* objfiles.h (struct objfile): New GDBARCH member.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
11 support.
12
13 This file is part of GDB.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27
28 #include "defs.h"
29 #include "bfd.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "objfiles.h"
33 #include "elf/dwarf2.h"
34 #include "buildsym.h"
35 #include "demangle.h"
36 #include "expression.h"
37 #include "filenames.h" /* for DOSish file names */
38 #include "macrotab.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "bcache.h"
42 #include "dwarf2expr.h"
43 #include "dwarf2loc.h"
44 #include "cp-support.h"
45 #include "hashtab.h"
46 #include "command.h"
47 #include "gdbcmd.h"
48
49 #include <fcntl.h>
50 #include "gdb_string.h"
51 #include "gdb_assert.h"
52 #include <sys/types.h>
53
54 /* A note on memory usage for this file.
55
56 At the present time, this code reads the debug info sections into
57 the objfile's objfile_obstack. A definite improvement for startup
58 time, on platforms which do not emit relocations for debug
59 sections, would be to use mmap instead. The object's complete
60 debug information is loaded into memory, partly to simplify
61 absolute DIE references.
62
63 Whether using obstacks or mmap, the sections should remain loaded
64 until the objfile is released, and pointers into the section data
65 can be used for any other data associated to the objfile (symbol
66 names, type names, location expressions to name a few). */
67
68 #if 0
69 /* .debug_info header for a compilation unit
70 Because of alignment constraints, this structure has padding and cannot
71 be mapped directly onto the beginning of the .debug_info section. */
72 typedef struct comp_unit_header
73 {
74 unsigned int length; /* length of the .debug_info
75 contribution */
76 unsigned short version; /* version number -- 2 for DWARF
77 version 2 */
78 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
79 unsigned char addr_size; /* byte size of an address -- 4 */
80 }
81 _COMP_UNIT_HEADER;
82 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
83 #endif
84
85 /* .debug_pubnames header
86 Because of alignment constraints, this structure has padding and cannot
87 be mapped directly onto the beginning of the .debug_info section. */
88 typedef struct pubnames_header
89 {
90 unsigned int length; /* length of the .debug_pubnames
91 contribution */
92 unsigned char version; /* version number -- 2 for DWARF
93 version 2 */
94 unsigned int info_offset; /* offset into .debug_info section */
95 unsigned int info_size; /* byte size of .debug_info section
96 portion */
97 }
98 _PUBNAMES_HEADER;
99 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
100
101 /* .debug_pubnames header
102 Because of alignment constraints, this structure has padding and cannot
103 be mapped directly onto the beginning of the .debug_info section. */
104 typedef struct aranges_header
105 {
106 unsigned int length; /* byte len of the .debug_aranges
107 contribution */
108 unsigned short version; /* version number -- 2 for DWARF
109 version 2 */
110 unsigned int info_offset; /* offset into .debug_info section */
111 unsigned char addr_size; /* byte size of an address */
112 unsigned char seg_size; /* byte size of segment descriptor */
113 }
114 _ARANGES_HEADER;
115 #define _ACTUAL_ARANGES_HEADER_SIZE 12
116
117 /* .debug_line statement program prologue
118 Because of alignment constraints, this structure has padding and cannot
119 be mapped directly onto the beginning of the .debug_info section. */
120 typedef struct statement_prologue
121 {
122 unsigned int total_length; /* byte length of the statement
123 information */
124 unsigned short version; /* version number -- 2 for DWARF
125 version 2 */
126 unsigned int prologue_length; /* # bytes between prologue &
127 stmt program */
128 unsigned char minimum_instruction_length; /* byte size of
129 smallest instr */
130 unsigned char default_is_stmt; /* initial value of is_stmt
131 register */
132 char line_base;
133 unsigned char line_range;
134 unsigned char opcode_base; /* number assigned to first special
135 opcode */
136 unsigned char *standard_opcode_lengths;
137 }
138 _STATEMENT_PROLOGUE;
139
140 static const struct objfile_data *dwarf2_objfile_data_key;
141
142 struct dwarf2_per_objfile
143 {
144 /* Sizes of debugging sections. */
145 unsigned int info_size;
146 unsigned int abbrev_size;
147 unsigned int line_size;
148 unsigned int pubnames_size;
149 unsigned int aranges_size;
150 unsigned int loc_size;
151 unsigned int macinfo_size;
152 unsigned int str_size;
153 unsigned int ranges_size;
154 unsigned int frame_size;
155 unsigned int eh_frame_size;
156
157 /* Loaded data from the sections. */
158 gdb_byte *info_buffer;
159 gdb_byte *abbrev_buffer;
160 gdb_byte *line_buffer;
161 gdb_byte *str_buffer;
162 gdb_byte *macinfo_buffer;
163 gdb_byte *ranges_buffer;
164 gdb_byte *loc_buffer;
165
166 /* A list of all the compilation units. This is used to locate
167 the target compilation unit of a particular reference. */
168 struct dwarf2_per_cu_data **all_comp_units;
169
170 /* The number of compilation units in ALL_COMP_UNITS. */
171 int n_comp_units;
172
173 /* A chain of compilation units that are currently read in, so that
174 they can be freed later. */
175 struct dwarf2_per_cu_data *read_in_chain;
176
177 /* A flag indicating wether this objfile has a section loaded at a
178 VMA of 0. */
179 int has_section_at_zero;
180 };
181
182 static struct dwarf2_per_objfile *dwarf2_per_objfile;
183
184 static asection *dwarf_info_section;
185 static asection *dwarf_abbrev_section;
186 static asection *dwarf_line_section;
187 static asection *dwarf_pubnames_section;
188 static asection *dwarf_aranges_section;
189 static asection *dwarf_loc_section;
190 static asection *dwarf_macinfo_section;
191 static asection *dwarf_str_section;
192 static asection *dwarf_ranges_section;
193 asection *dwarf_frame_section;
194 asection *dwarf_eh_frame_section;
195
196 /* names of the debugging sections */
197
198 #define INFO_SECTION ".debug_info"
199 #define ABBREV_SECTION ".debug_abbrev"
200 #define LINE_SECTION ".debug_line"
201 #define PUBNAMES_SECTION ".debug_pubnames"
202 #define ARANGES_SECTION ".debug_aranges"
203 #define LOC_SECTION ".debug_loc"
204 #define MACINFO_SECTION ".debug_macinfo"
205 #define STR_SECTION ".debug_str"
206 #define RANGES_SECTION ".debug_ranges"
207 #define FRAME_SECTION ".debug_frame"
208 #define EH_FRAME_SECTION ".eh_frame"
209
210 /* local data types */
211
212 /* We hold several abbreviation tables in memory at the same time. */
213 #ifndef ABBREV_HASH_SIZE
214 #define ABBREV_HASH_SIZE 121
215 #endif
216
217 /* The data in a compilation unit header, after target2host
218 translation, looks like this. */
219 struct comp_unit_head
220 {
221 unsigned long length;
222 short version;
223 unsigned int abbrev_offset;
224 unsigned char addr_size;
225 unsigned char signed_addr_p;
226
227 /* Size of file offsets; either 4 or 8. */
228 unsigned int offset_size;
229
230 /* Size of the length field; either 4 or 12. */
231 unsigned int initial_length_size;
232
233 /* Offset to the first byte of this compilation unit header in the
234 .debug_info section, for resolving relative reference dies. */
235 unsigned int offset;
236
237 /* Pointer to this compilation unit header in the .debug_info
238 section. */
239 gdb_byte *cu_head_ptr;
240
241 /* Pointer to the first die of this compilation unit. This will be
242 the first byte following the compilation unit header. */
243 gdb_byte *first_die_ptr;
244
245 /* Pointer to the next compilation unit header in the program. */
246 struct comp_unit_head *next;
247
248 /* Base address of this compilation unit. */
249 CORE_ADDR base_address;
250
251 /* Non-zero if base_address has been set. */
252 int base_known;
253 };
254
255 /* Fixed size for the DIE hash table. */
256 #ifndef REF_HASH_SIZE
257 #define REF_HASH_SIZE 1021
258 #endif
259
260 /* Internal state when decoding a particular compilation unit. */
261 struct dwarf2_cu
262 {
263 /* The objfile containing this compilation unit. */
264 struct objfile *objfile;
265
266 /* The header of the compilation unit.
267
268 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
269 should logically be moved to the dwarf2_cu structure. */
270 struct comp_unit_head header;
271
272 struct function_range *first_fn, *last_fn, *cached_fn;
273
274 /* The language we are debugging. */
275 enum language language;
276 const struct language_defn *language_defn;
277
278 const char *producer;
279
280 /* The generic symbol table building routines have separate lists for
281 file scope symbols and all all other scopes (local scopes). So
282 we need to select the right one to pass to add_symbol_to_list().
283 We do it by keeping a pointer to the correct list in list_in_scope.
284
285 FIXME: The original dwarf code just treated the file scope as the
286 first local scope, and all other local scopes as nested local
287 scopes, and worked fine. Check to see if we really need to
288 distinguish these in buildsym.c. */
289 struct pending **list_in_scope;
290
291 /* DWARF abbreviation table associated with this compilation unit. */
292 struct abbrev_info **dwarf2_abbrevs;
293
294 /* Storage for the abbrev table. */
295 struct obstack abbrev_obstack;
296
297 /* Hash table holding all the loaded partial DIEs. */
298 htab_t partial_dies;
299
300 /* Storage for things with the same lifetime as this read-in compilation
301 unit, including partial DIEs. */
302 struct obstack comp_unit_obstack;
303
304 /* When multiple dwarf2_cu structures are living in memory, this field
305 chains them all together, so that they can be released efficiently.
306 We will probably also want a generation counter so that most-recently-used
307 compilation units are cached... */
308 struct dwarf2_per_cu_data *read_in_chain;
309
310 /* Backchain to our per_cu entry if the tree has been built. */
311 struct dwarf2_per_cu_data *per_cu;
312
313 /* How many compilation units ago was this CU last referenced? */
314 int last_used;
315
316 /* A hash table of die offsets for following references. */
317 struct die_info *die_ref_table[REF_HASH_SIZE];
318
319 /* Full DIEs if read in. */
320 struct die_info *dies;
321
322 /* A set of pointers to dwarf2_per_cu_data objects for compilation
323 units referenced by this one. Only set during full symbol processing;
324 partial symbol tables do not have dependencies. */
325 htab_t dependencies;
326
327 /* Header data from the line table, during full symbol processing. */
328 struct line_header *line_header;
329
330 /* Mark used when releasing cached dies. */
331 unsigned int mark : 1;
332
333 /* This flag will be set if this compilation unit might include
334 inter-compilation-unit references. */
335 unsigned int has_form_ref_addr : 1;
336
337 /* This flag will be set if this compilation unit includes any
338 DW_TAG_namespace DIEs. If we know that there are explicit
339 DIEs for namespaces, we don't need to try to infer them
340 from mangled names. */
341 unsigned int has_namespace_info : 1;
342 };
343
344 /* Persistent data held for a compilation unit, even when not
345 processing it. We put a pointer to this structure in the
346 read_symtab_private field of the psymtab. If we encounter
347 inter-compilation-unit references, we also maintain a sorted
348 list of all compilation units. */
349
350 struct dwarf2_per_cu_data
351 {
352 /* The start offset and length of this compilation unit. 2**30-1
353 bytes should suffice to store the length of any compilation unit
354 - if it doesn't, GDB will fall over anyway. */
355 unsigned long offset;
356 unsigned long length : 30;
357
358 /* Flag indicating this compilation unit will be read in before
359 any of the current compilation units are processed. */
360 unsigned long queued : 1;
361
362 /* This flag will be set if we need to load absolutely all DIEs
363 for this compilation unit, instead of just the ones we think
364 are interesting. It gets set if we look for a DIE in the
365 hash table and don't find it. */
366 unsigned int load_all_dies : 1;
367
368 /* Set iff currently read in. */
369 struct dwarf2_cu *cu;
370
371 /* If full symbols for this CU have been read in, then this field
372 holds a map of DIE offsets to types. It isn't always possible
373 to reconstruct this information later, so we have to preserve
374 it. */
375 htab_t type_hash;
376
377 /* The partial symbol table associated with this compilation unit,
378 or NULL for partial units (which do not have an associated
379 symtab). */
380 struct partial_symtab *psymtab;
381 };
382
383 /* The line number information for a compilation unit (found in the
384 .debug_line section) begins with a "statement program header",
385 which contains the following information. */
386 struct line_header
387 {
388 unsigned int total_length;
389 unsigned short version;
390 unsigned int header_length;
391 unsigned char minimum_instruction_length;
392 unsigned char default_is_stmt;
393 int line_base;
394 unsigned char line_range;
395 unsigned char opcode_base;
396
397 /* standard_opcode_lengths[i] is the number of operands for the
398 standard opcode whose value is i. This means that
399 standard_opcode_lengths[0] is unused, and the last meaningful
400 element is standard_opcode_lengths[opcode_base - 1]. */
401 unsigned char *standard_opcode_lengths;
402
403 /* The include_directories table. NOTE! These strings are not
404 allocated with xmalloc; instead, they are pointers into
405 debug_line_buffer. If you try to free them, `free' will get
406 indigestion. */
407 unsigned int num_include_dirs, include_dirs_size;
408 char **include_dirs;
409
410 /* The file_names table. NOTE! These strings are not allocated
411 with xmalloc; instead, they are pointers into debug_line_buffer.
412 Don't try to free them directly. */
413 unsigned int num_file_names, file_names_size;
414 struct file_entry
415 {
416 char *name;
417 unsigned int dir_index;
418 unsigned int mod_time;
419 unsigned int length;
420 int included_p; /* Non-zero if referenced by the Line Number Program. */
421 struct symtab *symtab; /* The associated symbol table, if any. */
422 } *file_names;
423
424 /* The start and end of the statement program following this
425 header. These point into dwarf2_per_objfile->line_buffer. */
426 gdb_byte *statement_program_start, *statement_program_end;
427 };
428
429 /* When we construct a partial symbol table entry we only
430 need this much information. */
431 struct partial_die_info
432 {
433 /* Offset of this DIE. */
434 unsigned int offset;
435
436 /* DWARF-2 tag for this DIE. */
437 ENUM_BITFIELD(dwarf_tag) tag : 16;
438
439 /* Language code associated with this DIE. This is only used
440 for the compilation unit DIE. */
441 unsigned int language : 8;
442
443 /* Assorted flags describing the data found in this DIE. */
444 unsigned int has_children : 1;
445 unsigned int is_external : 1;
446 unsigned int is_declaration : 1;
447 unsigned int has_type : 1;
448 unsigned int has_specification : 1;
449 unsigned int has_stmt_list : 1;
450 unsigned int has_pc_info : 1;
451
452 /* Flag set if the SCOPE field of this structure has been
453 computed. */
454 unsigned int scope_set : 1;
455
456 /* Flag set if the DIE has a byte_size attribute. */
457 unsigned int has_byte_size : 1;
458
459 /* The name of this DIE. Normally the value of DW_AT_name, but
460 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
461 other fashion. */
462 char *name;
463 char *dirname;
464
465 /* The scope to prepend to our children. This is generally
466 allocated on the comp_unit_obstack, so will disappear
467 when this compilation unit leaves the cache. */
468 char *scope;
469
470 /* The location description associated with this DIE, if any. */
471 struct dwarf_block *locdesc;
472
473 /* If HAS_PC_INFO, the PC range associated with this DIE. */
474 CORE_ADDR lowpc;
475 CORE_ADDR highpc;
476
477 /* Pointer into the info_buffer pointing at the target of
478 DW_AT_sibling, if any. */
479 gdb_byte *sibling;
480
481 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
482 DW_AT_specification (or DW_AT_abstract_origin or
483 DW_AT_extension). */
484 unsigned int spec_offset;
485
486 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
487 unsigned int line_offset;
488
489 /* Pointers to this DIE's parent, first child, and next sibling,
490 if any. */
491 struct partial_die_info *die_parent, *die_child, *die_sibling;
492 };
493
494 /* This data structure holds the information of an abbrev. */
495 struct abbrev_info
496 {
497 unsigned int number; /* number identifying abbrev */
498 enum dwarf_tag tag; /* dwarf tag */
499 unsigned short has_children; /* boolean */
500 unsigned short num_attrs; /* number of attributes */
501 struct attr_abbrev *attrs; /* an array of attribute descriptions */
502 struct abbrev_info *next; /* next in chain */
503 };
504
505 struct attr_abbrev
506 {
507 enum dwarf_attribute name;
508 enum dwarf_form form;
509 };
510
511 /* This data structure holds a complete die structure. */
512 struct die_info
513 {
514 enum dwarf_tag tag; /* Tag indicating type of die */
515 unsigned int abbrev; /* Abbrev number */
516 unsigned int offset; /* Offset in .debug_info section */
517 unsigned int num_attrs; /* Number of attributes */
518 struct attribute *attrs; /* An array of attributes */
519 struct die_info *next_ref; /* Next die in ref hash table */
520
521 /* The dies in a compilation unit form an n-ary tree. PARENT
522 points to this die's parent; CHILD points to the first child of
523 this node; and all the children of a given node are chained
524 together via their SIBLING fields, terminated by a die whose
525 tag is zero. */
526 struct die_info *child; /* Its first child, if any. */
527 struct die_info *sibling; /* Its next sibling, if any. */
528 struct die_info *parent; /* Its parent, if any. */
529
530 struct type *type; /* Cached type information */
531 };
532
533 /* Attributes have a name and a value */
534 struct attribute
535 {
536 enum dwarf_attribute name;
537 enum dwarf_form form;
538 union
539 {
540 char *str;
541 struct dwarf_block *blk;
542 unsigned long unsnd;
543 long int snd;
544 CORE_ADDR addr;
545 }
546 u;
547 };
548
549 struct function_range
550 {
551 const char *name;
552 CORE_ADDR lowpc, highpc;
553 int seen_line;
554 struct function_range *next;
555 };
556
557 /* Get at parts of an attribute structure */
558
559 #define DW_STRING(attr) ((attr)->u.str)
560 #define DW_UNSND(attr) ((attr)->u.unsnd)
561 #define DW_BLOCK(attr) ((attr)->u.blk)
562 #define DW_SND(attr) ((attr)->u.snd)
563 #define DW_ADDR(attr) ((attr)->u.addr)
564
565 /* Blocks are a bunch of untyped bytes. */
566 struct dwarf_block
567 {
568 unsigned int size;
569 gdb_byte *data;
570 };
571
572 #ifndef ATTR_ALLOC_CHUNK
573 #define ATTR_ALLOC_CHUNK 4
574 #endif
575
576 /* Allocate fields for structs, unions and enums in this size. */
577 #ifndef DW_FIELD_ALLOC_CHUNK
578 #define DW_FIELD_ALLOC_CHUNK 4
579 #endif
580
581 /* A zeroed version of a partial die for initialization purposes. */
582 static struct partial_die_info zeroed_partial_die;
583
584 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
585 but this would require a corresponding change in unpack_field_as_long
586 and friends. */
587 static int bits_per_byte = 8;
588
589 /* The routines that read and process dies for a C struct or C++ class
590 pass lists of data member fields and lists of member function fields
591 in an instance of a field_info structure, as defined below. */
592 struct field_info
593 {
594 /* List of data member and baseclasses fields. */
595 struct nextfield
596 {
597 struct nextfield *next;
598 int accessibility;
599 int virtuality;
600 struct field field;
601 }
602 *fields;
603
604 /* Number of fields. */
605 int nfields;
606
607 /* Number of baseclasses. */
608 int nbaseclasses;
609
610 /* Set if the accesibility of one of the fields is not public. */
611 int non_public_fields;
612
613 /* Member function fields array, entries are allocated in the order they
614 are encountered in the object file. */
615 struct nextfnfield
616 {
617 struct nextfnfield *next;
618 struct fn_field fnfield;
619 }
620 *fnfields;
621
622 /* Member function fieldlist array, contains name of possibly overloaded
623 member function, number of overloaded member functions and a pointer
624 to the head of the member function field chain. */
625 struct fnfieldlist
626 {
627 char *name;
628 int length;
629 struct nextfnfield *head;
630 }
631 *fnfieldlists;
632
633 /* Number of entries in the fnfieldlists array. */
634 int nfnfields;
635 };
636
637 /* One item on the queue of compilation units to read in full symbols
638 for. */
639 struct dwarf2_queue_item
640 {
641 struct dwarf2_per_cu_data *per_cu;
642 struct dwarf2_queue_item *next;
643 };
644
645 /* The current queue. */
646 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
647
648 /* Loaded secondary compilation units are kept in memory until they
649 have not been referenced for the processing of this many
650 compilation units. Set this to zero to disable caching. Cache
651 sizes of up to at least twenty will improve startup time for
652 typical inter-CU-reference binaries, at an obvious memory cost. */
653 static int dwarf2_max_cache_age = 5;
654 static void
655 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
656 struct cmd_list_element *c, const char *value)
657 {
658 fprintf_filtered (file, _("\
659 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
660 value);
661 }
662
663
664 /* Various complaints about symbol reading that don't abort the process */
665
666 static void
667 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
668 {
669 complaint (&symfile_complaints,
670 _("statement list doesn't fit in .debug_line section"));
671 }
672
673 static void
674 dwarf2_debug_line_missing_file_complaint (void)
675 {
676 complaint (&symfile_complaints,
677 _(".debug_line section has line data without a file"));
678 }
679
680 static void
681 dwarf2_complex_location_expr_complaint (void)
682 {
683 complaint (&symfile_complaints, _("location expression too complex"));
684 }
685
686 static void
687 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
688 int arg3)
689 {
690 complaint (&symfile_complaints,
691 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
692 arg2, arg3);
693 }
694
695 static void
696 dwarf2_macros_too_long_complaint (void)
697 {
698 complaint (&symfile_complaints,
699 _("macro info runs off end of `.debug_macinfo' section"));
700 }
701
702 static void
703 dwarf2_macro_malformed_definition_complaint (const char *arg1)
704 {
705 complaint (&symfile_complaints,
706 _("macro debug info contains a malformed macro definition:\n`%s'"),
707 arg1);
708 }
709
710 static void
711 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
712 {
713 complaint (&symfile_complaints,
714 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
715 }
716
717 /* local function prototypes */
718
719 static void dwarf2_locate_sections (bfd *, asection *, void *);
720
721 #if 0
722 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
723 #endif
724
725 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
726 struct objfile *);
727
728 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
729 struct partial_die_info *,
730 struct partial_symtab *);
731
732 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
733
734 static void scan_partial_symbols (struct partial_die_info *,
735 CORE_ADDR *, CORE_ADDR *,
736 struct dwarf2_cu *);
737
738 static void add_partial_symbol (struct partial_die_info *,
739 struct dwarf2_cu *);
740
741 static int pdi_needs_namespace (enum dwarf_tag tag);
742
743 static void add_partial_namespace (struct partial_die_info *pdi,
744 CORE_ADDR *lowpc, CORE_ADDR *highpc,
745 struct dwarf2_cu *cu);
746
747 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
748 struct dwarf2_cu *cu);
749
750 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
751 gdb_byte *info_ptr,
752 bfd *abfd,
753 struct dwarf2_cu *cu);
754
755 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
756
757 static void psymtab_to_symtab_1 (struct partial_symtab *);
758
759 gdb_byte *dwarf2_read_section (struct objfile *, asection *);
760
761 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
762
763 static void dwarf2_free_abbrev_table (void *);
764
765 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
766 struct dwarf2_cu *);
767
768 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
769 struct dwarf2_cu *);
770
771 static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
772 struct dwarf2_cu *);
773
774 static gdb_byte *read_partial_die (struct partial_die_info *,
775 struct abbrev_info *abbrev, unsigned int,
776 bfd *, gdb_byte *, struct dwarf2_cu *);
777
778 static struct partial_die_info *find_partial_die (unsigned long,
779 struct dwarf2_cu *);
780
781 static void fixup_partial_die (struct partial_die_info *,
782 struct dwarf2_cu *);
783
784 static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
785 struct dwarf2_cu *, int *);
786
787 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
788 bfd *, gdb_byte *, struct dwarf2_cu *);
789
790 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
791 bfd *, gdb_byte *, struct dwarf2_cu *);
792
793 static unsigned int read_1_byte (bfd *, gdb_byte *);
794
795 static int read_1_signed_byte (bfd *, gdb_byte *);
796
797 static unsigned int read_2_bytes (bfd *, gdb_byte *);
798
799 static unsigned int read_4_bytes (bfd *, gdb_byte *);
800
801 static unsigned long read_8_bytes (bfd *, gdb_byte *);
802
803 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
804 unsigned int *);
805
806 static LONGEST read_initial_length (bfd *, gdb_byte *,
807 struct comp_unit_head *, unsigned int *);
808
809 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
810 unsigned int *);
811
812 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
813
814 static char *read_string (bfd *, gdb_byte *, unsigned int *);
815
816 static char *read_indirect_string (bfd *, gdb_byte *,
817 const struct comp_unit_head *,
818 unsigned int *);
819
820 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
821
822 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
823
824 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
825
826 static void set_cu_language (unsigned int, struct dwarf2_cu *);
827
828 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
829 struct dwarf2_cu *);
830
831 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
832 struct dwarf2_cu *cu);
833
834 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
835
836 static struct die_info *die_specification (struct die_info *die,
837 struct dwarf2_cu *);
838
839 static void free_line_header (struct line_header *lh);
840
841 static void add_file_name (struct line_header *, char *, unsigned int,
842 unsigned int, unsigned int);
843
844 static struct line_header *(dwarf_decode_line_header
845 (unsigned int offset,
846 bfd *abfd, struct dwarf2_cu *cu));
847
848 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
849 struct dwarf2_cu *, struct partial_symtab *);
850
851 static void dwarf2_start_subfile (char *, char *, char *);
852
853 static struct symbol *new_symbol (struct die_info *, struct type *,
854 struct dwarf2_cu *);
855
856 static void dwarf2_const_value (struct attribute *, struct symbol *,
857 struct dwarf2_cu *);
858
859 static void dwarf2_const_value_data (struct attribute *attr,
860 struct symbol *sym,
861 int bits);
862
863 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
864
865 static struct type *die_containing_type (struct die_info *,
866 struct dwarf2_cu *);
867
868 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
869
870 static void read_type_die (struct die_info *, struct dwarf2_cu *);
871
872 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
873
874 static char *typename_concat (struct obstack *,
875 const char *prefix,
876 const char *suffix,
877 struct dwarf2_cu *);
878
879 static void read_typedef (struct die_info *, struct dwarf2_cu *);
880
881 static void read_base_type (struct die_info *, struct dwarf2_cu *);
882
883 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
884
885 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
886
887 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
888
889 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
890
891 static int dwarf2_get_pc_bounds (struct die_info *,
892 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
893
894 static void get_scope_pc_bounds (struct die_info *,
895 CORE_ADDR *, CORE_ADDR *,
896 struct dwarf2_cu *);
897
898 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
899 CORE_ADDR, struct dwarf2_cu *);
900
901 static void dwarf2_add_field (struct field_info *, struct die_info *,
902 struct dwarf2_cu *);
903
904 static void dwarf2_attach_fields_to_type (struct field_info *,
905 struct type *, struct dwarf2_cu *);
906
907 static void dwarf2_add_member_fn (struct field_info *,
908 struct die_info *, struct type *,
909 struct dwarf2_cu *);
910
911 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
912 struct type *, struct dwarf2_cu *);
913
914 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
915
916 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
917
918 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
919
920 static void read_common_block (struct die_info *, struct dwarf2_cu *);
921
922 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
923
924 static const char *namespace_name (struct die_info *die,
925 int *is_anonymous, struct dwarf2_cu *);
926
927 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
928
929 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
930
931 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
932
933 static void read_array_type (struct die_info *, struct dwarf2_cu *);
934
935 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
936 struct dwarf2_cu *);
937
938 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
939
940 static void read_tag_ptr_to_member_type (struct die_info *,
941 struct dwarf2_cu *);
942
943 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
944
945 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
946
947 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
948
949 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
950
951 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
952
953 static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
954
955 static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
956 struct dwarf2_cu *,
957 gdb_byte **new_info_ptr,
958 struct die_info *parent);
959
960 static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
961 struct dwarf2_cu *,
962 gdb_byte **new_info_ptr,
963 struct die_info *parent);
964
965 static void free_die_list (struct die_info *);
966
967 static void process_die (struct die_info *, struct dwarf2_cu *);
968
969 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
970
971 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
972
973 static struct die_info *dwarf2_extension (struct die_info *die,
974 struct dwarf2_cu *);
975
976 static char *dwarf_tag_name (unsigned int);
977
978 static char *dwarf_attr_name (unsigned int);
979
980 static char *dwarf_form_name (unsigned int);
981
982 static char *dwarf_stack_op_name (unsigned int);
983
984 static char *dwarf_bool_name (unsigned int);
985
986 static char *dwarf_type_encoding_name (unsigned int);
987
988 #if 0
989 static char *dwarf_cfi_name (unsigned int);
990
991 struct die_info *copy_die (struct die_info *);
992 #endif
993
994 static struct die_info *sibling_die (struct die_info *);
995
996 static void dump_die (struct die_info *);
997
998 static void dump_die_list (struct die_info *);
999
1000 static void store_in_ref_table (unsigned int, struct die_info *,
1001 struct dwarf2_cu *);
1002
1003 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1004 struct dwarf2_cu *);
1005
1006 static int dwarf2_get_attr_constant_value (struct attribute *, int);
1007
1008 static struct die_info *follow_die_ref (struct die_info *,
1009 struct attribute *,
1010 struct dwarf2_cu *);
1011
1012 /* memory allocation interface */
1013
1014 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1015
1016 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1017
1018 static struct die_info *dwarf_alloc_die (void);
1019
1020 static void initialize_cu_func_list (struct dwarf2_cu *);
1021
1022 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1023 struct dwarf2_cu *);
1024
1025 static void dwarf_decode_macros (struct line_header *, unsigned int,
1026 char *, bfd *, struct dwarf2_cu *);
1027
1028 static int attr_form_is_block (struct attribute *);
1029
1030 static int attr_form_is_section_offset (struct attribute *);
1031
1032 static int attr_form_is_constant (struct attribute *);
1033
1034 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1035 struct symbol *sym,
1036 struct dwarf2_cu *cu);
1037
1038 static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1039 struct dwarf2_cu *cu);
1040
1041 static void free_stack_comp_unit (void *);
1042
1043 static hashval_t partial_die_hash (const void *item);
1044
1045 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1046
1047 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1048 (unsigned long offset, struct objfile *objfile);
1049
1050 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1051 (unsigned long offset, struct objfile *objfile);
1052
1053 static void free_one_comp_unit (void *);
1054
1055 static void free_cached_comp_units (void *);
1056
1057 static void age_cached_comp_units (void);
1058
1059 static void free_one_cached_comp_unit (void *);
1060
1061 static void set_die_type (struct die_info *, struct type *,
1062 struct dwarf2_cu *);
1063
1064 static void reset_die_and_siblings_types (struct die_info *,
1065 struct dwarf2_cu *);
1066
1067 static void create_all_comp_units (struct objfile *);
1068
1069 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1070 struct objfile *);
1071
1072 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1073
1074 static void dwarf2_add_dependence (struct dwarf2_cu *,
1075 struct dwarf2_per_cu_data *);
1076
1077 static void dwarf2_mark (struct dwarf2_cu *);
1078
1079 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1080
1081 static void read_set_type (struct die_info *, struct dwarf2_cu *);
1082
1083
1084 /* Try to locate the sections we need for DWARF 2 debugging
1085 information and return true if we have enough to do something. */
1086
1087 int
1088 dwarf2_has_info (struct objfile *objfile)
1089 {
1090 struct dwarf2_per_objfile *data;
1091
1092 /* Initialize per-objfile state. */
1093 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1094 memset (data, 0, sizeof (*data));
1095 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1096 dwarf2_per_objfile = data;
1097
1098 dwarf_info_section = 0;
1099 dwarf_abbrev_section = 0;
1100 dwarf_line_section = 0;
1101 dwarf_str_section = 0;
1102 dwarf_macinfo_section = 0;
1103 dwarf_frame_section = 0;
1104 dwarf_eh_frame_section = 0;
1105 dwarf_ranges_section = 0;
1106 dwarf_loc_section = 0;
1107
1108 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1109 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1110 }
1111
1112 /* This function is mapped across the sections and remembers the
1113 offset and size of each of the debugging sections we are interested
1114 in. */
1115
1116 static void
1117 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1118 {
1119 if (strcmp (sectp->name, INFO_SECTION) == 0)
1120 {
1121 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1122 dwarf_info_section = sectp;
1123 }
1124 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1125 {
1126 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1127 dwarf_abbrev_section = sectp;
1128 }
1129 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1130 {
1131 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1132 dwarf_line_section = sectp;
1133 }
1134 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1135 {
1136 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1137 dwarf_pubnames_section = sectp;
1138 }
1139 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1140 {
1141 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1142 dwarf_aranges_section = sectp;
1143 }
1144 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1145 {
1146 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1147 dwarf_loc_section = sectp;
1148 }
1149 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1150 {
1151 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1152 dwarf_macinfo_section = sectp;
1153 }
1154 else if (strcmp (sectp->name, STR_SECTION) == 0)
1155 {
1156 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1157 dwarf_str_section = sectp;
1158 }
1159 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1160 {
1161 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1162 dwarf_frame_section = sectp;
1163 }
1164 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1165 {
1166 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1167 if (aflag & SEC_HAS_CONTENTS)
1168 {
1169 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1170 dwarf_eh_frame_section = sectp;
1171 }
1172 }
1173 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1174 {
1175 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1176 dwarf_ranges_section = sectp;
1177 }
1178
1179 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1180 && bfd_section_vma (abfd, sectp) == 0)
1181 dwarf2_per_objfile->has_section_at_zero = 1;
1182 }
1183
1184 /* Build a partial symbol table. */
1185
1186 void
1187 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1188 {
1189 /* We definitely need the .debug_info and .debug_abbrev sections */
1190
1191 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1192 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1193
1194 if (dwarf_line_section)
1195 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1196 else
1197 dwarf2_per_objfile->line_buffer = NULL;
1198
1199 if (dwarf_str_section)
1200 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1201 else
1202 dwarf2_per_objfile->str_buffer = NULL;
1203
1204 if (dwarf_macinfo_section)
1205 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1206 dwarf_macinfo_section);
1207 else
1208 dwarf2_per_objfile->macinfo_buffer = NULL;
1209
1210 if (dwarf_ranges_section)
1211 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1212 else
1213 dwarf2_per_objfile->ranges_buffer = NULL;
1214
1215 if (dwarf_loc_section)
1216 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1217 else
1218 dwarf2_per_objfile->loc_buffer = NULL;
1219
1220 if (mainline
1221 || (objfile->global_psymbols.size == 0
1222 && objfile->static_psymbols.size == 0))
1223 {
1224 init_psymbol_list (objfile, 1024);
1225 }
1226
1227 #if 0
1228 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1229 {
1230 /* Things are significantly easier if we have .debug_aranges and
1231 .debug_pubnames sections */
1232
1233 dwarf2_build_psymtabs_easy (objfile, mainline);
1234 }
1235 else
1236 #endif
1237 /* only test this case for now */
1238 {
1239 /* In this case we have to work a bit harder */
1240 dwarf2_build_psymtabs_hard (objfile, mainline);
1241 }
1242 }
1243
1244 #if 0
1245 /* Build the partial symbol table from the information in the
1246 .debug_pubnames and .debug_aranges sections. */
1247
1248 static void
1249 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1250 {
1251 bfd *abfd = objfile->obfd;
1252 char *aranges_buffer, *pubnames_buffer;
1253 char *aranges_ptr, *pubnames_ptr;
1254 unsigned int entry_length, version, info_offset, info_size;
1255
1256 pubnames_buffer = dwarf2_read_section (objfile,
1257 dwarf_pubnames_section);
1258 pubnames_ptr = pubnames_buffer;
1259 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1260 {
1261 struct comp_unit_head cu_header;
1262 unsigned int bytes_read;
1263
1264 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1265 &bytes_read);
1266 pubnames_ptr += bytes_read;
1267 version = read_1_byte (abfd, pubnames_ptr);
1268 pubnames_ptr += 1;
1269 info_offset = read_4_bytes (abfd, pubnames_ptr);
1270 pubnames_ptr += 4;
1271 info_size = read_4_bytes (abfd, pubnames_ptr);
1272 pubnames_ptr += 4;
1273 }
1274
1275 aranges_buffer = dwarf2_read_section (objfile,
1276 dwarf_aranges_section);
1277
1278 }
1279 #endif
1280
1281 /* Read in the comp unit header information from the debug_info at
1282 info_ptr. */
1283
1284 static gdb_byte *
1285 read_comp_unit_head (struct comp_unit_head *cu_header,
1286 gdb_byte *info_ptr, bfd *abfd)
1287 {
1288 int signed_addr;
1289 unsigned int bytes_read;
1290 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1291 &bytes_read);
1292 info_ptr += bytes_read;
1293 cu_header->version = read_2_bytes (abfd, info_ptr);
1294 info_ptr += 2;
1295 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1296 &bytes_read);
1297 info_ptr += bytes_read;
1298 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1299 info_ptr += 1;
1300 signed_addr = bfd_get_sign_extend_vma (abfd);
1301 if (signed_addr < 0)
1302 internal_error (__FILE__, __LINE__,
1303 _("read_comp_unit_head: dwarf from non elf file"));
1304 cu_header->signed_addr_p = signed_addr;
1305 return info_ptr;
1306 }
1307
1308 static gdb_byte *
1309 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1310 bfd *abfd)
1311 {
1312 gdb_byte *beg_of_comp_unit = info_ptr;
1313
1314 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1315
1316 if (header->version != 2 && header->version != 3)
1317 error (_("Dwarf Error: wrong version in compilation unit header "
1318 "(is %d, should be %d) [in module %s]"), header->version,
1319 2, bfd_get_filename (abfd));
1320
1321 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1322 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1323 "(offset 0x%lx + 6) [in module %s]"),
1324 (long) header->abbrev_offset,
1325 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1326 bfd_get_filename (abfd));
1327
1328 if (beg_of_comp_unit + header->length + header->initial_length_size
1329 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1330 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1331 "(offset 0x%lx + 0) [in module %s]"),
1332 (long) header->length,
1333 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1334 bfd_get_filename (abfd));
1335
1336 return info_ptr;
1337 }
1338
1339 /* Allocate a new partial symtab for file named NAME and mark this new
1340 partial symtab as being an include of PST. */
1341
1342 static void
1343 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1344 struct objfile *objfile)
1345 {
1346 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1347
1348 subpst->section_offsets = pst->section_offsets;
1349 subpst->textlow = 0;
1350 subpst->texthigh = 0;
1351
1352 subpst->dependencies = (struct partial_symtab **)
1353 obstack_alloc (&objfile->objfile_obstack,
1354 sizeof (struct partial_symtab *));
1355 subpst->dependencies[0] = pst;
1356 subpst->number_of_dependencies = 1;
1357
1358 subpst->globals_offset = 0;
1359 subpst->n_global_syms = 0;
1360 subpst->statics_offset = 0;
1361 subpst->n_static_syms = 0;
1362 subpst->symtab = NULL;
1363 subpst->read_symtab = pst->read_symtab;
1364 subpst->readin = 0;
1365
1366 /* No private part is necessary for include psymtabs. This property
1367 can be used to differentiate between such include psymtabs and
1368 the regular ones. */
1369 subpst->read_symtab_private = NULL;
1370 }
1371
1372 /* Read the Line Number Program data and extract the list of files
1373 included by the source file represented by PST. Build an include
1374 partial symtab for each of these included files.
1375
1376 This procedure assumes that there *is* a Line Number Program in
1377 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1378 before calling this procedure. */
1379
1380 static void
1381 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1382 struct partial_die_info *pdi,
1383 struct partial_symtab *pst)
1384 {
1385 struct objfile *objfile = cu->objfile;
1386 bfd *abfd = objfile->obfd;
1387 struct line_header *lh;
1388
1389 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1390 if (lh == NULL)
1391 return; /* No linetable, so no includes. */
1392
1393 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1394
1395 free_line_header (lh);
1396 }
1397
1398
1399 /* Build the partial symbol table by doing a quick pass through the
1400 .debug_info and .debug_abbrev sections. */
1401
1402 static void
1403 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1404 {
1405 /* Instead of reading this into a big buffer, we should probably use
1406 mmap() on architectures that support it. (FIXME) */
1407 bfd *abfd = objfile->obfd;
1408 gdb_byte *info_ptr;
1409 gdb_byte *beg_of_comp_unit;
1410 struct partial_die_info comp_unit_die;
1411 struct partial_symtab *pst;
1412 struct cleanup *back_to;
1413 CORE_ADDR lowpc, highpc, baseaddr;
1414
1415 info_ptr = dwarf2_per_objfile->info_buffer;
1416
1417 /* Any cached compilation units will be linked by the per-objfile
1418 read_in_chain. Make sure to free them when we're done. */
1419 back_to = make_cleanup (free_cached_comp_units, NULL);
1420
1421 create_all_comp_units (objfile);
1422
1423 /* Since the objects we're extracting from .debug_info vary in
1424 length, only the individual functions to extract them (like
1425 read_comp_unit_head and load_partial_die) can really know whether
1426 the buffer is large enough to hold another complete object.
1427
1428 At the moment, they don't actually check that. If .debug_info
1429 holds just one extra byte after the last compilation unit's dies,
1430 then read_comp_unit_head will happily read off the end of the
1431 buffer. read_partial_die is similarly casual. Those functions
1432 should be fixed.
1433
1434 For this loop condition, simply checking whether there's any data
1435 left at all should be sufficient. */
1436 while (info_ptr < (dwarf2_per_objfile->info_buffer
1437 + dwarf2_per_objfile->info_size))
1438 {
1439 struct cleanup *back_to_inner;
1440 struct dwarf2_cu cu;
1441 struct abbrev_info *abbrev;
1442 unsigned int bytes_read;
1443 struct dwarf2_per_cu_data *this_cu;
1444
1445 beg_of_comp_unit = info_ptr;
1446
1447 memset (&cu, 0, sizeof (cu));
1448
1449 obstack_init (&cu.comp_unit_obstack);
1450
1451 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1452
1453 cu.objfile = objfile;
1454 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1455
1456 /* Complete the cu_header */
1457 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1458 cu.header.first_die_ptr = info_ptr;
1459 cu.header.cu_head_ptr = beg_of_comp_unit;
1460
1461 cu.list_in_scope = &file_symbols;
1462
1463 /* Read the abbrevs for this compilation unit into a table */
1464 dwarf2_read_abbrevs (abfd, &cu);
1465 make_cleanup (dwarf2_free_abbrev_table, &cu);
1466
1467 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1468
1469 /* Read the compilation unit die */
1470 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1471 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1472 abfd, info_ptr, &cu);
1473
1474 if (comp_unit_die.tag == DW_TAG_partial_unit)
1475 {
1476 info_ptr = (beg_of_comp_unit + cu.header.length
1477 + cu.header.initial_length_size);
1478 do_cleanups (back_to_inner);
1479 continue;
1480 }
1481
1482 /* Set the language we're debugging */
1483 set_cu_language (comp_unit_die.language, &cu);
1484
1485 /* Allocate a new partial symbol table structure */
1486 pst = start_psymtab_common (objfile, objfile->section_offsets,
1487 comp_unit_die.name ? comp_unit_die.name : "",
1488 comp_unit_die.lowpc,
1489 objfile->global_psymbols.next,
1490 objfile->static_psymbols.next);
1491
1492 if (comp_unit_die.dirname)
1493 pst->dirname = xstrdup (comp_unit_die.dirname);
1494
1495 pst->read_symtab_private = (char *) this_cu;
1496
1497 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1498
1499 /* Store the function that reads in the rest of the symbol table */
1500 pst->read_symtab = dwarf2_psymtab_to_symtab;
1501
1502 /* If this compilation unit was already read in, free the
1503 cached copy in order to read it in again. This is
1504 necessary because we skipped some symbols when we first
1505 read in the compilation unit (see load_partial_dies).
1506 This problem could be avoided, but the benefit is
1507 unclear. */
1508 if (this_cu->cu != NULL)
1509 free_one_cached_comp_unit (this_cu->cu);
1510
1511 cu.per_cu = this_cu;
1512
1513 /* Note that this is a pointer to our stack frame, being
1514 added to a global data structure. It will be cleaned up
1515 in free_stack_comp_unit when we finish with this
1516 compilation unit. */
1517 this_cu->cu = &cu;
1518
1519 this_cu->psymtab = pst;
1520
1521 /* Check if comp unit has_children.
1522 If so, read the rest of the partial symbols from this comp unit.
1523 If not, there's no more debug_info for this comp unit. */
1524 if (comp_unit_die.has_children)
1525 {
1526 struct partial_die_info *first_die;
1527
1528 lowpc = ((CORE_ADDR) -1);
1529 highpc = ((CORE_ADDR) 0);
1530
1531 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1532
1533 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1534
1535 /* If we didn't find a lowpc, set it to highpc to avoid
1536 complaints from `maint check'. */
1537 if (lowpc == ((CORE_ADDR) -1))
1538 lowpc = highpc;
1539
1540 /* If the compilation unit didn't have an explicit address range,
1541 then use the information extracted from its child dies. */
1542 if (! comp_unit_die.has_pc_info)
1543 {
1544 comp_unit_die.lowpc = lowpc;
1545 comp_unit_die.highpc = highpc;
1546 }
1547 }
1548 pst->textlow = comp_unit_die.lowpc + baseaddr;
1549 pst->texthigh = comp_unit_die.highpc + baseaddr;
1550
1551 pst->n_global_syms = objfile->global_psymbols.next -
1552 (objfile->global_psymbols.list + pst->globals_offset);
1553 pst->n_static_syms = objfile->static_psymbols.next -
1554 (objfile->static_psymbols.list + pst->statics_offset);
1555 sort_pst_symbols (pst);
1556
1557 /* If there is already a psymtab or symtab for a file of this
1558 name, remove it. (If there is a symtab, more drastic things
1559 also happen.) This happens in VxWorks. */
1560 free_named_symtabs (pst->filename);
1561
1562 info_ptr = beg_of_comp_unit + cu.header.length
1563 + cu.header.initial_length_size;
1564
1565 if (comp_unit_die.has_stmt_list)
1566 {
1567 /* Get the list of files included in the current compilation unit,
1568 and build a psymtab for each of them. */
1569 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1570 }
1571
1572 do_cleanups (back_to_inner);
1573 }
1574 do_cleanups (back_to);
1575 }
1576
1577 /* Load the DIEs for a secondary CU into memory. */
1578
1579 static void
1580 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1581 {
1582 bfd *abfd = objfile->obfd;
1583 gdb_byte *info_ptr, *beg_of_comp_unit;
1584 struct partial_die_info comp_unit_die;
1585 struct dwarf2_cu *cu;
1586 struct abbrev_info *abbrev;
1587 unsigned int bytes_read;
1588 struct cleanup *back_to;
1589
1590 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1591 beg_of_comp_unit = info_ptr;
1592
1593 cu = xmalloc (sizeof (struct dwarf2_cu));
1594 memset (cu, 0, sizeof (struct dwarf2_cu));
1595
1596 obstack_init (&cu->comp_unit_obstack);
1597
1598 cu->objfile = objfile;
1599 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1600
1601 /* Complete the cu_header. */
1602 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1603 cu->header.first_die_ptr = info_ptr;
1604 cu->header.cu_head_ptr = beg_of_comp_unit;
1605
1606 /* Read the abbrevs for this compilation unit into a table. */
1607 dwarf2_read_abbrevs (abfd, cu);
1608 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1609
1610 /* Read the compilation unit die. */
1611 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1612 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1613 abfd, info_ptr, cu);
1614
1615 /* Set the language we're debugging. */
1616 set_cu_language (comp_unit_die.language, cu);
1617
1618 /* Link this compilation unit into the compilation unit tree. */
1619 this_cu->cu = cu;
1620 cu->per_cu = this_cu;
1621
1622 /* Check if comp unit has_children.
1623 If so, read the rest of the partial symbols from this comp unit.
1624 If not, there's no more debug_info for this comp unit. */
1625 if (comp_unit_die.has_children)
1626 load_partial_dies (abfd, info_ptr, 0, cu);
1627
1628 do_cleanups (back_to);
1629 }
1630
1631 /* Create a list of all compilation units in OBJFILE. We do this only
1632 if an inter-comp-unit reference is found; presumably if there is one,
1633 there will be many, and one will occur early in the .debug_info section.
1634 So there's no point in building this list incrementally. */
1635
1636 static void
1637 create_all_comp_units (struct objfile *objfile)
1638 {
1639 int n_allocated;
1640 int n_comp_units;
1641 struct dwarf2_per_cu_data **all_comp_units;
1642 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
1643
1644 n_comp_units = 0;
1645 n_allocated = 10;
1646 all_comp_units = xmalloc (n_allocated
1647 * sizeof (struct dwarf2_per_cu_data *));
1648
1649 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1650 {
1651 struct comp_unit_head cu_header;
1652 gdb_byte *beg_of_comp_unit;
1653 struct dwarf2_per_cu_data *this_cu;
1654 unsigned long offset;
1655 unsigned int bytes_read;
1656
1657 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1658
1659 /* Read just enough information to find out where the next
1660 compilation unit is. */
1661 cu_header.initial_length_size = 0;
1662 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1663 &cu_header, &bytes_read);
1664
1665 /* Save the compilation unit for later lookup. */
1666 this_cu = obstack_alloc (&objfile->objfile_obstack,
1667 sizeof (struct dwarf2_per_cu_data));
1668 memset (this_cu, 0, sizeof (*this_cu));
1669 this_cu->offset = offset;
1670 this_cu->length = cu_header.length + cu_header.initial_length_size;
1671
1672 if (n_comp_units == n_allocated)
1673 {
1674 n_allocated *= 2;
1675 all_comp_units = xrealloc (all_comp_units,
1676 n_allocated
1677 * sizeof (struct dwarf2_per_cu_data *));
1678 }
1679 all_comp_units[n_comp_units++] = this_cu;
1680
1681 info_ptr = info_ptr + this_cu->length;
1682 }
1683
1684 dwarf2_per_objfile->all_comp_units
1685 = obstack_alloc (&objfile->objfile_obstack,
1686 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1687 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1688 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1689 xfree (all_comp_units);
1690 dwarf2_per_objfile->n_comp_units = n_comp_units;
1691 }
1692
1693 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1694 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1695 in CU. */
1696
1697 static void
1698 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1699 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1700 {
1701 struct objfile *objfile = cu->objfile;
1702 bfd *abfd = objfile->obfd;
1703 struct partial_die_info *pdi;
1704
1705 /* Now, march along the PDI's, descending into ones which have
1706 interesting children but skipping the children of the other ones,
1707 until we reach the end of the compilation unit. */
1708
1709 pdi = first_die;
1710
1711 while (pdi != NULL)
1712 {
1713 fixup_partial_die (pdi, cu);
1714
1715 /* Anonymous namespaces have no name but have interesting
1716 children, so we need to look at them. Ditto for anonymous
1717 enums. */
1718
1719 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1720 || pdi->tag == DW_TAG_enumeration_type)
1721 {
1722 switch (pdi->tag)
1723 {
1724 case DW_TAG_subprogram:
1725 if (pdi->has_pc_info)
1726 {
1727 if (pdi->lowpc < *lowpc)
1728 {
1729 *lowpc = pdi->lowpc;
1730 }
1731 if (pdi->highpc > *highpc)
1732 {
1733 *highpc = pdi->highpc;
1734 }
1735 if (!pdi->is_declaration)
1736 {
1737 add_partial_symbol (pdi, cu);
1738 }
1739 }
1740 break;
1741 case DW_TAG_variable:
1742 case DW_TAG_typedef:
1743 case DW_TAG_union_type:
1744 if (!pdi->is_declaration)
1745 {
1746 add_partial_symbol (pdi, cu);
1747 }
1748 break;
1749 case DW_TAG_class_type:
1750 case DW_TAG_interface_type:
1751 case DW_TAG_structure_type:
1752 if (!pdi->is_declaration)
1753 {
1754 add_partial_symbol (pdi, cu);
1755 }
1756 break;
1757 case DW_TAG_enumeration_type:
1758 if (!pdi->is_declaration)
1759 add_partial_enumeration (pdi, cu);
1760 break;
1761 case DW_TAG_base_type:
1762 case DW_TAG_subrange_type:
1763 /* File scope base type definitions are added to the partial
1764 symbol table. */
1765 add_partial_symbol (pdi, cu);
1766 break;
1767 case DW_TAG_namespace:
1768 add_partial_namespace (pdi, lowpc, highpc, cu);
1769 break;
1770 default:
1771 break;
1772 }
1773 }
1774
1775 /* If the die has a sibling, skip to the sibling. */
1776
1777 pdi = pdi->die_sibling;
1778 }
1779 }
1780
1781 /* Functions used to compute the fully scoped name of a partial DIE.
1782
1783 Normally, this is simple. For C++, the parent DIE's fully scoped
1784 name is concatenated with "::" and the partial DIE's name. For
1785 Java, the same thing occurs except that "." is used instead of "::".
1786 Enumerators are an exception; they use the scope of their parent
1787 enumeration type, i.e. the name of the enumeration type is not
1788 prepended to the enumerator.
1789
1790 There are two complexities. One is DW_AT_specification; in this
1791 case "parent" means the parent of the target of the specification,
1792 instead of the direct parent of the DIE. The other is compilers
1793 which do not emit DW_TAG_namespace; in this case we try to guess
1794 the fully qualified name of structure types from their members'
1795 linkage names. This must be done using the DIE's children rather
1796 than the children of any DW_AT_specification target. We only need
1797 to do this for structures at the top level, i.e. if the target of
1798 any DW_AT_specification (if any; otherwise the DIE itself) does not
1799 have a parent. */
1800
1801 /* Compute the scope prefix associated with PDI's parent, in
1802 compilation unit CU. The result will be allocated on CU's
1803 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1804 field. NULL is returned if no prefix is necessary. */
1805 static char *
1806 partial_die_parent_scope (struct partial_die_info *pdi,
1807 struct dwarf2_cu *cu)
1808 {
1809 char *grandparent_scope;
1810 struct partial_die_info *parent, *real_pdi;
1811
1812 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1813 then this means the parent of the specification DIE. */
1814
1815 real_pdi = pdi;
1816 while (real_pdi->has_specification)
1817 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1818
1819 parent = real_pdi->die_parent;
1820 if (parent == NULL)
1821 return NULL;
1822
1823 if (parent->scope_set)
1824 return parent->scope;
1825
1826 fixup_partial_die (parent, cu);
1827
1828 grandparent_scope = partial_die_parent_scope (parent, cu);
1829
1830 if (parent->tag == DW_TAG_namespace
1831 || parent->tag == DW_TAG_structure_type
1832 || parent->tag == DW_TAG_class_type
1833 || parent->tag == DW_TAG_interface_type
1834 || parent->tag == DW_TAG_union_type)
1835 {
1836 if (grandparent_scope == NULL)
1837 parent->scope = parent->name;
1838 else
1839 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1840 parent->name, cu);
1841 }
1842 else if (parent->tag == DW_TAG_enumeration_type)
1843 /* Enumerators should not get the name of the enumeration as a prefix. */
1844 parent->scope = grandparent_scope;
1845 else
1846 {
1847 /* FIXME drow/2004-04-01: What should we be doing with
1848 function-local names? For partial symbols, we should probably be
1849 ignoring them. */
1850 complaint (&symfile_complaints,
1851 _("unhandled containing DIE tag %d for DIE at %d"),
1852 parent->tag, pdi->offset);
1853 parent->scope = grandparent_scope;
1854 }
1855
1856 parent->scope_set = 1;
1857 return parent->scope;
1858 }
1859
1860 /* Return the fully scoped name associated with PDI, from compilation unit
1861 CU. The result will be allocated with malloc. */
1862 static char *
1863 partial_die_full_name (struct partial_die_info *pdi,
1864 struct dwarf2_cu *cu)
1865 {
1866 char *parent_scope;
1867
1868 parent_scope = partial_die_parent_scope (pdi, cu);
1869 if (parent_scope == NULL)
1870 return NULL;
1871 else
1872 return typename_concat (NULL, parent_scope, pdi->name, cu);
1873 }
1874
1875 static void
1876 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1877 {
1878 struct objfile *objfile = cu->objfile;
1879 CORE_ADDR addr = 0;
1880 char *actual_name = NULL;
1881 const char *my_prefix;
1882 const struct partial_symbol *psym = NULL;
1883 CORE_ADDR baseaddr;
1884 int built_actual_name = 0;
1885
1886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1887
1888 if (pdi_needs_namespace (pdi->tag))
1889 {
1890 actual_name = partial_die_full_name (pdi, cu);
1891 if (actual_name)
1892 built_actual_name = 1;
1893 }
1894
1895 if (actual_name == NULL)
1896 actual_name = pdi->name;
1897
1898 switch (pdi->tag)
1899 {
1900 case DW_TAG_subprogram:
1901 if (pdi->is_external || cu->language == language_ada)
1902 {
1903 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
1904 of the global scope. But in Ada, we want to be able to access
1905 nested procedures globally. So all Ada subprograms are stored
1906 in the global scope. */
1907 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1908 mst_text, objfile); */
1909 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1910 VAR_DOMAIN, LOC_BLOCK,
1911 &objfile->global_psymbols,
1912 0, pdi->lowpc + baseaddr,
1913 cu->language, objfile);
1914 }
1915 else
1916 {
1917 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1918 mst_file_text, objfile); */
1919 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1920 VAR_DOMAIN, LOC_BLOCK,
1921 &objfile->static_psymbols,
1922 0, pdi->lowpc + baseaddr,
1923 cu->language, objfile);
1924 }
1925 break;
1926 case DW_TAG_variable:
1927 if (pdi->is_external)
1928 {
1929 /* Global Variable.
1930 Don't enter into the minimal symbol tables as there is
1931 a minimal symbol table entry from the ELF symbols already.
1932 Enter into partial symbol table if it has a location
1933 descriptor or a type.
1934 If the location descriptor is missing, new_symbol will create
1935 a LOC_UNRESOLVED symbol, the address of the variable will then
1936 be determined from the minimal symbol table whenever the variable
1937 is referenced.
1938 The address for the partial symbol table entry is not
1939 used by GDB, but it comes in handy for debugging partial symbol
1940 table building. */
1941
1942 if (pdi->locdesc)
1943 addr = decode_locdesc (pdi->locdesc, cu);
1944 if (pdi->locdesc || pdi->has_type)
1945 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1946 VAR_DOMAIN, LOC_STATIC,
1947 &objfile->global_psymbols,
1948 0, addr + baseaddr,
1949 cu->language, objfile);
1950 }
1951 else
1952 {
1953 /* Static Variable. Skip symbols without location descriptors. */
1954 if (pdi->locdesc == NULL)
1955 {
1956 if (built_actual_name)
1957 xfree (actual_name);
1958 return;
1959 }
1960 addr = decode_locdesc (pdi->locdesc, cu);
1961 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1962 mst_file_data, objfile); */
1963 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1964 VAR_DOMAIN, LOC_STATIC,
1965 &objfile->static_psymbols,
1966 0, addr + baseaddr,
1967 cu->language, objfile);
1968 }
1969 break;
1970 case DW_TAG_typedef:
1971 case DW_TAG_base_type:
1972 case DW_TAG_subrange_type:
1973 add_psymbol_to_list (actual_name, strlen (actual_name),
1974 VAR_DOMAIN, LOC_TYPEDEF,
1975 &objfile->static_psymbols,
1976 0, (CORE_ADDR) 0, cu->language, objfile);
1977 break;
1978 case DW_TAG_namespace:
1979 add_psymbol_to_list (actual_name, strlen (actual_name),
1980 VAR_DOMAIN, LOC_TYPEDEF,
1981 &objfile->global_psymbols,
1982 0, (CORE_ADDR) 0, cu->language, objfile);
1983 break;
1984 case DW_TAG_class_type:
1985 case DW_TAG_interface_type:
1986 case DW_TAG_structure_type:
1987 case DW_TAG_union_type:
1988 case DW_TAG_enumeration_type:
1989 /* Skip external references. The DWARF standard says in the section
1990 about "Structure, Union, and Class Type Entries": "An incomplete
1991 structure, union or class type is represented by a structure,
1992 union or class entry that does not have a byte size attribute
1993 and that has a DW_AT_declaration attribute." */
1994 if (!pdi->has_byte_size && pdi->is_declaration)
1995 {
1996 if (built_actual_name)
1997 xfree (actual_name);
1998 return;
1999 }
2000
2001 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2002 static vs. global. */
2003 add_psymbol_to_list (actual_name, strlen (actual_name),
2004 STRUCT_DOMAIN, LOC_TYPEDEF,
2005 (cu->language == language_cplus
2006 || cu->language == language_java)
2007 ? &objfile->global_psymbols
2008 : &objfile->static_psymbols,
2009 0, (CORE_ADDR) 0, cu->language, objfile);
2010
2011 if (cu->language == language_cplus
2012 || cu->language == language_java
2013 || cu->language == language_ada)
2014 {
2015 /* For C++ and Java, these implicitly act as typedefs as well. */
2016 add_psymbol_to_list (actual_name, strlen (actual_name),
2017 VAR_DOMAIN, LOC_TYPEDEF,
2018 &objfile->global_psymbols,
2019 0, (CORE_ADDR) 0, cu->language, objfile);
2020 }
2021 break;
2022 case DW_TAG_enumerator:
2023 add_psymbol_to_list (actual_name, strlen (actual_name),
2024 VAR_DOMAIN, LOC_CONST,
2025 (cu->language == language_cplus
2026 || cu->language == language_java)
2027 ? &objfile->global_psymbols
2028 : &objfile->static_psymbols,
2029 0, (CORE_ADDR) 0, cu->language, objfile);
2030 break;
2031 default:
2032 break;
2033 }
2034
2035 /* Check to see if we should scan the name for possible namespace
2036 info. Only do this if this is C++, if we don't have namespace
2037 debugging info in the file, if the psym is of an appropriate type
2038 (otherwise we'll have psym == NULL), and if we actually had a
2039 mangled name to begin with. */
2040
2041 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2042 cases which do not set PSYM above? */
2043
2044 if (cu->language == language_cplus
2045 && cu->has_namespace_info == 0
2046 && psym != NULL
2047 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2048 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2049 objfile);
2050
2051 if (built_actual_name)
2052 xfree (actual_name);
2053 }
2054
2055 /* Determine whether a die of type TAG living in a C++ class or
2056 namespace needs to have the name of the scope prepended to the
2057 name listed in the die. */
2058
2059 static int
2060 pdi_needs_namespace (enum dwarf_tag tag)
2061 {
2062 switch (tag)
2063 {
2064 case DW_TAG_namespace:
2065 case DW_TAG_typedef:
2066 case DW_TAG_class_type:
2067 case DW_TAG_interface_type:
2068 case DW_TAG_structure_type:
2069 case DW_TAG_union_type:
2070 case DW_TAG_enumeration_type:
2071 case DW_TAG_enumerator:
2072 return 1;
2073 default:
2074 return 0;
2075 }
2076 }
2077
2078 /* Read a partial die corresponding to a namespace; also, add a symbol
2079 corresponding to that namespace to the symbol table. NAMESPACE is
2080 the name of the enclosing namespace. */
2081
2082 static void
2083 add_partial_namespace (struct partial_die_info *pdi,
2084 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2085 struct dwarf2_cu *cu)
2086 {
2087 struct objfile *objfile = cu->objfile;
2088
2089 /* Add a symbol for the namespace. */
2090
2091 add_partial_symbol (pdi, cu);
2092
2093 /* Now scan partial symbols in that namespace. */
2094
2095 if (pdi->has_children)
2096 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2097 }
2098
2099 /* See if we can figure out if the class lives in a namespace. We do
2100 this by looking for a member function; its demangled name will
2101 contain namespace info, if there is any. */
2102
2103 static void
2104 guess_structure_name (struct partial_die_info *struct_pdi,
2105 struct dwarf2_cu *cu)
2106 {
2107 if ((cu->language == language_cplus
2108 || cu->language == language_java)
2109 && cu->has_namespace_info == 0
2110 && struct_pdi->has_children)
2111 {
2112 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2113 what template types look like, because the demangler
2114 frequently doesn't give the same name as the debug info. We
2115 could fix this by only using the demangled name to get the
2116 prefix (but see comment in read_structure_type). */
2117
2118 struct partial_die_info *child_pdi = struct_pdi->die_child;
2119 struct partial_die_info *real_pdi;
2120
2121 /* If this DIE (this DIE's specification, if any) has a parent, then
2122 we should not do this. We'll prepend the parent's fully qualified
2123 name when we create the partial symbol. */
2124
2125 real_pdi = struct_pdi;
2126 while (real_pdi->has_specification)
2127 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2128
2129 if (real_pdi->die_parent != NULL)
2130 return;
2131
2132 while (child_pdi != NULL)
2133 {
2134 if (child_pdi->tag == DW_TAG_subprogram)
2135 {
2136 char *actual_class_name
2137 = language_class_name_from_physname (cu->language_defn,
2138 child_pdi->name);
2139 if (actual_class_name != NULL)
2140 {
2141 struct_pdi->name
2142 = obsavestring (actual_class_name,
2143 strlen (actual_class_name),
2144 &cu->comp_unit_obstack);
2145 xfree (actual_class_name);
2146 }
2147 break;
2148 }
2149
2150 child_pdi = child_pdi->die_sibling;
2151 }
2152 }
2153 }
2154
2155 /* Read a partial die corresponding to an enumeration type. */
2156
2157 static void
2158 add_partial_enumeration (struct partial_die_info *enum_pdi,
2159 struct dwarf2_cu *cu)
2160 {
2161 struct objfile *objfile = cu->objfile;
2162 bfd *abfd = objfile->obfd;
2163 struct partial_die_info *pdi;
2164
2165 if (enum_pdi->name != NULL)
2166 add_partial_symbol (enum_pdi, cu);
2167
2168 pdi = enum_pdi->die_child;
2169 while (pdi)
2170 {
2171 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2172 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2173 else
2174 add_partial_symbol (pdi, cu);
2175 pdi = pdi->die_sibling;
2176 }
2177 }
2178
2179 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2180 Return the corresponding abbrev, or NULL if the number is zero (indicating
2181 an empty DIE). In either case *BYTES_READ will be set to the length of
2182 the initial number. */
2183
2184 static struct abbrev_info *
2185 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2186 struct dwarf2_cu *cu)
2187 {
2188 bfd *abfd = cu->objfile->obfd;
2189 unsigned int abbrev_number;
2190 struct abbrev_info *abbrev;
2191
2192 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2193
2194 if (abbrev_number == 0)
2195 return NULL;
2196
2197 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2198 if (!abbrev)
2199 {
2200 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2201 bfd_get_filename (abfd));
2202 }
2203
2204 return abbrev;
2205 }
2206
2207 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2208 pointer to the end of a series of DIEs, terminated by an empty
2209 DIE. Any children of the skipped DIEs will also be skipped. */
2210
2211 static gdb_byte *
2212 skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
2213 {
2214 struct abbrev_info *abbrev;
2215 unsigned int bytes_read;
2216
2217 while (1)
2218 {
2219 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2220 if (abbrev == NULL)
2221 return info_ptr + bytes_read;
2222 else
2223 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2224 }
2225 }
2226
2227 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2228 should point just after the initial uleb128 of a DIE, and the
2229 abbrev corresponding to that skipped uleb128 should be passed in
2230 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2231 children. */
2232
2233 static gdb_byte *
2234 skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
2235 struct dwarf2_cu *cu)
2236 {
2237 unsigned int bytes_read;
2238 struct attribute attr;
2239 bfd *abfd = cu->objfile->obfd;
2240 unsigned int form, i;
2241
2242 for (i = 0; i < abbrev->num_attrs; i++)
2243 {
2244 /* The only abbrev we care about is DW_AT_sibling. */
2245 if (abbrev->attrs[i].name == DW_AT_sibling)
2246 {
2247 read_attribute (&attr, &abbrev->attrs[i],
2248 abfd, info_ptr, cu);
2249 if (attr.form == DW_FORM_ref_addr)
2250 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2251 else
2252 return dwarf2_per_objfile->info_buffer
2253 + dwarf2_get_ref_die_offset (&attr, cu);
2254 }
2255
2256 /* If it isn't DW_AT_sibling, skip this attribute. */
2257 form = abbrev->attrs[i].form;
2258 skip_attribute:
2259 switch (form)
2260 {
2261 case DW_FORM_addr:
2262 case DW_FORM_ref_addr:
2263 info_ptr += cu->header.addr_size;
2264 break;
2265 case DW_FORM_data1:
2266 case DW_FORM_ref1:
2267 case DW_FORM_flag:
2268 info_ptr += 1;
2269 break;
2270 case DW_FORM_data2:
2271 case DW_FORM_ref2:
2272 info_ptr += 2;
2273 break;
2274 case DW_FORM_data4:
2275 case DW_FORM_ref4:
2276 info_ptr += 4;
2277 break;
2278 case DW_FORM_data8:
2279 case DW_FORM_ref8:
2280 info_ptr += 8;
2281 break;
2282 case DW_FORM_string:
2283 read_string (abfd, info_ptr, &bytes_read);
2284 info_ptr += bytes_read;
2285 break;
2286 case DW_FORM_strp:
2287 info_ptr += cu->header.offset_size;
2288 break;
2289 case DW_FORM_block:
2290 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2291 info_ptr += bytes_read;
2292 break;
2293 case DW_FORM_block1:
2294 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2295 break;
2296 case DW_FORM_block2:
2297 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2298 break;
2299 case DW_FORM_block4:
2300 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2301 break;
2302 case DW_FORM_sdata:
2303 case DW_FORM_udata:
2304 case DW_FORM_ref_udata:
2305 info_ptr = skip_leb128 (abfd, info_ptr);
2306 break;
2307 case DW_FORM_indirect:
2308 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2309 info_ptr += bytes_read;
2310 /* We need to continue parsing from here, so just go back to
2311 the top. */
2312 goto skip_attribute;
2313
2314 default:
2315 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2316 dwarf_form_name (form),
2317 bfd_get_filename (abfd));
2318 }
2319 }
2320
2321 if (abbrev->has_children)
2322 return skip_children (info_ptr, cu);
2323 else
2324 return info_ptr;
2325 }
2326
2327 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2328 the next DIE after ORIG_PDI. */
2329
2330 static gdb_byte *
2331 locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
2332 bfd *abfd, struct dwarf2_cu *cu)
2333 {
2334 /* Do we know the sibling already? */
2335
2336 if (orig_pdi->sibling)
2337 return orig_pdi->sibling;
2338
2339 /* Are there any children to deal with? */
2340
2341 if (!orig_pdi->has_children)
2342 return info_ptr;
2343
2344 /* Skip the children the long way. */
2345
2346 return skip_children (info_ptr, cu);
2347 }
2348
2349 /* Expand this partial symbol table into a full symbol table. */
2350
2351 static void
2352 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2353 {
2354 /* FIXME: This is barely more than a stub. */
2355 if (pst != NULL)
2356 {
2357 if (pst->readin)
2358 {
2359 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2360 }
2361 else
2362 {
2363 if (info_verbose)
2364 {
2365 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2366 gdb_flush (gdb_stdout);
2367 }
2368
2369 /* Restore our global data. */
2370 dwarf2_per_objfile = objfile_data (pst->objfile,
2371 dwarf2_objfile_data_key);
2372
2373 psymtab_to_symtab_1 (pst);
2374
2375 /* Finish up the debug error message. */
2376 if (info_verbose)
2377 printf_filtered (_("done.\n"));
2378 }
2379 }
2380 }
2381
2382 /* Add PER_CU to the queue. */
2383
2384 static void
2385 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2386 {
2387 struct dwarf2_queue_item *item;
2388
2389 per_cu->queued = 1;
2390 item = xmalloc (sizeof (*item));
2391 item->per_cu = per_cu;
2392 item->next = NULL;
2393
2394 if (dwarf2_queue == NULL)
2395 dwarf2_queue = item;
2396 else
2397 dwarf2_queue_tail->next = item;
2398
2399 dwarf2_queue_tail = item;
2400 }
2401
2402 /* Process the queue. */
2403
2404 static void
2405 process_queue (struct objfile *objfile)
2406 {
2407 struct dwarf2_queue_item *item, *next_item;
2408
2409 /* Initially, there is just one item on the queue. Load its DIEs,
2410 and the DIEs of any other compilation units it requires,
2411 transitively. */
2412
2413 for (item = dwarf2_queue; item != NULL; item = item->next)
2414 {
2415 /* Read in this compilation unit. This may add new items to
2416 the end of the queue. */
2417 load_full_comp_unit (item->per_cu, objfile);
2418
2419 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2420 dwarf2_per_objfile->read_in_chain = item->per_cu;
2421
2422 /* If this compilation unit has already had full symbols created,
2423 reset the TYPE fields in each DIE. */
2424 if (item->per_cu->type_hash)
2425 reset_die_and_siblings_types (item->per_cu->cu->dies,
2426 item->per_cu->cu);
2427 }
2428
2429 /* Now everything left on the queue needs to be read in. Process
2430 them, one at a time, removing from the queue as we finish. */
2431 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2432 {
2433 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
2434 process_full_comp_unit (item->per_cu);
2435
2436 item->per_cu->queued = 0;
2437 next_item = item->next;
2438 xfree (item);
2439 }
2440
2441 dwarf2_queue_tail = NULL;
2442 }
2443
2444 /* Free all allocated queue entries. This function only releases anything if
2445 an error was thrown; if the queue was processed then it would have been
2446 freed as we went along. */
2447
2448 static void
2449 dwarf2_release_queue (void *dummy)
2450 {
2451 struct dwarf2_queue_item *item, *last;
2452
2453 item = dwarf2_queue;
2454 while (item)
2455 {
2456 /* Anything still marked queued is likely to be in an
2457 inconsistent state, so discard it. */
2458 if (item->per_cu->queued)
2459 {
2460 if (item->per_cu->cu != NULL)
2461 free_one_cached_comp_unit (item->per_cu->cu);
2462 item->per_cu->queued = 0;
2463 }
2464
2465 last = item;
2466 item = item->next;
2467 xfree (last);
2468 }
2469
2470 dwarf2_queue = dwarf2_queue_tail = NULL;
2471 }
2472
2473 /* Read in full symbols for PST, and anything it depends on. */
2474
2475 static void
2476 psymtab_to_symtab_1 (struct partial_symtab *pst)
2477 {
2478 struct dwarf2_per_cu_data *per_cu;
2479 struct cleanup *back_to;
2480 int i;
2481
2482 for (i = 0; i < pst->number_of_dependencies; i++)
2483 if (!pst->dependencies[i]->readin)
2484 {
2485 /* Inform about additional files that need to be read in. */
2486 if (info_verbose)
2487 {
2488 /* FIXME: i18n: Need to make this a single string. */
2489 fputs_filtered (" ", gdb_stdout);
2490 wrap_here ("");
2491 fputs_filtered ("and ", gdb_stdout);
2492 wrap_here ("");
2493 printf_filtered ("%s...", pst->dependencies[i]->filename);
2494 wrap_here (""); /* Flush output */
2495 gdb_flush (gdb_stdout);
2496 }
2497 psymtab_to_symtab_1 (pst->dependencies[i]);
2498 }
2499
2500 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2501
2502 if (per_cu == NULL)
2503 {
2504 /* It's an include file, no symbols to read for it.
2505 Everything is in the parent symtab. */
2506 pst->readin = 1;
2507 return;
2508 }
2509
2510 back_to = make_cleanup (dwarf2_release_queue, NULL);
2511
2512 queue_comp_unit (per_cu);
2513
2514 process_queue (pst->objfile);
2515
2516 /* Age the cache, releasing compilation units that have not
2517 been used recently. */
2518 age_cached_comp_units ();
2519
2520 do_cleanups (back_to);
2521 }
2522
2523 /* Load the DIEs associated with PST and PER_CU into memory. */
2524
2525 static struct dwarf2_cu *
2526 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
2527 {
2528 bfd *abfd = objfile->obfd;
2529 struct dwarf2_cu *cu;
2530 unsigned long offset;
2531 gdb_byte *info_ptr;
2532 struct cleanup *back_to, *free_cu_cleanup;
2533 struct attribute *attr;
2534 CORE_ADDR baseaddr;
2535
2536 /* Set local variables from the partial symbol table info. */
2537 offset = per_cu->offset;
2538
2539 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2540
2541 cu = xmalloc (sizeof (struct dwarf2_cu));
2542 memset (cu, 0, sizeof (struct dwarf2_cu));
2543
2544 /* If an error occurs while loading, release our storage. */
2545 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2546
2547 cu->objfile = objfile;
2548
2549 /* read in the comp_unit header */
2550 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2551
2552 /* Read the abbrevs for this compilation unit */
2553 dwarf2_read_abbrevs (abfd, cu);
2554 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2555
2556 cu->header.offset = offset;
2557
2558 cu->per_cu = per_cu;
2559 per_cu->cu = cu;
2560
2561 /* We use this obstack for block values in dwarf_alloc_block. */
2562 obstack_init (&cu->comp_unit_obstack);
2563
2564 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2565
2566 /* We try not to read any attributes in this function, because not
2567 all objfiles needed for references have been loaded yet, and symbol
2568 table processing isn't initialized. But we have to set the CU language,
2569 or we won't be able to build types correctly. */
2570 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2571 if (attr)
2572 set_cu_language (DW_UNSND (attr), cu);
2573 else
2574 set_cu_language (language_minimal, cu);
2575
2576 do_cleanups (back_to);
2577
2578 /* We've successfully allocated this compilation unit. Let our caller
2579 clean it up when finished with it. */
2580 discard_cleanups (free_cu_cleanup);
2581
2582 return cu;
2583 }
2584
2585 /* Generate full symbol information for PST and CU, whose DIEs have
2586 already been loaded into memory. */
2587
2588 static void
2589 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2590 {
2591 struct partial_symtab *pst = per_cu->psymtab;
2592 struct dwarf2_cu *cu = per_cu->cu;
2593 struct objfile *objfile = pst->objfile;
2594 bfd *abfd = objfile->obfd;
2595 CORE_ADDR lowpc, highpc;
2596 struct symtab *symtab;
2597 struct cleanup *back_to;
2598 struct attribute *attr;
2599 CORE_ADDR baseaddr;
2600
2601 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2602
2603 /* We're in the global namespace. */
2604 processing_current_prefix = "";
2605
2606 buildsym_init ();
2607 back_to = make_cleanup (really_free_pendings, NULL);
2608
2609 cu->list_in_scope = &file_symbols;
2610
2611 /* Find the base address of the compilation unit for range lists and
2612 location lists. It will normally be specified by DW_AT_low_pc.
2613 In DWARF-3 draft 4, the base address could be overridden by
2614 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2615 compilation units with discontinuous ranges. */
2616
2617 cu->header.base_known = 0;
2618 cu->header.base_address = 0;
2619
2620 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2621 if (attr)
2622 {
2623 cu->header.base_address = DW_ADDR (attr);
2624 cu->header.base_known = 1;
2625 }
2626 else
2627 {
2628 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2629 if (attr)
2630 {
2631 cu->header.base_address = DW_ADDR (attr);
2632 cu->header.base_known = 1;
2633 }
2634 }
2635
2636 /* Do line number decoding in read_file_scope () */
2637 process_die (cu->dies, cu);
2638
2639 /* Some compilers don't define a DW_AT_high_pc attribute for the
2640 compilation unit. If the DW_AT_high_pc is missing, synthesize
2641 it, by scanning the DIE's below the compilation unit. */
2642 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2643
2644 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2645
2646 /* Set symtab language to language from DW_AT_language.
2647 If the compilation is from a C file generated by language preprocessors,
2648 do not set the language if it was already deduced by start_subfile. */
2649 if (symtab != NULL
2650 && !(cu->language == language_c && symtab->language != language_c))
2651 {
2652 symtab->language = cu->language;
2653 }
2654 pst->symtab = symtab;
2655 pst->readin = 1;
2656
2657 do_cleanups (back_to);
2658 }
2659
2660 /* Process a die and its children. */
2661
2662 static void
2663 process_die (struct die_info *die, struct dwarf2_cu *cu)
2664 {
2665 switch (die->tag)
2666 {
2667 case DW_TAG_padding:
2668 break;
2669 case DW_TAG_compile_unit:
2670 read_file_scope (die, cu);
2671 break;
2672 case DW_TAG_subprogram:
2673 read_subroutine_type (die, cu);
2674 read_func_scope (die, cu);
2675 break;
2676 case DW_TAG_inlined_subroutine:
2677 /* FIXME: These are ignored for now.
2678 They could be used to set breakpoints on all inlined instances
2679 of a function and make GDB `next' properly over inlined functions. */
2680 break;
2681 case DW_TAG_lexical_block:
2682 case DW_TAG_try_block:
2683 case DW_TAG_catch_block:
2684 read_lexical_block_scope (die, cu);
2685 break;
2686 case DW_TAG_class_type:
2687 case DW_TAG_interface_type:
2688 case DW_TAG_structure_type:
2689 case DW_TAG_union_type:
2690 read_structure_type (die, cu);
2691 process_structure_scope (die, cu);
2692 break;
2693 case DW_TAG_enumeration_type:
2694 read_enumeration_type (die, cu);
2695 process_enumeration_scope (die, cu);
2696 break;
2697
2698 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2699 a symbol or process any children. Therefore it doesn't do anything
2700 that won't be done on-demand by read_type_die. */
2701 case DW_TAG_subroutine_type:
2702 read_subroutine_type (die, cu);
2703 break;
2704 case DW_TAG_set_type:
2705 read_set_type (die, cu);
2706 break;
2707 case DW_TAG_array_type:
2708 read_array_type (die, cu);
2709 break;
2710 case DW_TAG_pointer_type:
2711 read_tag_pointer_type (die, cu);
2712 break;
2713 case DW_TAG_ptr_to_member_type:
2714 read_tag_ptr_to_member_type (die, cu);
2715 break;
2716 case DW_TAG_reference_type:
2717 read_tag_reference_type (die, cu);
2718 break;
2719 case DW_TAG_string_type:
2720 read_tag_string_type (die, cu);
2721 break;
2722 /* END FIXME */
2723
2724 case DW_TAG_base_type:
2725 read_base_type (die, cu);
2726 /* Add a typedef symbol for the type definition, if it has a
2727 DW_AT_name. */
2728 new_symbol (die, die->type, cu);
2729 break;
2730 case DW_TAG_subrange_type:
2731 read_subrange_type (die, cu);
2732 /* Add a typedef symbol for the type definition, if it has a
2733 DW_AT_name. */
2734 new_symbol (die, die->type, cu);
2735 break;
2736 case DW_TAG_common_block:
2737 read_common_block (die, cu);
2738 break;
2739 case DW_TAG_common_inclusion:
2740 break;
2741 case DW_TAG_namespace:
2742 processing_has_namespace_info = 1;
2743 read_namespace (die, cu);
2744 break;
2745 case DW_TAG_imported_declaration:
2746 case DW_TAG_imported_module:
2747 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2748 information contained in these. DW_TAG_imported_declaration
2749 dies shouldn't have children; DW_TAG_imported_module dies
2750 shouldn't in the C++ case, but conceivably could in the
2751 Fortran case, so we'll have to replace this gdb_assert if
2752 Fortran compilers start generating that info. */
2753 processing_has_namespace_info = 1;
2754 gdb_assert (die->child == NULL);
2755 break;
2756 default:
2757 new_symbol (die, NULL, cu);
2758 break;
2759 }
2760 }
2761
2762 static void
2763 initialize_cu_func_list (struct dwarf2_cu *cu)
2764 {
2765 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2766 }
2767
2768 static void
2769 free_cu_line_header (void *arg)
2770 {
2771 struct dwarf2_cu *cu = arg;
2772
2773 free_line_header (cu->line_header);
2774 cu->line_header = NULL;
2775 }
2776
2777 static void
2778 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2779 {
2780 struct objfile *objfile = cu->objfile;
2781 struct comp_unit_head *cu_header = &cu->header;
2782 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2783 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2784 CORE_ADDR highpc = ((CORE_ADDR) 0);
2785 struct attribute *attr;
2786 char *name = NULL;
2787 char *comp_dir = NULL;
2788 struct die_info *child_die;
2789 bfd *abfd = objfile->obfd;
2790 struct line_header *line_header = 0;
2791 CORE_ADDR baseaddr;
2792
2793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2794
2795 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2796
2797 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2798 from finish_block. */
2799 if (lowpc == ((CORE_ADDR) -1))
2800 lowpc = highpc;
2801 lowpc += baseaddr;
2802 highpc += baseaddr;
2803
2804 /* Find the filename. Do not use dwarf2_name here, since the filename
2805 is not a source language identifier. */
2806 attr = dwarf2_attr (die, DW_AT_name, cu);
2807 if (attr)
2808 {
2809 name = DW_STRING (attr);
2810 }
2811
2812 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2813 if (attr)
2814 comp_dir = DW_STRING (attr);
2815 else if (name != NULL && IS_ABSOLUTE_PATH (name))
2816 {
2817 comp_dir = ldirname (name);
2818 if (comp_dir != NULL)
2819 make_cleanup (xfree, comp_dir);
2820 }
2821 if (comp_dir != NULL)
2822 {
2823 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2824 directory, get rid of it. */
2825 char *cp = strchr (comp_dir, ':');
2826
2827 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2828 comp_dir = cp + 1;
2829 }
2830
2831 if (name == NULL)
2832 name = "<unknown>";
2833
2834 attr = dwarf2_attr (die, DW_AT_language, cu);
2835 if (attr)
2836 {
2837 set_cu_language (DW_UNSND (attr), cu);
2838 }
2839
2840 attr = dwarf2_attr (die, DW_AT_producer, cu);
2841 if (attr)
2842 cu->producer = DW_STRING (attr);
2843
2844 /* We assume that we're processing GCC output. */
2845 processing_gcc_compilation = 2;
2846
2847 start_symtab (name, comp_dir, lowpc);
2848 record_debugformat ("DWARF 2");
2849 record_producer (cu->producer);
2850
2851 initialize_cu_func_list (cu);
2852
2853 /* Decode line number information if present. We do this before
2854 processing child DIEs, so that the line header table is available
2855 for DW_AT_decl_file. */
2856 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2857 if (attr)
2858 {
2859 unsigned int line_offset = DW_UNSND (attr);
2860 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2861 if (line_header)
2862 {
2863 cu->line_header = line_header;
2864 make_cleanup (free_cu_line_header, cu);
2865 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2866 }
2867 }
2868
2869 /* Process all dies in compilation unit. */
2870 if (die->child != NULL)
2871 {
2872 child_die = die->child;
2873 while (child_die && child_die->tag)
2874 {
2875 process_die (child_die, cu);
2876 child_die = sibling_die (child_die);
2877 }
2878 }
2879
2880 /* Decode macro information, if present. Dwarf 2 macro information
2881 refers to information in the line number info statement program
2882 header, so we can only read it if we've read the header
2883 successfully. */
2884 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2885 if (attr && line_header)
2886 {
2887 unsigned int macro_offset = DW_UNSND (attr);
2888 dwarf_decode_macros (line_header, macro_offset,
2889 comp_dir, abfd, cu);
2890 }
2891 do_cleanups (back_to);
2892 }
2893
2894 static void
2895 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2896 struct dwarf2_cu *cu)
2897 {
2898 struct function_range *thisfn;
2899
2900 thisfn = (struct function_range *)
2901 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2902 thisfn->name = name;
2903 thisfn->lowpc = lowpc;
2904 thisfn->highpc = highpc;
2905 thisfn->seen_line = 0;
2906 thisfn->next = NULL;
2907
2908 if (cu->last_fn == NULL)
2909 cu->first_fn = thisfn;
2910 else
2911 cu->last_fn->next = thisfn;
2912
2913 cu->last_fn = thisfn;
2914 }
2915
2916 static void
2917 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2918 {
2919 struct objfile *objfile = cu->objfile;
2920 struct context_stack *new;
2921 CORE_ADDR lowpc;
2922 CORE_ADDR highpc;
2923 struct die_info *child_die;
2924 struct attribute *attr;
2925 char *name;
2926 const char *previous_prefix = processing_current_prefix;
2927 struct cleanup *back_to = NULL;
2928 CORE_ADDR baseaddr;
2929 struct block *block;
2930
2931 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2932
2933 name = dwarf2_linkage_name (die, cu);
2934
2935 /* Ignore functions with missing or empty names and functions with
2936 missing or invalid low and high pc attributes. */
2937 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2938 return;
2939
2940 if (cu->language == language_cplus
2941 || cu->language == language_java)
2942 {
2943 struct die_info *spec_die = die_specification (die, cu);
2944
2945 /* NOTE: carlton/2004-01-23: We have to be careful in the
2946 presence of DW_AT_specification. For example, with GCC 3.4,
2947 given the code
2948
2949 namespace N {
2950 void foo() {
2951 // Definition of N::foo.
2952 }
2953 }
2954
2955 then we'll have a tree of DIEs like this:
2956
2957 1: DW_TAG_compile_unit
2958 2: DW_TAG_namespace // N
2959 3: DW_TAG_subprogram // declaration of N::foo
2960 4: DW_TAG_subprogram // definition of N::foo
2961 DW_AT_specification // refers to die #3
2962
2963 Thus, when processing die #4, we have to pretend that we're
2964 in the context of its DW_AT_specification, namely the contex
2965 of die #3. */
2966
2967 if (spec_die != NULL)
2968 {
2969 char *specification_prefix = determine_prefix (spec_die, cu);
2970 processing_current_prefix = specification_prefix;
2971 back_to = make_cleanup (xfree, specification_prefix);
2972 }
2973 }
2974
2975 lowpc += baseaddr;
2976 highpc += baseaddr;
2977
2978 /* Record the function range for dwarf_decode_lines. */
2979 add_to_cu_func_list (name, lowpc, highpc, cu);
2980
2981 new = push_context (0, lowpc);
2982 new->name = new_symbol (die, die->type, cu);
2983
2984 /* If there is a location expression for DW_AT_frame_base, record
2985 it. */
2986 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2987 if (attr)
2988 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2989 expression is being recorded directly in the function's symbol
2990 and not in a separate frame-base object. I guess this hack is
2991 to avoid adding some sort of frame-base adjunct/annex to the
2992 function's symbol :-(. The problem with doing this is that it
2993 results in a function symbol with a location expression that
2994 has nothing to do with the location of the function, ouch! The
2995 relationship should be: a function's symbol has-a frame base; a
2996 frame-base has-a location expression. */
2997 dwarf2_symbol_mark_computed (attr, new->name, cu);
2998
2999 cu->list_in_scope = &local_symbols;
3000
3001 if (die->child != NULL)
3002 {
3003 child_die = die->child;
3004 while (child_die && child_die->tag)
3005 {
3006 process_die (child_die, cu);
3007 child_die = sibling_die (child_die);
3008 }
3009 }
3010
3011 new = pop_context ();
3012 /* Make a block for the local symbols within. */
3013 block = finish_block (new->name, &local_symbols, new->old_blocks,
3014 lowpc, highpc, objfile);
3015
3016 /* If we have address ranges, record them. */
3017 dwarf2_record_block_ranges (die, block, baseaddr, cu);
3018
3019 /* In C++, we can have functions nested inside functions (e.g., when
3020 a function declares a class that has methods). This means that
3021 when we finish processing a function scope, we may need to go
3022 back to building a containing block's symbol lists. */
3023 local_symbols = new->locals;
3024 param_symbols = new->params;
3025
3026 /* If we've finished processing a top-level function, subsequent
3027 symbols go in the file symbol list. */
3028 if (outermost_context_p ())
3029 cu->list_in_scope = &file_symbols;
3030
3031 processing_current_prefix = previous_prefix;
3032 if (back_to != NULL)
3033 do_cleanups (back_to);
3034 }
3035
3036 /* Process all the DIES contained within a lexical block scope. Start
3037 a new scope, process the dies, and then close the scope. */
3038
3039 static void
3040 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
3041 {
3042 struct objfile *objfile = cu->objfile;
3043 struct context_stack *new;
3044 CORE_ADDR lowpc, highpc;
3045 struct die_info *child_die;
3046 CORE_ADDR baseaddr;
3047
3048 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3049
3050 /* Ignore blocks with missing or invalid low and high pc attributes. */
3051 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3052 as multiple lexical blocks? Handling children in a sane way would
3053 be nasty. Might be easier to properly extend generic blocks to
3054 describe ranges. */
3055 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3056 return;
3057 lowpc += baseaddr;
3058 highpc += baseaddr;
3059
3060 push_context (0, lowpc);
3061 if (die->child != NULL)
3062 {
3063 child_die = die->child;
3064 while (child_die && child_die->tag)
3065 {
3066 process_die (child_die, cu);
3067 child_die = sibling_die (child_die);
3068 }
3069 }
3070 new = pop_context ();
3071
3072 if (local_symbols != NULL)
3073 {
3074 struct block *block
3075 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3076 highpc, objfile);
3077
3078 /* Note that recording ranges after traversing children, as we
3079 do here, means that recording a parent's ranges entails
3080 walking across all its children's ranges as they appear in
3081 the address map, which is quadratic behavior.
3082
3083 It would be nicer to record the parent's ranges before
3084 traversing its children, simply overriding whatever you find
3085 there. But since we don't even decide whether to create a
3086 block until after we've traversed its children, that's hard
3087 to do. */
3088 dwarf2_record_block_ranges (die, block, baseaddr, cu);
3089 }
3090 local_symbols = new->locals;
3091 }
3092
3093 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
3094 Return 1 if the attributes are present and valid, otherwise, return 0. */
3095
3096 static int
3097 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
3098 CORE_ADDR *high_return, struct dwarf2_cu *cu)
3099 {
3100 struct objfile *objfile = cu->objfile;
3101 struct comp_unit_head *cu_header = &cu->header;
3102 bfd *obfd = objfile->obfd;
3103 unsigned int addr_size = cu_header->addr_size;
3104 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3105 /* Base address selection entry. */
3106 CORE_ADDR base;
3107 int found_base;
3108 unsigned int dummy;
3109 gdb_byte *buffer;
3110 CORE_ADDR marker;
3111 int low_set;
3112 CORE_ADDR low = 0;
3113 CORE_ADDR high = 0;
3114
3115 found_base = cu_header->base_known;
3116 base = cu_header->base_address;
3117
3118 if (offset >= dwarf2_per_objfile->ranges_size)
3119 {
3120 complaint (&symfile_complaints,
3121 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3122 offset);
3123 return 0;
3124 }
3125 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3126
3127 /* Read in the largest possible address. */
3128 marker = read_address (obfd, buffer, cu, &dummy);
3129 if ((marker & mask) == mask)
3130 {
3131 /* If we found the largest possible address, then
3132 read the base address. */
3133 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3134 buffer += 2 * addr_size;
3135 offset += 2 * addr_size;
3136 found_base = 1;
3137 }
3138
3139 low_set = 0;
3140
3141 while (1)
3142 {
3143 CORE_ADDR range_beginning, range_end;
3144
3145 range_beginning = read_address (obfd, buffer, cu, &dummy);
3146 buffer += addr_size;
3147 range_end = read_address (obfd, buffer, cu, &dummy);
3148 buffer += addr_size;
3149 offset += 2 * addr_size;
3150
3151 /* An end of list marker is a pair of zero addresses. */
3152 if (range_beginning == 0 && range_end == 0)
3153 /* Found the end of list entry. */
3154 break;
3155
3156 /* Each base address selection entry is a pair of 2 values.
3157 The first is the largest possible address, the second is
3158 the base address. Check for a base address here. */
3159 if ((range_beginning & mask) == mask)
3160 {
3161 /* If we found the largest possible address, then
3162 read the base address. */
3163 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3164 found_base = 1;
3165 continue;
3166 }
3167
3168 if (!found_base)
3169 {
3170 /* We have no valid base address for the ranges
3171 data. */
3172 complaint (&symfile_complaints,
3173 _("Invalid .debug_ranges data (no base address)"));
3174 return 0;
3175 }
3176
3177 range_beginning += base;
3178 range_end += base;
3179
3180 /* FIXME: This is recording everything as a low-high
3181 segment of consecutive addresses. We should have a
3182 data structure for discontiguous block ranges
3183 instead. */
3184 if (! low_set)
3185 {
3186 low = range_beginning;
3187 high = range_end;
3188 low_set = 1;
3189 }
3190 else
3191 {
3192 if (range_beginning < low)
3193 low = range_beginning;
3194 if (range_end > high)
3195 high = range_end;
3196 }
3197 }
3198
3199 if (! low_set)
3200 /* If the first entry is an end-of-list marker, the range
3201 describes an empty scope, i.e. no instructions. */
3202 return 0;
3203
3204 if (low_return)
3205 *low_return = low;
3206 if (high_return)
3207 *high_return = high;
3208 return 1;
3209 }
3210
3211 /* Get low and high pc attributes from a die. Return 1 if the attributes
3212 are present and valid, otherwise, return 0. Return -1 if the range is
3213 discontinuous, i.e. derived from DW_AT_ranges information. */
3214 static int
3215 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3216 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3217 {
3218 struct attribute *attr;
3219 CORE_ADDR low = 0;
3220 CORE_ADDR high = 0;
3221 int ret = 0;
3222
3223 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3224 if (attr)
3225 {
3226 high = DW_ADDR (attr);
3227 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3228 if (attr)
3229 low = DW_ADDR (attr);
3230 else
3231 /* Found high w/o low attribute. */
3232 return 0;
3233
3234 /* Found consecutive range of addresses. */
3235 ret = 1;
3236 }
3237 else
3238 {
3239 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3240 if (attr != NULL)
3241 {
3242 /* Value of the DW_AT_ranges attribute is the offset in the
3243 .debug_ranges section. */
3244 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu))
3245 return 0;
3246 /* Found discontinuous range of addresses. */
3247 ret = -1;
3248 }
3249 }
3250
3251 if (high < low)
3252 return 0;
3253
3254 /* When using the GNU linker, .gnu.linkonce. sections are used to
3255 eliminate duplicate copies of functions and vtables and such.
3256 The linker will arbitrarily choose one and discard the others.
3257 The AT_*_pc values for such functions refer to local labels in
3258 these sections. If the section from that file was discarded, the
3259 labels are not in the output, so the relocs get a value of 0.
3260 If this is a discarded function, mark the pc bounds as invalid,
3261 so that GDB will ignore it. */
3262 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
3263 return 0;
3264
3265 *lowpc = low;
3266 *highpc = high;
3267 return ret;
3268 }
3269
3270 /* Get the low and high pc's represented by the scope DIE, and store
3271 them in *LOWPC and *HIGHPC. If the correct values can't be
3272 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3273
3274 static void
3275 get_scope_pc_bounds (struct die_info *die,
3276 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3277 struct dwarf2_cu *cu)
3278 {
3279 CORE_ADDR best_low = (CORE_ADDR) -1;
3280 CORE_ADDR best_high = (CORE_ADDR) 0;
3281 CORE_ADDR current_low, current_high;
3282
3283 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3284 {
3285 best_low = current_low;
3286 best_high = current_high;
3287 }
3288 else
3289 {
3290 struct die_info *child = die->child;
3291
3292 while (child && child->tag)
3293 {
3294 switch (child->tag) {
3295 case DW_TAG_subprogram:
3296 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3297 {
3298 best_low = min (best_low, current_low);
3299 best_high = max (best_high, current_high);
3300 }
3301 break;
3302 case DW_TAG_namespace:
3303 /* FIXME: carlton/2004-01-16: Should we do this for
3304 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3305 that current GCC's always emit the DIEs corresponding
3306 to definitions of methods of classes as children of a
3307 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3308 the DIEs giving the declarations, which could be
3309 anywhere). But I don't see any reason why the
3310 standards says that they have to be there. */
3311 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3312
3313 if (current_low != ((CORE_ADDR) -1))
3314 {
3315 best_low = min (best_low, current_low);
3316 best_high = max (best_high, current_high);
3317 }
3318 break;
3319 default:
3320 /* Ignore. */
3321 break;
3322 }
3323
3324 child = sibling_die (child);
3325 }
3326 }
3327
3328 *lowpc = best_low;
3329 *highpc = best_high;
3330 }
3331
3332 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
3333 in DIE. */
3334 static void
3335 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
3336 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
3337 {
3338 struct attribute *attr;
3339
3340 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3341 if (attr)
3342 {
3343 CORE_ADDR high = DW_ADDR (attr);
3344 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3345 if (attr)
3346 {
3347 CORE_ADDR low = DW_ADDR (attr);
3348 record_block_range (block, baseaddr + low, baseaddr + high - 1);
3349 }
3350 }
3351
3352 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3353 if (attr)
3354 {
3355 bfd *obfd = cu->objfile->obfd;
3356
3357 /* The value of the DW_AT_ranges attribute is the offset of the
3358 address range list in the .debug_ranges section. */
3359 unsigned long offset = DW_UNSND (attr);
3360 gdb_byte *buffer = dwarf2_per_objfile->ranges_buffer + offset;
3361
3362 /* For some target architectures, but not others, the
3363 read_address function sign-extends the addresses it returns.
3364 To recognize base address selection entries, we need a
3365 mask. */
3366 unsigned int addr_size = cu->header.addr_size;
3367 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3368
3369 /* The base address, to which the next pair is relative. Note
3370 that this 'base' is a DWARF concept: most entries in a range
3371 list are relative, to reduce the number of relocs against the
3372 debugging information. This is separate from this function's
3373 'baseaddr' argument, which GDB uses to relocate debugging
3374 information from a shared library based on the address at
3375 which the library was loaded. */
3376 CORE_ADDR base = cu->header.base_address;
3377 int base_known = cu->header.base_known;
3378
3379 if (offset >= dwarf2_per_objfile->ranges_size)
3380 {
3381 complaint (&symfile_complaints,
3382 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
3383 offset);
3384 return;
3385 }
3386
3387 for (;;)
3388 {
3389 unsigned int bytes_read;
3390 CORE_ADDR start, end;
3391
3392 start = read_address (obfd, buffer, cu, &bytes_read);
3393 buffer += bytes_read;
3394 end = read_address (obfd, buffer, cu, &bytes_read);
3395 buffer += bytes_read;
3396
3397 /* Did we find the end of the range list? */
3398 if (start == 0 && end == 0)
3399 break;
3400
3401 /* Did we find a base address selection entry? */
3402 else if ((start & base_select_mask) == base_select_mask)
3403 {
3404 base = end;
3405 base_known = 1;
3406 }
3407
3408 /* We found an ordinary address range. */
3409 else
3410 {
3411 if (!base_known)
3412 {
3413 complaint (&symfile_complaints,
3414 _("Invalid .debug_ranges data (no base address)"));
3415 return;
3416 }
3417
3418 record_block_range (block,
3419 baseaddr + base + start,
3420 baseaddr + base + end - 1);
3421 }
3422 }
3423 }
3424 }
3425
3426 /* Add an aggregate field to the field list. */
3427
3428 static void
3429 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3430 struct dwarf2_cu *cu)
3431 {
3432 struct objfile *objfile = cu->objfile;
3433 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3434 struct nextfield *new_field;
3435 struct attribute *attr;
3436 struct field *fp;
3437 char *fieldname = "";
3438
3439 /* Allocate a new field list entry and link it in. */
3440 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3441 make_cleanup (xfree, new_field);
3442 memset (new_field, 0, sizeof (struct nextfield));
3443 new_field->next = fip->fields;
3444 fip->fields = new_field;
3445 fip->nfields++;
3446
3447 /* Handle accessibility and virtuality of field.
3448 The default accessibility for members is public, the default
3449 accessibility for inheritance is private. */
3450 if (die->tag != DW_TAG_inheritance)
3451 new_field->accessibility = DW_ACCESS_public;
3452 else
3453 new_field->accessibility = DW_ACCESS_private;
3454 new_field->virtuality = DW_VIRTUALITY_none;
3455
3456 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3457 if (attr)
3458 new_field->accessibility = DW_UNSND (attr);
3459 if (new_field->accessibility != DW_ACCESS_public)
3460 fip->non_public_fields = 1;
3461 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3462 if (attr)
3463 new_field->virtuality = DW_UNSND (attr);
3464
3465 fp = &new_field->field;
3466
3467 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3468 {
3469 /* Data member other than a C++ static data member. */
3470
3471 /* Get type of field. */
3472 fp->type = die_type (die, cu);
3473
3474 FIELD_STATIC_KIND (*fp) = 0;
3475
3476 /* Get bit size of field (zero if none). */
3477 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3478 if (attr)
3479 {
3480 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3481 }
3482 else
3483 {
3484 FIELD_BITSIZE (*fp) = 0;
3485 }
3486
3487 /* Get bit offset of field. */
3488 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3489 if (attr)
3490 {
3491 int byte_offset;
3492
3493 if (attr_form_is_section_offset (attr))
3494 {
3495 dwarf2_complex_location_expr_complaint ();
3496 byte_offset = 0;
3497 }
3498 else if (attr_form_is_constant (attr))
3499 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
3500 else
3501 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
3502
3503 FIELD_BITPOS (*fp) = byte_offset * bits_per_byte;
3504 }
3505 else
3506 FIELD_BITPOS (*fp) = 0;
3507 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3508 if (attr)
3509 {
3510 if (gdbarch_bits_big_endian (gdbarch))
3511 {
3512 /* For big endian bits, the DW_AT_bit_offset gives the
3513 additional bit offset from the MSB of the containing
3514 anonymous object to the MSB of the field. We don't
3515 have to do anything special since we don't need to
3516 know the size of the anonymous object. */
3517 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3518 }
3519 else
3520 {
3521 /* For little endian bits, compute the bit offset to the
3522 MSB of the anonymous object, subtract off the number of
3523 bits from the MSB of the field to the MSB of the
3524 object, and then subtract off the number of bits of
3525 the field itself. The result is the bit offset of
3526 the LSB of the field. */
3527 int anonymous_size;
3528 int bit_offset = DW_UNSND (attr);
3529
3530 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3531 if (attr)
3532 {
3533 /* The size of the anonymous object containing
3534 the bit field is explicit, so use the
3535 indicated size (in bytes). */
3536 anonymous_size = DW_UNSND (attr);
3537 }
3538 else
3539 {
3540 /* The size of the anonymous object containing
3541 the bit field must be inferred from the type
3542 attribute of the data member containing the
3543 bit field. */
3544 anonymous_size = TYPE_LENGTH (fp->type);
3545 }
3546 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3547 - bit_offset - FIELD_BITSIZE (*fp);
3548 }
3549 }
3550
3551 /* Get name of field. */
3552 fieldname = dwarf2_name (die, cu);
3553 if (fieldname == NULL)
3554 fieldname = "";
3555
3556 /* The name is already allocated along with this objfile, so we don't
3557 need to duplicate it for the type. */
3558 fp->name = fieldname;
3559
3560 /* Change accessibility for artificial fields (e.g. virtual table
3561 pointer or virtual base class pointer) to private. */
3562 if (dwarf2_attr (die, DW_AT_artificial, cu))
3563 {
3564 new_field->accessibility = DW_ACCESS_private;
3565 fip->non_public_fields = 1;
3566 }
3567 }
3568 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3569 {
3570 /* C++ static member. */
3571
3572 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3573 is a declaration, but all versions of G++ as of this writing
3574 (so through at least 3.2.1) incorrectly generate
3575 DW_TAG_variable tags. */
3576
3577 char *physname;
3578
3579 /* Get name of field. */
3580 fieldname = dwarf2_name (die, cu);
3581 if (fieldname == NULL)
3582 return;
3583
3584 /* Get physical name. */
3585 physname = dwarf2_linkage_name (die, cu);
3586
3587 /* The name is already allocated along with this objfile, so we don't
3588 need to duplicate it for the type. */
3589 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3590 FIELD_TYPE (*fp) = die_type (die, cu);
3591 FIELD_NAME (*fp) = fieldname;
3592 }
3593 else if (die->tag == DW_TAG_inheritance)
3594 {
3595 /* C++ base class field. */
3596 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3597 if (attr)
3598 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3599 * bits_per_byte);
3600 FIELD_BITSIZE (*fp) = 0;
3601 FIELD_STATIC_KIND (*fp) = 0;
3602 FIELD_TYPE (*fp) = die_type (die, cu);
3603 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3604 fip->nbaseclasses++;
3605 }
3606 }
3607
3608 /* Create the vector of fields, and attach it to the type. */
3609
3610 static void
3611 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3612 struct dwarf2_cu *cu)
3613 {
3614 int nfields = fip->nfields;
3615
3616 /* Record the field count, allocate space for the array of fields,
3617 and create blank accessibility bitfields if necessary. */
3618 TYPE_NFIELDS (type) = nfields;
3619 TYPE_FIELDS (type) = (struct field *)
3620 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3621 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3622
3623 if (fip->non_public_fields)
3624 {
3625 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3626
3627 TYPE_FIELD_PRIVATE_BITS (type) =
3628 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3629 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3630
3631 TYPE_FIELD_PROTECTED_BITS (type) =
3632 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3633 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3634
3635 TYPE_FIELD_IGNORE_BITS (type) =
3636 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3637 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3638 }
3639
3640 /* If the type has baseclasses, allocate and clear a bit vector for
3641 TYPE_FIELD_VIRTUAL_BITS. */
3642 if (fip->nbaseclasses)
3643 {
3644 int num_bytes = B_BYTES (fip->nbaseclasses);
3645 unsigned char *pointer;
3646
3647 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3648 pointer = TYPE_ALLOC (type, num_bytes);
3649 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
3650 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3651 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3652 }
3653
3654 /* Copy the saved-up fields into the field vector. Start from the head
3655 of the list, adding to the tail of the field array, so that they end
3656 up in the same order in the array in which they were added to the list. */
3657 while (nfields-- > 0)
3658 {
3659 TYPE_FIELD (type, nfields) = fip->fields->field;
3660 switch (fip->fields->accessibility)
3661 {
3662 case DW_ACCESS_private:
3663 SET_TYPE_FIELD_PRIVATE (type, nfields);
3664 break;
3665
3666 case DW_ACCESS_protected:
3667 SET_TYPE_FIELD_PROTECTED (type, nfields);
3668 break;
3669
3670 case DW_ACCESS_public:
3671 break;
3672
3673 default:
3674 /* Unknown accessibility. Complain and treat it as public. */
3675 {
3676 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3677 fip->fields->accessibility);
3678 }
3679 break;
3680 }
3681 if (nfields < fip->nbaseclasses)
3682 {
3683 switch (fip->fields->virtuality)
3684 {
3685 case DW_VIRTUALITY_virtual:
3686 case DW_VIRTUALITY_pure_virtual:
3687 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3688 break;
3689 }
3690 }
3691 fip->fields = fip->fields->next;
3692 }
3693 }
3694
3695 /* Add a member function to the proper fieldlist. */
3696
3697 static void
3698 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3699 struct type *type, struct dwarf2_cu *cu)
3700 {
3701 struct objfile *objfile = cu->objfile;
3702 struct attribute *attr;
3703 struct fnfieldlist *flp;
3704 int i;
3705 struct fn_field *fnp;
3706 char *fieldname;
3707 char *physname;
3708 struct nextfnfield *new_fnfield;
3709
3710 /* Get name of member function. */
3711 fieldname = dwarf2_name (die, cu);
3712 if (fieldname == NULL)
3713 return;
3714
3715 /* Get the mangled name. */
3716 physname = dwarf2_linkage_name (die, cu);
3717
3718 /* Look up member function name in fieldlist. */
3719 for (i = 0; i < fip->nfnfields; i++)
3720 {
3721 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3722 break;
3723 }
3724
3725 /* Create new list element if necessary. */
3726 if (i < fip->nfnfields)
3727 flp = &fip->fnfieldlists[i];
3728 else
3729 {
3730 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3731 {
3732 fip->fnfieldlists = (struct fnfieldlist *)
3733 xrealloc (fip->fnfieldlists,
3734 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3735 * sizeof (struct fnfieldlist));
3736 if (fip->nfnfields == 0)
3737 make_cleanup (free_current_contents, &fip->fnfieldlists);
3738 }
3739 flp = &fip->fnfieldlists[fip->nfnfields];
3740 flp->name = fieldname;
3741 flp->length = 0;
3742 flp->head = NULL;
3743 fip->nfnfields++;
3744 }
3745
3746 /* Create a new member function field and chain it to the field list
3747 entry. */
3748 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3749 make_cleanup (xfree, new_fnfield);
3750 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3751 new_fnfield->next = flp->head;
3752 flp->head = new_fnfield;
3753 flp->length++;
3754
3755 /* Fill in the member function field info. */
3756 fnp = &new_fnfield->fnfield;
3757 /* The name is already allocated along with this objfile, so we don't
3758 need to duplicate it for the type. */
3759 fnp->physname = physname ? physname : "";
3760 fnp->type = alloc_type (objfile);
3761 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3762 {
3763 int nparams = TYPE_NFIELDS (die->type);
3764
3765 /* TYPE is the domain of this method, and DIE->TYPE is the type
3766 of the method itself (TYPE_CODE_METHOD). */
3767 smash_to_method_type (fnp->type, type,
3768 TYPE_TARGET_TYPE (die->type),
3769 TYPE_FIELDS (die->type),
3770 TYPE_NFIELDS (die->type),
3771 TYPE_VARARGS (die->type));
3772
3773 /* Handle static member functions.
3774 Dwarf2 has no clean way to discern C++ static and non-static
3775 member functions. G++ helps GDB by marking the first
3776 parameter for non-static member functions (which is the
3777 this pointer) as artificial. We obtain this information
3778 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3779 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3780 fnp->voffset = VOFFSET_STATIC;
3781 }
3782 else
3783 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3784 physname);
3785
3786 /* Get fcontext from DW_AT_containing_type if present. */
3787 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3788 fnp->fcontext = die_containing_type (die, cu);
3789
3790 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3791 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3792
3793 /* Get accessibility. */
3794 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3795 if (attr)
3796 {
3797 switch (DW_UNSND (attr))
3798 {
3799 case DW_ACCESS_private:
3800 fnp->is_private = 1;
3801 break;
3802 case DW_ACCESS_protected:
3803 fnp->is_protected = 1;
3804 break;
3805 }
3806 }
3807
3808 /* Check for artificial methods. */
3809 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3810 if (attr && DW_UNSND (attr) != 0)
3811 fnp->is_artificial = 1;
3812
3813 /* Get index in virtual function table if it is a virtual member function. */
3814 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3815 if (attr)
3816 {
3817 /* Support the .debug_loc offsets */
3818 if (attr_form_is_block (attr))
3819 {
3820 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3821 }
3822 else if (attr_form_is_section_offset (attr))
3823 {
3824 dwarf2_complex_location_expr_complaint ();
3825 }
3826 else
3827 {
3828 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3829 fieldname);
3830 }
3831 }
3832 }
3833
3834 /* Create the vector of member function fields, and attach it to the type. */
3835
3836 static void
3837 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3838 struct dwarf2_cu *cu)
3839 {
3840 struct fnfieldlist *flp;
3841 int total_length = 0;
3842 int i;
3843
3844 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3845 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3846 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3847
3848 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3849 {
3850 struct nextfnfield *nfp = flp->head;
3851 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3852 int k;
3853
3854 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3855 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3856 fn_flp->fn_fields = (struct fn_field *)
3857 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3858 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3859 fn_flp->fn_fields[k] = nfp->fnfield;
3860
3861 total_length += flp->length;
3862 }
3863
3864 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3865 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3866 }
3867
3868 /* Returns non-zero if NAME is the name of a vtable member in CU's
3869 language, zero otherwise. */
3870 static int
3871 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3872 {
3873 static const char vptr[] = "_vptr";
3874 static const char vtable[] = "vtable";
3875
3876 /* Look for the C++ and Java forms of the vtable. */
3877 if ((cu->language == language_java
3878 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3879 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3880 && is_cplus_marker (name[sizeof (vptr) - 1])))
3881 return 1;
3882
3883 return 0;
3884 }
3885
3886 /* GCC outputs unnamed structures that are really pointers to member
3887 functions, with the ABI-specified layout. If DIE (from CU) describes
3888 such a structure, set its type, and return nonzero. Otherwise return
3889 zero.
3890
3891 GCC shouldn't do this; it should just output pointer to member DIEs.
3892 This is GCC PR debug/28767. */
3893
3894 static int
3895 quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3896 {
3897 struct objfile *objfile = cu->objfile;
3898 struct type *type;
3899 struct die_info *pfn_die, *delta_die;
3900 struct attribute *pfn_name, *delta_name;
3901 struct type *pfn_type, *domain_type;
3902
3903 /* Check for a structure with no name and two children. */
3904 if (die->tag != DW_TAG_structure_type
3905 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3906 || die->child == NULL
3907 || die->child->sibling == NULL
3908 || (die->child->sibling->sibling != NULL
3909 && die->child->sibling->sibling->tag != DW_TAG_padding))
3910 return 0;
3911
3912 /* Check for __pfn and __delta members. */
3913 pfn_die = die->child;
3914 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3915 if (pfn_die->tag != DW_TAG_member
3916 || pfn_name == NULL
3917 || DW_STRING (pfn_name) == NULL
3918 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3919 return 0;
3920
3921 delta_die = pfn_die->sibling;
3922 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3923 if (delta_die->tag != DW_TAG_member
3924 || delta_name == NULL
3925 || DW_STRING (delta_name) == NULL
3926 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3927 return 0;
3928
3929 /* Find the type of the method. */
3930 pfn_type = die_type (pfn_die, cu);
3931 if (pfn_type == NULL
3932 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3933 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3934 return 0;
3935
3936 /* Look for the "this" argument. */
3937 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3938 if (TYPE_NFIELDS (pfn_type) == 0
3939 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3940 return 0;
3941
3942 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3943 type = alloc_type (objfile);
3944 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3945 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3946 TYPE_VARARGS (pfn_type));
3947 type = lookup_methodptr_type (type);
3948 set_die_type (die, type, cu);
3949
3950 return 1;
3951 }
3952
3953 /* Called when we find the DIE that starts a structure or union scope
3954 (definition) to process all dies that define the members of the
3955 structure or union.
3956
3957 NOTE: we need to call struct_type regardless of whether or not the
3958 DIE has an at_name attribute, since it might be an anonymous
3959 structure or union. This gets the type entered into our set of
3960 user defined types.
3961
3962 However, if the structure is incomplete (an opaque struct/union)
3963 then suppress creating a symbol table entry for it since gdb only
3964 wants to find the one with the complete definition. Note that if
3965 it is complete, we just call new_symbol, which does it's own
3966 checking about whether the struct/union is anonymous or not (and
3967 suppresses creating a symbol table entry itself). */
3968
3969 static void
3970 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3971 {
3972 struct objfile *objfile = cu->objfile;
3973 struct type *type;
3974 struct attribute *attr;
3975 const char *previous_prefix = processing_current_prefix;
3976 struct cleanup *back_to = NULL;
3977 char *name;
3978
3979 if (die->type)
3980 return;
3981
3982 if (quirk_gcc_member_function_pointer (die, cu))
3983 return;
3984
3985 type = alloc_type (objfile);
3986 INIT_CPLUS_SPECIFIC (type);
3987 name = dwarf2_name (die, cu);
3988 if (name != NULL)
3989 {
3990 if (cu->language == language_cplus
3991 || cu->language == language_java)
3992 {
3993 char *new_prefix = determine_class_name (die, cu);
3994 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3995 strlen (new_prefix),
3996 &objfile->objfile_obstack);
3997 back_to = make_cleanup (xfree, new_prefix);
3998 processing_current_prefix = new_prefix;
3999 }
4000 else
4001 {
4002 /* The name is already allocated along with this objfile, so
4003 we don't need to duplicate it for the type. */
4004 TYPE_TAG_NAME (type) = name;
4005 }
4006 }
4007
4008 if (die->tag == DW_TAG_structure_type)
4009 {
4010 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4011 }
4012 else if (die->tag == DW_TAG_union_type)
4013 {
4014 TYPE_CODE (type) = TYPE_CODE_UNION;
4015 }
4016 else
4017 {
4018 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
4019 in gdbtypes.h. */
4020 TYPE_CODE (type) = TYPE_CODE_CLASS;
4021 }
4022
4023 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4024 if (attr)
4025 {
4026 TYPE_LENGTH (type) = DW_UNSND (attr);
4027 }
4028 else
4029 {
4030 TYPE_LENGTH (type) = 0;
4031 }
4032
4033 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
4034 if (die_is_declaration (die, cu))
4035 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
4036
4037 /* We need to add the type field to the die immediately so we don't
4038 infinitely recurse when dealing with pointers to the structure
4039 type within the structure itself. */
4040 set_die_type (die, type, cu);
4041
4042 if (die->child != NULL && ! die_is_declaration (die, cu))
4043 {
4044 struct field_info fi;
4045 struct die_info *child_die;
4046 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
4047
4048 memset (&fi, 0, sizeof (struct field_info));
4049
4050 child_die = die->child;
4051
4052 while (child_die && child_die->tag)
4053 {
4054 if (child_die->tag == DW_TAG_member
4055 || child_die->tag == DW_TAG_variable)
4056 {
4057 /* NOTE: carlton/2002-11-05: A C++ static data member
4058 should be a DW_TAG_member that is a declaration, but
4059 all versions of G++ as of this writing (so through at
4060 least 3.2.1) incorrectly generate DW_TAG_variable
4061 tags for them instead. */
4062 dwarf2_add_field (&fi, child_die, cu);
4063 }
4064 else if (child_die->tag == DW_TAG_subprogram)
4065 {
4066 /* C++ member function. */
4067 read_type_die (child_die, cu);
4068 dwarf2_add_member_fn (&fi, child_die, type, cu);
4069 }
4070 else if (child_die->tag == DW_TAG_inheritance)
4071 {
4072 /* C++ base class field. */
4073 dwarf2_add_field (&fi, child_die, cu);
4074 }
4075 child_die = sibling_die (child_die);
4076 }
4077
4078 /* Attach fields and member functions to the type. */
4079 if (fi.nfields)
4080 dwarf2_attach_fields_to_type (&fi, type, cu);
4081 if (fi.nfnfields)
4082 {
4083 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
4084
4085 /* Get the type which refers to the base class (possibly this
4086 class itself) which contains the vtable pointer for the current
4087 class from the DW_AT_containing_type attribute. */
4088
4089 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
4090 {
4091 struct type *t = die_containing_type (die, cu);
4092
4093 TYPE_VPTR_BASETYPE (type) = t;
4094 if (type == t)
4095 {
4096 int i;
4097
4098 /* Our own class provides vtbl ptr. */
4099 for (i = TYPE_NFIELDS (t) - 1;
4100 i >= TYPE_N_BASECLASSES (t);
4101 --i)
4102 {
4103 char *fieldname = TYPE_FIELD_NAME (t, i);
4104
4105 if (is_vtable_name (fieldname, cu))
4106 {
4107 TYPE_VPTR_FIELDNO (type) = i;
4108 break;
4109 }
4110 }
4111
4112 /* Complain if virtual function table field not found. */
4113 if (i < TYPE_N_BASECLASSES (t))
4114 complaint (&symfile_complaints,
4115 _("virtual function table pointer not found when defining class '%s'"),
4116 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
4117 "");
4118 }
4119 else
4120 {
4121 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4122 }
4123 }
4124 else if (cu->producer
4125 && strncmp (cu->producer,
4126 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
4127 {
4128 /* The IBM XLC compiler does not provide direct indication
4129 of the containing type, but the vtable pointer is
4130 always named __vfp. */
4131
4132 int i;
4133
4134 for (i = TYPE_NFIELDS (type) - 1;
4135 i >= TYPE_N_BASECLASSES (type);
4136 --i)
4137 {
4138 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
4139 {
4140 TYPE_VPTR_FIELDNO (type) = i;
4141 TYPE_VPTR_BASETYPE (type) = type;
4142 break;
4143 }
4144 }
4145 }
4146 }
4147
4148 do_cleanups (back_to);
4149 }
4150
4151 processing_current_prefix = previous_prefix;
4152 if (back_to != NULL)
4153 do_cleanups (back_to);
4154 }
4155
4156 static void
4157 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4158 {
4159 struct objfile *objfile = cu->objfile;
4160 const char *previous_prefix = processing_current_prefix;
4161 struct die_info *child_die = die->child;
4162
4163 if (TYPE_TAG_NAME (die->type) != NULL)
4164 processing_current_prefix = TYPE_TAG_NAME (die->type);
4165
4166 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4167 snapshots) has been known to create a die giving a declaration
4168 for a class that has, as a child, a die giving a definition for a
4169 nested class. So we have to process our children even if the
4170 current die is a declaration. Normally, of course, a declaration
4171 won't have any children at all. */
4172
4173 while (child_die != NULL && child_die->tag)
4174 {
4175 if (child_die->tag == DW_TAG_member
4176 || child_die->tag == DW_TAG_variable
4177 || child_die->tag == DW_TAG_inheritance)
4178 {
4179 /* Do nothing. */
4180 }
4181 else
4182 process_die (child_die, cu);
4183
4184 child_die = sibling_die (child_die);
4185 }
4186
4187 /* Do not consider external references. According to the DWARF standard,
4188 these DIEs are identified by the fact that they have no byte_size
4189 attribute, and a declaration attribute. */
4190 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4191 || !die_is_declaration (die, cu))
4192 new_symbol (die, die->type, cu);
4193
4194 processing_current_prefix = previous_prefix;
4195 }
4196
4197 /* Given a DW_AT_enumeration_type die, set its type. We do not
4198 complete the type's fields yet, or create any symbols. */
4199
4200 static void
4201 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
4202 {
4203 struct objfile *objfile = cu->objfile;
4204 struct type *type;
4205 struct attribute *attr;
4206 char *name;
4207
4208 if (die->type)
4209 return;
4210
4211 type = alloc_type (objfile);
4212
4213 TYPE_CODE (type) = TYPE_CODE_ENUM;
4214 name = dwarf2_name (die, cu);
4215 if (name != NULL)
4216 {
4217 if (processing_has_namespace_info)
4218 {
4219 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4220 processing_current_prefix,
4221 name, cu);
4222 }
4223 else
4224 {
4225 /* The name is already allocated along with this objfile, so
4226 we don't need to duplicate it for the type. */
4227 TYPE_TAG_NAME (type) = name;
4228 }
4229 }
4230
4231 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4232 if (attr)
4233 {
4234 TYPE_LENGTH (type) = DW_UNSND (attr);
4235 }
4236 else
4237 {
4238 TYPE_LENGTH (type) = 0;
4239 }
4240
4241 /* The enumeration DIE can be incomplete. In Ada, any type can be
4242 declared as private in the package spec, and then defined only
4243 inside the package body. Such types are known as Taft Amendment
4244 Types. When another package uses such a type, an incomplete DIE
4245 may be generated by the compiler. */
4246 if (die_is_declaration (die, cu))
4247 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
4248
4249 set_die_type (die, type, cu);
4250 }
4251
4252 /* Determine the name of the type represented by DIE, which should be
4253 a named C++ or Java compound type. Return the name in question; the caller
4254 is responsible for xfree()'ing it. */
4255
4256 static char *
4257 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4258 {
4259 struct cleanup *back_to = NULL;
4260 struct die_info *spec_die = die_specification (die, cu);
4261 char *new_prefix = NULL;
4262
4263 /* If this is the definition of a class that is declared by another
4264 die, then processing_current_prefix may not be accurate; see
4265 read_func_scope for a similar example. */
4266 if (spec_die != NULL)
4267 {
4268 char *specification_prefix = determine_prefix (spec_die, cu);
4269 processing_current_prefix = specification_prefix;
4270 back_to = make_cleanup (xfree, specification_prefix);
4271 }
4272
4273 /* If we don't have namespace debug info, guess the name by trying
4274 to demangle the names of members, just like we did in
4275 guess_structure_name. */
4276 if (!processing_has_namespace_info)
4277 {
4278 struct die_info *child;
4279
4280 for (child = die->child;
4281 child != NULL && child->tag != 0;
4282 child = sibling_die (child))
4283 {
4284 if (child->tag == DW_TAG_subprogram)
4285 {
4286 new_prefix
4287 = language_class_name_from_physname (cu->language_defn,
4288 dwarf2_linkage_name
4289 (child, cu));
4290
4291 if (new_prefix != NULL)
4292 break;
4293 }
4294 }
4295 }
4296
4297 if (new_prefix == NULL)
4298 {
4299 const char *name = dwarf2_name (die, cu);
4300 new_prefix = typename_concat (NULL, processing_current_prefix,
4301 name ? name : "<<anonymous>>",
4302 cu);
4303 }
4304
4305 if (back_to != NULL)
4306 do_cleanups (back_to);
4307
4308 return new_prefix;
4309 }
4310
4311 /* Given a pointer to a die which begins an enumeration, process all
4312 the dies that define the members of the enumeration, and create the
4313 symbol for the enumeration type.
4314
4315 NOTE: We reverse the order of the element list. */
4316
4317 static void
4318 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4319 {
4320 struct objfile *objfile = cu->objfile;
4321 struct die_info *child_die;
4322 struct field *fields;
4323 struct symbol *sym;
4324 int num_fields;
4325 int unsigned_enum = 1;
4326 char *name;
4327
4328 num_fields = 0;
4329 fields = NULL;
4330 if (die->child != NULL)
4331 {
4332 child_die = die->child;
4333 while (child_die && child_die->tag)
4334 {
4335 if (child_die->tag != DW_TAG_enumerator)
4336 {
4337 process_die (child_die, cu);
4338 }
4339 else
4340 {
4341 name = dwarf2_name (child_die, cu);
4342 if (name)
4343 {
4344 sym = new_symbol (child_die, die->type, cu);
4345 if (SYMBOL_VALUE (sym) < 0)
4346 unsigned_enum = 0;
4347
4348 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4349 {
4350 fields = (struct field *)
4351 xrealloc (fields,
4352 (num_fields + DW_FIELD_ALLOC_CHUNK)
4353 * sizeof (struct field));
4354 }
4355
4356 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4357 FIELD_TYPE (fields[num_fields]) = NULL;
4358 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4359 FIELD_BITSIZE (fields[num_fields]) = 0;
4360 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4361
4362 num_fields++;
4363 }
4364 }
4365
4366 child_die = sibling_die (child_die);
4367 }
4368
4369 if (num_fields)
4370 {
4371 TYPE_NFIELDS (die->type) = num_fields;
4372 TYPE_FIELDS (die->type) = (struct field *)
4373 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4374 memcpy (TYPE_FIELDS (die->type), fields,
4375 sizeof (struct field) * num_fields);
4376 xfree (fields);
4377 }
4378 if (unsigned_enum)
4379 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4380 }
4381
4382 new_symbol (die, die->type, cu);
4383 }
4384
4385 /* Extract all information from a DW_TAG_array_type DIE and put it in
4386 the DIE's type field. For now, this only handles one dimensional
4387 arrays. */
4388
4389 static void
4390 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4391 {
4392 struct objfile *objfile = cu->objfile;
4393 struct die_info *child_die;
4394 struct type *type = NULL;
4395 struct type *element_type, *range_type, *index_type;
4396 struct type **range_types = NULL;
4397 struct attribute *attr;
4398 int ndim = 0;
4399 struct cleanup *back_to;
4400 char *name;
4401
4402 /* Return if we've already decoded this type. */
4403 if (die->type)
4404 {
4405 return;
4406 }
4407
4408 element_type = die_type (die, cu);
4409
4410 /* Irix 6.2 native cc creates array types without children for
4411 arrays with unspecified length. */
4412 if (die->child == NULL)
4413 {
4414 index_type = builtin_type_int32;
4415 range_type = create_range_type (NULL, index_type, 0, -1);
4416 set_die_type (die, create_array_type (NULL, element_type, range_type),
4417 cu);
4418 return;
4419 }
4420
4421 back_to = make_cleanup (null_cleanup, NULL);
4422 child_die = die->child;
4423 while (child_die && child_die->tag)
4424 {
4425 if (child_die->tag == DW_TAG_subrange_type)
4426 {
4427 read_subrange_type (child_die, cu);
4428
4429 if (child_die->type != NULL)
4430 {
4431 /* The range type was succesfully read. Save it for
4432 the array type creation. */
4433 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4434 {
4435 range_types = (struct type **)
4436 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4437 * sizeof (struct type *));
4438 if (ndim == 0)
4439 make_cleanup (free_current_contents, &range_types);
4440 }
4441 range_types[ndim++] = child_die->type;
4442 }
4443 }
4444 child_die = sibling_die (child_die);
4445 }
4446
4447 /* Dwarf2 dimensions are output from left to right, create the
4448 necessary array types in backwards order. */
4449
4450 type = element_type;
4451
4452 if (read_array_order (die, cu) == DW_ORD_col_major)
4453 {
4454 int i = 0;
4455 while (i < ndim)
4456 type = create_array_type (NULL, type, range_types[i++]);
4457 }
4458 else
4459 {
4460 while (ndim-- > 0)
4461 type = create_array_type (NULL, type, range_types[ndim]);
4462 }
4463
4464 /* Understand Dwarf2 support for vector types (like they occur on
4465 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4466 array type. This is not part of the Dwarf2/3 standard yet, but a
4467 custom vendor extension. The main difference between a regular
4468 array and the vector variant is that vectors are passed by value
4469 to functions. */
4470 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4471 if (attr)
4472 make_vector_type (type);
4473
4474 name = dwarf2_name (die, cu);
4475 if (name)
4476 TYPE_NAME (type) = name;
4477
4478 do_cleanups (back_to);
4479
4480 /* Install the type in the die. */
4481 set_die_type (die, type, cu);
4482 }
4483
4484 static enum dwarf_array_dim_ordering
4485 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4486 {
4487 struct attribute *attr;
4488
4489 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4490
4491 if (attr) return DW_SND (attr);
4492
4493 /*
4494 GNU F77 is a special case, as at 08/2004 array type info is the
4495 opposite order to the dwarf2 specification, but data is still
4496 laid out as per normal fortran.
4497
4498 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4499 version checking.
4500 */
4501
4502 if (cu->language == language_fortran &&
4503 cu->producer && strstr (cu->producer, "GNU F77"))
4504 {
4505 return DW_ORD_row_major;
4506 }
4507
4508 switch (cu->language_defn->la_array_ordering)
4509 {
4510 case array_column_major:
4511 return DW_ORD_col_major;
4512 case array_row_major:
4513 default:
4514 return DW_ORD_row_major;
4515 };
4516 }
4517
4518 /* Extract all information from a DW_TAG_set_type DIE and put it in
4519 the DIE's type field. */
4520
4521 static void
4522 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4523 {
4524 if (die->type == NULL)
4525 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4526 }
4527
4528 /* First cut: install each common block member as a global variable. */
4529
4530 static void
4531 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4532 {
4533 struct die_info *child_die;
4534 struct attribute *attr;
4535 struct symbol *sym;
4536 CORE_ADDR base = (CORE_ADDR) 0;
4537
4538 attr = dwarf2_attr (die, DW_AT_location, cu);
4539 if (attr)
4540 {
4541 /* Support the .debug_loc offsets */
4542 if (attr_form_is_block (attr))
4543 {
4544 base = decode_locdesc (DW_BLOCK (attr), cu);
4545 }
4546 else if (attr_form_is_section_offset (attr))
4547 {
4548 dwarf2_complex_location_expr_complaint ();
4549 }
4550 else
4551 {
4552 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4553 "common block member");
4554 }
4555 }
4556 if (die->child != NULL)
4557 {
4558 child_die = die->child;
4559 while (child_die && child_die->tag)
4560 {
4561 sym = new_symbol (child_die, NULL, cu);
4562 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4563 if (attr)
4564 {
4565 SYMBOL_VALUE_ADDRESS (sym) =
4566 base + decode_locdesc (DW_BLOCK (attr), cu);
4567 add_symbol_to_list (sym, &global_symbols);
4568 }
4569 child_die = sibling_die (child_die);
4570 }
4571 }
4572 }
4573
4574 /* Read a C++ namespace. */
4575
4576 static void
4577 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4578 {
4579 struct objfile *objfile = cu->objfile;
4580 const char *previous_prefix = processing_current_prefix;
4581 const char *name;
4582 int is_anonymous;
4583 struct die_info *current_die;
4584 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4585
4586 name = namespace_name (die, &is_anonymous, cu);
4587
4588 /* Now build the name of the current namespace. */
4589
4590 if (previous_prefix[0] == '\0')
4591 {
4592 processing_current_prefix = name;
4593 }
4594 else
4595 {
4596 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4597 make_cleanup (xfree, temp_name);
4598 processing_current_prefix = temp_name;
4599 }
4600
4601 /* Add a symbol associated to this if we haven't seen the namespace
4602 before. Also, add a using directive if it's an anonymous
4603 namespace. */
4604
4605 if (dwarf2_extension (die, cu) == NULL)
4606 {
4607 struct type *type;
4608
4609 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4610 this cast will hopefully become unnecessary. */
4611 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4612 (char *) processing_current_prefix,
4613 objfile);
4614 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4615
4616 new_symbol (die, type, cu);
4617 set_die_type (die, type, cu);
4618
4619 if (is_anonymous)
4620 cp_add_using_directive (processing_current_prefix,
4621 strlen (previous_prefix),
4622 strlen (processing_current_prefix));
4623 }
4624
4625 if (die->child != NULL)
4626 {
4627 struct die_info *child_die = die->child;
4628
4629 while (child_die && child_die->tag)
4630 {
4631 process_die (child_die, cu);
4632 child_die = sibling_die (child_die);
4633 }
4634 }
4635
4636 processing_current_prefix = previous_prefix;
4637 do_cleanups (back_to);
4638 }
4639
4640 /* Return the name of the namespace represented by DIE. Set
4641 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4642 namespace. */
4643
4644 static const char *
4645 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4646 {
4647 struct die_info *current_die;
4648 const char *name = NULL;
4649
4650 /* Loop through the extensions until we find a name. */
4651
4652 for (current_die = die;
4653 current_die != NULL;
4654 current_die = dwarf2_extension (die, cu))
4655 {
4656 name = dwarf2_name (current_die, cu);
4657 if (name != NULL)
4658 break;
4659 }
4660
4661 /* Is it an anonymous namespace? */
4662
4663 *is_anonymous = (name == NULL);
4664 if (*is_anonymous)
4665 name = "(anonymous namespace)";
4666
4667 return name;
4668 }
4669
4670 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4671 the user defined type vector. */
4672
4673 static void
4674 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4675 {
4676 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
4677 struct comp_unit_head *cu_header = &cu->header;
4678 struct type *type;
4679 struct attribute *attr_byte_size;
4680 struct attribute *attr_address_class;
4681 int byte_size, addr_class;
4682
4683 if (die->type)
4684 {
4685 return;
4686 }
4687
4688 type = lookup_pointer_type (die_type (die, cu));
4689
4690 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4691 if (attr_byte_size)
4692 byte_size = DW_UNSND (attr_byte_size);
4693 else
4694 byte_size = cu_header->addr_size;
4695
4696 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4697 if (attr_address_class)
4698 addr_class = DW_UNSND (attr_address_class);
4699 else
4700 addr_class = DW_ADDR_none;
4701
4702 /* If the pointer size or address class is different than the
4703 default, create a type variant marked as such and set the
4704 length accordingly. */
4705 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4706 {
4707 if (gdbarch_address_class_type_flags_p (gdbarch))
4708 {
4709 int type_flags;
4710
4711 type_flags = gdbarch_address_class_type_flags
4712 (gdbarch, byte_size, addr_class);
4713 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4714 type = make_type_with_address_space (type, type_flags);
4715 }
4716 else if (TYPE_LENGTH (type) != byte_size)
4717 {
4718 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4719 }
4720 else {
4721 /* Should we also complain about unhandled address classes? */
4722 }
4723 }
4724
4725 TYPE_LENGTH (type) = byte_size;
4726 set_die_type (die, type, cu);
4727 }
4728
4729 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4730 the user defined type vector. */
4731
4732 static void
4733 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4734 {
4735 struct objfile *objfile = cu->objfile;
4736 struct type *type;
4737 struct type *to_type;
4738 struct type *domain;
4739
4740 if (die->type)
4741 {
4742 return;
4743 }
4744
4745 to_type = die_type (die, cu);
4746 domain = die_containing_type (die, cu);
4747
4748 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4749 type = lookup_methodptr_type (to_type);
4750 else
4751 type = lookup_memberptr_type (to_type, domain);
4752
4753 set_die_type (die, type, cu);
4754 }
4755
4756 /* Extract all information from a DW_TAG_reference_type DIE and add to
4757 the user defined type vector. */
4758
4759 static void
4760 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4761 {
4762 struct comp_unit_head *cu_header = &cu->header;
4763 struct type *type;
4764 struct attribute *attr;
4765
4766 if (die->type)
4767 {
4768 return;
4769 }
4770
4771 type = lookup_reference_type (die_type (die, cu));
4772 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4773 if (attr)
4774 {
4775 TYPE_LENGTH (type) = DW_UNSND (attr);
4776 }
4777 else
4778 {
4779 TYPE_LENGTH (type) = cu_header->addr_size;
4780 }
4781 set_die_type (die, type, cu);
4782 }
4783
4784 static void
4785 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4786 {
4787 struct type *base_type;
4788
4789 if (die->type)
4790 {
4791 return;
4792 }
4793
4794 base_type = die_type (die, cu);
4795 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4796 cu);
4797 }
4798
4799 static void
4800 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4801 {
4802 struct type *base_type;
4803
4804 if (die->type)
4805 {
4806 return;
4807 }
4808
4809 base_type = die_type (die, cu);
4810 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4811 cu);
4812 }
4813
4814 /* Extract all information from a DW_TAG_string_type DIE and add to
4815 the user defined type vector. It isn't really a user defined type,
4816 but it behaves like one, with other DIE's using an AT_user_def_type
4817 attribute to reference it. */
4818
4819 static void
4820 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4821 {
4822 struct objfile *objfile = cu->objfile;
4823 struct type *type, *range_type, *index_type, *char_type;
4824 struct attribute *attr;
4825 unsigned int length;
4826
4827 if (die->type)
4828 {
4829 return;
4830 }
4831
4832 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4833 if (attr)
4834 {
4835 length = DW_UNSND (attr);
4836 }
4837 else
4838 {
4839 /* check for the DW_AT_byte_size attribute */
4840 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4841 if (attr)
4842 {
4843 length = DW_UNSND (attr);
4844 }
4845 else
4846 {
4847 length = 1;
4848 }
4849 }
4850
4851 index_type = builtin_type_int32;
4852 range_type = create_range_type (NULL, index_type, 1, length);
4853 type = create_string_type (NULL, range_type);
4854
4855 set_die_type (die, type, cu);
4856 }
4857
4858 /* Handle DIES due to C code like:
4859
4860 struct foo
4861 {
4862 int (*funcp)(int a, long l);
4863 int b;
4864 };
4865
4866 ('funcp' generates a DW_TAG_subroutine_type DIE)
4867 */
4868
4869 static void
4870 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4871 {
4872 struct type *type; /* Type that this function returns */
4873 struct type *ftype; /* Function that returns above type */
4874 struct attribute *attr;
4875
4876 /* Decode the type that this subroutine returns */
4877 if (die->type)
4878 {
4879 return;
4880 }
4881 type = die_type (die, cu);
4882 ftype = make_function_type (type, (struct type **) 0);
4883
4884 /* All functions in C++, Pascal and Java have prototypes. */
4885 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4886 if ((attr && (DW_UNSND (attr) != 0))
4887 || cu->language == language_cplus
4888 || cu->language == language_java
4889 || cu->language == language_pascal)
4890 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4891
4892 if (die->child != NULL)
4893 {
4894 struct die_info *child_die;
4895 int nparams = 0;
4896 int iparams = 0;
4897
4898 /* Count the number of parameters.
4899 FIXME: GDB currently ignores vararg functions, but knows about
4900 vararg member functions. */
4901 child_die = die->child;
4902 while (child_die && child_die->tag)
4903 {
4904 if (child_die->tag == DW_TAG_formal_parameter)
4905 nparams++;
4906 else if (child_die->tag == DW_TAG_unspecified_parameters)
4907 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4908 child_die = sibling_die (child_die);
4909 }
4910
4911 /* Allocate storage for parameters and fill them in. */
4912 TYPE_NFIELDS (ftype) = nparams;
4913 TYPE_FIELDS (ftype) = (struct field *)
4914 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
4915
4916 child_die = die->child;
4917 while (child_die && child_die->tag)
4918 {
4919 if (child_die->tag == DW_TAG_formal_parameter)
4920 {
4921 /* Dwarf2 has no clean way to discern C++ static and non-static
4922 member functions. G++ helps GDB by marking the first
4923 parameter for non-static member functions (which is the
4924 this pointer) as artificial. We pass this information
4925 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4926 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4927 if (attr)
4928 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4929 else
4930 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4931 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4932 iparams++;
4933 }
4934 child_die = sibling_die (child_die);
4935 }
4936 }
4937
4938 set_die_type (die, ftype, cu);
4939 }
4940
4941 static void
4942 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4943 {
4944 struct objfile *objfile = cu->objfile;
4945 struct attribute *attr;
4946 char *name = NULL;
4947
4948 if (!die->type)
4949 {
4950 name = dwarf2_name (die, cu);
4951 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4952 TYPE_FLAG_TARGET_STUB, name, objfile),
4953 cu);
4954 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4955 }
4956 }
4957
4958 /* Find a representation of a given base type and install
4959 it in the TYPE field of the die. */
4960
4961 static void
4962 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4963 {
4964 struct objfile *objfile = cu->objfile;
4965 struct type *type;
4966 struct attribute *attr;
4967 int encoding = 0, size = 0;
4968 char *name;
4969 enum type_code code = TYPE_CODE_INT;
4970 int type_flags = 0;
4971 struct type *target_type = NULL;
4972
4973 /* If we've already decoded this die, this is a no-op. */
4974 if (die->type)
4975 {
4976 return;
4977 }
4978
4979 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4980 if (attr)
4981 {
4982 encoding = DW_UNSND (attr);
4983 }
4984 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4985 if (attr)
4986 {
4987 size = DW_UNSND (attr);
4988 }
4989 name = dwarf2_name (die, cu);
4990 if (!name)
4991 {
4992 complaint (&symfile_complaints,
4993 _("DW_AT_name missing from DW_TAG_base_type"));
4994 }
4995
4996 switch (encoding)
4997 {
4998 case DW_ATE_address:
4999 /* Turn DW_ATE_address into a void * pointer. */
5000 code = TYPE_CODE_PTR;
5001 type_flags |= TYPE_FLAG_UNSIGNED;
5002 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
5003 break;
5004 case DW_ATE_boolean:
5005 code = TYPE_CODE_BOOL;
5006 type_flags |= TYPE_FLAG_UNSIGNED;
5007 break;
5008 case DW_ATE_complex_float:
5009 code = TYPE_CODE_COMPLEX;
5010 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
5011 break;
5012 case DW_ATE_decimal_float:
5013 code = TYPE_CODE_DECFLOAT;
5014 break;
5015 case DW_ATE_float:
5016 code = TYPE_CODE_FLT;
5017 break;
5018 case DW_ATE_signed:
5019 break;
5020 case DW_ATE_unsigned:
5021 type_flags |= TYPE_FLAG_UNSIGNED;
5022 break;
5023 case DW_ATE_signed_char:
5024 if (cu->language == language_ada || cu->language == language_m2)
5025 code = TYPE_CODE_CHAR;
5026 break;
5027 case DW_ATE_unsigned_char:
5028 if (cu->language == language_ada || cu->language == language_m2)
5029 code = TYPE_CODE_CHAR;
5030 type_flags |= TYPE_FLAG_UNSIGNED;
5031 break;
5032 default:
5033 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
5034 dwarf_type_encoding_name (encoding));
5035 break;
5036 }
5037
5038 type = init_type (code, size, type_flags, name, objfile);
5039 TYPE_TARGET_TYPE (type) = target_type;
5040
5041 set_die_type (die, type, cu);
5042 }
5043
5044 /* Read the given DW_AT_subrange DIE. */
5045
5046 static void
5047 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
5048 {
5049 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
5050 struct type *base_type;
5051 struct type *range_type;
5052 struct attribute *attr;
5053 int low = 0;
5054 int high = -1;
5055 char *name;
5056
5057 /* If we have already decoded this die, then nothing more to do. */
5058 if (die->type)
5059 return;
5060
5061 base_type = die_type (die, cu);
5062 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
5063 {
5064 complaint (&symfile_complaints,
5065 _("DW_AT_type missing from DW_TAG_subrange_type"));
5066 base_type
5067 = init_type (TYPE_CODE_INT, gdbarch_addr_bit (gdbarch) / 8,
5068 0, NULL, cu->objfile);
5069 }
5070
5071 if (cu->language == language_fortran)
5072 {
5073 /* FORTRAN implies a lower bound of 1, if not given. */
5074 low = 1;
5075 }
5076
5077 /* FIXME: For variable sized arrays either of these could be
5078 a variable rather than a constant value. We'll allow it,
5079 but we don't know how to handle it. */
5080 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
5081 if (attr)
5082 low = dwarf2_get_attr_constant_value (attr, 0);
5083
5084 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
5085 if (attr)
5086 {
5087 if (attr->form == DW_FORM_block1)
5088 {
5089 /* GCC encodes arrays with unspecified or dynamic length
5090 with a DW_FORM_block1 attribute.
5091 FIXME: GDB does not yet know how to handle dynamic
5092 arrays properly, treat them as arrays with unspecified
5093 length for now.
5094
5095 FIXME: jimb/2003-09-22: GDB does not really know
5096 how to handle arrays of unspecified length
5097 either; we just represent them as zero-length
5098 arrays. Choose an appropriate upper bound given
5099 the lower bound we've computed above. */
5100 high = low - 1;
5101 }
5102 else
5103 high = dwarf2_get_attr_constant_value (attr, 1);
5104 }
5105
5106 range_type = create_range_type (NULL, base_type, low, high);
5107
5108 name = dwarf2_name (die, cu);
5109 if (name)
5110 TYPE_NAME (range_type) = name;
5111
5112 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5113 if (attr)
5114 TYPE_LENGTH (range_type) = DW_UNSND (attr);
5115
5116 set_die_type (die, range_type, cu);
5117 }
5118
5119 static void
5120 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
5121 {
5122 struct type *type;
5123
5124 if (die->type)
5125 return;
5126
5127 /* For now, we only support the C meaning of an unspecified type: void. */
5128
5129 type = init_type (TYPE_CODE_VOID, 0, 0, dwarf2_name (die, cu),
5130 cu->objfile);
5131
5132 set_die_type (die, type, cu);
5133 }
5134
5135 /* Read a whole compilation unit into a linked list of dies. */
5136
5137 static struct die_info *
5138 read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
5139 {
5140 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
5141 }
5142
5143 /* Read a single die and all its descendents. Set the die's sibling
5144 field to NULL; set other fields in the die correctly, and set all
5145 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5146 location of the info_ptr after reading all of those dies. PARENT
5147 is the parent of the die in question. */
5148
5149 static struct die_info *
5150 read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
5151 struct dwarf2_cu *cu,
5152 gdb_byte **new_info_ptr,
5153 struct die_info *parent)
5154 {
5155 struct die_info *die;
5156 gdb_byte *cur_ptr;
5157 int has_children;
5158
5159 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
5160 store_in_ref_table (die->offset, die, cu);
5161
5162 if (has_children)
5163 {
5164 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
5165 new_info_ptr, die);
5166 }
5167 else
5168 {
5169 die->child = NULL;
5170 *new_info_ptr = cur_ptr;
5171 }
5172
5173 die->sibling = NULL;
5174 die->parent = parent;
5175 return die;
5176 }
5177
5178 /* Read a die, all of its descendents, and all of its siblings; set
5179 all of the fields of all of the dies correctly. Arguments are as
5180 in read_die_and_children. */
5181
5182 static struct die_info *
5183 read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
5184 struct dwarf2_cu *cu,
5185 gdb_byte **new_info_ptr,
5186 struct die_info *parent)
5187 {
5188 struct die_info *first_die, *last_sibling;
5189 gdb_byte *cur_ptr;
5190
5191 cur_ptr = info_ptr;
5192 first_die = last_sibling = NULL;
5193
5194 while (1)
5195 {
5196 struct die_info *die
5197 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
5198
5199 if (!first_die)
5200 {
5201 first_die = die;
5202 }
5203 else
5204 {
5205 last_sibling->sibling = die;
5206 }
5207
5208 if (die->tag == 0)
5209 {
5210 *new_info_ptr = cur_ptr;
5211 return first_die;
5212 }
5213 else
5214 {
5215 last_sibling = die;
5216 }
5217 }
5218 }
5219
5220 /* Free a linked list of dies. */
5221
5222 static void
5223 free_die_list (struct die_info *dies)
5224 {
5225 struct die_info *die, *next;
5226
5227 die = dies;
5228 while (die)
5229 {
5230 if (die->child != NULL)
5231 free_die_list (die->child);
5232 next = die->sibling;
5233 xfree (die->attrs);
5234 xfree (die);
5235 die = next;
5236 }
5237 }
5238
5239 /* Read the contents of the section at OFFSET and of size SIZE from the
5240 object file specified by OBJFILE into the objfile_obstack and return it. */
5241
5242 gdb_byte *
5243 dwarf2_read_section (struct objfile *objfile, asection *sectp)
5244 {
5245 bfd *abfd = objfile->obfd;
5246 gdb_byte *buf, *retbuf;
5247 bfd_size_type size = bfd_get_section_size (sectp);
5248
5249 if (size == 0)
5250 return NULL;
5251
5252 buf = obstack_alloc (&objfile->objfile_obstack, size);
5253 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
5254 if (retbuf != NULL)
5255 return retbuf;
5256
5257 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5258 || bfd_bread (buf, size, abfd) != size)
5259 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
5260 bfd_get_filename (abfd));
5261
5262 return buf;
5263 }
5264
5265 /* In DWARF version 2, the description of the debugging information is
5266 stored in a separate .debug_abbrev section. Before we read any
5267 dies from a section we read in all abbreviations and install them
5268 in a hash table. This function also sets flags in CU describing
5269 the data found in the abbrev table. */
5270
5271 static void
5272 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
5273 {
5274 struct comp_unit_head *cu_header = &cu->header;
5275 gdb_byte *abbrev_ptr;
5276 struct abbrev_info *cur_abbrev;
5277 unsigned int abbrev_number, bytes_read, abbrev_name;
5278 unsigned int abbrev_form, hash_number;
5279 struct attr_abbrev *cur_attrs;
5280 unsigned int allocated_attrs;
5281
5282 /* Initialize dwarf2 abbrevs */
5283 obstack_init (&cu->abbrev_obstack);
5284 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5285 (ABBREV_HASH_SIZE
5286 * sizeof (struct abbrev_info *)));
5287 memset (cu->dwarf2_abbrevs, 0,
5288 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
5289
5290 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
5291 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5292 abbrev_ptr += bytes_read;
5293
5294 allocated_attrs = ATTR_ALLOC_CHUNK;
5295 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5296
5297 /* loop until we reach an abbrev number of 0 */
5298 while (abbrev_number)
5299 {
5300 cur_abbrev = dwarf_alloc_abbrev (cu);
5301
5302 /* read in abbrev header */
5303 cur_abbrev->number = abbrev_number;
5304 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5305 abbrev_ptr += bytes_read;
5306 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5307 abbrev_ptr += 1;
5308
5309 if (cur_abbrev->tag == DW_TAG_namespace)
5310 cu->has_namespace_info = 1;
5311
5312 /* now read in declarations */
5313 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5314 abbrev_ptr += bytes_read;
5315 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5316 abbrev_ptr += bytes_read;
5317 while (abbrev_name)
5318 {
5319 if (cur_abbrev->num_attrs == allocated_attrs)
5320 {
5321 allocated_attrs += ATTR_ALLOC_CHUNK;
5322 cur_attrs
5323 = xrealloc (cur_attrs, (allocated_attrs
5324 * sizeof (struct attr_abbrev)));
5325 }
5326
5327 /* Record whether this compilation unit might have
5328 inter-compilation-unit references. If we don't know what form
5329 this attribute will have, then it might potentially be a
5330 DW_FORM_ref_addr, so we conservatively expect inter-CU
5331 references. */
5332
5333 if (abbrev_form == DW_FORM_ref_addr
5334 || abbrev_form == DW_FORM_indirect)
5335 cu->has_form_ref_addr = 1;
5336
5337 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5338 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5339 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5340 abbrev_ptr += bytes_read;
5341 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5342 abbrev_ptr += bytes_read;
5343 }
5344
5345 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5346 (cur_abbrev->num_attrs
5347 * sizeof (struct attr_abbrev)));
5348 memcpy (cur_abbrev->attrs, cur_attrs,
5349 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5350
5351 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5352 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5353 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5354
5355 /* Get next abbreviation.
5356 Under Irix6 the abbreviations for a compilation unit are not
5357 always properly terminated with an abbrev number of 0.
5358 Exit loop if we encounter an abbreviation which we have
5359 already read (which means we are about to read the abbreviations
5360 for the next compile unit) or if the end of the abbreviation
5361 table is reached. */
5362 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5363 >= dwarf2_per_objfile->abbrev_size)
5364 break;
5365 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5366 abbrev_ptr += bytes_read;
5367 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5368 break;
5369 }
5370
5371 xfree (cur_attrs);
5372 }
5373
5374 /* Release the memory used by the abbrev table for a compilation unit. */
5375
5376 static void
5377 dwarf2_free_abbrev_table (void *ptr_to_cu)
5378 {
5379 struct dwarf2_cu *cu = ptr_to_cu;
5380
5381 obstack_free (&cu->abbrev_obstack, NULL);
5382 cu->dwarf2_abbrevs = NULL;
5383 }
5384
5385 /* Lookup an abbrev_info structure in the abbrev hash table. */
5386
5387 static struct abbrev_info *
5388 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5389 {
5390 unsigned int hash_number;
5391 struct abbrev_info *abbrev;
5392
5393 hash_number = number % ABBREV_HASH_SIZE;
5394 abbrev = cu->dwarf2_abbrevs[hash_number];
5395
5396 while (abbrev)
5397 {
5398 if (abbrev->number == number)
5399 return abbrev;
5400 else
5401 abbrev = abbrev->next;
5402 }
5403 return NULL;
5404 }
5405
5406 /* Returns nonzero if TAG represents a type that we might generate a partial
5407 symbol for. */
5408
5409 static int
5410 is_type_tag_for_partial (int tag)
5411 {
5412 switch (tag)
5413 {
5414 #if 0
5415 /* Some types that would be reasonable to generate partial symbols for,
5416 that we don't at present. */
5417 case DW_TAG_array_type:
5418 case DW_TAG_file_type:
5419 case DW_TAG_ptr_to_member_type:
5420 case DW_TAG_set_type:
5421 case DW_TAG_string_type:
5422 case DW_TAG_subroutine_type:
5423 #endif
5424 case DW_TAG_base_type:
5425 case DW_TAG_class_type:
5426 case DW_TAG_interface_type:
5427 case DW_TAG_enumeration_type:
5428 case DW_TAG_structure_type:
5429 case DW_TAG_subrange_type:
5430 case DW_TAG_typedef:
5431 case DW_TAG_union_type:
5432 return 1;
5433 default:
5434 return 0;
5435 }
5436 }
5437
5438 /* Load all DIEs that are interesting for partial symbols into memory. */
5439
5440 static struct partial_die_info *
5441 load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
5442 struct dwarf2_cu *cu)
5443 {
5444 struct partial_die_info *part_die;
5445 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5446 struct abbrev_info *abbrev;
5447 unsigned int bytes_read;
5448 unsigned int load_all = 0;
5449
5450 int nesting_level = 1;
5451
5452 parent_die = NULL;
5453 last_die = NULL;
5454
5455 if (cu->per_cu && cu->per_cu->load_all_dies)
5456 load_all = 1;
5457
5458 cu->partial_dies
5459 = htab_create_alloc_ex (cu->header.length / 12,
5460 partial_die_hash,
5461 partial_die_eq,
5462 NULL,
5463 &cu->comp_unit_obstack,
5464 hashtab_obstack_allocate,
5465 dummy_obstack_deallocate);
5466
5467 part_die = obstack_alloc (&cu->comp_unit_obstack,
5468 sizeof (struct partial_die_info));
5469
5470 while (1)
5471 {
5472 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5473
5474 /* A NULL abbrev means the end of a series of children. */
5475 if (abbrev == NULL)
5476 {
5477 if (--nesting_level == 0)
5478 {
5479 /* PART_DIE was probably the last thing allocated on the
5480 comp_unit_obstack, so we could call obstack_free
5481 here. We don't do that because the waste is small,
5482 and will be cleaned up when we're done with this
5483 compilation unit. This way, we're also more robust
5484 against other users of the comp_unit_obstack. */
5485 return first_die;
5486 }
5487 info_ptr += bytes_read;
5488 last_die = parent_die;
5489 parent_die = parent_die->die_parent;
5490 continue;
5491 }
5492
5493 /* Check whether this DIE is interesting enough to save. Normally
5494 we would not be interested in members here, but there may be
5495 later variables referencing them via DW_AT_specification (for
5496 static members). */
5497 if (!load_all
5498 && !is_type_tag_for_partial (abbrev->tag)
5499 && abbrev->tag != DW_TAG_enumerator
5500 && abbrev->tag != DW_TAG_subprogram
5501 && abbrev->tag != DW_TAG_variable
5502 && abbrev->tag != DW_TAG_namespace
5503 && abbrev->tag != DW_TAG_member)
5504 {
5505 /* Otherwise we skip to the next sibling, if any. */
5506 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5507 continue;
5508 }
5509
5510 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5511 abfd, info_ptr, cu);
5512
5513 /* This two-pass algorithm for processing partial symbols has a
5514 high cost in cache pressure. Thus, handle some simple cases
5515 here which cover the majority of C partial symbols. DIEs
5516 which neither have specification tags in them, nor could have
5517 specification tags elsewhere pointing at them, can simply be
5518 processed and discarded.
5519
5520 This segment is also optional; scan_partial_symbols and
5521 add_partial_symbol will handle these DIEs if we chain
5522 them in normally. When compilers which do not emit large
5523 quantities of duplicate debug information are more common,
5524 this code can probably be removed. */
5525
5526 /* Any complete simple types at the top level (pretty much all
5527 of them, for a language without namespaces), can be processed
5528 directly. */
5529 if (parent_die == NULL
5530 && part_die->has_specification == 0
5531 && part_die->is_declaration == 0
5532 && (part_die->tag == DW_TAG_typedef
5533 || part_die->tag == DW_TAG_base_type
5534 || part_die->tag == DW_TAG_subrange_type))
5535 {
5536 if (building_psymtab && part_die->name != NULL)
5537 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5538 VAR_DOMAIN, LOC_TYPEDEF,
5539 &cu->objfile->static_psymbols,
5540 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5541 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5542 continue;
5543 }
5544
5545 /* If we're at the second level, and we're an enumerator, and
5546 our parent has no specification (meaning possibly lives in a
5547 namespace elsewhere), then we can add the partial symbol now
5548 instead of queueing it. */
5549 if (part_die->tag == DW_TAG_enumerator
5550 && parent_die != NULL
5551 && parent_die->die_parent == NULL
5552 && parent_die->tag == DW_TAG_enumeration_type
5553 && parent_die->has_specification == 0)
5554 {
5555 if (part_die->name == NULL)
5556 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5557 else if (building_psymtab)
5558 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5559 VAR_DOMAIN, LOC_CONST,
5560 (cu->language == language_cplus
5561 || cu->language == language_java)
5562 ? &cu->objfile->global_psymbols
5563 : &cu->objfile->static_psymbols,
5564 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5565
5566 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5567 continue;
5568 }
5569
5570 /* We'll save this DIE so link it in. */
5571 part_die->die_parent = parent_die;
5572 part_die->die_sibling = NULL;
5573 part_die->die_child = NULL;
5574
5575 if (last_die && last_die == parent_die)
5576 last_die->die_child = part_die;
5577 else if (last_die)
5578 last_die->die_sibling = part_die;
5579
5580 last_die = part_die;
5581
5582 if (first_die == NULL)
5583 first_die = part_die;
5584
5585 /* Maybe add the DIE to the hash table. Not all DIEs that we
5586 find interesting need to be in the hash table, because we
5587 also have the parent/sibling/child chains; only those that we
5588 might refer to by offset later during partial symbol reading.
5589
5590 For now this means things that might have be the target of a
5591 DW_AT_specification, DW_AT_abstract_origin, or
5592 DW_AT_extension. DW_AT_extension will refer only to
5593 namespaces; DW_AT_abstract_origin refers to functions (and
5594 many things under the function DIE, but we do not recurse
5595 into function DIEs during partial symbol reading) and
5596 possibly variables as well; DW_AT_specification refers to
5597 declarations. Declarations ought to have the DW_AT_declaration
5598 flag. It happens that GCC forgets to put it in sometimes, but
5599 only for functions, not for types.
5600
5601 Adding more things than necessary to the hash table is harmless
5602 except for the performance cost. Adding too few will result in
5603 wasted time in find_partial_die, when we reread the compilation
5604 unit with load_all_dies set. */
5605
5606 if (load_all
5607 || abbrev->tag == DW_TAG_subprogram
5608 || abbrev->tag == DW_TAG_variable
5609 || abbrev->tag == DW_TAG_namespace
5610 || part_die->is_declaration)
5611 {
5612 void **slot;
5613
5614 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5615 part_die->offset, INSERT);
5616 *slot = part_die;
5617 }
5618
5619 part_die = obstack_alloc (&cu->comp_unit_obstack,
5620 sizeof (struct partial_die_info));
5621
5622 /* For some DIEs we want to follow their children (if any). For C
5623 we have no reason to follow the children of structures; for other
5624 languages we have to, both so that we can get at method physnames
5625 to infer fully qualified class names, and for DW_AT_specification. */
5626 if (last_die->has_children
5627 && (load_all
5628 || last_die->tag == DW_TAG_namespace
5629 || last_die->tag == DW_TAG_enumeration_type
5630 || (cu->language != language_c
5631 && (last_die->tag == DW_TAG_class_type
5632 || last_die->tag == DW_TAG_interface_type
5633 || last_die->tag == DW_TAG_structure_type
5634 || last_die->tag == DW_TAG_union_type))))
5635 {
5636 nesting_level++;
5637 parent_die = last_die;
5638 continue;
5639 }
5640
5641 /* Otherwise we skip to the next sibling, if any. */
5642 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5643
5644 /* Back to the top, do it again. */
5645 }
5646 }
5647
5648 /* Read a minimal amount of information into the minimal die structure. */
5649
5650 static gdb_byte *
5651 read_partial_die (struct partial_die_info *part_die,
5652 struct abbrev_info *abbrev,
5653 unsigned int abbrev_len, bfd *abfd,
5654 gdb_byte *info_ptr, struct dwarf2_cu *cu)
5655 {
5656 unsigned int bytes_read, i;
5657 struct attribute attr;
5658 int has_low_pc_attr = 0;
5659 int has_high_pc_attr = 0;
5660
5661 memset (part_die, 0, sizeof (struct partial_die_info));
5662
5663 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5664
5665 info_ptr += abbrev_len;
5666
5667 if (abbrev == NULL)
5668 return info_ptr;
5669
5670 part_die->tag = abbrev->tag;
5671 part_die->has_children = abbrev->has_children;
5672
5673 for (i = 0; i < abbrev->num_attrs; ++i)
5674 {
5675 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5676
5677 /* Store the data if it is of an attribute we want to keep in a
5678 partial symbol table. */
5679 switch (attr.name)
5680 {
5681 case DW_AT_name:
5682
5683 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5684 if (part_die->name == NULL)
5685 part_die->name = DW_STRING (&attr);
5686 break;
5687 case DW_AT_comp_dir:
5688 if (part_die->dirname == NULL)
5689 part_die->dirname = DW_STRING (&attr);
5690 break;
5691 case DW_AT_MIPS_linkage_name:
5692 part_die->name = DW_STRING (&attr);
5693 break;
5694 case DW_AT_low_pc:
5695 has_low_pc_attr = 1;
5696 part_die->lowpc = DW_ADDR (&attr);
5697 break;
5698 case DW_AT_high_pc:
5699 has_high_pc_attr = 1;
5700 part_die->highpc = DW_ADDR (&attr);
5701 break;
5702 case DW_AT_ranges:
5703 if (dwarf2_ranges_read (DW_UNSND (&attr), &part_die->lowpc,
5704 &part_die->highpc, cu))
5705 has_low_pc_attr = has_high_pc_attr = 1;
5706 break;
5707 case DW_AT_location:
5708 /* Support the .debug_loc offsets */
5709 if (attr_form_is_block (&attr))
5710 {
5711 part_die->locdesc = DW_BLOCK (&attr);
5712 }
5713 else if (attr_form_is_section_offset (&attr))
5714 {
5715 dwarf2_complex_location_expr_complaint ();
5716 }
5717 else
5718 {
5719 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5720 "partial symbol information");
5721 }
5722 break;
5723 case DW_AT_language:
5724 part_die->language = DW_UNSND (&attr);
5725 break;
5726 case DW_AT_external:
5727 part_die->is_external = DW_UNSND (&attr);
5728 break;
5729 case DW_AT_declaration:
5730 part_die->is_declaration = DW_UNSND (&attr);
5731 break;
5732 case DW_AT_type:
5733 part_die->has_type = 1;
5734 break;
5735 case DW_AT_abstract_origin:
5736 case DW_AT_specification:
5737 case DW_AT_extension:
5738 part_die->has_specification = 1;
5739 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5740 break;
5741 case DW_AT_sibling:
5742 /* Ignore absolute siblings, they might point outside of
5743 the current compile unit. */
5744 if (attr.form == DW_FORM_ref_addr)
5745 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5746 else
5747 part_die->sibling = dwarf2_per_objfile->info_buffer
5748 + dwarf2_get_ref_die_offset (&attr, cu);
5749 break;
5750 case DW_AT_stmt_list:
5751 part_die->has_stmt_list = 1;
5752 part_die->line_offset = DW_UNSND (&attr);
5753 break;
5754 case DW_AT_byte_size:
5755 part_die->has_byte_size = 1;
5756 break;
5757 case DW_AT_calling_convention:
5758 /* DWARF doesn't provide a way to identify a program's source-level
5759 entry point. DW_AT_calling_convention attributes are only meant
5760 to describe functions' calling conventions.
5761
5762 However, because it's a necessary piece of information in
5763 Fortran, and because DW_CC_program is the only piece of debugging
5764 information whose definition refers to a 'main program' at all,
5765 several compilers have begun marking Fortran main programs with
5766 DW_CC_program --- even when those functions use the standard
5767 calling conventions.
5768
5769 So until DWARF specifies a way to provide this information and
5770 compilers pick up the new representation, we'll support this
5771 practice. */
5772 if (DW_UNSND (&attr) == DW_CC_program
5773 && cu->language == language_fortran)
5774 set_main_name (part_die->name);
5775 break;
5776 default:
5777 break;
5778 }
5779 }
5780
5781 /* When using the GNU linker, .gnu.linkonce. sections are used to
5782 eliminate duplicate copies of functions and vtables and such.
5783 The linker will arbitrarily choose one and discard the others.
5784 The AT_*_pc values for such functions refer to local labels in
5785 these sections. If the section from that file was discarded, the
5786 labels are not in the output, so the relocs get a value of 0.
5787 If this is a discarded function, mark the pc bounds as invalid,
5788 so that GDB will ignore it. */
5789 if (has_low_pc_attr && has_high_pc_attr
5790 && part_die->lowpc < part_die->highpc
5791 && (part_die->lowpc != 0
5792 || dwarf2_per_objfile->has_section_at_zero))
5793 part_die->has_pc_info = 1;
5794 return info_ptr;
5795 }
5796
5797 /* Find a cached partial DIE at OFFSET in CU. */
5798
5799 static struct partial_die_info *
5800 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5801 {
5802 struct partial_die_info *lookup_die = NULL;
5803 struct partial_die_info part_die;
5804
5805 part_die.offset = offset;
5806 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5807
5808 return lookup_die;
5809 }
5810
5811 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5812
5813 static struct partial_die_info *
5814 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5815 {
5816 struct dwarf2_per_cu_data *per_cu = NULL;
5817 struct partial_die_info *pd = NULL;
5818
5819 if (offset >= cu->header.offset
5820 && offset < cu->header.offset + cu->header.length)
5821 {
5822 pd = find_partial_die_in_comp_unit (offset, cu);
5823 if (pd != NULL)
5824 return pd;
5825 }
5826
5827 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5828
5829 if (per_cu->cu == NULL)
5830 {
5831 load_comp_unit (per_cu, cu->objfile);
5832 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5833 dwarf2_per_objfile->read_in_chain = per_cu;
5834 }
5835
5836 per_cu->cu->last_used = 0;
5837 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5838
5839 if (pd == NULL && per_cu->load_all_dies == 0)
5840 {
5841 struct cleanup *back_to;
5842 struct partial_die_info comp_unit_die;
5843 struct abbrev_info *abbrev;
5844 unsigned int bytes_read;
5845 char *info_ptr;
5846
5847 per_cu->load_all_dies = 1;
5848
5849 /* Re-read the DIEs. */
5850 back_to = make_cleanup (null_cleanup, 0);
5851 if (per_cu->cu->dwarf2_abbrevs == NULL)
5852 {
5853 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5854 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5855 }
5856 info_ptr = per_cu->cu->header.first_die_ptr;
5857 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5858 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5859 per_cu->cu->objfile->obfd, info_ptr,
5860 per_cu->cu);
5861 if (comp_unit_die.has_children)
5862 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5863 do_cleanups (back_to);
5864
5865 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5866 }
5867
5868 if (pd == NULL)
5869 internal_error (__FILE__, __LINE__,
5870 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5871 offset, bfd_get_filename (cu->objfile->obfd));
5872 return pd;
5873 }
5874
5875 /* Adjust PART_DIE before generating a symbol for it. This function
5876 may set the is_external flag or change the DIE's name. */
5877
5878 static void
5879 fixup_partial_die (struct partial_die_info *part_die,
5880 struct dwarf2_cu *cu)
5881 {
5882 /* If we found a reference attribute and the DIE has no name, try
5883 to find a name in the referred to DIE. */
5884
5885 if (part_die->name == NULL && part_die->has_specification)
5886 {
5887 struct partial_die_info *spec_die;
5888
5889 spec_die = find_partial_die (part_die->spec_offset, cu);
5890
5891 fixup_partial_die (spec_die, cu);
5892
5893 if (spec_die->name)
5894 {
5895 part_die->name = spec_die->name;
5896
5897 /* Copy DW_AT_external attribute if it is set. */
5898 if (spec_die->is_external)
5899 part_die->is_external = spec_die->is_external;
5900 }
5901 }
5902
5903 /* Set default names for some unnamed DIEs. */
5904 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5905 || part_die->tag == DW_TAG_class_type))
5906 part_die->name = "(anonymous class)";
5907
5908 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5909 part_die->name = "(anonymous namespace)";
5910
5911 if (part_die->tag == DW_TAG_structure_type
5912 || part_die->tag == DW_TAG_class_type
5913 || part_die->tag == DW_TAG_union_type)
5914 guess_structure_name (part_die, cu);
5915 }
5916
5917 /* Read the die from the .debug_info section buffer. Set DIEP to
5918 point to a newly allocated die with its information, except for its
5919 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5920 whether the die has children or not. */
5921
5922 static gdb_byte *
5923 read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
5924 struct dwarf2_cu *cu, int *has_children)
5925 {
5926 unsigned int abbrev_number, bytes_read, i, offset;
5927 struct abbrev_info *abbrev;
5928 struct die_info *die;
5929
5930 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5931 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5932 info_ptr += bytes_read;
5933 if (!abbrev_number)
5934 {
5935 die = dwarf_alloc_die ();
5936 die->tag = 0;
5937 die->abbrev = abbrev_number;
5938 die->type = NULL;
5939 *diep = die;
5940 *has_children = 0;
5941 return info_ptr;
5942 }
5943
5944 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5945 if (!abbrev)
5946 {
5947 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5948 abbrev_number,
5949 bfd_get_filename (abfd));
5950 }
5951 die = dwarf_alloc_die ();
5952 die->offset = offset;
5953 die->tag = abbrev->tag;
5954 die->abbrev = abbrev_number;
5955 die->type = NULL;
5956
5957 die->num_attrs = abbrev->num_attrs;
5958 die->attrs = (struct attribute *)
5959 xmalloc (die->num_attrs * sizeof (struct attribute));
5960
5961 for (i = 0; i < abbrev->num_attrs; ++i)
5962 {
5963 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5964 abfd, info_ptr, cu);
5965
5966 /* If this attribute is an absolute reference to a different
5967 compilation unit, make sure that compilation unit is loaded
5968 also. */
5969 if (die->attrs[i].form == DW_FORM_ref_addr
5970 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5971 || (DW_ADDR (&die->attrs[i])
5972 >= cu->header.offset + cu->header.length)))
5973 {
5974 struct dwarf2_per_cu_data *per_cu;
5975 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5976 cu->objfile);
5977
5978 /* Mark the dependence relation so that we don't flush PER_CU
5979 too early. */
5980 dwarf2_add_dependence (cu, per_cu);
5981
5982 /* If it's already on the queue, we have nothing to do. */
5983 if (per_cu->queued)
5984 continue;
5985
5986 /* If the compilation unit is already loaded, just mark it as
5987 used. */
5988 if (per_cu->cu != NULL)
5989 {
5990 per_cu->cu->last_used = 0;
5991 continue;
5992 }
5993
5994 /* Add it to the queue. */
5995 queue_comp_unit (per_cu);
5996 }
5997 }
5998
5999 *diep = die;
6000 *has_children = abbrev->has_children;
6001 return info_ptr;
6002 }
6003
6004 /* Read an attribute value described by an attribute form. */
6005
6006 static gdb_byte *
6007 read_attribute_value (struct attribute *attr, unsigned form,
6008 bfd *abfd, gdb_byte *info_ptr,
6009 struct dwarf2_cu *cu)
6010 {
6011 struct comp_unit_head *cu_header = &cu->header;
6012 unsigned int bytes_read;
6013 struct dwarf_block *blk;
6014
6015 attr->form = form;
6016 switch (form)
6017 {
6018 case DW_FORM_addr:
6019 case DW_FORM_ref_addr:
6020 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
6021 info_ptr += bytes_read;
6022 break;
6023 case DW_FORM_block2:
6024 blk = dwarf_alloc_block (cu);
6025 blk->size = read_2_bytes (abfd, info_ptr);
6026 info_ptr += 2;
6027 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6028 info_ptr += blk->size;
6029 DW_BLOCK (attr) = blk;
6030 break;
6031 case DW_FORM_block4:
6032 blk = dwarf_alloc_block (cu);
6033 blk->size = read_4_bytes (abfd, info_ptr);
6034 info_ptr += 4;
6035 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6036 info_ptr += blk->size;
6037 DW_BLOCK (attr) = blk;
6038 break;
6039 case DW_FORM_data2:
6040 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
6041 info_ptr += 2;
6042 break;
6043 case DW_FORM_data4:
6044 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
6045 info_ptr += 4;
6046 break;
6047 case DW_FORM_data8:
6048 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
6049 info_ptr += 8;
6050 break;
6051 case DW_FORM_string:
6052 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
6053 info_ptr += bytes_read;
6054 break;
6055 case DW_FORM_strp:
6056 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
6057 &bytes_read);
6058 info_ptr += bytes_read;
6059 break;
6060 case DW_FORM_block:
6061 blk = dwarf_alloc_block (cu);
6062 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6063 info_ptr += bytes_read;
6064 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6065 info_ptr += blk->size;
6066 DW_BLOCK (attr) = blk;
6067 break;
6068 case DW_FORM_block1:
6069 blk = dwarf_alloc_block (cu);
6070 blk->size = read_1_byte (abfd, info_ptr);
6071 info_ptr += 1;
6072 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6073 info_ptr += blk->size;
6074 DW_BLOCK (attr) = blk;
6075 break;
6076 case DW_FORM_data1:
6077 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6078 info_ptr += 1;
6079 break;
6080 case DW_FORM_flag:
6081 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6082 info_ptr += 1;
6083 break;
6084 case DW_FORM_sdata:
6085 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
6086 info_ptr += bytes_read;
6087 break;
6088 case DW_FORM_udata:
6089 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6090 info_ptr += bytes_read;
6091 break;
6092 case DW_FORM_ref1:
6093 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
6094 info_ptr += 1;
6095 break;
6096 case DW_FORM_ref2:
6097 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
6098 info_ptr += 2;
6099 break;
6100 case DW_FORM_ref4:
6101 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
6102 info_ptr += 4;
6103 break;
6104 case DW_FORM_ref8:
6105 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
6106 info_ptr += 8;
6107 break;
6108 case DW_FORM_ref_udata:
6109 DW_ADDR (attr) = (cu->header.offset
6110 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
6111 info_ptr += bytes_read;
6112 break;
6113 case DW_FORM_indirect:
6114 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6115 info_ptr += bytes_read;
6116 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
6117 break;
6118 default:
6119 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
6120 dwarf_form_name (form),
6121 bfd_get_filename (abfd));
6122 }
6123 return info_ptr;
6124 }
6125
6126 /* Read an attribute described by an abbreviated attribute. */
6127
6128 static gdb_byte *
6129 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
6130 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
6131 {
6132 attr->name = abbrev->name;
6133 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
6134 }
6135
6136 /* read dwarf information from a buffer */
6137
6138 static unsigned int
6139 read_1_byte (bfd *abfd, gdb_byte *buf)
6140 {
6141 return bfd_get_8 (abfd, buf);
6142 }
6143
6144 static int
6145 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
6146 {
6147 return bfd_get_signed_8 (abfd, buf);
6148 }
6149
6150 static unsigned int
6151 read_2_bytes (bfd *abfd, gdb_byte *buf)
6152 {
6153 return bfd_get_16 (abfd, buf);
6154 }
6155
6156 static int
6157 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
6158 {
6159 return bfd_get_signed_16 (abfd, buf);
6160 }
6161
6162 static unsigned int
6163 read_4_bytes (bfd *abfd, gdb_byte *buf)
6164 {
6165 return bfd_get_32 (abfd, buf);
6166 }
6167
6168 static int
6169 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
6170 {
6171 return bfd_get_signed_32 (abfd, buf);
6172 }
6173
6174 static unsigned long
6175 read_8_bytes (bfd *abfd, gdb_byte *buf)
6176 {
6177 return bfd_get_64 (abfd, buf);
6178 }
6179
6180 static CORE_ADDR
6181 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
6182 unsigned int *bytes_read)
6183 {
6184 struct comp_unit_head *cu_header = &cu->header;
6185 CORE_ADDR retval = 0;
6186
6187 if (cu_header->signed_addr_p)
6188 {
6189 switch (cu_header->addr_size)
6190 {
6191 case 2:
6192 retval = bfd_get_signed_16 (abfd, buf);
6193 break;
6194 case 4:
6195 retval = bfd_get_signed_32 (abfd, buf);
6196 break;
6197 case 8:
6198 retval = bfd_get_signed_64 (abfd, buf);
6199 break;
6200 default:
6201 internal_error (__FILE__, __LINE__,
6202 _("read_address: bad switch, signed [in module %s]"),
6203 bfd_get_filename (abfd));
6204 }
6205 }
6206 else
6207 {
6208 switch (cu_header->addr_size)
6209 {
6210 case 2:
6211 retval = bfd_get_16 (abfd, buf);
6212 break;
6213 case 4:
6214 retval = bfd_get_32 (abfd, buf);
6215 break;
6216 case 8:
6217 retval = bfd_get_64 (abfd, buf);
6218 break;
6219 default:
6220 internal_error (__FILE__, __LINE__,
6221 _("read_address: bad switch, unsigned [in module %s]"),
6222 bfd_get_filename (abfd));
6223 }
6224 }
6225
6226 *bytes_read = cu_header->addr_size;
6227 return retval;
6228 }
6229
6230 /* Read the initial length from a section. The (draft) DWARF 3
6231 specification allows the initial length to take up either 4 bytes
6232 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6233 bytes describe the length and all offsets will be 8 bytes in length
6234 instead of 4.
6235
6236 An older, non-standard 64-bit format is also handled by this
6237 function. The older format in question stores the initial length
6238 as an 8-byte quantity without an escape value. Lengths greater
6239 than 2^32 aren't very common which means that the initial 4 bytes
6240 is almost always zero. Since a length value of zero doesn't make
6241 sense for the 32-bit format, this initial zero can be considered to
6242 be an escape value which indicates the presence of the older 64-bit
6243 format. As written, the code can't detect (old format) lengths
6244 greater than 4GB. If it becomes necessary to handle lengths
6245 somewhat larger than 4GB, we could allow other small values (such
6246 as the non-sensical values of 1, 2, and 3) to also be used as
6247 escape values indicating the presence of the old format.
6248
6249 The value returned via bytes_read should be used to increment the
6250 relevant pointer after calling read_initial_length().
6251
6252 As a side effect, this function sets the fields initial_length_size
6253 and offset_size in cu_header to the values appropriate for the
6254 length field. (The format of the initial length field determines
6255 the width of file offsets to be fetched later with read_offset().)
6256
6257 [ Note: read_initial_length() and read_offset() are based on the
6258 document entitled "DWARF Debugging Information Format", revision
6259 3, draft 8, dated November 19, 2001. This document was obtained
6260 from:
6261
6262 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6263
6264 This document is only a draft and is subject to change. (So beware.)
6265
6266 Details regarding the older, non-standard 64-bit format were
6267 determined empirically by examining 64-bit ELF files produced by
6268 the SGI toolchain on an IRIX 6.5 machine.
6269
6270 - Kevin, July 16, 2002
6271 ] */
6272
6273 static LONGEST
6274 read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
6275 unsigned int *bytes_read)
6276 {
6277 LONGEST length = bfd_get_32 (abfd, buf);
6278
6279 if (length == 0xffffffff)
6280 {
6281 length = bfd_get_64 (abfd, buf + 4);
6282 *bytes_read = 12;
6283 }
6284 else if (length == 0)
6285 {
6286 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
6287 length = bfd_get_64 (abfd, buf);
6288 *bytes_read = 8;
6289 }
6290 else
6291 {
6292 *bytes_read = 4;
6293 }
6294
6295 if (cu_header)
6296 {
6297 gdb_assert (cu_header->initial_length_size == 0
6298 || cu_header->initial_length_size == 4
6299 || cu_header->initial_length_size == 8
6300 || cu_header->initial_length_size == 12);
6301
6302 if (cu_header->initial_length_size != 0
6303 && cu_header->initial_length_size != *bytes_read)
6304 complaint (&symfile_complaints,
6305 _("intermixed 32-bit and 64-bit DWARF sections"));
6306
6307 cu_header->initial_length_size = *bytes_read;
6308 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6309 }
6310
6311 return length;
6312 }
6313
6314 /* Read an offset from the data stream. The size of the offset is
6315 given by cu_header->offset_size. */
6316
6317 static LONGEST
6318 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
6319 unsigned int *bytes_read)
6320 {
6321 LONGEST retval = 0;
6322
6323 switch (cu_header->offset_size)
6324 {
6325 case 4:
6326 retval = bfd_get_32 (abfd, buf);
6327 *bytes_read = 4;
6328 break;
6329 case 8:
6330 retval = bfd_get_64 (abfd, buf);
6331 *bytes_read = 8;
6332 break;
6333 default:
6334 internal_error (__FILE__, __LINE__,
6335 _("read_offset: bad switch [in module %s]"),
6336 bfd_get_filename (abfd));
6337 }
6338
6339 return retval;
6340 }
6341
6342 static gdb_byte *
6343 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
6344 {
6345 /* If the size of a host char is 8 bits, we can return a pointer
6346 to the buffer, otherwise we have to copy the data to a buffer
6347 allocated on the temporary obstack. */
6348 gdb_assert (HOST_CHAR_BIT == 8);
6349 return buf;
6350 }
6351
6352 static char *
6353 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6354 {
6355 /* If the size of a host char is 8 bits, we can return a pointer
6356 to the string, otherwise we have to copy the string to a buffer
6357 allocated on the temporary obstack. */
6358 gdb_assert (HOST_CHAR_BIT == 8);
6359 if (*buf == '\0')
6360 {
6361 *bytes_read_ptr = 1;
6362 return NULL;
6363 }
6364 *bytes_read_ptr = strlen ((char *) buf) + 1;
6365 return (char *) buf;
6366 }
6367
6368 static char *
6369 read_indirect_string (bfd *abfd, gdb_byte *buf,
6370 const struct comp_unit_head *cu_header,
6371 unsigned int *bytes_read_ptr)
6372 {
6373 LONGEST str_offset = read_offset (abfd, buf, cu_header,
6374 bytes_read_ptr);
6375
6376 if (dwarf2_per_objfile->str_buffer == NULL)
6377 {
6378 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
6379 bfd_get_filename (abfd));
6380 return NULL;
6381 }
6382 if (str_offset >= dwarf2_per_objfile->str_size)
6383 {
6384 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
6385 bfd_get_filename (abfd));
6386 return NULL;
6387 }
6388 gdb_assert (HOST_CHAR_BIT == 8);
6389 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
6390 return NULL;
6391 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
6392 }
6393
6394 static unsigned long
6395 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6396 {
6397 unsigned long result;
6398 unsigned int num_read;
6399 int i, shift;
6400 unsigned char byte;
6401
6402 result = 0;
6403 shift = 0;
6404 num_read = 0;
6405 i = 0;
6406 while (1)
6407 {
6408 byte = bfd_get_8 (abfd, buf);
6409 buf++;
6410 num_read++;
6411 result |= ((unsigned long)(byte & 127) << shift);
6412 if ((byte & 128) == 0)
6413 {
6414 break;
6415 }
6416 shift += 7;
6417 }
6418 *bytes_read_ptr = num_read;
6419 return result;
6420 }
6421
6422 static long
6423 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6424 {
6425 long result;
6426 int i, shift, num_read;
6427 unsigned char byte;
6428
6429 result = 0;
6430 shift = 0;
6431 num_read = 0;
6432 i = 0;
6433 while (1)
6434 {
6435 byte = bfd_get_8 (abfd, buf);
6436 buf++;
6437 num_read++;
6438 result |= ((long)(byte & 127) << shift);
6439 shift += 7;
6440 if ((byte & 128) == 0)
6441 {
6442 break;
6443 }
6444 }
6445 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6446 result |= -(((long)1) << shift);
6447 *bytes_read_ptr = num_read;
6448 return result;
6449 }
6450
6451 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6452
6453 static gdb_byte *
6454 skip_leb128 (bfd *abfd, gdb_byte *buf)
6455 {
6456 int byte;
6457
6458 while (1)
6459 {
6460 byte = bfd_get_8 (abfd, buf);
6461 buf++;
6462 if ((byte & 128) == 0)
6463 return buf;
6464 }
6465 }
6466
6467 static void
6468 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6469 {
6470 switch (lang)
6471 {
6472 case DW_LANG_C89:
6473 case DW_LANG_C:
6474 cu->language = language_c;
6475 break;
6476 case DW_LANG_C_plus_plus:
6477 cu->language = language_cplus;
6478 break;
6479 case DW_LANG_Fortran77:
6480 case DW_LANG_Fortran90:
6481 case DW_LANG_Fortran95:
6482 cu->language = language_fortran;
6483 break;
6484 case DW_LANG_Mips_Assembler:
6485 cu->language = language_asm;
6486 break;
6487 case DW_LANG_Java:
6488 cu->language = language_java;
6489 break;
6490 case DW_LANG_Ada83:
6491 case DW_LANG_Ada95:
6492 cu->language = language_ada;
6493 break;
6494 case DW_LANG_Modula2:
6495 cu->language = language_m2;
6496 break;
6497 case DW_LANG_Pascal83:
6498 cu->language = language_pascal;
6499 break;
6500 case DW_LANG_ObjC:
6501 cu->language = language_objc;
6502 break;
6503 case DW_LANG_Cobol74:
6504 case DW_LANG_Cobol85:
6505 default:
6506 cu->language = language_minimal;
6507 break;
6508 }
6509 cu->language_defn = language_def (cu->language);
6510 }
6511
6512 /* Return the named attribute or NULL if not there. */
6513
6514 static struct attribute *
6515 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6516 {
6517 unsigned int i;
6518 struct attribute *spec = NULL;
6519
6520 for (i = 0; i < die->num_attrs; ++i)
6521 {
6522 if (die->attrs[i].name == name)
6523 return &die->attrs[i];
6524 if (die->attrs[i].name == DW_AT_specification
6525 || die->attrs[i].name == DW_AT_abstract_origin)
6526 spec = &die->attrs[i];
6527 }
6528
6529 if (spec)
6530 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6531
6532 return NULL;
6533 }
6534
6535 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6536 and holds a non-zero value. This function should only be used for
6537 DW_FORM_flag attributes. */
6538
6539 static int
6540 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6541 {
6542 struct attribute *attr = dwarf2_attr (die, name, cu);
6543
6544 return (attr && DW_UNSND (attr));
6545 }
6546
6547 static int
6548 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6549 {
6550 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6551 which value is non-zero. However, we have to be careful with
6552 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6553 (via dwarf2_flag_true_p) follows this attribute. So we may
6554 end up accidently finding a declaration attribute that belongs
6555 to a different DIE referenced by the specification attribute,
6556 even though the given DIE does not have a declaration attribute. */
6557 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6558 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6559 }
6560
6561 /* Return the die giving the specification for DIE, if there is
6562 one. */
6563
6564 static struct die_info *
6565 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6566 {
6567 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6568
6569 if (spec_attr == NULL)
6570 return NULL;
6571 else
6572 return follow_die_ref (die, spec_attr, cu);
6573 }
6574
6575 /* Free the line_header structure *LH, and any arrays and strings it
6576 refers to. */
6577 static void
6578 free_line_header (struct line_header *lh)
6579 {
6580 if (lh->standard_opcode_lengths)
6581 xfree (lh->standard_opcode_lengths);
6582
6583 /* Remember that all the lh->file_names[i].name pointers are
6584 pointers into debug_line_buffer, and don't need to be freed. */
6585 if (lh->file_names)
6586 xfree (lh->file_names);
6587
6588 /* Similarly for the include directory names. */
6589 if (lh->include_dirs)
6590 xfree (lh->include_dirs);
6591
6592 xfree (lh);
6593 }
6594
6595
6596 /* Add an entry to LH's include directory table. */
6597 static void
6598 add_include_dir (struct line_header *lh, char *include_dir)
6599 {
6600 /* Grow the array if necessary. */
6601 if (lh->include_dirs_size == 0)
6602 {
6603 lh->include_dirs_size = 1; /* for testing */
6604 lh->include_dirs = xmalloc (lh->include_dirs_size
6605 * sizeof (*lh->include_dirs));
6606 }
6607 else if (lh->num_include_dirs >= lh->include_dirs_size)
6608 {
6609 lh->include_dirs_size *= 2;
6610 lh->include_dirs = xrealloc (lh->include_dirs,
6611 (lh->include_dirs_size
6612 * sizeof (*lh->include_dirs)));
6613 }
6614
6615 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6616 }
6617
6618
6619 /* Add an entry to LH's file name table. */
6620 static void
6621 add_file_name (struct line_header *lh,
6622 char *name,
6623 unsigned int dir_index,
6624 unsigned int mod_time,
6625 unsigned int length)
6626 {
6627 struct file_entry *fe;
6628
6629 /* Grow the array if necessary. */
6630 if (lh->file_names_size == 0)
6631 {
6632 lh->file_names_size = 1; /* for testing */
6633 lh->file_names = xmalloc (lh->file_names_size
6634 * sizeof (*lh->file_names));
6635 }
6636 else if (lh->num_file_names >= lh->file_names_size)
6637 {
6638 lh->file_names_size *= 2;
6639 lh->file_names = xrealloc (lh->file_names,
6640 (lh->file_names_size
6641 * sizeof (*lh->file_names)));
6642 }
6643
6644 fe = &lh->file_names[lh->num_file_names++];
6645 fe->name = name;
6646 fe->dir_index = dir_index;
6647 fe->mod_time = mod_time;
6648 fe->length = length;
6649 fe->included_p = 0;
6650 fe->symtab = NULL;
6651 }
6652
6653
6654 /* Read the statement program header starting at OFFSET in
6655 .debug_line, according to the endianness of ABFD. Return a pointer
6656 to a struct line_header, allocated using xmalloc.
6657
6658 NOTE: the strings in the include directory and file name tables of
6659 the returned object point into debug_line_buffer, and must not be
6660 freed. */
6661 static struct line_header *
6662 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6663 struct dwarf2_cu *cu)
6664 {
6665 struct cleanup *back_to;
6666 struct line_header *lh;
6667 gdb_byte *line_ptr;
6668 unsigned int bytes_read;
6669 int i;
6670 char *cur_dir, *cur_file;
6671
6672 if (dwarf2_per_objfile->line_buffer == NULL)
6673 {
6674 complaint (&symfile_complaints, _("missing .debug_line section"));
6675 return 0;
6676 }
6677
6678 /* Make sure that at least there's room for the total_length field.
6679 That could be 12 bytes long, but we're just going to fudge that. */
6680 if (offset + 4 >= dwarf2_per_objfile->line_size)
6681 {
6682 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6683 return 0;
6684 }
6685
6686 lh = xmalloc (sizeof (*lh));
6687 memset (lh, 0, sizeof (*lh));
6688 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6689 (void *) lh);
6690
6691 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6692
6693 /* Read in the header. */
6694 lh->total_length =
6695 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6696 line_ptr += bytes_read;
6697 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6698 + dwarf2_per_objfile->line_size))
6699 {
6700 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6701 return 0;
6702 }
6703 lh->statement_program_end = line_ptr + lh->total_length;
6704 lh->version = read_2_bytes (abfd, line_ptr);
6705 line_ptr += 2;
6706 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6707 line_ptr += bytes_read;
6708 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6709 line_ptr += 1;
6710 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6711 line_ptr += 1;
6712 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6713 line_ptr += 1;
6714 lh->line_range = read_1_byte (abfd, line_ptr);
6715 line_ptr += 1;
6716 lh->opcode_base = read_1_byte (abfd, line_ptr);
6717 line_ptr += 1;
6718 lh->standard_opcode_lengths
6719 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
6720
6721 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6722 for (i = 1; i < lh->opcode_base; ++i)
6723 {
6724 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6725 line_ptr += 1;
6726 }
6727
6728 /* Read directory table. */
6729 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6730 {
6731 line_ptr += bytes_read;
6732 add_include_dir (lh, cur_dir);
6733 }
6734 line_ptr += bytes_read;
6735
6736 /* Read file name table. */
6737 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6738 {
6739 unsigned int dir_index, mod_time, length;
6740
6741 line_ptr += bytes_read;
6742 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6743 line_ptr += bytes_read;
6744 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6745 line_ptr += bytes_read;
6746 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6747 line_ptr += bytes_read;
6748
6749 add_file_name (lh, cur_file, dir_index, mod_time, length);
6750 }
6751 line_ptr += bytes_read;
6752 lh->statement_program_start = line_ptr;
6753
6754 if (line_ptr > (dwarf2_per_objfile->line_buffer
6755 + dwarf2_per_objfile->line_size))
6756 complaint (&symfile_complaints,
6757 _("line number info header doesn't fit in `.debug_line' section"));
6758
6759 discard_cleanups (back_to);
6760 return lh;
6761 }
6762
6763 /* This function exists to work around a bug in certain compilers
6764 (particularly GCC 2.95), in which the first line number marker of a
6765 function does not show up until after the prologue, right before
6766 the second line number marker. This function shifts ADDRESS down
6767 to the beginning of the function if necessary, and is called on
6768 addresses passed to record_line. */
6769
6770 static CORE_ADDR
6771 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6772 {
6773 struct function_range *fn;
6774
6775 /* Find the function_range containing address. */
6776 if (!cu->first_fn)
6777 return address;
6778
6779 if (!cu->cached_fn)
6780 cu->cached_fn = cu->first_fn;
6781
6782 fn = cu->cached_fn;
6783 while (fn)
6784 if (fn->lowpc <= address && fn->highpc > address)
6785 goto found;
6786 else
6787 fn = fn->next;
6788
6789 fn = cu->first_fn;
6790 while (fn && fn != cu->cached_fn)
6791 if (fn->lowpc <= address && fn->highpc > address)
6792 goto found;
6793 else
6794 fn = fn->next;
6795
6796 return address;
6797
6798 found:
6799 if (fn->seen_line)
6800 return address;
6801 if (address != fn->lowpc)
6802 complaint (&symfile_complaints,
6803 _("misplaced first line number at 0x%lx for '%s'"),
6804 (unsigned long) address, fn->name);
6805 fn->seen_line = 1;
6806 return fn->lowpc;
6807 }
6808
6809 /* Decode the Line Number Program (LNP) for the given line_header
6810 structure and CU. The actual information extracted and the type
6811 of structures created from the LNP depends on the value of PST.
6812
6813 1. If PST is NULL, then this procedure uses the data from the program
6814 to create all necessary symbol tables, and their linetables.
6815 The compilation directory of the file is passed in COMP_DIR,
6816 and must not be NULL.
6817
6818 2. If PST is not NULL, this procedure reads the program to determine
6819 the list of files included by the unit represented by PST, and
6820 builds all the associated partial symbol tables. In this case,
6821 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6822 is not used to compute the full name of the symtab, and therefore
6823 omitting it when building the partial symtab does not introduce
6824 the potential for inconsistency - a partial symtab and its associated
6825 symbtab having a different fullname -). */
6826
6827 static void
6828 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6829 struct dwarf2_cu *cu, struct partial_symtab *pst)
6830 {
6831 gdb_byte *line_ptr, *extended_end;
6832 gdb_byte *line_end;
6833 unsigned int bytes_read, extended_len;
6834 unsigned char op_code, extended_op, adj_opcode;
6835 CORE_ADDR baseaddr;
6836 struct objfile *objfile = cu->objfile;
6837 const int decode_for_pst_p = (pst != NULL);
6838 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
6839
6840 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6841
6842 line_ptr = lh->statement_program_start;
6843 line_end = lh->statement_program_end;
6844
6845 /* Read the statement sequences until there's nothing left. */
6846 while (line_ptr < line_end)
6847 {
6848 /* state machine registers */
6849 CORE_ADDR address = 0;
6850 unsigned int file = 1;
6851 unsigned int line = 1;
6852 unsigned int column = 0;
6853 int is_stmt = lh->default_is_stmt;
6854 int basic_block = 0;
6855 int end_sequence = 0;
6856
6857 if (!decode_for_pst_p && lh->num_file_names >= file)
6858 {
6859 /* Start a subfile for the current file of the state machine. */
6860 /* lh->include_dirs and lh->file_names are 0-based, but the
6861 directory and file name numbers in the statement program
6862 are 1-based. */
6863 struct file_entry *fe = &lh->file_names[file - 1];
6864 char *dir = NULL;
6865
6866 if (fe->dir_index)
6867 dir = lh->include_dirs[fe->dir_index - 1];
6868
6869 dwarf2_start_subfile (fe->name, dir, comp_dir);
6870 }
6871
6872 /* Decode the table. */
6873 while (!end_sequence)
6874 {
6875 op_code = read_1_byte (abfd, line_ptr);
6876 line_ptr += 1;
6877
6878 if (op_code >= lh->opcode_base)
6879 {
6880 /* Special operand. */
6881 adj_opcode = op_code - lh->opcode_base;
6882 address += (adj_opcode / lh->line_range)
6883 * lh->minimum_instruction_length;
6884 line += lh->line_base + (adj_opcode % lh->line_range);
6885 if (lh->num_file_names < file)
6886 dwarf2_debug_line_missing_file_complaint ();
6887 else
6888 {
6889 lh->file_names[file - 1].included_p = 1;
6890 if (!decode_for_pst_p)
6891 {
6892 if (last_subfile != current_subfile)
6893 {
6894 if (last_subfile)
6895 record_line (last_subfile, 0, address);
6896 last_subfile = current_subfile;
6897 }
6898 /* Append row to matrix using current values. */
6899 record_line (current_subfile, line,
6900 check_cu_functions (address, cu));
6901 }
6902 }
6903 basic_block = 1;
6904 }
6905 else switch (op_code)
6906 {
6907 case DW_LNS_extended_op:
6908 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6909 line_ptr += bytes_read;
6910 extended_end = line_ptr + extended_len;
6911 extended_op = read_1_byte (abfd, line_ptr);
6912 line_ptr += 1;
6913 switch (extended_op)
6914 {
6915 case DW_LNE_end_sequence:
6916 end_sequence = 1;
6917
6918 if (lh->num_file_names < file)
6919 dwarf2_debug_line_missing_file_complaint ();
6920 else
6921 {
6922 lh->file_names[file - 1].included_p = 1;
6923 if (!decode_for_pst_p)
6924 record_line (current_subfile, 0, address);
6925 }
6926 break;
6927 case DW_LNE_set_address:
6928 address = read_address (abfd, line_ptr, cu, &bytes_read);
6929 line_ptr += bytes_read;
6930 address += baseaddr;
6931 break;
6932 case DW_LNE_define_file:
6933 {
6934 char *cur_file;
6935 unsigned int dir_index, mod_time, length;
6936
6937 cur_file = read_string (abfd, line_ptr, &bytes_read);
6938 line_ptr += bytes_read;
6939 dir_index =
6940 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6941 line_ptr += bytes_read;
6942 mod_time =
6943 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6944 line_ptr += bytes_read;
6945 length =
6946 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6947 line_ptr += bytes_read;
6948 add_file_name (lh, cur_file, dir_index, mod_time, length);
6949 }
6950 break;
6951 default:
6952 complaint (&symfile_complaints,
6953 _("mangled .debug_line section"));
6954 return;
6955 }
6956 /* Make sure that we parsed the extended op correctly. If e.g.
6957 we expected a different address size than the producer used,
6958 we may have read the wrong number of bytes. */
6959 if (line_ptr != extended_end)
6960 {
6961 complaint (&symfile_complaints,
6962 _("mangled .debug_line section"));
6963 return;
6964 }
6965 break;
6966 case DW_LNS_copy:
6967 if (lh->num_file_names < file)
6968 dwarf2_debug_line_missing_file_complaint ();
6969 else
6970 {
6971 lh->file_names[file - 1].included_p = 1;
6972 if (!decode_for_pst_p)
6973 {
6974 if (last_subfile != current_subfile)
6975 {
6976 if (last_subfile)
6977 record_line (last_subfile, 0, address);
6978 last_subfile = current_subfile;
6979 }
6980 record_line (current_subfile, line,
6981 check_cu_functions (address, cu));
6982 }
6983 }
6984 basic_block = 0;
6985 break;
6986 case DW_LNS_advance_pc:
6987 address += lh->minimum_instruction_length
6988 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6989 line_ptr += bytes_read;
6990 break;
6991 case DW_LNS_advance_line:
6992 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6993 line_ptr += bytes_read;
6994 break;
6995 case DW_LNS_set_file:
6996 {
6997 /* The arrays lh->include_dirs and lh->file_names are
6998 0-based, but the directory and file name numbers in
6999 the statement program are 1-based. */
7000 struct file_entry *fe;
7001 char *dir = NULL;
7002
7003 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7004 line_ptr += bytes_read;
7005 if (lh->num_file_names < file)
7006 dwarf2_debug_line_missing_file_complaint ();
7007 else
7008 {
7009 fe = &lh->file_names[file - 1];
7010 if (fe->dir_index)
7011 dir = lh->include_dirs[fe->dir_index - 1];
7012 if (!decode_for_pst_p)
7013 {
7014 last_subfile = current_subfile;
7015 dwarf2_start_subfile (fe->name, dir, comp_dir);
7016 }
7017 }
7018 }
7019 break;
7020 case DW_LNS_set_column:
7021 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7022 line_ptr += bytes_read;
7023 break;
7024 case DW_LNS_negate_stmt:
7025 is_stmt = (!is_stmt);
7026 break;
7027 case DW_LNS_set_basic_block:
7028 basic_block = 1;
7029 break;
7030 /* Add to the address register of the state machine the
7031 address increment value corresponding to special opcode
7032 255. I.e., this value is scaled by the minimum
7033 instruction length since special opcode 255 would have
7034 scaled the the increment. */
7035 case DW_LNS_const_add_pc:
7036 address += (lh->minimum_instruction_length
7037 * ((255 - lh->opcode_base) / lh->line_range));
7038 break;
7039 case DW_LNS_fixed_advance_pc:
7040 address += read_2_bytes (abfd, line_ptr);
7041 line_ptr += 2;
7042 break;
7043 default:
7044 {
7045 /* Unknown standard opcode, ignore it. */
7046 int i;
7047
7048 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
7049 {
7050 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7051 line_ptr += bytes_read;
7052 }
7053 }
7054 }
7055 }
7056 }
7057
7058 if (decode_for_pst_p)
7059 {
7060 int file_index;
7061
7062 /* Now that we're done scanning the Line Header Program, we can
7063 create the psymtab of each included file. */
7064 for (file_index = 0; file_index < lh->num_file_names; file_index++)
7065 if (lh->file_names[file_index].included_p == 1)
7066 {
7067 const struct file_entry fe = lh->file_names [file_index];
7068 char *include_name = fe.name;
7069 char *dir_name = NULL;
7070 char *pst_filename = pst->filename;
7071
7072 if (fe.dir_index)
7073 dir_name = lh->include_dirs[fe.dir_index - 1];
7074
7075 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
7076 {
7077 include_name = concat (dir_name, SLASH_STRING,
7078 include_name, (char *)NULL);
7079 make_cleanup (xfree, include_name);
7080 }
7081
7082 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
7083 {
7084 pst_filename = concat (pst->dirname, SLASH_STRING,
7085 pst_filename, (char *)NULL);
7086 make_cleanup (xfree, pst_filename);
7087 }
7088
7089 if (strcmp (include_name, pst_filename) != 0)
7090 dwarf2_create_include_psymtab (include_name, pst, objfile);
7091 }
7092 }
7093 else
7094 {
7095 /* Make sure a symtab is created for every file, even files
7096 which contain only variables (i.e. no code with associated
7097 line numbers). */
7098
7099 int i;
7100 struct file_entry *fe;
7101
7102 for (i = 0; i < lh->num_file_names; i++)
7103 {
7104 char *dir = NULL;
7105 fe = &lh->file_names[i];
7106 if (fe->dir_index)
7107 dir = lh->include_dirs[fe->dir_index - 1];
7108 dwarf2_start_subfile (fe->name, dir, comp_dir);
7109
7110 /* Skip the main file; we don't need it, and it must be
7111 allocated last, so that it will show up before the
7112 non-primary symtabs in the objfile's symtab list. */
7113 if (current_subfile == first_subfile)
7114 continue;
7115
7116 if (current_subfile->symtab == NULL)
7117 current_subfile->symtab = allocate_symtab (current_subfile->name,
7118 cu->objfile);
7119 fe->symtab = current_subfile->symtab;
7120 }
7121 }
7122 }
7123
7124 /* Start a subfile for DWARF. FILENAME is the name of the file and
7125 DIRNAME the name of the source directory which contains FILENAME
7126 or NULL if not known. COMP_DIR is the compilation directory for the
7127 linetable's compilation unit or NULL if not known.
7128 This routine tries to keep line numbers from identical absolute and
7129 relative file names in a common subfile.
7130
7131 Using the `list' example from the GDB testsuite, which resides in
7132 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
7133 of /srcdir/list0.c yields the following debugging information for list0.c:
7134
7135 DW_AT_name: /srcdir/list0.c
7136 DW_AT_comp_dir: /compdir
7137 files.files[0].name: list0.h
7138 files.files[0].dir: /srcdir
7139 files.files[1].name: list0.c
7140 files.files[1].dir: /srcdir
7141
7142 The line number information for list0.c has to end up in a single
7143 subfile, so that `break /srcdir/list0.c:1' works as expected.
7144 start_subfile will ensure that this happens provided that we pass the
7145 concatenation of files.files[1].dir and files.files[1].name as the
7146 subfile's name. */
7147
7148 static void
7149 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
7150 {
7151 char *fullname;
7152
7153 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
7154 `start_symtab' will always pass the contents of DW_AT_comp_dir as
7155 second argument to start_subfile. To be consistent, we do the
7156 same here. In order not to lose the line information directory,
7157 we concatenate it to the filename when it makes sense.
7158 Note that the Dwarf3 standard says (speaking of filenames in line
7159 information): ``The directory index is ignored for file names
7160 that represent full path names''. Thus ignoring dirname in the
7161 `else' branch below isn't an issue. */
7162
7163 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
7164 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
7165 else
7166 fullname = filename;
7167
7168 start_subfile (fullname, comp_dir);
7169
7170 if (fullname != filename)
7171 xfree (fullname);
7172 }
7173
7174 static void
7175 var_decode_location (struct attribute *attr, struct symbol *sym,
7176 struct dwarf2_cu *cu)
7177 {
7178 struct objfile *objfile = cu->objfile;
7179 struct comp_unit_head *cu_header = &cu->header;
7180
7181 /* NOTE drow/2003-01-30: There used to be a comment and some special
7182 code here to turn a symbol with DW_AT_external and a
7183 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7184 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7185 with some versions of binutils) where shared libraries could have
7186 relocations against symbols in their debug information - the
7187 minimal symbol would have the right address, but the debug info
7188 would not. It's no longer necessary, because we will explicitly
7189 apply relocations when we read in the debug information now. */
7190
7191 /* A DW_AT_location attribute with no contents indicates that a
7192 variable has been optimized away. */
7193 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7194 {
7195 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7196 return;
7197 }
7198
7199 /* Handle one degenerate form of location expression specially, to
7200 preserve GDB's previous behavior when section offsets are
7201 specified. If this is just a DW_OP_addr then mark this symbol
7202 as LOC_STATIC. */
7203
7204 if (attr_form_is_block (attr)
7205 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7206 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7207 {
7208 unsigned int dummy;
7209
7210 SYMBOL_VALUE_ADDRESS (sym) =
7211 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
7212 fixup_symbol_section (sym, objfile);
7213 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7214 SYMBOL_SECTION (sym));
7215 SYMBOL_CLASS (sym) = LOC_STATIC;
7216 return;
7217 }
7218
7219 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7220 expression evaluator, and use LOC_COMPUTED only when necessary
7221 (i.e. when the value of a register or memory location is
7222 referenced, or a thread-local block, etc.). Then again, it might
7223 not be worthwhile. I'm assuming that it isn't unless performance
7224 or memory numbers show me otherwise. */
7225
7226 dwarf2_symbol_mark_computed (attr, sym, cu);
7227 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7228 }
7229
7230 /* Given a pointer to a DWARF information entry, figure out if we need
7231 to make a symbol table entry for it, and if so, create a new entry
7232 and return a pointer to it.
7233 If TYPE is NULL, determine symbol type from the die, otherwise
7234 used the passed type. */
7235
7236 static struct symbol *
7237 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
7238 {
7239 struct objfile *objfile = cu->objfile;
7240 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7241 struct symbol *sym = NULL;
7242 char *name;
7243 struct attribute *attr = NULL;
7244 struct attribute *attr2 = NULL;
7245 CORE_ADDR baseaddr;
7246
7247 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7248
7249 if (die->tag != DW_TAG_namespace)
7250 name = dwarf2_linkage_name (die, cu);
7251 else
7252 name = TYPE_NAME (type);
7253
7254 if (name)
7255 {
7256 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
7257 sizeof (struct symbol));
7258 OBJSTAT (objfile, n_syms++);
7259 memset (sym, 0, sizeof (struct symbol));
7260
7261 /* Cache this symbol's name and the name's demangled form (if any). */
7262 SYMBOL_LANGUAGE (sym) = cu->language;
7263 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
7264
7265 /* Default assumptions.
7266 Use the passed type or decode it from the die. */
7267 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7268 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7269 if (type != NULL)
7270 SYMBOL_TYPE (sym) = type;
7271 else
7272 SYMBOL_TYPE (sym) = die_type (die, cu);
7273 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
7274 if (attr)
7275 {
7276 SYMBOL_LINE (sym) = DW_UNSND (attr);
7277 }
7278
7279 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7280 if (attr)
7281 {
7282 int file_index = DW_UNSND (attr);
7283 if (cu->line_header == NULL
7284 || file_index > cu->line_header->num_file_names)
7285 complaint (&symfile_complaints,
7286 _("file index out of range"));
7287 else if (file_index > 0)
7288 {
7289 struct file_entry *fe;
7290 fe = &cu->line_header->file_names[file_index - 1];
7291 SYMBOL_SYMTAB (sym) = fe->symtab;
7292 }
7293 }
7294
7295 switch (die->tag)
7296 {
7297 case DW_TAG_label:
7298 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
7299 if (attr)
7300 {
7301 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7302 }
7303 SYMBOL_CLASS (sym) = LOC_LABEL;
7304 break;
7305 case DW_TAG_subprogram:
7306 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7307 finish_block. */
7308 SYMBOL_CLASS (sym) = LOC_BLOCK;
7309 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7310 if ((attr2 && (DW_UNSND (attr2) != 0))
7311 || cu->language == language_ada)
7312 {
7313 /* Subprograms marked external are stored as a global symbol.
7314 Ada subprograms, whether marked external or not, are always
7315 stored as a global symbol, because we want to be able to
7316 access them globally. For instance, we want to be able
7317 to break on a nested subprogram without having to
7318 specify the context. */
7319 add_symbol_to_list (sym, &global_symbols);
7320 }
7321 else
7322 {
7323 add_symbol_to_list (sym, cu->list_in_scope);
7324 }
7325 break;
7326 case DW_TAG_variable:
7327 /* Compilation with minimal debug info may result in variables
7328 with missing type entries. Change the misleading `void' type
7329 to something sensible. */
7330 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
7331 SYMBOL_TYPE (sym)
7332 = builtin_type (gdbarch)->nodebug_data_symbol;
7333
7334 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7335 if (attr)
7336 {
7337 dwarf2_const_value (attr, sym, cu);
7338 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7339 if (attr2 && (DW_UNSND (attr2) != 0))
7340 add_symbol_to_list (sym, &global_symbols);
7341 else
7342 add_symbol_to_list (sym, cu->list_in_scope);
7343 break;
7344 }
7345 attr = dwarf2_attr (die, DW_AT_location, cu);
7346 if (attr)
7347 {
7348 var_decode_location (attr, sym, cu);
7349 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7350 if (attr2 && (DW_UNSND (attr2) != 0))
7351 add_symbol_to_list (sym, &global_symbols);
7352 else
7353 add_symbol_to_list (sym, cu->list_in_scope);
7354 }
7355 else
7356 {
7357 /* We do not know the address of this symbol.
7358 If it is an external symbol and we have type information
7359 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7360 The address of the variable will then be determined from
7361 the minimal symbol table whenever the variable is
7362 referenced. */
7363 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7364 if (attr2 && (DW_UNSND (attr2) != 0)
7365 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
7366 {
7367 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7368 add_symbol_to_list (sym, &global_symbols);
7369 }
7370 }
7371 break;
7372 case DW_TAG_formal_parameter:
7373 attr = dwarf2_attr (die, DW_AT_location, cu);
7374 if (attr)
7375 {
7376 var_decode_location (attr, sym, cu);
7377 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7378 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7379 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
7380 }
7381 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7382 if (attr)
7383 {
7384 dwarf2_const_value (attr, sym, cu);
7385 }
7386 add_symbol_to_list (sym, cu->list_in_scope);
7387 break;
7388 case DW_TAG_unspecified_parameters:
7389 /* From varargs functions; gdb doesn't seem to have any
7390 interest in this information, so just ignore it for now.
7391 (FIXME?) */
7392 break;
7393 case DW_TAG_class_type:
7394 case DW_TAG_interface_type:
7395 case DW_TAG_structure_type:
7396 case DW_TAG_union_type:
7397 case DW_TAG_set_type:
7398 case DW_TAG_enumeration_type:
7399 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7400 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7401
7402 /* Make sure that the symbol includes appropriate enclosing
7403 classes/namespaces in its name. These are calculated in
7404 read_structure_type, and the correct name is saved in
7405 the type. */
7406
7407 if (cu->language == language_cplus
7408 || cu->language == language_java)
7409 {
7410 struct type *type = SYMBOL_TYPE (sym);
7411
7412 if (TYPE_TAG_NAME (type) != NULL)
7413 {
7414 /* FIXME: carlton/2003-11-10: Should this use
7415 SYMBOL_SET_NAMES instead? (The same problem also
7416 arises further down in this function.) */
7417 /* The type's name is already allocated along with
7418 this objfile, so we don't need to duplicate it
7419 for the symbol. */
7420 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
7421 }
7422 }
7423
7424 {
7425 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
7426 really ever be static objects: otherwise, if you try
7427 to, say, break of a class's method and you're in a file
7428 which doesn't mention that class, it won't work unless
7429 the check for all static symbols in lookup_symbol_aux
7430 saves you. See the OtherFileClass tests in
7431 gdb.c++/namespace.exp. */
7432
7433 struct pending **list_to_add;
7434
7435 list_to_add = (cu->list_in_scope == &file_symbols
7436 && (cu->language == language_cplus
7437 || cu->language == language_java)
7438 ? &global_symbols : cu->list_in_scope);
7439
7440 add_symbol_to_list (sym, list_to_add);
7441
7442 /* The semantics of C++ state that "struct foo { ... }" also
7443 defines a typedef for "foo". A Java class declaration also
7444 defines a typedef for the class. Synthesize a typedef symbol
7445 so that "ptype foo" works as expected. */
7446 if (cu->language == language_cplus
7447 || cu->language == language_java
7448 || cu->language == language_ada)
7449 {
7450 struct symbol *typedef_sym = (struct symbol *)
7451 obstack_alloc (&objfile->objfile_obstack,
7452 sizeof (struct symbol));
7453 *typedef_sym = *sym;
7454 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
7455 /* The symbol's name is already allocated along with
7456 this objfile, so we don't need to duplicate it for
7457 the type. */
7458 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
7459 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
7460 add_symbol_to_list (typedef_sym, list_to_add);
7461 }
7462 }
7463 break;
7464 case DW_TAG_typedef:
7465 if (processing_has_namespace_info
7466 && processing_current_prefix[0] != '\0')
7467 {
7468 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7469 processing_current_prefix,
7470 name, cu);
7471 }
7472 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7473 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7474 add_symbol_to_list (sym, cu->list_in_scope);
7475 break;
7476 case DW_TAG_base_type:
7477 case DW_TAG_subrange_type:
7478 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7479 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7480 add_symbol_to_list (sym, cu->list_in_scope);
7481 break;
7482 case DW_TAG_enumerator:
7483 if (processing_has_namespace_info
7484 && processing_current_prefix[0] != '\0')
7485 {
7486 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7487 processing_current_prefix,
7488 name, cu);
7489 }
7490 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7491 if (attr)
7492 {
7493 dwarf2_const_value (attr, sym, cu);
7494 }
7495 {
7496 /* NOTE: carlton/2003-11-10: See comment above in the
7497 DW_TAG_class_type, etc. block. */
7498
7499 struct pending **list_to_add;
7500
7501 list_to_add = (cu->list_in_scope == &file_symbols
7502 && (cu->language == language_cplus
7503 || cu->language == language_java)
7504 ? &global_symbols : cu->list_in_scope);
7505
7506 add_symbol_to_list (sym, list_to_add);
7507 }
7508 break;
7509 case DW_TAG_namespace:
7510 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7511 add_symbol_to_list (sym, &global_symbols);
7512 break;
7513 default:
7514 /* Not a tag we recognize. Hopefully we aren't processing
7515 trash data, but since we must specifically ignore things
7516 we don't recognize, there is nothing else we should do at
7517 this point. */
7518 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
7519 dwarf_tag_name (die->tag));
7520 break;
7521 }
7522 }
7523 return (sym);
7524 }
7525
7526 /* Copy constant value from an attribute to a symbol. */
7527
7528 static void
7529 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7530 struct dwarf2_cu *cu)
7531 {
7532 struct objfile *objfile = cu->objfile;
7533 struct comp_unit_head *cu_header = &cu->header;
7534 struct dwarf_block *blk;
7535
7536 switch (attr->form)
7537 {
7538 case DW_FORM_addr:
7539 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7540 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7541 cu_header->addr_size,
7542 TYPE_LENGTH (SYMBOL_TYPE
7543 (sym)));
7544 SYMBOL_VALUE_BYTES (sym) =
7545 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7546 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7547 it's body - store_unsigned_integer. */
7548 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7549 DW_ADDR (attr));
7550 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7551 break;
7552 case DW_FORM_block1:
7553 case DW_FORM_block2:
7554 case DW_FORM_block4:
7555 case DW_FORM_block:
7556 blk = DW_BLOCK (attr);
7557 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7558 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7559 blk->size,
7560 TYPE_LENGTH (SYMBOL_TYPE
7561 (sym)));
7562 SYMBOL_VALUE_BYTES (sym) =
7563 obstack_alloc (&objfile->objfile_obstack, blk->size);
7564 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7565 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7566 break;
7567
7568 /* The DW_AT_const_value attributes are supposed to carry the
7569 symbol's value "represented as it would be on the target
7570 architecture." By the time we get here, it's already been
7571 converted to host endianness, so we just need to sign- or
7572 zero-extend it as appropriate. */
7573 case DW_FORM_data1:
7574 dwarf2_const_value_data (attr, sym, 8);
7575 break;
7576 case DW_FORM_data2:
7577 dwarf2_const_value_data (attr, sym, 16);
7578 break;
7579 case DW_FORM_data4:
7580 dwarf2_const_value_data (attr, sym, 32);
7581 break;
7582 case DW_FORM_data8:
7583 dwarf2_const_value_data (attr, sym, 64);
7584 break;
7585
7586 case DW_FORM_sdata:
7587 SYMBOL_VALUE (sym) = DW_SND (attr);
7588 SYMBOL_CLASS (sym) = LOC_CONST;
7589 break;
7590
7591 case DW_FORM_udata:
7592 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7593 SYMBOL_CLASS (sym) = LOC_CONST;
7594 break;
7595
7596 default:
7597 complaint (&symfile_complaints,
7598 _("unsupported const value attribute form: '%s'"),
7599 dwarf_form_name (attr->form));
7600 SYMBOL_VALUE (sym) = 0;
7601 SYMBOL_CLASS (sym) = LOC_CONST;
7602 break;
7603 }
7604 }
7605
7606
7607 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7608 or zero-extend it as appropriate for the symbol's type. */
7609 static void
7610 dwarf2_const_value_data (struct attribute *attr,
7611 struct symbol *sym,
7612 int bits)
7613 {
7614 LONGEST l = DW_UNSND (attr);
7615
7616 if (bits < sizeof (l) * 8)
7617 {
7618 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7619 l &= ((LONGEST) 1 << bits) - 1;
7620 else
7621 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7622 }
7623
7624 SYMBOL_VALUE (sym) = l;
7625 SYMBOL_CLASS (sym) = LOC_CONST;
7626 }
7627
7628
7629 /* Return the type of the die in question using its DW_AT_type attribute. */
7630
7631 static struct type *
7632 die_type (struct die_info *die, struct dwarf2_cu *cu)
7633 {
7634 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7635 struct type *type;
7636 struct attribute *type_attr;
7637 struct die_info *type_die;
7638
7639 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7640 if (!type_attr)
7641 {
7642 /* A missing DW_AT_type represents a void type. */
7643 return builtin_type (gdbarch)->builtin_void;
7644 }
7645 else
7646 type_die = follow_die_ref (die, type_attr, cu);
7647
7648 type = tag_type_to_type (type_die, cu);
7649 if (!type)
7650 {
7651 dump_die (type_die);
7652 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7653 cu->objfile->name);
7654 }
7655 return type;
7656 }
7657
7658 /* Return the containing type of the die in question using its
7659 DW_AT_containing_type attribute. */
7660
7661 static struct type *
7662 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7663 {
7664 struct type *type = NULL;
7665 struct attribute *type_attr;
7666 struct die_info *type_die = NULL;
7667
7668 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7669 if (type_attr)
7670 {
7671 type_die = follow_die_ref (die, type_attr, cu);
7672 type = tag_type_to_type (type_die, cu);
7673 }
7674 if (!type)
7675 {
7676 if (type_die)
7677 dump_die (type_die);
7678 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7679 cu->objfile->name);
7680 }
7681 return type;
7682 }
7683
7684 static struct type *
7685 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7686 {
7687 if (die->type)
7688 {
7689 return die->type;
7690 }
7691 else
7692 {
7693 read_type_die (die, cu);
7694 if (!die->type)
7695 {
7696 dump_die (die);
7697 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7698 cu->objfile->name);
7699 }
7700 return die->type;
7701 }
7702 }
7703
7704 static void
7705 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7706 {
7707 char *prefix = determine_prefix (die, cu);
7708 const char *old_prefix = processing_current_prefix;
7709 struct cleanup *back_to = make_cleanup (xfree, prefix);
7710 processing_current_prefix = prefix;
7711
7712 switch (die->tag)
7713 {
7714 case DW_TAG_class_type:
7715 case DW_TAG_interface_type:
7716 case DW_TAG_structure_type:
7717 case DW_TAG_union_type:
7718 read_structure_type (die, cu);
7719 break;
7720 case DW_TAG_enumeration_type:
7721 read_enumeration_type (die, cu);
7722 break;
7723 case DW_TAG_subprogram:
7724 case DW_TAG_subroutine_type:
7725 read_subroutine_type (die, cu);
7726 break;
7727 case DW_TAG_array_type:
7728 read_array_type (die, cu);
7729 break;
7730 case DW_TAG_set_type:
7731 read_set_type (die, cu);
7732 break;
7733 case DW_TAG_pointer_type:
7734 read_tag_pointer_type (die, cu);
7735 break;
7736 case DW_TAG_ptr_to_member_type:
7737 read_tag_ptr_to_member_type (die, cu);
7738 break;
7739 case DW_TAG_reference_type:
7740 read_tag_reference_type (die, cu);
7741 break;
7742 case DW_TAG_const_type:
7743 read_tag_const_type (die, cu);
7744 break;
7745 case DW_TAG_volatile_type:
7746 read_tag_volatile_type (die, cu);
7747 break;
7748 case DW_TAG_string_type:
7749 read_tag_string_type (die, cu);
7750 break;
7751 case DW_TAG_typedef:
7752 read_typedef (die, cu);
7753 break;
7754 case DW_TAG_subrange_type:
7755 read_subrange_type (die, cu);
7756 break;
7757 case DW_TAG_base_type:
7758 read_base_type (die, cu);
7759 break;
7760 case DW_TAG_unspecified_type:
7761 read_unspecified_type (die, cu);
7762 break;
7763 default:
7764 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
7765 dwarf_tag_name (die->tag));
7766 break;
7767 }
7768
7769 processing_current_prefix = old_prefix;
7770 do_cleanups (back_to);
7771 }
7772
7773 /* Return the name of the namespace/class that DIE is defined within,
7774 or "" if we can't tell. The caller should xfree the result. */
7775
7776 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7777 therein) for an example of how to use this function to deal with
7778 DW_AT_specification. */
7779
7780 static char *
7781 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7782 {
7783 struct die_info *parent;
7784
7785 if (cu->language != language_cplus
7786 && cu->language != language_java)
7787 return NULL;
7788
7789 parent = die->parent;
7790
7791 if (parent == NULL)
7792 {
7793 return xstrdup ("");
7794 }
7795 else
7796 {
7797 switch (parent->tag) {
7798 case DW_TAG_namespace:
7799 {
7800 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7801 before doing this check? */
7802 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7803 {
7804 return xstrdup (TYPE_TAG_NAME (parent->type));
7805 }
7806 else
7807 {
7808 int dummy;
7809 char *parent_prefix = determine_prefix (parent, cu);
7810 char *retval = typename_concat (NULL, parent_prefix,
7811 namespace_name (parent, &dummy,
7812 cu),
7813 cu);
7814 xfree (parent_prefix);
7815 return retval;
7816 }
7817 }
7818 break;
7819 case DW_TAG_class_type:
7820 case DW_TAG_interface_type:
7821 case DW_TAG_structure_type:
7822 {
7823 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7824 {
7825 return xstrdup (TYPE_TAG_NAME (parent->type));
7826 }
7827 else
7828 {
7829 const char *old_prefix = processing_current_prefix;
7830 char *new_prefix = determine_prefix (parent, cu);
7831 char *retval;
7832
7833 processing_current_prefix = new_prefix;
7834 retval = determine_class_name (parent, cu);
7835 processing_current_prefix = old_prefix;
7836
7837 xfree (new_prefix);
7838 return retval;
7839 }
7840 }
7841 default:
7842 return determine_prefix (parent, cu);
7843 }
7844 }
7845 }
7846
7847 /* Return a newly-allocated string formed by concatenating PREFIX and
7848 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7849 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7850 perform an obconcat, otherwise allocate storage for the result. The CU argument
7851 is used to determine the language and hence, the appropriate separator. */
7852
7853 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7854
7855 static char *
7856 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7857 struct dwarf2_cu *cu)
7858 {
7859 char *sep;
7860
7861 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7862 sep = "";
7863 else if (cu->language == language_java)
7864 sep = ".";
7865 else
7866 sep = "::";
7867
7868 if (obs == NULL)
7869 {
7870 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7871 retval[0] = '\0';
7872
7873 if (prefix)
7874 {
7875 strcpy (retval, prefix);
7876 strcat (retval, sep);
7877 }
7878 if (suffix)
7879 strcat (retval, suffix);
7880
7881 return retval;
7882 }
7883 else
7884 {
7885 /* We have an obstack. */
7886 return obconcat (obs, prefix, sep, suffix);
7887 }
7888 }
7889
7890 #if 0
7891 struct die_info *
7892 copy_die (struct die_info *old_die)
7893 {
7894 struct die_info *new_die;
7895 int i, num_attrs;
7896
7897 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7898 memset (new_die, 0, sizeof (struct die_info));
7899
7900 new_die->tag = old_die->tag;
7901 new_die->has_children = old_die->has_children;
7902 new_die->abbrev = old_die->abbrev;
7903 new_die->offset = old_die->offset;
7904 new_die->type = NULL;
7905
7906 num_attrs = old_die->num_attrs;
7907 new_die->num_attrs = num_attrs;
7908 new_die->attrs = (struct attribute *)
7909 xmalloc (num_attrs * sizeof (struct attribute));
7910
7911 for (i = 0; i < old_die->num_attrs; ++i)
7912 {
7913 new_die->attrs[i].name = old_die->attrs[i].name;
7914 new_die->attrs[i].form = old_die->attrs[i].form;
7915 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7916 }
7917
7918 new_die->next = NULL;
7919 return new_die;
7920 }
7921 #endif
7922
7923 /* Return sibling of die, NULL if no sibling. */
7924
7925 static struct die_info *
7926 sibling_die (struct die_info *die)
7927 {
7928 return die->sibling;
7929 }
7930
7931 /* Get linkage name of a die, return NULL if not found. */
7932
7933 static char *
7934 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7935 {
7936 struct attribute *attr;
7937
7938 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7939 if (attr && DW_STRING (attr))
7940 return DW_STRING (attr);
7941 attr = dwarf2_attr (die, DW_AT_name, cu);
7942 if (attr && DW_STRING (attr))
7943 return DW_STRING (attr);
7944 return NULL;
7945 }
7946
7947 /* Get name of a die, return NULL if not found. */
7948
7949 static char *
7950 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7951 {
7952 struct attribute *attr;
7953
7954 attr = dwarf2_attr (die, DW_AT_name, cu);
7955 if (attr && DW_STRING (attr))
7956 return DW_STRING (attr);
7957 return NULL;
7958 }
7959
7960 /* Return the die that this die in an extension of, or NULL if there
7961 is none. */
7962
7963 static struct die_info *
7964 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7965 {
7966 struct attribute *attr;
7967
7968 attr = dwarf2_attr (die, DW_AT_extension, cu);
7969 if (attr == NULL)
7970 return NULL;
7971
7972 return follow_die_ref (die, attr, cu);
7973 }
7974
7975 /* Convert a DIE tag into its string name. */
7976
7977 static char *
7978 dwarf_tag_name (unsigned tag)
7979 {
7980 switch (tag)
7981 {
7982 case DW_TAG_padding:
7983 return "DW_TAG_padding";
7984 case DW_TAG_array_type:
7985 return "DW_TAG_array_type";
7986 case DW_TAG_class_type:
7987 return "DW_TAG_class_type";
7988 case DW_TAG_entry_point:
7989 return "DW_TAG_entry_point";
7990 case DW_TAG_enumeration_type:
7991 return "DW_TAG_enumeration_type";
7992 case DW_TAG_formal_parameter:
7993 return "DW_TAG_formal_parameter";
7994 case DW_TAG_imported_declaration:
7995 return "DW_TAG_imported_declaration";
7996 case DW_TAG_label:
7997 return "DW_TAG_label";
7998 case DW_TAG_lexical_block:
7999 return "DW_TAG_lexical_block";
8000 case DW_TAG_member:
8001 return "DW_TAG_member";
8002 case DW_TAG_pointer_type:
8003 return "DW_TAG_pointer_type";
8004 case DW_TAG_reference_type:
8005 return "DW_TAG_reference_type";
8006 case DW_TAG_compile_unit:
8007 return "DW_TAG_compile_unit";
8008 case DW_TAG_string_type:
8009 return "DW_TAG_string_type";
8010 case DW_TAG_structure_type:
8011 return "DW_TAG_structure_type";
8012 case DW_TAG_subroutine_type:
8013 return "DW_TAG_subroutine_type";
8014 case DW_TAG_typedef:
8015 return "DW_TAG_typedef";
8016 case DW_TAG_union_type:
8017 return "DW_TAG_union_type";
8018 case DW_TAG_unspecified_parameters:
8019 return "DW_TAG_unspecified_parameters";
8020 case DW_TAG_variant:
8021 return "DW_TAG_variant";
8022 case DW_TAG_common_block:
8023 return "DW_TAG_common_block";
8024 case DW_TAG_common_inclusion:
8025 return "DW_TAG_common_inclusion";
8026 case DW_TAG_inheritance:
8027 return "DW_TAG_inheritance";
8028 case DW_TAG_inlined_subroutine:
8029 return "DW_TAG_inlined_subroutine";
8030 case DW_TAG_module:
8031 return "DW_TAG_module";
8032 case DW_TAG_ptr_to_member_type:
8033 return "DW_TAG_ptr_to_member_type";
8034 case DW_TAG_set_type:
8035 return "DW_TAG_set_type";
8036 case DW_TAG_subrange_type:
8037 return "DW_TAG_subrange_type";
8038 case DW_TAG_with_stmt:
8039 return "DW_TAG_with_stmt";
8040 case DW_TAG_access_declaration:
8041 return "DW_TAG_access_declaration";
8042 case DW_TAG_base_type:
8043 return "DW_TAG_base_type";
8044 case DW_TAG_catch_block:
8045 return "DW_TAG_catch_block";
8046 case DW_TAG_const_type:
8047 return "DW_TAG_const_type";
8048 case DW_TAG_constant:
8049 return "DW_TAG_constant";
8050 case DW_TAG_enumerator:
8051 return "DW_TAG_enumerator";
8052 case DW_TAG_file_type:
8053 return "DW_TAG_file_type";
8054 case DW_TAG_friend:
8055 return "DW_TAG_friend";
8056 case DW_TAG_namelist:
8057 return "DW_TAG_namelist";
8058 case DW_TAG_namelist_item:
8059 return "DW_TAG_namelist_item";
8060 case DW_TAG_packed_type:
8061 return "DW_TAG_packed_type";
8062 case DW_TAG_subprogram:
8063 return "DW_TAG_subprogram";
8064 case DW_TAG_template_type_param:
8065 return "DW_TAG_template_type_param";
8066 case DW_TAG_template_value_param:
8067 return "DW_TAG_template_value_param";
8068 case DW_TAG_thrown_type:
8069 return "DW_TAG_thrown_type";
8070 case DW_TAG_try_block:
8071 return "DW_TAG_try_block";
8072 case DW_TAG_variant_part:
8073 return "DW_TAG_variant_part";
8074 case DW_TAG_variable:
8075 return "DW_TAG_variable";
8076 case DW_TAG_volatile_type:
8077 return "DW_TAG_volatile_type";
8078 case DW_TAG_dwarf_procedure:
8079 return "DW_TAG_dwarf_procedure";
8080 case DW_TAG_restrict_type:
8081 return "DW_TAG_restrict_type";
8082 case DW_TAG_interface_type:
8083 return "DW_TAG_interface_type";
8084 case DW_TAG_namespace:
8085 return "DW_TAG_namespace";
8086 case DW_TAG_imported_module:
8087 return "DW_TAG_imported_module";
8088 case DW_TAG_unspecified_type:
8089 return "DW_TAG_unspecified_type";
8090 case DW_TAG_partial_unit:
8091 return "DW_TAG_partial_unit";
8092 case DW_TAG_imported_unit:
8093 return "DW_TAG_imported_unit";
8094 case DW_TAG_condition:
8095 return "DW_TAG_condition";
8096 case DW_TAG_shared_type:
8097 return "DW_TAG_shared_type";
8098 case DW_TAG_MIPS_loop:
8099 return "DW_TAG_MIPS_loop";
8100 case DW_TAG_HP_array_descriptor:
8101 return "DW_TAG_HP_array_descriptor";
8102 case DW_TAG_format_label:
8103 return "DW_TAG_format_label";
8104 case DW_TAG_function_template:
8105 return "DW_TAG_function_template";
8106 case DW_TAG_class_template:
8107 return "DW_TAG_class_template";
8108 case DW_TAG_GNU_BINCL:
8109 return "DW_TAG_GNU_BINCL";
8110 case DW_TAG_GNU_EINCL:
8111 return "DW_TAG_GNU_EINCL";
8112 case DW_TAG_upc_shared_type:
8113 return "DW_TAG_upc_shared_type";
8114 case DW_TAG_upc_strict_type:
8115 return "DW_TAG_upc_strict_type";
8116 case DW_TAG_upc_relaxed_type:
8117 return "DW_TAG_upc_relaxed_type";
8118 case DW_TAG_PGI_kanji_type:
8119 return "DW_TAG_PGI_kanji_type";
8120 case DW_TAG_PGI_interface_block:
8121 return "DW_TAG_PGI_interface_block";
8122 default:
8123 return "DW_TAG_<unknown>";
8124 }
8125 }
8126
8127 /* Convert a DWARF attribute code into its string name. */
8128
8129 static char *
8130 dwarf_attr_name (unsigned attr)
8131 {
8132 switch (attr)
8133 {
8134 case DW_AT_sibling:
8135 return "DW_AT_sibling";
8136 case DW_AT_location:
8137 return "DW_AT_location";
8138 case DW_AT_name:
8139 return "DW_AT_name";
8140 case DW_AT_ordering:
8141 return "DW_AT_ordering";
8142 case DW_AT_subscr_data:
8143 return "DW_AT_subscr_data";
8144 case DW_AT_byte_size:
8145 return "DW_AT_byte_size";
8146 case DW_AT_bit_offset:
8147 return "DW_AT_bit_offset";
8148 case DW_AT_bit_size:
8149 return "DW_AT_bit_size";
8150 case DW_AT_element_list:
8151 return "DW_AT_element_list";
8152 case DW_AT_stmt_list:
8153 return "DW_AT_stmt_list";
8154 case DW_AT_low_pc:
8155 return "DW_AT_low_pc";
8156 case DW_AT_high_pc:
8157 return "DW_AT_high_pc";
8158 case DW_AT_language:
8159 return "DW_AT_language";
8160 case DW_AT_member:
8161 return "DW_AT_member";
8162 case DW_AT_discr:
8163 return "DW_AT_discr";
8164 case DW_AT_discr_value:
8165 return "DW_AT_discr_value";
8166 case DW_AT_visibility:
8167 return "DW_AT_visibility";
8168 case DW_AT_import:
8169 return "DW_AT_import";
8170 case DW_AT_string_length:
8171 return "DW_AT_string_length";
8172 case DW_AT_common_reference:
8173 return "DW_AT_common_reference";
8174 case DW_AT_comp_dir:
8175 return "DW_AT_comp_dir";
8176 case DW_AT_const_value:
8177 return "DW_AT_const_value";
8178 case DW_AT_containing_type:
8179 return "DW_AT_containing_type";
8180 case DW_AT_default_value:
8181 return "DW_AT_default_value";
8182 case DW_AT_inline:
8183 return "DW_AT_inline";
8184 case DW_AT_is_optional:
8185 return "DW_AT_is_optional";
8186 case DW_AT_lower_bound:
8187 return "DW_AT_lower_bound";
8188 case DW_AT_producer:
8189 return "DW_AT_producer";
8190 case DW_AT_prototyped:
8191 return "DW_AT_prototyped";
8192 case DW_AT_return_addr:
8193 return "DW_AT_return_addr";
8194 case DW_AT_start_scope:
8195 return "DW_AT_start_scope";
8196 case DW_AT_bit_stride:
8197 return "DW_AT_bit_stride";
8198 case DW_AT_upper_bound:
8199 return "DW_AT_upper_bound";
8200 case DW_AT_abstract_origin:
8201 return "DW_AT_abstract_origin";
8202 case DW_AT_accessibility:
8203 return "DW_AT_accessibility";
8204 case DW_AT_address_class:
8205 return "DW_AT_address_class";
8206 case DW_AT_artificial:
8207 return "DW_AT_artificial";
8208 case DW_AT_base_types:
8209 return "DW_AT_base_types";
8210 case DW_AT_calling_convention:
8211 return "DW_AT_calling_convention";
8212 case DW_AT_count:
8213 return "DW_AT_count";
8214 case DW_AT_data_member_location:
8215 return "DW_AT_data_member_location";
8216 case DW_AT_decl_column:
8217 return "DW_AT_decl_column";
8218 case DW_AT_decl_file:
8219 return "DW_AT_decl_file";
8220 case DW_AT_decl_line:
8221 return "DW_AT_decl_line";
8222 case DW_AT_declaration:
8223 return "DW_AT_declaration";
8224 case DW_AT_discr_list:
8225 return "DW_AT_discr_list";
8226 case DW_AT_encoding:
8227 return "DW_AT_encoding";
8228 case DW_AT_external:
8229 return "DW_AT_external";
8230 case DW_AT_frame_base:
8231 return "DW_AT_frame_base";
8232 case DW_AT_friend:
8233 return "DW_AT_friend";
8234 case DW_AT_identifier_case:
8235 return "DW_AT_identifier_case";
8236 case DW_AT_macro_info:
8237 return "DW_AT_macro_info";
8238 case DW_AT_namelist_items:
8239 return "DW_AT_namelist_items";
8240 case DW_AT_priority:
8241 return "DW_AT_priority";
8242 case DW_AT_segment:
8243 return "DW_AT_segment";
8244 case DW_AT_specification:
8245 return "DW_AT_specification";
8246 case DW_AT_static_link:
8247 return "DW_AT_static_link";
8248 case DW_AT_type:
8249 return "DW_AT_type";
8250 case DW_AT_use_location:
8251 return "DW_AT_use_location";
8252 case DW_AT_variable_parameter:
8253 return "DW_AT_variable_parameter";
8254 case DW_AT_virtuality:
8255 return "DW_AT_virtuality";
8256 case DW_AT_vtable_elem_location:
8257 return "DW_AT_vtable_elem_location";
8258 /* DWARF 3 values. */
8259 case DW_AT_allocated:
8260 return "DW_AT_allocated";
8261 case DW_AT_associated:
8262 return "DW_AT_associated";
8263 case DW_AT_data_location:
8264 return "DW_AT_data_location";
8265 case DW_AT_byte_stride:
8266 return "DW_AT_byte_stride";
8267 case DW_AT_entry_pc:
8268 return "DW_AT_entry_pc";
8269 case DW_AT_use_UTF8:
8270 return "DW_AT_use_UTF8";
8271 case DW_AT_extension:
8272 return "DW_AT_extension";
8273 case DW_AT_ranges:
8274 return "DW_AT_ranges";
8275 case DW_AT_trampoline:
8276 return "DW_AT_trampoline";
8277 case DW_AT_call_column:
8278 return "DW_AT_call_column";
8279 case DW_AT_call_file:
8280 return "DW_AT_call_file";
8281 case DW_AT_call_line:
8282 return "DW_AT_call_line";
8283 case DW_AT_description:
8284 return "DW_AT_description";
8285 case DW_AT_binary_scale:
8286 return "DW_AT_binary_scale";
8287 case DW_AT_decimal_scale:
8288 return "DW_AT_decimal_scale";
8289 case DW_AT_small:
8290 return "DW_AT_small";
8291 case DW_AT_decimal_sign:
8292 return "DW_AT_decimal_sign";
8293 case DW_AT_digit_count:
8294 return "DW_AT_digit_count";
8295 case DW_AT_picture_string:
8296 return "DW_AT_picture_string";
8297 case DW_AT_mutable:
8298 return "DW_AT_mutable";
8299 case DW_AT_threads_scaled:
8300 return "DW_AT_threads_scaled";
8301 case DW_AT_explicit:
8302 return "DW_AT_explicit";
8303 case DW_AT_object_pointer:
8304 return "DW_AT_object_pointer";
8305 case DW_AT_endianity:
8306 return "DW_AT_endianity";
8307 case DW_AT_elemental:
8308 return "DW_AT_elemental";
8309 case DW_AT_pure:
8310 return "DW_AT_pure";
8311 case DW_AT_recursive:
8312 return "DW_AT_recursive";
8313 #ifdef MIPS
8314 /* SGI/MIPS extensions. */
8315 case DW_AT_MIPS_fde:
8316 return "DW_AT_MIPS_fde";
8317 case DW_AT_MIPS_loop_begin:
8318 return "DW_AT_MIPS_loop_begin";
8319 case DW_AT_MIPS_tail_loop_begin:
8320 return "DW_AT_MIPS_tail_loop_begin";
8321 case DW_AT_MIPS_epilog_begin:
8322 return "DW_AT_MIPS_epilog_begin";
8323 case DW_AT_MIPS_loop_unroll_factor:
8324 return "DW_AT_MIPS_loop_unroll_factor";
8325 case DW_AT_MIPS_software_pipeline_depth:
8326 return "DW_AT_MIPS_software_pipeline_depth";
8327 case DW_AT_MIPS_linkage_name:
8328 return "DW_AT_MIPS_linkage_name";
8329 case DW_AT_MIPS_stride:
8330 return "DW_AT_MIPS_stride";
8331 case DW_AT_MIPS_abstract_name:
8332 return "DW_AT_MIPS_abstract_name";
8333 case DW_AT_MIPS_clone_origin:
8334 return "DW_AT_MIPS_clone_origin";
8335 case DW_AT_MIPS_has_inlines:
8336 return "DW_AT_MIPS_has_inlines";
8337 #endif
8338 /* HP extensions. */
8339 case DW_AT_HP_block_index:
8340 return "DW_AT_HP_block_index";
8341 case DW_AT_HP_unmodifiable:
8342 return "DW_AT_HP_unmodifiable";
8343 case DW_AT_HP_actuals_stmt_list:
8344 return "DW_AT_HP_actuals_stmt_list";
8345 case DW_AT_HP_proc_per_section:
8346 return "DW_AT_HP_proc_per_section";
8347 case DW_AT_HP_raw_data_ptr:
8348 return "DW_AT_HP_raw_data_ptr";
8349 case DW_AT_HP_pass_by_reference:
8350 return "DW_AT_HP_pass_by_reference";
8351 case DW_AT_HP_opt_level:
8352 return "DW_AT_HP_opt_level";
8353 case DW_AT_HP_prof_version_id:
8354 return "DW_AT_HP_prof_version_id";
8355 case DW_AT_HP_opt_flags:
8356 return "DW_AT_HP_opt_flags";
8357 case DW_AT_HP_cold_region_low_pc:
8358 return "DW_AT_HP_cold_region_low_pc";
8359 case DW_AT_HP_cold_region_high_pc:
8360 return "DW_AT_HP_cold_region_high_pc";
8361 case DW_AT_HP_all_variables_modifiable:
8362 return "DW_AT_HP_all_variables_modifiable";
8363 case DW_AT_HP_linkage_name:
8364 return "DW_AT_HP_linkage_name";
8365 case DW_AT_HP_prof_flags:
8366 return "DW_AT_HP_prof_flags";
8367 /* GNU extensions. */
8368 case DW_AT_sf_names:
8369 return "DW_AT_sf_names";
8370 case DW_AT_src_info:
8371 return "DW_AT_src_info";
8372 case DW_AT_mac_info:
8373 return "DW_AT_mac_info";
8374 case DW_AT_src_coords:
8375 return "DW_AT_src_coords";
8376 case DW_AT_body_begin:
8377 return "DW_AT_body_begin";
8378 case DW_AT_body_end:
8379 return "DW_AT_body_end";
8380 case DW_AT_GNU_vector:
8381 return "DW_AT_GNU_vector";
8382 /* VMS extensions. */
8383 case DW_AT_VMS_rtnbeg_pd_address:
8384 return "DW_AT_VMS_rtnbeg_pd_address";
8385 /* UPC extension. */
8386 case DW_AT_upc_threads_scaled:
8387 return "DW_AT_upc_threads_scaled";
8388 /* PGI (STMicroelectronics) extensions. */
8389 case DW_AT_PGI_lbase:
8390 return "DW_AT_PGI_lbase";
8391 case DW_AT_PGI_soffset:
8392 return "DW_AT_PGI_soffset";
8393 case DW_AT_PGI_lstride:
8394 return "DW_AT_PGI_lstride";
8395 default:
8396 return "DW_AT_<unknown>";
8397 }
8398 }
8399
8400 /* Convert a DWARF value form code into its string name. */
8401
8402 static char *
8403 dwarf_form_name (unsigned form)
8404 {
8405 switch (form)
8406 {
8407 case DW_FORM_addr:
8408 return "DW_FORM_addr";
8409 case DW_FORM_block2:
8410 return "DW_FORM_block2";
8411 case DW_FORM_block4:
8412 return "DW_FORM_block4";
8413 case DW_FORM_data2:
8414 return "DW_FORM_data2";
8415 case DW_FORM_data4:
8416 return "DW_FORM_data4";
8417 case DW_FORM_data8:
8418 return "DW_FORM_data8";
8419 case DW_FORM_string:
8420 return "DW_FORM_string";
8421 case DW_FORM_block:
8422 return "DW_FORM_block";
8423 case DW_FORM_block1:
8424 return "DW_FORM_block1";
8425 case DW_FORM_data1:
8426 return "DW_FORM_data1";
8427 case DW_FORM_flag:
8428 return "DW_FORM_flag";
8429 case DW_FORM_sdata:
8430 return "DW_FORM_sdata";
8431 case DW_FORM_strp:
8432 return "DW_FORM_strp";
8433 case DW_FORM_udata:
8434 return "DW_FORM_udata";
8435 case DW_FORM_ref_addr:
8436 return "DW_FORM_ref_addr";
8437 case DW_FORM_ref1:
8438 return "DW_FORM_ref1";
8439 case DW_FORM_ref2:
8440 return "DW_FORM_ref2";
8441 case DW_FORM_ref4:
8442 return "DW_FORM_ref4";
8443 case DW_FORM_ref8:
8444 return "DW_FORM_ref8";
8445 case DW_FORM_ref_udata:
8446 return "DW_FORM_ref_udata";
8447 case DW_FORM_indirect:
8448 return "DW_FORM_indirect";
8449 default:
8450 return "DW_FORM_<unknown>";
8451 }
8452 }
8453
8454 /* Convert a DWARF stack opcode into its string name. */
8455
8456 static char *
8457 dwarf_stack_op_name (unsigned op)
8458 {
8459 switch (op)
8460 {
8461 case DW_OP_addr:
8462 return "DW_OP_addr";
8463 case DW_OP_deref:
8464 return "DW_OP_deref";
8465 case DW_OP_const1u:
8466 return "DW_OP_const1u";
8467 case DW_OP_const1s:
8468 return "DW_OP_const1s";
8469 case DW_OP_const2u:
8470 return "DW_OP_const2u";
8471 case DW_OP_const2s:
8472 return "DW_OP_const2s";
8473 case DW_OP_const4u:
8474 return "DW_OP_const4u";
8475 case DW_OP_const4s:
8476 return "DW_OP_const4s";
8477 case DW_OP_const8u:
8478 return "DW_OP_const8u";
8479 case DW_OP_const8s:
8480 return "DW_OP_const8s";
8481 case DW_OP_constu:
8482 return "DW_OP_constu";
8483 case DW_OP_consts:
8484 return "DW_OP_consts";
8485 case DW_OP_dup:
8486 return "DW_OP_dup";
8487 case DW_OP_drop:
8488 return "DW_OP_drop";
8489 case DW_OP_over:
8490 return "DW_OP_over";
8491 case DW_OP_pick:
8492 return "DW_OP_pick";
8493 case DW_OP_swap:
8494 return "DW_OP_swap";
8495 case DW_OP_rot:
8496 return "DW_OP_rot";
8497 case DW_OP_xderef:
8498 return "DW_OP_xderef";
8499 case DW_OP_abs:
8500 return "DW_OP_abs";
8501 case DW_OP_and:
8502 return "DW_OP_and";
8503 case DW_OP_div:
8504 return "DW_OP_div";
8505 case DW_OP_minus:
8506 return "DW_OP_minus";
8507 case DW_OP_mod:
8508 return "DW_OP_mod";
8509 case DW_OP_mul:
8510 return "DW_OP_mul";
8511 case DW_OP_neg:
8512 return "DW_OP_neg";
8513 case DW_OP_not:
8514 return "DW_OP_not";
8515 case DW_OP_or:
8516 return "DW_OP_or";
8517 case DW_OP_plus:
8518 return "DW_OP_plus";
8519 case DW_OP_plus_uconst:
8520 return "DW_OP_plus_uconst";
8521 case DW_OP_shl:
8522 return "DW_OP_shl";
8523 case DW_OP_shr:
8524 return "DW_OP_shr";
8525 case DW_OP_shra:
8526 return "DW_OP_shra";
8527 case DW_OP_xor:
8528 return "DW_OP_xor";
8529 case DW_OP_bra:
8530 return "DW_OP_bra";
8531 case DW_OP_eq:
8532 return "DW_OP_eq";
8533 case DW_OP_ge:
8534 return "DW_OP_ge";
8535 case DW_OP_gt:
8536 return "DW_OP_gt";
8537 case DW_OP_le:
8538 return "DW_OP_le";
8539 case DW_OP_lt:
8540 return "DW_OP_lt";
8541 case DW_OP_ne:
8542 return "DW_OP_ne";
8543 case DW_OP_skip:
8544 return "DW_OP_skip";
8545 case DW_OP_lit0:
8546 return "DW_OP_lit0";
8547 case DW_OP_lit1:
8548 return "DW_OP_lit1";
8549 case DW_OP_lit2:
8550 return "DW_OP_lit2";
8551 case DW_OP_lit3:
8552 return "DW_OP_lit3";
8553 case DW_OP_lit4:
8554 return "DW_OP_lit4";
8555 case DW_OP_lit5:
8556 return "DW_OP_lit5";
8557 case DW_OP_lit6:
8558 return "DW_OP_lit6";
8559 case DW_OP_lit7:
8560 return "DW_OP_lit7";
8561 case DW_OP_lit8:
8562 return "DW_OP_lit8";
8563 case DW_OP_lit9:
8564 return "DW_OP_lit9";
8565 case DW_OP_lit10:
8566 return "DW_OP_lit10";
8567 case DW_OP_lit11:
8568 return "DW_OP_lit11";
8569 case DW_OP_lit12:
8570 return "DW_OP_lit12";
8571 case DW_OP_lit13:
8572 return "DW_OP_lit13";
8573 case DW_OP_lit14:
8574 return "DW_OP_lit14";
8575 case DW_OP_lit15:
8576 return "DW_OP_lit15";
8577 case DW_OP_lit16:
8578 return "DW_OP_lit16";
8579 case DW_OP_lit17:
8580 return "DW_OP_lit17";
8581 case DW_OP_lit18:
8582 return "DW_OP_lit18";
8583 case DW_OP_lit19:
8584 return "DW_OP_lit19";
8585 case DW_OP_lit20:
8586 return "DW_OP_lit20";
8587 case DW_OP_lit21:
8588 return "DW_OP_lit21";
8589 case DW_OP_lit22:
8590 return "DW_OP_lit22";
8591 case DW_OP_lit23:
8592 return "DW_OP_lit23";
8593 case DW_OP_lit24:
8594 return "DW_OP_lit24";
8595 case DW_OP_lit25:
8596 return "DW_OP_lit25";
8597 case DW_OP_lit26:
8598 return "DW_OP_lit26";
8599 case DW_OP_lit27:
8600 return "DW_OP_lit27";
8601 case DW_OP_lit28:
8602 return "DW_OP_lit28";
8603 case DW_OP_lit29:
8604 return "DW_OP_lit29";
8605 case DW_OP_lit30:
8606 return "DW_OP_lit30";
8607 case DW_OP_lit31:
8608 return "DW_OP_lit31";
8609 case DW_OP_reg0:
8610 return "DW_OP_reg0";
8611 case DW_OP_reg1:
8612 return "DW_OP_reg1";
8613 case DW_OP_reg2:
8614 return "DW_OP_reg2";
8615 case DW_OP_reg3:
8616 return "DW_OP_reg3";
8617 case DW_OP_reg4:
8618 return "DW_OP_reg4";
8619 case DW_OP_reg5:
8620 return "DW_OP_reg5";
8621 case DW_OP_reg6:
8622 return "DW_OP_reg6";
8623 case DW_OP_reg7:
8624 return "DW_OP_reg7";
8625 case DW_OP_reg8:
8626 return "DW_OP_reg8";
8627 case DW_OP_reg9:
8628 return "DW_OP_reg9";
8629 case DW_OP_reg10:
8630 return "DW_OP_reg10";
8631 case DW_OP_reg11:
8632 return "DW_OP_reg11";
8633 case DW_OP_reg12:
8634 return "DW_OP_reg12";
8635 case DW_OP_reg13:
8636 return "DW_OP_reg13";
8637 case DW_OP_reg14:
8638 return "DW_OP_reg14";
8639 case DW_OP_reg15:
8640 return "DW_OP_reg15";
8641 case DW_OP_reg16:
8642 return "DW_OP_reg16";
8643 case DW_OP_reg17:
8644 return "DW_OP_reg17";
8645 case DW_OP_reg18:
8646 return "DW_OP_reg18";
8647 case DW_OP_reg19:
8648 return "DW_OP_reg19";
8649 case DW_OP_reg20:
8650 return "DW_OP_reg20";
8651 case DW_OP_reg21:
8652 return "DW_OP_reg21";
8653 case DW_OP_reg22:
8654 return "DW_OP_reg22";
8655 case DW_OP_reg23:
8656 return "DW_OP_reg23";
8657 case DW_OP_reg24:
8658 return "DW_OP_reg24";
8659 case DW_OP_reg25:
8660 return "DW_OP_reg25";
8661 case DW_OP_reg26:
8662 return "DW_OP_reg26";
8663 case DW_OP_reg27:
8664 return "DW_OP_reg27";
8665 case DW_OP_reg28:
8666 return "DW_OP_reg28";
8667 case DW_OP_reg29:
8668 return "DW_OP_reg29";
8669 case DW_OP_reg30:
8670 return "DW_OP_reg30";
8671 case DW_OP_reg31:
8672 return "DW_OP_reg31";
8673 case DW_OP_breg0:
8674 return "DW_OP_breg0";
8675 case DW_OP_breg1:
8676 return "DW_OP_breg1";
8677 case DW_OP_breg2:
8678 return "DW_OP_breg2";
8679 case DW_OP_breg3:
8680 return "DW_OP_breg3";
8681 case DW_OP_breg4:
8682 return "DW_OP_breg4";
8683 case DW_OP_breg5:
8684 return "DW_OP_breg5";
8685 case DW_OP_breg6:
8686 return "DW_OP_breg6";
8687 case DW_OP_breg7:
8688 return "DW_OP_breg7";
8689 case DW_OP_breg8:
8690 return "DW_OP_breg8";
8691 case DW_OP_breg9:
8692 return "DW_OP_breg9";
8693 case DW_OP_breg10:
8694 return "DW_OP_breg10";
8695 case DW_OP_breg11:
8696 return "DW_OP_breg11";
8697 case DW_OP_breg12:
8698 return "DW_OP_breg12";
8699 case DW_OP_breg13:
8700 return "DW_OP_breg13";
8701 case DW_OP_breg14:
8702 return "DW_OP_breg14";
8703 case DW_OP_breg15:
8704 return "DW_OP_breg15";
8705 case DW_OP_breg16:
8706 return "DW_OP_breg16";
8707 case DW_OP_breg17:
8708 return "DW_OP_breg17";
8709 case DW_OP_breg18:
8710 return "DW_OP_breg18";
8711 case DW_OP_breg19:
8712 return "DW_OP_breg19";
8713 case DW_OP_breg20:
8714 return "DW_OP_breg20";
8715 case DW_OP_breg21:
8716 return "DW_OP_breg21";
8717 case DW_OP_breg22:
8718 return "DW_OP_breg22";
8719 case DW_OP_breg23:
8720 return "DW_OP_breg23";
8721 case DW_OP_breg24:
8722 return "DW_OP_breg24";
8723 case DW_OP_breg25:
8724 return "DW_OP_breg25";
8725 case DW_OP_breg26:
8726 return "DW_OP_breg26";
8727 case DW_OP_breg27:
8728 return "DW_OP_breg27";
8729 case DW_OP_breg28:
8730 return "DW_OP_breg28";
8731 case DW_OP_breg29:
8732 return "DW_OP_breg29";
8733 case DW_OP_breg30:
8734 return "DW_OP_breg30";
8735 case DW_OP_breg31:
8736 return "DW_OP_breg31";
8737 case DW_OP_regx:
8738 return "DW_OP_regx";
8739 case DW_OP_fbreg:
8740 return "DW_OP_fbreg";
8741 case DW_OP_bregx:
8742 return "DW_OP_bregx";
8743 case DW_OP_piece:
8744 return "DW_OP_piece";
8745 case DW_OP_deref_size:
8746 return "DW_OP_deref_size";
8747 case DW_OP_xderef_size:
8748 return "DW_OP_xderef_size";
8749 case DW_OP_nop:
8750 return "DW_OP_nop";
8751 /* DWARF 3 extensions. */
8752 case DW_OP_push_object_address:
8753 return "DW_OP_push_object_address";
8754 case DW_OP_call2:
8755 return "DW_OP_call2";
8756 case DW_OP_call4:
8757 return "DW_OP_call4";
8758 case DW_OP_call_ref:
8759 return "DW_OP_call_ref";
8760 /* GNU extensions. */
8761 case DW_OP_form_tls_address:
8762 return "DW_OP_form_tls_address";
8763 case DW_OP_call_frame_cfa:
8764 return "DW_OP_call_frame_cfa";
8765 case DW_OP_bit_piece:
8766 return "DW_OP_bit_piece";
8767 case DW_OP_GNU_push_tls_address:
8768 return "DW_OP_GNU_push_tls_address";
8769 case DW_OP_GNU_uninit:
8770 return "DW_OP_GNU_uninit";
8771 /* HP extensions. */
8772 case DW_OP_HP_is_value:
8773 return "DW_OP_HP_is_value";
8774 case DW_OP_HP_fltconst4:
8775 return "DW_OP_HP_fltconst4";
8776 case DW_OP_HP_fltconst8:
8777 return "DW_OP_HP_fltconst8";
8778 case DW_OP_HP_mod_range:
8779 return "DW_OP_HP_mod_range";
8780 case DW_OP_HP_unmod_range:
8781 return "DW_OP_HP_unmod_range";
8782 case DW_OP_HP_tls:
8783 return "DW_OP_HP_tls";
8784 default:
8785 return "OP_<unknown>";
8786 }
8787 }
8788
8789 static char *
8790 dwarf_bool_name (unsigned mybool)
8791 {
8792 if (mybool)
8793 return "TRUE";
8794 else
8795 return "FALSE";
8796 }
8797
8798 /* Convert a DWARF type code into its string name. */
8799
8800 static char *
8801 dwarf_type_encoding_name (unsigned enc)
8802 {
8803 switch (enc)
8804 {
8805 case DW_ATE_void:
8806 return "DW_ATE_void";
8807 case DW_ATE_address:
8808 return "DW_ATE_address";
8809 case DW_ATE_boolean:
8810 return "DW_ATE_boolean";
8811 case DW_ATE_complex_float:
8812 return "DW_ATE_complex_float";
8813 case DW_ATE_float:
8814 return "DW_ATE_float";
8815 case DW_ATE_signed:
8816 return "DW_ATE_signed";
8817 case DW_ATE_signed_char:
8818 return "DW_ATE_signed_char";
8819 case DW_ATE_unsigned:
8820 return "DW_ATE_unsigned";
8821 case DW_ATE_unsigned_char:
8822 return "DW_ATE_unsigned_char";
8823 /* DWARF 3. */
8824 case DW_ATE_imaginary_float:
8825 return "DW_ATE_imaginary_float";
8826 case DW_ATE_packed_decimal:
8827 return "DW_ATE_packed_decimal";
8828 case DW_ATE_numeric_string:
8829 return "DW_ATE_numeric_string";
8830 case DW_ATE_edited:
8831 return "DW_ATE_edited";
8832 case DW_ATE_signed_fixed:
8833 return "DW_ATE_signed_fixed";
8834 case DW_ATE_unsigned_fixed:
8835 return "DW_ATE_unsigned_fixed";
8836 case DW_ATE_decimal_float:
8837 return "DW_ATE_decimal_float";
8838 /* HP extensions. */
8839 case DW_ATE_HP_float80:
8840 return "DW_ATE_HP_float80";
8841 case DW_ATE_HP_complex_float80:
8842 return "DW_ATE_HP_complex_float80";
8843 case DW_ATE_HP_float128:
8844 return "DW_ATE_HP_float128";
8845 case DW_ATE_HP_complex_float128:
8846 return "DW_ATE_HP_complex_float128";
8847 case DW_ATE_HP_floathpintel:
8848 return "DW_ATE_HP_floathpintel";
8849 case DW_ATE_HP_imaginary_float80:
8850 return "DW_ATE_HP_imaginary_float80";
8851 case DW_ATE_HP_imaginary_float128:
8852 return "DW_ATE_HP_imaginary_float128";
8853 default:
8854 return "DW_ATE_<unknown>";
8855 }
8856 }
8857
8858 /* Convert a DWARF call frame info operation to its string name. */
8859
8860 #if 0
8861 static char *
8862 dwarf_cfi_name (unsigned cfi_opc)
8863 {
8864 switch (cfi_opc)
8865 {
8866 case DW_CFA_advance_loc:
8867 return "DW_CFA_advance_loc";
8868 case DW_CFA_offset:
8869 return "DW_CFA_offset";
8870 case DW_CFA_restore:
8871 return "DW_CFA_restore";
8872 case DW_CFA_nop:
8873 return "DW_CFA_nop";
8874 case DW_CFA_set_loc:
8875 return "DW_CFA_set_loc";
8876 case DW_CFA_advance_loc1:
8877 return "DW_CFA_advance_loc1";
8878 case DW_CFA_advance_loc2:
8879 return "DW_CFA_advance_loc2";
8880 case DW_CFA_advance_loc4:
8881 return "DW_CFA_advance_loc4";
8882 case DW_CFA_offset_extended:
8883 return "DW_CFA_offset_extended";
8884 case DW_CFA_restore_extended:
8885 return "DW_CFA_restore_extended";
8886 case DW_CFA_undefined:
8887 return "DW_CFA_undefined";
8888 case DW_CFA_same_value:
8889 return "DW_CFA_same_value";
8890 case DW_CFA_register:
8891 return "DW_CFA_register";
8892 case DW_CFA_remember_state:
8893 return "DW_CFA_remember_state";
8894 case DW_CFA_restore_state:
8895 return "DW_CFA_restore_state";
8896 case DW_CFA_def_cfa:
8897 return "DW_CFA_def_cfa";
8898 case DW_CFA_def_cfa_register:
8899 return "DW_CFA_def_cfa_register";
8900 case DW_CFA_def_cfa_offset:
8901 return "DW_CFA_def_cfa_offset";
8902 /* DWARF 3. */
8903 case DW_CFA_def_cfa_expression:
8904 return "DW_CFA_def_cfa_expression";
8905 case DW_CFA_expression:
8906 return "DW_CFA_expression";
8907 case DW_CFA_offset_extended_sf:
8908 return "DW_CFA_offset_extended_sf";
8909 case DW_CFA_def_cfa_sf:
8910 return "DW_CFA_def_cfa_sf";
8911 case DW_CFA_def_cfa_offset_sf:
8912 return "DW_CFA_def_cfa_offset_sf";
8913 case DW_CFA_val_offset:
8914 return "DW_CFA_val_offset";
8915 case DW_CFA_val_offset_sf:
8916 return "DW_CFA_val_offset_sf";
8917 case DW_CFA_val_expression:
8918 return "DW_CFA_val_expression";
8919 /* SGI/MIPS specific. */
8920 case DW_CFA_MIPS_advance_loc8:
8921 return "DW_CFA_MIPS_advance_loc8";
8922 /* GNU extensions. */
8923 case DW_CFA_GNU_window_save:
8924 return "DW_CFA_GNU_window_save";
8925 case DW_CFA_GNU_args_size:
8926 return "DW_CFA_GNU_args_size";
8927 case DW_CFA_GNU_negative_offset_extended:
8928 return "DW_CFA_GNU_negative_offset_extended";
8929 default:
8930 return "DW_CFA_<unknown>";
8931 }
8932 }
8933 #endif
8934
8935 static void
8936 dump_die (struct die_info *die)
8937 {
8938 unsigned int i;
8939
8940 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8941 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8942 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8943 dwarf_bool_name (die->child != NULL));
8944
8945 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8946 for (i = 0; i < die->num_attrs; ++i)
8947 {
8948 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8949 dwarf_attr_name (die->attrs[i].name),
8950 dwarf_form_name (die->attrs[i].form));
8951 switch (die->attrs[i].form)
8952 {
8953 case DW_FORM_ref_addr:
8954 case DW_FORM_addr:
8955 fprintf_unfiltered (gdb_stderr, "address: ");
8956 fputs_filtered (paddress (DW_ADDR (&die->attrs[i])), gdb_stderr);
8957 break;
8958 case DW_FORM_block2:
8959 case DW_FORM_block4:
8960 case DW_FORM_block:
8961 case DW_FORM_block1:
8962 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8963 break;
8964 case DW_FORM_ref1:
8965 case DW_FORM_ref2:
8966 case DW_FORM_ref4:
8967 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8968 (long) (DW_ADDR (&die->attrs[i])));
8969 break;
8970 case DW_FORM_data1:
8971 case DW_FORM_data2:
8972 case DW_FORM_data4:
8973 case DW_FORM_data8:
8974 case DW_FORM_udata:
8975 case DW_FORM_sdata:
8976 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8977 break;
8978 case DW_FORM_string:
8979 case DW_FORM_strp:
8980 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8981 DW_STRING (&die->attrs[i])
8982 ? DW_STRING (&die->attrs[i]) : "");
8983 break;
8984 case DW_FORM_flag:
8985 if (DW_UNSND (&die->attrs[i]))
8986 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8987 else
8988 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8989 break;
8990 case DW_FORM_indirect:
8991 /* the reader will have reduced the indirect form to
8992 the "base form" so this form should not occur */
8993 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8994 break;
8995 default:
8996 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8997 die->attrs[i].form);
8998 }
8999 fprintf_unfiltered (gdb_stderr, "\n");
9000 }
9001 }
9002
9003 static void
9004 dump_die_list (struct die_info *die)
9005 {
9006 while (die)
9007 {
9008 dump_die (die);
9009 if (die->child != NULL)
9010 dump_die_list (die->child);
9011 if (die->sibling != NULL)
9012 dump_die_list (die->sibling);
9013 }
9014 }
9015
9016 static void
9017 store_in_ref_table (unsigned int offset, struct die_info *die,
9018 struct dwarf2_cu *cu)
9019 {
9020 int h;
9021 struct die_info *old;
9022
9023 h = (offset % REF_HASH_SIZE);
9024 old = cu->die_ref_table[h];
9025 die->next_ref = old;
9026 cu->die_ref_table[h] = die;
9027 }
9028
9029 static unsigned int
9030 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
9031 {
9032 unsigned int result = 0;
9033
9034 switch (attr->form)
9035 {
9036 case DW_FORM_ref_addr:
9037 case DW_FORM_ref1:
9038 case DW_FORM_ref2:
9039 case DW_FORM_ref4:
9040 case DW_FORM_ref8:
9041 case DW_FORM_ref_udata:
9042 result = DW_ADDR (attr);
9043 break;
9044 default:
9045 complaint (&symfile_complaints,
9046 _("unsupported die ref attribute form: '%s'"),
9047 dwarf_form_name (attr->form));
9048 }
9049 return result;
9050 }
9051
9052 /* Return the constant value held by the given attribute. Return -1
9053 if the value held by the attribute is not constant. */
9054
9055 static int
9056 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
9057 {
9058 if (attr->form == DW_FORM_sdata)
9059 return DW_SND (attr);
9060 else if (attr->form == DW_FORM_udata
9061 || attr->form == DW_FORM_data1
9062 || attr->form == DW_FORM_data2
9063 || attr->form == DW_FORM_data4
9064 || attr->form == DW_FORM_data8)
9065 return DW_UNSND (attr);
9066 else
9067 {
9068 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
9069 dwarf_form_name (attr->form));
9070 return default_value;
9071 }
9072 }
9073
9074 static struct die_info *
9075 follow_die_ref (struct die_info *src_die, struct attribute *attr,
9076 struct dwarf2_cu *cu)
9077 {
9078 struct die_info *die;
9079 unsigned int offset;
9080 int h;
9081 struct die_info temp_die;
9082 struct dwarf2_cu *target_cu;
9083
9084 offset = dwarf2_get_ref_die_offset (attr, cu);
9085
9086 if (DW_ADDR (attr) < cu->header.offset
9087 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
9088 {
9089 struct dwarf2_per_cu_data *per_cu;
9090 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
9091 cu->objfile);
9092 target_cu = per_cu->cu;
9093 }
9094 else
9095 target_cu = cu;
9096
9097 h = (offset % REF_HASH_SIZE);
9098 die = target_cu->die_ref_table[h];
9099 while (die)
9100 {
9101 if (die->offset == offset)
9102 return die;
9103 die = die->next_ref;
9104 }
9105
9106 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
9107 "at 0x%lx [in module %s]"),
9108 (long) src_die->offset, (long) offset, cu->objfile->name);
9109
9110 return NULL;
9111 }
9112
9113 /* Decode simple location descriptions.
9114 Given a pointer to a dwarf block that defines a location, compute
9115 the location and return the value.
9116
9117 NOTE drow/2003-11-18: This function is called in two situations
9118 now: for the address of static or global variables (partial symbols
9119 only) and for offsets into structures which are expected to be
9120 (more or less) constant. The partial symbol case should go away,
9121 and only the constant case should remain. That will let this
9122 function complain more accurately. A few special modes are allowed
9123 without complaint for global variables (for instance, global
9124 register values and thread-local values).
9125
9126 A location description containing no operations indicates that the
9127 object is optimized out. The return value is 0 for that case.
9128 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9129 callers will only want a very basic result and this can become a
9130 complaint.
9131
9132 Note that stack[0] is unused except as a default error return.
9133 Note that stack overflow is not yet handled. */
9134
9135 static CORE_ADDR
9136 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
9137 {
9138 struct objfile *objfile = cu->objfile;
9139 struct comp_unit_head *cu_header = &cu->header;
9140 int i;
9141 int size = blk->size;
9142 gdb_byte *data = blk->data;
9143 CORE_ADDR stack[64];
9144 int stacki;
9145 unsigned int bytes_read, unsnd;
9146 gdb_byte op;
9147
9148 i = 0;
9149 stacki = 0;
9150 stack[stacki] = 0;
9151
9152 while (i < size)
9153 {
9154 op = data[i++];
9155 switch (op)
9156 {
9157 case DW_OP_lit0:
9158 case DW_OP_lit1:
9159 case DW_OP_lit2:
9160 case DW_OP_lit3:
9161 case DW_OP_lit4:
9162 case DW_OP_lit5:
9163 case DW_OP_lit6:
9164 case DW_OP_lit7:
9165 case DW_OP_lit8:
9166 case DW_OP_lit9:
9167 case DW_OP_lit10:
9168 case DW_OP_lit11:
9169 case DW_OP_lit12:
9170 case DW_OP_lit13:
9171 case DW_OP_lit14:
9172 case DW_OP_lit15:
9173 case DW_OP_lit16:
9174 case DW_OP_lit17:
9175 case DW_OP_lit18:
9176 case DW_OP_lit19:
9177 case DW_OP_lit20:
9178 case DW_OP_lit21:
9179 case DW_OP_lit22:
9180 case DW_OP_lit23:
9181 case DW_OP_lit24:
9182 case DW_OP_lit25:
9183 case DW_OP_lit26:
9184 case DW_OP_lit27:
9185 case DW_OP_lit28:
9186 case DW_OP_lit29:
9187 case DW_OP_lit30:
9188 case DW_OP_lit31:
9189 stack[++stacki] = op - DW_OP_lit0;
9190 break;
9191
9192 case DW_OP_reg0:
9193 case DW_OP_reg1:
9194 case DW_OP_reg2:
9195 case DW_OP_reg3:
9196 case DW_OP_reg4:
9197 case DW_OP_reg5:
9198 case DW_OP_reg6:
9199 case DW_OP_reg7:
9200 case DW_OP_reg8:
9201 case DW_OP_reg9:
9202 case DW_OP_reg10:
9203 case DW_OP_reg11:
9204 case DW_OP_reg12:
9205 case DW_OP_reg13:
9206 case DW_OP_reg14:
9207 case DW_OP_reg15:
9208 case DW_OP_reg16:
9209 case DW_OP_reg17:
9210 case DW_OP_reg18:
9211 case DW_OP_reg19:
9212 case DW_OP_reg20:
9213 case DW_OP_reg21:
9214 case DW_OP_reg22:
9215 case DW_OP_reg23:
9216 case DW_OP_reg24:
9217 case DW_OP_reg25:
9218 case DW_OP_reg26:
9219 case DW_OP_reg27:
9220 case DW_OP_reg28:
9221 case DW_OP_reg29:
9222 case DW_OP_reg30:
9223 case DW_OP_reg31:
9224 stack[++stacki] = op - DW_OP_reg0;
9225 if (i < size)
9226 dwarf2_complex_location_expr_complaint ();
9227 break;
9228
9229 case DW_OP_regx:
9230 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9231 i += bytes_read;
9232 stack[++stacki] = unsnd;
9233 if (i < size)
9234 dwarf2_complex_location_expr_complaint ();
9235 break;
9236
9237 case DW_OP_addr:
9238 stack[++stacki] = read_address (objfile->obfd, &data[i],
9239 cu, &bytes_read);
9240 i += bytes_read;
9241 break;
9242
9243 case DW_OP_const1u:
9244 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9245 i += 1;
9246 break;
9247
9248 case DW_OP_const1s:
9249 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9250 i += 1;
9251 break;
9252
9253 case DW_OP_const2u:
9254 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9255 i += 2;
9256 break;
9257
9258 case DW_OP_const2s:
9259 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9260 i += 2;
9261 break;
9262
9263 case DW_OP_const4u:
9264 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9265 i += 4;
9266 break;
9267
9268 case DW_OP_const4s:
9269 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9270 i += 4;
9271 break;
9272
9273 case DW_OP_constu:
9274 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
9275 &bytes_read);
9276 i += bytes_read;
9277 break;
9278
9279 case DW_OP_consts:
9280 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9281 i += bytes_read;
9282 break;
9283
9284 case DW_OP_dup:
9285 stack[stacki + 1] = stack[stacki];
9286 stacki++;
9287 break;
9288
9289 case DW_OP_plus:
9290 stack[stacki - 1] += stack[stacki];
9291 stacki--;
9292 break;
9293
9294 case DW_OP_plus_uconst:
9295 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9296 i += bytes_read;
9297 break;
9298
9299 case DW_OP_minus:
9300 stack[stacki - 1] -= stack[stacki];
9301 stacki--;
9302 break;
9303
9304 case DW_OP_deref:
9305 /* If we're not the last op, then we definitely can't encode
9306 this using GDB's address_class enum. This is valid for partial
9307 global symbols, although the variable's address will be bogus
9308 in the psymtab. */
9309 if (i < size)
9310 dwarf2_complex_location_expr_complaint ();
9311 break;
9312
9313 case DW_OP_GNU_push_tls_address:
9314 /* The top of the stack has the offset from the beginning
9315 of the thread control block at which the variable is located. */
9316 /* Nothing should follow this operator, so the top of stack would
9317 be returned. */
9318 /* This is valid for partial global symbols, but the variable's
9319 address will be bogus in the psymtab. */
9320 if (i < size)
9321 dwarf2_complex_location_expr_complaint ();
9322 break;
9323
9324 case DW_OP_GNU_uninit:
9325 break;
9326
9327 default:
9328 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9329 dwarf_stack_op_name (op));
9330 return (stack[stacki]);
9331 }
9332 }
9333 return (stack[stacki]);
9334 }
9335
9336 /* memory allocation interface */
9337
9338 static struct dwarf_block *
9339 dwarf_alloc_block (struct dwarf2_cu *cu)
9340 {
9341 struct dwarf_block *blk;
9342
9343 blk = (struct dwarf_block *)
9344 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
9345 return (blk);
9346 }
9347
9348 static struct abbrev_info *
9349 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
9350 {
9351 struct abbrev_info *abbrev;
9352
9353 abbrev = (struct abbrev_info *)
9354 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
9355 memset (abbrev, 0, sizeof (struct abbrev_info));
9356 return (abbrev);
9357 }
9358
9359 static struct die_info *
9360 dwarf_alloc_die (void)
9361 {
9362 struct die_info *die;
9363
9364 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9365 memset (die, 0, sizeof (struct die_info));
9366 return (die);
9367 }
9368
9369 \f
9370 /* Macro support. */
9371
9372
9373 /* Return the full name of file number I in *LH's file name table.
9374 Use COMP_DIR as the name of the current directory of the
9375 compilation. The result is allocated using xmalloc; the caller is
9376 responsible for freeing it. */
9377 static char *
9378 file_full_name (int file, struct line_header *lh, const char *comp_dir)
9379 {
9380 /* Is the file number a valid index into the line header's file name
9381 table? Remember that file numbers start with one, not zero. */
9382 if (1 <= file && file <= lh->num_file_names)
9383 {
9384 struct file_entry *fe = &lh->file_names[file - 1];
9385
9386 if (IS_ABSOLUTE_PATH (fe->name))
9387 return xstrdup (fe->name);
9388 else
9389 {
9390 const char *dir;
9391 int dir_len;
9392 char *full_name;
9393
9394 if (fe->dir_index)
9395 dir = lh->include_dirs[fe->dir_index - 1];
9396 else
9397 dir = comp_dir;
9398
9399 if (dir)
9400 {
9401 dir_len = strlen (dir);
9402 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9403 strcpy (full_name, dir);
9404 full_name[dir_len] = '/';
9405 strcpy (full_name + dir_len + 1, fe->name);
9406 return full_name;
9407 }
9408 else
9409 return xstrdup (fe->name);
9410 }
9411 }
9412 else
9413 {
9414 /* The compiler produced a bogus file number. We can at least
9415 record the macro definitions made in the file, even if we
9416 won't be able to find the file by name. */
9417 char fake_name[80];
9418 sprintf (fake_name, "<bad macro file number %d>", file);
9419
9420 complaint (&symfile_complaints,
9421 _("bad file number in macro information (%d)"),
9422 file);
9423
9424 return xstrdup (fake_name);
9425 }
9426 }
9427
9428
9429 static struct macro_source_file *
9430 macro_start_file (int file, int line,
9431 struct macro_source_file *current_file,
9432 const char *comp_dir,
9433 struct line_header *lh, struct objfile *objfile)
9434 {
9435 /* The full name of this source file. */
9436 char *full_name = file_full_name (file, lh, comp_dir);
9437
9438 /* We don't create a macro table for this compilation unit
9439 at all until we actually get a filename. */
9440 if (! pending_macros)
9441 pending_macros = new_macro_table (&objfile->objfile_obstack,
9442 objfile->macro_cache);
9443
9444 if (! current_file)
9445 /* If we have no current file, then this must be the start_file
9446 directive for the compilation unit's main source file. */
9447 current_file = macro_set_main (pending_macros, full_name);
9448 else
9449 current_file = macro_include (current_file, line, full_name);
9450
9451 xfree (full_name);
9452
9453 return current_file;
9454 }
9455
9456
9457 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9458 followed by a null byte. */
9459 static char *
9460 copy_string (const char *buf, int len)
9461 {
9462 char *s = xmalloc (len + 1);
9463 memcpy (s, buf, len);
9464 s[len] = '\0';
9465
9466 return s;
9467 }
9468
9469
9470 static const char *
9471 consume_improper_spaces (const char *p, const char *body)
9472 {
9473 if (*p == ' ')
9474 {
9475 complaint (&symfile_complaints,
9476 _("macro definition contains spaces in formal argument list:\n`%s'"),
9477 body);
9478
9479 while (*p == ' ')
9480 p++;
9481 }
9482
9483 return p;
9484 }
9485
9486
9487 static void
9488 parse_macro_definition (struct macro_source_file *file, int line,
9489 const char *body)
9490 {
9491 const char *p;
9492
9493 /* The body string takes one of two forms. For object-like macro
9494 definitions, it should be:
9495
9496 <macro name> " " <definition>
9497
9498 For function-like macro definitions, it should be:
9499
9500 <macro name> "() " <definition>
9501 or
9502 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9503
9504 Spaces may appear only where explicitly indicated, and in the
9505 <definition>.
9506
9507 The Dwarf 2 spec says that an object-like macro's name is always
9508 followed by a space, but versions of GCC around March 2002 omit
9509 the space when the macro's definition is the empty string.
9510
9511 The Dwarf 2 spec says that there should be no spaces between the
9512 formal arguments in a function-like macro's formal argument list,
9513 but versions of GCC around March 2002 include spaces after the
9514 commas. */
9515
9516
9517 /* Find the extent of the macro name. The macro name is terminated
9518 by either a space or null character (for an object-like macro) or
9519 an opening paren (for a function-like macro). */
9520 for (p = body; *p; p++)
9521 if (*p == ' ' || *p == '(')
9522 break;
9523
9524 if (*p == ' ' || *p == '\0')
9525 {
9526 /* It's an object-like macro. */
9527 int name_len = p - body;
9528 char *name = copy_string (body, name_len);
9529 const char *replacement;
9530
9531 if (*p == ' ')
9532 replacement = body + name_len + 1;
9533 else
9534 {
9535 dwarf2_macro_malformed_definition_complaint (body);
9536 replacement = body + name_len;
9537 }
9538
9539 macro_define_object (file, line, name, replacement);
9540
9541 xfree (name);
9542 }
9543 else if (*p == '(')
9544 {
9545 /* It's a function-like macro. */
9546 char *name = copy_string (body, p - body);
9547 int argc = 0;
9548 int argv_size = 1;
9549 char **argv = xmalloc (argv_size * sizeof (*argv));
9550
9551 p++;
9552
9553 p = consume_improper_spaces (p, body);
9554
9555 /* Parse the formal argument list. */
9556 while (*p && *p != ')')
9557 {
9558 /* Find the extent of the current argument name. */
9559 const char *arg_start = p;
9560
9561 while (*p && *p != ',' && *p != ')' && *p != ' ')
9562 p++;
9563
9564 if (! *p || p == arg_start)
9565 dwarf2_macro_malformed_definition_complaint (body);
9566 else
9567 {
9568 /* Make sure argv has room for the new argument. */
9569 if (argc >= argv_size)
9570 {
9571 argv_size *= 2;
9572 argv = xrealloc (argv, argv_size * sizeof (*argv));
9573 }
9574
9575 argv[argc++] = copy_string (arg_start, p - arg_start);
9576 }
9577
9578 p = consume_improper_spaces (p, body);
9579
9580 /* Consume the comma, if present. */
9581 if (*p == ',')
9582 {
9583 p++;
9584
9585 p = consume_improper_spaces (p, body);
9586 }
9587 }
9588
9589 if (*p == ')')
9590 {
9591 p++;
9592
9593 if (*p == ' ')
9594 /* Perfectly formed definition, no complaints. */
9595 macro_define_function (file, line, name,
9596 argc, (const char **) argv,
9597 p + 1);
9598 else if (*p == '\0')
9599 {
9600 /* Complain, but do define it. */
9601 dwarf2_macro_malformed_definition_complaint (body);
9602 macro_define_function (file, line, name,
9603 argc, (const char **) argv,
9604 p);
9605 }
9606 else
9607 /* Just complain. */
9608 dwarf2_macro_malformed_definition_complaint (body);
9609 }
9610 else
9611 /* Just complain. */
9612 dwarf2_macro_malformed_definition_complaint (body);
9613
9614 xfree (name);
9615 {
9616 int i;
9617
9618 for (i = 0; i < argc; i++)
9619 xfree (argv[i]);
9620 }
9621 xfree (argv);
9622 }
9623 else
9624 dwarf2_macro_malformed_definition_complaint (body);
9625 }
9626
9627
9628 static void
9629 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9630 char *comp_dir, bfd *abfd,
9631 struct dwarf2_cu *cu)
9632 {
9633 gdb_byte *mac_ptr, *mac_end;
9634 struct macro_source_file *current_file = 0;
9635
9636 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9637 {
9638 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9639 return;
9640 }
9641
9642 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9643 mac_end = dwarf2_per_objfile->macinfo_buffer
9644 + dwarf2_per_objfile->macinfo_size;
9645
9646 for (;;)
9647 {
9648 enum dwarf_macinfo_record_type macinfo_type;
9649
9650 /* Do we at least have room for a macinfo type byte? */
9651 if (mac_ptr >= mac_end)
9652 {
9653 dwarf2_macros_too_long_complaint ();
9654 return;
9655 }
9656
9657 macinfo_type = read_1_byte (abfd, mac_ptr);
9658 mac_ptr++;
9659
9660 switch (macinfo_type)
9661 {
9662 /* A zero macinfo type indicates the end of the macro
9663 information. */
9664 case 0:
9665 return;
9666
9667 case DW_MACINFO_define:
9668 case DW_MACINFO_undef:
9669 {
9670 unsigned int bytes_read;
9671 int line;
9672 char *body;
9673
9674 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9675 mac_ptr += bytes_read;
9676 body = read_string (abfd, mac_ptr, &bytes_read);
9677 mac_ptr += bytes_read;
9678
9679 if (! current_file)
9680 complaint (&symfile_complaints,
9681 _("debug info gives macro %s outside of any file: %s"),
9682 macinfo_type ==
9683 DW_MACINFO_define ? "definition" : macinfo_type ==
9684 DW_MACINFO_undef ? "undefinition" :
9685 "something-or-other", body);
9686 else
9687 {
9688 if (macinfo_type == DW_MACINFO_define)
9689 parse_macro_definition (current_file, line, body);
9690 else if (macinfo_type == DW_MACINFO_undef)
9691 macro_undef (current_file, line, body);
9692 }
9693 }
9694 break;
9695
9696 case DW_MACINFO_start_file:
9697 {
9698 unsigned int bytes_read;
9699 int line, file;
9700
9701 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9702 mac_ptr += bytes_read;
9703 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9704 mac_ptr += bytes_read;
9705
9706 current_file = macro_start_file (file, line,
9707 current_file, comp_dir,
9708 lh, cu->objfile);
9709 }
9710 break;
9711
9712 case DW_MACINFO_end_file:
9713 if (! current_file)
9714 complaint (&symfile_complaints,
9715 _("macro debug info has an unmatched `close_file' directive"));
9716 else
9717 {
9718 current_file = current_file->included_by;
9719 if (! current_file)
9720 {
9721 enum dwarf_macinfo_record_type next_type;
9722
9723 /* GCC circa March 2002 doesn't produce the zero
9724 type byte marking the end of the compilation
9725 unit. Complain if it's not there, but exit no
9726 matter what. */
9727
9728 /* Do we at least have room for a macinfo type byte? */
9729 if (mac_ptr >= mac_end)
9730 {
9731 dwarf2_macros_too_long_complaint ();
9732 return;
9733 }
9734
9735 /* We don't increment mac_ptr here, so this is just
9736 a look-ahead. */
9737 next_type = read_1_byte (abfd, mac_ptr);
9738 if (next_type != 0)
9739 complaint (&symfile_complaints,
9740 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9741
9742 return;
9743 }
9744 }
9745 break;
9746
9747 case DW_MACINFO_vendor_ext:
9748 {
9749 unsigned int bytes_read;
9750 int constant;
9751 char *string;
9752
9753 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9754 mac_ptr += bytes_read;
9755 string = read_string (abfd, mac_ptr, &bytes_read);
9756 mac_ptr += bytes_read;
9757
9758 /* We don't recognize any vendor extensions. */
9759 }
9760 break;
9761 }
9762 }
9763 }
9764
9765 /* Check if the attribute's form is a DW_FORM_block*
9766 if so return true else false. */
9767 static int
9768 attr_form_is_block (struct attribute *attr)
9769 {
9770 return (attr == NULL ? 0 :
9771 attr->form == DW_FORM_block1
9772 || attr->form == DW_FORM_block2
9773 || attr->form == DW_FORM_block4
9774 || attr->form == DW_FORM_block);
9775 }
9776
9777 /* Return non-zero if ATTR's value is a section offset --- classes
9778 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
9779 You may use DW_UNSND (attr) to retrieve such offsets.
9780
9781 Section 7.5.4, "Attribute Encodings", explains that no attribute
9782 may have a value that belongs to more than one of these classes; it
9783 would be ambiguous if we did, because we use the same forms for all
9784 of them. */
9785 static int
9786 attr_form_is_section_offset (struct attribute *attr)
9787 {
9788 return (attr->form == DW_FORM_data4
9789 || attr->form == DW_FORM_data8);
9790 }
9791
9792
9793 /* Return non-zero if ATTR's value falls in the 'constant' class, or
9794 zero otherwise. When this function returns true, you can apply
9795 dwarf2_get_attr_constant_value to it.
9796
9797 However, note that for some attributes you must check
9798 attr_form_is_section_offset before using this test. DW_FORM_data4
9799 and DW_FORM_data8 are members of both the constant class, and of
9800 the classes that contain offsets into other debug sections
9801 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
9802 that, if an attribute's can be either a constant or one of the
9803 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
9804 taken as section offsets, not constants. */
9805 static int
9806 attr_form_is_constant (struct attribute *attr)
9807 {
9808 switch (attr->form)
9809 {
9810 case DW_FORM_sdata:
9811 case DW_FORM_udata:
9812 case DW_FORM_data1:
9813 case DW_FORM_data2:
9814 case DW_FORM_data4:
9815 case DW_FORM_data8:
9816 return 1;
9817 default:
9818 return 0;
9819 }
9820 }
9821
9822 static void
9823 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9824 struct dwarf2_cu *cu)
9825 {
9826 if (attr_form_is_section_offset (attr)
9827 /* ".debug_loc" may not exist at all, or the offset may be outside
9828 the section. If so, fall through to the complaint in the
9829 other branch. */
9830 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
9831 {
9832 struct dwarf2_loclist_baton *baton;
9833
9834 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9835 sizeof (struct dwarf2_loclist_baton));
9836 baton->per_cu = cu->per_cu;
9837 gdb_assert (baton->per_cu);
9838
9839 /* We don't know how long the location list is, but make sure we
9840 don't run off the edge of the section. */
9841 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9842 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9843 baton->base_address = cu->header.base_address;
9844 if (cu->header.base_known == 0)
9845 complaint (&symfile_complaints,
9846 _("Location list used without specifying the CU base address."));
9847
9848 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9849 SYMBOL_LOCATION_BATON (sym) = baton;
9850 }
9851 else
9852 {
9853 struct dwarf2_locexpr_baton *baton;
9854
9855 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9856 sizeof (struct dwarf2_locexpr_baton));
9857 baton->per_cu = cu->per_cu;
9858 gdb_assert (baton->per_cu);
9859
9860 if (attr_form_is_block (attr))
9861 {
9862 /* Note that we're just copying the block's data pointer
9863 here, not the actual data. We're still pointing into the
9864 info_buffer for SYM's objfile; right now we never release
9865 that buffer, but when we do clean up properly this may
9866 need to change. */
9867 baton->size = DW_BLOCK (attr)->size;
9868 baton->data = DW_BLOCK (attr)->data;
9869 }
9870 else
9871 {
9872 dwarf2_invalid_attrib_class_complaint ("location description",
9873 SYMBOL_NATURAL_NAME (sym));
9874 baton->size = 0;
9875 baton->data = NULL;
9876 }
9877
9878 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9879 SYMBOL_LOCATION_BATON (sym) = baton;
9880 }
9881 }
9882
9883 /* Return the OBJFILE associated with the compilation unit CU. */
9884
9885 struct objfile *
9886 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
9887 {
9888 struct objfile *objfile = per_cu->psymtab->objfile;
9889
9890 /* Return the master objfile, so that we can report and look up the
9891 correct file containing this variable. */
9892 if (objfile->separate_debug_objfile_backlink)
9893 objfile = objfile->separate_debug_objfile_backlink;
9894
9895 return objfile;
9896 }
9897
9898 /* Return the address size given in the compilation unit header for CU. */
9899
9900 CORE_ADDR
9901 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
9902 {
9903 if (per_cu->cu)
9904 return per_cu->cu->header.addr_size;
9905 else
9906 {
9907 /* If the CU is not currently read in, we re-read its header. */
9908 struct objfile *objfile = per_cu->psymtab->objfile;
9909 struct dwarf2_per_objfile *per_objfile
9910 = objfile_data (objfile, dwarf2_objfile_data_key);
9911 gdb_byte *info_ptr = per_objfile->info_buffer + per_cu->offset;
9912
9913 struct comp_unit_head cu_header;
9914 memset (&cu_header, 0, sizeof cu_header);
9915 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
9916 return cu_header.addr_size;
9917 }
9918 }
9919
9920 /* Locate the compilation unit from CU's objfile which contains the
9921 DIE at OFFSET. Raises an error on failure. */
9922
9923 static struct dwarf2_per_cu_data *
9924 dwarf2_find_containing_comp_unit (unsigned long offset,
9925 struct objfile *objfile)
9926 {
9927 struct dwarf2_per_cu_data *this_cu;
9928 int low, high;
9929
9930 low = 0;
9931 high = dwarf2_per_objfile->n_comp_units - 1;
9932 while (high > low)
9933 {
9934 int mid = low + (high - low) / 2;
9935 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9936 high = mid;
9937 else
9938 low = mid + 1;
9939 }
9940 gdb_assert (low == high);
9941 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9942 {
9943 if (low == 0)
9944 error (_("Dwarf Error: could not find partial DIE containing "
9945 "offset 0x%lx [in module %s]"),
9946 (long) offset, bfd_get_filename (objfile->obfd));
9947
9948 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9949 return dwarf2_per_objfile->all_comp_units[low-1];
9950 }
9951 else
9952 {
9953 this_cu = dwarf2_per_objfile->all_comp_units[low];
9954 if (low == dwarf2_per_objfile->n_comp_units - 1
9955 && offset >= this_cu->offset + this_cu->length)
9956 error (_("invalid dwarf2 offset %ld"), offset);
9957 gdb_assert (offset < this_cu->offset + this_cu->length);
9958 return this_cu;
9959 }
9960 }
9961
9962 /* Locate the compilation unit from OBJFILE which is located at exactly
9963 OFFSET. Raises an error on failure. */
9964
9965 static struct dwarf2_per_cu_data *
9966 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9967 {
9968 struct dwarf2_per_cu_data *this_cu;
9969 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9970 if (this_cu->offset != offset)
9971 error (_("no compilation unit with offset %ld."), offset);
9972 return this_cu;
9973 }
9974
9975 /* Release one cached compilation unit, CU. We unlink it from the tree
9976 of compilation units, but we don't remove it from the read_in_chain;
9977 the caller is responsible for that. */
9978
9979 static void
9980 free_one_comp_unit (void *data)
9981 {
9982 struct dwarf2_cu *cu = data;
9983
9984 if (cu->per_cu != NULL)
9985 cu->per_cu->cu = NULL;
9986 cu->per_cu = NULL;
9987
9988 obstack_free (&cu->comp_unit_obstack, NULL);
9989 if (cu->dies)
9990 free_die_list (cu->dies);
9991
9992 xfree (cu);
9993 }
9994
9995 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9996 when we're finished with it. We can't free the pointer itself, but be
9997 sure to unlink it from the cache. Also release any associated storage
9998 and perform cache maintenance.
9999
10000 Only used during partial symbol parsing. */
10001
10002 static void
10003 free_stack_comp_unit (void *data)
10004 {
10005 struct dwarf2_cu *cu = data;
10006
10007 obstack_free (&cu->comp_unit_obstack, NULL);
10008 cu->partial_dies = NULL;
10009
10010 if (cu->per_cu != NULL)
10011 {
10012 /* This compilation unit is on the stack in our caller, so we
10013 should not xfree it. Just unlink it. */
10014 cu->per_cu->cu = NULL;
10015 cu->per_cu = NULL;
10016
10017 /* If we had a per-cu pointer, then we may have other compilation
10018 units loaded, so age them now. */
10019 age_cached_comp_units ();
10020 }
10021 }
10022
10023 /* Free all cached compilation units. */
10024
10025 static void
10026 free_cached_comp_units (void *data)
10027 {
10028 struct dwarf2_per_cu_data *per_cu, **last_chain;
10029
10030 per_cu = dwarf2_per_objfile->read_in_chain;
10031 last_chain = &dwarf2_per_objfile->read_in_chain;
10032 while (per_cu != NULL)
10033 {
10034 struct dwarf2_per_cu_data *next_cu;
10035
10036 next_cu = per_cu->cu->read_in_chain;
10037
10038 free_one_comp_unit (per_cu->cu);
10039 *last_chain = next_cu;
10040
10041 per_cu = next_cu;
10042 }
10043 }
10044
10045 /* Increase the age counter on each cached compilation unit, and free
10046 any that are too old. */
10047
10048 static void
10049 age_cached_comp_units (void)
10050 {
10051 struct dwarf2_per_cu_data *per_cu, **last_chain;
10052
10053 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
10054 per_cu = dwarf2_per_objfile->read_in_chain;
10055 while (per_cu != NULL)
10056 {
10057 per_cu->cu->last_used ++;
10058 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
10059 dwarf2_mark (per_cu->cu);
10060 per_cu = per_cu->cu->read_in_chain;
10061 }
10062
10063 per_cu = dwarf2_per_objfile->read_in_chain;
10064 last_chain = &dwarf2_per_objfile->read_in_chain;
10065 while (per_cu != NULL)
10066 {
10067 struct dwarf2_per_cu_data *next_cu;
10068
10069 next_cu = per_cu->cu->read_in_chain;
10070
10071 if (!per_cu->cu->mark)
10072 {
10073 free_one_comp_unit (per_cu->cu);
10074 *last_chain = next_cu;
10075 }
10076 else
10077 last_chain = &per_cu->cu->read_in_chain;
10078
10079 per_cu = next_cu;
10080 }
10081 }
10082
10083 /* Remove a single compilation unit from the cache. */
10084
10085 static void
10086 free_one_cached_comp_unit (void *target_cu)
10087 {
10088 struct dwarf2_per_cu_data *per_cu, **last_chain;
10089
10090 per_cu = dwarf2_per_objfile->read_in_chain;
10091 last_chain = &dwarf2_per_objfile->read_in_chain;
10092 while (per_cu != NULL)
10093 {
10094 struct dwarf2_per_cu_data *next_cu;
10095
10096 next_cu = per_cu->cu->read_in_chain;
10097
10098 if (per_cu->cu == target_cu)
10099 {
10100 free_one_comp_unit (per_cu->cu);
10101 *last_chain = next_cu;
10102 break;
10103 }
10104 else
10105 last_chain = &per_cu->cu->read_in_chain;
10106
10107 per_cu = next_cu;
10108 }
10109 }
10110
10111 /* Release all extra memory associated with OBJFILE. */
10112
10113 void
10114 dwarf2_free_objfile (struct objfile *objfile)
10115 {
10116 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10117
10118 if (dwarf2_per_objfile == NULL)
10119 return;
10120
10121 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
10122 free_cached_comp_units (NULL);
10123
10124 /* Everything else should be on the objfile obstack. */
10125 }
10126
10127 /* A pair of DIE offset and GDB type pointer. We store these
10128 in a hash table separate from the DIEs, and preserve them
10129 when the DIEs are flushed out of cache. */
10130
10131 struct dwarf2_offset_and_type
10132 {
10133 unsigned int offset;
10134 struct type *type;
10135 };
10136
10137 /* Hash function for a dwarf2_offset_and_type. */
10138
10139 static hashval_t
10140 offset_and_type_hash (const void *item)
10141 {
10142 const struct dwarf2_offset_and_type *ofs = item;
10143 return ofs->offset;
10144 }
10145
10146 /* Equality function for a dwarf2_offset_and_type. */
10147
10148 static int
10149 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
10150 {
10151 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
10152 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
10153 return ofs_lhs->offset == ofs_rhs->offset;
10154 }
10155
10156 /* Set the type associated with DIE to TYPE. Save it in CU's hash
10157 table if necessary. */
10158
10159 static void
10160 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10161 {
10162 struct dwarf2_offset_and_type **slot, ofs;
10163
10164 die->type = type;
10165
10166 if (cu->per_cu == NULL)
10167 return;
10168
10169 if (cu->per_cu->type_hash == NULL)
10170 cu->per_cu->type_hash
10171 = htab_create_alloc_ex (cu->header.length / 24,
10172 offset_and_type_hash,
10173 offset_and_type_eq,
10174 NULL,
10175 &cu->objfile->objfile_obstack,
10176 hashtab_obstack_allocate,
10177 dummy_obstack_deallocate);
10178
10179 ofs.offset = die->offset;
10180 ofs.type = type;
10181 slot = (struct dwarf2_offset_and_type **)
10182 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
10183 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
10184 **slot = ofs;
10185 }
10186
10187 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
10188 have a saved type. */
10189
10190 static struct type *
10191 get_die_type (struct die_info *die, htab_t type_hash)
10192 {
10193 struct dwarf2_offset_and_type *slot, ofs;
10194
10195 ofs.offset = die->offset;
10196 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10197 if (slot)
10198 return slot->type;
10199 else
10200 return NULL;
10201 }
10202
10203 /* Restore the types of the DIE tree starting at START_DIE from the hash
10204 table saved in CU. */
10205
10206 static void
10207 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
10208 {
10209 struct die_info *die;
10210
10211 if (cu->per_cu->type_hash == NULL)
10212 return;
10213
10214 for (die = start_die; die != NULL; die = die->sibling)
10215 {
10216 die->type = get_die_type (die, cu->per_cu->type_hash);
10217 if (die->child != NULL)
10218 reset_die_and_siblings_types (die->child, cu);
10219 }
10220 }
10221
10222 /* Set the mark field in CU and in every other compilation unit in the
10223 cache that we must keep because we are keeping CU. */
10224
10225 /* Add a dependence relationship from CU to REF_PER_CU. */
10226
10227 static void
10228 dwarf2_add_dependence (struct dwarf2_cu *cu,
10229 struct dwarf2_per_cu_data *ref_per_cu)
10230 {
10231 void **slot;
10232
10233 if (cu->dependencies == NULL)
10234 cu->dependencies
10235 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10236 NULL, &cu->comp_unit_obstack,
10237 hashtab_obstack_allocate,
10238 dummy_obstack_deallocate);
10239
10240 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10241 if (*slot == NULL)
10242 *slot = ref_per_cu;
10243 }
10244
10245 /* Set the mark field in CU and in every other compilation unit in the
10246 cache that we must keep because we are keeping CU. */
10247
10248 static int
10249 dwarf2_mark_helper (void **slot, void *data)
10250 {
10251 struct dwarf2_per_cu_data *per_cu;
10252
10253 per_cu = (struct dwarf2_per_cu_data *) *slot;
10254 if (per_cu->cu->mark)
10255 return 1;
10256 per_cu->cu->mark = 1;
10257
10258 if (per_cu->cu->dependencies != NULL)
10259 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10260
10261 return 1;
10262 }
10263
10264 static void
10265 dwarf2_mark (struct dwarf2_cu *cu)
10266 {
10267 if (cu->mark)
10268 return;
10269 cu->mark = 1;
10270 if (cu->dependencies != NULL)
10271 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
10272 }
10273
10274 static void
10275 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10276 {
10277 while (per_cu)
10278 {
10279 per_cu->cu->mark = 0;
10280 per_cu = per_cu->cu->read_in_chain;
10281 }
10282 }
10283
10284 /* Trivial hash function for partial_die_info: the hash value of a DIE
10285 is its offset in .debug_info for this objfile. */
10286
10287 static hashval_t
10288 partial_die_hash (const void *item)
10289 {
10290 const struct partial_die_info *part_die = item;
10291 return part_die->offset;
10292 }
10293
10294 /* Trivial comparison function for partial_die_info structures: two DIEs
10295 are equal if they have the same offset. */
10296
10297 static int
10298 partial_die_eq (const void *item_lhs, const void *item_rhs)
10299 {
10300 const struct partial_die_info *part_die_lhs = item_lhs;
10301 const struct partial_die_info *part_die_rhs = item_rhs;
10302 return part_die_lhs->offset == part_die_rhs->offset;
10303 }
10304
10305 static struct cmd_list_element *set_dwarf2_cmdlist;
10306 static struct cmd_list_element *show_dwarf2_cmdlist;
10307
10308 static void
10309 set_dwarf2_cmd (char *args, int from_tty)
10310 {
10311 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10312 }
10313
10314 static void
10315 show_dwarf2_cmd (char *args, int from_tty)
10316 {
10317 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10318 }
10319
10320 void _initialize_dwarf2_read (void);
10321
10322 void
10323 _initialize_dwarf2_read (void)
10324 {
10325 dwarf2_objfile_data_key = register_objfile_data ();
10326
10327 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10328 Set DWARF 2 specific variables.\n\
10329 Configure DWARF 2 variables such as the cache size"),
10330 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10331 0/*allow-unknown*/, &maintenance_set_cmdlist);
10332
10333 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10334 Show DWARF 2 specific variables\n\
10335 Show DWARF 2 variables such as the cache size"),
10336 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10337 0/*allow-unknown*/, &maintenance_show_cmdlist);
10338
10339 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
10340 &dwarf2_max_cache_age, _("\
10341 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10342 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10343 A higher limit means that cached compilation units will be stored\n\
10344 in memory longer, and more total memory will be used. Zero disables\n\
10345 caching, which can slow down startup."),
10346 NULL,
10347 show_dwarf2_max_cache_age,
10348 &set_dwarf2_cmdlist,
10349 &show_dwarf2_cmdlist);
10350 }
This page took 0.24453 seconds and 4 git commands to generate.