 unsigned int dummy;
15730
15731 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15732 SYMBOL_VALUE_ADDRESS (sym) =
15733 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15734 else
15735 SYMBOL_VALUE_ADDRESS (sym) =
15736 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15737 SYMBOL_CLASS (sym) = LOC_STATIC;
15738 fixup_symbol_section (sym, objfile);
15739 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15740 SYMBOL_SECTION (sym));
15741 return;
15742 }
15743
15744 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15745 expression evaluator, and use LOC_COMPUTED only when necessary
15746 (i.e. when the value of a register or memory location is
15747 referenced, or a thread-local block, etc.). Then again, it might
15748 not be worthwhile. I'm assuming that it isn't unless performance
15749 or memory numbers show me otherwise. */
15750
15751 dwarf2_symbol_mark_computed (attr, sym, cu);
15752 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15753
15754 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
15755 cu->has_loclist = 1;
15756 }
15757
15758 /* Given a pointer to a DWARF information entry, figure out if we need
15759 to make a symbol table entry for it, and if so, create a new entry
15760 and return a pointer to it.
15761 If TYPE is NULL, determine symbol type from the die, otherwise
15762 used the passed type.
15763 If SPACE is not NULL, use it to hold the new symbol. If it is
15764 NULL, allocate a new symbol on the objfile's obstack. */
15765
15766 static struct symbol *
15767 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15768 struct symbol *space)
15769 {
15770 struct objfile *objfile = cu->objfile;
15771 struct symbol *sym = NULL;
15772 const char *name;
15773 struct attribute *attr = NULL;
15774 struct attribute *attr2 = NULL;
15775 CORE_ADDR baseaddr;
15776 struct pending **list_to_add = NULL;
15777
15778 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15779
15780 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15781
15782 name = dwarf2_name (die, cu);
15783 if (name)
15784 {
15785 const char *linkagename;
15786 int suppress_add = 0;
15787
15788 if (space)
15789 sym = space;
15790 else
15791 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
15792 OBJSTAT (objfile, n_syms++);
15793
15794 /* Cache this symbol's name and the name's demangled form (if any). */
15795 SYMBOL_SET_LANGUAGE (sym, cu->language);
15796 linkagename = dwarf2_physname (name, die, cu);
15797 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15798
15799 /* Fortran does not have mangling standard and the mangling does differ
15800 between gfortran, iFort etc. */
15801 if (cu->language == language_fortran
15802 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15803 symbol_set_demangled_name (&(sym->ginfo),
15804 dwarf2_full_name (name, die, cu),
15805 NULL);
15806
15807 /* Default assumptions.
15808 Use the passed type or decode it from the die. */
15809 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15810 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15811 if (type != NULL)
15812 SYMBOL_TYPE (sym) = type;
15813 else
15814 SYMBOL_TYPE (sym) = die_type (die, cu);
15815 attr = dwarf2_attr (die,
15816 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15817 cu);
15818 if (attr)
15819 {
15820 SYMBOL_LINE (sym) = DW_UNSND (attr);
15821 }
15822
15823 attr = dwarf2_attr (die,
15824 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15825 cu);
15826 if (attr)
15827 {
15828 int file_index = DW_UNSND (attr);
15829
15830 if (cu->line_header == NULL
15831 || file_index > cu->line_header->num_file_names)
15832 complaint (&symfile_complaints,
15833 _("file index out of range"));
15834 else if (file_index > 0)
15835 {
15836 struct file_entry *fe;
15837
15838 fe = &cu->line_header->file_names[file_index - 1];
15839 SYMBOL_SYMTAB (sym) = fe->symtab;
15840 }
15841 }
15842
15843 switch (die->tag)
15844 {
15845 case DW_TAG_label:
15846 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15847 if (attr)
15848 {
15849 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15850 }
15851 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15852 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
15853 SYMBOL_CLASS (sym) = LOC_LABEL;
15854 add_symbol_to_list (sym, cu->list_in_scope);
15855 break;
15856 case DW_TAG_subprogram:
15857 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15858 finish_block. */
15859 SYMBOL_CLASS (sym) = LOC_BLOCK;
15860 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15861 if ((attr2 && (DW_UNSND (attr2) != 0))
15862 || cu->language == language_ada)
15863 {
15864 /* Subprograms marked external are stored as a global symbol.
15865 Ada subprograms, whether marked external or not, are always
15866 stored as a global symbol, because we want to be able to
15867 access them globally. For instance, we want to be able
15868 to break on a nested subprogram without having to
15869 specify the context. */
15870 list_to_add = &global_symbols;
15871 }
15872 else
15873 {
15874 list_to_add = cu->list_in_scope;
15875 }
15876 break;
15877 case DW_TAG_inlined_subroutine:
15878 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15879 finish_block. */
15880 SYMBOL_CLASS (sym) = LOC_BLOCK;
15881 SYMBOL_INLINED (sym) = 1;
15882 list_to_add = cu->list_in_scope;
15883 break;
15884 case DW_TAG_template_value_param:
15885 suppress_add = 1;
15886 /* Fall through. */
15887 case DW_TAG_constant:
15888 case DW_TAG_variable:
15889 case DW_TAG_member:
15890 /* Compilation with minimal debug info may result in
15891 variables with missing type entries. Change the
15892 misleading `void' type to something sensible. */
15893 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
15894 SYMBOL_TYPE (sym)
15895 = objfile_type (objfile)->nodebug_data_symbol;
15896
15897 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15898 /* In the case of DW_TAG_member, we should only be called for
15899 static const members. */
15900 if (die->tag == DW_TAG_member)
15901 {
15902 /* dwarf2_add_field uses die_is_declaration,
15903 so we do the same. */
15904 gdb_assert (die_is_declaration (die, cu));
15905 gdb_assert (attr);
15906 }
15907 if (attr)
15908 {
15909 dwarf2_const_value (attr, sym, cu);
15910 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15911 if (!suppress_add)
15912 {
15913 if (attr2 && (DW_UNSND (attr2) != 0))
15914 list_to_add = &global_symbols;
15915 else
15916 list_to_add = cu->list_in_scope;
15917 }
15918 break;
15919 }
15920 attr = dwarf2_attr (die, DW_AT_location, cu);
15921 if (attr)
15922 {
15923 var_decode_location (attr, sym, cu);
15924 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15925
15926 /* Fortran explicitly imports any global symbols to the local
15927 scope by DW_TAG_common_block. */
15928 if (cu->language == language_fortran && die->parent
15929 && die->parent->tag == DW_TAG_common_block)
15930 attr2 = NULL;
15931
15932 if (SYMBOL_CLASS (sym) == LOC_STATIC
15933 && SYMBOL_VALUE_ADDRESS (sym) == 0
15934 && !dwarf2_per_objfile->has_section_at_zero)
15935 {
15936 /* When a static variable is eliminated by the linker,
15937 the corresponding debug information is not stripped
15938 out, but the variable address is set to null;
15939 do not add such variables into symbol table. */
15940 }
15941 else if (attr2 && (DW_UNSND (attr2) != 0))
15942 {
15943 /* Workaround gfortran PR debug/40040 - it uses
15944 DW_AT_location for variables in -fPIC libraries which may
15945 get overriden by other libraries/executable and get
15946 a different address. Resolve it by the minimal symbol
15947 which may come from inferior's executable using copy
15948 relocation. Make this workaround only for gfortran as for
15949 other compilers GDB cannot guess the minimal symbol
15950 Fortran mangling kind. */
15951 if (cu->language == language_fortran && die->parent
15952 && die->parent->tag == DW_TAG_module
15953 && cu->producer
15954 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15955 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15956
15957 /* A variable with DW_AT_external is never static,
15958 but it may be block-scoped. */
15959 list_to_add = (cu->list_in_scope == &file_symbols
15960 ? &global_symbols : cu->list_in_scope);
15961 }
15962 else
15963 list_to_add = cu->list_in_scope;
15964 }
15965 else
15966 {
15967 /* We do not know the address of this symbol.
15968 If it is an external symbol and we have type information
15969 for it, enter the symbol as a LOC_UNRESOLVED symbol.
15970 The address of the variable will then be determined from
15971 the minimal symbol table whenever the variable is
15972 referenced. */
15973 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15974
15975 /* Fortran explicitly imports any global symbols to the local
15976 scope by DW_TAG_common_block. */
15977 if (cu->language == language_fortran && die->parent
15978 && die->parent->tag == DW_TAG_common_block)
15979 {
15980 /* SYMBOL_CLASS doesn't matter here because
15981 read_common_block is going to reset it. */
15982 if (!suppress_add)
15983 list_to_add = cu->list_in_scope;
15984 }
15985 else if (attr2 && (DW_UNSND (attr2) != 0)
15986 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
15987 {
15988 /* A variable with DW_AT_external is never static, but it
15989 may be block-scoped. */
15990 list_to_add = (cu->list_in_scope == &file_symbols
15991 ? &global_symbols : cu->list_in_scope);
15992
15993 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15994 }
15995 else if (!die_is_declaration (die, cu))
15996 {
15997 /* Use the default LOC_OPTIMIZED_OUT class. */
15998 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
15999 if (!suppress_add)
16000 list_to_add = cu->list_in_scope;
16001 }
16002 }
16003 break;
16004 case DW_TAG_formal_parameter:
16005 /* If we are inside a function, mark this as an argument. If
16006 not, we might be looking at an argument to an inlined function
16007 when we do not have enough information to show inlined frames;
16008 pretend it's a local variable in that case so that the user can
16009 still see it. */
16010 if (context_stack_depth > 0
16011 && context_stack[context_stack_depth - 1].name != NULL)
16012 SYMBOL_IS_ARGUMENT (sym) = 1;
16013 attr = dwarf2_attr (die, DW_AT_location, cu);
16014 if (attr)
16015 {
16016 var_decode_location (attr, sym, cu);
16017 }
16018 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16019 if (attr)
16020 {
16021 dwarf2_const_value (attr, sym, cu);
16022 }
16023
16024 list_to_add = cu->list_in_scope;
16025 break;
16026 case DW_TAG_unspecified_parameters:
16027 /* From varargs functions; gdb doesn't seem to have any
16028 interest in this information, so just ignore it for now.
16029 (FIXME?) */
16030 break;
16031 case DW_TAG_template_type_param:
16032 suppress_add = 1;
16033 /* Fall through. */
16034 case DW_TAG_class_type:
16035 case DW_TAG_interface_type:
16036 case DW_TAG_structure_type:
16037 case DW_TAG_union_type:
16038 case DW_TAG_set_type:
16039 case DW_TAG_enumeration_type:
16040 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16041 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16042
16043 {
16044 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16045 really ever be static objects: otherwise, if you try
16046 to, say, break of a class's method and you're in a file
16047 which doesn't mention that class, it won't work unless
16048 the check for all static symbols in lookup_symbol_aux
16049 saves you. See the OtherFileClass tests in
16050 gdb.c++/namespace.exp. */
16051
16052 if (!suppress_add)
16053 {
16054 list_to_add = (cu->list_in_scope == &file_symbols
16055 && (cu->language == language_cplus
16056 || cu->language == language_java)
16057 ? &global_symbols : cu->list_in_scope);
16058
16059 /* The semantics of C++ state that "struct foo {
16060 ... }" also defines a typedef for "foo". A Java
16061 class declaration also defines a typedef for the
16062 class. */
16063 if (cu->language == language_cplus
16064 || cu->language == language_java
16065 || cu->language == language_ada)
16066 {
16067 /* The symbol's name is already allocated along
16068 with this objfile, so we don't need to
16069 duplicate it for the type. */
16070 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16071 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16072 }
16073 }
16074 }
16075 break;
16076 case DW_TAG_typedef:
16077 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16078 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16079 list_to_add = cu->list_in_scope;
16080 break;
16081 case DW_TAG_base_type:
16082 case DW_TAG_subrange_type:
16083 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16084 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16085 list_to_add = cu->list_in_scope;
16086 break;
16087 case DW_TAG_enumerator:
16088 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16089 if (attr)
16090 {
16091 dwarf2_const_value (attr, sym, cu);
16092 }
16093 {
16094 /* NOTE: carlton/2003-11-10: See comment above in the
16095 DW_TAG_class_type, etc. block. */
16096
16097 list_to_add = (cu->list_in_scope == &file_symbols
16098 && (cu->language == language_cplus
16099 || cu->language == language_java)
16100 ? &global_symbols : cu->list_in_scope);
16101 }
16102 break;
16103 case DW_TAG_namespace:
16104 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16105 list_to_add = &global_symbols;
16106 break;
16107 case DW_TAG_common_block:
16108 SYMBOL_CLASS (sym) = LOC_COMMON_BLOCK;
16109 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16110 add_symbol_to_list (sym, cu->list_in_scope);
16111 break;
16112 default:
16113 /* Not a tag we recognize. Hopefully we aren't processing
16114 trash data, but since we must specifically ignore things
16115 we don't recognize, there is nothing else we should do at
16116 this point. */
16117 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16118 dwarf_tag_name (die->tag));
16119 break;
16120 }
16121
16122 if (suppress_add)
16123 {
16124 sym->hash_next = objfile->template_symbols;
16125 objfile->template_symbols = sym;
16126 list_to_add = NULL;
16127 }
16128
16129 if (list_to_add != NULL)
16130 add_symbol_to_list (sym, list_to_add);
16131
16132 /* For the benefit of old versions of GCC, check for anonymous
16133 namespaces based on the demangled name. */
16134 if (!cu->processing_has_namespace_info
16135 && cu->language == language_cplus)
16136 cp_scan_for_anonymous_namespaces (sym, objfile);
16137 }
16138 return (sym);
16139 }
16140
16141 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16142
16143 static struct symbol *
16144 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16145 {
16146 return new_symbol_full (die, type, cu, NULL);
16147 }
16148
16149 /* Given an attr with a DW_FORM_dataN value in host byte order,
16150 zero-extend it as appropriate for the symbol's type. The DWARF
16151 standard (v4) is not entirely clear about the meaning of using
16152 DW_FORM_dataN for a constant with a signed type, where the type is
16153 wider than the data. The conclusion of a discussion on the DWARF
16154 list was that this is unspecified. We choose to always zero-extend
16155 because that is the interpretation long in use by GCC. */
16156
16157 static gdb_byte *
16158 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16159 const char *name, struct obstack *obstack,
16160 struct dwarf2_cu *cu, LONGEST *value, int bits)
16161 {
16162 struct objfile *objfile = cu->objfile;
16163 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16164 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16165 LONGEST l = DW_UNSND (attr);
16166
16167 if (bits < sizeof (*value) * 8)
16168 {
16169 l &= ((LONGEST) 1 << bits) - 1;
16170 *value = l;
16171 }
16172 else if (bits == sizeof (*value) * 8)
16173 *value = l;
16174 else
16175 {
16176 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16177 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16178 return bytes;
16179 }
16180
16181 return NULL;
16182 }
16183
16184 /* Read a constant value from an attribute. Either set *VALUE, or if
16185 the value does not fit in *VALUE, set *BYTES - either already
16186 allocated on the objfile obstack, or newly allocated on OBSTACK,
16187 or, set *BATON, if we translated the constant to a location
16188 expression. */
16189
16190 static void
16191 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16192 const char *name, struct obstack *obstack,
16193 struct dwarf2_cu *cu,
16194 LONGEST *value, gdb_byte **bytes,
16195 struct dwarf2_locexpr_baton **baton)
16196 {
16197 struct objfile *objfile = cu->objfile;
16198 struct comp_unit_head *cu_header = &cu->header;
16199 struct dwarf_block *blk;
16200 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16201 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16202
16203 *value = 0;
16204 *bytes = NULL;
16205 *baton = NULL;
16206
16207 switch (attr->form)
16208 {
16209 case DW_FORM_addr:
16210 case DW_FORM_GNU_addr_index:
16211 {
16212 gdb_byte *data;
16213
16214 if (TYPE_LENGTH (type) != cu_header->addr_size)
16215 dwarf2_const_value_length_mismatch_complaint (name,
16216 cu_header->addr_size,
16217 TYPE_LENGTH (type));
16218 /* Symbols of this form are reasonably rare, so we just
16219 piggyback on the existing location code rather than writing
16220 a new implementation of symbol_computed_ops. */
16221 *baton = obstack_alloc (&objfile->objfile_obstack,
16222 sizeof (struct dwarf2_locexpr_baton));
16223 (*baton)->per_cu = cu->per_cu;
16224 gdb_assert ((*baton)->per_cu);
16225
16226 (*baton)->size = 2 + cu_header->addr_size;
16227 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16228 (*baton)->data = data;
16229
16230 data[0] = DW_OP_addr;
16231 store_unsigned_integer (&data[1], cu_header->addr_size,
16232 byte_order, DW_ADDR (attr));
16233 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16234 }
16235 break;
16236 case DW_FORM_string:
16237 case DW_FORM_strp:
16238 case DW_FORM_GNU_str_index:
16239 case DW_FORM_GNU_strp_alt:
16240 /* DW_STRING is already allocated on the objfile obstack, point
16241 directly to it. */
16242 *bytes = (gdb_byte *) DW_STRING (attr);
16243 break;
16244 case DW_FORM_block1:
16245 case DW_FORM_block2:
16246 case DW_FORM_block4:
16247 case DW_FORM_block:
16248 case DW_FORM_exprloc:
16249 blk = DW_BLOCK (attr);
16250 if (TYPE_LENGTH (type) != blk->size)
16251 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16252 TYPE_LENGTH (type));
16253 *bytes = blk->data;
16254 break;
16255
16256 /* The DW_AT_const_value attributes are supposed to carry the
16257 symbol's value "represented as it would be on the target
16258 architecture." By the time we get here, it's already been
16259 converted to host endianness, so we just need to sign- or
16260 zero-extend it as appropriate. */
16261 case DW_FORM_data1:
16262 *bytes = dwarf2_const_value_data (attr, type, name,
16263 obstack, cu, value, 8);
16264 break;
16265 case DW_FORM_data2:
16266 *bytes = dwarf2_const_value_data (attr, type, name,
16267 obstack, cu, value, 16);
16268 break;
16269 case DW_FORM_data4:
16270 *bytes = dwarf2_const_value_data (attr, type, name,
16271 obstack, cu, value, 32);
16272 break;
16273 case DW_FORM_data8:
16274 *bytes = dwarf2_const_value_data (attr, type, name,
16275 obstack, cu, value, 64);
16276 break;
16277
16278 case DW_FORM_sdata:
16279 *value = DW_SND (attr);
16280 break;
16281
16282 case DW_FORM_udata:
16283 *value = DW_UNSND (attr);
16284 break;
16285
16286 default:
16287 complaint (&symfile_complaints,
16288 _("unsupported const value attribute form: '%s'"),
16289 dwarf_form_name (attr->form));
16290 *value = 0;
16291 break;
16292 }
16293 }
16294
16295
16296 /* Copy constant value from an attribute to a symbol. */
16297
16298 static void
16299 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16300 struct dwarf2_cu *cu)
16301 {
16302 struct objfile *objfile = cu->objfile;
16303 struct comp_unit_head *cu_header = &cu->header;
16304 LONGEST value;
16305 gdb_byte *bytes;
16306 struct dwarf2_locexpr_baton *baton;
16307
16308 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16309 SYMBOL_PRINT_NAME (sym),
16310 &objfile->objfile_obstack, cu,
16311 &value, &bytes, &baton);
16312
16313 if (baton != NULL)
16314 {
16315 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
16316 SYMBOL_LOCATION_BATON (sym) = baton;
16317 SYMBOL_CLASS (sym) = LOC_COMPUTED;
16318 }
16319 else if (bytes != NULL)
16320 {
16321 SYMBOL_VALUE_BYTES (sym) = bytes;
16322 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
16323 }
16324 else
16325 {
16326 SYMBOL_VALUE (sym) = value;
16327 SYMBOL_CLASS (sym) = LOC_CONST;
16328 }
16329 }
16330
16331 /* Return the type of the die in question using its DW_AT_type attribute. */
16332
16333 static struct type *
16334 die_type (struct die_info *die, struct dwarf2_cu *cu)
16335 {
16336 struct attribute *type_attr;
16337
16338 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16339 if (!type_attr)
16340 {
16341 /* A missing DW_AT_type represents a void type. */
16342 return objfile_type (cu->objfile)->builtin_void;
16343 }
16344
16345 return lookup_die_type (die, type_attr, cu);
16346 }
16347
16348 /* True iff CU's producer generates GNAT Ada auxiliary information
16349 that allows to find parallel types through that information instead
16350 of having to do expensive parallel lookups by type name. */
16351
16352 static int
16353 need_gnat_info (struct dwarf2_cu *cu)
16354 {
16355 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16356 of GNAT produces this auxiliary information, without any indication
16357 that it is produced. Part of enhancing the FSF version of GNAT
16358 to produce that information will be to put in place an indicator
16359 that we can use in order to determine whether the descriptive type
16360 info is available or not. One suggestion that has been made is
16361 to use a new attribute, attached to the CU die. For now, assume
16362 that the descriptive type info is not available. */
16363 return 0;
16364 }
16365
16366 /* Return the auxiliary type of the die in question using its
16367 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16368 attribute is not present. */
16369
16370 static struct type *
16371 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16372 {
16373 struct attribute *type_attr;
16374
16375 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16376 if (!type_attr)
16377 return NULL;
16378
16379 return lookup_die_type (die, type_attr, cu);
16380 }
16381
16382 /* If DIE has a descriptive_type attribute, then set the TYPE's
16383 descriptive type accordingly. */
16384
16385 static void
16386 set_descriptive_type (struct type *type, struct die_info *die,
16387 struct dwarf2_cu *cu)
16388 {
16389 struct type *descriptive_type = die_descriptive_type (die, cu);
16390
16391 if (descriptive_type)
16392 {
16393 ALLOCATE_GNAT_AUX_TYPE (type);
16394 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16395 }
16396 }
16397
16398 /* Return the containing type of the die in question using its
16399 DW_AT_containing_type attribute. */
16400
16401 static struct type *
16402 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16403 {
16404 struct attribute *type_attr;
16405
16406 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16407 if (!type_attr)
16408 error (_("Dwarf Error: Problem turning containing type into gdb type "
16409 "[in module %s]"), cu->objfile->name);
16410
16411 return lookup_die_type (die, type_attr, cu);
16412 }
16413
16414 /* Look up the type of DIE in CU using its type attribute ATTR.
16415 If there is no type substitute an error marker. */
16416
16417 static struct type *
16418 lookup_die_type (struct die_info *die, struct attribute *attr,
16419 struct dwarf2_cu *cu)
16420 {
16421 struct objfile *objfile = cu->objfile;
16422 struct type *this_type;
16423
16424 /* First see if we have it cached. */
16425
16426 if (attr->form == DW_FORM_GNU_ref_alt)
16427 {
16428 struct dwarf2_per_cu_data *per_cu;
16429 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16430
16431 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16432 this_type = get_die_type_at_offset (offset, per_cu);
16433 }
16434 else if (is_ref_attr (attr))
16435 {
16436 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16437
16438 this_type = get_die_type_at_offset (offset, cu->per_cu);
16439 }
16440 else if (attr->form == DW_FORM_ref_sig8)
16441 {
16442 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16443
16444 /* sig_type will be NULL if the signatured type is missing from
16445 the debug info. */
16446 if (sig_type == NULL)
16447 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16448 "at 0x%x [in module %s]"),
16449 die->offset.sect_off, objfile->name);
16450
16451 gdb_assert (sig_type->per_cu.is_debug_types);
16452 /* If we haven't filled in type_offset_in_section yet, then we
16453 haven't read the type in yet. */
16454 this_type = NULL;
16455 if (sig_type->type_offset_in_section.sect_off != 0)
16456 {
16457 this_type =
16458 get_die_type_at_offset (sig_type->type_offset_in_section,
16459 &sig_type->per_cu);
16460 }
16461 }
16462 else
16463 {
16464 dump_die_for_error (die);
16465 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16466 dwarf_attr_name (attr->name), objfile->name);
16467 }
16468
16469 /* If not cached we need to read it in. */
16470
16471 if (this_type == NULL)
16472 {
16473 struct die_info *type_die;
16474 struct dwarf2_cu *type_cu = cu;
16475
16476 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16477 /* If we found the type now, it's probably because the type came
16478 from an inter-CU reference and the type's CU got expanded before
16479 ours. */
16480 this_type = get_die_type (type_die, type_cu);
16481 if (this_type == NULL)
16482 this_type = read_type_die_1 (type_die, type_cu);
16483 }
16484
16485 /* If we still don't have a type use an error marker. */
16486
16487 if (this_type == NULL)
16488 {
16489 char *message, *saved;
16490
16491 /* read_type_die already issued a complaint. */
16492 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16493 objfile->name,
16494 cu->header.offset.sect_off,
16495 die->offset.sect_off);
16496 saved = obstack_copy0 (&objfile->objfile_obstack,
16497 message, strlen (message));
16498 xfree (message);
16499
16500 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16501 }
16502
16503 return this_type;
16504 }
16505
16506 /* Return the type in DIE, CU.
16507 Returns NULL for invalid types.
16508
16509 This first does a lookup in the appropriate type_hash table,
16510 and only reads the die in if necessary.
16511
16512 NOTE: This can be called when reading in partial or full symbols. */
16513
16514 static struct type *
16515 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16516 {
16517 struct type *this_type;
16518
16519 this_type = get_die_type (die, cu);
16520 if (this_type)
16521 return this_type;
16522
16523 return read_type_die_1 (die, cu);
16524 }
16525
16526 /* Read the type in DIE, CU.
16527 Returns NULL for invalid types. */
16528
16529 static struct type *
16530 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16531 {
16532 struct type *this_type = NULL;
16533
16534 switch (die->tag)
16535 {
16536 case DW_TAG_class_type:
16537 case DW_TAG_interface_type:
16538 case DW_TAG_structure_type:
16539 case DW_TAG_union_type:
16540 this_type = read_structure_type (die, cu);
16541 break;
16542 case DW_TAG_enumeration_type:
16543 this_type = read_enumeration_type (die, cu);
16544 break;
16545 case DW_TAG_subprogram:
16546 case DW_TAG_subroutine_type:
16547 case DW_TAG_inlined_subroutine:
16548 this_type = read_subroutine_type (die, cu);
16549 break;
16550 case DW_TAG_array_type:
16551 this_type = read_array_type (die, cu);
16552 break;
16553 case DW_TAG_set_type:
16554 this_type = read_set_type (die, cu);
16555 break;
16556 case DW_TAG_pointer_type:
16557 this_type = read_tag_pointer_type (die, cu);
16558 break;
16559 case DW_TAG_ptr_to_member_type:
16560 this_type = read_tag_ptr_to_member_type (die, cu);
16561 break;
16562 case DW_TAG_reference_type:
16563 this_type = read_tag_reference_type (die, cu);
16564 break;
16565 case DW_TAG_const_type:
16566 this_type = read_tag_const_type (die, cu);
16567 break;
16568 case DW_TAG_volatile_type:
16569 this_type = read_tag_volatile_type (die, cu);
16570 break;
16571 case DW_TAG_restrict_type:
16572 this_type = read_tag_restrict_type (die, cu);
16573 break;
16574 case DW_TAG_string_type:
16575 this_type = read_tag_string_type (die, cu);
16576 break;
16577 case DW_TAG_typedef:
16578 this_type = read_typedef (die, cu);
16579 break;
16580 case DW_TAG_subrange_type:
16581 this_type = read_subrange_type (die, cu);
16582 break;
16583 case DW_TAG_base_type:
16584 this_type = read_base_type (die, cu);
16585 break;
16586 case DW_TAG_unspecified_type:
16587 this_type = read_unspecified_type (die, cu);
16588 break;
16589 case DW_TAG_namespace:
16590 this_type = read_namespace_type (die, cu);
16591 break;
16592 case DW_TAG_module:
16593 this_type = read_module_type (die, cu);
16594 break;
16595 default:
16596 complaint (&symfile_complaints,
16597 _("unexpected tag in read_type_die: '%s'"),
16598 dwarf_tag_name (die->tag));
16599 break;
16600 }
16601
16602 return this_type;
16603 }
16604
16605 /* See if we can figure out if the class lives in a namespace. We do
16606 this by looking for a member function; its demangled name will
16607 contain namespace info, if there is any.
16608 Return the computed name or NULL.
16609 Space for the result is allocated on the objfile's obstack.
16610 This is the full-die version of guess_partial_die_structure_name.
16611 In this case we know DIE has no useful parent. */
16612
16613 static char *
16614 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16615 {
16616 struct die_info *spec_die;
16617 struct dwarf2_cu *spec_cu;
16618 struct die_info *child;
16619
16620 spec_cu = cu;
16621 spec_die = die_specification (die, &spec_cu);
16622 if (spec_die != NULL)
16623 {
16624 die = spec_die;
16625 cu = spec_cu;
16626 }
16627
16628 for (child = die->child;
16629 child != NULL;
16630 child = child->sibling)
16631 {
16632 if (child->tag == DW_TAG_subprogram)
16633 {
16634 struct attribute *attr;
16635
16636 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16637 if (attr == NULL)
16638 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16639 if (attr != NULL)
16640 {
16641 char *actual_name
16642 = language_class_name_from_physname (cu->language_defn,
16643 DW_STRING (attr));
16644 char *name = NULL;
16645
16646 if (actual_name != NULL)
16647 {
16648 const char *die_name = dwarf2_name (die, cu);
16649
16650 if (die_name != NULL
16651 && strcmp (die_name, actual_name) != 0)
16652 {
16653 /* Strip off the class name from the full name.
16654 We want the prefix. */
16655 int die_name_len = strlen (die_name);
16656 int actual_name_len = strlen (actual_name);
16657
16658 /* Test for '::' as a sanity check. */
16659 if (actual_name_len > die_name_len + 2
16660 && actual_name[actual_name_len
16661 - die_name_len - 1] == ':')
16662 name =
16663 obstack_copy0 (&cu->objfile->objfile_obstack,
16664 actual_name,
16665 actual_name_len - die_name_len - 2);
16666 }
16667 }
16668 xfree (actual_name);
16669 return name;
16670 }
16671 }
16672 }
16673
16674 return NULL;
16675 }
16676
16677 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16678 prefix part in such case. See
16679 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16680
16681 static char *
16682 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16683 {
16684 struct attribute *attr;
16685 char *base;
16686
16687 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16688 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16689 return NULL;
16690
16691 attr = dwarf2_attr (die, DW_AT_name, cu);
16692 if (attr != NULL && DW_STRING (attr) != NULL)
16693 return NULL;
16694
16695 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16696 if (attr == NULL)
16697 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16698 if (attr == NULL || DW_STRING (attr) == NULL)
16699 return NULL;
16700
16701 /* dwarf2_name had to be already called. */
16702 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16703
16704 /* Strip the base name, keep any leading namespaces/classes. */
16705 base = strrchr (DW_STRING (attr), ':');
16706 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16707 return "";
16708
16709 return obstack_copy0 (&cu->objfile->objfile_obstack,
16710 DW_STRING (attr), &base[-1] - DW_STRING (attr));
16711 }
16712
16713 /* Return the name of the namespace/class that DIE is defined within,
16714 or "" if we can't tell. The caller should not xfree the result.
16715
16716 For example, if we're within the method foo() in the following
16717 code:
16718
16719 namespace N {
16720 class C {
16721 void foo () {
16722 }
16723 };
16724 }
16725
16726 then determine_prefix on foo's die will return "N::C". */
16727
16728 static const char *
16729 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16730 {
16731 struct die_info *parent, *spec_die;
16732 struct dwarf2_cu *spec_cu;
16733 struct type *parent_type;
16734 char *retval;
16735
16736 if (cu->language != language_cplus && cu->language != language_java
16737 && cu->language != language_fortran)
16738 return "";
16739
16740 retval = anonymous_struct_prefix (die, cu);
16741 if (retval)
16742 return retval;
16743
16744 /* We have to be careful in the presence of DW_AT_specification.
16745 For example, with GCC 3.4, given the code
16746
16747 namespace N {
16748 void foo() {
16749 // Definition of N::foo.
16750 }
16751 }
16752
16753 then we'll have a tree of DIEs like this:
16754
16755 1: DW_TAG_compile_unit
16756 2: DW_TAG_namespace // N
16757 3: DW_TAG_subprogram // declaration of N::foo
16758 4: DW_TAG_subprogram // definition of N::foo
16759 DW_AT_specification // refers to die #3
16760
16761 Thus, when processing die #4, we have to pretend that we're in
16762 the context of its DW_AT_specification, namely the contex of die
16763 #3. */
16764 spec_cu = cu;
16765 spec_die = die_specification (die, &spec_cu);
16766 if (spec_die == NULL)
16767 parent = die->parent;
16768 else
16769 {
16770 parent = spec_die->parent;
16771 cu = spec_cu;
16772 }
16773
16774 if (parent == NULL)
16775 return "";
16776 else if (parent->building_fullname)
16777 {
16778 const char *name;
16779 const char *parent_name;
16780
16781 /* It has been seen on RealView 2.2 built binaries,
16782 DW_TAG_template_type_param types actually _defined_ as
16783 children of the parent class:
16784
16785 enum E {};
16786 template class <class Enum> Class{};
16787 Class<enum E> class_e;
16788
16789 1: DW_TAG_class_type (Class)
16790 2: DW_TAG_enumeration_type (E)
16791 3: DW_TAG_enumerator (enum1:0)
16792 3: DW_TAG_enumerator (enum2:1)
16793 ...
16794 2: DW_TAG_template_type_param
16795 DW_AT_type DW_FORM_ref_udata (E)
16796
16797 Besides being broken debug info, it can put GDB into an
16798 infinite loop. Consider:
16799
16800 When we're building the full name for Class<E>, we'll start
16801 at Class, and go look over its template type parameters,
16802 finding E. We'll then try to build the full name of E, and
16803 reach here. We're now trying to build the full name of E,
16804 and look over the parent DIE for containing scope. In the
16805 broken case, if we followed the parent DIE of E, we'd again
16806 find Class, and once again go look at its template type
16807 arguments, etc., etc. Simply don't consider such parent die
16808 as source-level parent of this die (it can't be, the language
16809 doesn't allow it), and break the loop here. */
16810 name = dwarf2_name (die, cu);
16811 parent_name = dwarf2_name (parent, cu);
16812 complaint (&symfile_complaints,
16813 _("template param type '%s' defined within parent '%s'"),
16814 name ? name : "<unknown>",
16815 parent_name ? parent_name : "<unknown>");
16816 return "";
16817 }
16818 else
16819 switch (parent->tag)
16820 {
16821 case DW_TAG_namespace:
16822 parent_type = read_type_die (parent, cu);
16823 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16824 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16825 Work around this problem here. */
16826 if (cu->language == language_cplus
16827 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16828 return "";
16829 /* We give a name to even anonymous namespaces. */
16830 return TYPE_TAG_NAME (parent_type);
16831 case DW_TAG_class_type:
16832 case DW_TAG_interface_type:
16833 case DW_TAG_structure_type:
16834 case DW_TAG_union_type:
16835 case DW_TAG_module:
16836 parent_type = read_type_die (parent, cu);
16837 if (TYPE_TAG_NAME (parent_type) != NULL)
16838 return TYPE_TAG_NAME (parent_type);
16839 else
16840 /* An anonymous structure is only allowed non-static data
16841 members; no typedefs, no member functions, et cetera.
16842 So it does not need a prefix. */
16843 return "";
16844 case DW_TAG_compile_unit:
16845 case DW_TAG_partial_unit:
16846 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16847 if (cu->language == language_cplus
16848 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16849 && die->child != NULL
16850 && (die->tag == DW_TAG_class_type
16851 || die->tag == DW_TAG_structure_type
16852 || die->tag == DW_TAG_union_type))
16853 {
16854 char *name = guess_full_die_structure_name (die, cu);
16855 if (name != NULL)
16856 return name;
16857 }
16858 return "";
16859 default:
16860 return determine_prefix (parent, cu);
16861 }
16862 }
16863
16864 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16865 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16866 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16867 an obconcat, otherwise allocate storage for the result. The CU argument is
16868 used to determine the language and hence, the appropriate separator. */
16869
16870 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
16871
16872 static char *
16873 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16874 int physname, struct dwarf2_cu *cu)
16875 {
16876 const char *lead = "";
16877 const char *sep;
16878
16879 if (suffix == NULL || suffix[0] == '\0'
16880 || prefix == NULL || prefix[0] == '\0')
16881 sep = "";
16882 else if (cu->language == language_java)
16883 sep = ".";
16884 else if (cu->language == language_fortran && physname)
16885 {
16886 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16887 DW_AT_MIPS_linkage_name is preferred and used instead. */
16888
16889 lead = "__";
16890 sep = "_MOD_";
16891 }
16892 else
16893 sep = "::";
16894
16895 if (prefix == NULL)
16896 prefix = "";
16897 if (suffix == NULL)
16898 suffix = "";
16899
16900 if (obs == NULL)
16901 {
16902 char *retval
16903 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
16904
16905 strcpy (retval, lead);
16906 strcat (retval, prefix);
16907 strcat (retval, sep);
16908 strcat (retval, suffix);
16909 return retval;
16910 }
16911 else
16912 {
16913 /* We have an obstack. */
16914 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
16915 }
16916 }
16917
16918 /* Return sibling of die, NULL if no sibling. */
16919
16920 static struct die_info *
16921 sibling_die (struct die_info *die)
16922 {
16923 return die->sibling;
16924 }
16925
16926 /* Get name of a die, return NULL if not found. */
16927
16928 static const char *
16929 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
16930 struct obstack *obstack)
16931 {
16932 if (name && cu->language == language_cplus)
16933 {
16934 char *canon_name = cp_canonicalize_string (name);
16935
16936 if (canon_name != NULL)
16937 {
16938 if (strcmp (canon_name, name) != 0)
16939 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
16940 xfree (canon_name);
16941 }
16942 }
16943
16944 return name;
16945 }
16946
16947 /* Get name of a die, return NULL if not found. */
16948
16949 static const char *
16950 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
16951 {
16952 struct attribute *attr;
16953
16954 attr = dwarf2_attr (die, DW_AT_name, cu);
16955 if ((!attr || !DW_STRING (attr))
16956 && die->tag != DW_TAG_class_type
16957 && die->tag != DW_TAG_interface_type
16958 && die->tag != DW_TAG_structure_type
16959 && die->tag != DW_TAG_union_type)
16960 return NULL;
16961
16962 switch (die->tag)
16963 {
16964 case DW_TAG_compile_unit:
16965 case DW_TAG_partial_unit:
16966 /* Compilation units have a DW_AT_name that is a filename, not
16967 a source language identifier. */
16968 case DW_TAG_enumeration_type:
16969 case DW_TAG_enumerator:
16970 /* These tags always have simple identifiers already; no need
16971 to canonicalize them. */
16972 return DW_STRING (attr);
16973
16974 case DW_TAG_subprogram:
16975 /* Java constructors will all be named "<init>", so return
16976 the class name when we see this special case. */
16977 if (cu->language == language_java
16978 && DW_STRING (attr) != NULL
16979 && strcmp (DW_STRING (attr), "<init>") == 0)
16980 {
16981 struct dwarf2_cu *spec_cu = cu;
16982 struct die_info *spec_die;
16983
16984 /* GCJ will output '<init>' for Java constructor names.
16985 For this special case, return the name of the parent class. */
16986
16987 /* GCJ may output suprogram DIEs with AT_specification set.
16988 If so, use the name of the specified DIE. */
16989 spec_die = die_specification (die, &spec_cu);
16990 if (spec_die != NULL)
16991 return dwarf2_name (spec_die, spec_cu);
16992
16993 do
16994 {
16995 die = die->parent;
16996 if (die->tag == DW_TAG_class_type)
16997 return dwarf2_name (die, cu);
16998 }
16999 while (die->tag != DW_TAG_compile_unit
17000 && die->tag != DW_TAG_partial_unit);
17001 }
17002 break;
17003
17004 case DW_TAG_class_type:
17005 case DW_TAG_interface_type:
17006 case DW_TAG_structure_type:
17007 case DW_TAG_union_type:
17008 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17009 structures or unions. These were of the form "._%d" in GCC 4.1,
17010 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17011 and GCC 4.4. We work around this problem by ignoring these. */
17012 if (attr && DW_STRING (attr)
17013 && (strncmp (DW_STRING (attr), "._", 2) == 0
17014 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17015 return NULL;
17016
17017 /* GCC might emit a nameless typedef that has a linkage name. See
17018 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17019 if (!attr || DW_STRING (attr) == NULL)
17020 {
17021 char *demangled = NULL;
17022
17023 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17024 if (attr == NULL)
17025 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17026
17027 if (attr == NULL || DW_STRING (attr) == NULL)
17028 return NULL;
17029
17030 /* Avoid demangling DW_STRING (attr) the second time on a second
17031 call for the same DIE. */
17032 if (!DW_STRING_IS_CANONICAL (attr))
17033 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
17034
17035 if (demangled)
17036 {
17037 char *base;
17038
17039 /* FIXME: we already did this for the partial symbol... */
17040 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17041 demangled, strlen (demangled));
17042 DW_STRING_IS_CANONICAL (attr) = 1;
17043 xfree (demangled);
17044
17045 /* Strip any leading namespaces/classes, keep only the base name.
17046 DW_AT_name for named DIEs does not contain the prefixes. */
17047 base = strrchr (DW_STRING (attr), ':');
17048 if (base && base > DW_STRING (attr) && base[-1] == ':')
17049 return &base[1];
17050 else
17051 return DW_STRING (attr);
17052 }
17053 }
17054 break;
17055
17056 default:
17057 break;
17058 }
17059
17060 if (!DW_STRING_IS_CANONICAL (attr))
17061 {
17062 DW_STRING (attr)
17063 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17064 &cu->objfile->objfile_obstack);
17065 DW_STRING_IS_CANONICAL (attr) = 1;
17066 }
17067 return DW_STRING (attr);
17068 }
17069
17070 /* Return the die that this die in an extension of, or NULL if there
17071 is none. *EXT_CU is the CU containing DIE on input, and the CU
17072 containing the return value on output. */
17073
17074 static struct die_info *
17075 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17076 {
17077 struct attribute *attr;
17078
17079 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17080 if (attr == NULL)
17081 return NULL;
17082
17083 return follow_die_ref (die, attr, ext_cu);
17084 }
17085
17086 /* Convert a DIE tag into its string name. */
17087
17088 static const char *
17089 dwarf_tag_name (unsigned tag)
17090 {
17091 const char *name = get_DW_TAG_name (tag);
17092
17093 if (name == NULL)
17094 return "DW_TAG_<unknown>";
17095
17096 return name;
17097 }
17098
17099 /* Convert a DWARF attribute code into its string name. */
17100
17101 static const char *
17102 dwarf_attr_name (unsigned attr)
17103 {
17104 const char *name;
17105
17106 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17107 if (attr == DW_AT_MIPS_fde)
17108 return "DW_AT_MIPS_fde";
17109 #else
17110 if (attr == DW_AT_HP_block_index)
17111 return "DW_AT_HP_block_index";
17112 #endif
17113
17114 name = get_DW_AT_name (attr);
17115
17116 if (name == NULL)
17117 return "DW_AT_<unknown>";
17118
17119 return name;
17120 }
17121
17122 /* Convert a DWARF value form code into its string name. */
17123
17124 static const char *
17125 dwarf_form_name (unsigned form)
17126 {
17127 const char *name = get_DW_FORM_name (form);
17128
17129 if (name == NULL)
17130 return "DW_FORM_<unknown>";
17131
17132 return name;
17133 }
17134
17135 static char *
17136 dwarf_bool_name (unsigned mybool)
17137 {
17138 if (mybool)
17139 return "TRUE";
17140 else
17141 return "FALSE";
17142 }
17143
17144 /* Convert a DWARF type code into its string name. */
17145
17146 static const char *
17147 dwarf_type_encoding_name (unsigned enc)
17148 {
17149 const char *name = get_DW_ATE_name (enc);
17150
17151 if (name == NULL)
17152 return "DW_ATE_<unknown>";
17153
17154 return name;
17155 }
17156
17157 static void
17158 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17159 {
17160 unsigned int i;
17161
17162 print_spaces (indent, f);
17163 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17164 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17165
17166 if (die->parent != NULL)
17167 {
17168 print_spaces (indent, f);
17169 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17170 die->parent->offset.sect_off);
17171 }
17172
17173 print_spaces (indent, f);
17174 fprintf_unfiltered (f, " has children: %s\n",
17175 dwarf_bool_name (die->child != NULL));
17176
17177 print_spaces (indent, f);
17178 fprintf_unfiltered (f, " attributes:\n");
17179
17180 for (i = 0; i < die->num_attrs; ++i)
17181 {
17182 print_spaces (indent, f);
17183 fprintf_unfiltered (f, " %s (%s) ",
17184 dwarf_attr_name (die->attrs[i].name),
17185 dwarf_form_name (die->attrs[i].form));
17186
17187 switch (die->attrs[i].form)
17188 {
17189 case DW_FORM_addr:
17190 case DW_FORM_GNU_addr_index:
17191 fprintf_unfiltered (f, "address: ");
17192 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17193 break;
17194 case DW_FORM_block2:
17195 case DW_FORM_block4:
17196 case DW_FORM_block:
17197 case DW_FORM_block1:
17198 fprintf_unfiltered (f, "block: size %s",
17199 pulongest (DW_BLOCK (&die->attrs[i])->size));
17200 break;
17201 case DW_FORM_exprloc:
17202 fprintf_unfiltered (f, "expression: size %s",
17203 pulongest (DW_BLOCK (&die->attrs[i])->size));
17204 break;
17205 case DW_FORM_ref_addr:
17206 fprintf_unfiltered (f, "ref address: ");
17207 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17208 break;
17209 case DW_FORM_GNU_ref_alt:
17210 fprintf_unfiltered (f, "alt ref address: ");
17211 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17212 break;
17213 case DW_FORM_ref1:
17214 case DW_FORM_ref2:
17215 case DW_FORM_ref4:
17216 case DW_FORM_ref8:
17217 case DW_FORM_ref_udata:
17218 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17219 (long) (DW_UNSND (&die->attrs[i])));
17220 break;
17221 case DW_FORM_data1:
17222 case DW_FORM_data2:
17223 case DW_FORM_data4:
17224 case DW_FORM_data8:
17225 case DW_FORM_udata:
17226 case DW_FORM_sdata:
17227 fprintf_unfiltered (f, "constant: %s",
17228 pulongest (DW_UNSND (&die->attrs[i])));
17229 break;
17230 case DW_FORM_sec_offset:
17231 fprintf_unfiltered (f, "section offset: %s",
17232 pulongest (DW_UNSND (&die->attrs[i])));
17233 break;
17234 case DW_FORM_ref_sig8:
17235 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17236 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
17237 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
17238 else
17239 fprintf_unfiltered (f, "signatured type, offset: unknown");
17240 break;
17241 case DW_FORM_string:
17242 case DW_FORM_strp:
17243 case DW_FORM_GNU_str_index:
17244 case DW_FORM_GNU_strp_alt:
17245 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17246 DW_STRING (&die->attrs[i])
17247 ? DW_STRING (&die->attrs[i]) : "",
17248 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17249 break;
17250 case DW_FORM_flag:
17251 if (DW_UNSND (&die->attrs[i]))
17252 fprintf_unfiltered (f, "flag: TRUE");
17253 else
17254 fprintf_unfiltered (f, "flag: FALSE");
17255 break;
17256 case DW_FORM_flag_present:
17257 fprintf_unfiltered (f, "flag: TRUE");
17258 break;
17259 case DW_FORM_indirect:
17260 /* The reader will have reduced the indirect form to
17261 the "base form" so this form should not occur. */
17262 fprintf_unfiltered (f,
17263 "unexpected attribute form: DW_FORM_indirect");
17264 break;
17265 default:
17266 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17267 die->attrs[i].form);
17268 break;
17269 }
17270 fprintf_unfiltered (f, "\n");
17271 }
17272 }
17273
17274 static void
17275 dump_die_for_error (struct die_info *die)
17276 {
17277 dump_die_shallow (gdb_stderr, 0, die);
17278 }
17279
17280 static void
17281 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17282 {
17283 int indent = level * 4;
17284
17285 gdb_assert (die != NULL);
17286
17287 if (level >= max_level)
17288 return;
17289
17290 dump_die_shallow (f, indent, die);
17291
17292 if (die->child != NULL)
17293 {
17294 print_spaces (indent, f);
17295 fprintf_unfiltered (f, " Children:");
17296 if (level + 1 < max_level)
17297 {
17298 fprintf_unfiltered (f, "\n");
17299 dump_die_1 (f, level + 1, max_level, die->child);
17300 }
17301 else
17302 {
17303 fprintf_unfiltered (f,
17304 " [not printed, max nesting level reached]\n");
17305 }
17306 }
17307
17308 if (die->sibling != NULL && level > 0)
17309 {
17310 dump_die_1 (f, level, max_level, die->sibling);
17311 }
17312 }
17313
17314 /* This is called from the pdie macro in gdbinit.in.
17315 It's not static so gcc will keep a copy callable from gdb. */
17316
17317 void
17318 dump_die (struct die_info *die, int max_level)
17319 {
17320 dump_die_1 (gdb_stdlog, 0, max_level, die);
17321 }
17322
17323 static void
17324 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17325 {
17326 void **slot;
17327
17328 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17329 INSERT);
17330
17331 *slot = die;
17332 }
17333
17334 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17335 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17336
17337 static int
17338 is_ref_attr (struct attribute *attr)
17339 {
17340 switch (attr->form)
17341 {
17342 case DW_FORM_ref_addr:
17343 case DW_FORM_ref1:
17344 case DW_FORM_ref2:
17345 case DW_FORM_ref4:
17346 case DW_FORM_ref8:
17347 case DW_FORM_ref_udata:
17348 case DW_FORM_GNU_ref_alt:
17349 return 1;
17350 default:
17351 return 0;
17352 }
17353 }
17354
17355 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17356 required kind. */
17357
17358 static sect_offset
17359 dwarf2_get_ref_die_offset (struct attribute *attr)
17360 {
17361 sect_offset retval = { DW_UNSND (attr) };
17362
17363 if (is_ref_attr (attr))
17364 return retval;
17365
17366 retval.sect_off = 0;
17367 complaint (&symfile_complaints,
17368 _("unsupported die ref attribute form: '%s'"),
17369 dwarf_form_name (attr->form));
17370 return retval;
17371 }
17372
17373 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17374 * the value held by the attribute is not constant. */
17375
17376 static LONGEST
17377 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17378 {
17379 if (attr->form == DW_FORM_sdata)
17380 return DW_SND (attr);
17381 else if (attr->form == DW_FORM_udata
17382 || attr->form == DW_FORM_data1
17383 || attr->form == DW_FORM_data2
17384 || attr->form == DW_FORM_data4
17385 || attr->form == DW_FORM_data8)
17386 return DW_UNSND (attr);
17387 else
17388 {
17389 complaint (&symfile_complaints,
17390 _("Attribute value is not a constant (%s)"),
17391 dwarf_form_name (attr->form));
17392 return default_value;
17393 }
17394 }
17395
17396 /* Follow reference or signature attribute ATTR of SRC_DIE.
17397 On entry *REF_CU is the CU of SRC_DIE.
17398 On exit *REF_CU is the CU of the result. */
17399
17400 static struct die_info *
17401 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17402 struct dwarf2_cu **ref_cu)
17403 {
17404 struct die_info *die;
17405
17406 if (is_ref_attr (attr))
17407 die = follow_die_ref (src_die, attr, ref_cu);
17408 else if (attr->form == DW_FORM_ref_sig8)
17409 die = follow_die_sig (src_die, attr, ref_cu);
17410 else
17411 {
17412 dump_die_for_error (src_die);
17413 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17414 (*ref_cu)->objfile->name);
17415 }
17416
17417 return die;
17418 }
17419
17420 /* Follow reference OFFSET.
17421 On entry *REF_CU is the CU of the source die referencing OFFSET.
17422 On exit *REF_CU is the CU of the result.
17423 Returns NULL if OFFSET is invalid. */
17424
17425 static struct die_info *
17426 follow_die_offset (sect_offset offset, int offset_in_dwz,
17427 struct dwarf2_cu **ref_cu)
17428 {
17429 struct die_info temp_die;
17430 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17431
17432 gdb_assert (cu->per_cu != NULL);
17433
17434 target_cu = cu;
17435
17436 if (cu->per_cu->is_debug_types)
17437 {
17438 /* .debug_types CUs cannot reference anything outside their CU.
17439 If they need to, they have to reference a signatured type via
17440 DW_FORM_ref_sig8. */
17441 if (! offset_in_cu_p (&cu->header, offset))
17442 return NULL;
17443 }
17444 else if (offset_in_dwz != cu->per_cu->is_dwz
17445 || ! offset_in_cu_p (&cu->header, offset))
17446 {
17447 struct dwarf2_per_cu_data *per_cu;
17448
17449 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17450 cu->objfile);
17451
17452 /* If necessary, add it to the queue and load its DIEs. */
17453 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17454 load_full_comp_unit (per_cu, cu->language);
17455
17456 target_cu = per_cu->cu;
17457 }
17458 else if (cu->dies == NULL)
17459 {
17460 /* We're loading full DIEs during partial symbol reading. */
17461 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17462 load_full_comp_unit (cu->per_cu, language_minimal);
17463 }
17464
17465 *ref_cu = target_cu;
17466 temp_die.offset = offset;
17467 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17468 }
17469
17470 /* Follow reference attribute ATTR of SRC_DIE.
17471 On entry *REF_CU is the CU of SRC_DIE.
17472 On exit *REF_CU is the CU of the result. */
17473
17474 static struct die_info *
17475 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17476 struct dwarf2_cu **ref_cu)
17477 {
17478 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17479 struct dwarf2_cu *cu = *ref_cu;
17480 struct die_info *die;
17481
17482 die = follow_die_offset (offset,
17483 (attr->form == DW_FORM_GNU_ref_alt
17484 || cu->per_cu->is_dwz),
17485 ref_cu);
17486 if (!die)
17487 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17488 "at 0x%x [in module %s]"),
17489 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17490
17491 return die;
17492 }
17493
17494 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17495 Returned value is intended for DW_OP_call*. Returned
17496 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17497
17498 struct dwarf2_locexpr_baton
17499 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17500 struct dwarf2_per_cu_data *per_cu,
17501 CORE_ADDR (*get_frame_pc) (void *baton),
17502 void *baton)
17503 {
17504 struct dwarf2_cu *cu;
17505 struct die_info *die;
17506 struct attribute *attr;
17507 struct dwarf2_locexpr_baton retval;
17508
17509 dw2_setup (per_cu->objfile);
17510
17511 if (per_cu->cu == NULL)
17512 load_cu (per_cu);
17513 cu = per_cu->cu;
17514
17515 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17516 if (!die)
17517 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17518 offset.sect_off, per_cu->objfile->name);
17519
17520 attr = dwarf2_attr (die, DW_AT_location, cu);
17521 if (!attr)
17522 {
17523 /* DWARF: "If there is no such attribute, then there is no effect.".
17524 DATA is ignored if SIZE is 0. */
17525
17526 retval.data = NULL;
17527 retval.size = 0;
17528 }
17529 else if (attr_form_is_section_offset (attr))
17530 {
17531 struct dwarf2_loclist_baton loclist_baton;
17532 CORE_ADDR pc = (*get_frame_pc) (baton);
17533 size_t size;
17534
17535 fill_in_loclist_baton (cu, &loclist_baton, attr);
17536
17537 retval.data = dwarf2_find_location_expression (&loclist_baton,
17538 &size, pc);
17539 retval.size = size;
17540 }
17541 else
17542 {
17543 if (!attr_form_is_block (attr))
17544 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17545 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17546 offset.sect_off, per_cu->objfile->name);
17547
17548 retval.data = DW_BLOCK (attr)->data;
17549 retval.size = DW_BLOCK (attr)->size;
17550 }
17551 retval.per_cu = cu->per_cu;
17552
17553 age_cached_comp_units ();
17554
17555 return retval;
17556 }
17557
17558 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17559 offset. */
17560
17561 struct dwarf2_locexpr_baton
17562 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17563 struct dwarf2_per_cu_data *per_cu,
17564 CORE_ADDR (*get_frame_pc) (void *baton),
17565 void *baton)
17566 {
17567 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17568
17569 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17570 }
17571
17572 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17573 PER_CU. */
17574
17575 struct type *
17576 dwarf2_get_die_type (cu_offset die_offset,
17577 struct dwarf2_per_cu_data *per_cu)
17578 {
17579 sect_offset die_offset_sect;
17580
17581 dw2_setup (per_cu->objfile);
17582
17583 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17584 return get_die_type_at_offset (die_offset_sect, per_cu);
17585 }
17586
17587 /* Follow the signature attribute ATTR in SRC_DIE.
17588 On entry *REF_CU is the CU of SRC_DIE.
17589 On exit *REF_CU is the CU of the result. */
17590
17591 static struct die_info *
17592 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17593 struct dwarf2_cu **ref_cu)
17594 {
17595 struct objfile *objfile = (*ref_cu)->objfile;
17596 struct die_info temp_die;
17597 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17598 struct dwarf2_cu *sig_cu;
17599 struct die_info *die;
17600
17601 /* sig_type will be NULL if the signatured type is missing from
17602 the debug info. */
17603 if (sig_type == NULL)
17604 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17605 "at 0x%x [in module %s]"),
17606 src_die->offset.sect_off, objfile->name);
17607
17608 /* If necessary, add it to the queue and load its DIEs. */
17609
17610 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17611 read_signatured_type (sig_type);
17612
17613 gdb_assert (sig_type->per_cu.cu != NULL);
17614
17615 sig_cu = sig_type->per_cu.cu;
17616 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17617 temp_die.offset = sig_type->type_offset_in_section;
17618 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17619 temp_die.offset.sect_off);
17620 if (die)
17621 {
17622 /* For .gdb_index version 7 keep track of included TUs.
17623 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
17624 if (dwarf2_per_objfile->index_table != NULL
17625 && dwarf2_per_objfile->index_table->version <= 7)
17626 {
17627 VEC_safe_push (dwarf2_per_cu_ptr,
17628 (*ref_cu)->per_cu->imported_symtabs,
17629 sig_cu->per_cu);
17630 }
17631
17632 *ref_cu = sig_cu;
17633 return die;
17634 }
17635
17636 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17637 "from DIE at 0x%x [in module %s]"),
17638 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17639 }
17640
17641 /* Given an offset of a signatured type, return its signatured_type. */
17642
17643 static struct signatured_type *
17644 lookup_signatured_type_at_offset (struct objfile *objfile,
17645 struct dwarf2_section_info *section,
17646 sect_offset offset)
17647 {
17648 gdb_byte *info_ptr = section->buffer + offset.sect_off;
17649 unsigned int length, initial_length_size;
17650 unsigned int sig_offset;
17651 struct signatured_type find_entry, *sig_type;
17652
17653 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17654 sig_offset = (initial_length_size
17655 + 2 /*version*/
17656 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17657 + 1 /*address_size*/);
17658 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
17659 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
17660
17661 /* This is only used to lookup previously recorded types.
17662 If we didn't find it, it's our bug. */
17663 gdb_assert (sig_type != NULL);
17664 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
17665
17666 return sig_type;
17667 }
17668
17669 /* Load the DIEs associated with type unit PER_CU into memory. */
17670
17671 static void
17672 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17673 {
17674 struct signatured_type *sig_type;
17675
17676 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17677 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17678
17679 /* We have the per_cu, but we need the signatured_type.
17680 Fortunately this is an easy translation. */
17681 gdb_assert (per_cu->is_debug_types);
17682 sig_type = (struct signatured_type *) per_cu;
17683
17684 gdb_assert (per_cu->cu == NULL);
17685
17686 read_signatured_type (sig_type);
17687
17688 gdb_assert (per_cu->cu != NULL);
17689 }
17690
17691 /* die_reader_func for read_signatured_type.
17692 This is identical to load_full_comp_unit_reader,
17693 but is kept separate for now. */
17694
17695 static void
17696 read_signatured_type_reader (const struct die_reader_specs *reader,
17697 gdb_byte *info_ptr,
17698 struct die_info *comp_unit_die,
17699 int has_children,
17700 void *data)
17701 {
17702 struct dwarf2_cu *cu = reader->cu;
17703
17704 gdb_assert (cu->die_hash == NULL);
17705 cu->die_hash =
17706 htab_create_alloc_ex (cu->header.length / 12,
17707 die_hash,
17708 die_eq,
17709 NULL,
17710 &cu->comp_unit_obstack,
17711 hashtab_obstack_allocate,
17712 dummy_obstack_deallocate);
17713
17714 if (has_children)
17715 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17716 &info_ptr, comp_unit_die);
17717 cu->dies = comp_unit_die;
17718 /* comp_unit_die is not stored in die_hash, no need. */
17719
17720 /* We try not to read any attributes in this function, because not
17721 all CUs needed for references have been loaded yet, and symbol
17722 table processing isn't initialized. But we have to set the CU language,
17723 or we won't be able to build types correctly.
17724 Similarly, if we do not read the producer, we can not apply
17725 producer-specific interpretation. */
17726 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17727 }
17728
17729 /* Read in a signatured type and build its CU and DIEs.
17730 If the type is a stub for the real type in a DWO file,
17731 read in the real type from the DWO file as well. */
17732
17733 static void
17734 read_signatured_type (struct signatured_type *sig_type)
17735 {
17736 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17737
17738 gdb_assert (per_cu->is_debug_types);
17739 gdb_assert (per_cu->cu == NULL);
17740
17741 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17742 read_signatured_type_reader, NULL);
17743 }
17744
17745 /* Decode simple location descriptions.
17746 Given a pointer to a dwarf block that defines a location, compute
17747 the location and return the value.
17748
17749 NOTE drow/2003-11-18: This function is called in two situations
17750 now: for the address of static or global variables (partial symbols
17751 only) and for offsets into structures which are expected to be
17752 (more or less) constant. The partial symbol case should go away,
17753 and only the constant case should remain. That will let this
17754 function complain more accurately. A few special modes are allowed
17755 without complaint for global variables (for instance, global
17756 register values and thread-local values).
17757
17758 A location description containing no operations indicates that the
17759 object is optimized out. The return value is 0 for that case.
17760 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17761 callers will only want a very basic result and this can become a
17762 complaint.
17763
17764 Note that stack[0] is unused except as a default error return. */
17765
17766 static CORE_ADDR
17767 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17768 {
17769 struct objfile *objfile = cu->objfile;
17770 size_t i;
17771 size_t size = blk->size;
17772 gdb_byte *data = blk->data;
17773 CORE_ADDR stack[64];
17774 int stacki;
17775 unsigned int bytes_read, unsnd;
17776 gdb_byte op;
17777
17778 i = 0;
17779 stacki = 0;
17780 stack[stacki] = 0;
17781 stack[++stacki] = 0;
17782
17783 while (i < size)
17784 {
17785 op = data[i++];
17786 switch (op)
17787 {
17788 case DW_OP_lit0:
17789 case DW_OP_lit1:
17790 case DW_OP_lit2:
17791 case DW_OP_lit3:
17792 case DW_OP_lit4:
17793 case DW_OP_lit5:
17794 case DW_OP_lit6:
17795 case DW_OP_lit7:
17796 case DW_OP_lit8:
17797 case DW_OP_lit9:
17798 case DW_OP_lit10:
17799 case DW_OP_lit11:
17800 case DW_OP_lit12:
17801 case DW_OP_lit13:
17802 case DW_OP_lit14:
17803 case DW_OP_lit15:
17804 case DW_OP_lit16:
17805 case DW_OP_lit17:
17806 case DW_OP_lit18:
17807 case DW_OP_lit19:
17808 case DW_OP_lit20:
17809 case DW_OP_lit21:
17810 case DW_OP_lit22:
17811 case DW_OP_lit23:
17812 case DW_OP_lit24:
17813 case DW_OP_lit25:
17814 case DW_OP_lit26:
17815 case DW_OP_lit27:
17816 case DW_OP_lit28:
17817 case DW_OP_lit29:
17818 case DW_OP_lit30:
17819 case DW_OP_lit31:
17820 stack[++stacki] = op - DW_OP_lit0;
17821 break;
17822
17823 case DW_OP_reg0:
17824 case DW_OP_reg1:
17825 case DW_OP_reg2:
17826 case DW_OP_reg3:
17827 case DW_OP_reg4:
17828 case DW_OP_reg5:
17829 case DW_OP_reg6:
17830 case DW_OP_reg7:
17831 case DW_OP_reg8:
17832 case DW_OP_reg9:
17833 case DW_OP_reg10:
17834 case DW_OP_reg11:
17835 case DW_OP_reg12:
17836 case DW_OP_reg13:
17837 case DW_OP_reg14:
17838 case DW_OP_reg15:
17839 case DW_OP_reg16:
17840 case DW_OP_reg17:
17841 case DW_OP_reg18:
17842 case DW_OP_reg19:
17843 case DW_OP_reg20:
17844 case DW_OP_reg21:
17845 case DW_OP_reg22:
17846 case DW_OP_reg23:
17847 case DW_OP_reg24:
17848 case DW_OP_reg25:
17849 case DW_OP_reg26:
17850 case DW_OP_reg27:
17851 case DW_OP_reg28:
17852 case DW_OP_reg29:
17853 case DW_OP_reg30:
17854 case DW_OP_reg31:
17855 stack[++stacki] = op - DW_OP_reg0;
17856 if (i < size)
17857 dwarf2_complex_location_expr_complaint ();
17858 break;
17859
17860 case DW_OP_regx:
17861 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17862 i += bytes_read;
17863 stack[++stacki] = unsnd;
17864 if (i < size)
17865 dwarf2_complex_location_expr_complaint ();
17866 break;
17867
17868 case DW_OP_addr:
17869 stack[++stacki] = read_address (objfile->obfd, &data[i],
17870 cu, &bytes_read);
17871 i += bytes_read;
17872 break;
17873
17874 case DW_OP_const1u:
17875 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17876 i += 1;
17877 break;
17878
17879 case DW_OP_const1s:
17880 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17881 i += 1;
17882 break;
17883
17884 case DW_OP_const2u:
17885 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17886 i += 2;
17887 break;
17888
17889 case DW_OP_const2s:
17890 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17891 i += 2;
17892 break;
17893
17894 case DW_OP_const4u:
17895 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17896 i += 4;
17897 break;
17898
17899 case DW_OP_const4s:
17900 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17901 i += 4;
17902 break;
17903
17904 case DW_OP_const8u:
17905 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17906 i += 8;
17907 break;
17908
17909 case DW_OP_constu:
17910 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17911 &bytes_read);
17912 i += bytes_read;
17913 break;
17914
17915 case DW_OP_consts:
17916 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17917 i += bytes_read;
17918 break;
17919
17920 case DW_OP_dup:
17921 stack[stacki + 1] = stack[stacki];
17922 stacki++;
17923 break;
17924
17925 case DW_OP_plus:
17926 stack[stacki - 1] += stack[stacki];
17927 stacki--;
17928 break;
17929
17930 case DW_OP_plus_uconst:
17931 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17932 &bytes_read);
17933 i += bytes_read;
17934 break;
17935
17936 case DW_OP_minus:
17937 stack[stacki - 1] -= stack[stacki];
17938 stacki--;
17939 break;
17940
17941 case DW_OP_deref:
17942 /* If we're not the last op, then we definitely can't encode
17943 this using GDB's address_class enum. This is valid for partial
17944 global symbols, although the variable's address will be bogus
17945 in the psymtab. */
17946 if (i < size)
17947 dwarf2_complex_location_expr_complaint ();
17948 break;
17949
17950 case DW_OP_GNU_push_tls_address:
17951 /* The top of the stack has the offset from the beginning
17952 of the thread control block at which the variable is located. */
17953 /* Nothing should follow this operator, so the top of stack would
17954 be returned. */
17955 /* This is valid for partial global symbols, but the variable's
17956 address will be bogus in the psymtab. Make it always at least
17957 non-zero to not look as a variable garbage collected by linker
17958 which have DW_OP_addr 0. */
17959 if (i < size)
17960 dwarf2_complex_location_expr_complaint ();
17961 stack[stacki]++;
17962 break;
17963
17964 case DW_OP_GNU_uninit:
17965 break;
17966
17967 case DW_OP_GNU_addr_index:
17968 case DW_OP_GNU_const_index:
17969 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
17970 &bytes_read);
17971 i += bytes_read;
17972 break;
17973
17974 default:
17975 {
17976 const char *name = get_DW_OP_name (op);
17977
17978 if (name)
17979 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
17980 name);
17981 else
17982 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
17983 op);
17984 }
17985
17986 return (stack[stacki]);
17987 }
17988
17989 /* Enforce maximum stack depth of SIZE-1 to avoid writing
17990 outside of the allocated space. Also enforce minimum>0. */
17991 if (stacki >= ARRAY_SIZE (stack) - 1)
17992 {
17993 complaint (&symfile_complaints,
17994 _("location description stack overflow"));
17995 return 0;
17996 }
17997
17998 if (stacki <= 0)
17999 {
18000 complaint (&symfile_complaints,
18001 _("location description stack underflow"));
18002 return 0;
18003 }
18004 }
18005 return (stack[stacki]);
18006 }
18007
18008 /* memory allocation interface */
18009
18010 static struct dwarf_block *
18011 dwarf_alloc_block (struct dwarf2_cu *cu)
18012 {
18013 struct dwarf_block *blk;
18014
18015 blk = (struct dwarf_block *)
18016 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18017 return (blk);
18018 }
18019
18020 static struct die_info *
18021 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18022 {
18023 struct die_info *die;
18024 size_t size = sizeof (struct die_info);
18025
18026 if (num_attrs > 1)
18027 size += (num_attrs - 1) * sizeof (struct attribute);
18028
18029 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18030 memset (die, 0, sizeof (struct die_info));
18031 return (die);
18032 }
18033
18034 \f
18035 /* Macro support. */
18036
18037 /* Return file name relative to the compilation directory of file number I in
18038 *LH's file name table. The result is allocated using xmalloc; the caller is
18039 responsible for freeing it. */
18040
18041 static char *
18042 file_file_name (int file, struct line_header *lh)
18043 {
18044 /* Is the file number a valid index into the line header's file name
18045 table? Remember that file numbers start with one, not zero. */
18046 if (1 <= file && file <= lh->num_file_names)
18047 {
18048 struct file_entry *fe = &lh->file_names[file - 1];
18049
18050 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18051 return xstrdup (fe->name);
18052 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18053 fe->name, NULL);
18054 }
18055 else
18056 {
18057 /* The compiler produced a bogus file number. We can at least
18058 record the macro definitions made in the file, even if we
18059 won't be able to find the file by name. */
18060 char fake_name[80];
18061
18062 xsnprintf (fake_name, sizeof (fake_name),
18063 "<bad macro file number %d>", file);
18064
18065 complaint (&symfile_complaints,
18066 _("bad file number in macro information (%d)"),
18067 file);
18068
18069 return xstrdup (fake_name);
18070 }
18071 }
18072
18073 /* Return the full name of file number I in *LH's file name table.
18074 Use COMP_DIR as the name of the current directory of the
18075 compilation. The result is allocated using xmalloc; the caller is
18076 responsible for freeing it. */
18077 static char *
18078 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18079 {
18080 /* Is the file number a valid index into the line header's file name
18081 table? Remember that file numbers start with one, not zero. */
18082 if (1 <= file && file <= lh->num_file_names)
18083 {
18084 char *relative = file_file_name (file, lh);
18085
18086 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18087 return relative;
18088 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18089 }
18090 else
18091 return file_file_name (file, lh);
18092 }
18093
18094
18095 static struct macro_source_file *
18096 macro_start_file (int file, int line,
18097 struct macro_source_file *current_file,
18098 const char *comp_dir,
18099 struct line_header *lh, struct objfile *objfile)
18100 {
18101 /* File name relative to the compilation directory of this source file. */
18102 char *file_name = file_file_name (file, lh);
18103
18104 /* We don't create a macro table for this compilation unit
18105 at all until we actually get a filename. */
18106 if (! pending_macros)
18107 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18108 objfile->per_bfd->macro_cache,
18109 comp_dir);
18110
18111 if (! current_file)
18112 {
18113 /* If we have no current file, then this must be the start_file
18114 directive for the compilation unit's main source file. */
18115 current_file = macro_set_main (pending_macros, file_name);
18116 macro_define_special (pending_macros);
18117 }
18118 else
18119 current_file = macro_include (current_file, line, file_name);
18120
18121 xfree (file_name);
18122
18123 return current_file;
18124 }
18125
18126
18127 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18128 followed by a null byte. */
18129 static char *
18130 copy_string (const char *buf, int len)
18131 {
18132 char *s = xmalloc (len + 1);
18133
18134 memcpy (s, buf, len);
18135 s[len] = '\0';
18136 return s;
18137 }
18138
18139
18140 static const char *
18141 consume_improper_spaces (const char *p, const char *body)
18142 {
18143 if (*p == ' ')
18144 {
18145 complaint (&symfile_complaints,
18146 _("macro definition contains spaces "
18147 "in formal argument list:\n`%s'"),
18148 body);
18149
18150 while (*p == ' ')
18151 p++;
18152 }
18153
18154 return p;
18155 }
18156
18157
18158 static void
18159 parse_macro_definition (struct macro_source_file *file, int line,
18160 const char *body)
18161 {
18162 const char *p;
18163
18164 /* The body string takes one of two forms. For object-like macro
18165 definitions, it should be:
18166
18167 <macro name> " " <definition>
18168
18169 For function-like macro definitions, it should be:
18170
18171 <macro name> "() " <definition>
18172 or
18173 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18174
18175 Spaces may appear only where explicitly indicated, and in the
18176 <definition>.
18177
18178 The Dwarf 2 spec says that an object-like macro's name is always
18179 followed by a space, but versions of GCC around March 2002 omit
18180 the space when the macro's definition is the empty string.
18181
18182 The Dwarf 2 spec says that there should be no spaces between the
18183 formal arguments in a function-like macro's formal argument list,
18184 but versions of GCC around March 2002 include spaces after the
18185 commas. */
18186
18187
18188 /* Find the extent of the macro name. The macro name is terminated
18189 by either a space or null character (for an object-like macro) or
18190 an opening paren (for a function-like macro). */
18191 for (p = body; *p; p++)
18192 if (*p == ' ' || *p == '(')
18193 break;
18194
18195 if (*p == ' ' || *p == '\0')
18196 {
18197 /* It's an object-like macro. */
18198 int name_len = p - body;
18199 char *name = copy_string (body, name_len);
18200 const char *replacement;
18201
18202 if (*p == ' ')
18203 replacement = body + name_len + 1;
18204 else
18205 {
18206 dwarf2_macro_malformed_definition_complaint (body);
18207 replacement = body + name_len;
18208 }
18209
18210 macro_define_object (file, line, name, replacement);
18211
18212 xfree (name);
18213 }
18214 else if (*p == '(')
18215 {
18216 /* It's a function-like macro. */
18217 char *name = copy_string (body, p - body);
18218 int argc = 0;
18219 int argv_size = 1;
18220 char **argv = xmalloc (argv_size * sizeof (*argv));
18221
18222 p++;
18223
18224 p = consume_improper_spaces (p, body);
18225
18226 /* Parse the formal argument list. */
18227 while (*p && *p != ')')
18228 {
18229 /* Find the extent of the current argument name. */
18230 const char *arg_start = p;
18231
18232 while (*p && *p != ',' && *p != ')' && *p != ' ')
18233 p++;
18234
18235 if (! *p || p == arg_start)
18236 dwarf2_macro_malformed_definition_complaint (body);
18237 else
18238 {
18239 /* Make sure argv has room for the new argument. */
18240 if (argc >= argv_size)
18241 {
18242 argv_size *= 2;
18243 argv = xrealloc (argv, argv_size * sizeof (*argv));
18244 }
18245
18246 argv[argc++] = copy_string (arg_start, p - arg_start);
18247 }
18248
18249 p = consume_improper_spaces (p, body);
18250
18251 /* Consume the comma, if present. */
18252 if (*p == ',')
18253 {
18254 p++;
18255
18256 p = consume_improper_spaces (p, body);
18257 }
18258 }
18259
18260 if (*p == ')')
18261 {
18262 p++;
18263
18264 if (*p == ' ')
18265 /* Perfectly formed definition, no complaints. */
18266 macro_define_function (file, line, name,
18267 argc, (const char **) argv,
18268 p + 1);
18269 else if (*p == '\0')
18270 {
18271 /* Complain, but do define it. */
18272 dwarf2_macro_malformed_definition_complaint (body);
18273 macro_define_function (file, line, name,
18274 argc, (const char **) argv,
18275 p);
18276 }
18277 else
18278 /* Just complain. */
18279 dwarf2_macro_malformed_definition_complaint (body);
18280 }
18281 else
18282 /* Just complain. */
18283 dwarf2_macro_malformed_definition_complaint (body);
18284
18285 xfree (name);
18286 {
18287 int i;
18288
18289 for (i = 0; i < argc; i++)
18290 xfree (argv[i]);
18291 }
18292 xfree (argv);
18293 }
18294 else
18295 dwarf2_macro_malformed_definition_complaint (body);
18296 }
18297
18298 /* Skip some bytes from BYTES according to the form given in FORM.
18299 Returns the new pointer. */
18300
18301 static gdb_byte *
18302 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
18303 enum dwarf_form form,
18304 unsigned int offset_size,
18305 struct dwarf2_section_info *section)
18306 {
18307 unsigned int bytes_read;
18308
18309 switch (form)
18310 {
18311 case DW_FORM_data1:
18312 case DW_FORM_flag:
18313 ++bytes;
18314 break;
18315
18316 case DW_FORM_data2:
18317 bytes += 2;
18318 break;
18319
18320 case DW_FORM_data4:
18321 bytes += 4;
18322 break;
18323
18324 case DW_FORM_data8:
18325 bytes += 8;
18326 break;
18327
18328 case DW_FORM_string:
18329 read_direct_string (abfd, bytes, &bytes_read);
18330 bytes += bytes_read;
18331 break;
18332
18333 case DW_FORM_sec_offset:
18334 case DW_FORM_strp:
18335 case DW_FORM_GNU_strp_alt:
18336 bytes += offset_size;
18337 break;
18338
18339 case DW_FORM_block:
18340 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18341 bytes += bytes_read;
18342 break;
18343
18344 case DW_FORM_block1:
18345 bytes += 1 + read_1_byte (abfd, bytes);
18346 break;
18347 case DW_FORM_block2:
18348 bytes += 2 + read_2_bytes (abfd, bytes);
18349 break;
18350 case DW_FORM_block4:
18351 bytes += 4 + read_4_bytes (abfd, bytes);
18352 break;
18353
18354 case DW_FORM_sdata:
18355 case DW_FORM_udata:
18356 case DW_FORM_GNU_addr_index:
18357 case DW_FORM_GNU_str_index:
18358 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18359 if (bytes == NULL)
18360 {
18361 dwarf2_section_buffer_overflow_complaint (section);
18362 return NULL;
18363 }
18364 break;
18365
18366 default:
18367 {
18368 complain:
18369 complaint (&symfile_complaints,
18370 _("invalid form 0x%x in `%s'"),
18371 form,
18372 section->asection->name);
18373 return NULL;
18374 }
18375 }
18376
18377 return bytes;
18378 }
18379
18380 /* A helper for dwarf_decode_macros that handles skipping an unknown
18381 opcode. Returns an updated pointer to the macro data buffer; or,
18382 on error, issues a complaint and returns NULL. */
18383
18384 static gdb_byte *
18385 skip_unknown_opcode (unsigned int opcode,
18386 gdb_byte **opcode_definitions,
18387 gdb_byte *mac_ptr, gdb_byte *mac_end,
18388 bfd *abfd,
18389 unsigned int offset_size,
18390 struct dwarf2_section_info *section)
18391 {
18392 unsigned int bytes_read, i;
18393 unsigned long arg;
18394 gdb_byte *defn;
18395
18396 if (opcode_definitions[opcode] == NULL)
18397 {
18398 complaint (&symfile_complaints,
18399 _("unrecognized DW_MACFINO opcode 0x%x"),
18400 opcode);
18401 return NULL;
18402 }
18403
18404 defn = opcode_definitions[opcode];
18405 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18406 defn += bytes_read;
18407
18408 for (i = 0; i < arg; ++i)
18409 {
18410 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18411 section);
18412 if (mac_ptr == NULL)
18413 {
18414 /* skip_form_bytes already issued the complaint. */
18415 return NULL;
18416 }
18417 }
18418
18419 return mac_ptr;
18420 }
18421
18422 /* A helper function which parses the header of a macro section.
18423 If the macro section is the extended (for now called "GNU") type,
18424 then this updates *OFFSET_SIZE. Returns a pointer to just after
18425 the header, or issues a complaint and returns NULL on error. */
18426
18427 static gdb_byte *
18428 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18429 bfd *abfd,
18430 gdb_byte *mac_ptr,
18431 unsigned int *offset_size,
18432 int section_is_gnu)
18433 {
18434 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18435
18436 if (section_is_gnu)
18437 {
18438 unsigned int version, flags;
18439
18440 version = read_2_bytes (abfd, mac_ptr);
18441 if (version != 4)
18442 {
18443 complaint (&symfile_complaints,
18444 _("unrecognized version `%d' in .debug_macro section"),
18445 version);
18446 return NULL;
18447 }
18448 mac_ptr += 2;
18449
18450 flags = read_1_byte (abfd, mac_ptr);
18451 ++mac_ptr;
18452 *offset_size = (flags & 1) ? 8 : 4;
18453
18454 if ((flags & 2) != 0)
18455 /* We don't need the line table offset. */
18456 mac_ptr += *offset_size;
18457
18458 /* Vendor opcode descriptions. */
18459 if ((flags & 4) != 0)
18460 {
18461 unsigned int i, count;
18462
18463 count = read_1_byte (abfd, mac_ptr);
18464 ++mac_ptr;
18465 for (i = 0; i < count; ++i)
18466 {
18467 unsigned int opcode, bytes_read;
18468 unsigned long arg;
18469
18470 opcode = read_1_byte (abfd, mac_ptr);
18471 ++mac_ptr;
18472 opcode_definitions[opcode] = mac_ptr;
18473 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18474 mac_ptr += bytes_read;
18475 mac_ptr += arg;
18476 }
18477 }
18478 }
18479
18480 return mac_ptr;
18481 }
18482
18483 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18484 including DW_MACRO_GNU_transparent_include. */
18485
18486 static void
18487 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18488 struct macro_source_file *current_file,
18489 struct line_header *lh, const char *comp_dir,
18490 struct dwarf2_section_info *section,
18491 int section_is_gnu, int section_is_dwz,
18492 unsigned int offset_size,
18493 struct objfile *objfile,
18494 htab_t include_hash)
18495 {
18496 enum dwarf_macro_record_type macinfo_type;
18497 int at_commandline;
18498 gdb_byte *opcode_definitions[256];
18499
18500 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18501 &offset_size, section_is_gnu);
18502 if (mac_ptr == NULL)
18503 {
18504 /* We already issued a complaint. */
18505 return;
18506 }
18507
18508 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18509 GDB is still reading the definitions from command line. First
18510 DW_MACINFO_start_file will need to be ignored as it was already executed
18511 to create CURRENT_FILE for the main source holding also the command line
18512 definitions. On first met DW_MACINFO_start_file this flag is reset to
18513 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18514
18515 at_commandline = 1;
18516
18517 do
18518 {
18519 /* Do we at least have room for a macinfo type byte? */
18520 if (mac_ptr >= mac_end)
18521 {
18522 dwarf2_section_buffer_overflow_complaint (section);
18523 break;
18524 }
18525
18526 macinfo_type = read_1_byte (abfd, mac_ptr);
18527 mac_ptr++;
18528
18529 /* Note that we rely on the fact that the corresponding GNU and
18530 DWARF constants are the same. */
18531 switch (macinfo_type)
18532 {
18533 /* A zero macinfo type indicates the end of the macro
18534 information. */
18535 case 0:
18536 break;
18537
18538 case DW_MACRO_GNU_define:
18539 case DW_MACRO_GNU_undef:
18540 case DW_MACRO_GNU_define_indirect:
18541 case DW_MACRO_GNU_undef_indirect:
18542 case DW_MACRO_GNU_define_indirect_alt:
18543 case DW_MACRO_GNU_undef_indirect_alt:
18544 {
18545 unsigned int bytes_read;
18546 int line;
18547 char *body;
18548 int is_define;
18549
18550 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18551 mac_ptr += bytes_read;
18552
18553 if (macinfo_type == DW_MACRO_GNU_define
18554 || macinfo_type == DW_MACRO_GNU_undef)
18555 {
18556 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18557 mac_ptr += bytes_read;
18558 }
18559 else
18560 {
18561 LONGEST str_offset;
18562
18563 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18564 mac_ptr += offset_size;
18565
18566 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18567 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18568 || section_is_dwz)
18569 {
18570 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18571
18572 body = read_indirect_string_from_dwz (dwz, str_offset);
18573 }
18574 else
18575 body = read_indirect_string_at_offset (abfd, str_offset);
18576 }
18577
18578 is_define = (macinfo_type == DW_MACRO_GNU_define
18579 || macinfo_type == DW_MACRO_GNU_define_indirect
18580 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18581 if (! current_file)
18582 {
18583 /* DWARF violation as no main source is present. */
18584 complaint (&symfile_complaints,
18585 _("debug info with no main source gives macro %s "
18586 "on line %d: %s"),
18587 is_define ? _("definition") : _("undefinition"),
18588 line, body);
18589 break;
18590 }
18591 if ((line == 0 && !at_commandline)
18592 || (line != 0 && at_commandline))
18593 complaint (&symfile_complaints,
18594 _("debug info gives %s macro %s with %s line %d: %s"),
18595 at_commandline ? _("command-line") : _("in-file"),
18596 is_define ? _("definition") : _("undefinition"),
18597 line == 0 ? _("zero") : _("non-zero"), line, body);
18598
18599 if (is_define)
18600 parse_macro_definition (current_file, line, body);
18601 else
18602 {
18603 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18604 || macinfo_type == DW_MACRO_GNU_undef_indirect
18605 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18606 macro_undef (current_file, line, body);
18607 }
18608 }
18609 break;
18610
18611 case DW_MACRO_GNU_start_file:
18612 {
18613 unsigned int bytes_read;
18614 int line, file;
18615
18616 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18617 mac_ptr += bytes_read;
18618 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18619 mac_ptr += bytes_read;
18620
18621 if ((line == 0 && !at_commandline)
18622 || (line != 0 && at_commandline))
18623 complaint (&symfile_complaints,
18624 _("debug info gives source %d included "
18625 "from %s at %s line %d"),
18626 file, at_commandline ? _("command-line") : _("file"),
18627 line == 0 ? _("zero") : _("non-zero"), line);
18628
18629 if (at_commandline)
18630 {
18631 /* This DW_MACRO_GNU_start_file was executed in the
18632 pass one. */
18633 at_commandline = 0;
18634 }
18635 else
18636 current_file = macro_start_file (file, line,
18637 current_file, comp_dir,
18638 lh, objfile);
18639 }
18640 break;
18641
18642 case DW_MACRO_GNU_end_file:
18643 if (! current_file)
18644 complaint (&symfile_complaints,
18645 _("macro debug info has an unmatched "
18646 "`close_file' directive"));
18647 else
18648 {
18649 current_file = current_file->included_by;
18650 if (! current_file)
18651 {
18652 enum dwarf_macro_record_type next_type;
18653
18654 /* GCC circa March 2002 doesn't produce the zero
18655 type byte marking the end of the compilation
18656 unit. Complain if it's not there, but exit no
18657 matter what. */
18658
18659 /* Do we at least have room for a macinfo type byte? */
18660 if (mac_ptr >= mac_end)
18661 {
18662 dwarf2_section_buffer_overflow_complaint (section);
18663 return;
18664 }
18665
18666 /* We don't increment mac_ptr here, so this is just
18667 a look-ahead. */
18668 next_type = read_1_byte (abfd, mac_ptr);
18669 if (next_type != 0)
18670 complaint (&symfile_complaints,
18671 _("no terminating 0-type entry for "
18672 "macros in `.debug_macinfo' section"));
18673
18674 return;
18675 }
18676 }
18677 break;
18678
18679 case DW_MACRO_GNU_transparent_include:
18680 case DW_MACRO_GNU_transparent_include_alt:
18681 {
18682 LONGEST offset;
18683 void **slot;
18684 bfd *include_bfd = abfd;
18685 struct dwarf2_section_info *include_section = section;
18686 struct dwarf2_section_info alt_section;
18687 gdb_byte *include_mac_end = mac_end;
18688 int is_dwz = section_is_dwz;
18689 gdb_byte *new_mac_ptr;
18690
18691 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18692 mac_ptr += offset_size;
18693
18694 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18695 {
18696 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18697
18698 dwarf2_read_section (dwarf2_per_objfile->objfile,
18699 &dwz->macro);
18700
18701 include_bfd = dwz->macro.asection->owner;
18702 include_section = &dwz->macro;
18703 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18704 is_dwz = 1;
18705 }
18706
18707 new_mac_ptr = include_section->buffer + offset;
18708 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18709
18710 if (*slot != NULL)
18711 {
18712 /* This has actually happened; see
18713 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18714 complaint (&symfile_complaints,
18715 _("recursive DW_MACRO_GNU_transparent_include in "
18716 ".debug_macro section"));
18717 }
18718 else
18719 {
18720 *slot = new_mac_ptr;
18721
18722 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18723 include_mac_end, current_file,
18724 lh, comp_dir,
18725 section, section_is_gnu, is_dwz,
18726 offset_size, objfile, include_hash);
18727
18728 htab_remove_elt (include_hash, new_mac_ptr);
18729 }
18730 }
18731 break;
18732
18733 case DW_MACINFO_vendor_ext:
18734 if (!section_is_gnu)
18735 {
18736 unsigned int bytes_read;
18737 int constant;
18738
18739 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18740 mac_ptr += bytes_read;
18741 read_direct_string (abfd, mac_ptr, &bytes_read);
18742 mac_ptr += bytes_read;
18743
18744 /* We don't recognize any vendor extensions. */
18745 break;
18746 }
18747 /* FALLTHROUGH */
18748
18749 default:
18750 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18751 mac_ptr, mac_end, abfd, offset_size,
18752 section);
18753 if (mac_ptr == NULL)
18754 return;
18755 break;
18756 }
18757 } while (macinfo_type != 0);
18758 }
18759
18760 static void
18761 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18762 const char *comp_dir, int section_is_gnu)
18763 {
18764 struct objfile *objfile = dwarf2_per_objfile->objfile;
18765 struct line_header *lh = cu->line_header;
18766 bfd *abfd;
18767 gdb_byte *mac_ptr, *mac_end;
18768 struct macro_source_file *current_file = 0;
18769 enum dwarf_macro_record_type macinfo_type;
18770 unsigned int offset_size = cu->header.offset_size;
18771 gdb_byte *opcode_definitions[256];
18772 struct cleanup *cleanup;
18773 htab_t include_hash;
18774 void **slot;
18775 struct dwarf2_section_info *section;
18776 const char *section_name;
18777
18778 if (cu->dwo_unit != NULL)
18779 {
18780 if (section_is_gnu)
18781 {
18782 section = &cu->dwo_unit->dwo_file->sections.macro;
18783 section_name = ".debug_macro.dwo";
18784 }
18785 else
18786 {
18787 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18788 section_name = ".debug_macinfo.dwo";
18789 }
18790 }
18791 else
18792 {
18793 if (section_is_gnu)
18794 {
18795 section = &dwarf2_per_objfile->macro;
18796 section_name = ".debug_macro";
18797 }
18798 else
18799 {
18800 section = &dwarf2_per_objfile->macinfo;
18801 section_name = ".debug_macinfo";
18802 }
18803 }
18804
18805 dwarf2_read_section (objfile, section);
18806 if (section->buffer == NULL)
18807 {
18808 complaint (&symfile_complaints, _("missing %s section"), section_name);
18809 return;
18810 }
18811 abfd = section->asection->owner;
18812
18813 /* First pass: Find the name of the base filename.
18814 This filename is needed in order to process all macros whose definition
18815 (or undefinition) comes from the command line. These macros are defined
18816 before the first DW_MACINFO_start_file entry, and yet still need to be
18817 associated to the base file.
18818
18819 To determine the base file name, we scan the macro definitions until we
18820 reach the first DW_MACINFO_start_file entry. We then initialize
18821 CURRENT_FILE accordingly so that any macro definition found before the
18822 first DW_MACINFO_start_file can still be associated to the base file. */
18823
18824 mac_ptr = section->buffer + offset;
18825 mac_end = section->buffer + section->size;
18826
18827 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18828 &offset_size, section_is_gnu);
18829 if (mac_ptr == NULL)
18830 {
18831 /* We already issued a complaint. */
18832 return;
18833 }
18834
18835 do
18836 {
18837 /* Do we at least have room for a macinfo type byte? */
18838 if (mac_ptr >= mac_end)
18839 {
18840 /* Complaint is printed during the second pass as GDB will probably
18841 stop the first pass earlier upon finding
18842 DW_MACINFO_start_file. */
18843 break;
18844 }
18845
18846 macinfo_type = read_1_byte (abfd, mac_ptr);
18847 mac_ptr++;
18848
18849 /* Note that we rely on the fact that the corresponding GNU and
18850 DWARF constants are the same. */
18851 switch (macinfo_type)
18852 {
18853 /* A zero macinfo type indicates the end of the macro
18854 information. */
18855 case 0:
18856 break;
18857
18858 case DW_MACRO_GNU_define:
18859 case DW_MACRO_GNU_undef:
18860 /* Only skip the data by MAC_PTR. */
18861 {
18862 unsigned int bytes_read;
18863
18864 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18865 mac_ptr += bytes_read;
18866 read_direct_string (abfd, mac_ptr, &bytes_read);
18867 mac_ptr += bytes_read;
18868 }
18869 break;
18870
18871 case DW_MACRO_GNU_start_file:
18872 {
18873 unsigned int bytes_read;
18874 int line, file;
18875
18876 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18877 mac_ptr += bytes_read;
18878 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18879 mac_ptr += bytes_read;
18880
18881 current_file = macro_start_file (file, line, current_file,
18882 comp_dir, lh, objfile);
18883 }
18884 break;
18885
18886 case DW_MACRO_GNU_end_file:
18887 /* No data to skip by MAC_PTR. */
18888 break;
18889
18890 case DW_MACRO_GNU_define_indirect:
18891 case DW_MACRO_GNU_undef_indirect:
18892 case DW_MACRO_GNU_define_indirect_alt:
18893 case DW_MACRO_GNU_undef_indirect_alt:
18894 {
18895 unsigned int bytes_read;
18896
18897 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18898 mac_ptr += bytes_read;
18899 mac_ptr += offset_size;
18900 }
18901 break;
18902
18903 case DW_MACRO_GNU_transparent_include:
18904 case DW_MACRO_GNU_transparent_include_alt:
18905 /* Note that, according to the spec, a transparent include
18906 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18907 skip this opcode. */
18908 mac_ptr += offset_size;
18909 break;
18910
18911 case DW_MACINFO_vendor_ext:
18912 /* Only skip the data by MAC_PTR. */
18913 if (!section_is_gnu)
18914 {
18915 unsigned int bytes_read;
18916
18917 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18918 mac_ptr += bytes_read;
18919 read_direct_string (abfd, mac_ptr, &bytes_read);
18920 mac_ptr += bytes_read;
18921 }
18922 /* FALLTHROUGH */
18923
18924 default:
18925 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18926 mac_ptr, mac_end, abfd, offset_size,
18927 section);
18928 if (mac_ptr == NULL)
18929 return;
18930 break;
18931 }
18932 } while (macinfo_type != 0 && current_file == NULL);
18933
18934 /* Second pass: Process all entries.
18935
18936 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18937 command-line macro definitions/undefinitions. This flag is unset when we
18938 reach the first DW_MACINFO_start_file entry. */
18939
18940 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18941 NULL, xcalloc, xfree);
18942 cleanup = make_cleanup_htab_delete (include_hash);
18943 mac_ptr = section->buffer + offset;
18944 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18945 *slot = mac_ptr;
18946 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
18947 current_file, lh, comp_dir, section,
18948 section_is_gnu, 0,
18949 offset_size, objfile, include_hash);
18950 do_cleanups (cleanup);
18951 }
18952
18953 /* Check if the attribute's form is a DW_FORM_block*
18954 if so return true else false. */
18955
18956 static int
18957 attr_form_is_block (struct attribute *attr)
18958 {
18959 return (attr == NULL ? 0 :
18960 attr->form == DW_FORM_block1
18961 || attr->form == DW_FORM_block2
18962 || attr->form == DW_FORM_block4
18963 || attr->form == DW_FORM_block
18964 || attr->form == DW_FORM_exprloc);
18965 }
18966
18967 /* Return non-zero if ATTR's value is a section offset --- classes
18968 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
18969 You may use DW_UNSND (attr) to retrieve such offsets.
18970
18971 Section 7.5.4, "Attribute Encodings", explains that no attribute
18972 may have a value that belongs to more than one of these classes; it
18973 would be ambiguous if we did, because we use the same forms for all
18974 of them. */
18975
18976 static int
18977 attr_form_is_section_offset (struct attribute *attr)
18978 {
18979 return (attr->form == DW_FORM_data4
18980 || attr->form == DW_FORM_data8
18981 || attr->form == DW_FORM_sec_offset);
18982 }
18983
18984 /* Return non-zero if ATTR's value falls in the 'constant' class, or
18985 zero otherwise. When this function returns true, you can apply
18986 dwarf2_get_attr_constant_value to it.
18987
18988 However, note that for some attributes you must check
18989 attr_form_is_section_offset before using this test. DW_FORM_data4
18990 and DW_FORM_data8 are members of both the constant class, and of
18991 the classes that contain offsets into other debug sections
18992 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
18993 that, if an attribute's can be either a constant or one of the
18994 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
18995 taken as section offsets, not constants. */
18996
18997 static int
18998 attr_form_is_constant (struct attribute *attr)
18999 {
19000 switch (attr->form)
19001 {
19002 case DW_FORM_sdata:
19003 case DW_FORM_udata:
19004 case DW_FORM_data1:
19005 case DW_FORM_data2:
19006 case DW_FORM_data4:
19007 case DW_FORM_data8:
19008 return 1;
19009 default:
19010 return 0;
19011 }
19012 }
19013
19014 /* Return the .debug_loc section to use for CU.
19015 For DWO files use .debug_loc.dwo. */
19016
19017 static struct dwarf2_section_info *
19018 cu_debug_loc_section (struct dwarf2_cu *cu)
19019 {
19020 if (cu->dwo_unit)
19021 return &cu->dwo_unit->dwo_file->sections.loc;
19022 return &dwarf2_per_objfile->loc;
19023 }
19024
19025 /* A helper function that fills in a dwarf2_loclist_baton. */
19026
19027 static void
19028 fill_in_loclist_baton (struct dwarf2_cu *cu,
19029 struct dwarf2_loclist_baton *baton,
19030 struct attribute *attr)
19031 {
19032 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19033
19034 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19035
19036 baton->per_cu = cu->per_cu;
19037 gdb_assert (baton->per_cu);
19038 /* We don't know how long the location list is, but make sure we
19039 don't run off the edge of the section. */
19040 baton->size = section->size - DW_UNSND (attr);
19041 baton->data = section->buffer + DW_UNSND (attr);
19042 baton->base_address = cu->base_address;
19043 baton->from_dwo = cu->dwo_unit != NULL;
19044 }
19045
19046 static void
19047 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19048 struct dwarf2_cu *cu)
19049 {
19050 struct objfile *objfile = dwarf2_per_objfile->objfile;
19051 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19052
19053 if (attr_form_is_section_offset (attr)
19054 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19055 the section. If so, fall through to the complaint in the
19056 other branch. */
19057 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19058 {
19059 struct dwarf2_loclist_baton *baton;
19060
19061 baton = obstack_alloc (&objfile->objfile_obstack,
19062 sizeof (struct dwarf2_loclist_baton));
19063
19064 fill_in_loclist_baton (cu, baton, attr);
19065
19066 if (cu->base_known == 0)
19067 complaint (&symfile_complaints,
19068 _("Location list used without "
19069 "specifying the CU base address."));
19070
19071 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
19072 SYMBOL_LOCATION_BATON (sym) = baton;
19073 }
19074 else
19075 {
19076 struct dwarf2_locexpr_baton *baton;
19077
19078 baton = obstack_alloc (&objfile->objfile_obstack,
19079 sizeof (struct dwarf2_locexpr_baton));
19080 baton->per_cu = cu->per_cu;
19081 gdb_assert (baton->per_cu);
19082
19083 if (attr_form_is_block (attr))
19084 {
19085 /* Note that we're just copying the block's data pointer
19086 here, not the actual data. We're still pointing into the
19087 info_buffer for SYM's objfile; right now we never release
19088 that buffer, but when we do clean up properly this may
19089 need to change. */
19090 baton->size = DW_BLOCK (attr)->size;
19091 baton->data = DW_BLOCK (attr)->data;
19092 }
19093 else
19094 {
19095 dwarf2_invalid_attrib_class_complaint ("location description",
19096 SYMBOL_NATURAL_NAME (sym));
19097 baton->size = 0;
19098 }
19099
19100 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
19101 SYMBOL_LOCATION_BATON (sym) = baton;
19102 }
19103 }
19104
19105 /* Return the OBJFILE associated with the compilation unit CU. If CU
19106 came from a separate debuginfo file, then the master objfile is
19107 returned. */
19108
19109 struct objfile *
19110 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19111 {
19112 struct objfile *objfile = per_cu->objfile;
19113
19114 /* Return the master objfile, so that we can report and look up the
19115 correct file containing this variable. */
19116 if (objfile->separate_debug_objfile_backlink)
19117 objfile = objfile->separate_debug_objfile_backlink;
19118
19119 return objfile;
19120 }
19121
19122 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19123 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19124 CU_HEADERP first. */
19125
19126 static const struct comp_unit_head *
19127 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19128 struct dwarf2_per_cu_data *per_cu)
19129 {
19130 gdb_byte *info_ptr;
19131
19132 if (per_cu->cu)
19133 return &per_cu->cu->header;
19134
19135 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
19136
19137 memset (cu_headerp, 0, sizeof (*cu_headerp));
19138 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19139
19140 return cu_headerp;
19141 }
19142
19143 /* Return the address size given in the compilation unit header for CU. */
19144
19145 int
19146 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19147 {
19148 struct comp_unit_head cu_header_local;
19149 const struct comp_unit_head *cu_headerp;
19150
19151 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19152
19153 return cu_headerp->addr_size;
19154 }
19155
19156 /* Return the offset size given in the compilation unit header for CU. */
19157
19158 int
19159 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19160 {
19161 struct comp_unit_head cu_header_local;
19162 const struct comp_unit_head *cu_headerp;
19163
19164 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19165
19166 return cu_headerp->offset_size;
19167 }
19168
19169 /* See its dwarf2loc.h declaration. */
19170
19171 int
19172 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19173 {
19174 struct comp_unit_head cu_header_local;
19175 const struct comp_unit_head *cu_headerp;
19176
19177 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19178
19179 if (cu_headerp->version == 2)
19180 return cu_headerp->addr_size;
19181 else
19182 return cu_headerp->offset_size;
19183 }
19184
19185 /* Return the text offset of the CU. The returned offset comes from
19186 this CU's objfile. If this objfile came from a separate debuginfo
19187 file, then the offset may be different from the corresponding
19188 offset in the parent objfile. */
19189
19190 CORE_ADDR
19191 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19192 {
19193 struct objfile *objfile = per_cu->objfile;
19194
19195 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19196 }
19197
19198 /* Locate the .debug_info compilation unit from CU's objfile which contains
19199 the DIE at OFFSET. Raises an error on failure. */
19200
19201 static struct dwarf2_per_cu_data *
19202 dwarf2_find_containing_comp_unit (sect_offset offset,
19203 unsigned int offset_in_dwz,
19204 struct objfile *objfile)
19205 {
19206 struct dwarf2_per_cu_data *this_cu;
19207 int low, high;
19208 const sect_offset *cu_off;
19209
19210 low = 0;
19211 high = dwarf2_per_objfile->n_comp_units - 1;
19212 while (high > low)
19213 {
19214 struct dwarf2_per_cu_data *mid_cu;
19215 int mid = low + (high - low) / 2;
19216
19217 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19218 cu_off = &mid_cu->offset;
19219 if (mid_cu->is_dwz > offset_in_dwz
19220 || (mid_cu->is_dwz == offset_in_dwz
19221 && cu_off->sect_off >= offset.sect_off))
19222 high = mid;
19223 else
19224 low = mid + 1;
19225 }
19226 gdb_assert (low == high);
19227 this_cu = dwarf2_per_objfile->all_comp_units[low];
19228 cu_off = &this_cu->offset;
19229 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19230 {
19231 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19232 error (_("Dwarf Error: could not find partial DIE containing "
19233 "offset 0x%lx [in module %s]"),
19234 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19235
19236 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19237 <= offset.sect_off);
19238 return dwarf2_per_objfile->all_comp_units[low-1];
19239 }
19240 else
19241 {
19242 this_cu = dwarf2_per_objfile->all_comp_units[low];
19243 if (low == dwarf2_per_objfile->n_comp_units - 1
19244 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19245 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19246 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19247 return this_cu;
19248 }
19249 }
19250
19251 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19252
19253 static void
19254 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19255 {
19256 memset (cu, 0, sizeof (*cu));
19257 per_cu->cu = cu;
19258 cu->per_cu = per_cu;
19259 cu->objfile = per_cu->objfile;
19260 obstack_init (&cu->comp_unit_obstack);
19261 }
19262
19263 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19264
19265 static void
19266 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19267 enum language pretend_language)
19268 {
19269 struct attribute *attr;
19270
19271 /* Set the language we're debugging. */
19272 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19273 if (attr)
19274 set_cu_language (DW_UNSND (attr), cu);
19275 else
19276 {
19277 cu->language = pretend_language;
19278 cu->language_defn = language_def (cu->language);
19279 }
19280
19281 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19282 if (attr)
19283 cu->producer = DW_STRING (attr);
19284 }
19285
19286 /* Release one cached compilation unit, CU. We unlink it from the tree
19287 of compilation units, but we don't remove it from the read_in_chain;
19288 the caller is responsible for that.
19289 NOTE: DATA is a void * because this function is also used as a
19290 cleanup routine. */
19291
19292 static void
19293 free_heap_comp_unit (void *data)
19294 {
19295 struct dwarf2_cu *cu = data;
19296
19297 gdb_assert (cu->per_cu != NULL);
19298 cu->per_cu->cu = NULL;
19299 cu->per_cu = NULL;
19300
19301 obstack_free (&cu->comp_unit_obstack, NULL);
19302
19303 xfree (cu);
19304 }
19305
19306 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19307 when we're finished with it. We can't free the pointer itself, but be
19308 sure to unlink it from the cache. Also release any associated storage. */
19309
19310 static void
19311 free_stack_comp_unit (void *data)
19312 {
19313 struct dwarf2_cu *cu = data;
19314
19315 gdb_assert (cu->per_cu != NULL);
19316 cu->per_cu->cu = NULL;
19317 cu->per_cu = NULL;
19318
19319 obstack_free (&cu->comp_unit_obstack, NULL);
19320 cu->partial_dies = NULL;
19321 }
19322
19323 /* Free all cached compilation units. */
19324
19325 static void
19326 free_cached_comp_units (void *data)
19327 {
19328 struct dwarf2_per_cu_data *per_cu, **last_chain;
19329
19330 per_cu = dwarf2_per_objfile->read_in_chain;
19331 last_chain = &dwarf2_per_objfile->read_in_chain;
19332 while (per_cu != NULL)
19333 {
19334 struct dwarf2_per_cu_data *next_cu;
19335
19336 next_cu = per_cu->cu->read_in_chain;
19337
19338 free_heap_comp_unit (per_cu->cu);
19339 *last_chain = next_cu;
19340
19341 per_cu = next_cu;
19342 }
19343 }
19344
19345 /* Increase the age counter on each cached compilation unit, and free
19346 any that are too old. */
19347
19348 static void
19349 age_cached_comp_units (void)
19350 {
19351 struct dwarf2_per_cu_data *per_cu, **last_chain;
19352
19353 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19354 per_cu = dwarf2_per_objfile->read_in_chain;
19355 while (per_cu != NULL)
19356 {
19357 per_cu->cu->last_used ++;
19358 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19359 dwarf2_mark (per_cu->cu);
19360 per_cu = per_cu->cu->read_in_chain;
19361 }
19362
19363 per_cu = dwarf2_per_objfile->read_in_chain;
19364 last_chain = &dwarf2_per_objfile->read_in_chain;
19365 while (per_cu != NULL)
19366 {
19367 struct dwarf2_per_cu_data *next_cu;
19368
19369 next_cu = per_cu->cu->read_in_chain;
19370
19371 if (!per_cu->cu->mark)
19372 {
19373 free_heap_comp_unit (per_cu->cu);
19374 *last_chain = next_cu;
19375 }
19376 else
19377 last_chain = &per_cu->cu->read_in_chain;
19378
19379 per_cu = next_cu;
19380 }
19381 }
19382
19383 /* Remove a single compilation unit from the cache. */
19384
19385 static void
19386 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19387 {
19388 struct dwarf2_per_cu_data *per_cu, **last_chain;
19389
19390 per_cu = dwarf2_per_objfile->read_in_chain;
19391 last_chain = &dwarf2_per_objfile->read_in_chain;
19392 while (per_cu != NULL)
19393 {
19394 struct dwarf2_per_cu_data *next_cu;
19395
19396 next_cu = per_cu->cu->read_in_chain;
19397
19398 if (per_cu == target_per_cu)
19399 {
19400 free_heap_comp_unit (per_cu->cu);
19401 per_cu->cu = NULL;
19402 *last_chain = next_cu;
19403 break;
19404 }
19405 else
19406 last_chain = &per_cu->cu->read_in_chain;
19407
19408 per_cu = next_cu;
19409 }
19410 }
19411
19412 /* Release all extra memory associated with OBJFILE. */
19413
19414 void
19415 dwarf2_free_objfile (struct objfile *objfile)
19416 {
19417 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19418
19419 if (dwarf2_per_objfile == NULL)
19420 return;
19421
19422 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19423 free_cached_comp_units (NULL);
19424
19425 if (dwarf2_per_objfile->quick_file_names_table)
19426 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19427
19428 /* Everything else should be on the objfile obstack. */
19429 }
19430
19431 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19432 We store these in a hash table separate from the DIEs, and preserve them
19433 when the DIEs are flushed out of cache.
19434
19435 The CU "per_cu" pointer is needed because offset alone is not enough to
19436 uniquely identify the type. A file may have multiple .debug_types sections,
19437 or the type may come from a DWO file. We have to use something in
19438 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
19439 routine, get_die_type_at_offset, from outside this file, and thus won't
19440 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
19441 of the objfile. */
19442
19443 struct dwarf2_per_cu_offset_and_type
19444 {
19445 const struct dwarf2_per_cu_data *per_cu;
19446 sect_offset offset;
19447 struct type *type;
19448 };
19449
19450 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19451
19452 static hashval_t
19453 per_cu_offset_and_type_hash (const void *item)
19454 {
19455 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19456
19457 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19458 }
19459
19460 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19461
19462 static int
19463 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19464 {
19465 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19466 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19467
19468 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19469 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19470 }
19471
19472 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19473 table if necessary. For convenience, return TYPE.
19474
19475 The DIEs reading must have careful ordering to:
19476 * Not cause infite loops trying to read in DIEs as a prerequisite for
19477 reading current DIE.
19478 * Not trying to dereference contents of still incompletely read in types
19479 while reading in other DIEs.
19480 * Enable referencing still incompletely read in types just by a pointer to
19481 the type without accessing its fields.
19482
19483 Therefore caller should follow these rules:
19484 * Try to fetch any prerequisite types we may need to build this DIE type
19485 before building the type and calling set_die_type.
19486 * After building type call set_die_type for current DIE as soon as
19487 possible before fetching more types to complete the current type.
19488 * Make the type as complete as possible before fetching more types. */
19489
19490 static struct type *
19491 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19492 {
19493 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19494 struct objfile *objfile = cu->objfile;
19495
19496 /* For Ada types, make sure that the gnat-specific data is always
19497 initialized (if not already set). There are a few types where
19498 we should not be doing so, because the type-specific area is
19499 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19500 where the type-specific area is used to store the floatformat).
19501 But this is not a problem, because the gnat-specific information
19502 is actually not needed for these types. */
19503 if (need_gnat_info (cu)
19504 && TYPE_CODE (type) != TYPE_CODE_FUNC
19505 && TYPE_CODE (type) != TYPE_CODE_FLT
19506 && !HAVE_GNAT_AUX_INFO (type))
19507 INIT_GNAT_SPECIFIC (type);
19508
19509 if (dwarf2_per_objfile->die_type_hash == NULL)
19510 {
19511 dwarf2_per_objfile->die_type_hash =
19512 htab_create_alloc_ex (127,
19513 per_cu_offset_and_type_hash,
19514 per_cu_offset_and_type_eq,
19515 NULL,
19516 &objfile->objfile_obstack,
19517 hashtab_obstack_allocate,
19518 dummy_obstack_deallocate);
19519 }
19520
19521 ofs.per_cu = cu->per_cu;
19522 ofs.offset = die->offset;
19523 ofs.type = type;
19524 slot = (struct dwarf2_per_cu_offset_and_type **)
19525 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19526 if (*slot)
19527 complaint (&symfile_complaints,
19528 _("A problem internal to GDB: DIE 0x%x has type already set"),
19529 die->offset.sect_off);
19530 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19531 **slot = ofs;
19532 return type;
19533 }
19534
19535 /* Look up the type for the die at OFFSET in the appropriate type_hash
19536 table, or return NULL if the die does not have a saved type. */
19537
19538 static struct type *
19539 get_die_type_at_offset (sect_offset offset,
19540 struct dwarf2_per_cu_data *per_cu)
19541 {
19542 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19543
19544 if (dwarf2_per_objfile->die_type_hash == NULL)
19545 return NULL;
19546
19547 ofs.per_cu = per_cu;
19548 ofs.offset = offset;
19549 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19550 if (slot)
19551 return slot->type;
19552 else
19553 return NULL;
19554 }
19555
19556 /* Look up the type for DIE in the appropriate type_hash table,
19557 or return NULL if DIE does not have a saved type. */
19558
19559 static struct type *
19560 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19561 {
19562 return get_die_type_at_offset (die->offset, cu->per_cu);
19563 }
19564
19565 /* Add a dependence relationship from CU to REF_PER_CU. */
19566
19567 static void
19568 dwarf2_add_dependence (struct dwarf2_cu *cu,
19569 struct dwarf2_per_cu_data *ref_per_cu)
19570 {
19571 void **slot;
19572
19573 if (cu->dependencies == NULL)
19574 cu->dependencies
19575 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19576 NULL, &cu->comp_unit_obstack,
19577 hashtab_obstack_allocate,
19578 dummy_obstack_deallocate);
19579
19580 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19581 if (*slot == NULL)
19582 *slot = ref_per_cu;
19583 }
19584
19585 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19586 Set the mark field in every compilation unit in the
19587 cache that we must keep because we are keeping CU. */
19588
19589 static int
19590 dwarf2_mark_helper (void **slot, void *data)
19591 {
19592 struct dwarf2_per_cu_data *per_cu;
19593
19594 per_cu = (struct dwarf2_per_cu_data *) *slot;
19595
19596 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19597 reading of the chain. As such dependencies remain valid it is not much
19598 useful to track and undo them during QUIT cleanups. */
19599 if (per_cu->cu == NULL)
19600 return 1;
19601
19602 if (per_cu->cu->mark)
19603 return 1;
19604 per_cu->cu->mark = 1;
19605
19606 if (per_cu->cu->dependencies != NULL)
19607 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19608
19609 return 1;
19610 }
19611
19612 /* Set the mark field in CU and in every other compilation unit in the
19613 cache that we must keep because we are keeping CU. */
19614
19615 static void
19616 dwarf2_mark (struct dwarf2_cu *cu)
19617 {
19618 if (cu->mark)
19619 return;
19620 cu->mark = 1;
19621 if (cu->dependencies != NULL)
19622 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19623 }
19624
19625 static void
19626 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19627 {
19628 while (per_cu)
19629 {
19630 per_cu->cu->mark = 0;
19631 per_cu = per_cu->cu->read_in_chain;
19632 }
19633 }
19634
19635 /* Trivial hash function for partial_die_info: the hash value of a DIE
19636 is its offset in .debug_info for this objfile. */
19637
19638 static hashval_t
19639 partial_die_hash (const void *item)
19640 {
19641 const struct partial_die_info *part_die = item;
19642
19643 return part_die->offset.sect_off;
19644 }
19645
19646 /* Trivial comparison function for partial_die_info structures: two DIEs
19647 are equal if they have the same offset. */
19648
19649 static int
19650 partial_die_eq (const void *item_lhs, const void *item_rhs)
19651 {
19652 const struct partial_die_info *part_die_lhs = item_lhs;
19653 const struct partial_die_info *part_die_rhs = item_rhs;
19654
19655 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19656 }
19657
19658 static struct cmd_list_element *set_dwarf2_cmdlist;
19659 static struct cmd_list_element *show_dwarf2_cmdlist;
19660
19661 static void
19662 set_dwarf2_cmd (char *args, int from_tty)
19663 {
19664 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19665 }
19666
19667 static void
19668 show_dwarf2_cmd (char *args, int from_tty)
19669 {
19670 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19671 }
19672
19673 /* Free data associated with OBJFILE, if necessary. */
19674
19675 static void
19676 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19677 {
19678 struct dwarf2_per_objfile *data = d;
19679 int ix;
19680
19681 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19682 VEC_free (dwarf2_per_cu_ptr,
19683 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
19684
19685 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
19686 VEC_free (dwarf2_per_cu_ptr,
19687 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
19688
19689 VEC_free (dwarf2_section_info_def, data->types);
19690
19691 if (data->dwo_files)
19692 free_dwo_files (data->dwo_files, objfile);
19693
19694 if (data->dwz_file && data->dwz_file->dwz_bfd)
19695 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19696 }
19697
19698 \f
19699 /* The "save gdb-index" command. */
19700
19701 /* The contents of the hash table we create when building the string
19702 table. */
19703 struct strtab_entry
19704 {
19705 offset_type offset;
19706 const char *str;
19707 };
19708
19709 /* Hash function for a strtab_entry.
19710
19711 Function is used only during write_hash_table so no index format backward
19712 compatibility is needed. */
19713
19714 static hashval_t
19715 hash_strtab_entry (const void *e)
19716 {
19717 const struct strtab_entry *entry = e;
19718 return mapped_index_string_hash (INT_MAX, entry->str);
19719 }
19720
19721 /* Equality function for a strtab_entry. */
19722
19723 static int
19724 eq_strtab_entry (const void *a, const void *b)
19725 {
19726 const struct strtab_entry *ea = a;
19727 const struct strtab_entry *eb = b;
19728 return !strcmp (ea->str, eb->str);
19729 }
19730
19731 /* Create a strtab_entry hash table. */
19732
19733 static htab_t
19734 create_strtab (void)
19735 {
19736 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19737 xfree, xcalloc, xfree);
19738 }
19739
19740 /* Add a string to the constant pool. Return the string's offset in
19741 host order. */
19742
19743 static offset_type
19744 add_string (htab_t table, struct obstack *cpool, const char *str)
19745 {
19746 void **slot;
19747 struct strtab_entry entry;
19748 struct strtab_entry *result;
19749
19750 entry.str = str;
19751 slot = htab_find_slot (table, &entry, INSERT);
19752 if (*slot)
19753 result = *slot;
19754 else
19755 {
19756 result = XNEW (struct strtab_entry);
19757 result->offset = obstack_object_size (cpool);
19758 result->str = str;
19759 obstack_grow_str0 (cpool, str);
19760 *slot = result;
19761 }
19762 return result->offset;
19763 }
19764
19765 /* An entry in the symbol table. */
19766 struct symtab_index_entry
19767 {
19768 /* The name of the symbol. */
19769 const char *name;
19770 /* The offset of the name in the constant pool. */
19771 offset_type index_offset;
19772 /* A sorted vector of the indices of all the CUs that hold an object
19773 of this name. */
19774 VEC (offset_type) *cu_indices;
19775 };
19776
19777 /* The symbol table. This is a power-of-2-sized hash table. */
19778 struct mapped_symtab
19779 {
19780 offset_type n_elements;
19781 offset_type size;
19782 struct symtab_index_entry **data;
19783 };
19784
19785 /* Hash function for a symtab_index_entry. */
19786
19787 static hashval_t
19788 hash_symtab_entry (const void *e)
19789 {
19790 const struct symtab_index_entry *entry = e;
19791 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19792 sizeof (offset_type) * VEC_length (offset_type,
19793 entry->cu_indices),
19794 0);
19795 }
19796
19797 /* Equality function for a symtab_index_entry. */
19798
19799 static int
19800 eq_symtab_entry (const void *a, const void *b)
19801 {
19802 const struct symtab_index_entry *ea = a;
19803 const struct symtab_index_entry *eb = b;
19804 int len = VEC_length (offset_type, ea->cu_indices);
19805 if (len != VEC_length (offset_type, eb->cu_indices))
19806 return 0;
19807 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19808 VEC_address (offset_type, eb->cu_indices),
19809 sizeof (offset_type) * len);
19810 }
19811
19812 /* Destroy a symtab_index_entry. */
19813
19814 static void
19815 delete_symtab_entry (void *p)
19816 {
19817 struct symtab_index_entry *entry = p;
19818 VEC_free (offset_type, entry->cu_indices);
19819 xfree (entry);
19820 }
19821
19822 /* Create a hash table holding symtab_index_entry objects. */
19823
19824 static htab_t
19825 create_symbol_hash_table (void)
19826 {
19827 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19828 delete_symtab_entry, xcalloc, xfree);
19829 }
19830
19831 /* Create a new mapped symtab object. */
19832
19833 static struct mapped_symtab *
19834 create_mapped_symtab (void)
19835 {
19836 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19837 symtab->n_elements = 0;
19838 symtab->size = 1024;
19839 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19840 return symtab;
19841 }
19842
19843 /* Destroy a mapped_symtab. */
19844
19845 static void
19846 cleanup_mapped_symtab (void *p)
19847 {
19848 struct mapped_symtab *symtab = p;
19849 /* The contents of the array are freed when the other hash table is
19850 destroyed. */
19851 xfree (symtab->data);
19852 xfree (symtab);
19853 }
19854
19855 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
19856 the slot.
19857
19858 Function is used only during write_hash_table so no index format backward
19859 compatibility is needed. */
19860
19861 static struct symtab_index_entry **
19862 find_slot (struct mapped_symtab *symtab, const char *name)
19863 {
19864 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
19865
19866 index = hash & (symtab->size - 1);
19867 step = ((hash * 17) & (symtab->size - 1)) | 1;
19868
19869 for (;;)
19870 {
19871 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19872 return &symtab->data[index];
19873 index = (index + step) & (symtab->size - 1);
19874 }
19875 }
19876
19877 /* Expand SYMTAB's hash table. */
19878
19879 static void
19880 hash_expand (struct mapped_symtab *symtab)
19881 {
19882 offset_type old_size = symtab->size;
19883 offset_type i;
19884 struct symtab_index_entry **old_entries = symtab->data;
19885
19886 symtab->size *= 2;
19887 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19888
19889 for (i = 0; i < old_size; ++i)
19890 {
19891 if (old_entries[i])
19892 {
19893 struct symtab_index_entry **slot = find_slot (symtab,
19894 old_entries[i]->name);
19895 *slot = old_entries[i];
19896 }
19897 }
19898
19899 xfree (old_entries);
19900 }
19901
19902 /* Add an entry to SYMTAB. NAME is the name of the symbol.
19903 CU_INDEX is the index of the CU in which the symbol appears.
19904 IS_STATIC is one if the symbol is static, otherwise zero (global). */
19905
19906 static void
19907 add_index_entry (struct mapped_symtab *symtab, const char *name,
19908 int is_static, gdb_index_symbol_kind kind,
19909 offset_type cu_index)
19910 {
19911 struct symtab_index_entry **slot;
19912 offset_type cu_index_and_attrs;
19913
19914 ++symtab->n_elements;
19915 if (4 * symtab->n_elements / 3 >= symtab->size)
19916 hash_expand (symtab);
19917
19918 slot = find_slot (symtab, name);
19919 if (!*slot)
19920 {
19921 *slot = XNEW (struct symtab_index_entry);
19922 (*slot)->name = name;
19923 /* index_offset is set later. */
19924 (*slot)->cu_indices = NULL;
19925 }
19926
19927 cu_index_and_attrs = 0;
19928 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19929 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19930 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19931
19932 /* We don't want to record an index value twice as we want to avoid the
19933 duplication.
19934 We process all global symbols and then all static symbols
19935 (which would allow us to avoid the duplication by only having to check
19936 the last entry pushed), but a symbol could have multiple kinds in one CU.
19937 To keep things simple we don't worry about the duplication here and
19938 sort and uniqufy the list after we've processed all symbols. */
19939 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19940 }
19941
19942 /* qsort helper routine for uniquify_cu_indices. */
19943
19944 static int
19945 offset_type_compare (const void *ap, const void *bp)
19946 {
19947 offset_type a = *(offset_type *) ap;
19948 offset_type b = *(offset_type *) bp;
19949
19950 return (a > b) - (b > a);
19951 }
19952
19953 /* Sort and remove duplicates of all symbols' cu_indices lists. */
19954
19955 static void
19956 uniquify_cu_indices (struct mapped_symtab *symtab)
19957 {
19958 int i;
19959
19960 for (i = 0; i < symtab->size; ++i)
19961 {
19962 struct symtab_index_entry *entry = symtab->data[i];
19963
19964 if (entry
19965 && entry->cu_indices != NULL)
19966 {
19967 unsigned int next_to_insert, next_to_check;
19968 offset_type last_value;
19969
19970 qsort (VEC_address (offset_type, entry->cu_indices),
19971 VEC_length (offset_type, entry->cu_indices),
19972 sizeof (offset_type), offset_type_compare);
19973
19974 last_value = VEC_index (offset_type, entry->cu_indices, 0);
19975 next_to_insert = 1;
19976 for (next_to_check = 1;
19977 next_to_check < VEC_length (offset_type, entry->cu_indices);
19978 ++next_to_check)
19979 {
19980 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
19981 != last_value)
19982 {
19983 last_value = VEC_index (offset_type, entry->cu_indices,
19984 next_to_check);
19985 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
19986 last_value);
19987 ++next_to_insert;
19988 }
19989 }
19990 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
19991 }
19992 }
19993 }
19994
19995 /* Add a vector of indices to the constant pool. */
19996
19997 static offset_type
19998 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
19999 struct symtab_index_entry *entry)
20000 {
20001 void **slot;
20002
20003 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20004 if (!*slot)
20005 {
20006 offset_type len = VEC_length (offset_type, entry->cu_indices);
20007 offset_type val = MAYBE_SWAP (len);
20008 offset_type iter;
20009 int i;
20010
20011 *slot = entry;
20012 entry->index_offset = obstack_object_size (cpool);
20013
20014 obstack_grow (cpool, &val, sizeof (val));
20015 for (i = 0;
20016 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20017 ++i)
20018 {
20019 val = MAYBE_SWAP (iter);
20020 obstack_grow (cpool, &val, sizeof (val));
20021 }
20022 }
20023 else
20024 {
20025 struct symtab_index_entry *old_entry = *slot;
20026 entry->index_offset = old_entry->index_offset;
20027 entry = old_entry;
20028 }
20029 return entry->index_offset;
20030 }
20031
20032 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20033 constant pool entries going into the obstack CPOOL. */
20034
20035 static void
20036 write_hash_table (struct mapped_symtab *symtab,
20037 struct obstack *output, struct obstack *cpool)
20038 {
20039 offset_type i;
20040 htab_t symbol_hash_table;
20041 htab_t str_table;
20042
20043 symbol_hash_table = create_symbol_hash_table ();
20044 str_table = create_strtab ();
20045
20046 /* We add all the index vectors to the constant pool first, to
20047 ensure alignment is ok. */
20048 for (i = 0; i < symtab->size; ++i)
20049 {
20050 if (symtab->data[i])
20051 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20052 }
20053
20054 /* Now write out the hash table. */
20055 for (i = 0; i < symtab->size; ++i)
20056 {
20057 offset_type str_off, vec_off;
20058
20059 if (symtab->data[i])
20060 {
20061 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20062 vec_off = symtab->data[i]->index_offset;
20063 }
20064 else
20065 {
20066 /* While 0 is a valid constant pool index, it is not valid
20067 to have 0 for both offsets. */
20068 str_off = 0;
20069 vec_off = 0;
20070 }
20071
20072 str_off = MAYBE_SWAP (str_off);
20073 vec_off = MAYBE_SWAP (vec_off);
20074
20075 obstack_grow (output, &str_off, sizeof (str_off));
20076 obstack_grow (output, &vec_off, sizeof (vec_off));
20077 }
20078
20079 htab_delete (str_table);
20080 htab_delete (symbol_hash_table);
20081 }
20082
20083 /* Struct to map psymtab to CU index in the index file. */
20084 struct psymtab_cu_index_map
20085 {
20086 struct partial_symtab *psymtab;
20087 unsigned int cu_index;
20088 };
20089
20090 static hashval_t
20091 hash_psymtab_cu_index (const void *item)
20092 {
20093 const struct psymtab_cu_index_map *map = item;
20094
20095 return htab_hash_pointer (map->psymtab);
20096 }
20097
20098 static int
20099 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20100 {
20101 const struct psymtab_cu_index_map *lhs = item_lhs;
20102 const struct psymtab_cu_index_map *rhs = item_rhs;
20103
20104 return lhs->psymtab == rhs->psymtab;
20105 }
20106
20107 /* Helper struct for building the address table. */
20108 struct addrmap_index_data
20109 {
20110 struct objfile *objfile;
20111 struct obstack *addr_obstack;
20112 htab_t cu_index_htab;
20113
20114 /* Non-zero if the previous_* fields are valid.
20115 We can't write an entry until we see the next entry (since it is only then
20116 that we know the end of the entry). */
20117 int previous_valid;
20118 /* Index of the CU in the table of all CUs in the index file. */
20119 unsigned int previous_cu_index;
20120 /* Start address of the CU. */
20121 CORE_ADDR previous_cu_start;
20122 };
20123
20124 /* Write an address entry to OBSTACK. */
20125
20126 static void
20127 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20128 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20129 {
20130 offset_type cu_index_to_write;
20131 char addr[8];
20132 CORE_ADDR baseaddr;
20133
20134 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20135
20136 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20137 obstack_grow (obstack, addr, 8);
20138 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20139 obstack_grow (obstack, addr, 8);
20140 cu_index_to_write = MAYBE_SWAP (cu_index);
20141 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20142 }
20143
20144 /* Worker function for traversing an addrmap to build the address table. */
20145
20146 static int
20147 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20148 {
20149 struct addrmap_index_data *data = datap;
20150 struct partial_symtab *pst = obj;
20151
20152 if (data->previous_valid)
20153 add_address_entry (data->objfile, data->addr_obstack,
20154 data->previous_cu_start, start_addr,
20155 data->previous_cu_index);
20156
20157 data->previous_cu_start = start_addr;
20158 if (pst != NULL)
20159 {
20160 struct psymtab_cu_index_map find_map, *map;
20161 find_map.psymtab = pst;
20162 map = htab_find (data->cu_index_htab, &find_map);
20163 gdb_assert (map != NULL);
20164 data->previous_cu_index = map->cu_index;
20165 data->previous_valid = 1;
20166 }
20167 else
20168 data->previous_valid = 0;
20169
20170 return 0;
20171 }
20172
20173 /* Write OBJFILE's address map to OBSTACK.
20174 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20175 in the index file. */
20176
20177 static void
20178 write_address_map (struct objfile *objfile, struct obstack *obstack,
20179 htab_t cu_index_htab)
20180 {
20181 struct addrmap_index_data addrmap_index_data;
20182
20183 /* When writing the address table, we have to cope with the fact that
20184 the addrmap iterator only provides the start of a region; we have to
20185 wait until the next invocation to get the start of the next region. */
20186
20187 addrmap_index_data.objfile = objfile;
20188 addrmap_index_data.addr_obstack = obstack;
20189 addrmap_index_data.cu_index_htab = cu_index_htab;
20190 addrmap_index_data.previous_valid = 0;
20191
20192 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20193 &addrmap_index_data);
20194
20195 /* It's highly unlikely the last entry (end address = 0xff...ff)
20196 is valid, but we should still handle it.
20197 The end address is recorded as the start of the next region, but that
20198 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20199 anyway. */
20200 if (addrmap_index_data.previous_valid)
20201 add_address_entry (objfile, obstack,
20202 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20203 addrmap_index_data.previous_cu_index);
20204 }
20205
20206 /* Return the symbol kind of PSYM. */
20207
20208 static gdb_index_symbol_kind
20209 symbol_kind (struct partial_symbol *psym)
20210 {
20211 domain_enum domain = PSYMBOL_DOMAIN (psym);
20212 enum address_class aclass = PSYMBOL_CLASS (psym);
20213
20214 switch (domain)
20215 {
20216 case VAR_DOMAIN:
20217 switch (aclass)
20218 {
20219 case LOC_BLOCK:
20220 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20221 case LOC_TYPEDEF:
20222 return GDB_INDEX_SYMBOL_KIND_TYPE;
20223 case LOC_COMPUTED:
20224 case LOC_CONST_BYTES:
20225 case LOC_OPTIMIZED_OUT:
20226 case LOC_STATIC:
20227 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20228 case LOC_CONST:
20229 /* Note: It's currently impossible to recognize psyms as enum values
20230 short of reading the type info. For now punt. */
20231 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20232 default:
20233 /* There are other LOC_FOO values that one might want to classify
20234 as variables, but dwarf2read.c doesn't currently use them. */
20235 return GDB_INDEX_SYMBOL_KIND_OTHER;
20236 }
20237 case STRUCT_DOMAIN:
20238 return GDB_INDEX_SYMBOL_KIND_TYPE;
20239 default:
20240 return GDB_INDEX_SYMBOL_KIND_OTHER;
20241 }
20242 }
20243
20244 /* Add a list of partial symbols to SYMTAB. */
20245
20246 static void
20247 write_psymbols (struct mapped_symtab *symtab,
20248 htab_t psyms_seen,
20249 struct partial_symbol **psymp,
20250 int count,
20251 offset_type cu_index,
20252 int is_static)
20253 {
20254 for (; count-- > 0; ++psymp)
20255 {
20256 struct partial_symbol *psym = *psymp;
20257 void **slot;
20258
20259 if (SYMBOL_LANGUAGE (psym) == language_ada)
20260 error (_("Ada is not currently supported by the index"));
20261
20262 /* Only add a given psymbol once. */
20263 slot = htab_find_slot (psyms_seen, psym, INSERT);
20264 if (!*slot)
20265 {
20266 gdb_index_symbol_kind kind = symbol_kind (psym);
20267
20268 *slot = psym;
20269 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20270 is_static, kind, cu_index);
20271 }
20272 }
20273 }
20274
20275 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20276 exception if there is an error. */
20277
20278 static void
20279 write_obstack (FILE *file, struct obstack *obstack)
20280 {
20281 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20282 file)
20283 != obstack_object_size (obstack))
20284 error (_("couldn't data write to file"));
20285 }
20286
20287 /* Unlink a file if the argument is not NULL. */
20288
20289 static void
20290 unlink_if_set (void *p)
20291 {
20292 char **filename = p;
20293 if (*filename)
20294 unlink (*filename);
20295 }
20296
20297 /* A helper struct used when iterating over debug_types. */
20298 struct signatured_type_index_data
20299 {
20300 struct objfile *objfile;
20301 struct mapped_symtab *symtab;
20302 struct obstack *types_list;
20303 htab_t psyms_seen;
20304 int cu_index;
20305 };
20306
20307 /* A helper function that writes a single signatured_type to an
20308 obstack. */
20309
20310 static int
20311 write_one_signatured_type (void **slot, void *d)
20312 {
20313 struct signatured_type_index_data *info = d;
20314 struct signatured_type *entry = (struct signatured_type *) *slot;
20315 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20316 struct partial_symtab *psymtab = per_cu->v.psymtab;
20317 gdb_byte val[8];
20318
20319 write_psymbols (info->symtab,
20320 info->psyms_seen,
20321 info->objfile->global_psymbols.list
20322 + psymtab->globals_offset,
20323 psymtab->n_global_syms, info->cu_index,
20324 0);
20325 write_psymbols (info->symtab,
20326 info->psyms_seen,
20327 info->objfile->static_psymbols.list
20328 + psymtab->statics_offset,
20329 psymtab->n_static_syms, info->cu_index,
20330 1);
20331
20332 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20333 entry->per_cu.offset.sect_off);
20334 obstack_grow (info->types_list, val, 8);
20335 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20336 entry->type_offset_in_tu.cu_off);
20337 obstack_grow (info->types_list, val, 8);
20338 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20339 obstack_grow (info->types_list, val, 8);
20340
20341 ++info->cu_index;
20342
20343 return 1;
20344 }
20345
20346 /* Recurse into all "included" dependencies and write their symbols as
20347 if they appeared in this psymtab. */
20348
20349 static void
20350 recursively_write_psymbols (struct objfile *objfile,
20351 struct partial_symtab *psymtab,
20352 struct mapped_symtab *symtab,
20353 htab_t psyms_seen,
20354 offset_type cu_index)
20355 {
20356 int i;
20357
20358 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20359 if (psymtab->dependencies[i]->user != NULL)
20360 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20361 symtab, psyms_seen, cu_index);
20362
20363 write_psymbols (symtab,
20364 psyms_seen,
20365 objfile->global_psymbols.list + psymtab->globals_offset,
20366 psymtab->n_global_syms, cu_index,
20367 0);
20368 write_psymbols (symtab,
20369 psyms_seen,
20370 objfile->static_psymbols.list + psymtab->statics_offset,
20371 psymtab->n_static_syms, cu_index,
20372 1);
20373 }
20374
20375 /* Create an index file for OBJFILE in the directory DIR. */
20376
20377 static void
20378 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20379 {
20380 struct cleanup *cleanup;
20381 char *filename, *cleanup_filename;
20382 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20383 struct obstack cu_list, types_cu_list;
20384 int i;
20385 FILE *out_file;
20386 struct mapped_symtab *symtab;
20387 offset_type val, size_of_contents, total_len;
20388 struct stat st;
20389 htab_t psyms_seen;
20390 htab_t cu_index_htab;
20391 struct psymtab_cu_index_map *psymtab_cu_index_map;
20392
20393 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20394 return;
20395
20396 if (dwarf2_per_objfile->using_index)
20397 error (_("Cannot use an index to create the index"));
20398
20399 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20400 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20401
20402 if (stat (objfile->name, &st) < 0)
20403 perror_with_name (objfile->name);
20404
20405 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20406 INDEX_SUFFIX, (char *) NULL);
20407 cleanup = make_cleanup (xfree, filename);
20408
20409 out_file = fopen (filename, "wb");
20410 if (!out_file)
20411 error (_("Can't open `%s' for writing"), filename);
20412
20413 cleanup_filename = filename;
20414 make_cleanup (unlink_if_set, &cleanup_filename);
20415
20416 symtab = create_mapped_symtab ();
20417 make_cleanup (cleanup_mapped_symtab, symtab);
20418
20419 obstack_init (&addr_obstack);
20420 make_cleanup_obstack_free (&addr_obstack);
20421
20422 obstack_init (&cu_list);
20423 make_cleanup_obstack_free (&cu_list);
20424
20425 obstack_init (&types_cu_list);
20426 make_cleanup_obstack_free (&types_cu_list);
20427
20428 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20429 NULL, xcalloc, xfree);
20430 make_cleanup_htab_delete (psyms_seen);
20431
20432 /* While we're scanning CU's create a table that maps a psymtab pointer
20433 (which is what addrmap records) to its index (which is what is recorded
20434 in the index file). This will later be needed to write the address
20435 table. */
20436 cu_index_htab = htab_create_alloc (100,
20437 hash_psymtab_cu_index,
20438 eq_psymtab_cu_index,
20439 NULL, xcalloc, xfree);
20440 make_cleanup_htab_delete (cu_index_htab);
20441 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20442 xmalloc (sizeof (struct psymtab_cu_index_map)
20443 * dwarf2_per_objfile->n_comp_units);
20444 make_cleanup (xfree, psymtab_cu_index_map);
20445
20446 /* The CU list is already sorted, so we don't need to do additional
20447 work here. Also, the debug_types entries do not appear in
20448 all_comp_units, but only in their own hash table. */
20449 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20450 {
20451 struct dwarf2_per_cu_data *per_cu
20452 = dwarf2_per_objfile->all_comp_units[i];
20453 struct partial_symtab *psymtab = per_cu->v.psymtab;
20454 gdb_byte val[8];
20455 struct psymtab_cu_index_map *map;
20456 void **slot;
20457
20458 if (psymtab->user == NULL)
20459 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20460
20461 map = &psymtab_cu_index_map[i];
20462 map->psymtab = psymtab;
20463 map->cu_index = i;
20464 slot = htab_find_slot (cu_index_htab, map, INSERT);
20465 gdb_assert (slot != NULL);
20466 gdb_assert (*slot == NULL);
20467 *slot = map;
20468
20469 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20470 per_cu->offset.sect_off);
20471 obstack_grow (&cu_list, val, 8);
20472 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20473 obstack_grow (&cu_list, val, 8);
20474 }
20475
20476 /* Dump the address map. */
20477 write_address_map (objfile, &addr_obstack, cu_index_htab);
20478
20479 /* Write out the .debug_type entries, if any. */
20480 if (dwarf2_per_objfile->signatured_types)
20481 {
20482 struct signatured_type_index_data sig_data;
20483
20484 sig_data.objfile = objfile;
20485 sig_data.symtab = symtab;
20486 sig_data.types_list = &types_cu_list;
20487 sig_data.psyms_seen = psyms_seen;
20488 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20489 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20490 write_one_signatured_type, &sig_data);
20491 }
20492
20493 /* Now that we've processed all symbols we can shrink their cu_indices
20494 lists. */
20495 uniquify_cu_indices (symtab);
20496
20497 obstack_init (&constant_pool);
20498 make_cleanup_obstack_free (&constant_pool);
20499 obstack_init (&symtab_obstack);
20500 make_cleanup_obstack_free (&symtab_obstack);
20501 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20502
20503 obstack_init (&contents);
20504 make_cleanup_obstack_free (&contents);
20505 size_of_contents = 6 * sizeof (offset_type);
20506 total_len = size_of_contents;
20507
20508 /* The version number. */
20509 val = MAYBE_SWAP (8);
20510 obstack_grow (&contents, &val, sizeof (val));
20511
20512 /* The offset of the CU list from the start of the file. */
20513 val = MAYBE_SWAP (total_len);
20514 obstack_grow (&contents, &val, sizeof (val));
20515 total_len += obstack_object_size (&cu_list);
20516
20517 /* The offset of the types CU list from the start of the file. */
20518 val = MAYBE_SWAP (total_len);
20519 obstack_grow (&contents, &val, sizeof (val));
20520 total_len += obstack_object_size (&types_cu_list);
20521
20522 /* The offset of the address table from the start of the file. */
20523 val = MAYBE_SWAP (total_len);
20524 obstack_grow (&contents, &val, sizeof (val));
20525 total_len += obstack_object_size (&addr_obstack);
20526
20527 /* The offset of the symbol table from the start of the file. */
20528 val = MAYBE_SWAP (total_len);
20529 obstack_grow (&contents, &val, sizeof (val));
20530 total_len += obstack_object_size (&symtab_obstack);
20531
20532 /* The offset of the constant pool from the start of the file. */
20533 val = MAYBE_SWAP (total_len);
20534 obstack_grow (&contents, &val, sizeof (val));
20535 total_len += obstack_object_size (&constant_pool);
20536
20537 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20538
20539 write_obstack (out_file, &contents);
20540 write_obstack (out_file, &cu_list);
20541 write_obstack (out_file, &types_cu_list);
20542 write_obstack (out_file, &addr_obstack);
20543 write_obstack (out_file, &symtab_obstack);
20544 write_obstack (out_file, &constant_pool);
20545
20546 fclose (out_file);
20547
20548 /* We want to keep the file, so we set cleanup_filename to NULL
20549 here. See unlink_if_set. */
20550 cleanup_filename = NULL;
20551
20552 do_cleanups (cleanup);
20553 }
20554
20555 /* Implementation of the `save gdb-index' command.
20556
20557 Note that the file format used by this command is documented in the
20558 GDB manual. Any changes here must be documented there. */
20559
20560 static void
20561 save_gdb_index_command (char *arg, int from_tty)
20562 {
20563 struct objfile *objfile;
20564
20565 if (!arg || !*arg)
20566 error (_("usage: save gdb-index DIRECTORY"));
20567
20568 ALL_OBJFILES (objfile)
20569 {
20570 struct stat st;
20571
20572 /* If the objfile does not correspond to an actual file, skip it. */
20573 if (stat (objfile->name, &st) < 0)
20574 continue;
20575
20576 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20577 if (dwarf2_per_objfile)
20578 {
20579 volatile struct gdb_exception except;
20580
20581 TRY_CATCH (except, RETURN_MASK_ERROR)
20582 {
20583 write_psymtabs_to_index (objfile, arg);
20584 }
20585 if (except.reason < 0)
20586 exception_fprintf (gdb_stderr, except,
20587 _("Error while writing index for `%s': "),
20588 objfile->name);
20589 }
20590 }
20591 }
20592
20593 \f
20594
20595 int dwarf2_always_disassemble;
20596
20597 static void
20598 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20599 struct cmd_list_element *c, const char *value)
20600 {
20601 fprintf_filtered (file,
20602 _("Whether to always disassemble "
20603 "DWARF expressions is %s.\n"),
20604 value);
20605 }
20606
20607 static void
20608 show_check_physname (struct ui_file *file, int from_tty,
20609 struct cmd_list_element *c, const char *value)
20610 {
20611 fprintf_filtered (file,
20612 _("Whether to check \"physname\" is %s.\n"),
20613 value);
20614 }
20615
20616 void _initialize_dwarf2_read (void);
20617
20618 void
20619 _initialize_dwarf2_read (void)
20620 {
20621 struct cmd_list_element *c;
20622
20623 dwarf2_objfile_data_key
20624 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20625
20626 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20627 Set DWARF 2 specific variables.\n\
20628 Configure DWARF 2 variables such as the cache size"),
20629 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20630 0/*allow-unknown*/, &maintenance_set_cmdlist);
20631
20632 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20633 Show DWARF 2 specific variables\n\
20634 Show DWARF 2 variables such as the cache size"),
20635 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20636 0/*allow-unknown*/, &maintenance_show_cmdlist);
20637
20638 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20639 &dwarf2_max_cache_age, _("\
20640 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20641 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20642 A higher limit means that cached compilation units will be stored\n\
20643 in memory longer, and more total memory will be used. Zero disables\n\
20644 caching, which can slow down startup."),
20645 NULL,
20646 show_dwarf2_max_cache_age,
20647 &set_dwarf2_cmdlist,
20648 &show_dwarf2_cmdlist);
20649
20650 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20651 &dwarf2_always_disassemble, _("\
20652 Set whether `info address' always disassembles DWARF expressions."), _("\
20653 Show whether `info address' always disassembles DWARF expressions."), _("\
20654 When enabled, DWARF expressions are always printed in an assembly-like\n\
20655 syntax. When disabled, expressions will be printed in a more\n\
20656 conversational style, when possible."),
20657 NULL,
20658 show_dwarf2_always_disassemble,
20659 &set_dwarf2_cmdlist,
20660 &show_dwarf2_cmdlist);
20661
20662 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20663 Set debugging of the dwarf2 reader."), _("\
20664 Show debugging of the dwarf2 reader."), _("\
20665 When enabled, debugging messages are printed during dwarf2 reading\n\
20666 and symtab expansion."),
20667 NULL,
20668 NULL,
20669 &setdebuglist, &showdebuglist);
20670
20671 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20672 Set debugging of the dwarf2 DIE reader."), _("\
20673 Show debugging of the dwarf2 DIE reader."), _("\
20674 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20675 The value is the maximum depth to print."),
20676 NULL,
20677 NULL,
20678 &setdebuglist, &showdebuglist);
20679
20680 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20681 Set cross-checking of \"physname\" code against demangler."), _("\
20682 Show cross-checking of \"physname\" code against demangler."), _("\
20683 When enabled, GDB's internal \"physname\" code is checked against\n\
20684 the demangler."),
20685 NULL, show_check_physname,
20686 &setdebuglist, &showdebuglist);
20687
20688 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20689 no_class, &use_deprecated_index_sections, _("\
20690 Set whether to use deprecated gdb_index sections."), _("\
20691 Show whether to use deprecated gdb_index sections."), _("\
20692 When enabled, deprecated .gdb_index sections are used anyway.\n\
20693 Normally they are ignored either because of a missing feature or\n\
20694 performance issue.\n\
20695 Warning: This option must be enabled before gdb reads the file."),
20696 NULL,
20697 NULL,
20698 &setlist, &showlist);
20699
20700 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20701 _("\
20702 Save a gdb-index file.\n\
20703 Usage: save gdb-index DIRECTORY"),
20704 &save_cmdlist);
20705 set_cmd_completer (c, filename_completer);
20706 }
This page took 0.530453 seconds and 4 git commands to generate.