2010-10-08 Bernd Schmidt <bernds@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51 #include "typeprint.h"
52 #include "jv-lang.h"
53 #include "psympriv.h"
54 #include "exceptions.h"
55 #include "gdb_stat.h"
56 #include "completer.h"
57 #include "vec.h"
58 #include "c-lang.h"
59 #include "valprint.h"
60
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_assert.h"
64 #include <sys/types.h>
65 #ifdef HAVE_ZLIB_H
66 #include <zlib.h>
67 #endif
68 #ifdef HAVE_MMAP
69 #include <sys/mman.h>
70 #ifndef MAP_FAILED
71 #define MAP_FAILED ((void *) -1)
72 #endif
73 #endif
74
75 typedef struct symbol *symbolp;
76 DEF_VEC_P (symbolp);
77
78 #if 0
79 /* .debug_info header for a compilation unit
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82 typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91 _COMP_UNIT_HEADER;
92 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
93 #endif
94
95 /* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98 typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116 _STATEMENT_PROLOGUE;
117
118 /* When non-zero, dump DIEs after they are read in. */
119 static int dwarf2_die_debug = 0;
120
121 static int pagesize;
122
123 /* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127 static int processing_has_namespace_info;
128
129 static const struct objfile_data *dwarf2_objfile_data_key;
130
131 struct dwarf2_section_info
132 {
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
137 /* True if we have tried to read this section. */
138 int readin;
139 };
140
141 /* All offsets in the index are of this type. It must be
142 architecture-independent. */
143 typedef uint32_t offset_type;
144
145 DEF_VEC_I (offset_type);
146
147 /* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149 struct mapped_index
150 {
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163 };
164
165 struct dwarf2_per_objfile
166 {
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
174 struct dwarf2_section_info types;
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
177 struct dwarf2_section_info gdb_index;
178
179 /* Back link. */
180 struct objfile *objfile;
181
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
198
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
206
207 /* True if we are using the mapped index. */
208 unsigned char using_index;
209
210 /* The mapped index. */
211 struct mapped_index *index_table;
212
213 /* Set during partial symbol reading, to prevent queueing of full
214 symbols. */
215 int reading_partial_symbols;
216
217 /* Table mapping type .debug_info DIE offsets to types.
218 This is NULL if not allocated yet.
219 It (currently) makes sense to allocate debug_types_type_hash lazily.
220 To keep things simple we allocate both lazily. */
221 htab_t debug_info_type_hash;
222
223 /* Table mapping type .debug_types DIE offsets to types.
224 This is NULL if not allocated yet. */
225 htab_t debug_types_type_hash;
226 };
227
228 static struct dwarf2_per_objfile *dwarf2_per_objfile;
229
230 /* names of the debugging sections */
231
232 /* Note that if the debugging section has been compressed, it might
233 have a name like .zdebug_info. */
234
235 #define INFO_SECTION "debug_info"
236 #define ABBREV_SECTION "debug_abbrev"
237 #define LINE_SECTION "debug_line"
238 #define LOC_SECTION "debug_loc"
239 #define MACINFO_SECTION "debug_macinfo"
240 #define STR_SECTION "debug_str"
241 #define RANGES_SECTION "debug_ranges"
242 #define TYPES_SECTION "debug_types"
243 #define FRAME_SECTION "debug_frame"
244 #define EH_FRAME_SECTION "eh_frame"
245 #define GDB_INDEX_SECTION "gdb_index"
246
247 /* local data types */
248
249 /* We hold several abbreviation tables in memory at the same time. */
250 #ifndef ABBREV_HASH_SIZE
251 #define ABBREV_HASH_SIZE 121
252 #endif
253
254 /* The data in a compilation unit header, after target2host
255 translation, looks like this. */
256 struct comp_unit_head
257 {
258 unsigned int length;
259 short version;
260 unsigned char addr_size;
261 unsigned char signed_addr_p;
262 unsigned int abbrev_offset;
263
264 /* Size of file offsets; either 4 or 8. */
265 unsigned int offset_size;
266
267 /* Size of the length field; either 4 or 12. */
268 unsigned int initial_length_size;
269
270 /* Offset to the first byte of this compilation unit header in the
271 .debug_info section, for resolving relative reference dies. */
272 unsigned int offset;
273
274 /* Offset to first die in this cu from the start of the cu.
275 This will be the first byte following the compilation unit header. */
276 unsigned int first_die_offset;
277 };
278
279 /* Type used for delaying computation of method physnames.
280 See comments for compute_delayed_physnames. */
281 struct delayed_method_info
282 {
283 /* The type to which the method is attached, i.e., its parent class. */
284 struct type *type;
285
286 /* The index of the method in the type's function fieldlists. */
287 int fnfield_index;
288
289 /* The index of the method in the fieldlist. */
290 int index;
291
292 /* The name of the DIE. */
293 const char *name;
294
295 /* The DIE associated with this method. */
296 struct die_info *die;
297 };
298
299 typedef struct delayed_method_info delayed_method_info;
300 DEF_VEC_O (delayed_method_info);
301
302 /* Internal state when decoding a particular compilation unit. */
303 struct dwarf2_cu
304 {
305 /* The objfile containing this compilation unit. */
306 struct objfile *objfile;
307
308 /* The header of the compilation unit. */
309 struct comp_unit_head header;
310
311 /* Base address of this compilation unit. */
312 CORE_ADDR base_address;
313
314 /* Non-zero if base_address has been set. */
315 int base_known;
316
317 struct function_range *first_fn, *last_fn, *cached_fn;
318
319 /* The language we are debugging. */
320 enum language language;
321 const struct language_defn *language_defn;
322
323 const char *producer;
324
325 /* The generic symbol table building routines have separate lists for
326 file scope symbols and all all other scopes (local scopes). So
327 we need to select the right one to pass to add_symbol_to_list().
328 We do it by keeping a pointer to the correct list in list_in_scope.
329
330 FIXME: The original dwarf code just treated the file scope as the
331 first local scope, and all other local scopes as nested local
332 scopes, and worked fine. Check to see if we really need to
333 distinguish these in buildsym.c. */
334 struct pending **list_in_scope;
335
336 /* DWARF abbreviation table associated with this compilation unit. */
337 struct abbrev_info **dwarf2_abbrevs;
338
339 /* Storage for the abbrev table. */
340 struct obstack abbrev_obstack;
341
342 /* Hash table holding all the loaded partial DIEs. */
343 htab_t partial_dies;
344
345 /* Storage for things with the same lifetime as this read-in compilation
346 unit, including partial DIEs. */
347 struct obstack comp_unit_obstack;
348
349 /* When multiple dwarf2_cu structures are living in memory, this field
350 chains them all together, so that they can be released efficiently.
351 We will probably also want a generation counter so that most-recently-used
352 compilation units are cached... */
353 struct dwarf2_per_cu_data *read_in_chain;
354
355 /* Backchain to our per_cu entry if the tree has been built. */
356 struct dwarf2_per_cu_data *per_cu;
357
358 /* How many compilation units ago was this CU last referenced? */
359 int last_used;
360
361 /* A hash table of die offsets for following references. */
362 htab_t die_hash;
363
364 /* Full DIEs if read in. */
365 struct die_info *dies;
366
367 /* A set of pointers to dwarf2_per_cu_data objects for compilation
368 units referenced by this one. Only set during full symbol processing;
369 partial symbol tables do not have dependencies. */
370 htab_t dependencies;
371
372 /* Header data from the line table, during full symbol processing. */
373 struct line_header *line_header;
374
375 /* A list of methods which need to have physnames computed
376 after all type information has been read. */
377 VEC (delayed_method_info) *method_list;
378
379 /* Mark used when releasing cached dies. */
380 unsigned int mark : 1;
381
382 /* This flag will be set if this compilation unit might include
383 inter-compilation-unit references. */
384 unsigned int has_form_ref_addr : 1;
385
386 /* This flag will be set if this compilation unit includes any
387 DW_TAG_namespace DIEs. If we know that there are explicit
388 DIEs for namespaces, we don't need to try to infer them
389 from mangled names. */
390 unsigned int has_namespace_info : 1;
391 };
392
393 /* When using the index (and thus not using psymtabs), each CU has an
394 object of this type. This is used to hold information needed by
395 the various "quick" methods. */
396 struct dwarf2_per_cu_quick_data
397 {
398 /* The line table. This can be NULL if there was no line table. */
399 struct line_header *lines;
400
401 /* The file names from the line table. */
402 const char **file_names;
403 /* The file names from the line table after being run through
404 gdb_realpath. */
405 const char **full_names;
406
407 /* The corresponding symbol table. This is NULL if symbols for this
408 CU have not yet been read. */
409 struct symtab *symtab;
410
411 /* A temporary mark bit used when iterating over all CUs in
412 expand_symtabs_matching. */
413 unsigned int mark : 1;
414
415 /* True if we've tried to read the line table. */
416 unsigned int read_lines : 1;
417 };
418
419 /* Persistent data held for a compilation unit, even when not
420 processing it. We put a pointer to this structure in the
421 read_symtab_private field of the psymtab. If we encounter
422 inter-compilation-unit references, we also maintain a sorted
423 list of all compilation units. */
424
425 struct dwarf2_per_cu_data
426 {
427 /* The start offset and length of this compilation unit. 2**29-1
428 bytes should suffice to store the length of any compilation unit
429 - if it doesn't, GDB will fall over anyway.
430 NOTE: Unlike comp_unit_head.length, this length includes
431 initial_length_size. */
432 unsigned int offset;
433 unsigned int length : 29;
434
435 /* Flag indicating this compilation unit will be read in before
436 any of the current compilation units are processed. */
437 unsigned int queued : 1;
438
439 /* This flag will be set if we need to load absolutely all DIEs
440 for this compilation unit, instead of just the ones we think
441 are interesting. It gets set if we look for a DIE in the
442 hash table and don't find it. */
443 unsigned int load_all_dies : 1;
444
445 /* Non-zero if this CU is from .debug_types.
446 Otherwise it's from .debug_info. */
447 unsigned int from_debug_types : 1;
448
449 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
450 of the CU cache it gets reset to NULL again. */
451 struct dwarf2_cu *cu;
452
453 /* The corresponding objfile. */
454 struct objfile *objfile;
455
456 /* When using partial symbol tables, the 'psymtab' field is active.
457 Otherwise the 'quick' field is active. */
458 union
459 {
460 /* The partial symbol table associated with this compilation unit,
461 or NULL for partial units (which do not have an associated
462 symtab). */
463 struct partial_symtab *psymtab;
464
465 /* Data needed by the "quick" functions. */
466 struct dwarf2_per_cu_quick_data *quick;
467 } v;
468 };
469
470 /* Entry in the signatured_types hash table. */
471
472 struct signatured_type
473 {
474 ULONGEST signature;
475
476 /* Offset in .debug_types of the TU (type_unit) for this type. */
477 unsigned int offset;
478
479 /* Offset in .debug_types of the type defined by this TU. */
480 unsigned int type_offset;
481
482 /* The CU(/TU) of this type. */
483 struct dwarf2_per_cu_data per_cu;
484 };
485
486 /* Struct used to pass misc. parameters to read_die_and_children, et. al.
487 which are used for both .debug_info and .debug_types dies.
488 All parameters here are unchanging for the life of the call.
489 This struct exists to abstract away the constant parameters of
490 die reading. */
491
492 struct die_reader_specs
493 {
494 /* The bfd of this objfile. */
495 bfd* abfd;
496
497 /* The CU of the DIE we are parsing. */
498 struct dwarf2_cu *cu;
499
500 /* Pointer to start of section buffer.
501 This is either the start of .debug_info or .debug_types. */
502 const gdb_byte *buffer;
503 };
504
505 /* The line number information for a compilation unit (found in the
506 .debug_line section) begins with a "statement program header",
507 which contains the following information. */
508 struct line_header
509 {
510 unsigned int total_length;
511 unsigned short version;
512 unsigned int header_length;
513 unsigned char minimum_instruction_length;
514 unsigned char maximum_ops_per_instruction;
515 unsigned char default_is_stmt;
516 int line_base;
517 unsigned char line_range;
518 unsigned char opcode_base;
519
520 /* standard_opcode_lengths[i] is the number of operands for the
521 standard opcode whose value is i. This means that
522 standard_opcode_lengths[0] is unused, and the last meaningful
523 element is standard_opcode_lengths[opcode_base - 1]. */
524 unsigned char *standard_opcode_lengths;
525
526 /* The include_directories table. NOTE! These strings are not
527 allocated with xmalloc; instead, they are pointers into
528 debug_line_buffer. If you try to free them, `free' will get
529 indigestion. */
530 unsigned int num_include_dirs, include_dirs_size;
531 char **include_dirs;
532
533 /* The file_names table. NOTE! These strings are not allocated
534 with xmalloc; instead, they are pointers into debug_line_buffer.
535 Don't try to free them directly. */
536 unsigned int num_file_names, file_names_size;
537 struct file_entry
538 {
539 char *name;
540 unsigned int dir_index;
541 unsigned int mod_time;
542 unsigned int length;
543 int included_p; /* Non-zero if referenced by the Line Number Program. */
544 struct symtab *symtab; /* The associated symbol table, if any. */
545 } *file_names;
546
547 /* The start and end of the statement program following this
548 header. These point into dwarf2_per_objfile->line_buffer. */
549 gdb_byte *statement_program_start, *statement_program_end;
550 };
551
552 /* When we construct a partial symbol table entry we only
553 need this much information. */
554 struct partial_die_info
555 {
556 /* Offset of this DIE. */
557 unsigned int offset;
558
559 /* DWARF-2 tag for this DIE. */
560 ENUM_BITFIELD(dwarf_tag) tag : 16;
561
562 /* Assorted flags describing the data found in this DIE. */
563 unsigned int has_children : 1;
564 unsigned int is_external : 1;
565 unsigned int is_declaration : 1;
566 unsigned int has_type : 1;
567 unsigned int has_specification : 1;
568 unsigned int has_pc_info : 1;
569
570 /* Flag set if the SCOPE field of this structure has been
571 computed. */
572 unsigned int scope_set : 1;
573
574 /* Flag set if the DIE has a byte_size attribute. */
575 unsigned int has_byte_size : 1;
576
577 /* Flag set if any of the DIE's children are template arguments. */
578 unsigned int has_template_arguments : 1;
579
580 /* Flag set if fixup_partial_die has been called on this die. */
581 unsigned int fixup_called : 1;
582
583 /* The name of this DIE. Normally the value of DW_AT_name, but
584 sometimes a default name for unnamed DIEs. */
585 char *name;
586
587 /* The linkage name, if present. */
588 const char *linkage_name;
589
590 /* The scope to prepend to our children. This is generally
591 allocated on the comp_unit_obstack, so will disappear
592 when this compilation unit leaves the cache. */
593 char *scope;
594
595 /* The location description associated with this DIE, if any. */
596 struct dwarf_block *locdesc;
597
598 /* If HAS_PC_INFO, the PC range associated with this DIE. */
599 CORE_ADDR lowpc;
600 CORE_ADDR highpc;
601
602 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
603 DW_AT_sibling, if any. */
604 /* NOTE: This member isn't strictly necessary, read_partial_die could
605 return DW_AT_sibling values to its caller load_partial_dies. */
606 gdb_byte *sibling;
607
608 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
609 DW_AT_specification (or DW_AT_abstract_origin or
610 DW_AT_extension). */
611 unsigned int spec_offset;
612
613 /* Pointers to this DIE's parent, first child, and next sibling,
614 if any. */
615 struct partial_die_info *die_parent, *die_child, *die_sibling;
616 };
617
618 /* This data structure holds the information of an abbrev. */
619 struct abbrev_info
620 {
621 unsigned int number; /* number identifying abbrev */
622 enum dwarf_tag tag; /* dwarf tag */
623 unsigned short has_children; /* boolean */
624 unsigned short num_attrs; /* number of attributes */
625 struct attr_abbrev *attrs; /* an array of attribute descriptions */
626 struct abbrev_info *next; /* next in chain */
627 };
628
629 struct attr_abbrev
630 {
631 ENUM_BITFIELD(dwarf_attribute) name : 16;
632 ENUM_BITFIELD(dwarf_form) form : 16;
633 };
634
635 /* Attributes have a name and a value */
636 struct attribute
637 {
638 ENUM_BITFIELD(dwarf_attribute) name : 16;
639 ENUM_BITFIELD(dwarf_form) form : 15;
640
641 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
642 field should be in u.str (existing only for DW_STRING) but it is kept
643 here for better struct attribute alignment. */
644 unsigned int string_is_canonical : 1;
645
646 union
647 {
648 char *str;
649 struct dwarf_block *blk;
650 ULONGEST unsnd;
651 LONGEST snd;
652 CORE_ADDR addr;
653 struct signatured_type *signatured_type;
654 }
655 u;
656 };
657
658 /* This data structure holds a complete die structure. */
659 struct die_info
660 {
661 /* DWARF-2 tag for this DIE. */
662 ENUM_BITFIELD(dwarf_tag) tag : 16;
663
664 /* Number of attributes */
665 unsigned char num_attrs;
666
667 /* True if we're presently building the full type name for the
668 type derived from this DIE. */
669 unsigned char building_fullname : 1;
670
671 /* Abbrev number */
672 unsigned int abbrev;
673
674 /* Offset in .debug_info or .debug_types section. */
675 unsigned int offset;
676
677 /* The dies in a compilation unit form an n-ary tree. PARENT
678 points to this die's parent; CHILD points to the first child of
679 this node; and all the children of a given node are chained
680 together via their SIBLING fields. */
681 struct die_info *child; /* Its first child, if any. */
682 struct die_info *sibling; /* Its next sibling, if any. */
683 struct die_info *parent; /* Its parent, if any. */
684
685 /* An array of attributes, with NUM_ATTRS elements. There may be
686 zero, but it's not common and zero-sized arrays are not
687 sufficiently portable C. */
688 struct attribute attrs[1];
689 };
690
691 struct function_range
692 {
693 const char *name;
694 CORE_ADDR lowpc, highpc;
695 int seen_line;
696 struct function_range *next;
697 };
698
699 /* Get at parts of an attribute structure */
700
701 #define DW_STRING(attr) ((attr)->u.str)
702 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
703 #define DW_UNSND(attr) ((attr)->u.unsnd)
704 #define DW_BLOCK(attr) ((attr)->u.blk)
705 #define DW_SND(attr) ((attr)->u.snd)
706 #define DW_ADDR(attr) ((attr)->u.addr)
707 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
708
709 /* Blocks are a bunch of untyped bytes. */
710 struct dwarf_block
711 {
712 unsigned int size;
713 gdb_byte *data;
714 };
715
716 #ifndef ATTR_ALLOC_CHUNK
717 #define ATTR_ALLOC_CHUNK 4
718 #endif
719
720 /* Allocate fields for structs, unions and enums in this size. */
721 #ifndef DW_FIELD_ALLOC_CHUNK
722 #define DW_FIELD_ALLOC_CHUNK 4
723 #endif
724
725 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
726 but this would require a corresponding change in unpack_field_as_long
727 and friends. */
728 static int bits_per_byte = 8;
729
730 /* The routines that read and process dies for a C struct or C++ class
731 pass lists of data member fields and lists of member function fields
732 in an instance of a field_info structure, as defined below. */
733 struct field_info
734 {
735 /* List of data member and baseclasses fields. */
736 struct nextfield
737 {
738 struct nextfield *next;
739 int accessibility;
740 int virtuality;
741 struct field field;
742 }
743 *fields, *baseclasses;
744
745 /* Number of fields (including baseclasses). */
746 int nfields;
747
748 /* Number of baseclasses. */
749 int nbaseclasses;
750
751 /* Set if the accesibility of one of the fields is not public. */
752 int non_public_fields;
753
754 /* Member function fields array, entries are allocated in the order they
755 are encountered in the object file. */
756 struct nextfnfield
757 {
758 struct nextfnfield *next;
759 struct fn_field fnfield;
760 }
761 *fnfields;
762
763 /* Member function fieldlist array, contains name of possibly overloaded
764 member function, number of overloaded member functions and a pointer
765 to the head of the member function field chain. */
766 struct fnfieldlist
767 {
768 char *name;
769 int length;
770 struct nextfnfield *head;
771 }
772 *fnfieldlists;
773
774 /* Number of entries in the fnfieldlists array. */
775 int nfnfields;
776
777 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
778 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
779 struct typedef_field_list
780 {
781 struct typedef_field field;
782 struct typedef_field_list *next;
783 }
784 *typedef_field_list;
785 unsigned typedef_field_list_count;
786 };
787
788 /* One item on the queue of compilation units to read in full symbols
789 for. */
790 struct dwarf2_queue_item
791 {
792 struct dwarf2_per_cu_data *per_cu;
793 struct dwarf2_queue_item *next;
794 };
795
796 /* The current queue. */
797 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
798
799 /* Loaded secondary compilation units are kept in memory until they
800 have not been referenced for the processing of this many
801 compilation units. Set this to zero to disable caching. Cache
802 sizes of up to at least twenty will improve startup time for
803 typical inter-CU-reference binaries, at an obvious memory cost. */
804 static int dwarf2_max_cache_age = 5;
805 static void
806 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
807 struct cmd_list_element *c, const char *value)
808 {
809 fprintf_filtered (file, _("\
810 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
811 value);
812 }
813
814
815 /* Various complaints about symbol reading that don't abort the process */
816
817 static void
818 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
819 {
820 complaint (&symfile_complaints,
821 _("statement list doesn't fit in .debug_line section"));
822 }
823
824 static void
825 dwarf2_debug_line_missing_file_complaint (void)
826 {
827 complaint (&symfile_complaints,
828 _(".debug_line section has line data without a file"));
829 }
830
831 static void
832 dwarf2_debug_line_missing_end_sequence_complaint (void)
833 {
834 complaint (&symfile_complaints,
835 _(".debug_line section has line program sequence without an end"));
836 }
837
838 static void
839 dwarf2_complex_location_expr_complaint (void)
840 {
841 complaint (&symfile_complaints, _("location expression too complex"));
842 }
843
844 static void
845 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
846 int arg3)
847 {
848 complaint (&symfile_complaints,
849 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
850 arg2, arg3);
851 }
852
853 static void
854 dwarf2_macros_too_long_complaint (void)
855 {
856 complaint (&symfile_complaints,
857 _("macro info runs off end of `.debug_macinfo' section"));
858 }
859
860 static void
861 dwarf2_macro_malformed_definition_complaint (const char *arg1)
862 {
863 complaint (&symfile_complaints,
864 _("macro debug info contains a malformed macro definition:\n`%s'"),
865 arg1);
866 }
867
868 static void
869 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
870 {
871 complaint (&symfile_complaints,
872 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
873 }
874
875 /* local function prototypes */
876
877 static void dwarf2_locate_sections (bfd *, asection *, void *);
878
879 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
880 struct objfile *);
881
882 static void dwarf2_build_psymtabs_hard (struct objfile *);
883
884 static void scan_partial_symbols (struct partial_die_info *,
885 CORE_ADDR *, CORE_ADDR *,
886 int, struct dwarf2_cu *);
887
888 static void add_partial_symbol (struct partial_die_info *,
889 struct dwarf2_cu *);
890
891 static void add_partial_namespace (struct partial_die_info *pdi,
892 CORE_ADDR *lowpc, CORE_ADDR *highpc,
893 int need_pc, struct dwarf2_cu *cu);
894
895 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
896 CORE_ADDR *highpc, int need_pc,
897 struct dwarf2_cu *cu);
898
899 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
900 struct dwarf2_cu *cu);
901
902 static void add_partial_subprogram (struct partial_die_info *pdi,
903 CORE_ADDR *lowpc, CORE_ADDR *highpc,
904 int need_pc, struct dwarf2_cu *cu);
905
906 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
907 gdb_byte *buffer, gdb_byte *info_ptr,
908 bfd *abfd, struct dwarf2_cu *cu);
909
910 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
911
912 static void psymtab_to_symtab_1 (struct partial_symtab *);
913
914 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
915
916 static void dwarf2_free_abbrev_table (void *);
917
918 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
919 struct dwarf2_cu *);
920
921 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
922 struct dwarf2_cu *);
923
924 static struct partial_die_info *load_partial_dies (bfd *,
925 gdb_byte *, gdb_byte *,
926 int, struct dwarf2_cu *);
927
928 static gdb_byte *read_partial_die (struct partial_die_info *,
929 struct abbrev_info *abbrev,
930 unsigned int, bfd *,
931 gdb_byte *, gdb_byte *,
932 struct dwarf2_cu *);
933
934 static struct partial_die_info *find_partial_die (unsigned int,
935 struct dwarf2_cu *);
936
937 static void fixup_partial_die (struct partial_die_info *,
938 struct dwarf2_cu *);
939
940 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
941 bfd *, gdb_byte *, struct dwarf2_cu *);
942
943 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
944 bfd *, gdb_byte *, struct dwarf2_cu *);
945
946 static unsigned int read_1_byte (bfd *, gdb_byte *);
947
948 static int read_1_signed_byte (bfd *, gdb_byte *);
949
950 static unsigned int read_2_bytes (bfd *, gdb_byte *);
951
952 static unsigned int read_4_bytes (bfd *, gdb_byte *);
953
954 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
955
956 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
957 unsigned int *);
958
959 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
960
961 static LONGEST read_checked_initial_length_and_offset
962 (bfd *, gdb_byte *, const struct comp_unit_head *,
963 unsigned int *, unsigned int *);
964
965 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
966 unsigned int *);
967
968 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
969
970 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
971
972 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
973
974 static char *read_indirect_string (bfd *, gdb_byte *,
975 const struct comp_unit_head *,
976 unsigned int *);
977
978 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
979
980 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
981
982 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
983
984 static void set_cu_language (unsigned int, struct dwarf2_cu *);
985
986 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
987 struct dwarf2_cu *);
988
989 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
990 unsigned int,
991 struct dwarf2_cu *);
992
993 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
994 struct dwarf2_cu *cu);
995
996 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
997
998 static struct die_info *die_specification (struct die_info *die,
999 struct dwarf2_cu **);
1000
1001 static void free_line_header (struct line_header *lh);
1002
1003 static void add_file_name (struct line_header *, char *, unsigned int,
1004 unsigned int, unsigned int);
1005
1006 static struct line_header *(dwarf_decode_line_header
1007 (unsigned int offset,
1008 bfd *abfd, struct dwarf2_cu *cu));
1009
1010 static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
1011 struct dwarf2_cu *, struct partial_symtab *);
1012
1013 static void dwarf2_start_subfile (char *, const char *, const char *);
1014
1015 static struct symbol *new_symbol (struct die_info *, struct type *,
1016 struct dwarf2_cu *);
1017
1018 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1019 struct dwarf2_cu *, struct symbol *);
1020
1021 static void dwarf2_const_value (struct attribute *, struct symbol *,
1022 struct dwarf2_cu *);
1023
1024 static void dwarf2_const_value_attr (struct attribute *attr,
1025 struct type *type,
1026 const char *name,
1027 struct obstack *obstack,
1028 struct dwarf2_cu *cu, long *value,
1029 gdb_byte **bytes,
1030 struct dwarf2_locexpr_baton **baton);
1031
1032 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1033
1034 static int need_gnat_info (struct dwarf2_cu *);
1035
1036 static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
1037
1038 static void set_descriptive_type (struct type *, struct die_info *,
1039 struct dwarf2_cu *);
1040
1041 static struct type *die_containing_type (struct die_info *,
1042 struct dwarf2_cu *);
1043
1044 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1045 struct dwarf2_cu *);
1046
1047 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1048
1049 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1050
1051 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1052
1053 static char *typename_concat (struct obstack *obs, const char *prefix,
1054 const char *suffix, int physname,
1055 struct dwarf2_cu *cu);
1056
1057 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1058
1059 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1060
1061 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1062
1063 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1064
1065 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1066 struct dwarf2_cu *, struct partial_symtab *);
1067
1068 static int dwarf2_get_pc_bounds (struct die_info *,
1069 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1070 struct partial_symtab *);
1071
1072 static void get_scope_pc_bounds (struct die_info *,
1073 CORE_ADDR *, CORE_ADDR *,
1074 struct dwarf2_cu *);
1075
1076 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1077 CORE_ADDR, struct dwarf2_cu *);
1078
1079 static void dwarf2_add_field (struct field_info *, struct die_info *,
1080 struct dwarf2_cu *);
1081
1082 static void dwarf2_attach_fields_to_type (struct field_info *,
1083 struct type *, struct dwarf2_cu *);
1084
1085 static void dwarf2_add_member_fn (struct field_info *,
1086 struct die_info *, struct type *,
1087 struct dwarf2_cu *);
1088
1089 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1090 struct type *, struct dwarf2_cu *);
1091
1092 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1093
1094 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1095
1096 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1097
1098 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1099
1100 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1101
1102 static struct type *read_module_type (struct die_info *die,
1103 struct dwarf2_cu *cu);
1104
1105 static const char *namespace_name (struct die_info *die,
1106 int *is_anonymous, struct dwarf2_cu *);
1107
1108 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1109
1110 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1111
1112 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1113 struct dwarf2_cu *);
1114
1115 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1116
1117 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1118 gdb_byte *info_ptr,
1119 gdb_byte **new_info_ptr,
1120 struct die_info *parent);
1121
1122 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1123 gdb_byte *info_ptr,
1124 gdb_byte **new_info_ptr,
1125 struct die_info *parent);
1126
1127 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1128 gdb_byte *info_ptr,
1129 gdb_byte **new_info_ptr,
1130 struct die_info *parent);
1131
1132 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1133 struct die_info **, gdb_byte *,
1134 int *);
1135
1136 static void process_die (struct die_info *, struct dwarf2_cu *);
1137
1138 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1139 struct obstack *);
1140
1141 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1142
1143 static const char *dwarf2_full_name (char *name,
1144 struct die_info *die,
1145 struct dwarf2_cu *cu);
1146
1147 static struct die_info *dwarf2_extension (struct die_info *die,
1148 struct dwarf2_cu **);
1149
1150 static char *dwarf_tag_name (unsigned int);
1151
1152 static char *dwarf_attr_name (unsigned int);
1153
1154 static char *dwarf_form_name (unsigned int);
1155
1156 static char *dwarf_bool_name (unsigned int);
1157
1158 static char *dwarf_type_encoding_name (unsigned int);
1159
1160 #if 0
1161 static char *dwarf_cfi_name (unsigned int);
1162 #endif
1163
1164 static struct die_info *sibling_die (struct die_info *);
1165
1166 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1167
1168 static void dump_die_for_error (struct die_info *);
1169
1170 static void dump_die_1 (struct ui_file *, int level, int max_level,
1171 struct die_info *);
1172
1173 /*static*/ void dump_die (struct die_info *, int max_level);
1174
1175 static void store_in_ref_table (struct die_info *,
1176 struct dwarf2_cu *);
1177
1178 static int is_ref_attr (struct attribute *);
1179
1180 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1181
1182 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1183
1184 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1185 struct attribute *,
1186 struct dwarf2_cu **);
1187
1188 static struct die_info *follow_die_ref (struct die_info *,
1189 struct attribute *,
1190 struct dwarf2_cu **);
1191
1192 static struct die_info *follow_die_sig (struct die_info *,
1193 struct attribute *,
1194 struct dwarf2_cu **);
1195
1196 static void read_signatured_type_at_offset (struct objfile *objfile,
1197 unsigned int offset);
1198
1199 static void read_signatured_type (struct objfile *,
1200 struct signatured_type *type_sig);
1201
1202 /* memory allocation interface */
1203
1204 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1205
1206 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1207
1208 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1209
1210 static void initialize_cu_func_list (struct dwarf2_cu *);
1211
1212 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1213 struct dwarf2_cu *);
1214
1215 static void dwarf_decode_macros (struct line_header *, unsigned int,
1216 char *, bfd *, struct dwarf2_cu *);
1217
1218 static int attr_form_is_block (struct attribute *);
1219
1220 static int attr_form_is_section_offset (struct attribute *);
1221
1222 static int attr_form_is_constant (struct attribute *);
1223
1224 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1225 struct symbol *sym,
1226 struct dwarf2_cu *cu);
1227
1228 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1229 struct abbrev_info *abbrev,
1230 struct dwarf2_cu *cu);
1231
1232 static void free_stack_comp_unit (void *);
1233
1234 static hashval_t partial_die_hash (const void *item);
1235
1236 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1237
1238 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1239 (unsigned int offset, struct objfile *objfile);
1240
1241 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1242 (unsigned int offset, struct objfile *objfile);
1243
1244 static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile);
1245
1246 static void free_one_comp_unit (void *);
1247
1248 static void free_cached_comp_units (void *);
1249
1250 static void age_cached_comp_units (void);
1251
1252 static void free_one_cached_comp_unit (void *);
1253
1254 static struct type *set_die_type (struct die_info *, struct type *,
1255 struct dwarf2_cu *);
1256
1257 static void create_all_comp_units (struct objfile *);
1258
1259 static int create_debug_types_hash_table (struct objfile *objfile);
1260
1261 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1262 struct objfile *);
1263
1264 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1265
1266 static void dwarf2_add_dependence (struct dwarf2_cu *,
1267 struct dwarf2_per_cu_data *);
1268
1269 static void dwarf2_mark (struct dwarf2_cu *);
1270
1271 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1272
1273 static struct type *get_die_type_at_offset (unsigned int,
1274 struct dwarf2_per_cu_data *per_cu);
1275
1276 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1277
1278 static void dwarf2_release_queue (void *dummy);
1279
1280 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1281 struct objfile *objfile);
1282
1283 static void process_queue (struct objfile *objfile);
1284
1285 static void find_file_and_directory (struct die_info *die,
1286 struct dwarf2_cu *cu,
1287 char **name, char **comp_dir);
1288
1289 static char *file_full_name (int file, struct line_header *lh,
1290 const char *comp_dir);
1291
1292 static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1293 gdb_byte *info_ptr,
1294 gdb_byte *buffer,
1295 unsigned int buffer_size,
1296 bfd *abfd);
1297
1298 static void init_cu_die_reader (struct die_reader_specs *reader,
1299 struct dwarf2_cu *cu);
1300
1301 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1302
1303 #if WORDS_BIGENDIAN
1304
1305 /* Convert VALUE between big- and little-endian. */
1306 static offset_type
1307 byte_swap (offset_type value)
1308 {
1309 offset_type result;
1310
1311 result = (value & 0xff) << 24;
1312 result |= (value & 0xff00) << 8;
1313 result |= (value & 0xff0000) >> 8;
1314 result |= (value & 0xff000000) >> 24;
1315 return result;
1316 }
1317
1318 #define MAYBE_SWAP(V) byte_swap (V)
1319
1320 #else
1321 #define MAYBE_SWAP(V) (V)
1322 #endif /* WORDS_BIGENDIAN */
1323
1324 /* The suffix for an index file. */
1325 #define INDEX_SUFFIX ".gdb-index"
1326
1327 static const char *dwarf2_physname (char *name, struct die_info *die,
1328 struct dwarf2_cu *cu);
1329
1330 /* Try to locate the sections we need for DWARF 2 debugging
1331 information and return true if we have enough to do something. */
1332
1333 int
1334 dwarf2_has_info (struct objfile *objfile)
1335 {
1336 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1337 if (!dwarf2_per_objfile)
1338 {
1339 /* Initialize per-objfile state. */
1340 struct dwarf2_per_objfile *data
1341 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1342
1343 memset (data, 0, sizeof (*data));
1344 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1345 dwarf2_per_objfile = data;
1346
1347 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1348 dwarf2_per_objfile->objfile = objfile;
1349 }
1350 return (dwarf2_per_objfile->info.asection != NULL
1351 && dwarf2_per_objfile->abbrev.asection != NULL);
1352 }
1353
1354 /* When loading sections, we can either look for ".<name>", or for
1355 * ".z<name>", which indicates a compressed section. */
1356
1357 static int
1358 section_is_p (const char *section_name, const char *name)
1359 {
1360 return (section_name[0] == '.'
1361 && (strcmp (section_name + 1, name) == 0
1362 || (section_name[1] == 'z'
1363 && strcmp (section_name + 2, name) == 0)));
1364 }
1365
1366 /* This function is mapped across the sections and remembers the
1367 offset and size of each of the debugging sections we are interested
1368 in. */
1369
1370 static void
1371 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1372 {
1373 if (section_is_p (sectp->name, INFO_SECTION))
1374 {
1375 dwarf2_per_objfile->info.asection = sectp;
1376 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1377 }
1378 else if (section_is_p (sectp->name, ABBREV_SECTION))
1379 {
1380 dwarf2_per_objfile->abbrev.asection = sectp;
1381 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1382 }
1383 else if (section_is_p (sectp->name, LINE_SECTION))
1384 {
1385 dwarf2_per_objfile->line.asection = sectp;
1386 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1387 }
1388 else if (section_is_p (sectp->name, LOC_SECTION))
1389 {
1390 dwarf2_per_objfile->loc.asection = sectp;
1391 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1392 }
1393 else if (section_is_p (sectp->name, MACINFO_SECTION))
1394 {
1395 dwarf2_per_objfile->macinfo.asection = sectp;
1396 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1397 }
1398 else if (section_is_p (sectp->name, STR_SECTION))
1399 {
1400 dwarf2_per_objfile->str.asection = sectp;
1401 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1402 }
1403 else if (section_is_p (sectp->name, FRAME_SECTION))
1404 {
1405 dwarf2_per_objfile->frame.asection = sectp;
1406 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1407 }
1408 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1409 {
1410 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1411
1412 if (aflag & SEC_HAS_CONTENTS)
1413 {
1414 dwarf2_per_objfile->eh_frame.asection = sectp;
1415 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1416 }
1417 }
1418 else if (section_is_p (sectp->name, RANGES_SECTION))
1419 {
1420 dwarf2_per_objfile->ranges.asection = sectp;
1421 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1422 }
1423 else if (section_is_p (sectp->name, TYPES_SECTION))
1424 {
1425 dwarf2_per_objfile->types.asection = sectp;
1426 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1427 }
1428 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1429 {
1430 dwarf2_per_objfile->gdb_index.asection = sectp;
1431 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1432 }
1433
1434 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1435 && bfd_section_vma (abfd, sectp) == 0)
1436 dwarf2_per_objfile->has_section_at_zero = 1;
1437 }
1438
1439 /* Decompress a section that was compressed using zlib. Store the
1440 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1441
1442 static void
1443 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1444 gdb_byte **outbuf, bfd_size_type *outsize)
1445 {
1446 bfd *abfd = objfile->obfd;
1447 #ifndef HAVE_ZLIB_H
1448 error (_("Support for zlib-compressed DWARF data (from '%s') "
1449 "is disabled in this copy of GDB"),
1450 bfd_get_filename (abfd));
1451 #else
1452 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1453 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1454 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1455 bfd_size_type uncompressed_size;
1456 gdb_byte *uncompressed_buffer;
1457 z_stream strm;
1458 int rc;
1459 int header_size = 12;
1460
1461 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1462 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1463 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1464 bfd_get_filename (abfd));
1465
1466 /* Read the zlib header. In this case, it should be "ZLIB" followed
1467 by the uncompressed section size, 8 bytes in big-endian order. */
1468 if (compressed_size < header_size
1469 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1470 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1471 bfd_get_filename (abfd));
1472 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1473 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1474 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1475 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1476 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1477 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1478 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1479 uncompressed_size += compressed_buffer[11];
1480
1481 /* It is possible the section consists of several compressed
1482 buffers concatenated together, so we uncompress in a loop. */
1483 strm.zalloc = NULL;
1484 strm.zfree = NULL;
1485 strm.opaque = NULL;
1486 strm.avail_in = compressed_size - header_size;
1487 strm.next_in = (Bytef*) compressed_buffer + header_size;
1488 strm.avail_out = uncompressed_size;
1489 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1490 uncompressed_size);
1491 rc = inflateInit (&strm);
1492 while (strm.avail_in > 0)
1493 {
1494 if (rc != Z_OK)
1495 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1496 bfd_get_filename (abfd), rc);
1497 strm.next_out = ((Bytef*) uncompressed_buffer
1498 + (uncompressed_size - strm.avail_out));
1499 rc = inflate (&strm, Z_FINISH);
1500 if (rc != Z_STREAM_END)
1501 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1502 bfd_get_filename (abfd), rc);
1503 rc = inflateReset (&strm);
1504 }
1505 rc = inflateEnd (&strm);
1506 if (rc != Z_OK
1507 || strm.avail_out != 0)
1508 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1509 bfd_get_filename (abfd), rc);
1510
1511 do_cleanups (cleanup);
1512 *outbuf = uncompressed_buffer;
1513 *outsize = uncompressed_size;
1514 #endif
1515 }
1516
1517 /* Read the contents of the section SECTP from object file specified by
1518 OBJFILE, store info about the section into INFO.
1519 If the section is compressed, uncompress it before returning. */
1520
1521 static void
1522 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1523 {
1524 bfd *abfd = objfile->obfd;
1525 asection *sectp = info->asection;
1526 gdb_byte *buf, *retbuf;
1527 unsigned char header[4];
1528
1529 if (info->readin)
1530 return;
1531 info->buffer = NULL;
1532 info->was_mmapped = 0;
1533 info->readin = 1;
1534
1535 if (info->asection == NULL || info->size == 0)
1536 return;
1537
1538 /* Check if the file has a 4-byte header indicating compression. */
1539 if (info->size > sizeof (header)
1540 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1541 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1542 {
1543 /* Upon decompression, update the buffer and its size. */
1544 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1545 {
1546 zlib_decompress_section (objfile, sectp, &info->buffer,
1547 &info->size);
1548 return;
1549 }
1550 }
1551
1552 #ifdef HAVE_MMAP
1553 if (pagesize == 0)
1554 pagesize = getpagesize ();
1555
1556 /* Only try to mmap sections which are large enough: we don't want to
1557 waste space due to fragmentation. Also, only try mmap for sections
1558 without relocations. */
1559
1560 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1561 {
1562 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1563 size_t map_length = info->size + sectp->filepos - pg_offset;
1564 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1565 MAP_PRIVATE, pg_offset);
1566
1567 if (retbuf != MAP_FAILED)
1568 {
1569 info->was_mmapped = 1;
1570 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1571 #if HAVE_POSIX_MADVISE
1572 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1573 #endif
1574 return;
1575 }
1576 }
1577 #endif
1578
1579 /* If we get here, we are a normal, not-compressed section. */
1580 info->buffer = buf
1581 = obstack_alloc (&objfile->objfile_obstack, info->size);
1582
1583 /* When debugging .o files, we may need to apply relocations; see
1584 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1585 We never compress sections in .o files, so we only need to
1586 try this when the section is not compressed. */
1587 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1588 if (retbuf != NULL)
1589 {
1590 info->buffer = retbuf;
1591 return;
1592 }
1593
1594 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1595 || bfd_bread (buf, info->size, abfd) != info->size)
1596 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1597 bfd_get_filename (abfd));
1598 }
1599
1600 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1601 SECTION_NAME. */
1602
1603 void
1604 dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1605 asection **sectp, gdb_byte **bufp,
1606 bfd_size_type *sizep)
1607 {
1608 struct dwarf2_per_objfile *data
1609 = objfile_data (objfile, dwarf2_objfile_data_key);
1610 struct dwarf2_section_info *info;
1611
1612 /* We may see an objfile without any DWARF, in which case we just
1613 return nothing. */
1614 if (data == NULL)
1615 {
1616 *sectp = NULL;
1617 *bufp = NULL;
1618 *sizep = 0;
1619 return;
1620 }
1621 if (section_is_p (section_name, EH_FRAME_SECTION))
1622 info = &data->eh_frame;
1623 else if (section_is_p (section_name, FRAME_SECTION))
1624 info = &data->frame;
1625 else
1626 gdb_assert_not_reached ("unexpected section");
1627
1628 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1629 /* We haven't read this section in yet. Do it now. */
1630 dwarf2_read_section (objfile, info);
1631
1632 *sectp = info->asection;
1633 *bufp = info->buffer;
1634 *sizep = info->size;
1635 }
1636
1637 \f
1638
1639 /* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1640 this CU came. */
1641
1642 static void
1643 dw2_do_instantiate_symtab (struct objfile *objfile,
1644 struct dwarf2_per_cu_data *per_cu)
1645 {
1646 struct cleanup *back_to;
1647
1648 back_to = make_cleanup (dwarf2_release_queue, NULL);
1649
1650 queue_comp_unit (per_cu, objfile);
1651
1652 if (per_cu->from_debug_types)
1653 read_signatured_type_at_offset (objfile, per_cu->offset);
1654 else
1655 load_full_comp_unit (per_cu, objfile);
1656
1657 process_queue (objfile);
1658
1659 /* Age the cache, releasing compilation units that have not
1660 been used recently. */
1661 age_cached_comp_units ();
1662
1663 do_cleanups (back_to);
1664 }
1665
1666 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1667 the objfile from which this CU came. Returns the resulting symbol
1668 table. */
1669
1670 static struct symtab *
1671 dw2_instantiate_symtab (struct objfile *objfile,
1672 struct dwarf2_per_cu_data *per_cu)
1673 {
1674 if (!per_cu->v.quick->symtab)
1675 {
1676 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1677 increment_reading_symtab ();
1678 dw2_do_instantiate_symtab (objfile, per_cu);
1679 do_cleanups (back_to);
1680 }
1681 return per_cu->v.quick->symtab;
1682 }
1683
1684 /* Return the CU given its index. */
1685
1686 static struct dwarf2_per_cu_data *
1687 dw2_get_cu (int index)
1688 {
1689 if (index >= dwarf2_per_objfile->n_comp_units)
1690 {
1691 index -= dwarf2_per_objfile->n_comp_units;
1692 return dwarf2_per_objfile->type_comp_units[index];
1693 }
1694 return dwarf2_per_objfile->all_comp_units[index];
1695 }
1696
1697 /* A helper function that knows how to read a 64-bit value in a way
1698 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1699 otherwise. */
1700
1701 static int
1702 extract_cu_value (const char *bytes, ULONGEST *result)
1703 {
1704 if (sizeof (ULONGEST) < 8)
1705 {
1706 int i;
1707
1708 /* Ignore the upper 4 bytes if they are all zero. */
1709 for (i = 0; i < 4; ++i)
1710 if (bytes[i + 4] != 0)
1711 return 0;
1712
1713 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1714 }
1715 else
1716 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1717 return 1;
1718 }
1719
1720 /* Read the CU list from the mapped index, and use it to create all
1721 the CU objects for this objfile. Return 0 if something went wrong,
1722 1 if everything went ok. */
1723
1724 static int
1725 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1726 offset_type cu_list_elements)
1727 {
1728 offset_type i;
1729
1730 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1731 dwarf2_per_objfile->all_comp_units
1732 = obstack_alloc (&objfile->objfile_obstack,
1733 dwarf2_per_objfile->n_comp_units
1734 * sizeof (struct dwarf2_per_cu_data *));
1735
1736 for (i = 0; i < cu_list_elements; i += 2)
1737 {
1738 struct dwarf2_per_cu_data *the_cu;
1739 ULONGEST offset, length;
1740
1741 if (!extract_cu_value (cu_list, &offset)
1742 || !extract_cu_value (cu_list + 8, &length))
1743 return 0;
1744 cu_list += 2 * 8;
1745
1746 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1747 struct dwarf2_per_cu_data);
1748 the_cu->offset = offset;
1749 the_cu->length = length;
1750 the_cu->objfile = objfile;
1751 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1752 struct dwarf2_per_cu_quick_data);
1753 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1754 }
1755
1756 return 1;
1757 }
1758
1759 /* Create the signatured type hash table from the index. */
1760
1761 static int
1762 create_signatured_type_table_from_index (struct objfile *objfile,
1763 const gdb_byte *bytes,
1764 offset_type elements)
1765 {
1766 offset_type i;
1767 htab_t sig_types_hash;
1768
1769 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1770 dwarf2_per_objfile->type_comp_units
1771 = obstack_alloc (&objfile->objfile_obstack,
1772 dwarf2_per_objfile->n_type_comp_units
1773 * sizeof (struct dwarf2_per_cu_data *));
1774
1775 sig_types_hash = allocate_signatured_type_table (objfile);
1776
1777 for (i = 0; i < elements; i += 3)
1778 {
1779 struct signatured_type *type_sig;
1780 ULONGEST offset, type_offset, signature;
1781 void **slot;
1782
1783 if (!extract_cu_value (bytes, &offset)
1784 || !extract_cu_value (bytes + 8, &type_offset))
1785 return 0;
1786 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1787 bytes += 3 * 8;
1788
1789 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1790 struct signatured_type);
1791 type_sig->signature = signature;
1792 type_sig->offset = offset;
1793 type_sig->type_offset = type_offset;
1794 type_sig->per_cu.from_debug_types = 1;
1795 type_sig->per_cu.offset = offset;
1796 type_sig->per_cu.objfile = objfile;
1797 type_sig->per_cu.v.quick
1798 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1799 struct dwarf2_per_cu_quick_data);
1800
1801 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1802 *slot = type_sig;
1803
1804 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1805 }
1806
1807 dwarf2_per_objfile->signatured_types = sig_types_hash;
1808
1809 return 1;
1810 }
1811
1812 /* Read the address map data from the mapped index, and use it to
1813 populate the objfile's psymtabs_addrmap. */
1814
1815 static void
1816 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1817 {
1818 const gdb_byte *iter, *end;
1819 struct obstack temp_obstack;
1820 struct addrmap *mutable_map;
1821 struct cleanup *cleanup;
1822 CORE_ADDR baseaddr;
1823
1824 obstack_init (&temp_obstack);
1825 cleanup = make_cleanup_obstack_free (&temp_obstack);
1826 mutable_map = addrmap_create_mutable (&temp_obstack);
1827
1828 iter = index->address_table;
1829 end = iter + index->address_table_size;
1830
1831 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1832
1833 while (iter < end)
1834 {
1835 ULONGEST hi, lo, cu_index;
1836 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1837 iter += 8;
1838 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1839 iter += 8;
1840 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1841 iter += 4;
1842
1843 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1844 dw2_get_cu (cu_index));
1845 }
1846
1847 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1848 &objfile->objfile_obstack);
1849 do_cleanups (cleanup);
1850 }
1851
1852 /* The hash function for strings in the mapped index. This is the
1853 same as the hashtab.c hash function, but we keep a separate copy to
1854 maintain control over the implementation. This is necessary
1855 because the hash function is tied to the format of the mapped index
1856 file. */
1857
1858 static hashval_t
1859 mapped_index_string_hash (const void *p)
1860 {
1861 const unsigned char *str = (const unsigned char *) p;
1862 hashval_t r = 0;
1863 unsigned char c;
1864
1865 while ((c = *str++) != 0)
1866 r = r * 67 + c - 113;
1867
1868 return r;
1869 }
1870
1871 /* Find a slot in the mapped index INDEX for the object named NAME.
1872 If NAME is found, set *VEC_OUT to point to the CU vector in the
1873 constant pool and return 1. If NAME cannot be found, return 0. */
1874
1875 static int
1876 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1877 offset_type **vec_out)
1878 {
1879 offset_type hash = mapped_index_string_hash (name);
1880 offset_type slot, step;
1881
1882 slot = hash & (index->symbol_table_slots - 1);
1883 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
1884
1885 for (;;)
1886 {
1887 /* Convert a slot number to an offset into the table. */
1888 offset_type i = 2 * slot;
1889 const char *str;
1890 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
1891 return 0;
1892
1893 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
1894 if (!strcmp (name, str))
1895 {
1896 *vec_out = (offset_type *) (index->constant_pool
1897 + MAYBE_SWAP (index->symbol_table[i + 1]));
1898 return 1;
1899 }
1900
1901 slot = (slot + step) & (index->symbol_table_slots - 1);
1902 }
1903 }
1904
1905 /* Read the index file. If everything went ok, initialize the "quick"
1906 elements of all the CUs and return 1. Otherwise, return 0. */
1907
1908 static int
1909 dwarf2_read_index (struct objfile *objfile)
1910 {
1911 char *addr;
1912 struct mapped_index *map;
1913 offset_type *metadata;
1914 const gdb_byte *cu_list;
1915 const gdb_byte *types_list = NULL;
1916 offset_type version, cu_list_elements;
1917 offset_type types_list_elements = 0;
1918 int i;
1919
1920 if (dwarf2_per_objfile->gdb_index.asection == NULL
1921 || dwarf2_per_objfile->gdb_index.size == 0)
1922 return 0;
1923
1924 /* Older elfutils strip versions could keep the section in the main
1925 executable while splitting it for the separate debug info file. */
1926 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
1927 & SEC_HAS_CONTENTS) == 0)
1928 return 0;
1929
1930 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
1931
1932 addr = dwarf2_per_objfile->gdb_index.buffer;
1933 /* Version check. */
1934 version = MAYBE_SWAP (*(offset_type *) addr);
1935 /* Versions earlier than 3 emitted every copy of a psymbol. This
1936 causes the index to behave very poorly for certain requests. So,
1937 it seems better to just ignore such indices. */
1938 if (version < 3)
1939 return 0;
1940
1941 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
1942 map->total_size = dwarf2_per_objfile->gdb_index.size;
1943
1944 metadata = (offset_type *) (addr + sizeof (offset_type));
1945
1946 i = 0;
1947 cu_list = addr + MAYBE_SWAP (metadata[i]);
1948 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
1949 / 8);
1950 ++i;
1951
1952 types_list = addr + MAYBE_SWAP (metadata[i]);
1953 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
1954 - MAYBE_SWAP (metadata[i]))
1955 / 8);
1956 ++i;
1957
1958 map->address_table = addr + MAYBE_SWAP (metadata[i]);
1959 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
1960 - MAYBE_SWAP (metadata[i]));
1961 ++i;
1962
1963 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
1964 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
1965 - MAYBE_SWAP (metadata[i]))
1966 / (2 * sizeof (offset_type)));
1967 ++i;
1968
1969 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
1970
1971 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
1972 return 0;
1973
1974 if (types_list_elements
1975 && !create_signatured_type_table_from_index (objfile, types_list,
1976 types_list_elements))
1977 return 0;
1978
1979 create_addrmap_from_index (objfile, map);
1980
1981 dwarf2_per_objfile->index_table = map;
1982 dwarf2_per_objfile->using_index = 1;
1983
1984 return 1;
1985 }
1986
1987 /* A helper for the "quick" functions which sets the global
1988 dwarf2_per_objfile according to OBJFILE. */
1989
1990 static void
1991 dw2_setup (struct objfile *objfile)
1992 {
1993 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1994 gdb_assert (dwarf2_per_objfile);
1995 }
1996
1997 /* A helper for the "quick" functions which attempts to read the line
1998 table for THIS_CU. */
1999
2000 static void
2001 dw2_require_line_header (struct objfile *objfile,
2002 struct dwarf2_per_cu_data *this_cu)
2003 {
2004 bfd *abfd = objfile->obfd;
2005 struct line_header *lh = NULL;
2006 struct attribute *attr;
2007 struct cleanup *cleanups;
2008 struct die_info *comp_unit_die;
2009 struct dwarf2_section_info* sec;
2010 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2011 int has_children, i;
2012 struct dwarf2_cu cu;
2013 unsigned int bytes_read, buffer_size;
2014 struct die_reader_specs reader_specs;
2015 char *name, *comp_dir;
2016
2017 if (this_cu->v.quick->read_lines)
2018 return;
2019 this_cu->v.quick->read_lines = 1;
2020
2021 memset (&cu, 0, sizeof (cu));
2022 cu.objfile = objfile;
2023 obstack_init (&cu.comp_unit_obstack);
2024
2025 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2026
2027 if (this_cu->from_debug_types)
2028 sec = &dwarf2_per_objfile->types;
2029 else
2030 sec = &dwarf2_per_objfile->info;
2031 dwarf2_read_section (objfile, sec);
2032 buffer_size = sec->size;
2033 buffer = sec->buffer;
2034 info_ptr = buffer + this_cu->offset;
2035 beg_of_comp_unit = info_ptr;
2036
2037 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2038 buffer, buffer_size,
2039 abfd);
2040
2041 /* Complete the cu_header. */
2042 cu.header.offset = beg_of_comp_unit - buffer;
2043 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2044
2045 this_cu->cu = &cu;
2046 cu.per_cu = this_cu;
2047
2048 dwarf2_read_abbrevs (abfd, &cu);
2049 make_cleanup (dwarf2_free_abbrev_table, &cu);
2050
2051 if (this_cu->from_debug_types)
2052 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2053 init_cu_die_reader (&reader_specs, &cu);
2054 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2055 &has_children);
2056
2057 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2058 if (attr)
2059 {
2060 unsigned int line_offset = DW_UNSND (attr);
2061 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2062 }
2063 if (lh == NULL)
2064 {
2065 do_cleanups (cleanups);
2066 return;
2067 }
2068
2069 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2070
2071 this_cu->v.quick->lines = lh;
2072
2073 this_cu->v.quick->file_names
2074 = obstack_alloc (&objfile->objfile_obstack,
2075 lh->num_file_names * sizeof (char *));
2076 for (i = 0; i < lh->num_file_names; ++i)
2077 this_cu->v.quick->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2078
2079 do_cleanups (cleanups);
2080 }
2081
2082 /* A helper for the "quick" functions which computes and caches the
2083 real path for a given file name from the line table.
2084 dw2_require_line_header must have been called before this is
2085 invoked. */
2086
2087 static const char *
2088 dw2_require_full_path (struct objfile *objfile,
2089 struct dwarf2_per_cu_data *per_cu,
2090 int index)
2091 {
2092 if (!per_cu->v.quick->full_names)
2093 per_cu->v.quick->full_names
2094 = OBSTACK_CALLOC (&objfile->objfile_obstack,
2095 per_cu->v.quick->lines->num_file_names,
2096 sizeof (char *));
2097
2098 if (!per_cu->v.quick->full_names[index])
2099 per_cu->v.quick->full_names[index]
2100 = gdb_realpath (per_cu->v.quick->file_names[index]);
2101
2102 return per_cu->v.quick->full_names[index];
2103 }
2104
2105 static struct symtab *
2106 dw2_find_last_source_symtab (struct objfile *objfile)
2107 {
2108 int index;
2109 dw2_setup (objfile);
2110 index = dwarf2_per_objfile->n_comp_units - 1;
2111 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
2112 }
2113
2114 static void
2115 dw2_forget_cached_source_info (struct objfile *objfile)
2116 {
2117 int i;
2118
2119 dw2_setup (objfile);
2120 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2121 + dwarf2_per_objfile->n_type_comp_units); ++i)
2122 {
2123 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2124
2125 if (per_cu->v.quick->full_names)
2126 {
2127 int j;
2128
2129 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2130 xfree ((void *) per_cu->v.quick->full_names[j]);
2131 }
2132 }
2133 }
2134
2135 static int
2136 dw2_lookup_symtab (struct objfile *objfile, const char *name,
2137 const char *full_path, const char *real_path,
2138 struct symtab **result)
2139 {
2140 int i;
2141 int check_basename = lbasename (name) == name;
2142 struct dwarf2_per_cu_data *base_cu = NULL;
2143
2144 dw2_setup (objfile);
2145 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2146 + dwarf2_per_objfile->n_type_comp_units); ++i)
2147 {
2148 int j;
2149 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2150
2151 if (per_cu->v.quick->symtab)
2152 continue;
2153
2154 dw2_require_line_header (objfile, per_cu);
2155 if (!per_cu->v.quick->lines)
2156 continue;
2157
2158 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2159 {
2160 const char *this_name = per_cu->v.quick->file_names[j];
2161
2162 if (FILENAME_CMP (name, this_name) == 0)
2163 {
2164 *result = dw2_instantiate_symtab (objfile, per_cu);
2165 return 1;
2166 }
2167
2168 if (check_basename && ! base_cu
2169 && FILENAME_CMP (lbasename (this_name), name) == 0)
2170 base_cu = per_cu;
2171
2172 if (full_path != NULL)
2173 {
2174 const char *this_full_name = dw2_require_full_path (objfile,
2175 per_cu, j);
2176
2177 if (this_full_name
2178 && FILENAME_CMP (full_path, this_full_name) == 0)
2179 {
2180 *result = dw2_instantiate_symtab (objfile, per_cu);
2181 return 1;
2182 }
2183 }
2184
2185 if (real_path != NULL)
2186 {
2187 const char *this_full_name = dw2_require_full_path (objfile,
2188 per_cu, j);
2189
2190 if (this_full_name != NULL)
2191 {
2192 char *rp = gdb_realpath (this_full_name);
2193 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
2194 {
2195 xfree (rp);
2196 *result = dw2_instantiate_symtab (objfile, per_cu);
2197 return 1;
2198 }
2199 xfree (rp);
2200 }
2201 }
2202 }
2203 }
2204
2205 if (base_cu)
2206 {
2207 *result = dw2_instantiate_symtab (objfile, base_cu);
2208 return 1;
2209 }
2210
2211 return 0;
2212 }
2213
2214 static struct symtab *
2215 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2216 const char *name, domain_enum domain)
2217 {
2218 /* We do all the work in the pre_expand_symtabs_matching hook
2219 instead. */
2220 return NULL;
2221 }
2222
2223 /* A helper function that expands all symtabs that hold an object
2224 named NAME. */
2225
2226 static void
2227 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2228 {
2229 dw2_setup (objfile);
2230
2231 if (dwarf2_per_objfile->index_table)
2232 {
2233 offset_type *vec;
2234
2235 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2236 name, &vec))
2237 {
2238 offset_type i, len = MAYBE_SWAP (*vec);
2239 for (i = 0; i < len; ++i)
2240 {
2241 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2242 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2243
2244 dw2_instantiate_symtab (objfile, per_cu);
2245 }
2246 }
2247 }
2248 }
2249
2250 static void
2251 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2252 int kind, const char *name,
2253 domain_enum domain)
2254 {
2255 dw2_do_expand_symtabs_matching (objfile, name);
2256 }
2257
2258 static void
2259 dw2_print_stats (struct objfile *objfile)
2260 {
2261 int i, count;
2262
2263 dw2_setup (objfile);
2264 count = 0;
2265 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2266 + dwarf2_per_objfile->n_type_comp_units); ++i)
2267 {
2268 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2269
2270 if (!per_cu->v.quick->symtab)
2271 ++count;
2272 }
2273 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2274 }
2275
2276 static void
2277 dw2_dump (struct objfile *objfile)
2278 {
2279 /* Nothing worth printing. */
2280 }
2281
2282 static void
2283 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2284 struct section_offsets *delta)
2285 {
2286 /* There's nothing to relocate here. */
2287 }
2288
2289 static void
2290 dw2_expand_symtabs_for_function (struct objfile *objfile,
2291 const char *func_name)
2292 {
2293 dw2_do_expand_symtabs_matching (objfile, func_name);
2294 }
2295
2296 static void
2297 dw2_expand_all_symtabs (struct objfile *objfile)
2298 {
2299 int i;
2300
2301 dw2_setup (objfile);
2302
2303 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2304 + dwarf2_per_objfile->n_type_comp_units); ++i)
2305 {
2306 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2307
2308 dw2_instantiate_symtab (objfile, per_cu);
2309 }
2310 }
2311
2312 static void
2313 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2314 const char *filename)
2315 {
2316 int i;
2317
2318 dw2_setup (objfile);
2319 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2320 + dwarf2_per_objfile->n_type_comp_units); ++i)
2321 {
2322 int j;
2323 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2324
2325 if (per_cu->v.quick->symtab)
2326 continue;
2327
2328 dw2_require_line_header (objfile, per_cu);
2329 if (!per_cu->v.quick->lines)
2330 continue;
2331
2332 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2333 {
2334 const char *this_name = per_cu->v.quick->file_names[j];
2335 if (strcmp (this_name, filename) == 0)
2336 {
2337 dw2_instantiate_symtab (objfile, per_cu);
2338 break;
2339 }
2340 }
2341 }
2342 }
2343
2344 static const char *
2345 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2346 {
2347 struct dwarf2_per_cu_data *per_cu;
2348 offset_type *vec;
2349
2350 dw2_setup (objfile);
2351
2352 if (!dwarf2_per_objfile->index_table)
2353 return NULL;
2354
2355 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2356 name, &vec))
2357 return NULL;
2358
2359 /* Note that this just looks at the very first one named NAME -- but
2360 actually we are looking for a function. find_main_filename
2361 should be rewritten so that it doesn't require a custom hook. It
2362 could just use the ordinary symbol tables. */
2363 /* vec[0] is the length, which must always be >0. */
2364 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2365
2366 dw2_require_line_header (objfile, per_cu);
2367 if (!per_cu->v.quick->lines)
2368 return NULL;
2369
2370 return per_cu->v.quick->file_names[per_cu->v.quick->lines->num_file_names - 1];
2371 }
2372
2373 static void
2374 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2375 struct objfile *objfile, int global,
2376 int (*callback) (struct block *,
2377 struct symbol *, void *),
2378 void *data,
2379 int (*match) (const char *, const char *),
2380 int (*ordered_compare) (const char *,
2381 const char *))
2382 {
2383 /* Currently unimplemented; used for Ada. The function can be called if the
2384 current language is Ada for a non-Ada objfile using GNU index. As Ada
2385 does not look for non-Ada symbols this function should just return. */
2386 }
2387
2388 static void
2389 dw2_expand_symtabs_matching (struct objfile *objfile,
2390 int (*file_matcher) (const char *, void *),
2391 int (*name_matcher) (const char *, void *),
2392 domain_enum kind,
2393 void *data)
2394 {
2395 int i;
2396 offset_type iter;
2397 struct mapped_index *index;
2398
2399 dw2_setup (objfile);
2400 if (!dwarf2_per_objfile->index_table)
2401 return;
2402 index = dwarf2_per_objfile->index_table;
2403
2404 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2405 + dwarf2_per_objfile->n_type_comp_units); ++i)
2406 {
2407 int j;
2408 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2409
2410 per_cu->v.quick->mark = 0;
2411 if (per_cu->v.quick->symtab)
2412 continue;
2413
2414 dw2_require_line_header (objfile, per_cu);
2415 if (!per_cu->v.quick->lines)
2416 continue;
2417
2418 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2419 {
2420 if (file_matcher (per_cu->v.quick->file_names[j], data))
2421 {
2422 per_cu->v.quick->mark = 1;
2423 break;
2424 }
2425 }
2426 }
2427
2428 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2429 {
2430 offset_type idx = 2 * iter;
2431 const char *name;
2432 offset_type *vec, vec_len, vec_idx;
2433
2434 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2435 continue;
2436
2437 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2438
2439 if (! (*name_matcher) (name, data))
2440 continue;
2441
2442 /* The name was matched, now expand corresponding CUs that were
2443 marked. */
2444 vec = (offset_type *) (index->constant_pool
2445 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2446 vec_len = MAYBE_SWAP (vec[0]);
2447 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2448 {
2449 struct dwarf2_per_cu_data *per_cu;
2450
2451 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2452 if (per_cu->v.quick->mark)
2453 dw2_instantiate_symtab (objfile, per_cu);
2454 }
2455 }
2456 }
2457
2458 static struct symtab *
2459 dw2_find_pc_sect_symtab (struct objfile *objfile,
2460 struct minimal_symbol *msymbol,
2461 CORE_ADDR pc,
2462 struct obj_section *section,
2463 int warn_if_readin)
2464 {
2465 struct dwarf2_per_cu_data *data;
2466
2467 dw2_setup (objfile);
2468
2469 if (!objfile->psymtabs_addrmap)
2470 return NULL;
2471
2472 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2473 if (!data)
2474 return NULL;
2475
2476 if (warn_if_readin && data->v.quick->symtab)
2477 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2478 paddress (get_objfile_arch (objfile), pc));
2479
2480 return dw2_instantiate_symtab (objfile, data);
2481 }
2482
2483 static void
2484 dw2_map_symbol_names (struct objfile *objfile,
2485 void (*fun) (const char *, void *),
2486 void *data)
2487 {
2488 offset_type iter;
2489 struct mapped_index *index;
2490
2491 dw2_setup (objfile);
2492
2493 if (!dwarf2_per_objfile->index_table)
2494 return;
2495 index = dwarf2_per_objfile->index_table;
2496
2497 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2498 {
2499 offset_type idx = 2 * iter;
2500 const char *name;
2501 offset_type *vec, vec_len, vec_idx;
2502
2503 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2504 continue;
2505
2506 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
2507
2508 (*fun) (name, data);
2509 }
2510 }
2511
2512 static void
2513 dw2_map_symbol_filenames (struct objfile *objfile,
2514 void (*fun) (const char *, const char *, void *),
2515 void *data)
2516 {
2517 int i;
2518
2519 dw2_setup (objfile);
2520 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2521 + dwarf2_per_objfile->n_type_comp_units); ++i)
2522 {
2523 int j;
2524 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2525
2526 if (per_cu->v.quick->symtab)
2527 continue;
2528
2529 dw2_require_line_header (objfile, per_cu);
2530 if (!per_cu->v.quick->lines)
2531 continue;
2532
2533 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2534 {
2535 const char *this_full_name = dw2_require_full_path (objfile, per_cu,
2536 j);
2537 (*fun) (per_cu->v.quick->file_names[j], this_full_name, data);
2538 }
2539 }
2540 }
2541
2542 static int
2543 dw2_has_symbols (struct objfile *objfile)
2544 {
2545 return 1;
2546 }
2547
2548 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2549 {
2550 dw2_has_symbols,
2551 dw2_find_last_source_symtab,
2552 dw2_forget_cached_source_info,
2553 dw2_lookup_symtab,
2554 dw2_lookup_symbol,
2555 dw2_pre_expand_symtabs_matching,
2556 dw2_print_stats,
2557 dw2_dump,
2558 dw2_relocate,
2559 dw2_expand_symtabs_for_function,
2560 dw2_expand_all_symtabs,
2561 dw2_expand_symtabs_with_filename,
2562 dw2_find_symbol_file,
2563 dw2_map_matching_symbols,
2564 dw2_expand_symtabs_matching,
2565 dw2_find_pc_sect_symtab,
2566 dw2_map_symbol_names,
2567 dw2_map_symbol_filenames
2568 };
2569
2570 /* Initialize for reading DWARF for this objfile. Return 0 if this
2571 file will use psymtabs, or 1 if using the GNU index. */
2572
2573 int
2574 dwarf2_initialize_objfile (struct objfile *objfile)
2575 {
2576 /* If we're about to read full symbols, don't bother with the
2577 indices. In this case we also don't care if some other debug
2578 format is making psymtabs, because they are all about to be
2579 expanded anyway. */
2580 if ((objfile->flags & OBJF_READNOW))
2581 {
2582 int i;
2583
2584 dwarf2_per_objfile->using_index = 1;
2585 create_all_comp_units (objfile);
2586 create_debug_types_hash_table (objfile);
2587
2588 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2589 + dwarf2_per_objfile->n_type_comp_units); ++i)
2590 {
2591 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2592
2593 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2594 struct dwarf2_per_cu_quick_data);
2595 }
2596
2597 /* Return 1 so that gdb sees the "quick" functions. However,
2598 these functions will be no-ops because we will have expanded
2599 all symtabs. */
2600 return 1;
2601 }
2602
2603 if (dwarf2_read_index (objfile))
2604 return 1;
2605
2606 dwarf2_build_psymtabs (objfile);
2607 return 0;
2608 }
2609
2610 \f
2611
2612 /* Build a partial symbol table. */
2613
2614 void
2615 dwarf2_build_psymtabs (struct objfile *objfile)
2616 {
2617 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2618 {
2619 init_psymbol_list (objfile, 1024);
2620 }
2621
2622 dwarf2_build_psymtabs_hard (objfile);
2623 }
2624
2625 /* Return TRUE if OFFSET is within CU_HEADER. */
2626
2627 static inline int
2628 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2629 {
2630 unsigned int bottom = cu_header->offset;
2631 unsigned int top = (cu_header->offset
2632 + cu_header->length
2633 + cu_header->initial_length_size);
2634
2635 return (offset >= bottom && offset < top);
2636 }
2637
2638 /* Read in the comp unit header information from the debug_info at info_ptr.
2639 NOTE: This leaves members offset, first_die_offset to be filled in
2640 by the caller. */
2641
2642 static gdb_byte *
2643 read_comp_unit_head (struct comp_unit_head *cu_header,
2644 gdb_byte *info_ptr, bfd *abfd)
2645 {
2646 int signed_addr;
2647 unsigned int bytes_read;
2648
2649 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2650 cu_header->initial_length_size = bytes_read;
2651 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2652 info_ptr += bytes_read;
2653 cu_header->version = read_2_bytes (abfd, info_ptr);
2654 info_ptr += 2;
2655 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2656 &bytes_read);
2657 info_ptr += bytes_read;
2658 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2659 info_ptr += 1;
2660 signed_addr = bfd_get_sign_extend_vma (abfd);
2661 if (signed_addr < 0)
2662 internal_error (__FILE__, __LINE__,
2663 _("read_comp_unit_head: dwarf from non elf file"));
2664 cu_header->signed_addr_p = signed_addr;
2665
2666 return info_ptr;
2667 }
2668
2669 static gdb_byte *
2670 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
2671 gdb_byte *buffer, unsigned int buffer_size,
2672 bfd *abfd)
2673 {
2674 gdb_byte *beg_of_comp_unit = info_ptr;
2675
2676 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2677
2678 if (header->version != 2 && header->version != 3 && header->version != 4)
2679 error (_("Dwarf Error: wrong version in compilation unit header "
2680 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2681 bfd_get_filename (abfd));
2682
2683 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
2684 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2685 "(offset 0x%lx + 6) [in module %s]"),
2686 (long) header->abbrev_offset,
2687 (long) (beg_of_comp_unit - buffer),
2688 bfd_get_filename (abfd));
2689
2690 if (beg_of_comp_unit + header->length + header->initial_length_size
2691 > buffer + buffer_size)
2692 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2693 "(offset 0x%lx + 0) [in module %s]"),
2694 (long) header->length,
2695 (long) (beg_of_comp_unit - buffer),
2696 bfd_get_filename (abfd));
2697
2698 return info_ptr;
2699 }
2700
2701 /* Read in the types comp unit header information from .debug_types entry at
2702 types_ptr. The result is a pointer to one past the end of the header. */
2703
2704 static gdb_byte *
2705 read_type_comp_unit_head (struct comp_unit_head *cu_header,
2706 ULONGEST *signature,
2707 gdb_byte *types_ptr, bfd *abfd)
2708 {
2709 gdb_byte *initial_types_ptr = types_ptr;
2710
2711 dwarf2_read_section (dwarf2_per_objfile->objfile,
2712 &dwarf2_per_objfile->types);
2713 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2714
2715 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2716
2717 *signature = read_8_bytes (abfd, types_ptr);
2718 types_ptr += 8;
2719 types_ptr += cu_header->offset_size;
2720 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2721
2722 return types_ptr;
2723 }
2724
2725 /* Allocate a new partial symtab for file named NAME and mark this new
2726 partial symtab as being an include of PST. */
2727
2728 static void
2729 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2730 struct objfile *objfile)
2731 {
2732 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2733
2734 subpst->section_offsets = pst->section_offsets;
2735 subpst->textlow = 0;
2736 subpst->texthigh = 0;
2737
2738 subpst->dependencies = (struct partial_symtab **)
2739 obstack_alloc (&objfile->objfile_obstack,
2740 sizeof (struct partial_symtab *));
2741 subpst->dependencies[0] = pst;
2742 subpst->number_of_dependencies = 1;
2743
2744 subpst->globals_offset = 0;
2745 subpst->n_global_syms = 0;
2746 subpst->statics_offset = 0;
2747 subpst->n_static_syms = 0;
2748 subpst->symtab = NULL;
2749 subpst->read_symtab = pst->read_symtab;
2750 subpst->readin = 0;
2751
2752 /* No private part is necessary for include psymtabs. This property
2753 can be used to differentiate between such include psymtabs and
2754 the regular ones. */
2755 subpst->read_symtab_private = NULL;
2756 }
2757
2758 /* Read the Line Number Program data and extract the list of files
2759 included by the source file represented by PST. Build an include
2760 partial symtab for each of these included files. */
2761
2762 static void
2763 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
2764 struct die_info *die,
2765 struct partial_symtab *pst)
2766 {
2767 struct objfile *objfile = cu->objfile;
2768 bfd *abfd = objfile->obfd;
2769 struct line_header *lh = NULL;
2770 struct attribute *attr;
2771
2772 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2773 if (attr)
2774 {
2775 unsigned int line_offset = DW_UNSND (attr);
2776
2777 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2778 }
2779 if (lh == NULL)
2780 return; /* No linetable, so no includes. */
2781
2782 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2783 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
2784
2785 free_line_header (lh);
2786 }
2787
2788 static hashval_t
2789 hash_type_signature (const void *item)
2790 {
2791 const struct signatured_type *type_sig = item;
2792
2793 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2794 return type_sig->signature;
2795 }
2796
2797 static int
2798 eq_type_signature (const void *item_lhs, const void *item_rhs)
2799 {
2800 const struct signatured_type *lhs = item_lhs;
2801 const struct signatured_type *rhs = item_rhs;
2802
2803 return lhs->signature == rhs->signature;
2804 }
2805
2806 /* Allocate a hash table for signatured types. */
2807
2808 static htab_t
2809 allocate_signatured_type_table (struct objfile *objfile)
2810 {
2811 return htab_create_alloc_ex (41,
2812 hash_type_signature,
2813 eq_type_signature,
2814 NULL,
2815 &objfile->objfile_obstack,
2816 hashtab_obstack_allocate,
2817 dummy_obstack_deallocate);
2818 }
2819
2820 /* A helper function to add a signatured type CU to a list. */
2821
2822 static int
2823 add_signatured_type_cu_to_list (void **slot, void *datum)
2824 {
2825 struct signatured_type *sigt = *slot;
2826 struct dwarf2_per_cu_data ***datap = datum;
2827
2828 **datap = &sigt->per_cu;
2829 ++*datap;
2830
2831 return 1;
2832 }
2833
2834 /* Create the hash table of all entries in the .debug_types section.
2835 The result is zero if there is an error (e.g. missing .debug_types section),
2836 otherwise non-zero. */
2837
2838 static int
2839 create_debug_types_hash_table (struct objfile *objfile)
2840 {
2841 gdb_byte *info_ptr;
2842 htab_t types_htab;
2843 struct dwarf2_per_cu_data **iter;
2844
2845 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
2846 info_ptr = dwarf2_per_objfile->types.buffer;
2847
2848 if (info_ptr == NULL)
2849 {
2850 dwarf2_per_objfile->signatured_types = NULL;
2851 return 0;
2852 }
2853
2854 types_htab = allocate_signatured_type_table (objfile);
2855
2856 if (dwarf2_die_debug)
2857 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
2858
2859 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2860 {
2861 unsigned int offset;
2862 unsigned int offset_size;
2863 unsigned int type_offset;
2864 unsigned int length, initial_length_size;
2865 unsigned short version;
2866 ULONGEST signature;
2867 struct signatured_type *type_sig;
2868 void **slot;
2869 gdb_byte *ptr = info_ptr;
2870
2871 offset = ptr - dwarf2_per_objfile->types.buffer;
2872
2873 /* We need to read the type's signature in order to build the hash
2874 table, but we don't need to read anything else just yet. */
2875
2876 /* Sanity check to ensure entire cu is present. */
2877 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
2878 if (ptr + length + initial_length_size
2879 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2880 {
2881 complaint (&symfile_complaints,
2882 _("debug type entry runs off end of `.debug_types' section, ignored"));
2883 break;
2884 }
2885
2886 offset_size = initial_length_size == 4 ? 4 : 8;
2887 ptr += initial_length_size;
2888 version = bfd_get_16 (objfile->obfd, ptr);
2889 ptr += 2;
2890 ptr += offset_size; /* abbrev offset */
2891 ptr += 1; /* address size */
2892 signature = bfd_get_64 (objfile->obfd, ptr);
2893 ptr += 8;
2894 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
2895
2896 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
2897 memset (type_sig, 0, sizeof (*type_sig));
2898 type_sig->signature = signature;
2899 type_sig->offset = offset;
2900 type_sig->type_offset = type_offset;
2901 type_sig->per_cu.objfile = objfile;
2902 type_sig->per_cu.from_debug_types = 1;
2903
2904 slot = htab_find_slot (types_htab, type_sig, INSERT);
2905 gdb_assert (slot != NULL);
2906 *slot = type_sig;
2907
2908 if (dwarf2_die_debug)
2909 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
2910 offset, phex (signature, sizeof (signature)));
2911
2912 info_ptr = info_ptr + initial_length_size + length;
2913 }
2914
2915 dwarf2_per_objfile->signatured_types = types_htab;
2916
2917 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
2918 dwarf2_per_objfile->type_comp_units
2919 = obstack_alloc (&objfile->objfile_obstack,
2920 dwarf2_per_objfile->n_type_comp_units
2921 * sizeof (struct dwarf2_per_cu_data *));
2922 iter = &dwarf2_per_objfile->type_comp_units[0];
2923 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
2924 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
2925 == dwarf2_per_objfile->n_type_comp_units);
2926
2927 return 1;
2928 }
2929
2930 /* Lookup a signature based type.
2931 Returns NULL if SIG is not present in the table. */
2932
2933 static struct signatured_type *
2934 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
2935 {
2936 struct signatured_type find_entry, *entry;
2937
2938 if (dwarf2_per_objfile->signatured_types == NULL)
2939 {
2940 complaint (&symfile_complaints,
2941 _("missing `.debug_types' section for DW_FORM_sig8 die"));
2942 return 0;
2943 }
2944
2945 find_entry.signature = sig;
2946 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
2947 return entry;
2948 }
2949
2950 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
2951
2952 static void
2953 init_cu_die_reader (struct die_reader_specs *reader,
2954 struct dwarf2_cu *cu)
2955 {
2956 reader->abfd = cu->objfile->obfd;
2957 reader->cu = cu;
2958 if (cu->per_cu->from_debug_types)
2959 {
2960 gdb_assert (dwarf2_per_objfile->types.readin);
2961 reader->buffer = dwarf2_per_objfile->types.buffer;
2962 }
2963 else
2964 {
2965 gdb_assert (dwarf2_per_objfile->info.readin);
2966 reader->buffer = dwarf2_per_objfile->info.buffer;
2967 }
2968 }
2969
2970 /* Find the base address of the compilation unit for range lists and
2971 location lists. It will normally be specified by DW_AT_low_pc.
2972 In DWARF-3 draft 4, the base address could be overridden by
2973 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2974 compilation units with discontinuous ranges. */
2975
2976 static void
2977 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
2978 {
2979 struct attribute *attr;
2980
2981 cu->base_known = 0;
2982 cu->base_address = 0;
2983
2984 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
2985 if (attr)
2986 {
2987 cu->base_address = DW_ADDR (attr);
2988 cu->base_known = 1;
2989 }
2990 else
2991 {
2992 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
2993 if (attr)
2994 {
2995 cu->base_address = DW_ADDR (attr);
2996 cu->base_known = 1;
2997 }
2998 }
2999 }
3000
3001 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3002 to combine the common parts.
3003 Process a compilation unit for a psymtab.
3004 BUFFER is a pointer to the beginning of the dwarf section buffer,
3005 either .debug_info or debug_types.
3006 INFO_PTR is a pointer to the start of the CU.
3007 Returns a pointer to the next CU. */
3008
3009 static gdb_byte *
3010 process_psymtab_comp_unit (struct objfile *objfile,
3011 struct dwarf2_per_cu_data *this_cu,
3012 gdb_byte *buffer, gdb_byte *info_ptr,
3013 unsigned int buffer_size)
3014 {
3015 bfd *abfd = objfile->obfd;
3016 gdb_byte *beg_of_comp_unit = info_ptr;
3017 struct die_info *comp_unit_die;
3018 struct partial_symtab *pst;
3019 CORE_ADDR baseaddr;
3020 struct cleanup *back_to_inner;
3021 struct dwarf2_cu cu;
3022 int has_children, has_pc_info;
3023 struct attribute *attr;
3024 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3025 struct die_reader_specs reader_specs;
3026
3027 memset (&cu, 0, sizeof (cu));
3028 cu.objfile = objfile;
3029 obstack_init (&cu.comp_unit_obstack);
3030
3031 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3032
3033 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3034 buffer, buffer_size,
3035 abfd);
3036
3037 /* Complete the cu_header. */
3038 cu.header.offset = beg_of_comp_unit - buffer;
3039 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
3040
3041 cu.list_in_scope = &file_symbols;
3042
3043 /* If this compilation unit was already read in, free the
3044 cached copy in order to read it in again. This is
3045 necessary because we skipped some symbols when we first
3046 read in the compilation unit (see load_partial_dies).
3047 This problem could be avoided, but the benefit is
3048 unclear. */
3049 if (this_cu->cu != NULL)
3050 free_one_cached_comp_unit (this_cu->cu);
3051
3052 /* Note that this is a pointer to our stack frame, being
3053 added to a global data structure. It will be cleaned up
3054 in free_stack_comp_unit when we finish with this
3055 compilation unit. */
3056 this_cu->cu = &cu;
3057 cu.per_cu = this_cu;
3058
3059 /* Read the abbrevs for this compilation unit into a table. */
3060 dwarf2_read_abbrevs (abfd, &cu);
3061 make_cleanup (dwarf2_free_abbrev_table, &cu);
3062
3063 /* Read the compilation unit die. */
3064 if (this_cu->from_debug_types)
3065 info_ptr += 8 /*signature*/ + cu.header.offset_size;
3066 init_cu_die_reader (&reader_specs, &cu);
3067 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3068 &has_children);
3069
3070 if (this_cu->from_debug_types)
3071 {
3072 /* offset,length haven't been set yet for type units. */
3073 this_cu->offset = cu.header.offset;
3074 this_cu->length = cu.header.length + cu.header.initial_length_size;
3075 }
3076 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3077 {
3078 info_ptr = (beg_of_comp_unit + cu.header.length
3079 + cu.header.initial_length_size);
3080 do_cleanups (back_to_inner);
3081 return info_ptr;
3082 }
3083
3084 /* Set the language we're debugging. */
3085 attr = dwarf2_attr (comp_unit_die, DW_AT_language, &cu);
3086 if (attr)
3087 set_cu_language (DW_UNSND (attr), &cu);
3088 else
3089 set_cu_language (language_minimal, &cu);
3090
3091 /* Allocate a new partial symbol table structure. */
3092 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3093 pst = start_psymtab_common (objfile, objfile->section_offsets,
3094 (attr != NULL) ? DW_STRING (attr) : "",
3095 /* TEXTLOW and TEXTHIGH are set below. */
3096 0,
3097 objfile->global_psymbols.next,
3098 objfile->static_psymbols.next);
3099
3100 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3101 if (attr != NULL)
3102 pst->dirname = DW_STRING (attr);
3103
3104 pst->read_symtab_private = this_cu;
3105
3106 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3107
3108 /* Store the function that reads in the rest of the symbol table */
3109 pst->read_symtab = dwarf2_psymtab_to_symtab;
3110
3111 this_cu->v.psymtab = pst;
3112
3113 dwarf2_find_base_address (comp_unit_die, &cu);
3114
3115 /* Possibly set the default values of LOWPC and HIGHPC from
3116 `DW_AT_ranges'. */
3117 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3118 &best_highpc, &cu, pst);
3119 if (has_pc_info == 1 && best_lowpc < best_highpc)
3120 /* Store the contiguous range if it is not empty; it can be empty for
3121 CUs with no code. */
3122 addrmap_set_empty (objfile->psymtabs_addrmap,
3123 best_lowpc + baseaddr,
3124 best_highpc + baseaddr - 1, pst);
3125
3126 /* Check if comp unit has_children.
3127 If so, read the rest of the partial symbols from this comp unit.
3128 If not, there's no more debug_info for this comp unit. */
3129 if (has_children)
3130 {
3131 struct partial_die_info *first_die;
3132 CORE_ADDR lowpc, highpc;
3133
3134 lowpc = ((CORE_ADDR) -1);
3135 highpc = ((CORE_ADDR) 0);
3136
3137 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3138
3139 scan_partial_symbols (first_die, &lowpc, &highpc,
3140 ! has_pc_info, &cu);
3141
3142 /* If we didn't find a lowpc, set it to highpc to avoid
3143 complaints from `maint check'. */
3144 if (lowpc == ((CORE_ADDR) -1))
3145 lowpc = highpc;
3146
3147 /* If the compilation unit didn't have an explicit address range,
3148 then use the information extracted from its child dies. */
3149 if (! has_pc_info)
3150 {
3151 best_lowpc = lowpc;
3152 best_highpc = highpc;
3153 }
3154 }
3155 pst->textlow = best_lowpc + baseaddr;
3156 pst->texthigh = best_highpc + baseaddr;
3157
3158 pst->n_global_syms = objfile->global_psymbols.next -
3159 (objfile->global_psymbols.list + pst->globals_offset);
3160 pst->n_static_syms = objfile->static_psymbols.next -
3161 (objfile->static_psymbols.list + pst->statics_offset);
3162 sort_pst_symbols (pst);
3163
3164 info_ptr = (beg_of_comp_unit + cu.header.length
3165 + cu.header.initial_length_size);
3166
3167 if (this_cu->from_debug_types)
3168 {
3169 /* It's not clear we want to do anything with stmt lists here.
3170 Waiting to see what gcc ultimately does. */
3171 }
3172 else
3173 {
3174 /* Get the list of files included in the current compilation unit,
3175 and build a psymtab for each of them. */
3176 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3177 }
3178
3179 do_cleanups (back_to_inner);
3180
3181 return info_ptr;
3182 }
3183
3184 /* Traversal function for htab_traverse_noresize.
3185 Process one .debug_types comp-unit. */
3186
3187 static int
3188 process_type_comp_unit (void **slot, void *info)
3189 {
3190 struct signatured_type *entry = (struct signatured_type *) *slot;
3191 struct objfile *objfile = (struct objfile *) info;
3192 struct dwarf2_per_cu_data *this_cu;
3193
3194 this_cu = &entry->per_cu;
3195
3196 gdb_assert (dwarf2_per_objfile->types.readin);
3197 process_psymtab_comp_unit (objfile, this_cu,
3198 dwarf2_per_objfile->types.buffer,
3199 dwarf2_per_objfile->types.buffer + entry->offset,
3200 dwarf2_per_objfile->types.size);
3201
3202 return 1;
3203 }
3204
3205 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3206 Build partial symbol tables for the .debug_types comp-units. */
3207
3208 static void
3209 build_type_psymtabs (struct objfile *objfile)
3210 {
3211 if (! create_debug_types_hash_table (objfile))
3212 return;
3213
3214 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3215 process_type_comp_unit, objfile);
3216 }
3217
3218 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3219
3220 static void
3221 psymtabs_addrmap_cleanup (void *o)
3222 {
3223 struct objfile *objfile = o;
3224
3225 objfile->psymtabs_addrmap = NULL;
3226 }
3227
3228 /* Build the partial symbol table by doing a quick pass through the
3229 .debug_info and .debug_abbrev sections. */
3230
3231 static void
3232 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3233 {
3234 gdb_byte *info_ptr;
3235 struct cleanup *back_to, *addrmap_cleanup;
3236 struct obstack temp_obstack;
3237
3238 dwarf2_per_objfile->reading_partial_symbols = 1;
3239
3240 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3241 info_ptr = dwarf2_per_objfile->info.buffer;
3242
3243 /* Any cached compilation units will be linked by the per-objfile
3244 read_in_chain. Make sure to free them when we're done. */
3245 back_to = make_cleanup (free_cached_comp_units, NULL);
3246
3247 build_type_psymtabs (objfile);
3248
3249 create_all_comp_units (objfile);
3250
3251 /* Create a temporary address map on a temporary obstack. We later
3252 copy this to the final obstack. */
3253 obstack_init (&temp_obstack);
3254 make_cleanup_obstack_free (&temp_obstack);
3255 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3256 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3257
3258 /* Since the objects we're extracting from .debug_info vary in
3259 length, only the individual functions to extract them (like
3260 read_comp_unit_head and load_partial_die) can really know whether
3261 the buffer is large enough to hold another complete object.
3262
3263 At the moment, they don't actually check that. If .debug_info
3264 holds just one extra byte after the last compilation unit's dies,
3265 then read_comp_unit_head will happily read off the end of the
3266 buffer. read_partial_die is similarly casual. Those functions
3267 should be fixed.
3268
3269 For this loop condition, simply checking whether there's any data
3270 left at all should be sufficient. */
3271
3272 while (info_ptr < (dwarf2_per_objfile->info.buffer
3273 + dwarf2_per_objfile->info.size))
3274 {
3275 struct dwarf2_per_cu_data *this_cu;
3276
3277 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
3278 objfile);
3279
3280 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3281 dwarf2_per_objfile->info.buffer,
3282 info_ptr,
3283 dwarf2_per_objfile->info.size);
3284 }
3285
3286 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3287 &objfile->objfile_obstack);
3288 discard_cleanups (addrmap_cleanup);
3289
3290 do_cleanups (back_to);
3291 }
3292
3293 /* Load the partial DIEs for a secondary CU into memory. */
3294
3295 static void
3296 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3297 struct objfile *objfile)
3298 {
3299 bfd *abfd = objfile->obfd;
3300 gdb_byte *info_ptr, *beg_of_comp_unit;
3301 struct die_info *comp_unit_die;
3302 struct dwarf2_cu *cu;
3303 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3304 struct attribute *attr;
3305 int has_children;
3306 struct die_reader_specs reader_specs;
3307 int read_cu = 0;
3308
3309 gdb_assert (! this_cu->from_debug_types);
3310
3311 gdb_assert (dwarf2_per_objfile->info.readin);
3312 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3313 beg_of_comp_unit = info_ptr;
3314
3315 if (this_cu->cu == NULL)
3316 {
3317 cu = alloc_one_comp_unit (objfile);
3318
3319 read_cu = 1;
3320
3321 /* If an error occurs while loading, release our storage. */
3322 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3323
3324 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3325 dwarf2_per_objfile->info.buffer,
3326 dwarf2_per_objfile->info.size,
3327 abfd);
3328
3329 /* Complete the cu_header. */
3330 cu->header.offset = this_cu->offset;
3331 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3332
3333 /* Link this compilation unit into the compilation unit tree. */
3334 this_cu->cu = cu;
3335 cu->per_cu = this_cu;
3336
3337 /* Link this CU into read_in_chain. */
3338 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3339 dwarf2_per_objfile->read_in_chain = this_cu;
3340 }
3341 else
3342 {
3343 cu = this_cu->cu;
3344 info_ptr += cu->header.first_die_offset;
3345 }
3346
3347 /* Read the abbrevs for this compilation unit into a table. */
3348 gdb_assert (cu->dwarf2_abbrevs == NULL);
3349 dwarf2_read_abbrevs (abfd, cu);
3350 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3351
3352 /* Read the compilation unit die. */
3353 init_cu_die_reader (&reader_specs, cu);
3354 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3355 &has_children);
3356
3357 /* Set the language we're debugging. */
3358 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
3359 if (attr)
3360 set_cu_language (DW_UNSND (attr), cu);
3361 else
3362 set_cu_language (language_minimal, cu);
3363
3364 /* Check if comp unit has_children.
3365 If so, read the rest of the partial symbols from this comp unit.
3366 If not, there's no more debug_info for this comp unit. */
3367 if (has_children)
3368 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3369
3370 do_cleanups (free_abbrevs_cleanup);
3371
3372 if (read_cu)
3373 {
3374 /* We've successfully allocated this compilation unit. Let our
3375 caller clean it up when finished with it. */
3376 discard_cleanups (free_cu_cleanup);
3377 }
3378 }
3379
3380 /* Create a list of all compilation units in OBJFILE. We do this only
3381 if an inter-comp-unit reference is found; presumably if there is one,
3382 there will be many, and one will occur early in the .debug_info section.
3383 So there's no point in building this list incrementally. */
3384
3385 static void
3386 create_all_comp_units (struct objfile *objfile)
3387 {
3388 int n_allocated;
3389 int n_comp_units;
3390 struct dwarf2_per_cu_data **all_comp_units;
3391 gdb_byte *info_ptr;
3392
3393 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3394 info_ptr = dwarf2_per_objfile->info.buffer;
3395
3396 n_comp_units = 0;
3397 n_allocated = 10;
3398 all_comp_units = xmalloc (n_allocated
3399 * sizeof (struct dwarf2_per_cu_data *));
3400
3401 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
3402 {
3403 unsigned int length, initial_length_size;
3404 struct dwarf2_per_cu_data *this_cu;
3405 unsigned int offset;
3406
3407 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3408
3409 /* Read just enough information to find out where the next
3410 compilation unit is. */
3411 length = read_initial_length (objfile->obfd, info_ptr,
3412 &initial_length_size);
3413
3414 /* Save the compilation unit for later lookup. */
3415 this_cu = obstack_alloc (&objfile->objfile_obstack,
3416 sizeof (struct dwarf2_per_cu_data));
3417 memset (this_cu, 0, sizeof (*this_cu));
3418 this_cu->offset = offset;
3419 this_cu->length = length + initial_length_size;
3420 this_cu->objfile = objfile;
3421
3422 if (n_comp_units == n_allocated)
3423 {
3424 n_allocated *= 2;
3425 all_comp_units = xrealloc (all_comp_units,
3426 n_allocated
3427 * sizeof (struct dwarf2_per_cu_data *));
3428 }
3429 all_comp_units[n_comp_units++] = this_cu;
3430
3431 info_ptr = info_ptr + this_cu->length;
3432 }
3433
3434 dwarf2_per_objfile->all_comp_units
3435 = obstack_alloc (&objfile->objfile_obstack,
3436 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3437 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3438 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3439 xfree (all_comp_units);
3440 dwarf2_per_objfile->n_comp_units = n_comp_units;
3441 }
3442
3443 /* Process all loaded DIEs for compilation unit CU, starting at
3444 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3445 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3446 DW_AT_ranges). If NEED_PC is set, then this function will set
3447 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3448 and record the covered ranges in the addrmap. */
3449
3450 static void
3451 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3452 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3453 {
3454 struct partial_die_info *pdi;
3455
3456 /* Now, march along the PDI's, descending into ones which have
3457 interesting children but skipping the children of the other ones,
3458 until we reach the end of the compilation unit. */
3459
3460 pdi = first_die;
3461
3462 while (pdi != NULL)
3463 {
3464 fixup_partial_die (pdi, cu);
3465
3466 /* Anonymous namespaces or modules have no name but have interesting
3467 children, so we need to look at them. Ditto for anonymous
3468 enums. */
3469
3470 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3471 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3472 {
3473 switch (pdi->tag)
3474 {
3475 case DW_TAG_subprogram:
3476 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3477 break;
3478 case DW_TAG_constant:
3479 case DW_TAG_variable:
3480 case DW_TAG_typedef:
3481 case DW_TAG_union_type:
3482 if (!pdi->is_declaration)
3483 {
3484 add_partial_symbol (pdi, cu);
3485 }
3486 break;
3487 case DW_TAG_class_type:
3488 case DW_TAG_interface_type:
3489 case DW_TAG_structure_type:
3490 if (!pdi->is_declaration)
3491 {
3492 add_partial_symbol (pdi, cu);
3493 }
3494 break;
3495 case DW_TAG_enumeration_type:
3496 if (!pdi->is_declaration)
3497 add_partial_enumeration (pdi, cu);
3498 break;
3499 case DW_TAG_base_type:
3500 case DW_TAG_subrange_type:
3501 /* File scope base type definitions are added to the partial
3502 symbol table. */
3503 add_partial_symbol (pdi, cu);
3504 break;
3505 case DW_TAG_namespace:
3506 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3507 break;
3508 case DW_TAG_module:
3509 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3510 break;
3511 default:
3512 break;
3513 }
3514 }
3515
3516 /* If the die has a sibling, skip to the sibling. */
3517
3518 pdi = pdi->die_sibling;
3519 }
3520 }
3521
3522 /* Functions used to compute the fully scoped name of a partial DIE.
3523
3524 Normally, this is simple. For C++, the parent DIE's fully scoped
3525 name is concatenated with "::" and the partial DIE's name. For
3526 Java, the same thing occurs except that "." is used instead of "::".
3527 Enumerators are an exception; they use the scope of their parent
3528 enumeration type, i.e. the name of the enumeration type is not
3529 prepended to the enumerator.
3530
3531 There are two complexities. One is DW_AT_specification; in this
3532 case "parent" means the parent of the target of the specification,
3533 instead of the direct parent of the DIE. The other is compilers
3534 which do not emit DW_TAG_namespace; in this case we try to guess
3535 the fully qualified name of structure types from their members'
3536 linkage names. This must be done using the DIE's children rather
3537 than the children of any DW_AT_specification target. We only need
3538 to do this for structures at the top level, i.e. if the target of
3539 any DW_AT_specification (if any; otherwise the DIE itself) does not
3540 have a parent. */
3541
3542 /* Compute the scope prefix associated with PDI's parent, in
3543 compilation unit CU. The result will be allocated on CU's
3544 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3545 field. NULL is returned if no prefix is necessary. */
3546 static char *
3547 partial_die_parent_scope (struct partial_die_info *pdi,
3548 struct dwarf2_cu *cu)
3549 {
3550 char *grandparent_scope;
3551 struct partial_die_info *parent, *real_pdi;
3552
3553 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3554 then this means the parent of the specification DIE. */
3555
3556 real_pdi = pdi;
3557 while (real_pdi->has_specification)
3558 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3559
3560 parent = real_pdi->die_parent;
3561 if (parent == NULL)
3562 return NULL;
3563
3564 if (parent->scope_set)
3565 return parent->scope;
3566
3567 fixup_partial_die (parent, cu);
3568
3569 grandparent_scope = partial_die_parent_scope (parent, cu);
3570
3571 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3572 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3573 Work around this problem here. */
3574 if (cu->language == language_cplus
3575 && parent->tag == DW_TAG_namespace
3576 && strcmp (parent->name, "::") == 0
3577 && grandparent_scope == NULL)
3578 {
3579 parent->scope = NULL;
3580 parent->scope_set = 1;
3581 return NULL;
3582 }
3583
3584 if (parent->tag == DW_TAG_namespace
3585 || parent->tag == DW_TAG_module
3586 || parent->tag == DW_TAG_structure_type
3587 || parent->tag == DW_TAG_class_type
3588 || parent->tag == DW_TAG_interface_type
3589 || parent->tag == DW_TAG_union_type
3590 || parent->tag == DW_TAG_enumeration_type)
3591 {
3592 if (grandparent_scope == NULL)
3593 parent->scope = parent->name;
3594 else
3595 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
3596 parent->name, 0, cu);
3597 }
3598 else if (parent->tag == DW_TAG_enumerator)
3599 /* Enumerators should not get the name of the enumeration as a prefix. */
3600 parent->scope = grandparent_scope;
3601 else
3602 {
3603 /* FIXME drow/2004-04-01: What should we be doing with
3604 function-local names? For partial symbols, we should probably be
3605 ignoring them. */
3606 complaint (&symfile_complaints,
3607 _("unhandled containing DIE tag %d for DIE at %d"),
3608 parent->tag, pdi->offset);
3609 parent->scope = grandparent_scope;
3610 }
3611
3612 parent->scope_set = 1;
3613 return parent->scope;
3614 }
3615
3616 /* Return the fully scoped name associated with PDI, from compilation unit
3617 CU. The result will be allocated with malloc. */
3618 static char *
3619 partial_die_full_name (struct partial_die_info *pdi,
3620 struct dwarf2_cu *cu)
3621 {
3622 char *parent_scope;
3623
3624 /* If this is a template instantiation, we can not work out the
3625 template arguments from partial DIEs. So, unfortunately, we have
3626 to go through the full DIEs. At least any work we do building
3627 types here will be reused if full symbols are loaded later. */
3628 if (pdi->has_template_arguments)
3629 {
3630 fixup_partial_die (pdi, cu);
3631
3632 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3633 {
3634 struct die_info *die;
3635 struct attribute attr;
3636 struct dwarf2_cu *ref_cu = cu;
3637
3638 attr.name = 0;
3639 attr.form = DW_FORM_ref_addr;
3640 attr.u.addr = pdi->offset;
3641 die = follow_die_ref (NULL, &attr, &ref_cu);
3642
3643 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3644 }
3645 }
3646
3647 parent_scope = partial_die_parent_scope (pdi, cu);
3648 if (parent_scope == NULL)
3649 return NULL;
3650 else
3651 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
3652 }
3653
3654 static void
3655 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
3656 {
3657 struct objfile *objfile = cu->objfile;
3658 CORE_ADDR addr = 0;
3659 char *actual_name = NULL;
3660 const struct partial_symbol *psym = NULL;
3661 CORE_ADDR baseaddr;
3662 int built_actual_name = 0;
3663
3664 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3665
3666 actual_name = partial_die_full_name (pdi, cu);
3667 if (actual_name)
3668 built_actual_name = 1;
3669
3670 if (actual_name == NULL)
3671 actual_name = pdi->name;
3672
3673 switch (pdi->tag)
3674 {
3675 case DW_TAG_subprogram:
3676 if (pdi->is_external || cu->language == language_ada)
3677 {
3678 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3679 of the global scope. But in Ada, we want to be able to access
3680 nested procedures globally. So all Ada subprograms are stored
3681 in the global scope. */
3682 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3683 mst_text, objfile); */
3684 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3685 built_actual_name,
3686 VAR_DOMAIN, LOC_BLOCK,
3687 &objfile->global_psymbols,
3688 0, pdi->lowpc + baseaddr,
3689 cu->language, objfile);
3690 }
3691 else
3692 {
3693 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3694 mst_file_text, objfile); */
3695 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3696 built_actual_name,
3697 VAR_DOMAIN, LOC_BLOCK,
3698 &objfile->static_psymbols,
3699 0, pdi->lowpc + baseaddr,
3700 cu->language, objfile);
3701 }
3702 break;
3703 case DW_TAG_constant:
3704 {
3705 struct psymbol_allocation_list *list;
3706
3707 if (pdi->is_external)
3708 list = &objfile->global_psymbols;
3709 else
3710 list = &objfile->static_psymbols;
3711 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3712 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3713 list, 0, 0, cu->language, objfile);
3714
3715 }
3716 break;
3717 case DW_TAG_variable:
3718 if (pdi->locdesc)
3719 addr = decode_locdesc (pdi->locdesc, cu);
3720
3721 if (pdi->locdesc
3722 && addr == 0
3723 && !dwarf2_per_objfile->has_section_at_zero)
3724 {
3725 /* A global or static variable may also have been stripped
3726 out by the linker if unused, in which case its address
3727 will be nullified; do not add such variables into partial
3728 symbol table then. */
3729 }
3730 else if (pdi->is_external)
3731 {
3732 /* Global Variable.
3733 Don't enter into the minimal symbol tables as there is
3734 a minimal symbol table entry from the ELF symbols already.
3735 Enter into partial symbol table if it has a location
3736 descriptor or a type.
3737 If the location descriptor is missing, new_symbol will create
3738 a LOC_UNRESOLVED symbol, the address of the variable will then
3739 be determined from the minimal symbol table whenever the variable
3740 is referenced.
3741 The address for the partial symbol table entry is not
3742 used by GDB, but it comes in handy for debugging partial symbol
3743 table building. */
3744
3745 if (pdi->locdesc || pdi->has_type)
3746 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3747 built_actual_name,
3748 VAR_DOMAIN, LOC_STATIC,
3749 &objfile->global_psymbols,
3750 0, addr + baseaddr,
3751 cu->language, objfile);
3752 }
3753 else
3754 {
3755 /* Static Variable. Skip symbols without location descriptors. */
3756 if (pdi->locdesc == NULL)
3757 {
3758 if (built_actual_name)
3759 xfree (actual_name);
3760 return;
3761 }
3762 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
3763 mst_file_data, objfile); */
3764 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3765 built_actual_name,
3766 VAR_DOMAIN, LOC_STATIC,
3767 &objfile->static_psymbols,
3768 0, addr + baseaddr,
3769 cu->language, objfile);
3770 }
3771 break;
3772 case DW_TAG_typedef:
3773 case DW_TAG_base_type:
3774 case DW_TAG_subrange_type:
3775 add_psymbol_to_list (actual_name, strlen (actual_name),
3776 built_actual_name,
3777 VAR_DOMAIN, LOC_TYPEDEF,
3778 &objfile->static_psymbols,
3779 0, (CORE_ADDR) 0, cu->language, objfile);
3780 break;
3781 case DW_TAG_namespace:
3782 add_psymbol_to_list (actual_name, strlen (actual_name),
3783 built_actual_name,
3784 VAR_DOMAIN, LOC_TYPEDEF,
3785 &objfile->global_psymbols,
3786 0, (CORE_ADDR) 0, cu->language, objfile);
3787 break;
3788 case DW_TAG_class_type:
3789 case DW_TAG_interface_type:
3790 case DW_TAG_structure_type:
3791 case DW_TAG_union_type:
3792 case DW_TAG_enumeration_type:
3793 /* Skip external references. The DWARF standard says in the section
3794 about "Structure, Union, and Class Type Entries": "An incomplete
3795 structure, union or class type is represented by a structure,
3796 union or class entry that does not have a byte size attribute
3797 and that has a DW_AT_declaration attribute." */
3798 if (!pdi->has_byte_size && pdi->is_declaration)
3799 {
3800 if (built_actual_name)
3801 xfree (actual_name);
3802 return;
3803 }
3804
3805 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3806 static vs. global. */
3807 add_psymbol_to_list (actual_name, strlen (actual_name),
3808 built_actual_name,
3809 STRUCT_DOMAIN, LOC_TYPEDEF,
3810 (cu->language == language_cplus
3811 || cu->language == language_java)
3812 ? &objfile->global_psymbols
3813 : &objfile->static_psymbols,
3814 0, (CORE_ADDR) 0, cu->language, objfile);
3815
3816 break;
3817 case DW_TAG_enumerator:
3818 add_psymbol_to_list (actual_name, strlen (actual_name),
3819 built_actual_name,
3820 VAR_DOMAIN, LOC_CONST,
3821 (cu->language == language_cplus
3822 || cu->language == language_java)
3823 ? &objfile->global_psymbols
3824 : &objfile->static_psymbols,
3825 0, (CORE_ADDR) 0, cu->language, objfile);
3826 break;
3827 default:
3828 break;
3829 }
3830
3831 if (built_actual_name)
3832 xfree (actual_name);
3833 }
3834
3835 /* Read a partial die corresponding to a namespace; also, add a symbol
3836 corresponding to that namespace to the symbol table. NAMESPACE is
3837 the name of the enclosing namespace. */
3838
3839 static void
3840 add_partial_namespace (struct partial_die_info *pdi,
3841 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3842 int need_pc, struct dwarf2_cu *cu)
3843 {
3844 /* Add a symbol for the namespace. */
3845
3846 add_partial_symbol (pdi, cu);
3847
3848 /* Now scan partial symbols in that namespace. */
3849
3850 if (pdi->has_children)
3851 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3852 }
3853
3854 /* Read a partial die corresponding to a Fortran module. */
3855
3856 static void
3857 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
3858 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3859 {
3860 /* Now scan partial symbols in that module. */
3861
3862 if (pdi->has_children)
3863 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3864 }
3865
3866 /* Read a partial die corresponding to a subprogram and create a partial
3867 symbol for that subprogram. When the CU language allows it, this
3868 routine also defines a partial symbol for each nested subprogram
3869 that this subprogram contains.
3870
3871 DIE my also be a lexical block, in which case we simply search
3872 recursively for suprograms defined inside that lexical block.
3873 Again, this is only performed when the CU language allows this
3874 type of definitions. */
3875
3876 static void
3877 add_partial_subprogram (struct partial_die_info *pdi,
3878 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3879 int need_pc, struct dwarf2_cu *cu)
3880 {
3881 if (pdi->tag == DW_TAG_subprogram)
3882 {
3883 if (pdi->has_pc_info)
3884 {
3885 if (pdi->lowpc < *lowpc)
3886 *lowpc = pdi->lowpc;
3887 if (pdi->highpc > *highpc)
3888 *highpc = pdi->highpc;
3889 if (need_pc)
3890 {
3891 CORE_ADDR baseaddr;
3892 struct objfile *objfile = cu->objfile;
3893
3894 baseaddr = ANOFFSET (objfile->section_offsets,
3895 SECT_OFF_TEXT (objfile));
3896 addrmap_set_empty (objfile->psymtabs_addrmap,
3897 pdi->lowpc + baseaddr,
3898 pdi->highpc - 1 + baseaddr,
3899 cu->per_cu->v.psymtab);
3900 }
3901 if (!pdi->is_declaration)
3902 /* Ignore subprogram DIEs that do not have a name, they are
3903 illegal. Do not emit a complaint at this point, we will
3904 do so when we convert this psymtab into a symtab. */
3905 if (pdi->name)
3906 add_partial_symbol (pdi, cu);
3907 }
3908 }
3909
3910 if (! pdi->has_children)
3911 return;
3912
3913 if (cu->language == language_ada)
3914 {
3915 pdi = pdi->die_child;
3916 while (pdi != NULL)
3917 {
3918 fixup_partial_die (pdi, cu);
3919 if (pdi->tag == DW_TAG_subprogram
3920 || pdi->tag == DW_TAG_lexical_block)
3921 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3922 pdi = pdi->die_sibling;
3923 }
3924 }
3925 }
3926
3927 /* Read a partial die corresponding to an enumeration type. */
3928
3929 static void
3930 add_partial_enumeration (struct partial_die_info *enum_pdi,
3931 struct dwarf2_cu *cu)
3932 {
3933 struct partial_die_info *pdi;
3934
3935 if (enum_pdi->name != NULL)
3936 add_partial_symbol (enum_pdi, cu);
3937
3938 pdi = enum_pdi->die_child;
3939 while (pdi)
3940 {
3941 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
3942 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
3943 else
3944 add_partial_symbol (pdi, cu);
3945 pdi = pdi->die_sibling;
3946 }
3947 }
3948
3949 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
3950 Return the corresponding abbrev, or NULL if the number is zero (indicating
3951 an empty DIE). In either case *BYTES_READ will be set to the length of
3952 the initial number. */
3953
3954 static struct abbrev_info *
3955 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
3956 struct dwarf2_cu *cu)
3957 {
3958 bfd *abfd = cu->objfile->obfd;
3959 unsigned int abbrev_number;
3960 struct abbrev_info *abbrev;
3961
3962 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
3963
3964 if (abbrev_number == 0)
3965 return NULL;
3966
3967 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
3968 if (!abbrev)
3969 {
3970 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
3971 bfd_get_filename (abfd));
3972 }
3973
3974 return abbrev;
3975 }
3976
3977 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3978 Returns a pointer to the end of a series of DIEs, terminated by an empty
3979 DIE. Any children of the skipped DIEs will also be skipped. */
3980
3981 static gdb_byte *
3982 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
3983 {
3984 struct abbrev_info *abbrev;
3985 unsigned int bytes_read;
3986
3987 while (1)
3988 {
3989 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
3990 if (abbrev == NULL)
3991 return info_ptr + bytes_read;
3992 else
3993 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
3994 }
3995 }
3996
3997 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3998 INFO_PTR should point just after the initial uleb128 of a DIE, and the
3999 abbrev corresponding to that skipped uleb128 should be passed in
4000 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4001 children. */
4002
4003 static gdb_byte *
4004 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4005 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4006 {
4007 unsigned int bytes_read;
4008 struct attribute attr;
4009 bfd *abfd = cu->objfile->obfd;
4010 unsigned int form, i;
4011
4012 for (i = 0; i < abbrev->num_attrs; i++)
4013 {
4014 /* The only abbrev we care about is DW_AT_sibling. */
4015 if (abbrev->attrs[i].name == DW_AT_sibling)
4016 {
4017 read_attribute (&attr, &abbrev->attrs[i],
4018 abfd, info_ptr, cu);
4019 if (attr.form == DW_FORM_ref_addr)
4020 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4021 else
4022 return buffer + dwarf2_get_ref_die_offset (&attr);
4023 }
4024
4025 /* If it isn't DW_AT_sibling, skip this attribute. */
4026 form = abbrev->attrs[i].form;
4027 skip_attribute:
4028 switch (form)
4029 {
4030 case DW_FORM_ref_addr:
4031 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4032 and later it is offset sized. */
4033 if (cu->header.version == 2)
4034 info_ptr += cu->header.addr_size;
4035 else
4036 info_ptr += cu->header.offset_size;
4037 break;
4038 case DW_FORM_addr:
4039 info_ptr += cu->header.addr_size;
4040 break;
4041 case DW_FORM_data1:
4042 case DW_FORM_ref1:
4043 case DW_FORM_flag:
4044 info_ptr += 1;
4045 break;
4046 case DW_FORM_flag_present:
4047 break;
4048 case DW_FORM_data2:
4049 case DW_FORM_ref2:
4050 info_ptr += 2;
4051 break;
4052 case DW_FORM_data4:
4053 case DW_FORM_ref4:
4054 info_ptr += 4;
4055 break;
4056 case DW_FORM_data8:
4057 case DW_FORM_ref8:
4058 case DW_FORM_sig8:
4059 info_ptr += 8;
4060 break;
4061 case DW_FORM_string:
4062 read_direct_string (abfd, info_ptr, &bytes_read);
4063 info_ptr += bytes_read;
4064 break;
4065 case DW_FORM_sec_offset:
4066 case DW_FORM_strp:
4067 info_ptr += cu->header.offset_size;
4068 break;
4069 case DW_FORM_exprloc:
4070 case DW_FORM_block:
4071 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4072 info_ptr += bytes_read;
4073 break;
4074 case DW_FORM_block1:
4075 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4076 break;
4077 case DW_FORM_block2:
4078 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4079 break;
4080 case DW_FORM_block4:
4081 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4082 break;
4083 case DW_FORM_sdata:
4084 case DW_FORM_udata:
4085 case DW_FORM_ref_udata:
4086 info_ptr = skip_leb128 (abfd, info_ptr);
4087 break;
4088 case DW_FORM_indirect:
4089 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4090 info_ptr += bytes_read;
4091 /* We need to continue parsing from here, so just go back to
4092 the top. */
4093 goto skip_attribute;
4094
4095 default:
4096 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4097 dwarf_form_name (form),
4098 bfd_get_filename (abfd));
4099 }
4100 }
4101
4102 if (abbrev->has_children)
4103 return skip_children (buffer, info_ptr, cu);
4104 else
4105 return info_ptr;
4106 }
4107
4108 /* Locate ORIG_PDI's sibling.
4109 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4110 in BUFFER. */
4111
4112 static gdb_byte *
4113 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4114 gdb_byte *buffer, gdb_byte *info_ptr,
4115 bfd *abfd, struct dwarf2_cu *cu)
4116 {
4117 /* Do we know the sibling already? */
4118
4119 if (orig_pdi->sibling)
4120 return orig_pdi->sibling;
4121
4122 /* Are there any children to deal with? */
4123
4124 if (!orig_pdi->has_children)
4125 return info_ptr;
4126
4127 /* Skip the children the long way. */
4128
4129 return skip_children (buffer, info_ptr, cu);
4130 }
4131
4132 /* Expand this partial symbol table into a full symbol table. */
4133
4134 static void
4135 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4136 {
4137 if (pst != NULL)
4138 {
4139 if (pst->readin)
4140 {
4141 warning (_("bug: psymtab for %s is already read in."), pst->filename);
4142 }
4143 else
4144 {
4145 if (info_verbose)
4146 {
4147 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
4148 gdb_flush (gdb_stdout);
4149 }
4150
4151 /* Restore our global data. */
4152 dwarf2_per_objfile = objfile_data (pst->objfile,
4153 dwarf2_objfile_data_key);
4154
4155 /* If this psymtab is constructed from a debug-only objfile, the
4156 has_section_at_zero flag will not necessarily be correct. We
4157 can get the correct value for this flag by looking at the data
4158 associated with the (presumably stripped) associated objfile. */
4159 if (pst->objfile->separate_debug_objfile_backlink)
4160 {
4161 struct dwarf2_per_objfile *dpo_backlink
4162 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4163 dwarf2_objfile_data_key);
4164
4165 dwarf2_per_objfile->has_section_at_zero
4166 = dpo_backlink->has_section_at_zero;
4167 }
4168
4169 dwarf2_per_objfile->reading_partial_symbols = 0;
4170
4171 psymtab_to_symtab_1 (pst);
4172
4173 /* Finish up the debug error message. */
4174 if (info_verbose)
4175 printf_filtered (_("done.\n"));
4176 }
4177 }
4178 }
4179
4180 /* Add PER_CU to the queue. */
4181
4182 static void
4183 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4184 {
4185 struct dwarf2_queue_item *item;
4186
4187 per_cu->queued = 1;
4188 item = xmalloc (sizeof (*item));
4189 item->per_cu = per_cu;
4190 item->next = NULL;
4191
4192 if (dwarf2_queue == NULL)
4193 dwarf2_queue = item;
4194 else
4195 dwarf2_queue_tail->next = item;
4196
4197 dwarf2_queue_tail = item;
4198 }
4199
4200 /* Process the queue. */
4201
4202 static void
4203 process_queue (struct objfile *objfile)
4204 {
4205 struct dwarf2_queue_item *item, *next_item;
4206
4207 /* The queue starts out with one item, but following a DIE reference
4208 may load a new CU, adding it to the end of the queue. */
4209 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4210 {
4211 if (dwarf2_per_objfile->using_index
4212 ? !item->per_cu->v.quick->symtab
4213 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4214 process_full_comp_unit (item->per_cu);
4215
4216 item->per_cu->queued = 0;
4217 next_item = item->next;
4218 xfree (item);
4219 }
4220
4221 dwarf2_queue_tail = NULL;
4222 }
4223
4224 /* Free all allocated queue entries. This function only releases anything if
4225 an error was thrown; if the queue was processed then it would have been
4226 freed as we went along. */
4227
4228 static void
4229 dwarf2_release_queue (void *dummy)
4230 {
4231 struct dwarf2_queue_item *item, *last;
4232
4233 item = dwarf2_queue;
4234 while (item)
4235 {
4236 /* Anything still marked queued is likely to be in an
4237 inconsistent state, so discard it. */
4238 if (item->per_cu->queued)
4239 {
4240 if (item->per_cu->cu != NULL)
4241 free_one_cached_comp_unit (item->per_cu->cu);
4242 item->per_cu->queued = 0;
4243 }
4244
4245 last = item;
4246 item = item->next;
4247 xfree (last);
4248 }
4249
4250 dwarf2_queue = dwarf2_queue_tail = NULL;
4251 }
4252
4253 /* Read in full symbols for PST, and anything it depends on. */
4254
4255 static void
4256 psymtab_to_symtab_1 (struct partial_symtab *pst)
4257 {
4258 struct dwarf2_per_cu_data *per_cu;
4259 struct cleanup *back_to;
4260 int i;
4261
4262 for (i = 0; i < pst->number_of_dependencies; i++)
4263 if (!pst->dependencies[i]->readin)
4264 {
4265 /* Inform about additional files that need to be read in. */
4266 if (info_verbose)
4267 {
4268 /* FIXME: i18n: Need to make this a single string. */
4269 fputs_filtered (" ", gdb_stdout);
4270 wrap_here ("");
4271 fputs_filtered ("and ", gdb_stdout);
4272 wrap_here ("");
4273 printf_filtered ("%s...", pst->dependencies[i]->filename);
4274 wrap_here (""); /* Flush output */
4275 gdb_flush (gdb_stdout);
4276 }
4277 psymtab_to_symtab_1 (pst->dependencies[i]);
4278 }
4279
4280 per_cu = pst->read_symtab_private;
4281
4282 if (per_cu == NULL)
4283 {
4284 /* It's an include file, no symbols to read for it.
4285 Everything is in the parent symtab. */
4286 pst->readin = 1;
4287 return;
4288 }
4289
4290 dw2_do_instantiate_symtab (pst->objfile, per_cu);
4291 }
4292
4293 /* Load the DIEs associated with PER_CU into memory. */
4294
4295 static void
4296 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4297 {
4298 bfd *abfd = objfile->obfd;
4299 struct dwarf2_cu *cu;
4300 unsigned int offset;
4301 gdb_byte *info_ptr, *beg_of_comp_unit;
4302 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4303 struct attribute *attr;
4304 int read_cu = 0;
4305
4306 gdb_assert (! per_cu->from_debug_types);
4307
4308 /* Set local variables from the partial symbol table info. */
4309 offset = per_cu->offset;
4310
4311 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4312 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4313 beg_of_comp_unit = info_ptr;
4314
4315 if (per_cu->cu == NULL)
4316 {
4317 cu = alloc_one_comp_unit (objfile);
4318
4319 read_cu = 1;
4320
4321 /* If an error occurs while loading, release our storage. */
4322 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4323
4324 /* Read in the comp_unit header. */
4325 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4326
4327 /* Complete the cu_header. */
4328 cu->header.offset = offset;
4329 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4330
4331 /* Read the abbrevs for this compilation unit. */
4332 dwarf2_read_abbrevs (abfd, cu);
4333 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4334
4335 /* Link this compilation unit into the compilation unit tree. */
4336 per_cu->cu = cu;
4337 cu->per_cu = per_cu;
4338
4339 /* Link this CU into read_in_chain. */
4340 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4341 dwarf2_per_objfile->read_in_chain = per_cu;
4342 }
4343 else
4344 {
4345 cu = per_cu->cu;
4346 info_ptr += cu->header.first_die_offset;
4347 }
4348
4349 cu->dies = read_comp_unit (info_ptr, cu);
4350
4351 /* We try not to read any attributes in this function, because not
4352 all objfiles needed for references have been loaded yet, and symbol
4353 table processing isn't initialized. But we have to set the CU language,
4354 or we won't be able to build types correctly. */
4355 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
4356 if (attr)
4357 set_cu_language (DW_UNSND (attr), cu);
4358 else
4359 set_cu_language (language_minimal, cu);
4360
4361 /* Similarly, if we do not read the producer, we can not apply
4362 producer-specific interpretation. */
4363 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4364 if (attr)
4365 cu->producer = DW_STRING (attr);
4366
4367 if (read_cu)
4368 {
4369 do_cleanups (free_abbrevs_cleanup);
4370
4371 /* We've successfully allocated this compilation unit. Let our
4372 caller clean it up when finished with it. */
4373 discard_cleanups (free_cu_cleanup);
4374 }
4375 }
4376
4377 /* Add a DIE to the delayed physname list. */
4378
4379 static void
4380 add_to_method_list (struct type *type, int fnfield_index, int index,
4381 const char *name, struct die_info *die,
4382 struct dwarf2_cu *cu)
4383 {
4384 struct delayed_method_info mi;
4385 mi.type = type;
4386 mi.fnfield_index = fnfield_index;
4387 mi.index = index;
4388 mi.name = name;
4389 mi.die = die;
4390 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4391 }
4392
4393 /* A cleanup for freeing the delayed method list. */
4394
4395 static void
4396 free_delayed_list (void *ptr)
4397 {
4398 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4399 if (cu->method_list != NULL)
4400 {
4401 VEC_free (delayed_method_info, cu->method_list);
4402 cu->method_list = NULL;
4403 }
4404 }
4405
4406 /* Compute the physnames of any methods on the CU's method list.
4407
4408 The computation of method physnames is delayed in order to avoid the
4409 (bad) condition that one of the method's formal parameters is of an as yet
4410 incomplete type. */
4411
4412 static void
4413 compute_delayed_physnames (struct dwarf2_cu *cu)
4414 {
4415 int i;
4416 struct delayed_method_info *mi;
4417 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4418 {
4419 char *physname;
4420 struct fn_fieldlist *fn_flp
4421 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4422 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4423 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4424 }
4425 }
4426
4427 /* Generate full symbol information for PST and CU, whose DIEs have
4428 already been loaded into memory. */
4429
4430 static void
4431 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4432 {
4433 struct dwarf2_cu *cu = per_cu->cu;
4434 struct objfile *objfile = per_cu->objfile;
4435 CORE_ADDR lowpc, highpc;
4436 struct symtab *symtab;
4437 struct cleanup *back_to, *delayed_list_cleanup;
4438 CORE_ADDR baseaddr;
4439
4440 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4441
4442 buildsym_init ();
4443 back_to = make_cleanup (really_free_pendings, NULL);
4444 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4445
4446 cu->list_in_scope = &file_symbols;
4447
4448 dwarf2_find_base_address (cu->dies, cu);
4449
4450 /* Do line number decoding in read_file_scope () */
4451 process_die (cu->dies, cu);
4452
4453 /* Now that we have processed all the DIEs in the CU, all the types
4454 should be complete, and it should now be safe to compute all of the
4455 physnames. */
4456 compute_delayed_physnames (cu);
4457 do_cleanups (delayed_list_cleanup);
4458
4459 /* Some compilers don't define a DW_AT_high_pc attribute for the
4460 compilation unit. If the DW_AT_high_pc is missing, synthesize
4461 it, by scanning the DIE's below the compilation unit. */
4462 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4463
4464 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4465
4466 /* Set symtab language to language from DW_AT_language.
4467 If the compilation is from a C file generated by language preprocessors,
4468 do not set the language if it was already deduced by start_subfile. */
4469 if (symtab != NULL
4470 && !(cu->language == language_c && symtab->language != language_c))
4471 {
4472 symtab->language = cu->language;
4473 }
4474
4475 if (dwarf2_per_objfile->using_index)
4476 per_cu->v.quick->symtab = symtab;
4477 else
4478 {
4479 struct partial_symtab *pst = per_cu->v.psymtab;
4480 pst->symtab = symtab;
4481 pst->readin = 1;
4482 }
4483
4484 do_cleanups (back_to);
4485 }
4486
4487 /* Process a die and its children. */
4488
4489 static void
4490 process_die (struct die_info *die, struct dwarf2_cu *cu)
4491 {
4492 switch (die->tag)
4493 {
4494 case DW_TAG_padding:
4495 break;
4496 case DW_TAG_compile_unit:
4497 read_file_scope (die, cu);
4498 break;
4499 case DW_TAG_type_unit:
4500 read_type_unit_scope (die, cu);
4501 break;
4502 case DW_TAG_subprogram:
4503 case DW_TAG_inlined_subroutine:
4504 read_func_scope (die, cu);
4505 break;
4506 case DW_TAG_lexical_block:
4507 case DW_TAG_try_block:
4508 case DW_TAG_catch_block:
4509 read_lexical_block_scope (die, cu);
4510 break;
4511 case DW_TAG_class_type:
4512 case DW_TAG_interface_type:
4513 case DW_TAG_structure_type:
4514 case DW_TAG_union_type:
4515 process_structure_scope (die, cu);
4516 break;
4517 case DW_TAG_enumeration_type:
4518 process_enumeration_scope (die, cu);
4519 break;
4520
4521 /* These dies have a type, but processing them does not create
4522 a symbol or recurse to process the children. Therefore we can
4523 read them on-demand through read_type_die. */
4524 case DW_TAG_subroutine_type:
4525 case DW_TAG_set_type:
4526 case DW_TAG_array_type:
4527 case DW_TAG_pointer_type:
4528 case DW_TAG_ptr_to_member_type:
4529 case DW_TAG_reference_type:
4530 case DW_TAG_string_type:
4531 break;
4532
4533 case DW_TAG_base_type:
4534 case DW_TAG_subrange_type:
4535 case DW_TAG_typedef:
4536 /* Add a typedef symbol for the type definition, if it has a
4537 DW_AT_name. */
4538 new_symbol (die, read_type_die (die, cu), cu);
4539 break;
4540 case DW_TAG_common_block:
4541 read_common_block (die, cu);
4542 break;
4543 case DW_TAG_common_inclusion:
4544 break;
4545 case DW_TAG_namespace:
4546 processing_has_namespace_info = 1;
4547 read_namespace (die, cu);
4548 break;
4549 case DW_TAG_module:
4550 processing_has_namespace_info = 1;
4551 read_module (die, cu);
4552 break;
4553 case DW_TAG_imported_declaration:
4554 case DW_TAG_imported_module:
4555 processing_has_namespace_info = 1;
4556 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4557 || cu->language != language_fortran))
4558 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4559 dwarf_tag_name (die->tag));
4560 read_import_statement (die, cu);
4561 break;
4562 default:
4563 new_symbol (die, NULL, cu);
4564 break;
4565 }
4566 }
4567
4568 /* A helper function for dwarf2_compute_name which determines whether DIE
4569 needs to have the name of the scope prepended to the name listed in the
4570 die. */
4571
4572 static int
4573 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4574 {
4575 struct attribute *attr;
4576
4577 switch (die->tag)
4578 {
4579 case DW_TAG_namespace:
4580 case DW_TAG_typedef:
4581 case DW_TAG_class_type:
4582 case DW_TAG_interface_type:
4583 case DW_TAG_structure_type:
4584 case DW_TAG_union_type:
4585 case DW_TAG_enumeration_type:
4586 case DW_TAG_enumerator:
4587 case DW_TAG_subprogram:
4588 case DW_TAG_member:
4589 return 1;
4590
4591 case DW_TAG_variable:
4592 case DW_TAG_constant:
4593 /* We only need to prefix "globally" visible variables. These include
4594 any variable marked with DW_AT_external or any variable that
4595 lives in a namespace. [Variables in anonymous namespaces
4596 require prefixing, but they are not DW_AT_external.] */
4597
4598 if (dwarf2_attr (die, DW_AT_specification, cu))
4599 {
4600 struct dwarf2_cu *spec_cu = cu;
4601
4602 return die_needs_namespace (die_specification (die, &spec_cu),
4603 spec_cu);
4604 }
4605
4606 attr = dwarf2_attr (die, DW_AT_external, cu);
4607 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4608 && die->parent->tag != DW_TAG_module)
4609 return 0;
4610 /* A variable in a lexical block of some kind does not need a
4611 namespace, even though in C++ such variables may be external
4612 and have a mangled name. */
4613 if (die->parent->tag == DW_TAG_lexical_block
4614 || die->parent->tag == DW_TAG_try_block
4615 || die->parent->tag == DW_TAG_catch_block
4616 || die->parent->tag == DW_TAG_subprogram)
4617 return 0;
4618 return 1;
4619
4620 default:
4621 return 0;
4622 }
4623 }
4624
4625 /* Retrieve the last character from a mem_file. */
4626
4627 static void
4628 do_ui_file_peek_last (void *object, const char *buffer, long length)
4629 {
4630 char *last_char_p = (char *) object;
4631
4632 if (length > 0)
4633 *last_char_p = buffer[length - 1];
4634 }
4635
4636 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4637 compute the physname for the object, which include a method's
4638 formal parameters (C++/Java) and return type (Java).
4639
4640 For Ada, return the DIE's linkage name rather than the fully qualified
4641 name. PHYSNAME is ignored..
4642
4643 The result is allocated on the objfile_obstack and canonicalized. */
4644
4645 static const char *
4646 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4647 int physname)
4648 {
4649 if (name == NULL)
4650 name = dwarf2_name (die, cu);
4651
4652 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4653 compute it by typename_concat inside GDB. */
4654 if (cu->language == language_ada
4655 || (cu->language == language_fortran && physname))
4656 {
4657 /* For Ada unit, we prefer the linkage name over the name, as
4658 the former contains the exported name, which the user expects
4659 to be able to reference. Ideally, we want the user to be able
4660 to reference this entity using either natural or linkage name,
4661 but we haven't started looking at this enhancement yet. */
4662 struct attribute *attr;
4663
4664 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4665 if (attr == NULL)
4666 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4667 if (attr && DW_STRING (attr))
4668 return DW_STRING (attr);
4669 }
4670
4671 /* These are the only languages we know how to qualify names in. */
4672 if (name != NULL
4673 && (cu->language == language_cplus || cu->language == language_java
4674 || cu->language == language_fortran))
4675 {
4676 if (die_needs_namespace (die, cu))
4677 {
4678 long length;
4679 char *prefix;
4680 struct ui_file *buf;
4681
4682 prefix = determine_prefix (die, cu);
4683 buf = mem_fileopen ();
4684 if (*prefix != '\0')
4685 {
4686 char *prefixed_name = typename_concat (NULL, prefix, name,
4687 physname, cu);
4688
4689 fputs_unfiltered (prefixed_name, buf);
4690 xfree (prefixed_name);
4691 }
4692 else
4693 fputs_unfiltered (name ? name : "", buf);
4694
4695 /* Template parameters may be specified in the DIE's DW_AT_name, or
4696 as children with DW_TAG_template_type_param or
4697 DW_TAG_value_type_param. If the latter, add them to the name
4698 here. If the name already has template parameters, then
4699 skip this step; some versions of GCC emit both, and
4700 it is more efficient to use the pre-computed name.
4701
4702 Something to keep in mind about this process: it is very
4703 unlikely, or in some cases downright impossible, to produce
4704 something that will match the mangled name of a function.
4705 If the definition of the function has the same debug info,
4706 we should be able to match up with it anyway. But fallbacks
4707 using the minimal symbol, for instance to find a method
4708 implemented in a stripped copy of libstdc++, will not work.
4709 If we do not have debug info for the definition, we will have to
4710 match them up some other way.
4711
4712 When we do name matching there is a related problem with function
4713 templates; two instantiated function templates are allowed to
4714 differ only by their return types, which we do not add here. */
4715
4716 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4717 {
4718 struct attribute *attr;
4719 struct die_info *child;
4720 int first = 1;
4721
4722 die->building_fullname = 1;
4723
4724 for (child = die->child; child != NULL; child = child->sibling)
4725 {
4726 struct type *type;
4727 long value;
4728 gdb_byte *bytes;
4729 struct dwarf2_locexpr_baton *baton;
4730 struct value *v;
4731
4732 if (child->tag != DW_TAG_template_type_param
4733 && child->tag != DW_TAG_template_value_param)
4734 continue;
4735
4736 if (first)
4737 {
4738 fputs_unfiltered ("<", buf);
4739 first = 0;
4740 }
4741 else
4742 fputs_unfiltered (", ", buf);
4743
4744 attr = dwarf2_attr (child, DW_AT_type, cu);
4745 if (attr == NULL)
4746 {
4747 complaint (&symfile_complaints,
4748 _("template parameter missing DW_AT_type"));
4749 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4750 continue;
4751 }
4752 type = die_type (child, cu);
4753
4754 if (child->tag == DW_TAG_template_type_param)
4755 {
4756 c_print_type (type, "", buf, -1, 0);
4757 continue;
4758 }
4759
4760 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4761 if (attr == NULL)
4762 {
4763 complaint (&symfile_complaints,
4764 _("template parameter missing DW_AT_const_value"));
4765 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4766 continue;
4767 }
4768
4769 dwarf2_const_value_attr (attr, type, name,
4770 &cu->comp_unit_obstack, cu,
4771 &value, &bytes, &baton);
4772
4773 if (TYPE_NOSIGN (type))
4774 /* GDB prints characters as NUMBER 'CHAR'. If that's
4775 changed, this can use value_print instead. */
4776 c_printchar (value, type, buf);
4777 else
4778 {
4779 struct value_print_options opts;
4780
4781 if (baton != NULL)
4782 v = dwarf2_evaluate_loc_desc (type, NULL,
4783 baton->data,
4784 baton->size,
4785 baton->per_cu);
4786 else if (bytes != NULL)
4787 {
4788 v = allocate_value (type);
4789 memcpy (value_contents_writeable (v), bytes,
4790 TYPE_LENGTH (type));
4791 }
4792 else
4793 v = value_from_longest (type, value);
4794
4795 /* Specify decimal so that we do not depend on the radix. */
4796 get_formatted_print_options (&opts, 'd');
4797 opts.raw = 1;
4798 value_print (v, buf, &opts);
4799 release_value (v);
4800 value_free (v);
4801 }
4802 }
4803
4804 die->building_fullname = 0;
4805
4806 if (!first)
4807 {
4808 /* Close the argument list, with a space if necessary
4809 (nested templates). */
4810 char last_char = '\0';
4811 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4812 if (last_char == '>')
4813 fputs_unfiltered (" >", buf);
4814 else
4815 fputs_unfiltered (">", buf);
4816 }
4817 }
4818
4819 /* For Java and C++ methods, append formal parameter type
4820 information, if PHYSNAME. */
4821
4822 if (physname && die->tag == DW_TAG_subprogram
4823 && (cu->language == language_cplus
4824 || cu->language == language_java))
4825 {
4826 struct type *type = read_type_die (die, cu);
4827
4828 c_type_print_args (type, buf, 0, cu->language);
4829
4830 if (cu->language == language_java)
4831 {
4832 /* For java, we must append the return type to method
4833 names. */
4834 if (die->tag == DW_TAG_subprogram)
4835 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
4836 0, 0);
4837 }
4838 else if (cu->language == language_cplus)
4839 {
4840 /* Assume that an artificial first parameter is
4841 "this", but do not crash if it is not. RealView
4842 marks unnamed (and thus unused) parameters as
4843 artificial; there is no way to differentiate
4844 the two cases. */
4845 if (TYPE_NFIELDS (type) > 0
4846 && TYPE_FIELD_ARTIFICIAL (type, 0)
4847 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
4848 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0))))
4849 fputs_unfiltered (" const", buf);
4850 }
4851 }
4852
4853 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
4854 &length);
4855 ui_file_delete (buf);
4856
4857 if (cu->language == language_cplus)
4858 {
4859 char *cname
4860 = dwarf2_canonicalize_name (name, cu,
4861 &cu->objfile->objfile_obstack);
4862
4863 if (cname != NULL)
4864 name = cname;
4865 }
4866 }
4867 }
4868
4869 return name;
4870 }
4871
4872 /* Return the fully qualified name of DIE, based on its DW_AT_name.
4873 If scope qualifiers are appropriate they will be added. The result
4874 will be allocated on the objfile_obstack, or NULL if the DIE does
4875 not have a name. NAME may either be from a previous call to
4876 dwarf2_name or NULL.
4877
4878 The output string will be canonicalized (if C++/Java). */
4879
4880 static const char *
4881 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
4882 {
4883 return dwarf2_compute_name (name, die, cu, 0);
4884 }
4885
4886 /* Construct a physname for the given DIE in CU. NAME may either be
4887 from a previous call to dwarf2_name or NULL. The result will be
4888 allocated on the objfile_objstack or NULL if the DIE does not have a
4889 name.
4890
4891 The output string will be canonicalized (if C++/Java). */
4892
4893 static const char *
4894 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
4895 {
4896 return dwarf2_compute_name (name, die, cu, 1);
4897 }
4898
4899 /* Read the import statement specified by the given die and record it. */
4900
4901 static void
4902 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
4903 {
4904 struct attribute *import_attr;
4905 struct die_info *imported_die;
4906 struct dwarf2_cu *imported_cu;
4907 const char *imported_name;
4908 const char *imported_name_prefix;
4909 const char *canonical_name;
4910 const char *import_alias;
4911 const char *imported_declaration = NULL;
4912 const char *import_prefix;
4913
4914 char *temp;
4915
4916 import_attr = dwarf2_attr (die, DW_AT_import, cu);
4917 if (import_attr == NULL)
4918 {
4919 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
4920 dwarf_tag_name (die->tag));
4921 return;
4922 }
4923
4924 imported_cu = cu;
4925 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
4926 imported_name = dwarf2_name (imported_die, imported_cu);
4927 if (imported_name == NULL)
4928 {
4929 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
4930
4931 The import in the following code:
4932 namespace A
4933 {
4934 typedef int B;
4935 }
4936
4937 int main ()
4938 {
4939 using A::B;
4940 B b;
4941 return b;
4942 }
4943
4944 ...
4945 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
4946 <52> DW_AT_decl_file : 1
4947 <53> DW_AT_decl_line : 6
4948 <54> DW_AT_import : <0x75>
4949 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
4950 <59> DW_AT_name : B
4951 <5b> DW_AT_decl_file : 1
4952 <5c> DW_AT_decl_line : 2
4953 <5d> DW_AT_type : <0x6e>
4954 ...
4955 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
4956 <76> DW_AT_byte_size : 4
4957 <77> DW_AT_encoding : 5 (signed)
4958
4959 imports the wrong die ( 0x75 instead of 0x58 ).
4960 This case will be ignored until the gcc bug is fixed. */
4961 return;
4962 }
4963
4964 /* Figure out the local name after import. */
4965 import_alias = dwarf2_name (die, cu);
4966
4967 /* Figure out where the statement is being imported to. */
4968 import_prefix = determine_prefix (die, cu);
4969
4970 /* Figure out what the scope of the imported die is and prepend it
4971 to the name of the imported die. */
4972 imported_name_prefix = determine_prefix (imported_die, imported_cu);
4973
4974 if (imported_die->tag != DW_TAG_namespace
4975 && imported_die->tag != DW_TAG_module)
4976 {
4977 imported_declaration = imported_name;
4978 canonical_name = imported_name_prefix;
4979 }
4980 else if (strlen (imported_name_prefix) > 0)
4981 {
4982 temp = alloca (strlen (imported_name_prefix)
4983 + 2 + strlen (imported_name) + 1);
4984 strcpy (temp, imported_name_prefix);
4985 strcat (temp, "::");
4986 strcat (temp, imported_name);
4987 canonical_name = temp;
4988 }
4989 else
4990 canonical_name = imported_name;
4991
4992 cp_add_using_directive (import_prefix,
4993 canonical_name,
4994 import_alias,
4995 imported_declaration,
4996 &cu->objfile->objfile_obstack);
4997 }
4998
4999 static void
5000 initialize_cu_func_list (struct dwarf2_cu *cu)
5001 {
5002 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5003 }
5004
5005 static void
5006 free_cu_line_header (void *arg)
5007 {
5008 struct dwarf2_cu *cu = arg;
5009
5010 free_line_header (cu->line_header);
5011 cu->line_header = NULL;
5012 }
5013
5014 static void
5015 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5016 char **name, char **comp_dir)
5017 {
5018 struct attribute *attr;
5019
5020 *name = NULL;
5021 *comp_dir = NULL;
5022
5023 /* Find the filename. Do not use dwarf2_name here, since the filename
5024 is not a source language identifier. */
5025 attr = dwarf2_attr (die, DW_AT_name, cu);
5026 if (attr)
5027 {
5028 *name = DW_STRING (attr);
5029 }
5030
5031 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5032 if (attr)
5033 *comp_dir = DW_STRING (attr);
5034 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5035 {
5036 *comp_dir = ldirname (*name);
5037 if (*comp_dir != NULL)
5038 make_cleanup (xfree, *comp_dir);
5039 }
5040 if (*comp_dir != NULL)
5041 {
5042 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5043 directory, get rid of it. */
5044 char *cp = strchr (*comp_dir, ':');
5045
5046 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5047 *comp_dir = cp + 1;
5048 }
5049
5050 if (*name == NULL)
5051 *name = "<unknown>";
5052 }
5053
5054 static void
5055 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5056 {
5057 struct objfile *objfile = cu->objfile;
5058 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5059 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5060 CORE_ADDR highpc = ((CORE_ADDR) 0);
5061 struct attribute *attr;
5062 char *name = NULL;
5063 char *comp_dir = NULL;
5064 struct die_info *child_die;
5065 bfd *abfd = objfile->obfd;
5066 struct line_header *line_header = 0;
5067 CORE_ADDR baseaddr;
5068
5069 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5070
5071 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5072
5073 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5074 from finish_block. */
5075 if (lowpc == ((CORE_ADDR) -1))
5076 lowpc = highpc;
5077 lowpc += baseaddr;
5078 highpc += baseaddr;
5079
5080 find_file_and_directory (die, cu, &name, &comp_dir);
5081
5082 attr = dwarf2_attr (die, DW_AT_language, cu);
5083 if (attr)
5084 {
5085 set_cu_language (DW_UNSND (attr), cu);
5086 }
5087
5088 attr = dwarf2_attr (die, DW_AT_producer, cu);
5089 if (attr)
5090 cu->producer = DW_STRING (attr);
5091
5092 /* We assume that we're processing GCC output. */
5093 processing_gcc_compilation = 2;
5094
5095 processing_has_namespace_info = 0;
5096
5097 start_symtab (name, comp_dir, lowpc);
5098 record_debugformat ("DWARF 2");
5099 record_producer (cu->producer);
5100
5101 initialize_cu_func_list (cu);
5102
5103 /* Decode line number information if present. We do this before
5104 processing child DIEs, so that the line header table is available
5105 for DW_AT_decl_file. */
5106 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5107 if (attr)
5108 {
5109 unsigned int line_offset = DW_UNSND (attr);
5110 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
5111 if (line_header)
5112 {
5113 cu->line_header = line_header;
5114 make_cleanup (free_cu_line_header, cu);
5115 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
5116 }
5117 }
5118
5119 /* Process all dies in compilation unit. */
5120 if (die->child != NULL)
5121 {
5122 child_die = die->child;
5123 while (child_die && child_die->tag)
5124 {
5125 process_die (child_die, cu);
5126 child_die = sibling_die (child_die);
5127 }
5128 }
5129
5130 /* Decode macro information, if present. Dwarf 2 macro information
5131 refers to information in the line number info statement program
5132 header, so we can only read it if we've read the header
5133 successfully. */
5134 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5135 if (attr && line_header)
5136 {
5137 unsigned int macro_offset = DW_UNSND (attr);
5138
5139 dwarf_decode_macros (line_header, macro_offset,
5140 comp_dir, abfd, cu);
5141 }
5142 do_cleanups (back_to);
5143 }
5144
5145 /* For TUs we want to skip the first top level sibling if it's not the
5146 actual type being defined by this TU. In this case the first top
5147 level sibling is there to provide context only. */
5148
5149 static void
5150 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5151 {
5152 struct objfile *objfile = cu->objfile;
5153 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5154 CORE_ADDR lowpc;
5155 struct attribute *attr;
5156 char *name = NULL;
5157 char *comp_dir = NULL;
5158 struct die_info *child_die;
5159 bfd *abfd = objfile->obfd;
5160
5161 /* start_symtab needs a low pc, but we don't really have one.
5162 Do what read_file_scope would do in the absence of such info. */
5163 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5164
5165 /* Find the filename. Do not use dwarf2_name here, since the filename
5166 is not a source language identifier. */
5167 attr = dwarf2_attr (die, DW_AT_name, cu);
5168 if (attr)
5169 name = DW_STRING (attr);
5170
5171 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5172 if (attr)
5173 comp_dir = DW_STRING (attr);
5174 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5175 {
5176 comp_dir = ldirname (name);
5177 if (comp_dir != NULL)
5178 make_cleanup (xfree, comp_dir);
5179 }
5180
5181 if (name == NULL)
5182 name = "<unknown>";
5183
5184 attr = dwarf2_attr (die, DW_AT_language, cu);
5185 if (attr)
5186 set_cu_language (DW_UNSND (attr), cu);
5187
5188 /* This isn't technically needed today. It is done for symmetry
5189 with read_file_scope. */
5190 attr = dwarf2_attr (die, DW_AT_producer, cu);
5191 if (attr)
5192 cu->producer = DW_STRING (attr);
5193
5194 /* We assume that we're processing GCC output. */
5195 processing_gcc_compilation = 2;
5196
5197 processing_has_namespace_info = 0;
5198
5199 start_symtab (name, comp_dir, lowpc);
5200 record_debugformat ("DWARF 2");
5201 record_producer (cu->producer);
5202
5203 /* Process the dies in the type unit. */
5204 if (die->child == NULL)
5205 {
5206 dump_die_for_error (die);
5207 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5208 bfd_get_filename (abfd));
5209 }
5210
5211 child_die = die->child;
5212
5213 while (child_die && child_die->tag)
5214 {
5215 process_die (child_die, cu);
5216
5217 child_die = sibling_die (child_die);
5218 }
5219
5220 do_cleanups (back_to);
5221 }
5222
5223 static void
5224 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5225 struct dwarf2_cu *cu)
5226 {
5227 struct function_range *thisfn;
5228
5229 thisfn = (struct function_range *)
5230 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5231 thisfn->name = name;
5232 thisfn->lowpc = lowpc;
5233 thisfn->highpc = highpc;
5234 thisfn->seen_line = 0;
5235 thisfn->next = NULL;
5236
5237 if (cu->last_fn == NULL)
5238 cu->first_fn = thisfn;
5239 else
5240 cu->last_fn->next = thisfn;
5241
5242 cu->last_fn = thisfn;
5243 }
5244
5245 /* qsort helper for inherit_abstract_dies. */
5246
5247 static int
5248 unsigned_int_compar (const void *ap, const void *bp)
5249 {
5250 unsigned int a = *(unsigned int *) ap;
5251 unsigned int b = *(unsigned int *) bp;
5252
5253 return (a > b) - (b > a);
5254 }
5255
5256 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5257 Inherit only the children of the DW_AT_abstract_origin DIE not being already
5258 referenced by DW_AT_abstract_origin from the children of the current DIE. */
5259
5260 static void
5261 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5262 {
5263 struct die_info *child_die;
5264 unsigned die_children_count;
5265 /* CU offsets which were referenced by children of the current DIE. */
5266 unsigned *offsets;
5267 unsigned *offsets_end, *offsetp;
5268 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5269 struct die_info *origin_die;
5270 /* Iterator of the ORIGIN_DIE children. */
5271 struct die_info *origin_child_die;
5272 struct cleanup *cleanups;
5273 struct attribute *attr;
5274 struct dwarf2_cu *origin_cu;
5275 struct pending **origin_previous_list_in_scope;
5276
5277 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5278 if (!attr)
5279 return;
5280
5281 /* Note that following die references may follow to a die in a
5282 different cu. */
5283
5284 origin_cu = cu;
5285 origin_die = follow_die_ref (die, attr, &origin_cu);
5286
5287 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5288 symbols in. */
5289 origin_previous_list_in_scope = origin_cu->list_in_scope;
5290 origin_cu->list_in_scope = cu->list_in_scope;
5291
5292 if (die->tag != origin_die->tag
5293 && !(die->tag == DW_TAG_inlined_subroutine
5294 && origin_die->tag == DW_TAG_subprogram))
5295 complaint (&symfile_complaints,
5296 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5297 die->offset, origin_die->offset);
5298
5299 child_die = die->child;
5300 die_children_count = 0;
5301 while (child_die && child_die->tag)
5302 {
5303 child_die = sibling_die (child_die);
5304 die_children_count++;
5305 }
5306 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5307 cleanups = make_cleanup (xfree, offsets);
5308
5309 offsets_end = offsets;
5310 child_die = die->child;
5311 while (child_die && child_die->tag)
5312 {
5313 /* For each CHILD_DIE, find the corresponding child of
5314 ORIGIN_DIE. If there is more than one layer of
5315 DW_AT_abstract_origin, follow them all; there shouldn't be,
5316 but GCC versions at least through 4.4 generate this (GCC PR
5317 40573). */
5318 struct die_info *child_origin_die = child_die;
5319 struct dwarf2_cu *child_origin_cu = cu;
5320
5321 while (1)
5322 {
5323 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5324 child_origin_cu);
5325 if (attr == NULL)
5326 break;
5327 child_origin_die = follow_die_ref (child_origin_die, attr,
5328 &child_origin_cu);
5329 }
5330
5331 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5332 counterpart may exist. */
5333 if (child_origin_die != child_die)
5334 {
5335 if (child_die->tag != child_origin_die->tag
5336 && !(child_die->tag == DW_TAG_inlined_subroutine
5337 && child_origin_die->tag == DW_TAG_subprogram))
5338 complaint (&symfile_complaints,
5339 _("Child DIE 0x%x and its abstract origin 0x%x have "
5340 "different tags"), child_die->offset,
5341 child_origin_die->offset);
5342 if (child_origin_die->parent != origin_die)
5343 complaint (&symfile_complaints,
5344 _("Child DIE 0x%x and its abstract origin 0x%x have "
5345 "different parents"), child_die->offset,
5346 child_origin_die->offset);
5347 else
5348 *offsets_end++ = child_origin_die->offset;
5349 }
5350 child_die = sibling_die (child_die);
5351 }
5352 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5353 unsigned_int_compar);
5354 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5355 if (offsetp[-1] == *offsetp)
5356 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
5357 "to DIE 0x%x as their abstract origin"),
5358 die->offset, *offsetp);
5359
5360 offsetp = offsets;
5361 origin_child_die = origin_die->child;
5362 while (origin_child_die && origin_child_die->tag)
5363 {
5364 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5365 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5366 offsetp++;
5367 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5368 {
5369 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5370 process_die (origin_child_die, origin_cu);
5371 }
5372 origin_child_die = sibling_die (origin_child_die);
5373 }
5374 origin_cu->list_in_scope = origin_previous_list_in_scope;
5375
5376 do_cleanups (cleanups);
5377 }
5378
5379 static void
5380 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5381 {
5382 struct objfile *objfile = cu->objfile;
5383 struct context_stack *new;
5384 CORE_ADDR lowpc;
5385 CORE_ADDR highpc;
5386 struct die_info *child_die;
5387 struct attribute *attr, *call_line, *call_file;
5388 char *name;
5389 CORE_ADDR baseaddr;
5390 struct block *block;
5391 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5392 VEC (symbolp) *template_args = NULL;
5393 struct template_symbol *templ_func = NULL;
5394
5395 if (inlined_func)
5396 {
5397 /* If we do not have call site information, we can't show the
5398 caller of this inlined function. That's too confusing, so
5399 only use the scope for local variables. */
5400 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5401 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5402 if (call_line == NULL || call_file == NULL)
5403 {
5404 read_lexical_block_scope (die, cu);
5405 return;
5406 }
5407 }
5408
5409 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5410
5411 name = dwarf2_name (die, cu);
5412
5413 /* Ignore functions with missing or empty names. These are actually
5414 illegal according to the DWARF standard. */
5415 if (name == NULL)
5416 {
5417 complaint (&symfile_complaints,
5418 _("missing name for subprogram DIE at %d"), die->offset);
5419 return;
5420 }
5421
5422 /* Ignore functions with missing or invalid low and high pc attributes. */
5423 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5424 {
5425 attr = dwarf2_attr (die, DW_AT_external, cu);
5426 if (!attr || !DW_UNSND (attr))
5427 complaint (&symfile_complaints,
5428 _("cannot get low and high bounds for subprogram DIE at %d"),
5429 die->offset);
5430 return;
5431 }
5432
5433 lowpc += baseaddr;
5434 highpc += baseaddr;
5435
5436 /* Record the function range for dwarf_decode_lines. */
5437 add_to_cu_func_list (name, lowpc, highpc, cu);
5438
5439 /* If we have any template arguments, then we must allocate a
5440 different sort of symbol. */
5441 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5442 {
5443 if (child_die->tag == DW_TAG_template_type_param
5444 || child_die->tag == DW_TAG_template_value_param)
5445 {
5446 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5447 struct template_symbol);
5448 templ_func->base.is_cplus_template_function = 1;
5449 break;
5450 }
5451 }
5452
5453 new = push_context (0, lowpc);
5454 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5455 (struct symbol *) templ_func);
5456
5457 /* If there is a location expression for DW_AT_frame_base, record
5458 it. */
5459 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
5460 if (attr)
5461 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5462 expression is being recorded directly in the function's symbol
5463 and not in a separate frame-base object. I guess this hack is
5464 to avoid adding some sort of frame-base adjunct/annex to the
5465 function's symbol :-(. The problem with doing this is that it
5466 results in a function symbol with a location expression that
5467 has nothing to do with the location of the function, ouch! The
5468 relationship should be: a function's symbol has-a frame base; a
5469 frame-base has-a location expression. */
5470 dwarf2_symbol_mark_computed (attr, new->name, cu);
5471
5472 cu->list_in_scope = &local_symbols;
5473
5474 if (die->child != NULL)
5475 {
5476 child_die = die->child;
5477 while (child_die && child_die->tag)
5478 {
5479 if (child_die->tag == DW_TAG_template_type_param
5480 || child_die->tag == DW_TAG_template_value_param)
5481 {
5482 struct symbol *arg = new_symbol (child_die, NULL, cu);
5483
5484 if (arg != NULL)
5485 VEC_safe_push (symbolp, template_args, arg);
5486 }
5487 else
5488 process_die (child_die, cu);
5489 child_die = sibling_die (child_die);
5490 }
5491 }
5492
5493 inherit_abstract_dies (die, cu);
5494
5495 /* If we have a DW_AT_specification, we might need to import using
5496 directives from the context of the specification DIE. See the
5497 comment in determine_prefix. */
5498 if (cu->language == language_cplus
5499 && dwarf2_attr (die, DW_AT_specification, cu))
5500 {
5501 struct dwarf2_cu *spec_cu = cu;
5502 struct die_info *spec_die = die_specification (die, &spec_cu);
5503
5504 while (spec_die)
5505 {
5506 child_die = spec_die->child;
5507 while (child_die && child_die->tag)
5508 {
5509 if (child_die->tag == DW_TAG_imported_module)
5510 process_die (child_die, spec_cu);
5511 child_die = sibling_die (child_die);
5512 }
5513
5514 /* In some cases, GCC generates specification DIEs that
5515 themselves contain DW_AT_specification attributes. */
5516 spec_die = die_specification (spec_die, &spec_cu);
5517 }
5518 }
5519
5520 new = pop_context ();
5521 /* Make a block for the local symbols within. */
5522 block = finish_block (new->name, &local_symbols, new->old_blocks,
5523 lowpc, highpc, objfile);
5524
5525 /* For C++, set the block's scope. */
5526 if (cu->language == language_cplus || cu->language == language_fortran)
5527 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
5528 determine_prefix (die, cu),
5529 processing_has_namespace_info);
5530
5531 /* If we have address ranges, record them. */
5532 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5533
5534 /* Attach template arguments to function. */
5535 if (! VEC_empty (symbolp, template_args))
5536 {
5537 gdb_assert (templ_func != NULL);
5538
5539 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5540 templ_func->template_arguments
5541 = obstack_alloc (&objfile->objfile_obstack,
5542 (templ_func->n_template_arguments
5543 * sizeof (struct symbol *)));
5544 memcpy (templ_func->template_arguments,
5545 VEC_address (symbolp, template_args),
5546 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5547 VEC_free (symbolp, template_args);
5548 }
5549
5550 /* In C++, we can have functions nested inside functions (e.g., when
5551 a function declares a class that has methods). This means that
5552 when we finish processing a function scope, we may need to go
5553 back to building a containing block's symbol lists. */
5554 local_symbols = new->locals;
5555 param_symbols = new->params;
5556 using_directives = new->using_directives;
5557
5558 /* If we've finished processing a top-level function, subsequent
5559 symbols go in the file symbol list. */
5560 if (outermost_context_p ())
5561 cu->list_in_scope = &file_symbols;
5562 }
5563
5564 /* Process all the DIES contained within a lexical block scope. Start
5565 a new scope, process the dies, and then close the scope. */
5566
5567 static void
5568 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
5569 {
5570 struct objfile *objfile = cu->objfile;
5571 struct context_stack *new;
5572 CORE_ADDR lowpc, highpc;
5573 struct die_info *child_die;
5574 CORE_ADDR baseaddr;
5575
5576 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5577
5578 /* Ignore blocks with missing or invalid low and high pc attributes. */
5579 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5580 as multiple lexical blocks? Handling children in a sane way would
5581 be nasty. Might be easier to properly extend generic blocks to
5582 describe ranges. */
5583 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5584 return;
5585 lowpc += baseaddr;
5586 highpc += baseaddr;
5587
5588 push_context (0, lowpc);
5589 if (die->child != NULL)
5590 {
5591 child_die = die->child;
5592 while (child_die && child_die->tag)
5593 {
5594 process_die (child_die, cu);
5595 child_die = sibling_die (child_die);
5596 }
5597 }
5598 new = pop_context ();
5599
5600 if (local_symbols != NULL || using_directives != NULL)
5601 {
5602 struct block *block
5603 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5604 highpc, objfile);
5605
5606 /* Note that recording ranges after traversing children, as we
5607 do here, means that recording a parent's ranges entails
5608 walking across all its children's ranges as they appear in
5609 the address map, which is quadratic behavior.
5610
5611 It would be nicer to record the parent's ranges before
5612 traversing its children, simply overriding whatever you find
5613 there. But since we don't even decide whether to create a
5614 block until after we've traversed its children, that's hard
5615 to do. */
5616 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5617 }
5618 local_symbols = new->locals;
5619 using_directives = new->using_directives;
5620 }
5621
5622 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
5623 Return 1 if the attributes are present and valid, otherwise, return 0.
5624 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
5625
5626 static int
5627 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
5628 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5629 struct partial_symtab *ranges_pst)
5630 {
5631 struct objfile *objfile = cu->objfile;
5632 struct comp_unit_head *cu_header = &cu->header;
5633 bfd *obfd = objfile->obfd;
5634 unsigned int addr_size = cu_header->addr_size;
5635 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5636 /* Base address selection entry. */
5637 CORE_ADDR base;
5638 int found_base;
5639 unsigned int dummy;
5640 gdb_byte *buffer;
5641 CORE_ADDR marker;
5642 int low_set;
5643 CORE_ADDR low = 0;
5644 CORE_ADDR high = 0;
5645 CORE_ADDR baseaddr;
5646
5647 found_base = cu->base_known;
5648 base = cu->base_address;
5649
5650 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
5651 if (offset >= dwarf2_per_objfile->ranges.size)
5652 {
5653 complaint (&symfile_complaints,
5654 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5655 offset);
5656 return 0;
5657 }
5658 buffer = dwarf2_per_objfile->ranges.buffer + offset;
5659
5660 /* Read in the largest possible address. */
5661 marker = read_address (obfd, buffer, cu, &dummy);
5662 if ((marker & mask) == mask)
5663 {
5664 /* If we found the largest possible address, then
5665 read the base address. */
5666 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5667 buffer += 2 * addr_size;
5668 offset += 2 * addr_size;
5669 found_base = 1;
5670 }
5671
5672 low_set = 0;
5673
5674 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5675
5676 while (1)
5677 {
5678 CORE_ADDR range_beginning, range_end;
5679
5680 range_beginning = read_address (obfd, buffer, cu, &dummy);
5681 buffer += addr_size;
5682 range_end = read_address (obfd, buffer, cu, &dummy);
5683 buffer += addr_size;
5684 offset += 2 * addr_size;
5685
5686 /* An end of list marker is a pair of zero addresses. */
5687 if (range_beginning == 0 && range_end == 0)
5688 /* Found the end of list entry. */
5689 break;
5690
5691 /* Each base address selection entry is a pair of 2 values.
5692 The first is the largest possible address, the second is
5693 the base address. Check for a base address here. */
5694 if ((range_beginning & mask) == mask)
5695 {
5696 /* If we found the largest possible address, then
5697 read the base address. */
5698 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5699 found_base = 1;
5700 continue;
5701 }
5702
5703 if (!found_base)
5704 {
5705 /* We have no valid base address for the ranges
5706 data. */
5707 complaint (&symfile_complaints,
5708 _("Invalid .debug_ranges data (no base address)"));
5709 return 0;
5710 }
5711
5712 range_beginning += base;
5713 range_end += base;
5714
5715 if (ranges_pst != NULL && range_beginning < range_end)
5716 addrmap_set_empty (objfile->psymtabs_addrmap,
5717 range_beginning + baseaddr, range_end - 1 + baseaddr,
5718 ranges_pst);
5719
5720 /* FIXME: This is recording everything as a low-high
5721 segment of consecutive addresses. We should have a
5722 data structure for discontiguous block ranges
5723 instead. */
5724 if (! low_set)
5725 {
5726 low = range_beginning;
5727 high = range_end;
5728 low_set = 1;
5729 }
5730 else
5731 {
5732 if (range_beginning < low)
5733 low = range_beginning;
5734 if (range_end > high)
5735 high = range_end;
5736 }
5737 }
5738
5739 if (! low_set)
5740 /* If the first entry is an end-of-list marker, the range
5741 describes an empty scope, i.e. no instructions. */
5742 return 0;
5743
5744 if (low_return)
5745 *low_return = low;
5746 if (high_return)
5747 *high_return = high;
5748 return 1;
5749 }
5750
5751 /* Get low and high pc attributes from a die. Return 1 if the attributes
5752 are present and valid, otherwise, return 0. Return -1 if the range is
5753 discontinuous, i.e. derived from DW_AT_ranges information. */
5754 static int
5755 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
5756 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5757 struct partial_symtab *pst)
5758 {
5759 struct attribute *attr;
5760 CORE_ADDR low = 0;
5761 CORE_ADDR high = 0;
5762 int ret = 0;
5763
5764 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5765 if (attr)
5766 {
5767 high = DW_ADDR (attr);
5768 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5769 if (attr)
5770 low = DW_ADDR (attr);
5771 else
5772 /* Found high w/o low attribute. */
5773 return 0;
5774
5775 /* Found consecutive range of addresses. */
5776 ret = 1;
5777 }
5778 else
5779 {
5780 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5781 if (attr != NULL)
5782 {
5783 /* Value of the DW_AT_ranges attribute is the offset in the
5784 .debug_ranges section. */
5785 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
5786 return 0;
5787 /* Found discontinuous range of addresses. */
5788 ret = -1;
5789 }
5790 }
5791
5792 if (high < low)
5793 return 0;
5794
5795 /* When using the GNU linker, .gnu.linkonce. sections are used to
5796 eliminate duplicate copies of functions and vtables and such.
5797 The linker will arbitrarily choose one and discard the others.
5798 The AT_*_pc values for such functions refer to local labels in
5799 these sections. If the section from that file was discarded, the
5800 labels are not in the output, so the relocs get a value of 0.
5801 If this is a discarded function, mark the pc bounds as invalid,
5802 so that GDB will ignore it. */
5803 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
5804 return 0;
5805
5806 *lowpc = low;
5807 *highpc = high;
5808 return ret;
5809 }
5810
5811 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
5812 its low and high PC addresses. Do nothing if these addresses could not
5813 be determined. Otherwise, set LOWPC to the low address if it is smaller,
5814 and HIGHPC to the high address if greater than HIGHPC. */
5815
5816 static void
5817 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
5818 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5819 struct dwarf2_cu *cu)
5820 {
5821 CORE_ADDR low, high;
5822 struct die_info *child = die->child;
5823
5824 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
5825 {
5826 *lowpc = min (*lowpc, low);
5827 *highpc = max (*highpc, high);
5828 }
5829
5830 /* If the language does not allow nested subprograms (either inside
5831 subprograms or lexical blocks), we're done. */
5832 if (cu->language != language_ada)
5833 return;
5834
5835 /* Check all the children of the given DIE. If it contains nested
5836 subprograms, then check their pc bounds. Likewise, we need to
5837 check lexical blocks as well, as they may also contain subprogram
5838 definitions. */
5839 while (child && child->tag)
5840 {
5841 if (child->tag == DW_TAG_subprogram
5842 || child->tag == DW_TAG_lexical_block)
5843 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
5844 child = sibling_die (child);
5845 }
5846 }
5847
5848 /* Get the low and high pc's represented by the scope DIE, and store
5849 them in *LOWPC and *HIGHPC. If the correct values can't be
5850 determined, set *LOWPC to -1 and *HIGHPC to 0. */
5851
5852 static void
5853 get_scope_pc_bounds (struct die_info *die,
5854 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5855 struct dwarf2_cu *cu)
5856 {
5857 CORE_ADDR best_low = (CORE_ADDR) -1;
5858 CORE_ADDR best_high = (CORE_ADDR) 0;
5859 CORE_ADDR current_low, current_high;
5860
5861 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
5862 {
5863 best_low = current_low;
5864 best_high = current_high;
5865 }
5866 else
5867 {
5868 struct die_info *child = die->child;
5869
5870 while (child && child->tag)
5871 {
5872 switch (child->tag) {
5873 case DW_TAG_subprogram:
5874 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
5875 break;
5876 case DW_TAG_namespace:
5877 case DW_TAG_module:
5878 /* FIXME: carlton/2004-01-16: Should we do this for
5879 DW_TAG_class_type/DW_TAG_structure_type, too? I think
5880 that current GCC's always emit the DIEs corresponding
5881 to definitions of methods of classes as children of a
5882 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
5883 the DIEs giving the declarations, which could be
5884 anywhere). But I don't see any reason why the
5885 standards says that they have to be there. */
5886 get_scope_pc_bounds (child, &current_low, &current_high, cu);
5887
5888 if (current_low != ((CORE_ADDR) -1))
5889 {
5890 best_low = min (best_low, current_low);
5891 best_high = max (best_high, current_high);
5892 }
5893 break;
5894 default:
5895 /* Ignore. */
5896 break;
5897 }
5898
5899 child = sibling_die (child);
5900 }
5901 }
5902
5903 *lowpc = best_low;
5904 *highpc = best_high;
5905 }
5906
5907 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
5908 in DIE. */
5909 static void
5910 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
5911 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
5912 {
5913 struct attribute *attr;
5914
5915 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5916 if (attr)
5917 {
5918 CORE_ADDR high = DW_ADDR (attr);
5919
5920 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5921 if (attr)
5922 {
5923 CORE_ADDR low = DW_ADDR (attr);
5924
5925 record_block_range (block, baseaddr + low, baseaddr + high - 1);
5926 }
5927 }
5928
5929 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5930 if (attr)
5931 {
5932 bfd *obfd = cu->objfile->obfd;
5933
5934 /* The value of the DW_AT_ranges attribute is the offset of the
5935 address range list in the .debug_ranges section. */
5936 unsigned long offset = DW_UNSND (attr);
5937 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
5938
5939 /* For some target architectures, but not others, the
5940 read_address function sign-extends the addresses it returns.
5941 To recognize base address selection entries, we need a
5942 mask. */
5943 unsigned int addr_size = cu->header.addr_size;
5944 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5945
5946 /* The base address, to which the next pair is relative. Note
5947 that this 'base' is a DWARF concept: most entries in a range
5948 list are relative, to reduce the number of relocs against the
5949 debugging information. This is separate from this function's
5950 'baseaddr' argument, which GDB uses to relocate debugging
5951 information from a shared library based on the address at
5952 which the library was loaded. */
5953 CORE_ADDR base = cu->base_address;
5954 int base_known = cu->base_known;
5955
5956 gdb_assert (dwarf2_per_objfile->ranges.readin);
5957 if (offset >= dwarf2_per_objfile->ranges.size)
5958 {
5959 complaint (&symfile_complaints,
5960 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
5961 offset);
5962 return;
5963 }
5964
5965 for (;;)
5966 {
5967 unsigned int bytes_read;
5968 CORE_ADDR start, end;
5969
5970 start = read_address (obfd, buffer, cu, &bytes_read);
5971 buffer += bytes_read;
5972 end = read_address (obfd, buffer, cu, &bytes_read);
5973 buffer += bytes_read;
5974
5975 /* Did we find the end of the range list? */
5976 if (start == 0 && end == 0)
5977 break;
5978
5979 /* Did we find a base address selection entry? */
5980 else if ((start & base_select_mask) == base_select_mask)
5981 {
5982 base = end;
5983 base_known = 1;
5984 }
5985
5986 /* We found an ordinary address range. */
5987 else
5988 {
5989 if (!base_known)
5990 {
5991 complaint (&symfile_complaints,
5992 _("Invalid .debug_ranges data (no base address)"));
5993 return;
5994 }
5995
5996 record_block_range (block,
5997 baseaddr + base + start,
5998 baseaddr + base + end - 1);
5999 }
6000 }
6001 }
6002 }
6003
6004 /* Add an aggregate field to the field list. */
6005
6006 static void
6007 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6008 struct dwarf2_cu *cu)
6009 {
6010 struct objfile *objfile = cu->objfile;
6011 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6012 struct nextfield *new_field;
6013 struct attribute *attr;
6014 struct field *fp;
6015 char *fieldname = "";
6016
6017 /* Allocate a new field list entry and link it in. */
6018 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6019 make_cleanup (xfree, new_field);
6020 memset (new_field, 0, sizeof (struct nextfield));
6021
6022 if (die->tag == DW_TAG_inheritance)
6023 {
6024 new_field->next = fip->baseclasses;
6025 fip->baseclasses = new_field;
6026 }
6027 else
6028 {
6029 new_field->next = fip->fields;
6030 fip->fields = new_field;
6031 }
6032 fip->nfields++;
6033
6034 /* Handle accessibility and virtuality of field.
6035 The default accessibility for members is public, the default
6036 accessibility for inheritance is private. */
6037 if (die->tag != DW_TAG_inheritance)
6038 new_field->accessibility = DW_ACCESS_public;
6039 else
6040 new_field->accessibility = DW_ACCESS_private;
6041 new_field->virtuality = DW_VIRTUALITY_none;
6042
6043 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6044 if (attr)
6045 new_field->accessibility = DW_UNSND (attr);
6046 if (new_field->accessibility != DW_ACCESS_public)
6047 fip->non_public_fields = 1;
6048 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6049 if (attr)
6050 new_field->virtuality = DW_UNSND (attr);
6051
6052 fp = &new_field->field;
6053
6054 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
6055 {
6056 /* Data member other than a C++ static data member. */
6057
6058 /* Get type of field. */
6059 fp->type = die_type (die, cu);
6060
6061 SET_FIELD_BITPOS (*fp, 0);
6062
6063 /* Get bit size of field (zero if none). */
6064 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
6065 if (attr)
6066 {
6067 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6068 }
6069 else
6070 {
6071 FIELD_BITSIZE (*fp) = 0;
6072 }
6073
6074 /* Get bit offset of field. */
6075 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6076 if (attr)
6077 {
6078 int byte_offset = 0;
6079
6080 if (attr_form_is_section_offset (attr))
6081 dwarf2_complex_location_expr_complaint ();
6082 else if (attr_form_is_constant (attr))
6083 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6084 else if (attr_form_is_block (attr))
6085 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6086 else
6087 dwarf2_complex_location_expr_complaint ();
6088
6089 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6090 }
6091 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
6092 if (attr)
6093 {
6094 if (gdbarch_bits_big_endian (gdbarch))
6095 {
6096 /* For big endian bits, the DW_AT_bit_offset gives the
6097 additional bit offset from the MSB of the containing
6098 anonymous object to the MSB of the field. We don't
6099 have to do anything special since we don't need to
6100 know the size of the anonymous object. */
6101 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6102 }
6103 else
6104 {
6105 /* For little endian bits, compute the bit offset to the
6106 MSB of the anonymous object, subtract off the number of
6107 bits from the MSB of the field to the MSB of the
6108 object, and then subtract off the number of bits of
6109 the field itself. The result is the bit offset of
6110 the LSB of the field. */
6111 int anonymous_size;
6112 int bit_offset = DW_UNSND (attr);
6113
6114 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6115 if (attr)
6116 {
6117 /* The size of the anonymous object containing
6118 the bit field is explicit, so use the
6119 indicated size (in bytes). */
6120 anonymous_size = DW_UNSND (attr);
6121 }
6122 else
6123 {
6124 /* The size of the anonymous object containing
6125 the bit field must be inferred from the type
6126 attribute of the data member containing the
6127 bit field. */
6128 anonymous_size = TYPE_LENGTH (fp->type);
6129 }
6130 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6131 - bit_offset - FIELD_BITSIZE (*fp);
6132 }
6133 }
6134
6135 /* Get name of field. */
6136 fieldname = dwarf2_name (die, cu);
6137 if (fieldname == NULL)
6138 fieldname = "";
6139
6140 /* The name is already allocated along with this objfile, so we don't
6141 need to duplicate it for the type. */
6142 fp->name = fieldname;
6143
6144 /* Change accessibility for artificial fields (e.g. virtual table
6145 pointer or virtual base class pointer) to private. */
6146 if (dwarf2_attr (die, DW_AT_artificial, cu))
6147 {
6148 FIELD_ARTIFICIAL (*fp) = 1;
6149 new_field->accessibility = DW_ACCESS_private;
6150 fip->non_public_fields = 1;
6151 }
6152 }
6153 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
6154 {
6155 /* C++ static member. */
6156
6157 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6158 is a declaration, but all versions of G++ as of this writing
6159 (so through at least 3.2.1) incorrectly generate
6160 DW_TAG_variable tags. */
6161
6162 char *physname;
6163
6164 /* Get name of field. */
6165 fieldname = dwarf2_name (die, cu);
6166 if (fieldname == NULL)
6167 return;
6168
6169 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6170 if (attr
6171 /* Only create a symbol if this is an external value.
6172 new_symbol checks this and puts the value in the global symbol
6173 table, which we want. If it is not external, new_symbol
6174 will try to put the value in cu->list_in_scope which is wrong. */
6175 && dwarf2_flag_true_p (die, DW_AT_external, cu))
6176 {
6177 /* A static const member, not much different than an enum as far as
6178 we're concerned, except that we can support more types. */
6179 new_symbol (die, NULL, cu);
6180 }
6181
6182 /* Get physical name. */
6183 physname = (char *) dwarf2_physname (fieldname, die, cu);
6184
6185 /* The name is already allocated along with this objfile, so we don't
6186 need to duplicate it for the type. */
6187 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
6188 FIELD_TYPE (*fp) = die_type (die, cu);
6189 FIELD_NAME (*fp) = fieldname;
6190 }
6191 else if (die->tag == DW_TAG_inheritance)
6192 {
6193 /* C++ base class field. */
6194 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6195 if (attr)
6196 {
6197 int byte_offset = 0;
6198
6199 if (attr_form_is_section_offset (attr))
6200 dwarf2_complex_location_expr_complaint ();
6201 else if (attr_form_is_constant (attr))
6202 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6203 else if (attr_form_is_block (attr))
6204 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6205 else
6206 dwarf2_complex_location_expr_complaint ();
6207
6208 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6209 }
6210 FIELD_BITSIZE (*fp) = 0;
6211 FIELD_TYPE (*fp) = die_type (die, cu);
6212 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6213 fip->nbaseclasses++;
6214 }
6215 }
6216
6217 /* Add a typedef defined in the scope of the FIP's class. */
6218
6219 static void
6220 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6221 struct dwarf2_cu *cu)
6222 {
6223 struct objfile *objfile = cu->objfile;
6224 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6225 struct typedef_field_list *new_field;
6226 struct attribute *attr;
6227 struct typedef_field *fp;
6228 char *fieldname = "";
6229
6230 /* Allocate a new field list entry and link it in. */
6231 new_field = xzalloc (sizeof (*new_field));
6232 make_cleanup (xfree, new_field);
6233
6234 gdb_assert (die->tag == DW_TAG_typedef);
6235
6236 fp = &new_field->field;
6237
6238 /* Get name of field. */
6239 fp->name = dwarf2_name (die, cu);
6240 if (fp->name == NULL)
6241 return;
6242
6243 fp->type = read_type_die (die, cu);
6244
6245 new_field->next = fip->typedef_field_list;
6246 fip->typedef_field_list = new_field;
6247 fip->typedef_field_list_count++;
6248 }
6249
6250 /* Create the vector of fields, and attach it to the type. */
6251
6252 static void
6253 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
6254 struct dwarf2_cu *cu)
6255 {
6256 int nfields = fip->nfields;
6257
6258 /* Record the field count, allocate space for the array of fields,
6259 and create blank accessibility bitfields if necessary. */
6260 TYPE_NFIELDS (type) = nfields;
6261 TYPE_FIELDS (type) = (struct field *)
6262 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6263 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6264
6265 if (fip->non_public_fields && cu->language != language_ada)
6266 {
6267 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6268
6269 TYPE_FIELD_PRIVATE_BITS (type) =
6270 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6271 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6272
6273 TYPE_FIELD_PROTECTED_BITS (type) =
6274 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6275 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6276
6277 TYPE_FIELD_IGNORE_BITS (type) =
6278 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6279 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
6280 }
6281
6282 /* If the type has baseclasses, allocate and clear a bit vector for
6283 TYPE_FIELD_VIRTUAL_BITS. */
6284 if (fip->nbaseclasses && cu->language != language_ada)
6285 {
6286 int num_bytes = B_BYTES (fip->nbaseclasses);
6287 unsigned char *pointer;
6288
6289 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6290 pointer = TYPE_ALLOC (type, num_bytes);
6291 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
6292 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6293 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6294 }
6295
6296 /* Copy the saved-up fields into the field vector. Start from the head
6297 of the list, adding to the tail of the field array, so that they end
6298 up in the same order in the array in which they were added to the list. */
6299 while (nfields-- > 0)
6300 {
6301 struct nextfield *fieldp;
6302
6303 if (fip->fields)
6304 {
6305 fieldp = fip->fields;
6306 fip->fields = fieldp->next;
6307 }
6308 else
6309 {
6310 fieldp = fip->baseclasses;
6311 fip->baseclasses = fieldp->next;
6312 }
6313
6314 TYPE_FIELD (type, nfields) = fieldp->field;
6315 switch (fieldp->accessibility)
6316 {
6317 case DW_ACCESS_private:
6318 if (cu->language != language_ada)
6319 SET_TYPE_FIELD_PRIVATE (type, nfields);
6320 break;
6321
6322 case DW_ACCESS_protected:
6323 if (cu->language != language_ada)
6324 SET_TYPE_FIELD_PROTECTED (type, nfields);
6325 break;
6326
6327 case DW_ACCESS_public:
6328 break;
6329
6330 default:
6331 /* Unknown accessibility. Complain and treat it as public. */
6332 {
6333 complaint (&symfile_complaints, _("unsupported accessibility %d"),
6334 fieldp->accessibility);
6335 }
6336 break;
6337 }
6338 if (nfields < fip->nbaseclasses)
6339 {
6340 switch (fieldp->virtuality)
6341 {
6342 case DW_VIRTUALITY_virtual:
6343 case DW_VIRTUALITY_pure_virtual:
6344 if (cu->language == language_ada)
6345 error ("unexpected virtuality in component of Ada type");
6346 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6347 break;
6348 }
6349 }
6350 }
6351 }
6352
6353 /* Add a member function to the proper fieldlist. */
6354
6355 static void
6356 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
6357 struct type *type, struct dwarf2_cu *cu)
6358 {
6359 struct objfile *objfile = cu->objfile;
6360 struct attribute *attr;
6361 struct fnfieldlist *flp;
6362 int i;
6363 struct fn_field *fnp;
6364 char *fieldname;
6365 struct nextfnfield *new_fnfield;
6366 struct type *this_type;
6367
6368 if (cu->language == language_ada)
6369 error ("unexpected member function in Ada type");
6370
6371 /* Get name of member function. */
6372 fieldname = dwarf2_name (die, cu);
6373 if (fieldname == NULL)
6374 return;
6375
6376 /* Look up member function name in fieldlist. */
6377 for (i = 0; i < fip->nfnfields; i++)
6378 {
6379 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
6380 break;
6381 }
6382
6383 /* Create new list element if necessary. */
6384 if (i < fip->nfnfields)
6385 flp = &fip->fnfieldlists[i];
6386 else
6387 {
6388 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6389 {
6390 fip->fnfieldlists = (struct fnfieldlist *)
6391 xrealloc (fip->fnfieldlists,
6392 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
6393 * sizeof (struct fnfieldlist));
6394 if (fip->nfnfields == 0)
6395 make_cleanup (free_current_contents, &fip->fnfieldlists);
6396 }
6397 flp = &fip->fnfieldlists[fip->nfnfields];
6398 flp->name = fieldname;
6399 flp->length = 0;
6400 flp->head = NULL;
6401 i = fip->nfnfields++;
6402 }
6403
6404 /* Create a new member function field and chain it to the field list
6405 entry. */
6406 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
6407 make_cleanup (xfree, new_fnfield);
6408 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6409 new_fnfield->next = flp->head;
6410 flp->head = new_fnfield;
6411 flp->length++;
6412
6413 /* Fill in the member function field info. */
6414 fnp = &new_fnfield->fnfield;
6415
6416 /* Delay processing of the physname until later. */
6417 if (cu->language == language_cplus || cu->language == language_java)
6418 {
6419 add_to_method_list (type, i, flp->length - 1, fieldname,
6420 die, cu);
6421 }
6422 else
6423 {
6424 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6425 fnp->physname = physname ? physname : "";
6426 }
6427
6428 fnp->type = alloc_type (objfile);
6429 this_type = read_type_die (die, cu);
6430 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
6431 {
6432 int nparams = TYPE_NFIELDS (this_type);
6433
6434 /* TYPE is the domain of this method, and THIS_TYPE is the type
6435 of the method itself (TYPE_CODE_METHOD). */
6436 smash_to_method_type (fnp->type, type,
6437 TYPE_TARGET_TYPE (this_type),
6438 TYPE_FIELDS (this_type),
6439 TYPE_NFIELDS (this_type),
6440 TYPE_VARARGS (this_type));
6441
6442 /* Handle static member functions.
6443 Dwarf2 has no clean way to discern C++ static and non-static
6444 member functions. G++ helps GDB by marking the first
6445 parameter for non-static member functions (which is the
6446 this pointer) as artificial. We obtain this information
6447 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
6448 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
6449 fnp->voffset = VOFFSET_STATIC;
6450 }
6451 else
6452 complaint (&symfile_complaints, _("member function type missing for '%s'"),
6453 dwarf2_full_name (fieldname, die, cu));
6454
6455 /* Get fcontext from DW_AT_containing_type if present. */
6456 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6457 fnp->fcontext = die_containing_type (die, cu);
6458
6459 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
6460 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
6461
6462 /* Get accessibility. */
6463 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6464 if (attr)
6465 {
6466 switch (DW_UNSND (attr))
6467 {
6468 case DW_ACCESS_private:
6469 fnp->is_private = 1;
6470 break;
6471 case DW_ACCESS_protected:
6472 fnp->is_protected = 1;
6473 break;
6474 }
6475 }
6476
6477 /* Check for artificial methods. */
6478 attr = dwarf2_attr (die, DW_AT_artificial, cu);
6479 if (attr && DW_UNSND (attr) != 0)
6480 fnp->is_artificial = 1;
6481
6482 /* Get index in virtual function table if it is a virtual member
6483 function. For older versions of GCC, this is an offset in the
6484 appropriate virtual table, as specified by DW_AT_containing_type.
6485 For everyone else, it is an expression to be evaluated relative
6486 to the object address. */
6487
6488 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
6489 if (attr)
6490 {
6491 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
6492 {
6493 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6494 {
6495 /* Old-style GCC. */
6496 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6497 }
6498 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6499 || (DW_BLOCK (attr)->size > 1
6500 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6501 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6502 {
6503 struct dwarf_block blk;
6504 int offset;
6505
6506 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6507 ? 1 : 2);
6508 blk.size = DW_BLOCK (attr)->size - offset;
6509 blk.data = DW_BLOCK (attr)->data + offset;
6510 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6511 if ((fnp->voffset % cu->header.addr_size) != 0)
6512 dwarf2_complex_location_expr_complaint ();
6513 else
6514 fnp->voffset /= cu->header.addr_size;
6515 fnp->voffset += 2;
6516 }
6517 else
6518 dwarf2_complex_location_expr_complaint ();
6519
6520 if (!fnp->fcontext)
6521 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6522 }
6523 else if (attr_form_is_section_offset (attr))
6524 {
6525 dwarf2_complex_location_expr_complaint ();
6526 }
6527 else
6528 {
6529 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6530 fieldname);
6531 }
6532 }
6533 else
6534 {
6535 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6536 if (attr && DW_UNSND (attr))
6537 {
6538 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6539 complaint (&symfile_complaints,
6540 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
6541 fieldname, die->offset);
6542 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6543 TYPE_CPLUS_DYNAMIC (type) = 1;
6544 }
6545 }
6546 }
6547
6548 /* Create the vector of member function fields, and attach it to the type. */
6549
6550 static void
6551 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
6552 struct dwarf2_cu *cu)
6553 {
6554 struct fnfieldlist *flp;
6555 int total_length = 0;
6556 int i;
6557
6558 if (cu->language == language_ada)
6559 error ("unexpected member functions in Ada type");
6560
6561 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6562 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6563 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6564
6565 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6566 {
6567 struct nextfnfield *nfp = flp->head;
6568 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6569 int k;
6570
6571 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6572 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6573 fn_flp->fn_fields = (struct fn_field *)
6574 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6575 for (k = flp->length; (k--, nfp); nfp = nfp->next)
6576 fn_flp->fn_fields[k] = nfp->fnfield;
6577
6578 total_length += flp->length;
6579 }
6580
6581 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6582 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6583 }
6584
6585 /* Returns non-zero if NAME is the name of a vtable member in CU's
6586 language, zero otherwise. */
6587 static int
6588 is_vtable_name (const char *name, struct dwarf2_cu *cu)
6589 {
6590 static const char vptr[] = "_vptr";
6591 static const char vtable[] = "vtable";
6592
6593 /* Look for the C++ and Java forms of the vtable. */
6594 if ((cu->language == language_java
6595 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6596 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6597 && is_cplus_marker (name[sizeof (vptr) - 1])))
6598 return 1;
6599
6600 return 0;
6601 }
6602
6603 /* GCC outputs unnamed structures that are really pointers to member
6604 functions, with the ABI-specified layout. If TYPE describes
6605 such a structure, smash it into a member function type.
6606
6607 GCC shouldn't do this; it should just output pointer to member DIEs.
6608 This is GCC PR debug/28767. */
6609
6610 static void
6611 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
6612 {
6613 struct type *pfn_type, *domain_type, *new_type;
6614
6615 /* Check for a structure with no name and two children. */
6616 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6617 return;
6618
6619 /* Check for __pfn and __delta members. */
6620 if (TYPE_FIELD_NAME (type, 0) == NULL
6621 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6622 || TYPE_FIELD_NAME (type, 1) == NULL
6623 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6624 return;
6625
6626 /* Find the type of the method. */
6627 pfn_type = TYPE_FIELD_TYPE (type, 0);
6628 if (pfn_type == NULL
6629 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6630 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
6631 return;
6632
6633 /* Look for the "this" argument. */
6634 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6635 if (TYPE_NFIELDS (pfn_type) == 0
6636 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
6637 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
6638 return;
6639
6640 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
6641 new_type = alloc_type (objfile);
6642 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
6643 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6644 TYPE_VARARGS (pfn_type));
6645 smash_to_methodptr_type (type, new_type);
6646 }
6647
6648 /* Called when we find the DIE that starts a structure or union scope
6649 (definition) to create a type for the structure or union. Fill in
6650 the type's name and general properties; the members will not be
6651 processed until process_structure_type.
6652
6653 NOTE: we need to call these functions regardless of whether or not the
6654 DIE has a DW_AT_name attribute, since it might be an anonymous
6655 structure or union. This gets the type entered into our set of
6656 user defined types.
6657
6658 However, if the structure is incomplete (an opaque struct/union)
6659 then suppress creating a symbol table entry for it since gdb only
6660 wants to find the one with the complete definition. Note that if
6661 it is complete, we just call new_symbol, which does it's own
6662 checking about whether the struct/union is anonymous or not (and
6663 suppresses creating a symbol table entry itself). */
6664
6665 static struct type *
6666 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
6667 {
6668 struct objfile *objfile = cu->objfile;
6669 struct type *type;
6670 struct attribute *attr;
6671 char *name;
6672
6673 /* If the definition of this type lives in .debug_types, read that type.
6674 Don't follow DW_AT_specification though, that will take us back up
6675 the chain and we want to go down. */
6676 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6677 if (attr)
6678 {
6679 struct dwarf2_cu *type_cu = cu;
6680 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6681
6682 /* We could just recurse on read_structure_type, but we need to call
6683 get_die_type to ensure only one type for this DIE is created.
6684 This is important, for example, because for c++ classes we need
6685 TYPE_NAME set which is only done by new_symbol. Blech. */
6686 type = read_type_die (type_die, type_cu);
6687
6688 /* TYPE_CU may not be the same as CU.
6689 Ensure TYPE is recorded in CU's type_hash table. */
6690 return set_die_type (die, type, cu);
6691 }
6692
6693 type = alloc_type (objfile);
6694 INIT_CPLUS_SPECIFIC (type);
6695
6696 name = dwarf2_name (die, cu);
6697 if (name != NULL)
6698 {
6699 if (cu->language == language_cplus
6700 || cu->language == language_java)
6701 {
6702 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6703
6704 /* dwarf2_full_name might have already finished building the DIE's
6705 type. If so, there is no need to continue. */
6706 if (get_die_type (die, cu) != NULL)
6707 return get_die_type (die, cu);
6708
6709 TYPE_TAG_NAME (type) = full_name;
6710 if (die->tag == DW_TAG_structure_type
6711 || die->tag == DW_TAG_class_type)
6712 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6713 }
6714 else
6715 {
6716 /* The name is already allocated along with this objfile, so
6717 we don't need to duplicate it for the type. */
6718 TYPE_TAG_NAME (type) = (char *) name;
6719 if (die->tag == DW_TAG_class_type)
6720 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6721 }
6722 }
6723
6724 if (die->tag == DW_TAG_structure_type)
6725 {
6726 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6727 }
6728 else if (die->tag == DW_TAG_union_type)
6729 {
6730 TYPE_CODE (type) = TYPE_CODE_UNION;
6731 }
6732 else
6733 {
6734 TYPE_CODE (type) = TYPE_CODE_CLASS;
6735 }
6736
6737 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6738 TYPE_DECLARED_CLASS (type) = 1;
6739
6740 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6741 if (attr)
6742 {
6743 TYPE_LENGTH (type) = DW_UNSND (attr);
6744 }
6745 else
6746 {
6747 TYPE_LENGTH (type) = 0;
6748 }
6749
6750 TYPE_STUB_SUPPORTED (type) = 1;
6751 if (die_is_declaration (die, cu))
6752 TYPE_STUB (type) = 1;
6753 else if (attr == NULL && die->child == NULL
6754 && producer_is_realview (cu->producer))
6755 /* RealView does not output the required DW_AT_declaration
6756 on incomplete types. */
6757 TYPE_STUB (type) = 1;
6758
6759 /* We need to add the type field to the die immediately so we don't
6760 infinitely recurse when dealing with pointers to the structure
6761 type within the structure itself. */
6762 set_die_type (die, type, cu);
6763
6764 /* set_die_type should be already done. */
6765 set_descriptive_type (type, die, cu);
6766
6767 return type;
6768 }
6769
6770 /* Finish creating a structure or union type, including filling in
6771 its members and creating a symbol for it. */
6772
6773 static void
6774 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6775 {
6776 struct objfile *objfile = cu->objfile;
6777 struct die_info *child_die = die->child;
6778 struct type *type;
6779
6780 type = get_die_type (die, cu);
6781 if (type == NULL)
6782 type = read_structure_type (die, cu);
6783
6784 if (die->child != NULL && ! die_is_declaration (die, cu))
6785 {
6786 struct field_info fi;
6787 struct die_info *child_die;
6788 VEC (symbolp) *template_args = NULL;
6789 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
6790
6791 memset (&fi, 0, sizeof (struct field_info));
6792
6793 child_die = die->child;
6794
6795 while (child_die && child_die->tag)
6796 {
6797 if (child_die->tag == DW_TAG_member
6798 || child_die->tag == DW_TAG_variable)
6799 {
6800 /* NOTE: carlton/2002-11-05: A C++ static data member
6801 should be a DW_TAG_member that is a declaration, but
6802 all versions of G++ as of this writing (so through at
6803 least 3.2.1) incorrectly generate DW_TAG_variable
6804 tags for them instead. */
6805 dwarf2_add_field (&fi, child_die, cu);
6806 }
6807 else if (child_die->tag == DW_TAG_subprogram)
6808 {
6809 /* C++ member function. */
6810 dwarf2_add_member_fn (&fi, child_die, type, cu);
6811 }
6812 else if (child_die->tag == DW_TAG_inheritance)
6813 {
6814 /* C++ base class field. */
6815 dwarf2_add_field (&fi, child_die, cu);
6816 }
6817 else if (child_die->tag == DW_TAG_typedef)
6818 dwarf2_add_typedef (&fi, child_die, cu);
6819 else if (child_die->tag == DW_TAG_template_type_param
6820 || child_die->tag == DW_TAG_template_value_param)
6821 {
6822 struct symbol *arg = new_symbol (child_die, NULL, cu);
6823
6824 if (arg != NULL)
6825 VEC_safe_push (symbolp, template_args, arg);
6826 }
6827
6828 child_die = sibling_die (child_die);
6829 }
6830
6831 /* Attach template arguments to type. */
6832 if (! VEC_empty (symbolp, template_args))
6833 {
6834 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6835 TYPE_N_TEMPLATE_ARGUMENTS (type)
6836 = VEC_length (symbolp, template_args);
6837 TYPE_TEMPLATE_ARGUMENTS (type)
6838 = obstack_alloc (&objfile->objfile_obstack,
6839 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6840 * sizeof (struct symbol *)));
6841 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
6842 VEC_address (symbolp, template_args),
6843 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6844 * sizeof (struct symbol *)));
6845 VEC_free (symbolp, template_args);
6846 }
6847
6848 /* Attach fields and member functions to the type. */
6849 if (fi.nfields)
6850 dwarf2_attach_fields_to_type (&fi, type, cu);
6851 if (fi.nfnfields)
6852 {
6853 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
6854
6855 /* Get the type which refers to the base class (possibly this
6856 class itself) which contains the vtable pointer for the current
6857 class from the DW_AT_containing_type attribute. This use of
6858 DW_AT_containing_type is a GNU extension. */
6859
6860 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6861 {
6862 struct type *t = die_containing_type (die, cu);
6863
6864 TYPE_VPTR_BASETYPE (type) = t;
6865 if (type == t)
6866 {
6867 int i;
6868
6869 /* Our own class provides vtbl ptr. */
6870 for (i = TYPE_NFIELDS (t) - 1;
6871 i >= TYPE_N_BASECLASSES (t);
6872 --i)
6873 {
6874 char *fieldname = TYPE_FIELD_NAME (t, i);
6875
6876 if (is_vtable_name (fieldname, cu))
6877 {
6878 TYPE_VPTR_FIELDNO (type) = i;
6879 break;
6880 }
6881 }
6882
6883 /* Complain if virtual function table field not found. */
6884 if (i < TYPE_N_BASECLASSES (t))
6885 complaint (&symfile_complaints,
6886 _("virtual function table pointer not found when defining class '%s'"),
6887 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
6888 "");
6889 }
6890 else
6891 {
6892 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
6893 }
6894 }
6895 else if (cu->producer
6896 && strncmp (cu->producer,
6897 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
6898 {
6899 /* The IBM XLC compiler does not provide direct indication
6900 of the containing type, but the vtable pointer is
6901 always named __vfp. */
6902
6903 int i;
6904
6905 for (i = TYPE_NFIELDS (type) - 1;
6906 i >= TYPE_N_BASECLASSES (type);
6907 --i)
6908 {
6909 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
6910 {
6911 TYPE_VPTR_FIELDNO (type) = i;
6912 TYPE_VPTR_BASETYPE (type) = type;
6913 break;
6914 }
6915 }
6916 }
6917 }
6918
6919 /* Copy fi.typedef_field_list linked list elements content into the
6920 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
6921 if (fi.typedef_field_list)
6922 {
6923 int i = fi.typedef_field_list_count;
6924
6925 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6926 TYPE_TYPEDEF_FIELD_ARRAY (type)
6927 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
6928 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
6929
6930 /* Reverse the list order to keep the debug info elements order. */
6931 while (--i >= 0)
6932 {
6933 struct typedef_field *dest, *src;
6934
6935 dest = &TYPE_TYPEDEF_FIELD (type, i);
6936 src = &fi.typedef_field_list->field;
6937 fi.typedef_field_list = fi.typedef_field_list->next;
6938 *dest = *src;
6939 }
6940 }
6941
6942 do_cleanups (back_to);
6943 }
6944
6945 quirk_gcc_member_function_pointer (type, cu->objfile);
6946
6947 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
6948 snapshots) has been known to create a die giving a declaration
6949 for a class that has, as a child, a die giving a definition for a
6950 nested class. So we have to process our children even if the
6951 current die is a declaration. Normally, of course, a declaration
6952 won't have any children at all. */
6953
6954 while (child_die != NULL && child_die->tag)
6955 {
6956 if (child_die->tag == DW_TAG_member
6957 || child_die->tag == DW_TAG_variable
6958 || child_die->tag == DW_TAG_inheritance
6959 || child_die->tag == DW_TAG_template_value_param
6960 || child_die->tag == DW_TAG_template_type_param)
6961 {
6962 /* Do nothing. */
6963 }
6964 else
6965 process_die (child_die, cu);
6966
6967 child_die = sibling_die (child_die);
6968 }
6969
6970 /* Do not consider external references. According to the DWARF standard,
6971 these DIEs are identified by the fact that they have no byte_size
6972 attribute, and a declaration attribute. */
6973 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
6974 || !die_is_declaration (die, cu))
6975 new_symbol (die, type, cu);
6976 }
6977
6978 /* Given a DW_AT_enumeration_type die, set its type. We do not
6979 complete the type's fields yet, or create any symbols. */
6980
6981 static struct type *
6982 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
6983 {
6984 struct objfile *objfile = cu->objfile;
6985 struct type *type;
6986 struct attribute *attr;
6987 const char *name;
6988
6989 /* If the definition of this type lives in .debug_types, read that type.
6990 Don't follow DW_AT_specification though, that will take us back up
6991 the chain and we want to go down. */
6992 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6993 if (attr)
6994 {
6995 struct dwarf2_cu *type_cu = cu;
6996 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6997
6998 type = read_type_die (type_die, type_cu);
6999
7000 /* TYPE_CU may not be the same as CU.
7001 Ensure TYPE is recorded in CU's type_hash table. */
7002 return set_die_type (die, type, cu);
7003 }
7004
7005 type = alloc_type (objfile);
7006
7007 TYPE_CODE (type) = TYPE_CODE_ENUM;
7008 name = dwarf2_full_name (NULL, die, cu);
7009 if (name != NULL)
7010 TYPE_TAG_NAME (type) = (char *) name;
7011
7012 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7013 if (attr)
7014 {
7015 TYPE_LENGTH (type) = DW_UNSND (attr);
7016 }
7017 else
7018 {
7019 TYPE_LENGTH (type) = 0;
7020 }
7021
7022 /* The enumeration DIE can be incomplete. In Ada, any type can be
7023 declared as private in the package spec, and then defined only
7024 inside the package body. Such types are known as Taft Amendment
7025 Types. When another package uses such a type, an incomplete DIE
7026 may be generated by the compiler. */
7027 if (die_is_declaration (die, cu))
7028 TYPE_STUB (type) = 1;
7029
7030 return set_die_type (die, type, cu);
7031 }
7032
7033 /* Given a pointer to a die which begins an enumeration, process all
7034 the dies that define the members of the enumeration, and create the
7035 symbol for the enumeration type.
7036
7037 NOTE: We reverse the order of the element list. */
7038
7039 static void
7040 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7041 {
7042 struct type *this_type;
7043
7044 this_type = get_die_type (die, cu);
7045 if (this_type == NULL)
7046 this_type = read_enumeration_type (die, cu);
7047
7048 if (die->child != NULL)
7049 {
7050 struct die_info *child_die;
7051 struct symbol *sym;
7052 struct field *fields = NULL;
7053 int num_fields = 0;
7054 int unsigned_enum = 1;
7055 char *name;
7056
7057 child_die = die->child;
7058 while (child_die && child_die->tag)
7059 {
7060 if (child_die->tag != DW_TAG_enumerator)
7061 {
7062 process_die (child_die, cu);
7063 }
7064 else
7065 {
7066 name = dwarf2_name (child_die, cu);
7067 if (name)
7068 {
7069 sym = new_symbol (child_die, this_type, cu);
7070 if (SYMBOL_VALUE (sym) < 0)
7071 unsigned_enum = 0;
7072
7073 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7074 {
7075 fields = (struct field *)
7076 xrealloc (fields,
7077 (num_fields + DW_FIELD_ALLOC_CHUNK)
7078 * sizeof (struct field));
7079 }
7080
7081 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
7082 FIELD_TYPE (fields[num_fields]) = NULL;
7083 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
7084 FIELD_BITSIZE (fields[num_fields]) = 0;
7085
7086 num_fields++;
7087 }
7088 }
7089
7090 child_die = sibling_die (child_die);
7091 }
7092
7093 if (num_fields)
7094 {
7095 TYPE_NFIELDS (this_type) = num_fields;
7096 TYPE_FIELDS (this_type) = (struct field *)
7097 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7098 memcpy (TYPE_FIELDS (this_type), fields,
7099 sizeof (struct field) * num_fields);
7100 xfree (fields);
7101 }
7102 if (unsigned_enum)
7103 TYPE_UNSIGNED (this_type) = 1;
7104 }
7105
7106 new_symbol (die, this_type, cu);
7107 }
7108
7109 /* Extract all information from a DW_TAG_array_type DIE and put it in
7110 the DIE's type field. For now, this only handles one dimensional
7111 arrays. */
7112
7113 static struct type *
7114 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
7115 {
7116 struct objfile *objfile = cu->objfile;
7117 struct die_info *child_die;
7118 struct type *type;
7119 struct type *element_type, *range_type, *index_type;
7120 struct type **range_types = NULL;
7121 struct attribute *attr;
7122 int ndim = 0;
7123 struct cleanup *back_to;
7124 char *name;
7125
7126 element_type = die_type (die, cu);
7127
7128 /* The die_type call above may have already set the type for this DIE. */
7129 type = get_die_type (die, cu);
7130 if (type)
7131 return type;
7132
7133 /* Irix 6.2 native cc creates array types without children for
7134 arrays with unspecified length. */
7135 if (die->child == NULL)
7136 {
7137 index_type = objfile_type (objfile)->builtin_int;
7138 range_type = create_range_type (NULL, index_type, 0, -1);
7139 type = create_array_type (NULL, element_type, range_type);
7140 return set_die_type (die, type, cu);
7141 }
7142
7143 back_to = make_cleanup (null_cleanup, NULL);
7144 child_die = die->child;
7145 while (child_die && child_die->tag)
7146 {
7147 if (child_die->tag == DW_TAG_subrange_type)
7148 {
7149 struct type *child_type = read_type_die (child_die, cu);
7150
7151 if (child_type != NULL)
7152 {
7153 /* The range type was succesfully read. Save it for
7154 the array type creation. */
7155 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7156 {
7157 range_types = (struct type **)
7158 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7159 * sizeof (struct type *));
7160 if (ndim == 0)
7161 make_cleanup (free_current_contents, &range_types);
7162 }
7163 range_types[ndim++] = child_type;
7164 }
7165 }
7166 child_die = sibling_die (child_die);
7167 }
7168
7169 /* Dwarf2 dimensions are output from left to right, create the
7170 necessary array types in backwards order. */
7171
7172 type = element_type;
7173
7174 if (read_array_order (die, cu) == DW_ORD_col_major)
7175 {
7176 int i = 0;
7177
7178 while (i < ndim)
7179 type = create_array_type (NULL, type, range_types[i++]);
7180 }
7181 else
7182 {
7183 while (ndim-- > 0)
7184 type = create_array_type (NULL, type, range_types[ndim]);
7185 }
7186
7187 /* Understand Dwarf2 support for vector types (like they occur on
7188 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7189 array type. This is not part of the Dwarf2/3 standard yet, but a
7190 custom vendor extension. The main difference between a regular
7191 array and the vector variant is that vectors are passed by value
7192 to functions. */
7193 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
7194 if (attr)
7195 make_vector_type (type);
7196
7197 name = dwarf2_name (die, cu);
7198 if (name)
7199 TYPE_NAME (type) = name;
7200
7201 /* Install the type in the die. */
7202 set_die_type (die, type, cu);
7203
7204 /* set_die_type should be already done. */
7205 set_descriptive_type (type, die, cu);
7206
7207 do_cleanups (back_to);
7208
7209 return type;
7210 }
7211
7212 static enum dwarf_array_dim_ordering
7213 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7214 {
7215 struct attribute *attr;
7216
7217 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7218
7219 if (attr) return DW_SND (attr);
7220
7221 /*
7222 GNU F77 is a special case, as at 08/2004 array type info is the
7223 opposite order to the dwarf2 specification, but data is still
7224 laid out as per normal fortran.
7225
7226 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7227 version checking.
7228 */
7229
7230 if (cu->language == language_fortran
7231 && cu->producer && strstr (cu->producer, "GNU F77"))
7232 {
7233 return DW_ORD_row_major;
7234 }
7235
7236 switch (cu->language_defn->la_array_ordering)
7237 {
7238 case array_column_major:
7239 return DW_ORD_col_major;
7240 case array_row_major:
7241 default:
7242 return DW_ORD_row_major;
7243 };
7244 }
7245
7246 /* Extract all information from a DW_TAG_set_type DIE and put it in
7247 the DIE's type field. */
7248
7249 static struct type *
7250 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7251 {
7252 struct type *domain_type, *set_type;
7253 struct attribute *attr;
7254
7255 domain_type = die_type (die, cu);
7256
7257 /* The die_type call above may have already set the type for this DIE. */
7258 set_type = get_die_type (die, cu);
7259 if (set_type)
7260 return set_type;
7261
7262 set_type = create_set_type (NULL, domain_type);
7263
7264 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7265 if (attr)
7266 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7267
7268 return set_die_type (die, set_type, cu);
7269 }
7270
7271 /* First cut: install each common block member as a global variable. */
7272
7273 static void
7274 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
7275 {
7276 struct die_info *child_die;
7277 struct attribute *attr;
7278 struct symbol *sym;
7279 CORE_ADDR base = (CORE_ADDR) 0;
7280
7281 attr = dwarf2_attr (die, DW_AT_location, cu);
7282 if (attr)
7283 {
7284 /* Support the .debug_loc offsets */
7285 if (attr_form_is_block (attr))
7286 {
7287 base = decode_locdesc (DW_BLOCK (attr), cu);
7288 }
7289 else if (attr_form_is_section_offset (attr))
7290 {
7291 dwarf2_complex_location_expr_complaint ();
7292 }
7293 else
7294 {
7295 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7296 "common block member");
7297 }
7298 }
7299 if (die->child != NULL)
7300 {
7301 child_die = die->child;
7302 while (child_die && child_die->tag)
7303 {
7304 sym = new_symbol (child_die, NULL, cu);
7305 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
7306 if (sym != NULL && attr != NULL)
7307 {
7308 CORE_ADDR byte_offset = 0;
7309
7310 if (attr_form_is_section_offset (attr))
7311 dwarf2_complex_location_expr_complaint ();
7312 else if (attr_form_is_constant (attr))
7313 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7314 else if (attr_form_is_block (attr))
7315 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7316 else
7317 dwarf2_complex_location_expr_complaint ();
7318
7319 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
7320 add_symbol_to_list (sym, &global_symbols);
7321 }
7322 child_die = sibling_die (child_die);
7323 }
7324 }
7325 }
7326
7327 /* Create a type for a C++ namespace. */
7328
7329 static struct type *
7330 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
7331 {
7332 struct objfile *objfile = cu->objfile;
7333 const char *previous_prefix, *name;
7334 int is_anonymous;
7335 struct type *type;
7336
7337 /* For extensions, reuse the type of the original namespace. */
7338 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7339 {
7340 struct die_info *ext_die;
7341 struct dwarf2_cu *ext_cu = cu;
7342
7343 ext_die = dwarf2_extension (die, &ext_cu);
7344 type = read_type_die (ext_die, ext_cu);
7345
7346 /* EXT_CU may not be the same as CU.
7347 Ensure TYPE is recorded in CU's type_hash table. */
7348 return set_die_type (die, type, cu);
7349 }
7350
7351 name = namespace_name (die, &is_anonymous, cu);
7352
7353 /* Now build the name of the current namespace. */
7354
7355 previous_prefix = determine_prefix (die, cu);
7356 if (previous_prefix[0] != '\0')
7357 name = typename_concat (&objfile->objfile_obstack,
7358 previous_prefix, name, 0, cu);
7359
7360 /* Create the type. */
7361 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7362 objfile);
7363 TYPE_NAME (type) = (char *) name;
7364 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7365
7366 return set_die_type (die, type, cu);
7367 }
7368
7369 /* Read a C++ namespace. */
7370
7371 static void
7372 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7373 {
7374 struct objfile *objfile = cu->objfile;
7375 const char *name;
7376 int is_anonymous;
7377
7378 /* Add a symbol associated to this if we haven't seen the namespace
7379 before. Also, add a using directive if it's an anonymous
7380 namespace. */
7381
7382 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
7383 {
7384 struct type *type;
7385
7386 type = read_type_die (die, cu);
7387 new_symbol (die, type, cu);
7388
7389 name = namespace_name (die, &is_anonymous, cu);
7390 if (is_anonymous)
7391 {
7392 const char *previous_prefix = determine_prefix (die, cu);
7393
7394 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
7395 NULL, &objfile->objfile_obstack);
7396 }
7397 }
7398
7399 if (die->child != NULL)
7400 {
7401 struct die_info *child_die = die->child;
7402
7403 while (child_die && child_die->tag)
7404 {
7405 process_die (child_die, cu);
7406 child_die = sibling_die (child_die);
7407 }
7408 }
7409 }
7410
7411 /* Read a Fortran module as type. This DIE can be only a declaration used for
7412 imported module. Still we need that type as local Fortran "use ... only"
7413 declaration imports depend on the created type in determine_prefix. */
7414
7415 static struct type *
7416 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7417 {
7418 struct objfile *objfile = cu->objfile;
7419 char *module_name;
7420 struct type *type;
7421
7422 module_name = dwarf2_name (die, cu);
7423 if (!module_name)
7424 complaint (&symfile_complaints, _("DW_TAG_module has no name, offset 0x%x"),
7425 die->offset);
7426 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7427
7428 /* determine_prefix uses TYPE_TAG_NAME. */
7429 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7430
7431 return set_die_type (die, type, cu);
7432 }
7433
7434 /* Read a Fortran module. */
7435
7436 static void
7437 read_module (struct die_info *die, struct dwarf2_cu *cu)
7438 {
7439 struct die_info *child_die = die->child;
7440
7441 while (child_die && child_die->tag)
7442 {
7443 process_die (child_die, cu);
7444 child_die = sibling_die (child_die);
7445 }
7446 }
7447
7448 /* Return the name of the namespace represented by DIE. Set
7449 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7450 namespace. */
7451
7452 static const char *
7453 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
7454 {
7455 struct die_info *current_die;
7456 const char *name = NULL;
7457
7458 /* Loop through the extensions until we find a name. */
7459
7460 for (current_die = die;
7461 current_die != NULL;
7462 current_die = dwarf2_extension (die, &cu))
7463 {
7464 name = dwarf2_name (current_die, cu);
7465 if (name != NULL)
7466 break;
7467 }
7468
7469 /* Is it an anonymous namespace? */
7470
7471 *is_anonymous = (name == NULL);
7472 if (*is_anonymous)
7473 name = "(anonymous namespace)";
7474
7475 return name;
7476 }
7477
7478 /* Extract all information from a DW_TAG_pointer_type DIE and add to
7479 the user defined type vector. */
7480
7481 static struct type *
7482 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
7483 {
7484 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7485 struct comp_unit_head *cu_header = &cu->header;
7486 struct type *type;
7487 struct attribute *attr_byte_size;
7488 struct attribute *attr_address_class;
7489 int byte_size, addr_class;
7490 struct type *target_type;
7491
7492 target_type = die_type (die, cu);
7493
7494 /* The die_type call above may have already set the type for this DIE. */
7495 type = get_die_type (die, cu);
7496 if (type)
7497 return type;
7498
7499 type = lookup_pointer_type (target_type);
7500
7501 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
7502 if (attr_byte_size)
7503 byte_size = DW_UNSND (attr_byte_size);
7504 else
7505 byte_size = cu_header->addr_size;
7506
7507 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
7508 if (attr_address_class)
7509 addr_class = DW_UNSND (attr_address_class);
7510 else
7511 addr_class = DW_ADDR_none;
7512
7513 /* If the pointer size or address class is different than the
7514 default, create a type variant marked as such and set the
7515 length accordingly. */
7516 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
7517 {
7518 if (gdbarch_address_class_type_flags_p (gdbarch))
7519 {
7520 int type_flags;
7521
7522 type_flags = gdbarch_address_class_type_flags
7523 (gdbarch, byte_size, addr_class);
7524 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7525 == 0);
7526 type = make_type_with_address_space (type, type_flags);
7527 }
7528 else if (TYPE_LENGTH (type) != byte_size)
7529 {
7530 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
7531 }
7532 else
7533 {
7534 /* Should we also complain about unhandled address classes? */
7535 }
7536 }
7537
7538 TYPE_LENGTH (type) = byte_size;
7539 return set_die_type (die, type, cu);
7540 }
7541
7542 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7543 the user defined type vector. */
7544
7545 static struct type *
7546 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
7547 {
7548 struct type *type;
7549 struct type *to_type;
7550 struct type *domain;
7551
7552 to_type = die_type (die, cu);
7553 domain = die_containing_type (die, cu);
7554
7555 /* The calls above may have already set the type for this DIE. */
7556 type = get_die_type (die, cu);
7557 if (type)
7558 return type;
7559
7560 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7561 type = lookup_methodptr_type (to_type);
7562 else
7563 type = lookup_memberptr_type (to_type, domain);
7564
7565 return set_die_type (die, type, cu);
7566 }
7567
7568 /* Extract all information from a DW_TAG_reference_type DIE and add to
7569 the user defined type vector. */
7570
7571 static struct type *
7572 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
7573 {
7574 struct comp_unit_head *cu_header = &cu->header;
7575 struct type *type, *target_type;
7576 struct attribute *attr;
7577
7578 target_type = die_type (die, cu);
7579
7580 /* The die_type call above may have already set the type for this DIE. */
7581 type = get_die_type (die, cu);
7582 if (type)
7583 return type;
7584
7585 type = lookup_reference_type (target_type);
7586 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7587 if (attr)
7588 {
7589 TYPE_LENGTH (type) = DW_UNSND (attr);
7590 }
7591 else
7592 {
7593 TYPE_LENGTH (type) = cu_header->addr_size;
7594 }
7595 return set_die_type (die, type, cu);
7596 }
7597
7598 static struct type *
7599 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
7600 {
7601 struct type *base_type, *cv_type;
7602
7603 base_type = die_type (die, cu);
7604
7605 /* The die_type call above may have already set the type for this DIE. */
7606 cv_type = get_die_type (die, cu);
7607 if (cv_type)
7608 return cv_type;
7609
7610 /* In case the const qualifier is applied to an array type, the element type
7611 is so qualified, not the array type (section 6.7.3 of C99). */
7612 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7613 {
7614 struct type *el_type, *inner_array;
7615
7616 base_type = copy_type (base_type);
7617 inner_array = base_type;
7618
7619 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7620 {
7621 TYPE_TARGET_TYPE (inner_array) =
7622 copy_type (TYPE_TARGET_TYPE (inner_array));
7623 inner_array = TYPE_TARGET_TYPE (inner_array);
7624 }
7625
7626 el_type = TYPE_TARGET_TYPE (inner_array);
7627 TYPE_TARGET_TYPE (inner_array) =
7628 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7629
7630 return set_die_type (die, base_type, cu);
7631 }
7632
7633 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7634 return set_die_type (die, cv_type, cu);
7635 }
7636
7637 static struct type *
7638 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
7639 {
7640 struct type *base_type, *cv_type;
7641
7642 base_type = die_type (die, cu);
7643
7644 /* The die_type call above may have already set the type for this DIE. */
7645 cv_type = get_die_type (die, cu);
7646 if (cv_type)
7647 return cv_type;
7648
7649 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7650 return set_die_type (die, cv_type, cu);
7651 }
7652
7653 /* Extract all information from a DW_TAG_string_type DIE and add to
7654 the user defined type vector. It isn't really a user defined type,
7655 but it behaves like one, with other DIE's using an AT_user_def_type
7656 attribute to reference it. */
7657
7658 static struct type *
7659 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
7660 {
7661 struct objfile *objfile = cu->objfile;
7662 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7663 struct type *type, *range_type, *index_type, *char_type;
7664 struct attribute *attr;
7665 unsigned int length;
7666
7667 attr = dwarf2_attr (die, DW_AT_string_length, cu);
7668 if (attr)
7669 {
7670 length = DW_UNSND (attr);
7671 }
7672 else
7673 {
7674 /* check for the DW_AT_byte_size attribute */
7675 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7676 if (attr)
7677 {
7678 length = DW_UNSND (attr);
7679 }
7680 else
7681 {
7682 length = 1;
7683 }
7684 }
7685
7686 index_type = objfile_type (objfile)->builtin_int;
7687 range_type = create_range_type (NULL, index_type, 1, length);
7688 char_type = language_string_char_type (cu->language_defn, gdbarch);
7689 type = create_string_type (NULL, char_type, range_type);
7690
7691 return set_die_type (die, type, cu);
7692 }
7693
7694 /* Handle DIES due to C code like:
7695
7696 struct foo
7697 {
7698 int (*funcp)(int a, long l);
7699 int b;
7700 };
7701
7702 ('funcp' generates a DW_TAG_subroutine_type DIE)
7703 */
7704
7705 static struct type *
7706 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
7707 {
7708 struct type *type; /* Type that this function returns */
7709 struct type *ftype; /* Function that returns above type */
7710 struct attribute *attr;
7711
7712 type = die_type (die, cu);
7713
7714 /* The die_type call above may have already set the type for this DIE. */
7715 ftype = get_die_type (die, cu);
7716 if (ftype)
7717 return ftype;
7718
7719 ftype = lookup_function_type (type);
7720
7721 /* All functions in C++, Pascal and Java have prototypes. */
7722 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
7723 if ((attr && (DW_UNSND (attr) != 0))
7724 || cu->language == language_cplus
7725 || cu->language == language_java
7726 || cu->language == language_pascal)
7727 TYPE_PROTOTYPED (ftype) = 1;
7728 else if (producer_is_realview (cu->producer))
7729 /* RealView does not emit DW_AT_prototyped. We can not
7730 distinguish prototyped and unprototyped functions; default to
7731 prototyped, since that is more common in modern code (and
7732 RealView warns about unprototyped functions). */
7733 TYPE_PROTOTYPED (ftype) = 1;
7734
7735 /* Store the calling convention in the type if it's available in
7736 the subroutine die. Otherwise set the calling convention to
7737 the default value DW_CC_normal. */
7738 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7739 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
7740
7741 /* We need to add the subroutine type to the die immediately so
7742 we don't infinitely recurse when dealing with parameters
7743 declared as the same subroutine type. */
7744 set_die_type (die, ftype, cu);
7745
7746 if (die->child != NULL)
7747 {
7748 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
7749 struct die_info *child_die;
7750 int nparams, iparams;
7751
7752 /* Count the number of parameters.
7753 FIXME: GDB currently ignores vararg functions, but knows about
7754 vararg member functions. */
7755 nparams = 0;
7756 child_die = die->child;
7757 while (child_die && child_die->tag)
7758 {
7759 if (child_die->tag == DW_TAG_formal_parameter)
7760 nparams++;
7761 else if (child_die->tag == DW_TAG_unspecified_parameters)
7762 TYPE_VARARGS (ftype) = 1;
7763 child_die = sibling_die (child_die);
7764 }
7765
7766 /* Allocate storage for parameters and fill them in. */
7767 TYPE_NFIELDS (ftype) = nparams;
7768 TYPE_FIELDS (ftype) = (struct field *)
7769 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
7770
7771 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7772 even if we error out during the parameters reading below. */
7773 for (iparams = 0; iparams < nparams; iparams++)
7774 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
7775
7776 iparams = 0;
7777 child_die = die->child;
7778 while (child_die && child_die->tag)
7779 {
7780 if (child_die->tag == DW_TAG_formal_parameter)
7781 {
7782 struct type *arg_type;
7783
7784 /* DWARF version 2 has no clean way to discern C++
7785 static and non-static member functions. G++ helps
7786 GDB by marking the first parameter for non-static
7787 member functions (which is the this pointer) as
7788 artificial. We pass this information to
7789 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
7790
7791 DWARF version 3 added DW_AT_object_pointer, which GCC
7792 4.5 does not yet generate. */
7793 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
7794 if (attr)
7795 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
7796 else
7797 {
7798 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
7799
7800 /* GCC/43521: In java, the formal parameter
7801 "this" is sometimes not marked with DW_AT_artificial. */
7802 if (cu->language == language_java)
7803 {
7804 const char *name = dwarf2_name (child_die, cu);
7805
7806 if (name && !strcmp (name, "this"))
7807 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
7808 }
7809 }
7810 arg_type = die_type (child_die, cu);
7811
7812 /* RealView does not mark THIS as const, which the testsuite
7813 expects. GCC marks THIS as const in method definitions,
7814 but not in the class specifications (GCC PR 43053). */
7815 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
7816 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
7817 {
7818 int is_this = 0;
7819 struct dwarf2_cu *arg_cu = cu;
7820 const char *name = dwarf2_name (child_die, cu);
7821
7822 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
7823 if (attr)
7824 {
7825 /* If the compiler emits this, use it. */
7826 if (follow_die_ref (die, attr, &arg_cu) == child_die)
7827 is_this = 1;
7828 }
7829 else if (name && strcmp (name, "this") == 0)
7830 /* Function definitions will have the argument names. */
7831 is_this = 1;
7832 else if (name == NULL && iparams == 0)
7833 /* Declarations may not have the names, so like
7834 elsewhere in GDB, assume an artificial first
7835 argument is "this". */
7836 is_this = 1;
7837
7838 if (is_this)
7839 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
7840 arg_type, 0);
7841 }
7842
7843 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
7844 iparams++;
7845 }
7846 child_die = sibling_die (child_die);
7847 }
7848 }
7849
7850 return ftype;
7851 }
7852
7853 static struct type *
7854 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
7855 {
7856 struct objfile *objfile = cu->objfile;
7857 const char *name = NULL;
7858 struct type *this_type;
7859
7860 name = dwarf2_full_name (NULL, die, cu);
7861 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
7862 TYPE_FLAG_TARGET_STUB, NULL, objfile);
7863 TYPE_NAME (this_type) = (char *) name;
7864 set_die_type (die, this_type, cu);
7865 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
7866 return this_type;
7867 }
7868
7869 /* Find a representation of a given base type and install
7870 it in the TYPE field of the die. */
7871
7872 static struct type *
7873 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
7874 {
7875 struct objfile *objfile = cu->objfile;
7876 struct type *type;
7877 struct attribute *attr;
7878 int encoding = 0, size = 0;
7879 char *name;
7880 enum type_code code = TYPE_CODE_INT;
7881 int type_flags = 0;
7882 struct type *target_type = NULL;
7883
7884 attr = dwarf2_attr (die, DW_AT_encoding, cu);
7885 if (attr)
7886 {
7887 encoding = DW_UNSND (attr);
7888 }
7889 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7890 if (attr)
7891 {
7892 size = DW_UNSND (attr);
7893 }
7894 name = dwarf2_name (die, cu);
7895 if (!name)
7896 {
7897 complaint (&symfile_complaints,
7898 _("DW_AT_name missing from DW_TAG_base_type"));
7899 }
7900
7901 switch (encoding)
7902 {
7903 case DW_ATE_address:
7904 /* Turn DW_ATE_address into a void * pointer. */
7905 code = TYPE_CODE_PTR;
7906 type_flags |= TYPE_FLAG_UNSIGNED;
7907 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
7908 break;
7909 case DW_ATE_boolean:
7910 code = TYPE_CODE_BOOL;
7911 type_flags |= TYPE_FLAG_UNSIGNED;
7912 break;
7913 case DW_ATE_complex_float:
7914 code = TYPE_CODE_COMPLEX;
7915 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
7916 break;
7917 case DW_ATE_decimal_float:
7918 code = TYPE_CODE_DECFLOAT;
7919 break;
7920 case DW_ATE_float:
7921 code = TYPE_CODE_FLT;
7922 break;
7923 case DW_ATE_signed:
7924 break;
7925 case DW_ATE_unsigned:
7926 type_flags |= TYPE_FLAG_UNSIGNED;
7927 break;
7928 case DW_ATE_signed_char:
7929 if (cu->language == language_ada || cu->language == language_m2
7930 || cu->language == language_pascal)
7931 code = TYPE_CODE_CHAR;
7932 break;
7933 case DW_ATE_unsigned_char:
7934 if (cu->language == language_ada || cu->language == language_m2
7935 || cu->language == language_pascal)
7936 code = TYPE_CODE_CHAR;
7937 type_flags |= TYPE_FLAG_UNSIGNED;
7938 break;
7939 case DW_ATE_UTF:
7940 /* We just treat this as an integer and then recognize the
7941 type by name elsewhere. */
7942 break;
7943
7944 default:
7945 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
7946 dwarf_type_encoding_name (encoding));
7947 break;
7948 }
7949
7950 type = init_type (code, size, type_flags, NULL, objfile);
7951 TYPE_NAME (type) = name;
7952 TYPE_TARGET_TYPE (type) = target_type;
7953
7954 if (name && strcmp (name, "char") == 0)
7955 TYPE_NOSIGN (type) = 1;
7956
7957 return set_die_type (die, type, cu);
7958 }
7959
7960 /* Read the given DW_AT_subrange DIE. */
7961
7962 static struct type *
7963 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
7964 {
7965 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7966 struct type *base_type;
7967 struct type *range_type;
7968 struct attribute *attr;
7969 LONGEST low = 0;
7970 LONGEST high = -1;
7971 char *name;
7972 LONGEST negative_mask;
7973
7974 base_type = die_type (die, cu);
7975 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
7976 check_typedef (base_type);
7977
7978 /* The die_type call above may have already set the type for this DIE. */
7979 range_type = get_die_type (die, cu);
7980 if (range_type)
7981 return range_type;
7982
7983 if (cu->language == language_fortran)
7984 {
7985 /* FORTRAN implies a lower bound of 1, if not given. */
7986 low = 1;
7987 }
7988
7989 /* FIXME: For variable sized arrays either of these could be
7990 a variable rather than a constant value. We'll allow it,
7991 but we don't know how to handle it. */
7992 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
7993 if (attr)
7994 low = dwarf2_get_attr_constant_value (attr, 0);
7995
7996 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
7997 if (attr)
7998 {
7999 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
8000 {
8001 /* GCC encodes arrays with unspecified or dynamic length
8002 with a DW_FORM_block1 attribute or a reference attribute.
8003 FIXME: GDB does not yet know how to handle dynamic
8004 arrays properly, treat them as arrays with unspecified
8005 length for now.
8006
8007 FIXME: jimb/2003-09-22: GDB does not really know
8008 how to handle arrays of unspecified length
8009 either; we just represent them as zero-length
8010 arrays. Choose an appropriate upper bound given
8011 the lower bound we've computed above. */
8012 high = low - 1;
8013 }
8014 else
8015 high = dwarf2_get_attr_constant_value (attr, 1);
8016 }
8017 else
8018 {
8019 attr = dwarf2_attr (die, DW_AT_count, cu);
8020 if (attr)
8021 {
8022 int count = dwarf2_get_attr_constant_value (attr, 1);
8023 high = low + count - 1;
8024 }
8025 }
8026
8027 /* Dwarf-2 specifications explicitly allows to create subrange types
8028 without specifying a base type.
8029 In that case, the base type must be set to the type of
8030 the lower bound, upper bound or count, in that order, if any of these
8031 three attributes references an object that has a type.
8032 If no base type is found, the Dwarf-2 specifications say that
8033 a signed integer type of size equal to the size of an address should
8034 be used.
8035 For the following C code: `extern char gdb_int [];'
8036 GCC produces an empty range DIE.
8037 FIXME: muller/2010-05-28: Possible references to object for low bound,
8038 high bound or count are not yet handled by this code.
8039 */
8040 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8041 {
8042 struct objfile *objfile = cu->objfile;
8043 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8044 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8045 struct type *int_type = objfile_type (objfile)->builtin_int;
8046
8047 /* Test "int", "long int", and "long long int" objfile types,
8048 and select the first one having a size above or equal to the
8049 architecture address size. */
8050 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8051 base_type = int_type;
8052 else
8053 {
8054 int_type = objfile_type (objfile)->builtin_long;
8055 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8056 base_type = int_type;
8057 else
8058 {
8059 int_type = objfile_type (objfile)->builtin_long_long;
8060 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8061 base_type = int_type;
8062 }
8063 }
8064 }
8065
8066 negative_mask =
8067 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8068 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8069 low |= negative_mask;
8070 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8071 high |= negative_mask;
8072
8073 range_type = create_range_type (NULL, base_type, low, high);
8074
8075 /* Mark arrays with dynamic length at least as an array of unspecified
8076 length. GDB could check the boundary but before it gets implemented at
8077 least allow accessing the array elements. */
8078 if (attr && attr->form == DW_FORM_block1)
8079 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8080
8081 name = dwarf2_name (die, cu);
8082 if (name)
8083 TYPE_NAME (range_type) = name;
8084
8085 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8086 if (attr)
8087 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8088
8089 set_die_type (die, range_type, cu);
8090
8091 /* set_die_type should be already done. */
8092 set_descriptive_type (range_type, die, cu);
8093
8094 return range_type;
8095 }
8096
8097 static struct type *
8098 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8099 {
8100 struct type *type;
8101
8102 /* For now, we only support the C meaning of an unspecified type: void. */
8103
8104 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8105 TYPE_NAME (type) = dwarf2_name (die, cu);
8106
8107 return set_die_type (die, type, cu);
8108 }
8109
8110 /* Trivial hash function for die_info: the hash value of a DIE
8111 is its offset in .debug_info for this objfile. */
8112
8113 static hashval_t
8114 die_hash (const void *item)
8115 {
8116 const struct die_info *die = item;
8117
8118 return die->offset;
8119 }
8120
8121 /* Trivial comparison function for die_info structures: two DIEs
8122 are equal if they have the same offset. */
8123
8124 static int
8125 die_eq (const void *item_lhs, const void *item_rhs)
8126 {
8127 const struct die_info *die_lhs = item_lhs;
8128 const struct die_info *die_rhs = item_rhs;
8129
8130 return die_lhs->offset == die_rhs->offset;
8131 }
8132
8133 /* Read a whole compilation unit into a linked list of dies. */
8134
8135 static struct die_info *
8136 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
8137 {
8138 struct die_reader_specs reader_specs;
8139 int read_abbrevs = 0;
8140 struct cleanup *back_to = NULL;
8141 struct die_info *die;
8142
8143 if (cu->dwarf2_abbrevs == NULL)
8144 {
8145 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8146 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8147 read_abbrevs = 1;
8148 }
8149
8150 gdb_assert (cu->die_hash == NULL);
8151 cu->die_hash
8152 = htab_create_alloc_ex (cu->header.length / 12,
8153 die_hash,
8154 die_eq,
8155 NULL,
8156 &cu->comp_unit_obstack,
8157 hashtab_obstack_allocate,
8158 dummy_obstack_deallocate);
8159
8160 init_cu_die_reader (&reader_specs, cu);
8161
8162 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8163
8164 if (read_abbrevs)
8165 do_cleanups (back_to);
8166
8167 return die;
8168 }
8169
8170 /* Main entry point for reading a DIE and all children.
8171 Read the DIE and dump it if requested. */
8172
8173 static struct die_info *
8174 read_die_and_children (const struct die_reader_specs *reader,
8175 gdb_byte *info_ptr,
8176 gdb_byte **new_info_ptr,
8177 struct die_info *parent)
8178 {
8179 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
8180 new_info_ptr, parent);
8181
8182 if (dwarf2_die_debug)
8183 {
8184 fprintf_unfiltered (gdb_stdlog,
8185 "\nRead die from %s of %s:\n",
8186 reader->buffer == dwarf2_per_objfile->info.buffer
8187 ? ".debug_info"
8188 : reader->buffer == dwarf2_per_objfile->types.buffer
8189 ? ".debug_types"
8190 : "unknown section",
8191 reader->abfd->filename);
8192 dump_die (result, dwarf2_die_debug);
8193 }
8194
8195 return result;
8196 }
8197
8198 /* Read a single die and all its descendents. Set the die's sibling
8199 field to NULL; set other fields in the die correctly, and set all
8200 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8201 location of the info_ptr after reading all of those dies. PARENT
8202 is the parent of the die in question. */
8203
8204 static struct die_info *
8205 read_die_and_children_1 (const struct die_reader_specs *reader,
8206 gdb_byte *info_ptr,
8207 gdb_byte **new_info_ptr,
8208 struct die_info *parent)
8209 {
8210 struct die_info *die;
8211 gdb_byte *cur_ptr;
8212 int has_children;
8213
8214 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
8215 if (die == NULL)
8216 {
8217 *new_info_ptr = cur_ptr;
8218 return NULL;
8219 }
8220 store_in_ref_table (die, reader->cu);
8221
8222 if (has_children)
8223 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
8224 else
8225 {
8226 die->child = NULL;
8227 *new_info_ptr = cur_ptr;
8228 }
8229
8230 die->sibling = NULL;
8231 die->parent = parent;
8232 return die;
8233 }
8234
8235 /* Read a die, all of its descendents, and all of its siblings; set
8236 all of the fields of all of the dies correctly. Arguments are as
8237 in read_die_and_children. */
8238
8239 static struct die_info *
8240 read_die_and_siblings (const struct die_reader_specs *reader,
8241 gdb_byte *info_ptr,
8242 gdb_byte **new_info_ptr,
8243 struct die_info *parent)
8244 {
8245 struct die_info *first_die, *last_sibling;
8246 gdb_byte *cur_ptr;
8247
8248 cur_ptr = info_ptr;
8249 first_die = last_sibling = NULL;
8250
8251 while (1)
8252 {
8253 struct die_info *die
8254 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
8255
8256 if (die == NULL)
8257 {
8258 *new_info_ptr = cur_ptr;
8259 return first_die;
8260 }
8261
8262 if (!first_die)
8263 first_die = die;
8264 else
8265 last_sibling->sibling = die;
8266
8267 last_sibling = die;
8268 }
8269 }
8270
8271 /* Read the die from the .debug_info section buffer. Set DIEP to
8272 point to a newly allocated die with its information, except for its
8273 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8274 whether the die has children or not. */
8275
8276 static gdb_byte *
8277 read_full_die (const struct die_reader_specs *reader,
8278 struct die_info **diep, gdb_byte *info_ptr,
8279 int *has_children)
8280 {
8281 unsigned int abbrev_number, bytes_read, i, offset;
8282 struct abbrev_info *abbrev;
8283 struct die_info *die;
8284 struct dwarf2_cu *cu = reader->cu;
8285 bfd *abfd = reader->abfd;
8286
8287 offset = info_ptr - reader->buffer;
8288 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8289 info_ptr += bytes_read;
8290 if (!abbrev_number)
8291 {
8292 *diep = NULL;
8293 *has_children = 0;
8294 return info_ptr;
8295 }
8296
8297 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8298 if (!abbrev)
8299 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8300 abbrev_number,
8301 bfd_get_filename (abfd));
8302
8303 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8304 die->offset = offset;
8305 die->tag = abbrev->tag;
8306 die->abbrev = abbrev_number;
8307
8308 die->num_attrs = abbrev->num_attrs;
8309
8310 for (i = 0; i < abbrev->num_attrs; ++i)
8311 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8312 abfd, info_ptr, cu);
8313
8314 *diep = die;
8315 *has_children = abbrev->has_children;
8316 return info_ptr;
8317 }
8318
8319 /* In DWARF version 2, the description of the debugging information is
8320 stored in a separate .debug_abbrev section. Before we read any
8321 dies from a section we read in all abbreviations and install them
8322 in a hash table. This function also sets flags in CU describing
8323 the data found in the abbrev table. */
8324
8325 static void
8326 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
8327 {
8328 struct comp_unit_head *cu_header = &cu->header;
8329 gdb_byte *abbrev_ptr;
8330 struct abbrev_info *cur_abbrev;
8331 unsigned int abbrev_number, bytes_read, abbrev_name;
8332 unsigned int abbrev_form, hash_number;
8333 struct attr_abbrev *cur_attrs;
8334 unsigned int allocated_attrs;
8335
8336 /* Initialize dwarf2 abbrevs */
8337 obstack_init (&cu->abbrev_obstack);
8338 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8339 (ABBREV_HASH_SIZE
8340 * sizeof (struct abbrev_info *)));
8341 memset (cu->dwarf2_abbrevs, 0,
8342 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
8343
8344 dwarf2_read_section (dwarf2_per_objfile->objfile,
8345 &dwarf2_per_objfile->abbrev);
8346 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
8347 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8348 abbrev_ptr += bytes_read;
8349
8350 allocated_attrs = ATTR_ALLOC_CHUNK;
8351 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
8352
8353 /* loop until we reach an abbrev number of 0 */
8354 while (abbrev_number)
8355 {
8356 cur_abbrev = dwarf_alloc_abbrev (cu);
8357
8358 /* read in abbrev header */
8359 cur_abbrev->number = abbrev_number;
8360 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8361 abbrev_ptr += bytes_read;
8362 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8363 abbrev_ptr += 1;
8364
8365 if (cur_abbrev->tag == DW_TAG_namespace)
8366 cu->has_namespace_info = 1;
8367
8368 /* now read in declarations */
8369 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8370 abbrev_ptr += bytes_read;
8371 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8372 abbrev_ptr += bytes_read;
8373 while (abbrev_name)
8374 {
8375 if (cur_abbrev->num_attrs == allocated_attrs)
8376 {
8377 allocated_attrs += ATTR_ALLOC_CHUNK;
8378 cur_attrs
8379 = xrealloc (cur_attrs, (allocated_attrs
8380 * sizeof (struct attr_abbrev)));
8381 }
8382
8383 /* Record whether this compilation unit might have
8384 inter-compilation-unit references. If we don't know what form
8385 this attribute will have, then it might potentially be a
8386 DW_FORM_ref_addr, so we conservatively expect inter-CU
8387 references. */
8388
8389 if (abbrev_form == DW_FORM_ref_addr
8390 || abbrev_form == DW_FORM_indirect)
8391 cu->has_form_ref_addr = 1;
8392
8393 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8394 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
8395 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8396 abbrev_ptr += bytes_read;
8397 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8398 abbrev_ptr += bytes_read;
8399 }
8400
8401 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8402 (cur_abbrev->num_attrs
8403 * sizeof (struct attr_abbrev)));
8404 memcpy (cur_abbrev->attrs, cur_attrs,
8405 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8406
8407 hash_number = abbrev_number % ABBREV_HASH_SIZE;
8408 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8409 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
8410
8411 /* Get next abbreviation.
8412 Under Irix6 the abbreviations for a compilation unit are not
8413 always properly terminated with an abbrev number of 0.
8414 Exit loop if we encounter an abbreviation which we have
8415 already read (which means we are about to read the abbreviations
8416 for the next compile unit) or if the end of the abbreviation
8417 table is reached. */
8418 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8419 >= dwarf2_per_objfile->abbrev.size)
8420 break;
8421 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8422 abbrev_ptr += bytes_read;
8423 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
8424 break;
8425 }
8426
8427 xfree (cur_attrs);
8428 }
8429
8430 /* Release the memory used by the abbrev table for a compilation unit. */
8431
8432 static void
8433 dwarf2_free_abbrev_table (void *ptr_to_cu)
8434 {
8435 struct dwarf2_cu *cu = ptr_to_cu;
8436
8437 obstack_free (&cu->abbrev_obstack, NULL);
8438 cu->dwarf2_abbrevs = NULL;
8439 }
8440
8441 /* Lookup an abbrev_info structure in the abbrev hash table. */
8442
8443 static struct abbrev_info *
8444 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
8445 {
8446 unsigned int hash_number;
8447 struct abbrev_info *abbrev;
8448
8449 hash_number = number % ABBREV_HASH_SIZE;
8450 abbrev = cu->dwarf2_abbrevs[hash_number];
8451
8452 while (abbrev)
8453 {
8454 if (abbrev->number == number)
8455 return abbrev;
8456 else
8457 abbrev = abbrev->next;
8458 }
8459 return NULL;
8460 }
8461
8462 /* Returns nonzero if TAG represents a type that we might generate a partial
8463 symbol for. */
8464
8465 static int
8466 is_type_tag_for_partial (int tag)
8467 {
8468 switch (tag)
8469 {
8470 #if 0
8471 /* Some types that would be reasonable to generate partial symbols for,
8472 that we don't at present. */
8473 case DW_TAG_array_type:
8474 case DW_TAG_file_type:
8475 case DW_TAG_ptr_to_member_type:
8476 case DW_TAG_set_type:
8477 case DW_TAG_string_type:
8478 case DW_TAG_subroutine_type:
8479 #endif
8480 case DW_TAG_base_type:
8481 case DW_TAG_class_type:
8482 case DW_TAG_interface_type:
8483 case DW_TAG_enumeration_type:
8484 case DW_TAG_structure_type:
8485 case DW_TAG_subrange_type:
8486 case DW_TAG_typedef:
8487 case DW_TAG_union_type:
8488 return 1;
8489 default:
8490 return 0;
8491 }
8492 }
8493
8494 /* Load all DIEs that are interesting for partial symbols into memory. */
8495
8496 static struct partial_die_info *
8497 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8498 int building_psymtab, struct dwarf2_cu *cu)
8499 {
8500 struct partial_die_info *part_die;
8501 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8502 struct abbrev_info *abbrev;
8503 unsigned int bytes_read;
8504 unsigned int load_all = 0;
8505
8506 int nesting_level = 1;
8507
8508 parent_die = NULL;
8509 last_die = NULL;
8510
8511 if (cu->per_cu && cu->per_cu->load_all_dies)
8512 load_all = 1;
8513
8514 cu->partial_dies
8515 = htab_create_alloc_ex (cu->header.length / 12,
8516 partial_die_hash,
8517 partial_die_eq,
8518 NULL,
8519 &cu->comp_unit_obstack,
8520 hashtab_obstack_allocate,
8521 dummy_obstack_deallocate);
8522
8523 part_die = obstack_alloc (&cu->comp_unit_obstack,
8524 sizeof (struct partial_die_info));
8525
8526 while (1)
8527 {
8528 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8529
8530 /* A NULL abbrev means the end of a series of children. */
8531 if (abbrev == NULL)
8532 {
8533 if (--nesting_level == 0)
8534 {
8535 /* PART_DIE was probably the last thing allocated on the
8536 comp_unit_obstack, so we could call obstack_free
8537 here. We don't do that because the waste is small,
8538 and will be cleaned up when we're done with this
8539 compilation unit. This way, we're also more robust
8540 against other users of the comp_unit_obstack. */
8541 return first_die;
8542 }
8543 info_ptr += bytes_read;
8544 last_die = parent_die;
8545 parent_die = parent_die->die_parent;
8546 continue;
8547 }
8548
8549 /* Check for template arguments. We never save these; if
8550 they're seen, we just mark the parent, and go on our way. */
8551 if (parent_die != NULL
8552 && cu->language == language_cplus
8553 && (abbrev->tag == DW_TAG_template_type_param
8554 || abbrev->tag == DW_TAG_template_value_param))
8555 {
8556 parent_die->has_template_arguments = 1;
8557
8558 if (!load_all)
8559 {
8560 /* We don't need a partial DIE for the template argument. */
8561 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8562 cu);
8563 continue;
8564 }
8565 }
8566
8567 /* We only recurse into subprograms looking for template arguments.
8568 Skip their other children. */
8569 if (!load_all
8570 && cu->language == language_cplus
8571 && parent_die != NULL
8572 && parent_die->tag == DW_TAG_subprogram)
8573 {
8574 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8575 continue;
8576 }
8577
8578 /* Check whether this DIE is interesting enough to save. Normally
8579 we would not be interested in members here, but there may be
8580 later variables referencing them via DW_AT_specification (for
8581 static members). */
8582 if (!load_all
8583 && !is_type_tag_for_partial (abbrev->tag)
8584 && abbrev->tag != DW_TAG_constant
8585 && abbrev->tag != DW_TAG_enumerator
8586 && abbrev->tag != DW_TAG_subprogram
8587 && abbrev->tag != DW_TAG_lexical_block
8588 && abbrev->tag != DW_TAG_variable
8589 && abbrev->tag != DW_TAG_namespace
8590 && abbrev->tag != DW_TAG_module
8591 && abbrev->tag != DW_TAG_member)
8592 {
8593 /* Otherwise we skip to the next sibling, if any. */
8594 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8595 continue;
8596 }
8597
8598 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8599 buffer, info_ptr, cu);
8600
8601 /* This two-pass algorithm for processing partial symbols has a
8602 high cost in cache pressure. Thus, handle some simple cases
8603 here which cover the majority of C partial symbols. DIEs
8604 which neither have specification tags in them, nor could have
8605 specification tags elsewhere pointing at them, can simply be
8606 processed and discarded.
8607
8608 This segment is also optional; scan_partial_symbols and
8609 add_partial_symbol will handle these DIEs if we chain
8610 them in normally. When compilers which do not emit large
8611 quantities of duplicate debug information are more common,
8612 this code can probably be removed. */
8613
8614 /* Any complete simple types at the top level (pretty much all
8615 of them, for a language without namespaces), can be processed
8616 directly. */
8617 if (parent_die == NULL
8618 && part_die->has_specification == 0
8619 && part_die->is_declaration == 0
8620 && (part_die->tag == DW_TAG_typedef
8621 || part_die->tag == DW_TAG_base_type
8622 || part_die->tag == DW_TAG_subrange_type))
8623 {
8624 if (building_psymtab && part_die->name != NULL)
8625 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8626 VAR_DOMAIN, LOC_TYPEDEF,
8627 &cu->objfile->static_psymbols,
8628 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8629 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8630 continue;
8631 }
8632
8633 /* If we're at the second level, and we're an enumerator, and
8634 our parent has no specification (meaning possibly lives in a
8635 namespace elsewhere), then we can add the partial symbol now
8636 instead of queueing it. */
8637 if (part_die->tag == DW_TAG_enumerator
8638 && parent_die != NULL
8639 && parent_die->die_parent == NULL
8640 && parent_die->tag == DW_TAG_enumeration_type
8641 && parent_die->has_specification == 0)
8642 {
8643 if (part_die->name == NULL)
8644 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
8645 else if (building_psymtab)
8646 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8647 VAR_DOMAIN, LOC_CONST,
8648 (cu->language == language_cplus
8649 || cu->language == language_java)
8650 ? &cu->objfile->global_psymbols
8651 : &cu->objfile->static_psymbols,
8652 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8653
8654 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8655 continue;
8656 }
8657
8658 /* We'll save this DIE so link it in. */
8659 part_die->die_parent = parent_die;
8660 part_die->die_sibling = NULL;
8661 part_die->die_child = NULL;
8662
8663 if (last_die && last_die == parent_die)
8664 last_die->die_child = part_die;
8665 else if (last_die)
8666 last_die->die_sibling = part_die;
8667
8668 last_die = part_die;
8669
8670 if (first_die == NULL)
8671 first_die = part_die;
8672
8673 /* Maybe add the DIE to the hash table. Not all DIEs that we
8674 find interesting need to be in the hash table, because we
8675 also have the parent/sibling/child chains; only those that we
8676 might refer to by offset later during partial symbol reading.
8677
8678 For now this means things that might have be the target of a
8679 DW_AT_specification, DW_AT_abstract_origin, or
8680 DW_AT_extension. DW_AT_extension will refer only to
8681 namespaces; DW_AT_abstract_origin refers to functions (and
8682 many things under the function DIE, but we do not recurse
8683 into function DIEs during partial symbol reading) and
8684 possibly variables as well; DW_AT_specification refers to
8685 declarations. Declarations ought to have the DW_AT_declaration
8686 flag. It happens that GCC forgets to put it in sometimes, but
8687 only for functions, not for types.
8688
8689 Adding more things than necessary to the hash table is harmless
8690 except for the performance cost. Adding too few will result in
8691 wasted time in find_partial_die, when we reread the compilation
8692 unit with load_all_dies set. */
8693
8694 if (load_all
8695 || abbrev->tag == DW_TAG_constant
8696 || abbrev->tag == DW_TAG_subprogram
8697 || abbrev->tag == DW_TAG_variable
8698 || abbrev->tag == DW_TAG_namespace
8699 || part_die->is_declaration)
8700 {
8701 void **slot;
8702
8703 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8704 part_die->offset, INSERT);
8705 *slot = part_die;
8706 }
8707
8708 part_die = obstack_alloc (&cu->comp_unit_obstack,
8709 sizeof (struct partial_die_info));
8710
8711 /* For some DIEs we want to follow their children (if any). For C
8712 we have no reason to follow the children of structures; for other
8713 languages we have to, so that we can get at method physnames
8714 to infer fully qualified class names, for DW_AT_specification,
8715 and for C++ template arguments. For C++, we also look one level
8716 inside functions to find template arguments (if the name of the
8717 function does not already contain the template arguments).
8718
8719 For Ada, we need to scan the children of subprograms and lexical
8720 blocks as well because Ada allows the definition of nested
8721 entities that could be interesting for the debugger, such as
8722 nested subprograms for instance. */
8723 if (last_die->has_children
8724 && (load_all
8725 || last_die->tag == DW_TAG_namespace
8726 || last_die->tag == DW_TAG_module
8727 || last_die->tag == DW_TAG_enumeration_type
8728 || (cu->language == language_cplus
8729 && last_die->tag == DW_TAG_subprogram
8730 && (last_die->name == NULL
8731 || strchr (last_die->name, '<') == NULL))
8732 || (cu->language != language_c
8733 && (last_die->tag == DW_TAG_class_type
8734 || last_die->tag == DW_TAG_interface_type
8735 || last_die->tag == DW_TAG_structure_type
8736 || last_die->tag == DW_TAG_union_type))
8737 || (cu->language == language_ada
8738 && (last_die->tag == DW_TAG_subprogram
8739 || last_die->tag == DW_TAG_lexical_block))))
8740 {
8741 nesting_level++;
8742 parent_die = last_die;
8743 continue;
8744 }
8745
8746 /* Otherwise we skip to the next sibling, if any. */
8747 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
8748
8749 /* Back to the top, do it again. */
8750 }
8751 }
8752
8753 /* Read a minimal amount of information into the minimal die structure. */
8754
8755 static gdb_byte *
8756 read_partial_die (struct partial_die_info *part_die,
8757 struct abbrev_info *abbrev,
8758 unsigned int abbrev_len, bfd *abfd,
8759 gdb_byte *buffer, gdb_byte *info_ptr,
8760 struct dwarf2_cu *cu)
8761 {
8762 unsigned int i;
8763 struct attribute attr;
8764 int has_low_pc_attr = 0;
8765 int has_high_pc_attr = 0;
8766
8767 memset (part_die, 0, sizeof (struct partial_die_info));
8768
8769 part_die->offset = info_ptr - buffer;
8770
8771 info_ptr += abbrev_len;
8772
8773 if (abbrev == NULL)
8774 return info_ptr;
8775
8776 part_die->tag = abbrev->tag;
8777 part_die->has_children = abbrev->has_children;
8778
8779 for (i = 0; i < abbrev->num_attrs; ++i)
8780 {
8781 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
8782
8783 /* Store the data if it is of an attribute we want to keep in a
8784 partial symbol table. */
8785 switch (attr.name)
8786 {
8787 case DW_AT_name:
8788 switch (part_die->tag)
8789 {
8790 case DW_TAG_compile_unit:
8791 case DW_TAG_type_unit:
8792 /* Compilation units have a DW_AT_name that is a filename, not
8793 a source language identifier. */
8794 case DW_TAG_enumeration_type:
8795 case DW_TAG_enumerator:
8796 /* These tags always have simple identifiers already; no need
8797 to canonicalize them. */
8798 part_die->name = DW_STRING (&attr);
8799 break;
8800 default:
8801 part_die->name
8802 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
8803 &cu->objfile->objfile_obstack);
8804 break;
8805 }
8806 break;
8807 case DW_AT_linkage_name:
8808 case DW_AT_MIPS_linkage_name:
8809 /* Note that both forms of linkage name might appear. We
8810 assume they will be the same, and we only store the last
8811 one we see. */
8812 if (cu->language == language_ada)
8813 part_die->name = DW_STRING (&attr);
8814 part_die->linkage_name = DW_STRING (&attr);
8815 break;
8816 case DW_AT_low_pc:
8817 has_low_pc_attr = 1;
8818 part_die->lowpc = DW_ADDR (&attr);
8819 break;
8820 case DW_AT_high_pc:
8821 has_high_pc_attr = 1;
8822 part_die->highpc = DW_ADDR (&attr);
8823 break;
8824 case DW_AT_location:
8825 /* Support the .debug_loc offsets */
8826 if (attr_form_is_block (&attr))
8827 {
8828 part_die->locdesc = DW_BLOCK (&attr);
8829 }
8830 else if (attr_form_is_section_offset (&attr))
8831 {
8832 dwarf2_complex_location_expr_complaint ();
8833 }
8834 else
8835 {
8836 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8837 "partial symbol information");
8838 }
8839 break;
8840 case DW_AT_external:
8841 part_die->is_external = DW_UNSND (&attr);
8842 break;
8843 case DW_AT_declaration:
8844 part_die->is_declaration = DW_UNSND (&attr);
8845 break;
8846 case DW_AT_type:
8847 part_die->has_type = 1;
8848 break;
8849 case DW_AT_abstract_origin:
8850 case DW_AT_specification:
8851 case DW_AT_extension:
8852 part_die->has_specification = 1;
8853 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
8854 break;
8855 case DW_AT_sibling:
8856 /* Ignore absolute siblings, they might point outside of
8857 the current compile unit. */
8858 if (attr.form == DW_FORM_ref_addr)
8859 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
8860 else
8861 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
8862 break;
8863 case DW_AT_byte_size:
8864 part_die->has_byte_size = 1;
8865 break;
8866 case DW_AT_calling_convention:
8867 /* DWARF doesn't provide a way to identify a program's source-level
8868 entry point. DW_AT_calling_convention attributes are only meant
8869 to describe functions' calling conventions.
8870
8871 However, because it's a necessary piece of information in
8872 Fortran, and because DW_CC_program is the only piece of debugging
8873 information whose definition refers to a 'main program' at all,
8874 several compilers have begun marking Fortran main programs with
8875 DW_CC_program --- even when those functions use the standard
8876 calling conventions.
8877
8878 So until DWARF specifies a way to provide this information and
8879 compilers pick up the new representation, we'll support this
8880 practice. */
8881 if (DW_UNSND (&attr) == DW_CC_program
8882 && cu->language == language_fortran)
8883 set_main_name (part_die->name);
8884 break;
8885 default:
8886 break;
8887 }
8888 }
8889
8890 /* When using the GNU linker, .gnu.linkonce. sections are used to
8891 eliminate duplicate copies of functions and vtables and such.
8892 The linker will arbitrarily choose one and discard the others.
8893 The AT_*_pc values for such functions refer to local labels in
8894 these sections. If the section from that file was discarded, the
8895 labels are not in the output, so the relocs get a value of 0.
8896 If this is a discarded function, mark the pc bounds as invalid,
8897 so that GDB will ignore it. */
8898 if (has_low_pc_attr && has_high_pc_attr
8899 && part_die->lowpc < part_die->highpc
8900 && (part_die->lowpc != 0
8901 || dwarf2_per_objfile->has_section_at_zero))
8902 part_die->has_pc_info = 1;
8903
8904 return info_ptr;
8905 }
8906
8907 /* Find a cached partial DIE at OFFSET in CU. */
8908
8909 static struct partial_die_info *
8910 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
8911 {
8912 struct partial_die_info *lookup_die = NULL;
8913 struct partial_die_info part_die;
8914
8915 part_die.offset = offset;
8916 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
8917
8918 return lookup_die;
8919 }
8920
8921 /* Find a partial DIE at OFFSET, which may or may not be in CU,
8922 except in the case of .debug_types DIEs which do not reference
8923 outside their CU (they do however referencing other types via
8924 DW_FORM_sig8). */
8925
8926 static struct partial_die_info *
8927 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
8928 {
8929 struct dwarf2_per_cu_data *per_cu = NULL;
8930 struct partial_die_info *pd = NULL;
8931
8932 if (cu->per_cu->from_debug_types)
8933 {
8934 pd = find_partial_die_in_comp_unit (offset, cu);
8935 if (pd != NULL)
8936 return pd;
8937 goto not_found;
8938 }
8939
8940 if (offset_in_cu_p (&cu->header, offset))
8941 {
8942 pd = find_partial_die_in_comp_unit (offset, cu);
8943 if (pd != NULL)
8944 return pd;
8945 }
8946
8947 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
8948
8949 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
8950 load_partial_comp_unit (per_cu, cu->objfile);
8951
8952 per_cu->cu->last_used = 0;
8953 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
8954
8955 if (pd == NULL && per_cu->load_all_dies == 0)
8956 {
8957 struct cleanup *back_to;
8958 struct partial_die_info comp_unit_die;
8959 struct abbrev_info *abbrev;
8960 unsigned int bytes_read;
8961 char *info_ptr;
8962
8963 per_cu->load_all_dies = 1;
8964
8965 /* Re-read the DIEs. */
8966 back_to = make_cleanup (null_cleanup, 0);
8967 if (per_cu->cu->dwarf2_abbrevs == NULL)
8968 {
8969 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
8970 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
8971 }
8972 info_ptr = (dwarf2_per_objfile->info.buffer
8973 + per_cu->cu->header.offset
8974 + per_cu->cu->header.first_die_offset);
8975 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
8976 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
8977 per_cu->cu->objfile->obfd,
8978 dwarf2_per_objfile->info.buffer, info_ptr,
8979 per_cu->cu);
8980 if (comp_unit_die.has_children)
8981 load_partial_dies (per_cu->cu->objfile->obfd,
8982 dwarf2_per_objfile->info.buffer, info_ptr,
8983 0, per_cu->cu);
8984 do_cleanups (back_to);
8985
8986 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
8987 }
8988
8989 not_found:
8990
8991 if (pd == NULL)
8992 internal_error (__FILE__, __LINE__,
8993 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
8994 offset, bfd_get_filename (cu->objfile->obfd));
8995 return pd;
8996 }
8997
8998 /* See if we can figure out if the class lives in a namespace. We do
8999 this by looking for a member function; its demangled name will
9000 contain namespace info, if there is any. */
9001
9002 static void
9003 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9004 struct dwarf2_cu *cu)
9005 {
9006 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9007 what template types look like, because the demangler
9008 frequently doesn't give the same name as the debug info. We
9009 could fix this by only using the demangled name to get the
9010 prefix (but see comment in read_structure_type). */
9011
9012 struct partial_die_info *real_pdi;
9013 struct partial_die_info *child_pdi;
9014
9015 /* If this DIE (this DIE's specification, if any) has a parent, then
9016 we should not do this. We'll prepend the parent's fully qualified
9017 name when we create the partial symbol. */
9018
9019 real_pdi = struct_pdi;
9020 while (real_pdi->has_specification)
9021 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9022
9023 if (real_pdi->die_parent != NULL)
9024 return;
9025
9026 for (child_pdi = struct_pdi->die_child;
9027 child_pdi != NULL;
9028 child_pdi = child_pdi->die_sibling)
9029 {
9030 if (child_pdi->tag == DW_TAG_subprogram
9031 && child_pdi->linkage_name != NULL)
9032 {
9033 char *actual_class_name
9034 = language_class_name_from_physname (cu->language_defn,
9035 child_pdi->linkage_name);
9036 if (actual_class_name != NULL)
9037 {
9038 struct_pdi->name
9039 = obsavestring (actual_class_name,
9040 strlen (actual_class_name),
9041 &cu->objfile->objfile_obstack);
9042 xfree (actual_class_name);
9043 }
9044 break;
9045 }
9046 }
9047 }
9048
9049 /* Adjust PART_DIE before generating a symbol for it. This function
9050 may set the is_external flag or change the DIE's name. */
9051
9052 static void
9053 fixup_partial_die (struct partial_die_info *part_die,
9054 struct dwarf2_cu *cu)
9055 {
9056 /* Once we've fixed up a die, there's no point in doing so again.
9057 This also avoids a memory leak if we were to call
9058 guess_partial_die_structure_name multiple times. */
9059 if (part_die->fixup_called)
9060 return;
9061
9062 /* If we found a reference attribute and the DIE has no name, try
9063 to find a name in the referred to DIE. */
9064
9065 if (part_die->name == NULL && part_die->has_specification)
9066 {
9067 struct partial_die_info *spec_die;
9068
9069 spec_die = find_partial_die (part_die->spec_offset, cu);
9070
9071 fixup_partial_die (spec_die, cu);
9072
9073 if (spec_die->name)
9074 {
9075 part_die->name = spec_die->name;
9076
9077 /* Copy DW_AT_external attribute if it is set. */
9078 if (spec_die->is_external)
9079 part_die->is_external = spec_die->is_external;
9080 }
9081 }
9082
9083 /* Set default names for some unnamed DIEs. */
9084
9085 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9086 part_die->name = "(anonymous namespace)";
9087
9088 /* If there is no parent die to provide a namespace, and there are
9089 children, see if we can determine the namespace from their linkage
9090 name.
9091 NOTE: We need to do this even if cu->has_namespace_info != 0.
9092 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9093 if (cu->language == language_cplus
9094 && dwarf2_per_objfile->types.asection != NULL
9095 && part_die->die_parent == NULL
9096 && part_die->has_children
9097 && (part_die->tag == DW_TAG_class_type
9098 || part_die->tag == DW_TAG_structure_type
9099 || part_die->tag == DW_TAG_union_type))
9100 guess_partial_die_structure_name (part_die, cu);
9101
9102 part_die->fixup_called = 1;
9103 }
9104
9105 /* Read an attribute value described by an attribute form. */
9106
9107 static gdb_byte *
9108 read_attribute_value (struct attribute *attr, unsigned form,
9109 bfd *abfd, gdb_byte *info_ptr,
9110 struct dwarf2_cu *cu)
9111 {
9112 struct comp_unit_head *cu_header = &cu->header;
9113 unsigned int bytes_read;
9114 struct dwarf_block *blk;
9115
9116 attr->form = form;
9117 switch (form)
9118 {
9119 case DW_FORM_ref_addr:
9120 if (cu->header.version == 2)
9121 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9122 else
9123 DW_ADDR (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9124 info_ptr += bytes_read;
9125 break;
9126 case DW_FORM_addr:
9127 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9128 info_ptr += bytes_read;
9129 break;
9130 case DW_FORM_block2:
9131 blk = dwarf_alloc_block (cu);
9132 blk->size = read_2_bytes (abfd, info_ptr);
9133 info_ptr += 2;
9134 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9135 info_ptr += blk->size;
9136 DW_BLOCK (attr) = blk;
9137 break;
9138 case DW_FORM_block4:
9139 blk = dwarf_alloc_block (cu);
9140 blk->size = read_4_bytes (abfd, info_ptr);
9141 info_ptr += 4;
9142 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9143 info_ptr += blk->size;
9144 DW_BLOCK (attr) = blk;
9145 break;
9146 case DW_FORM_data2:
9147 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9148 info_ptr += 2;
9149 break;
9150 case DW_FORM_data4:
9151 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9152 info_ptr += 4;
9153 break;
9154 case DW_FORM_data8:
9155 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9156 info_ptr += 8;
9157 break;
9158 case DW_FORM_sec_offset:
9159 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9160 info_ptr += bytes_read;
9161 break;
9162 case DW_FORM_string:
9163 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
9164 DW_STRING_IS_CANONICAL (attr) = 0;
9165 info_ptr += bytes_read;
9166 break;
9167 case DW_FORM_strp:
9168 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9169 &bytes_read);
9170 DW_STRING_IS_CANONICAL (attr) = 0;
9171 info_ptr += bytes_read;
9172 break;
9173 case DW_FORM_exprloc:
9174 case DW_FORM_block:
9175 blk = dwarf_alloc_block (cu);
9176 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9177 info_ptr += bytes_read;
9178 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9179 info_ptr += blk->size;
9180 DW_BLOCK (attr) = blk;
9181 break;
9182 case DW_FORM_block1:
9183 blk = dwarf_alloc_block (cu);
9184 blk->size = read_1_byte (abfd, info_ptr);
9185 info_ptr += 1;
9186 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9187 info_ptr += blk->size;
9188 DW_BLOCK (attr) = blk;
9189 break;
9190 case DW_FORM_data1:
9191 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9192 info_ptr += 1;
9193 break;
9194 case DW_FORM_flag:
9195 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9196 info_ptr += 1;
9197 break;
9198 case DW_FORM_flag_present:
9199 DW_UNSND (attr) = 1;
9200 break;
9201 case DW_FORM_sdata:
9202 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9203 info_ptr += bytes_read;
9204 break;
9205 case DW_FORM_udata:
9206 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9207 info_ptr += bytes_read;
9208 break;
9209 case DW_FORM_ref1:
9210 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
9211 info_ptr += 1;
9212 break;
9213 case DW_FORM_ref2:
9214 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
9215 info_ptr += 2;
9216 break;
9217 case DW_FORM_ref4:
9218 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
9219 info_ptr += 4;
9220 break;
9221 case DW_FORM_ref8:
9222 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
9223 info_ptr += 8;
9224 break;
9225 case DW_FORM_sig8:
9226 /* Convert the signature to something we can record in DW_UNSND
9227 for later lookup.
9228 NOTE: This is NULL if the type wasn't found. */
9229 DW_SIGNATURED_TYPE (attr) =
9230 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9231 info_ptr += 8;
9232 break;
9233 case DW_FORM_ref_udata:
9234 DW_ADDR (attr) = (cu->header.offset
9235 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
9236 info_ptr += bytes_read;
9237 break;
9238 case DW_FORM_indirect:
9239 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9240 info_ptr += bytes_read;
9241 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
9242 break;
9243 default:
9244 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
9245 dwarf_form_name (form),
9246 bfd_get_filename (abfd));
9247 }
9248
9249 /* We have seen instances where the compiler tried to emit a byte
9250 size attribute of -1 which ended up being encoded as an unsigned
9251 0xffffffff. Although 0xffffffff is technically a valid size value,
9252 an object of this size seems pretty unlikely so we can relatively
9253 safely treat these cases as if the size attribute was invalid and
9254 treat them as zero by default. */
9255 if (attr->name == DW_AT_byte_size
9256 && form == DW_FORM_data4
9257 && DW_UNSND (attr) >= 0xffffffff)
9258 {
9259 complaint
9260 (&symfile_complaints,
9261 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9262 hex_string (DW_UNSND (attr)));
9263 DW_UNSND (attr) = 0;
9264 }
9265
9266 return info_ptr;
9267 }
9268
9269 /* Read an attribute described by an abbreviated attribute. */
9270
9271 static gdb_byte *
9272 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
9273 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
9274 {
9275 attr->name = abbrev->name;
9276 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
9277 }
9278
9279 /* read dwarf information from a buffer */
9280
9281 static unsigned int
9282 read_1_byte (bfd *abfd, gdb_byte *buf)
9283 {
9284 return bfd_get_8 (abfd, buf);
9285 }
9286
9287 static int
9288 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
9289 {
9290 return bfd_get_signed_8 (abfd, buf);
9291 }
9292
9293 static unsigned int
9294 read_2_bytes (bfd *abfd, gdb_byte *buf)
9295 {
9296 return bfd_get_16 (abfd, buf);
9297 }
9298
9299 static int
9300 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
9301 {
9302 return bfd_get_signed_16 (abfd, buf);
9303 }
9304
9305 static unsigned int
9306 read_4_bytes (bfd *abfd, gdb_byte *buf)
9307 {
9308 return bfd_get_32 (abfd, buf);
9309 }
9310
9311 static int
9312 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
9313 {
9314 return bfd_get_signed_32 (abfd, buf);
9315 }
9316
9317 static ULONGEST
9318 read_8_bytes (bfd *abfd, gdb_byte *buf)
9319 {
9320 return bfd_get_64 (abfd, buf);
9321 }
9322
9323 static CORE_ADDR
9324 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
9325 unsigned int *bytes_read)
9326 {
9327 struct comp_unit_head *cu_header = &cu->header;
9328 CORE_ADDR retval = 0;
9329
9330 if (cu_header->signed_addr_p)
9331 {
9332 switch (cu_header->addr_size)
9333 {
9334 case 2:
9335 retval = bfd_get_signed_16 (abfd, buf);
9336 break;
9337 case 4:
9338 retval = bfd_get_signed_32 (abfd, buf);
9339 break;
9340 case 8:
9341 retval = bfd_get_signed_64 (abfd, buf);
9342 break;
9343 default:
9344 internal_error (__FILE__, __LINE__,
9345 _("read_address: bad switch, signed [in module %s]"),
9346 bfd_get_filename (abfd));
9347 }
9348 }
9349 else
9350 {
9351 switch (cu_header->addr_size)
9352 {
9353 case 2:
9354 retval = bfd_get_16 (abfd, buf);
9355 break;
9356 case 4:
9357 retval = bfd_get_32 (abfd, buf);
9358 break;
9359 case 8:
9360 retval = bfd_get_64 (abfd, buf);
9361 break;
9362 default:
9363 internal_error (__FILE__, __LINE__,
9364 _("read_address: bad switch, unsigned [in module %s]"),
9365 bfd_get_filename (abfd));
9366 }
9367 }
9368
9369 *bytes_read = cu_header->addr_size;
9370 return retval;
9371 }
9372
9373 /* Read the initial length from a section. The (draft) DWARF 3
9374 specification allows the initial length to take up either 4 bytes
9375 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9376 bytes describe the length and all offsets will be 8 bytes in length
9377 instead of 4.
9378
9379 An older, non-standard 64-bit format is also handled by this
9380 function. The older format in question stores the initial length
9381 as an 8-byte quantity without an escape value. Lengths greater
9382 than 2^32 aren't very common which means that the initial 4 bytes
9383 is almost always zero. Since a length value of zero doesn't make
9384 sense for the 32-bit format, this initial zero can be considered to
9385 be an escape value which indicates the presence of the older 64-bit
9386 format. As written, the code can't detect (old format) lengths
9387 greater than 4GB. If it becomes necessary to handle lengths
9388 somewhat larger than 4GB, we could allow other small values (such
9389 as the non-sensical values of 1, 2, and 3) to also be used as
9390 escape values indicating the presence of the old format.
9391
9392 The value returned via bytes_read should be used to increment the
9393 relevant pointer after calling read_initial_length().
9394
9395 [ Note: read_initial_length() and read_offset() are based on the
9396 document entitled "DWARF Debugging Information Format", revision
9397 3, draft 8, dated November 19, 2001. This document was obtained
9398 from:
9399
9400 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
9401
9402 This document is only a draft and is subject to change. (So beware.)
9403
9404 Details regarding the older, non-standard 64-bit format were
9405 determined empirically by examining 64-bit ELF files produced by
9406 the SGI toolchain on an IRIX 6.5 machine.
9407
9408 - Kevin, July 16, 2002
9409 ] */
9410
9411 static LONGEST
9412 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
9413 {
9414 LONGEST length = bfd_get_32 (abfd, buf);
9415
9416 if (length == 0xffffffff)
9417 {
9418 length = bfd_get_64 (abfd, buf + 4);
9419 *bytes_read = 12;
9420 }
9421 else if (length == 0)
9422 {
9423 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
9424 length = bfd_get_64 (abfd, buf);
9425 *bytes_read = 8;
9426 }
9427 else
9428 {
9429 *bytes_read = 4;
9430 }
9431
9432 return length;
9433 }
9434
9435 /* Cover function for read_initial_length.
9436 Returns the length of the object at BUF, and stores the size of the
9437 initial length in *BYTES_READ and stores the size that offsets will be in
9438 *OFFSET_SIZE.
9439 If the initial length size is not equivalent to that specified in
9440 CU_HEADER then issue a complaint.
9441 This is useful when reading non-comp-unit headers. */
9442
9443 static LONGEST
9444 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9445 const struct comp_unit_head *cu_header,
9446 unsigned int *bytes_read,
9447 unsigned int *offset_size)
9448 {
9449 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9450
9451 gdb_assert (cu_header->initial_length_size == 4
9452 || cu_header->initial_length_size == 8
9453 || cu_header->initial_length_size == 12);
9454
9455 if (cu_header->initial_length_size != *bytes_read)
9456 complaint (&symfile_complaints,
9457 _("intermixed 32-bit and 64-bit DWARF sections"));
9458
9459 *offset_size = (*bytes_read == 4) ? 4 : 8;
9460 return length;
9461 }
9462
9463 /* Read an offset from the data stream. The size of the offset is
9464 given by cu_header->offset_size. */
9465
9466 static LONGEST
9467 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
9468 unsigned int *bytes_read)
9469 {
9470 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9471
9472 *bytes_read = cu_header->offset_size;
9473 return offset;
9474 }
9475
9476 /* Read an offset from the data stream. */
9477
9478 static LONGEST
9479 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
9480 {
9481 LONGEST retval = 0;
9482
9483 switch (offset_size)
9484 {
9485 case 4:
9486 retval = bfd_get_32 (abfd, buf);
9487 break;
9488 case 8:
9489 retval = bfd_get_64 (abfd, buf);
9490 break;
9491 default:
9492 internal_error (__FILE__, __LINE__,
9493 _("read_offset_1: bad switch [in module %s]"),
9494 bfd_get_filename (abfd));
9495 }
9496
9497 return retval;
9498 }
9499
9500 static gdb_byte *
9501 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
9502 {
9503 /* If the size of a host char is 8 bits, we can return a pointer
9504 to the buffer, otherwise we have to copy the data to a buffer
9505 allocated on the temporary obstack. */
9506 gdb_assert (HOST_CHAR_BIT == 8);
9507 return buf;
9508 }
9509
9510 static char *
9511 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9512 {
9513 /* If the size of a host char is 8 bits, we can return a pointer
9514 to the string, otherwise we have to copy the string to a buffer
9515 allocated on the temporary obstack. */
9516 gdb_assert (HOST_CHAR_BIT == 8);
9517 if (*buf == '\0')
9518 {
9519 *bytes_read_ptr = 1;
9520 return NULL;
9521 }
9522 *bytes_read_ptr = strlen ((char *) buf) + 1;
9523 return (char *) buf;
9524 }
9525
9526 static char *
9527 read_indirect_string (bfd *abfd, gdb_byte *buf,
9528 const struct comp_unit_head *cu_header,
9529 unsigned int *bytes_read_ptr)
9530 {
9531 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
9532
9533 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
9534 if (dwarf2_per_objfile->str.buffer == NULL)
9535 {
9536 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
9537 bfd_get_filename (abfd));
9538 return NULL;
9539 }
9540 if (str_offset >= dwarf2_per_objfile->str.size)
9541 {
9542 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
9543 bfd_get_filename (abfd));
9544 return NULL;
9545 }
9546 gdb_assert (HOST_CHAR_BIT == 8);
9547 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
9548 return NULL;
9549 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
9550 }
9551
9552 static unsigned long
9553 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9554 {
9555 unsigned long result;
9556 unsigned int num_read;
9557 int i, shift;
9558 unsigned char byte;
9559
9560 result = 0;
9561 shift = 0;
9562 num_read = 0;
9563 i = 0;
9564 while (1)
9565 {
9566 byte = bfd_get_8 (abfd, buf);
9567 buf++;
9568 num_read++;
9569 result |= ((unsigned long)(byte & 127) << shift);
9570 if ((byte & 128) == 0)
9571 {
9572 break;
9573 }
9574 shift += 7;
9575 }
9576 *bytes_read_ptr = num_read;
9577 return result;
9578 }
9579
9580 static long
9581 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9582 {
9583 long result;
9584 int i, shift, num_read;
9585 unsigned char byte;
9586
9587 result = 0;
9588 shift = 0;
9589 num_read = 0;
9590 i = 0;
9591 while (1)
9592 {
9593 byte = bfd_get_8 (abfd, buf);
9594 buf++;
9595 num_read++;
9596 result |= ((long)(byte & 127) << shift);
9597 shift += 7;
9598 if ((byte & 128) == 0)
9599 {
9600 break;
9601 }
9602 }
9603 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9604 result |= -(((long)1) << shift);
9605 *bytes_read_ptr = num_read;
9606 return result;
9607 }
9608
9609 /* Return a pointer to just past the end of an LEB128 number in BUF. */
9610
9611 static gdb_byte *
9612 skip_leb128 (bfd *abfd, gdb_byte *buf)
9613 {
9614 int byte;
9615
9616 while (1)
9617 {
9618 byte = bfd_get_8 (abfd, buf);
9619 buf++;
9620 if ((byte & 128) == 0)
9621 return buf;
9622 }
9623 }
9624
9625 static void
9626 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
9627 {
9628 switch (lang)
9629 {
9630 case DW_LANG_C89:
9631 case DW_LANG_C99:
9632 case DW_LANG_C:
9633 cu->language = language_c;
9634 break;
9635 case DW_LANG_C_plus_plus:
9636 cu->language = language_cplus;
9637 break;
9638 case DW_LANG_D:
9639 cu->language = language_d;
9640 break;
9641 case DW_LANG_Fortran77:
9642 case DW_LANG_Fortran90:
9643 case DW_LANG_Fortran95:
9644 cu->language = language_fortran;
9645 break;
9646 case DW_LANG_Mips_Assembler:
9647 cu->language = language_asm;
9648 break;
9649 case DW_LANG_Java:
9650 cu->language = language_java;
9651 break;
9652 case DW_LANG_Ada83:
9653 case DW_LANG_Ada95:
9654 cu->language = language_ada;
9655 break;
9656 case DW_LANG_Modula2:
9657 cu->language = language_m2;
9658 break;
9659 case DW_LANG_Pascal83:
9660 cu->language = language_pascal;
9661 break;
9662 case DW_LANG_ObjC:
9663 cu->language = language_objc;
9664 break;
9665 case DW_LANG_Cobol74:
9666 case DW_LANG_Cobol85:
9667 default:
9668 cu->language = language_minimal;
9669 break;
9670 }
9671 cu->language_defn = language_def (cu->language);
9672 }
9673
9674 /* Return the named attribute or NULL if not there. */
9675
9676 static struct attribute *
9677 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
9678 {
9679 unsigned int i;
9680 struct attribute *spec = NULL;
9681
9682 for (i = 0; i < die->num_attrs; ++i)
9683 {
9684 if (die->attrs[i].name == name)
9685 return &die->attrs[i];
9686 if (die->attrs[i].name == DW_AT_specification
9687 || die->attrs[i].name == DW_AT_abstract_origin)
9688 spec = &die->attrs[i];
9689 }
9690
9691 if (spec)
9692 {
9693 die = follow_die_ref (die, spec, &cu);
9694 return dwarf2_attr (die, name, cu);
9695 }
9696
9697 return NULL;
9698 }
9699
9700 /* Return the named attribute or NULL if not there,
9701 but do not follow DW_AT_specification, etc.
9702 This is for use in contexts where we're reading .debug_types dies.
9703 Following DW_AT_specification, DW_AT_abstract_origin will take us
9704 back up the chain, and we want to go down. */
9705
9706 static struct attribute *
9707 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9708 struct dwarf2_cu *cu)
9709 {
9710 unsigned int i;
9711
9712 for (i = 0; i < die->num_attrs; ++i)
9713 if (die->attrs[i].name == name)
9714 return &die->attrs[i];
9715
9716 return NULL;
9717 }
9718
9719 /* Return non-zero iff the attribute NAME is defined for the given DIE,
9720 and holds a non-zero value. This function should only be used for
9721 DW_FORM_flag or DW_FORM_flag_present attributes. */
9722
9723 static int
9724 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
9725 {
9726 struct attribute *attr = dwarf2_attr (die, name, cu);
9727
9728 return (attr && DW_UNSND (attr));
9729 }
9730
9731 static int
9732 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
9733 {
9734 /* A DIE is a declaration if it has a DW_AT_declaration attribute
9735 which value is non-zero. However, we have to be careful with
9736 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
9737 (via dwarf2_flag_true_p) follows this attribute. So we may
9738 end up accidently finding a declaration attribute that belongs
9739 to a different DIE referenced by the specification attribute,
9740 even though the given DIE does not have a declaration attribute. */
9741 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
9742 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
9743 }
9744
9745 /* Return the die giving the specification for DIE, if there is
9746 one. *SPEC_CU is the CU containing DIE on input, and the CU
9747 containing the return value on output. If there is no
9748 specification, but there is an abstract origin, that is
9749 returned. */
9750
9751 static struct die_info *
9752 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
9753 {
9754 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
9755 *spec_cu);
9756
9757 if (spec_attr == NULL)
9758 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
9759
9760 if (spec_attr == NULL)
9761 return NULL;
9762 else
9763 return follow_die_ref (die, spec_attr, spec_cu);
9764 }
9765
9766 /* Free the line_header structure *LH, and any arrays and strings it
9767 refers to. */
9768 static void
9769 free_line_header (struct line_header *lh)
9770 {
9771 if (lh->standard_opcode_lengths)
9772 xfree (lh->standard_opcode_lengths);
9773
9774 /* Remember that all the lh->file_names[i].name pointers are
9775 pointers into debug_line_buffer, and don't need to be freed. */
9776 if (lh->file_names)
9777 xfree (lh->file_names);
9778
9779 /* Similarly for the include directory names. */
9780 if (lh->include_dirs)
9781 xfree (lh->include_dirs);
9782
9783 xfree (lh);
9784 }
9785
9786
9787 /* Add an entry to LH's include directory table. */
9788 static void
9789 add_include_dir (struct line_header *lh, char *include_dir)
9790 {
9791 /* Grow the array if necessary. */
9792 if (lh->include_dirs_size == 0)
9793 {
9794 lh->include_dirs_size = 1; /* for testing */
9795 lh->include_dirs = xmalloc (lh->include_dirs_size
9796 * sizeof (*lh->include_dirs));
9797 }
9798 else if (lh->num_include_dirs >= lh->include_dirs_size)
9799 {
9800 lh->include_dirs_size *= 2;
9801 lh->include_dirs = xrealloc (lh->include_dirs,
9802 (lh->include_dirs_size
9803 * sizeof (*lh->include_dirs)));
9804 }
9805
9806 lh->include_dirs[lh->num_include_dirs++] = include_dir;
9807 }
9808
9809
9810 /* Add an entry to LH's file name table. */
9811 static void
9812 add_file_name (struct line_header *lh,
9813 char *name,
9814 unsigned int dir_index,
9815 unsigned int mod_time,
9816 unsigned int length)
9817 {
9818 struct file_entry *fe;
9819
9820 /* Grow the array if necessary. */
9821 if (lh->file_names_size == 0)
9822 {
9823 lh->file_names_size = 1; /* for testing */
9824 lh->file_names = xmalloc (lh->file_names_size
9825 * sizeof (*lh->file_names));
9826 }
9827 else if (lh->num_file_names >= lh->file_names_size)
9828 {
9829 lh->file_names_size *= 2;
9830 lh->file_names = xrealloc (lh->file_names,
9831 (lh->file_names_size
9832 * sizeof (*lh->file_names)));
9833 }
9834
9835 fe = &lh->file_names[lh->num_file_names++];
9836 fe->name = name;
9837 fe->dir_index = dir_index;
9838 fe->mod_time = mod_time;
9839 fe->length = length;
9840 fe->included_p = 0;
9841 fe->symtab = NULL;
9842 }
9843
9844
9845 /* Read the statement program header starting at OFFSET in
9846 .debug_line, according to the endianness of ABFD. Return a pointer
9847 to a struct line_header, allocated using xmalloc.
9848
9849 NOTE: the strings in the include directory and file name tables of
9850 the returned object point into debug_line_buffer, and must not be
9851 freed. */
9852 static struct line_header *
9853 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
9854 struct dwarf2_cu *cu)
9855 {
9856 struct cleanup *back_to;
9857 struct line_header *lh;
9858 gdb_byte *line_ptr;
9859 unsigned int bytes_read, offset_size;
9860 int i;
9861 char *cur_dir, *cur_file;
9862
9863 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
9864 if (dwarf2_per_objfile->line.buffer == NULL)
9865 {
9866 complaint (&symfile_complaints, _("missing .debug_line section"));
9867 return 0;
9868 }
9869
9870 /* Make sure that at least there's room for the total_length field.
9871 That could be 12 bytes long, but we're just going to fudge that. */
9872 if (offset + 4 >= dwarf2_per_objfile->line.size)
9873 {
9874 dwarf2_statement_list_fits_in_line_number_section_complaint ();
9875 return 0;
9876 }
9877
9878 lh = xmalloc (sizeof (*lh));
9879 memset (lh, 0, sizeof (*lh));
9880 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
9881 (void *) lh);
9882
9883 line_ptr = dwarf2_per_objfile->line.buffer + offset;
9884
9885 /* Read in the header. */
9886 lh->total_length =
9887 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
9888 &bytes_read, &offset_size);
9889 line_ptr += bytes_read;
9890 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
9891 + dwarf2_per_objfile->line.size))
9892 {
9893 dwarf2_statement_list_fits_in_line_number_section_complaint ();
9894 return 0;
9895 }
9896 lh->statement_program_end = line_ptr + lh->total_length;
9897 lh->version = read_2_bytes (abfd, line_ptr);
9898 line_ptr += 2;
9899 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
9900 line_ptr += offset_size;
9901 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
9902 line_ptr += 1;
9903 if (lh->version >= 4)
9904 {
9905 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
9906 line_ptr += 1;
9907 }
9908 else
9909 lh->maximum_ops_per_instruction = 1;
9910
9911 if (lh->maximum_ops_per_instruction == 0)
9912 {
9913 lh->maximum_ops_per_instruction = 1;
9914 complaint (&symfile_complaints,
9915 _("invalid maximum_ops_per_instruction in `.debug_line' section"));
9916 }
9917
9918 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
9919 line_ptr += 1;
9920 lh->line_base = read_1_signed_byte (abfd, line_ptr);
9921 line_ptr += 1;
9922 lh->line_range = read_1_byte (abfd, line_ptr);
9923 line_ptr += 1;
9924 lh->opcode_base = read_1_byte (abfd, line_ptr);
9925 line_ptr += 1;
9926 lh->standard_opcode_lengths
9927 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
9928
9929 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
9930 for (i = 1; i < lh->opcode_base; ++i)
9931 {
9932 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
9933 line_ptr += 1;
9934 }
9935
9936 /* Read directory table. */
9937 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
9938 {
9939 line_ptr += bytes_read;
9940 add_include_dir (lh, cur_dir);
9941 }
9942 line_ptr += bytes_read;
9943
9944 /* Read file name table. */
9945 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
9946 {
9947 unsigned int dir_index, mod_time, length;
9948
9949 line_ptr += bytes_read;
9950 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9951 line_ptr += bytes_read;
9952 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9953 line_ptr += bytes_read;
9954 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9955 line_ptr += bytes_read;
9956
9957 add_file_name (lh, cur_file, dir_index, mod_time, length);
9958 }
9959 line_ptr += bytes_read;
9960 lh->statement_program_start = line_ptr;
9961
9962 if (line_ptr > (dwarf2_per_objfile->line.buffer
9963 + dwarf2_per_objfile->line.size))
9964 complaint (&symfile_complaints,
9965 _("line number info header doesn't fit in `.debug_line' section"));
9966
9967 discard_cleanups (back_to);
9968 return lh;
9969 }
9970
9971 /* This function exists to work around a bug in certain compilers
9972 (particularly GCC 2.95), in which the first line number marker of a
9973 function does not show up until after the prologue, right before
9974 the second line number marker. This function shifts ADDRESS down
9975 to the beginning of the function if necessary, and is called on
9976 addresses passed to record_line. */
9977
9978 static CORE_ADDR
9979 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
9980 {
9981 struct function_range *fn;
9982
9983 /* Find the function_range containing address. */
9984 if (!cu->first_fn)
9985 return address;
9986
9987 if (!cu->cached_fn)
9988 cu->cached_fn = cu->first_fn;
9989
9990 fn = cu->cached_fn;
9991 while (fn)
9992 if (fn->lowpc <= address && fn->highpc > address)
9993 goto found;
9994 else
9995 fn = fn->next;
9996
9997 fn = cu->first_fn;
9998 while (fn && fn != cu->cached_fn)
9999 if (fn->lowpc <= address && fn->highpc > address)
10000 goto found;
10001 else
10002 fn = fn->next;
10003
10004 return address;
10005
10006 found:
10007 if (fn->seen_line)
10008 return address;
10009 if (address != fn->lowpc)
10010 complaint (&symfile_complaints,
10011 _("misplaced first line number at 0x%lx for '%s'"),
10012 (unsigned long) address, fn->name);
10013 fn->seen_line = 1;
10014 return fn->lowpc;
10015 }
10016
10017 /* Subroutine of dwarf_decode_lines to simplify it.
10018 Return the file name of the psymtab for included file FILE_INDEX
10019 in line header LH of PST.
10020 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10021 If space for the result is malloc'd, it will be freed by a cleanup.
10022 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10023
10024 static char *
10025 psymtab_include_file_name (const struct line_header *lh, int file_index,
10026 const struct partial_symtab *pst,
10027 const char *comp_dir)
10028 {
10029 const struct file_entry fe = lh->file_names [file_index];
10030 char *include_name = fe.name;
10031 char *include_name_to_compare = include_name;
10032 char *dir_name = NULL;
10033 const char *pst_filename;
10034 char *copied_name = NULL;
10035 int file_is_pst;
10036
10037 if (fe.dir_index)
10038 dir_name = lh->include_dirs[fe.dir_index - 1];
10039
10040 if (!IS_ABSOLUTE_PATH (include_name)
10041 && (dir_name != NULL || comp_dir != NULL))
10042 {
10043 /* Avoid creating a duplicate psymtab for PST.
10044 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10045 Before we do the comparison, however, we need to account
10046 for DIR_NAME and COMP_DIR.
10047 First prepend dir_name (if non-NULL). If we still don't
10048 have an absolute path prepend comp_dir (if non-NULL).
10049 However, the directory we record in the include-file's
10050 psymtab does not contain COMP_DIR (to match the
10051 corresponding symtab(s)).
10052
10053 Example:
10054
10055 bash$ cd /tmp
10056 bash$ gcc -g ./hello.c
10057 include_name = "hello.c"
10058 dir_name = "."
10059 DW_AT_comp_dir = comp_dir = "/tmp"
10060 DW_AT_name = "./hello.c" */
10061
10062 if (dir_name != NULL)
10063 {
10064 include_name = concat (dir_name, SLASH_STRING,
10065 include_name, (char *)NULL);
10066 include_name_to_compare = include_name;
10067 make_cleanup (xfree, include_name);
10068 }
10069 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10070 {
10071 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10072 include_name, (char *)NULL);
10073 }
10074 }
10075
10076 pst_filename = pst->filename;
10077 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10078 {
10079 copied_name = concat (pst->dirname, SLASH_STRING,
10080 pst_filename, (char *)NULL);
10081 pst_filename = copied_name;
10082 }
10083
10084 file_is_pst = strcmp (include_name_to_compare, pst_filename) == 0;
10085
10086 if (include_name_to_compare != include_name)
10087 xfree (include_name_to_compare);
10088 if (copied_name != NULL)
10089 xfree (copied_name);
10090
10091 if (file_is_pst)
10092 return NULL;
10093 return include_name;
10094 }
10095
10096 /* Decode the Line Number Program (LNP) for the given line_header
10097 structure and CU. The actual information extracted and the type
10098 of structures created from the LNP depends on the value of PST.
10099
10100 1. If PST is NULL, then this procedure uses the data from the program
10101 to create all necessary symbol tables, and their linetables.
10102
10103 2. If PST is not NULL, this procedure reads the program to determine
10104 the list of files included by the unit represented by PST, and
10105 builds all the associated partial symbol tables.
10106
10107 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10108 It is used for relative paths in the line table.
10109 NOTE: When processing partial symtabs (pst != NULL),
10110 comp_dir == pst->dirname.
10111
10112 NOTE: It is important that psymtabs have the same file name (via strcmp)
10113 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10114 symtab we don't use it in the name of the psymtabs we create.
10115 E.g. expand_line_sal requires this when finding psymtabs to expand.
10116 A good testcase for this is mb-inline.exp. */
10117
10118 static void
10119 dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
10120 struct dwarf2_cu *cu, struct partial_symtab *pst)
10121 {
10122 gdb_byte *line_ptr, *extended_end;
10123 gdb_byte *line_end;
10124 unsigned int bytes_read, extended_len;
10125 unsigned char op_code, extended_op, adj_opcode;
10126 CORE_ADDR baseaddr;
10127 struct objfile *objfile = cu->objfile;
10128 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10129 const int decode_for_pst_p = (pst != NULL);
10130 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
10131
10132 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10133
10134 line_ptr = lh->statement_program_start;
10135 line_end = lh->statement_program_end;
10136
10137 /* Read the statement sequences until there's nothing left. */
10138 while (line_ptr < line_end)
10139 {
10140 /* state machine registers */
10141 CORE_ADDR address = 0;
10142 unsigned int file = 1;
10143 unsigned int line = 1;
10144 unsigned int column = 0;
10145 int is_stmt = lh->default_is_stmt;
10146 int basic_block = 0;
10147 int end_sequence = 0;
10148 CORE_ADDR addr;
10149 unsigned char op_index = 0;
10150
10151 if (!decode_for_pst_p && lh->num_file_names >= file)
10152 {
10153 /* Start a subfile for the current file of the state machine. */
10154 /* lh->include_dirs and lh->file_names are 0-based, but the
10155 directory and file name numbers in the statement program
10156 are 1-based. */
10157 struct file_entry *fe = &lh->file_names[file - 1];
10158 char *dir = NULL;
10159
10160 if (fe->dir_index)
10161 dir = lh->include_dirs[fe->dir_index - 1];
10162
10163 dwarf2_start_subfile (fe->name, dir, comp_dir);
10164 }
10165
10166 /* Decode the table. */
10167 while (!end_sequence)
10168 {
10169 op_code = read_1_byte (abfd, line_ptr);
10170 line_ptr += 1;
10171 if (line_ptr > line_end)
10172 {
10173 dwarf2_debug_line_missing_end_sequence_complaint ();
10174 break;
10175 }
10176
10177 if (op_code >= lh->opcode_base)
10178 {
10179 /* Special operand. */
10180 adj_opcode = op_code - lh->opcode_base;
10181 address += (((op_index + (adj_opcode / lh->line_range))
10182 / lh->maximum_ops_per_instruction)
10183 * lh->minimum_instruction_length);
10184 op_index = ((op_index + (adj_opcode / lh->line_range))
10185 % lh->maximum_ops_per_instruction);
10186 line += lh->line_base + (adj_opcode % lh->line_range);
10187 if (lh->num_file_names < file || file == 0)
10188 dwarf2_debug_line_missing_file_complaint ();
10189 /* For now we ignore lines not starting on an
10190 instruction boundary. */
10191 else if (op_index == 0)
10192 {
10193 lh->file_names[file - 1].included_p = 1;
10194 if (!decode_for_pst_p && is_stmt)
10195 {
10196 if (last_subfile != current_subfile)
10197 {
10198 addr = gdbarch_addr_bits_remove (gdbarch, address);
10199 if (last_subfile)
10200 record_line (last_subfile, 0, addr);
10201 last_subfile = current_subfile;
10202 }
10203 /* Append row to matrix using current values. */
10204 addr = check_cu_functions (address, cu);
10205 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10206 record_line (current_subfile, line, addr);
10207 }
10208 }
10209 basic_block = 0;
10210 }
10211 else switch (op_code)
10212 {
10213 case DW_LNS_extended_op:
10214 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10215 line_ptr += bytes_read;
10216 extended_end = line_ptr + extended_len;
10217 extended_op = read_1_byte (abfd, line_ptr);
10218 line_ptr += 1;
10219 switch (extended_op)
10220 {
10221 case DW_LNE_end_sequence:
10222 end_sequence = 1;
10223 break;
10224 case DW_LNE_set_address:
10225 address = read_address (abfd, line_ptr, cu, &bytes_read);
10226 op_index = 0;
10227 line_ptr += bytes_read;
10228 address += baseaddr;
10229 break;
10230 case DW_LNE_define_file:
10231 {
10232 char *cur_file;
10233 unsigned int dir_index, mod_time, length;
10234
10235 cur_file = read_direct_string (abfd, line_ptr, &bytes_read);
10236 line_ptr += bytes_read;
10237 dir_index =
10238 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10239 line_ptr += bytes_read;
10240 mod_time =
10241 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10242 line_ptr += bytes_read;
10243 length =
10244 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10245 line_ptr += bytes_read;
10246 add_file_name (lh, cur_file, dir_index, mod_time, length);
10247 }
10248 break;
10249 case DW_LNE_set_discriminator:
10250 /* The discriminator is not interesting to the debugger;
10251 just ignore it. */
10252 line_ptr = extended_end;
10253 break;
10254 default:
10255 complaint (&symfile_complaints,
10256 _("mangled .debug_line section"));
10257 return;
10258 }
10259 /* Make sure that we parsed the extended op correctly. If e.g.
10260 we expected a different address size than the producer used,
10261 we may have read the wrong number of bytes. */
10262 if (line_ptr != extended_end)
10263 {
10264 complaint (&symfile_complaints,
10265 _("mangled .debug_line section"));
10266 return;
10267 }
10268 break;
10269 case DW_LNS_copy:
10270 if (lh->num_file_names < file || file == 0)
10271 dwarf2_debug_line_missing_file_complaint ();
10272 else
10273 {
10274 lh->file_names[file - 1].included_p = 1;
10275 if (!decode_for_pst_p && is_stmt)
10276 {
10277 if (last_subfile != current_subfile)
10278 {
10279 addr = gdbarch_addr_bits_remove (gdbarch, address);
10280 if (last_subfile)
10281 record_line (last_subfile, 0, addr);
10282 last_subfile = current_subfile;
10283 }
10284 addr = check_cu_functions (address, cu);
10285 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10286 record_line (current_subfile, line, addr);
10287 }
10288 }
10289 basic_block = 0;
10290 break;
10291 case DW_LNS_advance_pc:
10292 {
10293 CORE_ADDR adjust
10294 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10295
10296 address += (((op_index + adjust)
10297 / lh->maximum_ops_per_instruction)
10298 * lh->minimum_instruction_length);
10299 op_index = ((op_index + adjust)
10300 % lh->maximum_ops_per_instruction);
10301 line_ptr += bytes_read;
10302 }
10303 break;
10304 case DW_LNS_advance_line:
10305 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10306 line_ptr += bytes_read;
10307 break;
10308 case DW_LNS_set_file:
10309 {
10310 /* The arrays lh->include_dirs and lh->file_names are
10311 0-based, but the directory and file name numbers in
10312 the statement program are 1-based. */
10313 struct file_entry *fe;
10314 char *dir = NULL;
10315
10316 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10317 line_ptr += bytes_read;
10318 if (lh->num_file_names < file || file == 0)
10319 dwarf2_debug_line_missing_file_complaint ();
10320 else
10321 {
10322 fe = &lh->file_names[file - 1];
10323 if (fe->dir_index)
10324 dir = lh->include_dirs[fe->dir_index - 1];
10325 if (!decode_for_pst_p)
10326 {
10327 last_subfile = current_subfile;
10328 dwarf2_start_subfile (fe->name, dir, comp_dir);
10329 }
10330 }
10331 }
10332 break;
10333 case DW_LNS_set_column:
10334 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10335 line_ptr += bytes_read;
10336 break;
10337 case DW_LNS_negate_stmt:
10338 is_stmt = (!is_stmt);
10339 break;
10340 case DW_LNS_set_basic_block:
10341 basic_block = 1;
10342 break;
10343 /* Add to the address register of the state machine the
10344 address increment value corresponding to special opcode
10345 255. I.e., this value is scaled by the minimum
10346 instruction length since special opcode 255 would have
10347 scaled the the increment. */
10348 case DW_LNS_const_add_pc:
10349 {
10350 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10351
10352 address += (((op_index + adjust)
10353 / lh->maximum_ops_per_instruction)
10354 * lh->minimum_instruction_length);
10355 op_index = ((op_index + adjust)
10356 % lh->maximum_ops_per_instruction);
10357 }
10358 break;
10359 case DW_LNS_fixed_advance_pc:
10360 address += read_2_bytes (abfd, line_ptr);
10361 op_index = 0;
10362 line_ptr += 2;
10363 break;
10364 default:
10365 {
10366 /* Unknown standard opcode, ignore it. */
10367 int i;
10368
10369 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
10370 {
10371 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10372 line_ptr += bytes_read;
10373 }
10374 }
10375 }
10376 }
10377 if (lh->num_file_names < file || file == 0)
10378 dwarf2_debug_line_missing_file_complaint ();
10379 else
10380 {
10381 lh->file_names[file - 1].included_p = 1;
10382 if (!decode_for_pst_p)
10383 {
10384 addr = gdbarch_addr_bits_remove (gdbarch, address);
10385 record_line (current_subfile, 0, addr);
10386 }
10387 }
10388 }
10389
10390 if (decode_for_pst_p)
10391 {
10392 int file_index;
10393
10394 /* Now that we're done scanning the Line Header Program, we can
10395 create the psymtab of each included file. */
10396 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10397 if (lh->file_names[file_index].included_p == 1)
10398 {
10399 char *include_name =
10400 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10401 if (include_name != NULL)
10402 dwarf2_create_include_psymtab (include_name, pst, objfile);
10403 }
10404 }
10405 else
10406 {
10407 /* Make sure a symtab is created for every file, even files
10408 which contain only variables (i.e. no code with associated
10409 line numbers). */
10410
10411 int i;
10412 struct file_entry *fe;
10413
10414 for (i = 0; i < lh->num_file_names; i++)
10415 {
10416 char *dir = NULL;
10417
10418 fe = &lh->file_names[i];
10419 if (fe->dir_index)
10420 dir = lh->include_dirs[fe->dir_index - 1];
10421 dwarf2_start_subfile (fe->name, dir, comp_dir);
10422
10423 /* Skip the main file; we don't need it, and it must be
10424 allocated last, so that it will show up before the
10425 non-primary symtabs in the objfile's symtab list. */
10426 if (current_subfile == first_subfile)
10427 continue;
10428
10429 if (current_subfile->symtab == NULL)
10430 current_subfile->symtab = allocate_symtab (current_subfile->name,
10431 cu->objfile);
10432 fe->symtab = current_subfile->symtab;
10433 }
10434 }
10435 }
10436
10437 /* Start a subfile for DWARF. FILENAME is the name of the file and
10438 DIRNAME the name of the source directory which contains FILENAME
10439 or NULL if not known. COMP_DIR is the compilation directory for the
10440 linetable's compilation unit or NULL if not known.
10441 This routine tries to keep line numbers from identical absolute and
10442 relative file names in a common subfile.
10443
10444 Using the `list' example from the GDB testsuite, which resides in
10445 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10446 of /srcdir/list0.c yields the following debugging information for list0.c:
10447
10448 DW_AT_name: /srcdir/list0.c
10449 DW_AT_comp_dir: /compdir
10450 files.files[0].name: list0.h
10451 files.files[0].dir: /srcdir
10452 files.files[1].name: list0.c
10453 files.files[1].dir: /srcdir
10454
10455 The line number information for list0.c has to end up in a single
10456 subfile, so that `break /srcdir/list0.c:1' works as expected.
10457 start_subfile will ensure that this happens provided that we pass the
10458 concatenation of files.files[1].dir and files.files[1].name as the
10459 subfile's name. */
10460
10461 static void
10462 dwarf2_start_subfile (char *filename, const char *dirname, const char *comp_dir)
10463 {
10464 char *fullname;
10465
10466 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10467 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10468 second argument to start_subfile. To be consistent, we do the
10469 same here. In order not to lose the line information directory,
10470 we concatenate it to the filename when it makes sense.
10471 Note that the Dwarf3 standard says (speaking of filenames in line
10472 information): ``The directory index is ignored for file names
10473 that represent full path names''. Thus ignoring dirname in the
10474 `else' branch below isn't an issue. */
10475
10476 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
10477 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10478 else
10479 fullname = filename;
10480
10481 start_subfile (fullname, comp_dir);
10482
10483 if (fullname != filename)
10484 xfree (fullname);
10485 }
10486
10487 static void
10488 var_decode_location (struct attribute *attr, struct symbol *sym,
10489 struct dwarf2_cu *cu)
10490 {
10491 struct objfile *objfile = cu->objfile;
10492 struct comp_unit_head *cu_header = &cu->header;
10493
10494 /* NOTE drow/2003-01-30: There used to be a comment and some special
10495 code here to turn a symbol with DW_AT_external and a
10496 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10497 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10498 with some versions of binutils) where shared libraries could have
10499 relocations against symbols in their debug information - the
10500 minimal symbol would have the right address, but the debug info
10501 would not. It's no longer necessary, because we will explicitly
10502 apply relocations when we read in the debug information now. */
10503
10504 /* A DW_AT_location attribute with no contents indicates that a
10505 variable has been optimized away. */
10506 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10507 {
10508 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10509 return;
10510 }
10511
10512 /* Handle one degenerate form of location expression specially, to
10513 preserve GDB's previous behavior when section offsets are
10514 specified. If this is just a DW_OP_addr then mark this symbol
10515 as LOC_STATIC. */
10516
10517 if (attr_form_is_block (attr)
10518 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10519 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10520 {
10521 unsigned int dummy;
10522
10523 SYMBOL_VALUE_ADDRESS (sym) =
10524 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
10525 SYMBOL_CLASS (sym) = LOC_STATIC;
10526 fixup_symbol_section (sym, objfile);
10527 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10528 SYMBOL_SECTION (sym));
10529 return;
10530 }
10531
10532 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10533 expression evaluator, and use LOC_COMPUTED only when necessary
10534 (i.e. when the value of a register or memory location is
10535 referenced, or a thread-local block, etc.). Then again, it might
10536 not be worthwhile. I'm assuming that it isn't unless performance
10537 or memory numbers show me otherwise. */
10538
10539 dwarf2_symbol_mark_computed (attr, sym, cu);
10540 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10541 }
10542
10543 /* Given a pointer to a DWARF information entry, figure out if we need
10544 to make a symbol table entry for it, and if so, create a new entry
10545 and return a pointer to it.
10546 If TYPE is NULL, determine symbol type from the die, otherwise
10547 used the passed type.
10548 If SPACE is not NULL, use it to hold the new symbol. If it is
10549 NULL, allocate a new symbol on the objfile's obstack. */
10550
10551 static struct symbol *
10552 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10553 struct symbol *space)
10554 {
10555 struct objfile *objfile = cu->objfile;
10556 struct symbol *sym = NULL;
10557 char *name;
10558 struct attribute *attr = NULL;
10559 struct attribute *attr2 = NULL;
10560 CORE_ADDR baseaddr;
10561 struct pending **list_to_add = NULL;
10562
10563 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10564
10565 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10566
10567 name = dwarf2_name (die, cu);
10568 if (name)
10569 {
10570 const char *linkagename;
10571 int suppress_add = 0;
10572
10573 if (space)
10574 sym = space;
10575 else
10576 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
10577 OBJSTAT (objfile, n_syms++);
10578
10579 /* Cache this symbol's name and the name's demangled form (if any). */
10580 SYMBOL_SET_LANGUAGE (sym, cu->language);
10581 linkagename = dwarf2_physname (name, die, cu);
10582 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
10583
10584 /* Fortran does not have mangling standard and the mangling does differ
10585 between gfortran, iFort etc. */
10586 if (cu->language == language_fortran
10587 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
10588 symbol_set_demangled_name (&(sym->ginfo),
10589 (char *) dwarf2_full_name (name, die, cu),
10590 NULL);
10591
10592 /* Default assumptions.
10593 Use the passed type or decode it from the die. */
10594 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10595 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10596 if (type != NULL)
10597 SYMBOL_TYPE (sym) = type;
10598 else
10599 SYMBOL_TYPE (sym) = die_type (die, cu);
10600 attr = dwarf2_attr (die,
10601 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10602 cu);
10603 if (attr)
10604 {
10605 SYMBOL_LINE (sym) = DW_UNSND (attr);
10606 }
10607
10608 attr = dwarf2_attr (die,
10609 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10610 cu);
10611 if (attr)
10612 {
10613 int file_index = DW_UNSND (attr);
10614
10615 if (cu->line_header == NULL
10616 || file_index > cu->line_header->num_file_names)
10617 complaint (&symfile_complaints,
10618 _("file index out of range"));
10619 else if (file_index > 0)
10620 {
10621 struct file_entry *fe;
10622
10623 fe = &cu->line_header->file_names[file_index - 1];
10624 SYMBOL_SYMTAB (sym) = fe->symtab;
10625 }
10626 }
10627
10628 switch (die->tag)
10629 {
10630 case DW_TAG_label:
10631 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10632 if (attr)
10633 {
10634 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10635 }
10636 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10637 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
10638 SYMBOL_CLASS (sym) = LOC_LABEL;
10639 add_symbol_to_list (sym, cu->list_in_scope);
10640 break;
10641 case DW_TAG_subprogram:
10642 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10643 finish_block. */
10644 SYMBOL_CLASS (sym) = LOC_BLOCK;
10645 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10646 if ((attr2 && (DW_UNSND (attr2) != 0))
10647 || cu->language == language_ada)
10648 {
10649 /* Subprograms marked external are stored as a global symbol.
10650 Ada subprograms, whether marked external or not, are always
10651 stored as a global symbol, because we want to be able to
10652 access them globally. For instance, we want to be able
10653 to break on a nested subprogram without having to
10654 specify the context. */
10655 list_to_add = &global_symbols;
10656 }
10657 else
10658 {
10659 list_to_add = cu->list_in_scope;
10660 }
10661 break;
10662 case DW_TAG_inlined_subroutine:
10663 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10664 finish_block. */
10665 SYMBOL_CLASS (sym) = LOC_BLOCK;
10666 SYMBOL_INLINED (sym) = 1;
10667 /* Do not add the symbol to any lists. It will be found via
10668 BLOCK_FUNCTION from the blockvector. */
10669 break;
10670 case DW_TAG_template_value_param:
10671 suppress_add = 1;
10672 /* Fall through. */
10673 case DW_TAG_constant:
10674 case DW_TAG_variable:
10675 case DW_TAG_member:
10676 /* Compilation with minimal debug info may result in variables
10677 with missing type entries. Change the misleading `void' type
10678 to something sensible. */
10679 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
10680 SYMBOL_TYPE (sym)
10681 = objfile_type (objfile)->nodebug_data_symbol;
10682
10683 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10684 /* In the case of DW_TAG_member, we should only be called for
10685 static const members. */
10686 if (die->tag == DW_TAG_member)
10687 {
10688 /* dwarf2_add_field uses die_is_declaration,
10689 so we do the same. */
10690 gdb_assert (die_is_declaration (die, cu));
10691 gdb_assert (attr);
10692 }
10693 if (attr)
10694 {
10695 dwarf2_const_value (attr, sym, cu);
10696 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10697 if (!suppress_add)
10698 {
10699 if (attr2 && (DW_UNSND (attr2) != 0))
10700 list_to_add = &global_symbols;
10701 else
10702 list_to_add = cu->list_in_scope;
10703 }
10704 break;
10705 }
10706 attr = dwarf2_attr (die, DW_AT_location, cu);
10707 if (attr)
10708 {
10709 var_decode_location (attr, sym, cu);
10710 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10711 if (SYMBOL_CLASS (sym) == LOC_STATIC
10712 && SYMBOL_VALUE_ADDRESS (sym) == 0
10713 && !dwarf2_per_objfile->has_section_at_zero)
10714 {
10715 /* When a static variable is eliminated by the linker,
10716 the corresponding debug information is not stripped
10717 out, but the variable address is set to null;
10718 do not add such variables into symbol table. */
10719 }
10720 else if (attr2 && (DW_UNSND (attr2) != 0))
10721 {
10722 /* Workaround gfortran PR debug/40040 - it uses
10723 DW_AT_location for variables in -fPIC libraries which may
10724 get overriden by other libraries/executable and get
10725 a different address. Resolve it by the minimal symbol
10726 which may come from inferior's executable using copy
10727 relocation. Make this workaround only for gfortran as for
10728 other compilers GDB cannot guess the minimal symbol
10729 Fortran mangling kind. */
10730 if (cu->language == language_fortran && die->parent
10731 && die->parent->tag == DW_TAG_module
10732 && cu->producer
10733 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
10734 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10735
10736 /* A variable with DW_AT_external is never static,
10737 but it may be block-scoped. */
10738 list_to_add = (cu->list_in_scope == &file_symbols
10739 ? &global_symbols : cu->list_in_scope);
10740 }
10741 else
10742 list_to_add = cu->list_in_scope;
10743 }
10744 else
10745 {
10746 /* We do not know the address of this symbol.
10747 If it is an external symbol and we have type information
10748 for it, enter the symbol as a LOC_UNRESOLVED symbol.
10749 The address of the variable will then be determined from
10750 the minimal symbol table whenever the variable is
10751 referenced. */
10752 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10753 if (attr2 && (DW_UNSND (attr2) != 0)
10754 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
10755 {
10756 /* A variable with DW_AT_external is never static, but it
10757 may be block-scoped. */
10758 list_to_add = (cu->list_in_scope == &file_symbols
10759 ? &global_symbols : cu->list_in_scope);
10760
10761 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10762 }
10763 else if (!die_is_declaration (die, cu))
10764 {
10765 /* Use the default LOC_OPTIMIZED_OUT class. */
10766 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
10767 if (!suppress_add)
10768 list_to_add = cu->list_in_scope;
10769 }
10770 }
10771 break;
10772 case DW_TAG_formal_parameter:
10773 /* If we are inside a function, mark this as an argument. If
10774 not, we might be looking at an argument to an inlined function
10775 when we do not have enough information to show inlined frames;
10776 pretend it's a local variable in that case so that the user can
10777 still see it. */
10778 if (context_stack_depth > 0
10779 && context_stack[context_stack_depth - 1].name != NULL)
10780 SYMBOL_IS_ARGUMENT (sym) = 1;
10781 attr = dwarf2_attr (die, DW_AT_location, cu);
10782 if (attr)
10783 {
10784 var_decode_location (attr, sym, cu);
10785 }
10786 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10787 if (attr)
10788 {
10789 dwarf2_const_value (attr, sym, cu);
10790 }
10791 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
10792 if (attr && DW_UNSND (attr))
10793 {
10794 struct type *ref_type;
10795
10796 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
10797 SYMBOL_TYPE (sym) = ref_type;
10798 }
10799
10800 list_to_add = cu->list_in_scope;
10801 break;
10802 case DW_TAG_unspecified_parameters:
10803 /* From varargs functions; gdb doesn't seem to have any
10804 interest in this information, so just ignore it for now.
10805 (FIXME?) */
10806 break;
10807 case DW_TAG_template_type_param:
10808 suppress_add = 1;
10809 /* Fall through. */
10810 case DW_TAG_class_type:
10811 case DW_TAG_interface_type:
10812 case DW_TAG_structure_type:
10813 case DW_TAG_union_type:
10814 case DW_TAG_set_type:
10815 case DW_TAG_enumeration_type:
10816 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10817 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
10818
10819 {
10820 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
10821 really ever be static objects: otherwise, if you try
10822 to, say, break of a class's method and you're in a file
10823 which doesn't mention that class, it won't work unless
10824 the check for all static symbols in lookup_symbol_aux
10825 saves you. See the OtherFileClass tests in
10826 gdb.c++/namespace.exp. */
10827
10828 if (!suppress_add)
10829 {
10830 list_to_add = (cu->list_in_scope == &file_symbols
10831 && (cu->language == language_cplus
10832 || cu->language == language_java)
10833 ? &global_symbols : cu->list_in_scope);
10834
10835 /* The semantics of C++ state that "struct foo {
10836 ... }" also defines a typedef for "foo". A Java
10837 class declaration also defines a typedef for the
10838 class. */
10839 if (cu->language == language_cplus
10840 || cu->language == language_java
10841 || cu->language == language_ada)
10842 {
10843 /* The symbol's name is already allocated along
10844 with this objfile, so we don't need to
10845 duplicate it for the type. */
10846 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
10847 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
10848 }
10849 }
10850 }
10851 break;
10852 case DW_TAG_typedef:
10853 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10854 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10855 list_to_add = cu->list_in_scope;
10856 break;
10857 case DW_TAG_base_type:
10858 case DW_TAG_subrange_type:
10859 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10860 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10861 list_to_add = cu->list_in_scope;
10862 break;
10863 case DW_TAG_enumerator:
10864 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10865 if (attr)
10866 {
10867 dwarf2_const_value (attr, sym, cu);
10868 }
10869 {
10870 /* NOTE: carlton/2003-11-10: See comment above in the
10871 DW_TAG_class_type, etc. block. */
10872
10873 list_to_add = (cu->list_in_scope == &file_symbols
10874 && (cu->language == language_cplus
10875 || cu->language == language_java)
10876 ? &global_symbols : cu->list_in_scope);
10877 }
10878 break;
10879 case DW_TAG_namespace:
10880 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10881 list_to_add = &global_symbols;
10882 break;
10883 default:
10884 /* Not a tag we recognize. Hopefully we aren't processing
10885 trash data, but since we must specifically ignore things
10886 we don't recognize, there is nothing else we should do at
10887 this point. */
10888 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
10889 dwarf_tag_name (die->tag));
10890 break;
10891 }
10892
10893 if (suppress_add)
10894 {
10895 sym->hash_next = objfile->template_symbols;
10896 objfile->template_symbols = sym;
10897 list_to_add = NULL;
10898 }
10899
10900 if (list_to_add != NULL)
10901 add_symbol_to_list (sym, list_to_add);
10902
10903 /* For the benefit of old versions of GCC, check for anonymous
10904 namespaces based on the demangled name. */
10905 if (!processing_has_namespace_info
10906 && cu->language == language_cplus)
10907 cp_scan_for_anonymous_namespaces (sym);
10908 }
10909 return (sym);
10910 }
10911
10912 /* A wrapper for new_symbol_full that always allocates a new symbol. */
10913
10914 static struct symbol *
10915 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10916 {
10917 return new_symbol_full (die, type, cu, NULL);
10918 }
10919
10920 /* Given an attr with a DW_FORM_dataN value in host byte order,
10921 zero-extend it as appropriate for the symbol's type. The DWARF
10922 standard (v4) is not entirely clear about the meaning of using
10923 DW_FORM_dataN for a constant with a signed type, where the type is
10924 wider than the data. The conclusion of a discussion on the DWARF
10925 list was that this is unspecified. We choose to always zero-extend
10926 because that is the interpretation long in use by GCC. */
10927
10928 static gdb_byte *
10929 dwarf2_const_value_data (struct attribute *attr, struct type *type,
10930 const char *name, struct obstack *obstack,
10931 struct dwarf2_cu *cu, long *value, int bits)
10932 {
10933 struct objfile *objfile = cu->objfile;
10934 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
10935 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
10936 LONGEST l = DW_UNSND (attr);
10937
10938 if (bits < sizeof (*value) * 8)
10939 {
10940 l &= ((LONGEST) 1 << bits) - 1;
10941 *value = l;
10942 }
10943 else if (bits == sizeof (*value) * 8)
10944 *value = l;
10945 else
10946 {
10947 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
10948 store_unsigned_integer (bytes, bits / 8, byte_order, l);
10949 return bytes;
10950 }
10951
10952 return NULL;
10953 }
10954
10955 /* Read a constant value from an attribute. Either set *VALUE, or if
10956 the value does not fit in *VALUE, set *BYTES - either already
10957 allocated on the objfile obstack, or newly allocated on OBSTACK,
10958 or, set *BATON, if we translated the constant to a location
10959 expression. */
10960
10961 static void
10962 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
10963 const char *name, struct obstack *obstack,
10964 struct dwarf2_cu *cu,
10965 long *value, gdb_byte **bytes,
10966 struct dwarf2_locexpr_baton **baton)
10967 {
10968 struct objfile *objfile = cu->objfile;
10969 struct comp_unit_head *cu_header = &cu->header;
10970 struct dwarf_block *blk;
10971 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
10972 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
10973
10974 *value = 0;
10975 *bytes = NULL;
10976 *baton = NULL;
10977
10978 switch (attr->form)
10979 {
10980 case DW_FORM_addr:
10981 {
10982 gdb_byte *data;
10983
10984 if (TYPE_LENGTH (type) != cu_header->addr_size)
10985 dwarf2_const_value_length_mismatch_complaint (name,
10986 cu_header->addr_size,
10987 TYPE_LENGTH (type));
10988 /* Symbols of this form are reasonably rare, so we just
10989 piggyback on the existing location code rather than writing
10990 a new implementation of symbol_computed_ops. */
10991 *baton = obstack_alloc (&objfile->objfile_obstack,
10992 sizeof (struct dwarf2_locexpr_baton));
10993 (*baton)->per_cu = cu->per_cu;
10994 gdb_assert ((*baton)->per_cu);
10995
10996 (*baton)->size = 2 + cu_header->addr_size;
10997 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
10998 (*baton)->data = data;
10999
11000 data[0] = DW_OP_addr;
11001 store_unsigned_integer (&data[1], cu_header->addr_size,
11002 byte_order, DW_ADDR (attr));
11003 data[cu_header->addr_size + 1] = DW_OP_stack_value;
11004 }
11005 break;
11006 case DW_FORM_string:
11007 case DW_FORM_strp:
11008 /* DW_STRING is already allocated on the objfile obstack, point
11009 directly to it. */
11010 *bytes = (gdb_byte *) DW_STRING (attr);
11011 break;
11012 case DW_FORM_block1:
11013 case DW_FORM_block2:
11014 case DW_FORM_block4:
11015 case DW_FORM_block:
11016 case DW_FORM_exprloc:
11017 blk = DW_BLOCK (attr);
11018 if (TYPE_LENGTH (type) != blk->size)
11019 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11020 TYPE_LENGTH (type));
11021 *bytes = blk->data;
11022 break;
11023
11024 /* The DW_AT_const_value attributes are supposed to carry the
11025 symbol's value "represented as it would be on the target
11026 architecture." By the time we get here, it's already been
11027 converted to host endianness, so we just need to sign- or
11028 zero-extend it as appropriate. */
11029 case DW_FORM_data1:
11030 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 8);
11031 break;
11032 case DW_FORM_data2:
11033 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 16);
11034 break;
11035 case DW_FORM_data4:
11036 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 32);
11037 break;
11038 case DW_FORM_data8:
11039 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 64);
11040 break;
11041
11042 case DW_FORM_sdata:
11043 *value = DW_SND (attr);
11044 break;
11045
11046 case DW_FORM_udata:
11047 *value = DW_UNSND (attr);
11048 break;
11049
11050 default:
11051 complaint (&symfile_complaints,
11052 _("unsupported const value attribute form: '%s'"),
11053 dwarf_form_name (attr->form));
11054 *value = 0;
11055 break;
11056 }
11057 }
11058
11059
11060 /* Copy constant value from an attribute to a symbol. */
11061
11062 static void
11063 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11064 struct dwarf2_cu *cu)
11065 {
11066 struct objfile *objfile = cu->objfile;
11067 struct comp_unit_head *cu_header = &cu->header;
11068 long value;
11069 gdb_byte *bytes;
11070 struct dwarf2_locexpr_baton *baton;
11071
11072 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11073 SYMBOL_PRINT_NAME (sym),
11074 &objfile->objfile_obstack, cu,
11075 &value, &bytes, &baton);
11076
11077 if (baton != NULL)
11078 {
11079 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11080 SYMBOL_LOCATION_BATON (sym) = baton;
11081 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11082 }
11083 else if (bytes != NULL)
11084 {
11085 SYMBOL_VALUE_BYTES (sym) = bytes;
11086 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11087 }
11088 else
11089 {
11090 SYMBOL_VALUE (sym) = value;
11091 SYMBOL_CLASS (sym) = LOC_CONST;
11092 }
11093 }
11094
11095 /* Return the type of the die in question using its DW_AT_type attribute. */
11096
11097 static struct type *
11098 die_type (struct die_info *die, struct dwarf2_cu *cu)
11099 {
11100 struct attribute *type_attr;
11101
11102 type_attr = dwarf2_attr (die, DW_AT_type, cu);
11103 if (!type_attr)
11104 {
11105 /* A missing DW_AT_type represents a void type. */
11106 return objfile_type (cu->objfile)->builtin_void;
11107 }
11108
11109 return lookup_die_type (die, type_attr, cu);
11110 }
11111
11112 /* True iff CU's producer generates GNAT Ada auxiliary information
11113 that allows to find parallel types through that information instead
11114 of having to do expensive parallel lookups by type name. */
11115
11116 static int
11117 need_gnat_info (struct dwarf2_cu *cu)
11118 {
11119 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11120 of GNAT produces this auxiliary information, without any indication
11121 that it is produced. Part of enhancing the FSF version of GNAT
11122 to produce that information will be to put in place an indicator
11123 that we can use in order to determine whether the descriptive type
11124 info is available or not. One suggestion that has been made is
11125 to use a new attribute, attached to the CU die. For now, assume
11126 that the descriptive type info is not available. */
11127 return 0;
11128 }
11129
11130 /* Return the auxiliary type of the die in question using its
11131 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11132 attribute is not present. */
11133
11134 static struct type *
11135 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11136 {
11137 struct attribute *type_attr;
11138
11139 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11140 if (!type_attr)
11141 return NULL;
11142
11143 return lookup_die_type (die, type_attr, cu);
11144 }
11145
11146 /* If DIE has a descriptive_type attribute, then set the TYPE's
11147 descriptive type accordingly. */
11148
11149 static void
11150 set_descriptive_type (struct type *type, struct die_info *die,
11151 struct dwarf2_cu *cu)
11152 {
11153 struct type *descriptive_type = die_descriptive_type (die, cu);
11154
11155 if (descriptive_type)
11156 {
11157 ALLOCATE_GNAT_AUX_TYPE (type);
11158 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11159 }
11160 }
11161
11162 /* Return the containing type of the die in question using its
11163 DW_AT_containing_type attribute. */
11164
11165 static struct type *
11166 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
11167 {
11168 struct attribute *type_attr;
11169
11170 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
11171 if (!type_attr)
11172 error (_("Dwarf Error: Problem turning containing type into gdb type "
11173 "[in module %s]"), cu->objfile->name);
11174
11175 return lookup_die_type (die, type_attr, cu);
11176 }
11177
11178 /* Look up the type of DIE in CU using its type attribute ATTR.
11179 If there is no type substitute an error marker. */
11180
11181 static struct type *
11182 lookup_die_type (struct die_info *die, struct attribute *attr,
11183 struct dwarf2_cu *cu)
11184 {
11185 struct type *this_type;
11186
11187 /* First see if we have it cached. */
11188
11189 if (is_ref_attr (attr))
11190 {
11191 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11192
11193 this_type = get_die_type_at_offset (offset, cu->per_cu);
11194 }
11195 else if (attr->form == DW_FORM_sig8)
11196 {
11197 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11198 struct dwarf2_cu *sig_cu;
11199 unsigned int offset;
11200
11201 /* sig_type will be NULL if the signatured type is missing from
11202 the debug info. */
11203 if (sig_type == NULL)
11204 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11205 "at 0x%x [in module %s]"),
11206 die->offset, cu->objfile->name);
11207
11208 gdb_assert (sig_type->per_cu.from_debug_types);
11209 offset = sig_type->offset + sig_type->type_offset;
11210 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11211 }
11212 else
11213 {
11214 dump_die_for_error (die);
11215 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11216 dwarf_attr_name (attr->name), cu->objfile->name);
11217 }
11218
11219 /* If not cached we need to read it in. */
11220
11221 if (this_type == NULL)
11222 {
11223 struct die_info *type_die;
11224 struct dwarf2_cu *type_cu = cu;
11225
11226 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11227 /* If the type is cached, we should have found it above. */
11228 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11229 this_type = read_type_die_1 (type_die, type_cu);
11230 }
11231
11232 /* If we still don't have a type use an error marker. */
11233
11234 if (this_type == NULL)
11235 {
11236 char *message, *saved;
11237
11238 /* read_type_die already issued a complaint. */
11239 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11240 cu->objfile->name,
11241 cu->header.offset,
11242 die->offset);
11243 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11244 message, strlen (message));
11245 xfree (message);
11246
11247 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
11248 }
11249
11250 return this_type;
11251 }
11252
11253 /* Return the type in DIE, CU.
11254 Returns NULL for invalid types.
11255
11256 This first does a lookup in the appropriate type_hash table,
11257 and only reads the die in if necessary.
11258
11259 NOTE: This can be called when reading in partial or full symbols. */
11260
11261 static struct type *
11262 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
11263 {
11264 struct type *this_type;
11265
11266 this_type = get_die_type (die, cu);
11267 if (this_type)
11268 return this_type;
11269
11270 return read_type_die_1 (die, cu);
11271 }
11272
11273 /* Read the type in DIE, CU.
11274 Returns NULL for invalid types. */
11275
11276 static struct type *
11277 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11278 {
11279 struct type *this_type = NULL;
11280
11281 switch (die->tag)
11282 {
11283 case DW_TAG_class_type:
11284 case DW_TAG_interface_type:
11285 case DW_TAG_structure_type:
11286 case DW_TAG_union_type:
11287 this_type = read_structure_type (die, cu);
11288 break;
11289 case DW_TAG_enumeration_type:
11290 this_type = read_enumeration_type (die, cu);
11291 break;
11292 case DW_TAG_subprogram:
11293 case DW_TAG_subroutine_type:
11294 case DW_TAG_inlined_subroutine:
11295 this_type = read_subroutine_type (die, cu);
11296 break;
11297 case DW_TAG_array_type:
11298 this_type = read_array_type (die, cu);
11299 break;
11300 case DW_TAG_set_type:
11301 this_type = read_set_type (die, cu);
11302 break;
11303 case DW_TAG_pointer_type:
11304 this_type = read_tag_pointer_type (die, cu);
11305 break;
11306 case DW_TAG_ptr_to_member_type:
11307 this_type = read_tag_ptr_to_member_type (die, cu);
11308 break;
11309 case DW_TAG_reference_type:
11310 this_type = read_tag_reference_type (die, cu);
11311 break;
11312 case DW_TAG_const_type:
11313 this_type = read_tag_const_type (die, cu);
11314 break;
11315 case DW_TAG_volatile_type:
11316 this_type = read_tag_volatile_type (die, cu);
11317 break;
11318 case DW_TAG_string_type:
11319 this_type = read_tag_string_type (die, cu);
11320 break;
11321 case DW_TAG_typedef:
11322 this_type = read_typedef (die, cu);
11323 break;
11324 case DW_TAG_subrange_type:
11325 this_type = read_subrange_type (die, cu);
11326 break;
11327 case DW_TAG_base_type:
11328 this_type = read_base_type (die, cu);
11329 break;
11330 case DW_TAG_unspecified_type:
11331 this_type = read_unspecified_type (die, cu);
11332 break;
11333 case DW_TAG_namespace:
11334 this_type = read_namespace_type (die, cu);
11335 break;
11336 case DW_TAG_module:
11337 this_type = read_module_type (die, cu);
11338 break;
11339 default:
11340 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
11341 dwarf_tag_name (die->tag));
11342 break;
11343 }
11344
11345 return this_type;
11346 }
11347
11348 /* See if we can figure out if the class lives in a namespace. We do
11349 this by looking for a member function; its demangled name will
11350 contain namespace info, if there is any.
11351 Return the computed name or NULL.
11352 Space for the result is allocated on the objfile's obstack.
11353 This is the full-die version of guess_partial_die_structure_name.
11354 In this case we know DIE has no useful parent. */
11355
11356 static char *
11357 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11358 {
11359 struct die_info *spec_die;
11360 struct dwarf2_cu *spec_cu;
11361 struct die_info *child;
11362
11363 spec_cu = cu;
11364 spec_die = die_specification (die, &spec_cu);
11365 if (spec_die != NULL)
11366 {
11367 die = spec_die;
11368 cu = spec_cu;
11369 }
11370
11371 for (child = die->child;
11372 child != NULL;
11373 child = child->sibling)
11374 {
11375 if (child->tag == DW_TAG_subprogram)
11376 {
11377 struct attribute *attr;
11378
11379 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11380 if (attr == NULL)
11381 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11382 if (attr != NULL)
11383 {
11384 char *actual_name
11385 = language_class_name_from_physname (cu->language_defn,
11386 DW_STRING (attr));
11387 char *name = NULL;
11388
11389 if (actual_name != NULL)
11390 {
11391 char *die_name = dwarf2_name (die, cu);
11392
11393 if (die_name != NULL
11394 && strcmp (die_name, actual_name) != 0)
11395 {
11396 /* Strip off the class name from the full name.
11397 We want the prefix. */
11398 int die_name_len = strlen (die_name);
11399 int actual_name_len = strlen (actual_name);
11400
11401 /* Test for '::' as a sanity check. */
11402 if (actual_name_len > die_name_len + 2
11403 && actual_name[actual_name_len - die_name_len - 1] == ':')
11404 name =
11405 obsavestring (actual_name,
11406 actual_name_len - die_name_len - 2,
11407 &cu->objfile->objfile_obstack);
11408 }
11409 }
11410 xfree (actual_name);
11411 return name;
11412 }
11413 }
11414 }
11415
11416 return NULL;
11417 }
11418
11419 /* Return the name of the namespace/class that DIE is defined within,
11420 or "" if we can't tell. The caller should not xfree the result.
11421
11422 For example, if we're within the method foo() in the following
11423 code:
11424
11425 namespace N {
11426 class C {
11427 void foo () {
11428 }
11429 };
11430 }
11431
11432 then determine_prefix on foo's die will return "N::C". */
11433
11434 static char *
11435 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
11436 {
11437 struct die_info *parent, *spec_die;
11438 struct dwarf2_cu *spec_cu;
11439 struct type *parent_type;
11440
11441 if (cu->language != language_cplus && cu->language != language_java
11442 && cu->language != language_fortran)
11443 return "";
11444
11445 /* We have to be careful in the presence of DW_AT_specification.
11446 For example, with GCC 3.4, given the code
11447
11448 namespace N {
11449 void foo() {
11450 // Definition of N::foo.
11451 }
11452 }
11453
11454 then we'll have a tree of DIEs like this:
11455
11456 1: DW_TAG_compile_unit
11457 2: DW_TAG_namespace // N
11458 3: DW_TAG_subprogram // declaration of N::foo
11459 4: DW_TAG_subprogram // definition of N::foo
11460 DW_AT_specification // refers to die #3
11461
11462 Thus, when processing die #4, we have to pretend that we're in
11463 the context of its DW_AT_specification, namely the contex of die
11464 #3. */
11465 spec_cu = cu;
11466 spec_die = die_specification (die, &spec_cu);
11467 if (spec_die == NULL)
11468 parent = die->parent;
11469 else
11470 {
11471 parent = spec_die->parent;
11472 cu = spec_cu;
11473 }
11474
11475 if (parent == NULL)
11476 return "";
11477 else if (parent->building_fullname)
11478 {
11479 const char *name;
11480 const char *parent_name;
11481
11482 /* It has been seen on RealView 2.2 built binaries,
11483 DW_TAG_template_type_param types actually _defined_ as
11484 children of the parent class:
11485
11486 enum E {};
11487 template class <class Enum> Class{};
11488 Class<enum E> class_e;
11489
11490 1: DW_TAG_class_type (Class)
11491 2: DW_TAG_enumeration_type (E)
11492 3: DW_TAG_enumerator (enum1:0)
11493 3: DW_TAG_enumerator (enum2:1)
11494 ...
11495 2: DW_TAG_template_type_param
11496 DW_AT_type DW_FORM_ref_udata (E)
11497
11498 Besides being broken debug info, it can put GDB into an
11499 infinite loop. Consider:
11500
11501 When we're building the full name for Class<E>, we'll start
11502 at Class, and go look over its template type parameters,
11503 finding E. We'll then try to build the full name of E, and
11504 reach here. We're now trying to build the full name of E,
11505 and look over the parent DIE for containing scope. In the
11506 broken case, if we followed the parent DIE of E, we'd again
11507 find Class, and once again go look at its template type
11508 arguments, etc., etc. Simply don't consider such parent die
11509 as source-level parent of this die (it can't be, the language
11510 doesn't allow it), and break the loop here. */
11511 name = dwarf2_name (die, cu);
11512 parent_name = dwarf2_name (parent, cu);
11513 complaint (&symfile_complaints,
11514 _("template param type '%s' defined within parent '%s'"),
11515 name ? name : "<unknown>",
11516 parent_name ? parent_name : "<unknown>");
11517 return "";
11518 }
11519 else
11520 switch (parent->tag)
11521 {
11522 case DW_TAG_namespace:
11523 parent_type = read_type_die (parent, cu);
11524 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11525 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11526 Work around this problem here. */
11527 if (cu->language == language_cplus
11528 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11529 return "";
11530 /* We give a name to even anonymous namespaces. */
11531 return TYPE_TAG_NAME (parent_type);
11532 case DW_TAG_class_type:
11533 case DW_TAG_interface_type:
11534 case DW_TAG_structure_type:
11535 case DW_TAG_union_type:
11536 case DW_TAG_module:
11537 parent_type = read_type_die (parent, cu);
11538 if (TYPE_TAG_NAME (parent_type) != NULL)
11539 return TYPE_TAG_NAME (parent_type);
11540 else
11541 /* An anonymous structure is only allowed non-static data
11542 members; no typedefs, no member functions, et cetera.
11543 So it does not need a prefix. */
11544 return "";
11545 case DW_TAG_compile_unit:
11546 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11547 if (cu->language == language_cplus
11548 && dwarf2_per_objfile->types.asection != NULL
11549 && die->child != NULL
11550 && (die->tag == DW_TAG_class_type
11551 || die->tag == DW_TAG_structure_type
11552 || die->tag == DW_TAG_union_type))
11553 {
11554 char *name = guess_full_die_structure_name (die, cu);
11555 if (name != NULL)
11556 return name;
11557 }
11558 return "";
11559 default:
11560 return determine_prefix (parent, cu);
11561 }
11562 }
11563
11564 /* Return a newly-allocated string formed by concatenating PREFIX and
11565 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11566 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
11567 perform an obconcat, otherwise allocate storage for the result. The CU argument
11568 is used to determine the language and hence, the appropriate separator. */
11569
11570 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
11571
11572 static char *
11573 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11574 int physname, struct dwarf2_cu *cu)
11575 {
11576 const char *lead = "";
11577 const char *sep;
11578
11579 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
11580 sep = "";
11581 else if (cu->language == language_java)
11582 sep = ".";
11583 else if (cu->language == language_fortran && physname)
11584 {
11585 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11586 DW_AT_MIPS_linkage_name is preferred and used instead. */
11587
11588 lead = "__";
11589 sep = "_MOD_";
11590 }
11591 else
11592 sep = "::";
11593
11594 if (prefix == NULL)
11595 prefix = "";
11596 if (suffix == NULL)
11597 suffix = "";
11598
11599 if (obs == NULL)
11600 {
11601 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
11602
11603 strcpy (retval, lead);
11604 strcat (retval, prefix);
11605 strcat (retval, sep);
11606 strcat (retval, suffix);
11607 return retval;
11608 }
11609 else
11610 {
11611 /* We have an obstack. */
11612 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
11613 }
11614 }
11615
11616 /* Return sibling of die, NULL if no sibling. */
11617
11618 static struct die_info *
11619 sibling_die (struct die_info *die)
11620 {
11621 return die->sibling;
11622 }
11623
11624 /* Get name of a die, return NULL if not found. */
11625
11626 static char *
11627 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11628 struct obstack *obstack)
11629 {
11630 if (name && cu->language == language_cplus)
11631 {
11632 char *canon_name = cp_canonicalize_string (name);
11633
11634 if (canon_name != NULL)
11635 {
11636 if (strcmp (canon_name, name) != 0)
11637 name = obsavestring (canon_name, strlen (canon_name),
11638 obstack);
11639 xfree (canon_name);
11640 }
11641 }
11642
11643 return name;
11644 }
11645
11646 /* Get name of a die, return NULL if not found. */
11647
11648 static char *
11649 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
11650 {
11651 struct attribute *attr;
11652
11653 attr = dwarf2_attr (die, DW_AT_name, cu);
11654 if (!attr || !DW_STRING (attr))
11655 return NULL;
11656
11657 switch (die->tag)
11658 {
11659 case DW_TAG_compile_unit:
11660 /* Compilation units have a DW_AT_name that is a filename, not
11661 a source language identifier. */
11662 case DW_TAG_enumeration_type:
11663 case DW_TAG_enumerator:
11664 /* These tags always have simple identifiers already; no need
11665 to canonicalize them. */
11666 return DW_STRING (attr);
11667
11668 case DW_TAG_subprogram:
11669 /* Java constructors will all be named "<init>", so return
11670 the class name when we see this special case. */
11671 if (cu->language == language_java
11672 && DW_STRING (attr) != NULL
11673 && strcmp (DW_STRING (attr), "<init>") == 0)
11674 {
11675 struct dwarf2_cu *spec_cu = cu;
11676 struct die_info *spec_die;
11677
11678 /* GCJ will output '<init>' for Java constructor names.
11679 For this special case, return the name of the parent class. */
11680
11681 /* GCJ may output suprogram DIEs with AT_specification set.
11682 If so, use the name of the specified DIE. */
11683 spec_die = die_specification (die, &spec_cu);
11684 if (spec_die != NULL)
11685 return dwarf2_name (spec_die, spec_cu);
11686
11687 do
11688 {
11689 die = die->parent;
11690 if (die->tag == DW_TAG_class_type)
11691 return dwarf2_name (die, cu);
11692 }
11693 while (die->tag != DW_TAG_compile_unit);
11694 }
11695 break;
11696
11697 case DW_TAG_class_type:
11698 case DW_TAG_interface_type:
11699 case DW_TAG_structure_type:
11700 case DW_TAG_union_type:
11701 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
11702 structures or unions. These were of the form "._%d" in GCC 4.1,
11703 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
11704 and GCC 4.4. We work around this problem by ignoring these. */
11705 if (strncmp (DW_STRING (attr), "._", 2) == 0
11706 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
11707 return NULL;
11708 break;
11709
11710 default:
11711 break;
11712 }
11713
11714 if (!DW_STRING_IS_CANONICAL (attr))
11715 {
11716 DW_STRING (attr)
11717 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
11718 &cu->objfile->objfile_obstack);
11719 DW_STRING_IS_CANONICAL (attr) = 1;
11720 }
11721 return DW_STRING (attr);
11722 }
11723
11724 /* Return the die that this die in an extension of, or NULL if there
11725 is none. *EXT_CU is the CU containing DIE on input, and the CU
11726 containing the return value on output. */
11727
11728 static struct die_info *
11729 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
11730 {
11731 struct attribute *attr;
11732
11733 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
11734 if (attr == NULL)
11735 return NULL;
11736
11737 return follow_die_ref (die, attr, ext_cu);
11738 }
11739
11740 /* Convert a DIE tag into its string name. */
11741
11742 static char *
11743 dwarf_tag_name (unsigned tag)
11744 {
11745 switch (tag)
11746 {
11747 case DW_TAG_padding:
11748 return "DW_TAG_padding";
11749 case DW_TAG_array_type:
11750 return "DW_TAG_array_type";
11751 case DW_TAG_class_type:
11752 return "DW_TAG_class_type";
11753 case DW_TAG_entry_point:
11754 return "DW_TAG_entry_point";
11755 case DW_TAG_enumeration_type:
11756 return "DW_TAG_enumeration_type";
11757 case DW_TAG_formal_parameter:
11758 return "DW_TAG_formal_parameter";
11759 case DW_TAG_imported_declaration:
11760 return "DW_TAG_imported_declaration";
11761 case DW_TAG_label:
11762 return "DW_TAG_label";
11763 case DW_TAG_lexical_block:
11764 return "DW_TAG_lexical_block";
11765 case DW_TAG_member:
11766 return "DW_TAG_member";
11767 case DW_TAG_pointer_type:
11768 return "DW_TAG_pointer_type";
11769 case DW_TAG_reference_type:
11770 return "DW_TAG_reference_type";
11771 case DW_TAG_compile_unit:
11772 return "DW_TAG_compile_unit";
11773 case DW_TAG_string_type:
11774 return "DW_TAG_string_type";
11775 case DW_TAG_structure_type:
11776 return "DW_TAG_structure_type";
11777 case DW_TAG_subroutine_type:
11778 return "DW_TAG_subroutine_type";
11779 case DW_TAG_typedef:
11780 return "DW_TAG_typedef";
11781 case DW_TAG_union_type:
11782 return "DW_TAG_union_type";
11783 case DW_TAG_unspecified_parameters:
11784 return "DW_TAG_unspecified_parameters";
11785 case DW_TAG_variant:
11786 return "DW_TAG_variant";
11787 case DW_TAG_common_block:
11788 return "DW_TAG_common_block";
11789 case DW_TAG_common_inclusion:
11790 return "DW_TAG_common_inclusion";
11791 case DW_TAG_inheritance:
11792 return "DW_TAG_inheritance";
11793 case DW_TAG_inlined_subroutine:
11794 return "DW_TAG_inlined_subroutine";
11795 case DW_TAG_module:
11796 return "DW_TAG_module";
11797 case DW_TAG_ptr_to_member_type:
11798 return "DW_TAG_ptr_to_member_type";
11799 case DW_TAG_set_type:
11800 return "DW_TAG_set_type";
11801 case DW_TAG_subrange_type:
11802 return "DW_TAG_subrange_type";
11803 case DW_TAG_with_stmt:
11804 return "DW_TAG_with_stmt";
11805 case DW_TAG_access_declaration:
11806 return "DW_TAG_access_declaration";
11807 case DW_TAG_base_type:
11808 return "DW_TAG_base_type";
11809 case DW_TAG_catch_block:
11810 return "DW_TAG_catch_block";
11811 case DW_TAG_const_type:
11812 return "DW_TAG_const_type";
11813 case DW_TAG_constant:
11814 return "DW_TAG_constant";
11815 case DW_TAG_enumerator:
11816 return "DW_TAG_enumerator";
11817 case DW_TAG_file_type:
11818 return "DW_TAG_file_type";
11819 case DW_TAG_friend:
11820 return "DW_TAG_friend";
11821 case DW_TAG_namelist:
11822 return "DW_TAG_namelist";
11823 case DW_TAG_namelist_item:
11824 return "DW_TAG_namelist_item";
11825 case DW_TAG_packed_type:
11826 return "DW_TAG_packed_type";
11827 case DW_TAG_subprogram:
11828 return "DW_TAG_subprogram";
11829 case DW_TAG_template_type_param:
11830 return "DW_TAG_template_type_param";
11831 case DW_TAG_template_value_param:
11832 return "DW_TAG_template_value_param";
11833 case DW_TAG_thrown_type:
11834 return "DW_TAG_thrown_type";
11835 case DW_TAG_try_block:
11836 return "DW_TAG_try_block";
11837 case DW_TAG_variant_part:
11838 return "DW_TAG_variant_part";
11839 case DW_TAG_variable:
11840 return "DW_TAG_variable";
11841 case DW_TAG_volatile_type:
11842 return "DW_TAG_volatile_type";
11843 case DW_TAG_dwarf_procedure:
11844 return "DW_TAG_dwarf_procedure";
11845 case DW_TAG_restrict_type:
11846 return "DW_TAG_restrict_type";
11847 case DW_TAG_interface_type:
11848 return "DW_TAG_interface_type";
11849 case DW_TAG_namespace:
11850 return "DW_TAG_namespace";
11851 case DW_TAG_imported_module:
11852 return "DW_TAG_imported_module";
11853 case DW_TAG_unspecified_type:
11854 return "DW_TAG_unspecified_type";
11855 case DW_TAG_partial_unit:
11856 return "DW_TAG_partial_unit";
11857 case DW_TAG_imported_unit:
11858 return "DW_TAG_imported_unit";
11859 case DW_TAG_condition:
11860 return "DW_TAG_condition";
11861 case DW_TAG_shared_type:
11862 return "DW_TAG_shared_type";
11863 case DW_TAG_type_unit:
11864 return "DW_TAG_type_unit";
11865 case DW_TAG_MIPS_loop:
11866 return "DW_TAG_MIPS_loop";
11867 case DW_TAG_HP_array_descriptor:
11868 return "DW_TAG_HP_array_descriptor";
11869 case DW_TAG_format_label:
11870 return "DW_TAG_format_label";
11871 case DW_TAG_function_template:
11872 return "DW_TAG_function_template";
11873 case DW_TAG_class_template:
11874 return "DW_TAG_class_template";
11875 case DW_TAG_GNU_BINCL:
11876 return "DW_TAG_GNU_BINCL";
11877 case DW_TAG_GNU_EINCL:
11878 return "DW_TAG_GNU_EINCL";
11879 case DW_TAG_upc_shared_type:
11880 return "DW_TAG_upc_shared_type";
11881 case DW_TAG_upc_strict_type:
11882 return "DW_TAG_upc_strict_type";
11883 case DW_TAG_upc_relaxed_type:
11884 return "DW_TAG_upc_relaxed_type";
11885 case DW_TAG_PGI_kanji_type:
11886 return "DW_TAG_PGI_kanji_type";
11887 case DW_TAG_PGI_interface_block:
11888 return "DW_TAG_PGI_interface_block";
11889 default:
11890 return "DW_TAG_<unknown>";
11891 }
11892 }
11893
11894 /* Convert a DWARF attribute code into its string name. */
11895
11896 static char *
11897 dwarf_attr_name (unsigned attr)
11898 {
11899 switch (attr)
11900 {
11901 case DW_AT_sibling:
11902 return "DW_AT_sibling";
11903 case DW_AT_location:
11904 return "DW_AT_location";
11905 case DW_AT_name:
11906 return "DW_AT_name";
11907 case DW_AT_ordering:
11908 return "DW_AT_ordering";
11909 case DW_AT_subscr_data:
11910 return "DW_AT_subscr_data";
11911 case DW_AT_byte_size:
11912 return "DW_AT_byte_size";
11913 case DW_AT_bit_offset:
11914 return "DW_AT_bit_offset";
11915 case DW_AT_bit_size:
11916 return "DW_AT_bit_size";
11917 case DW_AT_element_list:
11918 return "DW_AT_element_list";
11919 case DW_AT_stmt_list:
11920 return "DW_AT_stmt_list";
11921 case DW_AT_low_pc:
11922 return "DW_AT_low_pc";
11923 case DW_AT_high_pc:
11924 return "DW_AT_high_pc";
11925 case DW_AT_language:
11926 return "DW_AT_language";
11927 case DW_AT_member:
11928 return "DW_AT_member";
11929 case DW_AT_discr:
11930 return "DW_AT_discr";
11931 case DW_AT_discr_value:
11932 return "DW_AT_discr_value";
11933 case DW_AT_visibility:
11934 return "DW_AT_visibility";
11935 case DW_AT_import:
11936 return "DW_AT_import";
11937 case DW_AT_string_length:
11938 return "DW_AT_string_length";
11939 case DW_AT_common_reference:
11940 return "DW_AT_common_reference";
11941 case DW_AT_comp_dir:
11942 return "DW_AT_comp_dir";
11943 case DW_AT_const_value:
11944 return "DW_AT_const_value";
11945 case DW_AT_containing_type:
11946 return "DW_AT_containing_type";
11947 case DW_AT_default_value:
11948 return "DW_AT_default_value";
11949 case DW_AT_inline:
11950 return "DW_AT_inline";
11951 case DW_AT_is_optional:
11952 return "DW_AT_is_optional";
11953 case DW_AT_lower_bound:
11954 return "DW_AT_lower_bound";
11955 case DW_AT_producer:
11956 return "DW_AT_producer";
11957 case DW_AT_prototyped:
11958 return "DW_AT_prototyped";
11959 case DW_AT_return_addr:
11960 return "DW_AT_return_addr";
11961 case DW_AT_start_scope:
11962 return "DW_AT_start_scope";
11963 case DW_AT_bit_stride:
11964 return "DW_AT_bit_stride";
11965 case DW_AT_upper_bound:
11966 return "DW_AT_upper_bound";
11967 case DW_AT_abstract_origin:
11968 return "DW_AT_abstract_origin";
11969 case DW_AT_accessibility:
11970 return "DW_AT_accessibility";
11971 case DW_AT_address_class:
11972 return "DW_AT_address_class";
11973 case DW_AT_artificial:
11974 return "DW_AT_artificial";
11975 case DW_AT_base_types:
11976 return "DW_AT_base_types";
11977 case DW_AT_calling_convention:
11978 return "DW_AT_calling_convention";
11979 case DW_AT_count:
11980 return "DW_AT_count";
11981 case DW_AT_data_member_location:
11982 return "DW_AT_data_member_location";
11983 case DW_AT_decl_column:
11984 return "DW_AT_decl_column";
11985 case DW_AT_decl_file:
11986 return "DW_AT_decl_file";
11987 case DW_AT_decl_line:
11988 return "DW_AT_decl_line";
11989 case DW_AT_declaration:
11990 return "DW_AT_declaration";
11991 case DW_AT_discr_list:
11992 return "DW_AT_discr_list";
11993 case DW_AT_encoding:
11994 return "DW_AT_encoding";
11995 case DW_AT_external:
11996 return "DW_AT_external";
11997 case DW_AT_frame_base:
11998 return "DW_AT_frame_base";
11999 case DW_AT_friend:
12000 return "DW_AT_friend";
12001 case DW_AT_identifier_case:
12002 return "DW_AT_identifier_case";
12003 case DW_AT_macro_info:
12004 return "DW_AT_macro_info";
12005 case DW_AT_namelist_items:
12006 return "DW_AT_namelist_items";
12007 case DW_AT_priority:
12008 return "DW_AT_priority";
12009 case DW_AT_segment:
12010 return "DW_AT_segment";
12011 case DW_AT_specification:
12012 return "DW_AT_specification";
12013 case DW_AT_static_link:
12014 return "DW_AT_static_link";
12015 case DW_AT_type:
12016 return "DW_AT_type";
12017 case DW_AT_use_location:
12018 return "DW_AT_use_location";
12019 case DW_AT_variable_parameter:
12020 return "DW_AT_variable_parameter";
12021 case DW_AT_virtuality:
12022 return "DW_AT_virtuality";
12023 case DW_AT_vtable_elem_location:
12024 return "DW_AT_vtable_elem_location";
12025 /* DWARF 3 values. */
12026 case DW_AT_allocated:
12027 return "DW_AT_allocated";
12028 case DW_AT_associated:
12029 return "DW_AT_associated";
12030 case DW_AT_data_location:
12031 return "DW_AT_data_location";
12032 case DW_AT_byte_stride:
12033 return "DW_AT_byte_stride";
12034 case DW_AT_entry_pc:
12035 return "DW_AT_entry_pc";
12036 case DW_AT_use_UTF8:
12037 return "DW_AT_use_UTF8";
12038 case DW_AT_extension:
12039 return "DW_AT_extension";
12040 case DW_AT_ranges:
12041 return "DW_AT_ranges";
12042 case DW_AT_trampoline:
12043 return "DW_AT_trampoline";
12044 case DW_AT_call_column:
12045 return "DW_AT_call_column";
12046 case DW_AT_call_file:
12047 return "DW_AT_call_file";
12048 case DW_AT_call_line:
12049 return "DW_AT_call_line";
12050 case DW_AT_description:
12051 return "DW_AT_description";
12052 case DW_AT_binary_scale:
12053 return "DW_AT_binary_scale";
12054 case DW_AT_decimal_scale:
12055 return "DW_AT_decimal_scale";
12056 case DW_AT_small:
12057 return "DW_AT_small";
12058 case DW_AT_decimal_sign:
12059 return "DW_AT_decimal_sign";
12060 case DW_AT_digit_count:
12061 return "DW_AT_digit_count";
12062 case DW_AT_picture_string:
12063 return "DW_AT_picture_string";
12064 case DW_AT_mutable:
12065 return "DW_AT_mutable";
12066 case DW_AT_threads_scaled:
12067 return "DW_AT_threads_scaled";
12068 case DW_AT_explicit:
12069 return "DW_AT_explicit";
12070 case DW_AT_object_pointer:
12071 return "DW_AT_object_pointer";
12072 case DW_AT_endianity:
12073 return "DW_AT_endianity";
12074 case DW_AT_elemental:
12075 return "DW_AT_elemental";
12076 case DW_AT_pure:
12077 return "DW_AT_pure";
12078 case DW_AT_recursive:
12079 return "DW_AT_recursive";
12080 /* DWARF 4 values. */
12081 case DW_AT_signature:
12082 return "DW_AT_signature";
12083 case DW_AT_linkage_name:
12084 return "DW_AT_linkage_name";
12085 /* SGI/MIPS extensions. */
12086 #ifdef MIPS /* collides with DW_AT_HP_block_index */
12087 case DW_AT_MIPS_fde:
12088 return "DW_AT_MIPS_fde";
12089 #endif
12090 case DW_AT_MIPS_loop_begin:
12091 return "DW_AT_MIPS_loop_begin";
12092 case DW_AT_MIPS_tail_loop_begin:
12093 return "DW_AT_MIPS_tail_loop_begin";
12094 case DW_AT_MIPS_epilog_begin:
12095 return "DW_AT_MIPS_epilog_begin";
12096 case DW_AT_MIPS_loop_unroll_factor:
12097 return "DW_AT_MIPS_loop_unroll_factor";
12098 case DW_AT_MIPS_software_pipeline_depth:
12099 return "DW_AT_MIPS_software_pipeline_depth";
12100 case DW_AT_MIPS_linkage_name:
12101 return "DW_AT_MIPS_linkage_name";
12102 case DW_AT_MIPS_stride:
12103 return "DW_AT_MIPS_stride";
12104 case DW_AT_MIPS_abstract_name:
12105 return "DW_AT_MIPS_abstract_name";
12106 case DW_AT_MIPS_clone_origin:
12107 return "DW_AT_MIPS_clone_origin";
12108 case DW_AT_MIPS_has_inlines:
12109 return "DW_AT_MIPS_has_inlines";
12110 /* HP extensions. */
12111 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
12112 case DW_AT_HP_block_index:
12113 return "DW_AT_HP_block_index";
12114 #endif
12115 case DW_AT_HP_unmodifiable:
12116 return "DW_AT_HP_unmodifiable";
12117 case DW_AT_HP_actuals_stmt_list:
12118 return "DW_AT_HP_actuals_stmt_list";
12119 case DW_AT_HP_proc_per_section:
12120 return "DW_AT_HP_proc_per_section";
12121 case DW_AT_HP_raw_data_ptr:
12122 return "DW_AT_HP_raw_data_ptr";
12123 case DW_AT_HP_pass_by_reference:
12124 return "DW_AT_HP_pass_by_reference";
12125 case DW_AT_HP_opt_level:
12126 return "DW_AT_HP_opt_level";
12127 case DW_AT_HP_prof_version_id:
12128 return "DW_AT_HP_prof_version_id";
12129 case DW_AT_HP_opt_flags:
12130 return "DW_AT_HP_opt_flags";
12131 case DW_AT_HP_cold_region_low_pc:
12132 return "DW_AT_HP_cold_region_low_pc";
12133 case DW_AT_HP_cold_region_high_pc:
12134 return "DW_AT_HP_cold_region_high_pc";
12135 case DW_AT_HP_all_variables_modifiable:
12136 return "DW_AT_HP_all_variables_modifiable";
12137 case DW_AT_HP_linkage_name:
12138 return "DW_AT_HP_linkage_name";
12139 case DW_AT_HP_prof_flags:
12140 return "DW_AT_HP_prof_flags";
12141 /* GNU extensions. */
12142 case DW_AT_sf_names:
12143 return "DW_AT_sf_names";
12144 case DW_AT_src_info:
12145 return "DW_AT_src_info";
12146 case DW_AT_mac_info:
12147 return "DW_AT_mac_info";
12148 case DW_AT_src_coords:
12149 return "DW_AT_src_coords";
12150 case DW_AT_body_begin:
12151 return "DW_AT_body_begin";
12152 case DW_AT_body_end:
12153 return "DW_AT_body_end";
12154 case DW_AT_GNU_vector:
12155 return "DW_AT_GNU_vector";
12156 case DW_AT_GNU_odr_signature:
12157 return "DW_AT_GNU_odr_signature";
12158 /* VMS extensions. */
12159 case DW_AT_VMS_rtnbeg_pd_address:
12160 return "DW_AT_VMS_rtnbeg_pd_address";
12161 /* UPC extension. */
12162 case DW_AT_upc_threads_scaled:
12163 return "DW_AT_upc_threads_scaled";
12164 /* PGI (STMicroelectronics) extensions. */
12165 case DW_AT_PGI_lbase:
12166 return "DW_AT_PGI_lbase";
12167 case DW_AT_PGI_soffset:
12168 return "DW_AT_PGI_soffset";
12169 case DW_AT_PGI_lstride:
12170 return "DW_AT_PGI_lstride";
12171 default:
12172 return "DW_AT_<unknown>";
12173 }
12174 }
12175
12176 /* Convert a DWARF value form code into its string name. */
12177
12178 static char *
12179 dwarf_form_name (unsigned form)
12180 {
12181 switch (form)
12182 {
12183 case DW_FORM_addr:
12184 return "DW_FORM_addr";
12185 case DW_FORM_block2:
12186 return "DW_FORM_block2";
12187 case DW_FORM_block4:
12188 return "DW_FORM_block4";
12189 case DW_FORM_data2:
12190 return "DW_FORM_data2";
12191 case DW_FORM_data4:
12192 return "DW_FORM_data4";
12193 case DW_FORM_data8:
12194 return "DW_FORM_data8";
12195 case DW_FORM_string:
12196 return "DW_FORM_string";
12197 case DW_FORM_block:
12198 return "DW_FORM_block";
12199 case DW_FORM_block1:
12200 return "DW_FORM_block1";
12201 case DW_FORM_data1:
12202 return "DW_FORM_data1";
12203 case DW_FORM_flag:
12204 return "DW_FORM_flag";
12205 case DW_FORM_sdata:
12206 return "DW_FORM_sdata";
12207 case DW_FORM_strp:
12208 return "DW_FORM_strp";
12209 case DW_FORM_udata:
12210 return "DW_FORM_udata";
12211 case DW_FORM_ref_addr:
12212 return "DW_FORM_ref_addr";
12213 case DW_FORM_ref1:
12214 return "DW_FORM_ref1";
12215 case DW_FORM_ref2:
12216 return "DW_FORM_ref2";
12217 case DW_FORM_ref4:
12218 return "DW_FORM_ref4";
12219 case DW_FORM_ref8:
12220 return "DW_FORM_ref8";
12221 case DW_FORM_ref_udata:
12222 return "DW_FORM_ref_udata";
12223 case DW_FORM_indirect:
12224 return "DW_FORM_indirect";
12225 case DW_FORM_sec_offset:
12226 return "DW_FORM_sec_offset";
12227 case DW_FORM_exprloc:
12228 return "DW_FORM_exprloc";
12229 case DW_FORM_flag_present:
12230 return "DW_FORM_flag_present";
12231 case DW_FORM_sig8:
12232 return "DW_FORM_sig8";
12233 default:
12234 return "DW_FORM_<unknown>";
12235 }
12236 }
12237
12238 /* Convert a DWARF stack opcode into its string name. */
12239
12240 const char *
12241 dwarf_stack_op_name (unsigned op, int def)
12242 {
12243 switch (op)
12244 {
12245 case DW_OP_addr:
12246 return "DW_OP_addr";
12247 case DW_OP_deref:
12248 return "DW_OP_deref";
12249 case DW_OP_const1u:
12250 return "DW_OP_const1u";
12251 case DW_OP_const1s:
12252 return "DW_OP_const1s";
12253 case DW_OP_const2u:
12254 return "DW_OP_const2u";
12255 case DW_OP_const2s:
12256 return "DW_OP_const2s";
12257 case DW_OP_const4u:
12258 return "DW_OP_const4u";
12259 case DW_OP_const4s:
12260 return "DW_OP_const4s";
12261 case DW_OP_const8u:
12262 return "DW_OP_const8u";
12263 case DW_OP_const8s:
12264 return "DW_OP_const8s";
12265 case DW_OP_constu:
12266 return "DW_OP_constu";
12267 case DW_OP_consts:
12268 return "DW_OP_consts";
12269 case DW_OP_dup:
12270 return "DW_OP_dup";
12271 case DW_OP_drop:
12272 return "DW_OP_drop";
12273 case DW_OP_over:
12274 return "DW_OP_over";
12275 case DW_OP_pick:
12276 return "DW_OP_pick";
12277 case DW_OP_swap:
12278 return "DW_OP_swap";
12279 case DW_OP_rot:
12280 return "DW_OP_rot";
12281 case DW_OP_xderef:
12282 return "DW_OP_xderef";
12283 case DW_OP_abs:
12284 return "DW_OP_abs";
12285 case DW_OP_and:
12286 return "DW_OP_and";
12287 case DW_OP_div:
12288 return "DW_OP_div";
12289 case DW_OP_minus:
12290 return "DW_OP_minus";
12291 case DW_OP_mod:
12292 return "DW_OP_mod";
12293 case DW_OP_mul:
12294 return "DW_OP_mul";
12295 case DW_OP_neg:
12296 return "DW_OP_neg";
12297 case DW_OP_not:
12298 return "DW_OP_not";
12299 case DW_OP_or:
12300 return "DW_OP_or";
12301 case DW_OP_plus:
12302 return "DW_OP_plus";
12303 case DW_OP_plus_uconst:
12304 return "DW_OP_plus_uconst";
12305 case DW_OP_shl:
12306 return "DW_OP_shl";
12307 case DW_OP_shr:
12308 return "DW_OP_shr";
12309 case DW_OP_shra:
12310 return "DW_OP_shra";
12311 case DW_OP_xor:
12312 return "DW_OP_xor";
12313 case DW_OP_bra:
12314 return "DW_OP_bra";
12315 case DW_OP_eq:
12316 return "DW_OP_eq";
12317 case DW_OP_ge:
12318 return "DW_OP_ge";
12319 case DW_OP_gt:
12320 return "DW_OP_gt";
12321 case DW_OP_le:
12322 return "DW_OP_le";
12323 case DW_OP_lt:
12324 return "DW_OP_lt";
12325 case DW_OP_ne:
12326 return "DW_OP_ne";
12327 case DW_OP_skip:
12328 return "DW_OP_skip";
12329 case DW_OP_lit0:
12330 return "DW_OP_lit0";
12331 case DW_OP_lit1:
12332 return "DW_OP_lit1";
12333 case DW_OP_lit2:
12334 return "DW_OP_lit2";
12335 case DW_OP_lit3:
12336 return "DW_OP_lit3";
12337 case DW_OP_lit4:
12338 return "DW_OP_lit4";
12339 case DW_OP_lit5:
12340 return "DW_OP_lit5";
12341 case DW_OP_lit6:
12342 return "DW_OP_lit6";
12343 case DW_OP_lit7:
12344 return "DW_OP_lit7";
12345 case DW_OP_lit8:
12346 return "DW_OP_lit8";
12347 case DW_OP_lit9:
12348 return "DW_OP_lit9";
12349 case DW_OP_lit10:
12350 return "DW_OP_lit10";
12351 case DW_OP_lit11:
12352 return "DW_OP_lit11";
12353 case DW_OP_lit12:
12354 return "DW_OP_lit12";
12355 case DW_OP_lit13:
12356 return "DW_OP_lit13";
12357 case DW_OP_lit14:
12358 return "DW_OP_lit14";
12359 case DW_OP_lit15:
12360 return "DW_OP_lit15";
12361 case DW_OP_lit16:
12362 return "DW_OP_lit16";
12363 case DW_OP_lit17:
12364 return "DW_OP_lit17";
12365 case DW_OP_lit18:
12366 return "DW_OP_lit18";
12367 case DW_OP_lit19:
12368 return "DW_OP_lit19";
12369 case DW_OP_lit20:
12370 return "DW_OP_lit20";
12371 case DW_OP_lit21:
12372 return "DW_OP_lit21";
12373 case DW_OP_lit22:
12374 return "DW_OP_lit22";
12375 case DW_OP_lit23:
12376 return "DW_OP_lit23";
12377 case DW_OP_lit24:
12378 return "DW_OP_lit24";
12379 case DW_OP_lit25:
12380 return "DW_OP_lit25";
12381 case DW_OP_lit26:
12382 return "DW_OP_lit26";
12383 case DW_OP_lit27:
12384 return "DW_OP_lit27";
12385 case DW_OP_lit28:
12386 return "DW_OP_lit28";
12387 case DW_OP_lit29:
12388 return "DW_OP_lit29";
12389 case DW_OP_lit30:
12390 return "DW_OP_lit30";
12391 case DW_OP_lit31:
12392 return "DW_OP_lit31";
12393 case DW_OP_reg0:
12394 return "DW_OP_reg0";
12395 case DW_OP_reg1:
12396 return "DW_OP_reg1";
12397 case DW_OP_reg2:
12398 return "DW_OP_reg2";
12399 case DW_OP_reg3:
12400 return "DW_OP_reg3";
12401 case DW_OP_reg4:
12402 return "DW_OP_reg4";
12403 case DW_OP_reg5:
12404 return "DW_OP_reg5";
12405 case DW_OP_reg6:
12406 return "DW_OP_reg6";
12407 case DW_OP_reg7:
12408 return "DW_OP_reg7";
12409 case DW_OP_reg8:
12410 return "DW_OP_reg8";
12411 case DW_OP_reg9:
12412 return "DW_OP_reg9";
12413 case DW_OP_reg10:
12414 return "DW_OP_reg10";
12415 case DW_OP_reg11:
12416 return "DW_OP_reg11";
12417 case DW_OP_reg12:
12418 return "DW_OP_reg12";
12419 case DW_OP_reg13:
12420 return "DW_OP_reg13";
12421 case DW_OP_reg14:
12422 return "DW_OP_reg14";
12423 case DW_OP_reg15:
12424 return "DW_OP_reg15";
12425 case DW_OP_reg16:
12426 return "DW_OP_reg16";
12427 case DW_OP_reg17:
12428 return "DW_OP_reg17";
12429 case DW_OP_reg18:
12430 return "DW_OP_reg18";
12431 case DW_OP_reg19:
12432 return "DW_OP_reg19";
12433 case DW_OP_reg20:
12434 return "DW_OP_reg20";
12435 case DW_OP_reg21:
12436 return "DW_OP_reg21";
12437 case DW_OP_reg22:
12438 return "DW_OP_reg22";
12439 case DW_OP_reg23:
12440 return "DW_OP_reg23";
12441 case DW_OP_reg24:
12442 return "DW_OP_reg24";
12443 case DW_OP_reg25:
12444 return "DW_OP_reg25";
12445 case DW_OP_reg26:
12446 return "DW_OP_reg26";
12447 case DW_OP_reg27:
12448 return "DW_OP_reg27";
12449 case DW_OP_reg28:
12450 return "DW_OP_reg28";
12451 case DW_OP_reg29:
12452 return "DW_OP_reg29";
12453 case DW_OP_reg30:
12454 return "DW_OP_reg30";
12455 case DW_OP_reg31:
12456 return "DW_OP_reg31";
12457 case DW_OP_breg0:
12458 return "DW_OP_breg0";
12459 case DW_OP_breg1:
12460 return "DW_OP_breg1";
12461 case DW_OP_breg2:
12462 return "DW_OP_breg2";
12463 case DW_OP_breg3:
12464 return "DW_OP_breg3";
12465 case DW_OP_breg4:
12466 return "DW_OP_breg4";
12467 case DW_OP_breg5:
12468 return "DW_OP_breg5";
12469 case DW_OP_breg6:
12470 return "DW_OP_breg6";
12471 case DW_OP_breg7:
12472 return "DW_OP_breg7";
12473 case DW_OP_breg8:
12474 return "DW_OP_breg8";
12475 case DW_OP_breg9:
12476 return "DW_OP_breg9";
12477 case DW_OP_breg10:
12478 return "DW_OP_breg10";
12479 case DW_OP_breg11:
12480 return "DW_OP_breg11";
12481 case DW_OP_breg12:
12482 return "DW_OP_breg12";
12483 case DW_OP_breg13:
12484 return "DW_OP_breg13";
12485 case DW_OP_breg14:
12486 return "DW_OP_breg14";
12487 case DW_OP_breg15:
12488 return "DW_OP_breg15";
12489 case DW_OP_breg16:
12490 return "DW_OP_breg16";
12491 case DW_OP_breg17:
12492 return "DW_OP_breg17";
12493 case DW_OP_breg18:
12494 return "DW_OP_breg18";
12495 case DW_OP_breg19:
12496 return "DW_OP_breg19";
12497 case DW_OP_breg20:
12498 return "DW_OP_breg20";
12499 case DW_OP_breg21:
12500 return "DW_OP_breg21";
12501 case DW_OP_breg22:
12502 return "DW_OP_breg22";
12503 case DW_OP_breg23:
12504 return "DW_OP_breg23";
12505 case DW_OP_breg24:
12506 return "DW_OP_breg24";
12507 case DW_OP_breg25:
12508 return "DW_OP_breg25";
12509 case DW_OP_breg26:
12510 return "DW_OP_breg26";
12511 case DW_OP_breg27:
12512 return "DW_OP_breg27";
12513 case DW_OP_breg28:
12514 return "DW_OP_breg28";
12515 case DW_OP_breg29:
12516 return "DW_OP_breg29";
12517 case DW_OP_breg30:
12518 return "DW_OP_breg30";
12519 case DW_OP_breg31:
12520 return "DW_OP_breg31";
12521 case DW_OP_regx:
12522 return "DW_OP_regx";
12523 case DW_OP_fbreg:
12524 return "DW_OP_fbreg";
12525 case DW_OP_bregx:
12526 return "DW_OP_bregx";
12527 case DW_OP_piece:
12528 return "DW_OP_piece";
12529 case DW_OP_deref_size:
12530 return "DW_OP_deref_size";
12531 case DW_OP_xderef_size:
12532 return "DW_OP_xderef_size";
12533 case DW_OP_nop:
12534 return "DW_OP_nop";
12535 /* DWARF 3 extensions. */
12536 case DW_OP_push_object_address:
12537 return "DW_OP_push_object_address";
12538 case DW_OP_call2:
12539 return "DW_OP_call2";
12540 case DW_OP_call4:
12541 return "DW_OP_call4";
12542 case DW_OP_call_ref:
12543 return "DW_OP_call_ref";
12544 case DW_OP_form_tls_address:
12545 return "DW_OP_form_tls_address";
12546 case DW_OP_call_frame_cfa:
12547 return "DW_OP_call_frame_cfa";
12548 case DW_OP_bit_piece:
12549 return "DW_OP_bit_piece";
12550 /* DWARF 4 extensions. */
12551 case DW_OP_implicit_value:
12552 return "DW_OP_implicit_value";
12553 case DW_OP_stack_value:
12554 return "DW_OP_stack_value";
12555 /* GNU extensions. */
12556 case DW_OP_GNU_push_tls_address:
12557 return "DW_OP_GNU_push_tls_address";
12558 case DW_OP_GNU_uninit:
12559 return "DW_OP_GNU_uninit";
12560 default:
12561 return def ? "OP_<unknown>" : NULL;
12562 }
12563 }
12564
12565 static char *
12566 dwarf_bool_name (unsigned mybool)
12567 {
12568 if (mybool)
12569 return "TRUE";
12570 else
12571 return "FALSE";
12572 }
12573
12574 /* Convert a DWARF type code into its string name. */
12575
12576 static char *
12577 dwarf_type_encoding_name (unsigned enc)
12578 {
12579 switch (enc)
12580 {
12581 case DW_ATE_void:
12582 return "DW_ATE_void";
12583 case DW_ATE_address:
12584 return "DW_ATE_address";
12585 case DW_ATE_boolean:
12586 return "DW_ATE_boolean";
12587 case DW_ATE_complex_float:
12588 return "DW_ATE_complex_float";
12589 case DW_ATE_float:
12590 return "DW_ATE_float";
12591 case DW_ATE_signed:
12592 return "DW_ATE_signed";
12593 case DW_ATE_signed_char:
12594 return "DW_ATE_signed_char";
12595 case DW_ATE_unsigned:
12596 return "DW_ATE_unsigned";
12597 case DW_ATE_unsigned_char:
12598 return "DW_ATE_unsigned_char";
12599 /* DWARF 3. */
12600 case DW_ATE_imaginary_float:
12601 return "DW_ATE_imaginary_float";
12602 case DW_ATE_packed_decimal:
12603 return "DW_ATE_packed_decimal";
12604 case DW_ATE_numeric_string:
12605 return "DW_ATE_numeric_string";
12606 case DW_ATE_edited:
12607 return "DW_ATE_edited";
12608 case DW_ATE_signed_fixed:
12609 return "DW_ATE_signed_fixed";
12610 case DW_ATE_unsigned_fixed:
12611 return "DW_ATE_unsigned_fixed";
12612 case DW_ATE_decimal_float:
12613 return "DW_ATE_decimal_float";
12614 /* DWARF 4. */
12615 case DW_ATE_UTF:
12616 return "DW_ATE_UTF";
12617 /* HP extensions. */
12618 case DW_ATE_HP_float80:
12619 return "DW_ATE_HP_float80";
12620 case DW_ATE_HP_complex_float80:
12621 return "DW_ATE_HP_complex_float80";
12622 case DW_ATE_HP_float128:
12623 return "DW_ATE_HP_float128";
12624 case DW_ATE_HP_complex_float128:
12625 return "DW_ATE_HP_complex_float128";
12626 case DW_ATE_HP_floathpintel:
12627 return "DW_ATE_HP_floathpintel";
12628 case DW_ATE_HP_imaginary_float80:
12629 return "DW_ATE_HP_imaginary_float80";
12630 case DW_ATE_HP_imaginary_float128:
12631 return "DW_ATE_HP_imaginary_float128";
12632 default:
12633 return "DW_ATE_<unknown>";
12634 }
12635 }
12636
12637 /* Convert a DWARF call frame info operation to its string name. */
12638
12639 #if 0
12640 static char *
12641 dwarf_cfi_name (unsigned cfi_opc)
12642 {
12643 switch (cfi_opc)
12644 {
12645 case DW_CFA_advance_loc:
12646 return "DW_CFA_advance_loc";
12647 case DW_CFA_offset:
12648 return "DW_CFA_offset";
12649 case DW_CFA_restore:
12650 return "DW_CFA_restore";
12651 case DW_CFA_nop:
12652 return "DW_CFA_nop";
12653 case DW_CFA_set_loc:
12654 return "DW_CFA_set_loc";
12655 case DW_CFA_advance_loc1:
12656 return "DW_CFA_advance_loc1";
12657 case DW_CFA_advance_loc2:
12658 return "DW_CFA_advance_loc2";
12659 case DW_CFA_advance_loc4:
12660 return "DW_CFA_advance_loc4";
12661 case DW_CFA_offset_extended:
12662 return "DW_CFA_offset_extended";
12663 case DW_CFA_restore_extended:
12664 return "DW_CFA_restore_extended";
12665 case DW_CFA_undefined:
12666 return "DW_CFA_undefined";
12667 case DW_CFA_same_value:
12668 return "DW_CFA_same_value";
12669 case DW_CFA_register:
12670 return "DW_CFA_register";
12671 case DW_CFA_remember_state:
12672 return "DW_CFA_remember_state";
12673 case DW_CFA_restore_state:
12674 return "DW_CFA_restore_state";
12675 case DW_CFA_def_cfa:
12676 return "DW_CFA_def_cfa";
12677 case DW_CFA_def_cfa_register:
12678 return "DW_CFA_def_cfa_register";
12679 case DW_CFA_def_cfa_offset:
12680 return "DW_CFA_def_cfa_offset";
12681 /* DWARF 3. */
12682 case DW_CFA_def_cfa_expression:
12683 return "DW_CFA_def_cfa_expression";
12684 case DW_CFA_expression:
12685 return "DW_CFA_expression";
12686 case DW_CFA_offset_extended_sf:
12687 return "DW_CFA_offset_extended_sf";
12688 case DW_CFA_def_cfa_sf:
12689 return "DW_CFA_def_cfa_sf";
12690 case DW_CFA_def_cfa_offset_sf:
12691 return "DW_CFA_def_cfa_offset_sf";
12692 case DW_CFA_val_offset:
12693 return "DW_CFA_val_offset";
12694 case DW_CFA_val_offset_sf:
12695 return "DW_CFA_val_offset_sf";
12696 case DW_CFA_val_expression:
12697 return "DW_CFA_val_expression";
12698 /* SGI/MIPS specific. */
12699 case DW_CFA_MIPS_advance_loc8:
12700 return "DW_CFA_MIPS_advance_loc8";
12701 /* GNU extensions. */
12702 case DW_CFA_GNU_window_save:
12703 return "DW_CFA_GNU_window_save";
12704 case DW_CFA_GNU_args_size:
12705 return "DW_CFA_GNU_args_size";
12706 case DW_CFA_GNU_negative_offset_extended:
12707 return "DW_CFA_GNU_negative_offset_extended";
12708 default:
12709 return "DW_CFA_<unknown>";
12710 }
12711 }
12712 #endif
12713
12714 static void
12715 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
12716 {
12717 unsigned int i;
12718
12719 print_spaces (indent, f);
12720 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
12721 dwarf_tag_name (die->tag), die->abbrev, die->offset);
12722
12723 if (die->parent != NULL)
12724 {
12725 print_spaces (indent, f);
12726 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
12727 die->parent->offset);
12728 }
12729
12730 print_spaces (indent, f);
12731 fprintf_unfiltered (f, " has children: %s\n",
12732 dwarf_bool_name (die->child != NULL));
12733
12734 print_spaces (indent, f);
12735 fprintf_unfiltered (f, " attributes:\n");
12736
12737 for (i = 0; i < die->num_attrs; ++i)
12738 {
12739 print_spaces (indent, f);
12740 fprintf_unfiltered (f, " %s (%s) ",
12741 dwarf_attr_name (die->attrs[i].name),
12742 dwarf_form_name (die->attrs[i].form));
12743
12744 switch (die->attrs[i].form)
12745 {
12746 case DW_FORM_ref_addr:
12747 case DW_FORM_addr:
12748 fprintf_unfiltered (f, "address: ");
12749 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
12750 break;
12751 case DW_FORM_block2:
12752 case DW_FORM_block4:
12753 case DW_FORM_block:
12754 case DW_FORM_block1:
12755 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
12756 break;
12757 case DW_FORM_exprloc:
12758 fprintf_unfiltered (f, "expression: size %u",
12759 DW_BLOCK (&die->attrs[i])->size);
12760 break;
12761 case DW_FORM_ref1:
12762 case DW_FORM_ref2:
12763 case DW_FORM_ref4:
12764 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
12765 (long) (DW_ADDR (&die->attrs[i])));
12766 break;
12767 case DW_FORM_data1:
12768 case DW_FORM_data2:
12769 case DW_FORM_data4:
12770 case DW_FORM_data8:
12771 case DW_FORM_udata:
12772 case DW_FORM_sdata:
12773 fprintf_unfiltered (f, "constant: %s",
12774 pulongest (DW_UNSND (&die->attrs[i])));
12775 break;
12776 case DW_FORM_sec_offset:
12777 fprintf_unfiltered (f, "section offset: %s",
12778 pulongest (DW_UNSND (&die->attrs[i])));
12779 break;
12780 case DW_FORM_sig8:
12781 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
12782 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
12783 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
12784 else
12785 fprintf_unfiltered (f, "signatured type, offset: unknown");
12786 break;
12787 case DW_FORM_string:
12788 case DW_FORM_strp:
12789 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
12790 DW_STRING (&die->attrs[i])
12791 ? DW_STRING (&die->attrs[i]) : "",
12792 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
12793 break;
12794 case DW_FORM_flag:
12795 if (DW_UNSND (&die->attrs[i]))
12796 fprintf_unfiltered (f, "flag: TRUE");
12797 else
12798 fprintf_unfiltered (f, "flag: FALSE");
12799 break;
12800 case DW_FORM_flag_present:
12801 fprintf_unfiltered (f, "flag: TRUE");
12802 break;
12803 case DW_FORM_indirect:
12804 /* the reader will have reduced the indirect form to
12805 the "base form" so this form should not occur */
12806 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
12807 break;
12808 default:
12809 fprintf_unfiltered (f, "unsupported attribute form: %d.",
12810 die->attrs[i].form);
12811 break;
12812 }
12813 fprintf_unfiltered (f, "\n");
12814 }
12815 }
12816
12817 static void
12818 dump_die_for_error (struct die_info *die)
12819 {
12820 dump_die_shallow (gdb_stderr, 0, die);
12821 }
12822
12823 static void
12824 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
12825 {
12826 int indent = level * 4;
12827
12828 gdb_assert (die != NULL);
12829
12830 if (level >= max_level)
12831 return;
12832
12833 dump_die_shallow (f, indent, die);
12834
12835 if (die->child != NULL)
12836 {
12837 print_spaces (indent, f);
12838 fprintf_unfiltered (f, " Children:");
12839 if (level + 1 < max_level)
12840 {
12841 fprintf_unfiltered (f, "\n");
12842 dump_die_1 (f, level + 1, max_level, die->child);
12843 }
12844 else
12845 {
12846 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
12847 }
12848 }
12849
12850 if (die->sibling != NULL && level > 0)
12851 {
12852 dump_die_1 (f, level, max_level, die->sibling);
12853 }
12854 }
12855
12856 /* This is called from the pdie macro in gdbinit.in.
12857 It's not static so gcc will keep a copy callable from gdb. */
12858
12859 void
12860 dump_die (struct die_info *die, int max_level)
12861 {
12862 dump_die_1 (gdb_stdlog, 0, max_level, die);
12863 }
12864
12865 static void
12866 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
12867 {
12868 void **slot;
12869
12870 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
12871
12872 *slot = die;
12873 }
12874
12875 static int
12876 is_ref_attr (struct attribute *attr)
12877 {
12878 switch (attr->form)
12879 {
12880 case DW_FORM_ref_addr:
12881 case DW_FORM_ref1:
12882 case DW_FORM_ref2:
12883 case DW_FORM_ref4:
12884 case DW_FORM_ref8:
12885 case DW_FORM_ref_udata:
12886 return 1;
12887 default:
12888 return 0;
12889 }
12890 }
12891
12892 static unsigned int
12893 dwarf2_get_ref_die_offset (struct attribute *attr)
12894 {
12895 if (is_ref_attr (attr))
12896 return DW_ADDR (attr);
12897
12898 complaint (&symfile_complaints,
12899 _("unsupported die ref attribute form: '%s'"),
12900 dwarf_form_name (attr->form));
12901 return 0;
12902 }
12903
12904 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
12905 * the value held by the attribute is not constant. */
12906
12907 static LONGEST
12908 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
12909 {
12910 if (attr->form == DW_FORM_sdata)
12911 return DW_SND (attr);
12912 else if (attr->form == DW_FORM_udata
12913 || attr->form == DW_FORM_data1
12914 || attr->form == DW_FORM_data2
12915 || attr->form == DW_FORM_data4
12916 || attr->form == DW_FORM_data8)
12917 return DW_UNSND (attr);
12918 else
12919 {
12920 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
12921 dwarf_form_name (attr->form));
12922 return default_value;
12923 }
12924 }
12925
12926 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
12927 unit and add it to our queue.
12928 The result is non-zero if PER_CU was queued, otherwise the result is zero
12929 meaning either PER_CU is already queued or it is already loaded. */
12930
12931 static int
12932 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
12933 struct dwarf2_per_cu_data *per_cu)
12934 {
12935 /* We may arrive here during partial symbol reading, if we need full
12936 DIEs to process an unusual case (e.g. template arguments). Do
12937 not queue PER_CU, just tell our caller to load its DIEs. */
12938 if (dwarf2_per_objfile->reading_partial_symbols)
12939 {
12940 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
12941 return 1;
12942 return 0;
12943 }
12944
12945 /* Mark the dependence relation so that we don't flush PER_CU
12946 too early. */
12947 dwarf2_add_dependence (this_cu, per_cu);
12948
12949 /* If it's already on the queue, we have nothing to do. */
12950 if (per_cu->queued)
12951 return 0;
12952
12953 /* If the compilation unit is already loaded, just mark it as
12954 used. */
12955 if (per_cu->cu != NULL)
12956 {
12957 per_cu->cu->last_used = 0;
12958 return 0;
12959 }
12960
12961 /* Add it to the queue. */
12962 queue_comp_unit (per_cu, this_cu->objfile);
12963
12964 return 1;
12965 }
12966
12967 /* Follow reference or signature attribute ATTR of SRC_DIE.
12968 On entry *REF_CU is the CU of SRC_DIE.
12969 On exit *REF_CU is the CU of the result. */
12970
12971 static struct die_info *
12972 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
12973 struct dwarf2_cu **ref_cu)
12974 {
12975 struct die_info *die;
12976
12977 if (is_ref_attr (attr))
12978 die = follow_die_ref (src_die, attr, ref_cu);
12979 else if (attr->form == DW_FORM_sig8)
12980 die = follow_die_sig (src_die, attr, ref_cu);
12981 else
12982 {
12983 dump_die_for_error (src_die);
12984 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
12985 (*ref_cu)->objfile->name);
12986 }
12987
12988 return die;
12989 }
12990
12991 /* Follow reference OFFSET.
12992 On entry *REF_CU is the CU of the source die referencing OFFSET.
12993 On exit *REF_CU is the CU of the result.
12994 Returns NULL if OFFSET is invalid. */
12995
12996 static struct die_info *
12997 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
12998 {
12999 struct die_info temp_die;
13000 struct dwarf2_cu *target_cu, *cu = *ref_cu;
13001
13002 gdb_assert (cu->per_cu != NULL);
13003
13004 target_cu = cu;
13005
13006 if (cu->per_cu->from_debug_types)
13007 {
13008 /* .debug_types CUs cannot reference anything outside their CU.
13009 If they need to, they have to reference a signatured type via
13010 DW_FORM_sig8. */
13011 if (! offset_in_cu_p (&cu->header, offset))
13012 return NULL;
13013 }
13014 else if (! offset_in_cu_p (&cu->header, offset))
13015 {
13016 struct dwarf2_per_cu_data *per_cu;
13017
13018 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
13019
13020 /* If necessary, add it to the queue and load its DIEs. */
13021 if (maybe_queue_comp_unit (cu, per_cu))
13022 load_full_comp_unit (per_cu, cu->objfile);
13023
13024 target_cu = per_cu->cu;
13025 }
13026 else if (cu->dies == NULL)
13027 {
13028 /* We're loading full DIEs during partial symbol reading. */
13029 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13030 load_full_comp_unit (cu->per_cu, cu->objfile);
13031 }
13032
13033 *ref_cu = target_cu;
13034 temp_die.offset = offset;
13035 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13036 }
13037
13038 /* Follow reference attribute ATTR of SRC_DIE.
13039 On entry *REF_CU is the CU of SRC_DIE.
13040 On exit *REF_CU is the CU of the result. */
13041
13042 static struct die_info *
13043 follow_die_ref (struct die_info *src_die, struct attribute *attr,
13044 struct dwarf2_cu **ref_cu)
13045 {
13046 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13047 struct dwarf2_cu *cu = *ref_cu;
13048 struct die_info *die;
13049
13050 die = follow_die_offset (offset, ref_cu);
13051 if (!die)
13052 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13053 "at 0x%x [in module %s]"),
13054 offset, src_die->offset, cu->objfile->name);
13055
13056 return die;
13057 }
13058
13059 /* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13060 value is intended for DW_OP_call*. */
13061
13062 struct dwarf2_locexpr_baton
13063 dwarf2_fetch_die_location_block (unsigned int offset,
13064 struct dwarf2_per_cu_data *per_cu)
13065 {
13066 struct dwarf2_cu *cu = per_cu->cu;
13067 struct die_info *die;
13068 struct attribute *attr;
13069 struct dwarf2_locexpr_baton retval;
13070
13071 die = follow_die_offset (offset, &cu);
13072 if (!die)
13073 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13074 offset, per_cu->cu->objfile->name);
13075
13076 attr = dwarf2_attr (die, DW_AT_location, cu);
13077 if (!attr)
13078 {
13079 /* DWARF: "If there is no such attribute, then there is no effect.". */
13080
13081 retval.data = NULL;
13082 retval.size = 0;
13083 }
13084 else
13085 {
13086 if (!attr_form_is_block (attr))
13087 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13088 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13089 offset, per_cu->cu->objfile->name);
13090
13091 retval.data = DW_BLOCK (attr)->data;
13092 retval.size = DW_BLOCK (attr)->size;
13093 }
13094 retval.per_cu = cu->per_cu;
13095 return retval;
13096 }
13097
13098 /* Follow the signature attribute ATTR in SRC_DIE.
13099 On entry *REF_CU is the CU of SRC_DIE.
13100 On exit *REF_CU is the CU of the result. */
13101
13102 static struct die_info *
13103 follow_die_sig (struct die_info *src_die, struct attribute *attr,
13104 struct dwarf2_cu **ref_cu)
13105 {
13106 struct objfile *objfile = (*ref_cu)->objfile;
13107 struct die_info temp_die;
13108 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13109 struct dwarf2_cu *sig_cu;
13110 struct die_info *die;
13111
13112 /* sig_type will be NULL if the signatured type is missing from
13113 the debug info. */
13114 if (sig_type == NULL)
13115 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13116 "at 0x%x [in module %s]"),
13117 src_die->offset, objfile->name);
13118
13119 /* If necessary, add it to the queue and load its DIEs. */
13120
13121 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13122 read_signatured_type (objfile, sig_type);
13123
13124 gdb_assert (sig_type->per_cu.cu != NULL);
13125
13126 sig_cu = sig_type->per_cu.cu;
13127 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13128 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13129 if (die)
13130 {
13131 *ref_cu = sig_cu;
13132 return die;
13133 }
13134
13135 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
13136 "at 0x%x [in module %s]"),
13137 sig_type->type_offset, src_die->offset, objfile->name);
13138 }
13139
13140 /* Given an offset of a signatured type, return its signatured_type. */
13141
13142 static struct signatured_type *
13143 lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13144 {
13145 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13146 unsigned int length, initial_length_size;
13147 unsigned int sig_offset;
13148 struct signatured_type find_entry, *type_sig;
13149
13150 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13151 sig_offset = (initial_length_size
13152 + 2 /*version*/
13153 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13154 + 1 /*address_size*/);
13155 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13156 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13157
13158 /* This is only used to lookup previously recorded types.
13159 If we didn't find it, it's our bug. */
13160 gdb_assert (type_sig != NULL);
13161 gdb_assert (offset == type_sig->offset);
13162
13163 return type_sig;
13164 }
13165
13166 /* Read in signatured type at OFFSET and build its CU and die(s). */
13167
13168 static void
13169 read_signatured_type_at_offset (struct objfile *objfile,
13170 unsigned int offset)
13171 {
13172 struct signatured_type *type_sig;
13173
13174 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13175
13176 /* We have the section offset, but we need the signature to do the
13177 hash table lookup. */
13178 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13179
13180 gdb_assert (type_sig->per_cu.cu == NULL);
13181
13182 read_signatured_type (objfile, type_sig);
13183
13184 gdb_assert (type_sig->per_cu.cu != NULL);
13185 }
13186
13187 /* Read in a signatured type and build its CU and DIEs. */
13188
13189 static void
13190 read_signatured_type (struct objfile *objfile,
13191 struct signatured_type *type_sig)
13192 {
13193 gdb_byte *types_ptr;
13194 struct die_reader_specs reader_specs;
13195 struct dwarf2_cu *cu;
13196 ULONGEST signature;
13197 struct cleanup *back_to, *free_cu_cleanup;
13198 struct attribute *attr;
13199
13200 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13201 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13202
13203 gdb_assert (type_sig->per_cu.cu == NULL);
13204
13205 cu = xmalloc (sizeof (struct dwarf2_cu));
13206 memset (cu, 0, sizeof (struct dwarf2_cu));
13207 obstack_init (&cu->comp_unit_obstack);
13208 cu->objfile = objfile;
13209 type_sig->per_cu.cu = cu;
13210 cu->per_cu = &type_sig->per_cu;
13211
13212 /* If an error occurs while loading, release our storage. */
13213 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13214
13215 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13216 types_ptr, objfile->obfd);
13217 gdb_assert (signature == type_sig->signature);
13218
13219 cu->die_hash
13220 = htab_create_alloc_ex (cu->header.length / 12,
13221 die_hash,
13222 die_eq,
13223 NULL,
13224 &cu->comp_unit_obstack,
13225 hashtab_obstack_allocate,
13226 dummy_obstack_deallocate);
13227
13228 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13229 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13230
13231 init_cu_die_reader (&reader_specs, cu);
13232
13233 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13234 NULL /*parent*/);
13235
13236 /* We try not to read any attributes in this function, because not
13237 all objfiles needed for references have been loaded yet, and symbol
13238 table processing isn't initialized. But we have to set the CU language,
13239 or we won't be able to build types correctly. */
13240 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
13241 if (attr)
13242 set_cu_language (DW_UNSND (attr), cu);
13243 else
13244 set_cu_language (language_minimal, cu);
13245
13246 do_cleanups (back_to);
13247
13248 /* We've successfully allocated this compilation unit. Let our caller
13249 clean it up when finished with it. */
13250 discard_cleanups (free_cu_cleanup);
13251
13252 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13253 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
13254 }
13255
13256 /* Decode simple location descriptions.
13257 Given a pointer to a dwarf block that defines a location, compute
13258 the location and return the value.
13259
13260 NOTE drow/2003-11-18: This function is called in two situations
13261 now: for the address of static or global variables (partial symbols
13262 only) and for offsets into structures which are expected to be
13263 (more or less) constant. The partial symbol case should go away,
13264 and only the constant case should remain. That will let this
13265 function complain more accurately. A few special modes are allowed
13266 without complaint for global variables (for instance, global
13267 register values and thread-local values).
13268
13269 A location description containing no operations indicates that the
13270 object is optimized out. The return value is 0 for that case.
13271 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13272 callers will only want a very basic result and this can become a
13273 complaint.
13274
13275 Note that stack[0] is unused except as a default error return.
13276 Note that stack overflow is not yet handled. */
13277
13278 static CORE_ADDR
13279 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
13280 {
13281 struct objfile *objfile = cu->objfile;
13282 int i;
13283 int size = blk->size;
13284 gdb_byte *data = blk->data;
13285 CORE_ADDR stack[64];
13286 int stacki;
13287 unsigned int bytes_read, unsnd;
13288 gdb_byte op;
13289
13290 i = 0;
13291 stacki = 0;
13292 stack[stacki] = 0;
13293
13294 while (i < size)
13295 {
13296 op = data[i++];
13297 switch (op)
13298 {
13299 case DW_OP_lit0:
13300 case DW_OP_lit1:
13301 case DW_OP_lit2:
13302 case DW_OP_lit3:
13303 case DW_OP_lit4:
13304 case DW_OP_lit5:
13305 case DW_OP_lit6:
13306 case DW_OP_lit7:
13307 case DW_OP_lit8:
13308 case DW_OP_lit9:
13309 case DW_OP_lit10:
13310 case DW_OP_lit11:
13311 case DW_OP_lit12:
13312 case DW_OP_lit13:
13313 case DW_OP_lit14:
13314 case DW_OP_lit15:
13315 case DW_OP_lit16:
13316 case DW_OP_lit17:
13317 case DW_OP_lit18:
13318 case DW_OP_lit19:
13319 case DW_OP_lit20:
13320 case DW_OP_lit21:
13321 case DW_OP_lit22:
13322 case DW_OP_lit23:
13323 case DW_OP_lit24:
13324 case DW_OP_lit25:
13325 case DW_OP_lit26:
13326 case DW_OP_lit27:
13327 case DW_OP_lit28:
13328 case DW_OP_lit29:
13329 case DW_OP_lit30:
13330 case DW_OP_lit31:
13331 stack[++stacki] = op - DW_OP_lit0;
13332 break;
13333
13334 case DW_OP_reg0:
13335 case DW_OP_reg1:
13336 case DW_OP_reg2:
13337 case DW_OP_reg3:
13338 case DW_OP_reg4:
13339 case DW_OP_reg5:
13340 case DW_OP_reg6:
13341 case DW_OP_reg7:
13342 case DW_OP_reg8:
13343 case DW_OP_reg9:
13344 case DW_OP_reg10:
13345 case DW_OP_reg11:
13346 case DW_OP_reg12:
13347 case DW_OP_reg13:
13348 case DW_OP_reg14:
13349 case DW_OP_reg15:
13350 case DW_OP_reg16:
13351 case DW_OP_reg17:
13352 case DW_OP_reg18:
13353 case DW_OP_reg19:
13354 case DW_OP_reg20:
13355 case DW_OP_reg21:
13356 case DW_OP_reg22:
13357 case DW_OP_reg23:
13358 case DW_OP_reg24:
13359 case DW_OP_reg25:
13360 case DW_OP_reg26:
13361 case DW_OP_reg27:
13362 case DW_OP_reg28:
13363 case DW_OP_reg29:
13364 case DW_OP_reg30:
13365 case DW_OP_reg31:
13366 stack[++stacki] = op - DW_OP_reg0;
13367 if (i < size)
13368 dwarf2_complex_location_expr_complaint ();
13369 break;
13370
13371 case DW_OP_regx:
13372 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13373 i += bytes_read;
13374 stack[++stacki] = unsnd;
13375 if (i < size)
13376 dwarf2_complex_location_expr_complaint ();
13377 break;
13378
13379 case DW_OP_addr:
13380 stack[++stacki] = read_address (objfile->obfd, &data[i],
13381 cu, &bytes_read);
13382 i += bytes_read;
13383 break;
13384
13385 case DW_OP_const1u:
13386 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13387 i += 1;
13388 break;
13389
13390 case DW_OP_const1s:
13391 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13392 i += 1;
13393 break;
13394
13395 case DW_OP_const2u:
13396 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13397 i += 2;
13398 break;
13399
13400 case DW_OP_const2s:
13401 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13402 i += 2;
13403 break;
13404
13405 case DW_OP_const4u:
13406 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13407 i += 4;
13408 break;
13409
13410 case DW_OP_const4s:
13411 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13412 i += 4;
13413 break;
13414
13415 case DW_OP_constu:
13416 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
13417 &bytes_read);
13418 i += bytes_read;
13419 break;
13420
13421 case DW_OP_consts:
13422 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13423 i += bytes_read;
13424 break;
13425
13426 case DW_OP_dup:
13427 stack[stacki + 1] = stack[stacki];
13428 stacki++;
13429 break;
13430
13431 case DW_OP_plus:
13432 stack[stacki - 1] += stack[stacki];
13433 stacki--;
13434 break;
13435
13436 case DW_OP_plus_uconst:
13437 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13438 i += bytes_read;
13439 break;
13440
13441 case DW_OP_minus:
13442 stack[stacki - 1] -= stack[stacki];
13443 stacki--;
13444 break;
13445
13446 case DW_OP_deref:
13447 /* If we're not the last op, then we definitely can't encode
13448 this using GDB's address_class enum. This is valid for partial
13449 global symbols, although the variable's address will be bogus
13450 in the psymtab. */
13451 if (i < size)
13452 dwarf2_complex_location_expr_complaint ();
13453 break;
13454
13455 case DW_OP_GNU_push_tls_address:
13456 /* The top of the stack has the offset from the beginning
13457 of the thread control block at which the variable is located. */
13458 /* Nothing should follow this operator, so the top of stack would
13459 be returned. */
13460 /* This is valid for partial global symbols, but the variable's
13461 address will be bogus in the psymtab. */
13462 if (i < size)
13463 dwarf2_complex_location_expr_complaint ();
13464 break;
13465
13466 case DW_OP_GNU_uninit:
13467 break;
13468
13469 default:
13470 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
13471 dwarf_stack_op_name (op, 1));
13472 return (stack[stacki]);
13473 }
13474 }
13475 return (stack[stacki]);
13476 }
13477
13478 /* memory allocation interface */
13479
13480 static struct dwarf_block *
13481 dwarf_alloc_block (struct dwarf2_cu *cu)
13482 {
13483 struct dwarf_block *blk;
13484
13485 blk = (struct dwarf_block *)
13486 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
13487 return (blk);
13488 }
13489
13490 static struct abbrev_info *
13491 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
13492 {
13493 struct abbrev_info *abbrev;
13494
13495 abbrev = (struct abbrev_info *)
13496 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
13497 memset (abbrev, 0, sizeof (struct abbrev_info));
13498 return (abbrev);
13499 }
13500
13501 static struct die_info *
13502 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
13503 {
13504 struct die_info *die;
13505 size_t size = sizeof (struct die_info);
13506
13507 if (num_attrs > 1)
13508 size += (num_attrs - 1) * sizeof (struct attribute);
13509
13510 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
13511 memset (die, 0, sizeof (struct die_info));
13512 return (die);
13513 }
13514
13515 \f
13516 /* Macro support. */
13517
13518
13519 /* Return the full name of file number I in *LH's file name table.
13520 Use COMP_DIR as the name of the current directory of the
13521 compilation. The result is allocated using xmalloc; the caller is
13522 responsible for freeing it. */
13523 static char *
13524 file_full_name (int file, struct line_header *lh, const char *comp_dir)
13525 {
13526 /* Is the file number a valid index into the line header's file name
13527 table? Remember that file numbers start with one, not zero. */
13528 if (1 <= file && file <= lh->num_file_names)
13529 {
13530 struct file_entry *fe = &lh->file_names[file - 1];
13531
13532 if (IS_ABSOLUTE_PATH (fe->name))
13533 return xstrdup (fe->name);
13534 else
13535 {
13536 const char *dir;
13537 int dir_len;
13538 char *full_name;
13539
13540 if (fe->dir_index)
13541 dir = lh->include_dirs[fe->dir_index - 1];
13542 else
13543 dir = comp_dir;
13544
13545 if (dir)
13546 {
13547 dir_len = strlen (dir);
13548 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13549 strcpy (full_name, dir);
13550 full_name[dir_len] = '/';
13551 strcpy (full_name + dir_len + 1, fe->name);
13552 return full_name;
13553 }
13554 else
13555 return xstrdup (fe->name);
13556 }
13557 }
13558 else
13559 {
13560 /* The compiler produced a bogus file number. We can at least
13561 record the macro definitions made in the file, even if we
13562 won't be able to find the file by name. */
13563 char fake_name[80];
13564
13565 sprintf (fake_name, "<bad macro file number %d>", file);
13566
13567 complaint (&symfile_complaints,
13568 _("bad file number in macro information (%d)"),
13569 file);
13570
13571 return xstrdup (fake_name);
13572 }
13573 }
13574
13575
13576 static struct macro_source_file *
13577 macro_start_file (int file, int line,
13578 struct macro_source_file *current_file,
13579 const char *comp_dir,
13580 struct line_header *lh, struct objfile *objfile)
13581 {
13582 /* The full name of this source file. */
13583 char *full_name = file_full_name (file, lh, comp_dir);
13584
13585 /* We don't create a macro table for this compilation unit
13586 at all until we actually get a filename. */
13587 if (! pending_macros)
13588 pending_macros = new_macro_table (&objfile->objfile_obstack,
13589 objfile->macro_cache);
13590
13591 if (! current_file)
13592 /* If we have no current file, then this must be the start_file
13593 directive for the compilation unit's main source file. */
13594 current_file = macro_set_main (pending_macros, full_name);
13595 else
13596 current_file = macro_include (current_file, line, full_name);
13597
13598 xfree (full_name);
13599
13600 return current_file;
13601 }
13602
13603
13604 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
13605 followed by a null byte. */
13606 static char *
13607 copy_string (const char *buf, int len)
13608 {
13609 char *s = xmalloc (len + 1);
13610
13611 memcpy (s, buf, len);
13612 s[len] = '\0';
13613 return s;
13614 }
13615
13616
13617 static const char *
13618 consume_improper_spaces (const char *p, const char *body)
13619 {
13620 if (*p == ' ')
13621 {
13622 complaint (&symfile_complaints,
13623 _("macro definition contains spaces in formal argument list:\n`%s'"),
13624 body);
13625
13626 while (*p == ' ')
13627 p++;
13628 }
13629
13630 return p;
13631 }
13632
13633
13634 static void
13635 parse_macro_definition (struct macro_source_file *file, int line,
13636 const char *body)
13637 {
13638 const char *p;
13639
13640 /* The body string takes one of two forms. For object-like macro
13641 definitions, it should be:
13642
13643 <macro name> " " <definition>
13644
13645 For function-like macro definitions, it should be:
13646
13647 <macro name> "() " <definition>
13648 or
13649 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
13650
13651 Spaces may appear only where explicitly indicated, and in the
13652 <definition>.
13653
13654 The Dwarf 2 spec says that an object-like macro's name is always
13655 followed by a space, but versions of GCC around March 2002 omit
13656 the space when the macro's definition is the empty string.
13657
13658 The Dwarf 2 spec says that there should be no spaces between the
13659 formal arguments in a function-like macro's formal argument list,
13660 but versions of GCC around March 2002 include spaces after the
13661 commas. */
13662
13663
13664 /* Find the extent of the macro name. The macro name is terminated
13665 by either a space or null character (for an object-like macro) or
13666 an opening paren (for a function-like macro). */
13667 for (p = body; *p; p++)
13668 if (*p == ' ' || *p == '(')
13669 break;
13670
13671 if (*p == ' ' || *p == '\0')
13672 {
13673 /* It's an object-like macro. */
13674 int name_len = p - body;
13675 char *name = copy_string (body, name_len);
13676 const char *replacement;
13677
13678 if (*p == ' ')
13679 replacement = body + name_len + 1;
13680 else
13681 {
13682 dwarf2_macro_malformed_definition_complaint (body);
13683 replacement = body + name_len;
13684 }
13685
13686 macro_define_object (file, line, name, replacement);
13687
13688 xfree (name);
13689 }
13690 else if (*p == '(')
13691 {
13692 /* It's a function-like macro. */
13693 char *name = copy_string (body, p - body);
13694 int argc = 0;
13695 int argv_size = 1;
13696 char **argv = xmalloc (argv_size * sizeof (*argv));
13697
13698 p++;
13699
13700 p = consume_improper_spaces (p, body);
13701
13702 /* Parse the formal argument list. */
13703 while (*p && *p != ')')
13704 {
13705 /* Find the extent of the current argument name. */
13706 const char *arg_start = p;
13707
13708 while (*p && *p != ',' && *p != ')' && *p != ' ')
13709 p++;
13710
13711 if (! *p || p == arg_start)
13712 dwarf2_macro_malformed_definition_complaint (body);
13713 else
13714 {
13715 /* Make sure argv has room for the new argument. */
13716 if (argc >= argv_size)
13717 {
13718 argv_size *= 2;
13719 argv = xrealloc (argv, argv_size * sizeof (*argv));
13720 }
13721
13722 argv[argc++] = copy_string (arg_start, p - arg_start);
13723 }
13724
13725 p = consume_improper_spaces (p, body);
13726
13727 /* Consume the comma, if present. */
13728 if (*p == ',')
13729 {
13730 p++;
13731
13732 p = consume_improper_spaces (p, body);
13733 }
13734 }
13735
13736 if (*p == ')')
13737 {
13738 p++;
13739
13740 if (*p == ' ')
13741 /* Perfectly formed definition, no complaints. */
13742 macro_define_function (file, line, name,
13743 argc, (const char **) argv,
13744 p + 1);
13745 else if (*p == '\0')
13746 {
13747 /* Complain, but do define it. */
13748 dwarf2_macro_malformed_definition_complaint (body);
13749 macro_define_function (file, line, name,
13750 argc, (const char **) argv,
13751 p);
13752 }
13753 else
13754 /* Just complain. */
13755 dwarf2_macro_malformed_definition_complaint (body);
13756 }
13757 else
13758 /* Just complain. */
13759 dwarf2_macro_malformed_definition_complaint (body);
13760
13761 xfree (name);
13762 {
13763 int i;
13764
13765 for (i = 0; i < argc; i++)
13766 xfree (argv[i]);
13767 }
13768 xfree (argv);
13769 }
13770 else
13771 dwarf2_macro_malformed_definition_complaint (body);
13772 }
13773
13774
13775 static void
13776 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
13777 char *comp_dir, bfd *abfd,
13778 struct dwarf2_cu *cu)
13779 {
13780 gdb_byte *mac_ptr, *mac_end;
13781 struct macro_source_file *current_file = 0;
13782 enum dwarf_macinfo_record_type macinfo_type;
13783 int at_commandline;
13784
13785 dwarf2_read_section (dwarf2_per_objfile->objfile,
13786 &dwarf2_per_objfile->macinfo);
13787 if (dwarf2_per_objfile->macinfo.buffer == NULL)
13788 {
13789 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
13790 return;
13791 }
13792
13793 /* First pass: Find the name of the base filename.
13794 This filename is needed in order to process all macros whose definition
13795 (or undefinition) comes from the command line. These macros are defined
13796 before the first DW_MACINFO_start_file entry, and yet still need to be
13797 associated to the base file.
13798
13799 To determine the base file name, we scan the macro definitions until we
13800 reach the first DW_MACINFO_start_file entry. We then initialize
13801 CURRENT_FILE accordingly so that any macro definition found before the
13802 first DW_MACINFO_start_file can still be associated to the base file. */
13803
13804 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
13805 mac_end = dwarf2_per_objfile->macinfo.buffer
13806 + dwarf2_per_objfile->macinfo.size;
13807
13808 do
13809 {
13810 /* Do we at least have room for a macinfo type byte? */
13811 if (mac_ptr >= mac_end)
13812 {
13813 /* Complaint is printed during the second pass as GDB will probably
13814 stop the first pass earlier upon finding DW_MACINFO_start_file. */
13815 break;
13816 }
13817
13818 macinfo_type = read_1_byte (abfd, mac_ptr);
13819 mac_ptr++;
13820
13821 switch (macinfo_type)
13822 {
13823 /* A zero macinfo type indicates the end of the macro
13824 information. */
13825 case 0:
13826 break;
13827
13828 case DW_MACINFO_define:
13829 case DW_MACINFO_undef:
13830 /* Only skip the data by MAC_PTR. */
13831 {
13832 unsigned int bytes_read;
13833
13834 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13835 mac_ptr += bytes_read;
13836 read_direct_string (abfd, mac_ptr, &bytes_read);
13837 mac_ptr += bytes_read;
13838 }
13839 break;
13840
13841 case DW_MACINFO_start_file:
13842 {
13843 unsigned int bytes_read;
13844 int line, file;
13845
13846 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13847 mac_ptr += bytes_read;
13848 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13849 mac_ptr += bytes_read;
13850
13851 current_file = macro_start_file (file, line, current_file, comp_dir,
13852 lh, cu->objfile);
13853 }
13854 break;
13855
13856 case DW_MACINFO_end_file:
13857 /* No data to skip by MAC_PTR. */
13858 break;
13859
13860 case DW_MACINFO_vendor_ext:
13861 /* Only skip the data by MAC_PTR. */
13862 {
13863 unsigned int bytes_read;
13864
13865 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13866 mac_ptr += bytes_read;
13867 read_direct_string (abfd, mac_ptr, &bytes_read);
13868 mac_ptr += bytes_read;
13869 }
13870 break;
13871
13872 default:
13873 break;
13874 }
13875 } while (macinfo_type != 0 && current_file == NULL);
13876
13877 /* Second pass: Process all entries.
13878
13879 Use the AT_COMMAND_LINE flag to determine whether we are still processing
13880 command-line macro definitions/undefinitions. This flag is unset when we
13881 reach the first DW_MACINFO_start_file entry. */
13882
13883 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
13884
13885 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
13886 GDB is still reading the definitions from command line. First
13887 DW_MACINFO_start_file will need to be ignored as it was already executed
13888 to create CURRENT_FILE for the main source holding also the command line
13889 definitions. On first met DW_MACINFO_start_file this flag is reset to
13890 normally execute all the remaining DW_MACINFO_start_file macinfos. */
13891
13892 at_commandline = 1;
13893
13894 do
13895 {
13896 /* Do we at least have room for a macinfo type byte? */
13897 if (mac_ptr >= mac_end)
13898 {
13899 dwarf2_macros_too_long_complaint ();
13900 break;
13901 }
13902
13903 macinfo_type = read_1_byte (abfd, mac_ptr);
13904 mac_ptr++;
13905
13906 switch (macinfo_type)
13907 {
13908 /* A zero macinfo type indicates the end of the macro
13909 information. */
13910 case 0:
13911 break;
13912
13913 case DW_MACINFO_define:
13914 case DW_MACINFO_undef:
13915 {
13916 unsigned int bytes_read;
13917 int line;
13918 char *body;
13919
13920 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13921 mac_ptr += bytes_read;
13922 body = read_direct_string (abfd, mac_ptr, &bytes_read);
13923 mac_ptr += bytes_read;
13924
13925 if (! current_file)
13926 {
13927 /* DWARF violation as no main source is present. */
13928 complaint (&symfile_complaints,
13929 _("debug info with no main source gives macro %s "
13930 "on line %d: %s"),
13931 macinfo_type == DW_MACINFO_define ?
13932 _("definition") :
13933 macinfo_type == DW_MACINFO_undef ?
13934 _("undefinition") :
13935 _("something-or-other"), line, body);
13936 break;
13937 }
13938 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
13939 complaint (&symfile_complaints,
13940 _("debug info gives %s macro %s with %s line %d: %s"),
13941 at_commandline ? _("command-line") : _("in-file"),
13942 macinfo_type == DW_MACINFO_define ?
13943 _("definition") :
13944 macinfo_type == DW_MACINFO_undef ?
13945 _("undefinition") :
13946 _("something-or-other"),
13947 line == 0 ? _("zero") : _("non-zero"), line, body);
13948
13949 if (macinfo_type == DW_MACINFO_define)
13950 parse_macro_definition (current_file, line, body);
13951 else if (macinfo_type == DW_MACINFO_undef)
13952 macro_undef (current_file, line, body);
13953 }
13954 break;
13955
13956 case DW_MACINFO_start_file:
13957 {
13958 unsigned int bytes_read;
13959 int line, file;
13960
13961 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13962 mac_ptr += bytes_read;
13963 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13964 mac_ptr += bytes_read;
13965
13966 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
13967 complaint (&symfile_complaints,
13968 _("debug info gives source %d included "
13969 "from %s at %s line %d"),
13970 file, at_commandline ? _("command-line") : _("file"),
13971 line == 0 ? _("zero") : _("non-zero"), line);
13972
13973 if (at_commandline)
13974 {
13975 /* This DW_MACINFO_start_file was executed in the pass one. */
13976 at_commandline = 0;
13977 }
13978 else
13979 current_file = macro_start_file (file, line,
13980 current_file, comp_dir,
13981 lh, cu->objfile);
13982 }
13983 break;
13984
13985 case DW_MACINFO_end_file:
13986 if (! current_file)
13987 complaint (&symfile_complaints,
13988 _("macro debug info has an unmatched `close_file' directive"));
13989 else
13990 {
13991 current_file = current_file->included_by;
13992 if (! current_file)
13993 {
13994 enum dwarf_macinfo_record_type next_type;
13995
13996 /* GCC circa March 2002 doesn't produce the zero
13997 type byte marking the end of the compilation
13998 unit. Complain if it's not there, but exit no
13999 matter what. */
14000
14001 /* Do we at least have room for a macinfo type byte? */
14002 if (mac_ptr >= mac_end)
14003 {
14004 dwarf2_macros_too_long_complaint ();
14005 return;
14006 }
14007
14008 /* We don't increment mac_ptr here, so this is just
14009 a look-ahead. */
14010 next_type = read_1_byte (abfd, mac_ptr);
14011 if (next_type != 0)
14012 complaint (&symfile_complaints,
14013 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
14014
14015 return;
14016 }
14017 }
14018 break;
14019
14020 case DW_MACINFO_vendor_ext:
14021 {
14022 unsigned int bytes_read;
14023 int constant;
14024 char *string;
14025
14026 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14027 mac_ptr += bytes_read;
14028 string = read_direct_string (abfd, mac_ptr, &bytes_read);
14029 mac_ptr += bytes_read;
14030
14031 /* We don't recognize any vendor extensions. */
14032 }
14033 break;
14034 }
14035 } while (macinfo_type != 0);
14036 }
14037
14038 /* Check if the attribute's form is a DW_FORM_block*
14039 if so return true else false. */
14040 static int
14041 attr_form_is_block (struct attribute *attr)
14042 {
14043 return (attr == NULL ? 0 :
14044 attr->form == DW_FORM_block1
14045 || attr->form == DW_FORM_block2
14046 || attr->form == DW_FORM_block4
14047 || attr->form == DW_FORM_block
14048 || attr->form == DW_FORM_exprloc);
14049 }
14050
14051 /* Return non-zero if ATTR's value is a section offset --- classes
14052 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14053 You may use DW_UNSND (attr) to retrieve such offsets.
14054
14055 Section 7.5.4, "Attribute Encodings", explains that no attribute
14056 may have a value that belongs to more than one of these classes; it
14057 would be ambiguous if we did, because we use the same forms for all
14058 of them. */
14059 static int
14060 attr_form_is_section_offset (struct attribute *attr)
14061 {
14062 return (attr->form == DW_FORM_data4
14063 || attr->form == DW_FORM_data8
14064 || attr->form == DW_FORM_sec_offset);
14065 }
14066
14067
14068 /* Return non-zero if ATTR's value falls in the 'constant' class, or
14069 zero otherwise. When this function returns true, you can apply
14070 dwarf2_get_attr_constant_value to it.
14071
14072 However, note that for some attributes you must check
14073 attr_form_is_section_offset before using this test. DW_FORM_data4
14074 and DW_FORM_data8 are members of both the constant class, and of
14075 the classes that contain offsets into other debug sections
14076 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14077 that, if an attribute's can be either a constant or one of the
14078 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14079 taken as section offsets, not constants. */
14080 static int
14081 attr_form_is_constant (struct attribute *attr)
14082 {
14083 switch (attr->form)
14084 {
14085 case DW_FORM_sdata:
14086 case DW_FORM_udata:
14087 case DW_FORM_data1:
14088 case DW_FORM_data2:
14089 case DW_FORM_data4:
14090 case DW_FORM_data8:
14091 return 1;
14092 default:
14093 return 0;
14094 }
14095 }
14096
14097 static void
14098 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
14099 struct dwarf2_cu *cu)
14100 {
14101 if (attr_form_is_section_offset (attr)
14102 /* ".debug_loc" may not exist at all, or the offset may be outside
14103 the section. If so, fall through to the complaint in the
14104 other branch. */
14105 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
14106 {
14107 struct dwarf2_loclist_baton *baton;
14108
14109 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14110 sizeof (struct dwarf2_loclist_baton));
14111 baton->per_cu = cu->per_cu;
14112 gdb_assert (baton->per_cu);
14113
14114 dwarf2_read_section (dwarf2_per_objfile->objfile,
14115 &dwarf2_per_objfile->loc);
14116
14117 /* We don't know how long the location list is, but make sure we
14118 don't run off the edge of the section. */
14119 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14120 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
14121 baton->base_address = cu->base_address;
14122 if (cu->base_known == 0)
14123 complaint (&symfile_complaints,
14124 _("Location list used without specifying the CU base address."));
14125
14126 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
14127 SYMBOL_LOCATION_BATON (sym) = baton;
14128 }
14129 else
14130 {
14131 struct dwarf2_locexpr_baton *baton;
14132
14133 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14134 sizeof (struct dwarf2_locexpr_baton));
14135 baton->per_cu = cu->per_cu;
14136 gdb_assert (baton->per_cu);
14137
14138 if (attr_form_is_block (attr))
14139 {
14140 /* Note that we're just copying the block's data pointer
14141 here, not the actual data. We're still pointing into the
14142 info_buffer for SYM's objfile; right now we never release
14143 that buffer, but when we do clean up properly this may
14144 need to change. */
14145 baton->size = DW_BLOCK (attr)->size;
14146 baton->data = DW_BLOCK (attr)->data;
14147 }
14148 else
14149 {
14150 dwarf2_invalid_attrib_class_complaint ("location description",
14151 SYMBOL_NATURAL_NAME (sym));
14152 baton->size = 0;
14153 baton->data = NULL;
14154 }
14155
14156 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
14157 SYMBOL_LOCATION_BATON (sym) = baton;
14158 }
14159 }
14160
14161 /* Return the OBJFILE associated with the compilation unit CU. If CU
14162 came from a separate debuginfo file, then the master objfile is
14163 returned. */
14164
14165 struct objfile *
14166 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14167 {
14168 struct objfile *objfile = per_cu->objfile;
14169
14170 /* Return the master objfile, so that we can report and look up the
14171 correct file containing this variable. */
14172 if (objfile->separate_debug_objfile_backlink)
14173 objfile = objfile->separate_debug_objfile_backlink;
14174
14175 return objfile;
14176 }
14177
14178 /* Return the address size given in the compilation unit header for CU. */
14179
14180 CORE_ADDR
14181 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14182 {
14183 if (per_cu->cu)
14184 return per_cu->cu->header.addr_size;
14185 else
14186 {
14187 /* If the CU is not currently read in, we re-read its header. */
14188 struct objfile *objfile = per_cu->objfile;
14189 struct dwarf2_per_objfile *per_objfile
14190 = objfile_data (objfile, dwarf2_objfile_data_key);
14191 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14192 struct comp_unit_head cu_header;
14193
14194 memset (&cu_header, 0, sizeof cu_header);
14195 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14196 return cu_header.addr_size;
14197 }
14198 }
14199
14200 /* Return the offset size given in the compilation unit header for CU. */
14201
14202 int
14203 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14204 {
14205 if (per_cu->cu)
14206 return per_cu->cu->header.offset_size;
14207 else
14208 {
14209 /* If the CU is not currently read in, we re-read its header. */
14210 struct objfile *objfile = per_cu->objfile;
14211 struct dwarf2_per_objfile *per_objfile
14212 = objfile_data (objfile, dwarf2_objfile_data_key);
14213 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14214 struct comp_unit_head cu_header;
14215
14216 memset (&cu_header, 0, sizeof cu_header);
14217 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14218 return cu_header.offset_size;
14219 }
14220 }
14221
14222 /* Return the text offset of the CU. The returned offset comes from
14223 this CU's objfile. If this objfile came from a separate debuginfo
14224 file, then the offset may be different from the corresponding
14225 offset in the parent objfile. */
14226
14227 CORE_ADDR
14228 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14229 {
14230 struct objfile *objfile = per_cu->objfile;
14231
14232 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14233 }
14234
14235 /* Locate the .debug_info compilation unit from CU's objfile which contains
14236 the DIE at OFFSET. Raises an error on failure. */
14237
14238 static struct dwarf2_per_cu_data *
14239 dwarf2_find_containing_comp_unit (unsigned int offset,
14240 struct objfile *objfile)
14241 {
14242 struct dwarf2_per_cu_data *this_cu;
14243 int low, high;
14244
14245 low = 0;
14246 high = dwarf2_per_objfile->n_comp_units - 1;
14247 while (high > low)
14248 {
14249 int mid = low + (high - low) / 2;
14250
14251 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14252 high = mid;
14253 else
14254 low = mid + 1;
14255 }
14256 gdb_assert (low == high);
14257 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14258 {
14259 if (low == 0)
14260 error (_("Dwarf Error: could not find partial DIE containing "
14261 "offset 0x%lx [in module %s]"),
14262 (long) offset, bfd_get_filename (objfile->obfd));
14263
14264 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14265 return dwarf2_per_objfile->all_comp_units[low-1];
14266 }
14267 else
14268 {
14269 this_cu = dwarf2_per_objfile->all_comp_units[low];
14270 if (low == dwarf2_per_objfile->n_comp_units - 1
14271 && offset >= this_cu->offset + this_cu->length)
14272 error (_("invalid dwarf2 offset %u"), offset);
14273 gdb_assert (offset < this_cu->offset + this_cu->length);
14274 return this_cu;
14275 }
14276 }
14277
14278 /* Locate the compilation unit from OBJFILE which is located at exactly
14279 OFFSET. Raises an error on failure. */
14280
14281 static struct dwarf2_per_cu_data *
14282 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
14283 {
14284 struct dwarf2_per_cu_data *this_cu;
14285
14286 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14287 if (this_cu->offset != offset)
14288 error (_("no compilation unit with offset %u."), offset);
14289 return this_cu;
14290 }
14291
14292 /* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */
14293
14294 static struct dwarf2_cu *
14295 alloc_one_comp_unit (struct objfile *objfile)
14296 {
14297 struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu));
14298 cu->objfile = objfile;
14299 obstack_init (&cu->comp_unit_obstack);
14300 return cu;
14301 }
14302
14303 /* Release one cached compilation unit, CU. We unlink it from the tree
14304 of compilation units, but we don't remove it from the read_in_chain;
14305 the caller is responsible for that.
14306 NOTE: DATA is a void * because this function is also used as a
14307 cleanup routine. */
14308
14309 static void
14310 free_one_comp_unit (void *data)
14311 {
14312 struct dwarf2_cu *cu = data;
14313
14314 if (cu->per_cu != NULL)
14315 cu->per_cu->cu = NULL;
14316 cu->per_cu = NULL;
14317
14318 obstack_free (&cu->comp_unit_obstack, NULL);
14319
14320 xfree (cu);
14321 }
14322
14323 /* This cleanup function is passed the address of a dwarf2_cu on the stack
14324 when we're finished with it. We can't free the pointer itself, but be
14325 sure to unlink it from the cache. Also release any associated storage
14326 and perform cache maintenance.
14327
14328 Only used during partial symbol parsing. */
14329
14330 static void
14331 free_stack_comp_unit (void *data)
14332 {
14333 struct dwarf2_cu *cu = data;
14334
14335 obstack_free (&cu->comp_unit_obstack, NULL);
14336 cu->partial_dies = NULL;
14337
14338 if (cu->per_cu != NULL)
14339 {
14340 /* This compilation unit is on the stack in our caller, so we
14341 should not xfree it. Just unlink it. */
14342 cu->per_cu->cu = NULL;
14343 cu->per_cu = NULL;
14344
14345 /* If we had a per-cu pointer, then we may have other compilation
14346 units loaded, so age them now. */
14347 age_cached_comp_units ();
14348 }
14349 }
14350
14351 /* Free all cached compilation units. */
14352
14353 static void
14354 free_cached_comp_units (void *data)
14355 {
14356 struct dwarf2_per_cu_data *per_cu, **last_chain;
14357
14358 per_cu = dwarf2_per_objfile->read_in_chain;
14359 last_chain = &dwarf2_per_objfile->read_in_chain;
14360 while (per_cu != NULL)
14361 {
14362 struct dwarf2_per_cu_data *next_cu;
14363
14364 next_cu = per_cu->cu->read_in_chain;
14365
14366 free_one_comp_unit (per_cu->cu);
14367 *last_chain = next_cu;
14368
14369 per_cu = next_cu;
14370 }
14371 }
14372
14373 /* Increase the age counter on each cached compilation unit, and free
14374 any that are too old. */
14375
14376 static void
14377 age_cached_comp_units (void)
14378 {
14379 struct dwarf2_per_cu_data *per_cu, **last_chain;
14380
14381 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14382 per_cu = dwarf2_per_objfile->read_in_chain;
14383 while (per_cu != NULL)
14384 {
14385 per_cu->cu->last_used ++;
14386 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14387 dwarf2_mark (per_cu->cu);
14388 per_cu = per_cu->cu->read_in_chain;
14389 }
14390
14391 per_cu = dwarf2_per_objfile->read_in_chain;
14392 last_chain = &dwarf2_per_objfile->read_in_chain;
14393 while (per_cu != NULL)
14394 {
14395 struct dwarf2_per_cu_data *next_cu;
14396
14397 next_cu = per_cu->cu->read_in_chain;
14398
14399 if (!per_cu->cu->mark)
14400 {
14401 free_one_comp_unit (per_cu->cu);
14402 *last_chain = next_cu;
14403 }
14404 else
14405 last_chain = &per_cu->cu->read_in_chain;
14406
14407 per_cu = next_cu;
14408 }
14409 }
14410
14411 /* Remove a single compilation unit from the cache. */
14412
14413 static void
14414 free_one_cached_comp_unit (void *target_cu)
14415 {
14416 struct dwarf2_per_cu_data *per_cu, **last_chain;
14417
14418 per_cu = dwarf2_per_objfile->read_in_chain;
14419 last_chain = &dwarf2_per_objfile->read_in_chain;
14420 while (per_cu != NULL)
14421 {
14422 struct dwarf2_per_cu_data *next_cu;
14423
14424 next_cu = per_cu->cu->read_in_chain;
14425
14426 if (per_cu->cu == target_cu)
14427 {
14428 free_one_comp_unit (per_cu->cu);
14429 *last_chain = next_cu;
14430 break;
14431 }
14432 else
14433 last_chain = &per_cu->cu->read_in_chain;
14434
14435 per_cu = next_cu;
14436 }
14437 }
14438
14439 /* Release all extra memory associated with OBJFILE. */
14440
14441 void
14442 dwarf2_free_objfile (struct objfile *objfile)
14443 {
14444 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14445
14446 if (dwarf2_per_objfile == NULL)
14447 return;
14448
14449 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14450 free_cached_comp_units (NULL);
14451
14452 if (dwarf2_per_objfile->using_index)
14453 {
14454 int i;
14455
14456 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
14457 {
14458 int j;
14459 struct dwarf2_per_cu_data *per_cu =
14460 dwarf2_per_objfile->all_comp_units[i];
14461
14462 if (!per_cu->v.quick->lines)
14463 continue;
14464
14465 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
14466 {
14467 if (per_cu->v.quick->file_names)
14468 xfree ((void *) per_cu->v.quick->file_names[j]);
14469 if (per_cu->v.quick->full_names)
14470 xfree ((void *) per_cu->v.quick->full_names[j]);
14471 }
14472
14473 free_line_header (per_cu->v.quick->lines);
14474 }
14475 }
14476
14477 /* Everything else should be on the objfile obstack. */
14478 }
14479
14480 /* A pair of DIE offset and GDB type pointer. We store these
14481 in a hash table separate from the DIEs, and preserve them
14482 when the DIEs are flushed out of cache. */
14483
14484 struct dwarf2_offset_and_type
14485 {
14486 unsigned int offset;
14487 struct type *type;
14488 };
14489
14490 /* Hash function for a dwarf2_offset_and_type. */
14491
14492 static hashval_t
14493 offset_and_type_hash (const void *item)
14494 {
14495 const struct dwarf2_offset_and_type *ofs = item;
14496
14497 return ofs->offset;
14498 }
14499
14500 /* Equality function for a dwarf2_offset_and_type. */
14501
14502 static int
14503 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14504 {
14505 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14506 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
14507
14508 return ofs_lhs->offset == ofs_rhs->offset;
14509 }
14510
14511 /* Set the type associated with DIE to TYPE. Save it in CU's hash
14512 table if necessary. For convenience, return TYPE.
14513
14514 The DIEs reading must have careful ordering to:
14515 * Not cause infite loops trying to read in DIEs as a prerequisite for
14516 reading current DIE.
14517 * Not trying to dereference contents of still incompletely read in types
14518 while reading in other DIEs.
14519 * Enable referencing still incompletely read in types just by a pointer to
14520 the type without accessing its fields.
14521
14522 Therefore caller should follow these rules:
14523 * Try to fetch any prerequisite types we may need to build this DIE type
14524 before building the type and calling set_die_type.
14525 * After building type call set_die_type for current DIE as soon as
14526 possible before fetching more types to complete the current type.
14527 * Make the type as complete as possible before fetching more types. */
14528
14529 static struct type *
14530 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14531 {
14532 struct dwarf2_offset_and_type **slot, ofs;
14533 struct objfile *objfile = cu->objfile;
14534 htab_t *type_hash_ptr;
14535
14536 /* For Ada types, make sure that the gnat-specific data is always
14537 initialized (if not already set). There are a few types where
14538 we should not be doing so, because the type-specific area is
14539 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14540 where the type-specific area is used to store the floatformat).
14541 But this is not a problem, because the gnat-specific information
14542 is actually not needed for these types. */
14543 if (need_gnat_info (cu)
14544 && TYPE_CODE (type) != TYPE_CODE_FUNC
14545 && TYPE_CODE (type) != TYPE_CODE_FLT
14546 && !HAVE_GNAT_AUX_INFO (type))
14547 INIT_GNAT_SPECIFIC (type);
14548
14549 if (cu->per_cu->from_debug_types)
14550 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14551 else
14552 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14553
14554 if (*type_hash_ptr == NULL)
14555 {
14556 *type_hash_ptr
14557 = htab_create_alloc_ex (127,
14558 offset_and_type_hash,
14559 offset_and_type_eq,
14560 NULL,
14561 &objfile->objfile_obstack,
14562 hashtab_obstack_allocate,
14563 dummy_obstack_deallocate);
14564 }
14565
14566 ofs.offset = die->offset;
14567 ofs.type = type;
14568 slot = (struct dwarf2_offset_and_type **)
14569 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
14570 if (*slot)
14571 complaint (&symfile_complaints,
14572 _("A problem internal to GDB: DIE 0x%x has type already set"),
14573 die->offset);
14574 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
14575 **slot = ofs;
14576 return type;
14577 }
14578
14579 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14580 table, or return NULL if the die does not have a saved type. */
14581
14582 static struct type *
14583 get_die_type_at_offset (unsigned int offset,
14584 struct dwarf2_per_cu_data *per_cu)
14585 {
14586 struct dwarf2_offset_and_type *slot, ofs;
14587 htab_t type_hash;
14588
14589 if (per_cu->from_debug_types)
14590 type_hash = dwarf2_per_objfile->debug_types_type_hash;
14591 else
14592 type_hash = dwarf2_per_objfile->debug_info_type_hash;
14593 if (type_hash == NULL)
14594 return NULL;
14595
14596 ofs.offset = offset;
14597 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
14598 if (slot)
14599 return slot->type;
14600 else
14601 return NULL;
14602 }
14603
14604 /* Look up the type for DIE in the appropriate type_hash table,
14605 or return NULL if DIE does not have a saved type. */
14606
14607 static struct type *
14608 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
14609 {
14610 return get_die_type_at_offset (die->offset, cu->per_cu);
14611 }
14612
14613 /* Add a dependence relationship from CU to REF_PER_CU. */
14614
14615 static void
14616 dwarf2_add_dependence (struct dwarf2_cu *cu,
14617 struct dwarf2_per_cu_data *ref_per_cu)
14618 {
14619 void **slot;
14620
14621 if (cu->dependencies == NULL)
14622 cu->dependencies
14623 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
14624 NULL, &cu->comp_unit_obstack,
14625 hashtab_obstack_allocate,
14626 dummy_obstack_deallocate);
14627
14628 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
14629 if (*slot == NULL)
14630 *slot = ref_per_cu;
14631 }
14632
14633 /* Subroutine of dwarf2_mark to pass to htab_traverse.
14634 Set the mark field in every compilation unit in the
14635 cache that we must keep because we are keeping CU. */
14636
14637 static int
14638 dwarf2_mark_helper (void **slot, void *data)
14639 {
14640 struct dwarf2_per_cu_data *per_cu;
14641
14642 per_cu = (struct dwarf2_per_cu_data *) *slot;
14643 if (per_cu->cu->mark)
14644 return 1;
14645 per_cu->cu->mark = 1;
14646
14647 if (per_cu->cu->dependencies != NULL)
14648 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
14649
14650 return 1;
14651 }
14652
14653 /* Set the mark field in CU and in every other compilation unit in the
14654 cache that we must keep because we are keeping CU. */
14655
14656 static void
14657 dwarf2_mark (struct dwarf2_cu *cu)
14658 {
14659 if (cu->mark)
14660 return;
14661 cu->mark = 1;
14662 if (cu->dependencies != NULL)
14663 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
14664 }
14665
14666 static void
14667 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
14668 {
14669 while (per_cu)
14670 {
14671 per_cu->cu->mark = 0;
14672 per_cu = per_cu->cu->read_in_chain;
14673 }
14674 }
14675
14676 /* Trivial hash function for partial_die_info: the hash value of a DIE
14677 is its offset in .debug_info for this objfile. */
14678
14679 static hashval_t
14680 partial_die_hash (const void *item)
14681 {
14682 const struct partial_die_info *part_die = item;
14683
14684 return part_die->offset;
14685 }
14686
14687 /* Trivial comparison function for partial_die_info structures: two DIEs
14688 are equal if they have the same offset. */
14689
14690 static int
14691 partial_die_eq (const void *item_lhs, const void *item_rhs)
14692 {
14693 const struct partial_die_info *part_die_lhs = item_lhs;
14694 const struct partial_die_info *part_die_rhs = item_rhs;
14695
14696 return part_die_lhs->offset == part_die_rhs->offset;
14697 }
14698
14699 static struct cmd_list_element *set_dwarf2_cmdlist;
14700 static struct cmd_list_element *show_dwarf2_cmdlist;
14701
14702 static void
14703 set_dwarf2_cmd (char *args, int from_tty)
14704 {
14705 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
14706 }
14707
14708 static void
14709 show_dwarf2_cmd (char *args, int from_tty)
14710 {
14711 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
14712 }
14713
14714 /* If section described by INFO was mmapped, munmap it now. */
14715
14716 static void
14717 munmap_section_buffer (struct dwarf2_section_info *info)
14718 {
14719 if (info->was_mmapped)
14720 {
14721 #ifdef HAVE_MMAP
14722 intptr_t begin = (intptr_t) info->buffer;
14723 intptr_t map_begin = begin & ~(pagesize - 1);
14724 size_t map_length = info->size + begin - map_begin;
14725
14726 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
14727 #else
14728 /* Without HAVE_MMAP, we should never be here to begin with. */
14729 gdb_assert_not_reached ("no mmap support");
14730 #endif
14731 }
14732 }
14733
14734 /* munmap debug sections for OBJFILE, if necessary. */
14735
14736 static void
14737 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
14738 {
14739 struct dwarf2_per_objfile *data = d;
14740
14741 /* This is sorted according to the order they're defined in to make it easier
14742 to keep in sync. */
14743 munmap_section_buffer (&data->info);
14744 munmap_section_buffer (&data->abbrev);
14745 munmap_section_buffer (&data->line);
14746 munmap_section_buffer (&data->loc);
14747 munmap_section_buffer (&data->macinfo);
14748 munmap_section_buffer (&data->str);
14749 munmap_section_buffer (&data->ranges);
14750 munmap_section_buffer (&data->types);
14751 munmap_section_buffer (&data->frame);
14752 munmap_section_buffer (&data->eh_frame);
14753 munmap_section_buffer (&data->gdb_index);
14754 }
14755
14756 \f
14757
14758 /* The contents of the hash table we create when building the string
14759 table. */
14760 struct strtab_entry
14761 {
14762 offset_type offset;
14763 const char *str;
14764 };
14765
14766 /* Hash function for a strtab_entry. */
14767
14768 static hashval_t
14769 hash_strtab_entry (const void *e)
14770 {
14771 const struct strtab_entry *entry = e;
14772 return mapped_index_string_hash (entry->str);
14773 }
14774
14775 /* Equality function for a strtab_entry. */
14776
14777 static int
14778 eq_strtab_entry (const void *a, const void *b)
14779 {
14780 const struct strtab_entry *ea = a;
14781 const struct strtab_entry *eb = b;
14782 return !strcmp (ea->str, eb->str);
14783 }
14784
14785 /* Create a strtab_entry hash table. */
14786
14787 static htab_t
14788 create_strtab (void)
14789 {
14790 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
14791 xfree, xcalloc, xfree);
14792 }
14793
14794 /* Add a string to the constant pool. Return the string's offset in
14795 host order. */
14796
14797 static offset_type
14798 add_string (htab_t table, struct obstack *cpool, const char *str)
14799 {
14800 void **slot;
14801 struct strtab_entry entry;
14802 struct strtab_entry *result;
14803
14804 entry.str = str;
14805 slot = htab_find_slot (table, &entry, INSERT);
14806 if (*slot)
14807 result = *slot;
14808 else
14809 {
14810 result = XNEW (struct strtab_entry);
14811 result->offset = obstack_object_size (cpool);
14812 result->str = str;
14813 obstack_grow_str0 (cpool, str);
14814 *slot = result;
14815 }
14816 return result->offset;
14817 }
14818
14819 /* An entry in the symbol table. */
14820 struct symtab_index_entry
14821 {
14822 /* The name of the symbol. */
14823 const char *name;
14824 /* The offset of the name in the constant pool. */
14825 offset_type index_offset;
14826 /* A sorted vector of the indices of all the CUs that hold an object
14827 of this name. */
14828 VEC (offset_type) *cu_indices;
14829 };
14830
14831 /* The symbol table. This is a power-of-2-sized hash table. */
14832 struct mapped_symtab
14833 {
14834 offset_type n_elements;
14835 offset_type size;
14836 struct symtab_index_entry **data;
14837 };
14838
14839 /* Hash function for a symtab_index_entry. */
14840
14841 static hashval_t
14842 hash_symtab_entry (const void *e)
14843 {
14844 const struct symtab_index_entry *entry = e;
14845 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
14846 sizeof (offset_type) * VEC_length (offset_type,
14847 entry->cu_indices),
14848 0);
14849 }
14850
14851 /* Equality function for a symtab_index_entry. */
14852
14853 static int
14854 eq_symtab_entry (const void *a, const void *b)
14855 {
14856 const struct symtab_index_entry *ea = a;
14857 const struct symtab_index_entry *eb = b;
14858 int len = VEC_length (offset_type, ea->cu_indices);
14859 if (len != VEC_length (offset_type, eb->cu_indices))
14860 return 0;
14861 return !memcmp (VEC_address (offset_type, ea->cu_indices),
14862 VEC_address (offset_type, eb->cu_indices),
14863 sizeof (offset_type) * len);
14864 }
14865
14866 /* Destroy a symtab_index_entry. */
14867
14868 static void
14869 delete_symtab_entry (void *p)
14870 {
14871 struct symtab_index_entry *entry = p;
14872 VEC_free (offset_type, entry->cu_indices);
14873 xfree (entry);
14874 }
14875
14876 /* Create a hash table holding symtab_index_entry objects. */
14877
14878 static htab_t
14879 create_symbol_hash_table (void)
14880 {
14881 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
14882 delete_symtab_entry, xcalloc, xfree);
14883 }
14884
14885 /* Create a new mapped symtab object. */
14886
14887 static struct mapped_symtab *
14888 create_mapped_symtab (void)
14889 {
14890 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
14891 symtab->n_elements = 0;
14892 symtab->size = 1024;
14893 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
14894 return symtab;
14895 }
14896
14897 /* Destroy a mapped_symtab. */
14898
14899 static void
14900 cleanup_mapped_symtab (void *p)
14901 {
14902 struct mapped_symtab *symtab = p;
14903 /* The contents of the array are freed when the other hash table is
14904 destroyed. */
14905 xfree (symtab->data);
14906 xfree (symtab);
14907 }
14908
14909 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
14910 the slot. */
14911
14912 static struct symtab_index_entry **
14913 find_slot (struct mapped_symtab *symtab, const char *name)
14914 {
14915 offset_type index, step, hash = mapped_index_string_hash (name);
14916
14917 index = hash & (symtab->size - 1);
14918 step = ((hash * 17) & (symtab->size - 1)) | 1;
14919
14920 for (;;)
14921 {
14922 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
14923 return &symtab->data[index];
14924 index = (index + step) & (symtab->size - 1);
14925 }
14926 }
14927
14928 /* Expand SYMTAB's hash table. */
14929
14930 static void
14931 hash_expand (struct mapped_symtab *symtab)
14932 {
14933 offset_type old_size = symtab->size;
14934 offset_type i;
14935 struct symtab_index_entry **old_entries = symtab->data;
14936
14937 symtab->size *= 2;
14938 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
14939
14940 for (i = 0; i < old_size; ++i)
14941 {
14942 if (old_entries[i])
14943 {
14944 struct symtab_index_entry **slot = find_slot (symtab,
14945 old_entries[i]->name);
14946 *slot = old_entries[i];
14947 }
14948 }
14949
14950 xfree (old_entries);
14951 }
14952
14953 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
14954 is the index of the CU in which the symbol appears. */
14955
14956 static void
14957 add_index_entry (struct mapped_symtab *symtab, const char *name,
14958 offset_type cu_index)
14959 {
14960 struct symtab_index_entry **slot;
14961
14962 ++symtab->n_elements;
14963 if (4 * symtab->n_elements / 3 >= symtab->size)
14964 hash_expand (symtab);
14965
14966 slot = find_slot (symtab, name);
14967 if (!*slot)
14968 {
14969 *slot = XNEW (struct symtab_index_entry);
14970 (*slot)->name = name;
14971 (*slot)->cu_indices = NULL;
14972 }
14973 /* Don't push an index twice. Due to how we add entries we only
14974 have to check the last one. */
14975 if (VEC_empty (offset_type, (*slot)->cu_indices)
14976 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
14977 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
14978 }
14979
14980 /* Add a vector of indices to the constant pool. */
14981
14982 static offset_type
14983 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
14984 struct symtab_index_entry *entry)
14985 {
14986 void **slot;
14987
14988 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
14989 if (!*slot)
14990 {
14991 offset_type len = VEC_length (offset_type, entry->cu_indices);
14992 offset_type val = MAYBE_SWAP (len);
14993 offset_type iter;
14994 int i;
14995
14996 *slot = entry;
14997 entry->index_offset = obstack_object_size (cpool);
14998
14999 obstack_grow (cpool, &val, sizeof (val));
15000 for (i = 0;
15001 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15002 ++i)
15003 {
15004 val = MAYBE_SWAP (iter);
15005 obstack_grow (cpool, &val, sizeof (val));
15006 }
15007 }
15008 else
15009 {
15010 struct symtab_index_entry *old_entry = *slot;
15011 entry->index_offset = old_entry->index_offset;
15012 entry = old_entry;
15013 }
15014 return entry->index_offset;
15015 }
15016
15017 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15018 constant pool entries going into the obstack CPOOL. */
15019
15020 static void
15021 write_hash_table (struct mapped_symtab *symtab,
15022 struct obstack *output, struct obstack *cpool)
15023 {
15024 offset_type i;
15025 htab_t symbol_hash_table;
15026 htab_t str_table;
15027
15028 symbol_hash_table = create_symbol_hash_table ();
15029 str_table = create_strtab ();
15030
15031 /* We add all the index vectors to the constant pool first, to
15032 ensure alignment is ok. */
15033 for (i = 0; i < symtab->size; ++i)
15034 {
15035 if (symtab->data[i])
15036 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
15037 }
15038
15039 /* Now write out the hash table. */
15040 for (i = 0; i < symtab->size; ++i)
15041 {
15042 offset_type str_off, vec_off;
15043
15044 if (symtab->data[i])
15045 {
15046 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15047 vec_off = symtab->data[i]->index_offset;
15048 }
15049 else
15050 {
15051 /* While 0 is a valid constant pool index, it is not valid
15052 to have 0 for both offsets. */
15053 str_off = 0;
15054 vec_off = 0;
15055 }
15056
15057 str_off = MAYBE_SWAP (str_off);
15058 vec_off = MAYBE_SWAP (vec_off);
15059
15060 obstack_grow (output, &str_off, sizeof (str_off));
15061 obstack_grow (output, &vec_off, sizeof (vec_off));
15062 }
15063
15064 htab_delete (str_table);
15065 htab_delete (symbol_hash_table);
15066 }
15067
15068 /* Write an address entry to ADDR_OBSTACK. The addresses are taken
15069 from PST; CU_INDEX is the index of the CU in the vector of all
15070 CUs. */
15071
15072 static void
15073 add_address_entry (struct objfile *objfile,
15074 struct obstack *addr_obstack, struct partial_symtab *pst,
15075 unsigned int cu_index)
15076 {
15077 offset_type offset;
15078 char addr[8];
15079 CORE_ADDR baseaddr;
15080
15081 /* Don't bother recording empty ranges. */
15082 if (pst->textlow == pst->texthigh)
15083 return;
15084
15085 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15086
15087 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->textlow - baseaddr);
15088 obstack_grow (addr_obstack, addr, 8);
15089 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->texthigh - baseaddr);
15090 obstack_grow (addr_obstack, addr, 8);
15091 offset = MAYBE_SWAP (cu_index);
15092 obstack_grow (addr_obstack, &offset, sizeof (offset_type));
15093 }
15094
15095 /* Add a list of partial symbols to SYMTAB. */
15096
15097 static void
15098 write_psymbols (struct mapped_symtab *symtab,
15099 htab_t psyms_seen,
15100 struct partial_symbol **psymp,
15101 int count,
15102 offset_type cu_index,
15103 int is_static)
15104 {
15105 for (; count-- > 0; ++psymp)
15106 {
15107 void **slot, *lookup;
15108
15109 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15110 error (_("Ada is not currently supported by the index"));
15111
15112 /* We only want to add a given psymbol once. However, we also
15113 want to account for whether it is global or static. So, we
15114 may add it twice, using slightly different values. */
15115 if (is_static)
15116 {
15117 uintptr_t val = 1 | (uintptr_t) *psymp;
15118
15119 lookup = (void *) val;
15120 }
15121 else
15122 lookup = *psymp;
15123
15124 /* Only add a given psymbol once. */
15125 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15126 if (!*slot)
15127 {
15128 *slot = lookup;
15129 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15130 }
15131 }
15132 }
15133
15134 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
15135 exception if there is an error. */
15136
15137 static void
15138 write_obstack (FILE *file, struct obstack *obstack)
15139 {
15140 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15141 file)
15142 != obstack_object_size (obstack))
15143 error (_("couldn't data write to file"));
15144 }
15145
15146 /* Unlink a file if the argument is not NULL. */
15147
15148 static void
15149 unlink_if_set (void *p)
15150 {
15151 char **filename = p;
15152 if (*filename)
15153 unlink (*filename);
15154 }
15155
15156 /* A helper struct used when iterating over debug_types. */
15157 struct signatured_type_index_data
15158 {
15159 struct objfile *objfile;
15160 struct mapped_symtab *symtab;
15161 struct obstack *types_list;
15162 htab_t psyms_seen;
15163 int cu_index;
15164 };
15165
15166 /* A helper function that writes a single signatured_type to an
15167 obstack. */
15168
15169 static int
15170 write_one_signatured_type (void **slot, void *d)
15171 {
15172 struct signatured_type_index_data *info = d;
15173 struct signatured_type *entry = (struct signatured_type *) *slot;
15174 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15175 struct partial_symtab *psymtab = per_cu->v.psymtab;
15176 gdb_byte val[8];
15177
15178 write_psymbols (info->symtab,
15179 info->psyms_seen,
15180 info->objfile->global_psymbols.list + psymtab->globals_offset,
15181 psymtab->n_global_syms, info->cu_index,
15182 0);
15183 write_psymbols (info->symtab,
15184 info->psyms_seen,
15185 info->objfile->static_psymbols.list + psymtab->statics_offset,
15186 psymtab->n_static_syms, info->cu_index,
15187 1);
15188
15189 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15190 obstack_grow (info->types_list, val, 8);
15191 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15192 obstack_grow (info->types_list, val, 8);
15193 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15194 obstack_grow (info->types_list, val, 8);
15195
15196 ++info->cu_index;
15197
15198 return 1;
15199 }
15200
15201 /* A cleanup function for an htab_t. */
15202
15203 static void
15204 cleanup_htab (void *arg)
15205 {
15206 htab_delete (arg);
15207 }
15208
15209 /* Create an index file for OBJFILE in the directory DIR. */
15210
15211 static void
15212 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15213 {
15214 struct cleanup *cleanup;
15215 char *filename, *cleanup_filename;
15216 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15217 struct obstack cu_list, types_cu_list;
15218 int i;
15219 FILE *out_file;
15220 struct mapped_symtab *symtab;
15221 offset_type val, size_of_contents, total_len;
15222 struct stat st;
15223 char buf[8];
15224 htab_t psyms_seen;
15225
15226 if (!objfile->psymtabs)
15227 return;
15228 if (dwarf2_per_objfile->using_index)
15229 error (_("Cannot use an index to create the index"));
15230
15231 if (stat (objfile->name, &st) < 0)
15232 perror_with_name (_("Could not stat"));
15233
15234 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15235 INDEX_SUFFIX, (char *) NULL);
15236 cleanup = make_cleanup (xfree, filename);
15237
15238 out_file = fopen (filename, "wb");
15239 if (!out_file)
15240 error (_("Can't open `%s' for writing"), filename);
15241
15242 cleanup_filename = filename;
15243 make_cleanup (unlink_if_set, &cleanup_filename);
15244
15245 symtab = create_mapped_symtab ();
15246 make_cleanup (cleanup_mapped_symtab, symtab);
15247
15248 obstack_init (&addr_obstack);
15249 make_cleanup_obstack_free (&addr_obstack);
15250
15251 obstack_init (&cu_list);
15252 make_cleanup_obstack_free (&cu_list);
15253
15254 obstack_init (&types_cu_list);
15255 make_cleanup_obstack_free (&types_cu_list);
15256
15257 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15258 NULL, xcalloc, xfree);
15259 make_cleanup (cleanup_htab, psyms_seen);
15260
15261 /* The list is already sorted, so we don't need to do additional
15262 work here. Also, the debug_types entries do not appear in
15263 all_comp_units, but only in their own hash table. */
15264 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15265 {
15266 struct dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->all_comp_units[i];
15267 struct partial_symtab *psymtab = per_cu->v.psymtab;
15268 gdb_byte val[8];
15269
15270 write_psymbols (symtab,
15271 psyms_seen,
15272 objfile->global_psymbols.list + psymtab->globals_offset,
15273 psymtab->n_global_syms, i,
15274 0);
15275 write_psymbols (symtab,
15276 psyms_seen,
15277 objfile->static_psymbols.list + psymtab->statics_offset,
15278 psymtab->n_static_syms, i,
15279 1);
15280
15281 add_address_entry (objfile, &addr_obstack, psymtab, i);
15282
15283 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
15284 obstack_grow (&cu_list, val, 8);
15285 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
15286 obstack_grow (&cu_list, val, 8);
15287 }
15288
15289 /* Write out the .debug_type entries, if any. */
15290 if (dwarf2_per_objfile->signatured_types)
15291 {
15292 struct signatured_type_index_data sig_data;
15293
15294 sig_data.objfile = objfile;
15295 sig_data.symtab = symtab;
15296 sig_data.types_list = &types_cu_list;
15297 sig_data.psyms_seen = psyms_seen;
15298 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15299 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15300 write_one_signatured_type, &sig_data);
15301 }
15302
15303 obstack_init (&constant_pool);
15304 make_cleanup_obstack_free (&constant_pool);
15305 obstack_init (&symtab_obstack);
15306 make_cleanup_obstack_free (&symtab_obstack);
15307 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15308
15309 obstack_init (&contents);
15310 make_cleanup_obstack_free (&contents);
15311 size_of_contents = 6 * sizeof (offset_type);
15312 total_len = size_of_contents;
15313
15314 /* The version number. */
15315 val = MAYBE_SWAP (3);
15316 obstack_grow (&contents, &val, sizeof (val));
15317
15318 /* The offset of the CU list from the start of the file. */
15319 val = MAYBE_SWAP (total_len);
15320 obstack_grow (&contents, &val, sizeof (val));
15321 total_len += obstack_object_size (&cu_list);
15322
15323 /* The offset of the types CU list from the start of the file. */
15324 val = MAYBE_SWAP (total_len);
15325 obstack_grow (&contents, &val, sizeof (val));
15326 total_len += obstack_object_size (&types_cu_list);
15327
15328 /* The offset of the address table from the start of the file. */
15329 val = MAYBE_SWAP (total_len);
15330 obstack_grow (&contents, &val, sizeof (val));
15331 total_len += obstack_object_size (&addr_obstack);
15332
15333 /* The offset of the symbol table from the start of the file. */
15334 val = MAYBE_SWAP (total_len);
15335 obstack_grow (&contents, &val, sizeof (val));
15336 total_len += obstack_object_size (&symtab_obstack);
15337
15338 /* The offset of the constant pool from the start of the file. */
15339 val = MAYBE_SWAP (total_len);
15340 obstack_grow (&contents, &val, sizeof (val));
15341 total_len += obstack_object_size (&constant_pool);
15342
15343 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15344
15345 write_obstack (out_file, &contents);
15346 write_obstack (out_file, &cu_list);
15347 write_obstack (out_file, &types_cu_list);
15348 write_obstack (out_file, &addr_obstack);
15349 write_obstack (out_file, &symtab_obstack);
15350 write_obstack (out_file, &constant_pool);
15351
15352 fclose (out_file);
15353
15354 /* We want to keep the file, so we set cleanup_filename to NULL
15355 here. See unlink_if_set. */
15356 cleanup_filename = NULL;
15357
15358 do_cleanups (cleanup);
15359 }
15360
15361 /* The mapped index file format is designed to be directly mmap()able
15362 on any architecture. In most cases, a datum is represented using a
15363 little-endian 32-bit integer value, called an offset_type. Big
15364 endian machines must byte-swap the values before using them.
15365 Exceptions to this rule are noted. The data is laid out such that
15366 alignment is always respected.
15367
15368 A mapped index consists of several sections.
15369
15370 1. The file header. This is a sequence of values, of offset_type
15371 unless otherwise noted:
15372
15373 [0] The version number, currently 3. Versions 1 and 2 are
15374 obsolete.
15375 [1] The offset, from the start of the file, of the CU list.
15376 [2] The offset, from the start of the file, of the types CU list.
15377 Note that this section can be empty, in which case this offset will
15378 be equal to the next offset.
15379 [3] The offset, from the start of the file, of the address section.
15380 [4] The offset, from the start of the file, of the symbol table.
15381 [5] The offset, from the start of the file, of the constant pool.
15382
15383 2. The CU list. This is a sequence of pairs of 64-bit
15384 little-endian values, sorted by the CU offset. The first element
15385 in each pair is the offset of a CU in the .debug_info section. The
15386 second element in each pair is the length of that CU. References
15387 to a CU elsewhere in the map are done using a CU index, which is
15388 just the 0-based index into this table. Note that if there are
15389 type CUs, then conceptually CUs and type CUs form a single list for
15390 the purposes of CU indices.
15391
15392 3. The types CU list. This is a sequence of triplets of 64-bit
15393 little-endian values. In a triplet, the first value is the CU
15394 offset, the second value is the type offset in the CU, and the
15395 third value is the type signature. The types CU list is not
15396 sorted.
15397
15398 4. The address section. The address section consists of a sequence
15399 of address entries. Each address entry has three elements.
15400 [0] The low address. This is a 64-bit little-endian value.
15401 [1] The high address. This is a 64-bit little-endian value.
15402 [2] The CU index. This is an offset_type value.
15403
15404 5. The symbol table. This is a hash table. The size of the hash
15405 table is always a power of 2. The initial hash and the step are
15406 currently defined by the `find_slot' function.
15407
15408 Each slot in the hash table consists of a pair of offset_type
15409 values. The first value is the offset of the symbol's name in the
15410 constant pool. The second value is the offset of the CU vector in
15411 the constant pool.
15412
15413 If both values are 0, then this slot in the hash table is empty.
15414 This is ok because while 0 is a valid constant pool index, it
15415 cannot be a valid index for both a string and a CU vector.
15416
15417 A string in the constant pool is stored as a \0-terminated string,
15418 as you'd expect.
15419
15420 A CU vector in the constant pool is a sequence of offset_type
15421 values. The first value is the number of CU indices in the vector.
15422 Each subsequent value is the index of a CU in the CU list. This
15423 element in the hash table is used to indicate which CUs define the
15424 symbol.
15425
15426 6. The constant pool. This is simply a bunch of bytes. It is
15427 organized so that alignment is correct: CU vectors are stored
15428 first, followed by strings. */
15429
15430 static void
15431 save_gdb_index_command (char *arg, int from_tty)
15432 {
15433 struct objfile *objfile;
15434
15435 if (!arg || !*arg)
15436 error (_("usage: save gdb-index DIRECTORY"));
15437
15438 ALL_OBJFILES (objfile)
15439 {
15440 struct stat st;
15441
15442 /* If the objfile does not correspond to an actual file, skip it. */
15443 if (stat (objfile->name, &st) < 0)
15444 continue;
15445
15446 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15447 if (dwarf2_per_objfile)
15448 {
15449 volatile struct gdb_exception except;
15450
15451 TRY_CATCH (except, RETURN_MASK_ERROR)
15452 {
15453 write_psymtabs_to_index (objfile, arg);
15454 }
15455 if (except.reason < 0)
15456 exception_fprintf (gdb_stderr, except,
15457 _("Error while writing index for `%s': "),
15458 objfile->name);
15459 }
15460 }
15461 }
15462
15463 \f
15464
15465 int dwarf2_always_disassemble;
15466
15467 static void
15468 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
15469 struct cmd_list_element *c, const char *value)
15470 {
15471 fprintf_filtered (file, _("\
15472 Whether to always disassemble DWARF expressions is %s.\n"),
15473 value);
15474 }
15475
15476 void _initialize_dwarf2_read (void);
15477
15478 void
15479 _initialize_dwarf2_read (void)
15480 {
15481 struct cmd_list_element *c;
15482
15483 dwarf2_objfile_data_key
15484 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
15485
15486 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
15487 Set DWARF 2 specific variables.\n\
15488 Configure DWARF 2 variables such as the cache size"),
15489 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
15490 0/*allow-unknown*/, &maintenance_set_cmdlist);
15491
15492 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
15493 Show DWARF 2 specific variables\n\
15494 Show DWARF 2 variables such as the cache size"),
15495 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
15496 0/*allow-unknown*/, &maintenance_show_cmdlist);
15497
15498 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
15499 &dwarf2_max_cache_age, _("\
15500 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
15501 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
15502 A higher limit means that cached compilation units will be stored\n\
15503 in memory longer, and more total memory will be used. Zero disables\n\
15504 caching, which can slow down startup."),
15505 NULL,
15506 show_dwarf2_max_cache_age,
15507 &set_dwarf2_cmdlist,
15508 &show_dwarf2_cmdlist);
15509
15510 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
15511 &dwarf2_always_disassemble, _("\
15512 Set whether `info address' always disassembles DWARF expressions."), _("\
15513 Show whether `info address' always disassembles DWARF expressions."), _("\
15514 When enabled, DWARF expressions are always printed in an assembly-like\n\
15515 syntax. When disabled, expressions will be printed in a more\n\
15516 conversational style, when possible."),
15517 NULL,
15518 show_dwarf2_always_disassemble,
15519 &set_dwarf2_cmdlist,
15520 &show_dwarf2_cmdlist);
15521
15522 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
15523 Set debugging of the dwarf2 DIE reader."), _("\
15524 Show debugging of the dwarf2 DIE reader."), _("\
15525 When enabled (non-zero), DIEs are dumped after they are read in.\n\
15526 The value is the maximum depth to print."),
15527 NULL,
15528 NULL,
15529 &setdebuglist, &showdebuglist);
15530
15531 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
15532 _("\
15533 Save a .gdb-index file.\n\
15534 Usage: save gdb-index DIRECTORY"),
15535 &save_cmdlist);
15536 set_cmd_completer (c, filename_completer);
15537 }
This page took 0.356159 seconds and 4 git commands to generate.