DWARF: Add array DW_AT_bit_stride and DW_AT_byte_stride support
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73
74 #include <fcntl.h>
75 #include <string.h>
76 #include "gdb_assert.h"
77 #include <sys/types.h>
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
85 static unsigned int dwarf2_read_debug = 0;
86
87 /* When non-zero, dump DIEs after they are read in. */
88 static unsigned int dwarf2_die_debug = 0;
89
90 /* When non-zero, cross-check physname against demangler. */
91 static int check_physname = 0;
92
93 /* When non-zero, do not reject deprecated .gdb_index sections. */
94 static int use_deprecated_index_sections = 0;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 /* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100 static int dwarf2_locexpr_index;
101 static int dwarf2_loclist_index;
102 static int dwarf2_locexpr_block_index;
103 static int dwarf2_loclist_block_index;
104
105 /* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
121 struct dwarf2_section_info
122 {
123 union
124 {
125 /* If this is a real section, the bfd section. */
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
128 section. */
129 struct dwarf2_section_info *containing_section;
130 } s;
131 /* Pointer to section data, only valid if readin. */
132 const gdb_byte *buffer;
133 /* The size of the section, real or virtual. */
134 bfd_size_type size;
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
138 /* True if we have tried to read this section. */
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
143 };
144
145 typedef struct dwarf2_section_info dwarf2_section_info_def;
146 DEF_VEC_O (dwarf2_section_info_def);
147
148 /* All offsets in the index are of this type. It must be
149 architecture-independent. */
150 typedef uint32_t offset_type;
151
152 DEF_VEC_I (offset_type);
153
154 /* Ensure only legit values are used. */
155 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
170 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178 struct mapped_index
179 {
180 /* Index data format version. */
181 int version;
182
183 /* The total length of the buffer. */
184 off_t total_size;
185
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
188
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
191
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
194
195 /* Size in slots, each slot is 2 offset_types. */
196 offset_type symbol_table_slots;
197
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200 };
201
202 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203 DEF_VEC_P (dwarf2_per_cu_ptr);
204
205 /* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
208 struct dwarf2_per_objfile
209 {
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
215 struct dwarf2_section_info macro;
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
218 struct dwarf2_section_info addr;
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
221 struct dwarf2_section_info gdb_index;
222
223 VEC (dwarf2_section_info_def) *types;
224
225 /* Back link. */
226 struct objfile *objfile;
227
228 /* Table of all the compilation units. This is used to locate
229 the target compilation unit of a particular reference. */
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
235 /* The number of .debug_types-related CUs. */
236 int n_type_units;
237
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
240 struct signatured_type **all_type_units;
241
242 /* The number of entries in all_type_unit_groups. */
243 int n_type_unit_groups;
244
245 /* Table of type unit groups.
246 This exists to make it easy to iterate over all CUs and TU groups. */
247 struct type_unit_group **all_type_unit_groups;
248
249 /* Table of struct type_unit_group objects.
250 The hash key is the DW_AT_stmt_list value. */
251 htab_t type_unit_groups;
252
253 /* A table mapping .debug_types signatures to its signatured_type entry.
254 This is NULL if the .debug_types section hasn't been read in yet. */
255 htab_t signatured_types;
256
257 /* Type unit statistics, to see how well the scaling improvements
258 are doing. */
259 struct tu_stats
260 {
261 int nr_uniq_abbrev_tables;
262 int nr_symtabs;
263 int nr_symtab_sharers;
264 int nr_stmt_less_type_units;
265 } tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
288
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
291 unsigned char using_index;
292
293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
294 struct mapped_index *index_table;
295
296 /* When using index_table, this keeps track of all quick_file_names entries.
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
303 htab_t quick_file_names_table;
304
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
308
309 /* Table mapping type DIEs to their struct type *.
310 This is NULL if not allocated yet.
311 The mapping is done via (CU/TU + DIE offset) -> type. */
312 htab_t die_type_hash;
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
316 };
317
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320 /* Default names of the debugging sections. */
321
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
326 {
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341 };
342
343 /* List of DWO/DWP sections. */
344
345 static const struct dwop_section_names
346 {
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358 }
359 dwop_section_names =
360 {
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372 };
373
374 /* local data types */
375
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
379 {
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399 };
400
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
404 {
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419 };
420
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
423
424 /* Internal state when decoding a particular compilation unit. */
425 struct dwarf2_cu
426 {
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554 };
555
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560 struct dwarf2_per_cu_data
561 {
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When using partial symbol tables, the 'psymtab' field is active.
619 Otherwise the 'quick' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 };
650
651 /* Entry in the signatured_types hash table. */
652
653 struct signatured_type
654 {
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688 };
689
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
692
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696 struct stmt_list_hash
697 {
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703 };
704
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708 struct type_unit_group
709 {
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The primary symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the primary symtab. */
726 struct symtab *primary_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744 };
745
746 /* These sections are what may appear in a (real or virtual) DWO file. */
747
748 struct dwo_sections
749 {
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760 };
761
762 /* CUs/TUs in DWP/DWO files. */
763
764 struct dwo_unit
765 {
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783 };
784
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789 enum dwp_v2_section_ids
790 {
791 DW_SECT_MIN = 1
792 };
793
794 /* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805 struct dwo_file
806 {
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835 };
836
837 /* These sections are what may appear in a DWP file. */
838
839 struct dwp_sections
840 {
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862 };
863
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867 struct virtual_v1_dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878 };
879
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885 struct virtual_v2_dwo_sections
886 {
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909 };
910
911 /* Contents of DWP hash tables. */
912
913 struct dwp_hash_table
914 {
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940 };
941
942 /* Data for one DWP file. */
943
944 struct dwp_file
945 {
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972 };
973
974 /* This represents a '.dwz' file. */
975
976 struct dwz_file
977 {
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988 };
989
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995 struct die_reader_specs
996 {
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018 };
1019
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027 /* The line number information for a compilation unit (found in the
1028 .debug_line section) begins with a "statement program header",
1029 which contains the following information. */
1030 struct line_header
1031 {
1032 unsigned int total_length;
1033 unsigned short version;
1034 unsigned int header_length;
1035 unsigned char minimum_instruction_length;
1036 unsigned char maximum_ops_per_instruction;
1037 unsigned char default_is_stmt;
1038 int line_base;
1039 unsigned char line_range;
1040 unsigned char opcode_base;
1041
1042 /* standard_opcode_lengths[i] is the number of operands for the
1043 standard opcode whose value is i. This means that
1044 standard_opcode_lengths[0] is unused, and the last meaningful
1045 element is standard_opcode_lengths[opcode_base - 1]. */
1046 unsigned char *standard_opcode_lengths;
1047
1048 /* The include_directories table. NOTE! These strings are not
1049 allocated with xmalloc; instead, they are pointers into
1050 debug_line_buffer. If you try to free them, `free' will get
1051 indigestion. */
1052 unsigned int num_include_dirs, include_dirs_size;
1053 const char **include_dirs;
1054
1055 /* The file_names table. NOTE! These strings are not allocated
1056 with xmalloc; instead, they are pointers into debug_line_buffer.
1057 Don't try to free them directly. */
1058 unsigned int num_file_names, file_names_size;
1059 struct file_entry
1060 {
1061 const char *name;
1062 unsigned int dir_index;
1063 unsigned int mod_time;
1064 unsigned int length;
1065 int included_p; /* Non-zero if referenced by the Line Number Program. */
1066 struct symtab *symtab; /* The associated symbol table, if any. */
1067 } *file_names;
1068
1069 /* The start and end of the statement program following this
1070 header. These point into dwarf2_per_objfile->line_buffer. */
1071 const gdb_byte *statement_program_start, *statement_program_end;
1072 };
1073
1074 /* When we construct a partial symbol table entry we only
1075 need this much information. */
1076 struct partial_die_info
1077 {
1078 /* Offset of this DIE. */
1079 sect_offset offset;
1080
1081 /* DWARF-2 tag for this DIE. */
1082 ENUM_BITFIELD(dwarf_tag) tag : 16;
1083
1084 /* Assorted flags describing the data found in this DIE. */
1085 unsigned int has_children : 1;
1086 unsigned int is_external : 1;
1087 unsigned int is_declaration : 1;
1088 unsigned int has_type : 1;
1089 unsigned int has_specification : 1;
1090 unsigned int has_pc_info : 1;
1091 unsigned int may_be_inlined : 1;
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
1103 /* Flag set if fixup_partial_die has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
1112 /* The name of this DIE. Normally the value of DW_AT_name, but
1113 sometimes a default name for unnamed DIEs. */
1114 const char *name;
1115
1116 /* The linkage name, if present. */
1117 const char *linkage_name;
1118
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
1122 const char *scope;
1123
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset offset;
1132 } d;
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1135 CORE_ADDR lowpc;
1136 CORE_ADDR highpc;
1137
1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1139 DW_AT_sibling, if any. */
1140 /* NOTE: This member isn't strictly necessary, read_partial_die could
1141 return DW_AT_sibling values to its caller load_partial_dies. */
1142 const gdb_byte *sibling;
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
1147 sect_offset spec_offset;
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent, *die_child, *die_sibling;
1152 };
1153
1154 /* This data structure holds the information of an abbrev. */
1155 struct abbrev_info
1156 {
1157 unsigned int number; /* number identifying abbrev */
1158 enum dwarf_tag tag; /* dwarf tag */
1159 unsigned short has_children; /* boolean */
1160 unsigned short num_attrs; /* number of attributes */
1161 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1162 struct abbrev_info *next; /* next in chain */
1163 };
1164
1165 struct attr_abbrev
1166 {
1167 ENUM_BITFIELD(dwarf_attribute) name : 16;
1168 ENUM_BITFIELD(dwarf_form) form : 16;
1169 };
1170
1171 /* Size of abbrev_table.abbrev_hash_table. */
1172 #define ABBREV_HASH_SIZE 121
1173
1174 /* Top level data structure to contain an abbreviation table. */
1175
1176 struct abbrev_table
1177 {
1178 /* Where the abbrev table came from.
1179 This is used as a sanity check when the table is used. */
1180 sect_offset offset;
1181
1182 /* Storage for the abbrev table. */
1183 struct obstack abbrev_obstack;
1184
1185 /* Hash table of abbrevs.
1186 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1187 It could be statically allocated, but the previous code didn't so we
1188 don't either. */
1189 struct abbrev_info **abbrevs;
1190 };
1191
1192 /* Attributes have a name and a value. */
1193 struct attribute
1194 {
1195 ENUM_BITFIELD(dwarf_attribute) name : 16;
1196 ENUM_BITFIELD(dwarf_form) form : 15;
1197
1198 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1199 field should be in u.str (existing only for DW_STRING) but it is kept
1200 here for better struct attribute alignment. */
1201 unsigned int string_is_canonical : 1;
1202
1203 union
1204 {
1205 const char *str;
1206 struct dwarf_block *blk;
1207 ULONGEST unsnd;
1208 LONGEST snd;
1209 CORE_ADDR addr;
1210 ULONGEST signature;
1211 }
1212 u;
1213 };
1214
1215 /* This data structure holds a complete die structure. */
1216 struct die_info
1217 {
1218 /* DWARF-2 tag for this DIE. */
1219 ENUM_BITFIELD(dwarf_tag) tag : 16;
1220
1221 /* Number of attributes */
1222 unsigned char num_attrs;
1223
1224 /* True if we're presently building the full type name for the
1225 type derived from this DIE. */
1226 unsigned char building_fullname : 1;
1227
1228 /* True if this die is in process. PR 16581. */
1229 unsigned char in_process : 1;
1230
1231 /* Abbrev number */
1232 unsigned int abbrev;
1233
1234 /* Offset in .debug_info or .debug_types section. */
1235 sect_offset offset;
1236
1237 /* The dies in a compilation unit form an n-ary tree. PARENT
1238 points to this die's parent; CHILD points to the first child of
1239 this node; and all the children of a given node are chained
1240 together via their SIBLING fields. */
1241 struct die_info *child; /* Its first child, if any. */
1242 struct die_info *sibling; /* Its next sibling, if any. */
1243 struct die_info *parent; /* Its parent, if any. */
1244
1245 /* An array of attributes, with NUM_ATTRS elements. There may be
1246 zero, but it's not common and zero-sized arrays are not
1247 sufficiently portable C. */
1248 struct attribute attrs[1];
1249 };
1250
1251 /* Get at parts of an attribute structure. */
1252
1253 #define DW_STRING(attr) ((attr)->u.str)
1254 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1255 #define DW_UNSND(attr) ((attr)->u.unsnd)
1256 #define DW_BLOCK(attr) ((attr)->u.blk)
1257 #define DW_SND(attr) ((attr)->u.snd)
1258 #define DW_ADDR(attr) ((attr)->u.addr)
1259 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1260
1261 /* Blocks are a bunch of untyped bytes. */
1262 struct dwarf_block
1263 {
1264 size_t size;
1265
1266 /* Valid only if SIZE is not zero. */
1267 const gdb_byte *data;
1268 };
1269
1270 #ifndef ATTR_ALLOC_CHUNK
1271 #define ATTR_ALLOC_CHUNK 4
1272 #endif
1273
1274 /* Allocate fields for structs, unions and enums in this size. */
1275 #ifndef DW_FIELD_ALLOC_CHUNK
1276 #define DW_FIELD_ALLOC_CHUNK 4
1277 #endif
1278
1279 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1280 but this would require a corresponding change in unpack_field_as_long
1281 and friends. */
1282 static int bits_per_byte = 8;
1283
1284 /* The routines that read and process dies for a C struct or C++ class
1285 pass lists of data member fields and lists of member function fields
1286 in an instance of a field_info structure, as defined below. */
1287 struct field_info
1288 {
1289 /* List of data member and baseclasses fields. */
1290 struct nextfield
1291 {
1292 struct nextfield *next;
1293 int accessibility;
1294 int virtuality;
1295 struct field field;
1296 }
1297 *fields, *baseclasses;
1298
1299 /* Number of fields (including baseclasses). */
1300 int nfields;
1301
1302 /* Number of baseclasses. */
1303 int nbaseclasses;
1304
1305 /* Set if the accesibility of one of the fields is not public. */
1306 int non_public_fields;
1307
1308 /* Member function fields array, entries are allocated in the order they
1309 are encountered in the object file. */
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 }
1315 *fnfields;
1316
1317 /* Member function fieldlist array, contains name of possibly overloaded
1318 member function, number of overloaded member functions and a pointer
1319 to the head of the member function field chain. */
1320 struct fnfieldlist
1321 {
1322 const char *name;
1323 int length;
1324 struct nextfnfield *head;
1325 }
1326 *fnfieldlists;
1327
1328 /* Number of entries in the fnfieldlists array. */
1329 int nfnfields;
1330
1331 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1332 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1333 struct typedef_field_list
1334 {
1335 struct typedef_field field;
1336 struct typedef_field_list *next;
1337 }
1338 *typedef_field_list;
1339 unsigned typedef_field_list_count;
1340 };
1341
1342 /* One item on the queue of compilation units to read in full symbols
1343 for. */
1344 struct dwarf2_queue_item
1345 {
1346 struct dwarf2_per_cu_data *per_cu;
1347 enum language pretend_language;
1348 struct dwarf2_queue_item *next;
1349 };
1350
1351 /* The current queue. */
1352 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1353
1354 /* Loaded secondary compilation units are kept in memory until they
1355 have not been referenced for the processing of this many
1356 compilation units. Set this to zero to disable caching. Cache
1357 sizes of up to at least twenty will improve startup time for
1358 typical inter-CU-reference binaries, at an obvious memory cost. */
1359 static int dwarf2_max_cache_age = 5;
1360 static void
1361 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1362 struct cmd_list_element *c, const char *value)
1363 {
1364 fprintf_filtered (file, _("The upper bound on the age of cached "
1365 "dwarf2 compilation units is %s.\n"),
1366 value);
1367 }
1368 \f
1369 /* local function prototypes */
1370
1371 static const char *get_section_name (const struct dwarf2_section_info *);
1372
1373 static const char *get_section_file_name (const struct dwarf2_section_info *);
1374
1375 static void dwarf2_locate_sections (bfd *, asection *, void *);
1376
1377 static void dwarf2_find_base_address (struct die_info *die,
1378 struct dwarf2_cu *cu);
1379
1380 static struct partial_symtab *create_partial_symtab
1381 (struct dwarf2_per_cu_data *per_cu, const char *name);
1382
1383 static void dwarf2_build_psymtabs_hard (struct objfile *);
1384
1385 static void scan_partial_symbols (struct partial_die_info *,
1386 CORE_ADDR *, CORE_ADDR *,
1387 int, struct dwarf2_cu *);
1388
1389 static void add_partial_symbol (struct partial_die_info *,
1390 struct dwarf2_cu *);
1391
1392 static void add_partial_namespace (struct partial_die_info *pdi,
1393 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1394 int need_pc, struct dwarf2_cu *cu);
1395
1396 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1397 CORE_ADDR *highpc, int need_pc,
1398 struct dwarf2_cu *cu);
1399
1400 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1401 struct dwarf2_cu *cu);
1402
1403 static void add_partial_subprogram (struct partial_die_info *pdi,
1404 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1405 int need_pc, struct dwarf2_cu *cu);
1406
1407 static void dwarf2_read_symtab (struct partial_symtab *,
1408 struct objfile *);
1409
1410 static void psymtab_to_symtab_1 (struct partial_symtab *);
1411
1412 static struct abbrev_info *abbrev_table_lookup_abbrev
1413 (const struct abbrev_table *, unsigned int);
1414
1415 static struct abbrev_table *abbrev_table_read_table
1416 (struct dwarf2_section_info *, sect_offset);
1417
1418 static void abbrev_table_free (struct abbrev_table *);
1419
1420 static void abbrev_table_free_cleanup (void *);
1421
1422 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1423 struct dwarf2_section_info *);
1424
1425 static void dwarf2_free_abbrev_table (void *);
1426
1427 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1428
1429 static struct partial_die_info *load_partial_dies
1430 (const struct die_reader_specs *, const gdb_byte *, int);
1431
1432 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1433 struct partial_die_info *,
1434 struct abbrev_info *,
1435 unsigned int,
1436 const gdb_byte *);
1437
1438 static struct partial_die_info *find_partial_die (sect_offset, int,
1439 struct dwarf2_cu *);
1440
1441 static void fixup_partial_die (struct partial_die_info *,
1442 struct dwarf2_cu *);
1443
1444 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1445 struct attribute *, struct attr_abbrev *,
1446 const gdb_byte *);
1447
1448 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1449
1450 static int read_1_signed_byte (bfd *, const gdb_byte *);
1451
1452 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1453
1454 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1455
1456 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1457
1458 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1459 unsigned int *);
1460
1461 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1462
1463 static LONGEST read_checked_initial_length_and_offset
1464 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1465 unsigned int *, unsigned int *);
1466
1467 static LONGEST read_offset (bfd *, const gdb_byte *,
1468 const struct comp_unit_head *,
1469 unsigned int *);
1470
1471 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1472
1473 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1474 sect_offset);
1475
1476 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1477
1478 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1479
1480 static const char *read_indirect_string (bfd *, const gdb_byte *,
1481 const struct comp_unit_head *,
1482 unsigned int *);
1483
1484 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1485
1486 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1487
1488 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1489
1490 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1491 const gdb_byte *,
1492 unsigned int *);
1493
1494 static const char *read_str_index (const struct die_reader_specs *reader,
1495 struct dwarf2_cu *cu, ULONGEST str_index);
1496
1497 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1498
1499 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1500 struct dwarf2_cu *);
1501
1502 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1503 unsigned int);
1504
1505 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1506 struct dwarf2_cu *cu);
1507
1508 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1509
1510 static struct die_info *die_specification (struct die_info *die,
1511 struct dwarf2_cu **);
1512
1513 static void free_line_header (struct line_header *lh);
1514
1515 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1516 struct dwarf2_cu *cu);
1517
1518 static void dwarf_decode_lines (struct line_header *, const char *,
1519 struct dwarf2_cu *, struct partial_symtab *,
1520 int);
1521
1522 static void dwarf2_start_subfile (const char *, const char *, const char *);
1523
1524 static void dwarf2_start_symtab (struct dwarf2_cu *,
1525 const char *, const char *, CORE_ADDR);
1526
1527 static struct symbol *new_symbol (struct die_info *, struct type *,
1528 struct dwarf2_cu *);
1529
1530 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1531 struct dwarf2_cu *, struct symbol *);
1532
1533 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1534 struct dwarf2_cu *);
1535
1536 static void dwarf2_const_value_attr (const struct attribute *attr,
1537 struct type *type,
1538 const char *name,
1539 struct obstack *obstack,
1540 struct dwarf2_cu *cu, LONGEST *value,
1541 const gdb_byte **bytes,
1542 struct dwarf2_locexpr_baton **baton);
1543
1544 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1545
1546 static int need_gnat_info (struct dwarf2_cu *);
1547
1548 static struct type *die_descriptive_type (struct die_info *,
1549 struct dwarf2_cu *);
1550
1551 static void set_descriptive_type (struct type *, struct die_info *,
1552 struct dwarf2_cu *);
1553
1554 static struct type *die_containing_type (struct die_info *,
1555 struct dwarf2_cu *);
1556
1557 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1558 struct dwarf2_cu *);
1559
1560 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1561
1562 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1563
1564 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1565
1566 static char *typename_concat (struct obstack *obs, const char *prefix,
1567 const char *suffix, int physname,
1568 struct dwarf2_cu *cu);
1569
1570 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1571
1572 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1573
1574 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1575
1576 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1577
1578 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1579
1580 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1581 struct dwarf2_cu *, struct partial_symtab *);
1582
1583 static int dwarf2_get_pc_bounds (struct die_info *,
1584 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1585 struct partial_symtab *);
1586
1587 static void get_scope_pc_bounds (struct die_info *,
1588 CORE_ADDR *, CORE_ADDR *,
1589 struct dwarf2_cu *);
1590
1591 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1592 CORE_ADDR, struct dwarf2_cu *);
1593
1594 static void dwarf2_add_field (struct field_info *, struct die_info *,
1595 struct dwarf2_cu *);
1596
1597 static void dwarf2_attach_fields_to_type (struct field_info *,
1598 struct type *, struct dwarf2_cu *);
1599
1600 static void dwarf2_add_member_fn (struct field_info *,
1601 struct die_info *, struct type *,
1602 struct dwarf2_cu *);
1603
1604 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1605 struct type *,
1606 struct dwarf2_cu *);
1607
1608 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1609
1610 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1611
1612 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1613
1614 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1615
1616 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1617
1618 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1619
1620 static struct type *read_module_type (struct die_info *die,
1621 struct dwarf2_cu *cu);
1622
1623 static const char *namespace_name (struct die_info *die,
1624 int *is_anonymous, struct dwarf2_cu *);
1625
1626 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1627
1628 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1629
1630 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1631 struct dwarf2_cu *);
1632
1633 static struct die_info *read_die_and_siblings_1
1634 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1635 struct die_info *);
1636
1637 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1638 const gdb_byte *info_ptr,
1639 const gdb_byte **new_info_ptr,
1640 struct die_info *parent);
1641
1642 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *, int);
1645
1646 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1647 struct die_info **, const gdb_byte *,
1648 int *);
1649
1650 static void process_die (struct die_info *, struct dwarf2_cu *);
1651
1652 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1653 struct obstack *);
1654
1655 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1656
1657 static const char *dwarf2_full_name (const char *name,
1658 struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
1661 static const char *dwarf2_physname (const char *name, struct die_info *die,
1662 struct dwarf2_cu *cu);
1663
1664 static struct die_info *dwarf2_extension (struct die_info *die,
1665 struct dwarf2_cu **);
1666
1667 static const char *dwarf_tag_name (unsigned int);
1668
1669 static const char *dwarf_attr_name (unsigned int);
1670
1671 static const char *dwarf_form_name (unsigned int);
1672
1673 static char *dwarf_bool_name (unsigned int);
1674
1675 static const char *dwarf_type_encoding_name (unsigned int);
1676
1677 static struct die_info *sibling_die (struct die_info *);
1678
1679 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1680
1681 static void dump_die_for_error (struct die_info *);
1682
1683 static void dump_die_1 (struct ui_file *, int level, int max_level,
1684 struct die_info *);
1685
1686 /*static*/ void dump_die (struct die_info *, int max_level);
1687
1688 static void store_in_ref_table (struct die_info *,
1689 struct dwarf2_cu *);
1690
1691 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1692
1693 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1694
1695 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1696 const struct attribute *,
1697 struct dwarf2_cu **);
1698
1699 static struct die_info *follow_die_ref (struct die_info *,
1700 const struct attribute *,
1701 struct dwarf2_cu **);
1702
1703 static struct die_info *follow_die_sig (struct die_info *,
1704 const struct attribute *,
1705 struct dwarf2_cu **);
1706
1707 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1708 struct dwarf2_cu *);
1709
1710 static struct type *get_DW_AT_signature_type (struct die_info *,
1711 const struct attribute *,
1712 struct dwarf2_cu *);
1713
1714 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1715
1716 static void read_signatured_type (struct signatured_type *);
1717
1718 static struct type_unit_group *get_type_unit_group
1719 (struct dwarf2_cu *, const struct attribute *);
1720
1721 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1722
1723 /* memory allocation interface */
1724
1725 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1726
1727 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1728
1729 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1730 const char *, int);
1731
1732 static int attr_form_is_block (const struct attribute *);
1733
1734 static int attr_form_is_section_offset (const struct attribute *);
1735
1736 static int attr_form_is_constant (const struct attribute *);
1737
1738 static int attr_form_is_ref (const struct attribute *);
1739
1740 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1741 struct dwarf2_loclist_baton *baton,
1742 const struct attribute *attr);
1743
1744 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1745 struct symbol *sym,
1746 struct dwarf2_cu *cu,
1747 int is_block);
1748
1749 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1750 const gdb_byte *info_ptr,
1751 struct abbrev_info *abbrev);
1752
1753 static void free_stack_comp_unit (void *);
1754
1755 static hashval_t partial_die_hash (const void *item);
1756
1757 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1758
1759 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1760 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1761
1762 static void init_one_comp_unit (struct dwarf2_cu *cu,
1763 struct dwarf2_per_cu_data *per_cu);
1764
1765 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1766 struct die_info *comp_unit_die,
1767 enum language pretend_language);
1768
1769 static void free_heap_comp_unit (void *);
1770
1771 static void free_cached_comp_units (void *);
1772
1773 static void age_cached_comp_units (void);
1774
1775 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1776
1777 static struct type *set_die_type (struct die_info *, struct type *,
1778 struct dwarf2_cu *);
1779
1780 static void create_all_comp_units (struct objfile *);
1781
1782 static int create_all_type_units (struct objfile *);
1783
1784 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1785 enum language);
1786
1787 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1788 enum language);
1789
1790 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1791 enum language);
1792
1793 static void dwarf2_add_dependence (struct dwarf2_cu *,
1794 struct dwarf2_per_cu_data *);
1795
1796 static void dwarf2_mark (struct dwarf2_cu *);
1797
1798 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1799
1800 static struct type *get_die_type_at_offset (sect_offset,
1801 struct dwarf2_per_cu_data *);
1802
1803 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1804
1805 static void dwarf2_release_queue (void *dummy);
1806
1807 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1808 enum language pretend_language);
1809
1810 static void process_queue (void);
1811
1812 static void find_file_and_directory (struct die_info *die,
1813 struct dwarf2_cu *cu,
1814 const char **name, const char **comp_dir);
1815
1816 static char *file_full_name (int file, struct line_header *lh,
1817 const char *comp_dir);
1818
1819 static const gdb_byte *read_and_check_comp_unit_head
1820 (struct comp_unit_head *header,
1821 struct dwarf2_section_info *section,
1822 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1823 int is_debug_types_section);
1824
1825 static void init_cutu_and_read_dies
1826 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1827 int use_existing_cu, int keep,
1828 die_reader_func_ftype *die_reader_func, void *data);
1829
1830 static void init_cutu_and_read_dies_simple
1831 (struct dwarf2_per_cu_data *this_cu,
1832 die_reader_func_ftype *die_reader_func, void *data);
1833
1834 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1835
1836 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1837
1838 static struct dwo_unit *lookup_dwo_unit_in_dwp
1839 (struct dwp_file *dwp_file, const char *comp_dir,
1840 ULONGEST signature, int is_debug_types);
1841
1842 static struct dwp_file *get_dwp_file (void);
1843
1844 static struct dwo_unit *lookup_dwo_comp_unit
1845 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1846
1847 static struct dwo_unit *lookup_dwo_type_unit
1848 (struct signatured_type *, const char *, const char *);
1849
1850 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1851
1852 static void free_dwo_file_cleanup (void *);
1853
1854 static void process_cu_includes (void);
1855
1856 static void check_producer (struct dwarf2_cu *cu);
1857 \f
1858 /* Various complaints about symbol reading that don't abort the process. */
1859
1860 static void
1861 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1862 {
1863 complaint (&symfile_complaints,
1864 _("statement list doesn't fit in .debug_line section"));
1865 }
1866
1867 static void
1868 dwarf2_debug_line_missing_file_complaint (void)
1869 {
1870 complaint (&symfile_complaints,
1871 _(".debug_line section has line data without a file"));
1872 }
1873
1874 static void
1875 dwarf2_debug_line_missing_end_sequence_complaint (void)
1876 {
1877 complaint (&symfile_complaints,
1878 _(".debug_line section has line "
1879 "program sequence without an end"));
1880 }
1881
1882 static void
1883 dwarf2_complex_location_expr_complaint (void)
1884 {
1885 complaint (&symfile_complaints, _("location expression too complex"));
1886 }
1887
1888 static void
1889 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1890 int arg3)
1891 {
1892 complaint (&symfile_complaints,
1893 _("const value length mismatch for '%s', got %d, expected %d"),
1894 arg1, arg2, arg3);
1895 }
1896
1897 static void
1898 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1899 {
1900 complaint (&symfile_complaints,
1901 _("debug info runs off end of %s section"
1902 " [in module %s]"),
1903 get_section_name (section),
1904 get_section_file_name (section));
1905 }
1906
1907 static void
1908 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1909 {
1910 complaint (&symfile_complaints,
1911 _("macro debug info contains a "
1912 "malformed macro definition:\n`%s'"),
1913 arg1);
1914 }
1915
1916 static void
1917 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1918 {
1919 complaint (&symfile_complaints,
1920 _("invalid attribute class or form for '%s' in '%s'"),
1921 arg1, arg2);
1922 }
1923 \f
1924 #if WORDS_BIGENDIAN
1925
1926 /* Convert VALUE between big- and little-endian. */
1927 static offset_type
1928 byte_swap (offset_type value)
1929 {
1930 offset_type result;
1931
1932 result = (value & 0xff) << 24;
1933 result |= (value & 0xff00) << 8;
1934 result |= (value & 0xff0000) >> 8;
1935 result |= (value & 0xff000000) >> 24;
1936 return result;
1937 }
1938
1939 #define MAYBE_SWAP(V) byte_swap (V)
1940
1941 #else
1942 #define MAYBE_SWAP(V) (V)
1943 #endif /* WORDS_BIGENDIAN */
1944
1945 /* The suffix for an index file. */
1946 #define INDEX_SUFFIX ".gdb-index"
1947
1948 /* Try to locate the sections we need for DWARF 2 debugging
1949 information and return true if we have enough to do something.
1950 NAMES points to the dwarf2 section names, or is NULL if the standard
1951 ELF names are used. */
1952
1953 int
1954 dwarf2_has_info (struct objfile *objfile,
1955 const struct dwarf2_debug_sections *names)
1956 {
1957 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1958 if (!dwarf2_per_objfile)
1959 {
1960 /* Initialize per-objfile state. */
1961 struct dwarf2_per_objfile *data
1962 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1963
1964 memset (data, 0, sizeof (*data));
1965 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1966 dwarf2_per_objfile = data;
1967
1968 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1969 (void *) names);
1970 dwarf2_per_objfile->objfile = objfile;
1971 }
1972 return (!dwarf2_per_objfile->info.is_virtual
1973 && dwarf2_per_objfile->info.s.asection != NULL
1974 && !dwarf2_per_objfile->abbrev.is_virtual
1975 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1976 }
1977
1978 /* Return the containing section of virtual section SECTION. */
1979
1980 static struct dwarf2_section_info *
1981 get_containing_section (const struct dwarf2_section_info *section)
1982 {
1983 gdb_assert (section->is_virtual);
1984 return section->s.containing_section;
1985 }
1986
1987 /* Return the bfd owner of SECTION. */
1988
1989 static struct bfd *
1990 get_section_bfd_owner (const struct dwarf2_section_info *section)
1991 {
1992 if (section->is_virtual)
1993 {
1994 section = get_containing_section (section);
1995 gdb_assert (!section->is_virtual);
1996 }
1997 return section->s.asection->owner;
1998 }
1999
2000 /* Return the bfd section of SECTION.
2001 Returns NULL if the section is not present. */
2002
2003 static asection *
2004 get_section_bfd_section (const struct dwarf2_section_info *section)
2005 {
2006 if (section->is_virtual)
2007 {
2008 section = get_containing_section (section);
2009 gdb_assert (!section->is_virtual);
2010 }
2011 return section->s.asection;
2012 }
2013
2014 /* Return the name of SECTION. */
2015
2016 static const char *
2017 get_section_name (const struct dwarf2_section_info *section)
2018 {
2019 asection *sectp = get_section_bfd_section (section);
2020
2021 gdb_assert (sectp != NULL);
2022 return bfd_section_name (get_section_bfd_owner (section), sectp);
2023 }
2024
2025 /* Return the name of the file SECTION is in. */
2026
2027 static const char *
2028 get_section_file_name (const struct dwarf2_section_info *section)
2029 {
2030 bfd *abfd = get_section_bfd_owner (section);
2031
2032 return bfd_get_filename (abfd);
2033 }
2034
2035 /* Return the id of SECTION.
2036 Returns 0 if SECTION doesn't exist. */
2037
2038 static int
2039 get_section_id (const struct dwarf2_section_info *section)
2040 {
2041 asection *sectp = get_section_bfd_section (section);
2042
2043 if (sectp == NULL)
2044 return 0;
2045 return sectp->id;
2046 }
2047
2048 /* Return the flags of SECTION.
2049 SECTION (or containing section if this is a virtual section) must exist. */
2050
2051 static int
2052 get_section_flags (const struct dwarf2_section_info *section)
2053 {
2054 asection *sectp = get_section_bfd_section (section);
2055
2056 gdb_assert (sectp != NULL);
2057 return bfd_get_section_flags (sectp->owner, sectp);
2058 }
2059
2060 /* When loading sections, we look either for uncompressed section or for
2061 compressed section names. */
2062
2063 static int
2064 section_is_p (const char *section_name,
2065 const struct dwarf2_section_names *names)
2066 {
2067 if (names->normal != NULL
2068 && strcmp (section_name, names->normal) == 0)
2069 return 1;
2070 if (names->compressed != NULL
2071 && strcmp (section_name, names->compressed) == 0)
2072 return 1;
2073 return 0;
2074 }
2075
2076 /* This function is mapped across the sections and remembers the
2077 offset and size of each of the debugging sections we are interested
2078 in. */
2079
2080 static void
2081 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2082 {
2083 const struct dwarf2_debug_sections *names;
2084 flagword aflag = bfd_get_section_flags (abfd, sectp);
2085
2086 if (vnames == NULL)
2087 names = &dwarf2_elf_names;
2088 else
2089 names = (const struct dwarf2_debug_sections *) vnames;
2090
2091 if ((aflag & SEC_HAS_CONTENTS) == 0)
2092 {
2093 }
2094 else if (section_is_p (sectp->name, &names->info))
2095 {
2096 dwarf2_per_objfile->info.s.asection = sectp;
2097 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2098 }
2099 else if (section_is_p (sectp->name, &names->abbrev))
2100 {
2101 dwarf2_per_objfile->abbrev.s.asection = sectp;
2102 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2103 }
2104 else if (section_is_p (sectp->name, &names->line))
2105 {
2106 dwarf2_per_objfile->line.s.asection = sectp;
2107 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2108 }
2109 else if (section_is_p (sectp->name, &names->loc))
2110 {
2111 dwarf2_per_objfile->loc.s.asection = sectp;
2112 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2113 }
2114 else if (section_is_p (sectp->name, &names->macinfo))
2115 {
2116 dwarf2_per_objfile->macinfo.s.asection = sectp;
2117 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2118 }
2119 else if (section_is_p (sectp->name, &names->macro))
2120 {
2121 dwarf2_per_objfile->macro.s.asection = sectp;
2122 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2123 }
2124 else if (section_is_p (sectp->name, &names->str))
2125 {
2126 dwarf2_per_objfile->str.s.asection = sectp;
2127 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2128 }
2129 else if (section_is_p (sectp->name, &names->addr))
2130 {
2131 dwarf2_per_objfile->addr.s.asection = sectp;
2132 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2133 }
2134 else if (section_is_p (sectp->name, &names->frame))
2135 {
2136 dwarf2_per_objfile->frame.s.asection = sectp;
2137 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2138 }
2139 else if (section_is_p (sectp->name, &names->eh_frame))
2140 {
2141 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2142 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2143 }
2144 else if (section_is_p (sectp->name, &names->ranges))
2145 {
2146 dwarf2_per_objfile->ranges.s.asection = sectp;
2147 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2148 }
2149 else if (section_is_p (sectp->name, &names->types))
2150 {
2151 struct dwarf2_section_info type_section;
2152
2153 memset (&type_section, 0, sizeof (type_section));
2154 type_section.s.asection = sectp;
2155 type_section.size = bfd_get_section_size (sectp);
2156
2157 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2158 &type_section);
2159 }
2160 else if (section_is_p (sectp->name, &names->gdb_index))
2161 {
2162 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2163 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2164 }
2165
2166 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2167 && bfd_section_vma (abfd, sectp) == 0)
2168 dwarf2_per_objfile->has_section_at_zero = 1;
2169 }
2170
2171 /* A helper function that decides whether a section is empty,
2172 or not present. */
2173
2174 static int
2175 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2176 {
2177 if (section->is_virtual)
2178 return section->size == 0;
2179 return section->s.asection == NULL || section->size == 0;
2180 }
2181
2182 /* Read the contents of the section INFO.
2183 OBJFILE is the main object file, but not necessarily the file where
2184 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2185 of the DWO file.
2186 If the section is compressed, uncompress it before returning. */
2187
2188 static void
2189 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2190 {
2191 asection *sectp;
2192 bfd *abfd;
2193 gdb_byte *buf, *retbuf;
2194
2195 if (info->readin)
2196 return;
2197 info->buffer = NULL;
2198 info->readin = 1;
2199
2200 if (dwarf2_section_empty_p (info))
2201 return;
2202
2203 sectp = get_section_bfd_section (info);
2204
2205 /* If this is a virtual section we need to read in the real one first. */
2206 if (info->is_virtual)
2207 {
2208 struct dwarf2_section_info *containing_section =
2209 get_containing_section (info);
2210
2211 gdb_assert (sectp != NULL);
2212 if ((sectp->flags & SEC_RELOC) != 0)
2213 {
2214 error (_("Dwarf Error: DWP format V2 with relocations is not"
2215 " supported in section %s [in module %s]"),
2216 get_section_name (info), get_section_file_name (info));
2217 }
2218 dwarf2_read_section (objfile, containing_section);
2219 /* Other code should have already caught virtual sections that don't
2220 fit. */
2221 gdb_assert (info->virtual_offset + info->size
2222 <= containing_section->size);
2223 /* If the real section is empty or there was a problem reading the
2224 section we shouldn't get here. */
2225 gdb_assert (containing_section->buffer != NULL);
2226 info->buffer = containing_section->buffer + info->virtual_offset;
2227 return;
2228 }
2229
2230 /* If the section has relocations, we must read it ourselves.
2231 Otherwise we attach it to the BFD. */
2232 if ((sectp->flags & SEC_RELOC) == 0)
2233 {
2234 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2235 return;
2236 }
2237
2238 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2239 info->buffer = buf;
2240
2241 /* When debugging .o files, we may need to apply relocations; see
2242 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2243 We never compress sections in .o files, so we only need to
2244 try this when the section is not compressed. */
2245 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2246 if (retbuf != NULL)
2247 {
2248 info->buffer = retbuf;
2249 return;
2250 }
2251
2252 abfd = get_section_bfd_owner (info);
2253 gdb_assert (abfd != NULL);
2254
2255 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2256 || bfd_bread (buf, info->size, abfd) != info->size)
2257 {
2258 error (_("Dwarf Error: Can't read DWARF data"
2259 " in section %s [in module %s]"),
2260 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2261 }
2262 }
2263
2264 /* A helper function that returns the size of a section in a safe way.
2265 If you are positive that the section has been read before using the
2266 size, then it is safe to refer to the dwarf2_section_info object's
2267 "size" field directly. In other cases, you must call this
2268 function, because for compressed sections the size field is not set
2269 correctly until the section has been read. */
2270
2271 static bfd_size_type
2272 dwarf2_section_size (struct objfile *objfile,
2273 struct dwarf2_section_info *info)
2274 {
2275 if (!info->readin)
2276 dwarf2_read_section (objfile, info);
2277 return info->size;
2278 }
2279
2280 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2281 SECTION_NAME. */
2282
2283 void
2284 dwarf2_get_section_info (struct objfile *objfile,
2285 enum dwarf2_section_enum sect,
2286 asection **sectp, const gdb_byte **bufp,
2287 bfd_size_type *sizep)
2288 {
2289 struct dwarf2_per_objfile *data
2290 = objfile_data (objfile, dwarf2_objfile_data_key);
2291 struct dwarf2_section_info *info;
2292
2293 /* We may see an objfile without any DWARF, in which case we just
2294 return nothing. */
2295 if (data == NULL)
2296 {
2297 *sectp = NULL;
2298 *bufp = NULL;
2299 *sizep = 0;
2300 return;
2301 }
2302 switch (sect)
2303 {
2304 case DWARF2_DEBUG_FRAME:
2305 info = &data->frame;
2306 break;
2307 case DWARF2_EH_FRAME:
2308 info = &data->eh_frame;
2309 break;
2310 default:
2311 gdb_assert_not_reached ("unexpected section");
2312 }
2313
2314 dwarf2_read_section (objfile, info);
2315
2316 *sectp = get_section_bfd_section (info);
2317 *bufp = info->buffer;
2318 *sizep = info->size;
2319 }
2320
2321 /* A helper function to find the sections for a .dwz file. */
2322
2323 static void
2324 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2325 {
2326 struct dwz_file *dwz_file = arg;
2327
2328 /* Note that we only support the standard ELF names, because .dwz
2329 is ELF-only (at the time of writing). */
2330 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2331 {
2332 dwz_file->abbrev.s.asection = sectp;
2333 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2334 }
2335 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2336 {
2337 dwz_file->info.s.asection = sectp;
2338 dwz_file->info.size = bfd_get_section_size (sectp);
2339 }
2340 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2341 {
2342 dwz_file->str.s.asection = sectp;
2343 dwz_file->str.size = bfd_get_section_size (sectp);
2344 }
2345 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2346 {
2347 dwz_file->line.s.asection = sectp;
2348 dwz_file->line.size = bfd_get_section_size (sectp);
2349 }
2350 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2351 {
2352 dwz_file->macro.s.asection = sectp;
2353 dwz_file->macro.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2356 {
2357 dwz_file->gdb_index.s.asection = sectp;
2358 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2359 }
2360 }
2361
2362 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2363 there is no .gnu_debugaltlink section in the file. Error if there
2364 is such a section but the file cannot be found. */
2365
2366 static struct dwz_file *
2367 dwarf2_get_dwz_file (void)
2368 {
2369 bfd *dwz_bfd;
2370 char *data;
2371 struct cleanup *cleanup;
2372 const char *filename;
2373 struct dwz_file *result;
2374 bfd_size_type buildid_len_arg;
2375 size_t buildid_len;
2376 bfd_byte *buildid;
2377
2378 if (dwarf2_per_objfile->dwz_file != NULL)
2379 return dwarf2_per_objfile->dwz_file;
2380
2381 bfd_set_error (bfd_error_no_error);
2382 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2383 &buildid_len_arg, &buildid);
2384 if (data == NULL)
2385 {
2386 if (bfd_get_error () == bfd_error_no_error)
2387 return NULL;
2388 error (_("could not read '.gnu_debugaltlink' section: %s"),
2389 bfd_errmsg (bfd_get_error ()));
2390 }
2391 cleanup = make_cleanup (xfree, data);
2392 make_cleanup (xfree, buildid);
2393
2394 buildid_len = (size_t) buildid_len_arg;
2395
2396 filename = (const char *) data;
2397 if (!IS_ABSOLUTE_PATH (filename))
2398 {
2399 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2400 char *rel;
2401
2402 make_cleanup (xfree, abs);
2403 abs = ldirname (abs);
2404 make_cleanup (xfree, abs);
2405
2406 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2407 make_cleanup (xfree, rel);
2408 filename = rel;
2409 }
2410
2411 /* First try the file name given in the section. If that doesn't
2412 work, try to use the build-id instead. */
2413 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2414 if (dwz_bfd != NULL)
2415 {
2416 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2417 {
2418 gdb_bfd_unref (dwz_bfd);
2419 dwz_bfd = NULL;
2420 }
2421 }
2422
2423 if (dwz_bfd == NULL)
2424 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2425
2426 if (dwz_bfd == NULL)
2427 error (_("could not find '.gnu_debugaltlink' file for %s"),
2428 objfile_name (dwarf2_per_objfile->objfile));
2429
2430 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2431 struct dwz_file);
2432 result->dwz_bfd = dwz_bfd;
2433
2434 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2435
2436 do_cleanups (cleanup);
2437
2438 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2439 dwarf2_per_objfile->dwz_file = result;
2440 return result;
2441 }
2442 \f
2443 /* DWARF quick_symbols_functions support. */
2444
2445 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2446 unique line tables, so we maintain a separate table of all .debug_line
2447 derived entries to support the sharing.
2448 All the quick functions need is the list of file names. We discard the
2449 line_header when we're done and don't need to record it here. */
2450 struct quick_file_names
2451 {
2452 /* The data used to construct the hash key. */
2453 struct stmt_list_hash hash;
2454
2455 /* The number of entries in file_names, real_names. */
2456 unsigned int num_file_names;
2457
2458 /* The file names from the line table, after being run through
2459 file_full_name. */
2460 const char **file_names;
2461
2462 /* The file names from the line table after being run through
2463 gdb_realpath. These are computed lazily. */
2464 const char **real_names;
2465 };
2466
2467 /* When using the index (and thus not using psymtabs), each CU has an
2468 object of this type. This is used to hold information needed by
2469 the various "quick" methods. */
2470 struct dwarf2_per_cu_quick_data
2471 {
2472 /* The file table. This can be NULL if there was no file table
2473 or it's currently not read in.
2474 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2475 struct quick_file_names *file_names;
2476
2477 /* The corresponding symbol table. This is NULL if symbols for this
2478 CU have not yet been read. */
2479 struct symtab *symtab;
2480
2481 /* A temporary mark bit used when iterating over all CUs in
2482 expand_symtabs_matching. */
2483 unsigned int mark : 1;
2484
2485 /* True if we've tried to read the file table and found there isn't one.
2486 There will be no point in trying to read it again next time. */
2487 unsigned int no_file_data : 1;
2488 };
2489
2490 /* Utility hash function for a stmt_list_hash. */
2491
2492 static hashval_t
2493 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2494 {
2495 hashval_t v = 0;
2496
2497 if (stmt_list_hash->dwo_unit != NULL)
2498 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2499 v += stmt_list_hash->line_offset.sect_off;
2500 return v;
2501 }
2502
2503 /* Utility equality function for a stmt_list_hash. */
2504
2505 static int
2506 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2507 const struct stmt_list_hash *rhs)
2508 {
2509 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2510 return 0;
2511 if (lhs->dwo_unit != NULL
2512 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2513 return 0;
2514
2515 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2516 }
2517
2518 /* Hash function for a quick_file_names. */
2519
2520 static hashval_t
2521 hash_file_name_entry (const void *e)
2522 {
2523 const struct quick_file_names *file_data = e;
2524
2525 return hash_stmt_list_entry (&file_data->hash);
2526 }
2527
2528 /* Equality function for a quick_file_names. */
2529
2530 static int
2531 eq_file_name_entry (const void *a, const void *b)
2532 {
2533 const struct quick_file_names *ea = a;
2534 const struct quick_file_names *eb = b;
2535
2536 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2537 }
2538
2539 /* Delete function for a quick_file_names. */
2540
2541 static void
2542 delete_file_name_entry (void *e)
2543 {
2544 struct quick_file_names *file_data = e;
2545 int i;
2546
2547 for (i = 0; i < file_data->num_file_names; ++i)
2548 {
2549 xfree ((void*) file_data->file_names[i]);
2550 if (file_data->real_names)
2551 xfree ((void*) file_data->real_names[i]);
2552 }
2553
2554 /* The space for the struct itself lives on objfile_obstack,
2555 so we don't free it here. */
2556 }
2557
2558 /* Create a quick_file_names hash table. */
2559
2560 static htab_t
2561 create_quick_file_names_table (unsigned int nr_initial_entries)
2562 {
2563 return htab_create_alloc (nr_initial_entries,
2564 hash_file_name_entry, eq_file_name_entry,
2565 delete_file_name_entry, xcalloc, xfree);
2566 }
2567
2568 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2569 have to be created afterwards. You should call age_cached_comp_units after
2570 processing PER_CU->CU. dw2_setup must have been already called. */
2571
2572 static void
2573 load_cu (struct dwarf2_per_cu_data *per_cu)
2574 {
2575 if (per_cu->is_debug_types)
2576 load_full_type_unit (per_cu);
2577 else
2578 load_full_comp_unit (per_cu, language_minimal);
2579
2580 gdb_assert (per_cu->cu != NULL);
2581
2582 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2583 }
2584
2585 /* Read in the symbols for PER_CU. */
2586
2587 static void
2588 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2589 {
2590 struct cleanup *back_to;
2591
2592 /* Skip type_unit_groups, reading the type units they contain
2593 is handled elsewhere. */
2594 if (IS_TYPE_UNIT_GROUP (per_cu))
2595 return;
2596
2597 back_to = make_cleanup (dwarf2_release_queue, NULL);
2598
2599 if (dwarf2_per_objfile->using_index
2600 ? per_cu->v.quick->symtab == NULL
2601 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2602 {
2603 queue_comp_unit (per_cu, language_minimal);
2604 load_cu (per_cu);
2605
2606 /* If we just loaded a CU from a DWO, and we're working with an index
2607 that may badly handle TUs, load all the TUs in that DWO as well.
2608 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2609 if (!per_cu->is_debug_types
2610 && per_cu->cu->dwo_unit != NULL
2611 && dwarf2_per_objfile->index_table != NULL
2612 && dwarf2_per_objfile->index_table->version <= 7
2613 /* DWP files aren't supported yet. */
2614 && get_dwp_file () == NULL)
2615 queue_and_load_all_dwo_tus (per_cu);
2616 }
2617
2618 process_queue ();
2619
2620 /* Age the cache, releasing compilation units that have not
2621 been used recently. */
2622 age_cached_comp_units ();
2623
2624 do_cleanups (back_to);
2625 }
2626
2627 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2628 the objfile from which this CU came. Returns the resulting symbol
2629 table. */
2630
2631 static struct symtab *
2632 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2633 {
2634 gdb_assert (dwarf2_per_objfile->using_index);
2635 if (!per_cu->v.quick->symtab)
2636 {
2637 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2638 increment_reading_symtab ();
2639 dw2_do_instantiate_symtab (per_cu);
2640 process_cu_includes ();
2641 do_cleanups (back_to);
2642 }
2643 return per_cu->v.quick->symtab;
2644 }
2645
2646 /* Return the CU given its index.
2647
2648 This is intended for loops like:
2649
2650 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2651 + dwarf2_per_objfile->n_type_units); ++i)
2652 {
2653 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2654
2655 ...;
2656 }
2657 */
2658
2659 static struct dwarf2_per_cu_data *
2660 dw2_get_cu (int index)
2661 {
2662 if (index >= dwarf2_per_objfile->n_comp_units)
2663 {
2664 index -= dwarf2_per_objfile->n_comp_units;
2665 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2666 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2667 }
2668
2669 return dwarf2_per_objfile->all_comp_units[index];
2670 }
2671
2672 /* Return the primary CU given its index.
2673 The difference between this function and dw2_get_cu is in the handling
2674 of type units (TUs). Here we return the type_unit_group object.
2675
2676 This is intended for loops like:
2677
2678 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2679 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2680 {
2681 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2682
2683 ...;
2684 }
2685 */
2686
2687 static struct dwarf2_per_cu_data *
2688 dw2_get_primary_cu (int index)
2689 {
2690 if (index >= dwarf2_per_objfile->n_comp_units)
2691 {
2692 index -= dwarf2_per_objfile->n_comp_units;
2693 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2694 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2695 }
2696
2697 return dwarf2_per_objfile->all_comp_units[index];
2698 }
2699
2700 /* A helper for create_cus_from_index that handles a given list of
2701 CUs. */
2702
2703 static void
2704 create_cus_from_index_list (struct objfile *objfile,
2705 const gdb_byte *cu_list, offset_type n_elements,
2706 struct dwarf2_section_info *section,
2707 int is_dwz,
2708 int base_offset)
2709 {
2710 offset_type i;
2711
2712 for (i = 0; i < n_elements; i += 2)
2713 {
2714 struct dwarf2_per_cu_data *the_cu;
2715 ULONGEST offset, length;
2716
2717 gdb_static_assert (sizeof (ULONGEST) >= 8);
2718 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2719 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2720 cu_list += 2 * 8;
2721
2722 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2723 struct dwarf2_per_cu_data);
2724 the_cu->offset.sect_off = offset;
2725 the_cu->length = length;
2726 the_cu->objfile = objfile;
2727 the_cu->section = section;
2728 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2729 struct dwarf2_per_cu_quick_data);
2730 the_cu->is_dwz = is_dwz;
2731 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2732 }
2733 }
2734
2735 /* Read the CU list from the mapped index, and use it to create all
2736 the CU objects for this objfile. */
2737
2738 static void
2739 create_cus_from_index (struct objfile *objfile,
2740 const gdb_byte *cu_list, offset_type cu_list_elements,
2741 const gdb_byte *dwz_list, offset_type dwz_elements)
2742 {
2743 struct dwz_file *dwz;
2744
2745 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2746 dwarf2_per_objfile->all_comp_units
2747 = obstack_alloc (&objfile->objfile_obstack,
2748 dwarf2_per_objfile->n_comp_units
2749 * sizeof (struct dwarf2_per_cu_data *));
2750
2751 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2752 &dwarf2_per_objfile->info, 0, 0);
2753
2754 if (dwz_elements == 0)
2755 return;
2756
2757 dwz = dwarf2_get_dwz_file ();
2758 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2759 cu_list_elements / 2);
2760 }
2761
2762 /* Create the signatured type hash table from the index. */
2763
2764 static void
2765 create_signatured_type_table_from_index (struct objfile *objfile,
2766 struct dwarf2_section_info *section,
2767 const gdb_byte *bytes,
2768 offset_type elements)
2769 {
2770 offset_type i;
2771 htab_t sig_types_hash;
2772
2773 dwarf2_per_objfile->n_type_units = elements / 3;
2774 dwarf2_per_objfile->all_type_units
2775 = xmalloc (dwarf2_per_objfile->n_type_units
2776 * sizeof (struct signatured_type *));
2777
2778 sig_types_hash = allocate_signatured_type_table (objfile);
2779
2780 for (i = 0; i < elements; i += 3)
2781 {
2782 struct signatured_type *sig_type;
2783 ULONGEST offset, type_offset_in_tu, signature;
2784 void **slot;
2785
2786 gdb_static_assert (sizeof (ULONGEST) >= 8);
2787 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2788 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2789 BFD_ENDIAN_LITTLE);
2790 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2791 bytes += 3 * 8;
2792
2793 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2794 struct signatured_type);
2795 sig_type->signature = signature;
2796 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2797 sig_type->per_cu.is_debug_types = 1;
2798 sig_type->per_cu.section = section;
2799 sig_type->per_cu.offset.sect_off = offset;
2800 sig_type->per_cu.objfile = objfile;
2801 sig_type->per_cu.v.quick
2802 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2803 struct dwarf2_per_cu_quick_data);
2804
2805 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2806 *slot = sig_type;
2807
2808 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2809 }
2810
2811 dwarf2_per_objfile->signatured_types = sig_types_hash;
2812 }
2813
2814 /* Read the address map data from the mapped index, and use it to
2815 populate the objfile's psymtabs_addrmap. */
2816
2817 static void
2818 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2819 {
2820 const gdb_byte *iter, *end;
2821 struct obstack temp_obstack;
2822 struct addrmap *mutable_map;
2823 struct cleanup *cleanup;
2824 CORE_ADDR baseaddr;
2825
2826 obstack_init (&temp_obstack);
2827 cleanup = make_cleanup_obstack_free (&temp_obstack);
2828 mutable_map = addrmap_create_mutable (&temp_obstack);
2829
2830 iter = index->address_table;
2831 end = iter + index->address_table_size;
2832
2833 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2834
2835 while (iter < end)
2836 {
2837 ULONGEST hi, lo, cu_index;
2838 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2839 iter += 8;
2840 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2841 iter += 8;
2842 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2843 iter += 4;
2844
2845 if (lo > hi)
2846 {
2847 complaint (&symfile_complaints,
2848 _(".gdb_index address table has invalid range (%s - %s)"),
2849 hex_string (lo), hex_string (hi));
2850 continue;
2851 }
2852
2853 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2854 {
2855 complaint (&symfile_complaints,
2856 _(".gdb_index address table has invalid CU number %u"),
2857 (unsigned) cu_index);
2858 continue;
2859 }
2860
2861 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2862 dw2_get_cu (cu_index));
2863 }
2864
2865 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2866 &objfile->objfile_obstack);
2867 do_cleanups (cleanup);
2868 }
2869
2870 /* The hash function for strings in the mapped index. This is the same as
2871 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2872 implementation. This is necessary because the hash function is tied to the
2873 format of the mapped index file. The hash values do not have to match with
2874 SYMBOL_HASH_NEXT.
2875
2876 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2877
2878 static hashval_t
2879 mapped_index_string_hash (int index_version, const void *p)
2880 {
2881 const unsigned char *str = (const unsigned char *) p;
2882 hashval_t r = 0;
2883 unsigned char c;
2884
2885 while ((c = *str++) != 0)
2886 {
2887 if (index_version >= 5)
2888 c = tolower (c);
2889 r = r * 67 + c - 113;
2890 }
2891
2892 return r;
2893 }
2894
2895 /* Find a slot in the mapped index INDEX for the object named NAME.
2896 If NAME is found, set *VEC_OUT to point to the CU vector in the
2897 constant pool and return 1. If NAME cannot be found, return 0. */
2898
2899 static int
2900 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2901 offset_type **vec_out)
2902 {
2903 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2904 offset_type hash;
2905 offset_type slot, step;
2906 int (*cmp) (const char *, const char *);
2907
2908 if (current_language->la_language == language_cplus
2909 || current_language->la_language == language_java
2910 || current_language->la_language == language_fortran)
2911 {
2912 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2913 not contain any. */
2914 const char *paren = strchr (name, '(');
2915
2916 if (paren)
2917 {
2918 char *dup;
2919
2920 dup = xmalloc (paren - name + 1);
2921 memcpy (dup, name, paren - name);
2922 dup[paren - name] = 0;
2923
2924 make_cleanup (xfree, dup);
2925 name = dup;
2926 }
2927 }
2928
2929 /* Index version 4 did not support case insensitive searches. But the
2930 indices for case insensitive languages are built in lowercase, therefore
2931 simulate our NAME being searched is also lowercased. */
2932 hash = mapped_index_string_hash ((index->version == 4
2933 && case_sensitivity == case_sensitive_off
2934 ? 5 : index->version),
2935 name);
2936
2937 slot = hash & (index->symbol_table_slots - 1);
2938 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2939 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2940
2941 for (;;)
2942 {
2943 /* Convert a slot number to an offset into the table. */
2944 offset_type i = 2 * slot;
2945 const char *str;
2946 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2947 {
2948 do_cleanups (back_to);
2949 return 0;
2950 }
2951
2952 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2953 if (!cmp (name, str))
2954 {
2955 *vec_out = (offset_type *) (index->constant_pool
2956 + MAYBE_SWAP (index->symbol_table[i + 1]));
2957 do_cleanups (back_to);
2958 return 1;
2959 }
2960
2961 slot = (slot + step) & (index->symbol_table_slots - 1);
2962 }
2963 }
2964
2965 /* A helper function that reads the .gdb_index from SECTION and fills
2966 in MAP. FILENAME is the name of the file containing the section;
2967 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2968 ok to use deprecated sections.
2969
2970 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2971 out parameters that are filled in with information about the CU and
2972 TU lists in the section.
2973
2974 Returns 1 if all went well, 0 otherwise. */
2975
2976 static int
2977 read_index_from_section (struct objfile *objfile,
2978 const char *filename,
2979 int deprecated_ok,
2980 struct dwarf2_section_info *section,
2981 struct mapped_index *map,
2982 const gdb_byte **cu_list,
2983 offset_type *cu_list_elements,
2984 const gdb_byte **types_list,
2985 offset_type *types_list_elements)
2986 {
2987 const gdb_byte *addr;
2988 offset_type version;
2989 offset_type *metadata;
2990 int i;
2991
2992 if (dwarf2_section_empty_p (section))
2993 return 0;
2994
2995 /* Older elfutils strip versions could keep the section in the main
2996 executable while splitting it for the separate debug info file. */
2997 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
2998 return 0;
2999
3000 dwarf2_read_section (objfile, section);
3001
3002 addr = section->buffer;
3003 /* Version check. */
3004 version = MAYBE_SWAP (*(offset_type *) addr);
3005 /* Versions earlier than 3 emitted every copy of a psymbol. This
3006 causes the index to behave very poorly for certain requests. Version 3
3007 contained incomplete addrmap. So, it seems better to just ignore such
3008 indices. */
3009 if (version < 4)
3010 {
3011 static int warning_printed = 0;
3012 if (!warning_printed)
3013 {
3014 warning (_("Skipping obsolete .gdb_index section in %s."),
3015 filename);
3016 warning_printed = 1;
3017 }
3018 return 0;
3019 }
3020 /* Index version 4 uses a different hash function than index version
3021 5 and later.
3022
3023 Versions earlier than 6 did not emit psymbols for inlined
3024 functions. Using these files will cause GDB not to be able to
3025 set breakpoints on inlined functions by name, so we ignore these
3026 indices unless the user has done
3027 "set use-deprecated-index-sections on". */
3028 if (version < 6 && !deprecated_ok)
3029 {
3030 static int warning_printed = 0;
3031 if (!warning_printed)
3032 {
3033 warning (_("\
3034 Skipping deprecated .gdb_index section in %s.\n\
3035 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3036 to use the section anyway."),
3037 filename);
3038 warning_printed = 1;
3039 }
3040 return 0;
3041 }
3042 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3043 of the TU (for symbols coming from TUs),
3044 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3045 Plus gold-generated indices can have duplicate entries for global symbols,
3046 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3047 These are just performance bugs, and we can't distinguish gdb-generated
3048 indices from gold-generated ones, so issue no warning here. */
3049
3050 /* Indexes with higher version than the one supported by GDB may be no
3051 longer backward compatible. */
3052 if (version > 8)
3053 return 0;
3054
3055 map->version = version;
3056 map->total_size = section->size;
3057
3058 metadata = (offset_type *) (addr + sizeof (offset_type));
3059
3060 i = 0;
3061 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3062 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3063 / 8);
3064 ++i;
3065
3066 *types_list = addr + MAYBE_SWAP (metadata[i]);
3067 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3068 - MAYBE_SWAP (metadata[i]))
3069 / 8);
3070 ++i;
3071
3072 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3073 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3074 - MAYBE_SWAP (metadata[i]));
3075 ++i;
3076
3077 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3078 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3079 - MAYBE_SWAP (metadata[i]))
3080 / (2 * sizeof (offset_type)));
3081 ++i;
3082
3083 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3084
3085 return 1;
3086 }
3087
3088
3089 /* Read the index file. If everything went ok, initialize the "quick"
3090 elements of all the CUs and return 1. Otherwise, return 0. */
3091
3092 static int
3093 dwarf2_read_index (struct objfile *objfile)
3094 {
3095 struct mapped_index local_map, *map;
3096 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3097 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3098 struct dwz_file *dwz;
3099
3100 if (!read_index_from_section (objfile, objfile_name (objfile),
3101 use_deprecated_index_sections,
3102 &dwarf2_per_objfile->gdb_index, &local_map,
3103 &cu_list, &cu_list_elements,
3104 &types_list, &types_list_elements))
3105 return 0;
3106
3107 /* Don't use the index if it's empty. */
3108 if (local_map.symbol_table_slots == 0)
3109 return 0;
3110
3111 /* If there is a .dwz file, read it so we can get its CU list as
3112 well. */
3113 dwz = dwarf2_get_dwz_file ();
3114 if (dwz != NULL)
3115 {
3116 struct mapped_index dwz_map;
3117 const gdb_byte *dwz_types_ignore;
3118 offset_type dwz_types_elements_ignore;
3119
3120 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3121 1,
3122 &dwz->gdb_index, &dwz_map,
3123 &dwz_list, &dwz_list_elements,
3124 &dwz_types_ignore,
3125 &dwz_types_elements_ignore))
3126 {
3127 warning (_("could not read '.gdb_index' section from %s; skipping"),
3128 bfd_get_filename (dwz->dwz_bfd));
3129 return 0;
3130 }
3131 }
3132
3133 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3134 dwz_list_elements);
3135
3136 if (types_list_elements)
3137 {
3138 struct dwarf2_section_info *section;
3139
3140 /* We can only handle a single .debug_types when we have an
3141 index. */
3142 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3143 return 0;
3144
3145 section = VEC_index (dwarf2_section_info_def,
3146 dwarf2_per_objfile->types, 0);
3147
3148 create_signatured_type_table_from_index (objfile, section, types_list,
3149 types_list_elements);
3150 }
3151
3152 create_addrmap_from_index (objfile, &local_map);
3153
3154 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3155 *map = local_map;
3156
3157 dwarf2_per_objfile->index_table = map;
3158 dwarf2_per_objfile->using_index = 1;
3159 dwarf2_per_objfile->quick_file_names_table =
3160 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3161
3162 return 1;
3163 }
3164
3165 /* A helper for the "quick" functions which sets the global
3166 dwarf2_per_objfile according to OBJFILE. */
3167
3168 static void
3169 dw2_setup (struct objfile *objfile)
3170 {
3171 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3172 gdb_assert (dwarf2_per_objfile);
3173 }
3174
3175 /* die_reader_func for dw2_get_file_names. */
3176
3177 static void
3178 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3179 const gdb_byte *info_ptr,
3180 struct die_info *comp_unit_die,
3181 int has_children,
3182 void *data)
3183 {
3184 struct dwarf2_cu *cu = reader->cu;
3185 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3186 struct objfile *objfile = dwarf2_per_objfile->objfile;
3187 struct dwarf2_per_cu_data *lh_cu;
3188 struct line_header *lh;
3189 struct attribute *attr;
3190 int i;
3191 const char *name, *comp_dir;
3192 void **slot;
3193 struct quick_file_names *qfn;
3194 unsigned int line_offset;
3195
3196 gdb_assert (! this_cu->is_debug_types);
3197
3198 /* Our callers never want to match partial units -- instead they
3199 will match the enclosing full CU. */
3200 if (comp_unit_die->tag == DW_TAG_partial_unit)
3201 {
3202 this_cu->v.quick->no_file_data = 1;
3203 return;
3204 }
3205
3206 lh_cu = this_cu;
3207 lh = NULL;
3208 slot = NULL;
3209 line_offset = 0;
3210
3211 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3212 if (attr)
3213 {
3214 struct quick_file_names find_entry;
3215
3216 line_offset = DW_UNSND (attr);
3217
3218 /* We may have already read in this line header (TU line header sharing).
3219 If we have we're done. */
3220 find_entry.hash.dwo_unit = cu->dwo_unit;
3221 find_entry.hash.line_offset.sect_off = line_offset;
3222 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3223 &find_entry, INSERT);
3224 if (*slot != NULL)
3225 {
3226 lh_cu->v.quick->file_names = *slot;
3227 return;
3228 }
3229
3230 lh = dwarf_decode_line_header (line_offset, cu);
3231 }
3232 if (lh == NULL)
3233 {
3234 lh_cu->v.quick->no_file_data = 1;
3235 return;
3236 }
3237
3238 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3239 qfn->hash.dwo_unit = cu->dwo_unit;
3240 qfn->hash.line_offset.sect_off = line_offset;
3241 gdb_assert (slot != NULL);
3242 *slot = qfn;
3243
3244 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3245
3246 qfn->num_file_names = lh->num_file_names;
3247 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3248 lh->num_file_names * sizeof (char *));
3249 for (i = 0; i < lh->num_file_names; ++i)
3250 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3251 qfn->real_names = NULL;
3252
3253 free_line_header (lh);
3254
3255 lh_cu->v.quick->file_names = qfn;
3256 }
3257
3258 /* A helper for the "quick" functions which attempts to read the line
3259 table for THIS_CU. */
3260
3261 static struct quick_file_names *
3262 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3263 {
3264 /* This should never be called for TUs. */
3265 gdb_assert (! this_cu->is_debug_types);
3266 /* Nor type unit groups. */
3267 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3268
3269 if (this_cu->v.quick->file_names != NULL)
3270 return this_cu->v.quick->file_names;
3271 /* If we know there is no line data, no point in looking again. */
3272 if (this_cu->v.quick->no_file_data)
3273 return NULL;
3274
3275 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3276
3277 if (this_cu->v.quick->no_file_data)
3278 return NULL;
3279 return this_cu->v.quick->file_names;
3280 }
3281
3282 /* A helper for the "quick" functions which computes and caches the
3283 real path for a given file name from the line table. */
3284
3285 static const char *
3286 dw2_get_real_path (struct objfile *objfile,
3287 struct quick_file_names *qfn, int index)
3288 {
3289 if (qfn->real_names == NULL)
3290 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3291 qfn->num_file_names, char *);
3292
3293 if (qfn->real_names[index] == NULL)
3294 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3295
3296 return qfn->real_names[index];
3297 }
3298
3299 static struct symtab *
3300 dw2_find_last_source_symtab (struct objfile *objfile)
3301 {
3302 int index;
3303
3304 dw2_setup (objfile);
3305 index = dwarf2_per_objfile->n_comp_units - 1;
3306 return dw2_instantiate_symtab (dw2_get_cu (index));
3307 }
3308
3309 /* Traversal function for dw2_forget_cached_source_info. */
3310
3311 static int
3312 dw2_free_cached_file_names (void **slot, void *info)
3313 {
3314 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3315
3316 if (file_data->real_names)
3317 {
3318 int i;
3319
3320 for (i = 0; i < file_data->num_file_names; ++i)
3321 {
3322 xfree ((void*) file_data->real_names[i]);
3323 file_data->real_names[i] = NULL;
3324 }
3325 }
3326
3327 return 1;
3328 }
3329
3330 static void
3331 dw2_forget_cached_source_info (struct objfile *objfile)
3332 {
3333 dw2_setup (objfile);
3334
3335 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3336 dw2_free_cached_file_names, NULL);
3337 }
3338
3339 /* Helper function for dw2_map_symtabs_matching_filename that expands
3340 the symtabs and calls the iterator. */
3341
3342 static int
3343 dw2_map_expand_apply (struct objfile *objfile,
3344 struct dwarf2_per_cu_data *per_cu,
3345 const char *name, const char *real_path,
3346 int (*callback) (struct symtab *, void *),
3347 void *data)
3348 {
3349 struct symtab *last_made = objfile->symtabs;
3350
3351 /* Don't visit already-expanded CUs. */
3352 if (per_cu->v.quick->symtab)
3353 return 0;
3354
3355 /* This may expand more than one symtab, and we want to iterate over
3356 all of them. */
3357 dw2_instantiate_symtab (per_cu);
3358
3359 return iterate_over_some_symtabs (name, real_path, callback, data,
3360 objfile->symtabs, last_made);
3361 }
3362
3363 /* Implementation of the map_symtabs_matching_filename method. */
3364
3365 static int
3366 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3367 const char *real_path,
3368 int (*callback) (struct symtab *, void *),
3369 void *data)
3370 {
3371 int i;
3372 const char *name_basename = lbasename (name);
3373
3374 dw2_setup (objfile);
3375
3376 /* The rule is CUs specify all the files, including those used by
3377 any TU, so there's no need to scan TUs here. */
3378
3379 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3380 {
3381 int j;
3382 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3383 struct quick_file_names *file_data;
3384
3385 /* We only need to look at symtabs not already expanded. */
3386 if (per_cu->v.quick->symtab)
3387 continue;
3388
3389 file_data = dw2_get_file_names (per_cu);
3390 if (file_data == NULL)
3391 continue;
3392
3393 for (j = 0; j < file_data->num_file_names; ++j)
3394 {
3395 const char *this_name = file_data->file_names[j];
3396 const char *this_real_name;
3397
3398 if (compare_filenames_for_search (this_name, name))
3399 {
3400 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3401 callback, data))
3402 return 1;
3403 continue;
3404 }
3405
3406 /* Before we invoke realpath, which can get expensive when many
3407 files are involved, do a quick comparison of the basenames. */
3408 if (! basenames_may_differ
3409 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3410 continue;
3411
3412 this_real_name = dw2_get_real_path (objfile, file_data, j);
3413 if (compare_filenames_for_search (this_real_name, name))
3414 {
3415 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3416 callback, data))
3417 return 1;
3418 continue;
3419 }
3420
3421 if (real_path != NULL)
3422 {
3423 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3424 gdb_assert (IS_ABSOLUTE_PATH (name));
3425 if (this_real_name != NULL
3426 && FILENAME_CMP (real_path, this_real_name) == 0)
3427 {
3428 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3429 callback, data))
3430 return 1;
3431 continue;
3432 }
3433 }
3434 }
3435 }
3436
3437 return 0;
3438 }
3439
3440 /* Struct used to manage iterating over all CUs looking for a symbol. */
3441
3442 struct dw2_symtab_iterator
3443 {
3444 /* The internalized form of .gdb_index. */
3445 struct mapped_index *index;
3446 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3447 int want_specific_block;
3448 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3449 Unused if !WANT_SPECIFIC_BLOCK. */
3450 int block_index;
3451 /* The kind of symbol we're looking for. */
3452 domain_enum domain;
3453 /* The list of CUs from the index entry of the symbol,
3454 or NULL if not found. */
3455 offset_type *vec;
3456 /* The next element in VEC to look at. */
3457 int next;
3458 /* The number of elements in VEC, or zero if there is no match. */
3459 int length;
3460 /* Have we seen a global version of the symbol?
3461 If so we can ignore all further global instances.
3462 This is to work around gold/15646, inefficient gold-generated
3463 indices. */
3464 int global_seen;
3465 };
3466
3467 /* Initialize the index symtab iterator ITER.
3468 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3469 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3470
3471 static void
3472 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3473 struct mapped_index *index,
3474 int want_specific_block,
3475 int block_index,
3476 domain_enum domain,
3477 const char *name)
3478 {
3479 iter->index = index;
3480 iter->want_specific_block = want_specific_block;
3481 iter->block_index = block_index;
3482 iter->domain = domain;
3483 iter->next = 0;
3484 iter->global_seen = 0;
3485
3486 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3487 iter->length = MAYBE_SWAP (*iter->vec);
3488 else
3489 {
3490 iter->vec = NULL;
3491 iter->length = 0;
3492 }
3493 }
3494
3495 /* Return the next matching CU or NULL if there are no more. */
3496
3497 static struct dwarf2_per_cu_data *
3498 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3499 {
3500 for ( ; iter->next < iter->length; ++iter->next)
3501 {
3502 offset_type cu_index_and_attrs =
3503 MAYBE_SWAP (iter->vec[iter->next + 1]);
3504 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3505 struct dwarf2_per_cu_data *per_cu;
3506 int want_static = iter->block_index != GLOBAL_BLOCK;
3507 /* This value is only valid for index versions >= 7. */
3508 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3509 gdb_index_symbol_kind symbol_kind =
3510 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3511 /* Only check the symbol attributes if they're present.
3512 Indices prior to version 7 don't record them,
3513 and indices >= 7 may elide them for certain symbols
3514 (gold does this). */
3515 int attrs_valid =
3516 (iter->index->version >= 7
3517 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3518
3519 /* Don't crash on bad data. */
3520 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3521 + dwarf2_per_objfile->n_type_units))
3522 {
3523 complaint (&symfile_complaints,
3524 _(".gdb_index entry has bad CU index"
3525 " [in module %s]"),
3526 objfile_name (dwarf2_per_objfile->objfile));
3527 continue;
3528 }
3529
3530 per_cu = dw2_get_cu (cu_index);
3531
3532 /* Skip if already read in. */
3533 if (per_cu->v.quick->symtab)
3534 continue;
3535
3536 /* Check static vs global. */
3537 if (attrs_valid)
3538 {
3539 if (iter->want_specific_block
3540 && want_static != is_static)
3541 continue;
3542 /* Work around gold/15646. */
3543 if (!is_static && iter->global_seen)
3544 continue;
3545 if (!is_static)
3546 iter->global_seen = 1;
3547 }
3548
3549 /* Only check the symbol's kind if it has one. */
3550 if (attrs_valid)
3551 {
3552 switch (iter->domain)
3553 {
3554 case VAR_DOMAIN:
3555 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3556 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3557 /* Some types are also in VAR_DOMAIN. */
3558 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3559 continue;
3560 break;
3561 case STRUCT_DOMAIN:
3562 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3563 continue;
3564 break;
3565 case LABEL_DOMAIN:
3566 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3567 continue;
3568 break;
3569 default:
3570 break;
3571 }
3572 }
3573
3574 ++iter->next;
3575 return per_cu;
3576 }
3577
3578 return NULL;
3579 }
3580
3581 static struct symtab *
3582 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3583 const char *name, domain_enum domain)
3584 {
3585 struct symtab *stab_best = NULL;
3586 struct mapped_index *index;
3587
3588 dw2_setup (objfile);
3589
3590 index = dwarf2_per_objfile->index_table;
3591
3592 /* index is NULL if OBJF_READNOW. */
3593 if (index)
3594 {
3595 struct dw2_symtab_iterator iter;
3596 struct dwarf2_per_cu_data *per_cu;
3597
3598 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3599
3600 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3601 {
3602 struct symbol *sym = NULL;
3603 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3604
3605 /* Some caution must be observed with overloaded functions
3606 and methods, since the index will not contain any overload
3607 information (but NAME might contain it). */
3608 if (stab->primary)
3609 {
3610 struct blockvector *bv = BLOCKVECTOR (stab);
3611 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3612
3613 sym = lookup_block_symbol (block, name, domain);
3614 }
3615
3616 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3617 {
3618 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3619 return stab;
3620
3621 stab_best = stab;
3622 }
3623
3624 /* Keep looking through other CUs. */
3625 }
3626 }
3627
3628 return stab_best;
3629 }
3630
3631 static void
3632 dw2_print_stats (struct objfile *objfile)
3633 {
3634 int i, total, count;
3635
3636 dw2_setup (objfile);
3637 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3638 count = 0;
3639 for (i = 0; i < total; ++i)
3640 {
3641 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3642
3643 if (!per_cu->v.quick->symtab)
3644 ++count;
3645 }
3646 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3647 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3648 }
3649
3650 /* This dumps minimal information about the index.
3651 It is called via "mt print objfiles".
3652 One use is to verify .gdb_index has been loaded by the
3653 gdb.dwarf2/gdb-index.exp testcase. */
3654
3655 static void
3656 dw2_dump (struct objfile *objfile)
3657 {
3658 dw2_setup (objfile);
3659 gdb_assert (dwarf2_per_objfile->using_index);
3660 printf_filtered (".gdb_index:");
3661 if (dwarf2_per_objfile->index_table != NULL)
3662 {
3663 printf_filtered (" version %d\n",
3664 dwarf2_per_objfile->index_table->version);
3665 }
3666 else
3667 printf_filtered (" faked for \"readnow\"\n");
3668 printf_filtered ("\n");
3669 }
3670
3671 static void
3672 dw2_relocate (struct objfile *objfile,
3673 const struct section_offsets *new_offsets,
3674 const struct section_offsets *delta)
3675 {
3676 /* There's nothing to relocate here. */
3677 }
3678
3679 static void
3680 dw2_expand_symtabs_for_function (struct objfile *objfile,
3681 const char *func_name)
3682 {
3683 struct mapped_index *index;
3684
3685 dw2_setup (objfile);
3686
3687 index = dwarf2_per_objfile->index_table;
3688
3689 /* index is NULL if OBJF_READNOW. */
3690 if (index)
3691 {
3692 struct dw2_symtab_iterator iter;
3693 struct dwarf2_per_cu_data *per_cu;
3694
3695 /* Note: It doesn't matter what we pass for block_index here. */
3696 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3697 func_name);
3698
3699 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3700 dw2_instantiate_symtab (per_cu);
3701 }
3702 }
3703
3704 static void
3705 dw2_expand_all_symtabs (struct objfile *objfile)
3706 {
3707 int i;
3708
3709 dw2_setup (objfile);
3710
3711 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3712 + dwarf2_per_objfile->n_type_units); ++i)
3713 {
3714 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3715
3716 dw2_instantiate_symtab (per_cu);
3717 }
3718 }
3719
3720 static void
3721 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3722 const char *fullname)
3723 {
3724 int i;
3725
3726 dw2_setup (objfile);
3727
3728 /* We don't need to consider type units here.
3729 This is only called for examining code, e.g. expand_line_sal.
3730 There can be an order of magnitude (or more) more type units
3731 than comp units, and we avoid them if we can. */
3732
3733 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3734 {
3735 int j;
3736 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3737 struct quick_file_names *file_data;
3738
3739 /* We only need to look at symtabs not already expanded. */
3740 if (per_cu->v.quick->symtab)
3741 continue;
3742
3743 file_data = dw2_get_file_names (per_cu);
3744 if (file_data == NULL)
3745 continue;
3746
3747 for (j = 0; j < file_data->num_file_names; ++j)
3748 {
3749 const char *this_fullname = file_data->file_names[j];
3750
3751 if (filename_cmp (this_fullname, fullname) == 0)
3752 {
3753 dw2_instantiate_symtab (per_cu);
3754 break;
3755 }
3756 }
3757 }
3758 }
3759
3760 static void
3761 dw2_map_matching_symbols (struct objfile *objfile,
3762 const char * name, domain_enum namespace,
3763 int global,
3764 int (*callback) (struct block *,
3765 struct symbol *, void *),
3766 void *data, symbol_compare_ftype *match,
3767 symbol_compare_ftype *ordered_compare)
3768 {
3769 /* Currently unimplemented; used for Ada. The function can be called if the
3770 current language is Ada for a non-Ada objfile using GNU index. As Ada
3771 does not look for non-Ada symbols this function should just return. */
3772 }
3773
3774 static void
3775 dw2_expand_symtabs_matching
3776 (struct objfile *objfile,
3777 expand_symtabs_file_matcher_ftype *file_matcher,
3778 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3779 enum search_domain kind,
3780 void *data)
3781 {
3782 int i;
3783 offset_type iter;
3784 struct mapped_index *index;
3785
3786 dw2_setup (objfile);
3787
3788 /* index_table is NULL if OBJF_READNOW. */
3789 if (!dwarf2_per_objfile->index_table)
3790 return;
3791 index = dwarf2_per_objfile->index_table;
3792
3793 if (file_matcher != NULL)
3794 {
3795 struct cleanup *cleanup;
3796 htab_t visited_found, visited_not_found;
3797
3798 visited_found = htab_create_alloc (10,
3799 htab_hash_pointer, htab_eq_pointer,
3800 NULL, xcalloc, xfree);
3801 cleanup = make_cleanup_htab_delete (visited_found);
3802 visited_not_found = htab_create_alloc (10,
3803 htab_hash_pointer, htab_eq_pointer,
3804 NULL, xcalloc, xfree);
3805 make_cleanup_htab_delete (visited_not_found);
3806
3807 /* The rule is CUs specify all the files, including those used by
3808 any TU, so there's no need to scan TUs here. */
3809
3810 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3811 {
3812 int j;
3813 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3814 struct quick_file_names *file_data;
3815 void **slot;
3816
3817 per_cu->v.quick->mark = 0;
3818
3819 /* We only need to look at symtabs not already expanded. */
3820 if (per_cu->v.quick->symtab)
3821 continue;
3822
3823 file_data = dw2_get_file_names (per_cu);
3824 if (file_data == NULL)
3825 continue;
3826
3827 if (htab_find (visited_not_found, file_data) != NULL)
3828 continue;
3829 else if (htab_find (visited_found, file_data) != NULL)
3830 {
3831 per_cu->v.quick->mark = 1;
3832 continue;
3833 }
3834
3835 for (j = 0; j < file_data->num_file_names; ++j)
3836 {
3837 const char *this_real_name;
3838
3839 if (file_matcher (file_data->file_names[j], data, 0))
3840 {
3841 per_cu->v.quick->mark = 1;
3842 break;
3843 }
3844
3845 /* Before we invoke realpath, which can get expensive when many
3846 files are involved, do a quick comparison of the basenames. */
3847 if (!basenames_may_differ
3848 && !file_matcher (lbasename (file_data->file_names[j]),
3849 data, 1))
3850 continue;
3851
3852 this_real_name = dw2_get_real_path (objfile, file_data, j);
3853 if (file_matcher (this_real_name, data, 0))
3854 {
3855 per_cu->v.quick->mark = 1;
3856 break;
3857 }
3858 }
3859
3860 slot = htab_find_slot (per_cu->v.quick->mark
3861 ? visited_found
3862 : visited_not_found,
3863 file_data, INSERT);
3864 *slot = file_data;
3865 }
3866
3867 do_cleanups (cleanup);
3868 }
3869
3870 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3871 {
3872 offset_type idx = 2 * iter;
3873 const char *name;
3874 offset_type *vec, vec_len, vec_idx;
3875 int global_seen = 0;
3876
3877 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3878 continue;
3879
3880 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3881
3882 if (! (*symbol_matcher) (name, data))
3883 continue;
3884
3885 /* The name was matched, now expand corresponding CUs that were
3886 marked. */
3887 vec = (offset_type *) (index->constant_pool
3888 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3889 vec_len = MAYBE_SWAP (vec[0]);
3890 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3891 {
3892 struct dwarf2_per_cu_data *per_cu;
3893 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3894 /* This value is only valid for index versions >= 7. */
3895 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3896 gdb_index_symbol_kind symbol_kind =
3897 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3898 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3899 /* Only check the symbol attributes if they're present.
3900 Indices prior to version 7 don't record them,
3901 and indices >= 7 may elide them for certain symbols
3902 (gold does this). */
3903 int attrs_valid =
3904 (index->version >= 7
3905 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3906
3907 /* Work around gold/15646. */
3908 if (attrs_valid)
3909 {
3910 if (!is_static && global_seen)
3911 continue;
3912 if (!is_static)
3913 global_seen = 1;
3914 }
3915
3916 /* Only check the symbol's kind if it has one. */
3917 if (attrs_valid)
3918 {
3919 switch (kind)
3920 {
3921 case VARIABLES_DOMAIN:
3922 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3923 continue;
3924 break;
3925 case FUNCTIONS_DOMAIN:
3926 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3927 continue;
3928 break;
3929 case TYPES_DOMAIN:
3930 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3931 continue;
3932 break;
3933 default:
3934 break;
3935 }
3936 }
3937
3938 /* Don't crash on bad data. */
3939 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3940 + dwarf2_per_objfile->n_type_units))
3941 {
3942 complaint (&symfile_complaints,
3943 _(".gdb_index entry has bad CU index"
3944 " [in module %s]"), objfile_name (objfile));
3945 continue;
3946 }
3947
3948 per_cu = dw2_get_cu (cu_index);
3949 if (file_matcher == NULL || per_cu->v.quick->mark)
3950 dw2_instantiate_symtab (per_cu);
3951 }
3952 }
3953 }
3954
3955 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3956 symtab. */
3957
3958 static struct symtab *
3959 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3960 {
3961 int i;
3962
3963 if (BLOCKVECTOR (symtab) != NULL
3964 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3965 return symtab;
3966
3967 if (symtab->includes == NULL)
3968 return NULL;
3969
3970 for (i = 0; symtab->includes[i]; ++i)
3971 {
3972 struct symtab *s = symtab->includes[i];
3973
3974 s = recursively_find_pc_sect_symtab (s, pc);
3975 if (s != NULL)
3976 return s;
3977 }
3978
3979 return NULL;
3980 }
3981
3982 static struct symtab *
3983 dw2_find_pc_sect_symtab (struct objfile *objfile,
3984 struct minimal_symbol *msymbol,
3985 CORE_ADDR pc,
3986 struct obj_section *section,
3987 int warn_if_readin)
3988 {
3989 struct dwarf2_per_cu_data *data;
3990 struct symtab *result;
3991
3992 dw2_setup (objfile);
3993
3994 if (!objfile->psymtabs_addrmap)
3995 return NULL;
3996
3997 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3998 if (!data)
3999 return NULL;
4000
4001 if (warn_if_readin && data->v.quick->symtab)
4002 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4003 paddress (get_objfile_arch (objfile), pc));
4004
4005 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4006 gdb_assert (result != NULL);
4007 return result;
4008 }
4009
4010 static void
4011 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4012 void *data, int need_fullname)
4013 {
4014 int i;
4015 struct cleanup *cleanup;
4016 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4017 NULL, xcalloc, xfree);
4018
4019 cleanup = make_cleanup_htab_delete (visited);
4020 dw2_setup (objfile);
4021
4022 /* The rule is CUs specify all the files, including those used by
4023 any TU, so there's no need to scan TUs here.
4024 We can ignore file names coming from already-expanded CUs. */
4025
4026 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4027 {
4028 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4029
4030 if (per_cu->v.quick->symtab)
4031 {
4032 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4033 INSERT);
4034
4035 *slot = per_cu->v.quick->file_names;
4036 }
4037 }
4038
4039 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4040 {
4041 int j;
4042 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
4043 struct quick_file_names *file_data;
4044 void **slot;
4045
4046 /* We only need to look at symtabs not already expanded. */
4047 if (per_cu->v.quick->symtab)
4048 continue;
4049
4050 file_data = dw2_get_file_names (per_cu);
4051 if (file_data == NULL)
4052 continue;
4053
4054 slot = htab_find_slot (visited, file_data, INSERT);
4055 if (*slot)
4056 {
4057 /* Already visited. */
4058 continue;
4059 }
4060 *slot = file_data;
4061
4062 for (j = 0; j < file_data->num_file_names; ++j)
4063 {
4064 const char *this_real_name;
4065
4066 if (need_fullname)
4067 this_real_name = dw2_get_real_path (objfile, file_data, j);
4068 else
4069 this_real_name = NULL;
4070 (*fun) (file_data->file_names[j], this_real_name, data);
4071 }
4072 }
4073
4074 do_cleanups (cleanup);
4075 }
4076
4077 static int
4078 dw2_has_symbols (struct objfile *objfile)
4079 {
4080 return 1;
4081 }
4082
4083 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4084 {
4085 dw2_has_symbols,
4086 dw2_find_last_source_symtab,
4087 dw2_forget_cached_source_info,
4088 dw2_map_symtabs_matching_filename,
4089 dw2_lookup_symbol,
4090 dw2_print_stats,
4091 dw2_dump,
4092 dw2_relocate,
4093 dw2_expand_symtabs_for_function,
4094 dw2_expand_all_symtabs,
4095 dw2_expand_symtabs_with_fullname,
4096 dw2_map_matching_symbols,
4097 dw2_expand_symtabs_matching,
4098 dw2_find_pc_sect_symtab,
4099 dw2_map_symbol_filenames
4100 };
4101
4102 /* Initialize for reading DWARF for this objfile. Return 0 if this
4103 file will use psymtabs, or 1 if using the GNU index. */
4104
4105 int
4106 dwarf2_initialize_objfile (struct objfile *objfile)
4107 {
4108 /* If we're about to read full symbols, don't bother with the
4109 indices. In this case we also don't care if some other debug
4110 format is making psymtabs, because they are all about to be
4111 expanded anyway. */
4112 if ((objfile->flags & OBJF_READNOW))
4113 {
4114 int i;
4115
4116 dwarf2_per_objfile->using_index = 1;
4117 create_all_comp_units (objfile);
4118 create_all_type_units (objfile);
4119 dwarf2_per_objfile->quick_file_names_table =
4120 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4121
4122 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4123 + dwarf2_per_objfile->n_type_units); ++i)
4124 {
4125 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4126
4127 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4128 struct dwarf2_per_cu_quick_data);
4129 }
4130
4131 /* Return 1 so that gdb sees the "quick" functions. However,
4132 these functions will be no-ops because we will have expanded
4133 all symtabs. */
4134 return 1;
4135 }
4136
4137 if (dwarf2_read_index (objfile))
4138 return 1;
4139
4140 return 0;
4141 }
4142
4143 \f
4144
4145 /* Build a partial symbol table. */
4146
4147 void
4148 dwarf2_build_psymtabs (struct objfile *objfile)
4149 {
4150 volatile struct gdb_exception except;
4151
4152 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4153 {
4154 init_psymbol_list (objfile, 1024);
4155 }
4156
4157 TRY_CATCH (except, RETURN_MASK_ERROR)
4158 {
4159 /* This isn't really ideal: all the data we allocate on the
4160 objfile's obstack is still uselessly kept around. However,
4161 freeing it seems unsafe. */
4162 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4163
4164 dwarf2_build_psymtabs_hard (objfile);
4165 discard_cleanups (cleanups);
4166 }
4167 if (except.reason < 0)
4168 exception_print (gdb_stderr, except);
4169 }
4170
4171 /* Return the total length of the CU described by HEADER. */
4172
4173 static unsigned int
4174 get_cu_length (const struct comp_unit_head *header)
4175 {
4176 return header->initial_length_size + header->length;
4177 }
4178
4179 /* Return TRUE if OFFSET is within CU_HEADER. */
4180
4181 static inline int
4182 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4183 {
4184 sect_offset bottom = { cu_header->offset.sect_off };
4185 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4186
4187 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4188 }
4189
4190 /* Find the base address of the compilation unit for range lists and
4191 location lists. It will normally be specified by DW_AT_low_pc.
4192 In DWARF-3 draft 4, the base address could be overridden by
4193 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4194 compilation units with discontinuous ranges. */
4195
4196 static void
4197 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4198 {
4199 struct attribute *attr;
4200
4201 cu->base_known = 0;
4202 cu->base_address = 0;
4203
4204 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4205 if (attr)
4206 {
4207 cu->base_address = DW_ADDR (attr);
4208 cu->base_known = 1;
4209 }
4210 else
4211 {
4212 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4213 if (attr)
4214 {
4215 cu->base_address = DW_ADDR (attr);
4216 cu->base_known = 1;
4217 }
4218 }
4219 }
4220
4221 /* Read in the comp unit header information from the debug_info at info_ptr.
4222 NOTE: This leaves members offset, first_die_offset to be filled in
4223 by the caller. */
4224
4225 static const gdb_byte *
4226 read_comp_unit_head (struct comp_unit_head *cu_header,
4227 const gdb_byte *info_ptr, bfd *abfd)
4228 {
4229 int signed_addr;
4230 unsigned int bytes_read;
4231
4232 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4233 cu_header->initial_length_size = bytes_read;
4234 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4235 info_ptr += bytes_read;
4236 cu_header->version = read_2_bytes (abfd, info_ptr);
4237 info_ptr += 2;
4238 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4239 &bytes_read);
4240 info_ptr += bytes_read;
4241 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4242 info_ptr += 1;
4243 signed_addr = bfd_get_sign_extend_vma (abfd);
4244 if (signed_addr < 0)
4245 internal_error (__FILE__, __LINE__,
4246 _("read_comp_unit_head: dwarf from non elf file"));
4247 cu_header->signed_addr_p = signed_addr;
4248
4249 return info_ptr;
4250 }
4251
4252 /* Helper function that returns the proper abbrev section for
4253 THIS_CU. */
4254
4255 static struct dwarf2_section_info *
4256 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4257 {
4258 struct dwarf2_section_info *abbrev;
4259
4260 if (this_cu->is_dwz)
4261 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4262 else
4263 abbrev = &dwarf2_per_objfile->abbrev;
4264
4265 return abbrev;
4266 }
4267
4268 /* Subroutine of read_and_check_comp_unit_head and
4269 read_and_check_type_unit_head to simplify them.
4270 Perform various error checking on the header. */
4271
4272 static void
4273 error_check_comp_unit_head (struct comp_unit_head *header,
4274 struct dwarf2_section_info *section,
4275 struct dwarf2_section_info *abbrev_section)
4276 {
4277 bfd *abfd = get_section_bfd_owner (section);
4278 const char *filename = get_section_file_name (section);
4279
4280 if (header->version != 2 && header->version != 3 && header->version != 4)
4281 error (_("Dwarf Error: wrong version in compilation unit header "
4282 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4283 filename);
4284
4285 if (header->abbrev_offset.sect_off
4286 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4287 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4288 "(offset 0x%lx + 6) [in module %s]"),
4289 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4290 filename);
4291
4292 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4293 avoid potential 32-bit overflow. */
4294 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4295 > section->size)
4296 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4297 "(offset 0x%lx + 0) [in module %s]"),
4298 (long) header->length, (long) header->offset.sect_off,
4299 filename);
4300 }
4301
4302 /* Read in a CU/TU header and perform some basic error checking.
4303 The contents of the header are stored in HEADER.
4304 The result is a pointer to the start of the first DIE. */
4305
4306 static const gdb_byte *
4307 read_and_check_comp_unit_head (struct comp_unit_head *header,
4308 struct dwarf2_section_info *section,
4309 struct dwarf2_section_info *abbrev_section,
4310 const gdb_byte *info_ptr,
4311 int is_debug_types_section)
4312 {
4313 const gdb_byte *beg_of_comp_unit = info_ptr;
4314 bfd *abfd = get_section_bfd_owner (section);
4315
4316 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4317
4318 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4319
4320 /* If we're reading a type unit, skip over the signature and
4321 type_offset fields. */
4322 if (is_debug_types_section)
4323 info_ptr += 8 /*signature*/ + header->offset_size;
4324
4325 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4326
4327 error_check_comp_unit_head (header, section, abbrev_section);
4328
4329 return info_ptr;
4330 }
4331
4332 /* Read in the types comp unit header information from .debug_types entry at
4333 types_ptr. The result is a pointer to one past the end of the header. */
4334
4335 static const gdb_byte *
4336 read_and_check_type_unit_head (struct comp_unit_head *header,
4337 struct dwarf2_section_info *section,
4338 struct dwarf2_section_info *abbrev_section,
4339 const gdb_byte *info_ptr,
4340 ULONGEST *signature,
4341 cu_offset *type_offset_in_tu)
4342 {
4343 const gdb_byte *beg_of_comp_unit = info_ptr;
4344 bfd *abfd = get_section_bfd_owner (section);
4345
4346 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4347
4348 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4349
4350 /* If we're reading a type unit, skip over the signature and
4351 type_offset fields. */
4352 if (signature != NULL)
4353 *signature = read_8_bytes (abfd, info_ptr);
4354 info_ptr += 8;
4355 if (type_offset_in_tu != NULL)
4356 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4357 header->offset_size);
4358 info_ptr += header->offset_size;
4359
4360 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4361
4362 error_check_comp_unit_head (header, section, abbrev_section);
4363
4364 return info_ptr;
4365 }
4366
4367 /* Fetch the abbreviation table offset from a comp or type unit header. */
4368
4369 static sect_offset
4370 read_abbrev_offset (struct dwarf2_section_info *section,
4371 sect_offset offset)
4372 {
4373 bfd *abfd = get_section_bfd_owner (section);
4374 const gdb_byte *info_ptr;
4375 unsigned int length, initial_length_size, offset_size;
4376 sect_offset abbrev_offset;
4377
4378 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4379 info_ptr = section->buffer + offset.sect_off;
4380 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4381 offset_size = initial_length_size == 4 ? 4 : 8;
4382 info_ptr += initial_length_size + 2 /*version*/;
4383 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4384 return abbrev_offset;
4385 }
4386
4387 /* Allocate a new partial symtab for file named NAME and mark this new
4388 partial symtab as being an include of PST. */
4389
4390 static void
4391 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4392 struct objfile *objfile)
4393 {
4394 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4395
4396 if (!IS_ABSOLUTE_PATH (subpst->filename))
4397 {
4398 /* It shares objfile->objfile_obstack. */
4399 subpst->dirname = pst->dirname;
4400 }
4401
4402 subpst->section_offsets = pst->section_offsets;
4403 subpst->textlow = 0;
4404 subpst->texthigh = 0;
4405
4406 subpst->dependencies = (struct partial_symtab **)
4407 obstack_alloc (&objfile->objfile_obstack,
4408 sizeof (struct partial_symtab *));
4409 subpst->dependencies[0] = pst;
4410 subpst->number_of_dependencies = 1;
4411
4412 subpst->globals_offset = 0;
4413 subpst->n_global_syms = 0;
4414 subpst->statics_offset = 0;
4415 subpst->n_static_syms = 0;
4416 subpst->symtab = NULL;
4417 subpst->read_symtab = pst->read_symtab;
4418 subpst->readin = 0;
4419
4420 /* No private part is necessary for include psymtabs. This property
4421 can be used to differentiate between such include psymtabs and
4422 the regular ones. */
4423 subpst->read_symtab_private = NULL;
4424 }
4425
4426 /* Read the Line Number Program data and extract the list of files
4427 included by the source file represented by PST. Build an include
4428 partial symtab for each of these included files. */
4429
4430 static void
4431 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4432 struct die_info *die,
4433 struct partial_symtab *pst)
4434 {
4435 struct line_header *lh = NULL;
4436 struct attribute *attr;
4437
4438 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4439 if (attr)
4440 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4441 if (lh == NULL)
4442 return; /* No linetable, so no includes. */
4443
4444 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4445 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4446
4447 free_line_header (lh);
4448 }
4449
4450 static hashval_t
4451 hash_signatured_type (const void *item)
4452 {
4453 const struct signatured_type *sig_type = item;
4454
4455 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4456 return sig_type->signature;
4457 }
4458
4459 static int
4460 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4461 {
4462 const struct signatured_type *lhs = item_lhs;
4463 const struct signatured_type *rhs = item_rhs;
4464
4465 return lhs->signature == rhs->signature;
4466 }
4467
4468 /* Allocate a hash table for signatured types. */
4469
4470 static htab_t
4471 allocate_signatured_type_table (struct objfile *objfile)
4472 {
4473 return htab_create_alloc_ex (41,
4474 hash_signatured_type,
4475 eq_signatured_type,
4476 NULL,
4477 &objfile->objfile_obstack,
4478 hashtab_obstack_allocate,
4479 dummy_obstack_deallocate);
4480 }
4481
4482 /* A helper function to add a signatured type CU to a table. */
4483
4484 static int
4485 add_signatured_type_cu_to_table (void **slot, void *datum)
4486 {
4487 struct signatured_type *sigt = *slot;
4488 struct signatured_type ***datap = datum;
4489
4490 **datap = sigt;
4491 ++*datap;
4492
4493 return 1;
4494 }
4495
4496 /* Create the hash table of all entries in the .debug_types
4497 (or .debug_types.dwo) section(s).
4498 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4499 otherwise it is NULL.
4500
4501 The result is a pointer to the hash table or NULL if there are no types.
4502
4503 Note: This function processes DWO files only, not DWP files. */
4504
4505 static htab_t
4506 create_debug_types_hash_table (struct dwo_file *dwo_file,
4507 VEC (dwarf2_section_info_def) *types)
4508 {
4509 struct objfile *objfile = dwarf2_per_objfile->objfile;
4510 htab_t types_htab = NULL;
4511 int ix;
4512 struct dwarf2_section_info *section;
4513 struct dwarf2_section_info *abbrev_section;
4514
4515 if (VEC_empty (dwarf2_section_info_def, types))
4516 return NULL;
4517
4518 abbrev_section = (dwo_file != NULL
4519 ? &dwo_file->sections.abbrev
4520 : &dwarf2_per_objfile->abbrev);
4521
4522 if (dwarf2_read_debug)
4523 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4524 dwo_file ? ".dwo" : "",
4525 get_section_file_name (abbrev_section));
4526
4527 for (ix = 0;
4528 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4529 ++ix)
4530 {
4531 bfd *abfd;
4532 const gdb_byte *info_ptr, *end_ptr;
4533
4534 dwarf2_read_section (objfile, section);
4535 info_ptr = section->buffer;
4536
4537 if (info_ptr == NULL)
4538 continue;
4539
4540 /* We can't set abfd until now because the section may be empty or
4541 not present, in which case the bfd is unknown. */
4542 abfd = get_section_bfd_owner (section);
4543
4544 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4545 because we don't need to read any dies: the signature is in the
4546 header. */
4547
4548 end_ptr = info_ptr + section->size;
4549 while (info_ptr < end_ptr)
4550 {
4551 sect_offset offset;
4552 cu_offset type_offset_in_tu;
4553 ULONGEST signature;
4554 struct signatured_type *sig_type;
4555 struct dwo_unit *dwo_tu;
4556 void **slot;
4557 const gdb_byte *ptr = info_ptr;
4558 struct comp_unit_head header;
4559 unsigned int length;
4560
4561 offset.sect_off = ptr - section->buffer;
4562
4563 /* We need to read the type's signature in order to build the hash
4564 table, but we don't need anything else just yet. */
4565
4566 ptr = read_and_check_type_unit_head (&header, section,
4567 abbrev_section, ptr,
4568 &signature, &type_offset_in_tu);
4569
4570 length = get_cu_length (&header);
4571
4572 /* Skip dummy type units. */
4573 if (ptr >= info_ptr + length
4574 || peek_abbrev_code (abfd, ptr) == 0)
4575 {
4576 info_ptr += length;
4577 continue;
4578 }
4579
4580 if (types_htab == NULL)
4581 {
4582 if (dwo_file)
4583 types_htab = allocate_dwo_unit_table (objfile);
4584 else
4585 types_htab = allocate_signatured_type_table (objfile);
4586 }
4587
4588 if (dwo_file)
4589 {
4590 sig_type = NULL;
4591 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4592 struct dwo_unit);
4593 dwo_tu->dwo_file = dwo_file;
4594 dwo_tu->signature = signature;
4595 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4596 dwo_tu->section = section;
4597 dwo_tu->offset = offset;
4598 dwo_tu->length = length;
4599 }
4600 else
4601 {
4602 /* N.B.: type_offset is not usable if this type uses a DWO file.
4603 The real type_offset is in the DWO file. */
4604 dwo_tu = NULL;
4605 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4606 struct signatured_type);
4607 sig_type->signature = signature;
4608 sig_type->type_offset_in_tu = type_offset_in_tu;
4609 sig_type->per_cu.objfile = objfile;
4610 sig_type->per_cu.is_debug_types = 1;
4611 sig_type->per_cu.section = section;
4612 sig_type->per_cu.offset = offset;
4613 sig_type->per_cu.length = length;
4614 }
4615
4616 slot = htab_find_slot (types_htab,
4617 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4618 INSERT);
4619 gdb_assert (slot != NULL);
4620 if (*slot != NULL)
4621 {
4622 sect_offset dup_offset;
4623
4624 if (dwo_file)
4625 {
4626 const struct dwo_unit *dup_tu = *slot;
4627
4628 dup_offset = dup_tu->offset;
4629 }
4630 else
4631 {
4632 const struct signatured_type *dup_tu = *slot;
4633
4634 dup_offset = dup_tu->per_cu.offset;
4635 }
4636
4637 complaint (&symfile_complaints,
4638 _("debug type entry at offset 0x%x is duplicate to"
4639 " the entry at offset 0x%x, signature %s"),
4640 offset.sect_off, dup_offset.sect_off,
4641 hex_string (signature));
4642 }
4643 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4644
4645 if (dwarf2_read_debug > 1)
4646 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4647 offset.sect_off,
4648 hex_string (signature));
4649
4650 info_ptr += length;
4651 }
4652 }
4653
4654 return types_htab;
4655 }
4656
4657 /* Create the hash table of all entries in the .debug_types section,
4658 and initialize all_type_units.
4659 The result is zero if there is an error (e.g. missing .debug_types section),
4660 otherwise non-zero. */
4661
4662 static int
4663 create_all_type_units (struct objfile *objfile)
4664 {
4665 htab_t types_htab;
4666 struct signatured_type **iter;
4667
4668 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4669 if (types_htab == NULL)
4670 {
4671 dwarf2_per_objfile->signatured_types = NULL;
4672 return 0;
4673 }
4674
4675 dwarf2_per_objfile->signatured_types = types_htab;
4676
4677 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4678 dwarf2_per_objfile->all_type_units
4679 = xmalloc (dwarf2_per_objfile->n_type_units
4680 * sizeof (struct signatured_type *));
4681 iter = &dwarf2_per_objfile->all_type_units[0];
4682 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4683 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4684 == dwarf2_per_objfile->n_type_units);
4685
4686 return 1;
4687 }
4688
4689 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4690 Fill in SIG_ENTRY with DWO_ENTRY. */
4691
4692 static void
4693 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4694 struct signatured_type *sig_entry,
4695 struct dwo_unit *dwo_entry)
4696 {
4697 /* Make sure we're not clobbering something we don't expect to. */
4698 gdb_assert (! sig_entry->per_cu.queued);
4699 gdb_assert (sig_entry->per_cu.cu == NULL);
4700 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4701 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4702 gdb_assert (sig_entry->signature == dwo_entry->signature);
4703 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4704 gdb_assert (sig_entry->type_unit_group == NULL);
4705 gdb_assert (sig_entry->dwo_unit == NULL);
4706
4707 sig_entry->per_cu.section = dwo_entry->section;
4708 sig_entry->per_cu.offset = dwo_entry->offset;
4709 sig_entry->per_cu.length = dwo_entry->length;
4710 sig_entry->per_cu.reading_dwo_directly = 1;
4711 sig_entry->per_cu.objfile = objfile;
4712 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4713 sig_entry->dwo_unit = dwo_entry;
4714 }
4715
4716 /* Subroutine of lookup_signatured_type.
4717 If we haven't read the TU yet, create the signatured_type data structure
4718 for a TU to be read in directly from a DWO file, bypassing the stub.
4719 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4720 using .gdb_index, then when reading a CU we want to stay in the DWO file
4721 containing that CU. Otherwise we could end up reading several other DWO
4722 files (due to comdat folding) to process the transitive closure of all the
4723 mentioned TUs, and that can be slow. The current DWO file will have every
4724 type signature that it needs.
4725 We only do this for .gdb_index because in the psymtab case we already have
4726 to read all the DWOs to build the type unit groups. */
4727
4728 static struct signatured_type *
4729 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4730 {
4731 struct objfile *objfile = dwarf2_per_objfile->objfile;
4732 struct dwo_file *dwo_file;
4733 struct dwo_unit find_dwo_entry, *dwo_entry;
4734 struct signatured_type find_sig_entry, *sig_entry;
4735
4736 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4737
4738 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4739 dwo_unit of the TU itself. */
4740 dwo_file = cu->dwo_unit->dwo_file;
4741
4742 /* We only ever need to read in one copy of a signatured type.
4743 Just use the global signatured_types array. If this is the first time
4744 we're reading this type, replace the recorded data from .gdb_index with
4745 this TU. */
4746
4747 if (dwarf2_per_objfile->signatured_types == NULL)
4748 return NULL;
4749 find_sig_entry.signature = sig;
4750 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4751 if (sig_entry == NULL)
4752 return NULL;
4753
4754 /* We can get here with the TU already read, *or* in the process of being
4755 read. Don't reassign it if that's the case. Also note that if the TU is
4756 already being read, it may not have come from a DWO, the program may be
4757 a mix of Fission-compiled code and non-Fission-compiled code. */
4758 /* Have we already tried to read this TU? */
4759 if (sig_entry->per_cu.tu_read)
4760 return sig_entry;
4761
4762 /* Ok, this is the first time we're reading this TU. */
4763 if (dwo_file->tus == NULL)
4764 return NULL;
4765 find_dwo_entry.signature = sig;
4766 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4767 if (dwo_entry == NULL)
4768 return NULL;
4769
4770 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4771 sig_entry->per_cu.tu_read = 1;
4772 return sig_entry;
4773 }
4774
4775 /* Subroutine of lookup_dwp_signatured_type.
4776 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4777
4778 static struct signatured_type *
4779 add_type_unit (ULONGEST sig)
4780 {
4781 struct objfile *objfile = dwarf2_per_objfile->objfile;
4782 int n_type_units = dwarf2_per_objfile->n_type_units;
4783 struct signatured_type *sig_type;
4784 void **slot;
4785
4786 ++n_type_units;
4787 dwarf2_per_objfile->all_type_units =
4788 xrealloc (dwarf2_per_objfile->all_type_units,
4789 n_type_units * sizeof (struct signatured_type *));
4790 dwarf2_per_objfile->n_type_units = n_type_units;
4791 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4792 struct signatured_type);
4793 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4794 sig_type->signature = sig;
4795 sig_type->per_cu.is_debug_types = 1;
4796 sig_type->per_cu.v.quick =
4797 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4798 struct dwarf2_per_cu_quick_data);
4799 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4800 sig_type, INSERT);
4801 gdb_assert (*slot == NULL);
4802 *slot = sig_type;
4803 /* The rest of sig_type must be filled in by the caller. */
4804 return sig_type;
4805 }
4806
4807 /* Subroutine of lookup_signatured_type.
4808 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4809 then try the DWP file.
4810 Normally this "can't happen", but if there's a bug in signature
4811 generation and/or the DWP file is built incorrectly, it can happen.
4812 Using the type directly from the DWP file means we don't have the stub
4813 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4814 not critical. [Eventually the stub may go away for type units anyway.] */
4815
4816 static struct signatured_type *
4817 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4818 {
4819 struct objfile *objfile = dwarf2_per_objfile->objfile;
4820 struct dwp_file *dwp_file = get_dwp_file ();
4821 struct dwo_unit *dwo_entry;
4822 struct signatured_type find_sig_entry, *sig_entry;
4823
4824 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4825 gdb_assert (dwp_file != NULL);
4826
4827 if (dwarf2_per_objfile->signatured_types != NULL)
4828 {
4829 find_sig_entry.signature = sig;
4830 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4831 &find_sig_entry);
4832 if (sig_entry != NULL)
4833 return sig_entry;
4834 }
4835
4836 /* This is the "shouldn't happen" case.
4837 Try the DWP file and hope for the best. */
4838 if (dwp_file->tus == NULL)
4839 return NULL;
4840 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4841 sig, 1 /* is_debug_types */);
4842 if (dwo_entry == NULL)
4843 return NULL;
4844
4845 sig_entry = add_type_unit (sig);
4846 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4847
4848 /* The caller will signal a complaint if we return NULL.
4849 Here we don't return NULL but we still want to complain. */
4850 complaint (&symfile_complaints,
4851 _("Bad type signature %s referenced by %s at 0x%x,"
4852 " coping by using copy in DWP [in module %s]"),
4853 hex_string (sig),
4854 cu->per_cu->is_debug_types ? "TU" : "CU",
4855 cu->per_cu->offset.sect_off,
4856 objfile_name (objfile));
4857
4858 return sig_entry;
4859 }
4860
4861 /* Lookup a signature based type for DW_FORM_ref_sig8.
4862 Returns NULL if signature SIG is not present in the table.
4863 It is up to the caller to complain about this. */
4864
4865 static struct signatured_type *
4866 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4867 {
4868 if (cu->dwo_unit
4869 && dwarf2_per_objfile->using_index)
4870 {
4871 /* We're in a DWO/DWP file, and we're using .gdb_index.
4872 These cases require special processing. */
4873 if (get_dwp_file () == NULL)
4874 return lookup_dwo_signatured_type (cu, sig);
4875 else
4876 return lookup_dwp_signatured_type (cu, sig);
4877 }
4878 else
4879 {
4880 struct signatured_type find_entry, *entry;
4881
4882 if (dwarf2_per_objfile->signatured_types == NULL)
4883 return NULL;
4884 find_entry.signature = sig;
4885 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4886 return entry;
4887 }
4888 }
4889 \f
4890 /* Low level DIE reading support. */
4891
4892 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4893
4894 static void
4895 init_cu_die_reader (struct die_reader_specs *reader,
4896 struct dwarf2_cu *cu,
4897 struct dwarf2_section_info *section,
4898 struct dwo_file *dwo_file)
4899 {
4900 gdb_assert (section->readin && section->buffer != NULL);
4901 reader->abfd = get_section_bfd_owner (section);
4902 reader->cu = cu;
4903 reader->dwo_file = dwo_file;
4904 reader->die_section = section;
4905 reader->buffer = section->buffer;
4906 reader->buffer_end = section->buffer + section->size;
4907 reader->comp_dir = NULL;
4908 }
4909
4910 /* Subroutine of init_cutu_and_read_dies to simplify it.
4911 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4912 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4913 already.
4914
4915 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4916 from it to the DIE in the DWO. If NULL we are skipping the stub.
4917 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4918 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4919 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4920 COMP_DIR must be non-NULL.
4921 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4922 are filled in with the info of the DIE from the DWO file.
4923 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4924 provided an abbrev table to use.
4925 The result is non-zero if a valid (non-dummy) DIE was found. */
4926
4927 static int
4928 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4929 struct dwo_unit *dwo_unit,
4930 int abbrev_table_provided,
4931 struct die_info *stub_comp_unit_die,
4932 const char *stub_comp_dir,
4933 struct die_reader_specs *result_reader,
4934 const gdb_byte **result_info_ptr,
4935 struct die_info **result_comp_unit_die,
4936 int *result_has_children)
4937 {
4938 struct objfile *objfile = dwarf2_per_objfile->objfile;
4939 struct dwarf2_cu *cu = this_cu->cu;
4940 struct dwarf2_section_info *section;
4941 bfd *abfd;
4942 const gdb_byte *begin_info_ptr, *info_ptr;
4943 const char *comp_dir_string;
4944 ULONGEST signature; /* Or dwo_id. */
4945 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4946 int i,num_extra_attrs;
4947 struct dwarf2_section_info *dwo_abbrev_section;
4948 struct attribute *attr;
4949 struct attribute comp_dir_attr;
4950 struct die_info *comp_unit_die;
4951
4952 /* Both can't be provided. */
4953 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4954
4955 /* These attributes aren't processed until later:
4956 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4957 However, the attribute is found in the stub which we won't have later.
4958 In order to not impose this complication on the rest of the code,
4959 we read them here and copy them to the DWO CU/TU die. */
4960
4961 stmt_list = NULL;
4962 low_pc = NULL;
4963 high_pc = NULL;
4964 ranges = NULL;
4965 comp_dir = NULL;
4966
4967 if (stub_comp_unit_die != NULL)
4968 {
4969 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4970 DWO file. */
4971 if (! this_cu->is_debug_types)
4972 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4973 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4974 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4975 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4976 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4977
4978 /* There should be a DW_AT_addr_base attribute here (if needed).
4979 We need the value before we can process DW_FORM_GNU_addr_index. */
4980 cu->addr_base = 0;
4981 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4982 if (attr)
4983 cu->addr_base = DW_UNSND (attr);
4984
4985 /* There should be a DW_AT_ranges_base attribute here (if needed).
4986 We need the value before we can process DW_AT_ranges. */
4987 cu->ranges_base = 0;
4988 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4989 if (attr)
4990 cu->ranges_base = DW_UNSND (attr);
4991 }
4992 else if (stub_comp_dir != NULL)
4993 {
4994 /* Reconstruct the comp_dir attribute to simplify the code below. */
4995 comp_dir = (struct attribute *)
4996 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4997 comp_dir->name = DW_AT_comp_dir;
4998 comp_dir->form = DW_FORM_string;
4999 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5000 DW_STRING (comp_dir) = stub_comp_dir;
5001 }
5002
5003 /* Set up for reading the DWO CU/TU. */
5004 cu->dwo_unit = dwo_unit;
5005 section = dwo_unit->section;
5006 dwarf2_read_section (objfile, section);
5007 abfd = get_section_bfd_owner (section);
5008 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5009 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5010 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5011
5012 if (this_cu->is_debug_types)
5013 {
5014 ULONGEST header_signature;
5015 cu_offset type_offset_in_tu;
5016 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5017
5018 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5019 dwo_abbrev_section,
5020 info_ptr,
5021 &header_signature,
5022 &type_offset_in_tu);
5023 /* This is not an assert because it can be caused by bad debug info. */
5024 if (sig_type->signature != header_signature)
5025 {
5026 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5027 " TU at offset 0x%x [in module %s]"),
5028 hex_string (sig_type->signature),
5029 hex_string (header_signature),
5030 dwo_unit->offset.sect_off,
5031 bfd_get_filename (abfd));
5032 }
5033 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5034 /* For DWOs coming from DWP files, we don't know the CU length
5035 nor the type's offset in the TU until now. */
5036 dwo_unit->length = get_cu_length (&cu->header);
5037 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5038
5039 /* Establish the type offset that can be used to lookup the type.
5040 For DWO files, we don't know it until now. */
5041 sig_type->type_offset_in_section.sect_off =
5042 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5043 }
5044 else
5045 {
5046 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5047 dwo_abbrev_section,
5048 info_ptr, 0);
5049 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5050 /* For DWOs coming from DWP files, we don't know the CU length
5051 until now. */
5052 dwo_unit->length = get_cu_length (&cu->header);
5053 }
5054
5055 /* Replace the CU's original abbrev table with the DWO's.
5056 Reminder: We can't read the abbrev table until we've read the header. */
5057 if (abbrev_table_provided)
5058 {
5059 /* Don't free the provided abbrev table, the caller of
5060 init_cutu_and_read_dies owns it. */
5061 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5062 /* Ensure the DWO abbrev table gets freed. */
5063 make_cleanup (dwarf2_free_abbrev_table, cu);
5064 }
5065 else
5066 {
5067 dwarf2_free_abbrev_table (cu);
5068 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5069 /* Leave any existing abbrev table cleanup as is. */
5070 }
5071
5072 /* Read in the die, but leave space to copy over the attributes
5073 from the stub. This has the benefit of simplifying the rest of
5074 the code - all the work to maintain the illusion of a single
5075 DW_TAG_{compile,type}_unit DIE is done here. */
5076 num_extra_attrs = ((stmt_list != NULL)
5077 + (low_pc != NULL)
5078 + (high_pc != NULL)
5079 + (ranges != NULL)
5080 + (comp_dir != NULL));
5081 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5082 result_has_children, num_extra_attrs);
5083
5084 /* Copy over the attributes from the stub to the DIE we just read in. */
5085 comp_unit_die = *result_comp_unit_die;
5086 i = comp_unit_die->num_attrs;
5087 if (stmt_list != NULL)
5088 comp_unit_die->attrs[i++] = *stmt_list;
5089 if (low_pc != NULL)
5090 comp_unit_die->attrs[i++] = *low_pc;
5091 if (high_pc != NULL)
5092 comp_unit_die->attrs[i++] = *high_pc;
5093 if (ranges != NULL)
5094 comp_unit_die->attrs[i++] = *ranges;
5095 if (comp_dir != NULL)
5096 comp_unit_die->attrs[i++] = *comp_dir;
5097 comp_unit_die->num_attrs += num_extra_attrs;
5098
5099 if (dwarf2_die_debug)
5100 {
5101 fprintf_unfiltered (gdb_stdlog,
5102 "Read die from %s@0x%x of %s:\n",
5103 get_section_name (section),
5104 (unsigned) (begin_info_ptr - section->buffer),
5105 bfd_get_filename (abfd));
5106 dump_die (comp_unit_die, dwarf2_die_debug);
5107 }
5108
5109 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5110 TUs by skipping the stub and going directly to the entry in the DWO file.
5111 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5112 to get it via circuitous means. Blech. */
5113 if (comp_dir != NULL)
5114 result_reader->comp_dir = DW_STRING (comp_dir);
5115
5116 /* Skip dummy compilation units. */
5117 if (info_ptr >= begin_info_ptr + dwo_unit->length
5118 || peek_abbrev_code (abfd, info_ptr) == 0)
5119 return 0;
5120
5121 *result_info_ptr = info_ptr;
5122 return 1;
5123 }
5124
5125 /* Subroutine of init_cutu_and_read_dies to simplify it.
5126 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5127 Returns NULL if the specified DWO unit cannot be found. */
5128
5129 static struct dwo_unit *
5130 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5131 struct die_info *comp_unit_die)
5132 {
5133 struct dwarf2_cu *cu = this_cu->cu;
5134 struct attribute *attr;
5135 ULONGEST signature;
5136 struct dwo_unit *dwo_unit;
5137 const char *comp_dir, *dwo_name;
5138
5139 gdb_assert (cu != NULL);
5140
5141 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5142 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5143 gdb_assert (attr != NULL);
5144 dwo_name = DW_STRING (attr);
5145 comp_dir = NULL;
5146 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5147 if (attr)
5148 comp_dir = DW_STRING (attr);
5149
5150 if (this_cu->is_debug_types)
5151 {
5152 struct signatured_type *sig_type;
5153
5154 /* Since this_cu is the first member of struct signatured_type,
5155 we can go from a pointer to one to a pointer to the other. */
5156 sig_type = (struct signatured_type *) this_cu;
5157 signature = sig_type->signature;
5158 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5159 }
5160 else
5161 {
5162 struct attribute *attr;
5163
5164 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5165 if (! attr)
5166 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5167 " [in module %s]"),
5168 dwo_name, objfile_name (this_cu->objfile));
5169 signature = DW_UNSND (attr);
5170 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5171 signature);
5172 }
5173
5174 return dwo_unit;
5175 }
5176
5177 /* Subroutine of init_cutu_and_read_dies to simplify it.
5178 Read a TU directly from a DWO file, bypassing the stub. */
5179
5180 static void
5181 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5182 die_reader_func_ftype *die_reader_func,
5183 void *data)
5184 {
5185 struct dwarf2_cu *cu;
5186 struct signatured_type *sig_type;
5187 struct cleanup *cleanups, *free_cu_cleanup;
5188 struct die_reader_specs reader;
5189 const gdb_byte *info_ptr;
5190 struct die_info *comp_unit_die;
5191 int has_children;
5192
5193 /* Verify we can do the following downcast, and that we have the
5194 data we need. */
5195 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5196 sig_type = (struct signatured_type *) this_cu;
5197 gdb_assert (sig_type->dwo_unit != NULL);
5198
5199 cleanups = make_cleanup (null_cleanup, NULL);
5200
5201 gdb_assert (this_cu->cu == NULL);
5202 cu = xmalloc (sizeof (*cu));
5203 init_one_comp_unit (cu, this_cu);
5204 /* If an error occurs while loading, release our storage. */
5205 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5206
5207 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5208 0 /* abbrev_table_provided */,
5209 NULL /* stub_comp_unit_die */,
5210 sig_type->dwo_unit->dwo_file->comp_dir,
5211 &reader, &info_ptr,
5212 &comp_unit_die, &has_children) == 0)
5213 {
5214 /* Dummy die. */
5215 do_cleanups (cleanups);
5216 return;
5217 }
5218
5219 /* All the "real" work is done here. */
5220 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5221
5222 /* This duplicates some code in init_cutu_and_read_dies,
5223 but the alternative is making the latter more complex.
5224 This function is only for the special case of using DWO files directly:
5225 no point in overly complicating the general case just to handle this. */
5226 if (keep)
5227 {
5228 /* We've successfully allocated this compilation unit. Let our
5229 caller clean it up when finished with it. */
5230 discard_cleanups (free_cu_cleanup);
5231
5232 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5233 So we have to manually free the abbrev table. */
5234 dwarf2_free_abbrev_table (cu);
5235
5236 /* Link this CU into read_in_chain. */
5237 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5238 dwarf2_per_objfile->read_in_chain = this_cu;
5239 }
5240 else
5241 do_cleanups (free_cu_cleanup);
5242
5243 do_cleanups (cleanups);
5244 }
5245
5246 /* Initialize a CU (or TU) and read its DIEs.
5247 If the CU defers to a DWO file, read the DWO file as well.
5248
5249 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5250 Otherwise the table specified in the comp unit header is read in and used.
5251 This is an optimization for when we already have the abbrev table.
5252
5253 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5254 Otherwise, a new CU is allocated with xmalloc.
5255
5256 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5257 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5258
5259 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5260 linker) then DIE_READER_FUNC will not get called. */
5261
5262 static void
5263 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5264 struct abbrev_table *abbrev_table,
5265 int use_existing_cu, int keep,
5266 die_reader_func_ftype *die_reader_func,
5267 void *data)
5268 {
5269 struct objfile *objfile = dwarf2_per_objfile->objfile;
5270 struct dwarf2_section_info *section = this_cu->section;
5271 bfd *abfd = get_section_bfd_owner (section);
5272 struct dwarf2_cu *cu;
5273 const gdb_byte *begin_info_ptr, *info_ptr;
5274 struct die_reader_specs reader;
5275 struct die_info *comp_unit_die;
5276 int has_children;
5277 struct attribute *attr;
5278 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5279 struct signatured_type *sig_type = NULL;
5280 struct dwarf2_section_info *abbrev_section;
5281 /* Non-zero if CU currently points to a DWO file and we need to
5282 reread it. When this happens we need to reread the skeleton die
5283 before we can reread the DWO file (this only applies to CUs, not TUs). */
5284 int rereading_dwo_cu = 0;
5285
5286 if (dwarf2_die_debug)
5287 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5288 this_cu->is_debug_types ? "type" : "comp",
5289 this_cu->offset.sect_off);
5290
5291 if (use_existing_cu)
5292 gdb_assert (keep);
5293
5294 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5295 file (instead of going through the stub), short-circuit all of this. */
5296 if (this_cu->reading_dwo_directly)
5297 {
5298 /* Narrow down the scope of possibilities to have to understand. */
5299 gdb_assert (this_cu->is_debug_types);
5300 gdb_assert (abbrev_table == NULL);
5301 gdb_assert (!use_existing_cu);
5302 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5303 return;
5304 }
5305
5306 cleanups = make_cleanup (null_cleanup, NULL);
5307
5308 /* This is cheap if the section is already read in. */
5309 dwarf2_read_section (objfile, section);
5310
5311 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5312
5313 abbrev_section = get_abbrev_section_for_cu (this_cu);
5314
5315 if (use_existing_cu && this_cu->cu != NULL)
5316 {
5317 cu = this_cu->cu;
5318
5319 /* If this CU is from a DWO file we need to start over, we need to
5320 refetch the attributes from the skeleton CU.
5321 This could be optimized by retrieving those attributes from when we
5322 were here the first time: the previous comp_unit_die was stored in
5323 comp_unit_obstack. But there's no data yet that we need this
5324 optimization. */
5325 if (cu->dwo_unit != NULL)
5326 rereading_dwo_cu = 1;
5327 }
5328 else
5329 {
5330 /* If !use_existing_cu, this_cu->cu must be NULL. */
5331 gdb_assert (this_cu->cu == NULL);
5332
5333 cu = xmalloc (sizeof (*cu));
5334 init_one_comp_unit (cu, this_cu);
5335
5336 /* If an error occurs while loading, release our storage. */
5337 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5338 }
5339
5340 /* Get the header. */
5341 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5342 {
5343 /* We already have the header, there's no need to read it in again. */
5344 info_ptr += cu->header.first_die_offset.cu_off;
5345 }
5346 else
5347 {
5348 if (this_cu->is_debug_types)
5349 {
5350 ULONGEST signature;
5351 cu_offset type_offset_in_tu;
5352
5353 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5354 abbrev_section, info_ptr,
5355 &signature,
5356 &type_offset_in_tu);
5357
5358 /* Since per_cu is the first member of struct signatured_type,
5359 we can go from a pointer to one to a pointer to the other. */
5360 sig_type = (struct signatured_type *) this_cu;
5361 gdb_assert (sig_type->signature == signature);
5362 gdb_assert (sig_type->type_offset_in_tu.cu_off
5363 == type_offset_in_tu.cu_off);
5364 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5365
5366 /* LENGTH has not been set yet for type units if we're
5367 using .gdb_index. */
5368 this_cu->length = get_cu_length (&cu->header);
5369
5370 /* Establish the type offset that can be used to lookup the type. */
5371 sig_type->type_offset_in_section.sect_off =
5372 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5373 }
5374 else
5375 {
5376 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5377 abbrev_section,
5378 info_ptr, 0);
5379
5380 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5381 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5382 }
5383 }
5384
5385 /* Skip dummy compilation units. */
5386 if (info_ptr >= begin_info_ptr + this_cu->length
5387 || peek_abbrev_code (abfd, info_ptr) == 0)
5388 {
5389 do_cleanups (cleanups);
5390 return;
5391 }
5392
5393 /* If we don't have them yet, read the abbrevs for this compilation unit.
5394 And if we need to read them now, make sure they're freed when we're
5395 done. Note that it's important that if the CU had an abbrev table
5396 on entry we don't free it when we're done: Somewhere up the call stack
5397 it may be in use. */
5398 if (abbrev_table != NULL)
5399 {
5400 gdb_assert (cu->abbrev_table == NULL);
5401 gdb_assert (cu->header.abbrev_offset.sect_off
5402 == abbrev_table->offset.sect_off);
5403 cu->abbrev_table = abbrev_table;
5404 }
5405 else if (cu->abbrev_table == NULL)
5406 {
5407 dwarf2_read_abbrevs (cu, abbrev_section);
5408 make_cleanup (dwarf2_free_abbrev_table, cu);
5409 }
5410 else if (rereading_dwo_cu)
5411 {
5412 dwarf2_free_abbrev_table (cu);
5413 dwarf2_read_abbrevs (cu, abbrev_section);
5414 }
5415
5416 /* Read the top level CU/TU die. */
5417 init_cu_die_reader (&reader, cu, section, NULL);
5418 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5419
5420 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5421 from the DWO file.
5422 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5423 DWO CU, that this test will fail (the attribute will not be present). */
5424 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5425 if (attr)
5426 {
5427 struct dwo_unit *dwo_unit;
5428 struct die_info *dwo_comp_unit_die;
5429
5430 if (has_children)
5431 {
5432 complaint (&symfile_complaints,
5433 _("compilation unit with DW_AT_GNU_dwo_name"
5434 " has children (offset 0x%x) [in module %s]"),
5435 this_cu->offset.sect_off, bfd_get_filename (abfd));
5436 }
5437 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5438 if (dwo_unit != NULL)
5439 {
5440 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5441 abbrev_table != NULL,
5442 comp_unit_die, NULL,
5443 &reader, &info_ptr,
5444 &dwo_comp_unit_die, &has_children) == 0)
5445 {
5446 /* Dummy die. */
5447 do_cleanups (cleanups);
5448 return;
5449 }
5450 comp_unit_die = dwo_comp_unit_die;
5451 }
5452 else
5453 {
5454 /* Yikes, we couldn't find the rest of the DIE, we only have
5455 the stub. A complaint has already been logged. There's
5456 not much more we can do except pass on the stub DIE to
5457 die_reader_func. We don't want to throw an error on bad
5458 debug info. */
5459 }
5460 }
5461
5462 /* All of the above is setup for this call. Yikes. */
5463 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5464
5465 /* Done, clean up. */
5466 if (free_cu_cleanup != NULL)
5467 {
5468 if (keep)
5469 {
5470 /* We've successfully allocated this compilation unit. Let our
5471 caller clean it up when finished with it. */
5472 discard_cleanups (free_cu_cleanup);
5473
5474 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5475 So we have to manually free the abbrev table. */
5476 dwarf2_free_abbrev_table (cu);
5477
5478 /* Link this CU into read_in_chain. */
5479 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5480 dwarf2_per_objfile->read_in_chain = this_cu;
5481 }
5482 else
5483 do_cleanups (free_cu_cleanup);
5484 }
5485
5486 do_cleanups (cleanups);
5487 }
5488
5489 /* Read CU/TU THIS_CU in section SECTION,
5490 but do not follow DW_AT_GNU_dwo_name if present.
5491 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5492 to have already done the lookup to find the DWO/DWP file).
5493
5494 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5495 THIS_CU->is_debug_types, but nothing else.
5496
5497 We fill in THIS_CU->length.
5498
5499 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5500 linker) then DIE_READER_FUNC will not get called.
5501
5502 THIS_CU->cu is always freed when done.
5503 This is done in order to not leave THIS_CU->cu in a state where we have
5504 to care whether it refers to the "main" CU or the DWO CU. */
5505
5506 static void
5507 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5508 struct dwarf2_section_info *abbrev_section,
5509 struct dwo_file *dwo_file,
5510 die_reader_func_ftype *die_reader_func,
5511 void *data)
5512 {
5513 struct objfile *objfile = dwarf2_per_objfile->objfile;
5514 struct dwarf2_section_info *section = this_cu->section;
5515 bfd *abfd = get_section_bfd_owner (section);
5516 struct dwarf2_cu cu;
5517 const gdb_byte *begin_info_ptr, *info_ptr;
5518 struct die_reader_specs reader;
5519 struct cleanup *cleanups;
5520 struct die_info *comp_unit_die;
5521 int has_children;
5522
5523 if (dwarf2_die_debug)
5524 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5525 this_cu->is_debug_types ? "type" : "comp",
5526 this_cu->offset.sect_off);
5527
5528 gdb_assert (this_cu->cu == NULL);
5529
5530 /* This is cheap if the section is already read in. */
5531 dwarf2_read_section (objfile, section);
5532
5533 init_one_comp_unit (&cu, this_cu);
5534
5535 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5536
5537 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5538 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5539 abbrev_section, info_ptr,
5540 this_cu->is_debug_types);
5541
5542 this_cu->length = get_cu_length (&cu.header);
5543
5544 /* Skip dummy compilation units. */
5545 if (info_ptr >= begin_info_ptr + this_cu->length
5546 || peek_abbrev_code (abfd, info_ptr) == 0)
5547 {
5548 do_cleanups (cleanups);
5549 return;
5550 }
5551
5552 dwarf2_read_abbrevs (&cu, abbrev_section);
5553 make_cleanup (dwarf2_free_abbrev_table, &cu);
5554
5555 init_cu_die_reader (&reader, &cu, section, dwo_file);
5556 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5557
5558 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5559
5560 do_cleanups (cleanups);
5561 }
5562
5563 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5564 does not lookup the specified DWO file.
5565 This cannot be used to read DWO files.
5566
5567 THIS_CU->cu is always freed when done.
5568 This is done in order to not leave THIS_CU->cu in a state where we have
5569 to care whether it refers to the "main" CU or the DWO CU.
5570 We can revisit this if the data shows there's a performance issue. */
5571
5572 static void
5573 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5574 die_reader_func_ftype *die_reader_func,
5575 void *data)
5576 {
5577 init_cutu_and_read_dies_no_follow (this_cu,
5578 get_abbrev_section_for_cu (this_cu),
5579 NULL,
5580 die_reader_func, data);
5581 }
5582 \f
5583 /* Type Unit Groups.
5584
5585 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5586 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5587 so that all types coming from the same compilation (.o file) are grouped
5588 together. A future step could be to put the types in the same symtab as
5589 the CU the types ultimately came from. */
5590
5591 static hashval_t
5592 hash_type_unit_group (const void *item)
5593 {
5594 const struct type_unit_group *tu_group = item;
5595
5596 return hash_stmt_list_entry (&tu_group->hash);
5597 }
5598
5599 static int
5600 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5601 {
5602 const struct type_unit_group *lhs = item_lhs;
5603 const struct type_unit_group *rhs = item_rhs;
5604
5605 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5606 }
5607
5608 /* Allocate a hash table for type unit groups. */
5609
5610 static htab_t
5611 allocate_type_unit_groups_table (void)
5612 {
5613 return htab_create_alloc_ex (3,
5614 hash_type_unit_group,
5615 eq_type_unit_group,
5616 NULL,
5617 &dwarf2_per_objfile->objfile->objfile_obstack,
5618 hashtab_obstack_allocate,
5619 dummy_obstack_deallocate);
5620 }
5621
5622 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5623 partial symtabs. We combine several TUs per psymtab to not let the size
5624 of any one psymtab grow too big. */
5625 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5626 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5627
5628 /* Helper routine for get_type_unit_group.
5629 Create the type_unit_group object used to hold one or more TUs. */
5630
5631 static struct type_unit_group *
5632 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5633 {
5634 struct objfile *objfile = dwarf2_per_objfile->objfile;
5635 struct dwarf2_per_cu_data *per_cu;
5636 struct type_unit_group *tu_group;
5637
5638 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5639 struct type_unit_group);
5640 per_cu = &tu_group->per_cu;
5641 per_cu->objfile = objfile;
5642
5643 if (dwarf2_per_objfile->using_index)
5644 {
5645 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5646 struct dwarf2_per_cu_quick_data);
5647 }
5648 else
5649 {
5650 unsigned int line_offset = line_offset_struct.sect_off;
5651 struct partial_symtab *pst;
5652 char *name;
5653
5654 /* Give the symtab a useful name for debug purposes. */
5655 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5656 name = xstrprintf ("<type_units_%d>",
5657 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5658 else
5659 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5660
5661 pst = create_partial_symtab (per_cu, name);
5662 pst->anonymous = 1;
5663
5664 xfree (name);
5665 }
5666
5667 tu_group->hash.dwo_unit = cu->dwo_unit;
5668 tu_group->hash.line_offset = line_offset_struct;
5669
5670 return tu_group;
5671 }
5672
5673 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5674 STMT_LIST is a DW_AT_stmt_list attribute. */
5675
5676 static struct type_unit_group *
5677 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5678 {
5679 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5680 struct type_unit_group *tu_group;
5681 void **slot;
5682 unsigned int line_offset;
5683 struct type_unit_group type_unit_group_for_lookup;
5684
5685 if (dwarf2_per_objfile->type_unit_groups == NULL)
5686 {
5687 dwarf2_per_objfile->type_unit_groups =
5688 allocate_type_unit_groups_table ();
5689 }
5690
5691 /* Do we need to create a new group, or can we use an existing one? */
5692
5693 if (stmt_list)
5694 {
5695 line_offset = DW_UNSND (stmt_list);
5696 ++tu_stats->nr_symtab_sharers;
5697 }
5698 else
5699 {
5700 /* Ugh, no stmt_list. Rare, but we have to handle it.
5701 We can do various things here like create one group per TU or
5702 spread them over multiple groups to split up the expansion work.
5703 To avoid worst case scenarios (too many groups or too large groups)
5704 we, umm, group them in bunches. */
5705 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5706 | (tu_stats->nr_stmt_less_type_units
5707 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5708 ++tu_stats->nr_stmt_less_type_units;
5709 }
5710
5711 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5712 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5713 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5714 &type_unit_group_for_lookup, INSERT);
5715 if (*slot != NULL)
5716 {
5717 tu_group = *slot;
5718 gdb_assert (tu_group != NULL);
5719 }
5720 else
5721 {
5722 sect_offset line_offset_struct;
5723
5724 line_offset_struct.sect_off = line_offset;
5725 tu_group = create_type_unit_group (cu, line_offset_struct);
5726 *slot = tu_group;
5727 ++tu_stats->nr_symtabs;
5728 }
5729
5730 return tu_group;
5731 }
5732
5733 /* Struct used to sort TUs by their abbreviation table offset. */
5734
5735 struct tu_abbrev_offset
5736 {
5737 struct signatured_type *sig_type;
5738 sect_offset abbrev_offset;
5739 };
5740
5741 /* Helper routine for build_type_unit_groups, passed to qsort. */
5742
5743 static int
5744 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5745 {
5746 const struct tu_abbrev_offset * const *a = ap;
5747 const struct tu_abbrev_offset * const *b = bp;
5748 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5749 unsigned int boff = (*b)->abbrev_offset.sect_off;
5750
5751 return (aoff > boff) - (aoff < boff);
5752 }
5753
5754 /* A helper function to add a type_unit_group to a table. */
5755
5756 static int
5757 add_type_unit_group_to_table (void **slot, void *datum)
5758 {
5759 struct type_unit_group *tu_group = *slot;
5760 struct type_unit_group ***datap = datum;
5761
5762 **datap = tu_group;
5763 ++*datap;
5764
5765 return 1;
5766 }
5767
5768 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5769 each one passing FUNC,DATA.
5770
5771 The efficiency is because we sort TUs by the abbrev table they use and
5772 only read each abbrev table once. In one program there are 200K TUs
5773 sharing 8K abbrev tables.
5774
5775 The main purpose of this function is to support building the
5776 dwarf2_per_objfile->type_unit_groups table.
5777 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5778 can collapse the search space by grouping them by stmt_list.
5779 The savings can be significant, in the same program from above the 200K TUs
5780 share 8K stmt_list tables.
5781
5782 FUNC is expected to call get_type_unit_group, which will create the
5783 struct type_unit_group if necessary and add it to
5784 dwarf2_per_objfile->type_unit_groups. */
5785
5786 static void
5787 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5788 {
5789 struct objfile *objfile = dwarf2_per_objfile->objfile;
5790 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5791 struct cleanup *cleanups;
5792 struct abbrev_table *abbrev_table;
5793 sect_offset abbrev_offset;
5794 struct tu_abbrev_offset *sorted_by_abbrev;
5795 struct type_unit_group **iter;
5796 int i;
5797
5798 /* It's up to the caller to not call us multiple times. */
5799 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5800
5801 if (dwarf2_per_objfile->n_type_units == 0)
5802 return;
5803
5804 /* TUs typically share abbrev tables, and there can be way more TUs than
5805 abbrev tables. Sort by abbrev table to reduce the number of times we
5806 read each abbrev table in.
5807 Alternatives are to punt or to maintain a cache of abbrev tables.
5808 This is simpler and efficient enough for now.
5809
5810 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5811 symtab to use). Typically TUs with the same abbrev offset have the same
5812 stmt_list value too so in practice this should work well.
5813
5814 The basic algorithm here is:
5815
5816 sort TUs by abbrev table
5817 for each TU with same abbrev table:
5818 read abbrev table if first user
5819 read TU top level DIE
5820 [IWBN if DWO skeletons had DW_AT_stmt_list]
5821 call FUNC */
5822
5823 if (dwarf2_read_debug)
5824 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5825
5826 /* Sort in a separate table to maintain the order of all_type_units
5827 for .gdb_index: TU indices directly index all_type_units. */
5828 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5829 dwarf2_per_objfile->n_type_units);
5830 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5831 {
5832 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5833
5834 sorted_by_abbrev[i].sig_type = sig_type;
5835 sorted_by_abbrev[i].abbrev_offset =
5836 read_abbrev_offset (sig_type->per_cu.section,
5837 sig_type->per_cu.offset);
5838 }
5839 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5840 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5841 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5842
5843 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5844 called any number of times, so we don't reset tu_stats here. */
5845
5846 abbrev_offset.sect_off = ~(unsigned) 0;
5847 abbrev_table = NULL;
5848 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5849
5850 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5851 {
5852 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5853
5854 /* Switch to the next abbrev table if necessary. */
5855 if (abbrev_table == NULL
5856 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5857 {
5858 if (abbrev_table != NULL)
5859 {
5860 abbrev_table_free (abbrev_table);
5861 /* Reset to NULL in case abbrev_table_read_table throws
5862 an error: abbrev_table_free_cleanup will get called. */
5863 abbrev_table = NULL;
5864 }
5865 abbrev_offset = tu->abbrev_offset;
5866 abbrev_table =
5867 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5868 abbrev_offset);
5869 ++tu_stats->nr_uniq_abbrev_tables;
5870 }
5871
5872 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5873 func, data);
5874 }
5875
5876 /* type_unit_groups can be NULL if there is an error in the debug info.
5877 Just create an empty table so the rest of gdb doesn't have to watch
5878 for this error case. */
5879 if (dwarf2_per_objfile->type_unit_groups == NULL)
5880 {
5881 dwarf2_per_objfile->type_unit_groups =
5882 allocate_type_unit_groups_table ();
5883 dwarf2_per_objfile->n_type_unit_groups = 0;
5884 }
5885
5886 /* Create a vector of pointers to primary type units to make it easy to
5887 iterate over them and CUs. See dw2_get_primary_cu. */
5888 dwarf2_per_objfile->n_type_unit_groups =
5889 htab_elements (dwarf2_per_objfile->type_unit_groups);
5890 dwarf2_per_objfile->all_type_unit_groups =
5891 obstack_alloc (&objfile->objfile_obstack,
5892 dwarf2_per_objfile->n_type_unit_groups
5893 * sizeof (struct type_unit_group *));
5894 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5895 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5896 add_type_unit_group_to_table, &iter);
5897 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5898 == dwarf2_per_objfile->n_type_unit_groups);
5899
5900 do_cleanups (cleanups);
5901
5902 if (dwarf2_read_debug)
5903 {
5904 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5905 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5906 dwarf2_per_objfile->n_type_units);
5907 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5908 tu_stats->nr_uniq_abbrev_tables);
5909 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5910 tu_stats->nr_symtabs);
5911 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5912 tu_stats->nr_symtab_sharers);
5913 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5914 tu_stats->nr_stmt_less_type_units);
5915 }
5916 }
5917 \f
5918 /* Partial symbol tables. */
5919
5920 /* Create a psymtab named NAME and assign it to PER_CU.
5921
5922 The caller must fill in the following details:
5923 dirname, textlow, texthigh. */
5924
5925 static struct partial_symtab *
5926 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5927 {
5928 struct objfile *objfile = per_cu->objfile;
5929 struct partial_symtab *pst;
5930
5931 pst = start_psymtab_common (objfile, objfile->section_offsets,
5932 name, 0,
5933 objfile->global_psymbols.next,
5934 objfile->static_psymbols.next);
5935
5936 pst->psymtabs_addrmap_supported = 1;
5937
5938 /* This is the glue that links PST into GDB's symbol API. */
5939 pst->read_symtab_private = per_cu;
5940 pst->read_symtab = dwarf2_read_symtab;
5941 per_cu->v.psymtab = pst;
5942
5943 return pst;
5944 }
5945
5946 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5947 type. */
5948
5949 struct process_psymtab_comp_unit_data
5950 {
5951 /* True if we are reading a DW_TAG_partial_unit. */
5952
5953 int want_partial_unit;
5954
5955 /* The "pretend" language that is used if the CU doesn't declare a
5956 language. */
5957
5958 enum language pretend_language;
5959 };
5960
5961 /* die_reader_func for process_psymtab_comp_unit. */
5962
5963 static void
5964 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5965 const gdb_byte *info_ptr,
5966 struct die_info *comp_unit_die,
5967 int has_children,
5968 void *data)
5969 {
5970 struct dwarf2_cu *cu = reader->cu;
5971 struct objfile *objfile = cu->objfile;
5972 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5973 struct attribute *attr;
5974 CORE_ADDR baseaddr;
5975 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5976 struct partial_symtab *pst;
5977 int has_pc_info;
5978 const char *filename;
5979 struct process_psymtab_comp_unit_data *info = data;
5980
5981 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5982 return;
5983
5984 gdb_assert (! per_cu->is_debug_types);
5985
5986 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5987
5988 cu->list_in_scope = &file_symbols;
5989
5990 /* Allocate a new partial symbol table structure. */
5991 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5992 if (attr == NULL || !DW_STRING (attr))
5993 filename = "";
5994 else
5995 filename = DW_STRING (attr);
5996
5997 pst = create_partial_symtab (per_cu, filename);
5998
5999 /* This must be done before calling dwarf2_build_include_psymtabs. */
6000 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
6001 if (attr != NULL)
6002 pst->dirname = DW_STRING (attr);
6003
6004 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6005
6006 dwarf2_find_base_address (comp_unit_die, cu);
6007
6008 /* Possibly set the default values of LOWPC and HIGHPC from
6009 `DW_AT_ranges'. */
6010 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6011 &best_highpc, cu, pst);
6012 if (has_pc_info == 1 && best_lowpc < best_highpc)
6013 /* Store the contiguous range if it is not empty; it can be empty for
6014 CUs with no code. */
6015 addrmap_set_empty (objfile->psymtabs_addrmap,
6016 best_lowpc + baseaddr,
6017 best_highpc + baseaddr - 1, pst);
6018
6019 /* Check if comp unit has_children.
6020 If so, read the rest of the partial symbols from this comp unit.
6021 If not, there's no more debug_info for this comp unit. */
6022 if (has_children)
6023 {
6024 struct partial_die_info *first_die;
6025 CORE_ADDR lowpc, highpc;
6026
6027 lowpc = ((CORE_ADDR) -1);
6028 highpc = ((CORE_ADDR) 0);
6029
6030 first_die = load_partial_dies (reader, info_ptr, 1);
6031
6032 scan_partial_symbols (first_die, &lowpc, &highpc,
6033 ! has_pc_info, cu);
6034
6035 /* If we didn't find a lowpc, set it to highpc to avoid
6036 complaints from `maint check'. */
6037 if (lowpc == ((CORE_ADDR) -1))
6038 lowpc = highpc;
6039
6040 /* If the compilation unit didn't have an explicit address range,
6041 then use the information extracted from its child dies. */
6042 if (! has_pc_info)
6043 {
6044 best_lowpc = lowpc;
6045 best_highpc = highpc;
6046 }
6047 }
6048 pst->textlow = best_lowpc + baseaddr;
6049 pst->texthigh = best_highpc + baseaddr;
6050
6051 pst->n_global_syms = objfile->global_psymbols.next -
6052 (objfile->global_psymbols.list + pst->globals_offset);
6053 pst->n_static_syms = objfile->static_psymbols.next -
6054 (objfile->static_psymbols.list + pst->statics_offset);
6055 sort_pst_symbols (objfile, pst);
6056
6057 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6058 {
6059 int i;
6060 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6061 struct dwarf2_per_cu_data *iter;
6062
6063 /* Fill in 'dependencies' here; we fill in 'users' in a
6064 post-pass. */
6065 pst->number_of_dependencies = len;
6066 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6067 len * sizeof (struct symtab *));
6068 for (i = 0;
6069 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6070 i, iter);
6071 ++i)
6072 pst->dependencies[i] = iter->v.psymtab;
6073
6074 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6075 }
6076
6077 /* Get the list of files included in the current compilation unit,
6078 and build a psymtab for each of them. */
6079 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6080
6081 if (dwarf2_read_debug)
6082 {
6083 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6084
6085 fprintf_unfiltered (gdb_stdlog,
6086 "Psymtab for %s unit @0x%x: %s - %s"
6087 ", %d global, %d static syms\n",
6088 per_cu->is_debug_types ? "type" : "comp",
6089 per_cu->offset.sect_off,
6090 paddress (gdbarch, pst->textlow),
6091 paddress (gdbarch, pst->texthigh),
6092 pst->n_global_syms, pst->n_static_syms);
6093 }
6094 }
6095
6096 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6097 Process compilation unit THIS_CU for a psymtab. */
6098
6099 static void
6100 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6101 int want_partial_unit,
6102 enum language pretend_language)
6103 {
6104 struct process_psymtab_comp_unit_data info;
6105
6106 /* If this compilation unit was already read in, free the
6107 cached copy in order to read it in again. This is
6108 necessary because we skipped some symbols when we first
6109 read in the compilation unit (see load_partial_dies).
6110 This problem could be avoided, but the benefit is unclear. */
6111 if (this_cu->cu != NULL)
6112 free_one_cached_comp_unit (this_cu);
6113
6114 gdb_assert (! this_cu->is_debug_types);
6115 info.want_partial_unit = want_partial_unit;
6116 info.pretend_language = pretend_language;
6117 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6118 process_psymtab_comp_unit_reader,
6119 &info);
6120
6121 /* Age out any secondary CUs. */
6122 age_cached_comp_units ();
6123 }
6124
6125 /* Reader function for build_type_psymtabs. */
6126
6127 static void
6128 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6129 const gdb_byte *info_ptr,
6130 struct die_info *type_unit_die,
6131 int has_children,
6132 void *data)
6133 {
6134 struct objfile *objfile = dwarf2_per_objfile->objfile;
6135 struct dwarf2_cu *cu = reader->cu;
6136 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6137 struct signatured_type *sig_type;
6138 struct type_unit_group *tu_group;
6139 struct attribute *attr;
6140 struct partial_die_info *first_die;
6141 CORE_ADDR lowpc, highpc;
6142 struct partial_symtab *pst;
6143
6144 gdb_assert (data == NULL);
6145 gdb_assert (per_cu->is_debug_types);
6146 sig_type = (struct signatured_type *) per_cu;
6147
6148 if (! has_children)
6149 return;
6150
6151 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6152 tu_group = get_type_unit_group (cu, attr);
6153
6154 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6155
6156 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6157 cu->list_in_scope = &file_symbols;
6158 pst = create_partial_symtab (per_cu, "");
6159 pst->anonymous = 1;
6160
6161 first_die = load_partial_dies (reader, info_ptr, 1);
6162
6163 lowpc = (CORE_ADDR) -1;
6164 highpc = (CORE_ADDR) 0;
6165 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6166
6167 pst->n_global_syms = objfile->global_psymbols.next -
6168 (objfile->global_psymbols.list + pst->globals_offset);
6169 pst->n_static_syms = objfile->static_psymbols.next -
6170 (objfile->static_psymbols.list + pst->statics_offset);
6171 sort_pst_symbols (objfile, pst);
6172 }
6173
6174 /* Traversal function for build_type_psymtabs. */
6175
6176 static int
6177 build_type_psymtab_dependencies (void **slot, void *info)
6178 {
6179 struct objfile *objfile = dwarf2_per_objfile->objfile;
6180 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6181 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6182 struct partial_symtab *pst = per_cu->v.psymtab;
6183 int len = VEC_length (sig_type_ptr, tu_group->tus);
6184 struct signatured_type *iter;
6185 int i;
6186
6187 gdb_assert (len > 0);
6188 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6189
6190 pst->number_of_dependencies = len;
6191 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6192 len * sizeof (struct psymtab *));
6193 for (i = 0;
6194 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6195 ++i)
6196 {
6197 gdb_assert (iter->per_cu.is_debug_types);
6198 pst->dependencies[i] = iter->per_cu.v.psymtab;
6199 iter->type_unit_group = tu_group;
6200 }
6201
6202 VEC_free (sig_type_ptr, tu_group->tus);
6203
6204 return 1;
6205 }
6206
6207 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6208 Build partial symbol tables for the .debug_types comp-units. */
6209
6210 static void
6211 build_type_psymtabs (struct objfile *objfile)
6212 {
6213 if (! create_all_type_units (objfile))
6214 return;
6215
6216 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6217
6218 /* Now that all TUs have been processed we can fill in the dependencies. */
6219 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6220 build_type_psymtab_dependencies, NULL);
6221 }
6222
6223 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6224
6225 static void
6226 psymtabs_addrmap_cleanup (void *o)
6227 {
6228 struct objfile *objfile = o;
6229
6230 objfile->psymtabs_addrmap = NULL;
6231 }
6232
6233 /* Compute the 'user' field for each psymtab in OBJFILE. */
6234
6235 static void
6236 set_partial_user (struct objfile *objfile)
6237 {
6238 int i;
6239
6240 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6241 {
6242 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6243 struct partial_symtab *pst = per_cu->v.psymtab;
6244 int j;
6245
6246 if (pst == NULL)
6247 continue;
6248
6249 for (j = 0; j < pst->number_of_dependencies; ++j)
6250 {
6251 /* Set the 'user' field only if it is not already set. */
6252 if (pst->dependencies[j]->user == NULL)
6253 pst->dependencies[j]->user = pst;
6254 }
6255 }
6256 }
6257
6258 /* Build the partial symbol table by doing a quick pass through the
6259 .debug_info and .debug_abbrev sections. */
6260
6261 static void
6262 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6263 {
6264 struct cleanup *back_to, *addrmap_cleanup;
6265 struct obstack temp_obstack;
6266 int i;
6267
6268 if (dwarf2_read_debug)
6269 {
6270 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6271 objfile_name (objfile));
6272 }
6273
6274 dwarf2_per_objfile->reading_partial_symbols = 1;
6275
6276 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6277
6278 /* Any cached compilation units will be linked by the per-objfile
6279 read_in_chain. Make sure to free them when we're done. */
6280 back_to = make_cleanup (free_cached_comp_units, NULL);
6281
6282 build_type_psymtabs (objfile);
6283
6284 create_all_comp_units (objfile);
6285
6286 /* Create a temporary address map on a temporary obstack. We later
6287 copy this to the final obstack. */
6288 obstack_init (&temp_obstack);
6289 make_cleanup_obstack_free (&temp_obstack);
6290 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6291 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6292
6293 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6294 {
6295 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6296
6297 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6298 }
6299
6300 set_partial_user (objfile);
6301
6302 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6303 &objfile->objfile_obstack);
6304 discard_cleanups (addrmap_cleanup);
6305
6306 do_cleanups (back_to);
6307
6308 if (dwarf2_read_debug)
6309 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6310 objfile_name (objfile));
6311 }
6312
6313 /* die_reader_func for load_partial_comp_unit. */
6314
6315 static void
6316 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6317 const gdb_byte *info_ptr,
6318 struct die_info *comp_unit_die,
6319 int has_children,
6320 void *data)
6321 {
6322 struct dwarf2_cu *cu = reader->cu;
6323
6324 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6325
6326 /* Check if comp unit has_children.
6327 If so, read the rest of the partial symbols from this comp unit.
6328 If not, there's no more debug_info for this comp unit. */
6329 if (has_children)
6330 load_partial_dies (reader, info_ptr, 0);
6331 }
6332
6333 /* Load the partial DIEs for a secondary CU into memory.
6334 This is also used when rereading a primary CU with load_all_dies. */
6335
6336 static void
6337 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6338 {
6339 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6340 load_partial_comp_unit_reader, NULL);
6341 }
6342
6343 static void
6344 read_comp_units_from_section (struct objfile *objfile,
6345 struct dwarf2_section_info *section,
6346 unsigned int is_dwz,
6347 int *n_allocated,
6348 int *n_comp_units,
6349 struct dwarf2_per_cu_data ***all_comp_units)
6350 {
6351 const gdb_byte *info_ptr;
6352 bfd *abfd = get_section_bfd_owner (section);
6353
6354 if (dwarf2_read_debug)
6355 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6356 get_section_name (section),
6357 get_section_file_name (section));
6358
6359 dwarf2_read_section (objfile, section);
6360
6361 info_ptr = section->buffer;
6362
6363 while (info_ptr < section->buffer + section->size)
6364 {
6365 unsigned int length, initial_length_size;
6366 struct dwarf2_per_cu_data *this_cu;
6367 sect_offset offset;
6368
6369 offset.sect_off = info_ptr - section->buffer;
6370
6371 /* Read just enough information to find out where the next
6372 compilation unit is. */
6373 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6374
6375 /* Save the compilation unit for later lookup. */
6376 this_cu = obstack_alloc (&objfile->objfile_obstack,
6377 sizeof (struct dwarf2_per_cu_data));
6378 memset (this_cu, 0, sizeof (*this_cu));
6379 this_cu->offset = offset;
6380 this_cu->length = length + initial_length_size;
6381 this_cu->is_dwz = is_dwz;
6382 this_cu->objfile = objfile;
6383 this_cu->section = section;
6384
6385 if (*n_comp_units == *n_allocated)
6386 {
6387 *n_allocated *= 2;
6388 *all_comp_units = xrealloc (*all_comp_units,
6389 *n_allocated
6390 * sizeof (struct dwarf2_per_cu_data *));
6391 }
6392 (*all_comp_units)[*n_comp_units] = this_cu;
6393 ++*n_comp_units;
6394
6395 info_ptr = info_ptr + this_cu->length;
6396 }
6397 }
6398
6399 /* Create a list of all compilation units in OBJFILE.
6400 This is only done for -readnow and building partial symtabs. */
6401
6402 static void
6403 create_all_comp_units (struct objfile *objfile)
6404 {
6405 int n_allocated;
6406 int n_comp_units;
6407 struct dwarf2_per_cu_data **all_comp_units;
6408 struct dwz_file *dwz;
6409
6410 n_comp_units = 0;
6411 n_allocated = 10;
6412 all_comp_units = xmalloc (n_allocated
6413 * sizeof (struct dwarf2_per_cu_data *));
6414
6415 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6416 &n_allocated, &n_comp_units, &all_comp_units);
6417
6418 dwz = dwarf2_get_dwz_file ();
6419 if (dwz != NULL)
6420 read_comp_units_from_section (objfile, &dwz->info, 1,
6421 &n_allocated, &n_comp_units,
6422 &all_comp_units);
6423
6424 dwarf2_per_objfile->all_comp_units
6425 = obstack_alloc (&objfile->objfile_obstack,
6426 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6427 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6428 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6429 xfree (all_comp_units);
6430 dwarf2_per_objfile->n_comp_units = n_comp_units;
6431 }
6432
6433 /* Process all loaded DIEs for compilation unit CU, starting at
6434 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6435 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6436 DW_AT_ranges). If NEED_PC is set, then this function will set
6437 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6438 and record the covered ranges in the addrmap. */
6439
6440 static void
6441 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6442 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6443 {
6444 struct partial_die_info *pdi;
6445
6446 /* Now, march along the PDI's, descending into ones which have
6447 interesting children but skipping the children of the other ones,
6448 until we reach the end of the compilation unit. */
6449
6450 pdi = first_die;
6451
6452 while (pdi != NULL)
6453 {
6454 fixup_partial_die (pdi, cu);
6455
6456 /* Anonymous namespaces or modules have no name but have interesting
6457 children, so we need to look at them. Ditto for anonymous
6458 enums. */
6459
6460 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6461 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6462 || pdi->tag == DW_TAG_imported_unit)
6463 {
6464 switch (pdi->tag)
6465 {
6466 case DW_TAG_subprogram:
6467 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6468 break;
6469 case DW_TAG_constant:
6470 case DW_TAG_variable:
6471 case DW_TAG_typedef:
6472 case DW_TAG_union_type:
6473 if (!pdi->is_declaration)
6474 {
6475 add_partial_symbol (pdi, cu);
6476 }
6477 break;
6478 case DW_TAG_class_type:
6479 case DW_TAG_interface_type:
6480 case DW_TAG_structure_type:
6481 if (!pdi->is_declaration)
6482 {
6483 add_partial_symbol (pdi, cu);
6484 }
6485 break;
6486 case DW_TAG_enumeration_type:
6487 if (!pdi->is_declaration)
6488 add_partial_enumeration (pdi, cu);
6489 break;
6490 case DW_TAG_base_type:
6491 case DW_TAG_subrange_type:
6492 /* File scope base type definitions are added to the partial
6493 symbol table. */
6494 add_partial_symbol (pdi, cu);
6495 break;
6496 case DW_TAG_namespace:
6497 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6498 break;
6499 case DW_TAG_module:
6500 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6501 break;
6502 case DW_TAG_imported_unit:
6503 {
6504 struct dwarf2_per_cu_data *per_cu;
6505
6506 /* For now we don't handle imported units in type units. */
6507 if (cu->per_cu->is_debug_types)
6508 {
6509 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6510 " supported in type units [in module %s]"),
6511 objfile_name (cu->objfile));
6512 }
6513
6514 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6515 pdi->is_dwz,
6516 cu->objfile);
6517
6518 /* Go read the partial unit, if needed. */
6519 if (per_cu->v.psymtab == NULL)
6520 process_psymtab_comp_unit (per_cu, 1, cu->language);
6521
6522 VEC_safe_push (dwarf2_per_cu_ptr,
6523 cu->per_cu->imported_symtabs, per_cu);
6524 }
6525 break;
6526 case DW_TAG_imported_declaration:
6527 add_partial_symbol (pdi, cu);
6528 break;
6529 default:
6530 break;
6531 }
6532 }
6533
6534 /* If the die has a sibling, skip to the sibling. */
6535
6536 pdi = pdi->die_sibling;
6537 }
6538 }
6539
6540 /* Functions used to compute the fully scoped name of a partial DIE.
6541
6542 Normally, this is simple. For C++, the parent DIE's fully scoped
6543 name is concatenated with "::" and the partial DIE's name. For
6544 Java, the same thing occurs except that "." is used instead of "::".
6545 Enumerators are an exception; they use the scope of their parent
6546 enumeration type, i.e. the name of the enumeration type is not
6547 prepended to the enumerator.
6548
6549 There are two complexities. One is DW_AT_specification; in this
6550 case "parent" means the parent of the target of the specification,
6551 instead of the direct parent of the DIE. The other is compilers
6552 which do not emit DW_TAG_namespace; in this case we try to guess
6553 the fully qualified name of structure types from their members'
6554 linkage names. This must be done using the DIE's children rather
6555 than the children of any DW_AT_specification target. We only need
6556 to do this for structures at the top level, i.e. if the target of
6557 any DW_AT_specification (if any; otherwise the DIE itself) does not
6558 have a parent. */
6559
6560 /* Compute the scope prefix associated with PDI's parent, in
6561 compilation unit CU. The result will be allocated on CU's
6562 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6563 field. NULL is returned if no prefix is necessary. */
6564 static const char *
6565 partial_die_parent_scope (struct partial_die_info *pdi,
6566 struct dwarf2_cu *cu)
6567 {
6568 const char *grandparent_scope;
6569 struct partial_die_info *parent, *real_pdi;
6570
6571 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6572 then this means the parent of the specification DIE. */
6573
6574 real_pdi = pdi;
6575 while (real_pdi->has_specification)
6576 real_pdi = find_partial_die (real_pdi->spec_offset,
6577 real_pdi->spec_is_dwz, cu);
6578
6579 parent = real_pdi->die_parent;
6580 if (parent == NULL)
6581 return NULL;
6582
6583 if (parent->scope_set)
6584 return parent->scope;
6585
6586 fixup_partial_die (parent, cu);
6587
6588 grandparent_scope = partial_die_parent_scope (parent, cu);
6589
6590 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6591 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6592 Work around this problem here. */
6593 if (cu->language == language_cplus
6594 && parent->tag == DW_TAG_namespace
6595 && strcmp (parent->name, "::") == 0
6596 && grandparent_scope == NULL)
6597 {
6598 parent->scope = NULL;
6599 parent->scope_set = 1;
6600 return NULL;
6601 }
6602
6603 if (pdi->tag == DW_TAG_enumerator)
6604 /* Enumerators should not get the name of the enumeration as a prefix. */
6605 parent->scope = grandparent_scope;
6606 else if (parent->tag == DW_TAG_namespace
6607 || parent->tag == DW_TAG_module
6608 || parent->tag == DW_TAG_structure_type
6609 || parent->tag == DW_TAG_class_type
6610 || parent->tag == DW_TAG_interface_type
6611 || parent->tag == DW_TAG_union_type
6612 || parent->tag == DW_TAG_enumeration_type)
6613 {
6614 if (grandparent_scope == NULL)
6615 parent->scope = parent->name;
6616 else
6617 parent->scope = typename_concat (&cu->comp_unit_obstack,
6618 grandparent_scope,
6619 parent->name, 0, cu);
6620 }
6621 else
6622 {
6623 /* FIXME drow/2004-04-01: What should we be doing with
6624 function-local names? For partial symbols, we should probably be
6625 ignoring them. */
6626 complaint (&symfile_complaints,
6627 _("unhandled containing DIE tag %d for DIE at %d"),
6628 parent->tag, pdi->offset.sect_off);
6629 parent->scope = grandparent_scope;
6630 }
6631
6632 parent->scope_set = 1;
6633 return parent->scope;
6634 }
6635
6636 /* Return the fully scoped name associated with PDI, from compilation unit
6637 CU. The result will be allocated with malloc. */
6638
6639 static char *
6640 partial_die_full_name (struct partial_die_info *pdi,
6641 struct dwarf2_cu *cu)
6642 {
6643 const char *parent_scope;
6644
6645 /* If this is a template instantiation, we can not work out the
6646 template arguments from partial DIEs. So, unfortunately, we have
6647 to go through the full DIEs. At least any work we do building
6648 types here will be reused if full symbols are loaded later. */
6649 if (pdi->has_template_arguments)
6650 {
6651 fixup_partial_die (pdi, cu);
6652
6653 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6654 {
6655 struct die_info *die;
6656 struct attribute attr;
6657 struct dwarf2_cu *ref_cu = cu;
6658
6659 /* DW_FORM_ref_addr is using section offset. */
6660 attr.name = 0;
6661 attr.form = DW_FORM_ref_addr;
6662 attr.u.unsnd = pdi->offset.sect_off;
6663 die = follow_die_ref (NULL, &attr, &ref_cu);
6664
6665 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6666 }
6667 }
6668
6669 parent_scope = partial_die_parent_scope (pdi, cu);
6670 if (parent_scope == NULL)
6671 return NULL;
6672 else
6673 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6674 }
6675
6676 static void
6677 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6678 {
6679 struct objfile *objfile = cu->objfile;
6680 CORE_ADDR addr = 0;
6681 const char *actual_name = NULL;
6682 CORE_ADDR baseaddr;
6683 char *built_actual_name;
6684
6685 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6686
6687 built_actual_name = partial_die_full_name (pdi, cu);
6688 if (built_actual_name != NULL)
6689 actual_name = built_actual_name;
6690
6691 if (actual_name == NULL)
6692 actual_name = pdi->name;
6693
6694 switch (pdi->tag)
6695 {
6696 case DW_TAG_subprogram:
6697 if (pdi->is_external || cu->language == language_ada)
6698 {
6699 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6700 of the global scope. But in Ada, we want to be able to access
6701 nested procedures globally. So all Ada subprograms are stored
6702 in the global scope. */
6703 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6704 mst_text, objfile); */
6705 add_psymbol_to_list (actual_name, strlen (actual_name),
6706 built_actual_name != NULL,
6707 VAR_DOMAIN, LOC_BLOCK,
6708 &objfile->global_psymbols,
6709 0, pdi->lowpc + baseaddr,
6710 cu->language, objfile);
6711 }
6712 else
6713 {
6714 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6715 mst_file_text, objfile); */
6716 add_psymbol_to_list (actual_name, strlen (actual_name),
6717 built_actual_name != NULL,
6718 VAR_DOMAIN, LOC_BLOCK,
6719 &objfile->static_psymbols,
6720 0, pdi->lowpc + baseaddr,
6721 cu->language, objfile);
6722 }
6723 break;
6724 case DW_TAG_constant:
6725 {
6726 struct psymbol_allocation_list *list;
6727
6728 if (pdi->is_external)
6729 list = &objfile->global_psymbols;
6730 else
6731 list = &objfile->static_psymbols;
6732 add_psymbol_to_list (actual_name, strlen (actual_name),
6733 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6734 list, 0, 0, cu->language, objfile);
6735 }
6736 break;
6737 case DW_TAG_variable:
6738 if (pdi->d.locdesc)
6739 addr = decode_locdesc (pdi->d.locdesc, cu);
6740
6741 if (pdi->d.locdesc
6742 && addr == 0
6743 && !dwarf2_per_objfile->has_section_at_zero)
6744 {
6745 /* A global or static variable may also have been stripped
6746 out by the linker if unused, in which case its address
6747 will be nullified; do not add such variables into partial
6748 symbol table then. */
6749 }
6750 else if (pdi->is_external)
6751 {
6752 /* Global Variable.
6753 Don't enter into the minimal symbol tables as there is
6754 a minimal symbol table entry from the ELF symbols already.
6755 Enter into partial symbol table if it has a location
6756 descriptor or a type.
6757 If the location descriptor is missing, new_symbol will create
6758 a LOC_UNRESOLVED symbol, the address of the variable will then
6759 be determined from the minimal symbol table whenever the variable
6760 is referenced.
6761 The address for the partial symbol table entry is not
6762 used by GDB, but it comes in handy for debugging partial symbol
6763 table building. */
6764
6765 if (pdi->d.locdesc || pdi->has_type)
6766 add_psymbol_to_list (actual_name, strlen (actual_name),
6767 built_actual_name != NULL,
6768 VAR_DOMAIN, LOC_STATIC,
6769 &objfile->global_psymbols,
6770 0, addr + baseaddr,
6771 cu->language, objfile);
6772 }
6773 else
6774 {
6775 /* Static Variable. Skip symbols without location descriptors. */
6776 if (pdi->d.locdesc == NULL)
6777 {
6778 xfree (built_actual_name);
6779 return;
6780 }
6781 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6782 mst_file_data, objfile); */
6783 add_psymbol_to_list (actual_name, strlen (actual_name),
6784 built_actual_name != NULL,
6785 VAR_DOMAIN, LOC_STATIC,
6786 &objfile->static_psymbols,
6787 0, addr + baseaddr,
6788 cu->language, objfile);
6789 }
6790 break;
6791 case DW_TAG_typedef:
6792 case DW_TAG_base_type:
6793 case DW_TAG_subrange_type:
6794 add_psymbol_to_list (actual_name, strlen (actual_name),
6795 built_actual_name != NULL,
6796 VAR_DOMAIN, LOC_TYPEDEF,
6797 &objfile->static_psymbols,
6798 0, (CORE_ADDR) 0, cu->language, objfile);
6799 break;
6800 case DW_TAG_imported_declaration:
6801 case DW_TAG_namespace:
6802 add_psymbol_to_list (actual_name, strlen (actual_name),
6803 built_actual_name != NULL,
6804 VAR_DOMAIN, LOC_TYPEDEF,
6805 &objfile->global_psymbols,
6806 0, (CORE_ADDR) 0, cu->language, objfile);
6807 break;
6808 case DW_TAG_module:
6809 add_psymbol_to_list (actual_name, strlen (actual_name),
6810 built_actual_name != NULL,
6811 MODULE_DOMAIN, LOC_TYPEDEF,
6812 &objfile->global_psymbols,
6813 0, (CORE_ADDR) 0, cu->language, objfile);
6814 break;
6815 case DW_TAG_class_type:
6816 case DW_TAG_interface_type:
6817 case DW_TAG_structure_type:
6818 case DW_TAG_union_type:
6819 case DW_TAG_enumeration_type:
6820 /* Skip external references. The DWARF standard says in the section
6821 about "Structure, Union, and Class Type Entries": "An incomplete
6822 structure, union or class type is represented by a structure,
6823 union or class entry that does not have a byte size attribute
6824 and that has a DW_AT_declaration attribute." */
6825 if (!pdi->has_byte_size && pdi->is_declaration)
6826 {
6827 xfree (built_actual_name);
6828 return;
6829 }
6830
6831 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6832 static vs. global. */
6833 add_psymbol_to_list (actual_name, strlen (actual_name),
6834 built_actual_name != NULL,
6835 STRUCT_DOMAIN, LOC_TYPEDEF,
6836 (cu->language == language_cplus
6837 || cu->language == language_java)
6838 ? &objfile->global_psymbols
6839 : &objfile->static_psymbols,
6840 0, (CORE_ADDR) 0, cu->language, objfile);
6841
6842 break;
6843 case DW_TAG_enumerator:
6844 add_psymbol_to_list (actual_name, strlen (actual_name),
6845 built_actual_name != NULL,
6846 VAR_DOMAIN, LOC_CONST,
6847 (cu->language == language_cplus
6848 || cu->language == language_java)
6849 ? &objfile->global_psymbols
6850 : &objfile->static_psymbols,
6851 0, (CORE_ADDR) 0, cu->language, objfile);
6852 break;
6853 default:
6854 break;
6855 }
6856
6857 xfree (built_actual_name);
6858 }
6859
6860 /* Read a partial die corresponding to a namespace; also, add a symbol
6861 corresponding to that namespace to the symbol table. NAMESPACE is
6862 the name of the enclosing namespace. */
6863
6864 static void
6865 add_partial_namespace (struct partial_die_info *pdi,
6866 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6867 int need_pc, struct dwarf2_cu *cu)
6868 {
6869 /* Add a symbol for the namespace. */
6870
6871 add_partial_symbol (pdi, cu);
6872
6873 /* Now scan partial symbols in that namespace. */
6874
6875 if (pdi->has_children)
6876 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6877 }
6878
6879 /* Read a partial die corresponding to a Fortran module. */
6880
6881 static void
6882 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6883 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6884 {
6885 /* Add a symbol for the namespace. */
6886
6887 add_partial_symbol (pdi, cu);
6888
6889 /* Now scan partial symbols in that module. */
6890
6891 if (pdi->has_children)
6892 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6893 }
6894
6895 /* Read a partial die corresponding to a subprogram and create a partial
6896 symbol for that subprogram. When the CU language allows it, this
6897 routine also defines a partial symbol for each nested subprogram
6898 that this subprogram contains.
6899
6900 DIE my also be a lexical block, in which case we simply search
6901 recursively for suprograms defined inside that lexical block.
6902 Again, this is only performed when the CU language allows this
6903 type of definitions. */
6904
6905 static void
6906 add_partial_subprogram (struct partial_die_info *pdi,
6907 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6908 int need_pc, struct dwarf2_cu *cu)
6909 {
6910 if (pdi->tag == DW_TAG_subprogram)
6911 {
6912 if (pdi->has_pc_info)
6913 {
6914 if (pdi->lowpc < *lowpc)
6915 *lowpc = pdi->lowpc;
6916 if (pdi->highpc > *highpc)
6917 *highpc = pdi->highpc;
6918 if (need_pc)
6919 {
6920 CORE_ADDR baseaddr;
6921 struct objfile *objfile = cu->objfile;
6922
6923 baseaddr = ANOFFSET (objfile->section_offsets,
6924 SECT_OFF_TEXT (objfile));
6925 addrmap_set_empty (objfile->psymtabs_addrmap,
6926 pdi->lowpc + baseaddr,
6927 pdi->highpc - 1 + baseaddr,
6928 cu->per_cu->v.psymtab);
6929 }
6930 }
6931
6932 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6933 {
6934 if (!pdi->is_declaration)
6935 /* Ignore subprogram DIEs that do not have a name, they are
6936 illegal. Do not emit a complaint at this point, we will
6937 do so when we convert this psymtab into a symtab. */
6938 if (pdi->name)
6939 add_partial_symbol (pdi, cu);
6940 }
6941 }
6942
6943 if (! pdi->has_children)
6944 return;
6945
6946 if (cu->language == language_ada)
6947 {
6948 pdi = pdi->die_child;
6949 while (pdi != NULL)
6950 {
6951 fixup_partial_die (pdi, cu);
6952 if (pdi->tag == DW_TAG_subprogram
6953 || pdi->tag == DW_TAG_lexical_block)
6954 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6955 pdi = pdi->die_sibling;
6956 }
6957 }
6958 }
6959
6960 /* Read a partial die corresponding to an enumeration type. */
6961
6962 static void
6963 add_partial_enumeration (struct partial_die_info *enum_pdi,
6964 struct dwarf2_cu *cu)
6965 {
6966 struct partial_die_info *pdi;
6967
6968 if (enum_pdi->name != NULL)
6969 add_partial_symbol (enum_pdi, cu);
6970
6971 pdi = enum_pdi->die_child;
6972 while (pdi)
6973 {
6974 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6975 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6976 else
6977 add_partial_symbol (pdi, cu);
6978 pdi = pdi->die_sibling;
6979 }
6980 }
6981
6982 /* Return the initial uleb128 in the die at INFO_PTR. */
6983
6984 static unsigned int
6985 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6986 {
6987 unsigned int bytes_read;
6988
6989 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6990 }
6991
6992 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6993 Return the corresponding abbrev, or NULL if the number is zero (indicating
6994 an empty DIE). In either case *BYTES_READ will be set to the length of
6995 the initial number. */
6996
6997 static struct abbrev_info *
6998 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6999 struct dwarf2_cu *cu)
7000 {
7001 bfd *abfd = cu->objfile->obfd;
7002 unsigned int abbrev_number;
7003 struct abbrev_info *abbrev;
7004
7005 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7006
7007 if (abbrev_number == 0)
7008 return NULL;
7009
7010 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7011 if (!abbrev)
7012 {
7013 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7014 abbrev_number, bfd_get_filename (abfd));
7015 }
7016
7017 return abbrev;
7018 }
7019
7020 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7021 Returns a pointer to the end of a series of DIEs, terminated by an empty
7022 DIE. Any children of the skipped DIEs will also be skipped. */
7023
7024 static const gdb_byte *
7025 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7026 {
7027 struct dwarf2_cu *cu = reader->cu;
7028 struct abbrev_info *abbrev;
7029 unsigned int bytes_read;
7030
7031 while (1)
7032 {
7033 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7034 if (abbrev == NULL)
7035 return info_ptr + bytes_read;
7036 else
7037 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7038 }
7039 }
7040
7041 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7042 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7043 abbrev corresponding to that skipped uleb128 should be passed in
7044 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7045 children. */
7046
7047 static const gdb_byte *
7048 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7049 struct abbrev_info *abbrev)
7050 {
7051 unsigned int bytes_read;
7052 struct attribute attr;
7053 bfd *abfd = reader->abfd;
7054 struct dwarf2_cu *cu = reader->cu;
7055 const gdb_byte *buffer = reader->buffer;
7056 const gdb_byte *buffer_end = reader->buffer_end;
7057 const gdb_byte *start_info_ptr = info_ptr;
7058 unsigned int form, i;
7059
7060 for (i = 0; i < abbrev->num_attrs; i++)
7061 {
7062 /* The only abbrev we care about is DW_AT_sibling. */
7063 if (abbrev->attrs[i].name == DW_AT_sibling)
7064 {
7065 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7066 if (attr.form == DW_FORM_ref_addr)
7067 complaint (&symfile_complaints,
7068 _("ignoring absolute DW_AT_sibling"));
7069 else
7070 {
7071 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7072 const gdb_byte *sibling_ptr = buffer + off;
7073
7074 if (sibling_ptr < info_ptr)
7075 complaint (&symfile_complaints,
7076 _("DW_AT_sibling points backwards"));
7077 else
7078 return sibling_ptr;
7079 }
7080 }
7081
7082 /* If it isn't DW_AT_sibling, skip this attribute. */
7083 form = abbrev->attrs[i].form;
7084 skip_attribute:
7085 switch (form)
7086 {
7087 case DW_FORM_ref_addr:
7088 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7089 and later it is offset sized. */
7090 if (cu->header.version == 2)
7091 info_ptr += cu->header.addr_size;
7092 else
7093 info_ptr += cu->header.offset_size;
7094 break;
7095 case DW_FORM_GNU_ref_alt:
7096 info_ptr += cu->header.offset_size;
7097 break;
7098 case DW_FORM_addr:
7099 info_ptr += cu->header.addr_size;
7100 break;
7101 case DW_FORM_data1:
7102 case DW_FORM_ref1:
7103 case DW_FORM_flag:
7104 info_ptr += 1;
7105 break;
7106 case DW_FORM_flag_present:
7107 break;
7108 case DW_FORM_data2:
7109 case DW_FORM_ref2:
7110 info_ptr += 2;
7111 break;
7112 case DW_FORM_data4:
7113 case DW_FORM_ref4:
7114 info_ptr += 4;
7115 break;
7116 case DW_FORM_data8:
7117 case DW_FORM_ref8:
7118 case DW_FORM_ref_sig8:
7119 info_ptr += 8;
7120 break;
7121 case DW_FORM_string:
7122 read_direct_string (abfd, info_ptr, &bytes_read);
7123 info_ptr += bytes_read;
7124 break;
7125 case DW_FORM_sec_offset:
7126 case DW_FORM_strp:
7127 case DW_FORM_GNU_strp_alt:
7128 info_ptr += cu->header.offset_size;
7129 break;
7130 case DW_FORM_exprloc:
7131 case DW_FORM_block:
7132 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7133 info_ptr += bytes_read;
7134 break;
7135 case DW_FORM_block1:
7136 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7137 break;
7138 case DW_FORM_block2:
7139 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7140 break;
7141 case DW_FORM_block4:
7142 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7143 break;
7144 case DW_FORM_sdata:
7145 case DW_FORM_udata:
7146 case DW_FORM_ref_udata:
7147 case DW_FORM_GNU_addr_index:
7148 case DW_FORM_GNU_str_index:
7149 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7150 break;
7151 case DW_FORM_indirect:
7152 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7153 info_ptr += bytes_read;
7154 /* We need to continue parsing from here, so just go back to
7155 the top. */
7156 goto skip_attribute;
7157
7158 default:
7159 error (_("Dwarf Error: Cannot handle %s "
7160 "in DWARF reader [in module %s]"),
7161 dwarf_form_name (form),
7162 bfd_get_filename (abfd));
7163 }
7164 }
7165
7166 if (abbrev->has_children)
7167 return skip_children (reader, info_ptr);
7168 else
7169 return info_ptr;
7170 }
7171
7172 /* Locate ORIG_PDI's sibling.
7173 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7174
7175 static const gdb_byte *
7176 locate_pdi_sibling (const struct die_reader_specs *reader,
7177 struct partial_die_info *orig_pdi,
7178 const gdb_byte *info_ptr)
7179 {
7180 /* Do we know the sibling already? */
7181
7182 if (orig_pdi->sibling)
7183 return orig_pdi->sibling;
7184
7185 /* Are there any children to deal with? */
7186
7187 if (!orig_pdi->has_children)
7188 return info_ptr;
7189
7190 /* Skip the children the long way. */
7191
7192 return skip_children (reader, info_ptr);
7193 }
7194
7195 /* Expand this partial symbol table into a full symbol table. SELF is
7196 not NULL. */
7197
7198 static void
7199 dwarf2_read_symtab (struct partial_symtab *self,
7200 struct objfile *objfile)
7201 {
7202 if (self->readin)
7203 {
7204 warning (_("bug: psymtab for %s is already read in."),
7205 self->filename);
7206 }
7207 else
7208 {
7209 if (info_verbose)
7210 {
7211 printf_filtered (_("Reading in symbols for %s..."),
7212 self->filename);
7213 gdb_flush (gdb_stdout);
7214 }
7215
7216 /* Restore our global data. */
7217 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7218
7219 /* If this psymtab is constructed from a debug-only objfile, the
7220 has_section_at_zero flag will not necessarily be correct. We
7221 can get the correct value for this flag by looking at the data
7222 associated with the (presumably stripped) associated objfile. */
7223 if (objfile->separate_debug_objfile_backlink)
7224 {
7225 struct dwarf2_per_objfile *dpo_backlink
7226 = objfile_data (objfile->separate_debug_objfile_backlink,
7227 dwarf2_objfile_data_key);
7228
7229 dwarf2_per_objfile->has_section_at_zero
7230 = dpo_backlink->has_section_at_zero;
7231 }
7232
7233 dwarf2_per_objfile->reading_partial_symbols = 0;
7234
7235 psymtab_to_symtab_1 (self);
7236
7237 /* Finish up the debug error message. */
7238 if (info_verbose)
7239 printf_filtered (_("done.\n"));
7240 }
7241
7242 process_cu_includes ();
7243 }
7244 \f
7245 /* Reading in full CUs. */
7246
7247 /* Add PER_CU to the queue. */
7248
7249 static void
7250 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7251 enum language pretend_language)
7252 {
7253 struct dwarf2_queue_item *item;
7254
7255 per_cu->queued = 1;
7256 item = xmalloc (sizeof (*item));
7257 item->per_cu = per_cu;
7258 item->pretend_language = pretend_language;
7259 item->next = NULL;
7260
7261 if (dwarf2_queue == NULL)
7262 dwarf2_queue = item;
7263 else
7264 dwarf2_queue_tail->next = item;
7265
7266 dwarf2_queue_tail = item;
7267 }
7268
7269 /* If PER_CU is not yet queued, add it to the queue.
7270 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7271 dependency.
7272 The result is non-zero if PER_CU was queued, otherwise the result is zero
7273 meaning either PER_CU is already queued or it is already loaded.
7274
7275 N.B. There is an invariant here that if a CU is queued then it is loaded.
7276 The caller is required to load PER_CU if we return non-zero. */
7277
7278 static int
7279 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7280 struct dwarf2_per_cu_data *per_cu,
7281 enum language pretend_language)
7282 {
7283 /* We may arrive here during partial symbol reading, if we need full
7284 DIEs to process an unusual case (e.g. template arguments). Do
7285 not queue PER_CU, just tell our caller to load its DIEs. */
7286 if (dwarf2_per_objfile->reading_partial_symbols)
7287 {
7288 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7289 return 1;
7290 return 0;
7291 }
7292
7293 /* Mark the dependence relation so that we don't flush PER_CU
7294 too early. */
7295 if (dependent_cu != NULL)
7296 dwarf2_add_dependence (dependent_cu, per_cu);
7297
7298 /* If it's already on the queue, we have nothing to do. */
7299 if (per_cu->queued)
7300 return 0;
7301
7302 /* If the compilation unit is already loaded, just mark it as
7303 used. */
7304 if (per_cu->cu != NULL)
7305 {
7306 per_cu->cu->last_used = 0;
7307 return 0;
7308 }
7309
7310 /* Add it to the queue. */
7311 queue_comp_unit (per_cu, pretend_language);
7312
7313 return 1;
7314 }
7315
7316 /* Process the queue. */
7317
7318 static void
7319 process_queue (void)
7320 {
7321 struct dwarf2_queue_item *item, *next_item;
7322
7323 if (dwarf2_read_debug)
7324 {
7325 fprintf_unfiltered (gdb_stdlog,
7326 "Expanding one or more symtabs of objfile %s ...\n",
7327 objfile_name (dwarf2_per_objfile->objfile));
7328 }
7329
7330 /* The queue starts out with one item, but following a DIE reference
7331 may load a new CU, adding it to the end of the queue. */
7332 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7333 {
7334 if (dwarf2_per_objfile->using_index
7335 ? !item->per_cu->v.quick->symtab
7336 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7337 {
7338 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7339 unsigned int debug_print_threshold;
7340 char buf[100];
7341
7342 if (per_cu->is_debug_types)
7343 {
7344 struct signatured_type *sig_type =
7345 (struct signatured_type *) per_cu;
7346
7347 sprintf (buf, "TU %s at offset 0x%x",
7348 hex_string (sig_type->signature),
7349 per_cu->offset.sect_off);
7350 /* There can be 100s of TUs.
7351 Only print them in verbose mode. */
7352 debug_print_threshold = 2;
7353 }
7354 else
7355 {
7356 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7357 debug_print_threshold = 1;
7358 }
7359
7360 if (dwarf2_read_debug >= debug_print_threshold)
7361 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7362
7363 if (per_cu->is_debug_types)
7364 process_full_type_unit (per_cu, item->pretend_language);
7365 else
7366 process_full_comp_unit (per_cu, item->pretend_language);
7367
7368 if (dwarf2_read_debug >= debug_print_threshold)
7369 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7370 }
7371
7372 item->per_cu->queued = 0;
7373 next_item = item->next;
7374 xfree (item);
7375 }
7376
7377 dwarf2_queue_tail = NULL;
7378
7379 if (dwarf2_read_debug)
7380 {
7381 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7382 objfile_name (dwarf2_per_objfile->objfile));
7383 }
7384 }
7385
7386 /* Free all allocated queue entries. This function only releases anything if
7387 an error was thrown; if the queue was processed then it would have been
7388 freed as we went along. */
7389
7390 static void
7391 dwarf2_release_queue (void *dummy)
7392 {
7393 struct dwarf2_queue_item *item, *last;
7394
7395 item = dwarf2_queue;
7396 while (item)
7397 {
7398 /* Anything still marked queued is likely to be in an
7399 inconsistent state, so discard it. */
7400 if (item->per_cu->queued)
7401 {
7402 if (item->per_cu->cu != NULL)
7403 free_one_cached_comp_unit (item->per_cu);
7404 item->per_cu->queued = 0;
7405 }
7406
7407 last = item;
7408 item = item->next;
7409 xfree (last);
7410 }
7411
7412 dwarf2_queue = dwarf2_queue_tail = NULL;
7413 }
7414
7415 /* Read in full symbols for PST, and anything it depends on. */
7416
7417 static void
7418 psymtab_to_symtab_1 (struct partial_symtab *pst)
7419 {
7420 struct dwarf2_per_cu_data *per_cu;
7421 int i;
7422
7423 if (pst->readin)
7424 return;
7425
7426 for (i = 0; i < pst->number_of_dependencies; i++)
7427 if (!pst->dependencies[i]->readin
7428 && pst->dependencies[i]->user == NULL)
7429 {
7430 /* Inform about additional files that need to be read in. */
7431 if (info_verbose)
7432 {
7433 /* FIXME: i18n: Need to make this a single string. */
7434 fputs_filtered (" ", gdb_stdout);
7435 wrap_here ("");
7436 fputs_filtered ("and ", gdb_stdout);
7437 wrap_here ("");
7438 printf_filtered ("%s...", pst->dependencies[i]->filename);
7439 wrap_here (""); /* Flush output. */
7440 gdb_flush (gdb_stdout);
7441 }
7442 psymtab_to_symtab_1 (pst->dependencies[i]);
7443 }
7444
7445 per_cu = pst->read_symtab_private;
7446
7447 if (per_cu == NULL)
7448 {
7449 /* It's an include file, no symbols to read for it.
7450 Everything is in the parent symtab. */
7451 pst->readin = 1;
7452 return;
7453 }
7454
7455 dw2_do_instantiate_symtab (per_cu);
7456 }
7457
7458 /* Trivial hash function for die_info: the hash value of a DIE
7459 is its offset in .debug_info for this objfile. */
7460
7461 static hashval_t
7462 die_hash (const void *item)
7463 {
7464 const struct die_info *die = item;
7465
7466 return die->offset.sect_off;
7467 }
7468
7469 /* Trivial comparison function for die_info structures: two DIEs
7470 are equal if they have the same offset. */
7471
7472 static int
7473 die_eq (const void *item_lhs, const void *item_rhs)
7474 {
7475 const struct die_info *die_lhs = item_lhs;
7476 const struct die_info *die_rhs = item_rhs;
7477
7478 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7479 }
7480
7481 /* die_reader_func for load_full_comp_unit.
7482 This is identical to read_signatured_type_reader,
7483 but is kept separate for now. */
7484
7485 static void
7486 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7487 const gdb_byte *info_ptr,
7488 struct die_info *comp_unit_die,
7489 int has_children,
7490 void *data)
7491 {
7492 struct dwarf2_cu *cu = reader->cu;
7493 enum language *language_ptr = data;
7494
7495 gdb_assert (cu->die_hash == NULL);
7496 cu->die_hash =
7497 htab_create_alloc_ex (cu->header.length / 12,
7498 die_hash,
7499 die_eq,
7500 NULL,
7501 &cu->comp_unit_obstack,
7502 hashtab_obstack_allocate,
7503 dummy_obstack_deallocate);
7504
7505 if (has_children)
7506 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7507 &info_ptr, comp_unit_die);
7508 cu->dies = comp_unit_die;
7509 /* comp_unit_die is not stored in die_hash, no need. */
7510
7511 /* We try not to read any attributes in this function, because not
7512 all CUs needed for references have been loaded yet, and symbol
7513 table processing isn't initialized. But we have to set the CU language,
7514 or we won't be able to build types correctly.
7515 Similarly, if we do not read the producer, we can not apply
7516 producer-specific interpretation. */
7517 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7518 }
7519
7520 /* Load the DIEs associated with PER_CU into memory. */
7521
7522 static void
7523 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7524 enum language pretend_language)
7525 {
7526 gdb_assert (! this_cu->is_debug_types);
7527
7528 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7529 load_full_comp_unit_reader, &pretend_language);
7530 }
7531
7532 /* Add a DIE to the delayed physname list. */
7533
7534 static void
7535 add_to_method_list (struct type *type, int fnfield_index, int index,
7536 const char *name, struct die_info *die,
7537 struct dwarf2_cu *cu)
7538 {
7539 struct delayed_method_info mi;
7540 mi.type = type;
7541 mi.fnfield_index = fnfield_index;
7542 mi.index = index;
7543 mi.name = name;
7544 mi.die = die;
7545 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7546 }
7547
7548 /* A cleanup for freeing the delayed method list. */
7549
7550 static void
7551 free_delayed_list (void *ptr)
7552 {
7553 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7554 if (cu->method_list != NULL)
7555 {
7556 VEC_free (delayed_method_info, cu->method_list);
7557 cu->method_list = NULL;
7558 }
7559 }
7560
7561 /* Compute the physnames of any methods on the CU's method list.
7562
7563 The computation of method physnames is delayed in order to avoid the
7564 (bad) condition that one of the method's formal parameters is of an as yet
7565 incomplete type. */
7566
7567 static void
7568 compute_delayed_physnames (struct dwarf2_cu *cu)
7569 {
7570 int i;
7571 struct delayed_method_info *mi;
7572 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7573 {
7574 const char *physname;
7575 struct fn_fieldlist *fn_flp
7576 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7577 physname = dwarf2_physname (mi->name, mi->die, cu);
7578 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7579 }
7580 }
7581
7582 /* Go objects should be embedded in a DW_TAG_module DIE,
7583 and it's not clear if/how imported objects will appear.
7584 To keep Go support simple until that's worked out,
7585 go back through what we've read and create something usable.
7586 We could do this while processing each DIE, and feels kinda cleaner,
7587 but that way is more invasive.
7588 This is to, for example, allow the user to type "p var" or "b main"
7589 without having to specify the package name, and allow lookups
7590 of module.object to work in contexts that use the expression
7591 parser. */
7592
7593 static void
7594 fixup_go_packaging (struct dwarf2_cu *cu)
7595 {
7596 char *package_name = NULL;
7597 struct pending *list;
7598 int i;
7599
7600 for (list = global_symbols; list != NULL; list = list->next)
7601 {
7602 for (i = 0; i < list->nsyms; ++i)
7603 {
7604 struct symbol *sym = list->symbol[i];
7605
7606 if (SYMBOL_LANGUAGE (sym) == language_go
7607 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7608 {
7609 char *this_package_name = go_symbol_package_name (sym);
7610
7611 if (this_package_name == NULL)
7612 continue;
7613 if (package_name == NULL)
7614 package_name = this_package_name;
7615 else
7616 {
7617 if (strcmp (package_name, this_package_name) != 0)
7618 complaint (&symfile_complaints,
7619 _("Symtab %s has objects from two different Go packages: %s and %s"),
7620 (SYMBOL_SYMTAB (sym)
7621 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7622 : objfile_name (cu->objfile)),
7623 this_package_name, package_name);
7624 xfree (this_package_name);
7625 }
7626 }
7627 }
7628 }
7629
7630 if (package_name != NULL)
7631 {
7632 struct objfile *objfile = cu->objfile;
7633 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7634 package_name,
7635 strlen (package_name));
7636 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7637 saved_package_name, objfile);
7638 struct symbol *sym;
7639
7640 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7641
7642 sym = allocate_symbol (objfile);
7643 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7644 SYMBOL_SET_NAMES (sym, saved_package_name,
7645 strlen (saved_package_name), 0, objfile);
7646 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7647 e.g., "main" finds the "main" module and not C's main(). */
7648 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7649 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7650 SYMBOL_TYPE (sym) = type;
7651
7652 add_symbol_to_list (sym, &global_symbols);
7653
7654 xfree (package_name);
7655 }
7656 }
7657
7658 /* Return the symtab for PER_CU. This works properly regardless of
7659 whether we're using the index or psymtabs. */
7660
7661 static struct symtab *
7662 get_symtab (struct dwarf2_per_cu_data *per_cu)
7663 {
7664 return (dwarf2_per_objfile->using_index
7665 ? per_cu->v.quick->symtab
7666 : per_cu->v.psymtab->symtab);
7667 }
7668
7669 /* A helper function for computing the list of all symbol tables
7670 included by PER_CU. */
7671
7672 static void
7673 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7674 htab_t all_children, htab_t all_type_symtabs,
7675 struct dwarf2_per_cu_data *per_cu,
7676 struct symtab *immediate_parent)
7677 {
7678 void **slot;
7679 int ix;
7680 struct symtab *symtab;
7681 struct dwarf2_per_cu_data *iter;
7682
7683 slot = htab_find_slot (all_children, per_cu, INSERT);
7684 if (*slot != NULL)
7685 {
7686 /* This inclusion and its children have been processed. */
7687 return;
7688 }
7689
7690 *slot = per_cu;
7691 /* Only add a CU if it has a symbol table. */
7692 symtab = get_symtab (per_cu);
7693 if (symtab != NULL)
7694 {
7695 /* If this is a type unit only add its symbol table if we haven't
7696 seen it yet (type unit per_cu's can share symtabs). */
7697 if (per_cu->is_debug_types)
7698 {
7699 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7700 if (*slot == NULL)
7701 {
7702 *slot = symtab;
7703 VEC_safe_push (symtab_ptr, *result, symtab);
7704 if (symtab->user == NULL)
7705 symtab->user = immediate_parent;
7706 }
7707 }
7708 else
7709 {
7710 VEC_safe_push (symtab_ptr, *result, symtab);
7711 if (symtab->user == NULL)
7712 symtab->user = immediate_parent;
7713 }
7714 }
7715
7716 for (ix = 0;
7717 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7718 ++ix)
7719 {
7720 recursively_compute_inclusions (result, all_children,
7721 all_type_symtabs, iter, symtab);
7722 }
7723 }
7724
7725 /* Compute the symtab 'includes' fields for the symtab related to
7726 PER_CU. */
7727
7728 static void
7729 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7730 {
7731 gdb_assert (! per_cu->is_debug_types);
7732
7733 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7734 {
7735 int ix, len;
7736 struct dwarf2_per_cu_data *per_cu_iter;
7737 struct symtab *symtab_iter;
7738 VEC (symtab_ptr) *result_symtabs = NULL;
7739 htab_t all_children, all_type_symtabs;
7740 struct symtab *symtab = get_symtab (per_cu);
7741
7742 /* If we don't have a symtab, we can just skip this case. */
7743 if (symtab == NULL)
7744 return;
7745
7746 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7747 NULL, xcalloc, xfree);
7748 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7749 NULL, xcalloc, xfree);
7750
7751 for (ix = 0;
7752 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7753 ix, per_cu_iter);
7754 ++ix)
7755 {
7756 recursively_compute_inclusions (&result_symtabs, all_children,
7757 all_type_symtabs, per_cu_iter,
7758 symtab);
7759 }
7760
7761 /* Now we have a transitive closure of all the included symtabs. */
7762 len = VEC_length (symtab_ptr, result_symtabs);
7763 symtab->includes
7764 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7765 (len + 1) * sizeof (struct symtab *));
7766 for (ix = 0;
7767 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7768 ++ix)
7769 symtab->includes[ix] = symtab_iter;
7770 symtab->includes[len] = NULL;
7771
7772 VEC_free (symtab_ptr, result_symtabs);
7773 htab_delete (all_children);
7774 htab_delete (all_type_symtabs);
7775 }
7776 }
7777
7778 /* Compute the 'includes' field for the symtabs of all the CUs we just
7779 read. */
7780
7781 static void
7782 process_cu_includes (void)
7783 {
7784 int ix;
7785 struct dwarf2_per_cu_data *iter;
7786
7787 for (ix = 0;
7788 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7789 ix, iter);
7790 ++ix)
7791 {
7792 if (! iter->is_debug_types)
7793 compute_symtab_includes (iter);
7794 }
7795
7796 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7797 }
7798
7799 /* Generate full symbol information for PER_CU, whose DIEs have
7800 already been loaded into memory. */
7801
7802 static void
7803 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7804 enum language pretend_language)
7805 {
7806 struct dwarf2_cu *cu = per_cu->cu;
7807 struct objfile *objfile = per_cu->objfile;
7808 CORE_ADDR lowpc, highpc;
7809 struct symtab *symtab;
7810 struct cleanup *back_to, *delayed_list_cleanup;
7811 CORE_ADDR baseaddr;
7812 struct block *static_block;
7813
7814 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7815
7816 buildsym_init ();
7817 back_to = make_cleanup (really_free_pendings, NULL);
7818 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7819
7820 cu->list_in_scope = &file_symbols;
7821
7822 cu->language = pretend_language;
7823 cu->language_defn = language_def (cu->language);
7824
7825 /* Do line number decoding in read_file_scope () */
7826 process_die (cu->dies, cu);
7827
7828 /* For now fudge the Go package. */
7829 if (cu->language == language_go)
7830 fixup_go_packaging (cu);
7831
7832 /* Now that we have processed all the DIEs in the CU, all the types
7833 should be complete, and it should now be safe to compute all of the
7834 physnames. */
7835 compute_delayed_physnames (cu);
7836 do_cleanups (delayed_list_cleanup);
7837
7838 /* Some compilers don't define a DW_AT_high_pc attribute for the
7839 compilation unit. If the DW_AT_high_pc is missing, synthesize
7840 it, by scanning the DIE's below the compilation unit. */
7841 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7842
7843 static_block
7844 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7845
7846 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7847 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7848 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7849 addrmap to help ensure it has an accurate map of pc values belonging to
7850 this comp unit. */
7851 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7852
7853 symtab = end_symtab_from_static_block (static_block, objfile,
7854 SECT_OFF_TEXT (objfile), 0);
7855
7856 if (symtab != NULL)
7857 {
7858 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7859
7860 /* Set symtab language to language from DW_AT_language. If the
7861 compilation is from a C file generated by language preprocessors, do
7862 not set the language if it was already deduced by start_subfile. */
7863 if (!(cu->language == language_c && symtab->language != language_c))
7864 symtab->language = cu->language;
7865
7866 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7867 produce DW_AT_location with location lists but it can be possibly
7868 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7869 there were bugs in prologue debug info, fixed later in GCC-4.5
7870 by "unwind info for epilogues" patch (which is not directly related).
7871
7872 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7873 needed, it would be wrong due to missing DW_AT_producer there.
7874
7875 Still one can confuse GDB by using non-standard GCC compilation
7876 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7877 */
7878 if (cu->has_loclist && gcc_4_minor >= 5)
7879 symtab->locations_valid = 1;
7880
7881 if (gcc_4_minor >= 5)
7882 symtab->epilogue_unwind_valid = 1;
7883
7884 symtab->call_site_htab = cu->call_site_htab;
7885 }
7886
7887 if (dwarf2_per_objfile->using_index)
7888 per_cu->v.quick->symtab = symtab;
7889 else
7890 {
7891 struct partial_symtab *pst = per_cu->v.psymtab;
7892 pst->symtab = symtab;
7893 pst->readin = 1;
7894 }
7895
7896 /* Push it for inclusion processing later. */
7897 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7898
7899 do_cleanups (back_to);
7900 }
7901
7902 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7903 already been loaded into memory. */
7904
7905 static void
7906 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7907 enum language pretend_language)
7908 {
7909 struct dwarf2_cu *cu = per_cu->cu;
7910 struct objfile *objfile = per_cu->objfile;
7911 struct symtab *symtab;
7912 struct cleanup *back_to, *delayed_list_cleanup;
7913 struct signatured_type *sig_type;
7914
7915 gdb_assert (per_cu->is_debug_types);
7916 sig_type = (struct signatured_type *) per_cu;
7917
7918 buildsym_init ();
7919 back_to = make_cleanup (really_free_pendings, NULL);
7920 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7921
7922 cu->list_in_scope = &file_symbols;
7923
7924 cu->language = pretend_language;
7925 cu->language_defn = language_def (cu->language);
7926
7927 /* The symbol tables are set up in read_type_unit_scope. */
7928 process_die (cu->dies, cu);
7929
7930 /* For now fudge the Go package. */
7931 if (cu->language == language_go)
7932 fixup_go_packaging (cu);
7933
7934 /* Now that we have processed all the DIEs in the CU, all the types
7935 should be complete, and it should now be safe to compute all of the
7936 physnames. */
7937 compute_delayed_physnames (cu);
7938 do_cleanups (delayed_list_cleanup);
7939
7940 /* TUs share symbol tables.
7941 If this is the first TU to use this symtab, complete the construction
7942 of it with end_expandable_symtab. Otherwise, complete the addition of
7943 this TU's symbols to the existing symtab. */
7944 if (sig_type->type_unit_group->primary_symtab == NULL)
7945 {
7946 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7947 sig_type->type_unit_group->primary_symtab = symtab;
7948
7949 if (symtab != NULL)
7950 {
7951 /* Set symtab language to language from DW_AT_language. If the
7952 compilation is from a C file generated by language preprocessors,
7953 do not set the language if it was already deduced by
7954 start_subfile. */
7955 if (!(cu->language == language_c && symtab->language != language_c))
7956 symtab->language = cu->language;
7957 }
7958 }
7959 else
7960 {
7961 augment_type_symtab (objfile,
7962 sig_type->type_unit_group->primary_symtab);
7963 symtab = sig_type->type_unit_group->primary_symtab;
7964 }
7965
7966 if (dwarf2_per_objfile->using_index)
7967 per_cu->v.quick->symtab = symtab;
7968 else
7969 {
7970 struct partial_symtab *pst = per_cu->v.psymtab;
7971 pst->symtab = symtab;
7972 pst->readin = 1;
7973 }
7974
7975 do_cleanups (back_to);
7976 }
7977
7978 /* Process an imported unit DIE. */
7979
7980 static void
7981 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7982 {
7983 struct attribute *attr;
7984
7985 /* For now we don't handle imported units in type units. */
7986 if (cu->per_cu->is_debug_types)
7987 {
7988 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7989 " supported in type units [in module %s]"),
7990 objfile_name (cu->objfile));
7991 }
7992
7993 attr = dwarf2_attr (die, DW_AT_import, cu);
7994 if (attr != NULL)
7995 {
7996 struct dwarf2_per_cu_data *per_cu;
7997 struct symtab *imported_symtab;
7998 sect_offset offset;
7999 int is_dwz;
8000
8001 offset = dwarf2_get_ref_die_offset (attr);
8002 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8003 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8004
8005 /* If necessary, add it to the queue and load its DIEs. */
8006 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8007 load_full_comp_unit (per_cu, cu->language);
8008
8009 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8010 per_cu);
8011 }
8012 }
8013
8014 /* Reset the in_process bit of a die. */
8015
8016 static void
8017 reset_die_in_process (void *arg)
8018 {
8019 struct die_info *die = arg;
8020
8021 die->in_process = 0;
8022 }
8023
8024 /* Process a die and its children. */
8025
8026 static void
8027 process_die (struct die_info *die, struct dwarf2_cu *cu)
8028 {
8029 struct cleanup *in_process;
8030
8031 /* We should only be processing those not already in process. */
8032 gdb_assert (!die->in_process);
8033
8034 die->in_process = 1;
8035 in_process = make_cleanup (reset_die_in_process,die);
8036
8037 switch (die->tag)
8038 {
8039 case DW_TAG_padding:
8040 break;
8041 case DW_TAG_compile_unit:
8042 case DW_TAG_partial_unit:
8043 read_file_scope (die, cu);
8044 break;
8045 case DW_TAG_type_unit:
8046 read_type_unit_scope (die, cu);
8047 break;
8048 case DW_TAG_subprogram:
8049 case DW_TAG_inlined_subroutine:
8050 read_func_scope (die, cu);
8051 break;
8052 case DW_TAG_lexical_block:
8053 case DW_TAG_try_block:
8054 case DW_TAG_catch_block:
8055 read_lexical_block_scope (die, cu);
8056 break;
8057 case DW_TAG_GNU_call_site:
8058 read_call_site_scope (die, cu);
8059 break;
8060 case DW_TAG_class_type:
8061 case DW_TAG_interface_type:
8062 case DW_TAG_structure_type:
8063 case DW_TAG_union_type:
8064 process_structure_scope (die, cu);
8065 break;
8066 case DW_TAG_enumeration_type:
8067 process_enumeration_scope (die, cu);
8068 break;
8069
8070 /* These dies have a type, but processing them does not create
8071 a symbol or recurse to process the children. Therefore we can
8072 read them on-demand through read_type_die. */
8073 case DW_TAG_subroutine_type:
8074 case DW_TAG_set_type:
8075 case DW_TAG_array_type:
8076 case DW_TAG_pointer_type:
8077 case DW_TAG_ptr_to_member_type:
8078 case DW_TAG_reference_type:
8079 case DW_TAG_string_type:
8080 break;
8081
8082 case DW_TAG_base_type:
8083 case DW_TAG_subrange_type:
8084 case DW_TAG_typedef:
8085 /* Add a typedef symbol for the type definition, if it has a
8086 DW_AT_name. */
8087 new_symbol (die, read_type_die (die, cu), cu);
8088 break;
8089 case DW_TAG_common_block:
8090 read_common_block (die, cu);
8091 break;
8092 case DW_TAG_common_inclusion:
8093 break;
8094 case DW_TAG_namespace:
8095 cu->processing_has_namespace_info = 1;
8096 read_namespace (die, cu);
8097 break;
8098 case DW_TAG_module:
8099 cu->processing_has_namespace_info = 1;
8100 read_module (die, cu);
8101 break;
8102 case DW_TAG_imported_declaration:
8103 cu->processing_has_namespace_info = 1;
8104 if (read_namespace_alias (die, cu))
8105 break;
8106 /* The declaration is not a global namespace alias: fall through. */
8107 case DW_TAG_imported_module:
8108 cu->processing_has_namespace_info = 1;
8109 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8110 || cu->language != language_fortran))
8111 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8112 dwarf_tag_name (die->tag));
8113 read_import_statement (die, cu);
8114 break;
8115
8116 case DW_TAG_imported_unit:
8117 process_imported_unit_die (die, cu);
8118 break;
8119
8120 default:
8121 new_symbol (die, NULL, cu);
8122 break;
8123 }
8124
8125 do_cleanups (in_process);
8126 }
8127 \f
8128 /* DWARF name computation. */
8129
8130 /* A helper function for dwarf2_compute_name which determines whether DIE
8131 needs to have the name of the scope prepended to the name listed in the
8132 die. */
8133
8134 static int
8135 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8136 {
8137 struct attribute *attr;
8138
8139 switch (die->tag)
8140 {
8141 case DW_TAG_namespace:
8142 case DW_TAG_typedef:
8143 case DW_TAG_class_type:
8144 case DW_TAG_interface_type:
8145 case DW_TAG_structure_type:
8146 case DW_TAG_union_type:
8147 case DW_TAG_enumeration_type:
8148 case DW_TAG_enumerator:
8149 case DW_TAG_subprogram:
8150 case DW_TAG_member:
8151 case DW_TAG_imported_declaration:
8152 return 1;
8153
8154 case DW_TAG_variable:
8155 case DW_TAG_constant:
8156 /* We only need to prefix "globally" visible variables. These include
8157 any variable marked with DW_AT_external or any variable that
8158 lives in a namespace. [Variables in anonymous namespaces
8159 require prefixing, but they are not DW_AT_external.] */
8160
8161 if (dwarf2_attr (die, DW_AT_specification, cu))
8162 {
8163 struct dwarf2_cu *spec_cu = cu;
8164
8165 return die_needs_namespace (die_specification (die, &spec_cu),
8166 spec_cu);
8167 }
8168
8169 attr = dwarf2_attr (die, DW_AT_external, cu);
8170 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8171 && die->parent->tag != DW_TAG_module)
8172 return 0;
8173 /* A variable in a lexical block of some kind does not need a
8174 namespace, even though in C++ such variables may be external
8175 and have a mangled name. */
8176 if (die->parent->tag == DW_TAG_lexical_block
8177 || die->parent->tag == DW_TAG_try_block
8178 || die->parent->tag == DW_TAG_catch_block
8179 || die->parent->tag == DW_TAG_subprogram)
8180 return 0;
8181 return 1;
8182
8183 default:
8184 return 0;
8185 }
8186 }
8187
8188 /* Retrieve the last character from a mem_file. */
8189
8190 static void
8191 do_ui_file_peek_last (void *object, const char *buffer, long length)
8192 {
8193 char *last_char_p = (char *) object;
8194
8195 if (length > 0)
8196 *last_char_p = buffer[length - 1];
8197 }
8198
8199 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8200 compute the physname for the object, which include a method's:
8201 - formal parameters (C++/Java),
8202 - receiver type (Go),
8203 - return type (Java).
8204
8205 The term "physname" is a bit confusing.
8206 For C++, for example, it is the demangled name.
8207 For Go, for example, it's the mangled name.
8208
8209 For Ada, return the DIE's linkage name rather than the fully qualified
8210 name. PHYSNAME is ignored..
8211
8212 The result is allocated on the objfile_obstack and canonicalized. */
8213
8214 static const char *
8215 dwarf2_compute_name (const char *name,
8216 struct die_info *die, struct dwarf2_cu *cu,
8217 int physname)
8218 {
8219 struct objfile *objfile = cu->objfile;
8220
8221 if (name == NULL)
8222 name = dwarf2_name (die, cu);
8223
8224 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8225 compute it by typename_concat inside GDB. */
8226 if (cu->language == language_ada
8227 || (cu->language == language_fortran && physname))
8228 {
8229 /* For Ada unit, we prefer the linkage name over the name, as
8230 the former contains the exported name, which the user expects
8231 to be able to reference. Ideally, we want the user to be able
8232 to reference this entity using either natural or linkage name,
8233 but we haven't started looking at this enhancement yet. */
8234 struct attribute *attr;
8235
8236 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8237 if (attr == NULL)
8238 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8239 if (attr && DW_STRING (attr))
8240 return DW_STRING (attr);
8241 }
8242
8243 /* These are the only languages we know how to qualify names in. */
8244 if (name != NULL
8245 && (cu->language == language_cplus || cu->language == language_java
8246 || cu->language == language_fortran))
8247 {
8248 if (die_needs_namespace (die, cu))
8249 {
8250 long length;
8251 const char *prefix;
8252 struct ui_file *buf;
8253
8254 prefix = determine_prefix (die, cu);
8255 buf = mem_fileopen ();
8256 if (*prefix != '\0')
8257 {
8258 char *prefixed_name = typename_concat (NULL, prefix, name,
8259 physname, cu);
8260
8261 fputs_unfiltered (prefixed_name, buf);
8262 xfree (prefixed_name);
8263 }
8264 else
8265 fputs_unfiltered (name, buf);
8266
8267 /* Template parameters may be specified in the DIE's DW_AT_name, or
8268 as children with DW_TAG_template_type_param or
8269 DW_TAG_value_type_param. If the latter, add them to the name
8270 here. If the name already has template parameters, then
8271 skip this step; some versions of GCC emit both, and
8272 it is more efficient to use the pre-computed name.
8273
8274 Something to keep in mind about this process: it is very
8275 unlikely, or in some cases downright impossible, to produce
8276 something that will match the mangled name of a function.
8277 If the definition of the function has the same debug info,
8278 we should be able to match up with it anyway. But fallbacks
8279 using the minimal symbol, for instance to find a method
8280 implemented in a stripped copy of libstdc++, will not work.
8281 If we do not have debug info for the definition, we will have to
8282 match them up some other way.
8283
8284 When we do name matching there is a related problem with function
8285 templates; two instantiated function templates are allowed to
8286 differ only by their return types, which we do not add here. */
8287
8288 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8289 {
8290 struct attribute *attr;
8291 struct die_info *child;
8292 int first = 1;
8293
8294 die->building_fullname = 1;
8295
8296 for (child = die->child; child != NULL; child = child->sibling)
8297 {
8298 struct type *type;
8299 LONGEST value;
8300 const gdb_byte *bytes;
8301 struct dwarf2_locexpr_baton *baton;
8302 struct value *v;
8303
8304 if (child->tag != DW_TAG_template_type_param
8305 && child->tag != DW_TAG_template_value_param)
8306 continue;
8307
8308 if (first)
8309 {
8310 fputs_unfiltered ("<", buf);
8311 first = 0;
8312 }
8313 else
8314 fputs_unfiltered (", ", buf);
8315
8316 attr = dwarf2_attr (child, DW_AT_type, cu);
8317 if (attr == NULL)
8318 {
8319 complaint (&symfile_complaints,
8320 _("template parameter missing DW_AT_type"));
8321 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8322 continue;
8323 }
8324 type = die_type (child, cu);
8325
8326 if (child->tag == DW_TAG_template_type_param)
8327 {
8328 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8329 continue;
8330 }
8331
8332 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8333 if (attr == NULL)
8334 {
8335 complaint (&symfile_complaints,
8336 _("template parameter missing "
8337 "DW_AT_const_value"));
8338 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8339 continue;
8340 }
8341
8342 dwarf2_const_value_attr (attr, type, name,
8343 &cu->comp_unit_obstack, cu,
8344 &value, &bytes, &baton);
8345
8346 if (TYPE_NOSIGN (type))
8347 /* GDB prints characters as NUMBER 'CHAR'. If that's
8348 changed, this can use value_print instead. */
8349 c_printchar (value, type, buf);
8350 else
8351 {
8352 struct value_print_options opts;
8353
8354 if (baton != NULL)
8355 v = dwarf2_evaluate_loc_desc (type, NULL,
8356 baton->data,
8357 baton->size,
8358 baton->per_cu);
8359 else if (bytes != NULL)
8360 {
8361 v = allocate_value (type);
8362 memcpy (value_contents_writeable (v), bytes,
8363 TYPE_LENGTH (type));
8364 }
8365 else
8366 v = value_from_longest (type, value);
8367
8368 /* Specify decimal so that we do not depend on
8369 the radix. */
8370 get_formatted_print_options (&opts, 'd');
8371 opts.raw = 1;
8372 value_print (v, buf, &opts);
8373 release_value (v);
8374 value_free (v);
8375 }
8376 }
8377
8378 die->building_fullname = 0;
8379
8380 if (!first)
8381 {
8382 /* Close the argument list, with a space if necessary
8383 (nested templates). */
8384 char last_char = '\0';
8385 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8386 if (last_char == '>')
8387 fputs_unfiltered (" >", buf);
8388 else
8389 fputs_unfiltered (">", buf);
8390 }
8391 }
8392
8393 /* For Java and C++ methods, append formal parameter type
8394 information, if PHYSNAME. */
8395
8396 if (physname && die->tag == DW_TAG_subprogram
8397 && (cu->language == language_cplus
8398 || cu->language == language_java))
8399 {
8400 struct type *type = read_type_die (die, cu);
8401
8402 c_type_print_args (type, buf, 1, cu->language,
8403 &type_print_raw_options);
8404
8405 if (cu->language == language_java)
8406 {
8407 /* For java, we must append the return type to method
8408 names. */
8409 if (die->tag == DW_TAG_subprogram)
8410 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8411 0, 0, &type_print_raw_options);
8412 }
8413 else if (cu->language == language_cplus)
8414 {
8415 /* Assume that an artificial first parameter is
8416 "this", but do not crash if it is not. RealView
8417 marks unnamed (and thus unused) parameters as
8418 artificial; there is no way to differentiate
8419 the two cases. */
8420 if (TYPE_NFIELDS (type) > 0
8421 && TYPE_FIELD_ARTIFICIAL (type, 0)
8422 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8423 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8424 0))))
8425 fputs_unfiltered (" const", buf);
8426 }
8427 }
8428
8429 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8430 &length);
8431 ui_file_delete (buf);
8432
8433 if (cu->language == language_cplus)
8434 {
8435 const char *cname
8436 = dwarf2_canonicalize_name (name, cu,
8437 &objfile->objfile_obstack);
8438
8439 if (cname != NULL)
8440 name = cname;
8441 }
8442 }
8443 }
8444
8445 return name;
8446 }
8447
8448 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8449 If scope qualifiers are appropriate they will be added. The result
8450 will be allocated on the objfile_obstack, or NULL if the DIE does
8451 not have a name. NAME may either be from a previous call to
8452 dwarf2_name or NULL.
8453
8454 The output string will be canonicalized (if C++/Java). */
8455
8456 static const char *
8457 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8458 {
8459 return dwarf2_compute_name (name, die, cu, 0);
8460 }
8461
8462 /* Construct a physname for the given DIE in CU. NAME may either be
8463 from a previous call to dwarf2_name or NULL. The result will be
8464 allocated on the objfile_objstack or NULL if the DIE does not have a
8465 name.
8466
8467 The output string will be canonicalized (if C++/Java). */
8468
8469 static const char *
8470 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8471 {
8472 struct objfile *objfile = cu->objfile;
8473 struct attribute *attr;
8474 const char *retval, *mangled = NULL, *canon = NULL;
8475 struct cleanup *back_to;
8476 int need_copy = 1;
8477
8478 /* In this case dwarf2_compute_name is just a shortcut not building anything
8479 on its own. */
8480 if (!die_needs_namespace (die, cu))
8481 return dwarf2_compute_name (name, die, cu, 1);
8482
8483 back_to = make_cleanup (null_cleanup, NULL);
8484
8485 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8486 if (!attr)
8487 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8488
8489 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8490 has computed. */
8491 if (attr && DW_STRING (attr))
8492 {
8493 char *demangled;
8494
8495 mangled = DW_STRING (attr);
8496
8497 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8498 type. It is easier for GDB users to search for such functions as
8499 `name(params)' than `long name(params)'. In such case the minimal
8500 symbol names do not match the full symbol names but for template
8501 functions there is never a need to look up their definition from their
8502 declaration so the only disadvantage remains the minimal symbol
8503 variant `long name(params)' does not have the proper inferior type.
8504 */
8505
8506 if (cu->language == language_go)
8507 {
8508 /* This is a lie, but we already lie to the caller new_symbol_full.
8509 new_symbol_full assumes we return the mangled name.
8510 This just undoes that lie until things are cleaned up. */
8511 demangled = NULL;
8512 }
8513 else
8514 {
8515 demangled = gdb_demangle (mangled,
8516 (DMGL_PARAMS | DMGL_ANSI
8517 | (cu->language == language_java
8518 ? DMGL_JAVA | DMGL_RET_POSTFIX
8519 : DMGL_RET_DROP)));
8520 }
8521 if (demangled)
8522 {
8523 make_cleanup (xfree, demangled);
8524 canon = demangled;
8525 }
8526 else
8527 {
8528 canon = mangled;
8529 need_copy = 0;
8530 }
8531 }
8532
8533 if (canon == NULL || check_physname)
8534 {
8535 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8536
8537 if (canon != NULL && strcmp (physname, canon) != 0)
8538 {
8539 /* It may not mean a bug in GDB. The compiler could also
8540 compute DW_AT_linkage_name incorrectly. But in such case
8541 GDB would need to be bug-to-bug compatible. */
8542
8543 complaint (&symfile_complaints,
8544 _("Computed physname <%s> does not match demangled <%s> "
8545 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8546 physname, canon, mangled, die->offset.sect_off,
8547 objfile_name (objfile));
8548
8549 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8550 is available here - over computed PHYSNAME. It is safer
8551 against both buggy GDB and buggy compilers. */
8552
8553 retval = canon;
8554 }
8555 else
8556 {
8557 retval = physname;
8558 need_copy = 0;
8559 }
8560 }
8561 else
8562 retval = canon;
8563
8564 if (need_copy)
8565 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8566
8567 do_cleanups (back_to);
8568 return retval;
8569 }
8570
8571 /* Inspect DIE in CU for a namespace alias. If one exists, record
8572 a new symbol for it.
8573
8574 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8575
8576 static int
8577 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8578 {
8579 struct attribute *attr;
8580
8581 /* If the die does not have a name, this is not a namespace
8582 alias. */
8583 attr = dwarf2_attr (die, DW_AT_name, cu);
8584 if (attr != NULL)
8585 {
8586 int num;
8587 struct die_info *d = die;
8588 struct dwarf2_cu *imported_cu = cu;
8589
8590 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8591 keep inspecting DIEs until we hit the underlying import. */
8592 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8593 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8594 {
8595 attr = dwarf2_attr (d, DW_AT_import, cu);
8596 if (attr == NULL)
8597 break;
8598
8599 d = follow_die_ref (d, attr, &imported_cu);
8600 if (d->tag != DW_TAG_imported_declaration)
8601 break;
8602 }
8603
8604 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8605 {
8606 complaint (&symfile_complaints,
8607 _("DIE at 0x%x has too many recursively imported "
8608 "declarations"), d->offset.sect_off);
8609 return 0;
8610 }
8611
8612 if (attr != NULL)
8613 {
8614 struct type *type;
8615 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8616
8617 type = get_die_type_at_offset (offset, cu->per_cu);
8618 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8619 {
8620 /* This declaration is a global namespace alias. Add
8621 a symbol for it whose type is the aliased namespace. */
8622 new_symbol (die, type, cu);
8623 return 1;
8624 }
8625 }
8626 }
8627
8628 return 0;
8629 }
8630
8631 /* Read the import statement specified by the given die and record it. */
8632
8633 static void
8634 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8635 {
8636 struct objfile *objfile = cu->objfile;
8637 struct attribute *import_attr;
8638 struct die_info *imported_die, *child_die;
8639 struct dwarf2_cu *imported_cu;
8640 const char *imported_name;
8641 const char *imported_name_prefix;
8642 const char *canonical_name;
8643 const char *import_alias;
8644 const char *imported_declaration = NULL;
8645 const char *import_prefix;
8646 VEC (const_char_ptr) *excludes = NULL;
8647 struct cleanup *cleanups;
8648
8649 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8650 if (import_attr == NULL)
8651 {
8652 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8653 dwarf_tag_name (die->tag));
8654 return;
8655 }
8656
8657 imported_cu = cu;
8658 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8659 imported_name = dwarf2_name (imported_die, imported_cu);
8660 if (imported_name == NULL)
8661 {
8662 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8663
8664 The import in the following code:
8665 namespace A
8666 {
8667 typedef int B;
8668 }
8669
8670 int main ()
8671 {
8672 using A::B;
8673 B b;
8674 return b;
8675 }
8676
8677 ...
8678 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8679 <52> DW_AT_decl_file : 1
8680 <53> DW_AT_decl_line : 6
8681 <54> DW_AT_import : <0x75>
8682 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8683 <59> DW_AT_name : B
8684 <5b> DW_AT_decl_file : 1
8685 <5c> DW_AT_decl_line : 2
8686 <5d> DW_AT_type : <0x6e>
8687 ...
8688 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8689 <76> DW_AT_byte_size : 4
8690 <77> DW_AT_encoding : 5 (signed)
8691
8692 imports the wrong die ( 0x75 instead of 0x58 ).
8693 This case will be ignored until the gcc bug is fixed. */
8694 return;
8695 }
8696
8697 /* Figure out the local name after import. */
8698 import_alias = dwarf2_name (die, cu);
8699
8700 /* Figure out where the statement is being imported to. */
8701 import_prefix = determine_prefix (die, cu);
8702
8703 /* Figure out what the scope of the imported die is and prepend it
8704 to the name of the imported die. */
8705 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8706
8707 if (imported_die->tag != DW_TAG_namespace
8708 && imported_die->tag != DW_TAG_module)
8709 {
8710 imported_declaration = imported_name;
8711 canonical_name = imported_name_prefix;
8712 }
8713 else if (strlen (imported_name_prefix) > 0)
8714 canonical_name = obconcat (&objfile->objfile_obstack,
8715 imported_name_prefix, "::", imported_name,
8716 (char *) NULL);
8717 else
8718 canonical_name = imported_name;
8719
8720 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8721
8722 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8723 for (child_die = die->child; child_die && child_die->tag;
8724 child_die = sibling_die (child_die))
8725 {
8726 /* DWARF-4: A Fortran use statement with a “rename list” may be
8727 represented by an imported module entry with an import attribute
8728 referring to the module and owned entries corresponding to those
8729 entities that are renamed as part of being imported. */
8730
8731 if (child_die->tag != DW_TAG_imported_declaration)
8732 {
8733 complaint (&symfile_complaints,
8734 _("child DW_TAG_imported_declaration expected "
8735 "- DIE at 0x%x [in module %s]"),
8736 child_die->offset.sect_off, objfile_name (objfile));
8737 continue;
8738 }
8739
8740 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8741 if (import_attr == NULL)
8742 {
8743 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8744 dwarf_tag_name (child_die->tag));
8745 continue;
8746 }
8747
8748 imported_cu = cu;
8749 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8750 &imported_cu);
8751 imported_name = dwarf2_name (imported_die, imported_cu);
8752 if (imported_name == NULL)
8753 {
8754 complaint (&symfile_complaints,
8755 _("child DW_TAG_imported_declaration has unknown "
8756 "imported name - DIE at 0x%x [in module %s]"),
8757 child_die->offset.sect_off, objfile_name (objfile));
8758 continue;
8759 }
8760
8761 VEC_safe_push (const_char_ptr, excludes, imported_name);
8762
8763 process_die (child_die, cu);
8764 }
8765
8766 cp_add_using_directive (import_prefix,
8767 canonical_name,
8768 import_alias,
8769 imported_declaration,
8770 excludes,
8771 0,
8772 &objfile->objfile_obstack);
8773
8774 do_cleanups (cleanups);
8775 }
8776
8777 /* Cleanup function for handle_DW_AT_stmt_list. */
8778
8779 static void
8780 free_cu_line_header (void *arg)
8781 {
8782 struct dwarf2_cu *cu = arg;
8783
8784 free_line_header (cu->line_header);
8785 cu->line_header = NULL;
8786 }
8787
8788 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8789 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8790 this, it was first present in GCC release 4.3.0. */
8791
8792 static int
8793 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8794 {
8795 if (!cu->checked_producer)
8796 check_producer (cu);
8797
8798 return cu->producer_is_gcc_lt_4_3;
8799 }
8800
8801 static void
8802 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8803 const char **name, const char **comp_dir)
8804 {
8805 struct attribute *attr;
8806
8807 *name = NULL;
8808 *comp_dir = NULL;
8809
8810 /* Find the filename. Do not use dwarf2_name here, since the filename
8811 is not a source language identifier. */
8812 attr = dwarf2_attr (die, DW_AT_name, cu);
8813 if (attr)
8814 {
8815 *name = DW_STRING (attr);
8816 }
8817
8818 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8819 if (attr)
8820 *comp_dir = DW_STRING (attr);
8821 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8822 && IS_ABSOLUTE_PATH (*name))
8823 {
8824 char *d = ldirname (*name);
8825
8826 *comp_dir = d;
8827 if (d != NULL)
8828 make_cleanup (xfree, d);
8829 }
8830 if (*comp_dir != NULL)
8831 {
8832 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8833 directory, get rid of it. */
8834 char *cp = strchr (*comp_dir, ':');
8835
8836 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8837 *comp_dir = cp + 1;
8838 }
8839
8840 if (*name == NULL)
8841 *name = "<unknown>";
8842 }
8843
8844 /* Handle DW_AT_stmt_list for a compilation unit.
8845 DIE is the DW_TAG_compile_unit die for CU.
8846 COMP_DIR is the compilation directory.
8847 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8848
8849 static void
8850 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8851 const char *comp_dir) /* ARI: editCase function */
8852 {
8853 struct attribute *attr;
8854
8855 gdb_assert (! cu->per_cu->is_debug_types);
8856
8857 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8858 if (attr)
8859 {
8860 unsigned int line_offset = DW_UNSND (attr);
8861 struct line_header *line_header
8862 = dwarf_decode_line_header (line_offset, cu);
8863
8864 if (line_header)
8865 {
8866 cu->line_header = line_header;
8867 make_cleanup (free_cu_line_header, cu);
8868 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8869 }
8870 }
8871 }
8872
8873 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8874
8875 static void
8876 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8877 {
8878 struct objfile *objfile = dwarf2_per_objfile->objfile;
8879 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8880 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8881 CORE_ADDR highpc = ((CORE_ADDR) 0);
8882 struct attribute *attr;
8883 const char *name = NULL;
8884 const char *comp_dir = NULL;
8885 struct die_info *child_die;
8886 bfd *abfd = objfile->obfd;
8887 CORE_ADDR baseaddr;
8888
8889 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8890
8891 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8892
8893 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8894 from finish_block. */
8895 if (lowpc == ((CORE_ADDR) -1))
8896 lowpc = highpc;
8897 lowpc += baseaddr;
8898 highpc += baseaddr;
8899
8900 find_file_and_directory (die, cu, &name, &comp_dir);
8901
8902 prepare_one_comp_unit (cu, die, cu->language);
8903
8904 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8905 standardised yet. As a workaround for the language detection we fall
8906 back to the DW_AT_producer string. */
8907 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8908 cu->language = language_opencl;
8909
8910 /* Similar hack for Go. */
8911 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8912 set_cu_language (DW_LANG_Go, cu);
8913
8914 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8915
8916 /* Decode line number information if present. We do this before
8917 processing child DIEs, so that the line header table is available
8918 for DW_AT_decl_file. */
8919 handle_DW_AT_stmt_list (die, cu, comp_dir);
8920
8921 /* Process all dies in compilation unit. */
8922 if (die->child != NULL)
8923 {
8924 child_die = die->child;
8925 while (child_die && child_die->tag)
8926 {
8927 process_die (child_die, cu);
8928 child_die = sibling_die (child_die);
8929 }
8930 }
8931
8932 /* Decode macro information, if present. Dwarf 2 macro information
8933 refers to information in the line number info statement program
8934 header, so we can only read it if we've read the header
8935 successfully. */
8936 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8937 if (attr && cu->line_header)
8938 {
8939 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8940 complaint (&symfile_complaints,
8941 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8942
8943 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8944 }
8945 else
8946 {
8947 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8948 if (attr && cu->line_header)
8949 {
8950 unsigned int macro_offset = DW_UNSND (attr);
8951
8952 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8953 }
8954 }
8955
8956 do_cleanups (back_to);
8957 }
8958
8959 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8960 Create the set of symtabs used by this TU, or if this TU is sharing
8961 symtabs with another TU and the symtabs have already been created
8962 then restore those symtabs in the line header.
8963 We don't need the pc/line-number mapping for type units. */
8964
8965 static void
8966 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8967 {
8968 struct objfile *objfile = dwarf2_per_objfile->objfile;
8969 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8970 struct type_unit_group *tu_group;
8971 int first_time;
8972 struct line_header *lh;
8973 struct attribute *attr;
8974 unsigned int i, line_offset;
8975 struct signatured_type *sig_type;
8976
8977 gdb_assert (per_cu->is_debug_types);
8978 sig_type = (struct signatured_type *) per_cu;
8979
8980 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8981
8982 /* If we're using .gdb_index (includes -readnow) then
8983 per_cu->type_unit_group may not have been set up yet. */
8984 if (sig_type->type_unit_group == NULL)
8985 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8986 tu_group = sig_type->type_unit_group;
8987
8988 /* If we've already processed this stmt_list there's no real need to
8989 do it again, we could fake it and just recreate the part we need
8990 (file name,index -> symtab mapping). If data shows this optimization
8991 is useful we can do it then. */
8992 first_time = tu_group->primary_symtab == NULL;
8993
8994 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8995 debug info. */
8996 lh = NULL;
8997 if (attr != NULL)
8998 {
8999 line_offset = DW_UNSND (attr);
9000 lh = dwarf_decode_line_header (line_offset, cu);
9001 }
9002 if (lh == NULL)
9003 {
9004 if (first_time)
9005 dwarf2_start_symtab (cu, "", NULL, 0);
9006 else
9007 {
9008 gdb_assert (tu_group->symtabs == NULL);
9009 restart_symtab (0);
9010 }
9011 /* Note: The primary symtab will get allocated at the end. */
9012 return;
9013 }
9014
9015 cu->line_header = lh;
9016 make_cleanup (free_cu_line_header, cu);
9017
9018 if (first_time)
9019 {
9020 dwarf2_start_symtab (cu, "", NULL, 0);
9021
9022 tu_group->num_symtabs = lh->num_file_names;
9023 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9024
9025 for (i = 0; i < lh->num_file_names; ++i)
9026 {
9027 const char *dir = NULL;
9028 struct file_entry *fe = &lh->file_names[i];
9029
9030 if (fe->dir_index)
9031 dir = lh->include_dirs[fe->dir_index - 1];
9032 dwarf2_start_subfile (fe->name, dir, NULL);
9033
9034 /* Note: We don't have to watch for the main subfile here, type units
9035 don't have DW_AT_name. */
9036
9037 if (current_subfile->symtab == NULL)
9038 {
9039 /* NOTE: start_subfile will recognize when it's been passed
9040 a file it has already seen. So we can't assume there's a
9041 simple mapping from lh->file_names to subfiles,
9042 lh->file_names may contain dups. */
9043 current_subfile->symtab = allocate_symtab (current_subfile->name,
9044 objfile);
9045 }
9046
9047 fe->symtab = current_subfile->symtab;
9048 tu_group->symtabs[i] = fe->symtab;
9049 }
9050 }
9051 else
9052 {
9053 restart_symtab (0);
9054
9055 for (i = 0; i < lh->num_file_names; ++i)
9056 {
9057 struct file_entry *fe = &lh->file_names[i];
9058
9059 fe->symtab = tu_group->symtabs[i];
9060 }
9061 }
9062
9063 /* The main symtab is allocated last. Type units don't have DW_AT_name
9064 so they don't have a "real" (so to speak) symtab anyway.
9065 There is later code that will assign the main symtab to all symbols
9066 that don't have one. We need to handle the case of a symbol with a
9067 missing symtab (DW_AT_decl_file) anyway. */
9068 }
9069
9070 /* Process DW_TAG_type_unit.
9071 For TUs we want to skip the first top level sibling if it's not the
9072 actual type being defined by this TU. In this case the first top
9073 level sibling is there to provide context only. */
9074
9075 static void
9076 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9077 {
9078 struct die_info *child_die;
9079
9080 prepare_one_comp_unit (cu, die, language_minimal);
9081
9082 /* Initialize (or reinitialize) the machinery for building symtabs.
9083 We do this before processing child DIEs, so that the line header table
9084 is available for DW_AT_decl_file. */
9085 setup_type_unit_groups (die, cu);
9086
9087 if (die->child != NULL)
9088 {
9089 child_die = die->child;
9090 while (child_die && child_die->tag)
9091 {
9092 process_die (child_die, cu);
9093 child_die = sibling_die (child_die);
9094 }
9095 }
9096 }
9097 \f
9098 /* DWO/DWP files.
9099
9100 http://gcc.gnu.org/wiki/DebugFission
9101 http://gcc.gnu.org/wiki/DebugFissionDWP
9102
9103 To simplify handling of both DWO files ("object" files with the DWARF info)
9104 and DWP files (a file with the DWOs packaged up into one file), we treat
9105 DWP files as having a collection of virtual DWO files. */
9106
9107 static hashval_t
9108 hash_dwo_file (const void *item)
9109 {
9110 const struct dwo_file *dwo_file = item;
9111 hashval_t hash;
9112
9113 hash = htab_hash_string (dwo_file->dwo_name);
9114 if (dwo_file->comp_dir != NULL)
9115 hash += htab_hash_string (dwo_file->comp_dir);
9116 return hash;
9117 }
9118
9119 static int
9120 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9121 {
9122 const struct dwo_file *lhs = item_lhs;
9123 const struct dwo_file *rhs = item_rhs;
9124
9125 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9126 return 0;
9127 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9128 return lhs->comp_dir == rhs->comp_dir;
9129 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9130 }
9131
9132 /* Allocate a hash table for DWO files. */
9133
9134 static htab_t
9135 allocate_dwo_file_hash_table (void)
9136 {
9137 struct objfile *objfile = dwarf2_per_objfile->objfile;
9138
9139 return htab_create_alloc_ex (41,
9140 hash_dwo_file,
9141 eq_dwo_file,
9142 NULL,
9143 &objfile->objfile_obstack,
9144 hashtab_obstack_allocate,
9145 dummy_obstack_deallocate);
9146 }
9147
9148 /* Lookup DWO file DWO_NAME. */
9149
9150 static void **
9151 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9152 {
9153 struct dwo_file find_entry;
9154 void **slot;
9155
9156 if (dwarf2_per_objfile->dwo_files == NULL)
9157 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9158
9159 memset (&find_entry, 0, sizeof (find_entry));
9160 find_entry.dwo_name = dwo_name;
9161 find_entry.comp_dir = comp_dir;
9162 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9163
9164 return slot;
9165 }
9166
9167 static hashval_t
9168 hash_dwo_unit (const void *item)
9169 {
9170 const struct dwo_unit *dwo_unit = item;
9171
9172 /* This drops the top 32 bits of the id, but is ok for a hash. */
9173 return dwo_unit->signature;
9174 }
9175
9176 static int
9177 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9178 {
9179 const struct dwo_unit *lhs = item_lhs;
9180 const struct dwo_unit *rhs = item_rhs;
9181
9182 /* The signature is assumed to be unique within the DWO file.
9183 So while object file CU dwo_id's always have the value zero,
9184 that's OK, assuming each object file DWO file has only one CU,
9185 and that's the rule for now. */
9186 return lhs->signature == rhs->signature;
9187 }
9188
9189 /* Allocate a hash table for DWO CUs,TUs.
9190 There is one of these tables for each of CUs,TUs for each DWO file. */
9191
9192 static htab_t
9193 allocate_dwo_unit_table (struct objfile *objfile)
9194 {
9195 /* Start out with a pretty small number.
9196 Generally DWO files contain only one CU and maybe some TUs. */
9197 return htab_create_alloc_ex (3,
9198 hash_dwo_unit,
9199 eq_dwo_unit,
9200 NULL,
9201 &objfile->objfile_obstack,
9202 hashtab_obstack_allocate,
9203 dummy_obstack_deallocate);
9204 }
9205
9206 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9207
9208 struct create_dwo_cu_data
9209 {
9210 struct dwo_file *dwo_file;
9211 struct dwo_unit dwo_unit;
9212 };
9213
9214 /* die_reader_func for create_dwo_cu. */
9215
9216 static void
9217 create_dwo_cu_reader (const struct die_reader_specs *reader,
9218 const gdb_byte *info_ptr,
9219 struct die_info *comp_unit_die,
9220 int has_children,
9221 void *datap)
9222 {
9223 struct dwarf2_cu *cu = reader->cu;
9224 struct objfile *objfile = dwarf2_per_objfile->objfile;
9225 sect_offset offset = cu->per_cu->offset;
9226 struct dwarf2_section_info *section = cu->per_cu->section;
9227 struct create_dwo_cu_data *data = datap;
9228 struct dwo_file *dwo_file = data->dwo_file;
9229 struct dwo_unit *dwo_unit = &data->dwo_unit;
9230 struct attribute *attr;
9231
9232 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9233 if (attr == NULL)
9234 {
9235 complaint (&symfile_complaints,
9236 _("Dwarf Error: debug entry at offset 0x%x is missing"
9237 " its dwo_id [in module %s]"),
9238 offset.sect_off, dwo_file->dwo_name);
9239 return;
9240 }
9241
9242 dwo_unit->dwo_file = dwo_file;
9243 dwo_unit->signature = DW_UNSND (attr);
9244 dwo_unit->section = section;
9245 dwo_unit->offset = offset;
9246 dwo_unit->length = cu->per_cu->length;
9247
9248 if (dwarf2_read_debug)
9249 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9250 offset.sect_off, hex_string (dwo_unit->signature));
9251 }
9252
9253 /* Create the dwo_unit for the lone CU in DWO_FILE.
9254 Note: This function processes DWO files only, not DWP files. */
9255
9256 static struct dwo_unit *
9257 create_dwo_cu (struct dwo_file *dwo_file)
9258 {
9259 struct objfile *objfile = dwarf2_per_objfile->objfile;
9260 struct dwarf2_section_info *section = &dwo_file->sections.info;
9261 bfd *abfd;
9262 htab_t cu_htab;
9263 const gdb_byte *info_ptr, *end_ptr;
9264 struct create_dwo_cu_data create_dwo_cu_data;
9265 struct dwo_unit *dwo_unit;
9266
9267 dwarf2_read_section (objfile, section);
9268 info_ptr = section->buffer;
9269
9270 if (info_ptr == NULL)
9271 return NULL;
9272
9273 /* We can't set abfd until now because the section may be empty or
9274 not present, in which case section->asection will be NULL. */
9275 abfd = get_section_bfd_owner (section);
9276
9277 if (dwarf2_read_debug)
9278 {
9279 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9280 get_section_name (section),
9281 get_section_file_name (section));
9282 }
9283
9284 create_dwo_cu_data.dwo_file = dwo_file;
9285 dwo_unit = NULL;
9286
9287 end_ptr = info_ptr + section->size;
9288 while (info_ptr < end_ptr)
9289 {
9290 struct dwarf2_per_cu_data per_cu;
9291
9292 memset (&create_dwo_cu_data.dwo_unit, 0,
9293 sizeof (create_dwo_cu_data.dwo_unit));
9294 memset (&per_cu, 0, sizeof (per_cu));
9295 per_cu.objfile = objfile;
9296 per_cu.is_debug_types = 0;
9297 per_cu.offset.sect_off = info_ptr - section->buffer;
9298 per_cu.section = section;
9299
9300 init_cutu_and_read_dies_no_follow (&per_cu,
9301 &dwo_file->sections.abbrev,
9302 dwo_file,
9303 create_dwo_cu_reader,
9304 &create_dwo_cu_data);
9305
9306 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9307 {
9308 /* If we've already found one, complain. We only support one
9309 because having more than one requires hacking the dwo_name of
9310 each to match, which is highly unlikely to happen. */
9311 if (dwo_unit != NULL)
9312 {
9313 complaint (&symfile_complaints,
9314 _("Multiple CUs in DWO file %s [in module %s]"),
9315 dwo_file->dwo_name, objfile_name (objfile));
9316 break;
9317 }
9318
9319 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9320 *dwo_unit = create_dwo_cu_data.dwo_unit;
9321 }
9322
9323 info_ptr += per_cu.length;
9324 }
9325
9326 return dwo_unit;
9327 }
9328
9329 /* DWP file .debug_{cu,tu}_index section format:
9330 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9331
9332 DWP Version 1:
9333
9334 Both index sections have the same format, and serve to map a 64-bit
9335 signature to a set of section numbers. Each section begins with a header,
9336 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9337 indexes, and a pool of 32-bit section numbers. The index sections will be
9338 aligned at 8-byte boundaries in the file.
9339
9340 The index section header consists of:
9341
9342 V, 32 bit version number
9343 -, 32 bits unused
9344 N, 32 bit number of compilation units or type units in the index
9345 M, 32 bit number of slots in the hash table
9346
9347 Numbers are recorded using the byte order of the application binary.
9348
9349 The hash table begins at offset 16 in the section, and consists of an array
9350 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9351 order of the application binary). Unused slots in the hash table are 0.
9352 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9353
9354 The parallel table begins immediately after the hash table
9355 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9356 array of 32-bit indexes (using the byte order of the application binary),
9357 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9358 table contains a 32-bit index into the pool of section numbers. For unused
9359 hash table slots, the corresponding entry in the parallel table will be 0.
9360
9361 The pool of section numbers begins immediately following the hash table
9362 (at offset 16 + 12 * M from the beginning of the section). The pool of
9363 section numbers consists of an array of 32-bit words (using the byte order
9364 of the application binary). Each item in the array is indexed starting
9365 from 0. The hash table entry provides the index of the first section
9366 number in the set. Additional section numbers in the set follow, and the
9367 set is terminated by a 0 entry (section number 0 is not used in ELF).
9368
9369 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9370 section must be the first entry in the set, and the .debug_abbrev.dwo must
9371 be the second entry. Other members of the set may follow in any order.
9372
9373 ---
9374
9375 DWP Version 2:
9376
9377 DWP Version 2 combines all the .debug_info, etc. sections into one,
9378 and the entries in the index tables are now offsets into these sections.
9379 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9380 section.
9381
9382 Index Section Contents:
9383 Header
9384 Hash Table of Signatures dwp_hash_table.hash_table
9385 Parallel Table of Indices dwp_hash_table.unit_table
9386 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9387 Table of Section Sizes dwp_hash_table.v2.sizes
9388
9389 The index section header consists of:
9390
9391 V, 32 bit version number
9392 L, 32 bit number of columns in the table of section offsets
9393 N, 32 bit number of compilation units or type units in the index
9394 M, 32 bit number of slots in the hash table
9395
9396 Numbers are recorded using the byte order of the application binary.
9397
9398 The hash table has the same format as version 1.
9399 The parallel table of indices has the same format as version 1,
9400 except that the entries are origin-1 indices into the table of sections
9401 offsets and the table of section sizes.
9402
9403 The table of offsets begins immediately following the parallel table
9404 (at offset 16 + 12 * M from the beginning of the section). The table is
9405 a two-dimensional array of 32-bit words (using the byte order of the
9406 application binary), with L columns and N+1 rows, in row-major order.
9407 Each row in the array is indexed starting from 0. The first row provides
9408 a key to the remaining rows: each column in this row provides an identifier
9409 for a debug section, and the offsets in the same column of subsequent rows
9410 refer to that section. The section identifiers are:
9411
9412 DW_SECT_INFO 1 .debug_info.dwo
9413 DW_SECT_TYPES 2 .debug_types.dwo
9414 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9415 DW_SECT_LINE 4 .debug_line.dwo
9416 DW_SECT_LOC 5 .debug_loc.dwo
9417 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9418 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9419 DW_SECT_MACRO 8 .debug_macro.dwo
9420
9421 The offsets provided by the CU and TU index sections are the base offsets
9422 for the contributions made by each CU or TU to the corresponding section
9423 in the package file. Each CU and TU header contains an abbrev_offset
9424 field, used to find the abbreviations table for that CU or TU within the
9425 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9426 be interpreted as relative to the base offset given in the index section.
9427 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9428 should be interpreted as relative to the base offset for .debug_line.dwo,
9429 and offsets into other debug sections obtained from DWARF attributes should
9430 also be interpreted as relative to the corresponding base offset.
9431
9432 The table of sizes begins immediately following the table of offsets.
9433 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9434 with L columns and N rows, in row-major order. Each row in the array is
9435 indexed starting from 1 (row 0 is shared by the two tables).
9436
9437 ---
9438
9439 Hash table lookup is handled the same in version 1 and 2:
9440
9441 We assume that N and M will not exceed 2^32 - 1.
9442 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9443
9444 Given a 64-bit compilation unit signature or a type signature S, an entry
9445 in the hash table is located as follows:
9446
9447 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9448 the low-order k bits all set to 1.
9449
9450 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9451
9452 3) If the hash table entry at index H matches the signature, use that
9453 entry. If the hash table entry at index H is unused (all zeroes),
9454 terminate the search: the signature is not present in the table.
9455
9456 4) Let H = (H + H') modulo M. Repeat at Step 3.
9457
9458 Because M > N and H' and M are relatively prime, the search is guaranteed
9459 to stop at an unused slot or find the match. */
9460
9461 /* Create a hash table to map DWO IDs to their CU/TU entry in
9462 .debug_{info,types}.dwo in DWP_FILE.
9463 Returns NULL if there isn't one.
9464 Note: This function processes DWP files only, not DWO files. */
9465
9466 static struct dwp_hash_table *
9467 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9468 {
9469 struct objfile *objfile = dwarf2_per_objfile->objfile;
9470 bfd *dbfd = dwp_file->dbfd;
9471 const gdb_byte *index_ptr, *index_end;
9472 struct dwarf2_section_info *index;
9473 uint32_t version, nr_columns, nr_units, nr_slots;
9474 struct dwp_hash_table *htab;
9475
9476 if (is_debug_types)
9477 index = &dwp_file->sections.tu_index;
9478 else
9479 index = &dwp_file->sections.cu_index;
9480
9481 if (dwarf2_section_empty_p (index))
9482 return NULL;
9483 dwarf2_read_section (objfile, index);
9484
9485 index_ptr = index->buffer;
9486 index_end = index_ptr + index->size;
9487
9488 version = read_4_bytes (dbfd, index_ptr);
9489 index_ptr += 4;
9490 if (version == 2)
9491 nr_columns = read_4_bytes (dbfd, index_ptr);
9492 else
9493 nr_columns = 0;
9494 index_ptr += 4;
9495 nr_units = read_4_bytes (dbfd, index_ptr);
9496 index_ptr += 4;
9497 nr_slots = read_4_bytes (dbfd, index_ptr);
9498 index_ptr += 4;
9499
9500 if (version != 1 && version != 2)
9501 {
9502 error (_("Dwarf Error: unsupported DWP file version (%s)"
9503 " [in module %s]"),
9504 pulongest (version), dwp_file->name);
9505 }
9506 if (nr_slots != (nr_slots & -nr_slots))
9507 {
9508 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9509 " is not power of 2 [in module %s]"),
9510 pulongest (nr_slots), dwp_file->name);
9511 }
9512
9513 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9514 htab->version = version;
9515 htab->nr_columns = nr_columns;
9516 htab->nr_units = nr_units;
9517 htab->nr_slots = nr_slots;
9518 htab->hash_table = index_ptr;
9519 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9520
9521 /* Exit early if the table is empty. */
9522 if (nr_slots == 0 || nr_units == 0
9523 || (version == 2 && nr_columns == 0))
9524 {
9525 /* All must be zero. */
9526 if (nr_slots != 0 || nr_units != 0
9527 || (version == 2 && nr_columns != 0))
9528 {
9529 complaint (&symfile_complaints,
9530 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9531 " all zero [in modules %s]"),
9532 dwp_file->name);
9533 }
9534 return htab;
9535 }
9536
9537 if (version == 1)
9538 {
9539 htab->section_pool.v1.indices =
9540 htab->unit_table + sizeof (uint32_t) * nr_slots;
9541 /* It's harder to decide whether the section is too small in v1.
9542 V1 is deprecated anyway so we punt. */
9543 }
9544 else
9545 {
9546 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9547 int *ids = htab->section_pool.v2.section_ids;
9548 /* Reverse map for error checking. */
9549 int ids_seen[DW_SECT_MAX + 1];
9550 int i;
9551
9552 if (nr_columns < 2)
9553 {
9554 error (_("Dwarf Error: bad DWP hash table, too few columns"
9555 " in section table [in module %s]"),
9556 dwp_file->name);
9557 }
9558 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9559 {
9560 error (_("Dwarf Error: bad DWP hash table, too many columns"
9561 " in section table [in module %s]"),
9562 dwp_file->name);
9563 }
9564 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9565 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9566 for (i = 0; i < nr_columns; ++i)
9567 {
9568 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9569
9570 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9571 {
9572 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9573 " in section table [in module %s]"),
9574 id, dwp_file->name);
9575 }
9576 if (ids_seen[id] != -1)
9577 {
9578 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9579 " id %d in section table [in module %s]"),
9580 id, dwp_file->name);
9581 }
9582 ids_seen[id] = i;
9583 ids[i] = id;
9584 }
9585 /* Must have exactly one info or types section. */
9586 if (((ids_seen[DW_SECT_INFO] != -1)
9587 + (ids_seen[DW_SECT_TYPES] != -1))
9588 != 1)
9589 {
9590 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9591 " DWO info/types section [in module %s]"),
9592 dwp_file->name);
9593 }
9594 /* Must have an abbrev section. */
9595 if (ids_seen[DW_SECT_ABBREV] == -1)
9596 {
9597 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9598 " section [in module %s]"),
9599 dwp_file->name);
9600 }
9601 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9602 htab->section_pool.v2.sizes =
9603 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9604 * nr_units * nr_columns);
9605 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9606 * nr_units * nr_columns))
9607 > index_end)
9608 {
9609 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9610 " [in module %s]"),
9611 dwp_file->name);
9612 }
9613 }
9614
9615 return htab;
9616 }
9617
9618 /* Update SECTIONS with the data from SECTP.
9619
9620 This function is like the other "locate" section routines that are
9621 passed to bfd_map_over_sections, but in this context the sections to
9622 read comes from the DWP V1 hash table, not the full ELF section table.
9623
9624 The result is non-zero for success, or zero if an error was found. */
9625
9626 static int
9627 locate_v1_virtual_dwo_sections (asection *sectp,
9628 struct virtual_v1_dwo_sections *sections)
9629 {
9630 const struct dwop_section_names *names = &dwop_section_names;
9631
9632 if (section_is_p (sectp->name, &names->abbrev_dwo))
9633 {
9634 /* There can be only one. */
9635 if (sections->abbrev.s.asection != NULL)
9636 return 0;
9637 sections->abbrev.s.asection = sectp;
9638 sections->abbrev.size = bfd_get_section_size (sectp);
9639 }
9640 else if (section_is_p (sectp->name, &names->info_dwo)
9641 || section_is_p (sectp->name, &names->types_dwo))
9642 {
9643 /* There can be only one. */
9644 if (sections->info_or_types.s.asection != NULL)
9645 return 0;
9646 sections->info_or_types.s.asection = sectp;
9647 sections->info_or_types.size = bfd_get_section_size (sectp);
9648 }
9649 else if (section_is_p (sectp->name, &names->line_dwo))
9650 {
9651 /* There can be only one. */
9652 if (sections->line.s.asection != NULL)
9653 return 0;
9654 sections->line.s.asection = sectp;
9655 sections->line.size = bfd_get_section_size (sectp);
9656 }
9657 else if (section_is_p (sectp->name, &names->loc_dwo))
9658 {
9659 /* There can be only one. */
9660 if (sections->loc.s.asection != NULL)
9661 return 0;
9662 sections->loc.s.asection = sectp;
9663 sections->loc.size = bfd_get_section_size (sectp);
9664 }
9665 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9666 {
9667 /* There can be only one. */
9668 if (sections->macinfo.s.asection != NULL)
9669 return 0;
9670 sections->macinfo.s.asection = sectp;
9671 sections->macinfo.size = bfd_get_section_size (sectp);
9672 }
9673 else if (section_is_p (sectp->name, &names->macro_dwo))
9674 {
9675 /* There can be only one. */
9676 if (sections->macro.s.asection != NULL)
9677 return 0;
9678 sections->macro.s.asection = sectp;
9679 sections->macro.size = bfd_get_section_size (sectp);
9680 }
9681 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9682 {
9683 /* There can be only one. */
9684 if (sections->str_offsets.s.asection != NULL)
9685 return 0;
9686 sections->str_offsets.s.asection = sectp;
9687 sections->str_offsets.size = bfd_get_section_size (sectp);
9688 }
9689 else
9690 {
9691 /* No other kind of section is valid. */
9692 return 0;
9693 }
9694
9695 return 1;
9696 }
9697
9698 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9699 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9700 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9701 This is for DWP version 1 files. */
9702
9703 static struct dwo_unit *
9704 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9705 uint32_t unit_index,
9706 const char *comp_dir,
9707 ULONGEST signature, int is_debug_types)
9708 {
9709 struct objfile *objfile = dwarf2_per_objfile->objfile;
9710 const struct dwp_hash_table *dwp_htab =
9711 is_debug_types ? dwp_file->tus : dwp_file->cus;
9712 bfd *dbfd = dwp_file->dbfd;
9713 const char *kind = is_debug_types ? "TU" : "CU";
9714 struct dwo_file *dwo_file;
9715 struct dwo_unit *dwo_unit;
9716 struct virtual_v1_dwo_sections sections;
9717 void **dwo_file_slot;
9718 char *virtual_dwo_name;
9719 struct dwarf2_section_info *cutu;
9720 struct cleanup *cleanups;
9721 int i;
9722
9723 gdb_assert (dwp_file->version == 1);
9724
9725 if (dwarf2_read_debug)
9726 {
9727 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9728 kind,
9729 pulongest (unit_index), hex_string (signature),
9730 dwp_file->name);
9731 }
9732
9733 /* Fetch the sections of this DWO unit.
9734 Put a limit on the number of sections we look for so that bad data
9735 doesn't cause us to loop forever. */
9736
9737 #define MAX_NR_V1_DWO_SECTIONS \
9738 (1 /* .debug_info or .debug_types */ \
9739 + 1 /* .debug_abbrev */ \
9740 + 1 /* .debug_line */ \
9741 + 1 /* .debug_loc */ \
9742 + 1 /* .debug_str_offsets */ \
9743 + 1 /* .debug_macro or .debug_macinfo */ \
9744 + 1 /* trailing zero */)
9745
9746 memset (&sections, 0, sizeof (sections));
9747 cleanups = make_cleanup (null_cleanup, 0);
9748
9749 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9750 {
9751 asection *sectp;
9752 uint32_t section_nr =
9753 read_4_bytes (dbfd,
9754 dwp_htab->section_pool.v1.indices
9755 + (unit_index + i) * sizeof (uint32_t));
9756
9757 if (section_nr == 0)
9758 break;
9759 if (section_nr >= dwp_file->num_sections)
9760 {
9761 error (_("Dwarf Error: bad DWP hash table, section number too large"
9762 " [in module %s]"),
9763 dwp_file->name);
9764 }
9765
9766 sectp = dwp_file->elf_sections[section_nr];
9767 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9768 {
9769 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9770 " [in module %s]"),
9771 dwp_file->name);
9772 }
9773 }
9774
9775 if (i < 2
9776 || dwarf2_section_empty_p (&sections.info_or_types)
9777 || dwarf2_section_empty_p (&sections.abbrev))
9778 {
9779 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9780 " [in module %s]"),
9781 dwp_file->name);
9782 }
9783 if (i == MAX_NR_V1_DWO_SECTIONS)
9784 {
9785 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9786 " [in module %s]"),
9787 dwp_file->name);
9788 }
9789
9790 /* It's easier for the rest of the code if we fake a struct dwo_file and
9791 have dwo_unit "live" in that. At least for now.
9792
9793 The DWP file can be made up of a random collection of CUs and TUs.
9794 However, for each CU + set of TUs that came from the same original DWO
9795 file, we can combine them back into a virtual DWO file to save space
9796 (fewer struct dwo_file objects to allocate). Remember that for really
9797 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9798
9799 virtual_dwo_name =
9800 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9801 get_section_id (&sections.abbrev),
9802 get_section_id (&sections.line),
9803 get_section_id (&sections.loc),
9804 get_section_id (&sections.str_offsets));
9805 make_cleanup (xfree, virtual_dwo_name);
9806 /* Can we use an existing virtual DWO file? */
9807 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9808 /* Create one if necessary. */
9809 if (*dwo_file_slot == NULL)
9810 {
9811 if (dwarf2_read_debug)
9812 {
9813 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9814 virtual_dwo_name);
9815 }
9816 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9817 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9818 virtual_dwo_name,
9819 strlen (virtual_dwo_name));
9820 dwo_file->comp_dir = comp_dir;
9821 dwo_file->sections.abbrev = sections.abbrev;
9822 dwo_file->sections.line = sections.line;
9823 dwo_file->sections.loc = sections.loc;
9824 dwo_file->sections.macinfo = sections.macinfo;
9825 dwo_file->sections.macro = sections.macro;
9826 dwo_file->sections.str_offsets = sections.str_offsets;
9827 /* The "str" section is global to the entire DWP file. */
9828 dwo_file->sections.str = dwp_file->sections.str;
9829 /* The info or types section is assigned below to dwo_unit,
9830 there's no need to record it in dwo_file.
9831 Also, we can't simply record type sections in dwo_file because
9832 we record a pointer into the vector in dwo_unit. As we collect more
9833 types we'll grow the vector and eventually have to reallocate space
9834 for it, invalidating all copies of pointers into the previous
9835 contents. */
9836 *dwo_file_slot = dwo_file;
9837 }
9838 else
9839 {
9840 if (dwarf2_read_debug)
9841 {
9842 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9843 virtual_dwo_name);
9844 }
9845 dwo_file = *dwo_file_slot;
9846 }
9847 do_cleanups (cleanups);
9848
9849 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9850 dwo_unit->dwo_file = dwo_file;
9851 dwo_unit->signature = signature;
9852 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9853 sizeof (struct dwarf2_section_info));
9854 *dwo_unit->section = sections.info_or_types;
9855 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9856
9857 return dwo_unit;
9858 }
9859
9860 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9861 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9862 piece within that section used by a TU/CU, return a virtual section
9863 of just that piece. */
9864
9865 static struct dwarf2_section_info
9866 create_dwp_v2_section (struct dwarf2_section_info *section,
9867 bfd_size_type offset, bfd_size_type size)
9868 {
9869 struct dwarf2_section_info result;
9870 asection *sectp;
9871
9872 gdb_assert (section != NULL);
9873 gdb_assert (!section->is_virtual);
9874
9875 memset (&result, 0, sizeof (result));
9876 result.s.containing_section = section;
9877 result.is_virtual = 1;
9878
9879 if (size == 0)
9880 return result;
9881
9882 sectp = get_section_bfd_section (section);
9883
9884 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9885 bounds of the real section. This is a pretty-rare event, so just
9886 flag an error (easier) instead of a warning and trying to cope. */
9887 if (sectp == NULL
9888 || offset + size > bfd_get_section_size (sectp))
9889 {
9890 bfd *abfd = sectp->owner;
9891
9892 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9893 " in section %s [in module %s]"),
9894 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9895 objfile_name (dwarf2_per_objfile->objfile));
9896 }
9897
9898 result.virtual_offset = offset;
9899 result.size = size;
9900 return result;
9901 }
9902
9903 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9904 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9905 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9906 This is for DWP version 2 files. */
9907
9908 static struct dwo_unit *
9909 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9910 uint32_t unit_index,
9911 const char *comp_dir,
9912 ULONGEST signature, int is_debug_types)
9913 {
9914 struct objfile *objfile = dwarf2_per_objfile->objfile;
9915 const struct dwp_hash_table *dwp_htab =
9916 is_debug_types ? dwp_file->tus : dwp_file->cus;
9917 bfd *dbfd = dwp_file->dbfd;
9918 const char *kind = is_debug_types ? "TU" : "CU";
9919 struct dwo_file *dwo_file;
9920 struct dwo_unit *dwo_unit;
9921 struct virtual_v2_dwo_sections sections;
9922 void **dwo_file_slot;
9923 char *virtual_dwo_name;
9924 struct dwarf2_section_info *cutu;
9925 struct cleanup *cleanups;
9926 int i;
9927
9928 gdb_assert (dwp_file->version == 2);
9929
9930 if (dwarf2_read_debug)
9931 {
9932 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9933 kind,
9934 pulongest (unit_index), hex_string (signature),
9935 dwp_file->name);
9936 }
9937
9938 /* Fetch the section offsets of this DWO unit. */
9939
9940 memset (&sections, 0, sizeof (sections));
9941 cleanups = make_cleanup (null_cleanup, 0);
9942
9943 for (i = 0; i < dwp_htab->nr_columns; ++i)
9944 {
9945 uint32_t offset = read_4_bytes (dbfd,
9946 dwp_htab->section_pool.v2.offsets
9947 + (((unit_index - 1) * dwp_htab->nr_columns
9948 + i)
9949 * sizeof (uint32_t)));
9950 uint32_t size = read_4_bytes (dbfd,
9951 dwp_htab->section_pool.v2.sizes
9952 + (((unit_index - 1) * dwp_htab->nr_columns
9953 + i)
9954 * sizeof (uint32_t)));
9955
9956 switch (dwp_htab->section_pool.v2.section_ids[i])
9957 {
9958 case DW_SECT_INFO:
9959 case DW_SECT_TYPES:
9960 sections.info_or_types_offset = offset;
9961 sections.info_or_types_size = size;
9962 break;
9963 case DW_SECT_ABBREV:
9964 sections.abbrev_offset = offset;
9965 sections.abbrev_size = size;
9966 break;
9967 case DW_SECT_LINE:
9968 sections.line_offset = offset;
9969 sections.line_size = size;
9970 break;
9971 case DW_SECT_LOC:
9972 sections.loc_offset = offset;
9973 sections.loc_size = size;
9974 break;
9975 case DW_SECT_STR_OFFSETS:
9976 sections.str_offsets_offset = offset;
9977 sections.str_offsets_size = size;
9978 break;
9979 case DW_SECT_MACINFO:
9980 sections.macinfo_offset = offset;
9981 sections.macinfo_size = size;
9982 break;
9983 case DW_SECT_MACRO:
9984 sections.macro_offset = offset;
9985 sections.macro_size = size;
9986 break;
9987 }
9988 }
9989
9990 /* It's easier for the rest of the code if we fake a struct dwo_file and
9991 have dwo_unit "live" in that. At least for now.
9992
9993 The DWP file can be made up of a random collection of CUs and TUs.
9994 However, for each CU + set of TUs that came from the same original DWO
9995 file, we can combine them back into a virtual DWO file to save space
9996 (fewer struct dwo_file objects to allocate). Remember that for really
9997 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9998
9999 virtual_dwo_name =
10000 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10001 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10002 (long) (sections.line_size ? sections.line_offset : 0),
10003 (long) (sections.loc_size ? sections.loc_offset : 0),
10004 (long) (sections.str_offsets_size
10005 ? sections.str_offsets_offset : 0));
10006 make_cleanup (xfree, virtual_dwo_name);
10007 /* Can we use an existing virtual DWO file? */
10008 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10009 /* Create one if necessary. */
10010 if (*dwo_file_slot == NULL)
10011 {
10012 if (dwarf2_read_debug)
10013 {
10014 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10015 virtual_dwo_name);
10016 }
10017 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10018 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10019 virtual_dwo_name,
10020 strlen (virtual_dwo_name));
10021 dwo_file->comp_dir = comp_dir;
10022 dwo_file->sections.abbrev =
10023 create_dwp_v2_section (&dwp_file->sections.abbrev,
10024 sections.abbrev_offset, sections.abbrev_size);
10025 dwo_file->sections.line =
10026 create_dwp_v2_section (&dwp_file->sections.line,
10027 sections.line_offset, sections.line_size);
10028 dwo_file->sections.loc =
10029 create_dwp_v2_section (&dwp_file->sections.loc,
10030 sections.loc_offset, sections.loc_size);
10031 dwo_file->sections.macinfo =
10032 create_dwp_v2_section (&dwp_file->sections.macinfo,
10033 sections.macinfo_offset, sections.macinfo_size);
10034 dwo_file->sections.macro =
10035 create_dwp_v2_section (&dwp_file->sections.macro,
10036 sections.macro_offset, sections.macro_size);
10037 dwo_file->sections.str_offsets =
10038 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10039 sections.str_offsets_offset,
10040 sections.str_offsets_size);
10041 /* The "str" section is global to the entire DWP file. */
10042 dwo_file->sections.str = dwp_file->sections.str;
10043 /* The info or types section is assigned below to dwo_unit,
10044 there's no need to record it in dwo_file.
10045 Also, we can't simply record type sections in dwo_file because
10046 we record a pointer into the vector in dwo_unit. As we collect more
10047 types we'll grow the vector and eventually have to reallocate space
10048 for it, invalidating all copies of pointers into the previous
10049 contents. */
10050 *dwo_file_slot = dwo_file;
10051 }
10052 else
10053 {
10054 if (dwarf2_read_debug)
10055 {
10056 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10057 virtual_dwo_name);
10058 }
10059 dwo_file = *dwo_file_slot;
10060 }
10061 do_cleanups (cleanups);
10062
10063 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10064 dwo_unit->dwo_file = dwo_file;
10065 dwo_unit->signature = signature;
10066 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10067 sizeof (struct dwarf2_section_info));
10068 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10069 ? &dwp_file->sections.types
10070 : &dwp_file->sections.info,
10071 sections.info_or_types_offset,
10072 sections.info_or_types_size);
10073 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10074
10075 return dwo_unit;
10076 }
10077
10078 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10079 Returns NULL if the signature isn't found. */
10080
10081 static struct dwo_unit *
10082 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10083 ULONGEST signature, int is_debug_types)
10084 {
10085 const struct dwp_hash_table *dwp_htab =
10086 is_debug_types ? dwp_file->tus : dwp_file->cus;
10087 bfd *dbfd = dwp_file->dbfd;
10088 uint32_t mask = dwp_htab->nr_slots - 1;
10089 uint32_t hash = signature & mask;
10090 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10091 unsigned int i;
10092 void **slot;
10093 struct dwo_unit find_dwo_cu, *dwo_cu;
10094
10095 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10096 find_dwo_cu.signature = signature;
10097 slot = htab_find_slot (is_debug_types
10098 ? dwp_file->loaded_tus
10099 : dwp_file->loaded_cus,
10100 &find_dwo_cu, INSERT);
10101
10102 if (*slot != NULL)
10103 return *slot;
10104
10105 /* Use a for loop so that we don't loop forever on bad debug info. */
10106 for (i = 0; i < dwp_htab->nr_slots; ++i)
10107 {
10108 ULONGEST signature_in_table;
10109
10110 signature_in_table =
10111 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10112 if (signature_in_table == signature)
10113 {
10114 uint32_t unit_index =
10115 read_4_bytes (dbfd,
10116 dwp_htab->unit_table + hash * sizeof (uint32_t));
10117
10118 if (dwp_file->version == 1)
10119 {
10120 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10121 comp_dir, signature,
10122 is_debug_types);
10123 }
10124 else
10125 {
10126 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10127 comp_dir, signature,
10128 is_debug_types);
10129 }
10130 return *slot;
10131 }
10132 if (signature_in_table == 0)
10133 return NULL;
10134 hash = (hash + hash2) & mask;
10135 }
10136
10137 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10138 " [in module %s]"),
10139 dwp_file->name);
10140 }
10141
10142 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10143 Open the file specified by FILE_NAME and hand it off to BFD for
10144 preliminary analysis. Return a newly initialized bfd *, which
10145 includes a canonicalized copy of FILE_NAME.
10146 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10147 SEARCH_CWD is true if the current directory is to be searched.
10148 It will be searched before debug-file-directory.
10149 If successful, the file is added to the bfd include table of the
10150 objfile's bfd (see gdb_bfd_record_inclusion).
10151 If unable to find/open the file, return NULL.
10152 NOTE: This function is derived from symfile_bfd_open. */
10153
10154 static bfd *
10155 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10156 {
10157 bfd *sym_bfd;
10158 int desc, flags;
10159 char *absolute_name;
10160 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10161 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10162 to debug_file_directory. */
10163 char *search_path;
10164 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10165
10166 if (search_cwd)
10167 {
10168 if (*debug_file_directory != '\0')
10169 search_path = concat (".", dirname_separator_string,
10170 debug_file_directory, NULL);
10171 else
10172 search_path = xstrdup (".");
10173 }
10174 else
10175 search_path = xstrdup (debug_file_directory);
10176
10177 flags = OPF_RETURN_REALPATH;
10178 if (is_dwp)
10179 flags |= OPF_SEARCH_IN_PATH;
10180 desc = openp (search_path, flags, file_name,
10181 O_RDONLY | O_BINARY, &absolute_name);
10182 xfree (search_path);
10183 if (desc < 0)
10184 return NULL;
10185
10186 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10187 xfree (absolute_name);
10188 if (sym_bfd == NULL)
10189 return NULL;
10190 bfd_set_cacheable (sym_bfd, 1);
10191
10192 if (!bfd_check_format (sym_bfd, bfd_object))
10193 {
10194 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10195 return NULL;
10196 }
10197
10198 /* Success. Record the bfd as having been included by the objfile's bfd.
10199 This is important because things like demangled_names_hash lives in the
10200 objfile's per_bfd space and may have references to things like symbol
10201 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10202 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10203
10204 return sym_bfd;
10205 }
10206
10207 /* Try to open DWO file FILE_NAME.
10208 COMP_DIR is the DW_AT_comp_dir attribute.
10209 The result is the bfd handle of the file.
10210 If there is a problem finding or opening the file, return NULL.
10211 Upon success, the canonicalized path of the file is stored in the bfd,
10212 same as symfile_bfd_open. */
10213
10214 static bfd *
10215 open_dwo_file (const char *file_name, const char *comp_dir)
10216 {
10217 bfd *abfd;
10218
10219 if (IS_ABSOLUTE_PATH (file_name))
10220 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10221
10222 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10223
10224 if (comp_dir != NULL)
10225 {
10226 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10227
10228 /* NOTE: If comp_dir is a relative path, this will also try the
10229 search path, which seems useful. */
10230 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10231 xfree (path_to_try);
10232 if (abfd != NULL)
10233 return abfd;
10234 }
10235
10236 /* That didn't work, try debug-file-directory, which, despite its name,
10237 is a list of paths. */
10238
10239 if (*debug_file_directory == '\0')
10240 return NULL;
10241
10242 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10243 }
10244
10245 /* This function is mapped across the sections and remembers the offset and
10246 size of each of the DWO debugging sections we are interested in. */
10247
10248 static void
10249 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10250 {
10251 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10252 const struct dwop_section_names *names = &dwop_section_names;
10253
10254 if (section_is_p (sectp->name, &names->abbrev_dwo))
10255 {
10256 dwo_sections->abbrev.s.asection = sectp;
10257 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10258 }
10259 else if (section_is_p (sectp->name, &names->info_dwo))
10260 {
10261 dwo_sections->info.s.asection = sectp;
10262 dwo_sections->info.size = bfd_get_section_size (sectp);
10263 }
10264 else if (section_is_p (sectp->name, &names->line_dwo))
10265 {
10266 dwo_sections->line.s.asection = sectp;
10267 dwo_sections->line.size = bfd_get_section_size (sectp);
10268 }
10269 else if (section_is_p (sectp->name, &names->loc_dwo))
10270 {
10271 dwo_sections->loc.s.asection = sectp;
10272 dwo_sections->loc.size = bfd_get_section_size (sectp);
10273 }
10274 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10275 {
10276 dwo_sections->macinfo.s.asection = sectp;
10277 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10278 }
10279 else if (section_is_p (sectp->name, &names->macro_dwo))
10280 {
10281 dwo_sections->macro.s.asection = sectp;
10282 dwo_sections->macro.size = bfd_get_section_size (sectp);
10283 }
10284 else if (section_is_p (sectp->name, &names->str_dwo))
10285 {
10286 dwo_sections->str.s.asection = sectp;
10287 dwo_sections->str.size = bfd_get_section_size (sectp);
10288 }
10289 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10290 {
10291 dwo_sections->str_offsets.s.asection = sectp;
10292 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10293 }
10294 else if (section_is_p (sectp->name, &names->types_dwo))
10295 {
10296 struct dwarf2_section_info type_section;
10297
10298 memset (&type_section, 0, sizeof (type_section));
10299 type_section.s.asection = sectp;
10300 type_section.size = bfd_get_section_size (sectp);
10301 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10302 &type_section);
10303 }
10304 }
10305
10306 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10307 by PER_CU. This is for the non-DWP case.
10308 The result is NULL if DWO_NAME can't be found. */
10309
10310 static struct dwo_file *
10311 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10312 const char *dwo_name, const char *comp_dir)
10313 {
10314 struct objfile *objfile = dwarf2_per_objfile->objfile;
10315 struct dwo_file *dwo_file;
10316 bfd *dbfd;
10317 struct cleanup *cleanups;
10318
10319 dbfd = open_dwo_file (dwo_name, comp_dir);
10320 if (dbfd == NULL)
10321 {
10322 if (dwarf2_read_debug)
10323 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10324 return NULL;
10325 }
10326 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10327 dwo_file->dwo_name = dwo_name;
10328 dwo_file->comp_dir = comp_dir;
10329 dwo_file->dbfd = dbfd;
10330
10331 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10332
10333 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10334
10335 dwo_file->cu = create_dwo_cu (dwo_file);
10336
10337 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10338 dwo_file->sections.types);
10339
10340 discard_cleanups (cleanups);
10341
10342 if (dwarf2_read_debug)
10343 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10344
10345 return dwo_file;
10346 }
10347
10348 /* This function is mapped across the sections and remembers the offset and
10349 size of each of the DWP debugging sections common to version 1 and 2 that
10350 we are interested in. */
10351
10352 static void
10353 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10354 void *dwp_file_ptr)
10355 {
10356 struct dwp_file *dwp_file = dwp_file_ptr;
10357 const struct dwop_section_names *names = &dwop_section_names;
10358 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10359
10360 /* Record the ELF section number for later lookup: this is what the
10361 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10362 gdb_assert (elf_section_nr < dwp_file->num_sections);
10363 dwp_file->elf_sections[elf_section_nr] = sectp;
10364
10365 /* Look for specific sections that we need. */
10366 if (section_is_p (sectp->name, &names->str_dwo))
10367 {
10368 dwp_file->sections.str.s.asection = sectp;
10369 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10370 }
10371 else if (section_is_p (sectp->name, &names->cu_index))
10372 {
10373 dwp_file->sections.cu_index.s.asection = sectp;
10374 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10375 }
10376 else if (section_is_p (sectp->name, &names->tu_index))
10377 {
10378 dwp_file->sections.tu_index.s.asection = sectp;
10379 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10380 }
10381 }
10382
10383 /* This function is mapped across the sections and remembers the offset and
10384 size of each of the DWP version 2 debugging sections that we are interested
10385 in. This is split into a separate function because we don't know if we
10386 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10387
10388 static void
10389 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10390 {
10391 struct dwp_file *dwp_file = dwp_file_ptr;
10392 const struct dwop_section_names *names = &dwop_section_names;
10393 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10394
10395 /* Record the ELF section number for later lookup: this is what the
10396 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10397 gdb_assert (elf_section_nr < dwp_file->num_sections);
10398 dwp_file->elf_sections[elf_section_nr] = sectp;
10399
10400 /* Look for specific sections that we need. */
10401 if (section_is_p (sectp->name, &names->abbrev_dwo))
10402 {
10403 dwp_file->sections.abbrev.s.asection = sectp;
10404 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10405 }
10406 else if (section_is_p (sectp->name, &names->info_dwo))
10407 {
10408 dwp_file->sections.info.s.asection = sectp;
10409 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10410 }
10411 else if (section_is_p (sectp->name, &names->line_dwo))
10412 {
10413 dwp_file->sections.line.s.asection = sectp;
10414 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10415 }
10416 else if (section_is_p (sectp->name, &names->loc_dwo))
10417 {
10418 dwp_file->sections.loc.s.asection = sectp;
10419 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10420 }
10421 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10422 {
10423 dwp_file->sections.macinfo.s.asection = sectp;
10424 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10425 }
10426 else if (section_is_p (sectp->name, &names->macro_dwo))
10427 {
10428 dwp_file->sections.macro.s.asection = sectp;
10429 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10430 }
10431 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10432 {
10433 dwp_file->sections.str_offsets.s.asection = sectp;
10434 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10435 }
10436 else if (section_is_p (sectp->name, &names->types_dwo))
10437 {
10438 dwp_file->sections.types.s.asection = sectp;
10439 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10440 }
10441 }
10442
10443 /* Hash function for dwp_file loaded CUs/TUs. */
10444
10445 static hashval_t
10446 hash_dwp_loaded_cutus (const void *item)
10447 {
10448 const struct dwo_unit *dwo_unit = item;
10449
10450 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10451 return dwo_unit->signature;
10452 }
10453
10454 /* Equality function for dwp_file loaded CUs/TUs. */
10455
10456 static int
10457 eq_dwp_loaded_cutus (const void *a, const void *b)
10458 {
10459 const struct dwo_unit *dua = a;
10460 const struct dwo_unit *dub = b;
10461
10462 return dua->signature == dub->signature;
10463 }
10464
10465 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10466
10467 static htab_t
10468 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10469 {
10470 return htab_create_alloc_ex (3,
10471 hash_dwp_loaded_cutus,
10472 eq_dwp_loaded_cutus,
10473 NULL,
10474 &objfile->objfile_obstack,
10475 hashtab_obstack_allocate,
10476 dummy_obstack_deallocate);
10477 }
10478
10479 /* Try to open DWP file FILE_NAME.
10480 The result is the bfd handle of the file.
10481 If there is a problem finding or opening the file, return NULL.
10482 Upon success, the canonicalized path of the file is stored in the bfd,
10483 same as symfile_bfd_open. */
10484
10485 static bfd *
10486 open_dwp_file (const char *file_name)
10487 {
10488 bfd *abfd;
10489
10490 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10491 if (abfd != NULL)
10492 return abfd;
10493
10494 /* Work around upstream bug 15652.
10495 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10496 [Whether that's a "bug" is debatable, but it is getting in our way.]
10497 We have no real idea where the dwp file is, because gdb's realpath-ing
10498 of the executable's path may have discarded the needed info.
10499 [IWBN if the dwp file name was recorded in the executable, akin to
10500 .gnu_debuglink, but that doesn't exist yet.]
10501 Strip the directory from FILE_NAME and search again. */
10502 if (*debug_file_directory != '\0')
10503 {
10504 /* Don't implicitly search the current directory here.
10505 If the user wants to search "." to handle this case,
10506 it must be added to debug-file-directory. */
10507 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10508 0 /*search_cwd*/);
10509 }
10510
10511 return NULL;
10512 }
10513
10514 /* Initialize the use of the DWP file for the current objfile.
10515 By convention the name of the DWP file is ${objfile}.dwp.
10516 The result is NULL if it can't be found. */
10517
10518 static struct dwp_file *
10519 open_and_init_dwp_file (void)
10520 {
10521 struct objfile *objfile = dwarf2_per_objfile->objfile;
10522 struct dwp_file *dwp_file;
10523 char *dwp_name;
10524 bfd *dbfd;
10525 struct cleanup *cleanups;
10526
10527 /* Try to find first .dwp for the binary file before any symbolic links
10528 resolving. */
10529 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10530 cleanups = make_cleanup (xfree, dwp_name);
10531
10532 dbfd = open_dwp_file (dwp_name);
10533 if (dbfd == NULL
10534 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10535 {
10536 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10537 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10538 make_cleanup (xfree, dwp_name);
10539 dbfd = open_dwp_file (dwp_name);
10540 }
10541
10542 if (dbfd == NULL)
10543 {
10544 if (dwarf2_read_debug)
10545 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10546 do_cleanups (cleanups);
10547 return NULL;
10548 }
10549 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10550 dwp_file->name = bfd_get_filename (dbfd);
10551 dwp_file->dbfd = dbfd;
10552 do_cleanups (cleanups);
10553
10554 /* +1: section 0 is unused */
10555 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10556 dwp_file->elf_sections =
10557 OBSTACK_CALLOC (&objfile->objfile_obstack,
10558 dwp_file->num_sections, asection *);
10559
10560 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10561
10562 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10563
10564 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10565
10566 /* The DWP file version is stored in the hash table. Oh well. */
10567 if (dwp_file->cus->version != dwp_file->tus->version)
10568 {
10569 /* Technically speaking, we should try to limp along, but this is
10570 pretty bizarre. We use pulongest here because that's the established
10571 portability solution (e.g, we cannot use %u for uint32_t). */
10572 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10573 " TU version %s [in DWP file %s]"),
10574 pulongest (dwp_file->cus->version),
10575 pulongest (dwp_file->tus->version), dwp_name);
10576 }
10577 dwp_file->version = dwp_file->cus->version;
10578
10579 if (dwp_file->version == 2)
10580 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10581
10582 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10583 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10584
10585 if (dwarf2_read_debug)
10586 {
10587 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10588 fprintf_unfiltered (gdb_stdlog,
10589 " %s CUs, %s TUs\n",
10590 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10591 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10592 }
10593
10594 return dwp_file;
10595 }
10596
10597 /* Wrapper around open_and_init_dwp_file, only open it once. */
10598
10599 static struct dwp_file *
10600 get_dwp_file (void)
10601 {
10602 if (! dwarf2_per_objfile->dwp_checked)
10603 {
10604 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10605 dwarf2_per_objfile->dwp_checked = 1;
10606 }
10607 return dwarf2_per_objfile->dwp_file;
10608 }
10609
10610 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10611 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10612 or in the DWP file for the objfile, referenced by THIS_UNIT.
10613 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10614 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10615
10616 This is called, for example, when wanting to read a variable with a
10617 complex location. Therefore we don't want to do file i/o for every call.
10618 Therefore we don't want to look for a DWO file on every call.
10619 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10620 then we check if we've already seen DWO_NAME, and only THEN do we check
10621 for a DWO file.
10622
10623 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10624 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10625
10626 static struct dwo_unit *
10627 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10628 const char *dwo_name, const char *comp_dir,
10629 ULONGEST signature, int is_debug_types)
10630 {
10631 struct objfile *objfile = dwarf2_per_objfile->objfile;
10632 const char *kind = is_debug_types ? "TU" : "CU";
10633 void **dwo_file_slot;
10634 struct dwo_file *dwo_file;
10635 struct dwp_file *dwp_file;
10636
10637 /* First see if there's a DWP file.
10638 If we have a DWP file but didn't find the DWO inside it, don't
10639 look for the original DWO file. It makes gdb behave differently
10640 depending on whether one is debugging in the build tree. */
10641
10642 dwp_file = get_dwp_file ();
10643 if (dwp_file != NULL)
10644 {
10645 const struct dwp_hash_table *dwp_htab =
10646 is_debug_types ? dwp_file->tus : dwp_file->cus;
10647
10648 if (dwp_htab != NULL)
10649 {
10650 struct dwo_unit *dwo_cutu =
10651 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10652 signature, is_debug_types);
10653
10654 if (dwo_cutu != NULL)
10655 {
10656 if (dwarf2_read_debug)
10657 {
10658 fprintf_unfiltered (gdb_stdlog,
10659 "Virtual DWO %s %s found: @%s\n",
10660 kind, hex_string (signature),
10661 host_address_to_string (dwo_cutu));
10662 }
10663 return dwo_cutu;
10664 }
10665 }
10666 }
10667 else
10668 {
10669 /* No DWP file, look for the DWO file. */
10670
10671 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10672 if (*dwo_file_slot == NULL)
10673 {
10674 /* Read in the file and build a table of the CUs/TUs it contains. */
10675 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10676 }
10677 /* NOTE: This will be NULL if unable to open the file. */
10678 dwo_file = *dwo_file_slot;
10679
10680 if (dwo_file != NULL)
10681 {
10682 struct dwo_unit *dwo_cutu = NULL;
10683
10684 if (is_debug_types && dwo_file->tus)
10685 {
10686 struct dwo_unit find_dwo_cutu;
10687
10688 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10689 find_dwo_cutu.signature = signature;
10690 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10691 }
10692 else if (!is_debug_types && dwo_file->cu)
10693 {
10694 if (signature == dwo_file->cu->signature)
10695 dwo_cutu = dwo_file->cu;
10696 }
10697
10698 if (dwo_cutu != NULL)
10699 {
10700 if (dwarf2_read_debug)
10701 {
10702 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10703 kind, dwo_name, hex_string (signature),
10704 host_address_to_string (dwo_cutu));
10705 }
10706 return dwo_cutu;
10707 }
10708 }
10709 }
10710
10711 /* We didn't find it. This could mean a dwo_id mismatch, or
10712 someone deleted the DWO/DWP file, or the search path isn't set up
10713 correctly to find the file. */
10714
10715 if (dwarf2_read_debug)
10716 {
10717 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10718 kind, dwo_name, hex_string (signature));
10719 }
10720
10721 /* This is a warning and not a complaint because it can be caused by
10722 pilot error (e.g., user accidentally deleting the DWO). */
10723 {
10724 /* Print the name of the DWP file if we looked there, helps the user
10725 better diagnose the problem. */
10726 char *dwp_text = NULL;
10727 struct cleanup *cleanups;
10728
10729 if (dwp_file != NULL)
10730 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10731 cleanups = make_cleanup (xfree, dwp_text);
10732
10733 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10734 " [in module %s]"),
10735 kind, dwo_name, hex_string (signature),
10736 dwp_text != NULL ? dwp_text : "",
10737 this_unit->is_debug_types ? "TU" : "CU",
10738 this_unit->offset.sect_off, objfile_name (objfile));
10739
10740 do_cleanups (cleanups);
10741 }
10742 return NULL;
10743 }
10744
10745 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10746 See lookup_dwo_cutu_unit for details. */
10747
10748 static struct dwo_unit *
10749 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10750 const char *dwo_name, const char *comp_dir,
10751 ULONGEST signature)
10752 {
10753 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10754 }
10755
10756 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10757 See lookup_dwo_cutu_unit for details. */
10758
10759 static struct dwo_unit *
10760 lookup_dwo_type_unit (struct signatured_type *this_tu,
10761 const char *dwo_name, const char *comp_dir)
10762 {
10763 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10764 }
10765
10766 /* Traversal function for queue_and_load_all_dwo_tus. */
10767
10768 static int
10769 queue_and_load_dwo_tu (void **slot, void *info)
10770 {
10771 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10772 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10773 ULONGEST signature = dwo_unit->signature;
10774 struct signatured_type *sig_type =
10775 lookup_dwo_signatured_type (per_cu->cu, signature);
10776
10777 if (sig_type != NULL)
10778 {
10779 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10780
10781 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10782 a real dependency of PER_CU on SIG_TYPE. That is detected later
10783 while processing PER_CU. */
10784 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10785 load_full_type_unit (sig_cu);
10786 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10787 }
10788
10789 return 1;
10790 }
10791
10792 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10793 The DWO may have the only definition of the type, though it may not be
10794 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10795 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10796
10797 static void
10798 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10799 {
10800 struct dwo_unit *dwo_unit;
10801 struct dwo_file *dwo_file;
10802
10803 gdb_assert (!per_cu->is_debug_types);
10804 gdb_assert (get_dwp_file () == NULL);
10805 gdb_assert (per_cu->cu != NULL);
10806
10807 dwo_unit = per_cu->cu->dwo_unit;
10808 gdb_assert (dwo_unit != NULL);
10809
10810 dwo_file = dwo_unit->dwo_file;
10811 if (dwo_file->tus != NULL)
10812 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10813 }
10814
10815 /* Free all resources associated with DWO_FILE.
10816 Close the DWO file and munmap the sections.
10817 All memory should be on the objfile obstack. */
10818
10819 static void
10820 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10821 {
10822 int ix;
10823 struct dwarf2_section_info *section;
10824
10825 /* Note: dbfd is NULL for virtual DWO files. */
10826 gdb_bfd_unref (dwo_file->dbfd);
10827
10828 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10829 }
10830
10831 /* Wrapper for free_dwo_file for use in cleanups. */
10832
10833 static void
10834 free_dwo_file_cleanup (void *arg)
10835 {
10836 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10837 struct objfile *objfile = dwarf2_per_objfile->objfile;
10838
10839 free_dwo_file (dwo_file, objfile);
10840 }
10841
10842 /* Traversal function for free_dwo_files. */
10843
10844 static int
10845 free_dwo_file_from_slot (void **slot, void *info)
10846 {
10847 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10848 struct objfile *objfile = (struct objfile *) info;
10849
10850 free_dwo_file (dwo_file, objfile);
10851
10852 return 1;
10853 }
10854
10855 /* Free all resources associated with DWO_FILES. */
10856
10857 static void
10858 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10859 {
10860 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10861 }
10862 \f
10863 /* Read in various DIEs. */
10864
10865 /* qsort helper for inherit_abstract_dies. */
10866
10867 static int
10868 unsigned_int_compar (const void *ap, const void *bp)
10869 {
10870 unsigned int a = *(unsigned int *) ap;
10871 unsigned int b = *(unsigned int *) bp;
10872
10873 return (a > b) - (b > a);
10874 }
10875
10876 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10877 Inherit only the children of the DW_AT_abstract_origin DIE not being
10878 already referenced by DW_AT_abstract_origin from the children of the
10879 current DIE. */
10880
10881 static void
10882 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10883 {
10884 struct die_info *child_die;
10885 unsigned die_children_count;
10886 /* CU offsets which were referenced by children of the current DIE. */
10887 sect_offset *offsets;
10888 sect_offset *offsets_end, *offsetp;
10889 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10890 struct die_info *origin_die;
10891 /* Iterator of the ORIGIN_DIE children. */
10892 struct die_info *origin_child_die;
10893 struct cleanup *cleanups;
10894 struct attribute *attr;
10895 struct dwarf2_cu *origin_cu;
10896 struct pending **origin_previous_list_in_scope;
10897
10898 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10899 if (!attr)
10900 return;
10901
10902 /* Note that following die references may follow to a die in a
10903 different cu. */
10904
10905 origin_cu = cu;
10906 origin_die = follow_die_ref (die, attr, &origin_cu);
10907
10908 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10909 symbols in. */
10910 origin_previous_list_in_scope = origin_cu->list_in_scope;
10911 origin_cu->list_in_scope = cu->list_in_scope;
10912
10913 if (die->tag != origin_die->tag
10914 && !(die->tag == DW_TAG_inlined_subroutine
10915 && origin_die->tag == DW_TAG_subprogram))
10916 complaint (&symfile_complaints,
10917 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
10918 die->offset.sect_off, origin_die->offset.sect_off);
10919
10920 child_die = die->child;
10921 die_children_count = 0;
10922 while (child_die && child_die->tag)
10923 {
10924 child_die = sibling_die (child_die);
10925 die_children_count++;
10926 }
10927 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10928 cleanups = make_cleanup (xfree, offsets);
10929
10930 offsets_end = offsets;
10931 child_die = die->child;
10932 while (child_die && child_die->tag)
10933 {
10934 /* For each CHILD_DIE, find the corresponding child of
10935 ORIGIN_DIE. If there is more than one layer of
10936 DW_AT_abstract_origin, follow them all; there shouldn't be,
10937 but GCC versions at least through 4.4 generate this (GCC PR
10938 40573). */
10939 struct die_info *child_origin_die = child_die;
10940 struct dwarf2_cu *child_origin_cu = cu;
10941
10942 while (1)
10943 {
10944 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10945 child_origin_cu);
10946 if (attr == NULL)
10947 break;
10948 child_origin_die = follow_die_ref (child_origin_die, attr,
10949 &child_origin_cu);
10950 }
10951
10952 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10953 counterpart may exist. */
10954 if (child_origin_die != child_die)
10955 {
10956 if (child_die->tag != child_origin_die->tag
10957 && !(child_die->tag == DW_TAG_inlined_subroutine
10958 && child_origin_die->tag == DW_TAG_subprogram))
10959 complaint (&symfile_complaints,
10960 _("Child DIE 0x%x and its abstract origin 0x%x have "
10961 "different tags"), child_die->offset.sect_off,
10962 child_origin_die->offset.sect_off);
10963 if (child_origin_die->parent != origin_die)
10964 complaint (&symfile_complaints,
10965 _("Child DIE 0x%x and its abstract origin 0x%x have "
10966 "different parents"), child_die->offset.sect_off,
10967 child_origin_die->offset.sect_off);
10968 else
10969 *offsets_end++ = child_origin_die->offset;
10970 }
10971 child_die = sibling_die (child_die);
10972 }
10973 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10974 unsigned_int_compar);
10975 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
10976 if (offsetp[-1].sect_off == offsetp->sect_off)
10977 complaint (&symfile_complaints,
10978 _("Multiple children of DIE 0x%x refer "
10979 "to DIE 0x%x as their abstract origin"),
10980 die->offset.sect_off, offsetp->sect_off);
10981
10982 offsetp = offsets;
10983 origin_child_die = origin_die->child;
10984 while (origin_child_die && origin_child_die->tag)
10985 {
10986 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
10987 while (offsetp < offsets_end
10988 && offsetp->sect_off < origin_child_die->offset.sect_off)
10989 offsetp++;
10990 if (offsetp >= offsets_end
10991 || offsetp->sect_off > origin_child_die->offset.sect_off)
10992 {
10993 /* Found that ORIGIN_CHILD_DIE is really not referenced.
10994 Check whether we're already processing ORIGIN_CHILD_DIE.
10995 This can happen with mutually referenced abstract_origins.
10996 PR 16581. */
10997 if (!origin_child_die->in_process)
10998 process_die (origin_child_die, origin_cu);
10999 }
11000 origin_child_die = sibling_die (origin_child_die);
11001 }
11002 origin_cu->list_in_scope = origin_previous_list_in_scope;
11003
11004 do_cleanups (cleanups);
11005 }
11006
11007 static void
11008 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11009 {
11010 struct objfile *objfile = cu->objfile;
11011 struct context_stack *new;
11012 CORE_ADDR lowpc;
11013 CORE_ADDR highpc;
11014 struct die_info *child_die;
11015 struct attribute *attr, *call_line, *call_file;
11016 const char *name;
11017 CORE_ADDR baseaddr;
11018 struct block *block;
11019 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11020 VEC (symbolp) *template_args = NULL;
11021 struct template_symbol *templ_func = NULL;
11022
11023 if (inlined_func)
11024 {
11025 /* If we do not have call site information, we can't show the
11026 caller of this inlined function. That's too confusing, so
11027 only use the scope for local variables. */
11028 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11029 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11030 if (call_line == NULL || call_file == NULL)
11031 {
11032 read_lexical_block_scope (die, cu);
11033 return;
11034 }
11035 }
11036
11037 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11038
11039 name = dwarf2_name (die, cu);
11040
11041 /* Ignore functions with missing or empty names. These are actually
11042 illegal according to the DWARF standard. */
11043 if (name == NULL)
11044 {
11045 complaint (&symfile_complaints,
11046 _("missing name for subprogram DIE at %d"),
11047 die->offset.sect_off);
11048 return;
11049 }
11050
11051 /* Ignore functions with missing or invalid low and high pc attributes. */
11052 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11053 {
11054 attr = dwarf2_attr (die, DW_AT_external, cu);
11055 if (!attr || !DW_UNSND (attr))
11056 complaint (&symfile_complaints,
11057 _("cannot get low and high bounds "
11058 "for subprogram DIE at %d"),
11059 die->offset.sect_off);
11060 return;
11061 }
11062
11063 lowpc += baseaddr;
11064 highpc += baseaddr;
11065
11066 /* If we have any template arguments, then we must allocate a
11067 different sort of symbol. */
11068 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11069 {
11070 if (child_die->tag == DW_TAG_template_type_param
11071 || child_die->tag == DW_TAG_template_value_param)
11072 {
11073 templ_func = allocate_template_symbol (objfile);
11074 templ_func->base.is_cplus_template_function = 1;
11075 break;
11076 }
11077 }
11078
11079 new = push_context (0, lowpc);
11080 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11081 (struct symbol *) templ_func);
11082
11083 /* If there is a location expression for DW_AT_frame_base, record
11084 it. */
11085 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11086 if (attr)
11087 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11088
11089 cu->list_in_scope = &local_symbols;
11090
11091 if (die->child != NULL)
11092 {
11093 child_die = die->child;
11094 while (child_die && child_die->tag)
11095 {
11096 if (child_die->tag == DW_TAG_template_type_param
11097 || child_die->tag == DW_TAG_template_value_param)
11098 {
11099 struct symbol *arg = new_symbol (child_die, NULL, cu);
11100
11101 if (arg != NULL)
11102 VEC_safe_push (symbolp, template_args, arg);
11103 }
11104 else
11105 process_die (child_die, cu);
11106 child_die = sibling_die (child_die);
11107 }
11108 }
11109
11110 inherit_abstract_dies (die, cu);
11111
11112 /* If we have a DW_AT_specification, we might need to import using
11113 directives from the context of the specification DIE. See the
11114 comment in determine_prefix. */
11115 if (cu->language == language_cplus
11116 && dwarf2_attr (die, DW_AT_specification, cu))
11117 {
11118 struct dwarf2_cu *spec_cu = cu;
11119 struct die_info *spec_die = die_specification (die, &spec_cu);
11120
11121 while (spec_die)
11122 {
11123 child_die = spec_die->child;
11124 while (child_die && child_die->tag)
11125 {
11126 if (child_die->tag == DW_TAG_imported_module)
11127 process_die (child_die, spec_cu);
11128 child_die = sibling_die (child_die);
11129 }
11130
11131 /* In some cases, GCC generates specification DIEs that
11132 themselves contain DW_AT_specification attributes. */
11133 spec_die = die_specification (spec_die, &spec_cu);
11134 }
11135 }
11136
11137 new = pop_context ();
11138 /* Make a block for the local symbols within. */
11139 block = finish_block (new->name, &local_symbols, new->old_blocks,
11140 lowpc, highpc, objfile);
11141
11142 /* For C++, set the block's scope. */
11143 if ((cu->language == language_cplus || cu->language == language_fortran)
11144 && cu->processing_has_namespace_info)
11145 block_set_scope (block, determine_prefix (die, cu),
11146 &objfile->objfile_obstack);
11147
11148 /* If we have address ranges, record them. */
11149 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11150
11151 /* Attach template arguments to function. */
11152 if (! VEC_empty (symbolp, template_args))
11153 {
11154 gdb_assert (templ_func != NULL);
11155
11156 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11157 templ_func->template_arguments
11158 = obstack_alloc (&objfile->objfile_obstack,
11159 (templ_func->n_template_arguments
11160 * sizeof (struct symbol *)));
11161 memcpy (templ_func->template_arguments,
11162 VEC_address (symbolp, template_args),
11163 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11164 VEC_free (symbolp, template_args);
11165 }
11166
11167 /* In C++, we can have functions nested inside functions (e.g., when
11168 a function declares a class that has methods). This means that
11169 when we finish processing a function scope, we may need to go
11170 back to building a containing block's symbol lists. */
11171 local_symbols = new->locals;
11172 using_directives = new->using_directives;
11173
11174 /* If we've finished processing a top-level function, subsequent
11175 symbols go in the file symbol list. */
11176 if (outermost_context_p ())
11177 cu->list_in_scope = &file_symbols;
11178 }
11179
11180 /* Process all the DIES contained within a lexical block scope. Start
11181 a new scope, process the dies, and then close the scope. */
11182
11183 static void
11184 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11185 {
11186 struct objfile *objfile = cu->objfile;
11187 struct context_stack *new;
11188 CORE_ADDR lowpc, highpc;
11189 struct die_info *child_die;
11190 CORE_ADDR baseaddr;
11191
11192 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11193
11194 /* Ignore blocks with missing or invalid low and high pc attributes. */
11195 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11196 as multiple lexical blocks? Handling children in a sane way would
11197 be nasty. Might be easier to properly extend generic blocks to
11198 describe ranges. */
11199 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11200 return;
11201 lowpc += baseaddr;
11202 highpc += baseaddr;
11203
11204 push_context (0, lowpc);
11205 if (die->child != NULL)
11206 {
11207 child_die = die->child;
11208 while (child_die && child_die->tag)
11209 {
11210 process_die (child_die, cu);
11211 child_die = sibling_die (child_die);
11212 }
11213 }
11214 new = pop_context ();
11215
11216 if (local_symbols != NULL || using_directives != NULL)
11217 {
11218 struct block *block
11219 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11220 highpc, objfile);
11221
11222 /* Note that recording ranges after traversing children, as we
11223 do here, means that recording a parent's ranges entails
11224 walking across all its children's ranges as they appear in
11225 the address map, which is quadratic behavior.
11226
11227 It would be nicer to record the parent's ranges before
11228 traversing its children, simply overriding whatever you find
11229 there. But since we don't even decide whether to create a
11230 block until after we've traversed its children, that's hard
11231 to do. */
11232 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11233 }
11234 local_symbols = new->locals;
11235 using_directives = new->using_directives;
11236 }
11237
11238 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11239
11240 static void
11241 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11242 {
11243 struct objfile *objfile = cu->objfile;
11244 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11245 CORE_ADDR pc, baseaddr;
11246 struct attribute *attr;
11247 struct call_site *call_site, call_site_local;
11248 void **slot;
11249 int nparams;
11250 struct die_info *child_die;
11251
11252 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11253
11254 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11255 if (!attr)
11256 {
11257 complaint (&symfile_complaints,
11258 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11259 "DIE 0x%x [in module %s]"),
11260 die->offset.sect_off, objfile_name (objfile));
11261 return;
11262 }
11263 pc = DW_ADDR (attr) + baseaddr;
11264
11265 if (cu->call_site_htab == NULL)
11266 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11267 NULL, &objfile->objfile_obstack,
11268 hashtab_obstack_allocate, NULL);
11269 call_site_local.pc = pc;
11270 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11271 if (*slot != NULL)
11272 {
11273 complaint (&symfile_complaints,
11274 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11275 "DIE 0x%x [in module %s]"),
11276 paddress (gdbarch, pc), die->offset.sect_off,
11277 objfile_name (objfile));
11278 return;
11279 }
11280
11281 /* Count parameters at the caller. */
11282
11283 nparams = 0;
11284 for (child_die = die->child; child_die && child_die->tag;
11285 child_die = sibling_die (child_die))
11286 {
11287 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11288 {
11289 complaint (&symfile_complaints,
11290 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11291 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11292 child_die->tag, child_die->offset.sect_off,
11293 objfile_name (objfile));
11294 continue;
11295 }
11296
11297 nparams++;
11298 }
11299
11300 call_site = obstack_alloc (&objfile->objfile_obstack,
11301 (sizeof (*call_site)
11302 + (sizeof (*call_site->parameter)
11303 * (nparams - 1))));
11304 *slot = call_site;
11305 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11306 call_site->pc = pc;
11307
11308 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11309 {
11310 struct die_info *func_die;
11311
11312 /* Skip also over DW_TAG_inlined_subroutine. */
11313 for (func_die = die->parent;
11314 func_die && func_die->tag != DW_TAG_subprogram
11315 && func_die->tag != DW_TAG_subroutine_type;
11316 func_die = func_die->parent);
11317
11318 /* DW_AT_GNU_all_call_sites is a superset
11319 of DW_AT_GNU_all_tail_call_sites. */
11320 if (func_die
11321 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11322 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11323 {
11324 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11325 not complete. But keep CALL_SITE for look ups via call_site_htab,
11326 both the initial caller containing the real return address PC and
11327 the final callee containing the current PC of a chain of tail
11328 calls do not need to have the tail call list complete. But any
11329 function candidate for a virtual tail call frame searched via
11330 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11331 determined unambiguously. */
11332 }
11333 else
11334 {
11335 struct type *func_type = NULL;
11336
11337 if (func_die)
11338 func_type = get_die_type (func_die, cu);
11339 if (func_type != NULL)
11340 {
11341 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11342
11343 /* Enlist this call site to the function. */
11344 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11345 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11346 }
11347 else
11348 complaint (&symfile_complaints,
11349 _("Cannot find function owning DW_TAG_GNU_call_site "
11350 "DIE 0x%x [in module %s]"),
11351 die->offset.sect_off, objfile_name (objfile));
11352 }
11353 }
11354
11355 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11356 if (attr == NULL)
11357 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11358 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11359 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11360 /* Keep NULL DWARF_BLOCK. */;
11361 else if (attr_form_is_block (attr))
11362 {
11363 struct dwarf2_locexpr_baton *dlbaton;
11364
11365 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11366 dlbaton->data = DW_BLOCK (attr)->data;
11367 dlbaton->size = DW_BLOCK (attr)->size;
11368 dlbaton->per_cu = cu->per_cu;
11369
11370 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11371 }
11372 else if (attr_form_is_ref (attr))
11373 {
11374 struct dwarf2_cu *target_cu = cu;
11375 struct die_info *target_die;
11376
11377 target_die = follow_die_ref (die, attr, &target_cu);
11378 gdb_assert (target_cu->objfile == objfile);
11379 if (die_is_declaration (target_die, target_cu))
11380 {
11381 const char *target_physname = NULL;
11382 struct attribute *target_attr;
11383
11384 /* Prefer the mangled name; otherwise compute the demangled one. */
11385 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11386 if (target_attr == NULL)
11387 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11388 target_cu);
11389 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11390 target_physname = DW_STRING (target_attr);
11391 else
11392 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11393 if (target_physname == NULL)
11394 complaint (&symfile_complaints,
11395 _("DW_AT_GNU_call_site_target target DIE has invalid "
11396 "physname, for referencing DIE 0x%x [in module %s]"),
11397 die->offset.sect_off, objfile_name (objfile));
11398 else
11399 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11400 }
11401 else
11402 {
11403 CORE_ADDR lowpc;
11404
11405 /* DW_AT_entry_pc should be preferred. */
11406 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11407 complaint (&symfile_complaints,
11408 _("DW_AT_GNU_call_site_target target DIE has invalid "
11409 "low pc, for referencing DIE 0x%x [in module %s]"),
11410 die->offset.sect_off, objfile_name (objfile));
11411 else
11412 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11413 }
11414 }
11415 else
11416 complaint (&symfile_complaints,
11417 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11418 "block nor reference, for DIE 0x%x [in module %s]"),
11419 die->offset.sect_off, objfile_name (objfile));
11420
11421 call_site->per_cu = cu->per_cu;
11422
11423 for (child_die = die->child;
11424 child_die && child_die->tag;
11425 child_die = sibling_die (child_die))
11426 {
11427 struct call_site_parameter *parameter;
11428 struct attribute *loc, *origin;
11429
11430 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11431 {
11432 /* Already printed the complaint above. */
11433 continue;
11434 }
11435
11436 gdb_assert (call_site->parameter_count < nparams);
11437 parameter = &call_site->parameter[call_site->parameter_count];
11438
11439 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11440 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11441 register is contained in DW_AT_GNU_call_site_value. */
11442
11443 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11444 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11445 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11446 {
11447 sect_offset offset;
11448
11449 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11450 offset = dwarf2_get_ref_die_offset (origin);
11451 if (!offset_in_cu_p (&cu->header, offset))
11452 {
11453 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11454 binding can be done only inside one CU. Such referenced DIE
11455 therefore cannot be even moved to DW_TAG_partial_unit. */
11456 complaint (&symfile_complaints,
11457 _("DW_AT_abstract_origin offset is not in CU for "
11458 "DW_TAG_GNU_call_site child DIE 0x%x "
11459 "[in module %s]"),
11460 child_die->offset.sect_off, objfile_name (objfile));
11461 continue;
11462 }
11463 parameter->u.param_offset.cu_off = (offset.sect_off
11464 - cu->header.offset.sect_off);
11465 }
11466 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11467 {
11468 complaint (&symfile_complaints,
11469 _("No DW_FORM_block* DW_AT_location for "
11470 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11471 child_die->offset.sect_off, objfile_name (objfile));
11472 continue;
11473 }
11474 else
11475 {
11476 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11477 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11478 if (parameter->u.dwarf_reg != -1)
11479 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11480 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11481 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11482 &parameter->u.fb_offset))
11483 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11484 else
11485 {
11486 complaint (&symfile_complaints,
11487 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11488 "for DW_FORM_block* DW_AT_location is supported for "
11489 "DW_TAG_GNU_call_site child DIE 0x%x "
11490 "[in module %s]"),
11491 child_die->offset.sect_off, objfile_name (objfile));
11492 continue;
11493 }
11494 }
11495
11496 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11497 if (!attr_form_is_block (attr))
11498 {
11499 complaint (&symfile_complaints,
11500 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11501 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11502 child_die->offset.sect_off, objfile_name (objfile));
11503 continue;
11504 }
11505 parameter->value = DW_BLOCK (attr)->data;
11506 parameter->value_size = DW_BLOCK (attr)->size;
11507
11508 /* Parameters are not pre-cleared by memset above. */
11509 parameter->data_value = NULL;
11510 parameter->data_value_size = 0;
11511 call_site->parameter_count++;
11512
11513 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11514 if (attr)
11515 {
11516 if (!attr_form_is_block (attr))
11517 complaint (&symfile_complaints,
11518 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11519 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11520 child_die->offset.sect_off, objfile_name (objfile));
11521 else
11522 {
11523 parameter->data_value = DW_BLOCK (attr)->data;
11524 parameter->data_value_size = DW_BLOCK (attr)->size;
11525 }
11526 }
11527 }
11528 }
11529
11530 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11531 Return 1 if the attributes are present and valid, otherwise, return 0.
11532 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11533
11534 static int
11535 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11536 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11537 struct partial_symtab *ranges_pst)
11538 {
11539 struct objfile *objfile = cu->objfile;
11540 struct comp_unit_head *cu_header = &cu->header;
11541 bfd *obfd = objfile->obfd;
11542 unsigned int addr_size = cu_header->addr_size;
11543 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11544 /* Base address selection entry. */
11545 CORE_ADDR base;
11546 int found_base;
11547 unsigned int dummy;
11548 const gdb_byte *buffer;
11549 CORE_ADDR marker;
11550 int low_set;
11551 CORE_ADDR low = 0;
11552 CORE_ADDR high = 0;
11553 CORE_ADDR baseaddr;
11554
11555 found_base = cu->base_known;
11556 base = cu->base_address;
11557
11558 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11559 if (offset >= dwarf2_per_objfile->ranges.size)
11560 {
11561 complaint (&symfile_complaints,
11562 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11563 offset);
11564 return 0;
11565 }
11566 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11567
11568 /* Read in the largest possible address. */
11569 marker = read_address (obfd, buffer, cu, &dummy);
11570 if ((marker & mask) == mask)
11571 {
11572 /* If we found the largest possible address, then
11573 read the base address. */
11574 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11575 buffer += 2 * addr_size;
11576 offset += 2 * addr_size;
11577 found_base = 1;
11578 }
11579
11580 low_set = 0;
11581
11582 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11583
11584 while (1)
11585 {
11586 CORE_ADDR range_beginning, range_end;
11587
11588 range_beginning = read_address (obfd, buffer, cu, &dummy);
11589 buffer += addr_size;
11590 range_end = read_address (obfd, buffer, cu, &dummy);
11591 buffer += addr_size;
11592 offset += 2 * addr_size;
11593
11594 /* An end of list marker is a pair of zero addresses. */
11595 if (range_beginning == 0 && range_end == 0)
11596 /* Found the end of list entry. */
11597 break;
11598
11599 /* Each base address selection entry is a pair of 2 values.
11600 The first is the largest possible address, the second is
11601 the base address. Check for a base address here. */
11602 if ((range_beginning & mask) == mask)
11603 {
11604 /* If we found the largest possible address, then
11605 read the base address. */
11606 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11607 found_base = 1;
11608 continue;
11609 }
11610
11611 if (!found_base)
11612 {
11613 /* We have no valid base address for the ranges
11614 data. */
11615 complaint (&symfile_complaints,
11616 _("Invalid .debug_ranges data (no base address)"));
11617 return 0;
11618 }
11619
11620 if (range_beginning > range_end)
11621 {
11622 /* Inverted range entries are invalid. */
11623 complaint (&symfile_complaints,
11624 _("Invalid .debug_ranges data (inverted range)"));
11625 return 0;
11626 }
11627
11628 /* Empty range entries have no effect. */
11629 if (range_beginning == range_end)
11630 continue;
11631
11632 range_beginning += base;
11633 range_end += base;
11634
11635 /* A not-uncommon case of bad debug info.
11636 Don't pollute the addrmap with bad data. */
11637 if (range_beginning + baseaddr == 0
11638 && !dwarf2_per_objfile->has_section_at_zero)
11639 {
11640 complaint (&symfile_complaints,
11641 _(".debug_ranges entry has start address of zero"
11642 " [in module %s]"), objfile_name (objfile));
11643 continue;
11644 }
11645
11646 if (ranges_pst != NULL)
11647 addrmap_set_empty (objfile->psymtabs_addrmap,
11648 range_beginning + baseaddr,
11649 range_end - 1 + baseaddr,
11650 ranges_pst);
11651
11652 /* FIXME: This is recording everything as a low-high
11653 segment of consecutive addresses. We should have a
11654 data structure for discontiguous block ranges
11655 instead. */
11656 if (! low_set)
11657 {
11658 low = range_beginning;
11659 high = range_end;
11660 low_set = 1;
11661 }
11662 else
11663 {
11664 if (range_beginning < low)
11665 low = range_beginning;
11666 if (range_end > high)
11667 high = range_end;
11668 }
11669 }
11670
11671 if (! low_set)
11672 /* If the first entry is an end-of-list marker, the range
11673 describes an empty scope, i.e. no instructions. */
11674 return 0;
11675
11676 if (low_return)
11677 *low_return = low;
11678 if (high_return)
11679 *high_return = high;
11680 return 1;
11681 }
11682
11683 /* Get low and high pc attributes from a die. Return 1 if the attributes
11684 are present and valid, otherwise, return 0. Return -1 if the range is
11685 discontinuous, i.e. derived from DW_AT_ranges information. */
11686
11687 static int
11688 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11689 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11690 struct partial_symtab *pst)
11691 {
11692 struct attribute *attr;
11693 struct attribute *attr_high;
11694 CORE_ADDR low = 0;
11695 CORE_ADDR high = 0;
11696 int ret = 0;
11697
11698 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11699 if (attr_high)
11700 {
11701 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11702 if (attr)
11703 {
11704 low = DW_ADDR (attr);
11705 if (attr_high->form == DW_FORM_addr
11706 || attr_high->form == DW_FORM_GNU_addr_index)
11707 high = DW_ADDR (attr_high);
11708 else
11709 high = low + DW_UNSND (attr_high);
11710 }
11711 else
11712 /* Found high w/o low attribute. */
11713 return 0;
11714
11715 /* Found consecutive range of addresses. */
11716 ret = 1;
11717 }
11718 else
11719 {
11720 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11721 if (attr != NULL)
11722 {
11723 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11724 We take advantage of the fact that DW_AT_ranges does not appear
11725 in DW_TAG_compile_unit of DWO files. */
11726 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11727 unsigned int ranges_offset = (DW_UNSND (attr)
11728 + (need_ranges_base
11729 ? cu->ranges_base
11730 : 0));
11731
11732 /* Value of the DW_AT_ranges attribute is the offset in the
11733 .debug_ranges section. */
11734 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11735 return 0;
11736 /* Found discontinuous range of addresses. */
11737 ret = -1;
11738 }
11739 }
11740
11741 /* read_partial_die has also the strict LOW < HIGH requirement. */
11742 if (high <= low)
11743 return 0;
11744
11745 /* When using the GNU linker, .gnu.linkonce. sections are used to
11746 eliminate duplicate copies of functions and vtables and such.
11747 The linker will arbitrarily choose one and discard the others.
11748 The AT_*_pc values for such functions refer to local labels in
11749 these sections. If the section from that file was discarded, the
11750 labels are not in the output, so the relocs get a value of 0.
11751 If this is a discarded function, mark the pc bounds as invalid,
11752 so that GDB will ignore it. */
11753 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11754 return 0;
11755
11756 *lowpc = low;
11757 if (highpc)
11758 *highpc = high;
11759 return ret;
11760 }
11761
11762 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11763 its low and high PC addresses. Do nothing if these addresses could not
11764 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11765 and HIGHPC to the high address if greater than HIGHPC. */
11766
11767 static void
11768 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11769 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11770 struct dwarf2_cu *cu)
11771 {
11772 CORE_ADDR low, high;
11773 struct die_info *child = die->child;
11774
11775 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11776 {
11777 *lowpc = min (*lowpc, low);
11778 *highpc = max (*highpc, high);
11779 }
11780
11781 /* If the language does not allow nested subprograms (either inside
11782 subprograms or lexical blocks), we're done. */
11783 if (cu->language != language_ada)
11784 return;
11785
11786 /* Check all the children of the given DIE. If it contains nested
11787 subprograms, then check their pc bounds. Likewise, we need to
11788 check lexical blocks as well, as they may also contain subprogram
11789 definitions. */
11790 while (child && child->tag)
11791 {
11792 if (child->tag == DW_TAG_subprogram
11793 || child->tag == DW_TAG_lexical_block)
11794 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11795 child = sibling_die (child);
11796 }
11797 }
11798
11799 /* Get the low and high pc's represented by the scope DIE, and store
11800 them in *LOWPC and *HIGHPC. If the correct values can't be
11801 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11802
11803 static void
11804 get_scope_pc_bounds (struct die_info *die,
11805 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11806 struct dwarf2_cu *cu)
11807 {
11808 CORE_ADDR best_low = (CORE_ADDR) -1;
11809 CORE_ADDR best_high = (CORE_ADDR) 0;
11810 CORE_ADDR current_low, current_high;
11811
11812 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11813 {
11814 best_low = current_low;
11815 best_high = current_high;
11816 }
11817 else
11818 {
11819 struct die_info *child = die->child;
11820
11821 while (child && child->tag)
11822 {
11823 switch (child->tag) {
11824 case DW_TAG_subprogram:
11825 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11826 break;
11827 case DW_TAG_namespace:
11828 case DW_TAG_module:
11829 /* FIXME: carlton/2004-01-16: Should we do this for
11830 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11831 that current GCC's always emit the DIEs corresponding
11832 to definitions of methods of classes as children of a
11833 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11834 the DIEs giving the declarations, which could be
11835 anywhere). But I don't see any reason why the
11836 standards says that they have to be there. */
11837 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11838
11839 if (current_low != ((CORE_ADDR) -1))
11840 {
11841 best_low = min (best_low, current_low);
11842 best_high = max (best_high, current_high);
11843 }
11844 break;
11845 default:
11846 /* Ignore. */
11847 break;
11848 }
11849
11850 child = sibling_die (child);
11851 }
11852 }
11853
11854 *lowpc = best_low;
11855 *highpc = best_high;
11856 }
11857
11858 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11859 in DIE. */
11860
11861 static void
11862 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11863 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11864 {
11865 struct objfile *objfile = cu->objfile;
11866 struct attribute *attr;
11867 struct attribute *attr_high;
11868
11869 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11870 if (attr_high)
11871 {
11872 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11873 if (attr)
11874 {
11875 CORE_ADDR low = DW_ADDR (attr);
11876 CORE_ADDR high;
11877 if (attr_high->form == DW_FORM_addr
11878 || attr_high->form == DW_FORM_GNU_addr_index)
11879 high = DW_ADDR (attr_high);
11880 else
11881 high = low + DW_UNSND (attr_high);
11882
11883 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11884 }
11885 }
11886
11887 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11888 if (attr)
11889 {
11890 bfd *obfd = objfile->obfd;
11891 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11892 We take advantage of the fact that DW_AT_ranges does not appear
11893 in DW_TAG_compile_unit of DWO files. */
11894 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11895
11896 /* The value of the DW_AT_ranges attribute is the offset of the
11897 address range list in the .debug_ranges section. */
11898 unsigned long offset = (DW_UNSND (attr)
11899 + (need_ranges_base ? cu->ranges_base : 0));
11900 const gdb_byte *buffer;
11901
11902 /* For some target architectures, but not others, the
11903 read_address function sign-extends the addresses it returns.
11904 To recognize base address selection entries, we need a
11905 mask. */
11906 unsigned int addr_size = cu->header.addr_size;
11907 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11908
11909 /* The base address, to which the next pair is relative. Note
11910 that this 'base' is a DWARF concept: most entries in a range
11911 list are relative, to reduce the number of relocs against the
11912 debugging information. This is separate from this function's
11913 'baseaddr' argument, which GDB uses to relocate debugging
11914 information from a shared library based on the address at
11915 which the library was loaded. */
11916 CORE_ADDR base = cu->base_address;
11917 int base_known = cu->base_known;
11918
11919 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11920 if (offset >= dwarf2_per_objfile->ranges.size)
11921 {
11922 complaint (&symfile_complaints,
11923 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11924 offset);
11925 return;
11926 }
11927 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11928
11929 for (;;)
11930 {
11931 unsigned int bytes_read;
11932 CORE_ADDR start, end;
11933
11934 start = read_address (obfd, buffer, cu, &bytes_read);
11935 buffer += bytes_read;
11936 end = read_address (obfd, buffer, cu, &bytes_read);
11937 buffer += bytes_read;
11938
11939 /* Did we find the end of the range list? */
11940 if (start == 0 && end == 0)
11941 break;
11942
11943 /* Did we find a base address selection entry? */
11944 else if ((start & base_select_mask) == base_select_mask)
11945 {
11946 base = end;
11947 base_known = 1;
11948 }
11949
11950 /* We found an ordinary address range. */
11951 else
11952 {
11953 if (!base_known)
11954 {
11955 complaint (&symfile_complaints,
11956 _("Invalid .debug_ranges data "
11957 "(no base address)"));
11958 return;
11959 }
11960
11961 if (start > end)
11962 {
11963 /* Inverted range entries are invalid. */
11964 complaint (&symfile_complaints,
11965 _("Invalid .debug_ranges data "
11966 "(inverted range)"));
11967 return;
11968 }
11969
11970 /* Empty range entries have no effect. */
11971 if (start == end)
11972 continue;
11973
11974 start += base + baseaddr;
11975 end += base + baseaddr;
11976
11977 /* A not-uncommon case of bad debug info.
11978 Don't pollute the addrmap with bad data. */
11979 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11980 {
11981 complaint (&symfile_complaints,
11982 _(".debug_ranges entry has start address of zero"
11983 " [in module %s]"), objfile_name (objfile));
11984 continue;
11985 }
11986
11987 record_block_range (block, start, end - 1);
11988 }
11989 }
11990 }
11991 }
11992
11993 /* Check whether the producer field indicates either of GCC < 4.6, or the
11994 Intel C/C++ compiler, and cache the result in CU. */
11995
11996 static void
11997 check_producer (struct dwarf2_cu *cu)
11998 {
11999 const char *cs;
12000 int major, minor, release;
12001
12002 if (cu->producer == NULL)
12003 {
12004 /* For unknown compilers expect their behavior is DWARF version
12005 compliant.
12006
12007 GCC started to support .debug_types sections by -gdwarf-4 since
12008 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12009 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12010 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12011 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12012 }
12013 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12014 {
12015 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12016
12017 cs = &cu->producer[strlen ("GNU ")];
12018 while (*cs && !isdigit (*cs))
12019 cs++;
12020 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12021 {
12022 /* Not recognized as GCC. */
12023 }
12024 else
12025 {
12026 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12027 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12028 }
12029 }
12030 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12031 cu->producer_is_icc = 1;
12032 else
12033 {
12034 /* For other non-GCC compilers, expect their behavior is DWARF version
12035 compliant. */
12036 }
12037
12038 cu->checked_producer = 1;
12039 }
12040
12041 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12042 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12043 during 4.6.0 experimental. */
12044
12045 static int
12046 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12047 {
12048 if (!cu->checked_producer)
12049 check_producer (cu);
12050
12051 return cu->producer_is_gxx_lt_4_6;
12052 }
12053
12054 /* Return the default accessibility type if it is not overriden by
12055 DW_AT_accessibility. */
12056
12057 static enum dwarf_access_attribute
12058 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12059 {
12060 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12061 {
12062 /* The default DWARF 2 accessibility for members is public, the default
12063 accessibility for inheritance is private. */
12064
12065 if (die->tag != DW_TAG_inheritance)
12066 return DW_ACCESS_public;
12067 else
12068 return DW_ACCESS_private;
12069 }
12070 else
12071 {
12072 /* DWARF 3+ defines the default accessibility a different way. The same
12073 rules apply now for DW_TAG_inheritance as for the members and it only
12074 depends on the container kind. */
12075
12076 if (die->parent->tag == DW_TAG_class_type)
12077 return DW_ACCESS_private;
12078 else
12079 return DW_ACCESS_public;
12080 }
12081 }
12082
12083 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12084 offset. If the attribute was not found return 0, otherwise return
12085 1. If it was found but could not properly be handled, set *OFFSET
12086 to 0. */
12087
12088 static int
12089 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12090 LONGEST *offset)
12091 {
12092 struct attribute *attr;
12093
12094 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12095 if (attr != NULL)
12096 {
12097 *offset = 0;
12098
12099 /* Note that we do not check for a section offset first here.
12100 This is because DW_AT_data_member_location is new in DWARF 4,
12101 so if we see it, we can assume that a constant form is really
12102 a constant and not a section offset. */
12103 if (attr_form_is_constant (attr))
12104 *offset = dwarf2_get_attr_constant_value (attr, 0);
12105 else if (attr_form_is_section_offset (attr))
12106 dwarf2_complex_location_expr_complaint ();
12107 else if (attr_form_is_block (attr))
12108 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12109 else
12110 dwarf2_complex_location_expr_complaint ();
12111
12112 return 1;
12113 }
12114
12115 return 0;
12116 }
12117
12118 /* Add an aggregate field to the field list. */
12119
12120 static void
12121 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12122 struct dwarf2_cu *cu)
12123 {
12124 struct objfile *objfile = cu->objfile;
12125 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12126 struct nextfield *new_field;
12127 struct attribute *attr;
12128 struct field *fp;
12129 const char *fieldname = "";
12130
12131 /* Allocate a new field list entry and link it in. */
12132 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12133 make_cleanup (xfree, new_field);
12134 memset (new_field, 0, sizeof (struct nextfield));
12135
12136 if (die->tag == DW_TAG_inheritance)
12137 {
12138 new_field->next = fip->baseclasses;
12139 fip->baseclasses = new_field;
12140 }
12141 else
12142 {
12143 new_field->next = fip->fields;
12144 fip->fields = new_field;
12145 }
12146 fip->nfields++;
12147
12148 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12149 if (attr)
12150 new_field->accessibility = DW_UNSND (attr);
12151 else
12152 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12153 if (new_field->accessibility != DW_ACCESS_public)
12154 fip->non_public_fields = 1;
12155
12156 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12157 if (attr)
12158 new_field->virtuality = DW_UNSND (attr);
12159 else
12160 new_field->virtuality = DW_VIRTUALITY_none;
12161
12162 fp = &new_field->field;
12163
12164 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12165 {
12166 LONGEST offset;
12167
12168 /* Data member other than a C++ static data member. */
12169
12170 /* Get type of field. */
12171 fp->type = die_type (die, cu);
12172
12173 SET_FIELD_BITPOS (*fp, 0);
12174
12175 /* Get bit size of field (zero if none). */
12176 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12177 if (attr)
12178 {
12179 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12180 }
12181 else
12182 {
12183 FIELD_BITSIZE (*fp) = 0;
12184 }
12185
12186 /* Get bit offset of field. */
12187 if (handle_data_member_location (die, cu, &offset))
12188 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12189 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12190 if (attr)
12191 {
12192 if (gdbarch_bits_big_endian (gdbarch))
12193 {
12194 /* For big endian bits, the DW_AT_bit_offset gives the
12195 additional bit offset from the MSB of the containing
12196 anonymous object to the MSB of the field. We don't
12197 have to do anything special since we don't need to
12198 know the size of the anonymous object. */
12199 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12200 }
12201 else
12202 {
12203 /* For little endian bits, compute the bit offset to the
12204 MSB of the anonymous object, subtract off the number of
12205 bits from the MSB of the field to the MSB of the
12206 object, and then subtract off the number of bits of
12207 the field itself. The result is the bit offset of
12208 the LSB of the field. */
12209 int anonymous_size;
12210 int bit_offset = DW_UNSND (attr);
12211
12212 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12213 if (attr)
12214 {
12215 /* The size of the anonymous object containing
12216 the bit field is explicit, so use the
12217 indicated size (in bytes). */
12218 anonymous_size = DW_UNSND (attr);
12219 }
12220 else
12221 {
12222 /* The size of the anonymous object containing
12223 the bit field must be inferred from the type
12224 attribute of the data member containing the
12225 bit field. */
12226 anonymous_size = TYPE_LENGTH (fp->type);
12227 }
12228 SET_FIELD_BITPOS (*fp,
12229 (FIELD_BITPOS (*fp)
12230 + anonymous_size * bits_per_byte
12231 - bit_offset - FIELD_BITSIZE (*fp)));
12232 }
12233 }
12234
12235 /* Get name of field. */
12236 fieldname = dwarf2_name (die, cu);
12237 if (fieldname == NULL)
12238 fieldname = "";
12239
12240 /* The name is already allocated along with this objfile, so we don't
12241 need to duplicate it for the type. */
12242 fp->name = fieldname;
12243
12244 /* Change accessibility for artificial fields (e.g. virtual table
12245 pointer or virtual base class pointer) to private. */
12246 if (dwarf2_attr (die, DW_AT_artificial, cu))
12247 {
12248 FIELD_ARTIFICIAL (*fp) = 1;
12249 new_field->accessibility = DW_ACCESS_private;
12250 fip->non_public_fields = 1;
12251 }
12252 }
12253 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12254 {
12255 /* C++ static member. */
12256
12257 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12258 is a declaration, but all versions of G++ as of this writing
12259 (so through at least 3.2.1) incorrectly generate
12260 DW_TAG_variable tags. */
12261
12262 const char *physname;
12263
12264 /* Get name of field. */
12265 fieldname = dwarf2_name (die, cu);
12266 if (fieldname == NULL)
12267 return;
12268
12269 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12270 if (attr
12271 /* Only create a symbol if this is an external value.
12272 new_symbol checks this and puts the value in the global symbol
12273 table, which we want. If it is not external, new_symbol
12274 will try to put the value in cu->list_in_scope which is wrong. */
12275 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12276 {
12277 /* A static const member, not much different than an enum as far as
12278 we're concerned, except that we can support more types. */
12279 new_symbol (die, NULL, cu);
12280 }
12281
12282 /* Get physical name. */
12283 physname = dwarf2_physname (fieldname, die, cu);
12284
12285 /* The name is already allocated along with this objfile, so we don't
12286 need to duplicate it for the type. */
12287 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12288 FIELD_TYPE (*fp) = die_type (die, cu);
12289 FIELD_NAME (*fp) = fieldname;
12290 }
12291 else if (die->tag == DW_TAG_inheritance)
12292 {
12293 LONGEST offset;
12294
12295 /* C++ base class field. */
12296 if (handle_data_member_location (die, cu, &offset))
12297 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12298 FIELD_BITSIZE (*fp) = 0;
12299 FIELD_TYPE (*fp) = die_type (die, cu);
12300 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12301 fip->nbaseclasses++;
12302 }
12303 }
12304
12305 /* Add a typedef defined in the scope of the FIP's class. */
12306
12307 static void
12308 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12309 struct dwarf2_cu *cu)
12310 {
12311 struct objfile *objfile = cu->objfile;
12312 struct typedef_field_list *new_field;
12313 struct attribute *attr;
12314 struct typedef_field *fp;
12315 char *fieldname = "";
12316
12317 /* Allocate a new field list entry and link it in. */
12318 new_field = xzalloc (sizeof (*new_field));
12319 make_cleanup (xfree, new_field);
12320
12321 gdb_assert (die->tag == DW_TAG_typedef);
12322
12323 fp = &new_field->field;
12324
12325 /* Get name of field. */
12326 fp->name = dwarf2_name (die, cu);
12327 if (fp->name == NULL)
12328 return;
12329
12330 fp->type = read_type_die (die, cu);
12331
12332 new_field->next = fip->typedef_field_list;
12333 fip->typedef_field_list = new_field;
12334 fip->typedef_field_list_count++;
12335 }
12336
12337 /* Create the vector of fields, and attach it to the type. */
12338
12339 static void
12340 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12341 struct dwarf2_cu *cu)
12342 {
12343 int nfields = fip->nfields;
12344
12345 /* Record the field count, allocate space for the array of fields,
12346 and create blank accessibility bitfields if necessary. */
12347 TYPE_NFIELDS (type) = nfields;
12348 TYPE_FIELDS (type) = (struct field *)
12349 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12350 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12351
12352 if (fip->non_public_fields && cu->language != language_ada)
12353 {
12354 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12355
12356 TYPE_FIELD_PRIVATE_BITS (type) =
12357 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12358 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12359
12360 TYPE_FIELD_PROTECTED_BITS (type) =
12361 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12362 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12363
12364 TYPE_FIELD_IGNORE_BITS (type) =
12365 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12366 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12367 }
12368
12369 /* If the type has baseclasses, allocate and clear a bit vector for
12370 TYPE_FIELD_VIRTUAL_BITS. */
12371 if (fip->nbaseclasses && cu->language != language_ada)
12372 {
12373 int num_bytes = B_BYTES (fip->nbaseclasses);
12374 unsigned char *pointer;
12375
12376 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12377 pointer = TYPE_ALLOC (type, num_bytes);
12378 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12379 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12380 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12381 }
12382
12383 /* Copy the saved-up fields into the field vector. Start from the head of
12384 the list, adding to the tail of the field array, so that they end up in
12385 the same order in the array in which they were added to the list. */
12386 while (nfields-- > 0)
12387 {
12388 struct nextfield *fieldp;
12389
12390 if (fip->fields)
12391 {
12392 fieldp = fip->fields;
12393 fip->fields = fieldp->next;
12394 }
12395 else
12396 {
12397 fieldp = fip->baseclasses;
12398 fip->baseclasses = fieldp->next;
12399 }
12400
12401 TYPE_FIELD (type, nfields) = fieldp->field;
12402 switch (fieldp->accessibility)
12403 {
12404 case DW_ACCESS_private:
12405 if (cu->language != language_ada)
12406 SET_TYPE_FIELD_PRIVATE (type, nfields);
12407 break;
12408
12409 case DW_ACCESS_protected:
12410 if (cu->language != language_ada)
12411 SET_TYPE_FIELD_PROTECTED (type, nfields);
12412 break;
12413
12414 case DW_ACCESS_public:
12415 break;
12416
12417 default:
12418 /* Unknown accessibility. Complain and treat it as public. */
12419 {
12420 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12421 fieldp->accessibility);
12422 }
12423 break;
12424 }
12425 if (nfields < fip->nbaseclasses)
12426 {
12427 switch (fieldp->virtuality)
12428 {
12429 case DW_VIRTUALITY_virtual:
12430 case DW_VIRTUALITY_pure_virtual:
12431 if (cu->language == language_ada)
12432 error (_("unexpected virtuality in component of Ada type"));
12433 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12434 break;
12435 }
12436 }
12437 }
12438 }
12439
12440 /* Return true if this member function is a constructor, false
12441 otherwise. */
12442
12443 static int
12444 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12445 {
12446 const char *fieldname;
12447 const char *typename;
12448 int len;
12449
12450 if (die->parent == NULL)
12451 return 0;
12452
12453 if (die->parent->tag != DW_TAG_structure_type
12454 && die->parent->tag != DW_TAG_union_type
12455 && die->parent->tag != DW_TAG_class_type)
12456 return 0;
12457
12458 fieldname = dwarf2_name (die, cu);
12459 typename = dwarf2_name (die->parent, cu);
12460 if (fieldname == NULL || typename == NULL)
12461 return 0;
12462
12463 len = strlen (fieldname);
12464 return (strncmp (fieldname, typename, len) == 0
12465 && (typename[len] == '\0' || typename[len] == '<'));
12466 }
12467
12468 /* Add a member function to the proper fieldlist. */
12469
12470 static void
12471 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12472 struct type *type, struct dwarf2_cu *cu)
12473 {
12474 struct objfile *objfile = cu->objfile;
12475 struct attribute *attr;
12476 struct fnfieldlist *flp;
12477 int i;
12478 struct fn_field *fnp;
12479 const char *fieldname;
12480 struct nextfnfield *new_fnfield;
12481 struct type *this_type;
12482 enum dwarf_access_attribute accessibility;
12483
12484 if (cu->language == language_ada)
12485 error (_("unexpected member function in Ada type"));
12486
12487 /* Get name of member function. */
12488 fieldname = dwarf2_name (die, cu);
12489 if (fieldname == NULL)
12490 return;
12491
12492 /* Look up member function name in fieldlist. */
12493 for (i = 0; i < fip->nfnfields; i++)
12494 {
12495 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12496 break;
12497 }
12498
12499 /* Create new list element if necessary. */
12500 if (i < fip->nfnfields)
12501 flp = &fip->fnfieldlists[i];
12502 else
12503 {
12504 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12505 {
12506 fip->fnfieldlists = (struct fnfieldlist *)
12507 xrealloc (fip->fnfieldlists,
12508 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12509 * sizeof (struct fnfieldlist));
12510 if (fip->nfnfields == 0)
12511 make_cleanup (free_current_contents, &fip->fnfieldlists);
12512 }
12513 flp = &fip->fnfieldlists[fip->nfnfields];
12514 flp->name = fieldname;
12515 flp->length = 0;
12516 flp->head = NULL;
12517 i = fip->nfnfields++;
12518 }
12519
12520 /* Create a new member function field and chain it to the field list
12521 entry. */
12522 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12523 make_cleanup (xfree, new_fnfield);
12524 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12525 new_fnfield->next = flp->head;
12526 flp->head = new_fnfield;
12527 flp->length++;
12528
12529 /* Fill in the member function field info. */
12530 fnp = &new_fnfield->fnfield;
12531
12532 /* Delay processing of the physname until later. */
12533 if (cu->language == language_cplus || cu->language == language_java)
12534 {
12535 add_to_method_list (type, i, flp->length - 1, fieldname,
12536 die, cu);
12537 }
12538 else
12539 {
12540 const char *physname = dwarf2_physname (fieldname, die, cu);
12541 fnp->physname = physname ? physname : "";
12542 }
12543
12544 fnp->type = alloc_type (objfile);
12545 this_type = read_type_die (die, cu);
12546 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12547 {
12548 int nparams = TYPE_NFIELDS (this_type);
12549
12550 /* TYPE is the domain of this method, and THIS_TYPE is the type
12551 of the method itself (TYPE_CODE_METHOD). */
12552 smash_to_method_type (fnp->type, type,
12553 TYPE_TARGET_TYPE (this_type),
12554 TYPE_FIELDS (this_type),
12555 TYPE_NFIELDS (this_type),
12556 TYPE_VARARGS (this_type));
12557
12558 /* Handle static member functions.
12559 Dwarf2 has no clean way to discern C++ static and non-static
12560 member functions. G++ helps GDB by marking the first
12561 parameter for non-static member functions (which is the this
12562 pointer) as artificial. We obtain this information from
12563 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12564 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12565 fnp->voffset = VOFFSET_STATIC;
12566 }
12567 else
12568 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12569 dwarf2_full_name (fieldname, die, cu));
12570
12571 /* Get fcontext from DW_AT_containing_type if present. */
12572 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12573 fnp->fcontext = die_containing_type (die, cu);
12574
12575 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12576 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12577
12578 /* Get accessibility. */
12579 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12580 if (attr)
12581 accessibility = DW_UNSND (attr);
12582 else
12583 accessibility = dwarf2_default_access_attribute (die, cu);
12584 switch (accessibility)
12585 {
12586 case DW_ACCESS_private:
12587 fnp->is_private = 1;
12588 break;
12589 case DW_ACCESS_protected:
12590 fnp->is_protected = 1;
12591 break;
12592 }
12593
12594 /* Check for artificial methods. */
12595 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12596 if (attr && DW_UNSND (attr) != 0)
12597 fnp->is_artificial = 1;
12598
12599 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12600
12601 /* Get index in virtual function table if it is a virtual member
12602 function. For older versions of GCC, this is an offset in the
12603 appropriate virtual table, as specified by DW_AT_containing_type.
12604 For everyone else, it is an expression to be evaluated relative
12605 to the object address. */
12606
12607 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12608 if (attr)
12609 {
12610 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12611 {
12612 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12613 {
12614 /* Old-style GCC. */
12615 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12616 }
12617 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12618 || (DW_BLOCK (attr)->size > 1
12619 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12620 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12621 {
12622 struct dwarf_block blk;
12623 int offset;
12624
12625 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12626 ? 1 : 2);
12627 blk.size = DW_BLOCK (attr)->size - offset;
12628 blk.data = DW_BLOCK (attr)->data + offset;
12629 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12630 if ((fnp->voffset % cu->header.addr_size) != 0)
12631 dwarf2_complex_location_expr_complaint ();
12632 else
12633 fnp->voffset /= cu->header.addr_size;
12634 fnp->voffset += 2;
12635 }
12636 else
12637 dwarf2_complex_location_expr_complaint ();
12638
12639 if (!fnp->fcontext)
12640 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12641 }
12642 else if (attr_form_is_section_offset (attr))
12643 {
12644 dwarf2_complex_location_expr_complaint ();
12645 }
12646 else
12647 {
12648 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12649 fieldname);
12650 }
12651 }
12652 else
12653 {
12654 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12655 if (attr && DW_UNSND (attr))
12656 {
12657 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12658 complaint (&symfile_complaints,
12659 _("Member function \"%s\" (offset %d) is virtual "
12660 "but the vtable offset is not specified"),
12661 fieldname, die->offset.sect_off);
12662 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12663 TYPE_CPLUS_DYNAMIC (type) = 1;
12664 }
12665 }
12666 }
12667
12668 /* Create the vector of member function fields, and attach it to the type. */
12669
12670 static void
12671 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12672 struct dwarf2_cu *cu)
12673 {
12674 struct fnfieldlist *flp;
12675 int i;
12676
12677 if (cu->language == language_ada)
12678 error (_("unexpected member functions in Ada type"));
12679
12680 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12681 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12682 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12683
12684 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12685 {
12686 struct nextfnfield *nfp = flp->head;
12687 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12688 int k;
12689
12690 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12691 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12692 fn_flp->fn_fields = (struct fn_field *)
12693 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12694 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12695 fn_flp->fn_fields[k] = nfp->fnfield;
12696 }
12697
12698 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12699 }
12700
12701 /* Returns non-zero if NAME is the name of a vtable member in CU's
12702 language, zero otherwise. */
12703 static int
12704 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12705 {
12706 static const char vptr[] = "_vptr";
12707 static const char vtable[] = "vtable";
12708
12709 /* Look for the C++ and Java forms of the vtable. */
12710 if ((cu->language == language_java
12711 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12712 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12713 && is_cplus_marker (name[sizeof (vptr) - 1])))
12714 return 1;
12715
12716 return 0;
12717 }
12718
12719 /* GCC outputs unnamed structures that are really pointers to member
12720 functions, with the ABI-specified layout. If TYPE describes
12721 such a structure, smash it into a member function type.
12722
12723 GCC shouldn't do this; it should just output pointer to member DIEs.
12724 This is GCC PR debug/28767. */
12725
12726 static void
12727 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12728 {
12729 struct type *pfn_type, *domain_type, *new_type;
12730
12731 /* Check for a structure with no name and two children. */
12732 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12733 return;
12734
12735 /* Check for __pfn and __delta members. */
12736 if (TYPE_FIELD_NAME (type, 0) == NULL
12737 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12738 || TYPE_FIELD_NAME (type, 1) == NULL
12739 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12740 return;
12741
12742 /* Find the type of the method. */
12743 pfn_type = TYPE_FIELD_TYPE (type, 0);
12744 if (pfn_type == NULL
12745 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12746 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12747 return;
12748
12749 /* Look for the "this" argument. */
12750 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12751 if (TYPE_NFIELDS (pfn_type) == 0
12752 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12753 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12754 return;
12755
12756 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12757 new_type = alloc_type (objfile);
12758 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12759 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12760 TYPE_VARARGS (pfn_type));
12761 smash_to_methodptr_type (type, new_type);
12762 }
12763
12764 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12765 (icc). */
12766
12767 static int
12768 producer_is_icc (struct dwarf2_cu *cu)
12769 {
12770 if (!cu->checked_producer)
12771 check_producer (cu);
12772
12773 return cu->producer_is_icc;
12774 }
12775
12776 /* Called when we find the DIE that starts a structure or union scope
12777 (definition) to create a type for the structure or union. Fill in
12778 the type's name and general properties; the members will not be
12779 processed until process_structure_scope.
12780
12781 NOTE: we need to call these functions regardless of whether or not the
12782 DIE has a DW_AT_name attribute, since it might be an anonymous
12783 structure or union. This gets the type entered into our set of
12784 user defined types.
12785
12786 However, if the structure is incomplete (an opaque struct/union)
12787 then suppress creating a symbol table entry for it since gdb only
12788 wants to find the one with the complete definition. Note that if
12789 it is complete, we just call new_symbol, which does it's own
12790 checking about whether the struct/union is anonymous or not (and
12791 suppresses creating a symbol table entry itself). */
12792
12793 static struct type *
12794 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12795 {
12796 struct objfile *objfile = cu->objfile;
12797 struct type *type;
12798 struct attribute *attr;
12799 const char *name;
12800
12801 /* If the definition of this type lives in .debug_types, read that type.
12802 Don't follow DW_AT_specification though, that will take us back up
12803 the chain and we want to go down. */
12804 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12805 if (attr)
12806 {
12807 type = get_DW_AT_signature_type (die, attr, cu);
12808
12809 /* The type's CU may not be the same as CU.
12810 Ensure TYPE is recorded with CU in die_type_hash. */
12811 return set_die_type (die, type, cu);
12812 }
12813
12814 type = alloc_type (objfile);
12815 INIT_CPLUS_SPECIFIC (type);
12816
12817 name = dwarf2_name (die, cu);
12818 if (name != NULL)
12819 {
12820 if (cu->language == language_cplus
12821 || cu->language == language_java)
12822 {
12823 const char *full_name = dwarf2_full_name (name, die, cu);
12824
12825 /* dwarf2_full_name might have already finished building the DIE's
12826 type. If so, there is no need to continue. */
12827 if (get_die_type (die, cu) != NULL)
12828 return get_die_type (die, cu);
12829
12830 TYPE_TAG_NAME (type) = full_name;
12831 if (die->tag == DW_TAG_structure_type
12832 || die->tag == DW_TAG_class_type)
12833 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12834 }
12835 else
12836 {
12837 /* The name is already allocated along with this objfile, so
12838 we don't need to duplicate it for the type. */
12839 TYPE_TAG_NAME (type) = name;
12840 if (die->tag == DW_TAG_class_type)
12841 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12842 }
12843 }
12844
12845 if (die->tag == DW_TAG_structure_type)
12846 {
12847 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12848 }
12849 else if (die->tag == DW_TAG_union_type)
12850 {
12851 TYPE_CODE (type) = TYPE_CODE_UNION;
12852 }
12853 else
12854 {
12855 TYPE_CODE (type) = TYPE_CODE_CLASS;
12856 }
12857
12858 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12859 TYPE_DECLARED_CLASS (type) = 1;
12860
12861 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12862 if (attr)
12863 {
12864 TYPE_LENGTH (type) = DW_UNSND (attr);
12865 }
12866 else
12867 {
12868 TYPE_LENGTH (type) = 0;
12869 }
12870
12871 if (producer_is_icc (cu))
12872 {
12873 /* ICC does not output the required DW_AT_declaration
12874 on incomplete types, but gives them a size of zero. */
12875 }
12876 else
12877 TYPE_STUB_SUPPORTED (type) = 1;
12878
12879 if (die_is_declaration (die, cu))
12880 TYPE_STUB (type) = 1;
12881 else if (attr == NULL && die->child == NULL
12882 && producer_is_realview (cu->producer))
12883 /* RealView does not output the required DW_AT_declaration
12884 on incomplete types. */
12885 TYPE_STUB (type) = 1;
12886
12887 /* We need to add the type field to the die immediately so we don't
12888 infinitely recurse when dealing with pointers to the structure
12889 type within the structure itself. */
12890 set_die_type (die, type, cu);
12891
12892 /* set_die_type should be already done. */
12893 set_descriptive_type (type, die, cu);
12894
12895 return type;
12896 }
12897
12898 /* Finish creating a structure or union type, including filling in
12899 its members and creating a symbol for it. */
12900
12901 static void
12902 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12903 {
12904 struct objfile *objfile = cu->objfile;
12905 struct die_info *child_die = die->child;
12906 struct type *type;
12907
12908 type = get_die_type (die, cu);
12909 if (type == NULL)
12910 type = read_structure_type (die, cu);
12911
12912 if (die->child != NULL && ! die_is_declaration (die, cu))
12913 {
12914 struct field_info fi;
12915 struct die_info *child_die;
12916 VEC (symbolp) *template_args = NULL;
12917 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
12918
12919 memset (&fi, 0, sizeof (struct field_info));
12920
12921 child_die = die->child;
12922
12923 while (child_die && child_die->tag)
12924 {
12925 if (child_die->tag == DW_TAG_member
12926 || child_die->tag == DW_TAG_variable)
12927 {
12928 /* NOTE: carlton/2002-11-05: A C++ static data member
12929 should be a DW_TAG_member that is a declaration, but
12930 all versions of G++ as of this writing (so through at
12931 least 3.2.1) incorrectly generate DW_TAG_variable
12932 tags for them instead. */
12933 dwarf2_add_field (&fi, child_die, cu);
12934 }
12935 else if (child_die->tag == DW_TAG_subprogram)
12936 {
12937 /* C++ member function. */
12938 dwarf2_add_member_fn (&fi, child_die, type, cu);
12939 }
12940 else if (child_die->tag == DW_TAG_inheritance)
12941 {
12942 /* C++ base class field. */
12943 dwarf2_add_field (&fi, child_die, cu);
12944 }
12945 else if (child_die->tag == DW_TAG_typedef)
12946 dwarf2_add_typedef (&fi, child_die, cu);
12947 else if (child_die->tag == DW_TAG_template_type_param
12948 || child_die->tag == DW_TAG_template_value_param)
12949 {
12950 struct symbol *arg = new_symbol (child_die, NULL, cu);
12951
12952 if (arg != NULL)
12953 VEC_safe_push (symbolp, template_args, arg);
12954 }
12955
12956 child_die = sibling_die (child_die);
12957 }
12958
12959 /* Attach template arguments to type. */
12960 if (! VEC_empty (symbolp, template_args))
12961 {
12962 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12963 TYPE_N_TEMPLATE_ARGUMENTS (type)
12964 = VEC_length (symbolp, template_args);
12965 TYPE_TEMPLATE_ARGUMENTS (type)
12966 = obstack_alloc (&objfile->objfile_obstack,
12967 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12968 * sizeof (struct symbol *)));
12969 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12970 VEC_address (symbolp, template_args),
12971 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12972 * sizeof (struct symbol *)));
12973 VEC_free (symbolp, template_args);
12974 }
12975
12976 /* Attach fields and member functions to the type. */
12977 if (fi.nfields)
12978 dwarf2_attach_fields_to_type (&fi, type, cu);
12979 if (fi.nfnfields)
12980 {
12981 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
12982
12983 /* Get the type which refers to the base class (possibly this
12984 class itself) which contains the vtable pointer for the current
12985 class from the DW_AT_containing_type attribute. This use of
12986 DW_AT_containing_type is a GNU extension. */
12987
12988 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12989 {
12990 struct type *t = die_containing_type (die, cu);
12991
12992 TYPE_VPTR_BASETYPE (type) = t;
12993 if (type == t)
12994 {
12995 int i;
12996
12997 /* Our own class provides vtbl ptr. */
12998 for (i = TYPE_NFIELDS (t) - 1;
12999 i >= TYPE_N_BASECLASSES (t);
13000 --i)
13001 {
13002 const char *fieldname = TYPE_FIELD_NAME (t, i);
13003
13004 if (is_vtable_name (fieldname, cu))
13005 {
13006 TYPE_VPTR_FIELDNO (type) = i;
13007 break;
13008 }
13009 }
13010
13011 /* Complain if virtual function table field not found. */
13012 if (i < TYPE_N_BASECLASSES (t))
13013 complaint (&symfile_complaints,
13014 _("virtual function table pointer "
13015 "not found when defining class '%s'"),
13016 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13017 "");
13018 }
13019 else
13020 {
13021 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13022 }
13023 }
13024 else if (cu->producer
13025 && strncmp (cu->producer,
13026 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13027 {
13028 /* The IBM XLC compiler does not provide direct indication
13029 of the containing type, but the vtable pointer is
13030 always named __vfp. */
13031
13032 int i;
13033
13034 for (i = TYPE_NFIELDS (type) - 1;
13035 i >= TYPE_N_BASECLASSES (type);
13036 --i)
13037 {
13038 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13039 {
13040 TYPE_VPTR_FIELDNO (type) = i;
13041 TYPE_VPTR_BASETYPE (type) = type;
13042 break;
13043 }
13044 }
13045 }
13046 }
13047
13048 /* Copy fi.typedef_field_list linked list elements content into the
13049 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13050 if (fi.typedef_field_list)
13051 {
13052 int i = fi.typedef_field_list_count;
13053
13054 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13055 TYPE_TYPEDEF_FIELD_ARRAY (type)
13056 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13057 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13058
13059 /* Reverse the list order to keep the debug info elements order. */
13060 while (--i >= 0)
13061 {
13062 struct typedef_field *dest, *src;
13063
13064 dest = &TYPE_TYPEDEF_FIELD (type, i);
13065 src = &fi.typedef_field_list->field;
13066 fi.typedef_field_list = fi.typedef_field_list->next;
13067 *dest = *src;
13068 }
13069 }
13070
13071 do_cleanups (back_to);
13072
13073 if (HAVE_CPLUS_STRUCT (type))
13074 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13075 }
13076
13077 quirk_gcc_member_function_pointer (type, objfile);
13078
13079 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13080 snapshots) has been known to create a die giving a declaration
13081 for a class that has, as a child, a die giving a definition for a
13082 nested class. So we have to process our children even if the
13083 current die is a declaration. Normally, of course, a declaration
13084 won't have any children at all. */
13085
13086 while (child_die != NULL && child_die->tag)
13087 {
13088 if (child_die->tag == DW_TAG_member
13089 || child_die->tag == DW_TAG_variable
13090 || child_die->tag == DW_TAG_inheritance
13091 || child_die->tag == DW_TAG_template_value_param
13092 || child_die->tag == DW_TAG_template_type_param)
13093 {
13094 /* Do nothing. */
13095 }
13096 else
13097 process_die (child_die, cu);
13098
13099 child_die = sibling_die (child_die);
13100 }
13101
13102 /* Do not consider external references. According to the DWARF standard,
13103 these DIEs are identified by the fact that they have no byte_size
13104 attribute, and a declaration attribute. */
13105 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13106 || !die_is_declaration (die, cu))
13107 new_symbol (die, type, cu);
13108 }
13109
13110 /* Given a DW_AT_enumeration_type die, set its type. We do not
13111 complete the type's fields yet, or create any symbols. */
13112
13113 static struct type *
13114 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13115 {
13116 struct objfile *objfile = cu->objfile;
13117 struct type *type;
13118 struct attribute *attr;
13119 const char *name;
13120
13121 /* If the definition of this type lives in .debug_types, read that type.
13122 Don't follow DW_AT_specification though, that will take us back up
13123 the chain and we want to go down. */
13124 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13125 if (attr)
13126 {
13127 type = get_DW_AT_signature_type (die, attr, cu);
13128
13129 /* The type's CU may not be the same as CU.
13130 Ensure TYPE is recorded with CU in die_type_hash. */
13131 return set_die_type (die, type, cu);
13132 }
13133
13134 type = alloc_type (objfile);
13135
13136 TYPE_CODE (type) = TYPE_CODE_ENUM;
13137 name = dwarf2_full_name (NULL, die, cu);
13138 if (name != NULL)
13139 TYPE_TAG_NAME (type) = name;
13140
13141 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13142 if (attr)
13143 {
13144 TYPE_LENGTH (type) = DW_UNSND (attr);
13145 }
13146 else
13147 {
13148 TYPE_LENGTH (type) = 0;
13149 }
13150
13151 /* The enumeration DIE can be incomplete. In Ada, any type can be
13152 declared as private in the package spec, and then defined only
13153 inside the package body. Such types are known as Taft Amendment
13154 Types. When another package uses such a type, an incomplete DIE
13155 may be generated by the compiler. */
13156 if (die_is_declaration (die, cu))
13157 TYPE_STUB (type) = 1;
13158
13159 return set_die_type (die, type, cu);
13160 }
13161
13162 /* Given a pointer to a die which begins an enumeration, process all
13163 the dies that define the members of the enumeration, and create the
13164 symbol for the enumeration type.
13165
13166 NOTE: We reverse the order of the element list. */
13167
13168 static void
13169 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13170 {
13171 struct type *this_type;
13172
13173 this_type = get_die_type (die, cu);
13174 if (this_type == NULL)
13175 this_type = read_enumeration_type (die, cu);
13176
13177 if (die->child != NULL)
13178 {
13179 struct die_info *child_die;
13180 struct symbol *sym;
13181 struct field *fields = NULL;
13182 int num_fields = 0;
13183 int unsigned_enum = 1;
13184 const char *name;
13185 int flag_enum = 1;
13186 ULONGEST mask = 0;
13187
13188 child_die = die->child;
13189 while (child_die && child_die->tag)
13190 {
13191 if (child_die->tag != DW_TAG_enumerator)
13192 {
13193 process_die (child_die, cu);
13194 }
13195 else
13196 {
13197 name = dwarf2_name (child_die, cu);
13198 if (name)
13199 {
13200 sym = new_symbol (child_die, this_type, cu);
13201 if (SYMBOL_VALUE (sym) < 0)
13202 {
13203 unsigned_enum = 0;
13204 flag_enum = 0;
13205 }
13206 else if ((mask & SYMBOL_VALUE (sym)) != 0)
13207 flag_enum = 0;
13208 else
13209 mask |= SYMBOL_VALUE (sym);
13210
13211 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13212 {
13213 fields = (struct field *)
13214 xrealloc (fields,
13215 (num_fields + DW_FIELD_ALLOC_CHUNK)
13216 * sizeof (struct field));
13217 }
13218
13219 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13220 FIELD_TYPE (fields[num_fields]) = NULL;
13221 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13222 FIELD_BITSIZE (fields[num_fields]) = 0;
13223
13224 num_fields++;
13225 }
13226 }
13227
13228 child_die = sibling_die (child_die);
13229 }
13230
13231 if (num_fields)
13232 {
13233 TYPE_NFIELDS (this_type) = num_fields;
13234 TYPE_FIELDS (this_type) = (struct field *)
13235 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13236 memcpy (TYPE_FIELDS (this_type), fields,
13237 sizeof (struct field) * num_fields);
13238 xfree (fields);
13239 }
13240 if (unsigned_enum)
13241 TYPE_UNSIGNED (this_type) = 1;
13242 if (flag_enum)
13243 TYPE_FLAG_ENUM (this_type) = 1;
13244 }
13245
13246 /* If we are reading an enum from a .debug_types unit, and the enum
13247 is a declaration, and the enum is not the signatured type in the
13248 unit, then we do not want to add a symbol for it. Adding a
13249 symbol would in some cases obscure the true definition of the
13250 enum, giving users an incomplete type when the definition is
13251 actually available. Note that we do not want to do this for all
13252 enums which are just declarations, because C++0x allows forward
13253 enum declarations. */
13254 if (cu->per_cu->is_debug_types
13255 && die_is_declaration (die, cu))
13256 {
13257 struct signatured_type *sig_type;
13258
13259 sig_type = (struct signatured_type *) cu->per_cu;
13260 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13261 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13262 return;
13263 }
13264
13265 new_symbol (die, this_type, cu);
13266 }
13267
13268 /* Extract all information from a DW_TAG_array_type DIE and put it in
13269 the DIE's type field. For now, this only handles one dimensional
13270 arrays. */
13271
13272 static struct type *
13273 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13274 {
13275 struct objfile *objfile = cu->objfile;
13276 struct die_info *child_die;
13277 struct type *type;
13278 struct type *element_type, *range_type, *index_type;
13279 struct type **range_types = NULL;
13280 struct attribute *attr;
13281 int ndim = 0;
13282 struct cleanup *back_to;
13283 const char *name;
13284 unsigned int bit_stride = 0;
13285
13286 element_type = die_type (die, cu);
13287
13288 /* The die_type call above may have already set the type for this DIE. */
13289 type = get_die_type (die, cu);
13290 if (type)
13291 return type;
13292
13293 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13294 if (attr != NULL)
13295 bit_stride = DW_UNSND (attr) * 8;
13296
13297 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13298 if (attr != NULL)
13299 bit_stride = DW_UNSND (attr);
13300
13301 /* Irix 6.2 native cc creates array types without children for
13302 arrays with unspecified length. */
13303 if (die->child == NULL)
13304 {
13305 index_type = objfile_type (objfile)->builtin_int;
13306 range_type = create_range_type (NULL, index_type, 0, -1);
13307 type = create_array_type_with_stride (NULL, element_type, range_type,
13308 bit_stride);
13309 return set_die_type (die, type, cu);
13310 }
13311
13312 back_to = make_cleanup (null_cleanup, NULL);
13313 child_die = die->child;
13314 while (child_die && child_die->tag)
13315 {
13316 if (child_die->tag == DW_TAG_subrange_type)
13317 {
13318 struct type *child_type = read_type_die (child_die, cu);
13319
13320 if (child_type != NULL)
13321 {
13322 /* The range type was succesfully read. Save it for the
13323 array type creation. */
13324 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13325 {
13326 range_types = (struct type **)
13327 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13328 * sizeof (struct type *));
13329 if (ndim == 0)
13330 make_cleanup (free_current_contents, &range_types);
13331 }
13332 range_types[ndim++] = child_type;
13333 }
13334 }
13335 child_die = sibling_die (child_die);
13336 }
13337
13338 /* Dwarf2 dimensions are output from left to right, create the
13339 necessary array types in backwards order. */
13340
13341 type = element_type;
13342
13343 if (read_array_order (die, cu) == DW_ORD_col_major)
13344 {
13345 int i = 0;
13346
13347 while (i < ndim)
13348 type = create_array_type_with_stride (NULL, type, range_types[i++],
13349 bit_stride);
13350 }
13351 else
13352 {
13353 while (ndim-- > 0)
13354 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13355 bit_stride);
13356 }
13357
13358 /* Understand Dwarf2 support for vector types (like they occur on
13359 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13360 array type. This is not part of the Dwarf2/3 standard yet, but a
13361 custom vendor extension. The main difference between a regular
13362 array and the vector variant is that vectors are passed by value
13363 to functions. */
13364 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13365 if (attr)
13366 make_vector_type (type);
13367
13368 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13369 implementation may choose to implement triple vectors using this
13370 attribute. */
13371 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13372 if (attr)
13373 {
13374 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13375 TYPE_LENGTH (type) = DW_UNSND (attr);
13376 else
13377 complaint (&symfile_complaints,
13378 _("DW_AT_byte_size for array type smaller "
13379 "than the total size of elements"));
13380 }
13381
13382 name = dwarf2_name (die, cu);
13383 if (name)
13384 TYPE_NAME (type) = name;
13385
13386 /* Install the type in the die. */
13387 set_die_type (die, type, cu);
13388
13389 /* set_die_type should be already done. */
13390 set_descriptive_type (type, die, cu);
13391
13392 do_cleanups (back_to);
13393
13394 return type;
13395 }
13396
13397 static enum dwarf_array_dim_ordering
13398 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13399 {
13400 struct attribute *attr;
13401
13402 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13403
13404 if (attr) return DW_SND (attr);
13405
13406 /* GNU F77 is a special case, as at 08/2004 array type info is the
13407 opposite order to the dwarf2 specification, but data is still
13408 laid out as per normal fortran.
13409
13410 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13411 version checking. */
13412
13413 if (cu->language == language_fortran
13414 && cu->producer && strstr (cu->producer, "GNU F77"))
13415 {
13416 return DW_ORD_row_major;
13417 }
13418
13419 switch (cu->language_defn->la_array_ordering)
13420 {
13421 case array_column_major:
13422 return DW_ORD_col_major;
13423 case array_row_major:
13424 default:
13425 return DW_ORD_row_major;
13426 };
13427 }
13428
13429 /* Extract all information from a DW_TAG_set_type DIE and put it in
13430 the DIE's type field. */
13431
13432 static struct type *
13433 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13434 {
13435 struct type *domain_type, *set_type;
13436 struct attribute *attr;
13437
13438 domain_type = die_type (die, cu);
13439
13440 /* The die_type call above may have already set the type for this DIE. */
13441 set_type = get_die_type (die, cu);
13442 if (set_type)
13443 return set_type;
13444
13445 set_type = create_set_type (NULL, domain_type);
13446
13447 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13448 if (attr)
13449 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13450
13451 return set_die_type (die, set_type, cu);
13452 }
13453
13454 /* A helper for read_common_block that creates a locexpr baton.
13455 SYM is the symbol which we are marking as computed.
13456 COMMON_DIE is the DIE for the common block.
13457 COMMON_LOC is the location expression attribute for the common
13458 block itself.
13459 MEMBER_LOC is the location expression attribute for the particular
13460 member of the common block that we are processing.
13461 CU is the CU from which the above come. */
13462
13463 static void
13464 mark_common_block_symbol_computed (struct symbol *sym,
13465 struct die_info *common_die,
13466 struct attribute *common_loc,
13467 struct attribute *member_loc,
13468 struct dwarf2_cu *cu)
13469 {
13470 struct objfile *objfile = dwarf2_per_objfile->objfile;
13471 struct dwarf2_locexpr_baton *baton;
13472 gdb_byte *ptr;
13473 unsigned int cu_off;
13474 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13475 LONGEST offset = 0;
13476
13477 gdb_assert (common_loc && member_loc);
13478 gdb_assert (attr_form_is_block (common_loc));
13479 gdb_assert (attr_form_is_block (member_loc)
13480 || attr_form_is_constant (member_loc));
13481
13482 baton = obstack_alloc (&objfile->objfile_obstack,
13483 sizeof (struct dwarf2_locexpr_baton));
13484 baton->per_cu = cu->per_cu;
13485 gdb_assert (baton->per_cu);
13486
13487 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13488
13489 if (attr_form_is_constant (member_loc))
13490 {
13491 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13492 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13493 }
13494 else
13495 baton->size += DW_BLOCK (member_loc)->size;
13496
13497 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13498 baton->data = ptr;
13499
13500 *ptr++ = DW_OP_call4;
13501 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13502 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13503 ptr += 4;
13504
13505 if (attr_form_is_constant (member_loc))
13506 {
13507 *ptr++ = DW_OP_addr;
13508 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13509 ptr += cu->header.addr_size;
13510 }
13511 else
13512 {
13513 /* We have to copy the data here, because DW_OP_call4 will only
13514 use a DW_AT_location attribute. */
13515 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13516 ptr += DW_BLOCK (member_loc)->size;
13517 }
13518
13519 *ptr++ = DW_OP_plus;
13520 gdb_assert (ptr - baton->data == baton->size);
13521
13522 SYMBOL_LOCATION_BATON (sym) = baton;
13523 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13524 }
13525
13526 /* Create appropriate locally-scoped variables for all the
13527 DW_TAG_common_block entries. Also create a struct common_block
13528 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13529 is used to sepate the common blocks name namespace from regular
13530 variable names. */
13531
13532 static void
13533 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13534 {
13535 struct attribute *attr;
13536
13537 attr = dwarf2_attr (die, DW_AT_location, cu);
13538 if (attr)
13539 {
13540 /* Support the .debug_loc offsets. */
13541 if (attr_form_is_block (attr))
13542 {
13543 /* Ok. */
13544 }
13545 else if (attr_form_is_section_offset (attr))
13546 {
13547 dwarf2_complex_location_expr_complaint ();
13548 attr = NULL;
13549 }
13550 else
13551 {
13552 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13553 "common block member");
13554 attr = NULL;
13555 }
13556 }
13557
13558 if (die->child != NULL)
13559 {
13560 struct objfile *objfile = cu->objfile;
13561 struct die_info *child_die;
13562 size_t n_entries = 0, size;
13563 struct common_block *common_block;
13564 struct symbol *sym;
13565
13566 for (child_die = die->child;
13567 child_die && child_die->tag;
13568 child_die = sibling_die (child_die))
13569 ++n_entries;
13570
13571 size = (sizeof (struct common_block)
13572 + (n_entries - 1) * sizeof (struct symbol *));
13573 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13574 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13575 common_block->n_entries = 0;
13576
13577 for (child_die = die->child;
13578 child_die && child_die->tag;
13579 child_die = sibling_die (child_die))
13580 {
13581 /* Create the symbol in the DW_TAG_common_block block in the current
13582 symbol scope. */
13583 sym = new_symbol (child_die, NULL, cu);
13584 if (sym != NULL)
13585 {
13586 struct attribute *member_loc;
13587
13588 common_block->contents[common_block->n_entries++] = sym;
13589
13590 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13591 cu);
13592 if (member_loc)
13593 {
13594 /* GDB has handled this for a long time, but it is
13595 not specified by DWARF. It seems to have been
13596 emitted by gfortran at least as recently as:
13597 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13598 complaint (&symfile_complaints,
13599 _("Variable in common block has "
13600 "DW_AT_data_member_location "
13601 "- DIE at 0x%x [in module %s]"),
13602 child_die->offset.sect_off,
13603 objfile_name (cu->objfile));
13604
13605 if (attr_form_is_section_offset (member_loc))
13606 dwarf2_complex_location_expr_complaint ();
13607 else if (attr_form_is_constant (member_loc)
13608 || attr_form_is_block (member_loc))
13609 {
13610 if (attr)
13611 mark_common_block_symbol_computed (sym, die, attr,
13612 member_loc, cu);
13613 }
13614 else
13615 dwarf2_complex_location_expr_complaint ();
13616 }
13617 }
13618 }
13619
13620 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13621 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13622 }
13623 }
13624
13625 /* Create a type for a C++ namespace. */
13626
13627 static struct type *
13628 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13629 {
13630 struct objfile *objfile = cu->objfile;
13631 const char *previous_prefix, *name;
13632 int is_anonymous;
13633 struct type *type;
13634
13635 /* For extensions, reuse the type of the original namespace. */
13636 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13637 {
13638 struct die_info *ext_die;
13639 struct dwarf2_cu *ext_cu = cu;
13640
13641 ext_die = dwarf2_extension (die, &ext_cu);
13642 type = read_type_die (ext_die, ext_cu);
13643
13644 /* EXT_CU may not be the same as CU.
13645 Ensure TYPE is recorded with CU in die_type_hash. */
13646 return set_die_type (die, type, cu);
13647 }
13648
13649 name = namespace_name (die, &is_anonymous, cu);
13650
13651 /* Now build the name of the current namespace. */
13652
13653 previous_prefix = determine_prefix (die, cu);
13654 if (previous_prefix[0] != '\0')
13655 name = typename_concat (&objfile->objfile_obstack,
13656 previous_prefix, name, 0, cu);
13657
13658 /* Create the type. */
13659 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13660 objfile);
13661 TYPE_NAME (type) = name;
13662 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13663
13664 return set_die_type (die, type, cu);
13665 }
13666
13667 /* Read a C++ namespace. */
13668
13669 static void
13670 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13671 {
13672 struct objfile *objfile = cu->objfile;
13673 int is_anonymous;
13674
13675 /* Add a symbol associated to this if we haven't seen the namespace
13676 before. Also, add a using directive if it's an anonymous
13677 namespace. */
13678
13679 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13680 {
13681 struct type *type;
13682
13683 type = read_type_die (die, cu);
13684 new_symbol (die, type, cu);
13685
13686 namespace_name (die, &is_anonymous, cu);
13687 if (is_anonymous)
13688 {
13689 const char *previous_prefix = determine_prefix (die, cu);
13690
13691 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13692 NULL, NULL, 0, &objfile->objfile_obstack);
13693 }
13694 }
13695
13696 if (die->child != NULL)
13697 {
13698 struct die_info *child_die = die->child;
13699
13700 while (child_die && child_die->tag)
13701 {
13702 process_die (child_die, cu);
13703 child_die = sibling_die (child_die);
13704 }
13705 }
13706 }
13707
13708 /* Read a Fortran module as type. This DIE can be only a declaration used for
13709 imported module. Still we need that type as local Fortran "use ... only"
13710 declaration imports depend on the created type in determine_prefix. */
13711
13712 static struct type *
13713 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13714 {
13715 struct objfile *objfile = cu->objfile;
13716 const char *module_name;
13717 struct type *type;
13718
13719 module_name = dwarf2_name (die, cu);
13720 if (!module_name)
13721 complaint (&symfile_complaints,
13722 _("DW_TAG_module has no name, offset 0x%x"),
13723 die->offset.sect_off);
13724 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13725
13726 /* determine_prefix uses TYPE_TAG_NAME. */
13727 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13728
13729 return set_die_type (die, type, cu);
13730 }
13731
13732 /* Read a Fortran module. */
13733
13734 static void
13735 read_module (struct die_info *die, struct dwarf2_cu *cu)
13736 {
13737 struct die_info *child_die = die->child;
13738 struct type *type;
13739
13740 type = read_type_die (die, cu);
13741 new_symbol (die, type, cu);
13742
13743 while (child_die && child_die->tag)
13744 {
13745 process_die (child_die, cu);
13746 child_die = sibling_die (child_die);
13747 }
13748 }
13749
13750 /* Return the name of the namespace represented by DIE. Set
13751 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13752 namespace. */
13753
13754 static const char *
13755 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13756 {
13757 struct die_info *current_die;
13758 const char *name = NULL;
13759
13760 /* Loop through the extensions until we find a name. */
13761
13762 for (current_die = die;
13763 current_die != NULL;
13764 current_die = dwarf2_extension (die, &cu))
13765 {
13766 name = dwarf2_name (current_die, cu);
13767 if (name != NULL)
13768 break;
13769 }
13770
13771 /* Is it an anonymous namespace? */
13772
13773 *is_anonymous = (name == NULL);
13774 if (*is_anonymous)
13775 name = CP_ANONYMOUS_NAMESPACE_STR;
13776
13777 return name;
13778 }
13779
13780 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13781 the user defined type vector. */
13782
13783 static struct type *
13784 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13785 {
13786 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13787 struct comp_unit_head *cu_header = &cu->header;
13788 struct type *type;
13789 struct attribute *attr_byte_size;
13790 struct attribute *attr_address_class;
13791 int byte_size, addr_class;
13792 struct type *target_type;
13793
13794 target_type = die_type (die, cu);
13795
13796 /* The die_type call above may have already set the type for this DIE. */
13797 type = get_die_type (die, cu);
13798 if (type)
13799 return type;
13800
13801 type = lookup_pointer_type (target_type);
13802
13803 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13804 if (attr_byte_size)
13805 byte_size = DW_UNSND (attr_byte_size);
13806 else
13807 byte_size = cu_header->addr_size;
13808
13809 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13810 if (attr_address_class)
13811 addr_class = DW_UNSND (attr_address_class);
13812 else
13813 addr_class = DW_ADDR_none;
13814
13815 /* If the pointer size or address class is different than the
13816 default, create a type variant marked as such and set the
13817 length accordingly. */
13818 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
13819 {
13820 if (gdbarch_address_class_type_flags_p (gdbarch))
13821 {
13822 int type_flags;
13823
13824 type_flags = gdbarch_address_class_type_flags
13825 (gdbarch, byte_size, addr_class);
13826 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13827 == 0);
13828 type = make_type_with_address_space (type, type_flags);
13829 }
13830 else if (TYPE_LENGTH (type) != byte_size)
13831 {
13832 complaint (&symfile_complaints,
13833 _("invalid pointer size %d"), byte_size);
13834 }
13835 else
13836 {
13837 /* Should we also complain about unhandled address classes? */
13838 }
13839 }
13840
13841 TYPE_LENGTH (type) = byte_size;
13842 return set_die_type (die, type, cu);
13843 }
13844
13845 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13846 the user defined type vector. */
13847
13848 static struct type *
13849 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
13850 {
13851 struct type *type;
13852 struct type *to_type;
13853 struct type *domain;
13854
13855 to_type = die_type (die, cu);
13856 domain = die_containing_type (die, cu);
13857
13858 /* The calls above may have already set the type for this DIE. */
13859 type = get_die_type (die, cu);
13860 if (type)
13861 return type;
13862
13863 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13864 type = lookup_methodptr_type (to_type);
13865 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13866 {
13867 struct type *new_type = alloc_type (cu->objfile);
13868
13869 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13870 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13871 TYPE_VARARGS (to_type));
13872 type = lookup_methodptr_type (new_type);
13873 }
13874 else
13875 type = lookup_memberptr_type (to_type, domain);
13876
13877 return set_die_type (die, type, cu);
13878 }
13879
13880 /* Extract all information from a DW_TAG_reference_type DIE and add to
13881 the user defined type vector. */
13882
13883 static struct type *
13884 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
13885 {
13886 struct comp_unit_head *cu_header = &cu->header;
13887 struct type *type, *target_type;
13888 struct attribute *attr;
13889
13890 target_type = die_type (die, cu);
13891
13892 /* The die_type call above may have already set the type for this DIE. */
13893 type = get_die_type (die, cu);
13894 if (type)
13895 return type;
13896
13897 type = lookup_reference_type (target_type);
13898 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13899 if (attr)
13900 {
13901 TYPE_LENGTH (type) = DW_UNSND (attr);
13902 }
13903 else
13904 {
13905 TYPE_LENGTH (type) = cu_header->addr_size;
13906 }
13907 return set_die_type (die, type, cu);
13908 }
13909
13910 static struct type *
13911 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
13912 {
13913 struct type *base_type, *cv_type;
13914
13915 base_type = die_type (die, cu);
13916
13917 /* The die_type call above may have already set the type for this DIE. */
13918 cv_type = get_die_type (die, cu);
13919 if (cv_type)
13920 return cv_type;
13921
13922 /* In case the const qualifier is applied to an array type, the element type
13923 is so qualified, not the array type (section 6.7.3 of C99). */
13924 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
13925 {
13926 struct type *el_type, *inner_array;
13927
13928 base_type = copy_type (base_type);
13929 inner_array = base_type;
13930
13931 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
13932 {
13933 TYPE_TARGET_TYPE (inner_array) =
13934 copy_type (TYPE_TARGET_TYPE (inner_array));
13935 inner_array = TYPE_TARGET_TYPE (inner_array);
13936 }
13937
13938 el_type = TYPE_TARGET_TYPE (inner_array);
13939 TYPE_TARGET_TYPE (inner_array) =
13940 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
13941
13942 return set_die_type (die, base_type, cu);
13943 }
13944
13945 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
13946 return set_die_type (die, cv_type, cu);
13947 }
13948
13949 static struct type *
13950 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
13951 {
13952 struct type *base_type, *cv_type;
13953
13954 base_type = die_type (die, cu);
13955
13956 /* The die_type call above may have already set the type for this DIE. */
13957 cv_type = get_die_type (die, cu);
13958 if (cv_type)
13959 return cv_type;
13960
13961 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
13962 return set_die_type (die, cv_type, cu);
13963 }
13964
13965 /* Handle DW_TAG_restrict_type. */
13966
13967 static struct type *
13968 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
13969 {
13970 struct type *base_type, *cv_type;
13971
13972 base_type = die_type (die, cu);
13973
13974 /* The die_type call above may have already set the type for this DIE. */
13975 cv_type = get_die_type (die, cu);
13976 if (cv_type)
13977 return cv_type;
13978
13979 cv_type = make_restrict_type (base_type);
13980 return set_die_type (die, cv_type, cu);
13981 }
13982
13983 /* Extract all information from a DW_TAG_string_type DIE and add to
13984 the user defined type vector. It isn't really a user defined type,
13985 but it behaves like one, with other DIE's using an AT_user_def_type
13986 attribute to reference it. */
13987
13988 static struct type *
13989 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
13990 {
13991 struct objfile *objfile = cu->objfile;
13992 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13993 struct type *type, *range_type, *index_type, *char_type;
13994 struct attribute *attr;
13995 unsigned int length;
13996
13997 attr = dwarf2_attr (die, DW_AT_string_length, cu);
13998 if (attr)
13999 {
14000 length = DW_UNSND (attr);
14001 }
14002 else
14003 {
14004 /* Check for the DW_AT_byte_size attribute. */
14005 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14006 if (attr)
14007 {
14008 length = DW_UNSND (attr);
14009 }
14010 else
14011 {
14012 length = 1;
14013 }
14014 }
14015
14016 index_type = objfile_type (objfile)->builtin_int;
14017 range_type = create_range_type (NULL, index_type, 1, length);
14018 char_type = language_string_char_type (cu->language_defn, gdbarch);
14019 type = create_string_type (NULL, char_type, range_type);
14020
14021 return set_die_type (die, type, cu);
14022 }
14023
14024 /* Assuming that DIE corresponds to a function, returns nonzero
14025 if the function is prototyped. */
14026
14027 static int
14028 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14029 {
14030 struct attribute *attr;
14031
14032 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14033 if (attr && (DW_UNSND (attr) != 0))
14034 return 1;
14035
14036 /* The DWARF standard implies that the DW_AT_prototyped attribute
14037 is only meaninful for C, but the concept also extends to other
14038 languages that allow unprototyped functions (Eg: Objective C).
14039 For all other languages, assume that functions are always
14040 prototyped. */
14041 if (cu->language != language_c
14042 && cu->language != language_objc
14043 && cu->language != language_opencl)
14044 return 1;
14045
14046 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14047 prototyped and unprototyped functions; default to prototyped,
14048 since that is more common in modern code (and RealView warns
14049 about unprototyped functions). */
14050 if (producer_is_realview (cu->producer))
14051 return 1;
14052
14053 return 0;
14054 }
14055
14056 /* Handle DIES due to C code like:
14057
14058 struct foo
14059 {
14060 int (*funcp)(int a, long l);
14061 int b;
14062 };
14063
14064 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14065
14066 static struct type *
14067 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14068 {
14069 struct objfile *objfile = cu->objfile;
14070 struct type *type; /* Type that this function returns. */
14071 struct type *ftype; /* Function that returns above type. */
14072 struct attribute *attr;
14073
14074 type = die_type (die, cu);
14075
14076 /* The die_type call above may have already set the type for this DIE. */
14077 ftype = get_die_type (die, cu);
14078 if (ftype)
14079 return ftype;
14080
14081 ftype = lookup_function_type (type);
14082
14083 if (prototyped_function_p (die, cu))
14084 TYPE_PROTOTYPED (ftype) = 1;
14085
14086 /* Store the calling convention in the type if it's available in
14087 the subroutine die. Otherwise set the calling convention to
14088 the default value DW_CC_normal. */
14089 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14090 if (attr)
14091 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14092 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14093 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14094 else
14095 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14096
14097 /* We need to add the subroutine type to the die immediately so
14098 we don't infinitely recurse when dealing with parameters
14099 declared as the same subroutine type. */
14100 set_die_type (die, ftype, cu);
14101
14102 if (die->child != NULL)
14103 {
14104 struct type *void_type = objfile_type (objfile)->builtin_void;
14105 struct die_info *child_die;
14106 int nparams, iparams;
14107
14108 /* Count the number of parameters.
14109 FIXME: GDB currently ignores vararg functions, but knows about
14110 vararg member functions. */
14111 nparams = 0;
14112 child_die = die->child;
14113 while (child_die && child_die->tag)
14114 {
14115 if (child_die->tag == DW_TAG_formal_parameter)
14116 nparams++;
14117 else if (child_die->tag == DW_TAG_unspecified_parameters)
14118 TYPE_VARARGS (ftype) = 1;
14119 child_die = sibling_die (child_die);
14120 }
14121
14122 /* Allocate storage for parameters and fill them in. */
14123 TYPE_NFIELDS (ftype) = nparams;
14124 TYPE_FIELDS (ftype) = (struct field *)
14125 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14126
14127 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14128 even if we error out during the parameters reading below. */
14129 for (iparams = 0; iparams < nparams; iparams++)
14130 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14131
14132 iparams = 0;
14133 child_die = die->child;
14134 while (child_die && child_die->tag)
14135 {
14136 if (child_die->tag == DW_TAG_formal_parameter)
14137 {
14138 struct type *arg_type;
14139
14140 /* DWARF version 2 has no clean way to discern C++
14141 static and non-static member functions. G++ helps
14142 GDB by marking the first parameter for non-static
14143 member functions (which is the this pointer) as
14144 artificial. We pass this information to
14145 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14146
14147 DWARF version 3 added DW_AT_object_pointer, which GCC
14148 4.5 does not yet generate. */
14149 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14150 if (attr)
14151 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14152 else
14153 {
14154 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14155
14156 /* GCC/43521: In java, the formal parameter
14157 "this" is sometimes not marked with DW_AT_artificial. */
14158 if (cu->language == language_java)
14159 {
14160 const char *name = dwarf2_name (child_die, cu);
14161
14162 if (name && !strcmp (name, "this"))
14163 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14164 }
14165 }
14166 arg_type = die_type (child_die, cu);
14167
14168 /* RealView does not mark THIS as const, which the testsuite
14169 expects. GCC marks THIS as const in method definitions,
14170 but not in the class specifications (GCC PR 43053). */
14171 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14172 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14173 {
14174 int is_this = 0;
14175 struct dwarf2_cu *arg_cu = cu;
14176 const char *name = dwarf2_name (child_die, cu);
14177
14178 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14179 if (attr)
14180 {
14181 /* If the compiler emits this, use it. */
14182 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14183 is_this = 1;
14184 }
14185 else if (name && strcmp (name, "this") == 0)
14186 /* Function definitions will have the argument names. */
14187 is_this = 1;
14188 else if (name == NULL && iparams == 0)
14189 /* Declarations may not have the names, so like
14190 elsewhere in GDB, assume an artificial first
14191 argument is "this". */
14192 is_this = 1;
14193
14194 if (is_this)
14195 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14196 arg_type, 0);
14197 }
14198
14199 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14200 iparams++;
14201 }
14202 child_die = sibling_die (child_die);
14203 }
14204 }
14205
14206 return ftype;
14207 }
14208
14209 static struct type *
14210 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14211 {
14212 struct objfile *objfile = cu->objfile;
14213 const char *name = NULL;
14214 struct type *this_type, *target_type;
14215
14216 name = dwarf2_full_name (NULL, die, cu);
14217 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14218 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14219 TYPE_NAME (this_type) = name;
14220 set_die_type (die, this_type, cu);
14221 target_type = die_type (die, cu);
14222 if (target_type != this_type)
14223 TYPE_TARGET_TYPE (this_type) = target_type;
14224 else
14225 {
14226 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14227 spec and cause infinite loops in GDB. */
14228 complaint (&symfile_complaints,
14229 _("Self-referential DW_TAG_typedef "
14230 "- DIE at 0x%x [in module %s]"),
14231 die->offset.sect_off, objfile_name (objfile));
14232 TYPE_TARGET_TYPE (this_type) = NULL;
14233 }
14234 return this_type;
14235 }
14236
14237 /* Find a representation of a given base type and install
14238 it in the TYPE field of the die. */
14239
14240 static struct type *
14241 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14242 {
14243 struct objfile *objfile = cu->objfile;
14244 struct type *type;
14245 struct attribute *attr;
14246 int encoding = 0, size = 0;
14247 const char *name;
14248 enum type_code code = TYPE_CODE_INT;
14249 int type_flags = 0;
14250 struct type *target_type = NULL;
14251
14252 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14253 if (attr)
14254 {
14255 encoding = DW_UNSND (attr);
14256 }
14257 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14258 if (attr)
14259 {
14260 size = DW_UNSND (attr);
14261 }
14262 name = dwarf2_name (die, cu);
14263 if (!name)
14264 {
14265 complaint (&symfile_complaints,
14266 _("DW_AT_name missing from DW_TAG_base_type"));
14267 }
14268
14269 switch (encoding)
14270 {
14271 case DW_ATE_address:
14272 /* Turn DW_ATE_address into a void * pointer. */
14273 code = TYPE_CODE_PTR;
14274 type_flags |= TYPE_FLAG_UNSIGNED;
14275 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14276 break;
14277 case DW_ATE_boolean:
14278 code = TYPE_CODE_BOOL;
14279 type_flags |= TYPE_FLAG_UNSIGNED;
14280 break;
14281 case DW_ATE_complex_float:
14282 code = TYPE_CODE_COMPLEX;
14283 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14284 break;
14285 case DW_ATE_decimal_float:
14286 code = TYPE_CODE_DECFLOAT;
14287 break;
14288 case DW_ATE_float:
14289 code = TYPE_CODE_FLT;
14290 break;
14291 case DW_ATE_signed:
14292 break;
14293 case DW_ATE_unsigned:
14294 type_flags |= TYPE_FLAG_UNSIGNED;
14295 if (cu->language == language_fortran
14296 && name
14297 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14298 code = TYPE_CODE_CHAR;
14299 break;
14300 case DW_ATE_signed_char:
14301 if (cu->language == language_ada || cu->language == language_m2
14302 || cu->language == language_pascal
14303 || cu->language == language_fortran)
14304 code = TYPE_CODE_CHAR;
14305 break;
14306 case DW_ATE_unsigned_char:
14307 if (cu->language == language_ada || cu->language == language_m2
14308 || cu->language == language_pascal
14309 || cu->language == language_fortran)
14310 code = TYPE_CODE_CHAR;
14311 type_flags |= TYPE_FLAG_UNSIGNED;
14312 break;
14313 case DW_ATE_UTF:
14314 /* We just treat this as an integer and then recognize the
14315 type by name elsewhere. */
14316 break;
14317
14318 default:
14319 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14320 dwarf_type_encoding_name (encoding));
14321 break;
14322 }
14323
14324 type = init_type (code, size, type_flags, NULL, objfile);
14325 TYPE_NAME (type) = name;
14326 TYPE_TARGET_TYPE (type) = target_type;
14327
14328 if (name && strcmp (name, "char") == 0)
14329 TYPE_NOSIGN (type) = 1;
14330
14331 return set_die_type (die, type, cu);
14332 }
14333
14334 /* Read the given DW_AT_subrange DIE. */
14335
14336 static struct type *
14337 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14338 {
14339 struct type *base_type, *orig_base_type;
14340 struct type *range_type;
14341 struct attribute *attr;
14342 LONGEST low, high;
14343 int low_default_is_valid;
14344 const char *name;
14345 LONGEST negative_mask;
14346
14347 orig_base_type = die_type (die, cu);
14348 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14349 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14350 creating the range type, but we use the result of check_typedef
14351 when examining properties of the type. */
14352 base_type = check_typedef (orig_base_type);
14353
14354 /* The die_type call above may have already set the type for this DIE. */
14355 range_type = get_die_type (die, cu);
14356 if (range_type)
14357 return range_type;
14358
14359 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14360 omitting DW_AT_lower_bound. */
14361 switch (cu->language)
14362 {
14363 case language_c:
14364 case language_cplus:
14365 low = 0;
14366 low_default_is_valid = 1;
14367 break;
14368 case language_fortran:
14369 low = 1;
14370 low_default_is_valid = 1;
14371 break;
14372 case language_d:
14373 case language_java:
14374 case language_objc:
14375 low = 0;
14376 low_default_is_valid = (cu->header.version >= 4);
14377 break;
14378 case language_ada:
14379 case language_m2:
14380 case language_pascal:
14381 low = 1;
14382 low_default_is_valid = (cu->header.version >= 4);
14383 break;
14384 default:
14385 low = 0;
14386 low_default_is_valid = 0;
14387 break;
14388 }
14389
14390 /* FIXME: For variable sized arrays either of these could be
14391 a variable rather than a constant value. We'll allow it,
14392 but we don't know how to handle it. */
14393 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14394 if (attr)
14395 low = dwarf2_get_attr_constant_value (attr, low);
14396 else if (!low_default_is_valid)
14397 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14398 "- DIE at 0x%x [in module %s]"),
14399 die->offset.sect_off, objfile_name (cu->objfile));
14400
14401 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14402 if (attr)
14403 {
14404 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
14405 {
14406 /* GCC encodes arrays with unspecified or dynamic length
14407 with a DW_FORM_block1 attribute or a reference attribute.
14408 FIXME: GDB does not yet know how to handle dynamic
14409 arrays properly, treat them as arrays with unspecified
14410 length for now.
14411
14412 FIXME: jimb/2003-09-22: GDB does not really know
14413 how to handle arrays of unspecified length
14414 either; we just represent them as zero-length
14415 arrays. Choose an appropriate upper bound given
14416 the lower bound we've computed above. */
14417 high = low - 1;
14418 }
14419 else
14420 high = dwarf2_get_attr_constant_value (attr, 1);
14421 }
14422 else
14423 {
14424 attr = dwarf2_attr (die, DW_AT_count, cu);
14425 if (attr)
14426 {
14427 int count = dwarf2_get_attr_constant_value (attr, 1);
14428 high = low + count - 1;
14429 }
14430 else
14431 {
14432 /* Unspecified array length. */
14433 high = low - 1;
14434 }
14435 }
14436
14437 /* Dwarf-2 specifications explicitly allows to create subrange types
14438 without specifying a base type.
14439 In that case, the base type must be set to the type of
14440 the lower bound, upper bound or count, in that order, if any of these
14441 three attributes references an object that has a type.
14442 If no base type is found, the Dwarf-2 specifications say that
14443 a signed integer type of size equal to the size of an address should
14444 be used.
14445 For the following C code: `extern char gdb_int [];'
14446 GCC produces an empty range DIE.
14447 FIXME: muller/2010-05-28: Possible references to object for low bound,
14448 high bound or count are not yet handled by this code. */
14449 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14450 {
14451 struct objfile *objfile = cu->objfile;
14452 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14453 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14454 struct type *int_type = objfile_type (objfile)->builtin_int;
14455
14456 /* Test "int", "long int", and "long long int" objfile types,
14457 and select the first one having a size above or equal to the
14458 architecture address size. */
14459 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14460 base_type = int_type;
14461 else
14462 {
14463 int_type = objfile_type (objfile)->builtin_long;
14464 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14465 base_type = int_type;
14466 else
14467 {
14468 int_type = objfile_type (objfile)->builtin_long_long;
14469 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14470 base_type = int_type;
14471 }
14472 }
14473 }
14474
14475 negative_mask =
14476 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14477 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
14478 low |= negative_mask;
14479 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
14480 high |= negative_mask;
14481
14482 range_type = create_range_type (NULL, orig_base_type, low, high);
14483
14484 /* Mark arrays with dynamic length at least as an array of unspecified
14485 length. GDB could check the boundary but before it gets implemented at
14486 least allow accessing the array elements. */
14487 if (attr && attr_form_is_block (attr))
14488 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14489
14490 /* Ada expects an empty array on no boundary attributes. */
14491 if (attr == NULL && cu->language != language_ada)
14492 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14493
14494 name = dwarf2_name (die, cu);
14495 if (name)
14496 TYPE_NAME (range_type) = name;
14497
14498 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14499 if (attr)
14500 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14501
14502 set_die_type (die, range_type, cu);
14503
14504 /* set_die_type should be already done. */
14505 set_descriptive_type (range_type, die, cu);
14506
14507 return range_type;
14508 }
14509
14510 static struct type *
14511 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14512 {
14513 struct type *type;
14514
14515 /* For now, we only support the C meaning of an unspecified type: void. */
14516
14517 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14518 TYPE_NAME (type) = dwarf2_name (die, cu);
14519
14520 return set_die_type (die, type, cu);
14521 }
14522
14523 /* Read a single die and all its descendents. Set the die's sibling
14524 field to NULL; set other fields in the die correctly, and set all
14525 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14526 location of the info_ptr after reading all of those dies. PARENT
14527 is the parent of the die in question. */
14528
14529 static struct die_info *
14530 read_die_and_children (const struct die_reader_specs *reader,
14531 const gdb_byte *info_ptr,
14532 const gdb_byte **new_info_ptr,
14533 struct die_info *parent)
14534 {
14535 struct die_info *die;
14536 const gdb_byte *cur_ptr;
14537 int has_children;
14538
14539 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14540 if (die == NULL)
14541 {
14542 *new_info_ptr = cur_ptr;
14543 return NULL;
14544 }
14545 store_in_ref_table (die, reader->cu);
14546
14547 if (has_children)
14548 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14549 else
14550 {
14551 die->child = NULL;
14552 *new_info_ptr = cur_ptr;
14553 }
14554
14555 die->sibling = NULL;
14556 die->parent = parent;
14557 return die;
14558 }
14559
14560 /* Read a die, all of its descendents, and all of its siblings; set
14561 all of the fields of all of the dies correctly. Arguments are as
14562 in read_die_and_children. */
14563
14564 static struct die_info *
14565 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14566 const gdb_byte *info_ptr,
14567 const gdb_byte **new_info_ptr,
14568 struct die_info *parent)
14569 {
14570 struct die_info *first_die, *last_sibling;
14571 const gdb_byte *cur_ptr;
14572
14573 cur_ptr = info_ptr;
14574 first_die = last_sibling = NULL;
14575
14576 while (1)
14577 {
14578 struct die_info *die
14579 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14580
14581 if (die == NULL)
14582 {
14583 *new_info_ptr = cur_ptr;
14584 return first_die;
14585 }
14586
14587 if (!first_die)
14588 first_die = die;
14589 else
14590 last_sibling->sibling = die;
14591
14592 last_sibling = die;
14593 }
14594 }
14595
14596 /* Read a die, all of its descendents, and all of its siblings; set
14597 all of the fields of all of the dies correctly. Arguments are as
14598 in read_die_and_children.
14599 This the main entry point for reading a DIE and all its children. */
14600
14601 static struct die_info *
14602 read_die_and_siblings (const struct die_reader_specs *reader,
14603 const gdb_byte *info_ptr,
14604 const gdb_byte **new_info_ptr,
14605 struct die_info *parent)
14606 {
14607 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14608 new_info_ptr, parent);
14609
14610 if (dwarf2_die_debug)
14611 {
14612 fprintf_unfiltered (gdb_stdlog,
14613 "Read die from %s@0x%x of %s:\n",
14614 get_section_name (reader->die_section),
14615 (unsigned) (info_ptr - reader->die_section->buffer),
14616 bfd_get_filename (reader->abfd));
14617 dump_die (die, dwarf2_die_debug);
14618 }
14619
14620 return die;
14621 }
14622
14623 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14624 attributes.
14625 The caller is responsible for filling in the extra attributes
14626 and updating (*DIEP)->num_attrs.
14627 Set DIEP to point to a newly allocated die with its information,
14628 except for its child, sibling, and parent fields.
14629 Set HAS_CHILDREN to tell whether the die has children or not. */
14630
14631 static const gdb_byte *
14632 read_full_die_1 (const struct die_reader_specs *reader,
14633 struct die_info **diep, const gdb_byte *info_ptr,
14634 int *has_children, int num_extra_attrs)
14635 {
14636 unsigned int abbrev_number, bytes_read, i;
14637 sect_offset offset;
14638 struct abbrev_info *abbrev;
14639 struct die_info *die;
14640 struct dwarf2_cu *cu = reader->cu;
14641 bfd *abfd = reader->abfd;
14642
14643 offset.sect_off = info_ptr - reader->buffer;
14644 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14645 info_ptr += bytes_read;
14646 if (!abbrev_number)
14647 {
14648 *diep = NULL;
14649 *has_children = 0;
14650 return info_ptr;
14651 }
14652
14653 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14654 if (!abbrev)
14655 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14656 abbrev_number,
14657 bfd_get_filename (abfd));
14658
14659 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14660 die->offset = offset;
14661 die->tag = abbrev->tag;
14662 die->abbrev = abbrev_number;
14663
14664 /* Make the result usable.
14665 The caller needs to update num_attrs after adding the extra
14666 attributes. */
14667 die->num_attrs = abbrev->num_attrs;
14668
14669 for (i = 0; i < abbrev->num_attrs; ++i)
14670 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14671 info_ptr);
14672
14673 *diep = die;
14674 *has_children = abbrev->has_children;
14675 return info_ptr;
14676 }
14677
14678 /* Read a die and all its attributes.
14679 Set DIEP to point to a newly allocated die with its information,
14680 except for its child, sibling, and parent fields.
14681 Set HAS_CHILDREN to tell whether the die has children or not. */
14682
14683 static const gdb_byte *
14684 read_full_die (const struct die_reader_specs *reader,
14685 struct die_info **diep, const gdb_byte *info_ptr,
14686 int *has_children)
14687 {
14688 const gdb_byte *result;
14689
14690 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14691
14692 if (dwarf2_die_debug)
14693 {
14694 fprintf_unfiltered (gdb_stdlog,
14695 "Read die from %s@0x%x of %s:\n",
14696 get_section_name (reader->die_section),
14697 (unsigned) (info_ptr - reader->die_section->buffer),
14698 bfd_get_filename (reader->abfd));
14699 dump_die (*diep, dwarf2_die_debug);
14700 }
14701
14702 return result;
14703 }
14704 \f
14705 /* Abbreviation tables.
14706
14707 In DWARF version 2, the description of the debugging information is
14708 stored in a separate .debug_abbrev section. Before we read any
14709 dies from a section we read in all abbreviations and install them
14710 in a hash table. */
14711
14712 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14713
14714 static struct abbrev_info *
14715 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14716 {
14717 struct abbrev_info *abbrev;
14718
14719 abbrev = (struct abbrev_info *)
14720 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14721 memset (abbrev, 0, sizeof (struct abbrev_info));
14722 return abbrev;
14723 }
14724
14725 /* Add an abbreviation to the table. */
14726
14727 static void
14728 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14729 unsigned int abbrev_number,
14730 struct abbrev_info *abbrev)
14731 {
14732 unsigned int hash_number;
14733
14734 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14735 abbrev->next = abbrev_table->abbrevs[hash_number];
14736 abbrev_table->abbrevs[hash_number] = abbrev;
14737 }
14738
14739 /* Look up an abbrev in the table.
14740 Returns NULL if the abbrev is not found. */
14741
14742 static struct abbrev_info *
14743 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14744 unsigned int abbrev_number)
14745 {
14746 unsigned int hash_number;
14747 struct abbrev_info *abbrev;
14748
14749 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14750 abbrev = abbrev_table->abbrevs[hash_number];
14751
14752 while (abbrev)
14753 {
14754 if (abbrev->number == abbrev_number)
14755 return abbrev;
14756 abbrev = abbrev->next;
14757 }
14758 return NULL;
14759 }
14760
14761 /* Read in an abbrev table. */
14762
14763 static struct abbrev_table *
14764 abbrev_table_read_table (struct dwarf2_section_info *section,
14765 sect_offset offset)
14766 {
14767 struct objfile *objfile = dwarf2_per_objfile->objfile;
14768 bfd *abfd = get_section_bfd_owner (section);
14769 struct abbrev_table *abbrev_table;
14770 const gdb_byte *abbrev_ptr;
14771 struct abbrev_info *cur_abbrev;
14772 unsigned int abbrev_number, bytes_read, abbrev_name;
14773 unsigned int abbrev_form;
14774 struct attr_abbrev *cur_attrs;
14775 unsigned int allocated_attrs;
14776
14777 abbrev_table = XNEW (struct abbrev_table);
14778 abbrev_table->offset = offset;
14779 obstack_init (&abbrev_table->abbrev_obstack);
14780 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14781 (ABBREV_HASH_SIZE
14782 * sizeof (struct abbrev_info *)));
14783 memset (abbrev_table->abbrevs, 0,
14784 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
14785
14786 dwarf2_read_section (objfile, section);
14787 abbrev_ptr = section->buffer + offset.sect_off;
14788 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14789 abbrev_ptr += bytes_read;
14790
14791 allocated_attrs = ATTR_ALLOC_CHUNK;
14792 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
14793
14794 /* Loop until we reach an abbrev number of 0. */
14795 while (abbrev_number)
14796 {
14797 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
14798
14799 /* read in abbrev header */
14800 cur_abbrev->number = abbrev_number;
14801 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14802 abbrev_ptr += bytes_read;
14803 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14804 abbrev_ptr += 1;
14805
14806 /* now read in declarations */
14807 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14808 abbrev_ptr += bytes_read;
14809 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14810 abbrev_ptr += bytes_read;
14811 while (abbrev_name)
14812 {
14813 if (cur_abbrev->num_attrs == allocated_attrs)
14814 {
14815 allocated_attrs += ATTR_ALLOC_CHUNK;
14816 cur_attrs
14817 = xrealloc (cur_attrs, (allocated_attrs
14818 * sizeof (struct attr_abbrev)));
14819 }
14820
14821 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14822 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
14823 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14824 abbrev_ptr += bytes_read;
14825 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14826 abbrev_ptr += bytes_read;
14827 }
14828
14829 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
14830 (cur_abbrev->num_attrs
14831 * sizeof (struct attr_abbrev)));
14832 memcpy (cur_abbrev->attrs, cur_attrs,
14833 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14834
14835 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
14836
14837 /* Get next abbreviation.
14838 Under Irix6 the abbreviations for a compilation unit are not
14839 always properly terminated with an abbrev number of 0.
14840 Exit loop if we encounter an abbreviation which we have
14841 already read (which means we are about to read the abbreviations
14842 for the next compile unit) or if the end of the abbreviation
14843 table is reached. */
14844 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
14845 break;
14846 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14847 abbrev_ptr += bytes_read;
14848 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
14849 break;
14850 }
14851
14852 xfree (cur_attrs);
14853 return abbrev_table;
14854 }
14855
14856 /* Free the resources held by ABBREV_TABLE. */
14857
14858 static void
14859 abbrev_table_free (struct abbrev_table *abbrev_table)
14860 {
14861 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14862 xfree (abbrev_table);
14863 }
14864
14865 /* Same as abbrev_table_free but as a cleanup.
14866 We pass in a pointer to the pointer to the table so that we can
14867 set the pointer to NULL when we're done. It also simplifies
14868 build_type_unit_groups. */
14869
14870 static void
14871 abbrev_table_free_cleanup (void *table_ptr)
14872 {
14873 struct abbrev_table **abbrev_table_ptr = table_ptr;
14874
14875 if (*abbrev_table_ptr != NULL)
14876 abbrev_table_free (*abbrev_table_ptr);
14877 *abbrev_table_ptr = NULL;
14878 }
14879
14880 /* Read the abbrev table for CU from ABBREV_SECTION. */
14881
14882 static void
14883 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14884 struct dwarf2_section_info *abbrev_section)
14885 {
14886 cu->abbrev_table =
14887 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14888 }
14889
14890 /* Release the memory used by the abbrev table for a compilation unit. */
14891
14892 static void
14893 dwarf2_free_abbrev_table (void *ptr_to_cu)
14894 {
14895 struct dwarf2_cu *cu = ptr_to_cu;
14896
14897 if (cu->abbrev_table != NULL)
14898 abbrev_table_free (cu->abbrev_table);
14899 /* Set this to NULL so that we SEGV if we try to read it later,
14900 and also because free_comp_unit verifies this is NULL. */
14901 cu->abbrev_table = NULL;
14902 }
14903 \f
14904 /* Returns nonzero if TAG represents a type that we might generate a partial
14905 symbol for. */
14906
14907 static int
14908 is_type_tag_for_partial (int tag)
14909 {
14910 switch (tag)
14911 {
14912 #if 0
14913 /* Some types that would be reasonable to generate partial symbols for,
14914 that we don't at present. */
14915 case DW_TAG_array_type:
14916 case DW_TAG_file_type:
14917 case DW_TAG_ptr_to_member_type:
14918 case DW_TAG_set_type:
14919 case DW_TAG_string_type:
14920 case DW_TAG_subroutine_type:
14921 #endif
14922 case DW_TAG_base_type:
14923 case DW_TAG_class_type:
14924 case DW_TAG_interface_type:
14925 case DW_TAG_enumeration_type:
14926 case DW_TAG_structure_type:
14927 case DW_TAG_subrange_type:
14928 case DW_TAG_typedef:
14929 case DW_TAG_union_type:
14930 return 1;
14931 default:
14932 return 0;
14933 }
14934 }
14935
14936 /* Load all DIEs that are interesting for partial symbols into memory. */
14937
14938 static struct partial_die_info *
14939 load_partial_dies (const struct die_reader_specs *reader,
14940 const gdb_byte *info_ptr, int building_psymtab)
14941 {
14942 struct dwarf2_cu *cu = reader->cu;
14943 struct objfile *objfile = cu->objfile;
14944 struct partial_die_info *part_die;
14945 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
14946 struct abbrev_info *abbrev;
14947 unsigned int bytes_read;
14948 unsigned int load_all = 0;
14949 int nesting_level = 1;
14950
14951 parent_die = NULL;
14952 last_die = NULL;
14953
14954 gdb_assert (cu->per_cu != NULL);
14955 if (cu->per_cu->load_all_dies)
14956 load_all = 1;
14957
14958 cu->partial_dies
14959 = htab_create_alloc_ex (cu->header.length / 12,
14960 partial_die_hash,
14961 partial_die_eq,
14962 NULL,
14963 &cu->comp_unit_obstack,
14964 hashtab_obstack_allocate,
14965 dummy_obstack_deallocate);
14966
14967 part_die = obstack_alloc (&cu->comp_unit_obstack,
14968 sizeof (struct partial_die_info));
14969
14970 while (1)
14971 {
14972 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
14973
14974 /* A NULL abbrev means the end of a series of children. */
14975 if (abbrev == NULL)
14976 {
14977 if (--nesting_level == 0)
14978 {
14979 /* PART_DIE was probably the last thing allocated on the
14980 comp_unit_obstack, so we could call obstack_free
14981 here. We don't do that because the waste is small,
14982 and will be cleaned up when we're done with this
14983 compilation unit. This way, we're also more robust
14984 against other users of the comp_unit_obstack. */
14985 return first_die;
14986 }
14987 info_ptr += bytes_read;
14988 last_die = parent_die;
14989 parent_die = parent_die->die_parent;
14990 continue;
14991 }
14992
14993 /* Check for template arguments. We never save these; if
14994 they're seen, we just mark the parent, and go on our way. */
14995 if (parent_die != NULL
14996 && cu->language == language_cplus
14997 && (abbrev->tag == DW_TAG_template_type_param
14998 || abbrev->tag == DW_TAG_template_value_param))
14999 {
15000 parent_die->has_template_arguments = 1;
15001
15002 if (!load_all)
15003 {
15004 /* We don't need a partial DIE for the template argument. */
15005 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15006 continue;
15007 }
15008 }
15009
15010 /* We only recurse into c++ subprograms looking for template arguments.
15011 Skip their other children. */
15012 if (!load_all
15013 && cu->language == language_cplus
15014 && parent_die != NULL
15015 && parent_die->tag == DW_TAG_subprogram)
15016 {
15017 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15018 continue;
15019 }
15020
15021 /* Check whether this DIE is interesting enough to save. Normally
15022 we would not be interested in members here, but there may be
15023 later variables referencing them via DW_AT_specification (for
15024 static members). */
15025 if (!load_all
15026 && !is_type_tag_for_partial (abbrev->tag)
15027 && abbrev->tag != DW_TAG_constant
15028 && abbrev->tag != DW_TAG_enumerator
15029 && abbrev->tag != DW_TAG_subprogram
15030 && abbrev->tag != DW_TAG_lexical_block
15031 && abbrev->tag != DW_TAG_variable
15032 && abbrev->tag != DW_TAG_namespace
15033 && abbrev->tag != DW_TAG_module
15034 && abbrev->tag != DW_TAG_member
15035 && abbrev->tag != DW_TAG_imported_unit
15036 && abbrev->tag != DW_TAG_imported_declaration)
15037 {
15038 /* Otherwise we skip to the next sibling, if any. */
15039 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15040 continue;
15041 }
15042
15043 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15044 info_ptr);
15045
15046 /* This two-pass algorithm for processing partial symbols has a
15047 high cost in cache pressure. Thus, handle some simple cases
15048 here which cover the majority of C partial symbols. DIEs
15049 which neither have specification tags in them, nor could have
15050 specification tags elsewhere pointing at them, can simply be
15051 processed and discarded.
15052
15053 This segment is also optional; scan_partial_symbols and
15054 add_partial_symbol will handle these DIEs if we chain
15055 them in normally. When compilers which do not emit large
15056 quantities of duplicate debug information are more common,
15057 this code can probably be removed. */
15058
15059 /* Any complete simple types at the top level (pretty much all
15060 of them, for a language without namespaces), can be processed
15061 directly. */
15062 if (parent_die == NULL
15063 && part_die->has_specification == 0
15064 && part_die->is_declaration == 0
15065 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15066 || part_die->tag == DW_TAG_base_type
15067 || part_die->tag == DW_TAG_subrange_type))
15068 {
15069 if (building_psymtab && part_die->name != NULL)
15070 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15071 VAR_DOMAIN, LOC_TYPEDEF,
15072 &objfile->static_psymbols,
15073 0, (CORE_ADDR) 0, cu->language, objfile);
15074 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15075 continue;
15076 }
15077
15078 /* The exception for DW_TAG_typedef with has_children above is
15079 a workaround of GCC PR debug/47510. In the case of this complaint
15080 type_name_no_tag_or_error will error on such types later.
15081
15082 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15083 it could not find the child DIEs referenced later, this is checked
15084 above. In correct DWARF DW_TAG_typedef should have no children. */
15085
15086 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15087 complaint (&symfile_complaints,
15088 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15089 "- DIE at 0x%x [in module %s]"),
15090 part_die->offset.sect_off, objfile_name (objfile));
15091
15092 /* If we're at the second level, and we're an enumerator, and
15093 our parent has no specification (meaning possibly lives in a
15094 namespace elsewhere), then we can add the partial symbol now
15095 instead of queueing it. */
15096 if (part_die->tag == DW_TAG_enumerator
15097 && parent_die != NULL
15098 && parent_die->die_parent == NULL
15099 && parent_die->tag == DW_TAG_enumeration_type
15100 && parent_die->has_specification == 0)
15101 {
15102 if (part_die->name == NULL)
15103 complaint (&symfile_complaints,
15104 _("malformed enumerator DIE ignored"));
15105 else if (building_psymtab)
15106 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15107 VAR_DOMAIN, LOC_CONST,
15108 (cu->language == language_cplus
15109 || cu->language == language_java)
15110 ? &objfile->global_psymbols
15111 : &objfile->static_psymbols,
15112 0, (CORE_ADDR) 0, cu->language, objfile);
15113
15114 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15115 continue;
15116 }
15117
15118 /* We'll save this DIE so link it in. */
15119 part_die->die_parent = parent_die;
15120 part_die->die_sibling = NULL;
15121 part_die->die_child = NULL;
15122
15123 if (last_die && last_die == parent_die)
15124 last_die->die_child = part_die;
15125 else if (last_die)
15126 last_die->die_sibling = part_die;
15127
15128 last_die = part_die;
15129
15130 if (first_die == NULL)
15131 first_die = part_die;
15132
15133 /* Maybe add the DIE to the hash table. Not all DIEs that we
15134 find interesting need to be in the hash table, because we
15135 also have the parent/sibling/child chains; only those that we
15136 might refer to by offset later during partial symbol reading.
15137
15138 For now this means things that might have be the target of a
15139 DW_AT_specification, DW_AT_abstract_origin, or
15140 DW_AT_extension. DW_AT_extension will refer only to
15141 namespaces; DW_AT_abstract_origin refers to functions (and
15142 many things under the function DIE, but we do not recurse
15143 into function DIEs during partial symbol reading) and
15144 possibly variables as well; DW_AT_specification refers to
15145 declarations. Declarations ought to have the DW_AT_declaration
15146 flag. It happens that GCC forgets to put it in sometimes, but
15147 only for functions, not for types.
15148
15149 Adding more things than necessary to the hash table is harmless
15150 except for the performance cost. Adding too few will result in
15151 wasted time in find_partial_die, when we reread the compilation
15152 unit with load_all_dies set. */
15153
15154 if (load_all
15155 || abbrev->tag == DW_TAG_constant
15156 || abbrev->tag == DW_TAG_subprogram
15157 || abbrev->tag == DW_TAG_variable
15158 || abbrev->tag == DW_TAG_namespace
15159 || part_die->is_declaration)
15160 {
15161 void **slot;
15162
15163 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15164 part_die->offset.sect_off, INSERT);
15165 *slot = part_die;
15166 }
15167
15168 part_die = obstack_alloc (&cu->comp_unit_obstack,
15169 sizeof (struct partial_die_info));
15170
15171 /* For some DIEs we want to follow their children (if any). For C
15172 we have no reason to follow the children of structures; for other
15173 languages we have to, so that we can get at method physnames
15174 to infer fully qualified class names, for DW_AT_specification,
15175 and for C++ template arguments. For C++, we also look one level
15176 inside functions to find template arguments (if the name of the
15177 function does not already contain the template arguments).
15178
15179 For Ada, we need to scan the children of subprograms and lexical
15180 blocks as well because Ada allows the definition of nested
15181 entities that could be interesting for the debugger, such as
15182 nested subprograms for instance. */
15183 if (last_die->has_children
15184 && (load_all
15185 || last_die->tag == DW_TAG_namespace
15186 || last_die->tag == DW_TAG_module
15187 || last_die->tag == DW_TAG_enumeration_type
15188 || (cu->language == language_cplus
15189 && last_die->tag == DW_TAG_subprogram
15190 && (last_die->name == NULL
15191 || strchr (last_die->name, '<') == NULL))
15192 || (cu->language != language_c
15193 && (last_die->tag == DW_TAG_class_type
15194 || last_die->tag == DW_TAG_interface_type
15195 || last_die->tag == DW_TAG_structure_type
15196 || last_die->tag == DW_TAG_union_type))
15197 || (cu->language == language_ada
15198 && (last_die->tag == DW_TAG_subprogram
15199 || last_die->tag == DW_TAG_lexical_block))))
15200 {
15201 nesting_level++;
15202 parent_die = last_die;
15203 continue;
15204 }
15205
15206 /* Otherwise we skip to the next sibling, if any. */
15207 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15208
15209 /* Back to the top, do it again. */
15210 }
15211 }
15212
15213 /* Read a minimal amount of information into the minimal die structure. */
15214
15215 static const gdb_byte *
15216 read_partial_die (const struct die_reader_specs *reader,
15217 struct partial_die_info *part_die,
15218 struct abbrev_info *abbrev, unsigned int abbrev_len,
15219 const gdb_byte *info_ptr)
15220 {
15221 struct dwarf2_cu *cu = reader->cu;
15222 struct objfile *objfile = cu->objfile;
15223 const gdb_byte *buffer = reader->buffer;
15224 unsigned int i;
15225 struct attribute attr;
15226 int has_low_pc_attr = 0;
15227 int has_high_pc_attr = 0;
15228 int high_pc_relative = 0;
15229
15230 memset (part_die, 0, sizeof (struct partial_die_info));
15231
15232 part_die->offset.sect_off = info_ptr - buffer;
15233
15234 info_ptr += abbrev_len;
15235
15236 if (abbrev == NULL)
15237 return info_ptr;
15238
15239 part_die->tag = abbrev->tag;
15240 part_die->has_children = abbrev->has_children;
15241
15242 for (i = 0; i < abbrev->num_attrs; ++i)
15243 {
15244 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15245
15246 /* Store the data if it is of an attribute we want to keep in a
15247 partial symbol table. */
15248 switch (attr.name)
15249 {
15250 case DW_AT_name:
15251 switch (part_die->tag)
15252 {
15253 case DW_TAG_compile_unit:
15254 case DW_TAG_partial_unit:
15255 case DW_TAG_type_unit:
15256 /* Compilation units have a DW_AT_name that is a filename, not
15257 a source language identifier. */
15258 case DW_TAG_enumeration_type:
15259 case DW_TAG_enumerator:
15260 /* These tags always have simple identifiers already; no need
15261 to canonicalize them. */
15262 part_die->name = DW_STRING (&attr);
15263 break;
15264 default:
15265 part_die->name
15266 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15267 &objfile->objfile_obstack);
15268 break;
15269 }
15270 break;
15271 case DW_AT_linkage_name:
15272 case DW_AT_MIPS_linkage_name:
15273 /* Note that both forms of linkage name might appear. We
15274 assume they will be the same, and we only store the last
15275 one we see. */
15276 if (cu->language == language_ada)
15277 part_die->name = DW_STRING (&attr);
15278 part_die->linkage_name = DW_STRING (&attr);
15279 break;
15280 case DW_AT_low_pc:
15281 has_low_pc_attr = 1;
15282 part_die->lowpc = DW_ADDR (&attr);
15283 break;
15284 case DW_AT_high_pc:
15285 has_high_pc_attr = 1;
15286 if (attr.form == DW_FORM_addr
15287 || attr.form == DW_FORM_GNU_addr_index)
15288 part_die->highpc = DW_ADDR (&attr);
15289 else
15290 {
15291 high_pc_relative = 1;
15292 part_die->highpc = DW_UNSND (&attr);
15293 }
15294 break;
15295 case DW_AT_location:
15296 /* Support the .debug_loc offsets. */
15297 if (attr_form_is_block (&attr))
15298 {
15299 part_die->d.locdesc = DW_BLOCK (&attr);
15300 }
15301 else if (attr_form_is_section_offset (&attr))
15302 {
15303 dwarf2_complex_location_expr_complaint ();
15304 }
15305 else
15306 {
15307 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15308 "partial symbol information");
15309 }
15310 break;
15311 case DW_AT_external:
15312 part_die->is_external = DW_UNSND (&attr);
15313 break;
15314 case DW_AT_declaration:
15315 part_die->is_declaration = DW_UNSND (&attr);
15316 break;
15317 case DW_AT_type:
15318 part_die->has_type = 1;
15319 break;
15320 case DW_AT_abstract_origin:
15321 case DW_AT_specification:
15322 case DW_AT_extension:
15323 part_die->has_specification = 1;
15324 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15325 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15326 || cu->per_cu->is_dwz);
15327 break;
15328 case DW_AT_sibling:
15329 /* Ignore absolute siblings, they might point outside of
15330 the current compile unit. */
15331 if (attr.form == DW_FORM_ref_addr)
15332 complaint (&symfile_complaints,
15333 _("ignoring absolute DW_AT_sibling"));
15334 else
15335 {
15336 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15337 const gdb_byte *sibling_ptr = buffer + off;
15338
15339 if (sibling_ptr < info_ptr)
15340 complaint (&symfile_complaints,
15341 _("DW_AT_sibling points backwards"));
15342 else
15343 part_die->sibling = sibling_ptr;
15344 }
15345 break;
15346 case DW_AT_byte_size:
15347 part_die->has_byte_size = 1;
15348 break;
15349 case DW_AT_calling_convention:
15350 /* DWARF doesn't provide a way to identify a program's source-level
15351 entry point. DW_AT_calling_convention attributes are only meant
15352 to describe functions' calling conventions.
15353
15354 However, because it's a necessary piece of information in
15355 Fortran, and because DW_CC_program is the only piece of debugging
15356 information whose definition refers to a 'main program' at all,
15357 several compilers have begun marking Fortran main programs with
15358 DW_CC_program --- even when those functions use the standard
15359 calling conventions.
15360
15361 So until DWARF specifies a way to provide this information and
15362 compilers pick up the new representation, we'll support this
15363 practice. */
15364 if (DW_UNSND (&attr) == DW_CC_program
15365 && cu->language == language_fortran)
15366 set_objfile_main_name (objfile, part_die->name, language_fortran);
15367 break;
15368 case DW_AT_inline:
15369 if (DW_UNSND (&attr) == DW_INL_inlined
15370 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15371 part_die->may_be_inlined = 1;
15372 break;
15373
15374 case DW_AT_import:
15375 if (part_die->tag == DW_TAG_imported_unit)
15376 {
15377 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15378 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15379 || cu->per_cu->is_dwz);
15380 }
15381 break;
15382
15383 default:
15384 break;
15385 }
15386 }
15387
15388 if (high_pc_relative)
15389 part_die->highpc += part_die->lowpc;
15390
15391 if (has_low_pc_attr && has_high_pc_attr)
15392 {
15393 /* When using the GNU linker, .gnu.linkonce. sections are used to
15394 eliminate duplicate copies of functions and vtables and such.
15395 The linker will arbitrarily choose one and discard the others.
15396 The AT_*_pc values for such functions refer to local labels in
15397 these sections. If the section from that file was discarded, the
15398 labels are not in the output, so the relocs get a value of 0.
15399 If this is a discarded function, mark the pc bounds as invalid,
15400 so that GDB will ignore it. */
15401 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15402 {
15403 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15404
15405 complaint (&symfile_complaints,
15406 _("DW_AT_low_pc %s is zero "
15407 "for DIE at 0x%x [in module %s]"),
15408 paddress (gdbarch, part_die->lowpc),
15409 part_die->offset.sect_off, objfile_name (objfile));
15410 }
15411 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15412 else if (part_die->lowpc >= part_die->highpc)
15413 {
15414 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15415
15416 complaint (&symfile_complaints,
15417 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15418 "for DIE at 0x%x [in module %s]"),
15419 paddress (gdbarch, part_die->lowpc),
15420 paddress (gdbarch, part_die->highpc),
15421 part_die->offset.sect_off, objfile_name (objfile));
15422 }
15423 else
15424 part_die->has_pc_info = 1;
15425 }
15426
15427 return info_ptr;
15428 }
15429
15430 /* Find a cached partial DIE at OFFSET in CU. */
15431
15432 static struct partial_die_info *
15433 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15434 {
15435 struct partial_die_info *lookup_die = NULL;
15436 struct partial_die_info part_die;
15437
15438 part_die.offset = offset;
15439 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15440 offset.sect_off);
15441
15442 return lookup_die;
15443 }
15444
15445 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15446 except in the case of .debug_types DIEs which do not reference
15447 outside their CU (they do however referencing other types via
15448 DW_FORM_ref_sig8). */
15449
15450 static struct partial_die_info *
15451 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15452 {
15453 struct objfile *objfile = cu->objfile;
15454 struct dwarf2_per_cu_data *per_cu = NULL;
15455 struct partial_die_info *pd = NULL;
15456
15457 if (offset_in_dwz == cu->per_cu->is_dwz
15458 && offset_in_cu_p (&cu->header, offset))
15459 {
15460 pd = find_partial_die_in_comp_unit (offset, cu);
15461 if (pd != NULL)
15462 return pd;
15463 /* We missed recording what we needed.
15464 Load all dies and try again. */
15465 per_cu = cu->per_cu;
15466 }
15467 else
15468 {
15469 /* TUs don't reference other CUs/TUs (except via type signatures). */
15470 if (cu->per_cu->is_debug_types)
15471 {
15472 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15473 " external reference to offset 0x%lx [in module %s].\n"),
15474 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15475 bfd_get_filename (objfile->obfd));
15476 }
15477 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15478 objfile);
15479
15480 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15481 load_partial_comp_unit (per_cu);
15482
15483 per_cu->cu->last_used = 0;
15484 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15485 }
15486
15487 /* If we didn't find it, and not all dies have been loaded,
15488 load them all and try again. */
15489
15490 if (pd == NULL && per_cu->load_all_dies == 0)
15491 {
15492 per_cu->load_all_dies = 1;
15493
15494 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15495 THIS_CU->cu may already be in use. So we can't just free it and
15496 replace its DIEs with the ones we read in. Instead, we leave those
15497 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15498 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15499 set. */
15500 load_partial_comp_unit (per_cu);
15501
15502 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15503 }
15504
15505 if (pd == NULL)
15506 internal_error (__FILE__, __LINE__,
15507 _("could not find partial DIE 0x%x "
15508 "in cache [from module %s]\n"),
15509 offset.sect_off, bfd_get_filename (objfile->obfd));
15510 return pd;
15511 }
15512
15513 /* See if we can figure out if the class lives in a namespace. We do
15514 this by looking for a member function; its demangled name will
15515 contain namespace info, if there is any. */
15516
15517 static void
15518 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15519 struct dwarf2_cu *cu)
15520 {
15521 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15522 what template types look like, because the demangler
15523 frequently doesn't give the same name as the debug info. We
15524 could fix this by only using the demangled name to get the
15525 prefix (but see comment in read_structure_type). */
15526
15527 struct partial_die_info *real_pdi;
15528 struct partial_die_info *child_pdi;
15529
15530 /* If this DIE (this DIE's specification, if any) has a parent, then
15531 we should not do this. We'll prepend the parent's fully qualified
15532 name when we create the partial symbol. */
15533
15534 real_pdi = struct_pdi;
15535 while (real_pdi->has_specification)
15536 real_pdi = find_partial_die (real_pdi->spec_offset,
15537 real_pdi->spec_is_dwz, cu);
15538
15539 if (real_pdi->die_parent != NULL)
15540 return;
15541
15542 for (child_pdi = struct_pdi->die_child;
15543 child_pdi != NULL;
15544 child_pdi = child_pdi->die_sibling)
15545 {
15546 if (child_pdi->tag == DW_TAG_subprogram
15547 && child_pdi->linkage_name != NULL)
15548 {
15549 char *actual_class_name
15550 = language_class_name_from_physname (cu->language_defn,
15551 child_pdi->linkage_name);
15552 if (actual_class_name != NULL)
15553 {
15554 struct_pdi->name
15555 = obstack_copy0 (&cu->objfile->objfile_obstack,
15556 actual_class_name,
15557 strlen (actual_class_name));
15558 xfree (actual_class_name);
15559 }
15560 break;
15561 }
15562 }
15563 }
15564
15565 /* Adjust PART_DIE before generating a symbol for it. This function
15566 may set the is_external flag or change the DIE's name. */
15567
15568 static void
15569 fixup_partial_die (struct partial_die_info *part_die,
15570 struct dwarf2_cu *cu)
15571 {
15572 /* Once we've fixed up a die, there's no point in doing so again.
15573 This also avoids a memory leak if we were to call
15574 guess_partial_die_structure_name multiple times. */
15575 if (part_die->fixup_called)
15576 return;
15577
15578 /* If we found a reference attribute and the DIE has no name, try
15579 to find a name in the referred to DIE. */
15580
15581 if (part_die->name == NULL && part_die->has_specification)
15582 {
15583 struct partial_die_info *spec_die;
15584
15585 spec_die = find_partial_die (part_die->spec_offset,
15586 part_die->spec_is_dwz, cu);
15587
15588 fixup_partial_die (spec_die, cu);
15589
15590 if (spec_die->name)
15591 {
15592 part_die->name = spec_die->name;
15593
15594 /* Copy DW_AT_external attribute if it is set. */
15595 if (spec_die->is_external)
15596 part_die->is_external = spec_die->is_external;
15597 }
15598 }
15599
15600 /* Set default names for some unnamed DIEs. */
15601
15602 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15603 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15604
15605 /* If there is no parent die to provide a namespace, and there are
15606 children, see if we can determine the namespace from their linkage
15607 name. */
15608 if (cu->language == language_cplus
15609 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15610 && part_die->die_parent == NULL
15611 && part_die->has_children
15612 && (part_die->tag == DW_TAG_class_type
15613 || part_die->tag == DW_TAG_structure_type
15614 || part_die->tag == DW_TAG_union_type))
15615 guess_partial_die_structure_name (part_die, cu);
15616
15617 /* GCC might emit a nameless struct or union that has a linkage
15618 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15619 if (part_die->name == NULL
15620 && (part_die->tag == DW_TAG_class_type
15621 || part_die->tag == DW_TAG_interface_type
15622 || part_die->tag == DW_TAG_structure_type
15623 || part_die->tag == DW_TAG_union_type)
15624 && part_die->linkage_name != NULL)
15625 {
15626 char *demangled;
15627
15628 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15629 if (demangled)
15630 {
15631 const char *base;
15632
15633 /* Strip any leading namespaces/classes, keep only the base name.
15634 DW_AT_name for named DIEs does not contain the prefixes. */
15635 base = strrchr (demangled, ':');
15636 if (base && base > demangled && base[-1] == ':')
15637 base++;
15638 else
15639 base = demangled;
15640
15641 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15642 base, strlen (base));
15643 xfree (demangled);
15644 }
15645 }
15646
15647 part_die->fixup_called = 1;
15648 }
15649
15650 /* Read an attribute value described by an attribute form. */
15651
15652 static const gdb_byte *
15653 read_attribute_value (const struct die_reader_specs *reader,
15654 struct attribute *attr, unsigned form,
15655 const gdb_byte *info_ptr)
15656 {
15657 struct dwarf2_cu *cu = reader->cu;
15658 bfd *abfd = reader->abfd;
15659 struct comp_unit_head *cu_header = &cu->header;
15660 unsigned int bytes_read;
15661 struct dwarf_block *blk;
15662
15663 attr->form = form;
15664 switch (form)
15665 {
15666 case DW_FORM_ref_addr:
15667 if (cu->header.version == 2)
15668 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15669 else
15670 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15671 &cu->header, &bytes_read);
15672 info_ptr += bytes_read;
15673 break;
15674 case DW_FORM_GNU_ref_alt:
15675 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15676 info_ptr += bytes_read;
15677 break;
15678 case DW_FORM_addr:
15679 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15680 info_ptr += bytes_read;
15681 break;
15682 case DW_FORM_block2:
15683 blk = dwarf_alloc_block (cu);
15684 blk->size = read_2_bytes (abfd, info_ptr);
15685 info_ptr += 2;
15686 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15687 info_ptr += blk->size;
15688 DW_BLOCK (attr) = blk;
15689 break;
15690 case DW_FORM_block4:
15691 blk = dwarf_alloc_block (cu);
15692 blk->size = read_4_bytes (abfd, info_ptr);
15693 info_ptr += 4;
15694 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15695 info_ptr += blk->size;
15696 DW_BLOCK (attr) = blk;
15697 break;
15698 case DW_FORM_data2:
15699 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15700 info_ptr += 2;
15701 break;
15702 case DW_FORM_data4:
15703 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15704 info_ptr += 4;
15705 break;
15706 case DW_FORM_data8:
15707 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15708 info_ptr += 8;
15709 break;
15710 case DW_FORM_sec_offset:
15711 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15712 info_ptr += bytes_read;
15713 break;
15714 case DW_FORM_string:
15715 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15716 DW_STRING_IS_CANONICAL (attr) = 0;
15717 info_ptr += bytes_read;
15718 break;
15719 case DW_FORM_strp:
15720 if (!cu->per_cu->is_dwz)
15721 {
15722 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15723 &bytes_read);
15724 DW_STRING_IS_CANONICAL (attr) = 0;
15725 info_ptr += bytes_read;
15726 break;
15727 }
15728 /* FALLTHROUGH */
15729 case DW_FORM_GNU_strp_alt:
15730 {
15731 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15732 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15733 &bytes_read);
15734
15735 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15736 DW_STRING_IS_CANONICAL (attr) = 0;
15737 info_ptr += bytes_read;
15738 }
15739 break;
15740 case DW_FORM_exprloc:
15741 case DW_FORM_block:
15742 blk = dwarf_alloc_block (cu);
15743 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15744 info_ptr += bytes_read;
15745 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15746 info_ptr += blk->size;
15747 DW_BLOCK (attr) = blk;
15748 break;
15749 case DW_FORM_block1:
15750 blk = dwarf_alloc_block (cu);
15751 blk->size = read_1_byte (abfd, info_ptr);
15752 info_ptr += 1;
15753 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15754 info_ptr += blk->size;
15755 DW_BLOCK (attr) = blk;
15756 break;
15757 case DW_FORM_data1:
15758 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15759 info_ptr += 1;
15760 break;
15761 case DW_FORM_flag:
15762 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15763 info_ptr += 1;
15764 break;
15765 case DW_FORM_flag_present:
15766 DW_UNSND (attr) = 1;
15767 break;
15768 case DW_FORM_sdata:
15769 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15770 info_ptr += bytes_read;
15771 break;
15772 case DW_FORM_udata:
15773 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15774 info_ptr += bytes_read;
15775 break;
15776 case DW_FORM_ref1:
15777 DW_UNSND (attr) = (cu->header.offset.sect_off
15778 + read_1_byte (abfd, info_ptr));
15779 info_ptr += 1;
15780 break;
15781 case DW_FORM_ref2:
15782 DW_UNSND (attr) = (cu->header.offset.sect_off
15783 + read_2_bytes (abfd, info_ptr));
15784 info_ptr += 2;
15785 break;
15786 case DW_FORM_ref4:
15787 DW_UNSND (attr) = (cu->header.offset.sect_off
15788 + read_4_bytes (abfd, info_ptr));
15789 info_ptr += 4;
15790 break;
15791 case DW_FORM_ref8:
15792 DW_UNSND (attr) = (cu->header.offset.sect_off
15793 + read_8_bytes (abfd, info_ptr));
15794 info_ptr += 8;
15795 break;
15796 case DW_FORM_ref_sig8:
15797 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
15798 info_ptr += 8;
15799 break;
15800 case DW_FORM_ref_udata:
15801 DW_UNSND (attr) = (cu->header.offset.sect_off
15802 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
15803 info_ptr += bytes_read;
15804 break;
15805 case DW_FORM_indirect:
15806 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15807 info_ptr += bytes_read;
15808 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
15809 break;
15810 case DW_FORM_GNU_addr_index:
15811 if (reader->dwo_file == NULL)
15812 {
15813 /* For now flag a hard error.
15814 Later we can turn this into a complaint. */
15815 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15816 dwarf_form_name (form),
15817 bfd_get_filename (abfd));
15818 }
15819 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15820 info_ptr += bytes_read;
15821 break;
15822 case DW_FORM_GNU_str_index:
15823 if (reader->dwo_file == NULL)
15824 {
15825 /* For now flag a hard error.
15826 Later we can turn this into a complaint if warranted. */
15827 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15828 dwarf_form_name (form),
15829 bfd_get_filename (abfd));
15830 }
15831 {
15832 ULONGEST str_index =
15833 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15834
15835 DW_STRING (attr) = read_str_index (reader, cu, str_index);
15836 DW_STRING_IS_CANONICAL (attr) = 0;
15837 info_ptr += bytes_read;
15838 }
15839 break;
15840 default:
15841 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
15842 dwarf_form_name (form),
15843 bfd_get_filename (abfd));
15844 }
15845
15846 /* Super hack. */
15847 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
15848 attr->form = DW_FORM_GNU_ref_alt;
15849
15850 /* We have seen instances where the compiler tried to emit a byte
15851 size attribute of -1 which ended up being encoded as an unsigned
15852 0xffffffff. Although 0xffffffff is technically a valid size value,
15853 an object of this size seems pretty unlikely so we can relatively
15854 safely treat these cases as if the size attribute was invalid and
15855 treat them as zero by default. */
15856 if (attr->name == DW_AT_byte_size
15857 && form == DW_FORM_data4
15858 && DW_UNSND (attr) >= 0xffffffff)
15859 {
15860 complaint
15861 (&symfile_complaints,
15862 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15863 hex_string (DW_UNSND (attr)));
15864 DW_UNSND (attr) = 0;
15865 }
15866
15867 return info_ptr;
15868 }
15869
15870 /* Read an attribute described by an abbreviated attribute. */
15871
15872 static const gdb_byte *
15873 read_attribute (const struct die_reader_specs *reader,
15874 struct attribute *attr, struct attr_abbrev *abbrev,
15875 const gdb_byte *info_ptr)
15876 {
15877 attr->name = abbrev->name;
15878 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
15879 }
15880
15881 /* Read dwarf information from a buffer. */
15882
15883 static unsigned int
15884 read_1_byte (bfd *abfd, const gdb_byte *buf)
15885 {
15886 return bfd_get_8 (abfd, buf);
15887 }
15888
15889 static int
15890 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
15891 {
15892 return bfd_get_signed_8 (abfd, buf);
15893 }
15894
15895 static unsigned int
15896 read_2_bytes (bfd *abfd, const gdb_byte *buf)
15897 {
15898 return bfd_get_16 (abfd, buf);
15899 }
15900
15901 static int
15902 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
15903 {
15904 return bfd_get_signed_16 (abfd, buf);
15905 }
15906
15907 static unsigned int
15908 read_4_bytes (bfd *abfd, const gdb_byte *buf)
15909 {
15910 return bfd_get_32 (abfd, buf);
15911 }
15912
15913 static int
15914 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
15915 {
15916 return bfd_get_signed_32 (abfd, buf);
15917 }
15918
15919 static ULONGEST
15920 read_8_bytes (bfd *abfd, const gdb_byte *buf)
15921 {
15922 return bfd_get_64 (abfd, buf);
15923 }
15924
15925 static CORE_ADDR
15926 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
15927 unsigned int *bytes_read)
15928 {
15929 struct comp_unit_head *cu_header = &cu->header;
15930 CORE_ADDR retval = 0;
15931
15932 if (cu_header->signed_addr_p)
15933 {
15934 switch (cu_header->addr_size)
15935 {
15936 case 2:
15937 retval = bfd_get_signed_16 (abfd, buf);
15938 break;
15939 case 4:
15940 retval = bfd_get_signed_32 (abfd, buf);
15941 break;
15942 case 8:
15943 retval = bfd_get_signed_64 (abfd, buf);
15944 break;
15945 default:
15946 internal_error (__FILE__, __LINE__,
15947 _("read_address: bad switch, signed [in module %s]"),
15948 bfd_get_filename (abfd));
15949 }
15950 }
15951 else
15952 {
15953 switch (cu_header->addr_size)
15954 {
15955 case 2:
15956 retval = bfd_get_16 (abfd, buf);
15957 break;
15958 case 4:
15959 retval = bfd_get_32 (abfd, buf);
15960 break;
15961 case 8:
15962 retval = bfd_get_64 (abfd, buf);
15963 break;
15964 default:
15965 internal_error (__FILE__, __LINE__,
15966 _("read_address: bad switch, "
15967 "unsigned [in module %s]"),
15968 bfd_get_filename (abfd));
15969 }
15970 }
15971
15972 *bytes_read = cu_header->addr_size;
15973 return retval;
15974 }
15975
15976 /* Read the initial length from a section. The (draft) DWARF 3
15977 specification allows the initial length to take up either 4 bytes
15978 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
15979 bytes describe the length and all offsets will be 8 bytes in length
15980 instead of 4.
15981
15982 An older, non-standard 64-bit format is also handled by this
15983 function. The older format in question stores the initial length
15984 as an 8-byte quantity without an escape value. Lengths greater
15985 than 2^32 aren't very common which means that the initial 4 bytes
15986 is almost always zero. Since a length value of zero doesn't make
15987 sense for the 32-bit format, this initial zero can be considered to
15988 be an escape value which indicates the presence of the older 64-bit
15989 format. As written, the code can't detect (old format) lengths
15990 greater than 4GB. If it becomes necessary to handle lengths
15991 somewhat larger than 4GB, we could allow other small values (such
15992 as the non-sensical values of 1, 2, and 3) to also be used as
15993 escape values indicating the presence of the old format.
15994
15995 The value returned via bytes_read should be used to increment the
15996 relevant pointer after calling read_initial_length().
15997
15998 [ Note: read_initial_length() and read_offset() are based on the
15999 document entitled "DWARF Debugging Information Format", revision
16000 3, draft 8, dated November 19, 2001. This document was obtained
16001 from:
16002
16003 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16004
16005 This document is only a draft and is subject to change. (So beware.)
16006
16007 Details regarding the older, non-standard 64-bit format were
16008 determined empirically by examining 64-bit ELF files produced by
16009 the SGI toolchain on an IRIX 6.5 machine.
16010
16011 - Kevin, July 16, 2002
16012 ] */
16013
16014 static LONGEST
16015 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16016 {
16017 LONGEST length = bfd_get_32 (abfd, buf);
16018
16019 if (length == 0xffffffff)
16020 {
16021 length = bfd_get_64 (abfd, buf + 4);
16022 *bytes_read = 12;
16023 }
16024 else if (length == 0)
16025 {
16026 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16027 length = bfd_get_64 (abfd, buf);
16028 *bytes_read = 8;
16029 }
16030 else
16031 {
16032 *bytes_read = 4;
16033 }
16034
16035 return length;
16036 }
16037
16038 /* Cover function for read_initial_length.
16039 Returns the length of the object at BUF, and stores the size of the
16040 initial length in *BYTES_READ and stores the size that offsets will be in
16041 *OFFSET_SIZE.
16042 If the initial length size is not equivalent to that specified in
16043 CU_HEADER then issue a complaint.
16044 This is useful when reading non-comp-unit headers. */
16045
16046 static LONGEST
16047 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16048 const struct comp_unit_head *cu_header,
16049 unsigned int *bytes_read,
16050 unsigned int *offset_size)
16051 {
16052 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16053
16054 gdb_assert (cu_header->initial_length_size == 4
16055 || cu_header->initial_length_size == 8
16056 || cu_header->initial_length_size == 12);
16057
16058 if (cu_header->initial_length_size != *bytes_read)
16059 complaint (&symfile_complaints,
16060 _("intermixed 32-bit and 64-bit DWARF sections"));
16061
16062 *offset_size = (*bytes_read == 4) ? 4 : 8;
16063 return length;
16064 }
16065
16066 /* Read an offset from the data stream. The size of the offset is
16067 given by cu_header->offset_size. */
16068
16069 static LONGEST
16070 read_offset (bfd *abfd, const gdb_byte *buf,
16071 const struct comp_unit_head *cu_header,
16072 unsigned int *bytes_read)
16073 {
16074 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16075
16076 *bytes_read = cu_header->offset_size;
16077 return offset;
16078 }
16079
16080 /* Read an offset from the data stream. */
16081
16082 static LONGEST
16083 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16084 {
16085 LONGEST retval = 0;
16086
16087 switch (offset_size)
16088 {
16089 case 4:
16090 retval = bfd_get_32 (abfd, buf);
16091 break;
16092 case 8:
16093 retval = bfd_get_64 (abfd, buf);
16094 break;
16095 default:
16096 internal_error (__FILE__, __LINE__,
16097 _("read_offset_1: bad switch [in module %s]"),
16098 bfd_get_filename (abfd));
16099 }
16100
16101 return retval;
16102 }
16103
16104 static const gdb_byte *
16105 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16106 {
16107 /* If the size of a host char is 8 bits, we can return a pointer
16108 to the buffer, otherwise we have to copy the data to a buffer
16109 allocated on the temporary obstack. */
16110 gdb_assert (HOST_CHAR_BIT == 8);
16111 return buf;
16112 }
16113
16114 static const char *
16115 read_direct_string (bfd *abfd, const gdb_byte *buf,
16116 unsigned int *bytes_read_ptr)
16117 {
16118 /* If the size of a host char is 8 bits, we can return a pointer
16119 to the string, otherwise we have to copy the string to a buffer
16120 allocated on the temporary obstack. */
16121 gdb_assert (HOST_CHAR_BIT == 8);
16122 if (*buf == '\0')
16123 {
16124 *bytes_read_ptr = 1;
16125 return NULL;
16126 }
16127 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16128 return (const char *) buf;
16129 }
16130
16131 static const char *
16132 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16133 {
16134 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16135 if (dwarf2_per_objfile->str.buffer == NULL)
16136 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16137 bfd_get_filename (abfd));
16138 if (str_offset >= dwarf2_per_objfile->str.size)
16139 error (_("DW_FORM_strp pointing outside of "
16140 ".debug_str section [in module %s]"),
16141 bfd_get_filename (abfd));
16142 gdb_assert (HOST_CHAR_BIT == 8);
16143 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16144 return NULL;
16145 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16146 }
16147
16148 /* Read a string at offset STR_OFFSET in the .debug_str section from
16149 the .dwz file DWZ. Throw an error if the offset is too large. If
16150 the string consists of a single NUL byte, return NULL; otherwise
16151 return a pointer to the string. */
16152
16153 static const char *
16154 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16155 {
16156 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16157
16158 if (dwz->str.buffer == NULL)
16159 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16160 "section [in module %s]"),
16161 bfd_get_filename (dwz->dwz_bfd));
16162 if (str_offset >= dwz->str.size)
16163 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16164 ".debug_str section [in module %s]"),
16165 bfd_get_filename (dwz->dwz_bfd));
16166 gdb_assert (HOST_CHAR_BIT == 8);
16167 if (dwz->str.buffer[str_offset] == '\0')
16168 return NULL;
16169 return (const char *) (dwz->str.buffer + str_offset);
16170 }
16171
16172 static const char *
16173 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16174 const struct comp_unit_head *cu_header,
16175 unsigned int *bytes_read_ptr)
16176 {
16177 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16178
16179 return read_indirect_string_at_offset (abfd, str_offset);
16180 }
16181
16182 static ULONGEST
16183 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16184 unsigned int *bytes_read_ptr)
16185 {
16186 ULONGEST result;
16187 unsigned int num_read;
16188 int i, shift;
16189 unsigned char byte;
16190
16191 result = 0;
16192 shift = 0;
16193 num_read = 0;
16194 i = 0;
16195 while (1)
16196 {
16197 byte = bfd_get_8 (abfd, buf);
16198 buf++;
16199 num_read++;
16200 result |= ((ULONGEST) (byte & 127) << shift);
16201 if ((byte & 128) == 0)
16202 {
16203 break;
16204 }
16205 shift += 7;
16206 }
16207 *bytes_read_ptr = num_read;
16208 return result;
16209 }
16210
16211 static LONGEST
16212 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16213 unsigned int *bytes_read_ptr)
16214 {
16215 LONGEST result;
16216 int i, shift, num_read;
16217 unsigned char byte;
16218
16219 result = 0;
16220 shift = 0;
16221 num_read = 0;
16222 i = 0;
16223 while (1)
16224 {
16225 byte = bfd_get_8 (abfd, buf);
16226 buf++;
16227 num_read++;
16228 result |= ((LONGEST) (byte & 127) << shift);
16229 shift += 7;
16230 if ((byte & 128) == 0)
16231 {
16232 break;
16233 }
16234 }
16235 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16236 result |= -(((LONGEST) 1) << shift);
16237 *bytes_read_ptr = num_read;
16238 return result;
16239 }
16240
16241 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16242 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16243 ADDR_SIZE is the size of addresses from the CU header. */
16244
16245 static CORE_ADDR
16246 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16247 {
16248 struct objfile *objfile = dwarf2_per_objfile->objfile;
16249 bfd *abfd = objfile->obfd;
16250 const gdb_byte *info_ptr;
16251
16252 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16253 if (dwarf2_per_objfile->addr.buffer == NULL)
16254 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16255 objfile_name (objfile));
16256 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16257 error (_("DW_FORM_addr_index pointing outside of "
16258 ".debug_addr section [in module %s]"),
16259 objfile_name (objfile));
16260 info_ptr = (dwarf2_per_objfile->addr.buffer
16261 + addr_base + addr_index * addr_size);
16262 if (addr_size == 4)
16263 return bfd_get_32 (abfd, info_ptr);
16264 else
16265 return bfd_get_64 (abfd, info_ptr);
16266 }
16267
16268 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16269
16270 static CORE_ADDR
16271 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16272 {
16273 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16274 }
16275
16276 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16277
16278 static CORE_ADDR
16279 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16280 unsigned int *bytes_read)
16281 {
16282 bfd *abfd = cu->objfile->obfd;
16283 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16284
16285 return read_addr_index (cu, addr_index);
16286 }
16287
16288 /* Data structure to pass results from dwarf2_read_addr_index_reader
16289 back to dwarf2_read_addr_index. */
16290
16291 struct dwarf2_read_addr_index_data
16292 {
16293 ULONGEST addr_base;
16294 int addr_size;
16295 };
16296
16297 /* die_reader_func for dwarf2_read_addr_index. */
16298
16299 static void
16300 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16301 const gdb_byte *info_ptr,
16302 struct die_info *comp_unit_die,
16303 int has_children,
16304 void *data)
16305 {
16306 struct dwarf2_cu *cu = reader->cu;
16307 struct dwarf2_read_addr_index_data *aidata =
16308 (struct dwarf2_read_addr_index_data *) data;
16309
16310 aidata->addr_base = cu->addr_base;
16311 aidata->addr_size = cu->header.addr_size;
16312 }
16313
16314 /* Given an index in .debug_addr, fetch the value.
16315 NOTE: This can be called during dwarf expression evaluation,
16316 long after the debug information has been read, and thus per_cu->cu
16317 may no longer exist. */
16318
16319 CORE_ADDR
16320 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16321 unsigned int addr_index)
16322 {
16323 struct objfile *objfile = per_cu->objfile;
16324 struct dwarf2_cu *cu = per_cu->cu;
16325 ULONGEST addr_base;
16326 int addr_size;
16327
16328 /* This is intended to be called from outside this file. */
16329 dw2_setup (objfile);
16330
16331 /* We need addr_base and addr_size.
16332 If we don't have PER_CU->cu, we have to get it.
16333 Nasty, but the alternative is storing the needed info in PER_CU,
16334 which at this point doesn't seem justified: it's not clear how frequently
16335 it would get used and it would increase the size of every PER_CU.
16336 Entry points like dwarf2_per_cu_addr_size do a similar thing
16337 so we're not in uncharted territory here.
16338 Alas we need to be a bit more complicated as addr_base is contained
16339 in the DIE.
16340
16341 We don't need to read the entire CU(/TU).
16342 We just need the header and top level die.
16343
16344 IWBN to use the aging mechanism to let us lazily later discard the CU.
16345 For now we skip this optimization. */
16346
16347 if (cu != NULL)
16348 {
16349 addr_base = cu->addr_base;
16350 addr_size = cu->header.addr_size;
16351 }
16352 else
16353 {
16354 struct dwarf2_read_addr_index_data aidata;
16355
16356 /* Note: We can't use init_cutu_and_read_dies_simple here,
16357 we need addr_base. */
16358 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16359 dwarf2_read_addr_index_reader, &aidata);
16360 addr_base = aidata.addr_base;
16361 addr_size = aidata.addr_size;
16362 }
16363
16364 return read_addr_index_1 (addr_index, addr_base, addr_size);
16365 }
16366
16367 /* Given a DW_FORM_GNU_str_index, fetch the string.
16368 This is only used by the Fission support. */
16369
16370 static const char *
16371 read_str_index (const struct die_reader_specs *reader,
16372 struct dwarf2_cu *cu, ULONGEST str_index)
16373 {
16374 struct objfile *objfile = dwarf2_per_objfile->objfile;
16375 const char *dwo_name = objfile_name (objfile);
16376 bfd *abfd = objfile->obfd;
16377 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16378 struct dwarf2_section_info *str_offsets_section =
16379 &reader->dwo_file->sections.str_offsets;
16380 const gdb_byte *info_ptr;
16381 ULONGEST str_offset;
16382 static const char form_name[] = "DW_FORM_GNU_str_index";
16383
16384 dwarf2_read_section (objfile, str_section);
16385 dwarf2_read_section (objfile, str_offsets_section);
16386 if (str_section->buffer == NULL)
16387 error (_("%s used without .debug_str.dwo section"
16388 " in CU at offset 0x%lx [in module %s]"),
16389 form_name, (long) cu->header.offset.sect_off, dwo_name);
16390 if (str_offsets_section->buffer == NULL)
16391 error (_("%s used without .debug_str_offsets.dwo section"
16392 " in CU at offset 0x%lx [in module %s]"),
16393 form_name, (long) cu->header.offset.sect_off, dwo_name);
16394 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16395 error (_("%s pointing outside of .debug_str_offsets.dwo"
16396 " section in CU at offset 0x%lx [in module %s]"),
16397 form_name, (long) cu->header.offset.sect_off, dwo_name);
16398 info_ptr = (str_offsets_section->buffer
16399 + str_index * cu->header.offset_size);
16400 if (cu->header.offset_size == 4)
16401 str_offset = bfd_get_32 (abfd, info_ptr);
16402 else
16403 str_offset = bfd_get_64 (abfd, info_ptr);
16404 if (str_offset >= str_section->size)
16405 error (_("Offset from %s pointing outside of"
16406 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16407 form_name, (long) cu->header.offset.sect_off, dwo_name);
16408 return (const char *) (str_section->buffer + str_offset);
16409 }
16410
16411 /* Return the length of an LEB128 number in BUF. */
16412
16413 static int
16414 leb128_size (const gdb_byte *buf)
16415 {
16416 const gdb_byte *begin = buf;
16417 gdb_byte byte;
16418
16419 while (1)
16420 {
16421 byte = *buf++;
16422 if ((byte & 128) == 0)
16423 return buf - begin;
16424 }
16425 }
16426
16427 static void
16428 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16429 {
16430 switch (lang)
16431 {
16432 case DW_LANG_C89:
16433 case DW_LANG_C99:
16434 case DW_LANG_C:
16435 case DW_LANG_UPC:
16436 cu->language = language_c;
16437 break;
16438 case DW_LANG_C_plus_plus:
16439 cu->language = language_cplus;
16440 break;
16441 case DW_LANG_D:
16442 cu->language = language_d;
16443 break;
16444 case DW_LANG_Fortran77:
16445 case DW_LANG_Fortran90:
16446 case DW_LANG_Fortran95:
16447 cu->language = language_fortran;
16448 break;
16449 case DW_LANG_Go:
16450 cu->language = language_go;
16451 break;
16452 case DW_LANG_Mips_Assembler:
16453 cu->language = language_asm;
16454 break;
16455 case DW_LANG_Java:
16456 cu->language = language_java;
16457 break;
16458 case DW_LANG_Ada83:
16459 case DW_LANG_Ada95:
16460 cu->language = language_ada;
16461 break;
16462 case DW_LANG_Modula2:
16463 cu->language = language_m2;
16464 break;
16465 case DW_LANG_Pascal83:
16466 cu->language = language_pascal;
16467 break;
16468 case DW_LANG_ObjC:
16469 cu->language = language_objc;
16470 break;
16471 case DW_LANG_Cobol74:
16472 case DW_LANG_Cobol85:
16473 default:
16474 cu->language = language_minimal;
16475 break;
16476 }
16477 cu->language_defn = language_def (cu->language);
16478 }
16479
16480 /* Return the named attribute or NULL if not there. */
16481
16482 static struct attribute *
16483 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16484 {
16485 for (;;)
16486 {
16487 unsigned int i;
16488 struct attribute *spec = NULL;
16489
16490 for (i = 0; i < die->num_attrs; ++i)
16491 {
16492 if (die->attrs[i].name == name)
16493 return &die->attrs[i];
16494 if (die->attrs[i].name == DW_AT_specification
16495 || die->attrs[i].name == DW_AT_abstract_origin)
16496 spec = &die->attrs[i];
16497 }
16498
16499 if (!spec)
16500 break;
16501
16502 die = follow_die_ref (die, spec, &cu);
16503 }
16504
16505 return NULL;
16506 }
16507
16508 /* Return the named attribute or NULL if not there,
16509 but do not follow DW_AT_specification, etc.
16510 This is for use in contexts where we're reading .debug_types dies.
16511 Following DW_AT_specification, DW_AT_abstract_origin will take us
16512 back up the chain, and we want to go down. */
16513
16514 static struct attribute *
16515 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16516 {
16517 unsigned int i;
16518
16519 for (i = 0; i < die->num_attrs; ++i)
16520 if (die->attrs[i].name == name)
16521 return &die->attrs[i];
16522
16523 return NULL;
16524 }
16525
16526 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16527 and holds a non-zero value. This function should only be used for
16528 DW_FORM_flag or DW_FORM_flag_present attributes. */
16529
16530 static int
16531 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16532 {
16533 struct attribute *attr = dwarf2_attr (die, name, cu);
16534
16535 return (attr && DW_UNSND (attr));
16536 }
16537
16538 static int
16539 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16540 {
16541 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16542 which value is non-zero. However, we have to be careful with
16543 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16544 (via dwarf2_flag_true_p) follows this attribute. So we may
16545 end up accidently finding a declaration attribute that belongs
16546 to a different DIE referenced by the specification attribute,
16547 even though the given DIE does not have a declaration attribute. */
16548 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16549 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16550 }
16551
16552 /* Return the die giving the specification for DIE, if there is
16553 one. *SPEC_CU is the CU containing DIE on input, and the CU
16554 containing the return value on output. If there is no
16555 specification, but there is an abstract origin, that is
16556 returned. */
16557
16558 static struct die_info *
16559 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16560 {
16561 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16562 *spec_cu);
16563
16564 if (spec_attr == NULL)
16565 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16566
16567 if (spec_attr == NULL)
16568 return NULL;
16569 else
16570 return follow_die_ref (die, spec_attr, spec_cu);
16571 }
16572
16573 /* Free the line_header structure *LH, and any arrays and strings it
16574 refers to.
16575 NOTE: This is also used as a "cleanup" function. */
16576
16577 static void
16578 free_line_header (struct line_header *lh)
16579 {
16580 if (lh->standard_opcode_lengths)
16581 xfree (lh->standard_opcode_lengths);
16582
16583 /* Remember that all the lh->file_names[i].name pointers are
16584 pointers into debug_line_buffer, and don't need to be freed. */
16585 if (lh->file_names)
16586 xfree (lh->file_names);
16587
16588 /* Similarly for the include directory names. */
16589 if (lh->include_dirs)
16590 xfree (lh->include_dirs);
16591
16592 xfree (lh);
16593 }
16594
16595 /* Add an entry to LH's include directory table. */
16596
16597 static void
16598 add_include_dir (struct line_header *lh, const char *include_dir)
16599 {
16600 /* Grow the array if necessary. */
16601 if (lh->include_dirs_size == 0)
16602 {
16603 lh->include_dirs_size = 1; /* for testing */
16604 lh->include_dirs = xmalloc (lh->include_dirs_size
16605 * sizeof (*lh->include_dirs));
16606 }
16607 else if (lh->num_include_dirs >= lh->include_dirs_size)
16608 {
16609 lh->include_dirs_size *= 2;
16610 lh->include_dirs = xrealloc (lh->include_dirs,
16611 (lh->include_dirs_size
16612 * sizeof (*lh->include_dirs)));
16613 }
16614
16615 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16616 }
16617
16618 /* Add an entry to LH's file name table. */
16619
16620 static void
16621 add_file_name (struct line_header *lh,
16622 const char *name,
16623 unsigned int dir_index,
16624 unsigned int mod_time,
16625 unsigned int length)
16626 {
16627 struct file_entry *fe;
16628
16629 /* Grow the array if necessary. */
16630 if (lh->file_names_size == 0)
16631 {
16632 lh->file_names_size = 1; /* for testing */
16633 lh->file_names = xmalloc (lh->file_names_size
16634 * sizeof (*lh->file_names));
16635 }
16636 else if (lh->num_file_names >= lh->file_names_size)
16637 {
16638 lh->file_names_size *= 2;
16639 lh->file_names = xrealloc (lh->file_names,
16640 (lh->file_names_size
16641 * sizeof (*lh->file_names)));
16642 }
16643
16644 fe = &lh->file_names[lh->num_file_names++];
16645 fe->name = name;
16646 fe->dir_index = dir_index;
16647 fe->mod_time = mod_time;
16648 fe->length = length;
16649 fe->included_p = 0;
16650 fe->symtab = NULL;
16651 }
16652
16653 /* A convenience function to find the proper .debug_line section for a
16654 CU. */
16655
16656 static struct dwarf2_section_info *
16657 get_debug_line_section (struct dwarf2_cu *cu)
16658 {
16659 struct dwarf2_section_info *section;
16660
16661 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16662 DWO file. */
16663 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16664 section = &cu->dwo_unit->dwo_file->sections.line;
16665 else if (cu->per_cu->is_dwz)
16666 {
16667 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16668
16669 section = &dwz->line;
16670 }
16671 else
16672 section = &dwarf2_per_objfile->line;
16673
16674 return section;
16675 }
16676
16677 /* Read the statement program header starting at OFFSET in
16678 .debug_line, or .debug_line.dwo. Return a pointer
16679 to a struct line_header, allocated using xmalloc.
16680
16681 NOTE: the strings in the include directory and file name tables of
16682 the returned object point into the dwarf line section buffer,
16683 and must not be freed. */
16684
16685 static struct line_header *
16686 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16687 {
16688 struct cleanup *back_to;
16689 struct line_header *lh;
16690 const gdb_byte *line_ptr;
16691 unsigned int bytes_read, offset_size;
16692 int i;
16693 const char *cur_dir, *cur_file;
16694 struct dwarf2_section_info *section;
16695 bfd *abfd;
16696
16697 section = get_debug_line_section (cu);
16698 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16699 if (section->buffer == NULL)
16700 {
16701 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16702 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16703 else
16704 complaint (&symfile_complaints, _("missing .debug_line section"));
16705 return 0;
16706 }
16707
16708 /* We can't do this until we know the section is non-empty.
16709 Only then do we know we have such a section. */
16710 abfd = get_section_bfd_owner (section);
16711
16712 /* Make sure that at least there's room for the total_length field.
16713 That could be 12 bytes long, but we're just going to fudge that. */
16714 if (offset + 4 >= section->size)
16715 {
16716 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16717 return 0;
16718 }
16719
16720 lh = xmalloc (sizeof (*lh));
16721 memset (lh, 0, sizeof (*lh));
16722 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16723 (void *) lh);
16724
16725 line_ptr = section->buffer + offset;
16726
16727 /* Read in the header. */
16728 lh->total_length =
16729 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16730 &bytes_read, &offset_size);
16731 line_ptr += bytes_read;
16732 if (line_ptr + lh->total_length > (section->buffer + section->size))
16733 {
16734 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16735 do_cleanups (back_to);
16736 return 0;
16737 }
16738 lh->statement_program_end = line_ptr + lh->total_length;
16739 lh->version = read_2_bytes (abfd, line_ptr);
16740 line_ptr += 2;
16741 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16742 line_ptr += offset_size;
16743 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16744 line_ptr += 1;
16745 if (lh->version >= 4)
16746 {
16747 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16748 line_ptr += 1;
16749 }
16750 else
16751 lh->maximum_ops_per_instruction = 1;
16752
16753 if (lh->maximum_ops_per_instruction == 0)
16754 {
16755 lh->maximum_ops_per_instruction = 1;
16756 complaint (&symfile_complaints,
16757 _("invalid maximum_ops_per_instruction "
16758 "in `.debug_line' section"));
16759 }
16760
16761 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16762 line_ptr += 1;
16763 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16764 line_ptr += 1;
16765 lh->line_range = read_1_byte (abfd, line_ptr);
16766 line_ptr += 1;
16767 lh->opcode_base = read_1_byte (abfd, line_ptr);
16768 line_ptr += 1;
16769 lh->standard_opcode_lengths
16770 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
16771
16772 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16773 for (i = 1; i < lh->opcode_base; ++i)
16774 {
16775 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16776 line_ptr += 1;
16777 }
16778
16779 /* Read directory table. */
16780 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16781 {
16782 line_ptr += bytes_read;
16783 add_include_dir (lh, cur_dir);
16784 }
16785 line_ptr += bytes_read;
16786
16787 /* Read file name table. */
16788 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16789 {
16790 unsigned int dir_index, mod_time, length;
16791
16792 line_ptr += bytes_read;
16793 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16794 line_ptr += bytes_read;
16795 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16796 line_ptr += bytes_read;
16797 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16798 line_ptr += bytes_read;
16799
16800 add_file_name (lh, cur_file, dir_index, mod_time, length);
16801 }
16802 line_ptr += bytes_read;
16803 lh->statement_program_start = line_ptr;
16804
16805 if (line_ptr > (section->buffer + section->size))
16806 complaint (&symfile_complaints,
16807 _("line number info header doesn't "
16808 "fit in `.debug_line' section"));
16809
16810 discard_cleanups (back_to);
16811 return lh;
16812 }
16813
16814 /* Subroutine of dwarf_decode_lines to simplify it.
16815 Return the file name of the psymtab for included file FILE_INDEX
16816 in line header LH of PST.
16817 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16818 If space for the result is malloc'd, it will be freed by a cleanup.
16819 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16820
16821 The function creates dangling cleanup registration. */
16822
16823 static const char *
16824 psymtab_include_file_name (const struct line_header *lh, int file_index,
16825 const struct partial_symtab *pst,
16826 const char *comp_dir)
16827 {
16828 const struct file_entry fe = lh->file_names [file_index];
16829 const char *include_name = fe.name;
16830 const char *include_name_to_compare = include_name;
16831 const char *dir_name = NULL;
16832 const char *pst_filename;
16833 char *copied_name = NULL;
16834 int file_is_pst;
16835
16836 if (fe.dir_index)
16837 dir_name = lh->include_dirs[fe.dir_index - 1];
16838
16839 if (!IS_ABSOLUTE_PATH (include_name)
16840 && (dir_name != NULL || comp_dir != NULL))
16841 {
16842 /* Avoid creating a duplicate psymtab for PST.
16843 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16844 Before we do the comparison, however, we need to account
16845 for DIR_NAME and COMP_DIR.
16846 First prepend dir_name (if non-NULL). If we still don't
16847 have an absolute path prepend comp_dir (if non-NULL).
16848 However, the directory we record in the include-file's
16849 psymtab does not contain COMP_DIR (to match the
16850 corresponding symtab(s)).
16851
16852 Example:
16853
16854 bash$ cd /tmp
16855 bash$ gcc -g ./hello.c
16856 include_name = "hello.c"
16857 dir_name = "."
16858 DW_AT_comp_dir = comp_dir = "/tmp"
16859 DW_AT_name = "./hello.c" */
16860
16861 if (dir_name != NULL)
16862 {
16863 char *tem = concat (dir_name, SLASH_STRING,
16864 include_name, (char *)NULL);
16865
16866 make_cleanup (xfree, tem);
16867 include_name = tem;
16868 include_name_to_compare = include_name;
16869 }
16870 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16871 {
16872 char *tem = concat (comp_dir, SLASH_STRING,
16873 include_name, (char *)NULL);
16874
16875 make_cleanup (xfree, tem);
16876 include_name_to_compare = tem;
16877 }
16878 }
16879
16880 pst_filename = pst->filename;
16881 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16882 {
16883 copied_name = concat (pst->dirname, SLASH_STRING,
16884 pst_filename, (char *)NULL);
16885 pst_filename = copied_name;
16886 }
16887
16888 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
16889
16890 if (copied_name != NULL)
16891 xfree (copied_name);
16892
16893 if (file_is_pst)
16894 return NULL;
16895 return include_name;
16896 }
16897
16898 /* Ignore this record_line request. */
16899
16900 static void
16901 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16902 {
16903 return;
16904 }
16905
16906 /* Subroutine of dwarf_decode_lines to simplify it.
16907 Process the line number information in LH. */
16908
16909 static void
16910 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16911 struct dwarf2_cu *cu, struct partial_symtab *pst)
16912 {
16913 const gdb_byte *line_ptr, *extended_end;
16914 const gdb_byte *line_end;
16915 unsigned int bytes_read, extended_len;
16916 unsigned char op_code, extended_op, adj_opcode;
16917 CORE_ADDR baseaddr;
16918 struct objfile *objfile = cu->objfile;
16919 bfd *abfd = objfile->obfd;
16920 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16921 const int decode_for_pst_p = (pst != NULL);
16922 struct subfile *last_subfile = NULL;
16923 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
16924 = record_line;
16925
16926 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16927
16928 line_ptr = lh->statement_program_start;
16929 line_end = lh->statement_program_end;
16930
16931 /* Read the statement sequences until there's nothing left. */
16932 while (line_ptr < line_end)
16933 {
16934 /* state machine registers */
16935 CORE_ADDR address = 0;
16936 unsigned int file = 1;
16937 unsigned int line = 1;
16938 unsigned int column = 0;
16939 int is_stmt = lh->default_is_stmt;
16940 int basic_block = 0;
16941 int end_sequence = 0;
16942 CORE_ADDR addr;
16943 unsigned char op_index = 0;
16944
16945 if (!decode_for_pst_p && lh->num_file_names >= file)
16946 {
16947 /* Start a subfile for the current file of the state machine. */
16948 /* lh->include_dirs and lh->file_names are 0-based, but the
16949 directory and file name numbers in the statement program
16950 are 1-based. */
16951 struct file_entry *fe = &lh->file_names[file - 1];
16952 const char *dir = NULL;
16953
16954 if (fe->dir_index)
16955 dir = lh->include_dirs[fe->dir_index - 1];
16956
16957 dwarf2_start_subfile (fe->name, dir, comp_dir);
16958 }
16959
16960 /* Decode the table. */
16961 while (!end_sequence)
16962 {
16963 op_code = read_1_byte (abfd, line_ptr);
16964 line_ptr += 1;
16965 if (line_ptr > line_end)
16966 {
16967 dwarf2_debug_line_missing_end_sequence_complaint ();
16968 break;
16969 }
16970
16971 if (op_code >= lh->opcode_base)
16972 {
16973 /* Special operand. */
16974 adj_opcode = op_code - lh->opcode_base;
16975 address += (((op_index + (adj_opcode / lh->line_range))
16976 / lh->maximum_ops_per_instruction)
16977 * lh->minimum_instruction_length);
16978 op_index = ((op_index + (adj_opcode / lh->line_range))
16979 % lh->maximum_ops_per_instruction);
16980 line += lh->line_base + (adj_opcode % lh->line_range);
16981 if (lh->num_file_names < file || file == 0)
16982 dwarf2_debug_line_missing_file_complaint ();
16983 /* For now we ignore lines not starting on an
16984 instruction boundary. */
16985 else if (op_index == 0)
16986 {
16987 lh->file_names[file - 1].included_p = 1;
16988 if (!decode_for_pst_p && is_stmt)
16989 {
16990 if (last_subfile != current_subfile)
16991 {
16992 addr = gdbarch_addr_bits_remove (gdbarch, address);
16993 if (last_subfile)
16994 (*p_record_line) (last_subfile, 0, addr);
16995 last_subfile = current_subfile;
16996 }
16997 /* Append row to matrix using current values. */
16998 addr = gdbarch_addr_bits_remove (gdbarch, address);
16999 (*p_record_line) (current_subfile, line, addr);
17000 }
17001 }
17002 basic_block = 0;
17003 }
17004 else switch (op_code)
17005 {
17006 case DW_LNS_extended_op:
17007 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17008 &bytes_read);
17009 line_ptr += bytes_read;
17010 extended_end = line_ptr + extended_len;
17011 extended_op = read_1_byte (abfd, line_ptr);
17012 line_ptr += 1;
17013 switch (extended_op)
17014 {
17015 case DW_LNE_end_sequence:
17016 p_record_line = record_line;
17017 end_sequence = 1;
17018 break;
17019 case DW_LNE_set_address:
17020 address = read_address (abfd, line_ptr, cu, &bytes_read);
17021
17022 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17023 {
17024 /* This line table is for a function which has been
17025 GCd by the linker. Ignore it. PR gdb/12528 */
17026
17027 long line_offset
17028 = line_ptr - get_debug_line_section (cu)->buffer;
17029
17030 complaint (&symfile_complaints,
17031 _(".debug_line address at offset 0x%lx is 0 "
17032 "[in module %s]"),
17033 line_offset, objfile_name (objfile));
17034 p_record_line = noop_record_line;
17035 }
17036
17037 op_index = 0;
17038 line_ptr += bytes_read;
17039 address += baseaddr;
17040 break;
17041 case DW_LNE_define_file:
17042 {
17043 const char *cur_file;
17044 unsigned int dir_index, mod_time, length;
17045
17046 cur_file = read_direct_string (abfd, line_ptr,
17047 &bytes_read);
17048 line_ptr += bytes_read;
17049 dir_index =
17050 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17051 line_ptr += bytes_read;
17052 mod_time =
17053 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17054 line_ptr += bytes_read;
17055 length =
17056 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17057 line_ptr += bytes_read;
17058 add_file_name (lh, cur_file, dir_index, mod_time, length);
17059 }
17060 break;
17061 case DW_LNE_set_discriminator:
17062 /* The discriminator is not interesting to the debugger;
17063 just ignore it. */
17064 line_ptr = extended_end;
17065 break;
17066 default:
17067 complaint (&symfile_complaints,
17068 _("mangled .debug_line section"));
17069 return;
17070 }
17071 /* Make sure that we parsed the extended op correctly. If e.g.
17072 we expected a different address size than the producer used,
17073 we may have read the wrong number of bytes. */
17074 if (line_ptr != extended_end)
17075 {
17076 complaint (&symfile_complaints,
17077 _("mangled .debug_line section"));
17078 return;
17079 }
17080 break;
17081 case DW_LNS_copy:
17082 if (lh->num_file_names < file || file == 0)
17083 dwarf2_debug_line_missing_file_complaint ();
17084 else
17085 {
17086 lh->file_names[file - 1].included_p = 1;
17087 if (!decode_for_pst_p && is_stmt)
17088 {
17089 if (last_subfile != current_subfile)
17090 {
17091 addr = gdbarch_addr_bits_remove (gdbarch, address);
17092 if (last_subfile)
17093 (*p_record_line) (last_subfile, 0, addr);
17094 last_subfile = current_subfile;
17095 }
17096 addr = gdbarch_addr_bits_remove (gdbarch, address);
17097 (*p_record_line) (current_subfile, line, addr);
17098 }
17099 }
17100 basic_block = 0;
17101 break;
17102 case DW_LNS_advance_pc:
17103 {
17104 CORE_ADDR adjust
17105 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17106
17107 address += (((op_index + adjust)
17108 / lh->maximum_ops_per_instruction)
17109 * lh->minimum_instruction_length);
17110 op_index = ((op_index + adjust)
17111 % lh->maximum_ops_per_instruction);
17112 line_ptr += bytes_read;
17113 }
17114 break;
17115 case DW_LNS_advance_line:
17116 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17117 line_ptr += bytes_read;
17118 break;
17119 case DW_LNS_set_file:
17120 {
17121 /* The arrays lh->include_dirs and lh->file_names are
17122 0-based, but the directory and file name numbers in
17123 the statement program are 1-based. */
17124 struct file_entry *fe;
17125 const char *dir = NULL;
17126
17127 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17128 line_ptr += bytes_read;
17129 if (lh->num_file_names < file || file == 0)
17130 dwarf2_debug_line_missing_file_complaint ();
17131 else
17132 {
17133 fe = &lh->file_names[file - 1];
17134 if (fe->dir_index)
17135 dir = lh->include_dirs[fe->dir_index - 1];
17136 if (!decode_for_pst_p)
17137 {
17138 last_subfile = current_subfile;
17139 dwarf2_start_subfile (fe->name, dir, comp_dir);
17140 }
17141 }
17142 }
17143 break;
17144 case DW_LNS_set_column:
17145 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17146 line_ptr += bytes_read;
17147 break;
17148 case DW_LNS_negate_stmt:
17149 is_stmt = (!is_stmt);
17150 break;
17151 case DW_LNS_set_basic_block:
17152 basic_block = 1;
17153 break;
17154 /* Add to the address register of the state machine the
17155 address increment value corresponding to special opcode
17156 255. I.e., this value is scaled by the minimum
17157 instruction length since special opcode 255 would have
17158 scaled the increment. */
17159 case DW_LNS_const_add_pc:
17160 {
17161 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17162
17163 address += (((op_index + adjust)
17164 / lh->maximum_ops_per_instruction)
17165 * lh->minimum_instruction_length);
17166 op_index = ((op_index + adjust)
17167 % lh->maximum_ops_per_instruction);
17168 }
17169 break;
17170 case DW_LNS_fixed_advance_pc:
17171 address += read_2_bytes (abfd, line_ptr);
17172 op_index = 0;
17173 line_ptr += 2;
17174 break;
17175 default:
17176 {
17177 /* Unknown standard opcode, ignore it. */
17178 int i;
17179
17180 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17181 {
17182 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17183 line_ptr += bytes_read;
17184 }
17185 }
17186 }
17187 }
17188 if (lh->num_file_names < file || file == 0)
17189 dwarf2_debug_line_missing_file_complaint ();
17190 else
17191 {
17192 lh->file_names[file - 1].included_p = 1;
17193 if (!decode_for_pst_p)
17194 {
17195 addr = gdbarch_addr_bits_remove (gdbarch, address);
17196 (*p_record_line) (current_subfile, 0, addr);
17197 }
17198 }
17199 }
17200 }
17201
17202 /* Decode the Line Number Program (LNP) for the given line_header
17203 structure and CU. The actual information extracted and the type
17204 of structures created from the LNP depends on the value of PST.
17205
17206 1. If PST is NULL, then this procedure uses the data from the program
17207 to create all necessary symbol tables, and their linetables.
17208
17209 2. If PST is not NULL, this procedure reads the program to determine
17210 the list of files included by the unit represented by PST, and
17211 builds all the associated partial symbol tables.
17212
17213 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17214 It is used for relative paths in the line table.
17215 NOTE: When processing partial symtabs (pst != NULL),
17216 comp_dir == pst->dirname.
17217
17218 NOTE: It is important that psymtabs have the same file name (via strcmp)
17219 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17220 symtab we don't use it in the name of the psymtabs we create.
17221 E.g. expand_line_sal requires this when finding psymtabs to expand.
17222 A good testcase for this is mb-inline.exp. */
17223
17224 static void
17225 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17226 struct dwarf2_cu *cu, struct partial_symtab *pst,
17227 int want_line_info)
17228 {
17229 struct objfile *objfile = cu->objfile;
17230 const int decode_for_pst_p = (pst != NULL);
17231 struct subfile *first_subfile = current_subfile;
17232
17233 if (want_line_info)
17234 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17235
17236 if (decode_for_pst_p)
17237 {
17238 int file_index;
17239
17240 /* Now that we're done scanning the Line Header Program, we can
17241 create the psymtab of each included file. */
17242 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17243 if (lh->file_names[file_index].included_p == 1)
17244 {
17245 const char *include_name =
17246 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17247 if (include_name != NULL)
17248 dwarf2_create_include_psymtab (include_name, pst, objfile);
17249 }
17250 }
17251 else
17252 {
17253 /* Make sure a symtab is created for every file, even files
17254 which contain only variables (i.e. no code with associated
17255 line numbers). */
17256 int i;
17257
17258 for (i = 0; i < lh->num_file_names; i++)
17259 {
17260 const char *dir = NULL;
17261 struct file_entry *fe;
17262
17263 fe = &lh->file_names[i];
17264 if (fe->dir_index)
17265 dir = lh->include_dirs[fe->dir_index - 1];
17266 dwarf2_start_subfile (fe->name, dir, comp_dir);
17267
17268 /* Skip the main file; we don't need it, and it must be
17269 allocated last, so that it will show up before the
17270 non-primary symtabs in the objfile's symtab list. */
17271 if (current_subfile == first_subfile)
17272 continue;
17273
17274 if (current_subfile->symtab == NULL)
17275 current_subfile->symtab = allocate_symtab (current_subfile->name,
17276 objfile);
17277 fe->symtab = current_subfile->symtab;
17278 }
17279 }
17280 }
17281
17282 /* Start a subfile for DWARF. FILENAME is the name of the file and
17283 DIRNAME the name of the source directory which contains FILENAME
17284 or NULL if not known. COMP_DIR is the compilation directory for the
17285 linetable's compilation unit or NULL if not known.
17286 This routine tries to keep line numbers from identical absolute and
17287 relative file names in a common subfile.
17288
17289 Using the `list' example from the GDB testsuite, which resides in
17290 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17291 of /srcdir/list0.c yields the following debugging information for list0.c:
17292
17293 DW_AT_name: /srcdir/list0.c
17294 DW_AT_comp_dir: /compdir
17295 files.files[0].name: list0.h
17296 files.files[0].dir: /srcdir
17297 files.files[1].name: list0.c
17298 files.files[1].dir: /srcdir
17299
17300 The line number information for list0.c has to end up in a single
17301 subfile, so that `break /srcdir/list0.c:1' works as expected.
17302 start_subfile will ensure that this happens provided that we pass the
17303 concatenation of files.files[1].dir and files.files[1].name as the
17304 subfile's name. */
17305
17306 static void
17307 dwarf2_start_subfile (const char *filename, const char *dirname,
17308 const char *comp_dir)
17309 {
17310 char *copy = NULL;
17311
17312 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17313 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17314 second argument to start_subfile. To be consistent, we do the
17315 same here. In order not to lose the line information directory,
17316 we concatenate it to the filename when it makes sense.
17317 Note that the Dwarf3 standard says (speaking of filenames in line
17318 information): ``The directory index is ignored for file names
17319 that represent full path names''. Thus ignoring dirname in the
17320 `else' branch below isn't an issue. */
17321
17322 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17323 {
17324 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17325 filename = copy;
17326 }
17327
17328 start_subfile (filename, comp_dir);
17329
17330 if (copy != NULL)
17331 xfree (copy);
17332 }
17333
17334 /* Start a symtab for DWARF.
17335 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17336
17337 static void
17338 dwarf2_start_symtab (struct dwarf2_cu *cu,
17339 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17340 {
17341 start_symtab (name, comp_dir, low_pc);
17342 record_debugformat ("DWARF 2");
17343 record_producer (cu->producer);
17344
17345 /* We assume that we're processing GCC output. */
17346 processing_gcc_compilation = 2;
17347
17348 cu->processing_has_namespace_info = 0;
17349 }
17350
17351 static void
17352 var_decode_location (struct attribute *attr, struct symbol *sym,
17353 struct dwarf2_cu *cu)
17354 {
17355 struct objfile *objfile = cu->objfile;
17356 struct comp_unit_head *cu_header = &cu->header;
17357
17358 /* NOTE drow/2003-01-30: There used to be a comment and some special
17359 code here to turn a symbol with DW_AT_external and a
17360 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17361 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17362 with some versions of binutils) where shared libraries could have
17363 relocations against symbols in their debug information - the
17364 minimal symbol would have the right address, but the debug info
17365 would not. It's no longer necessary, because we will explicitly
17366 apply relocations when we read in the debug information now. */
17367
17368 /* A DW_AT_location attribute with no contents indicates that a
17369 variable has been optimized away. */
17370 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17371 {
17372 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17373 return;
17374 }
17375
17376 /* Handle one degenerate form of location expression specially, to
17377 preserve GDB's previous behavior when section offsets are
17378 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17379 then mark this symbol as LOC_STATIC. */
17380
17381 if (attr_form_is_block (attr)
17382 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17383 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17384 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17385 && (DW_BLOCK (attr)->size
17386 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17387 {
17388 unsigned int dummy;
17389
17390 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17391 SYMBOL_VALUE_ADDRESS (sym) =
17392 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17393 else
17394 SYMBOL_VALUE_ADDRESS (sym) =
17395 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17396 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17397 fixup_symbol_section (sym, objfile);
17398 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17399 SYMBOL_SECTION (sym));
17400 return;
17401 }
17402
17403 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17404 expression evaluator, and use LOC_COMPUTED only when necessary
17405 (i.e. when the value of a register or memory location is
17406 referenced, or a thread-local block, etc.). Then again, it might
17407 not be worthwhile. I'm assuming that it isn't unless performance
17408 or memory numbers show me otherwise. */
17409
17410 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17411
17412 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17413 cu->has_loclist = 1;
17414 }
17415
17416 /* Given a pointer to a DWARF information entry, figure out if we need
17417 to make a symbol table entry for it, and if so, create a new entry
17418 and return a pointer to it.
17419 If TYPE is NULL, determine symbol type from the die, otherwise
17420 used the passed type.
17421 If SPACE is not NULL, use it to hold the new symbol. If it is
17422 NULL, allocate a new symbol on the objfile's obstack. */
17423
17424 static struct symbol *
17425 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17426 struct symbol *space)
17427 {
17428 struct objfile *objfile = cu->objfile;
17429 struct symbol *sym = NULL;
17430 const char *name;
17431 struct attribute *attr = NULL;
17432 struct attribute *attr2 = NULL;
17433 CORE_ADDR baseaddr;
17434 struct pending **list_to_add = NULL;
17435
17436 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17437
17438 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17439
17440 name = dwarf2_name (die, cu);
17441 if (name)
17442 {
17443 const char *linkagename;
17444 int suppress_add = 0;
17445
17446 if (space)
17447 sym = space;
17448 else
17449 sym = allocate_symbol (objfile);
17450 OBJSTAT (objfile, n_syms++);
17451
17452 /* Cache this symbol's name and the name's demangled form (if any). */
17453 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17454 linkagename = dwarf2_physname (name, die, cu);
17455 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17456
17457 /* Fortran does not have mangling standard and the mangling does differ
17458 between gfortran, iFort etc. */
17459 if (cu->language == language_fortran
17460 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17461 symbol_set_demangled_name (&(sym->ginfo),
17462 dwarf2_full_name (name, die, cu),
17463 NULL);
17464
17465 /* Default assumptions.
17466 Use the passed type or decode it from the die. */
17467 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17468 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17469 if (type != NULL)
17470 SYMBOL_TYPE (sym) = type;
17471 else
17472 SYMBOL_TYPE (sym) = die_type (die, cu);
17473 attr = dwarf2_attr (die,
17474 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17475 cu);
17476 if (attr)
17477 {
17478 SYMBOL_LINE (sym) = DW_UNSND (attr);
17479 }
17480
17481 attr = dwarf2_attr (die,
17482 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17483 cu);
17484 if (attr)
17485 {
17486 int file_index = DW_UNSND (attr);
17487
17488 if (cu->line_header == NULL
17489 || file_index > cu->line_header->num_file_names)
17490 complaint (&symfile_complaints,
17491 _("file index out of range"));
17492 else if (file_index > 0)
17493 {
17494 struct file_entry *fe;
17495
17496 fe = &cu->line_header->file_names[file_index - 1];
17497 SYMBOL_SYMTAB (sym) = fe->symtab;
17498 }
17499 }
17500
17501 switch (die->tag)
17502 {
17503 case DW_TAG_label:
17504 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17505 if (attr)
17506 {
17507 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
17508 }
17509 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17510 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17511 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17512 add_symbol_to_list (sym, cu->list_in_scope);
17513 break;
17514 case DW_TAG_subprogram:
17515 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17516 finish_block. */
17517 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17518 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17519 if ((attr2 && (DW_UNSND (attr2) != 0))
17520 || cu->language == language_ada)
17521 {
17522 /* Subprograms marked external are stored as a global symbol.
17523 Ada subprograms, whether marked external or not, are always
17524 stored as a global symbol, because we want to be able to
17525 access them globally. For instance, we want to be able
17526 to break on a nested subprogram without having to
17527 specify the context. */
17528 list_to_add = &global_symbols;
17529 }
17530 else
17531 {
17532 list_to_add = cu->list_in_scope;
17533 }
17534 break;
17535 case DW_TAG_inlined_subroutine:
17536 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17537 finish_block. */
17538 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17539 SYMBOL_INLINED (sym) = 1;
17540 list_to_add = cu->list_in_scope;
17541 break;
17542 case DW_TAG_template_value_param:
17543 suppress_add = 1;
17544 /* Fall through. */
17545 case DW_TAG_constant:
17546 case DW_TAG_variable:
17547 case DW_TAG_member:
17548 /* Compilation with minimal debug info may result in
17549 variables with missing type entries. Change the
17550 misleading `void' type to something sensible. */
17551 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17552 SYMBOL_TYPE (sym)
17553 = objfile_type (objfile)->nodebug_data_symbol;
17554
17555 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17556 /* In the case of DW_TAG_member, we should only be called for
17557 static const members. */
17558 if (die->tag == DW_TAG_member)
17559 {
17560 /* dwarf2_add_field uses die_is_declaration,
17561 so we do the same. */
17562 gdb_assert (die_is_declaration (die, cu));
17563 gdb_assert (attr);
17564 }
17565 if (attr)
17566 {
17567 dwarf2_const_value (attr, sym, cu);
17568 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17569 if (!suppress_add)
17570 {
17571 if (attr2 && (DW_UNSND (attr2) != 0))
17572 list_to_add = &global_symbols;
17573 else
17574 list_to_add = cu->list_in_scope;
17575 }
17576 break;
17577 }
17578 attr = dwarf2_attr (die, DW_AT_location, cu);
17579 if (attr)
17580 {
17581 var_decode_location (attr, sym, cu);
17582 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17583
17584 /* Fortran explicitly imports any global symbols to the local
17585 scope by DW_TAG_common_block. */
17586 if (cu->language == language_fortran && die->parent
17587 && die->parent->tag == DW_TAG_common_block)
17588 attr2 = NULL;
17589
17590 if (SYMBOL_CLASS (sym) == LOC_STATIC
17591 && SYMBOL_VALUE_ADDRESS (sym) == 0
17592 && !dwarf2_per_objfile->has_section_at_zero)
17593 {
17594 /* When a static variable is eliminated by the linker,
17595 the corresponding debug information is not stripped
17596 out, but the variable address is set to null;
17597 do not add such variables into symbol table. */
17598 }
17599 else if (attr2 && (DW_UNSND (attr2) != 0))
17600 {
17601 /* Workaround gfortran PR debug/40040 - it uses
17602 DW_AT_location for variables in -fPIC libraries which may
17603 get overriden by other libraries/executable and get
17604 a different address. Resolve it by the minimal symbol
17605 which may come from inferior's executable using copy
17606 relocation. Make this workaround only for gfortran as for
17607 other compilers GDB cannot guess the minimal symbol
17608 Fortran mangling kind. */
17609 if (cu->language == language_fortran && die->parent
17610 && die->parent->tag == DW_TAG_module
17611 && cu->producer
17612 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17613 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17614
17615 /* A variable with DW_AT_external is never static,
17616 but it may be block-scoped. */
17617 list_to_add = (cu->list_in_scope == &file_symbols
17618 ? &global_symbols : cu->list_in_scope);
17619 }
17620 else
17621 list_to_add = cu->list_in_scope;
17622 }
17623 else
17624 {
17625 /* We do not know the address of this symbol.
17626 If it is an external symbol and we have type information
17627 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17628 The address of the variable will then be determined from
17629 the minimal symbol table whenever the variable is
17630 referenced. */
17631 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17632
17633 /* Fortran explicitly imports any global symbols to the local
17634 scope by DW_TAG_common_block. */
17635 if (cu->language == language_fortran && die->parent
17636 && die->parent->tag == DW_TAG_common_block)
17637 {
17638 /* SYMBOL_CLASS doesn't matter here because
17639 read_common_block is going to reset it. */
17640 if (!suppress_add)
17641 list_to_add = cu->list_in_scope;
17642 }
17643 else if (attr2 && (DW_UNSND (attr2) != 0)
17644 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17645 {
17646 /* A variable with DW_AT_external is never static, but it
17647 may be block-scoped. */
17648 list_to_add = (cu->list_in_scope == &file_symbols
17649 ? &global_symbols : cu->list_in_scope);
17650
17651 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17652 }
17653 else if (!die_is_declaration (die, cu))
17654 {
17655 /* Use the default LOC_OPTIMIZED_OUT class. */
17656 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17657 if (!suppress_add)
17658 list_to_add = cu->list_in_scope;
17659 }
17660 }
17661 break;
17662 case DW_TAG_formal_parameter:
17663 /* If we are inside a function, mark this as an argument. If
17664 not, we might be looking at an argument to an inlined function
17665 when we do not have enough information to show inlined frames;
17666 pretend it's a local variable in that case so that the user can
17667 still see it. */
17668 if (context_stack_depth > 0
17669 && context_stack[context_stack_depth - 1].name != NULL)
17670 SYMBOL_IS_ARGUMENT (sym) = 1;
17671 attr = dwarf2_attr (die, DW_AT_location, cu);
17672 if (attr)
17673 {
17674 var_decode_location (attr, sym, cu);
17675 }
17676 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17677 if (attr)
17678 {
17679 dwarf2_const_value (attr, sym, cu);
17680 }
17681
17682 list_to_add = cu->list_in_scope;
17683 break;
17684 case DW_TAG_unspecified_parameters:
17685 /* From varargs functions; gdb doesn't seem to have any
17686 interest in this information, so just ignore it for now.
17687 (FIXME?) */
17688 break;
17689 case DW_TAG_template_type_param:
17690 suppress_add = 1;
17691 /* Fall through. */
17692 case DW_TAG_class_type:
17693 case DW_TAG_interface_type:
17694 case DW_TAG_structure_type:
17695 case DW_TAG_union_type:
17696 case DW_TAG_set_type:
17697 case DW_TAG_enumeration_type:
17698 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17699 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17700
17701 {
17702 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17703 really ever be static objects: otherwise, if you try
17704 to, say, break of a class's method and you're in a file
17705 which doesn't mention that class, it won't work unless
17706 the check for all static symbols in lookup_symbol_aux
17707 saves you. See the OtherFileClass tests in
17708 gdb.c++/namespace.exp. */
17709
17710 if (!suppress_add)
17711 {
17712 list_to_add = (cu->list_in_scope == &file_symbols
17713 && (cu->language == language_cplus
17714 || cu->language == language_java)
17715 ? &global_symbols : cu->list_in_scope);
17716
17717 /* The semantics of C++ state that "struct foo {
17718 ... }" also defines a typedef for "foo". A Java
17719 class declaration also defines a typedef for the
17720 class. */
17721 if (cu->language == language_cplus
17722 || cu->language == language_java
17723 || cu->language == language_ada)
17724 {
17725 /* The symbol's name is already allocated along
17726 with this objfile, so we don't need to
17727 duplicate it for the type. */
17728 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17729 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17730 }
17731 }
17732 }
17733 break;
17734 case DW_TAG_typedef:
17735 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17736 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17737 list_to_add = cu->list_in_scope;
17738 break;
17739 case DW_TAG_base_type:
17740 case DW_TAG_subrange_type:
17741 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17742 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17743 list_to_add = cu->list_in_scope;
17744 break;
17745 case DW_TAG_enumerator:
17746 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17747 if (attr)
17748 {
17749 dwarf2_const_value (attr, sym, cu);
17750 }
17751 {
17752 /* NOTE: carlton/2003-11-10: See comment above in the
17753 DW_TAG_class_type, etc. block. */
17754
17755 list_to_add = (cu->list_in_scope == &file_symbols
17756 && (cu->language == language_cplus
17757 || cu->language == language_java)
17758 ? &global_symbols : cu->list_in_scope);
17759 }
17760 break;
17761 case DW_TAG_imported_declaration:
17762 case DW_TAG_namespace:
17763 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17764 list_to_add = &global_symbols;
17765 break;
17766 case DW_TAG_module:
17767 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17768 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
17769 list_to_add = &global_symbols;
17770 break;
17771 case DW_TAG_common_block:
17772 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
17773 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17774 add_symbol_to_list (sym, cu->list_in_scope);
17775 break;
17776 default:
17777 /* Not a tag we recognize. Hopefully we aren't processing
17778 trash data, but since we must specifically ignore things
17779 we don't recognize, there is nothing else we should do at
17780 this point. */
17781 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
17782 dwarf_tag_name (die->tag));
17783 break;
17784 }
17785
17786 if (suppress_add)
17787 {
17788 sym->hash_next = objfile->template_symbols;
17789 objfile->template_symbols = sym;
17790 list_to_add = NULL;
17791 }
17792
17793 if (list_to_add != NULL)
17794 add_symbol_to_list (sym, list_to_add);
17795
17796 /* For the benefit of old versions of GCC, check for anonymous
17797 namespaces based on the demangled name. */
17798 if (!cu->processing_has_namespace_info
17799 && cu->language == language_cplus)
17800 cp_scan_for_anonymous_namespaces (sym, objfile);
17801 }
17802 return (sym);
17803 }
17804
17805 /* A wrapper for new_symbol_full that always allocates a new symbol. */
17806
17807 static struct symbol *
17808 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17809 {
17810 return new_symbol_full (die, type, cu, NULL);
17811 }
17812
17813 /* Given an attr with a DW_FORM_dataN value in host byte order,
17814 zero-extend it as appropriate for the symbol's type. The DWARF
17815 standard (v4) is not entirely clear about the meaning of using
17816 DW_FORM_dataN for a constant with a signed type, where the type is
17817 wider than the data. The conclusion of a discussion on the DWARF
17818 list was that this is unspecified. We choose to always zero-extend
17819 because that is the interpretation long in use by GCC. */
17820
17821 static gdb_byte *
17822 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
17823 struct dwarf2_cu *cu, LONGEST *value, int bits)
17824 {
17825 struct objfile *objfile = cu->objfile;
17826 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17827 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
17828 LONGEST l = DW_UNSND (attr);
17829
17830 if (bits < sizeof (*value) * 8)
17831 {
17832 l &= ((LONGEST) 1 << bits) - 1;
17833 *value = l;
17834 }
17835 else if (bits == sizeof (*value) * 8)
17836 *value = l;
17837 else
17838 {
17839 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17840 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17841 return bytes;
17842 }
17843
17844 return NULL;
17845 }
17846
17847 /* Read a constant value from an attribute. Either set *VALUE, or if
17848 the value does not fit in *VALUE, set *BYTES - either already
17849 allocated on the objfile obstack, or newly allocated on OBSTACK,
17850 or, set *BATON, if we translated the constant to a location
17851 expression. */
17852
17853 static void
17854 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
17855 const char *name, struct obstack *obstack,
17856 struct dwarf2_cu *cu,
17857 LONGEST *value, const gdb_byte **bytes,
17858 struct dwarf2_locexpr_baton **baton)
17859 {
17860 struct objfile *objfile = cu->objfile;
17861 struct comp_unit_head *cu_header = &cu->header;
17862 struct dwarf_block *blk;
17863 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17864 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17865
17866 *value = 0;
17867 *bytes = NULL;
17868 *baton = NULL;
17869
17870 switch (attr->form)
17871 {
17872 case DW_FORM_addr:
17873 case DW_FORM_GNU_addr_index:
17874 {
17875 gdb_byte *data;
17876
17877 if (TYPE_LENGTH (type) != cu_header->addr_size)
17878 dwarf2_const_value_length_mismatch_complaint (name,
17879 cu_header->addr_size,
17880 TYPE_LENGTH (type));
17881 /* Symbols of this form are reasonably rare, so we just
17882 piggyback on the existing location code rather than writing
17883 a new implementation of symbol_computed_ops. */
17884 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
17885 (*baton)->per_cu = cu->per_cu;
17886 gdb_assert ((*baton)->per_cu);
17887
17888 (*baton)->size = 2 + cu_header->addr_size;
17889 data = obstack_alloc (obstack, (*baton)->size);
17890 (*baton)->data = data;
17891
17892 data[0] = DW_OP_addr;
17893 store_unsigned_integer (&data[1], cu_header->addr_size,
17894 byte_order, DW_ADDR (attr));
17895 data[cu_header->addr_size + 1] = DW_OP_stack_value;
17896 }
17897 break;
17898 case DW_FORM_string:
17899 case DW_FORM_strp:
17900 case DW_FORM_GNU_str_index:
17901 case DW_FORM_GNU_strp_alt:
17902 /* DW_STRING is already allocated on the objfile obstack, point
17903 directly to it. */
17904 *bytes = (const gdb_byte *) DW_STRING (attr);
17905 break;
17906 case DW_FORM_block1:
17907 case DW_FORM_block2:
17908 case DW_FORM_block4:
17909 case DW_FORM_block:
17910 case DW_FORM_exprloc:
17911 blk = DW_BLOCK (attr);
17912 if (TYPE_LENGTH (type) != blk->size)
17913 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17914 TYPE_LENGTH (type));
17915 *bytes = blk->data;
17916 break;
17917
17918 /* The DW_AT_const_value attributes are supposed to carry the
17919 symbol's value "represented as it would be on the target
17920 architecture." By the time we get here, it's already been
17921 converted to host endianness, so we just need to sign- or
17922 zero-extend it as appropriate. */
17923 case DW_FORM_data1:
17924 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
17925 break;
17926 case DW_FORM_data2:
17927 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
17928 break;
17929 case DW_FORM_data4:
17930 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
17931 break;
17932 case DW_FORM_data8:
17933 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
17934 break;
17935
17936 case DW_FORM_sdata:
17937 *value = DW_SND (attr);
17938 break;
17939
17940 case DW_FORM_udata:
17941 *value = DW_UNSND (attr);
17942 break;
17943
17944 default:
17945 complaint (&symfile_complaints,
17946 _("unsupported const value attribute form: '%s'"),
17947 dwarf_form_name (attr->form));
17948 *value = 0;
17949 break;
17950 }
17951 }
17952
17953
17954 /* Copy constant value from an attribute to a symbol. */
17955
17956 static void
17957 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
17958 struct dwarf2_cu *cu)
17959 {
17960 struct objfile *objfile = cu->objfile;
17961 struct comp_unit_head *cu_header = &cu->header;
17962 LONGEST value;
17963 const gdb_byte *bytes;
17964 struct dwarf2_locexpr_baton *baton;
17965
17966 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
17967 SYMBOL_PRINT_NAME (sym),
17968 &objfile->objfile_obstack, cu,
17969 &value, &bytes, &baton);
17970
17971 if (baton != NULL)
17972 {
17973 SYMBOL_LOCATION_BATON (sym) = baton;
17974 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
17975 }
17976 else if (bytes != NULL)
17977 {
17978 SYMBOL_VALUE_BYTES (sym) = bytes;
17979 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
17980 }
17981 else
17982 {
17983 SYMBOL_VALUE (sym) = value;
17984 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
17985 }
17986 }
17987
17988 /* Return the type of the die in question using its DW_AT_type attribute. */
17989
17990 static struct type *
17991 die_type (struct die_info *die, struct dwarf2_cu *cu)
17992 {
17993 struct attribute *type_attr;
17994
17995 type_attr = dwarf2_attr (die, DW_AT_type, cu);
17996 if (!type_attr)
17997 {
17998 /* A missing DW_AT_type represents a void type. */
17999 return objfile_type (cu->objfile)->builtin_void;
18000 }
18001
18002 return lookup_die_type (die, type_attr, cu);
18003 }
18004
18005 /* True iff CU's producer generates GNAT Ada auxiliary information
18006 that allows to find parallel types through that information instead
18007 of having to do expensive parallel lookups by type name. */
18008
18009 static int
18010 need_gnat_info (struct dwarf2_cu *cu)
18011 {
18012 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18013 of GNAT produces this auxiliary information, without any indication
18014 that it is produced. Part of enhancing the FSF version of GNAT
18015 to produce that information will be to put in place an indicator
18016 that we can use in order to determine whether the descriptive type
18017 info is available or not. One suggestion that has been made is
18018 to use a new attribute, attached to the CU die. For now, assume
18019 that the descriptive type info is not available. */
18020 return 0;
18021 }
18022
18023 /* Return the auxiliary type of the die in question using its
18024 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18025 attribute is not present. */
18026
18027 static struct type *
18028 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18029 {
18030 struct attribute *type_attr;
18031
18032 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18033 if (!type_attr)
18034 return NULL;
18035
18036 return lookup_die_type (die, type_attr, cu);
18037 }
18038
18039 /* If DIE has a descriptive_type attribute, then set the TYPE's
18040 descriptive type accordingly. */
18041
18042 static void
18043 set_descriptive_type (struct type *type, struct die_info *die,
18044 struct dwarf2_cu *cu)
18045 {
18046 struct type *descriptive_type = die_descriptive_type (die, cu);
18047
18048 if (descriptive_type)
18049 {
18050 ALLOCATE_GNAT_AUX_TYPE (type);
18051 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18052 }
18053 }
18054
18055 /* Return the containing type of the die in question using its
18056 DW_AT_containing_type attribute. */
18057
18058 static struct type *
18059 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18060 {
18061 struct attribute *type_attr;
18062
18063 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18064 if (!type_attr)
18065 error (_("Dwarf Error: Problem turning containing type into gdb type "
18066 "[in module %s]"), objfile_name (cu->objfile));
18067
18068 return lookup_die_type (die, type_attr, cu);
18069 }
18070
18071 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18072
18073 static struct type *
18074 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18075 {
18076 struct objfile *objfile = dwarf2_per_objfile->objfile;
18077 char *message, *saved;
18078
18079 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18080 objfile_name (objfile),
18081 cu->header.offset.sect_off,
18082 die->offset.sect_off);
18083 saved = obstack_copy0 (&objfile->objfile_obstack,
18084 message, strlen (message));
18085 xfree (message);
18086
18087 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18088 }
18089
18090 /* Look up the type of DIE in CU using its type attribute ATTR.
18091 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18092 DW_AT_containing_type.
18093 If there is no type substitute an error marker. */
18094
18095 static struct type *
18096 lookup_die_type (struct die_info *die, const struct attribute *attr,
18097 struct dwarf2_cu *cu)
18098 {
18099 struct objfile *objfile = cu->objfile;
18100 struct type *this_type;
18101
18102 gdb_assert (attr->name == DW_AT_type
18103 || attr->name == DW_AT_GNAT_descriptive_type
18104 || attr->name == DW_AT_containing_type);
18105
18106 /* First see if we have it cached. */
18107
18108 if (attr->form == DW_FORM_GNU_ref_alt)
18109 {
18110 struct dwarf2_per_cu_data *per_cu;
18111 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18112
18113 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18114 this_type = get_die_type_at_offset (offset, per_cu);
18115 }
18116 else if (attr_form_is_ref (attr))
18117 {
18118 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18119
18120 this_type = get_die_type_at_offset (offset, cu->per_cu);
18121 }
18122 else if (attr->form == DW_FORM_ref_sig8)
18123 {
18124 ULONGEST signature = DW_SIGNATURE (attr);
18125
18126 return get_signatured_type (die, signature, cu);
18127 }
18128 else
18129 {
18130 complaint (&symfile_complaints,
18131 _("Dwarf Error: Bad type attribute %s in DIE"
18132 " at 0x%x [in module %s]"),
18133 dwarf_attr_name (attr->name), die->offset.sect_off,
18134 objfile_name (objfile));
18135 return build_error_marker_type (cu, die);
18136 }
18137
18138 /* If not cached we need to read it in. */
18139
18140 if (this_type == NULL)
18141 {
18142 struct die_info *type_die = NULL;
18143 struct dwarf2_cu *type_cu = cu;
18144
18145 if (attr_form_is_ref (attr))
18146 type_die = follow_die_ref (die, attr, &type_cu);
18147 if (type_die == NULL)
18148 return build_error_marker_type (cu, die);
18149 /* If we find the type now, it's probably because the type came
18150 from an inter-CU reference and the type's CU got expanded before
18151 ours. */
18152 this_type = read_type_die (type_die, type_cu);
18153 }
18154
18155 /* If we still don't have a type use an error marker. */
18156
18157 if (this_type == NULL)
18158 return build_error_marker_type (cu, die);
18159
18160 return this_type;
18161 }
18162
18163 /* Return the type in DIE, CU.
18164 Returns NULL for invalid types.
18165
18166 This first does a lookup in die_type_hash,
18167 and only reads the die in if necessary.
18168
18169 NOTE: This can be called when reading in partial or full symbols. */
18170
18171 static struct type *
18172 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18173 {
18174 struct type *this_type;
18175
18176 this_type = get_die_type (die, cu);
18177 if (this_type)
18178 return this_type;
18179
18180 return read_type_die_1 (die, cu);
18181 }
18182
18183 /* Read the type in DIE, CU.
18184 Returns NULL for invalid types. */
18185
18186 static struct type *
18187 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18188 {
18189 struct type *this_type = NULL;
18190
18191 switch (die->tag)
18192 {
18193 case DW_TAG_class_type:
18194 case DW_TAG_interface_type:
18195 case DW_TAG_structure_type:
18196 case DW_TAG_union_type:
18197 this_type = read_structure_type (die, cu);
18198 break;
18199 case DW_TAG_enumeration_type:
18200 this_type = read_enumeration_type (die, cu);
18201 break;
18202 case DW_TAG_subprogram:
18203 case DW_TAG_subroutine_type:
18204 case DW_TAG_inlined_subroutine:
18205 this_type = read_subroutine_type (die, cu);
18206 break;
18207 case DW_TAG_array_type:
18208 this_type = read_array_type (die, cu);
18209 break;
18210 case DW_TAG_set_type:
18211 this_type = read_set_type (die, cu);
18212 break;
18213 case DW_TAG_pointer_type:
18214 this_type = read_tag_pointer_type (die, cu);
18215 break;
18216 case DW_TAG_ptr_to_member_type:
18217 this_type = read_tag_ptr_to_member_type (die, cu);
18218 break;
18219 case DW_TAG_reference_type:
18220 this_type = read_tag_reference_type (die, cu);
18221 break;
18222 case DW_TAG_const_type:
18223 this_type = read_tag_const_type (die, cu);
18224 break;
18225 case DW_TAG_volatile_type:
18226 this_type = read_tag_volatile_type (die, cu);
18227 break;
18228 case DW_TAG_restrict_type:
18229 this_type = read_tag_restrict_type (die, cu);
18230 break;
18231 case DW_TAG_string_type:
18232 this_type = read_tag_string_type (die, cu);
18233 break;
18234 case DW_TAG_typedef:
18235 this_type = read_typedef (die, cu);
18236 break;
18237 case DW_TAG_subrange_type:
18238 this_type = read_subrange_type (die, cu);
18239 break;
18240 case DW_TAG_base_type:
18241 this_type = read_base_type (die, cu);
18242 break;
18243 case DW_TAG_unspecified_type:
18244 this_type = read_unspecified_type (die, cu);
18245 break;
18246 case DW_TAG_namespace:
18247 this_type = read_namespace_type (die, cu);
18248 break;
18249 case DW_TAG_module:
18250 this_type = read_module_type (die, cu);
18251 break;
18252 default:
18253 complaint (&symfile_complaints,
18254 _("unexpected tag in read_type_die: '%s'"),
18255 dwarf_tag_name (die->tag));
18256 break;
18257 }
18258
18259 return this_type;
18260 }
18261
18262 /* See if we can figure out if the class lives in a namespace. We do
18263 this by looking for a member function; its demangled name will
18264 contain namespace info, if there is any.
18265 Return the computed name or NULL.
18266 Space for the result is allocated on the objfile's obstack.
18267 This is the full-die version of guess_partial_die_structure_name.
18268 In this case we know DIE has no useful parent. */
18269
18270 static char *
18271 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18272 {
18273 struct die_info *spec_die;
18274 struct dwarf2_cu *spec_cu;
18275 struct die_info *child;
18276
18277 spec_cu = cu;
18278 spec_die = die_specification (die, &spec_cu);
18279 if (spec_die != NULL)
18280 {
18281 die = spec_die;
18282 cu = spec_cu;
18283 }
18284
18285 for (child = die->child;
18286 child != NULL;
18287 child = child->sibling)
18288 {
18289 if (child->tag == DW_TAG_subprogram)
18290 {
18291 struct attribute *attr;
18292
18293 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18294 if (attr == NULL)
18295 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18296 if (attr != NULL)
18297 {
18298 char *actual_name
18299 = language_class_name_from_physname (cu->language_defn,
18300 DW_STRING (attr));
18301 char *name = NULL;
18302
18303 if (actual_name != NULL)
18304 {
18305 const char *die_name = dwarf2_name (die, cu);
18306
18307 if (die_name != NULL
18308 && strcmp (die_name, actual_name) != 0)
18309 {
18310 /* Strip off the class name from the full name.
18311 We want the prefix. */
18312 int die_name_len = strlen (die_name);
18313 int actual_name_len = strlen (actual_name);
18314
18315 /* Test for '::' as a sanity check. */
18316 if (actual_name_len > die_name_len + 2
18317 && actual_name[actual_name_len
18318 - die_name_len - 1] == ':')
18319 name =
18320 obstack_copy0 (&cu->objfile->objfile_obstack,
18321 actual_name,
18322 actual_name_len - die_name_len - 2);
18323 }
18324 }
18325 xfree (actual_name);
18326 return name;
18327 }
18328 }
18329 }
18330
18331 return NULL;
18332 }
18333
18334 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18335 prefix part in such case. See
18336 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18337
18338 static char *
18339 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18340 {
18341 struct attribute *attr;
18342 char *base;
18343
18344 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18345 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18346 return NULL;
18347
18348 attr = dwarf2_attr (die, DW_AT_name, cu);
18349 if (attr != NULL && DW_STRING (attr) != NULL)
18350 return NULL;
18351
18352 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18353 if (attr == NULL)
18354 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18355 if (attr == NULL || DW_STRING (attr) == NULL)
18356 return NULL;
18357
18358 /* dwarf2_name had to be already called. */
18359 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18360
18361 /* Strip the base name, keep any leading namespaces/classes. */
18362 base = strrchr (DW_STRING (attr), ':');
18363 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18364 return "";
18365
18366 return obstack_copy0 (&cu->objfile->objfile_obstack,
18367 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18368 }
18369
18370 /* Return the name of the namespace/class that DIE is defined within,
18371 or "" if we can't tell. The caller should not xfree the result.
18372
18373 For example, if we're within the method foo() in the following
18374 code:
18375
18376 namespace N {
18377 class C {
18378 void foo () {
18379 }
18380 };
18381 }
18382
18383 then determine_prefix on foo's die will return "N::C". */
18384
18385 static const char *
18386 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18387 {
18388 struct die_info *parent, *spec_die;
18389 struct dwarf2_cu *spec_cu;
18390 struct type *parent_type;
18391 char *retval;
18392
18393 if (cu->language != language_cplus && cu->language != language_java
18394 && cu->language != language_fortran)
18395 return "";
18396
18397 retval = anonymous_struct_prefix (die, cu);
18398 if (retval)
18399 return retval;
18400
18401 /* We have to be careful in the presence of DW_AT_specification.
18402 For example, with GCC 3.4, given the code
18403
18404 namespace N {
18405 void foo() {
18406 // Definition of N::foo.
18407 }
18408 }
18409
18410 then we'll have a tree of DIEs like this:
18411
18412 1: DW_TAG_compile_unit
18413 2: DW_TAG_namespace // N
18414 3: DW_TAG_subprogram // declaration of N::foo
18415 4: DW_TAG_subprogram // definition of N::foo
18416 DW_AT_specification // refers to die #3
18417
18418 Thus, when processing die #4, we have to pretend that we're in
18419 the context of its DW_AT_specification, namely the contex of die
18420 #3. */
18421 spec_cu = cu;
18422 spec_die = die_specification (die, &spec_cu);
18423 if (spec_die == NULL)
18424 parent = die->parent;
18425 else
18426 {
18427 parent = spec_die->parent;
18428 cu = spec_cu;
18429 }
18430
18431 if (parent == NULL)
18432 return "";
18433 else if (parent->building_fullname)
18434 {
18435 const char *name;
18436 const char *parent_name;
18437
18438 /* It has been seen on RealView 2.2 built binaries,
18439 DW_TAG_template_type_param types actually _defined_ as
18440 children of the parent class:
18441
18442 enum E {};
18443 template class <class Enum> Class{};
18444 Class<enum E> class_e;
18445
18446 1: DW_TAG_class_type (Class)
18447 2: DW_TAG_enumeration_type (E)
18448 3: DW_TAG_enumerator (enum1:0)
18449 3: DW_TAG_enumerator (enum2:1)
18450 ...
18451 2: DW_TAG_template_type_param
18452 DW_AT_type DW_FORM_ref_udata (E)
18453
18454 Besides being broken debug info, it can put GDB into an
18455 infinite loop. Consider:
18456
18457 When we're building the full name for Class<E>, we'll start
18458 at Class, and go look over its template type parameters,
18459 finding E. We'll then try to build the full name of E, and
18460 reach here. We're now trying to build the full name of E,
18461 and look over the parent DIE for containing scope. In the
18462 broken case, if we followed the parent DIE of E, we'd again
18463 find Class, and once again go look at its template type
18464 arguments, etc., etc. Simply don't consider such parent die
18465 as source-level parent of this die (it can't be, the language
18466 doesn't allow it), and break the loop here. */
18467 name = dwarf2_name (die, cu);
18468 parent_name = dwarf2_name (parent, cu);
18469 complaint (&symfile_complaints,
18470 _("template param type '%s' defined within parent '%s'"),
18471 name ? name : "<unknown>",
18472 parent_name ? parent_name : "<unknown>");
18473 return "";
18474 }
18475 else
18476 switch (parent->tag)
18477 {
18478 case DW_TAG_namespace:
18479 parent_type = read_type_die (parent, cu);
18480 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18481 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18482 Work around this problem here. */
18483 if (cu->language == language_cplus
18484 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18485 return "";
18486 /* We give a name to even anonymous namespaces. */
18487 return TYPE_TAG_NAME (parent_type);
18488 case DW_TAG_class_type:
18489 case DW_TAG_interface_type:
18490 case DW_TAG_structure_type:
18491 case DW_TAG_union_type:
18492 case DW_TAG_module:
18493 parent_type = read_type_die (parent, cu);
18494 if (TYPE_TAG_NAME (parent_type) != NULL)
18495 return TYPE_TAG_NAME (parent_type);
18496 else
18497 /* An anonymous structure is only allowed non-static data
18498 members; no typedefs, no member functions, et cetera.
18499 So it does not need a prefix. */
18500 return "";
18501 case DW_TAG_compile_unit:
18502 case DW_TAG_partial_unit:
18503 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18504 if (cu->language == language_cplus
18505 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18506 && die->child != NULL
18507 && (die->tag == DW_TAG_class_type
18508 || die->tag == DW_TAG_structure_type
18509 || die->tag == DW_TAG_union_type))
18510 {
18511 char *name = guess_full_die_structure_name (die, cu);
18512 if (name != NULL)
18513 return name;
18514 }
18515 return "";
18516 default:
18517 return determine_prefix (parent, cu);
18518 }
18519 }
18520
18521 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18522 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18523 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18524 an obconcat, otherwise allocate storage for the result. The CU argument is
18525 used to determine the language and hence, the appropriate separator. */
18526
18527 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18528
18529 static char *
18530 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18531 int physname, struct dwarf2_cu *cu)
18532 {
18533 const char *lead = "";
18534 const char *sep;
18535
18536 if (suffix == NULL || suffix[0] == '\0'
18537 || prefix == NULL || prefix[0] == '\0')
18538 sep = "";
18539 else if (cu->language == language_java)
18540 sep = ".";
18541 else if (cu->language == language_fortran && physname)
18542 {
18543 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18544 DW_AT_MIPS_linkage_name is preferred and used instead. */
18545
18546 lead = "__";
18547 sep = "_MOD_";
18548 }
18549 else
18550 sep = "::";
18551
18552 if (prefix == NULL)
18553 prefix = "";
18554 if (suffix == NULL)
18555 suffix = "";
18556
18557 if (obs == NULL)
18558 {
18559 char *retval
18560 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18561
18562 strcpy (retval, lead);
18563 strcat (retval, prefix);
18564 strcat (retval, sep);
18565 strcat (retval, suffix);
18566 return retval;
18567 }
18568 else
18569 {
18570 /* We have an obstack. */
18571 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18572 }
18573 }
18574
18575 /* Return sibling of die, NULL if no sibling. */
18576
18577 static struct die_info *
18578 sibling_die (struct die_info *die)
18579 {
18580 return die->sibling;
18581 }
18582
18583 /* Get name of a die, return NULL if not found. */
18584
18585 static const char *
18586 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18587 struct obstack *obstack)
18588 {
18589 if (name && cu->language == language_cplus)
18590 {
18591 char *canon_name = cp_canonicalize_string (name);
18592
18593 if (canon_name != NULL)
18594 {
18595 if (strcmp (canon_name, name) != 0)
18596 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18597 xfree (canon_name);
18598 }
18599 }
18600
18601 return name;
18602 }
18603
18604 /* Get name of a die, return NULL if not found. */
18605
18606 static const char *
18607 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18608 {
18609 struct attribute *attr;
18610
18611 attr = dwarf2_attr (die, DW_AT_name, cu);
18612 if ((!attr || !DW_STRING (attr))
18613 && die->tag != DW_TAG_class_type
18614 && die->tag != DW_TAG_interface_type
18615 && die->tag != DW_TAG_structure_type
18616 && die->tag != DW_TAG_union_type)
18617 return NULL;
18618
18619 switch (die->tag)
18620 {
18621 case DW_TAG_compile_unit:
18622 case DW_TAG_partial_unit:
18623 /* Compilation units have a DW_AT_name that is a filename, not
18624 a source language identifier. */
18625 case DW_TAG_enumeration_type:
18626 case DW_TAG_enumerator:
18627 /* These tags always have simple identifiers already; no need
18628 to canonicalize them. */
18629 return DW_STRING (attr);
18630
18631 case DW_TAG_subprogram:
18632 /* Java constructors will all be named "<init>", so return
18633 the class name when we see this special case. */
18634 if (cu->language == language_java
18635 && DW_STRING (attr) != NULL
18636 && strcmp (DW_STRING (attr), "<init>") == 0)
18637 {
18638 struct dwarf2_cu *spec_cu = cu;
18639 struct die_info *spec_die;
18640
18641 /* GCJ will output '<init>' for Java constructor names.
18642 For this special case, return the name of the parent class. */
18643
18644 /* GCJ may output suprogram DIEs with AT_specification set.
18645 If so, use the name of the specified DIE. */
18646 spec_die = die_specification (die, &spec_cu);
18647 if (spec_die != NULL)
18648 return dwarf2_name (spec_die, spec_cu);
18649
18650 do
18651 {
18652 die = die->parent;
18653 if (die->tag == DW_TAG_class_type)
18654 return dwarf2_name (die, cu);
18655 }
18656 while (die->tag != DW_TAG_compile_unit
18657 && die->tag != DW_TAG_partial_unit);
18658 }
18659 break;
18660
18661 case DW_TAG_class_type:
18662 case DW_TAG_interface_type:
18663 case DW_TAG_structure_type:
18664 case DW_TAG_union_type:
18665 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18666 structures or unions. These were of the form "._%d" in GCC 4.1,
18667 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18668 and GCC 4.4. We work around this problem by ignoring these. */
18669 if (attr && DW_STRING (attr)
18670 && (strncmp (DW_STRING (attr), "._", 2) == 0
18671 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18672 return NULL;
18673
18674 /* GCC might emit a nameless typedef that has a linkage name. See
18675 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18676 if (!attr || DW_STRING (attr) == NULL)
18677 {
18678 char *demangled = NULL;
18679
18680 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18681 if (attr == NULL)
18682 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18683
18684 if (attr == NULL || DW_STRING (attr) == NULL)
18685 return NULL;
18686
18687 /* Avoid demangling DW_STRING (attr) the second time on a second
18688 call for the same DIE. */
18689 if (!DW_STRING_IS_CANONICAL (attr))
18690 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18691
18692 if (demangled)
18693 {
18694 char *base;
18695
18696 /* FIXME: we already did this for the partial symbol... */
18697 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18698 demangled, strlen (demangled));
18699 DW_STRING_IS_CANONICAL (attr) = 1;
18700 xfree (demangled);
18701
18702 /* Strip any leading namespaces/classes, keep only the base name.
18703 DW_AT_name for named DIEs does not contain the prefixes. */
18704 base = strrchr (DW_STRING (attr), ':');
18705 if (base && base > DW_STRING (attr) && base[-1] == ':')
18706 return &base[1];
18707 else
18708 return DW_STRING (attr);
18709 }
18710 }
18711 break;
18712
18713 default:
18714 break;
18715 }
18716
18717 if (!DW_STRING_IS_CANONICAL (attr))
18718 {
18719 DW_STRING (attr)
18720 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18721 &cu->objfile->objfile_obstack);
18722 DW_STRING_IS_CANONICAL (attr) = 1;
18723 }
18724 return DW_STRING (attr);
18725 }
18726
18727 /* Return the die that this die in an extension of, or NULL if there
18728 is none. *EXT_CU is the CU containing DIE on input, and the CU
18729 containing the return value on output. */
18730
18731 static struct die_info *
18732 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
18733 {
18734 struct attribute *attr;
18735
18736 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
18737 if (attr == NULL)
18738 return NULL;
18739
18740 return follow_die_ref (die, attr, ext_cu);
18741 }
18742
18743 /* Convert a DIE tag into its string name. */
18744
18745 static const char *
18746 dwarf_tag_name (unsigned tag)
18747 {
18748 const char *name = get_DW_TAG_name (tag);
18749
18750 if (name == NULL)
18751 return "DW_TAG_<unknown>";
18752
18753 return name;
18754 }
18755
18756 /* Convert a DWARF attribute code into its string name. */
18757
18758 static const char *
18759 dwarf_attr_name (unsigned attr)
18760 {
18761 const char *name;
18762
18763 #ifdef MIPS /* collides with DW_AT_HP_block_index */
18764 if (attr == DW_AT_MIPS_fde)
18765 return "DW_AT_MIPS_fde";
18766 #else
18767 if (attr == DW_AT_HP_block_index)
18768 return "DW_AT_HP_block_index";
18769 #endif
18770
18771 name = get_DW_AT_name (attr);
18772
18773 if (name == NULL)
18774 return "DW_AT_<unknown>";
18775
18776 return name;
18777 }
18778
18779 /* Convert a DWARF value form code into its string name. */
18780
18781 static const char *
18782 dwarf_form_name (unsigned form)
18783 {
18784 const char *name = get_DW_FORM_name (form);
18785
18786 if (name == NULL)
18787 return "DW_FORM_<unknown>";
18788
18789 return name;
18790 }
18791
18792 static char *
18793 dwarf_bool_name (unsigned mybool)
18794 {
18795 if (mybool)
18796 return "TRUE";
18797 else
18798 return "FALSE";
18799 }
18800
18801 /* Convert a DWARF type code into its string name. */
18802
18803 static const char *
18804 dwarf_type_encoding_name (unsigned enc)
18805 {
18806 const char *name = get_DW_ATE_name (enc);
18807
18808 if (name == NULL)
18809 return "DW_ATE_<unknown>";
18810
18811 return name;
18812 }
18813
18814 static void
18815 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
18816 {
18817 unsigned int i;
18818
18819 print_spaces (indent, f);
18820 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
18821 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
18822
18823 if (die->parent != NULL)
18824 {
18825 print_spaces (indent, f);
18826 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
18827 die->parent->offset.sect_off);
18828 }
18829
18830 print_spaces (indent, f);
18831 fprintf_unfiltered (f, " has children: %s\n",
18832 dwarf_bool_name (die->child != NULL));
18833
18834 print_spaces (indent, f);
18835 fprintf_unfiltered (f, " attributes:\n");
18836
18837 for (i = 0; i < die->num_attrs; ++i)
18838 {
18839 print_spaces (indent, f);
18840 fprintf_unfiltered (f, " %s (%s) ",
18841 dwarf_attr_name (die->attrs[i].name),
18842 dwarf_form_name (die->attrs[i].form));
18843
18844 switch (die->attrs[i].form)
18845 {
18846 case DW_FORM_addr:
18847 case DW_FORM_GNU_addr_index:
18848 fprintf_unfiltered (f, "address: ");
18849 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
18850 break;
18851 case DW_FORM_block2:
18852 case DW_FORM_block4:
18853 case DW_FORM_block:
18854 case DW_FORM_block1:
18855 fprintf_unfiltered (f, "block: size %s",
18856 pulongest (DW_BLOCK (&die->attrs[i])->size));
18857 break;
18858 case DW_FORM_exprloc:
18859 fprintf_unfiltered (f, "expression: size %s",
18860 pulongest (DW_BLOCK (&die->attrs[i])->size));
18861 break;
18862 case DW_FORM_ref_addr:
18863 fprintf_unfiltered (f, "ref address: ");
18864 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18865 break;
18866 case DW_FORM_GNU_ref_alt:
18867 fprintf_unfiltered (f, "alt ref address: ");
18868 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18869 break;
18870 case DW_FORM_ref1:
18871 case DW_FORM_ref2:
18872 case DW_FORM_ref4:
18873 case DW_FORM_ref8:
18874 case DW_FORM_ref_udata:
18875 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
18876 (long) (DW_UNSND (&die->attrs[i])));
18877 break;
18878 case DW_FORM_data1:
18879 case DW_FORM_data2:
18880 case DW_FORM_data4:
18881 case DW_FORM_data8:
18882 case DW_FORM_udata:
18883 case DW_FORM_sdata:
18884 fprintf_unfiltered (f, "constant: %s",
18885 pulongest (DW_UNSND (&die->attrs[i])));
18886 break;
18887 case DW_FORM_sec_offset:
18888 fprintf_unfiltered (f, "section offset: %s",
18889 pulongest (DW_UNSND (&die->attrs[i])));
18890 break;
18891 case DW_FORM_ref_sig8:
18892 fprintf_unfiltered (f, "signature: %s",
18893 hex_string (DW_SIGNATURE (&die->attrs[i])));
18894 break;
18895 case DW_FORM_string:
18896 case DW_FORM_strp:
18897 case DW_FORM_GNU_str_index:
18898 case DW_FORM_GNU_strp_alt:
18899 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
18900 DW_STRING (&die->attrs[i])
18901 ? DW_STRING (&die->attrs[i]) : "",
18902 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
18903 break;
18904 case DW_FORM_flag:
18905 if (DW_UNSND (&die->attrs[i]))
18906 fprintf_unfiltered (f, "flag: TRUE");
18907 else
18908 fprintf_unfiltered (f, "flag: FALSE");
18909 break;
18910 case DW_FORM_flag_present:
18911 fprintf_unfiltered (f, "flag: TRUE");
18912 break;
18913 case DW_FORM_indirect:
18914 /* The reader will have reduced the indirect form to
18915 the "base form" so this form should not occur. */
18916 fprintf_unfiltered (f,
18917 "unexpected attribute form: DW_FORM_indirect");
18918 break;
18919 default:
18920 fprintf_unfiltered (f, "unsupported attribute form: %d.",
18921 die->attrs[i].form);
18922 break;
18923 }
18924 fprintf_unfiltered (f, "\n");
18925 }
18926 }
18927
18928 static void
18929 dump_die_for_error (struct die_info *die)
18930 {
18931 dump_die_shallow (gdb_stderr, 0, die);
18932 }
18933
18934 static void
18935 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
18936 {
18937 int indent = level * 4;
18938
18939 gdb_assert (die != NULL);
18940
18941 if (level >= max_level)
18942 return;
18943
18944 dump_die_shallow (f, indent, die);
18945
18946 if (die->child != NULL)
18947 {
18948 print_spaces (indent, f);
18949 fprintf_unfiltered (f, " Children:");
18950 if (level + 1 < max_level)
18951 {
18952 fprintf_unfiltered (f, "\n");
18953 dump_die_1 (f, level + 1, max_level, die->child);
18954 }
18955 else
18956 {
18957 fprintf_unfiltered (f,
18958 " [not printed, max nesting level reached]\n");
18959 }
18960 }
18961
18962 if (die->sibling != NULL && level > 0)
18963 {
18964 dump_die_1 (f, level, max_level, die->sibling);
18965 }
18966 }
18967
18968 /* This is called from the pdie macro in gdbinit.in.
18969 It's not static so gcc will keep a copy callable from gdb. */
18970
18971 void
18972 dump_die (struct die_info *die, int max_level)
18973 {
18974 dump_die_1 (gdb_stdlog, 0, max_level, die);
18975 }
18976
18977 static void
18978 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
18979 {
18980 void **slot;
18981
18982 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
18983 INSERT);
18984
18985 *slot = die;
18986 }
18987
18988 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
18989 required kind. */
18990
18991 static sect_offset
18992 dwarf2_get_ref_die_offset (const struct attribute *attr)
18993 {
18994 sect_offset retval = { DW_UNSND (attr) };
18995
18996 if (attr_form_is_ref (attr))
18997 return retval;
18998
18999 retval.sect_off = 0;
19000 complaint (&symfile_complaints,
19001 _("unsupported die ref attribute form: '%s'"),
19002 dwarf_form_name (attr->form));
19003 return retval;
19004 }
19005
19006 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19007 * the value held by the attribute is not constant. */
19008
19009 static LONGEST
19010 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19011 {
19012 if (attr->form == DW_FORM_sdata)
19013 return DW_SND (attr);
19014 else if (attr->form == DW_FORM_udata
19015 || attr->form == DW_FORM_data1
19016 || attr->form == DW_FORM_data2
19017 || attr->form == DW_FORM_data4
19018 || attr->form == DW_FORM_data8)
19019 return DW_UNSND (attr);
19020 else
19021 {
19022 complaint (&symfile_complaints,
19023 _("Attribute value is not a constant (%s)"),
19024 dwarf_form_name (attr->form));
19025 return default_value;
19026 }
19027 }
19028
19029 /* Follow reference or signature attribute ATTR of SRC_DIE.
19030 On entry *REF_CU is the CU of SRC_DIE.
19031 On exit *REF_CU is the CU of the result. */
19032
19033 static struct die_info *
19034 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19035 struct dwarf2_cu **ref_cu)
19036 {
19037 struct die_info *die;
19038
19039 if (attr_form_is_ref (attr))
19040 die = follow_die_ref (src_die, attr, ref_cu);
19041 else if (attr->form == DW_FORM_ref_sig8)
19042 die = follow_die_sig (src_die, attr, ref_cu);
19043 else
19044 {
19045 dump_die_for_error (src_die);
19046 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19047 objfile_name ((*ref_cu)->objfile));
19048 }
19049
19050 return die;
19051 }
19052
19053 /* Follow reference OFFSET.
19054 On entry *REF_CU is the CU of the source die referencing OFFSET.
19055 On exit *REF_CU is the CU of the result.
19056 Returns NULL if OFFSET is invalid. */
19057
19058 static struct die_info *
19059 follow_die_offset (sect_offset offset, int offset_in_dwz,
19060 struct dwarf2_cu **ref_cu)
19061 {
19062 struct die_info temp_die;
19063 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19064
19065 gdb_assert (cu->per_cu != NULL);
19066
19067 target_cu = cu;
19068
19069 if (cu->per_cu->is_debug_types)
19070 {
19071 /* .debug_types CUs cannot reference anything outside their CU.
19072 If they need to, they have to reference a signatured type via
19073 DW_FORM_ref_sig8. */
19074 if (! offset_in_cu_p (&cu->header, offset))
19075 return NULL;
19076 }
19077 else if (offset_in_dwz != cu->per_cu->is_dwz
19078 || ! offset_in_cu_p (&cu->header, offset))
19079 {
19080 struct dwarf2_per_cu_data *per_cu;
19081
19082 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19083 cu->objfile);
19084
19085 /* If necessary, add it to the queue and load its DIEs. */
19086 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19087 load_full_comp_unit (per_cu, cu->language);
19088
19089 target_cu = per_cu->cu;
19090 }
19091 else if (cu->dies == NULL)
19092 {
19093 /* We're loading full DIEs during partial symbol reading. */
19094 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19095 load_full_comp_unit (cu->per_cu, language_minimal);
19096 }
19097
19098 *ref_cu = target_cu;
19099 temp_die.offset = offset;
19100 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19101 }
19102
19103 /* Follow reference attribute ATTR of SRC_DIE.
19104 On entry *REF_CU is the CU of SRC_DIE.
19105 On exit *REF_CU is the CU of the result. */
19106
19107 static struct die_info *
19108 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19109 struct dwarf2_cu **ref_cu)
19110 {
19111 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19112 struct dwarf2_cu *cu = *ref_cu;
19113 struct die_info *die;
19114
19115 die = follow_die_offset (offset,
19116 (attr->form == DW_FORM_GNU_ref_alt
19117 || cu->per_cu->is_dwz),
19118 ref_cu);
19119 if (!die)
19120 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19121 "at 0x%x [in module %s]"),
19122 offset.sect_off, src_die->offset.sect_off,
19123 objfile_name (cu->objfile));
19124
19125 return die;
19126 }
19127
19128 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19129 Returned value is intended for DW_OP_call*. Returned
19130 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19131
19132 struct dwarf2_locexpr_baton
19133 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19134 struct dwarf2_per_cu_data *per_cu,
19135 CORE_ADDR (*get_frame_pc) (void *baton),
19136 void *baton)
19137 {
19138 struct dwarf2_cu *cu;
19139 struct die_info *die;
19140 struct attribute *attr;
19141 struct dwarf2_locexpr_baton retval;
19142
19143 dw2_setup (per_cu->objfile);
19144
19145 if (per_cu->cu == NULL)
19146 load_cu (per_cu);
19147 cu = per_cu->cu;
19148
19149 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19150 if (!die)
19151 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19152 offset.sect_off, objfile_name (per_cu->objfile));
19153
19154 attr = dwarf2_attr (die, DW_AT_location, cu);
19155 if (!attr)
19156 {
19157 /* DWARF: "If there is no such attribute, then there is no effect.".
19158 DATA is ignored if SIZE is 0. */
19159
19160 retval.data = NULL;
19161 retval.size = 0;
19162 }
19163 else if (attr_form_is_section_offset (attr))
19164 {
19165 struct dwarf2_loclist_baton loclist_baton;
19166 CORE_ADDR pc = (*get_frame_pc) (baton);
19167 size_t size;
19168
19169 fill_in_loclist_baton (cu, &loclist_baton, attr);
19170
19171 retval.data = dwarf2_find_location_expression (&loclist_baton,
19172 &size, pc);
19173 retval.size = size;
19174 }
19175 else
19176 {
19177 if (!attr_form_is_block (attr))
19178 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19179 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19180 offset.sect_off, objfile_name (per_cu->objfile));
19181
19182 retval.data = DW_BLOCK (attr)->data;
19183 retval.size = DW_BLOCK (attr)->size;
19184 }
19185 retval.per_cu = cu->per_cu;
19186
19187 age_cached_comp_units ();
19188
19189 return retval;
19190 }
19191
19192 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19193 offset. */
19194
19195 struct dwarf2_locexpr_baton
19196 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19197 struct dwarf2_per_cu_data *per_cu,
19198 CORE_ADDR (*get_frame_pc) (void *baton),
19199 void *baton)
19200 {
19201 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19202
19203 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19204 }
19205
19206 /* Write a constant of a given type as target-ordered bytes into
19207 OBSTACK. */
19208
19209 static const gdb_byte *
19210 write_constant_as_bytes (struct obstack *obstack,
19211 enum bfd_endian byte_order,
19212 struct type *type,
19213 ULONGEST value,
19214 LONGEST *len)
19215 {
19216 gdb_byte *result;
19217
19218 *len = TYPE_LENGTH (type);
19219 result = obstack_alloc (obstack, *len);
19220 store_unsigned_integer (result, *len, byte_order, value);
19221
19222 return result;
19223 }
19224
19225 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19226 pointer to the constant bytes and set LEN to the length of the
19227 data. If memory is needed, allocate it on OBSTACK. If the DIE
19228 does not have a DW_AT_const_value, return NULL. */
19229
19230 const gdb_byte *
19231 dwarf2_fetch_constant_bytes (sect_offset offset,
19232 struct dwarf2_per_cu_data *per_cu,
19233 struct obstack *obstack,
19234 LONGEST *len)
19235 {
19236 struct dwarf2_cu *cu;
19237 struct die_info *die;
19238 struct attribute *attr;
19239 const gdb_byte *result = NULL;
19240 struct type *type;
19241 LONGEST value;
19242 enum bfd_endian byte_order;
19243
19244 dw2_setup (per_cu->objfile);
19245
19246 if (per_cu->cu == NULL)
19247 load_cu (per_cu);
19248 cu = per_cu->cu;
19249
19250 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19251 if (!die)
19252 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19253 offset.sect_off, objfile_name (per_cu->objfile));
19254
19255
19256 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19257 if (attr == NULL)
19258 return NULL;
19259
19260 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19261 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19262
19263 switch (attr->form)
19264 {
19265 case DW_FORM_addr:
19266 case DW_FORM_GNU_addr_index:
19267 {
19268 gdb_byte *tem;
19269
19270 *len = cu->header.addr_size;
19271 tem = obstack_alloc (obstack, *len);
19272 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19273 result = tem;
19274 }
19275 break;
19276 case DW_FORM_string:
19277 case DW_FORM_strp:
19278 case DW_FORM_GNU_str_index:
19279 case DW_FORM_GNU_strp_alt:
19280 /* DW_STRING is already allocated on the objfile obstack, point
19281 directly to it. */
19282 result = (const gdb_byte *) DW_STRING (attr);
19283 *len = strlen (DW_STRING (attr));
19284 break;
19285 case DW_FORM_block1:
19286 case DW_FORM_block2:
19287 case DW_FORM_block4:
19288 case DW_FORM_block:
19289 case DW_FORM_exprloc:
19290 result = DW_BLOCK (attr)->data;
19291 *len = DW_BLOCK (attr)->size;
19292 break;
19293
19294 /* The DW_AT_const_value attributes are supposed to carry the
19295 symbol's value "represented as it would be on the target
19296 architecture." By the time we get here, it's already been
19297 converted to host endianness, so we just need to sign- or
19298 zero-extend it as appropriate. */
19299 case DW_FORM_data1:
19300 type = die_type (die, cu);
19301 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19302 if (result == NULL)
19303 result = write_constant_as_bytes (obstack, byte_order,
19304 type, value, len);
19305 break;
19306 case DW_FORM_data2:
19307 type = die_type (die, cu);
19308 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19309 if (result == NULL)
19310 result = write_constant_as_bytes (obstack, byte_order,
19311 type, value, len);
19312 break;
19313 case DW_FORM_data4:
19314 type = die_type (die, cu);
19315 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19316 if (result == NULL)
19317 result = write_constant_as_bytes (obstack, byte_order,
19318 type, value, len);
19319 break;
19320 case DW_FORM_data8:
19321 type = die_type (die, cu);
19322 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19323 if (result == NULL)
19324 result = write_constant_as_bytes (obstack, byte_order,
19325 type, value, len);
19326 break;
19327
19328 case DW_FORM_sdata:
19329 type = die_type (die, cu);
19330 result = write_constant_as_bytes (obstack, byte_order,
19331 type, DW_SND (attr), len);
19332 break;
19333
19334 case DW_FORM_udata:
19335 type = die_type (die, cu);
19336 result = write_constant_as_bytes (obstack, byte_order,
19337 type, DW_UNSND (attr), len);
19338 break;
19339
19340 default:
19341 complaint (&symfile_complaints,
19342 _("unsupported const value attribute form: '%s'"),
19343 dwarf_form_name (attr->form));
19344 break;
19345 }
19346
19347 return result;
19348 }
19349
19350 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19351 PER_CU. */
19352
19353 struct type *
19354 dwarf2_get_die_type (cu_offset die_offset,
19355 struct dwarf2_per_cu_data *per_cu)
19356 {
19357 sect_offset die_offset_sect;
19358
19359 dw2_setup (per_cu->objfile);
19360
19361 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19362 return get_die_type_at_offset (die_offset_sect, per_cu);
19363 }
19364
19365 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19366 On entry *REF_CU is the CU of SRC_DIE.
19367 On exit *REF_CU is the CU of the result.
19368 Returns NULL if the referenced DIE isn't found. */
19369
19370 static struct die_info *
19371 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19372 struct dwarf2_cu **ref_cu)
19373 {
19374 struct objfile *objfile = (*ref_cu)->objfile;
19375 struct die_info temp_die;
19376 struct dwarf2_cu *sig_cu;
19377 struct die_info *die;
19378
19379 /* While it might be nice to assert sig_type->type == NULL here,
19380 we can get here for DW_AT_imported_declaration where we need
19381 the DIE not the type. */
19382
19383 /* If necessary, add it to the queue and load its DIEs. */
19384
19385 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19386 read_signatured_type (sig_type);
19387
19388 sig_cu = sig_type->per_cu.cu;
19389 gdb_assert (sig_cu != NULL);
19390 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19391 temp_die.offset = sig_type->type_offset_in_section;
19392 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19393 temp_die.offset.sect_off);
19394 if (die)
19395 {
19396 /* For .gdb_index version 7 keep track of included TUs.
19397 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19398 if (dwarf2_per_objfile->index_table != NULL
19399 && dwarf2_per_objfile->index_table->version <= 7)
19400 {
19401 VEC_safe_push (dwarf2_per_cu_ptr,
19402 (*ref_cu)->per_cu->imported_symtabs,
19403 sig_cu->per_cu);
19404 }
19405
19406 *ref_cu = sig_cu;
19407 return die;
19408 }
19409
19410 return NULL;
19411 }
19412
19413 /* Follow signatured type referenced by ATTR in SRC_DIE.
19414 On entry *REF_CU is the CU of SRC_DIE.
19415 On exit *REF_CU is the CU of the result.
19416 The result is the DIE of the type.
19417 If the referenced type cannot be found an error is thrown. */
19418
19419 static struct die_info *
19420 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19421 struct dwarf2_cu **ref_cu)
19422 {
19423 ULONGEST signature = DW_SIGNATURE (attr);
19424 struct signatured_type *sig_type;
19425 struct die_info *die;
19426
19427 gdb_assert (attr->form == DW_FORM_ref_sig8);
19428
19429 sig_type = lookup_signatured_type (*ref_cu, signature);
19430 /* sig_type will be NULL if the signatured type is missing from
19431 the debug info. */
19432 if (sig_type == NULL)
19433 {
19434 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19435 " from DIE at 0x%x [in module %s]"),
19436 hex_string (signature), src_die->offset.sect_off,
19437 objfile_name ((*ref_cu)->objfile));
19438 }
19439
19440 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19441 if (die == NULL)
19442 {
19443 dump_die_for_error (src_die);
19444 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19445 " from DIE at 0x%x [in module %s]"),
19446 hex_string (signature), src_die->offset.sect_off,
19447 objfile_name ((*ref_cu)->objfile));
19448 }
19449
19450 return die;
19451 }
19452
19453 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19454 reading in and processing the type unit if necessary. */
19455
19456 static struct type *
19457 get_signatured_type (struct die_info *die, ULONGEST signature,
19458 struct dwarf2_cu *cu)
19459 {
19460 struct signatured_type *sig_type;
19461 struct dwarf2_cu *type_cu;
19462 struct die_info *type_die;
19463 struct type *type;
19464
19465 sig_type = lookup_signatured_type (cu, signature);
19466 /* sig_type will be NULL if the signatured type is missing from
19467 the debug info. */
19468 if (sig_type == NULL)
19469 {
19470 complaint (&symfile_complaints,
19471 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19472 " from DIE at 0x%x [in module %s]"),
19473 hex_string (signature), die->offset.sect_off,
19474 objfile_name (dwarf2_per_objfile->objfile));
19475 return build_error_marker_type (cu, die);
19476 }
19477
19478 /* If we already know the type we're done. */
19479 if (sig_type->type != NULL)
19480 return sig_type->type;
19481
19482 type_cu = cu;
19483 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19484 if (type_die != NULL)
19485 {
19486 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19487 is created. This is important, for example, because for c++ classes
19488 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19489 type = read_type_die (type_die, type_cu);
19490 if (type == NULL)
19491 {
19492 complaint (&symfile_complaints,
19493 _("Dwarf Error: Cannot build signatured type %s"
19494 " referenced from DIE at 0x%x [in module %s]"),
19495 hex_string (signature), die->offset.sect_off,
19496 objfile_name (dwarf2_per_objfile->objfile));
19497 type = build_error_marker_type (cu, die);
19498 }
19499 }
19500 else
19501 {
19502 complaint (&symfile_complaints,
19503 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19504 " from DIE at 0x%x [in module %s]"),
19505 hex_string (signature), die->offset.sect_off,
19506 objfile_name (dwarf2_per_objfile->objfile));
19507 type = build_error_marker_type (cu, die);
19508 }
19509 sig_type->type = type;
19510
19511 return type;
19512 }
19513
19514 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19515 reading in and processing the type unit if necessary. */
19516
19517 static struct type *
19518 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19519 struct dwarf2_cu *cu) /* ARI: editCase function */
19520 {
19521 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19522 if (attr_form_is_ref (attr))
19523 {
19524 struct dwarf2_cu *type_cu = cu;
19525 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19526
19527 return read_type_die (type_die, type_cu);
19528 }
19529 else if (attr->form == DW_FORM_ref_sig8)
19530 {
19531 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19532 }
19533 else
19534 {
19535 complaint (&symfile_complaints,
19536 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19537 " at 0x%x [in module %s]"),
19538 dwarf_form_name (attr->form), die->offset.sect_off,
19539 objfile_name (dwarf2_per_objfile->objfile));
19540 return build_error_marker_type (cu, die);
19541 }
19542 }
19543
19544 /* Load the DIEs associated with type unit PER_CU into memory. */
19545
19546 static void
19547 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19548 {
19549 struct signatured_type *sig_type;
19550
19551 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19552 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19553
19554 /* We have the per_cu, but we need the signatured_type.
19555 Fortunately this is an easy translation. */
19556 gdb_assert (per_cu->is_debug_types);
19557 sig_type = (struct signatured_type *) per_cu;
19558
19559 gdb_assert (per_cu->cu == NULL);
19560
19561 read_signatured_type (sig_type);
19562
19563 gdb_assert (per_cu->cu != NULL);
19564 }
19565
19566 /* die_reader_func for read_signatured_type.
19567 This is identical to load_full_comp_unit_reader,
19568 but is kept separate for now. */
19569
19570 static void
19571 read_signatured_type_reader (const struct die_reader_specs *reader,
19572 const gdb_byte *info_ptr,
19573 struct die_info *comp_unit_die,
19574 int has_children,
19575 void *data)
19576 {
19577 struct dwarf2_cu *cu = reader->cu;
19578
19579 gdb_assert (cu->die_hash == NULL);
19580 cu->die_hash =
19581 htab_create_alloc_ex (cu->header.length / 12,
19582 die_hash,
19583 die_eq,
19584 NULL,
19585 &cu->comp_unit_obstack,
19586 hashtab_obstack_allocate,
19587 dummy_obstack_deallocate);
19588
19589 if (has_children)
19590 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19591 &info_ptr, comp_unit_die);
19592 cu->dies = comp_unit_die;
19593 /* comp_unit_die is not stored in die_hash, no need. */
19594
19595 /* We try not to read any attributes in this function, because not
19596 all CUs needed for references have been loaded yet, and symbol
19597 table processing isn't initialized. But we have to set the CU language,
19598 or we won't be able to build types correctly.
19599 Similarly, if we do not read the producer, we can not apply
19600 producer-specific interpretation. */
19601 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19602 }
19603
19604 /* Read in a signatured type and build its CU and DIEs.
19605 If the type is a stub for the real type in a DWO file,
19606 read in the real type from the DWO file as well. */
19607
19608 static void
19609 read_signatured_type (struct signatured_type *sig_type)
19610 {
19611 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19612
19613 gdb_assert (per_cu->is_debug_types);
19614 gdb_assert (per_cu->cu == NULL);
19615
19616 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19617 read_signatured_type_reader, NULL);
19618 sig_type->per_cu.tu_read = 1;
19619 }
19620
19621 /* Decode simple location descriptions.
19622 Given a pointer to a dwarf block that defines a location, compute
19623 the location and return the value.
19624
19625 NOTE drow/2003-11-18: This function is called in two situations
19626 now: for the address of static or global variables (partial symbols
19627 only) and for offsets into structures which are expected to be
19628 (more or less) constant. The partial symbol case should go away,
19629 and only the constant case should remain. That will let this
19630 function complain more accurately. A few special modes are allowed
19631 without complaint for global variables (for instance, global
19632 register values and thread-local values).
19633
19634 A location description containing no operations indicates that the
19635 object is optimized out. The return value is 0 for that case.
19636 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19637 callers will only want a very basic result and this can become a
19638 complaint.
19639
19640 Note that stack[0] is unused except as a default error return. */
19641
19642 static CORE_ADDR
19643 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19644 {
19645 struct objfile *objfile = cu->objfile;
19646 size_t i;
19647 size_t size = blk->size;
19648 const gdb_byte *data = blk->data;
19649 CORE_ADDR stack[64];
19650 int stacki;
19651 unsigned int bytes_read, unsnd;
19652 gdb_byte op;
19653
19654 i = 0;
19655 stacki = 0;
19656 stack[stacki] = 0;
19657 stack[++stacki] = 0;
19658
19659 while (i < size)
19660 {
19661 op = data[i++];
19662 switch (op)
19663 {
19664 case DW_OP_lit0:
19665 case DW_OP_lit1:
19666 case DW_OP_lit2:
19667 case DW_OP_lit3:
19668 case DW_OP_lit4:
19669 case DW_OP_lit5:
19670 case DW_OP_lit6:
19671 case DW_OP_lit7:
19672 case DW_OP_lit8:
19673 case DW_OP_lit9:
19674 case DW_OP_lit10:
19675 case DW_OP_lit11:
19676 case DW_OP_lit12:
19677 case DW_OP_lit13:
19678 case DW_OP_lit14:
19679 case DW_OP_lit15:
19680 case DW_OP_lit16:
19681 case DW_OP_lit17:
19682 case DW_OP_lit18:
19683 case DW_OP_lit19:
19684 case DW_OP_lit20:
19685 case DW_OP_lit21:
19686 case DW_OP_lit22:
19687 case DW_OP_lit23:
19688 case DW_OP_lit24:
19689 case DW_OP_lit25:
19690 case DW_OP_lit26:
19691 case DW_OP_lit27:
19692 case DW_OP_lit28:
19693 case DW_OP_lit29:
19694 case DW_OP_lit30:
19695 case DW_OP_lit31:
19696 stack[++stacki] = op - DW_OP_lit0;
19697 break;
19698
19699 case DW_OP_reg0:
19700 case DW_OP_reg1:
19701 case DW_OP_reg2:
19702 case DW_OP_reg3:
19703 case DW_OP_reg4:
19704 case DW_OP_reg5:
19705 case DW_OP_reg6:
19706 case DW_OP_reg7:
19707 case DW_OP_reg8:
19708 case DW_OP_reg9:
19709 case DW_OP_reg10:
19710 case DW_OP_reg11:
19711 case DW_OP_reg12:
19712 case DW_OP_reg13:
19713 case DW_OP_reg14:
19714 case DW_OP_reg15:
19715 case DW_OP_reg16:
19716 case DW_OP_reg17:
19717 case DW_OP_reg18:
19718 case DW_OP_reg19:
19719 case DW_OP_reg20:
19720 case DW_OP_reg21:
19721 case DW_OP_reg22:
19722 case DW_OP_reg23:
19723 case DW_OP_reg24:
19724 case DW_OP_reg25:
19725 case DW_OP_reg26:
19726 case DW_OP_reg27:
19727 case DW_OP_reg28:
19728 case DW_OP_reg29:
19729 case DW_OP_reg30:
19730 case DW_OP_reg31:
19731 stack[++stacki] = op - DW_OP_reg0;
19732 if (i < size)
19733 dwarf2_complex_location_expr_complaint ();
19734 break;
19735
19736 case DW_OP_regx:
19737 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19738 i += bytes_read;
19739 stack[++stacki] = unsnd;
19740 if (i < size)
19741 dwarf2_complex_location_expr_complaint ();
19742 break;
19743
19744 case DW_OP_addr:
19745 stack[++stacki] = read_address (objfile->obfd, &data[i],
19746 cu, &bytes_read);
19747 i += bytes_read;
19748 break;
19749
19750 case DW_OP_const1u:
19751 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19752 i += 1;
19753 break;
19754
19755 case DW_OP_const1s:
19756 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19757 i += 1;
19758 break;
19759
19760 case DW_OP_const2u:
19761 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19762 i += 2;
19763 break;
19764
19765 case DW_OP_const2s:
19766 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19767 i += 2;
19768 break;
19769
19770 case DW_OP_const4u:
19771 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19772 i += 4;
19773 break;
19774
19775 case DW_OP_const4s:
19776 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19777 i += 4;
19778 break;
19779
19780 case DW_OP_const8u:
19781 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19782 i += 8;
19783 break;
19784
19785 case DW_OP_constu:
19786 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19787 &bytes_read);
19788 i += bytes_read;
19789 break;
19790
19791 case DW_OP_consts:
19792 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19793 i += bytes_read;
19794 break;
19795
19796 case DW_OP_dup:
19797 stack[stacki + 1] = stack[stacki];
19798 stacki++;
19799 break;
19800
19801 case DW_OP_plus:
19802 stack[stacki - 1] += stack[stacki];
19803 stacki--;
19804 break;
19805
19806 case DW_OP_plus_uconst:
19807 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19808 &bytes_read);
19809 i += bytes_read;
19810 break;
19811
19812 case DW_OP_minus:
19813 stack[stacki - 1] -= stack[stacki];
19814 stacki--;
19815 break;
19816
19817 case DW_OP_deref:
19818 /* If we're not the last op, then we definitely can't encode
19819 this using GDB's address_class enum. This is valid for partial
19820 global symbols, although the variable's address will be bogus
19821 in the psymtab. */
19822 if (i < size)
19823 dwarf2_complex_location_expr_complaint ();
19824 break;
19825
19826 case DW_OP_GNU_push_tls_address:
19827 /* The top of the stack has the offset from the beginning
19828 of the thread control block at which the variable is located. */
19829 /* Nothing should follow this operator, so the top of stack would
19830 be returned. */
19831 /* This is valid for partial global symbols, but the variable's
19832 address will be bogus in the psymtab. Make it always at least
19833 non-zero to not look as a variable garbage collected by linker
19834 which have DW_OP_addr 0. */
19835 if (i < size)
19836 dwarf2_complex_location_expr_complaint ();
19837 stack[stacki]++;
19838 break;
19839
19840 case DW_OP_GNU_uninit:
19841 break;
19842
19843 case DW_OP_GNU_addr_index:
19844 case DW_OP_GNU_const_index:
19845 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19846 &bytes_read);
19847 i += bytes_read;
19848 break;
19849
19850 default:
19851 {
19852 const char *name = get_DW_OP_name (op);
19853
19854 if (name)
19855 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19856 name);
19857 else
19858 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19859 op);
19860 }
19861
19862 return (stack[stacki]);
19863 }
19864
19865 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19866 outside of the allocated space. Also enforce minimum>0. */
19867 if (stacki >= ARRAY_SIZE (stack) - 1)
19868 {
19869 complaint (&symfile_complaints,
19870 _("location description stack overflow"));
19871 return 0;
19872 }
19873
19874 if (stacki <= 0)
19875 {
19876 complaint (&symfile_complaints,
19877 _("location description stack underflow"));
19878 return 0;
19879 }
19880 }
19881 return (stack[stacki]);
19882 }
19883
19884 /* memory allocation interface */
19885
19886 static struct dwarf_block *
19887 dwarf_alloc_block (struct dwarf2_cu *cu)
19888 {
19889 struct dwarf_block *blk;
19890
19891 blk = (struct dwarf_block *)
19892 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
19893 return (blk);
19894 }
19895
19896 static struct die_info *
19897 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
19898 {
19899 struct die_info *die;
19900 size_t size = sizeof (struct die_info);
19901
19902 if (num_attrs > 1)
19903 size += (num_attrs - 1) * sizeof (struct attribute);
19904
19905 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
19906 memset (die, 0, sizeof (struct die_info));
19907 return (die);
19908 }
19909
19910 \f
19911 /* Macro support. */
19912
19913 /* Return file name relative to the compilation directory of file number I in
19914 *LH's file name table. The result is allocated using xmalloc; the caller is
19915 responsible for freeing it. */
19916
19917 static char *
19918 file_file_name (int file, struct line_header *lh)
19919 {
19920 /* Is the file number a valid index into the line header's file name
19921 table? Remember that file numbers start with one, not zero. */
19922 if (1 <= file && file <= lh->num_file_names)
19923 {
19924 struct file_entry *fe = &lh->file_names[file - 1];
19925
19926 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
19927 return xstrdup (fe->name);
19928 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
19929 fe->name, NULL);
19930 }
19931 else
19932 {
19933 /* The compiler produced a bogus file number. We can at least
19934 record the macro definitions made in the file, even if we
19935 won't be able to find the file by name. */
19936 char fake_name[80];
19937
19938 xsnprintf (fake_name, sizeof (fake_name),
19939 "<bad macro file number %d>", file);
19940
19941 complaint (&symfile_complaints,
19942 _("bad file number in macro information (%d)"),
19943 file);
19944
19945 return xstrdup (fake_name);
19946 }
19947 }
19948
19949 /* Return the full name of file number I in *LH's file name table.
19950 Use COMP_DIR as the name of the current directory of the
19951 compilation. The result is allocated using xmalloc; the caller is
19952 responsible for freeing it. */
19953 static char *
19954 file_full_name (int file, struct line_header *lh, const char *comp_dir)
19955 {
19956 /* Is the file number a valid index into the line header's file name
19957 table? Remember that file numbers start with one, not zero. */
19958 if (1 <= file && file <= lh->num_file_names)
19959 {
19960 char *relative = file_file_name (file, lh);
19961
19962 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
19963 return relative;
19964 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
19965 }
19966 else
19967 return file_file_name (file, lh);
19968 }
19969
19970
19971 static struct macro_source_file *
19972 macro_start_file (int file, int line,
19973 struct macro_source_file *current_file,
19974 const char *comp_dir,
19975 struct line_header *lh, struct objfile *objfile)
19976 {
19977 /* File name relative to the compilation directory of this source file. */
19978 char *file_name = file_file_name (file, lh);
19979
19980 if (! current_file)
19981 {
19982 /* Note: We don't create a macro table for this compilation unit
19983 at all until we actually get a filename. */
19984 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
19985
19986 /* If we have no current file, then this must be the start_file
19987 directive for the compilation unit's main source file. */
19988 current_file = macro_set_main (macro_table, file_name);
19989 macro_define_special (macro_table);
19990 }
19991 else
19992 current_file = macro_include (current_file, line, file_name);
19993
19994 xfree (file_name);
19995
19996 return current_file;
19997 }
19998
19999
20000 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20001 followed by a null byte. */
20002 static char *
20003 copy_string (const char *buf, int len)
20004 {
20005 char *s = xmalloc (len + 1);
20006
20007 memcpy (s, buf, len);
20008 s[len] = '\0';
20009 return s;
20010 }
20011
20012
20013 static const char *
20014 consume_improper_spaces (const char *p, const char *body)
20015 {
20016 if (*p == ' ')
20017 {
20018 complaint (&symfile_complaints,
20019 _("macro definition contains spaces "
20020 "in formal argument list:\n`%s'"),
20021 body);
20022
20023 while (*p == ' ')
20024 p++;
20025 }
20026
20027 return p;
20028 }
20029
20030
20031 static void
20032 parse_macro_definition (struct macro_source_file *file, int line,
20033 const char *body)
20034 {
20035 const char *p;
20036
20037 /* The body string takes one of two forms. For object-like macro
20038 definitions, it should be:
20039
20040 <macro name> " " <definition>
20041
20042 For function-like macro definitions, it should be:
20043
20044 <macro name> "() " <definition>
20045 or
20046 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20047
20048 Spaces may appear only where explicitly indicated, and in the
20049 <definition>.
20050
20051 The Dwarf 2 spec says that an object-like macro's name is always
20052 followed by a space, but versions of GCC around March 2002 omit
20053 the space when the macro's definition is the empty string.
20054
20055 The Dwarf 2 spec says that there should be no spaces between the
20056 formal arguments in a function-like macro's formal argument list,
20057 but versions of GCC around March 2002 include spaces after the
20058 commas. */
20059
20060
20061 /* Find the extent of the macro name. The macro name is terminated
20062 by either a space or null character (for an object-like macro) or
20063 an opening paren (for a function-like macro). */
20064 for (p = body; *p; p++)
20065 if (*p == ' ' || *p == '(')
20066 break;
20067
20068 if (*p == ' ' || *p == '\0')
20069 {
20070 /* It's an object-like macro. */
20071 int name_len = p - body;
20072 char *name = copy_string (body, name_len);
20073 const char *replacement;
20074
20075 if (*p == ' ')
20076 replacement = body + name_len + 1;
20077 else
20078 {
20079 dwarf2_macro_malformed_definition_complaint (body);
20080 replacement = body + name_len;
20081 }
20082
20083 macro_define_object (file, line, name, replacement);
20084
20085 xfree (name);
20086 }
20087 else if (*p == '(')
20088 {
20089 /* It's a function-like macro. */
20090 char *name = copy_string (body, p - body);
20091 int argc = 0;
20092 int argv_size = 1;
20093 char **argv = xmalloc (argv_size * sizeof (*argv));
20094
20095 p++;
20096
20097 p = consume_improper_spaces (p, body);
20098
20099 /* Parse the formal argument list. */
20100 while (*p && *p != ')')
20101 {
20102 /* Find the extent of the current argument name. */
20103 const char *arg_start = p;
20104
20105 while (*p && *p != ',' && *p != ')' && *p != ' ')
20106 p++;
20107
20108 if (! *p || p == arg_start)
20109 dwarf2_macro_malformed_definition_complaint (body);
20110 else
20111 {
20112 /* Make sure argv has room for the new argument. */
20113 if (argc >= argv_size)
20114 {
20115 argv_size *= 2;
20116 argv = xrealloc (argv, argv_size * sizeof (*argv));
20117 }
20118
20119 argv[argc++] = copy_string (arg_start, p - arg_start);
20120 }
20121
20122 p = consume_improper_spaces (p, body);
20123
20124 /* Consume the comma, if present. */
20125 if (*p == ',')
20126 {
20127 p++;
20128
20129 p = consume_improper_spaces (p, body);
20130 }
20131 }
20132
20133 if (*p == ')')
20134 {
20135 p++;
20136
20137 if (*p == ' ')
20138 /* Perfectly formed definition, no complaints. */
20139 macro_define_function (file, line, name,
20140 argc, (const char **) argv,
20141 p + 1);
20142 else if (*p == '\0')
20143 {
20144 /* Complain, but do define it. */
20145 dwarf2_macro_malformed_definition_complaint (body);
20146 macro_define_function (file, line, name,
20147 argc, (const char **) argv,
20148 p);
20149 }
20150 else
20151 /* Just complain. */
20152 dwarf2_macro_malformed_definition_complaint (body);
20153 }
20154 else
20155 /* Just complain. */
20156 dwarf2_macro_malformed_definition_complaint (body);
20157
20158 xfree (name);
20159 {
20160 int i;
20161
20162 for (i = 0; i < argc; i++)
20163 xfree (argv[i]);
20164 }
20165 xfree (argv);
20166 }
20167 else
20168 dwarf2_macro_malformed_definition_complaint (body);
20169 }
20170
20171 /* Skip some bytes from BYTES according to the form given in FORM.
20172 Returns the new pointer. */
20173
20174 static const gdb_byte *
20175 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20176 enum dwarf_form form,
20177 unsigned int offset_size,
20178 struct dwarf2_section_info *section)
20179 {
20180 unsigned int bytes_read;
20181
20182 switch (form)
20183 {
20184 case DW_FORM_data1:
20185 case DW_FORM_flag:
20186 ++bytes;
20187 break;
20188
20189 case DW_FORM_data2:
20190 bytes += 2;
20191 break;
20192
20193 case DW_FORM_data4:
20194 bytes += 4;
20195 break;
20196
20197 case DW_FORM_data8:
20198 bytes += 8;
20199 break;
20200
20201 case DW_FORM_string:
20202 read_direct_string (abfd, bytes, &bytes_read);
20203 bytes += bytes_read;
20204 break;
20205
20206 case DW_FORM_sec_offset:
20207 case DW_FORM_strp:
20208 case DW_FORM_GNU_strp_alt:
20209 bytes += offset_size;
20210 break;
20211
20212 case DW_FORM_block:
20213 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20214 bytes += bytes_read;
20215 break;
20216
20217 case DW_FORM_block1:
20218 bytes += 1 + read_1_byte (abfd, bytes);
20219 break;
20220 case DW_FORM_block2:
20221 bytes += 2 + read_2_bytes (abfd, bytes);
20222 break;
20223 case DW_FORM_block4:
20224 bytes += 4 + read_4_bytes (abfd, bytes);
20225 break;
20226
20227 case DW_FORM_sdata:
20228 case DW_FORM_udata:
20229 case DW_FORM_GNU_addr_index:
20230 case DW_FORM_GNU_str_index:
20231 bytes = gdb_skip_leb128 (bytes, buffer_end);
20232 if (bytes == NULL)
20233 {
20234 dwarf2_section_buffer_overflow_complaint (section);
20235 return NULL;
20236 }
20237 break;
20238
20239 default:
20240 {
20241 complain:
20242 complaint (&symfile_complaints,
20243 _("invalid form 0x%x in `%s'"),
20244 form, get_section_name (section));
20245 return NULL;
20246 }
20247 }
20248
20249 return bytes;
20250 }
20251
20252 /* A helper for dwarf_decode_macros that handles skipping an unknown
20253 opcode. Returns an updated pointer to the macro data buffer; or,
20254 on error, issues a complaint and returns NULL. */
20255
20256 static const gdb_byte *
20257 skip_unknown_opcode (unsigned int opcode,
20258 const gdb_byte **opcode_definitions,
20259 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20260 bfd *abfd,
20261 unsigned int offset_size,
20262 struct dwarf2_section_info *section)
20263 {
20264 unsigned int bytes_read, i;
20265 unsigned long arg;
20266 const gdb_byte *defn;
20267
20268 if (opcode_definitions[opcode] == NULL)
20269 {
20270 complaint (&symfile_complaints,
20271 _("unrecognized DW_MACFINO opcode 0x%x"),
20272 opcode);
20273 return NULL;
20274 }
20275
20276 defn = opcode_definitions[opcode];
20277 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20278 defn += bytes_read;
20279
20280 for (i = 0; i < arg; ++i)
20281 {
20282 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20283 section);
20284 if (mac_ptr == NULL)
20285 {
20286 /* skip_form_bytes already issued the complaint. */
20287 return NULL;
20288 }
20289 }
20290
20291 return mac_ptr;
20292 }
20293
20294 /* A helper function which parses the header of a macro section.
20295 If the macro section is the extended (for now called "GNU") type,
20296 then this updates *OFFSET_SIZE. Returns a pointer to just after
20297 the header, or issues a complaint and returns NULL on error. */
20298
20299 static const gdb_byte *
20300 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20301 bfd *abfd,
20302 const gdb_byte *mac_ptr,
20303 unsigned int *offset_size,
20304 int section_is_gnu)
20305 {
20306 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20307
20308 if (section_is_gnu)
20309 {
20310 unsigned int version, flags;
20311
20312 version = read_2_bytes (abfd, mac_ptr);
20313 if (version != 4)
20314 {
20315 complaint (&symfile_complaints,
20316 _("unrecognized version `%d' in .debug_macro section"),
20317 version);
20318 return NULL;
20319 }
20320 mac_ptr += 2;
20321
20322 flags = read_1_byte (abfd, mac_ptr);
20323 ++mac_ptr;
20324 *offset_size = (flags & 1) ? 8 : 4;
20325
20326 if ((flags & 2) != 0)
20327 /* We don't need the line table offset. */
20328 mac_ptr += *offset_size;
20329
20330 /* Vendor opcode descriptions. */
20331 if ((flags & 4) != 0)
20332 {
20333 unsigned int i, count;
20334
20335 count = read_1_byte (abfd, mac_ptr);
20336 ++mac_ptr;
20337 for (i = 0; i < count; ++i)
20338 {
20339 unsigned int opcode, bytes_read;
20340 unsigned long arg;
20341
20342 opcode = read_1_byte (abfd, mac_ptr);
20343 ++mac_ptr;
20344 opcode_definitions[opcode] = mac_ptr;
20345 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20346 mac_ptr += bytes_read;
20347 mac_ptr += arg;
20348 }
20349 }
20350 }
20351
20352 return mac_ptr;
20353 }
20354
20355 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20356 including DW_MACRO_GNU_transparent_include. */
20357
20358 static void
20359 dwarf_decode_macro_bytes (bfd *abfd,
20360 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20361 struct macro_source_file *current_file,
20362 struct line_header *lh, const char *comp_dir,
20363 struct dwarf2_section_info *section,
20364 int section_is_gnu, int section_is_dwz,
20365 unsigned int offset_size,
20366 struct objfile *objfile,
20367 htab_t include_hash)
20368 {
20369 enum dwarf_macro_record_type macinfo_type;
20370 int at_commandline;
20371 const gdb_byte *opcode_definitions[256];
20372
20373 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20374 &offset_size, section_is_gnu);
20375 if (mac_ptr == NULL)
20376 {
20377 /* We already issued a complaint. */
20378 return;
20379 }
20380
20381 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20382 GDB is still reading the definitions from command line. First
20383 DW_MACINFO_start_file will need to be ignored as it was already executed
20384 to create CURRENT_FILE for the main source holding also the command line
20385 definitions. On first met DW_MACINFO_start_file this flag is reset to
20386 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20387
20388 at_commandline = 1;
20389
20390 do
20391 {
20392 /* Do we at least have room for a macinfo type byte? */
20393 if (mac_ptr >= mac_end)
20394 {
20395 dwarf2_section_buffer_overflow_complaint (section);
20396 break;
20397 }
20398
20399 macinfo_type = read_1_byte (abfd, mac_ptr);
20400 mac_ptr++;
20401
20402 /* Note that we rely on the fact that the corresponding GNU and
20403 DWARF constants are the same. */
20404 switch (macinfo_type)
20405 {
20406 /* A zero macinfo type indicates the end of the macro
20407 information. */
20408 case 0:
20409 break;
20410
20411 case DW_MACRO_GNU_define:
20412 case DW_MACRO_GNU_undef:
20413 case DW_MACRO_GNU_define_indirect:
20414 case DW_MACRO_GNU_undef_indirect:
20415 case DW_MACRO_GNU_define_indirect_alt:
20416 case DW_MACRO_GNU_undef_indirect_alt:
20417 {
20418 unsigned int bytes_read;
20419 int line;
20420 const char *body;
20421 int is_define;
20422
20423 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20424 mac_ptr += bytes_read;
20425
20426 if (macinfo_type == DW_MACRO_GNU_define
20427 || macinfo_type == DW_MACRO_GNU_undef)
20428 {
20429 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20430 mac_ptr += bytes_read;
20431 }
20432 else
20433 {
20434 LONGEST str_offset;
20435
20436 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20437 mac_ptr += offset_size;
20438
20439 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20440 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20441 || section_is_dwz)
20442 {
20443 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20444
20445 body = read_indirect_string_from_dwz (dwz, str_offset);
20446 }
20447 else
20448 body = read_indirect_string_at_offset (abfd, str_offset);
20449 }
20450
20451 is_define = (macinfo_type == DW_MACRO_GNU_define
20452 || macinfo_type == DW_MACRO_GNU_define_indirect
20453 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20454 if (! current_file)
20455 {
20456 /* DWARF violation as no main source is present. */
20457 complaint (&symfile_complaints,
20458 _("debug info with no main source gives macro %s "
20459 "on line %d: %s"),
20460 is_define ? _("definition") : _("undefinition"),
20461 line, body);
20462 break;
20463 }
20464 if ((line == 0 && !at_commandline)
20465 || (line != 0 && at_commandline))
20466 complaint (&symfile_complaints,
20467 _("debug info gives %s macro %s with %s line %d: %s"),
20468 at_commandline ? _("command-line") : _("in-file"),
20469 is_define ? _("definition") : _("undefinition"),
20470 line == 0 ? _("zero") : _("non-zero"), line, body);
20471
20472 if (is_define)
20473 parse_macro_definition (current_file, line, body);
20474 else
20475 {
20476 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20477 || macinfo_type == DW_MACRO_GNU_undef_indirect
20478 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20479 macro_undef (current_file, line, body);
20480 }
20481 }
20482 break;
20483
20484 case DW_MACRO_GNU_start_file:
20485 {
20486 unsigned int bytes_read;
20487 int line, file;
20488
20489 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20490 mac_ptr += bytes_read;
20491 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20492 mac_ptr += bytes_read;
20493
20494 if ((line == 0 && !at_commandline)
20495 || (line != 0 && at_commandline))
20496 complaint (&symfile_complaints,
20497 _("debug info gives source %d included "
20498 "from %s at %s line %d"),
20499 file, at_commandline ? _("command-line") : _("file"),
20500 line == 0 ? _("zero") : _("non-zero"), line);
20501
20502 if (at_commandline)
20503 {
20504 /* This DW_MACRO_GNU_start_file was executed in the
20505 pass one. */
20506 at_commandline = 0;
20507 }
20508 else
20509 current_file = macro_start_file (file, line,
20510 current_file, comp_dir,
20511 lh, objfile);
20512 }
20513 break;
20514
20515 case DW_MACRO_GNU_end_file:
20516 if (! current_file)
20517 complaint (&symfile_complaints,
20518 _("macro debug info has an unmatched "
20519 "`close_file' directive"));
20520 else
20521 {
20522 current_file = current_file->included_by;
20523 if (! current_file)
20524 {
20525 enum dwarf_macro_record_type next_type;
20526
20527 /* GCC circa March 2002 doesn't produce the zero
20528 type byte marking the end of the compilation
20529 unit. Complain if it's not there, but exit no
20530 matter what. */
20531
20532 /* Do we at least have room for a macinfo type byte? */
20533 if (mac_ptr >= mac_end)
20534 {
20535 dwarf2_section_buffer_overflow_complaint (section);
20536 return;
20537 }
20538
20539 /* We don't increment mac_ptr here, so this is just
20540 a look-ahead. */
20541 next_type = read_1_byte (abfd, mac_ptr);
20542 if (next_type != 0)
20543 complaint (&symfile_complaints,
20544 _("no terminating 0-type entry for "
20545 "macros in `.debug_macinfo' section"));
20546
20547 return;
20548 }
20549 }
20550 break;
20551
20552 case DW_MACRO_GNU_transparent_include:
20553 case DW_MACRO_GNU_transparent_include_alt:
20554 {
20555 LONGEST offset;
20556 void **slot;
20557 bfd *include_bfd = abfd;
20558 struct dwarf2_section_info *include_section = section;
20559 struct dwarf2_section_info alt_section;
20560 const gdb_byte *include_mac_end = mac_end;
20561 int is_dwz = section_is_dwz;
20562 const gdb_byte *new_mac_ptr;
20563
20564 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20565 mac_ptr += offset_size;
20566
20567 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20568 {
20569 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20570
20571 dwarf2_read_section (dwarf2_per_objfile->objfile,
20572 &dwz->macro);
20573
20574 include_section = &dwz->macro;
20575 include_bfd = get_section_bfd_owner (include_section);
20576 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20577 is_dwz = 1;
20578 }
20579
20580 new_mac_ptr = include_section->buffer + offset;
20581 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20582
20583 if (*slot != NULL)
20584 {
20585 /* This has actually happened; see
20586 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20587 complaint (&symfile_complaints,
20588 _("recursive DW_MACRO_GNU_transparent_include in "
20589 ".debug_macro section"));
20590 }
20591 else
20592 {
20593 *slot = (void *) new_mac_ptr;
20594
20595 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20596 include_mac_end, current_file,
20597 lh, comp_dir,
20598 section, section_is_gnu, is_dwz,
20599 offset_size, objfile, include_hash);
20600
20601 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20602 }
20603 }
20604 break;
20605
20606 case DW_MACINFO_vendor_ext:
20607 if (!section_is_gnu)
20608 {
20609 unsigned int bytes_read;
20610 int constant;
20611
20612 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20613 mac_ptr += bytes_read;
20614 read_direct_string (abfd, mac_ptr, &bytes_read);
20615 mac_ptr += bytes_read;
20616
20617 /* We don't recognize any vendor extensions. */
20618 break;
20619 }
20620 /* FALLTHROUGH */
20621
20622 default:
20623 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20624 mac_ptr, mac_end, abfd, offset_size,
20625 section);
20626 if (mac_ptr == NULL)
20627 return;
20628 break;
20629 }
20630 } while (macinfo_type != 0);
20631 }
20632
20633 static void
20634 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20635 const char *comp_dir, int section_is_gnu)
20636 {
20637 struct objfile *objfile = dwarf2_per_objfile->objfile;
20638 struct line_header *lh = cu->line_header;
20639 bfd *abfd;
20640 const gdb_byte *mac_ptr, *mac_end;
20641 struct macro_source_file *current_file = 0;
20642 enum dwarf_macro_record_type macinfo_type;
20643 unsigned int offset_size = cu->header.offset_size;
20644 const gdb_byte *opcode_definitions[256];
20645 struct cleanup *cleanup;
20646 htab_t include_hash;
20647 void **slot;
20648 struct dwarf2_section_info *section;
20649 const char *section_name;
20650
20651 if (cu->dwo_unit != NULL)
20652 {
20653 if (section_is_gnu)
20654 {
20655 section = &cu->dwo_unit->dwo_file->sections.macro;
20656 section_name = ".debug_macro.dwo";
20657 }
20658 else
20659 {
20660 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20661 section_name = ".debug_macinfo.dwo";
20662 }
20663 }
20664 else
20665 {
20666 if (section_is_gnu)
20667 {
20668 section = &dwarf2_per_objfile->macro;
20669 section_name = ".debug_macro";
20670 }
20671 else
20672 {
20673 section = &dwarf2_per_objfile->macinfo;
20674 section_name = ".debug_macinfo";
20675 }
20676 }
20677
20678 dwarf2_read_section (objfile, section);
20679 if (section->buffer == NULL)
20680 {
20681 complaint (&symfile_complaints, _("missing %s section"), section_name);
20682 return;
20683 }
20684 abfd = get_section_bfd_owner (section);
20685
20686 /* First pass: Find the name of the base filename.
20687 This filename is needed in order to process all macros whose definition
20688 (or undefinition) comes from the command line. These macros are defined
20689 before the first DW_MACINFO_start_file entry, and yet still need to be
20690 associated to the base file.
20691
20692 To determine the base file name, we scan the macro definitions until we
20693 reach the first DW_MACINFO_start_file entry. We then initialize
20694 CURRENT_FILE accordingly so that any macro definition found before the
20695 first DW_MACINFO_start_file can still be associated to the base file. */
20696
20697 mac_ptr = section->buffer + offset;
20698 mac_end = section->buffer + section->size;
20699
20700 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20701 &offset_size, section_is_gnu);
20702 if (mac_ptr == NULL)
20703 {
20704 /* We already issued a complaint. */
20705 return;
20706 }
20707
20708 do
20709 {
20710 /* Do we at least have room for a macinfo type byte? */
20711 if (mac_ptr >= mac_end)
20712 {
20713 /* Complaint is printed during the second pass as GDB will probably
20714 stop the first pass earlier upon finding
20715 DW_MACINFO_start_file. */
20716 break;
20717 }
20718
20719 macinfo_type = read_1_byte (abfd, mac_ptr);
20720 mac_ptr++;
20721
20722 /* Note that we rely on the fact that the corresponding GNU and
20723 DWARF constants are the same. */
20724 switch (macinfo_type)
20725 {
20726 /* A zero macinfo type indicates the end of the macro
20727 information. */
20728 case 0:
20729 break;
20730
20731 case DW_MACRO_GNU_define:
20732 case DW_MACRO_GNU_undef:
20733 /* Only skip the data by MAC_PTR. */
20734 {
20735 unsigned int bytes_read;
20736
20737 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20738 mac_ptr += bytes_read;
20739 read_direct_string (abfd, mac_ptr, &bytes_read);
20740 mac_ptr += bytes_read;
20741 }
20742 break;
20743
20744 case DW_MACRO_GNU_start_file:
20745 {
20746 unsigned int bytes_read;
20747 int line, file;
20748
20749 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20750 mac_ptr += bytes_read;
20751 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20752 mac_ptr += bytes_read;
20753
20754 current_file = macro_start_file (file, line, current_file,
20755 comp_dir, lh, objfile);
20756 }
20757 break;
20758
20759 case DW_MACRO_GNU_end_file:
20760 /* No data to skip by MAC_PTR. */
20761 break;
20762
20763 case DW_MACRO_GNU_define_indirect:
20764 case DW_MACRO_GNU_undef_indirect:
20765 case DW_MACRO_GNU_define_indirect_alt:
20766 case DW_MACRO_GNU_undef_indirect_alt:
20767 {
20768 unsigned int bytes_read;
20769
20770 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20771 mac_ptr += bytes_read;
20772 mac_ptr += offset_size;
20773 }
20774 break;
20775
20776 case DW_MACRO_GNU_transparent_include:
20777 case DW_MACRO_GNU_transparent_include_alt:
20778 /* Note that, according to the spec, a transparent include
20779 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20780 skip this opcode. */
20781 mac_ptr += offset_size;
20782 break;
20783
20784 case DW_MACINFO_vendor_ext:
20785 /* Only skip the data by MAC_PTR. */
20786 if (!section_is_gnu)
20787 {
20788 unsigned int bytes_read;
20789
20790 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20791 mac_ptr += bytes_read;
20792 read_direct_string (abfd, mac_ptr, &bytes_read);
20793 mac_ptr += bytes_read;
20794 }
20795 /* FALLTHROUGH */
20796
20797 default:
20798 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20799 mac_ptr, mac_end, abfd, offset_size,
20800 section);
20801 if (mac_ptr == NULL)
20802 return;
20803 break;
20804 }
20805 } while (macinfo_type != 0 && current_file == NULL);
20806
20807 /* Second pass: Process all entries.
20808
20809 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20810 command-line macro definitions/undefinitions. This flag is unset when we
20811 reach the first DW_MACINFO_start_file entry. */
20812
20813 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20814 NULL, xcalloc, xfree);
20815 cleanup = make_cleanup_htab_delete (include_hash);
20816 mac_ptr = section->buffer + offset;
20817 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
20818 *slot = (void *) mac_ptr;
20819 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
20820 current_file, lh, comp_dir, section,
20821 section_is_gnu, 0,
20822 offset_size, objfile, include_hash);
20823 do_cleanups (cleanup);
20824 }
20825
20826 /* Check if the attribute's form is a DW_FORM_block*
20827 if so return true else false. */
20828
20829 static int
20830 attr_form_is_block (const struct attribute *attr)
20831 {
20832 return (attr == NULL ? 0 :
20833 attr->form == DW_FORM_block1
20834 || attr->form == DW_FORM_block2
20835 || attr->form == DW_FORM_block4
20836 || attr->form == DW_FORM_block
20837 || attr->form == DW_FORM_exprloc);
20838 }
20839
20840 /* Return non-zero if ATTR's value is a section offset --- classes
20841 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20842 You may use DW_UNSND (attr) to retrieve such offsets.
20843
20844 Section 7.5.4, "Attribute Encodings", explains that no attribute
20845 may have a value that belongs to more than one of these classes; it
20846 would be ambiguous if we did, because we use the same forms for all
20847 of them. */
20848
20849 static int
20850 attr_form_is_section_offset (const struct attribute *attr)
20851 {
20852 return (attr->form == DW_FORM_data4
20853 || attr->form == DW_FORM_data8
20854 || attr->form == DW_FORM_sec_offset);
20855 }
20856
20857 /* Return non-zero if ATTR's value falls in the 'constant' class, or
20858 zero otherwise. When this function returns true, you can apply
20859 dwarf2_get_attr_constant_value to it.
20860
20861 However, note that for some attributes you must check
20862 attr_form_is_section_offset before using this test. DW_FORM_data4
20863 and DW_FORM_data8 are members of both the constant class, and of
20864 the classes that contain offsets into other debug sections
20865 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20866 that, if an attribute's can be either a constant or one of the
20867 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20868 taken as section offsets, not constants. */
20869
20870 static int
20871 attr_form_is_constant (const struct attribute *attr)
20872 {
20873 switch (attr->form)
20874 {
20875 case DW_FORM_sdata:
20876 case DW_FORM_udata:
20877 case DW_FORM_data1:
20878 case DW_FORM_data2:
20879 case DW_FORM_data4:
20880 case DW_FORM_data8:
20881 return 1;
20882 default:
20883 return 0;
20884 }
20885 }
20886
20887
20888 /* DW_ADDR is always stored already as sect_offset; despite for the forms
20889 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20890
20891 static int
20892 attr_form_is_ref (const struct attribute *attr)
20893 {
20894 switch (attr->form)
20895 {
20896 case DW_FORM_ref_addr:
20897 case DW_FORM_ref1:
20898 case DW_FORM_ref2:
20899 case DW_FORM_ref4:
20900 case DW_FORM_ref8:
20901 case DW_FORM_ref_udata:
20902 case DW_FORM_GNU_ref_alt:
20903 return 1;
20904 default:
20905 return 0;
20906 }
20907 }
20908
20909 /* Return the .debug_loc section to use for CU.
20910 For DWO files use .debug_loc.dwo. */
20911
20912 static struct dwarf2_section_info *
20913 cu_debug_loc_section (struct dwarf2_cu *cu)
20914 {
20915 if (cu->dwo_unit)
20916 return &cu->dwo_unit->dwo_file->sections.loc;
20917 return &dwarf2_per_objfile->loc;
20918 }
20919
20920 /* A helper function that fills in a dwarf2_loclist_baton. */
20921
20922 static void
20923 fill_in_loclist_baton (struct dwarf2_cu *cu,
20924 struct dwarf2_loclist_baton *baton,
20925 const struct attribute *attr)
20926 {
20927 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20928
20929 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20930
20931 baton->per_cu = cu->per_cu;
20932 gdb_assert (baton->per_cu);
20933 /* We don't know how long the location list is, but make sure we
20934 don't run off the edge of the section. */
20935 baton->size = section->size - DW_UNSND (attr);
20936 baton->data = section->buffer + DW_UNSND (attr);
20937 baton->base_address = cu->base_address;
20938 baton->from_dwo = cu->dwo_unit != NULL;
20939 }
20940
20941 static void
20942 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
20943 struct dwarf2_cu *cu, int is_block)
20944 {
20945 struct objfile *objfile = dwarf2_per_objfile->objfile;
20946 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20947
20948 if (attr_form_is_section_offset (attr)
20949 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
20950 the section. If so, fall through to the complaint in the
20951 other branch. */
20952 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
20953 {
20954 struct dwarf2_loclist_baton *baton;
20955
20956 baton = obstack_alloc (&objfile->objfile_obstack,
20957 sizeof (struct dwarf2_loclist_baton));
20958
20959 fill_in_loclist_baton (cu, baton, attr);
20960
20961 if (cu->base_known == 0)
20962 complaint (&symfile_complaints,
20963 _("Location list used without "
20964 "specifying the CU base address."));
20965
20966 SYMBOL_ACLASS_INDEX (sym) = (is_block
20967 ? dwarf2_loclist_block_index
20968 : dwarf2_loclist_index);
20969 SYMBOL_LOCATION_BATON (sym) = baton;
20970 }
20971 else
20972 {
20973 struct dwarf2_locexpr_baton *baton;
20974
20975 baton = obstack_alloc (&objfile->objfile_obstack,
20976 sizeof (struct dwarf2_locexpr_baton));
20977 baton->per_cu = cu->per_cu;
20978 gdb_assert (baton->per_cu);
20979
20980 if (attr_form_is_block (attr))
20981 {
20982 /* Note that we're just copying the block's data pointer
20983 here, not the actual data. We're still pointing into the
20984 info_buffer for SYM's objfile; right now we never release
20985 that buffer, but when we do clean up properly this may
20986 need to change. */
20987 baton->size = DW_BLOCK (attr)->size;
20988 baton->data = DW_BLOCK (attr)->data;
20989 }
20990 else
20991 {
20992 dwarf2_invalid_attrib_class_complaint ("location description",
20993 SYMBOL_NATURAL_NAME (sym));
20994 baton->size = 0;
20995 }
20996
20997 SYMBOL_ACLASS_INDEX (sym) = (is_block
20998 ? dwarf2_locexpr_block_index
20999 : dwarf2_locexpr_index);
21000 SYMBOL_LOCATION_BATON (sym) = baton;
21001 }
21002 }
21003
21004 /* Return the OBJFILE associated with the compilation unit CU. If CU
21005 came from a separate debuginfo file, then the master objfile is
21006 returned. */
21007
21008 struct objfile *
21009 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21010 {
21011 struct objfile *objfile = per_cu->objfile;
21012
21013 /* Return the master objfile, so that we can report and look up the
21014 correct file containing this variable. */
21015 if (objfile->separate_debug_objfile_backlink)
21016 objfile = objfile->separate_debug_objfile_backlink;
21017
21018 return objfile;
21019 }
21020
21021 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21022 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21023 CU_HEADERP first. */
21024
21025 static const struct comp_unit_head *
21026 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21027 struct dwarf2_per_cu_data *per_cu)
21028 {
21029 const gdb_byte *info_ptr;
21030
21031 if (per_cu->cu)
21032 return &per_cu->cu->header;
21033
21034 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21035
21036 memset (cu_headerp, 0, sizeof (*cu_headerp));
21037 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21038
21039 return cu_headerp;
21040 }
21041
21042 /* Return the address size given in the compilation unit header for CU. */
21043
21044 int
21045 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21046 {
21047 struct comp_unit_head cu_header_local;
21048 const struct comp_unit_head *cu_headerp;
21049
21050 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21051
21052 return cu_headerp->addr_size;
21053 }
21054
21055 /* Return the offset size given in the compilation unit header for CU. */
21056
21057 int
21058 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21059 {
21060 struct comp_unit_head cu_header_local;
21061 const struct comp_unit_head *cu_headerp;
21062
21063 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21064
21065 return cu_headerp->offset_size;
21066 }
21067
21068 /* See its dwarf2loc.h declaration. */
21069
21070 int
21071 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21072 {
21073 struct comp_unit_head cu_header_local;
21074 const struct comp_unit_head *cu_headerp;
21075
21076 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21077
21078 if (cu_headerp->version == 2)
21079 return cu_headerp->addr_size;
21080 else
21081 return cu_headerp->offset_size;
21082 }
21083
21084 /* Return the text offset of the CU. The returned offset comes from
21085 this CU's objfile. If this objfile came from a separate debuginfo
21086 file, then the offset may be different from the corresponding
21087 offset in the parent objfile. */
21088
21089 CORE_ADDR
21090 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21091 {
21092 struct objfile *objfile = per_cu->objfile;
21093
21094 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21095 }
21096
21097 /* Locate the .debug_info compilation unit from CU's objfile which contains
21098 the DIE at OFFSET. Raises an error on failure. */
21099
21100 static struct dwarf2_per_cu_data *
21101 dwarf2_find_containing_comp_unit (sect_offset offset,
21102 unsigned int offset_in_dwz,
21103 struct objfile *objfile)
21104 {
21105 struct dwarf2_per_cu_data *this_cu;
21106 int low, high;
21107 const sect_offset *cu_off;
21108
21109 low = 0;
21110 high = dwarf2_per_objfile->n_comp_units - 1;
21111 while (high > low)
21112 {
21113 struct dwarf2_per_cu_data *mid_cu;
21114 int mid = low + (high - low) / 2;
21115
21116 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21117 cu_off = &mid_cu->offset;
21118 if (mid_cu->is_dwz > offset_in_dwz
21119 || (mid_cu->is_dwz == offset_in_dwz
21120 && cu_off->sect_off >= offset.sect_off))
21121 high = mid;
21122 else
21123 low = mid + 1;
21124 }
21125 gdb_assert (low == high);
21126 this_cu = dwarf2_per_objfile->all_comp_units[low];
21127 cu_off = &this_cu->offset;
21128 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21129 {
21130 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21131 error (_("Dwarf Error: could not find partial DIE containing "
21132 "offset 0x%lx [in module %s]"),
21133 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21134
21135 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21136 <= offset.sect_off);
21137 return dwarf2_per_objfile->all_comp_units[low-1];
21138 }
21139 else
21140 {
21141 this_cu = dwarf2_per_objfile->all_comp_units[low];
21142 if (low == dwarf2_per_objfile->n_comp_units - 1
21143 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21144 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21145 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21146 return this_cu;
21147 }
21148 }
21149
21150 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21151
21152 static void
21153 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21154 {
21155 memset (cu, 0, sizeof (*cu));
21156 per_cu->cu = cu;
21157 cu->per_cu = per_cu;
21158 cu->objfile = per_cu->objfile;
21159 obstack_init (&cu->comp_unit_obstack);
21160 }
21161
21162 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21163
21164 static void
21165 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21166 enum language pretend_language)
21167 {
21168 struct attribute *attr;
21169
21170 /* Set the language we're debugging. */
21171 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21172 if (attr)
21173 set_cu_language (DW_UNSND (attr), cu);
21174 else
21175 {
21176 cu->language = pretend_language;
21177 cu->language_defn = language_def (cu->language);
21178 }
21179
21180 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21181 if (attr)
21182 cu->producer = DW_STRING (attr);
21183 }
21184
21185 /* Release one cached compilation unit, CU. We unlink it from the tree
21186 of compilation units, but we don't remove it from the read_in_chain;
21187 the caller is responsible for that.
21188 NOTE: DATA is a void * because this function is also used as a
21189 cleanup routine. */
21190
21191 static void
21192 free_heap_comp_unit (void *data)
21193 {
21194 struct dwarf2_cu *cu = data;
21195
21196 gdb_assert (cu->per_cu != NULL);
21197 cu->per_cu->cu = NULL;
21198 cu->per_cu = NULL;
21199
21200 obstack_free (&cu->comp_unit_obstack, NULL);
21201
21202 xfree (cu);
21203 }
21204
21205 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21206 when we're finished with it. We can't free the pointer itself, but be
21207 sure to unlink it from the cache. Also release any associated storage. */
21208
21209 static void
21210 free_stack_comp_unit (void *data)
21211 {
21212 struct dwarf2_cu *cu = data;
21213
21214 gdb_assert (cu->per_cu != NULL);
21215 cu->per_cu->cu = NULL;
21216 cu->per_cu = NULL;
21217
21218 obstack_free (&cu->comp_unit_obstack, NULL);
21219 cu->partial_dies = NULL;
21220 }
21221
21222 /* Free all cached compilation units. */
21223
21224 static void
21225 free_cached_comp_units (void *data)
21226 {
21227 struct dwarf2_per_cu_data *per_cu, **last_chain;
21228
21229 per_cu = dwarf2_per_objfile->read_in_chain;
21230 last_chain = &dwarf2_per_objfile->read_in_chain;
21231 while (per_cu != NULL)
21232 {
21233 struct dwarf2_per_cu_data *next_cu;
21234
21235 next_cu = per_cu->cu->read_in_chain;
21236
21237 free_heap_comp_unit (per_cu->cu);
21238 *last_chain = next_cu;
21239
21240 per_cu = next_cu;
21241 }
21242 }
21243
21244 /* Increase the age counter on each cached compilation unit, and free
21245 any that are too old. */
21246
21247 static void
21248 age_cached_comp_units (void)
21249 {
21250 struct dwarf2_per_cu_data *per_cu, **last_chain;
21251
21252 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21253 per_cu = dwarf2_per_objfile->read_in_chain;
21254 while (per_cu != NULL)
21255 {
21256 per_cu->cu->last_used ++;
21257 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21258 dwarf2_mark (per_cu->cu);
21259 per_cu = per_cu->cu->read_in_chain;
21260 }
21261
21262 per_cu = dwarf2_per_objfile->read_in_chain;
21263 last_chain = &dwarf2_per_objfile->read_in_chain;
21264 while (per_cu != NULL)
21265 {
21266 struct dwarf2_per_cu_data *next_cu;
21267
21268 next_cu = per_cu->cu->read_in_chain;
21269
21270 if (!per_cu->cu->mark)
21271 {
21272 free_heap_comp_unit (per_cu->cu);
21273 *last_chain = next_cu;
21274 }
21275 else
21276 last_chain = &per_cu->cu->read_in_chain;
21277
21278 per_cu = next_cu;
21279 }
21280 }
21281
21282 /* Remove a single compilation unit from the cache. */
21283
21284 static void
21285 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21286 {
21287 struct dwarf2_per_cu_data *per_cu, **last_chain;
21288
21289 per_cu = dwarf2_per_objfile->read_in_chain;
21290 last_chain = &dwarf2_per_objfile->read_in_chain;
21291 while (per_cu != NULL)
21292 {
21293 struct dwarf2_per_cu_data *next_cu;
21294
21295 next_cu = per_cu->cu->read_in_chain;
21296
21297 if (per_cu == target_per_cu)
21298 {
21299 free_heap_comp_unit (per_cu->cu);
21300 per_cu->cu = NULL;
21301 *last_chain = next_cu;
21302 break;
21303 }
21304 else
21305 last_chain = &per_cu->cu->read_in_chain;
21306
21307 per_cu = next_cu;
21308 }
21309 }
21310
21311 /* Release all extra memory associated with OBJFILE. */
21312
21313 void
21314 dwarf2_free_objfile (struct objfile *objfile)
21315 {
21316 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21317
21318 if (dwarf2_per_objfile == NULL)
21319 return;
21320
21321 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21322 free_cached_comp_units (NULL);
21323
21324 if (dwarf2_per_objfile->quick_file_names_table)
21325 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21326
21327 /* Everything else should be on the objfile obstack. */
21328 }
21329
21330 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21331 We store these in a hash table separate from the DIEs, and preserve them
21332 when the DIEs are flushed out of cache.
21333
21334 The CU "per_cu" pointer is needed because offset alone is not enough to
21335 uniquely identify the type. A file may have multiple .debug_types sections,
21336 or the type may come from a DWO file. Furthermore, while it's more logical
21337 to use per_cu->section+offset, with Fission the section with the data is in
21338 the DWO file but we don't know that section at the point we need it.
21339 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21340 because we can enter the lookup routine, get_die_type_at_offset, from
21341 outside this file, and thus won't necessarily have PER_CU->cu.
21342 Fortunately, PER_CU is stable for the life of the objfile. */
21343
21344 struct dwarf2_per_cu_offset_and_type
21345 {
21346 const struct dwarf2_per_cu_data *per_cu;
21347 sect_offset offset;
21348 struct type *type;
21349 };
21350
21351 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21352
21353 static hashval_t
21354 per_cu_offset_and_type_hash (const void *item)
21355 {
21356 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21357
21358 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21359 }
21360
21361 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21362
21363 static int
21364 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21365 {
21366 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21367 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21368
21369 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21370 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21371 }
21372
21373 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21374 table if necessary. For convenience, return TYPE.
21375
21376 The DIEs reading must have careful ordering to:
21377 * Not cause infite loops trying to read in DIEs as a prerequisite for
21378 reading current DIE.
21379 * Not trying to dereference contents of still incompletely read in types
21380 while reading in other DIEs.
21381 * Enable referencing still incompletely read in types just by a pointer to
21382 the type without accessing its fields.
21383
21384 Therefore caller should follow these rules:
21385 * Try to fetch any prerequisite types we may need to build this DIE type
21386 before building the type and calling set_die_type.
21387 * After building type call set_die_type for current DIE as soon as
21388 possible before fetching more types to complete the current type.
21389 * Make the type as complete as possible before fetching more types. */
21390
21391 static struct type *
21392 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21393 {
21394 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21395 struct objfile *objfile = cu->objfile;
21396
21397 /* For Ada types, make sure that the gnat-specific data is always
21398 initialized (if not already set). There are a few types where
21399 we should not be doing so, because the type-specific area is
21400 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21401 where the type-specific area is used to store the floatformat).
21402 But this is not a problem, because the gnat-specific information
21403 is actually not needed for these types. */
21404 if (need_gnat_info (cu)
21405 && TYPE_CODE (type) != TYPE_CODE_FUNC
21406 && TYPE_CODE (type) != TYPE_CODE_FLT
21407 && !HAVE_GNAT_AUX_INFO (type))
21408 INIT_GNAT_SPECIFIC (type);
21409
21410 if (dwarf2_per_objfile->die_type_hash == NULL)
21411 {
21412 dwarf2_per_objfile->die_type_hash =
21413 htab_create_alloc_ex (127,
21414 per_cu_offset_and_type_hash,
21415 per_cu_offset_and_type_eq,
21416 NULL,
21417 &objfile->objfile_obstack,
21418 hashtab_obstack_allocate,
21419 dummy_obstack_deallocate);
21420 }
21421
21422 ofs.per_cu = cu->per_cu;
21423 ofs.offset = die->offset;
21424 ofs.type = type;
21425 slot = (struct dwarf2_per_cu_offset_and_type **)
21426 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21427 if (*slot)
21428 complaint (&symfile_complaints,
21429 _("A problem internal to GDB: DIE 0x%x has type already set"),
21430 die->offset.sect_off);
21431 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21432 **slot = ofs;
21433 return type;
21434 }
21435
21436 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21437 or return NULL if the die does not have a saved type. */
21438
21439 static struct type *
21440 get_die_type_at_offset (sect_offset offset,
21441 struct dwarf2_per_cu_data *per_cu)
21442 {
21443 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21444
21445 if (dwarf2_per_objfile->die_type_hash == NULL)
21446 return NULL;
21447
21448 ofs.per_cu = per_cu;
21449 ofs.offset = offset;
21450 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21451 if (slot)
21452 return slot->type;
21453 else
21454 return NULL;
21455 }
21456
21457 /* Look up the type for DIE in CU in die_type_hash,
21458 or return NULL if DIE does not have a saved type. */
21459
21460 static struct type *
21461 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21462 {
21463 return get_die_type_at_offset (die->offset, cu->per_cu);
21464 }
21465
21466 /* Add a dependence relationship from CU to REF_PER_CU. */
21467
21468 static void
21469 dwarf2_add_dependence (struct dwarf2_cu *cu,
21470 struct dwarf2_per_cu_data *ref_per_cu)
21471 {
21472 void **slot;
21473
21474 if (cu->dependencies == NULL)
21475 cu->dependencies
21476 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21477 NULL, &cu->comp_unit_obstack,
21478 hashtab_obstack_allocate,
21479 dummy_obstack_deallocate);
21480
21481 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21482 if (*slot == NULL)
21483 *slot = ref_per_cu;
21484 }
21485
21486 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21487 Set the mark field in every compilation unit in the
21488 cache that we must keep because we are keeping CU. */
21489
21490 static int
21491 dwarf2_mark_helper (void **slot, void *data)
21492 {
21493 struct dwarf2_per_cu_data *per_cu;
21494
21495 per_cu = (struct dwarf2_per_cu_data *) *slot;
21496
21497 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21498 reading of the chain. As such dependencies remain valid it is not much
21499 useful to track and undo them during QUIT cleanups. */
21500 if (per_cu->cu == NULL)
21501 return 1;
21502
21503 if (per_cu->cu->mark)
21504 return 1;
21505 per_cu->cu->mark = 1;
21506
21507 if (per_cu->cu->dependencies != NULL)
21508 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21509
21510 return 1;
21511 }
21512
21513 /* Set the mark field in CU and in every other compilation unit in the
21514 cache that we must keep because we are keeping CU. */
21515
21516 static void
21517 dwarf2_mark (struct dwarf2_cu *cu)
21518 {
21519 if (cu->mark)
21520 return;
21521 cu->mark = 1;
21522 if (cu->dependencies != NULL)
21523 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21524 }
21525
21526 static void
21527 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21528 {
21529 while (per_cu)
21530 {
21531 per_cu->cu->mark = 0;
21532 per_cu = per_cu->cu->read_in_chain;
21533 }
21534 }
21535
21536 /* Trivial hash function for partial_die_info: the hash value of a DIE
21537 is its offset in .debug_info for this objfile. */
21538
21539 static hashval_t
21540 partial_die_hash (const void *item)
21541 {
21542 const struct partial_die_info *part_die = item;
21543
21544 return part_die->offset.sect_off;
21545 }
21546
21547 /* Trivial comparison function for partial_die_info structures: two DIEs
21548 are equal if they have the same offset. */
21549
21550 static int
21551 partial_die_eq (const void *item_lhs, const void *item_rhs)
21552 {
21553 const struct partial_die_info *part_die_lhs = item_lhs;
21554 const struct partial_die_info *part_die_rhs = item_rhs;
21555
21556 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21557 }
21558
21559 static struct cmd_list_element *set_dwarf2_cmdlist;
21560 static struct cmd_list_element *show_dwarf2_cmdlist;
21561
21562 static void
21563 set_dwarf2_cmd (char *args, int from_tty)
21564 {
21565 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21566 }
21567
21568 static void
21569 show_dwarf2_cmd (char *args, int from_tty)
21570 {
21571 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21572 }
21573
21574 /* Free data associated with OBJFILE, if necessary. */
21575
21576 static void
21577 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21578 {
21579 struct dwarf2_per_objfile *data = d;
21580 int ix;
21581
21582 /* Make sure we don't accidentally use dwarf2_per_objfile while
21583 cleaning up. */
21584 dwarf2_per_objfile = NULL;
21585
21586 for (ix = 0; ix < data->n_comp_units; ++ix)
21587 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21588
21589 for (ix = 0; ix < data->n_type_units; ++ix)
21590 VEC_free (dwarf2_per_cu_ptr,
21591 data->all_type_units[ix]->per_cu.imported_symtabs);
21592 xfree (data->all_type_units);
21593
21594 VEC_free (dwarf2_section_info_def, data->types);
21595
21596 if (data->dwo_files)
21597 free_dwo_files (data->dwo_files, objfile);
21598 if (data->dwp_file)
21599 gdb_bfd_unref (data->dwp_file->dbfd);
21600
21601 if (data->dwz_file && data->dwz_file->dwz_bfd)
21602 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21603 }
21604
21605 \f
21606 /* The "save gdb-index" command. */
21607
21608 /* The contents of the hash table we create when building the string
21609 table. */
21610 struct strtab_entry
21611 {
21612 offset_type offset;
21613 const char *str;
21614 };
21615
21616 /* Hash function for a strtab_entry.
21617
21618 Function is used only during write_hash_table so no index format backward
21619 compatibility is needed. */
21620
21621 static hashval_t
21622 hash_strtab_entry (const void *e)
21623 {
21624 const struct strtab_entry *entry = e;
21625 return mapped_index_string_hash (INT_MAX, entry->str);
21626 }
21627
21628 /* Equality function for a strtab_entry. */
21629
21630 static int
21631 eq_strtab_entry (const void *a, const void *b)
21632 {
21633 const struct strtab_entry *ea = a;
21634 const struct strtab_entry *eb = b;
21635 return !strcmp (ea->str, eb->str);
21636 }
21637
21638 /* Create a strtab_entry hash table. */
21639
21640 static htab_t
21641 create_strtab (void)
21642 {
21643 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21644 xfree, xcalloc, xfree);
21645 }
21646
21647 /* Add a string to the constant pool. Return the string's offset in
21648 host order. */
21649
21650 static offset_type
21651 add_string (htab_t table, struct obstack *cpool, const char *str)
21652 {
21653 void **slot;
21654 struct strtab_entry entry;
21655 struct strtab_entry *result;
21656
21657 entry.str = str;
21658 slot = htab_find_slot (table, &entry, INSERT);
21659 if (*slot)
21660 result = *slot;
21661 else
21662 {
21663 result = XNEW (struct strtab_entry);
21664 result->offset = obstack_object_size (cpool);
21665 result->str = str;
21666 obstack_grow_str0 (cpool, str);
21667 *slot = result;
21668 }
21669 return result->offset;
21670 }
21671
21672 /* An entry in the symbol table. */
21673 struct symtab_index_entry
21674 {
21675 /* The name of the symbol. */
21676 const char *name;
21677 /* The offset of the name in the constant pool. */
21678 offset_type index_offset;
21679 /* A sorted vector of the indices of all the CUs that hold an object
21680 of this name. */
21681 VEC (offset_type) *cu_indices;
21682 };
21683
21684 /* The symbol table. This is a power-of-2-sized hash table. */
21685 struct mapped_symtab
21686 {
21687 offset_type n_elements;
21688 offset_type size;
21689 struct symtab_index_entry **data;
21690 };
21691
21692 /* Hash function for a symtab_index_entry. */
21693
21694 static hashval_t
21695 hash_symtab_entry (const void *e)
21696 {
21697 const struct symtab_index_entry *entry = e;
21698 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21699 sizeof (offset_type) * VEC_length (offset_type,
21700 entry->cu_indices),
21701 0);
21702 }
21703
21704 /* Equality function for a symtab_index_entry. */
21705
21706 static int
21707 eq_symtab_entry (const void *a, const void *b)
21708 {
21709 const struct symtab_index_entry *ea = a;
21710 const struct symtab_index_entry *eb = b;
21711 int len = VEC_length (offset_type, ea->cu_indices);
21712 if (len != VEC_length (offset_type, eb->cu_indices))
21713 return 0;
21714 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21715 VEC_address (offset_type, eb->cu_indices),
21716 sizeof (offset_type) * len);
21717 }
21718
21719 /* Destroy a symtab_index_entry. */
21720
21721 static void
21722 delete_symtab_entry (void *p)
21723 {
21724 struct symtab_index_entry *entry = p;
21725 VEC_free (offset_type, entry->cu_indices);
21726 xfree (entry);
21727 }
21728
21729 /* Create a hash table holding symtab_index_entry objects. */
21730
21731 static htab_t
21732 create_symbol_hash_table (void)
21733 {
21734 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21735 delete_symtab_entry, xcalloc, xfree);
21736 }
21737
21738 /* Create a new mapped symtab object. */
21739
21740 static struct mapped_symtab *
21741 create_mapped_symtab (void)
21742 {
21743 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21744 symtab->n_elements = 0;
21745 symtab->size = 1024;
21746 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21747 return symtab;
21748 }
21749
21750 /* Destroy a mapped_symtab. */
21751
21752 static void
21753 cleanup_mapped_symtab (void *p)
21754 {
21755 struct mapped_symtab *symtab = p;
21756 /* The contents of the array are freed when the other hash table is
21757 destroyed. */
21758 xfree (symtab->data);
21759 xfree (symtab);
21760 }
21761
21762 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
21763 the slot.
21764
21765 Function is used only during write_hash_table so no index format backward
21766 compatibility is needed. */
21767
21768 static struct symtab_index_entry **
21769 find_slot (struct mapped_symtab *symtab, const char *name)
21770 {
21771 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
21772
21773 index = hash & (symtab->size - 1);
21774 step = ((hash * 17) & (symtab->size - 1)) | 1;
21775
21776 for (;;)
21777 {
21778 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21779 return &symtab->data[index];
21780 index = (index + step) & (symtab->size - 1);
21781 }
21782 }
21783
21784 /* Expand SYMTAB's hash table. */
21785
21786 static void
21787 hash_expand (struct mapped_symtab *symtab)
21788 {
21789 offset_type old_size = symtab->size;
21790 offset_type i;
21791 struct symtab_index_entry **old_entries = symtab->data;
21792
21793 symtab->size *= 2;
21794 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21795
21796 for (i = 0; i < old_size; ++i)
21797 {
21798 if (old_entries[i])
21799 {
21800 struct symtab_index_entry **slot = find_slot (symtab,
21801 old_entries[i]->name);
21802 *slot = old_entries[i];
21803 }
21804 }
21805
21806 xfree (old_entries);
21807 }
21808
21809 /* Add an entry to SYMTAB. NAME is the name of the symbol.
21810 CU_INDEX is the index of the CU in which the symbol appears.
21811 IS_STATIC is one if the symbol is static, otherwise zero (global). */
21812
21813 static void
21814 add_index_entry (struct mapped_symtab *symtab, const char *name,
21815 int is_static, gdb_index_symbol_kind kind,
21816 offset_type cu_index)
21817 {
21818 struct symtab_index_entry **slot;
21819 offset_type cu_index_and_attrs;
21820
21821 ++symtab->n_elements;
21822 if (4 * symtab->n_elements / 3 >= symtab->size)
21823 hash_expand (symtab);
21824
21825 slot = find_slot (symtab, name);
21826 if (!*slot)
21827 {
21828 *slot = XNEW (struct symtab_index_entry);
21829 (*slot)->name = name;
21830 /* index_offset is set later. */
21831 (*slot)->cu_indices = NULL;
21832 }
21833
21834 cu_index_and_attrs = 0;
21835 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21836 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21837 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21838
21839 /* We don't want to record an index value twice as we want to avoid the
21840 duplication.
21841 We process all global symbols and then all static symbols
21842 (which would allow us to avoid the duplication by only having to check
21843 the last entry pushed), but a symbol could have multiple kinds in one CU.
21844 To keep things simple we don't worry about the duplication here and
21845 sort and uniqufy the list after we've processed all symbols. */
21846 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21847 }
21848
21849 /* qsort helper routine for uniquify_cu_indices. */
21850
21851 static int
21852 offset_type_compare (const void *ap, const void *bp)
21853 {
21854 offset_type a = *(offset_type *) ap;
21855 offset_type b = *(offset_type *) bp;
21856
21857 return (a > b) - (b > a);
21858 }
21859
21860 /* Sort and remove duplicates of all symbols' cu_indices lists. */
21861
21862 static void
21863 uniquify_cu_indices (struct mapped_symtab *symtab)
21864 {
21865 int i;
21866
21867 for (i = 0; i < symtab->size; ++i)
21868 {
21869 struct symtab_index_entry *entry = symtab->data[i];
21870
21871 if (entry
21872 && entry->cu_indices != NULL)
21873 {
21874 unsigned int next_to_insert, next_to_check;
21875 offset_type last_value;
21876
21877 qsort (VEC_address (offset_type, entry->cu_indices),
21878 VEC_length (offset_type, entry->cu_indices),
21879 sizeof (offset_type), offset_type_compare);
21880
21881 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21882 next_to_insert = 1;
21883 for (next_to_check = 1;
21884 next_to_check < VEC_length (offset_type, entry->cu_indices);
21885 ++next_to_check)
21886 {
21887 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21888 != last_value)
21889 {
21890 last_value = VEC_index (offset_type, entry->cu_indices,
21891 next_to_check);
21892 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21893 last_value);
21894 ++next_to_insert;
21895 }
21896 }
21897 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21898 }
21899 }
21900 }
21901
21902 /* Add a vector of indices to the constant pool. */
21903
21904 static offset_type
21905 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
21906 struct symtab_index_entry *entry)
21907 {
21908 void **slot;
21909
21910 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
21911 if (!*slot)
21912 {
21913 offset_type len = VEC_length (offset_type, entry->cu_indices);
21914 offset_type val = MAYBE_SWAP (len);
21915 offset_type iter;
21916 int i;
21917
21918 *slot = entry;
21919 entry->index_offset = obstack_object_size (cpool);
21920
21921 obstack_grow (cpool, &val, sizeof (val));
21922 for (i = 0;
21923 VEC_iterate (offset_type, entry->cu_indices, i, iter);
21924 ++i)
21925 {
21926 val = MAYBE_SWAP (iter);
21927 obstack_grow (cpool, &val, sizeof (val));
21928 }
21929 }
21930 else
21931 {
21932 struct symtab_index_entry *old_entry = *slot;
21933 entry->index_offset = old_entry->index_offset;
21934 entry = old_entry;
21935 }
21936 return entry->index_offset;
21937 }
21938
21939 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
21940 constant pool entries going into the obstack CPOOL. */
21941
21942 static void
21943 write_hash_table (struct mapped_symtab *symtab,
21944 struct obstack *output, struct obstack *cpool)
21945 {
21946 offset_type i;
21947 htab_t symbol_hash_table;
21948 htab_t str_table;
21949
21950 symbol_hash_table = create_symbol_hash_table ();
21951 str_table = create_strtab ();
21952
21953 /* We add all the index vectors to the constant pool first, to
21954 ensure alignment is ok. */
21955 for (i = 0; i < symtab->size; ++i)
21956 {
21957 if (symtab->data[i])
21958 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
21959 }
21960
21961 /* Now write out the hash table. */
21962 for (i = 0; i < symtab->size; ++i)
21963 {
21964 offset_type str_off, vec_off;
21965
21966 if (symtab->data[i])
21967 {
21968 str_off = add_string (str_table, cpool, symtab->data[i]->name);
21969 vec_off = symtab->data[i]->index_offset;
21970 }
21971 else
21972 {
21973 /* While 0 is a valid constant pool index, it is not valid
21974 to have 0 for both offsets. */
21975 str_off = 0;
21976 vec_off = 0;
21977 }
21978
21979 str_off = MAYBE_SWAP (str_off);
21980 vec_off = MAYBE_SWAP (vec_off);
21981
21982 obstack_grow (output, &str_off, sizeof (str_off));
21983 obstack_grow (output, &vec_off, sizeof (vec_off));
21984 }
21985
21986 htab_delete (str_table);
21987 htab_delete (symbol_hash_table);
21988 }
21989
21990 /* Struct to map psymtab to CU index in the index file. */
21991 struct psymtab_cu_index_map
21992 {
21993 struct partial_symtab *psymtab;
21994 unsigned int cu_index;
21995 };
21996
21997 static hashval_t
21998 hash_psymtab_cu_index (const void *item)
21999 {
22000 const struct psymtab_cu_index_map *map = item;
22001
22002 return htab_hash_pointer (map->psymtab);
22003 }
22004
22005 static int
22006 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22007 {
22008 const struct psymtab_cu_index_map *lhs = item_lhs;
22009 const struct psymtab_cu_index_map *rhs = item_rhs;
22010
22011 return lhs->psymtab == rhs->psymtab;
22012 }
22013
22014 /* Helper struct for building the address table. */
22015 struct addrmap_index_data
22016 {
22017 struct objfile *objfile;
22018 struct obstack *addr_obstack;
22019 htab_t cu_index_htab;
22020
22021 /* Non-zero if the previous_* fields are valid.
22022 We can't write an entry until we see the next entry (since it is only then
22023 that we know the end of the entry). */
22024 int previous_valid;
22025 /* Index of the CU in the table of all CUs in the index file. */
22026 unsigned int previous_cu_index;
22027 /* Start address of the CU. */
22028 CORE_ADDR previous_cu_start;
22029 };
22030
22031 /* Write an address entry to OBSTACK. */
22032
22033 static void
22034 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22035 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22036 {
22037 offset_type cu_index_to_write;
22038 gdb_byte addr[8];
22039 CORE_ADDR baseaddr;
22040
22041 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22042
22043 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22044 obstack_grow (obstack, addr, 8);
22045 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22046 obstack_grow (obstack, addr, 8);
22047 cu_index_to_write = MAYBE_SWAP (cu_index);
22048 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22049 }
22050
22051 /* Worker function for traversing an addrmap to build the address table. */
22052
22053 static int
22054 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22055 {
22056 struct addrmap_index_data *data = datap;
22057 struct partial_symtab *pst = obj;
22058
22059 if (data->previous_valid)
22060 add_address_entry (data->objfile, data->addr_obstack,
22061 data->previous_cu_start, start_addr,
22062 data->previous_cu_index);
22063
22064 data->previous_cu_start = start_addr;
22065 if (pst != NULL)
22066 {
22067 struct psymtab_cu_index_map find_map, *map;
22068 find_map.psymtab = pst;
22069 map = htab_find (data->cu_index_htab, &find_map);
22070 gdb_assert (map != NULL);
22071 data->previous_cu_index = map->cu_index;
22072 data->previous_valid = 1;
22073 }
22074 else
22075 data->previous_valid = 0;
22076
22077 return 0;
22078 }
22079
22080 /* Write OBJFILE's address map to OBSTACK.
22081 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22082 in the index file. */
22083
22084 static void
22085 write_address_map (struct objfile *objfile, struct obstack *obstack,
22086 htab_t cu_index_htab)
22087 {
22088 struct addrmap_index_data addrmap_index_data;
22089
22090 /* When writing the address table, we have to cope with the fact that
22091 the addrmap iterator only provides the start of a region; we have to
22092 wait until the next invocation to get the start of the next region. */
22093
22094 addrmap_index_data.objfile = objfile;
22095 addrmap_index_data.addr_obstack = obstack;
22096 addrmap_index_data.cu_index_htab = cu_index_htab;
22097 addrmap_index_data.previous_valid = 0;
22098
22099 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22100 &addrmap_index_data);
22101
22102 /* It's highly unlikely the last entry (end address = 0xff...ff)
22103 is valid, but we should still handle it.
22104 The end address is recorded as the start of the next region, but that
22105 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22106 anyway. */
22107 if (addrmap_index_data.previous_valid)
22108 add_address_entry (objfile, obstack,
22109 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22110 addrmap_index_data.previous_cu_index);
22111 }
22112
22113 /* Return the symbol kind of PSYM. */
22114
22115 static gdb_index_symbol_kind
22116 symbol_kind (struct partial_symbol *psym)
22117 {
22118 domain_enum domain = PSYMBOL_DOMAIN (psym);
22119 enum address_class aclass = PSYMBOL_CLASS (psym);
22120
22121 switch (domain)
22122 {
22123 case VAR_DOMAIN:
22124 switch (aclass)
22125 {
22126 case LOC_BLOCK:
22127 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22128 case LOC_TYPEDEF:
22129 return GDB_INDEX_SYMBOL_KIND_TYPE;
22130 case LOC_COMPUTED:
22131 case LOC_CONST_BYTES:
22132 case LOC_OPTIMIZED_OUT:
22133 case LOC_STATIC:
22134 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22135 case LOC_CONST:
22136 /* Note: It's currently impossible to recognize psyms as enum values
22137 short of reading the type info. For now punt. */
22138 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22139 default:
22140 /* There are other LOC_FOO values that one might want to classify
22141 as variables, but dwarf2read.c doesn't currently use them. */
22142 return GDB_INDEX_SYMBOL_KIND_OTHER;
22143 }
22144 case STRUCT_DOMAIN:
22145 return GDB_INDEX_SYMBOL_KIND_TYPE;
22146 default:
22147 return GDB_INDEX_SYMBOL_KIND_OTHER;
22148 }
22149 }
22150
22151 /* Add a list of partial symbols to SYMTAB. */
22152
22153 static void
22154 write_psymbols (struct mapped_symtab *symtab,
22155 htab_t psyms_seen,
22156 struct partial_symbol **psymp,
22157 int count,
22158 offset_type cu_index,
22159 int is_static)
22160 {
22161 for (; count-- > 0; ++psymp)
22162 {
22163 struct partial_symbol *psym = *psymp;
22164 void **slot;
22165
22166 if (SYMBOL_LANGUAGE (psym) == language_ada)
22167 error (_("Ada is not currently supported by the index"));
22168
22169 /* Only add a given psymbol once. */
22170 slot = htab_find_slot (psyms_seen, psym, INSERT);
22171 if (!*slot)
22172 {
22173 gdb_index_symbol_kind kind = symbol_kind (psym);
22174
22175 *slot = psym;
22176 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22177 is_static, kind, cu_index);
22178 }
22179 }
22180 }
22181
22182 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22183 exception if there is an error. */
22184
22185 static void
22186 write_obstack (FILE *file, struct obstack *obstack)
22187 {
22188 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22189 file)
22190 != obstack_object_size (obstack))
22191 error (_("couldn't data write to file"));
22192 }
22193
22194 /* Unlink a file if the argument is not NULL. */
22195
22196 static void
22197 unlink_if_set (void *p)
22198 {
22199 char **filename = p;
22200 if (*filename)
22201 unlink (*filename);
22202 }
22203
22204 /* A helper struct used when iterating over debug_types. */
22205 struct signatured_type_index_data
22206 {
22207 struct objfile *objfile;
22208 struct mapped_symtab *symtab;
22209 struct obstack *types_list;
22210 htab_t psyms_seen;
22211 int cu_index;
22212 };
22213
22214 /* A helper function that writes a single signatured_type to an
22215 obstack. */
22216
22217 static int
22218 write_one_signatured_type (void **slot, void *d)
22219 {
22220 struct signatured_type_index_data *info = d;
22221 struct signatured_type *entry = (struct signatured_type *) *slot;
22222 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22223 gdb_byte val[8];
22224
22225 write_psymbols (info->symtab,
22226 info->psyms_seen,
22227 info->objfile->global_psymbols.list
22228 + psymtab->globals_offset,
22229 psymtab->n_global_syms, info->cu_index,
22230 0);
22231 write_psymbols (info->symtab,
22232 info->psyms_seen,
22233 info->objfile->static_psymbols.list
22234 + psymtab->statics_offset,
22235 psymtab->n_static_syms, info->cu_index,
22236 1);
22237
22238 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22239 entry->per_cu.offset.sect_off);
22240 obstack_grow (info->types_list, val, 8);
22241 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22242 entry->type_offset_in_tu.cu_off);
22243 obstack_grow (info->types_list, val, 8);
22244 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22245 obstack_grow (info->types_list, val, 8);
22246
22247 ++info->cu_index;
22248
22249 return 1;
22250 }
22251
22252 /* Recurse into all "included" dependencies and write their symbols as
22253 if they appeared in this psymtab. */
22254
22255 static void
22256 recursively_write_psymbols (struct objfile *objfile,
22257 struct partial_symtab *psymtab,
22258 struct mapped_symtab *symtab,
22259 htab_t psyms_seen,
22260 offset_type cu_index)
22261 {
22262 int i;
22263
22264 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22265 if (psymtab->dependencies[i]->user != NULL)
22266 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22267 symtab, psyms_seen, cu_index);
22268
22269 write_psymbols (symtab,
22270 psyms_seen,
22271 objfile->global_psymbols.list + psymtab->globals_offset,
22272 psymtab->n_global_syms, cu_index,
22273 0);
22274 write_psymbols (symtab,
22275 psyms_seen,
22276 objfile->static_psymbols.list + psymtab->statics_offset,
22277 psymtab->n_static_syms, cu_index,
22278 1);
22279 }
22280
22281 /* Create an index file for OBJFILE in the directory DIR. */
22282
22283 static void
22284 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22285 {
22286 struct cleanup *cleanup;
22287 char *filename, *cleanup_filename;
22288 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22289 struct obstack cu_list, types_cu_list;
22290 int i;
22291 FILE *out_file;
22292 struct mapped_symtab *symtab;
22293 offset_type val, size_of_contents, total_len;
22294 struct stat st;
22295 htab_t psyms_seen;
22296 htab_t cu_index_htab;
22297 struct psymtab_cu_index_map *psymtab_cu_index_map;
22298
22299 if (dwarf2_per_objfile->using_index)
22300 error (_("Cannot use an index to create the index"));
22301
22302 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22303 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22304
22305 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22306 return;
22307
22308 if (stat (objfile_name (objfile), &st) < 0)
22309 perror_with_name (objfile_name (objfile));
22310
22311 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22312 INDEX_SUFFIX, (char *) NULL);
22313 cleanup = make_cleanup (xfree, filename);
22314
22315 out_file = gdb_fopen_cloexec (filename, "wb");
22316 if (!out_file)
22317 error (_("Can't open `%s' for writing"), filename);
22318
22319 cleanup_filename = filename;
22320 make_cleanup (unlink_if_set, &cleanup_filename);
22321
22322 symtab = create_mapped_symtab ();
22323 make_cleanup (cleanup_mapped_symtab, symtab);
22324
22325 obstack_init (&addr_obstack);
22326 make_cleanup_obstack_free (&addr_obstack);
22327
22328 obstack_init (&cu_list);
22329 make_cleanup_obstack_free (&cu_list);
22330
22331 obstack_init (&types_cu_list);
22332 make_cleanup_obstack_free (&types_cu_list);
22333
22334 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22335 NULL, xcalloc, xfree);
22336 make_cleanup_htab_delete (psyms_seen);
22337
22338 /* While we're scanning CU's create a table that maps a psymtab pointer
22339 (which is what addrmap records) to its index (which is what is recorded
22340 in the index file). This will later be needed to write the address
22341 table. */
22342 cu_index_htab = htab_create_alloc (100,
22343 hash_psymtab_cu_index,
22344 eq_psymtab_cu_index,
22345 NULL, xcalloc, xfree);
22346 make_cleanup_htab_delete (cu_index_htab);
22347 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22348 xmalloc (sizeof (struct psymtab_cu_index_map)
22349 * dwarf2_per_objfile->n_comp_units);
22350 make_cleanup (xfree, psymtab_cu_index_map);
22351
22352 /* The CU list is already sorted, so we don't need to do additional
22353 work here. Also, the debug_types entries do not appear in
22354 all_comp_units, but only in their own hash table. */
22355 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22356 {
22357 struct dwarf2_per_cu_data *per_cu
22358 = dwarf2_per_objfile->all_comp_units[i];
22359 struct partial_symtab *psymtab = per_cu->v.psymtab;
22360 gdb_byte val[8];
22361 struct psymtab_cu_index_map *map;
22362 void **slot;
22363
22364 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22365 It may be referenced from a local scope but in such case it does not
22366 need to be present in .gdb_index. */
22367 if (psymtab == NULL)
22368 continue;
22369
22370 if (psymtab->user == NULL)
22371 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22372
22373 map = &psymtab_cu_index_map[i];
22374 map->psymtab = psymtab;
22375 map->cu_index = i;
22376 slot = htab_find_slot (cu_index_htab, map, INSERT);
22377 gdb_assert (slot != NULL);
22378 gdb_assert (*slot == NULL);
22379 *slot = map;
22380
22381 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22382 per_cu->offset.sect_off);
22383 obstack_grow (&cu_list, val, 8);
22384 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22385 obstack_grow (&cu_list, val, 8);
22386 }
22387
22388 /* Dump the address map. */
22389 write_address_map (objfile, &addr_obstack, cu_index_htab);
22390
22391 /* Write out the .debug_type entries, if any. */
22392 if (dwarf2_per_objfile->signatured_types)
22393 {
22394 struct signatured_type_index_data sig_data;
22395
22396 sig_data.objfile = objfile;
22397 sig_data.symtab = symtab;
22398 sig_data.types_list = &types_cu_list;
22399 sig_data.psyms_seen = psyms_seen;
22400 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22401 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22402 write_one_signatured_type, &sig_data);
22403 }
22404
22405 /* Now that we've processed all symbols we can shrink their cu_indices
22406 lists. */
22407 uniquify_cu_indices (symtab);
22408
22409 obstack_init (&constant_pool);
22410 make_cleanup_obstack_free (&constant_pool);
22411 obstack_init (&symtab_obstack);
22412 make_cleanup_obstack_free (&symtab_obstack);
22413 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22414
22415 obstack_init (&contents);
22416 make_cleanup_obstack_free (&contents);
22417 size_of_contents = 6 * sizeof (offset_type);
22418 total_len = size_of_contents;
22419
22420 /* The version number. */
22421 val = MAYBE_SWAP (8);
22422 obstack_grow (&contents, &val, sizeof (val));
22423
22424 /* The offset of the CU list from the start of the file. */
22425 val = MAYBE_SWAP (total_len);
22426 obstack_grow (&contents, &val, sizeof (val));
22427 total_len += obstack_object_size (&cu_list);
22428
22429 /* The offset of the types CU list from the start of the file. */
22430 val = MAYBE_SWAP (total_len);
22431 obstack_grow (&contents, &val, sizeof (val));
22432 total_len += obstack_object_size (&types_cu_list);
22433
22434 /* The offset of the address table from the start of the file. */
22435 val = MAYBE_SWAP (total_len);
22436 obstack_grow (&contents, &val, sizeof (val));
22437 total_len += obstack_object_size (&addr_obstack);
22438
22439 /* The offset of the symbol table from the start of the file. */
22440 val = MAYBE_SWAP (total_len);
22441 obstack_grow (&contents, &val, sizeof (val));
22442 total_len += obstack_object_size (&symtab_obstack);
22443
22444 /* The offset of the constant pool from the start of the file. */
22445 val = MAYBE_SWAP (total_len);
22446 obstack_grow (&contents, &val, sizeof (val));
22447 total_len += obstack_object_size (&constant_pool);
22448
22449 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22450
22451 write_obstack (out_file, &contents);
22452 write_obstack (out_file, &cu_list);
22453 write_obstack (out_file, &types_cu_list);
22454 write_obstack (out_file, &addr_obstack);
22455 write_obstack (out_file, &symtab_obstack);
22456 write_obstack (out_file, &constant_pool);
22457
22458 fclose (out_file);
22459
22460 /* We want to keep the file, so we set cleanup_filename to NULL
22461 here. See unlink_if_set. */
22462 cleanup_filename = NULL;
22463
22464 do_cleanups (cleanup);
22465 }
22466
22467 /* Implementation of the `save gdb-index' command.
22468
22469 Note that the file format used by this command is documented in the
22470 GDB manual. Any changes here must be documented there. */
22471
22472 static void
22473 save_gdb_index_command (char *arg, int from_tty)
22474 {
22475 struct objfile *objfile;
22476
22477 if (!arg || !*arg)
22478 error (_("usage: save gdb-index DIRECTORY"));
22479
22480 ALL_OBJFILES (objfile)
22481 {
22482 struct stat st;
22483
22484 /* If the objfile does not correspond to an actual file, skip it. */
22485 if (stat (objfile_name (objfile), &st) < 0)
22486 continue;
22487
22488 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22489 if (dwarf2_per_objfile)
22490 {
22491 volatile struct gdb_exception except;
22492
22493 TRY_CATCH (except, RETURN_MASK_ERROR)
22494 {
22495 write_psymtabs_to_index (objfile, arg);
22496 }
22497 if (except.reason < 0)
22498 exception_fprintf (gdb_stderr, except,
22499 _("Error while writing index for `%s': "),
22500 objfile_name (objfile));
22501 }
22502 }
22503 }
22504
22505 \f
22506
22507 int dwarf2_always_disassemble;
22508
22509 static void
22510 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22511 struct cmd_list_element *c, const char *value)
22512 {
22513 fprintf_filtered (file,
22514 _("Whether to always disassemble "
22515 "DWARF expressions is %s.\n"),
22516 value);
22517 }
22518
22519 static void
22520 show_check_physname (struct ui_file *file, int from_tty,
22521 struct cmd_list_element *c, const char *value)
22522 {
22523 fprintf_filtered (file,
22524 _("Whether to check \"physname\" is %s.\n"),
22525 value);
22526 }
22527
22528 void _initialize_dwarf2_read (void);
22529
22530 void
22531 _initialize_dwarf2_read (void)
22532 {
22533 struct cmd_list_element *c;
22534
22535 dwarf2_objfile_data_key
22536 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22537
22538 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22539 Set DWARF 2 specific variables.\n\
22540 Configure DWARF 2 variables such as the cache size"),
22541 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22542 0/*allow-unknown*/, &maintenance_set_cmdlist);
22543
22544 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22545 Show DWARF 2 specific variables\n\
22546 Show DWARF 2 variables such as the cache size"),
22547 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22548 0/*allow-unknown*/, &maintenance_show_cmdlist);
22549
22550 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22551 &dwarf2_max_cache_age, _("\
22552 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22553 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22554 A higher limit means that cached compilation units will be stored\n\
22555 in memory longer, and more total memory will be used. Zero disables\n\
22556 caching, which can slow down startup."),
22557 NULL,
22558 show_dwarf2_max_cache_age,
22559 &set_dwarf2_cmdlist,
22560 &show_dwarf2_cmdlist);
22561
22562 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22563 &dwarf2_always_disassemble, _("\
22564 Set whether `info address' always disassembles DWARF expressions."), _("\
22565 Show whether `info address' always disassembles DWARF expressions."), _("\
22566 When enabled, DWARF expressions are always printed in an assembly-like\n\
22567 syntax. When disabled, expressions will be printed in a more\n\
22568 conversational style, when possible."),
22569 NULL,
22570 show_dwarf2_always_disassemble,
22571 &set_dwarf2_cmdlist,
22572 &show_dwarf2_cmdlist);
22573
22574 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22575 Set debugging of the dwarf2 reader."), _("\
22576 Show debugging of the dwarf2 reader."), _("\
22577 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22578 reading and symtab expansion. A value of 1 (one) provides basic\n\
22579 information. A value greater than 1 provides more verbose information."),
22580 NULL,
22581 NULL,
22582 &setdebuglist, &showdebuglist);
22583
22584 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22585 Set debugging of the dwarf2 DIE reader."), _("\
22586 Show debugging of the dwarf2 DIE reader."), _("\
22587 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22588 The value is the maximum depth to print."),
22589 NULL,
22590 NULL,
22591 &setdebuglist, &showdebuglist);
22592
22593 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22594 Set cross-checking of \"physname\" code against demangler."), _("\
22595 Show cross-checking of \"physname\" code against demangler."), _("\
22596 When enabled, GDB's internal \"physname\" code is checked against\n\
22597 the demangler."),
22598 NULL, show_check_physname,
22599 &setdebuglist, &showdebuglist);
22600
22601 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22602 no_class, &use_deprecated_index_sections, _("\
22603 Set whether to use deprecated gdb_index sections."), _("\
22604 Show whether to use deprecated gdb_index sections."), _("\
22605 When enabled, deprecated .gdb_index sections are used anyway.\n\
22606 Normally they are ignored either because of a missing feature or\n\
22607 performance issue.\n\
22608 Warning: This option must be enabled before gdb reads the file."),
22609 NULL,
22610 NULL,
22611 &setlist, &showlist);
22612
22613 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22614 _("\
22615 Save a gdb-index file.\n\
22616 Usage: save gdb-index DIRECTORY"),
22617 &save_cmdlist);
22618 set_cmd_completer (c, filename_completer);
22619
22620 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22621 &dwarf2_locexpr_funcs);
22622 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22623 &dwarf2_loclist_funcs);
22624
22625 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22626 &dwarf2_block_frame_base_locexpr_funcs);
22627 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22628 &dwarf2_block_frame_base_loclist_funcs);
22629 }
This page took 0.548234 seconds and 4 git commands to generate.