Enable support for the AArch64 dot-prod instruction in the Cortex A55 and A75 cpus.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "filename-seen-cache.h"
78 #include <fcntl.h>
79 #include <sys/types.h>
80 #include <algorithm>
81 #include <unordered_set>
82 #include <unordered_map>
83
84 typedef struct symbol *symbolp;
85 DEF_VEC_P (symbolp);
86
87 /* When == 1, print basic high level tracing messages.
88 When > 1, be more verbose.
89 This is in contrast to the low level DIE reading of dwarf_die_debug. */
90 static unsigned int dwarf_read_debug = 0;
91
92 /* When non-zero, dump DIEs after they are read in. */
93 static unsigned int dwarf_die_debug = 0;
94
95 /* When non-zero, dump line number entries as they are read in. */
96 static unsigned int dwarf_line_debug = 0;
97
98 /* When non-zero, cross-check physname against demangler. */
99 static int check_physname = 0;
100
101 /* When non-zero, do not reject deprecated .gdb_index sections. */
102 static int use_deprecated_index_sections = 0;
103
104 static const struct objfile_data *dwarf2_objfile_data_key;
105
106 /* The "aclass" indices for various kinds of computed DWARF symbols. */
107
108 static int dwarf2_locexpr_index;
109 static int dwarf2_loclist_index;
110 static int dwarf2_locexpr_block_index;
111 static int dwarf2_loclist_block_index;
112
113 /* A descriptor for dwarf sections.
114
115 S.ASECTION, SIZE are typically initialized when the objfile is first
116 scanned. BUFFER, READIN are filled in later when the section is read.
117 If the section contained compressed data then SIZE is updated to record
118 the uncompressed size of the section.
119
120 DWP file format V2 introduces a wrinkle that is easiest to handle by
121 creating the concept of virtual sections contained within a real section.
122 In DWP V2 the sections of the input DWO files are concatenated together
123 into one section, but section offsets are kept relative to the original
124 input section.
125 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
126 the real section this "virtual" section is contained in, and BUFFER,SIZE
127 describe the virtual section. */
128
129 struct dwarf2_section_info
130 {
131 union
132 {
133 /* If this is a real section, the bfd section. */
134 asection *section;
135 /* If this is a virtual section, pointer to the containing ("real")
136 section. */
137 struct dwarf2_section_info *containing_section;
138 } s;
139 /* Pointer to section data, only valid if readin. */
140 const gdb_byte *buffer;
141 /* The size of the section, real or virtual. */
142 bfd_size_type size;
143 /* If this is a virtual section, the offset in the real section.
144 Only valid if is_virtual. */
145 bfd_size_type virtual_offset;
146 /* True if we have tried to read this section. */
147 char readin;
148 /* True if this is a virtual section, False otherwise.
149 This specifies which of s.section and s.containing_section to use. */
150 char is_virtual;
151 };
152
153 typedef struct dwarf2_section_info dwarf2_section_info_def;
154 DEF_VEC_O (dwarf2_section_info_def);
155
156 /* All offsets in the index are of this type. It must be
157 architecture-independent. */
158 typedef uint32_t offset_type;
159
160 DEF_VEC_I (offset_type);
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((unsigned int) (value) <= 1); \
166 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure only legit values are used. */
170 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
173 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
174 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
178 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
179 do { \
180 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
181 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
182 } while (0)
183
184 /* A description of the mapped index. The file format is described in
185 a comment by the code that writes the index. */
186 struct mapped_index
187 {
188 /* Index data format version. */
189 int version;
190
191 /* The total length of the buffer. */
192 off_t total_size;
193
194 /* A pointer to the address table data. */
195 const gdb_byte *address_table;
196
197 /* Size of the address table data in bytes. */
198 offset_type address_table_size;
199
200 /* The symbol table, implemented as a hash table. */
201 const offset_type *symbol_table;
202
203 /* Size in slots, each slot is 2 offset_types. */
204 offset_type symbol_table_slots;
205
206 /* A pointer to the constant pool. */
207 const char *constant_pool;
208 };
209
210 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
211 DEF_VEC_P (dwarf2_per_cu_ptr);
212
213 struct tu_stats
214 {
215 int nr_uniq_abbrev_tables;
216 int nr_symtabs;
217 int nr_symtab_sharers;
218 int nr_stmt_less_type_units;
219 int nr_all_type_units_reallocs;
220 };
221
222 /* Collection of data recorded per objfile.
223 This hangs off of dwarf2_objfile_data_key. */
224
225 struct dwarf2_per_objfile
226 {
227 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
228 dwarf2 section names, or is NULL if the standard ELF names are
229 used. */
230 dwarf2_per_objfile (struct objfile *objfile,
231 const dwarf2_debug_sections *names);
232
233 ~dwarf2_per_objfile ();
234
235 /* Disable copy. */
236 dwarf2_per_objfile (const dwarf2_per_objfile &) = delete;
237 void operator= (const dwarf2_per_objfile &) = delete;
238
239 /* Free all cached compilation units. */
240 void free_cached_comp_units ();
241 private:
242 /* This function is mapped across the sections and remembers the
243 offset and size of each of the debugging sections we are
244 interested in. */
245 void locate_sections (bfd *abfd, asection *sectp,
246 const dwarf2_debug_sections &names);
247
248 public:
249 dwarf2_section_info info {};
250 dwarf2_section_info abbrev {};
251 dwarf2_section_info line {};
252 dwarf2_section_info loc {};
253 dwarf2_section_info loclists {};
254 dwarf2_section_info macinfo {};
255 dwarf2_section_info macro {};
256 dwarf2_section_info str {};
257 dwarf2_section_info line_str {};
258 dwarf2_section_info ranges {};
259 dwarf2_section_info rnglists {};
260 dwarf2_section_info addr {};
261 dwarf2_section_info frame {};
262 dwarf2_section_info eh_frame {};
263 dwarf2_section_info gdb_index {};
264
265 VEC (dwarf2_section_info_def) *types = NULL;
266
267 /* Back link. */
268 struct objfile *objfile = NULL;
269
270 /* Table of all the compilation units. This is used to locate
271 the target compilation unit of a particular reference. */
272 struct dwarf2_per_cu_data **all_comp_units = NULL;
273
274 /* The number of compilation units in ALL_COMP_UNITS. */
275 int n_comp_units = 0;
276
277 /* The number of .debug_types-related CUs. */
278 int n_type_units = 0;
279
280 /* The number of elements allocated in all_type_units.
281 If there are skeleton-less TUs, we add them to all_type_units lazily. */
282 int n_allocated_type_units = 0;
283
284 /* The .debug_types-related CUs (TUs).
285 This is stored in malloc space because we may realloc it. */
286 struct signatured_type **all_type_units = NULL;
287
288 /* Table of struct type_unit_group objects.
289 The hash key is the DW_AT_stmt_list value. */
290 htab_t type_unit_groups {};
291
292 /* A table mapping .debug_types signatures to its signatured_type entry.
293 This is NULL if the .debug_types section hasn't been read in yet. */
294 htab_t signatured_types {};
295
296 /* Type unit statistics, to see how well the scaling improvements
297 are doing. */
298 struct tu_stats tu_stats {};
299
300 /* A chain of compilation units that are currently read in, so that
301 they can be freed later. */
302 dwarf2_per_cu_data *read_in_chain = NULL;
303
304 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
305 This is NULL if the table hasn't been allocated yet. */
306 htab_t dwo_files {};
307
308 /* True if we've checked for whether there is a DWP file. */
309 bool dwp_checked = false;
310
311 /* The DWP file if there is one, or NULL. */
312 struct dwp_file *dwp_file = NULL;
313
314 /* The shared '.dwz' file, if one exists. This is used when the
315 original data was compressed using 'dwz -m'. */
316 struct dwz_file *dwz_file = NULL;
317
318 /* A flag indicating whether this objfile has a section loaded at a
319 VMA of 0. */
320 bool has_section_at_zero = false;
321
322 /* True if we are using the mapped index,
323 or we are faking it for OBJF_READNOW's sake. */
324 bool using_index = false;
325
326 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
327 mapped_index *index_table = NULL;
328
329 /* When using index_table, this keeps track of all quick_file_names entries.
330 TUs typically share line table entries with a CU, so we maintain a
331 separate table of all line table entries to support the sharing.
332 Note that while there can be way more TUs than CUs, we've already
333 sorted all the TUs into "type unit groups", grouped by their
334 DW_AT_stmt_list value. Therefore the only sharing done here is with a
335 CU and its associated TU group if there is one. */
336 htab_t quick_file_names_table {};
337
338 /* Set during partial symbol reading, to prevent queueing of full
339 symbols. */
340 bool reading_partial_symbols = false;
341
342 /* Table mapping type DIEs to their struct type *.
343 This is NULL if not allocated yet.
344 The mapping is done via (CU/TU + DIE offset) -> type. */
345 htab_t die_type_hash {};
346
347 /* The CUs we recently read. */
348 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
349
350 /* Table containing line_header indexed by offset and offset_in_dwz. */
351 htab_t line_header_hash {};
352
353 /* Table containing all filenames. This is an optional because the
354 table is lazily constructed on first access. */
355 gdb::optional<filename_seen_cache> filenames_cache;
356 };
357
358 static struct dwarf2_per_objfile *dwarf2_per_objfile;
359
360 /* Default names of the debugging sections. */
361
362 /* Note that if the debugging section has been compressed, it might
363 have a name like .zdebug_info. */
364
365 static const struct dwarf2_debug_sections dwarf2_elf_names =
366 {
367 { ".debug_info", ".zdebug_info" },
368 { ".debug_abbrev", ".zdebug_abbrev" },
369 { ".debug_line", ".zdebug_line" },
370 { ".debug_loc", ".zdebug_loc" },
371 { ".debug_loclists", ".zdebug_loclists" },
372 { ".debug_macinfo", ".zdebug_macinfo" },
373 { ".debug_macro", ".zdebug_macro" },
374 { ".debug_str", ".zdebug_str" },
375 { ".debug_line_str", ".zdebug_line_str" },
376 { ".debug_ranges", ".zdebug_ranges" },
377 { ".debug_rnglists", ".zdebug_rnglists" },
378 { ".debug_types", ".zdebug_types" },
379 { ".debug_addr", ".zdebug_addr" },
380 { ".debug_frame", ".zdebug_frame" },
381 { ".eh_frame", NULL },
382 { ".gdb_index", ".zgdb_index" },
383 23
384 };
385
386 /* List of DWO/DWP sections. */
387
388 static const struct dwop_section_names
389 {
390 struct dwarf2_section_names abbrev_dwo;
391 struct dwarf2_section_names info_dwo;
392 struct dwarf2_section_names line_dwo;
393 struct dwarf2_section_names loc_dwo;
394 struct dwarf2_section_names loclists_dwo;
395 struct dwarf2_section_names macinfo_dwo;
396 struct dwarf2_section_names macro_dwo;
397 struct dwarf2_section_names str_dwo;
398 struct dwarf2_section_names str_offsets_dwo;
399 struct dwarf2_section_names types_dwo;
400 struct dwarf2_section_names cu_index;
401 struct dwarf2_section_names tu_index;
402 }
403 dwop_section_names =
404 {
405 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
406 { ".debug_info.dwo", ".zdebug_info.dwo" },
407 { ".debug_line.dwo", ".zdebug_line.dwo" },
408 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
409 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
410 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
411 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
412 { ".debug_str.dwo", ".zdebug_str.dwo" },
413 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
414 { ".debug_types.dwo", ".zdebug_types.dwo" },
415 { ".debug_cu_index", ".zdebug_cu_index" },
416 { ".debug_tu_index", ".zdebug_tu_index" },
417 };
418
419 /* local data types */
420
421 /* The data in a compilation unit header, after target2host
422 translation, looks like this. */
423 struct comp_unit_head
424 {
425 unsigned int length;
426 short version;
427 unsigned char addr_size;
428 unsigned char signed_addr_p;
429 sect_offset abbrev_sect_off;
430
431 /* Size of file offsets; either 4 or 8. */
432 unsigned int offset_size;
433
434 /* Size of the length field; either 4 or 12. */
435 unsigned int initial_length_size;
436
437 enum dwarf_unit_type unit_type;
438
439 /* Offset to the first byte of this compilation unit header in the
440 .debug_info section, for resolving relative reference dies. */
441 sect_offset sect_off;
442
443 /* Offset to first die in this cu from the start of the cu.
444 This will be the first byte following the compilation unit header. */
445 cu_offset first_die_cu_offset;
446
447 /* 64-bit signature of this type unit - it is valid only for
448 UNIT_TYPE DW_UT_type. */
449 ULONGEST signature;
450
451 /* For types, offset in the type's DIE of the type defined by this TU. */
452 cu_offset type_cu_offset_in_tu;
453 };
454
455 /* Type used for delaying computation of method physnames.
456 See comments for compute_delayed_physnames. */
457 struct delayed_method_info
458 {
459 /* The type to which the method is attached, i.e., its parent class. */
460 struct type *type;
461
462 /* The index of the method in the type's function fieldlists. */
463 int fnfield_index;
464
465 /* The index of the method in the fieldlist. */
466 int index;
467
468 /* The name of the DIE. */
469 const char *name;
470
471 /* The DIE associated with this method. */
472 struct die_info *die;
473 };
474
475 typedef struct delayed_method_info delayed_method_info;
476 DEF_VEC_O (delayed_method_info);
477
478 /* Internal state when decoding a particular compilation unit. */
479 struct dwarf2_cu
480 {
481 /* The objfile containing this compilation unit. */
482 struct objfile *objfile;
483
484 /* The header of the compilation unit. */
485 struct comp_unit_head header;
486
487 /* Base address of this compilation unit. */
488 CORE_ADDR base_address;
489
490 /* Non-zero if base_address has been set. */
491 int base_known;
492
493 /* The language we are debugging. */
494 enum language language;
495 const struct language_defn *language_defn;
496
497 const char *producer;
498
499 /* The generic symbol table building routines have separate lists for
500 file scope symbols and all all other scopes (local scopes). So
501 we need to select the right one to pass to add_symbol_to_list().
502 We do it by keeping a pointer to the correct list in list_in_scope.
503
504 FIXME: The original dwarf code just treated the file scope as the
505 first local scope, and all other local scopes as nested local
506 scopes, and worked fine. Check to see if we really need to
507 distinguish these in buildsym.c. */
508 struct pending **list_in_scope;
509
510 /* The abbrev table for this CU.
511 Normally this points to the abbrev table in the objfile.
512 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
513 struct abbrev_table *abbrev_table;
514
515 /* Hash table holding all the loaded partial DIEs
516 with partial_die->offset.SECT_OFF as hash. */
517 htab_t partial_dies;
518
519 /* Storage for things with the same lifetime as this read-in compilation
520 unit, including partial DIEs. */
521 struct obstack comp_unit_obstack;
522
523 /* When multiple dwarf2_cu structures are living in memory, this field
524 chains them all together, so that they can be released efficiently.
525 We will probably also want a generation counter so that most-recently-used
526 compilation units are cached... */
527 struct dwarf2_per_cu_data *read_in_chain;
528
529 /* Backlink to our per_cu entry. */
530 struct dwarf2_per_cu_data *per_cu;
531
532 /* How many compilation units ago was this CU last referenced? */
533 int last_used;
534
535 /* A hash table of DIE cu_offset for following references with
536 die_info->offset.sect_off as hash. */
537 htab_t die_hash;
538
539 /* Full DIEs if read in. */
540 struct die_info *dies;
541
542 /* A set of pointers to dwarf2_per_cu_data objects for compilation
543 units referenced by this one. Only set during full symbol processing;
544 partial symbol tables do not have dependencies. */
545 htab_t dependencies;
546
547 /* Header data from the line table, during full symbol processing. */
548 struct line_header *line_header;
549 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
550 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
551 this is the DW_TAG_compile_unit die for this CU. We'll hold on
552 to the line header as long as this DIE is being processed. See
553 process_die_scope. */
554 die_info *line_header_die_owner;
555
556 /* A list of methods which need to have physnames computed
557 after all type information has been read. */
558 VEC (delayed_method_info) *method_list;
559
560 /* To be copied to symtab->call_site_htab. */
561 htab_t call_site_htab;
562
563 /* Non-NULL if this CU came from a DWO file.
564 There is an invariant here that is important to remember:
565 Except for attributes copied from the top level DIE in the "main"
566 (or "stub") file in preparation for reading the DWO file
567 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
568 Either there isn't a DWO file (in which case this is NULL and the point
569 is moot), or there is and either we're not going to read it (in which
570 case this is NULL) or there is and we are reading it (in which case this
571 is non-NULL). */
572 struct dwo_unit *dwo_unit;
573
574 /* The DW_AT_addr_base attribute if present, zero otherwise
575 (zero is a valid value though).
576 Note this value comes from the Fission stub CU/TU's DIE. */
577 ULONGEST addr_base;
578
579 /* The DW_AT_ranges_base attribute if present, zero otherwise
580 (zero is a valid value though).
581 Note this value comes from the Fission stub CU/TU's DIE.
582 Also note that the value is zero in the non-DWO case so this value can
583 be used without needing to know whether DWO files are in use or not.
584 N.B. This does not apply to DW_AT_ranges appearing in
585 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
586 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
587 DW_AT_ranges_base *would* have to be applied, and we'd have to care
588 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
589 ULONGEST ranges_base;
590
591 /* Mark used when releasing cached dies. */
592 unsigned int mark : 1;
593
594 /* This CU references .debug_loc. See the symtab->locations_valid field.
595 This test is imperfect as there may exist optimized debug code not using
596 any location list and still facing inlining issues if handled as
597 unoptimized code. For a future better test see GCC PR other/32998. */
598 unsigned int has_loclist : 1;
599
600 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
601 if all the producer_is_* fields are valid. This information is cached
602 because profiling CU expansion showed excessive time spent in
603 producer_is_gxx_lt_4_6. */
604 unsigned int checked_producer : 1;
605 unsigned int producer_is_gxx_lt_4_6 : 1;
606 unsigned int producer_is_gcc_lt_4_3 : 1;
607 unsigned int producer_is_icc : 1;
608
609 /* When set, the file that we're processing is known to have
610 debugging info for C++ namespaces. GCC 3.3.x did not produce
611 this information, but later versions do. */
612
613 unsigned int processing_has_namespace_info : 1;
614 };
615
616 /* Persistent data held for a compilation unit, even when not
617 processing it. We put a pointer to this structure in the
618 read_symtab_private field of the psymtab. */
619
620 struct dwarf2_per_cu_data
621 {
622 /* The start offset and length of this compilation unit.
623 NOTE: Unlike comp_unit_head.length, this length includes
624 initial_length_size.
625 If the DIE refers to a DWO file, this is always of the original die,
626 not the DWO file. */
627 sect_offset sect_off;
628 unsigned int length;
629
630 /* DWARF standard version this data has been read from (such as 4 or 5). */
631 short dwarf_version;
632
633 /* Flag indicating this compilation unit will be read in before
634 any of the current compilation units are processed. */
635 unsigned int queued : 1;
636
637 /* This flag will be set when reading partial DIEs if we need to load
638 absolutely all DIEs for this compilation unit, instead of just the ones
639 we think are interesting. It gets set if we look for a DIE in the
640 hash table and don't find it. */
641 unsigned int load_all_dies : 1;
642
643 /* Non-zero if this CU is from .debug_types.
644 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
645 this is non-zero. */
646 unsigned int is_debug_types : 1;
647
648 /* Non-zero if this CU is from the .dwz file. */
649 unsigned int is_dwz : 1;
650
651 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
652 This flag is only valid if is_debug_types is true.
653 We can't read a CU directly from a DWO file: There are required
654 attributes in the stub. */
655 unsigned int reading_dwo_directly : 1;
656
657 /* Non-zero if the TU has been read.
658 This is used to assist the "Stay in DWO Optimization" for Fission:
659 When reading a DWO, it's faster to read TUs from the DWO instead of
660 fetching them from random other DWOs (due to comdat folding).
661 If the TU has already been read, the optimization is unnecessary
662 (and unwise - we don't want to change where gdb thinks the TU lives
663 "midflight").
664 This flag is only valid if is_debug_types is true. */
665 unsigned int tu_read : 1;
666
667 /* The section this CU/TU lives in.
668 If the DIE refers to a DWO file, this is always the original die,
669 not the DWO file. */
670 struct dwarf2_section_info *section;
671
672 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
673 of the CU cache it gets reset to NULL again. This is left as NULL for
674 dummy CUs (a CU header, but nothing else). */
675 struct dwarf2_cu *cu;
676
677 /* The corresponding objfile.
678 Normally we can get the objfile from dwarf2_per_objfile.
679 However we can enter this file with just a "per_cu" handle. */
680 struct objfile *objfile;
681
682 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
683 is active. Otherwise, the 'psymtab' field is active. */
684 union
685 {
686 /* The partial symbol table associated with this compilation unit,
687 or NULL for unread partial units. */
688 struct partial_symtab *psymtab;
689
690 /* Data needed by the "quick" functions. */
691 struct dwarf2_per_cu_quick_data *quick;
692 } v;
693
694 /* The CUs we import using DW_TAG_imported_unit. This is filled in
695 while reading psymtabs, used to compute the psymtab dependencies,
696 and then cleared. Then it is filled in again while reading full
697 symbols, and only deleted when the objfile is destroyed.
698
699 This is also used to work around a difference between the way gold
700 generates .gdb_index version <=7 and the way gdb does. Arguably this
701 is a gold bug. For symbols coming from TUs, gold records in the index
702 the CU that includes the TU instead of the TU itself. This breaks
703 dw2_lookup_symbol: It assumes that if the index says symbol X lives
704 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
705 will find X. Alas TUs live in their own symtab, so after expanding CU Y
706 we need to look in TU Z to find X. Fortunately, this is akin to
707 DW_TAG_imported_unit, so we just use the same mechanism: For
708 .gdb_index version <=7 this also records the TUs that the CU referred
709 to. Concurrently with this change gdb was modified to emit version 8
710 indices so we only pay a price for gold generated indices.
711 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
712 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
713 };
714
715 /* Entry in the signatured_types hash table. */
716
717 struct signatured_type
718 {
719 /* The "per_cu" object of this type.
720 This struct is used iff per_cu.is_debug_types.
721 N.B.: This is the first member so that it's easy to convert pointers
722 between them. */
723 struct dwarf2_per_cu_data per_cu;
724
725 /* The type's signature. */
726 ULONGEST signature;
727
728 /* Offset in the TU of the type's DIE, as read from the TU header.
729 If this TU is a DWO stub and the definition lives in a DWO file
730 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
731 cu_offset type_offset_in_tu;
732
733 /* Offset in the section of the type's DIE.
734 If the definition lives in a DWO file, this is the offset in the
735 .debug_types.dwo section.
736 The value is zero until the actual value is known.
737 Zero is otherwise not a valid section offset. */
738 sect_offset type_offset_in_section;
739
740 /* Type units are grouped by their DW_AT_stmt_list entry so that they
741 can share them. This points to the containing symtab. */
742 struct type_unit_group *type_unit_group;
743
744 /* The type.
745 The first time we encounter this type we fully read it in and install it
746 in the symbol tables. Subsequent times we only need the type. */
747 struct type *type;
748
749 /* Containing DWO unit.
750 This field is valid iff per_cu.reading_dwo_directly. */
751 struct dwo_unit *dwo_unit;
752 };
753
754 typedef struct signatured_type *sig_type_ptr;
755 DEF_VEC_P (sig_type_ptr);
756
757 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
758 This includes type_unit_group and quick_file_names. */
759
760 struct stmt_list_hash
761 {
762 /* The DWO unit this table is from or NULL if there is none. */
763 struct dwo_unit *dwo_unit;
764
765 /* Offset in .debug_line or .debug_line.dwo. */
766 sect_offset line_sect_off;
767 };
768
769 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
770 an object of this type. */
771
772 struct type_unit_group
773 {
774 /* dwarf2read.c's main "handle" on a TU symtab.
775 To simplify things we create an artificial CU that "includes" all the
776 type units using this stmt_list so that the rest of the code still has
777 a "per_cu" handle on the symtab.
778 This PER_CU is recognized by having no section. */
779 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
780 struct dwarf2_per_cu_data per_cu;
781
782 /* The TUs that share this DW_AT_stmt_list entry.
783 This is added to while parsing type units to build partial symtabs,
784 and is deleted afterwards and not used again. */
785 VEC (sig_type_ptr) *tus;
786
787 /* The compunit symtab.
788 Type units in a group needn't all be defined in the same source file,
789 so we create an essentially anonymous symtab as the compunit symtab. */
790 struct compunit_symtab *compunit_symtab;
791
792 /* The data used to construct the hash key. */
793 struct stmt_list_hash hash;
794
795 /* The number of symtabs from the line header.
796 The value here must match line_header.num_file_names. */
797 unsigned int num_symtabs;
798
799 /* The symbol tables for this TU (obtained from the files listed in
800 DW_AT_stmt_list).
801 WARNING: The order of entries here must match the order of entries
802 in the line header. After the first TU using this type_unit_group, the
803 line header for the subsequent TUs is recreated from this. This is done
804 because we need to use the same symtabs for each TU using the same
805 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
806 there's no guarantee the line header doesn't have duplicate entries. */
807 struct symtab **symtabs;
808 };
809
810 /* These sections are what may appear in a (real or virtual) DWO file. */
811
812 struct dwo_sections
813 {
814 struct dwarf2_section_info abbrev;
815 struct dwarf2_section_info line;
816 struct dwarf2_section_info loc;
817 struct dwarf2_section_info loclists;
818 struct dwarf2_section_info macinfo;
819 struct dwarf2_section_info macro;
820 struct dwarf2_section_info str;
821 struct dwarf2_section_info str_offsets;
822 /* In the case of a virtual DWO file, these two are unused. */
823 struct dwarf2_section_info info;
824 VEC (dwarf2_section_info_def) *types;
825 };
826
827 /* CUs/TUs in DWP/DWO files. */
828
829 struct dwo_unit
830 {
831 /* Backlink to the containing struct dwo_file. */
832 struct dwo_file *dwo_file;
833
834 /* The "id" that distinguishes this CU/TU.
835 .debug_info calls this "dwo_id", .debug_types calls this "signature".
836 Since signatures came first, we stick with it for consistency. */
837 ULONGEST signature;
838
839 /* The section this CU/TU lives in, in the DWO file. */
840 struct dwarf2_section_info *section;
841
842 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
843 sect_offset sect_off;
844 unsigned int length;
845
846 /* For types, offset in the type's DIE of the type defined by this TU. */
847 cu_offset type_offset_in_tu;
848 };
849
850 /* include/dwarf2.h defines the DWP section codes.
851 It defines a max value but it doesn't define a min value, which we
852 use for error checking, so provide one. */
853
854 enum dwp_v2_section_ids
855 {
856 DW_SECT_MIN = 1
857 };
858
859 /* Data for one DWO file.
860
861 This includes virtual DWO files (a virtual DWO file is a DWO file as it
862 appears in a DWP file). DWP files don't really have DWO files per se -
863 comdat folding of types "loses" the DWO file they came from, and from
864 a high level view DWP files appear to contain a mass of random types.
865 However, to maintain consistency with the non-DWP case we pretend DWP
866 files contain virtual DWO files, and we assign each TU with one virtual
867 DWO file (generally based on the line and abbrev section offsets -
868 a heuristic that seems to work in practice). */
869
870 struct dwo_file
871 {
872 /* The DW_AT_GNU_dwo_name attribute.
873 For virtual DWO files the name is constructed from the section offsets
874 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
875 from related CU+TUs. */
876 const char *dwo_name;
877
878 /* The DW_AT_comp_dir attribute. */
879 const char *comp_dir;
880
881 /* The bfd, when the file is open. Otherwise this is NULL.
882 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
883 bfd *dbfd;
884
885 /* The sections that make up this DWO file.
886 Remember that for virtual DWO files in DWP V2, these are virtual
887 sections (for lack of a better name). */
888 struct dwo_sections sections;
889
890 /* The CUs in the file.
891 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
892 an extension to handle LLVM's Link Time Optimization output (where
893 multiple source files may be compiled into a single object/dwo pair). */
894 htab_t cus;
895
896 /* Table of TUs in the file.
897 Each element is a struct dwo_unit. */
898 htab_t tus;
899 };
900
901 /* These sections are what may appear in a DWP file. */
902
903 struct dwp_sections
904 {
905 /* These are used by both DWP version 1 and 2. */
906 struct dwarf2_section_info str;
907 struct dwarf2_section_info cu_index;
908 struct dwarf2_section_info tu_index;
909
910 /* These are only used by DWP version 2 files.
911 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
912 sections are referenced by section number, and are not recorded here.
913 In DWP version 2 there is at most one copy of all these sections, each
914 section being (effectively) comprised of the concatenation of all of the
915 individual sections that exist in the version 1 format.
916 To keep the code simple we treat each of these concatenated pieces as a
917 section itself (a virtual section?). */
918 struct dwarf2_section_info abbrev;
919 struct dwarf2_section_info info;
920 struct dwarf2_section_info line;
921 struct dwarf2_section_info loc;
922 struct dwarf2_section_info macinfo;
923 struct dwarf2_section_info macro;
924 struct dwarf2_section_info str_offsets;
925 struct dwarf2_section_info types;
926 };
927
928 /* These sections are what may appear in a virtual DWO file in DWP version 1.
929 A virtual DWO file is a DWO file as it appears in a DWP file. */
930
931 struct virtual_v1_dwo_sections
932 {
933 struct dwarf2_section_info abbrev;
934 struct dwarf2_section_info line;
935 struct dwarf2_section_info loc;
936 struct dwarf2_section_info macinfo;
937 struct dwarf2_section_info macro;
938 struct dwarf2_section_info str_offsets;
939 /* Each DWP hash table entry records one CU or one TU.
940 That is recorded here, and copied to dwo_unit.section. */
941 struct dwarf2_section_info info_or_types;
942 };
943
944 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
945 In version 2, the sections of the DWO files are concatenated together
946 and stored in one section of that name. Thus each ELF section contains
947 several "virtual" sections. */
948
949 struct virtual_v2_dwo_sections
950 {
951 bfd_size_type abbrev_offset;
952 bfd_size_type abbrev_size;
953
954 bfd_size_type line_offset;
955 bfd_size_type line_size;
956
957 bfd_size_type loc_offset;
958 bfd_size_type loc_size;
959
960 bfd_size_type macinfo_offset;
961 bfd_size_type macinfo_size;
962
963 bfd_size_type macro_offset;
964 bfd_size_type macro_size;
965
966 bfd_size_type str_offsets_offset;
967 bfd_size_type str_offsets_size;
968
969 /* Each DWP hash table entry records one CU or one TU.
970 That is recorded here, and copied to dwo_unit.section. */
971 bfd_size_type info_or_types_offset;
972 bfd_size_type info_or_types_size;
973 };
974
975 /* Contents of DWP hash tables. */
976
977 struct dwp_hash_table
978 {
979 uint32_t version, nr_columns;
980 uint32_t nr_units, nr_slots;
981 const gdb_byte *hash_table, *unit_table;
982 union
983 {
984 struct
985 {
986 const gdb_byte *indices;
987 } v1;
988 struct
989 {
990 /* This is indexed by column number and gives the id of the section
991 in that column. */
992 #define MAX_NR_V2_DWO_SECTIONS \
993 (1 /* .debug_info or .debug_types */ \
994 + 1 /* .debug_abbrev */ \
995 + 1 /* .debug_line */ \
996 + 1 /* .debug_loc */ \
997 + 1 /* .debug_str_offsets */ \
998 + 1 /* .debug_macro or .debug_macinfo */)
999 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1000 const gdb_byte *offsets;
1001 const gdb_byte *sizes;
1002 } v2;
1003 } section_pool;
1004 };
1005
1006 /* Data for one DWP file. */
1007
1008 struct dwp_file
1009 {
1010 /* Name of the file. */
1011 const char *name;
1012
1013 /* File format version. */
1014 int version;
1015
1016 /* The bfd. */
1017 bfd *dbfd;
1018
1019 /* Section info for this file. */
1020 struct dwp_sections sections;
1021
1022 /* Table of CUs in the file. */
1023 const struct dwp_hash_table *cus;
1024
1025 /* Table of TUs in the file. */
1026 const struct dwp_hash_table *tus;
1027
1028 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1029 htab_t loaded_cus;
1030 htab_t loaded_tus;
1031
1032 /* Table to map ELF section numbers to their sections.
1033 This is only needed for the DWP V1 file format. */
1034 unsigned int num_sections;
1035 asection **elf_sections;
1036 };
1037
1038 /* This represents a '.dwz' file. */
1039
1040 struct dwz_file
1041 {
1042 /* A dwz file can only contain a few sections. */
1043 struct dwarf2_section_info abbrev;
1044 struct dwarf2_section_info info;
1045 struct dwarf2_section_info str;
1046 struct dwarf2_section_info line;
1047 struct dwarf2_section_info macro;
1048 struct dwarf2_section_info gdb_index;
1049
1050 /* The dwz's BFD. */
1051 bfd *dwz_bfd;
1052 };
1053
1054 /* Struct used to pass misc. parameters to read_die_and_children, et
1055 al. which are used for both .debug_info and .debug_types dies.
1056 All parameters here are unchanging for the life of the call. This
1057 struct exists to abstract away the constant parameters of die reading. */
1058
1059 struct die_reader_specs
1060 {
1061 /* The bfd of die_section. */
1062 bfd* abfd;
1063
1064 /* The CU of the DIE we are parsing. */
1065 struct dwarf2_cu *cu;
1066
1067 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1068 struct dwo_file *dwo_file;
1069
1070 /* The section the die comes from.
1071 This is either .debug_info or .debug_types, or the .dwo variants. */
1072 struct dwarf2_section_info *die_section;
1073
1074 /* die_section->buffer. */
1075 const gdb_byte *buffer;
1076
1077 /* The end of the buffer. */
1078 const gdb_byte *buffer_end;
1079
1080 /* The value of the DW_AT_comp_dir attribute. */
1081 const char *comp_dir;
1082 };
1083
1084 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1085 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1086 const gdb_byte *info_ptr,
1087 struct die_info *comp_unit_die,
1088 int has_children,
1089 void *data);
1090
1091 /* A 1-based directory index. This is a strong typedef to prevent
1092 accidentally using a directory index as a 0-based index into an
1093 array/vector. */
1094 enum class dir_index : unsigned int {};
1095
1096 /* Likewise, a 1-based file name index. */
1097 enum class file_name_index : unsigned int {};
1098
1099 struct file_entry
1100 {
1101 file_entry () = default;
1102
1103 file_entry (const char *name_, dir_index d_index_,
1104 unsigned int mod_time_, unsigned int length_)
1105 : name (name_),
1106 d_index (d_index_),
1107 mod_time (mod_time_),
1108 length (length_)
1109 {}
1110
1111 /* Return the include directory at D_INDEX stored in LH. Returns
1112 NULL if D_INDEX is out of bounds. */
1113 const char *include_dir (const line_header *lh) const;
1114
1115 /* The file name. Note this is an observing pointer. The memory is
1116 owned by debug_line_buffer. */
1117 const char *name {};
1118
1119 /* The directory index (1-based). */
1120 dir_index d_index {};
1121
1122 unsigned int mod_time {};
1123
1124 unsigned int length {};
1125
1126 /* True if referenced by the Line Number Program. */
1127 bool included_p {};
1128
1129 /* The associated symbol table, if any. */
1130 struct symtab *symtab {};
1131 };
1132
1133 /* The line number information for a compilation unit (found in the
1134 .debug_line section) begins with a "statement program header",
1135 which contains the following information. */
1136 struct line_header
1137 {
1138 line_header ()
1139 : offset_in_dwz {}
1140 {}
1141
1142 /* Add an entry to the include directory table. */
1143 void add_include_dir (const char *include_dir);
1144
1145 /* Add an entry to the file name table. */
1146 void add_file_name (const char *name, dir_index d_index,
1147 unsigned int mod_time, unsigned int length);
1148
1149 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1150 is out of bounds. */
1151 const char *include_dir_at (dir_index index) const
1152 {
1153 /* Convert directory index number (1-based) to vector index
1154 (0-based). */
1155 size_t vec_index = to_underlying (index) - 1;
1156
1157 if (vec_index >= include_dirs.size ())
1158 return NULL;
1159 return include_dirs[vec_index];
1160 }
1161
1162 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1163 is out of bounds. */
1164 file_entry *file_name_at (file_name_index index)
1165 {
1166 /* Convert file name index number (1-based) to vector index
1167 (0-based). */
1168 size_t vec_index = to_underlying (index) - 1;
1169
1170 if (vec_index >= file_names.size ())
1171 return NULL;
1172 return &file_names[vec_index];
1173 }
1174
1175 /* Const version of the above. */
1176 const file_entry *file_name_at (unsigned int index) const
1177 {
1178 if (index >= file_names.size ())
1179 return NULL;
1180 return &file_names[index];
1181 }
1182
1183 /* Offset of line number information in .debug_line section. */
1184 sect_offset sect_off {};
1185
1186 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1187 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1188
1189 unsigned int total_length {};
1190 unsigned short version {};
1191 unsigned int header_length {};
1192 unsigned char minimum_instruction_length {};
1193 unsigned char maximum_ops_per_instruction {};
1194 unsigned char default_is_stmt {};
1195 int line_base {};
1196 unsigned char line_range {};
1197 unsigned char opcode_base {};
1198
1199 /* standard_opcode_lengths[i] is the number of operands for the
1200 standard opcode whose value is i. This means that
1201 standard_opcode_lengths[0] is unused, and the last meaningful
1202 element is standard_opcode_lengths[opcode_base - 1]. */
1203 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1204
1205 /* The include_directories table. Note these are observing
1206 pointers. The memory is owned by debug_line_buffer. */
1207 std::vector<const char *> include_dirs;
1208
1209 /* The file_names table. */
1210 std::vector<file_entry> file_names;
1211
1212 /* The start and end of the statement program following this
1213 header. These point into dwarf2_per_objfile->line_buffer. */
1214 const gdb_byte *statement_program_start {}, *statement_program_end {};
1215 };
1216
1217 typedef std::unique_ptr<line_header> line_header_up;
1218
1219 const char *
1220 file_entry::include_dir (const line_header *lh) const
1221 {
1222 return lh->include_dir_at (d_index);
1223 }
1224
1225 /* When we construct a partial symbol table entry we only
1226 need this much information. */
1227 struct partial_die_info
1228 {
1229 /* Offset of this DIE. */
1230 sect_offset sect_off;
1231
1232 /* DWARF-2 tag for this DIE. */
1233 ENUM_BITFIELD(dwarf_tag) tag : 16;
1234
1235 /* Assorted flags describing the data found in this DIE. */
1236 unsigned int has_children : 1;
1237 unsigned int is_external : 1;
1238 unsigned int is_declaration : 1;
1239 unsigned int has_type : 1;
1240 unsigned int has_specification : 1;
1241 unsigned int has_pc_info : 1;
1242 unsigned int may_be_inlined : 1;
1243
1244 /* This DIE has been marked DW_AT_main_subprogram. */
1245 unsigned int main_subprogram : 1;
1246
1247 /* Flag set if the SCOPE field of this structure has been
1248 computed. */
1249 unsigned int scope_set : 1;
1250
1251 /* Flag set if the DIE has a byte_size attribute. */
1252 unsigned int has_byte_size : 1;
1253
1254 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1255 unsigned int has_const_value : 1;
1256
1257 /* Flag set if any of the DIE's children are template arguments. */
1258 unsigned int has_template_arguments : 1;
1259
1260 /* Flag set if fixup_partial_die has been called on this die. */
1261 unsigned int fixup_called : 1;
1262
1263 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1264 unsigned int is_dwz : 1;
1265
1266 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1267 unsigned int spec_is_dwz : 1;
1268
1269 /* The name of this DIE. Normally the value of DW_AT_name, but
1270 sometimes a default name for unnamed DIEs. */
1271 const char *name;
1272
1273 /* The linkage name, if present. */
1274 const char *linkage_name;
1275
1276 /* The scope to prepend to our children. This is generally
1277 allocated on the comp_unit_obstack, so will disappear
1278 when this compilation unit leaves the cache. */
1279 const char *scope;
1280
1281 /* Some data associated with the partial DIE. The tag determines
1282 which field is live. */
1283 union
1284 {
1285 /* The location description associated with this DIE, if any. */
1286 struct dwarf_block *locdesc;
1287 /* The offset of an import, for DW_TAG_imported_unit. */
1288 sect_offset sect_off;
1289 } d;
1290
1291 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1292 CORE_ADDR lowpc;
1293 CORE_ADDR highpc;
1294
1295 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1296 DW_AT_sibling, if any. */
1297 /* NOTE: This member isn't strictly necessary, read_partial_die could
1298 return DW_AT_sibling values to its caller load_partial_dies. */
1299 const gdb_byte *sibling;
1300
1301 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1302 DW_AT_specification (or DW_AT_abstract_origin or
1303 DW_AT_extension). */
1304 sect_offset spec_offset;
1305
1306 /* Pointers to this DIE's parent, first child, and next sibling,
1307 if any. */
1308 struct partial_die_info *die_parent, *die_child, *die_sibling;
1309 };
1310
1311 /* This data structure holds the information of an abbrev. */
1312 struct abbrev_info
1313 {
1314 unsigned int number; /* number identifying abbrev */
1315 enum dwarf_tag tag; /* dwarf tag */
1316 unsigned short has_children; /* boolean */
1317 unsigned short num_attrs; /* number of attributes */
1318 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1319 struct abbrev_info *next; /* next in chain */
1320 };
1321
1322 struct attr_abbrev
1323 {
1324 ENUM_BITFIELD(dwarf_attribute) name : 16;
1325 ENUM_BITFIELD(dwarf_form) form : 16;
1326
1327 /* It is valid only if FORM is DW_FORM_implicit_const. */
1328 LONGEST implicit_const;
1329 };
1330
1331 /* Size of abbrev_table.abbrev_hash_table. */
1332 #define ABBREV_HASH_SIZE 121
1333
1334 /* Top level data structure to contain an abbreviation table. */
1335
1336 struct abbrev_table
1337 {
1338 /* Where the abbrev table came from.
1339 This is used as a sanity check when the table is used. */
1340 sect_offset sect_off;
1341
1342 /* Storage for the abbrev table. */
1343 struct obstack abbrev_obstack;
1344
1345 /* Hash table of abbrevs.
1346 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1347 It could be statically allocated, but the previous code didn't so we
1348 don't either. */
1349 struct abbrev_info **abbrevs;
1350 };
1351
1352 /* Attributes have a name and a value. */
1353 struct attribute
1354 {
1355 ENUM_BITFIELD(dwarf_attribute) name : 16;
1356 ENUM_BITFIELD(dwarf_form) form : 15;
1357
1358 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1359 field should be in u.str (existing only for DW_STRING) but it is kept
1360 here for better struct attribute alignment. */
1361 unsigned int string_is_canonical : 1;
1362
1363 union
1364 {
1365 const char *str;
1366 struct dwarf_block *blk;
1367 ULONGEST unsnd;
1368 LONGEST snd;
1369 CORE_ADDR addr;
1370 ULONGEST signature;
1371 }
1372 u;
1373 };
1374
1375 /* This data structure holds a complete die structure. */
1376 struct die_info
1377 {
1378 /* DWARF-2 tag for this DIE. */
1379 ENUM_BITFIELD(dwarf_tag) tag : 16;
1380
1381 /* Number of attributes */
1382 unsigned char num_attrs;
1383
1384 /* True if we're presently building the full type name for the
1385 type derived from this DIE. */
1386 unsigned char building_fullname : 1;
1387
1388 /* True if this die is in process. PR 16581. */
1389 unsigned char in_process : 1;
1390
1391 /* Abbrev number */
1392 unsigned int abbrev;
1393
1394 /* Offset in .debug_info or .debug_types section. */
1395 sect_offset sect_off;
1396
1397 /* The dies in a compilation unit form an n-ary tree. PARENT
1398 points to this die's parent; CHILD points to the first child of
1399 this node; and all the children of a given node are chained
1400 together via their SIBLING fields. */
1401 struct die_info *child; /* Its first child, if any. */
1402 struct die_info *sibling; /* Its next sibling, if any. */
1403 struct die_info *parent; /* Its parent, if any. */
1404
1405 /* An array of attributes, with NUM_ATTRS elements. There may be
1406 zero, but it's not common and zero-sized arrays are not
1407 sufficiently portable C. */
1408 struct attribute attrs[1];
1409 };
1410
1411 /* Get at parts of an attribute structure. */
1412
1413 #define DW_STRING(attr) ((attr)->u.str)
1414 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1415 #define DW_UNSND(attr) ((attr)->u.unsnd)
1416 #define DW_BLOCK(attr) ((attr)->u.blk)
1417 #define DW_SND(attr) ((attr)->u.snd)
1418 #define DW_ADDR(attr) ((attr)->u.addr)
1419 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1420
1421 /* Blocks are a bunch of untyped bytes. */
1422 struct dwarf_block
1423 {
1424 size_t size;
1425
1426 /* Valid only if SIZE is not zero. */
1427 const gdb_byte *data;
1428 };
1429
1430 #ifndef ATTR_ALLOC_CHUNK
1431 #define ATTR_ALLOC_CHUNK 4
1432 #endif
1433
1434 /* Allocate fields for structs, unions and enums in this size. */
1435 #ifndef DW_FIELD_ALLOC_CHUNK
1436 #define DW_FIELD_ALLOC_CHUNK 4
1437 #endif
1438
1439 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1440 but this would require a corresponding change in unpack_field_as_long
1441 and friends. */
1442 static int bits_per_byte = 8;
1443
1444 struct nextfield
1445 {
1446 struct nextfield *next;
1447 int accessibility;
1448 int virtuality;
1449 struct field field;
1450 };
1451
1452 struct nextfnfield
1453 {
1454 struct nextfnfield *next;
1455 struct fn_field fnfield;
1456 };
1457
1458 struct fnfieldlist
1459 {
1460 const char *name;
1461 int length;
1462 struct nextfnfield *head;
1463 };
1464
1465 struct typedef_field_list
1466 {
1467 struct typedef_field field;
1468 struct typedef_field_list *next;
1469 };
1470
1471 /* The routines that read and process dies for a C struct or C++ class
1472 pass lists of data member fields and lists of member function fields
1473 in an instance of a field_info structure, as defined below. */
1474 struct field_info
1475 {
1476 /* List of data member and baseclasses fields. */
1477 struct nextfield *fields, *baseclasses;
1478
1479 /* Number of fields (including baseclasses). */
1480 int nfields;
1481
1482 /* Number of baseclasses. */
1483 int nbaseclasses;
1484
1485 /* Set if the accesibility of one of the fields is not public. */
1486 int non_public_fields;
1487
1488 /* Member function fields array, entries are allocated in the order they
1489 are encountered in the object file. */
1490 struct nextfnfield *fnfields;
1491
1492 /* Member function fieldlist array, contains name of possibly overloaded
1493 member function, number of overloaded member functions and a pointer
1494 to the head of the member function field chain. */
1495 struct fnfieldlist *fnfieldlists;
1496
1497 /* Number of entries in the fnfieldlists array. */
1498 int nfnfields;
1499
1500 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1501 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1502 struct typedef_field_list *typedef_field_list;
1503 unsigned typedef_field_list_count;
1504 };
1505
1506 /* One item on the queue of compilation units to read in full symbols
1507 for. */
1508 struct dwarf2_queue_item
1509 {
1510 struct dwarf2_per_cu_data *per_cu;
1511 enum language pretend_language;
1512 struct dwarf2_queue_item *next;
1513 };
1514
1515 /* The current queue. */
1516 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1517
1518 /* Loaded secondary compilation units are kept in memory until they
1519 have not been referenced for the processing of this many
1520 compilation units. Set this to zero to disable caching. Cache
1521 sizes of up to at least twenty will improve startup time for
1522 typical inter-CU-reference binaries, at an obvious memory cost. */
1523 static int dwarf_max_cache_age = 5;
1524 static void
1525 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1526 struct cmd_list_element *c, const char *value)
1527 {
1528 fprintf_filtered (file, _("The upper bound on the age of cached "
1529 "DWARF compilation units is %s.\n"),
1530 value);
1531 }
1532 \f
1533 /* local function prototypes */
1534
1535 static const char *get_section_name (const struct dwarf2_section_info *);
1536
1537 static const char *get_section_file_name (const struct dwarf2_section_info *);
1538
1539 static void dwarf2_find_base_address (struct die_info *die,
1540 struct dwarf2_cu *cu);
1541
1542 static struct partial_symtab *create_partial_symtab
1543 (struct dwarf2_per_cu_data *per_cu, const char *name);
1544
1545 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1546 const gdb_byte *info_ptr,
1547 struct die_info *type_unit_die,
1548 int has_children, void *data);
1549
1550 static void dwarf2_build_psymtabs_hard (struct objfile *);
1551
1552 static void scan_partial_symbols (struct partial_die_info *,
1553 CORE_ADDR *, CORE_ADDR *,
1554 int, struct dwarf2_cu *);
1555
1556 static void add_partial_symbol (struct partial_die_info *,
1557 struct dwarf2_cu *);
1558
1559 static void add_partial_namespace (struct partial_die_info *pdi,
1560 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1561 int set_addrmap, struct dwarf2_cu *cu);
1562
1563 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1564 CORE_ADDR *highpc, int set_addrmap,
1565 struct dwarf2_cu *cu);
1566
1567 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1568 struct dwarf2_cu *cu);
1569
1570 static void add_partial_subprogram (struct partial_die_info *pdi,
1571 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1572 int need_pc, struct dwarf2_cu *cu);
1573
1574 static void dwarf2_read_symtab (struct partial_symtab *,
1575 struct objfile *);
1576
1577 static void psymtab_to_symtab_1 (struct partial_symtab *);
1578
1579 static struct abbrev_info *abbrev_table_lookup_abbrev
1580 (const struct abbrev_table *, unsigned int);
1581
1582 static struct abbrev_table *abbrev_table_read_table
1583 (struct dwarf2_section_info *, sect_offset);
1584
1585 static void abbrev_table_free (struct abbrev_table *);
1586
1587 static void abbrev_table_free_cleanup (void *);
1588
1589 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1590 struct dwarf2_section_info *);
1591
1592 static void dwarf2_free_abbrev_table (void *);
1593
1594 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1595
1596 static struct partial_die_info *load_partial_dies
1597 (const struct die_reader_specs *, const gdb_byte *, int);
1598
1599 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1600 struct partial_die_info *,
1601 struct abbrev_info *,
1602 unsigned int,
1603 const gdb_byte *);
1604
1605 static struct partial_die_info *find_partial_die (sect_offset, int,
1606 struct dwarf2_cu *);
1607
1608 static void fixup_partial_die (struct partial_die_info *,
1609 struct dwarf2_cu *);
1610
1611 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1612 struct attribute *, struct attr_abbrev *,
1613 const gdb_byte *);
1614
1615 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1616
1617 static int read_1_signed_byte (bfd *, const gdb_byte *);
1618
1619 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1620
1621 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1622
1623 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1624
1625 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1626 unsigned int *);
1627
1628 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1629
1630 static LONGEST read_checked_initial_length_and_offset
1631 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1632 unsigned int *, unsigned int *);
1633
1634 static LONGEST read_offset (bfd *, const gdb_byte *,
1635 const struct comp_unit_head *,
1636 unsigned int *);
1637
1638 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1639
1640 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1641 sect_offset);
1642
1643 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1644
1645 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1646
1647 static const char *read_indirect_string (bfd *, const gdb_byte *,
1648 const struct comp_unit_head *,
1649 unsigned int *);
1650
1651 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1652 const struct comp_unit_head *,
1653 unsigned int *);
1654
1655 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1656
1657 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1658
1659 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1660 const gdb_byte *,
1661 unsigned int *);
1662
1663 static const char *read_str_index (const struct die_reader_specs *reader,
1664 ULONGEST str_index);
1665
1666 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1667
1668 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1669 struct dwarf2_cu *);
1670
1671 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1672 unsigned int);
1673
1674 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1675 struct dwarf2_cu *cu);
1676
1677 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1678 struct dwarf2_cu *cu);
1679
1680 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1681
1682 static struct die_info *die_specification (struct die_info *die,
1683 struct dwarf2_cu **);
1684
1685 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1686 struct dwarf2_cu *cu);
1687
1688 static void dwarf_decode_lines (struct line_header *, const char *,
1689 struct dwarf2_cu *, struct partial_symtab *,
1690 CORE_ADDR, int decode_mapping);
1691
1692 static void dwarf2_start_subfile (const char *, const char *);
1693
1694 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1695 const char *, const char *,
1696 CORE_ADDR);
1697
1698 static struct symbol *new_symbol (struct die_info *, struct type *,
1699 struct dwarf2_cu *);
1700
1701 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1702 struct dwarf2_cu *, struct symbol *);
1703
1704 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1705 struct dwarf2_cu *);
1706
1707 static void dwarf2_const_value_attr (const struct attribute *attr,
1708 struct type *type,
1709 const char *name,
1710 struct obstack *obstack,
1711 struct dwarf2_cu *cu, LONGEST *value,
1712 const gdb_byte **bytes,
1713 struct dwarf2_locexpr_baton **baton);
1714
1715 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1716
1717 static int need_gnat_info (struct dwarf2_cu *);
1718
1719 static struct type *die_descriptive_type (struct die_info *,
1720 struct dwarf2_cu *);
1721
1722 static void set_descriptive_type (struct type *, struct die_info *,
1723 struct dwarf2_cu *);
1724
1725 static struct type *die_containing_type (struct die_info *,
1726 struct dwarf2_cu *);
1727
1728 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1729 struct dwarf2_cu *);
1730
1731 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1732
1733 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1734
1735 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1736
1737 static char *typename_concat (struct obstack *obs, const char *prefix,
1738 const char *suffix, int physname,
1739 struct dwarf2_cu *cu);
1740
1741 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1742
1743 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1744
1745 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1746
1747 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1748
1749 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1750
1751 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1752 struct dwarf2_cu *, struct partial_symtab *);
1753
1754 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1755 values. Keep the items ordered with increasing constraints compliance. */
1756 enum pc_bounds_kind
1757 {
1758 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1759 PC_BOUNDS_NOT_PRESENT,
1760
1761 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1762 were present but they do not form a valid range of PC addresses. */
1763 PC_BOUNDS_INVALID,
1764
1765 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1766 PC_BOUNDS_RANGES,
1767
1768 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1769 PC_BOUNDS_HIGH_LOW,
1770 };
1771
1772 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1773 CORE_ADDR *, CORE_ADDR *,
1774 struct dwarf2_cu *,
1775 struct partial_symtab *);
1776
1777 static void get_scope_pc_bounds (struct die_info *,
1778 CORE_ADDR *, CORE_ADDR *,
1779 struct dwarf2_cu *);
1780
1781 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1782 CORE_ADDR, struct dwarf2_cu *);
1783
1784 static void dwarf2_add_field (struct field_info *, struct die_info *,
1785 struct dwarf2_cu *);
1786
1787 static void dwarf2_attach_fields_to_type (struct field_info *,
1788 struct type *, struct dwarf2_cu *);
1789
1790 static void dwarf2_add_member_fn (struct field_info *,
1791 struct die_info *, struct type *,
1792 struct dwarf2_cu *);
1793
1794 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1795 struct type *,
1796 struct dwarf2_cu *);
1797
1798 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1799
1800 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1801
1802 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1803
1804 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1805
1806 static struct using_direct **using_directives (enum language);
1807
1808 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1809
1810 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1811
1812 static struct type *read_module_type (struct die_info *die,
1813 struct dwarf2_cu *cu);
1814
1815 static const char *namespace_name (struct die_info *die,
1816 int *is_anonymous, struct dwarf2_cu *);
1817
1818 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1819
1820 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1821
1822 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1823 struct dwarf2_cu *);
1824
1825 static struct die_info *read_die_and_siblings_1
1826 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1827 struct die_info *);
1828
1829 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1830 const gdb_byte *info_ptr,
1831 const gdb_byte **new_info_ptr,
1832 struct die_info *parent);
1833
1834 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1835 struct die_info **, const gdb_byte *,
1836 int *, int);
1837
1838 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1839 struct die_info **, const gdb_byte *,
1840 int *);
1841
1842 static void process_die (struct die_info *, struct dwarf2_cu *);
1843
1844 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1845 struct obstack *);
1846
1847 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1848
1849 static const char *dwarf2_full_name (const char *name,
1850 struct die_info *die,
1851 struct dwarf2_cu *cu);
1852
1853 static const char *dwarf2_physname (const char *name, struct die_info *die,
1854 struct dwarf2_cu *cu);
1855
1856 static struct die_info *dwarf2_extension (struct die_info *die,
1857 struct dwarf2_cu **);
1858
1859 static const char *dwarf_tag_name (unsigned int);
1860
1861 static const char *dwarf_attr_name (unsigned int);
1862
1863 static const char *dwarf_form_name (unsigned int);
1864
1865 static const char *dwarf_bool_name (unsigned int);
1866
1867 static const char *dwarf_type_encoding_name (unsigned int);
1868
1869 static struct die_info *sibling_die (struct die_info *);
1870
1871 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1872
1873 static void dump_die_for_error (struct die_info *);
1874
1875 static void dump_die_1 (struct ui_file *, int level, int max_level,
1876 struct die_info *);
1877
1878 /*static*/ void dump_die (struct die_info *, int max_level);
1879
1880 static void store_in_ref_table (struct die_info *,
1881 struct dwarf2_cu *);
1882
1883 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1884
1885 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1886
1887 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1888 const struct attribute *,
1889 struct dwarf2_cu **);
1890
1891 static struct die_info *follow_die_ref (struct die_info *,
1892 const struct attribute *,
1893 struct dwarf2_cu **);
1894
1895 static struct die_info *follow_die_sig (struct die_info *,
1896 const struct attribute *,
1897 struct dwarf2_cu **);
1898
1899 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1900 struct dwarf2_cu *);
1901
1902 static struct type *get_DW_AT_signature_type (struct die_info *,
1903 const struct attribute *,
1904 struct dwarf2_cu *);
1905
1906 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1907
1908 static void read_signatured_type (struct signatured_type *);
1909
1910 static int attr_to_dynamic_prop (const struct attribute *attr,
1911 struct die_info *die, struct dwarf2_cu *cu,
1912 struct dynamic_prop *prop);
1913
1914 /* memory allocation interface */
1915
1916 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1917
1918 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1919
1920 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1921
1922 static int attr_form_is_block (const struct attribute *);
1923
1924 static int attr_form_is_section_offset (const struct attribute *);
1925
1926 static int attr_form_is_constant (const struct attribute *);
1927
1928 static int attr_form_is_ref (const struct attribute *);
1929
1930 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1931 struct dwarf2_loclist_baton *baton,
1932 const struct attribute *attr);
1933
1934 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1935 struct symbol *sym,
1936 struct dwarf2_cu *cu,
1937 int is_block);
1938
1939 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1940 const gdb_byte *info_ptr,
1941 struct abbrev_info *abbrev);
1942
1943 static void free_stack_comp_unit (void *);
1944
1945 static hashval_t partial_die_hash (const void *item);
1946
1947 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1948
1949 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1950 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
1951
1952 static void init_one_comp_unit (struct dwarf2_cu *cu,
1953 struct dwarf2_per_cu_data *per_cu);
1954
1955 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1956 struct die_info *comp_unit_die,
1957 enum language pretend_language);
1958
1959 static void free_heap_comp_unit (void *);
1960
1961 static void free_cached_comp_units (void *);
1962
1963 static void age_cached_comp_units (void);
1964
1965 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1966
1967 static struct type *set_die_type (struct die_info *, struct type *,
1968 struct dwarf2_cu *);
1969
1970 static void create_all_comp_units (struct objfile *);
1971
1972 static int create_all_type_units (struct objfile *);
1973
1974 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1975 enum language);
1976
1977 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1978 enum language);
1979
1980 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1981 enum language);
1982
1983 static void dwarf2_add_dependence (struct dwarf2_cu *,
1984 struct dwarf2_per_cu_data *);
1985
1986 static void dwarf2_mark (struct dwarf2_cu *);
1987
1988 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1989
1990 static struct type *get_die_type_at_offset (sect_offset,
1991 struct dwarf2_per_cu_data *);
1992
1993 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1994
1995 static void dwarf2_release_queue (void *dummy);
1996
1997 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1998 enum language pretend_language);
1999
2000 static void process_queue (void);
2001
2002 /* The return type of find_file_and_directory. Note, the enclosed
2003 string pointers are only valid while this object is valid. */
2004
2005 struct file_and_directory
2006 {
2007 /* The filename. This is never NULL. */
2008 const char *name;
2009
2010 /* The compilation directory. NULL if not known. If we needed to
2011 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2012 points directly to the DW_AT_comp_dir string attribute owned by
2013 the obstack that owns the DIE. */
2014 const char *comp_dir;
2015
2016 /* If we needed to build a new string for comp_dir, this is what
2017 owns the storage. */
2018 std::string comp_dir_storage;
2019 };
2020
2021 static file_and_directory find_file_and_directory (struct die_info *die,
2022 struct dwarf2_cu *cu);
2023
2024 static char *file_full_name (int file, struct line_header *lh,
2025 const char *comp_dir);
2026
2027 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2028 enum class rcuh_kind { COMPILE, TYPE };
2029
2030 static const gdb_byte *read_and_check_comp_unit_head
2031 (struct comp_unit_head *header,
2032 struct dwarf2_section_info *section,
2033 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2034 rcuh_kind section_kind);
2035
2036 static void init_cutu_and_read_dies
2037 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2038 int use_existing_cu, int keep,
2039 die_reader_func_ftype *die_reader_func, void *data);
2040
2041 static void init_cutu_and_read_dies_simple
2042 (struct dwarf2_per_cu_data *this_cu,
2043 die_reader_func_ftype *die_reader_func, void *data);
2044
2045 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2046
2047 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2048
2049 static struct dwo_unit *lookup_dwo_unit_in_dwp
2050 (struct dwp_file *dwp_file, const char *comp_dir,
2051 ULONGEST signature, int is_debug_types);
2052
2053 static struct dwp_file *get_dwp_file (void);
2054
2055 static struct dwo_unit *lookup_dwo_comp_unit
2056 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2057
2058 static struct dwo_unit *lookup_dwo_type_unit
2059 (struct signatured_type *, const char *, const char *);
2060
2061 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2062
2063 static void free_dwo_file_cleanup (void *);
2064
2065 static void process_cu_includes (void);
2066
2067 static void check_producer (struct dwarf2_cu *cu);
2068
2069 static void free_line_header_voidp (void *arg);
2070 \f
2071 /* Various complaints about symbol reading that don't abort the process. */
2072
2073 static void
2074 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2075 {
2076 complaint (&symfile_complaints,
2077 _("statement list doesn't fit in .debug_line section"));
2078 }
2079
2080 static void
2081 dwarf2_debug_line_missing_file_complaint (void)
2082 {
2083 complaint (&symfile_complaints,
2084 _(".debug_line section has line data without a file"));
2085 }
2086
2087 static void
2088 dwarf2_debug_line_missing_end_sequence_complaint (void)
2089 {
2090 complaint (&symfile_complaints,
2091 _(".debug_line section has line "
2092 "program sequence without an end"));
2093 }
2094
2095 static void
2096 dwarf2_complex_location_expr_complaint (void)
2097 {
2098 complaint (&symfile_complaints, _("location expression too complex"));
2099 }
2100
2101 static void
2102 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2103 int arg3)
2104 {
2105 complaint (&symfile_complaints,
2106 _("const value length mismatch for '%s', got %d, expected %d"),
2107 arg1, arg2, arg3);
2108 }
2109
2110 static void
2111 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2112 {
2113 complaint (&symfile_complaints,
2114 _("debug info runs off end of %s section"
2115 " [in module %s]"),
2116 get_section_name (section),
2117 get_section_file_name (section));
2118 }
2119
2120 static void
2121 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2122 {
2123 complaint (&symfile_complaints,
2124 _("macro debug info contains a "
2125 "malformed macro definition:\n`%s'"),
2126 arg1);
2127 }
2128
2129 static void
2130 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2131 {
2132 complaint (&symfile_complaints,
2133 _("invalid attribute class or form for '%s' in '%s'"),
2134 arg1, arg2);
2135 }
2136
2137 /* Hash function for line_header_hash. */
2138
2139 static hashval_t
2140 line_header_hash (const struct line_header *ofs)
2141 {
2142 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2143 }
2144
2145 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2146
2147 static hashval_t
2148 line_header_hash_voidp (const void *item)
2149 {
2150 const struct line_header *ofs = (const struct line_header *) item;
2151
2152 return line_header_hash (ofs);
2153 }
2154
2155 /* Equality function for line_header_hash. */
2156
2157 static int
2158 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2159 {
2160 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2161 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2162
2163 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2164 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2165 }
2166
2167 \f
2168 #if WORDS_BIGENDIAN
2169
2170 /* Convert VALUE between big- and little-endian. */
2171 static offset_type
2172 byte_swap (offset_type value)
2173 {
2174 offset_type result;
2175
2176 result = (value & 0xff) << 24;
2177 result |= (value & 0xff00) << 8;
2178 result |= (value & 0xff0000) >> 8;
2179 result |= (value & 0xff000000) >> 24;
2180 return result;
2181 }
2182
2183 #define MAYBE_SWAP(V) byte_swap (V)
2184
2185 #else
2186 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
2187 #endif /* WORDS_BIGENDIAN */
2188
2189 /* Read the given attribute value as an address, taking the attribute's
2190 form into account. */
2191
2192 static CORE_ADDR
2193 attr_value_as_address (struct attribute *attr)
2194 {
2195 CORE_ADDR addr;
2196
2197 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2198 {
2199 /* Aside from a few clearly defined exceptions, attributes that
2200 contain an address must always be in DW_FORM_addr form.
2201 Unfortunately, some compilers happen to be violating this
2202 requirement by encoding addresses using other forms, such
2203 as DW_FORM_data4 for example. For those broken compilers,
2204 we try to do our best, without any guarantee of success,
2205 to interpret the address correctly. It would also be nice
2206 to generate a complaint, but that would require us to maintain
2207 a list of legitimate cases where a non-address form is allowed,
2208 as well as update callers to pass in at least the CU's DWARF
2209 version. This is more overhead than what we're willing to
2210 expand for a pretty rare case. */
2211 addr = DW_UNSND (attr);
2212 }
2213 else
2214 addr = DW_ADDR (attr);
2215
2216 return addr;
2217 }
2218
2219 /* The suffix for an index file. */
2220 #define INDEX_SUFFIX ".gdb-index"
2221
2222 /* See declaration. */
2223
2224 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2225 const dwarf2_debug_sections *names)
2226 : objfile (objfile_)
2227 {
2228 if (names == NULL)
2229 names = &dwarf2_elf_names;
2230
2231 bfd *obfd = objfile->obfd;
2232
2233 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2234 locate_sections (obfd, sec, *names);
2235 }
2236
2237 dwarf2_per_objfile::~dwarf2_per_objfile ()
2238 {
2239 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2240 free_cached_comp_units ();
2241
2242 if (quick_file_names_table)
2243 htab_delete (quick_file_names_table);
2244
2245 if (line_header_hash)
2246 htab_delete (line_header_hash);
2247
2248 /* Everything else should be on the objfile obstack. */
2249 }
2250
2251 /* See declaration. */
2252
2253 void
2254 dwarf2_per_objfile::free_cached_comp_units ()
2255 {
2256 dwarf2_per_cu_data *per_cu = read_in_chain;
2257 dwarf2_per_cu_data **last_chain = &read_in_chain;
2258 while (per_cu != NULL)
2259 {
2260 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2261
2262 free_heap_comp_unit (per_cu->cu);
2263 *last_chain = next_cu;
2264 per_cu = next_cu;
2265 }
2266 }
2267
2268 /* Try to locate the sections we need for DWARF 2 debugging
2269 information and return true if we have enough to do something.
2270 NAMES points to the dwarf2 section names, or is NULL if the standard
2271 ELF names are used. */
2272
2273 int
2274 dwarf2_has_info (struct objfile *objfile,
2275 const struct dwarf2_debug_sections *names)
2276 {
2277 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2278 objfile_data (objfile, dwarf2_objfile_data_key));
2279 if (!dwarf2_per_objfile)
2280 {
2281 /* Initialize per-objfile state. */
2282 struct dwarf2_per_objfile *data
2283 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2284
2285 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2286 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2287 }
2288 return (!dwarf2_per_objfile->info.is_virtual
2289 && dwarf2_per_objfile->info.s.section != NULL
2290 && !dwarf2_per_objfile->abbrev.is_virtual
2291 && dwarf2_per_objfile->abbrev.s.section != NULL);
2292 }
2293
2294 /* Return the containing section of virtual section SECTION. */
2295
2296 static struct dwarf2_section_info *
2297 get_containing_section (const struct dwarf2_section_info *section)
2298 {
2299 gdb_assert (section->is_virtual);
2300 return section->s.containing_section;
2301 }
2302
2303 /* Return the bfd owner of SECTION. */
2304
2305 static struct bfd *
2306 get_section_bfd_owner (const struct dwarf2_section_info *section)
2307 {
2308 if (section->is_virtual)
2309 {
2310 section = get_containing_section (section);
2311 gdb_assert (!section->is_virtual);
2312 }
2313 return section->s.section->owner;
2314 }
2315
2316 /* Return the bfd section of SECTION.
2317 Returns NULL if the section is not present. */
2318
2319 static asection *
2320 get_section_bfd_section (const struct dwarf2_section_info *section)
2321 {
2322 if (section->is_virtual)
2323 {
2324 section = get_containing_section (section);
2325 gdb_assert (!section->is_virtual);
2326 }
2327 return section->s.section;
2328 }
2329
2330 /* Return the name of SECTION. */
2331
2332 static const char *
2333 get_section_name (const struct dwarf2_section_info *section)
2334 {
2335 asection *sectp = get_section_bfd_section (section);
2336
2337 gdb_assert (sectp != NULL);
2338 return bfd_section_name (get_section_bfd_owner (section), sectp);
2339 }
2340
2341 /* Return the name of the file SECTION is in. */
2342
2343 static const char *
2344 get_section_file_name (const struct dwarf2_section_info *section)
2345 {
2346 bfd *abfd = get_section_bfd_owner (section);
2347
2348 return bfd_get_filename (abfd);
2349 }
2350
2351 /* Return the id of SECTION.
2352 Returns 0 if SECTION doesn't exist. */
2353
2354 static int
2355 get_section_id (const struct dwarf2_section_info *section)
2356 {
2357 asection *sectp = get_section_bfd_section (section);
2358
2359 if (sectp == NULL)
2360 return 0;
2361 return sectp->id;
2362 }
2363
2364 /* Return the flags of SECTION.
2365 SECTION (or containing section if this is a virtual section) must exist. */
2366
2367 static int
2368 get_section_flags (const struct dwarf2_section_info *section)
2369 {
2370 asection *sectp = get_section_bfd_section (section);
2371
2372 gdb_assert (sectp != NULL);
2373 return bfd_get_section_flags (sectp->owner, sectp);
2374 }
2375
2376 /* When loading sections, we look either for uncompressed section or for
2377 compressed section names. */
2378
2379 static int
2380 section_is_p (const char *section_name,
2381 const struct dwarf2_section_names *names)
2382 {
2383 if (names->normal != NULL
2384 && strcmp (section_name, names->normal) == 0)
2385 return 1;
2386 if (names->compressed != NULL
2387 && strcmp (section_name, names->compressed) == 0)
2388 return 1;
2389 return 0;
2390 }
2391
2392 /* See declaration. */
2393
2394 void
2395 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2396 const dwarf2_debug_sections &names)
2397 {
2398 flagword aflag = bfd_get_section_flags (abfd, sectp);
2399
2400 if ((aflag & SEC_HAS_CONTENTS) == 0)
2401 {
2402 }
2403 else if (section_is_p (sectp->name, &names.info))
2404 {
2405 this->info.s.section = sectp;
2406 this->info.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.abbrev))
2409 {
2410 this->abbrev.s.section = sectp;
2411 this->abbrev.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.line))
2414 {
2415 this->line.s.section = sectp;
2416 this->line.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &names.loc))
2419 {
2420 this->loc.s.section = sectp;
2421 this->loc.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.loclists))
2424 {
2425 this->loclists.s.section = sectp;
2426 this->loclists.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.macinfo))
2429 {
2430 this->macinfo.s.section = sectp;
2431 this->macinfo.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.macro))
2434 {
2435 this->macro.s.section = sectp;
2436 this->macro.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.str))
2439 {
2440 this->str.s.section = sectp;
2441 this->str.size = bfd_get_section_size (sectp);
2442 }
2443 else if (section_is_p (sectp->name, &names.line_str))
2444 {
2445 this->line_str.s.section = sectp;
2446 this->line_str.size = bfd_get_section_size (sectp);
2447 }
2448 else if (section_is_p (sectp->name, &names.addr))
2449 {
2450 this->addr.s.section = sectp;
2451 this->addr.size = bfd_get_section_size (sectp);
2452 }
2453 else if (section_is_p (sectp->name, &names.frame))
2454 {
2455 this->frame.s.section = sectp;
2456 this->frame.size = bfd_get_section_size (sectp);
2457 }
2458 else if (section_is_p (sectp->name, &names.eh_frame))
2459 {
2460 this->eh_frame.s.section = sectp;
2461 this->eh_frame.size = bfd_get_section_size (sectp);
2462 }
2463 else if (section_is_p (sectp->name, &names.ranges))
2464 {
2465 this->ranges.s.section = sectp;
2466 this->ranges.size = bfd_get_section_size (sectp);
2467 }
2468 else if (section_is_p (sectp->name, &names.rnglists))
2469 {
2470 this->rnglists.s.section = sectp;
2471 this->rnglists.size = bfd_get_section_size (sectp);
2472 }
2473 else if (section_is_p (sectp->name, &names.types))
2474 {
2475 struct dwarf2_section_info type_section;
2476
2477 memset (&type_section, 0, sizeof (type_section));
2478 type_section.s.section = sectp;
2479 type_section.size = bfd_get_section_size (sectp);
2480
2481 VEC_safe_push (dwarf2_section_info_def, this->types,
2482 &type_section);
2483 }
2484 else if (section_is_p (sectp->name, &names.gdb_index))
2485 {
2486 this->gdb_index.s.section = sectp;
2487 this->gdb_index.size = bfd_get_section_size (sectp);
2488 }
2489
2490 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2491 && bfd_section_vma (abfd, sectp) == 0)
2492 this->has_section_at_zero = true;
2493 }
2494
2495 /* A helper function that decides whether a section is empty,
2496 or not present. */
2497
2498 static int
2499 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2500 {
2501 if (section->is_virtual)
2502 return section->size == 0;
2503 return section->s.section == NULL || section->size == 0;
2504 }
2505
2506 /* Read the contents of the section INFO.
2507 OBJFILE is the main object file, but not necessarily the file where
2508 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2509 of the DWO file.
2510 If the section is compressed, uncompress it before returning. */
2511
2512 static void
2513 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2514 {
2515 asection *sectp;
2516 bfd *abfd;
2517 gdb_byte *buf, *retbuf;
2518
2519 if (info->readin)
2520 return;
2521 info->buffer = NULL;
2522 info->readin = 1;
2523
2524 if (dwarf2_section_empty_p (info))
2525 return;
2526
2527 sectp = get_section_bfd_section (info);
2528
2529 /* If this is a virtual section we need to read in the real one first. */
2530 if (info->is_virtual)
2531 {
2532 struct dwarf2_section_info *containing_section =
2533 get_containing_section (info);
2534
2535 gdb_assert (sectp != NULL);
2536 if ((sectp->flags & SEC_RELOC) != 0)
2537 {
2538 error (_("Dwarf Error: DWP format V2 with relocations is not"
2539 " supported in section %s [in module %s]"),
2540 get_section_name (info), get_section_file_name (info));
2541 }
2542 dwarf2_read_section (objfile, containing_section);
2543 /* Other code should have already caught virtual sections that don't
2544 fit. */
2545 gdb_assert (info->virtual_offset + info->size
2546 <= containing_section->size);
2547 /* If the real section is empty or there was a problem reading the
2548 section we shouldn't get here. */
2549 gdb_assert (containing_section->buffer != NULL);
2550 info->buffer = containing_section->buffer + info->virtual_offset;
2551 return;
2552 }
2553
2554 /* If the section has relocations, we must read it ourselves.
2555 Otherwise we attach it to the BFD. */
2556 if ((sectp->flags & SEC_RELOC) == 0)
2557 {
2558 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2559 return;
2560 }
2561
2562 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2563 info->buffer = buf;
2564
2565 /* When debugging .o files, we may need to apply relocations; see
2566 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2567 We never compress sections in .o files, so we only need to
2568 try this when the section is not compressed. */
2569 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2570 if (retbuf != NULL)
2571 {
2572 info->buffer = retbuf;
2573 return;
2574 }
2575
2576 abfd = get_section_bfd_owner (info);
2577 gdb_assert (abfd != NULL);
2578
2579 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2580 || bfd_bread (buf, info->size, abfd) != info->size)
2581 {
2582 error (_("Dwarf Error: Can't read DWARF data"
2583 " in section %s [in module %s]"),
2584 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2585 }
2586 }
2587
2588 /* A helper function that returns the size of a section in a safe way.
2589 If you are positive that the section has been read before using the
2590 size, then it is safe to refer to the dwarf2_section_info object's
2591 "size" field directly. In other cases, you must call this
2592 function, because for compressed sections the size field is not set
2593 correctly until the section has been read. */
2594
2595 static bfd_size_type
2596 dwarf2_section_size (struct objfile *objfile,
2597 struct dwarf2_section_info *info)
2598 {
2599 if (!info->readin)
2600 dwarf2_read_section (objfile, info);
2601 return info->size;
2602 }
2603
2604 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2605 SECTION_NAME. */
2606
2607 void
2608 dwarf2_get_section_info (struct objfile *objfile,
2609 enum dwarf2_section_enum sect,
2610 asection **sectp, const gdb_byte **bufp,
2611 bfd_size_type *sizep)
2612 {
2613 struct dwarf2_per_objfile *data
2614 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2615 dwarf2_objfile_data_key);
2616 struct dwarf2_section_info *info;
2617
2618 /* We may see an objfile without any DWARF, in which case we just
2619 return nothing. */
2620 if (data == NULL)
2621 {
2622 *sectp = NULL;
2623 *bufp = NULL;
2624 *sizep = 0;
2625 return;
2626 }
2627 switch (sect)
2628 {
2629 case DWARF2_DEBUG_FRAME:
2630 info = &data->frame;
2631 break;
2632 case DWARF2_EH_FRAME:
2633 info = &data->eh_frame;
2634 break;
2635 default:
2636 gdb_assert_not_reached ("unexpected section");
2637 }
2638
2639 dwarf2_read_section (objfile, info);
2640
2641 *sectp = get_section_bfd_section (info);
2642 *bufp = info->buffer;
2643 *sizep = info->size;
2644 }
2645
2646 /* A helper function to find the sections for a .dwz file. */
2647
2648 static void
2649 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2650 {
2651 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2652
2653 /* Note that we only support the standard ELF names, because .dwz
2654 is ELF-only (at the time of writing). */
2655 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2656 {
2657 dwz_file->abbrev.s.section = sectp;
2658 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2659 }
2660 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2661 {
2662 dwz_file->info.s.section = sectp;
2663 dwz_file->info.size = bfd_get_section_size (sectp);
2664 }
2665 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2666 {
2667 dwz_file->str.s.section = sectp;
2668 dwz_file->str.size = bfd_get_section_size (sectp);
2669 }
2670 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2671 {
2672 dwz_file->line.s.section = sectp;
2673 dwz_file->line.size = bfd_get_section_size (sectp);
2674 }
2675 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2676 {
2677 dwz_file->macro.s.section = sectp;
2678 dwz_file->macro.size = bfd_get_section_size (sectp);
2679 }
2680 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2681 {
2682 dwz_file->gdb_index.s.section = sectp;
2683 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2684 }
2685 }
2686
2687 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2688 there is no .gnu_debugaltlink section in the file. Error if there
2689 is such a section but the file cannot be found. */
2690
2691 static struct dwz_file *
2692 dwarf2_get_dwz_file (void)
2693 {
2694 char *data;
2695 struct cleanup *cleanup;
2696 const char *filename;
2697 struct dwz_file *result;
2698 bfd_size_type buildid_len_arg;
2699 size_t buildid_len;
2700 bfd_byte *buildid;
2701
2702 if (dwarf2_per_objfile->dwz_file != NULL)
2703 return dwarf2_per_objfile->dwz_file;
2704
2705 bfd_set_error (bfd_error_no_error);
2706 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2707 &buildid_len_arg, &buildid);
2708 if (data == NULL)
2709 {
2710 if (bfd_get_error () == bfd_error_no_error)
2711 return NULL;
2712 error (_("could not read '.gnu_debugaltlink' section: %s"),
2713 bfd_errmsg (bfd_get_error ()));
2714 }
2715 cleanup = make_cleanup (xfree, data);
2716 make_cleanup (xfree, buildid);
2717
2718 buildid_len = (size_t) buildid_len_arg;
2719
2720 filename = (const char *) data;
2721
2722 std::string abs_storage;
2723 if (!IS_ABSOLUTE_PATH (filename))
2724 {
2725 gdb::unique_xmalloc_ptr<char> abs
2726 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2727
2728 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2729 filename = abs_storage.c_str ();
2730 }
2731
2732 /* First try the file name given in the section. If that doesn't
2733 work, try to use the build-id instead. */
2734 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2735 if (dwz_bfd != NULL)
2736 {
2737 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2738 dwz_bfd.release ();
2739 }
2740
2741 if (dwz_bfd == NULL)
2742 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2743
2744 if (dwz_bfd == NULL)
2745 error (_("could not find '.gnu_debugaltlink' file for %s"),
2746 objfile_name (dwarf2_per_objfile->objfile));
2747
2748 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2749 struct dwz_file);
2750 result->dwz_bfd = dwz_bfd.release ();
2751
2752 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2753
2754 do_cleanups (cleanup);
2755
2756 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2757 dwarf2_per_objfile->dwz_file = result;
2758 return result;
2759 }
2760 \f
2761 /* DWARF quick_symbols_functions support. */
2762
2763 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2764 unique line tables, so we maintain a separate table of all .debug_line
2765 derived entries to support the sharing.
2766 All the quick functions need is the list of file names. We discard the
2767 line_header when we're done and don't need to record it here. */
2768 struct quick_file_names
2769 {
2770 /* The data used to construct the hash key. */
2771 struct stmt_list_hash hash;
2772
2773 /* The number of entries in file_names, real_names. */
2774 unsigned int num_file_names;
2775
2776 /* The file names from the line table, after being run through
2777 file_full_name. */
2778 const char **file_names;
2779
2780 /* The file names from the line table after being run through
2781 gdb_realpath. These are computed lazily. */
2782 const char **real_names;
2783 };
2784
2785 /* When using the index (and thus not using psymtabs), each CU has an
2786 object of this type. This is used to hold information needed by
2787 the various "quick" methods. */
2788 struct dwarf2_per_cu_quick_data
2789 {
2790 /* The file table. This can be NULL if there was no file table
2791 or it's currently not read in.
2792 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2793 struct quick_file_names *file_names;
2794
2795 /* The corresponding symbol table. This is NULL if symbols for this
2796 CU have not yet been read. */
2797 struct compunit_symtab *compunit_symtab;
2798
2799 /* A temporary mark bit used when iterating over all CUs in
2800 expand_symtabs_matching. */
2801 unsigned int mark : 1;
2802
2803 /* True if we've tried to read the file table and found there isn't one.
2804 There will be no point in trying to read it again next time. */
2805 unsigned int no_file_data : 1;
2806 };
2807
2808 /* Utility hash function for a stmt_list_hash. */
2809
2810 static hashval_t
2811 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2812 {
2813 hashval_t v = 0;
2814
2815 if (stmt_list_hash->dwo_unit != NULL)
2816 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2817 v += to_underlying (stmt_list_hash->line_sect_off);
2818 return v;
2819 }
2820
2821 /* Utility equality function for a stmt_list_hash. */
2822
2823 static int
2824 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2825 const struct stmt_list_hash *rhs)
2826 {
2827 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2828 return 0;
2829 if (lhs->dwo_unit != NULL
2830 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2831 return 0;
2832
2833 return lhs->line_sect_off == rhs->line_sect_off;
2834 }
2835
2836 /* Hash function for a quick_file_names. */
2837
2838 static hashval_t
2839 hash_file_name_entry (const void *e)
2840 {
2841 const struct quick_file_names *file_data
2842 = (const struct quick_file_names *) e;
2843
2844 return hash_stmt_list_entry (&file_data->hash);
2845 }
2846
2847 /* Equality function for a quick_file_names. */
2848
2849 static int
2850 eq_file_name_entry (const void *a, const void *b)
2851 {
2852 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2853 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2854
2855 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2856 }
2857
2858 /* Delete function for a quick_file_names. */
2859
2860 static void
2861 delete_file_name_entry (void *e)
2862 {
2863 struct quick_file_names *file_data = (struct quick_file_names *) e;
2864 int i;
2865
2866 for (i = 0; i < file_data->num_file_names; ++i)
2867 {
2868 xfree ((void*) file_data->file_names[i]);
2869 if (file_data->real_names)
2870 xfree ((void*) file_data->real_names[i]);
2871 }
2872
2873 /* The space for the struct itself lives on objfile_obstack,
2874 so we don't free it here. */
2875 }
2876
2877 /* Create a quick_file_names hash table. */
2878
2879 static htab_t
2880 create_quick_file_names_table (unsigned int nr_initial_entries)
2881 {
2882 return htab_create_alloc (nr_initial_entries,
2883 hash_file_name_entry, eq_file_name_entry,
2884 delete_file_name_entry, xcalloc, xfree);
2885 }
2886
2887 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2888 have to be created afterwards. You should call age_cached_comp_units after
2889 processing PER_CU->CU. dw2_setup must have been already called. */
2890
2891 static void
2892 load_cu (struct dwarf2_per_cu_data *per_cu)
2893 {
2894 if (per_cu->is_debug_types)
2895 load_full_type_unit (per_cu);
2896 else
2897 load_full_comp_unit (per_cu, language_minimal);
2898
2899 if (per_cu->cu == NULL)
2900 return; /* Dummy CU. */
2901
2902 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2903 }
2904
2905 /* Read in the symbols for PER_CU. */
2906
2907 static void
2908 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2909 {
2910 struct cleanup *back_to;
2911
2912 /* Skip type_unit_groups, reading the type units they contain
2913 is handled elsewhere. */
2914 if (IS_TYPE_UNIT_GROUP (per_cu))
2915 return;
2916
2917 back_to = make_cleanup (dwarf2_release_queue, NULL);
2918
2919 if (dwarf2_per_objfile->using_index
2920 ? per_cu->v.quick->compunit_symtab == NULL
2921 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2922 {
2923 queue_comp_unit (per_cu, language_minimal);
2924 load_cu (per_cu);
2925
2926 /* If we just loaded a CU from a DWO, and we're working with an index
2927 that may badly handle TUs, load all the TUs in that DWO as well.
2928 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2929 if (!per_cu->is_debug_types
2930 && per_cu->cu != NULL
2931 && per_cu->cu->dwo_unit != NULL
2932 && dwarf2_per_objfile->index_table != NULL
2933 && dwarf2_per_objfile->index_table->version <= 7
2934 /* DWP files aren't supported yet. */
2935 && get_dwp_file () == NULL)
2936 queue_and_load_all_dwo_tus (per_cu);
2937 }
2938
2939 process_queue ();
2940
2941 /* Age the cache, releasing compilation units that have not
2942 been used recently. */
2943 age_cached_comp_units ();
2944
2945 do_cleanups (back_to);
2946 }
2947
2948 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2949 the objfile from which this CU came. Returns the resulting symbol
2950 table. */
2951
2952 static struct compunit_symtab *
2953 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2954 {
2955 gdb_assert (dwarf2_per_objfile->using_index);
2956 if (!per_cu->v.quick->compunit_symtab)
2957 {
2958 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2959 scoped_restore decrementer = increment_reading_symtab ();
2960 dw2_do_instantiate_symtab (per_cu);
2961 process_cu_includes ();
2962 do_cleanups (back_to);
2963 }
2964
2965 return per_cu->v.quick->compunit_symtab;
2966 }
2967
2968 /* Return the CU/TU given its index.
2969
2970 This is intended for loops like:
2971
2972 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2973 + dwarf2_per_objfile->n_type_units); ++i)
2974 {
2975 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2976
2977 ...;
2978 }
2979 */
2980
2981 static struct dwarf2_per_cu_data *
2982 dw2_get_cutu (int index)
2983 {
2984 if (index >= dwarf2_per_objfile->n_comp_units)
2985 {
2986 index -= dwarf2_per_objfile->n_comp_units;
2987 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2988 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2989 }
2990
2991 return dwarf2_per_objfile->all_comp_units[index];
2992 }
2993
2994 /* Return the CU given its index.
2995 This differs from dw2_get_cutu in that it's for when you know INDEX
2996 refers to a CU. */
2997
2998 static struct dwarf2_per_cu_data *
2999 dw2_get_cu (int index)
3000 {
3001 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
3002
3003 return dwarf2_per_objfile->all_comp_units[index];
3004 }
3005
3006 /* A helper for create_cus_from_index that handles a given list of
3007 CUs. */
3008
3009 static void
3010 create_cus_from_index_list (struct objfile *objfile,
3011 const gdb_byte *cu_list, offset_type n_elements,
3012 struct dwarf2_section_info *section,
3013 int is_dwz,
3014 int base_offset)
3015 {
3016 offset_type i;
3017
3018 for (i = 0; i < n_elements; i += 2)
3019 {
3020 gdb_static_assert (sizeof (ULONGEST) >= 8);
3021
3022 sect_offset sect_off
3023 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3024 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3025 cu_list += 2 * 8;
3026
3027 dwarf2_per_cu_data *the_cu
3028 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3029 struct dwarf2_per_cu_data);
3030 the_cu->sect_off = sect_off;
3031 the_cu->length = length;
3032 the_cu->objfile = objfile;
3033 the_cu->section = section;
3034 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3035 struct dwarf2_per_cu_quick_data);
3036 the_cu->is_dwz = is_dwz;
3037 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
3038 }
3039 }
3040
3041 /* Read the CU list from the mapped index, and use it to create all
3042 the CU objects for this objfile. */
3043
3044 static void
3045 create_cus_from_index (struct objfile *objfile,
3046 const gdb_byte *cu_list, offset_type cu_list_elements,
3047 const gdb_byte *dwz_list, offset_type dwz_elements)
3048 {
3049 struct dwz_file *dwz;
3050
3051 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3052 dwarf2_per_objfile->all_comp_units =
3053 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3054 dwarf2_per_objfile->n_comp_units);
3055
3056 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3057 &dwarf2_per_objfile->info, 0, 0);
3058
3059 if (dwz_elements == 0)
3060 return;
3061
3062 dwz = dwarf2_get_dwz_file ();
3063 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3064 cu_list_elements / 2);
3065 }
3066
3067 /* Create the signatured type hash table from the index. */
3068
3069 static void
3070 create_signatured_type_table_from_index (struct objfile *objfile,
3071 struct dwarf2_section_info *section,
3072 const gdb_byte *bytes,
3073 offset_type elements)
3074 {
3075 offset_type i;
3076 htab_t sig_types_hash;
3077
3078 dwarf2_per_objfile->n_type_units
3079 = dwarf2_per_objfile->n_allocated_type_units
3080 = elements / 3;
3081 dwarf2_per_objfile->all_type_units =
3082 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3083
3084 sig_types_hash = allocate_signatured_type_table (objfile);
3085
3086 for (i = 0; i < elements; i += 3)
3087 {
3088 struct signatured_type *sig_type;
3089 ULONGEST signature;
3090 void **slot;
3091 cu_offset type_offset_in_tu;
3092
3093 gdb_static_assert (sizeof (ULONGEST) >= 8);
3094 sect_offset sect_off
3095 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3096 type_offset_in_tu
3097 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3098 BFD_ENDIAN_LITTLE);
3099 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3100 bytes += 3 * 8;
3101
3102 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3103 struct signatured_type);
3104 sig_type->signature = signature;
3105 sig_type->type_offset_in_tu = type_offset_in_tu;
3106 sig_type->per_cu.is_debug_types = 1;
3107 sig_type->per_cu.section = section;
3108 sig_type->per_cu.sect_off = sect_off;
3109 sig_type->per_cu.objfile = objfile;
3110 sig_type->per_cu.v.quick
3111 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3112 struct dwarf2_per_cu_quick_data);
3113
3114 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3115 *slot = sig_type;
3116
3117 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3118 }
3119
3120 dwarf2_per_objfile->signatured_types = sig_types_hash;
3121 }
3122
3123 /* Read the address map data from the mapped index, and use it to
3124 populate the objfile's psymtabs_addrmap. */
3125
3126 static void
3127 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3128 {
3129 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3130 const gdb_byte *iter, *end;
3131 struct addrmap *mutable_map;
3132 CORE_ADDR baseaddr;
3133
3134 auto_obstack temp_obstack;
3135
3136 mutable_map = addrmap_create_mutable (&temp_obstack);
3137
3138 iter = index->address_table;
3139 end = iter + index->address_table_size;
3140
3141 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3142
3143 while (iter < end)
3144 {
3145 ULONGEST hi, lo, cu_index;
3146 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3147 iter += 8;
3148 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3149 iter += 8;
3150 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3151 iter += 4;
3152
3153 if (lo > hi)
3154 {
3155 complaint (&symfile_complaints,
3156 _(".gdb_index address table has invalid range (%s - %s)"),
3157 hex_string (lo), hex_string (hi));
3158 continue;
3159 }
3160
3161 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3162 {
3163 complaint (&symfile_complaints,
3164 _(".gdb_index address table has invalid CU number %u"),
3165 (unsigned) cu_index);
3166 continue;
3167 }
3168
3169 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3170 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3171 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3172 }
3173
3174 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3175 &objfile->objfile_obstack);
3176 }
3177
3178 /* The hash function for strings in the mapped index. This is the same as
3179 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3180 implementation. This is necessary because the hash function is tied to the
3181 format of the mapped index file. The hash values do not have to match with
3182 SYMBOL_HASH_NEXT.
3183
3184 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3185
3186 static hashval_t
3187 mapped_index_string_hash (int index_version, const void *p)
3188 {
3189 const unsigned char *str = (const unsigned char *) p;
3190 hashval_t r = 0;
3191 unsigned char c;
3192
3193 while ((c = *str++) != 0)
3194 {
3195 if (index_version >= 5)
3196 c = tolower (c);
3197 r = r * 67 + c - 113;
3198 }
3199
3200 return r;
3201 }
3202
3203 /* Find a slot in the mapped index INDEX for the object named NAME.
3204 If NAME is found, set *VEC_OUT to point to the CU vector in the
3205 constant pool and return 1. If NAME cannot be found, return 0. */
3206
3207 static int
3208 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3209 offset_type **vec_out)
3210 {
3211 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3212 offset_type hash;
3213 offset_type slot, step;
3214 int (*cmp) (const char *, const char *);
3215
3216 if (current_language->la_language == language_cplus
3217 || current_language->la_language == language_fortran
3218 || current_language->la_language == language_d)
3219 {
3220 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3221 not contain any. */
3222
3223 if (strchr (name, '(') != NULL)
3224 {
3225 char *without_params = cp_remove_params (name);
3226
3227 if (without_params != NULL)
3228 {
3229 make_cleanup (xfree, without_params);
3230 name = without_params;
3231 }
3232 }
3233 }
3234
3235 /* Index version 4 did not support case insensitive searches. But the
3236 indices for case insensitive languages are built in lowercase, therefore
3237 simulate our NAME being searched is also lowercased. */
3238 hash = mapped_index_string_hash ((index->version == 4
3239 && case_sensitivity == case_sensitive_off
3240 ? 5 : index->version),
3241 name);
3242
3243 slot = hash & (index->symbol_table_slots - 1);
3244 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3245 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3246
3247 for (;;)
3248 {
3249 /* Convert a slot number to an offset into the table. */
3250 offset_type i = 2 * slot;
3251 const char *str;
3252 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3253 {
3254 do_cleanups (back_to);
3255 return 0;
3256 }
3257
3258 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3259 if (!cmp (name, str))
3260 {
3261 *vec_out = (offset_type *) (index->constant_pool
3262 + MAYBE_SWAP (index->symbol_table[i + 1]));
3263 do_cleanups (back_to);
3264 return 1;
3265 }
3266
3267 slot = (slot + step) & (index->symbol_table_slots - 1);
3268 }
3269 }
3270
3271 /* A helper function that reads the .gdb_index from SECTION and fills
3272 in MAP. FILENAME is the name of the file containing the section;
3273 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3274 ok to use deprecated sections.
3275
3276 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3277 out parameters that are filled in with information about the CU and
3278 TU lists in the section.
3279
3280 Returns 1 if all went well, 0 otherwise. */
3281
3282 static int
3283 read_index_from_section (struct objfile *objfile,
3284 const char *filename,
3285 int deprecated_ok,
3286 struct dwarf2_section_info *section,
3287 struct mapped_index *map,
3288 const gdb_byte **cu_list,
3289 offset_type *cu_list_elements,
3290 const gdb_byte **types_list,
3291 offset_type *types_list_elements)
3292 {
3293 const gdb_byte *addr;
3294 offset_type version;
3295 offset_type *metadata;
3296 int i;
3297
3298 if (dwarf2_section_empty_p (section))
3299 return 0;
3300
3301 /* Older elfutils strip versions could keep the section in the main
3302 executable while splitting it for the separate debug info file. */
3303 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3304 return 0;
3305
3306 dwarf2_read_section (objfile, section);
3307
3308 addr = section->buffer;
3309 /* Version check. */
3310 version = MAYBE_SWAP (*(offset_type *) addr);
3311 /* Versions earlier than 3 emitted every copy of a psymbol. This
3312 causes the index to behave very poorly for certain requests. Version 3
3313 contained incomplete addrmap. So, it seems better to just ignore such
3314 indices. */
3315 if (version < 4)
3316 {
3317 static int warning_printed = 0;
3318 if (!warning_printed)
3319 {
3320 warning (_("Skipping obsolete .gdb_index section in %s."),
3321 filename);
3322 warning_printed = 1;
3323 }
3324 return 0;
3325 }
3326 /* Index version 4 uses a different hash function than index version
3327 5 and later.
3328
3329 Versions earlier than 6 did not emit psymbols for inlined
3330 functions. Using these files will cause GDB not to be able to
3331 set breakpoints on inlined functions by name, so we ignore these
3332 indices unless the user has done
3333 "set use-deprecated-index-sections on". */
3334 if (version < 6 && !deprecated_ok)
3335 {
3336 static int warning_printed = 0;
3337 if (!warning_printed)
3338 {
3339 warning (_("\
3340 Skipping deprecated .gdb_index section in %s.\n\
3341 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3342 to use the section anyway."),
3343 filename);
3344 warning_printed = 1;
3345 }
3346 return 0;
3347 }
3348 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3349 of the TU (for symbols coming from TUs),
3350 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3351 Plus gold-generated indices can have duplicate entries for global symbols,
3352 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3353 These are just performance bugs, and we can't distinguish gdb-generated
3354 indices from gold-generated ones, so issue no warning here. */
3355
3356 /* Indexes with higher version than the one supported by GDB may be no
3357 longer backward compatible. */
3358 if (version > 8)
3359 return 0;
3360
3361 map->version = version;
3362 map->total_size = section->size;
3363
3364 metadata = (offset_type *) (addr + sizeof (offset_type));
3365
3366 i = 0;
3367 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3368 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3369 / 8);
3370 ++i;
3371
3372 *types_list = addr + MAYBE_SWAP (metadata[i]);
3373 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3374 - MAYBE_SWAP (metadata[i]))
3375 / 8);
3376 ++i;
3377
3378 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3379 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3380 - MAYBE_SWAP (metadata[i]));
3381 ++i;
3382
3383 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3384 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3385 - MAYBE_SWAP (metadata[i]))
3386 / (2 * sizeof (offset_type)));
3387 ++i;
3388
3389 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3390
3391 return 1;
3392 }
3393
3394
3395 /* Read the index file. If everything went ok, initialize the "quick"
3396 elements of all the CUs and return 1. Otherwise, return 0. */
3397
3398 static int
3399 dwarf2_read_index (struct objfile *objfile)
3400 {
3401 struct mapped_index local_map, *map;
3402 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3403 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3404 struct dwz_file *dwz;
3405
3406 if (!read_index_from_section (objfile, objfile_name (objfile),
3407 use_deprecated_index_sections,
3408 &dwarf2_per_objfile->gdb_index, &local_map,
3409 &cu_list, &cu_list_elements,
3410 &types_list, &types_list_elements))
3411 return 0;
3412
3413 /* Don't use the index if it's empty. */
3414 if (local_map.symbol_table_slots == 0)
3415 return 0;
3416
3417 /* If there is a .dwz file, read it so we can get its CU list as
3418 well. */
3419 dwz = dwarf2_get_dwz_file ();
3420 if (dwz != NULL)
3421 {
3422 struct mapped_index dwz_map;
3423 const gdb_byte *dwz_types_ignore;
3424 offset_type dwz_types_elements_ignore;
3425
3426 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3427 1,
3428 &dwz->gdb_index, &dwz_map,
3429 &dwz_list, &dwz_list_elements,
3430 &dwz_types_ignore,
3431 &dwz_types_elements_ignore))
3432 {
3433 warning (_("could not read '.gdb_index' section from %s; skipping"),
3434 bfd_get_filename (dwz->dwz_bfd));
3435 return 0;
3436 }
3437 }
3438
3439 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3440 dwz_list_elements);
3441
3442 if (types_list_elements)
3443 {
3444 struct dwarf2_section_info *section;
3445
3446 /* We can only handle a single .debug_types when we have an
3447 index. */
3448 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3449 return 0;
3450
3451 section = VEC_index (dwarf2_section_info_def,
3452 dwarf2_per_objfile->types, 0);
3453
3454 create_signatured_type_table_from_index (objfile, section, types_list,
3455 types_list_elements);
3456 }
3457
3458 create_addrmap_from_index (objfile, &local_map);
3459
3460 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3461 *map = local_map;
3462
3463 dwarf2_per_objfile->index_table = map;
3464 dwarf2_per_objfile->using_index = 1;
3465 dwarf2_per_objfile->quick_file_names_table =
3466 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3467
3468 return 1;
3469 }
3470
3471 /* A helper for the "quick" functions which sets the global
3472 dwarf2_per_objfile according to OBJFILE. */
3473
3474 static void
3475 dw2_setup (struct objfile *objfile)
3476 {
3477 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3478 objfile_data (objfile, dwarf2_objfile_data_key));
3479 gdb_assert (dwarf2_per_objfile);
3480 }
3481
3482 /* die_reader_func for dw2_get_file_names. */
3483
3484 static void
3485 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3486 const gdb_byte *info_ptr,
3487 struct die_info *comp_unit_die,
3488 int has_children,
3489 void *data)
3490 {
3491 struct dwarf2_cu *cu = reader->cu;
3492 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3493 struct objfile *objfile = dwarf2_per_objfile->objfile;
3494 struct dwarf2_per_cu_data *lh_cu;
3495 struct attribute *attr;
3496 int i;
3497 void **slot;
3498 struct quick_file_names *qfn;
3499
3500 gdb_assert (! this_cu->is_debug_types);
3501
3502 /* Our callers never want to match partial units -- instead they
3503 will match the enclosing full CU. */
3504 if (comp_unit_die->tag == DW_TAG_partial_unit)
3505 {
3506 this_cu->v.quick->no_file_data = 1;
3507 return;
3508 }
3509
3510 lh_cu = this_cu;
3511 slot = NULL;
3512
3513 line_header_up lh;
3514 sect_offset line_offset {};
3515
3516 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3517 if (attr)
3518 {
3519 struct quick_file_names find_entry;
3520
3521 line_offset = (sect_offset) DW_UNSND (attr);
3522
3523 /* We may have already read in this line header (TU line header sharing).
3524 If we have we're done. */
3525 find_entry.hash.dwo_unit = cu->dwo_unit;
3526 find_entry.hash.line_sect_off = line_offset;
3527 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3528 &find_entry, INSERT);
3529 if (*slot != NULL)
3530 {
3531 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3532 return;
3533 }
3534
3535 lh = dwarf_decode_line_header (line_offset, cu);
3536 }
3537 if (lh == NULL)
3538 {
3539 lh_cu->v.quick->no_file_data = 1;
3540 return;
3541 }
3542
3543 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3544 qfn->hash.dwo_unit = cu->dwo_unit;
3545 qfn->hash.line_sect_off = line_offset;
3546 gdb_assert (slot != NULL);
3547 *slot = qfn;
3548
3549 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3550
3551 qfn->num_file_names = lh->file_names.size ();
3552 qfn->file_names =
3553 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3554 for (i = 0; i < lh->file_names.size (); ++i)
3555 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3556 qfn->real_names = NULL;
3557
3558 lh_cu->v.quick->file_names = qfn;
3559 }
3560
3561 /* A helper for the "quick" functions which attempts to read the line
3562 table for THIS_CU. */
3563
3564 static struct quick_file_names *
3565 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3566 {
3567 /* This should never be called for TUs. */
3568 gdb_assert (! this_cu->is_debug_types);
3569 /* Nor type unit groups. */
3570 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3571
3572 if (this_cu->v.quick->file_names != NULL)
3573 return this_cu->v.quick->file_names;
3574 /* If we know there is no line data, no point in looking again. */
3575 if (this_cu->v.quick->no_file_data)
3576 return NULL;
3577
3578 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3579
3580 if (this_cu->v.quick->no_file_data)
3581 return NULL;
3582 return this_cu->v.quick->file_names;
3583 }
3584
3585 /* A helper for the "quick" functions which computes and caches the
3586 real path for a given file name from the line table. */
3587
3588 static const char *
3589 dw2_get_real_path (struct objfile *objfile,
3590 struct quick_file_names *qfn, int index)
3591 {
3592 if (qfn->real_names == NULL)
3593 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3594 qfn->num_file_names, const char *);
3595
3596 if (qfn->real_names[index] == NULL)
3597 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3598
3599 return qfn->real_names[index];
3600 }
3601
3602 static struct symtab *
3603 dw2_find_last_source_symtab (struct objfile *objfile)
3604 {
3605 struct compunit_symtab *cust;
3606 int index;
3607
3608 dw2_setup (objfile);
3609 index = dwarf2_per_objfile->n_comp_units - 1;
3610 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3611 if (cust == NULL)
3612 return NULL;
3613 return compunit_primary_filetab (cust);
3614 }
3615
3616 /* Traversal function for dw2_forget_cached_source_info. */
3617
3618 static int
3619 dw2_free_cached_file_names (void **slot, void *info)
3620 {
3621 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3622
3623 if (file_data->real_names)
3624 {
3625 int i;
3626
3627 for (i = 0; i < file_data->num_file_names; ++i)
3628 {
3629 xfree ((void*) file_data->real_names[i]);
3630 file_data->real_names[i] = NULL;
3631 }
3632 }
3633
3634 return 1;
3635 }
3636
3637 static void
3638 dw2_forget_cached_source_info (struct objfile *objfile)
3639 {
3640 dw2_setup (objfile);
3641
3642 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3643 dw2_free_cached_file_names, NULL);
3644 }
3645
3646 /* Helper function for dw2_map_symtabs_matching_filename that expands
3647 the symtabs and calls the iterator. */
3648
3649 static int
3650 dw2_map_expand_apply (struct objfile *objfile,
3651 struct dwarf2_per_cu_data *per_cu,
3652 const char *name, const char *real_path,
3653 gdb::function_view<bool (symtab *)> callback)
3654 {
3655 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3656
3657 /* Don't visit already-expanded CUs. */
3658 if (per_cu->v.quick->compunit_symtab)
3659 return 0;
3660
3661 /* This may expand more than one symtab, and we want to iterate over
3662 all of them. */
3663 dw2_instantiate_symtab (per_cu);
3664
3665 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3666 last_made, callback);
3667 }
3668
3669 /* Implementation of the map_symtabs_matching_filename method. */
3670
3671 static bool
3672 dw2_map_symtabs_matching_filename
3673 (struct objfile *objfile, const char *name, const char *real_path,
3674 gdb::function_view<bool (symtab *)> callback)
3675 {
3676 int i;
3677 const char *name_basename = lbasename (name);
3678
3679 dw2_setup (objfile);
3680
3681 /* The rule is CUs specify all the files, including those used by
3682 any TU, so there's no need to scan TUs here. */
3683
3684 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3685 {
3686 int j;
3687 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3688 struct quick_file_names *file_data;
3689
3690 /* We only need to look at symtabs not already expanded. */
3691 if (per_cu->v.quick->compunit_symtab)
3692 continue;
3693
3694 file_data = dw2_get_file_names (per_cu);
3695 if (file_data == NULL)
3696 continue;
3697
3698 for (j = 0; j < file_data->num_file_names; ++j)
3699 {
3700 const char *this_name = file_data->file_names[j];
3701 const char *this_real_name;
3702
3703 if (compare_filenames_for_search (this_name, name))
3704 {
3705 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3706 callback))
3707 return true;
3708 continue;
3709 }
3710
3711 /* Before we invoke realpath, which can get expensive when many
3712 files are involved, do a quick comparison of the basenames. */
3713 if (! basenames_may_differ
3714 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3715 continue;
3716
3717 this_real_name = dw2_get_real_path (objfile, file_data, j);
3718 if (compare_filenames_for_search (this_real_name, name))
3719 {
3720 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3721 callback))
3722 return true;
3723 continue;
3724 }
3725
3726 if (real_path != NULL)
3727 {
3728 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3729 gdb_assert (IS_ABSOLUTE_PATH (name));
3730 if (this_real_name != NULL
3731 && FILENAME_CMP (real_path, this_real_name) == 0)
3732 {
3733 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3734 callback))
3735 return true;
3736 continue;
3737 }
3738 }
3739 }
3740 }
3741
3742 return false;
3743 }
3744
3745 /* Struct used to manage iterating over all CUs looking for a symbol. */
3746
3747 struct dw2_symtab_iterator
3748 {
3749 /* The internalized form of .gdb_index. */
3750 struct mapped_index *index;
3751 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3752 int want_specific_block;
3753 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3754 Unused if !WANT_SPECIFIC_BLOCK. */
3755 int block_index;
3756 /* The kind of symbol we're looking for. */
3757 domain_enum domain;
3758 /* The list of CUs from the index entry of the symbol,
3759 or NULL if not found. */
3760 offset_type *vec;
3761 /* The next element in VEC to look at. */
3762 int next;
3763 /* The number of elements in VEC, or zero if there is no match. */
3764 int length;
3765 /* Have we seen a global version of the symbol?
3766 If so we can ignore all further global instances.
3767 This is to work around gold/15646, inefficient gold-generated
3768 indices. */
3769 int global_seen;
3770 };
3771
3772 /* Initialize the index symtab iterator ITER.
3773 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3774 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3775
3776 static void
3777 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3778 struct mapped_index *index,
3779 int want_specific_block,
3780 int block_index,
3781 domain_enum domain,
3782 const char *name)
3783 {
3784 iter->index = index;
3785 iter->want_specific_block = want_specific_block;
3786 iter->block_index = block_index;
3787 iter->domain = domain;
3788 iter->next = 0;
3789 iter->global_seen = 0;
3790
3791 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3792 iter->length = MAYBE_SWAP (*iter->vec);
3793 else
3794 {
3795 iter->vec = NULL;
3796 iter->length = 0;
3797 }
3798 }
3799
3800 /* Return the next matching CU or NULL if there are no more. */
3801
3802 static struct dwarf2_per_cu_data *
3803 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3804 {
3805 for ( ; iter->next < iter->length; ++iter->next)
3806 {
3807 offset_type cu_index_and_attrs =
3808 MAYBE_SWAP (iter->vec[iter->next + 1]);
3809 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3810 struct dwarf2_per_cu_data *per_cu;
3811 int want_static = iter->block_index != GLOBAL_BLOCK;
3812 /* This value is only valid for index versions >= 7. */
3813 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3814 gdb_index_symbol_kind symbol_kind =
3815 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3816 /* Only check the symbol attributes if they're present.
3817 Indices prior to version 7 don't record them,
3818 and indices >= 7 may elide them for certain symbols
3819 (gold does this). */
3820 int attrs_valid =
3821 (iter->index->version >= 7
3822 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3823
3824 /* Don't crash on bad data. */
3825 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3826 + dwarf2_per_objfile->n_type_units))
3827 {
3828 complaint (&symfile_complaints,
3829 _(".gdb_index entry has bad CU index"
3830 " [in module %s]"),
3831 objfile_name (dwarf2_per_objfile->objfile));
3832 continue;
3833 }
3834
3835 per_cu = dw2_get_cutu (cu_index);
3836
3837 /* Skip if already read in. */
3838 if (per_cu->v.quick->compunit_symtab)
3839 continue;
3840
3841 /* Check static vs global. */
3842 if (attrs_valid)
3843 {
3844 if (iter->want_specific_block
3845 && want_static != is_static)
3846 continue;
3847 /* Work around gold/15646. */
3848 if (!is_static && iter->global_seen)
3849 continue;
3850 if (!is_static)
3851 iter->global_seen = 1;
3852 }
3853
3854 /* Only check the symbol's kind if it has one. */
3855 if (attrs_valid)
3856 {
3857 switch (iter->domain)
3858 {
3859 case VAR_DOMAIN:
3860 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3861 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3862 /* Some types are also in VAR_DOMAIN. */
3863 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3864 continue;
3865 break;
3866 case STRUCT_DOMAIN:
3867 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3868 continue;
3869 break;
3870 case LABEL_DOMAIN:
3871 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3872 continue;
3873 break;
3874 default:
3875 break;
3876 }
3877 }
3878
3879 ++iter->next;
3880 return per_cu;
3881 }
3882
3883 return NULL;
3884 }
3885
3886 static struct compunit_symtab *
3887 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3888 const char *name, domain_enum domain)
3889 {
3890 struct compunit_symtab *stab_best = NULL;
3891 struct mapped_index *index;
3892
3893 dw2_setup (objfile);
3894
3895 index = dwarf2_per_objfile->index_table;
3896
3897 /* index is NULL if OBJF_READNOW. */
3898 if (index)
3899 {
3900 struct dw2_symtab_iterator iter;
3901 struct dwarf2_per_cu_data *per_cu;
3902
3903 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3904
3905 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3906 {
3907 struct symbol *sym, *with_opaque = NULL;
3908 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3909 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3910 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3911
3912 sym = block_find_symbol (block, name, domain,
3913 block_find_non_opaque_type_preferred,
3914 &with_opaque);
3915
3916 /* Some caution must be observed with overloaded functions
3917 and methods, since the index will not contain any overload
3918 information (but NAME might contain it). */
3919
3920 if (sym != NULL
3921 && SYMBOL_MATCHES_SEARCH_NAME (sym, name))
3922 return stab;
3923 if (with_opaque != NULL
3924 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, name))
3925 stab_best = stab;
3926
3927 /* Keep looking through other CUs. */
3928 }
3929 }
3930
3931 return stab_best;
3932 }
3933
3934 static void
3935 dw2_print_stats (struct objfile *objfile)
3936 {
3937 int i, total, count;
3938
3939 dw2_setup (objfile);
3940 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3941 count = 0;
3942 for (i = 0; i < total; ++i)
3943 {
3944 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3945
3946 if (!per_cu->v.quick->compunit_symtab)
3947 ++count;
3948 }
3949 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3950 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3951 }
3952
3953 /* This dumps minimal information about the index.
3954 It is called via "mt print objfiles".
3955 One use is to verify .gdb_index has been loaded by the
3956 gdb.dwarf2/gdb-index.exp testcase. */
3957
3958 static void
3959 dw2_dump (struct objfile *objfile)
3960 {
3961 dw2_setup (objfile);
3962 gdb_assert (dwarf2_per_objfile->using_index);
3963 printf_filtered (".gdb_index:");
3964 if (dwarf2_per_objfile->index_table != NULL)
3965 {
3966 printf_filtered (" version %d\n",
3967 dwarf2_per_objfile->index_table->version);
3968 }
3969 else
3970 printf_filtered (" faked for \"readnow\"\n");
3971 printf_filtered ("\n");
3972 }
3973
3974 static void
3975 dw2_relocate (struct objfile *objfile,
3976 const struct section_offsets *new_offsets,
3977 const struct section_offsets *delta)
3978 {
3979 /* There's nothing to relocate here. */
3980 }
3981
3982 static void
3983 dw2_expand_symtabs_for_function (struct objfile *objfile,
3984 const char *func_name)
3985 {
3986 struct mapped_index *index;
3987
3988 dw2_setup (objfile);
3989
3990 index = dwarf2_per_objfile->index_table;
3991
3992 /* index is NULL if OBJF_READNOW. */
3993 if (index)
3994 {
3995 struct dw2_symtab_iterator iter;
3996 struct dwarf2_per_cu_data *per_cu;
3997
3998 /* Note: It doesn't matter what we pass for block_index here. */
3999 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4000 func_name);
4001
4002 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4003 dw2_instantiate_symtab (per_cu);
4004 }
4005 }
4006
4007 static void
4008 dw2_expand_all_symtabs (struct objfile *objfile)
4009 {
4010 int i;
4011
4012 dw2_setup (objfile);
4013
4014 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4015 + dwarf2_per_objfile->n_type_units); ++i)
4016 {
4017 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4018
4019 dw2_instantiate_symtab (per_cu);
4020 }
4021 }
4022
4023 static void
4024 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4025 const char *fullname)
4026 {
4027 int i;
4028
4029 dw2_setup (objfile);
4030
4031 /* We don't need to consider type units here.
4032 This is only called for examining code, e.g. expand_line_sal.
4033 There can be an order of magnitude (or more) more type units
4034 than comp units, and we avoid them if we can. */
4035
4036 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4037 {
4038 int j;
4039 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4040 struct quick_file_names *file_data;
4041
4042 /* We only need to look at symtabs not already expanded. */
4043 if (per_cu->v.quick->compunit_symtab)
4044 continue;
4045
4046 file_data = dw2_get_file_names (per_cu);
4047 if (file_data == NULL)
4048 continue;
4049
4050 for (j = 0; j < file_data->num_file_names; ++j)
4051 {
4052 const char *this_fullname = file_data->file_names[j];
4053
4054 if (filename_cmp (this_fullname, fullname) == 0)
4055 {
4056 dw2_instantiate_symtab (per_cu);
4057 break;
4058 }
4059 }
4060 }
4061 }
4062
4063 static void
4064 dw2_map_matching_symbols (struct objfile *objfile,
4065 const char * name, domain_enum domain,
4066 int global,
4067 int (*callback) (struct block *,
4068 struct symbol *, void *),
4069 void *data, symbol_compare_ftype *match,
4070 symbol_compare_ftype *ordered_compare)
4071 {
4072 /* Currently unimplemented; used for Ada. The function can be called if the
4073 current language is Ada for a non-Ada objfile using GNU index. As Ada
4074 does not look for non-Ada symbols this function should just return. */
4075 }
4076
4077 static void
4078 dw2_expand_symtabs_matching
4079 (struct objfile *objfile,
4080 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4081 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4082 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4083 enum search_domain kind)
4084 {
4085 int i;
4086 offset_type iter;
4087 struct mapped_index *index;
4088
4089 dw2_setup (objfile);
4090
4091 /* index_table is NULL if OBJF_READNOW. */
4092 if (!dwarf2_per_objfile->index_table)
4093 return;
4094 index = dwarf2_per_objfile->index_table;
4095
4096 if (file_matcher != NULL)
4097 {
4098 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4099 htab_eq_pointer,
4100 NULL, xcalloc, xfree));
4101 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4102 htab_eq_pointer,
4103 NULL, xcalloc, xfree));
4104
4105 /* The rule is CUs specify all the files, including those used by
4106 any TU, so there's no need to scan TUs here. */
4107
4108 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4109 {
4110 int j;
4111 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4112 struct quick_file_names *file_data;
4113 void **slot;
4114
4115 QUIT;
4116
4117 per_cu->v.quick->mark = 0;
4118
4119 /* We only need to look at symtabs not already expanded. */
4120 if (per_cu->v.quick->compunit_symtab)
4121 continue;
4122
4123 file_data = dw2_get_file_names (per_cu);
4124 if (file_data == NULL)
4125 continue;
4126
4127 if (htab_find (visited_not_found.get (), file_data) != NULL)
4128 continue;
4129 else if (htab_find (visited_found.get (), file_data) != NULL)
4130 {
4131 per_cu->v.quick->mark = 1;
4132 continue;
4133 }
4134
4135 for (j = 0; j < file_data->num_file_names; ++j)
4136 {
4137 const char *this_real_name;
4138
4139 if (file_matcher (file_data->file_names[j], false))
4140 {
4141 per_cu->v.quick->mark = 1;
4142 break;
4143 }
4144
4145 /* Before we invoke realpath, which can get expensive when many
4146 files are involved, do a quick comparison of the basenames. */
4147 if (!basenames_may_differ
4148 && !file_matcher (lbasename (file_data->file_names[j]),
4149 true))
4150 continue;
4151
4152 this_real_name = dw2_get_real_path (objfile, file_data, j);
4153 if (file_matcher (this_real_name, false))
4154 {
4155 per_cu->v.quick->mark = 1;
4156 break;
4157 }
4158 }
4159
4160 slot = htab_find_slot (per_cu->v.quick->mark
4161 ? visited_found.get ()
4162 : visited_not_found.get (),
4163 file_data, INSERT);
4164 *slot = file_data;
4165 }
4166 }
4167
4168 for (iter = 0; iter < index->symbol_table_slots; ++iter)
4169 {
4170 offset_type idx = 2 * iter;
4171 const char *name;
4172 offset_type *vec, vec_len, vec_idx;
4173 int global_seen = 0;
4174
4175 QUIT;
4176
4177 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
4178 continue;
4179
4180 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
4181
4182 if (!symbol_matcher (name))
4183 continue;
4184
4185 /* The name was matched, now expand corresponding CUs that were
4186 marked. */
4187 vec = (offset_type *) (index->constant_pool
4188 + MAYBE_SWAP (index->symbol_table[idx + 1]));
4189 vec_len = MAYBE_SWAP (vec[0]);
4190 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4191 {
4192 struct dwarf2_per_cu_data *per_cu;
4193 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4194 /* This value is only valid for index versions >= 7. */
4195 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4196 gdb_index_symbol_kind symbol_kind =
4197 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4198 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4199 /* Only check the symbol attributes if they're present.
4200 Indices prior to version 7 don't record them,
4201 and indices >= 7 may elide them for certain symbols
4202 (gold does this). */
4203 int attrs_valid =
4204 (index->version >= 7
4205 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4206
4207 /* Work around gold/15646. */
4208 if (attrs_valid)
4209 {
4210 if (!is_static && global_seen)
4211 continue;
4212 if (!is_static)
4213 global_seen = 1;
4214 }
4215
4216 /* Only check the symbol's kind if it has one. */
4217 if (attrs_valid)
4218 {
4219 switch (kind)
4220 {
4221 case VARIABLES_DOMAIN:
4222 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4223 continue;
4224 break;
4225 case FUNCTIONS_DOMAIN:
4226 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4227 continue;
4228 break;
4229 case TYPES_DOMAIN:
4230 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4231 continue;
4232 break;
4233 default:
4234 break;
4235 }
4236 }
4237
4238 /* Don't crash on bad data. */
4239 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4240 + dwarf2_per_objfile->n_type_units))
4241 {
4242 complaint (&symfile_complaints,
4243 _(".gdb_index entry has bad CU index"
4244 " [in module %s]"), objfile_name (objfile));
4245 continue;
4246 }
4247
4248 per_cu = dw2_get_cutu (cu_index);
4249 if (file_matcher == NULL || per_cu->v.quick->mark)
4250 {
4251 int symtab_was_null =
4252 (per_cu->v.quick->compunit_symtab == NULL);
4253
4254 dw2_instantiate_symtab (per_cu);
4255
4256 if (expansion_notify != NULL
4257 && symtab_was_null
4258 && per_cu->v.quick->compunit_symtab != NULL)
4259 {
4260 expansion_notify (per_cu->v.quick->compunit_symtab);
4261 }
4262 }
4263 }
4264 }
4265 }
4266
4267 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4268 symtab. */
4269
4270 static struct compunit_symtab *
4271 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4272 CORE_ADDR pc)
4273 {
4274 int i;
4275
4276 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4277 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4278 return cust;
4279
4280 if (cust->includes == NULL)
4281 return NULL;
4282
4283 for (i = 0; cust->includes[i]; ++i)
4284 {
4285 struct compunit_symtab *s = cust->includes[i];
4286
4287 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4288 if (s != NULL)
4289 return s;
4290 }
4291
4292 return NULL;
4293 }
4294
4295 static struct compunit_symtab *
4296 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4297 struct bound_minimal_symbol msymbol,
4298 CORE_ADDR pc,
4299 struct obj_section *section,
4300 int warn_if_readin)
4301 {
4302 struct dwarf2_per_cu_data *data;
4303 struct compunit_symtab *result;
4304
4305 dw2_setup (objfile);
4306
4307 if (!objfile->psymtabs_addrmap)
4308 return NULL;
4309
4310 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4311 pc);
4312 if (!data)
4313 return NULL;
4314
4315 if (warn_if_readin && data->v.quick->compunit_symtab)
4316 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4317 paddress (get_objfile_arch (objfile), pc));
4318
4319 result
4320 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4321 pc);
4322 gdb_assert (result != NULL);
4323 return result;
4324 }
4325
4326 static void
4327 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4328 void *data, int need_fullname)
4329 {
4330 dw2_setup (objfile);
4331
4332 if (!dwarf2_per_objfile->filenames_cache)
4333 {
4334 dwarf2_per_objfile->filenames_cache.emplace ();
4335
4336 htab_up visited (htab_create_alloc (10,
4337 htab_hash_pointer, htab_eq_pointer,
4338 NULL, xcalloc, xfree));
4339
4340 /* The rule is CUs specify all the files, including those used
4341 by any TU, so there's no need to scan TUs here. We can
4342 ignore file names coming from already-expanded CUs. */
4343
4344 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4345 {
4346 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4347
4348 if (per_cu->v.quick->compunit_symtab)
4349 {
4350 void **slot = htab_find_slot (visited.get (),
4351 per_cu->v.quick->file_names,
4352 INSERT);
4353
4354 *slot = per_cu->v.quick->file_names;
4355 }
4356 }
4357
4358 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4359 {
4360 int j;
4361 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4362 struct quick_file_names *file_data;
4363 void **slot;
4364
4365 /* We only need to look at symtabs not already expanded. */
4366 if (per_cu->v.quick->compunit_symtab)
4367 continue;
4368
4369 file_data = dw2_get_file_names (per_cu);
4370 if (file_data == NULL)
4371 continue;
4372
4373 slot = htab_find_slot (visited.get (), file_data, INSERT);
4374 if (*slot)
4375 {
4376 /* Already visited. */
4377 continue;
4378 }
4379 *slot = file_data;
4380
4381 for (int j = 0; j < file_data->num_file_names; ++j)
4382 {
4383 const char *filename = file_data->file_names[j];
4384 dwarf2_per_objfile->filenames_cache->seen (filename);
4385 }
4386 }
4387 }
4388
4389 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4390 {
4391 gdb::unique_xmalloc_ptr<char> this_real_name;
4392
4393 if (need_fullname)
4394 this_real_name = gdb_realpath (filename);
4395 (*fun) (filename, this_real_name.get (), data);
4396 });
4397 }
4398
4399 static int
4400 dw2_has_symbols (struct objfile *objfile)
4401 {
4402 return 1;
4403 }
4404
4405 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4406 {
4407 dw2_has_symbols,
4408 dw2_find_last_source_symtab,
4409 dw2_forget_cached_source_info,
4410 dw2_map_symtabs_matching_filename,
4411 dw2_lookup_symbol,
4412 dw2_print_stats,
4413 dw2_dump,
4414 dw2_relocate,
4415 dw2_expand_symtabs_for_function,
4416 dw2_expand_all_symtabs,
4417 dw2_expand_symtabs_with_fullname,
4418 dw2_map_matching_symbols,
4419 dw2_expand_symtabs_matching,
4420 dw2_find_pc_sect_compunit_symtab,
4421 dw2_map_symbol_filenames
4422 };
4423
4424 /* Initialize for reading DWARF for this objfile. Return 0 if this
4425 file will use psymtabs, or 1 if using the GNU index. */
4426
4427 int
4428 dwarf2_initialize_objfile (struct objfile *objfile)
4429 {
4430 /* If we're about to read full symbols, don't bother with the
4431 indices. In this case we also don't care if some other debug
4432 format is making psymtabs, because they are all about to be
4433 expanded anyway. */
4434 if ((objfile->flags & OBJF_READNOW))
4435 {
4436 int i;
4437
4438 dwarf2_per_objfile->using_index = 1;
4439 create_all_comp_units (objfile);
4440 create_all_type_units (objfile);
4441 dwarf2_per_objfile->quick_file_names_table =
4442 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4443
4444 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4445 + dwarf2_per_objfile->n_type_units); ++i)
4446 {
4447 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4448
4449 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4450 struct dwarf2_per_cu_quick_data);
4451 }
4452
4453 /* Return 1 so that gdb sees the "quick" functions. However,
4454 these functions will be no-ops because we will have expanded
4455 all symtabs. */
4456 return 1;
4457 }
4458
4459 if (dwarf2_read_index (objfile))
4460 return 1;
4461
4462 return 0;
4463 }
4464
4465 \f
4466
4467 /* Build a partial symbol table. */
4468
4469 void
4470 dwarf2_build_psymtabs (struct objfile *objfile)
4471 {
4472
4473 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4474 {
4475 init_psymbol_list (objfile, 1024);
4476 }
4477
4478 TRY
4479 {
4480 /* This isn't really ideal: all the data we allocate on the
4481 objfile's obstack is still uselessly kept around. However,
4482 freeing it seems unsafe. */
4483 psymtab_discarder psymtabs (objfile);
4484 dwarf2_build_psymtabs_hard (objfile);
4485 psymtabs.keep ();
4486 }
4487 CATCH (except, RETURN_MASK_ERROR)
4488 {
4489 exception_print (gdb_stderr, except);
4490 }
4491 END_CATCH
4492 }
4493
4494 /* Return the total length of the CU described by HEADER. */
4495
4496 static unsigned int
4497 get_cu_length (const struct comp_unit_head *header)
4498 {
4499 return header->initial_length_size + header->length;
4500 }
4501
4502 /* Return TRUE if SECT_OFF is within CU_HEADER. */
4503
4504 static inline bool
4505 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
4506 {
4507 sect_offset bottom = cu_header->sect_off;
4508 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
4509
4510 return sect_off >= bottom && sect_off < top;
4511 }
4512
4513 /* Find the base address of the compilation unit for range lists and
4514 location lists. It will normally be specified by DW_AT_low_pc.
4515 In DWARF-3 draft 4, the base address could be overridden by
4516 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4517 compilation units with discontinuous ranges. */
4518
4519 static void
4520 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4521 {
4522 struct attribute *attr;
4523
4524 cu->base_known = 0;
4525 cu->base_address = 0;
4526
4527 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4528 if (attr)
4529 {
4530 cu->base_address = attr_value_as_address (attr);
4531 cu->base_known = 1;
4532 }
4533 else
4534 {
4535 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4536 if (attr)
4537 {
4538 cu->base_address = attr_value_as_address (attr);
4539 cu->base_known = 1;
4540 }
4541 }
4542 }
4543
4544 /* Read in the comp unit header information from the debug_info at info_ptr.
4545 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4546 NOTE: This leaves members offset, first_die_offset to be filled in
4547 by the caller. */
4548
4549 static const gdb_byte *
4550 read_comp_unit_head (struct comp_unit_head *cu_header,
4551 const gdb_byte *info_ptr,
4552 struct dwarf2_section_info *section,
4553 rcuh_kind section_kind)
4554 {
4555 int signed_addr;
4556 unsigned int bytes_read;
4557 const char *filename = get_section_file_name (section);
4558 bfd *abfd = get_section_bfd_owner (section);
4559
4560 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4561 cu_header->initial_length_size = bytes_read;
4562 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4563 info_ptr += bytes_read;
4564 cu_header->version = read_2_bytes (abfd, info_ptr);
4565 info_ptr += 2;
4566 if (cu_header->version < 5)
4567 switch (section_kind)
4568 {
4569 case rcuh_kind::COMPILE:
4570 cu_header->unit_type = DW_UT_compile;
4571 break;
4572 case rcuh_kind::TYPE:
4573 cu_header->unit_type = DW_UT_type;
4574 break;
4575 default:
4576 internal_error (__FILE__, __LINE__,
4577 _("read_comp_unit_head: invalid section_kind"));
4578 }
4579 else
4580 {
4581 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4582 (read_1_byte (abfd, info_ptr));
4583 info_ptr += 1;
4584 switch (cu_header->unit_type)
4585 {
4586 case DW_UT_compile:
4587 if (section_kind != rcuh_kind::COMPILE)
4588 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4589 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4590 filename);
4591 break;
4592 case DW_UT_type:
4593 section_kind = rcuh_kind::TYPE;
4594 break;
4595 default:
4596 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4597 "(is %d, should be %d or %d) [in module %s]"),
4598 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4599 }
4600
4601 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4602 info_ptr += 1;
4603 }
4604 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4605 cu_header,
4606 &bytes_read);
4607 info_ptr += bytes_read;
4608 if (cu_header->version < 5)
4609 {
4610 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4611 info_ptr += 1;
4612 }
4613 signed_addr = bfd_get_sign_extend_vma (abfd);
4614 if (signed_addr < 0)
4615 internal_error (__FILE__, __LINE__,
4616 _("read_comp_unit_head: dwarf from non elf file"));
4617 cu_header->signed_addr_p = signed_addr;
4618
4619 if (section_kind == rcuh_kind::TYPE)
4620 {
4621 LONGEST type_offset;
4622
4623 cu_header->signature = read_8_bytes (abfd, info_ptr);
4624 info_ptr += 8;
4625
4626 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4627 info_ptr += bytes_read;
4628 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4629 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
4630 error (_("Dwarf Error: Too big type_offset in compilation unit "
4631 "header (is %s) [in module %s]"), plongest (type_offset),
4632 filename);
4633 }
4634
4635 return info_ptr;
4636 }
4637
4638 /* Helper function that returns the proper abbrev section for
4639 THIS_CU. */
4640
4641 static struct dwarf2_section_info *
4642 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4643 {
4644 struct dwarf2_section_info *abbrev;
4645
4646 if (this_cu->is_dwz)
4647 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4648 else
4649 abbrev = &dwarf2_per_objfile->abbrev;
4650
4651 return abbrev;
4652 }
4653
4654 /* Subroutine of read_and_check_comp_unit_head and
4655 read_and_check_type_unit_head to simplify them.
4656 Perform various error checking on the header. */
4657
4658 static void
4659 error_check_comp_unit_head (struct comp_unit_head *header,
4660 struct dwarf2_section_info *section,
4661 struct dwarf2_section_info *abbrev_section)
4662 {
4663 const char *filename = get_section_file_name (section);
4664
4665 if (header->version < 2 || header->version > 5)
4666 error (_("Dwarf Error: wrong version in compilation unit header "
4667 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4668 filename);
4669
4670 if (to_underlying (header->abbrev_sect_off)
4671 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4672 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4673 "(offset 0x%x + 6) [in module %s]"),
4674 to_underlying (header->abbrev_sect_off),
4675 to_underlying (header->sect_off),
4676 filename);
4677
4678 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
4679 avoid potential 32-bit overflow. */
4680 if (((ULONGEST) header->sect_off + get_cu_length (header))
4681 > section->size)
4682 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4683 "(offset 0x%x + 0) [in module %s]"),
4684 header->length, to_underlying (header->sect_off),
4685 filename);
4686 }
4687
4688 /* Read in a CU/TU header and perform some basic error checking.
4689 The contents of the header are stored in HEADER.
4690 The result is a pointer to the start of the first DIE. */
4691
4692 static const gdb_byte *
4693 read_and_check_comp_unit_head (struct comp_unit_head *header,
4694 struct dwarf2_section_info *section,
4695 struct dwarf2_section_info *abbrev_section,
4696 const gdb_byte *info_ptr,
4697 rcuh_kind section_kind)
4698 {
4699 const gdb_byte *beg_of_comp_unit = info_ptr;
4700 bfd *abfd = get_section_bfd_owner (section);
4701
4702 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
4703
4704 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
4705
4706 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
4707
4708 error_check_comp_unit_head (header, section, abbrev_section);
4709
4710 return info_ptr;
4711 }
4712
4713 /* Fetch the abbreviation table offset from a comp or type unit header. */
4714
4715 static sect_offset
4716 read_abbrev_offset (struct dwarf2_section_info *section,
4717 sect_offset sect_off)
4718 {
4719 bfd *abfd = get_section_bfd_owner (section);
4720 const gdb_byte *info_ptr;
4721 unsigned int initial_length_size, offset_size;
4722 uint16_t version;
4723
4724 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4725 info_ptr = section->buffer + to_underlying (sect_off);
4726 read_initial_length (abfd, info_ptr, &initial_length_size);
4727 offset_size = initial_length_size == 4 ? 4 : 8;
4728 info_ptr += initial_length_size;
4729
4730 version = read_2_bytes (abfd, info_ptr);
4731 info_ptr += 2;
4732 if (version >= 5)
4733 {
4734 /* Skip unit type and address size. */
4735 info_ptr += 2;
4736 }
4737
4738 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
4739 }
4740
4741 /* Allocate a new partial symtab for file named NAME and mark this new
4742 partial symtab as being an include of PST. */
4743
4744 static void
4745 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4746 struct objfile *objfile)
4747 {
4748 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4749
4750 if (!IS_ABSOLUTE_PATH (subpst->filename))
4751 {
4752 /* It shares objfile->objfile_obstack. */
4753 subpst->dirname = pst->dirname;
4754 }
4755
4756 subpst->textlow = 0;
4757 subpst->texthigh = 0;
4758
4759 subpst->dependencies
4760 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4761 subpst->dependencies[0] = pst;
4762 subpst->number_of_dependencies = 1;
4763
4764 subpst->globals_offset = 0;
4765 subpst->n_global_syms = 0;
4766 subpst->statics_offset = 0;
4767 subpst->n_static_syms = 0;
4768 subpst->compunit_symtab = NULL;
4769 subpst->read_symtab = pst->read_symtab;
4770 subpst->readin = 0;
4771
4772 /* No private part is necessary for include psymtabs. This property
4773 can be used to differentiate between such include psymtabs and
4774 the regular ones. */
4775 subpst->read_symtab_private = NULL;
4776 }
4777
4778 /* Read the Line Number Program data and extract the list of files
4779 included by the source file represented by PST. Build an include
4780 partial symtab for each of these included files. */
4781
4782 static void
4783 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4784 struct die_info *die,
4785 struct partial_symtab *pst)
4786 {
4787 line_header_up lh;
4788 struct attribute *attr;
4789
4790 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4791 if (attr)
4792 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
4793 if (lh == NULL)
4794 return; /* No linetable, so no includes. */
4795
4796 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4797 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
4798 }
4799
4800 static hashval_t
4801 hash_signatured_type (const void *item)
4802 {
4803 const struct signatured_type *sig_type
4804 = (const struct signatured_type *) item;
4805
4806 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4807 return sig_type->signature;
4808 }
4809
4810 static int
4811 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4812 {
4813 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4814 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4815
4816 return lhs->signature == rhs->signature;
4817 }
4818
4819 /* Allocate a hash table for signatured types. */
4820
4821 static htab_t
4822 allocate_signatured_type_table (struct objfile *objfile)
4823 {
4824 return htab_create_alloc_ex (41,
4825 hash_signatured_type,
4826 eq_signatured_type,
4827 NULL,
4828 &objfile->objfile_obstack,
4829 hashtab_obstack_allocate,
4830 dummy_obstack_deallocate);
4831 }
4832
4833 /* A helper function to add a signatured type CU to a table. */
4834
4835 static int
4836 add_signatured_type_cu_to_table (void **slot, void *datum)
4837 {
4838 struct signatured_type *sigt = (struct signatured_type *) *slot;
4839 struct signatured_type ***datap = (struct signatured_type ***) datum;
4840
4841 **datap = sigt;
4842 ++*datap;
4843
4844 return 1;
4845 }
4846
4847 /* A helper for create_debug_types_hash_table. Read types from SECTION
4848 and fill them into TYPES_HTAB. It will process only type units,
4849 therefore DW_UT_type. */
4850
4851 static void
4852 create_debug_type_hash_table (struct dwo_file *dwo_file,
4853 dwarf2_section_info *section, htab_t &types_htab,
4854 rcuh_kind section_kind)
4855 {
4856 struct objfile *objfile = dwarf2_per_objfile->objfile;
4857 struct dwarf2_section_info *abbrev_section;
4858 bfd *abfd;
4859 const gdb_byte *info_ptr, *end_ptr;
4860
4861 abbrev_section = (dwo_file != NULL
4862 ? &dwo_file->sections.abbrev
4863 : &dwarf2_per_objfile->abbrev);
4864
4865 if (dwarf_read_debug)
4866 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4867 get_section_name (section),
4868 get_section_file_name (abbrev_section));
4869
4870 dwarf2_read_section (objfile, section);
4871 info_ptr = section->buffer;
4872
4873 if (info_ptr == NULL)
4874 return;
4875
4876 /* We can't set abfd until now because the section may be empty or
4877 not present, in which case the bfd is unknown. */
4878 abfd = get_section_bfd_owner (section);
4879
4880 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4881 because we don't need to read any dies: the signature is in the
4882 header. */
4883
4884 end_ptr = info_ptr + section->size;
4885 while (info_ptr < end_ptr)
4886 {
4887 struct signatured_type *sig_type;
4888 struct dwo_unit *dwo_tu;
4889 void **slot;
4890 const gdb_byte *ptr = info_ptr;
4891 struct comp_unit_head header;
4892 unsigned int length;
4893
4894 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
4895
4896 /* Initialize it due to a false compiler warning. */
4897 header.signature = -1;
4898 header.type_cu_offset_in_tu = (cu_offset) -1;
4899
4900 /* We need to read the type's signature in order to build the hash
4901 table, but we don't need anything else just yet. */
4902
4903 ptr = read_and_check_comp_unit_head (&header, section,
4904 abbrev_section, ptr, section_kind);
4905
4906 length = get_cu_length (&header);
4907
4908 /* Skip dummy type units. */
4909 if (ptr >= info_ptr + length
4910 || peek_abbrev_code (abfd, ptr) == 0
4911 || header.unit_type != DW_UT_type)
4912 {
4913 info_ptr += length;
4914 continue;
4915 }
4916
4917 if (types_htab == NULL)
4918 {
4919 if (dwo_file)
4920 types_htab = allocate_dwo_unit_table (objfile);
4921 else
4922 types_htab = allocate_signatured_type_table (objfile);
4923 }
4924
4925 if (dwo_file)
4926 {
4927 sig_type = NULL;
4928 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4929 struct dwo_unit);
4930 dwo_tu->dwo_file = dwo_file;
4931 dwo_tu->signature = header.signature;
4932 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
4933 dwo_tu->section = section;
4934 dwo_tu->sect_off = sect_off;
4935 dwo_tu->length = length;
4936 }
4937 else
4938 {
4939 /* N.B.: type_offset is not usable if this type uses a DWO file.
4940 The real type_offset is in the DWO file. */
4941 dwo_tu = NULL;
4942 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4943 struct signatured_type);
4944 sig_type->signature = header.signature;
4945 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
4946 sig_type->per_cu.objfile = objfile;
4947 sig_type->per_cu.is_debug_types = 1;
4948 sig_type->per_cu.section = section;
4949 sig_type->per_cu.sect_off = sect_off;
4950 sig_type->per_cu.length = length;
4951 }
4952
4953 slot = htab_find_slot (types_htab,
4954 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4955 INSERT);
4956 gdb_assert (slot != NULL);
4957 if (*slot != NULL)
4958 {
4959 sect_offset dup_sect_off;
4960
4961 if (dwo_file)
4962 {
4963 const struct dwo_unit *dup_tu
4964 = (const struct dwo_unit *) *slot;
4965
4966 dup_sect_off = dup_tu->sect_off;
4967 }
4968 else
4969 {
4970 const struct signatured_type *dup_tu
4971 = (const struct signatured_type *) *slot;
4972
4973 dup_sect_off = dup_tu->per_cu.sect_off;
4974 }
4975
4976 complaint (&symfile_complaints,
4977 _("debug type entry at offset 0x%x is duplicate to"
4978 " the entry at offset 0x%x, signature %s"),
4979 to_underlying (sect_off), to_underlying (dup_sect_off),
4980 hex_string (header.signature));
4981 }
4982 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4983
4984 if (dwarf_read_debug > 1)
4985 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4986 to_underlying (sect_off),
4987 hex_string (header.signature));
4988
4989 info_ptr += length;
4990 }
4991 }
4992
4993 /* Create the hash table of all entries in the .debug_types
4994 (or .debug_types.dwo) section(s).
4995 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4996 otherwise it is NULL.
4997
4998 The result is a pointer to the hash table or NULL if there are no types.
4999
5000 Note: This function processes DWO files only, not DWP files. */
5001
5002 static void
5003 create_debug_types_hash_table (struct dwo_file *dwo_file,
5004 VEC (dwarf2_section_info_def) *types,
5005 htab_t &types_htab)
5006 {
5007 int ix;
5008 struct dwarf2_section_info *section;
5009
5010 if (VEC_empty (dwarf2_section_info_def, types))
5011 return;
5012
5013 for (ix = 0;
5014 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5015 ++ix)
5016 create_debug_type_hash_table (dwo_file, section, types_htab,
5017 rcuh_kind::TYPE);
5018 }
5019
5020 /* Create the hash table of all entries in the .debug_types section,
5021 and initialize all_type_units.
5022 The result is zero if there is an error (e.g. missing .debug_types section),
5023 otherwise non-zero. */
5024
5025 static int
5026 create_all_type_units (struct objfile *objfile)
5027 {
5028 htab_t types_htab = NULL;
5029 struct signatured_type **iter;
5030
5031 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5032 rcuh_kind::COMPILE);
5033 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
5034 if (types_htab == NULL)
5035 {
5036 dwarf2_per_objfile->signatured_types = NULL;
5037 return 0;
5038 }
5039
5040 dwarf2_per_objfile->signatured_types = types_htab;
5041
5042 dwarf2_per_objfile->n_type_units
5043 = dwarf2_per_objfile->n_allocated_type_units
5044 = htab_elements (types_htab);
5045 dwarf2_per_objfile->all_type_units =
5046 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
5047 iter = &dwarf2_per_objfile->all_type_units[0];
5048 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5049 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5050 == dwarf2_per_objfile->n_type_units);
5051
5052 return 1;
5053 }
5054
5055 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5056 If SLOT is non-NULL, it is the entry to use in the hash table.
5057 Otherwise we find one. */
5058
5059 static struct signatured_type *
5060 add_type_unit (ULONGEST sig, void **slot)
5061 {
5062 struct objfile *objfile = dwarf2_per_objfile->objfile;
5063 int n_type_units = dwarf2_per_objfile->n_type_units;
5064 struct signatured_type *sig_type;
5065
5066 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5067 ++n_type_units;
5068 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5069 {
5070 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5071 dwarf2_per_objfile->n_allocated_type_units = 1;
5072 dwarf2_per_objfile->n_allocated_type_units *= 2;
5073 dwarf2_per_objfile->all_type_units
5074 = XRESIZEVEC (struct signatured_type *,
5075 dwarf2_per_objfile->all_type_units,
5076 dwarf2_per_objfile->n_allocated_type_units);
5077 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5078 }
5079 dwarf2_per_objfile->n_type_units = n_type_units;
5080
5081 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5082 struct signatured_type);
5083 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5084 sig_type->signature = sig;
5085 sig_type->per_cu.is_debug_types = 1;
5086 if (dwarf2_per_objfile->using_index)
5087 {
5088 sig_type->per_cu.v.quick =
5089 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5090 struct dwarf2_per_cu_quick_data);
5091 }
5092
5093 if (slot == NULL)
5094 {
5095 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5096 sig_type, INSERT);
5097 }
5098 gdb_assert (*slot == NULL);
5099 *slot = sig_type;
5100 /* The rest of sig_type must be filled in by the caller. */
5101 return sig_type;
5102 }
5103
5104 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5105 Fill in SIG_ENTRY with DWO_ENTRY. */
5106
5107 static void
5108 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5109 struct signatured_type *sig_entry,
5110 struct dwo_unit *dwo_entry)
5111 {
5112 /* Make sure we're not clobbering something we don't expect to. */
5113 gdb_assert (! sig_entry->per_cu.queued);
5114 gdb_assert (sig_entry->per_cu.cu == NULL);
5115 if (dwarf2_per_objfile->using_index)
5116 {
5117 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5118 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5119 }
5120 else
5121 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5122 gdb_assert (sig_entry->signature == dwo_entry->signature);
5123 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5124 gdb_assert (sig_entry->type_unit_group == NULL);
5125 gdb_assert (sig_entry->dwo_unit == NULL);
5126
5127 sig_entry->per_cu.section = dwo_entry->section;
5128 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5129 sig_entry->per_cu.length = dwo_entry->length;
5130 sig_entry->per_cu.reading_dwo_directly = 1;
5131 sig_entry->per_cu.objfile = objfile;
5132 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5133 sig_entry->dwo_unit = dwo_entry;
5134 }
5135
5136 /* Subroutine of lookup_signatured_type.
5137 If we haven't read the TU yet, create the signatured_type data structure
5138 for a TU to be read in directly from a DWO file, bypassing the stub.
5139 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5140 using .gdb_index, then when reading a CU we want to stay in the DWO file
5141 containing that CU. Otherwise we could end up reading several other DWO
5142 files (due to comdat folding) to process the transitive closure of all the
5143 mentioned TUs, and that can be slow. The current DWO file will have every
5144 type signature that it needs.
5145 We only do this for .gdb_index because in the psymtab case we already have
5146 to read all the DWOs to build the type unit groups. */
5147
5148 static struct signatured_type *
5149 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5150 {
5151 struct objfile *objfile = dwarf2_per_objfile->objfile;
5152 struct dwo_file *dwo_file;
5153 struct dwo_unit find_dwo_entry, *dwo_entry;
5154 struct signatured_type find_sig_entry, *sig_entry;
5155 void **slot;
5156
5157 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5158
5159 /* If TU skeletons have been removed then we may not have read in any
5160 TUs yet. */
5161 if (dwarf2_per_objfile->signatured_types == NULL)
5162 {
5163 dwarf2_per_objfile->signatured_types
5164 = allocate_signatured_type_table (objfile);
5165 }
5166
5167 /* We only ever need to read in one copy of a signatured type.
5168 Use the global signatured_types array to do our own comdat-folding
5169 of types. If this is the first time we're reading this TU, and
5170 the TU has an entry in .gdb_index, replace the recorded data from
5171 .gdb_index with this TU. */
5172
5173 find_sig_entry.signature = sig;
5174 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5175 &find_sig_entry, INSERT);
5176 sig_entry = (struct signatured_type *) *slot;
5177
5178 /* We can get here with the TU already read, *or* in the process of being
5179 read. Don't reassign the global entry to point to this DWO if that's
5180 the case. Also note that if the TU is already being read, it may not
5181 have come from a DWO, the program may be a mix of Fission-compiled
5182 code and non-Fission-compiled code. */
5183
5184 /* Have we already tried to read this TU?
5185 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5186 needn't exist in the global table yet). */
5187 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5188 return sig_entry;
5189
5190 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5191 dwo_unit of the TU itself. */
5192 dwo_file = cu->dwo_unit->dwo_file;
5193
5194 /* Ok, this is the first time we're reading this TU. */
5195 if (dwo_file->tus == NULL)
5196 return NULL;
5197 find_dwo_entry.signature = sig;
5198 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5199 if (dwo_entry == NULL)
5200 return NULL;
5201
5202 /* If the global table doesn't have an entry for this TU, add one. */
5203 if (sig_entry == NULL)
5204 sig_entry = add_type_unit (sig, slot);
5205
5206 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5207 sig_entry->per_cu.tu_read = 1;
5208 return sig_entry;
5209 }
5210
5211 /* Subroutine of lookup_signatured_type.
5212 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5213 then try the DWP file. If the TU stub (skeleton) has been removed then
5214 it won't be in .gdb_index. */
5215
5216 static struct signatured_type *
5217 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5218 {
5219 struct objfile *objfile = dwarf2_per_objfile->objfile;
5220 struct dwp_file *dwp_file = get_dwp_file ();
5221 struct dwo_unit *dwo_entry;
5222 struct signatured_type find_sig_entry, *sig_entry;
5223 void **slot;
5224
5225 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5226 gdb_assert (dwp_file != NULL);
5227
5228 /* If TU skeletons have been removed then we may not have read in any
5229 TUs yet. */
5230 if (dwarf2_per_objfile->signatured_types == NULL)
5231 {
5232 dwarf2_per_objfile->signatured_types
5233 = allocate_signatured_type_table (objfile);
5234 }
5235
5236 find_sig_entry.signature = sig;
5237 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5238 &find_sig_entry, INSERT);
5239 sig_entry = (struct signatured_type *) *slot;
5240
5241 /* Have we already tried to read this TU?
5242 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5243 needn't exist in the global table yet). */
5244 if (sig_entry != NULL)
5245 return sig_entry;
5246
5247 if (dwp_file->tus == NULL)
5248 return NULL;
5249 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5250 sig, 1 /* is_debug_types */);
5251 if (dwo_entry == NULL)
5252 return NULL;
5253
5254 sig_entry = add_type_unit (sig, slot);
5255 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5256
5257 return sig_entry;
5258 }
5259
5260 /* Lookup a signature based type for DW_FORM_ref_sig8.
5261 Returns NULL if signature SIG is not present in the table.
5262 It is up to the caller to complain about this. */
5263
5264 static struct signatured_type *
5265 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5266 {
5267 if (cu->dwo_unit
5268 && dwarf2_per_objfile->using_index)
5269 {
5270 /* We're in a DWO/DWP file, and we're using .gdb_index.
5271 These cases require special processing. */
5272 if (get_dwp_file () == NULL)
5273 return lookup_dwo_signatured_type (cu, sig);
5274 else
5275 return lookup_dwp_signatured_type (cu, sig);
5276 }
5277 else
5278 {
5279 struct signatured_type find_entry, *entry;
5280
5281 if (dwarf2_per_objfile->signatured_types == NULL)
5282 return NULL;
5283 find_entry.signature = sig;
5284 entry = ((struct signatured_type *)
5285 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5286 return entry;
5287 }
5288 }
5289 \f
5290 /* Low level DIE reading support. */
5291
5292 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5293
5294 static void
5295 init_cu_die_reader (struct die_reader_specs *reader,
5296 struct dwarf2_cu *cu,
5297 struct dwarf2_section_info *section,
5298 struct dwo_file *dwo_file)
5299 {
5300 gdb_assert (section->readin && section->buffer != NULL);
5301 reader->abfd = get_section_bfd_owner (section);
5302 reader->cu = cu;
5303 reader->dwo_file = dwo_file;
5304 reader->die_section = section;
5305 reader->buffer = section->buffer;
5306 reader->buffer_end = section->buffer + section->size;
5307 reader->comp_dir = NULL;
5308 }
5309
5310 /* Subroutine of init_cutu_and_read_dies to simplify it.
5311 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5312 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5313 already.
5314
5315 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5316 from it to the DIE in the DWO. If NULL we are skipping the stub.
5317 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5318 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5319 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5320 STUB_COMP_DIR may be non-NULL.
5321 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5322 are filled in with the info of the DIE from the DWO file.
5323 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5324 provided an abbrev table to use.
5325 The result is non-zero if a valid (non-dummy) DIE was found. */
5326
5327 static int
5328 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5329 struct dwo_unit *dwo_unit,
5330 int abbrev_table_provided,
5331 struct die_info *stub_comp_unit_die,
5332 const char *stub_comp_dir,
5333 struct die_reader_specs *result_reader,
5334 const gdb_byte **result_info_ptr,
5335 struct die_info **result_comp_unit_die,
5336 int *result_has_children)
5337 {
5338 struct objfile *objfile = dwarf2_per_objfile->objfile;
5339 struct dwarf2_cu *cu = this_cu->cu;
5340 struct dwarf2_section_info *section;
5341 bfd *abfd;
5342 const gdb_byte *begin_info_ptr, *info_ptr;
5343 ULONGEST signature; /* Or dwo_id. */
5344 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5345 int i,num_extra_attrs;
5346 struct dwarf2_section_info *dwo_abbrev_section;
5347 struct attribute *attr;
5348 struct die_info *comp_unit_die;
5349
5350 /* At most one of these may be provided. */
5351 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5352
5353 /* These attributes aren't processed until later:
5354 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5355 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5356 referenced later. However, these attributes are found in the stub
5357 which we won't have later. In order to not impose this complication
5358 on the rest of the code, we read them here and copy them to the
5359 DWO CU/TU die. */
5360
5361 stmt_list = NULL;
5362 low_pc = NULL;
5363 high_pc = NULL;
5364 ranges = NULL;
5365 comp_dir = NULL;
5366
5367 if (stub_comp_unit_die != NULL)
5368 {
5369 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5370 DWO file. */
5371 if (! this_cu->is_debug_types)
5372 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5373 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5374 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5375 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5376 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5377
5378 /* There should be a DW_AT_addr_base attribute here (if needed).
5379 We need the value before we can process DW_FORM_GNU_addr_index. */
5380 cu->addr_base = 0;
5381 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5382 if (attr)
5383 cu->addr_base = DW_UNSND (attr);
5384
5385 /* There should be a DW_AT_ranges_base attribute here (if needed).
5386 We need the value before we can process DW_AT_ranges. */
5387 cu->ranges_base = 0;
5388 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5389 if (attr)
5390 cu->ranges_base = DW_UNSND (attr);
5391 }
5392 else if (stub_comp_dir != NULL)
5393 {
5394 /* Reconstruct the comp_dir attribute to simplify the code below. */
5395 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5396 comp_dir->name = DW_AT_comp_dir;
5397 comp_dir->form = DW_FORM_string;
5398 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5399 DW_STRING (comp_dir) = stub_comp_dir;
5400 }
5401
5402 /* Set up for reading the DWO CU/TU. */
5403 cu->dwo_unit = dwo_unit;
5404 section = dwo_unit->section;
5405 dwarf2_read_section (objfile, section);
5406 abfd = get_section_bfd_owner (section);
5407 begin_info_ptr = info_ptr = (section->buffer
5408 + to_underlying (dwo_unit->sect_off));
5409 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5410 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5411
5412 if (this_cu->is_debug_types)
5413 {
5414 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5415
5416 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5417 dwo_abbrev_section,
5418 info_ptr, rcuh_kind::TYPE);
5419 /* This is not an assert because it can be caused by bad debug info. */
5420 if (sig_type->signature != cu->header.signature)
5421 {
5422 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5423 " TU at offset 0x%x [in module %s]"),
5424 hex_string (sig_type->signature),
5425 hex_string (cu->header.signature),
5426 to_underlying (dwo_unit->sect_off),
5427 bfd_get_filename (abfd));
5428 }
5429 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5430 /* For DWOs coming from DWP files, we don't know the CU length
5431 nor the type's offset in the TU until now. */
5432 dwo_unit->length = get_cu_length (&cu->header);
5433 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
5434
5435 /* Establish the type offset that can be used to lookup the type.
5436 For DWO files, we don't know it until now. */
5437 sig_type->type_offset_in_section
5438 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
5439 }
5440 else
5441 {
5442 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5443 dwo_abbrev_section,
5444 info_ptr, rcuh_kind::COMPILE);
5445 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5446 /* For DWOs coming from DWP files, we don't know the CU length
5447 until now. */
5448 dwo_unit->length = get_cu_length (&cu->header);
5449 }
5450
5451 /* Replace the CU's original abbrev table with the DWO's.
5452 Reminder: We can't read the abbrev table until we've read the header. */
5453 if (abbrev_table_provided)
5454 {
5455 /* Don't free the provided abbrev table, the caller of
5456 init_cutu_and_read_dies owns it. */
5457 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5458 /* Ensure the DWO abbrev table gets freed. */
5459 make_cleanup (dwarf2_free_abbrev_table, cu);
5460 }
5461 else
5462 {
5463 dwarf2_free_abbrev_table (cu);
5464 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5465 /* Leave any existing abbrev table cleanup as is. */
5466 }
5467
5468 /* Read in the die, but leave space to copy over the attributes
5469 from the stub. This has the benefit of simplifying the rest of
5470 the code - all the work to maintain the illusion of a single
5471 DW_TAG_{compile,type}_unit DIE is done here. */
5472 num_extra_attrs = ((stmt_list != NULL)
5473 + (low_pc != NULL)
5474 + (high_pc != NULL)
5475 + (ranges != NULL)
5476 + (comp_dir != NULL));
5477 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5478 result_has_children, num_extra_attrs);
5479
5480 /* Copy over the attributes from the stub to the DIE we just read in. */
5481 comp_unit_die = *result_comp_unit_die;
5482 i = comp_unit_die->num_attrs;
5483 if (stmt_list != NULL)
5484 comp_unit_die->attrs[i++] = *stmt_list;
5485 if (low_pc != NULL)
5486 comp_unit_die->attrs[i++] = *low_pc;
5487 if (high_pc != NULL)
5488 comp_unit_die->attrs[i++] = *high_pc;
5489 if (ranges != NULL)
5490 comp_unit_die->attrs[i++] = *ranges;
5491 if (comp_dir != NULL)
5492 comp_unit_die->attrs[i++] = *comp_dir;
5493 comp_unit_die->num_attrs += num_extra_attrs;
5494
5495 if (dwarf_die_debug)
5496 {
5497 fprintf_unfiltered (gdb_stdlog,
5498 "Read die from %s@0x%x of %s:\n",
5499 get_section_name (section),
5500 (unsigned) (begin_info_ptr - section->buffer),
5501 bfd_get_filename (abfd));
5502 dump_die (comp_unit_die, dwarf_die_debug);
5503 }
5504
5505 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5506 TUs by skipping the stub and going directly to the entry in the DWO file.
5507 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5508 to get it via circuitous means. Blech. */
5509 if (comp_dir != NULL)
5510 result_reader->comp_dir = DW_STRING (comp_dir);
5511
5512 /* Skip dummy compilation units. */
5513 if (info_ptr >= begin_info_ptr + dwo_unit->length
5514 || peek_abbrev_code (abfd, info_ptr) == 0)
5515 return 0;
5516
5517 *result_info_ptr = info_ptr;
5518 return 1;
5519 }
5520
5521 /* Subroutine of init_cutu_and_read_dies to simplify it.
5522 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5523 Returns NULL if the specified DWO unit cannot be found. */
5524
5525 static struct dwo_unit *
5526 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5527 struct die_info *comp_unit_die)
5528 {
5529 struct dwarf2_cu *cu = this_cu->cu;
5530 struct attribute *attr;
5531 ULONGEST signature;
5532 struct dwo_unit *dwo_unit;
5533 const char *comp_dir, *dwo_name;
5534
5535 gdb_assert (cu != NULL);
5536
5537 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5538 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5539 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5540
5541 if (this_cu->is_debug_types)
5542 {
5543 struct signatured_type *sig_type;
5544
5545 /* Since this_cu is the first member of struct signatured_type,
5546 we can go from a pointer to one to a pointer to the other. */
5547 sig_type = (struct signatured_type *) this_cu;
5548 signature = sig_type->signature;
5549 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5550 }
5551 else
5552 {
5553 struct attribute *attr;
5554
5555 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5556 if (! attr)
5557 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5558 " [in module %s]"),
5559 dwo_name, objfile_name (this_cu->objfile));
5560 signature = DW_UNSND (attr);
5561 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5562 signature);
5563 }
5564
5565 return dwo_unit;
5566 }
5567
5568 /* Subroutine of init_cutu_and_read_dies to simplify it.
5569 See it for a description of the parameters.
5570 Read a TU directly from a DWO file, bypassing the stub.
5571
5572 Note: This function could be a little bit simpler if we shared cleanups
5573 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5574 to do, so we keep this function self-contained. Or we could move this
5575 into our caller, but it's complex enough already. */
5576
5577 static void
5578 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5579 int use_existing_cu, int keep,
5580 die_reader_func_ftype *die_reader_func,
5581 void *data)
5582 {
5583 struct dwarf2_cu *cu;
5584 struct signatured_type *sig_type;
5585 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5586 struct die_reader_specs reader;
5587 const gdb_byte *info_ptr;
5588 struct die_info *comp_unit_die;
5589 int has_children;
5590
5591 /* Verify we can do the following downcast, and that we have the
5592 data we need. */
5593 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5594 sig_type = (struct signatured_type *) this_cu;
5595 gdb_assert (sig_type->dwo_unit != NULL);
5596
5597 cleanups = make_cleanup (null_cleanup, NULL);
5598
5599 if (use_existing_cu && this_cu->cu != NULL)
5600 {
5601 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5602 cu = this_cu->cu;
5603 /* There's no need to do the rereading_dwo_cu handling that
5604 init_cutu_and_read_dies does since we don't read the stub. */
5605 }
5606 else
5607 {
5608 /* If !use_existing_cu, this_cu->cu must be NULL. */
5609 gdb_assert (this_cu->cu == NULL);
5610 cu = XNEW (struct dwarf2_cu);
5611 init_one_comp_unit (cu, this_cu);
5612 /* If an error occurs while loading, release our storage. */
5613 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5614 }
5615
5616 /* A future optimization, if needed, would be to use an existing
5617 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5618 could share abbrev tables. */
5619
5620 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5621 0 /* abbrev_table_provided */,
5622 NULL /* stub_comp_unit_die */,
5623 sig_type->dwo_unit->dwo_file->comp_dir,
5624 &reader, &info_ptr,
5625 &comp_unit_die, &has_children) == 0)
5626 {
5627 /* Dummy die. */
5628 do_cleanups (cleanups);
5629 return;
5630 }
5631
5632 /* All the "real" work is done here. */
5633 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5634
5635 /* This duplicates the code in init_cutu_and_read_dies,
5636 but the alternative is making the latter more complex.
5637 This function is only for the special case of using DWO files directly:
5638 no point in overly complicating the general case just to handle this. */
5639 if (free_cu_cleanup != NULL)
5640 {
5641 if (keep)
5642 {
5643 /* We've successfully allocated this compilation unit. Let our
5644 caller clean it up when finished with it. */
5645 discard_cleanups (free_cu_cleanup);
5646
5647 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5648 So we have to manually free the abbrev table. */
5649 dwarf2_free_abbrev_table (cu);
5650
5651 /* Link this CU into read_in_chain. */
5652 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5653 dwarf2_per_objfile->read_in_chain = this_cu;
5654 }
5655 else
5656 do_cleanups (free_cu_cleanup);
5657 }
5658
5659 do_cleanups (cleanups);
5660 }
5661
5662 /* Initialize a CU (or TU) and read its DIEs.
5663 If the CU defers to a DWO file, read the DWO file as well.
5664
5665 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5666 Otherwise the table specified in the comp unit header is read in and used.
5667 This is an optimization for when we already have the abbrev table.
5668
5669 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5670 Otherwise, a new CU is allocated with xmalloc.
5671
5672 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5673 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5674
5675 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5676 linker) then DIE_READER_FUNC will not get called. */
5677
5678 static void
5679 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5680 struct abbrev_table *abbrev_table,
5681 int use_existing_cu, int keep,
5682 die_reader_func_ftype *die_reader_func,
5683 void *data)
5684 {
5685 struct objfile *objfile = dwarf2_per_objfile->objfile;
5686 struct dwarf2_section_info *section = this_cu->section;
5687 bfd *abfd = get_section_bfd_owner (section);
5688 struct dwarf2_cu *cu;
5689 const gdb_byte *begin_info_ptr, *info_ptr;
5690 struct die_reader_specs reader;
5691 struct die_info *comp_unit_die;
5692 int has_children;
5693 struct attribute *attr;
5694 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5695 struct signatured_type *sig_type = NULL;
5696 struct dwarf2_section_info *abbrev_section;
5697 /* Non-zero if CU currently points to a DWO file and we need to
5698 reread it. When this happens we need to reread the skeleton die
5699 before we can reread the DWO file (this only applies to CUs, not TUs). */
5700 int rereading_dwo_cu = 0;
5701
5702 if (dwarf_die_debug)
5703 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5704 this_cu->is_debug_types ? "type" : "comp",
5705 to_underlying (this_cu->sect_off));
5706
5707 if (use_existing_cu)
5708 gdb_assert (keep);
5709
5710 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5711 file (instead of going through the stub), short-circuit all of this. */
5712 if (this_cu->reading_dwo_directly)
5713 {
5714 /* Narrow down the scope of possibilities to have to understand. */
5715 gdb_assert (this_cu->is_debug_types);
5716 gdb_assert (abbrev_table == NULL);
5717 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5718 die_reader_func, data);
5719 return;
5720 }
5721
5722 cleanups = make_cleanup (null_cleanup, NULL);
5723
5724 /* This is cheap if the section is already read in. */
5725 dwarf2_read_section (objfile, section);
5726
5727 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5728
5729 abbrev_section = get_abbrev_section_for_cu (this_cu);
5730
5731 if (use_existing_cu && this_cu->cu != NULL)
5732 {
5733 cu = this_cu->cu;
5734 /* If this CU is from a DWO file we need to start over, we need to
5735 refetch the attributes from the skeleton CU.
5736 This could be optimized by retrieving those attributes from when we
5737 were here the first time: the previous comp_unit_die was stored in
5738 comp_unit_obstack. But there's no data yet that we need this
5739 optimization. */
5740 if (cu->dwo_unit != NULL)
5741 rereading_dwo_cu = 1;
5742 }
5743 else
5744 {
5745 /* If !use_existing_cu, this_cu->cu must be NULL. */
5746 gdb_assert (this_cu->cu == NULL);
5747 cu = XNEW (struct dwarf2_cu);
5748 init_one_comp_unit (cu, this_cu);
5749 /* If an error occurs while loading, release our storage. */
5750 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5751 }
5752
5753 /* Get the header. */
5754 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
5755 {
5756 /* We already have the header, there's no need to read it in again. */
5757 info_ptr += to_underlying (cu->header.first_die_cu_offset);
5758 }
5759 else
5760 {
5761 if (this_cu->is_debug_types)
5762 {
5763 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5764 abbrev_section, info_ptr,
5765 rcuh_kind::TYPE);
5766
5767 /* Since per_cu is the first member of struct signatured_type,
5768 we can go from a pointer to one to a pointer to the other. */
5769 sig_type = (struct signatured_type *) this_cu;
5770 gdb_assert (sig_type->signature == cu->header.signature);
5771 gdb_assert (sig_type->type_offset_in_tu
5772 == cu->header.type_cu_offset_in_tu);
5773 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5774
5775 /* LENGTH has not been set yet for type units if we're
5776 using .gdb_index. */
5777 this_cu->length = get_cu_length (&cu->header);
5778
5779 /* Establish the type offset that can be used to lookup the type. */
5780 sig_type->type_offset_in_section =
5781 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
5782
5783 this_cu->dwarf_version = cu->header.version;
5784 }
5785 else
5786 {
5787 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5788 abbrev_section,
5789 info_ptr,
5790 rcuh_kind::COMPILE);
5791
5792 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5793 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5794 this_cu->dwarf_version = cu->header.version;
5795 }
5796 }
5797
5798 /* Skip dummy compilation units. */
5799 if (info_ptr >= begin_info_ptr + this_cu->length
5800 || peek_abbrev_code (abfd, info_ptr) == 0)
5801 {
5802 do_cleanups (cleanups);
5803 return;
5804 }
5805
5806 /* If we don't have them yet, read the abbrevs for this compilation unit.
5807 And if we need to read them now, make sure they're freed when we're
5808 done. Note that it's important that if the CU had an abbrev table
5809 on entry we don't free it when we're done: Somewhere up the call stack
5810 it may be in use. */
5811 if (abbrev_table != NULL)
5812 {
5813 gdb_assert (cu->abbrev_table == NULL);
5814 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
5815 cu->abbrev_table = abbrev_table;
5816 }
5817 else if (cu->abbrev_table == NULL)
5818 {
5819 dwarf2_read_abbrevs (cu, abbrev_section);
5820 make_cleanup (dwarf2_free_abbrev_table, cu);
5821 }
5822 else if (rereading_dwo_cu)
5823 {
5824 dwarf2_free_abbrev_table (cu);
5825 dwarf2_read_abbrevs (cu, abbrev_section);
5826 }
5827
5828 /* Read the top level CU/TU die. */
5829 init_cu_die_reader (&reader, cu, section, NULL);
5830 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5831
5832 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5833 from the DWO file.
5834 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5835 DWO CU, that this test will fail (the attribute will not be present). */
5836 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5837 if (attr)
5838 {
5839 struct dwo_unit *dwo_unit;
5840 struct die_info *dwo_comp_unit_die;
5841
5842 if (has_children)
5843 {
5844 complaint (&symfile_complaints,
5845 _("compilation unit with DW_AT_GNU_dwo_name"
5846 " has children (offset 0x%x) [in module %s]"),
5847 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
5848 }
5849 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5850 if (dwo_unit != NULL)
5851 {
5852 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5853 abbrev_table != NULL,
5854 comp_unit_die, NULL,
5855 &reader, &info_ptr,
5856 &dwo_comp_unit_die, &has_children) == 0)
5857 {
5858 /* Dummy die. */
5859 do_cleanups (cleanups);
5860 return;
5861 }
5862 comp_unit_die = dwo_comp_unit_die;
5863 }
5864 else
5865 {
5866 /* Yikes, we couldn't find the rest of the DIE, we only have
5867 the stub. A complaint has already been logged. There's
5868 not much more we can do except pass on the stub DIE to
5869 die_reader_func. We don't want to throw an error on bad
5870 debug info. */
5871 }
5872 }
5873
5874 /* All of the above is setup for this call. Yikes. */
5875 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5876
5877 /* Done, clean up. */
5878 if (free_cu_cleanup != NULL)
5879 {
5880 if (keep)
5881 {
5882 /* We've successfully allocated this compilation unit. Let our
5883 caller clean it up when finished with it. */
5884 discard_cleanups (free_cu_cleanup);
5885
5886 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5887 So we have to manually free the abbrev table. */
5888 dwarf2_free_abbrev_table (cu);
5889
5890 /* Link this CU into read_in_chain. */
5891 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5892 dwarf2_per_objfile->read_in_chain = this_cu;
5893 }
5894 else
5895 do_cleanups (free_cu_cleanup);
5896 }
5897
5898 do_cleanups (cleanups);
5899 }
5900
5901 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5902 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5903 to have already done the lookup to find the DWO file).
5904
5905 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5906 THIS_CU->is_debug_types, but nothing else.
5907
5908 We fill in THIS_CU->length.
5909
5910 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5911 linker) then DIE_READER_FUNC will not get called.
5912
5913 THIS_CU->cu is always freed when done.
5914 This is done in order to not leave THIS_CU->cu in a state where we have
5915 to care whether it refers to the "main" CU or the DWO CU. */
5916
5917 static void
5918 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5919 struct dwo_file *dwo_file,
5920 die_reader_func_ftype *die_reader_func,
5921 void *data)
5922 {
5923 struct objfile *objfile = dwarf2_per_objfile->objfile;
5924 struct dwarf2_section_info *section = this_cu->section;
5925 bfd *abfd = get_section_bfd_owner (section);
5926 struct dwarf2_section_info *abbrev_section;
5927 struct dwarf2_cu cu;
5928 const gdb_byte *begin_info_ptr, *info_ptr;
5929 struct die_reader_specs reader;
5930 struct cleanup *cleanups;
5931 struct die_info *comp_unit_die;
5932 int has_children;
5933
5934 if (dwarf_die_debug)
5935 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5936 this_cu->is_debug_types ? "type" : "comp",
5937 to_underlying (this_cu->sect_off));
5938
5939 gdb_assert (this_cu->cu == NULL);
5940
5941 abbrev_section = (dwo_file != NULL
5942 ? &dwo_file->sections.abbrev
5943 : get_abbrev_section_for_cu (this_cu));
5944
5945 /* This is cheap if the section is already read in. */
5946 dwarf2_read_section (objfile, section);
5947
5948 init_one_comp_unit (&cu, this_cu);
5949
5950 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5951
5952 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5953 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5954 abbrev_section, info_ptr,
5955 (this_cu->is_debug_types
5956 ? rcuh_kind::TYPE
5957 : rcuh_kind::COMPILE));
5958
5959 this_cu->length = get_cu_length (&cu.header);
5960
5961 /* Skip dummy compilation units. */
5962 if (info_ptr >= begin_info_ptr + this_cu->length
5963 || peek_abbrev_code (abfd, info_ptr) == 0)
5964 {
5965 do_cleanups (cleanups);
5966 return;
5967 }
5968
5969 dwarf2_read_abbrevs (&cu, abbrev_section);
5970 make_cleanup (dwarf2_free_abbrev_table, &cu);
5971
5972 init_cu_die_reader (&reader, &cu, section, dwo_file);
5973 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5974
5975 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5976
5977 do_cleanups (cleanups);
5978 }
5979
5980 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5981 does not lookup the specified DWO file.
5982 This cannot be used to read DWO files.
5983
5984 THIS_CU->cu is always freed when done.
5985 This is done in order to not leave THIS_CU->cu in a state where we have
5986 to care whether it refers to the "main" CU or the DWO CU.
5987 We can revisit this if the data shows there's a performance issue. */
5988
5989 static void
5990 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5991 die_reader_func_ftype *die_reader_func,
5992 void *data)
5993 {
5994 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5995 }
5996 \f
5997 /* Type Unit Groups.
5998
5999 Type Unit Groups are a way to collapse the set of all TUs (type units) into
6000 a more manageable set. The grouping is done by DW_AT_stmt_list entry
6001 so that all types coming from the same compilation (.o file) are grouped
6002 together. A future step could be to put the types in the same symtab as
6003 the CU the types ultimately came from. */
6004
6005 static hashval_t
6006 hash_type_unit_group (const void *item)
6007 {
6008 const struct type_unit_group *tu_group
6009 = (const struct type_unit_group *) item;
6010
6011 return hash_stmt_list_entry (&tu_group->hash);
6012 }
6013
6014 static int
6015 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6016 {
6017 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6018 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6019
6020 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6021 }
6022
6023 /* Allocate a hash table for type unit groups. */
6024
6025 static htab_t
6026 allocate_type_unit_groups_table (void)
6027 {
6028 return htab_create_alloc_ex (3,
6029 hash_type_unit_group,
6030 eq_type_unit_group,
6031 NULL,
6032 &dwarf2_per_objfile->objfile->objfile_obstack,
6033 hashtab_obstack_allocate,
6034 dummy_obstack_deallocate);
6035 }
6036
6037 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6038 partial symtabs. We combine several TUs per psymtab to not let the size
6039 of any one psymtab grow too big. */
6040 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6041 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6042
6043 /* Helper routine for get_type_unit_group.
6044 Create the type_unit_group object used to hold one or more TUs. */
6045
6046 static struct type_unit_group *
6047 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6048 {
6049 struct objfile *objfile = dwarf2_per_objfile->objfile;
6050 struct dwarf2_per_cu_data *per_cu;
6051 struct type_unit_group *tu_group;
6052
6053 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6054 struct type_unit_group);
6055 per_cu = &tu_group->per_cu;
6056 per_cu->objfile = objfile;
6057
6058 if (dwarf2_per_objfile->using_index)
6059 {
6060 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6061 struct dwarf2_per_cu_quick_data);
6062 }
6063 else
6064 {
6065 unsigned int line_offset = to_underlying (line_offset_struct);
6066 struct partial_symtab *pst;
6067 char *name;
6068
6069 /* Give the symtab a useful name for debug purposes. */
6070 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6071 name = xstrprintf ("<type_units_%d>",
6072 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6073 else
6074 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6075
6076 pst = create_partial_symtab (per_cu, name);
6077 pst->anonymous = 1;
6078
6079 xfree (name);
6080 }
6081
6082 tu_group->hash.dwo_unit = cu->dwo_unit;
6083 tu_group->hash.line_sect_off = line_offset_struct;
6084
6085 return tu_group;
6086 }
6087
6088 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6089 STMT_LIST is a DW_AT_stmt_list attribute. */
6090
6091 static struct type_unit_group *
6092 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6093 {
6094 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6095 struct type_unit_group *tu_group;
6096 void **slot;
6097 unsigned int line_offset;
6098 struct type_unit_group type_unit_group_for_lookup;
6099
6100 if (dwarf2_per_objfile->type_unit_groups == NULL)
6101 {
6102 dwarf2_per_objfile->type_unit_groups =
6103 allocate_type_unit_groups_table ();
6104 }
6105
6106 /* Do we need to create a new group, or can we use an existing one? */
6107
6108 if (stmt_list)
6109 {
6110 line_offset = DW_UNSND (stmt_list);
6111 ++tu_stats->nr_symtab_sharers;
6112 }
6113 else
6114 {
6115 /* Ugh, no stmt_list. Rare, but we have to handle it.
6116 We can do various things here like create one group per TU or
6117 spread them over multiple groups to split up the expansion work.
6118 To avoid worst case scenarios (too many groups or too large groups)
6119 we, umm, group them in bunches. */
6120 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6121 | (tu_stats->nr_stmt_less_type_units
6122 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6123 ++tu_stats->nr_stmt_less_type_units;
6124 }
6125
6126 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6127 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6128 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6129 &type_unit_group_for_lookup, INSERT);
6130 if (*slot != NULL)
6131 {
6132 tu_group = (struct type_unit_group *) *slot;
6133 gdb_assert (tu_group != NULL);
6134 }
6135 else
6136 {
6137 sect_offset line_offset_struct = (sect_offset) line_offset;
6138 tu_group = create_type_unit_group (cu, line_offset_struct);
6139 *slot = tu_group;
6140 ++tu_stats->nr_symtabs;
6141 }
6142
6143 return tu_group;
6144 }
6145 \f
6146 /* Partial symbol tables. */
6147
6148 /* Create a psymtab named NAME and assign it to PER_CU.
6149
6150 The caller must fill in the following details:
6151 dirname, textlow, texthigh. */
6152
6153 static struct partial_symtab *
6154 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6155 {
6156 struct objfile *objfile = per_cu->objfile;
6157 struct partial_symtab *pst;
6158
6159 pst = start_psymtab_common (objfile, name, 0,
6160 objfile->global_psymbols.next,
6161 objfile->static_psymbols.next);
6162
6163 pst->psymtabs_addrmap_supported = 1;
6164
6165 /* This is the glue that links PST into GDB's symbol API. */
6166 pst->read_symtab_private = per_cu;
6167 pst->read_symtab = dwarf2_read_symtab;
6168 per_cu->v.psymtab = pst;
6169
6170 return pst;
6171 }
6172
6173 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6174 type. */
6175
6176 struct process_psymtab_comp_unit_data
6177 {
6178 /* True if we are reading a DW_TAG_partial_unit. */
6179
6180 int want_partial_unit;
6181
6182 /* The "pretend" language that is used if the CU doesn't declare a
6183 language. */
6184
6185 enum language pretend_language;
6186 };
6187
6188 /* die_reader_func for process_psymtab_comp_unit. */
6189
6190 static void
6191 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6192 const gdb_byte *info_ptr,
6193 struct die_info *comp_unit_die,
6194 int has_children,
6195 void *data)
6196 {
6197 struct dwarf2_cu *cu = reader->cu;
6198 struct objfile *objfile = cu->objfile;
6199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6200 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6201 CORE_ADDR baseaddr;
6202 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6203 struct partial_symtab *pst;
6204 enum pc_bounds_kind cu_bounds_kind;
6205 const char *filename;
6206 struct process_psymtab_comp_unit_data *info
6207 = (struct process_psymtab_comp_unit_data *) data;
6208
6209 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6210 return;
6211
6212 gdb_assert (! per_cu->is_debug_types);
6213
6214 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6215
6216 cu->list_in_scope = &file_symbols;
6217
6218 /* Allocate a new partial symbol table structure. */
6219 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6220 if (filename == NULL)
6221 filename = "";
6222
6223 pst = create_partial_symtab (per_cu, filename);
6224
6225 /* This must be done before calling dwarf2_build_include_psymtabs. */
6226 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6227
6228 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6229
6230 dwarf2_find_base_address (comp_unit_die, cu);
6231
6232 /* Possibly set the default values of LOWPC and HIGHPC from
6233 `DW_AT_ranges'. */
6234 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6235 &best_highpc, cu, pst);
6236 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6237 /* Store the contiguous range if it is not empty; it can be empty for
6238 CUs with no code. */
6239 addrmap_set_empty (objfile->psymtabs_addrmap,
6240 gdbarch_adjust_dwarf2_addr (gdbarch,
6241 best_lowpc + baseaddr),
6242 gdbarch_adjust_dwarf2_addr (gdbarch,
6243 best_highpc + baseaddr) - 1,
6244 pst);
6245
6246 /* Check if comp unit has_children.
6247 If so, read the rest of the partial symbols from this comp unit.
6248 If not, there's no more debug_info for this comp unit. */
6249 if (has_children)
6250 {
6251 struct partial_die_info *first_die;
6252 CORE_ADDR lowpc, highpc;
6253
6254 lowpc = ((CORE_ADDR) -1);
6255 highpc = ((CORE_ADDR) 0);
6256
6257 first_die = load_partial_dies (reader, info_ptr, 1);
6258
6259 scan_partial_symbols (first_die, &lowpc, &highpc,
6260 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6261
6262 /* If we didn't find a lowpc, set it to highpc to avoid
6263 complaints from `maint check'. */
6264 if (lowpc == ((CORE_ADDR) -1))
6265 lowpc = highpc;
6266
6267 /* If the compilation unit didn't have an explicit address range,
6268 then use the information extracted from its child dies. */
6269 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6270 {
6271 best_lowpc = lowpc;
6272 best_highpc = highpc;
6273 }
6274 }
6275 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6276 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6277
6278 end_psymtab_common (objfile, pst);
6279
6280 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6281 {
6282 int i;
6283 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6284 struct dwarf2_per_cu_data *iter;
6285
6286 /* Fill in 'dependencies' here; we fill in 'users' in a
6287 post-pass. */
6288 pst->number_of_dependencies = len;
6289 pst->dependencies =
6290 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6291 for (i = 0;
6292 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6293 i, iter);
6294 ++i)
6295 pst->dependencies[i] = iter->v.psymtab;
6296
6297 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6298 }
6299
6300 /* Get the list of files included in the current compilation unit,
6301 and build a psymtab for each of them. */
6302 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6303
6304 if (dwarf_read_debug)
6305 {
6306 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6307
6308 fprintf_unfiltered (gdb_stdlog,
6309 "Psymtab for %s unit @0x%x: %s - %s"
6310 ", %d global, %d static syms\n",
6311 per_cu->is_debug_types ? "type" : "comp",
6312 to_underlying (per_cu->sect_off),
6313 paddress (gdbarch, pst->textlow),
6314 paddress (gdbarch, pst->texthigh),
6315 pst->n_global_syms, pst->n_static_syms);
6316 }
6317 }
6318
6319 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6320 Process compilation unit THIS_CU for a psymtab. */
6321
6322 static void
6323 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6324 int want_partial_unit,
6325 enum language pretend_language)
6326 {
6327 /* If this compilation unit was already read in, free the
6328 cached copy in order to read it in again. This is
6329 necessary because we skipped some symbols when we first
6330 read in the compilation unit (see load_partial_dies).
6331 This problem could be avoided, but the benefit is unclear. */
6332 if (this_cu->cu != NULL)
6333 free_one_cached_comp_unit (this_cu);
6334
6335 if (this_cu->is_debug_types)
6336 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
6337 NULL);
6338 else
6339 {
6340 process_psymtab_comp_unit_data info;
6341 info.want_partial_unit = want_partial_unit;
6342 info.pretend_language = pretend_language;
6343 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6344 process_psymtab_comp_unit_reader, &info);
6345 }
6346
6347 /* Age out any secondary CUs. */
6348 age_cached_comp_units ();
6349 }
6350
6351 /* Reader function for build_type_psymtabs. */
6352
6353 static void
6354 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6355 const gdb_byte *info_ptr,
6356 struct die_info *type_unit_die,
6357 int has_children,
6358 void *data)
6359 {
6360 struct objfile *objfile = dwarf2_per_objfile->objfile;
6361 struct dwarf2_cu *cu = reader->cu;
6362 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6363 struct signatured_type *sig_type;
6364 struct type_unit_group *tu_group;
6365 struct attribute *attr;
6366 struct partial_die_info *first_die;
6367 CORE_ADDR lowpc, highpc;
6368 struct partial_symtab *pst;
6369
6370 gdb_assert (data == NULL);
6371 gdb_assert (per_cu->is_debug_types);
6372 sig_type = (struct signatured_type *) per_cu;
6373
6374 if (! has_children)
6375 return;
6376
6377 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6378 tu_group = get_type_unit_group (cu, attr);
6379
6380 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6381
6382 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6383 cu->list_in_scope = &file_symbols;
6384 pst = create_partial_symtab (per_cu, "");
6385 pst->anonymous = 1;
6386
6387 first_die = load_partial_dies (reader, info_ptr, 1);
6388
6389 lowpc = (CORE_ADDR) -1;
6390 highpc = (CORE_ADDR) 0;
6391 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6392
6393 end_psymtab_common (objfile, pst);
6394 }
6395
6396 /* Struct used to sort TUs by their abbreviation table offset. */
6397
6398 struct tu_abbrev_offset
6399 {
6400 struct signatured_type *sig_type;
6401 sect_offset abbrev_offset;
6402 };
6403
6404 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6405
6406 static int
6407 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6408 {
6409 const struct tu_abbrev_offset * const *a
6410 = (const struct tu_abbrev_offset * const*) ap;
6411 const struct tu_abbrev_offset * const *b
6412 = (const struct tu_abbrev_offset * const*) bp;
6413 sect_offset aoff = (*a)->abbrev_offset;
6414 sect_offset boff = (*b)->abbrev_offset;
6415
6416 return (aoff > boff) - (aoff < boff);
6417 }
6418
6419 /* Efficiently read all the type units.
6420 This does the bulk of the work for build_type_psymtabs.
6421
6422 The efficiency is because we sort TUs by the abbrev table they use and
6423 only read each abbrev table once. In one program there are 200K TUs
6424 sharing 8K abbrev tables.
6425
6426 The main purpose of this function is to support building the
6427 dwarf2_per_objfile->type_unit_groups table.
6428 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6429 can collapse the search space by grouping them by stmt_list.
6430 The savings can be significant, in the same program from above the 200K TUs
6431 share 8K stmt_list tables.
6432
6433 FUNC is expected to call get_type_unit_group, which will create the
6434 struct type_unit_group if necessary and add it to
6435 dwarf2_per_objfile->type_unit_groups. */
6436
6437 static void
6438 build_type_psymtabs_1 (void)
6439 {
6440 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6441 struct cleanup *cleanups;
6442 struct abbrev_table *abbrev_table;
6443 sect_offset abbrev_offset;
6444 struct tu_abbrev_offset *sorted_by_abbrev;
6445 int i;
6446
6447 /* It's up to the caller to not call us multiple times. */
6448 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6449
6450 if (dwarf2_per_objfile->n_type_units == 0)
6451 return;
6452
6453 /* TUs typically share abbrev tables, and there can be way more TUs than
6454 abbrev tables. Sort by abbrev table to reduce the number of times we
6455 read each abbrev table in.
6456 Alternatives are to punt or to maintain a cache of abbrev tables.
6457 This is simpler and efficient enough for now.
6458
6459 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6460 symtab to use). Typically TUs with the same abbrev offset have the same
6461 stmt_list value too so in practice this should work well.
6462
6463 The basic algorithm here is:
6464
6465 sort TUs by abbrev table
6466 for each TU with same abbrev table:
6467 read abbrev table if first user
6468 read TU top level DIE
6469 [IWBN if DWO skeletons had DW_AT_stmt_list]
6470 call FUNC */
6471
6472 if (dwarf_read_debug)
6473 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6474
6475 /* Sort in a separate table to maintain the order of all_type_units
6476 for .gdb_index: TU indices directly index all_type_units. */
6477 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6478 dwarf2_per_objfile->n_type_units);
6479 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6480 {
6481 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6482
6483 sorted_by_abbrev[i].sig_type = sig_type;
6484 sorted_by_abbrev[i].abbrev_offset =
6485 read_abbrev_offset (sig_type->per_cu.section,
6486 sig_type->per_cu.sect_off);
6487 }
6488 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6489 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6490 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6491
6492 abbrev_offset = (sect_offset) ~(unsigned) 0;
6493 abbrev_table = NULL;
6494 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6495
6496 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6497 {
6498 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6499
6500 /* Switch to the next abbrev table if necessary. */
6501 if (abbrev_table == NULL
6502 || tu->abbrev_offset != abbrev_offset)
6503 {
6504 if (abbrev_table != NULL)
6505 {
6506 abbrev_table_free (abbrev_table);
6507 /* Reset to NULL in case abbrev_table_read_table throws
6508 an error: abbrev_table_free_cleanup will get called. */
6509 abbrev_table = NULL;
6510 }
6511 abbrev_offset = tu->abbrev_offset;
6512 abbrev_table =
6513 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6514 abbrev_offset);
6515 ++tu_stats->nr_uniq_abbrev_tables;
6516 }
6517
6518 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6519 build_type_psymtabs_reader, NULL);
6520 }
6521
6522 do_cleanups (cleanups);
6523 }
6524
6525 /* Print collected type unit statistics. */
6526
6527 static void
6528 print_tu_stats (void)
6529 {
6530 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6531
6532 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6533 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6534 dwarf2_per_objfile->n_type_units);
6535 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6536 tu_stats->nr_uniq_abbrev_tables);
6537 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6538 tu_stats->nr_symtabs);
6539 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6540 tu_stats->nr_symtab_sharers);
6541 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6542 tu_stats->nr_stmt_less_type_units);
6543 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6544 tu_stats->nr_all_type_units_reallocs);
6545 }
6546
6547 /* Traversal function for build_type_psymtabs. */
6548
6549 static int
6550 build_type_psymtab_dependencies (void **slot, void *info)
6551 {
6552 struct objfile *objfile = dwarf2_per_objfile->objfile;
6553 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6554 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6555 struct partial_symtab *pst = per_cu->v.psymtab;
6556 int len = VEC_length (sig_type_ptr, tu_group->tus);
6557 struct signatured_type *iter;
6558 int i;
6559
6560 gdb_assert (len > 0);
6561 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6562
6563 pst->number_of_dependencies = len;
6564 pst->dependencies =
6565 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6566 for (i = 0;
6567 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6568 ++i)
6569 {
6570 gdb_assert (iter->per_cu.is_debug_types);
6571 pst->dependencies[i] = iter->per_cu.v.psymtab;
6572 iter->type_unit_group = tu_group;
6573 }
6574
6575 VEC_free (sig_type_ptr, tu_group->tus);
6576
6577 return 1;
6578 }
6579
6580 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6581 Build partial symbol tables for the .debug_types comp-units. */
6582
6583 static void
6584 build_type_psymtabs (struct objfile *objfile)
6585 {
6586 if (! create_all_type_units (objfile))
6587 return;
6588
6589 build_type_psymtabs_1 ();
6590 }
6591
6592 /* Traversal function for process_skeletonless_type_unit.
6593 Read a TU in a DWO file and build partial symbols for it. */
6594
6595 static int
6596 process_skeletonless_type_unit (void **slot, void *info)
6597 {
6598 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6599 struct objfile *objfile = (struct objfile *) info;
6600 struct signatured_type find_entry, *entry;
6601
6602 /* If this TU doesn't exist in the global table, add it and read it in. */
6603
6604 if (dwarf2_per_objfile->signatured_types == NULL)
6605 {
6606 dwarf2_per_objfile->signatured_types
6607 = allocate_signatured_type_table (objfile);
6608 }
6609
6610 find_entry.signature = dwo_unit->signature;
6611 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6612 INSERT);
6613 /* If we've already seen this type there's nothing to do. What's happening
6614 is we're doing our own version of comdat-folding here. */
6615 if (*slot != NULL)
6616 return 1;
6617
6618 /* This does the job that create_all_type_units would have done for
6619 this TU. */
6620 entry = add_type_unit (dwo_unit->signature, slot);
6621 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6622 *slot = entry;
6623
6624 /* This does the job that build_type_psymtabs_1 would have done. */
6625 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6626 build_type_psymtabs_reader, NULL);
6627
6628 return 1;
6629 }
6630
6631 /* Traversal function for process_skeletonless_type_units. */
6632
6633 static int
6634 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6635 {
6636 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6637
6638 if (dwo_file->tus != NULL)
6639 {
6640 htab_traverse_noresize (dwo_file->tus,
6641 process_skeletonless_type_unit, info);
6642 }
6643
6644 return 1;
6645 }
6646
6647 /* Scan all TUs of DWO files, verifying we've processed them.
6648 This is needed in case a TU was emitted without its skeleton.
6649 Note: This can't be done until we know what all the DWO files are. */
6650
6651 static void
6652 process_skeletonless_type_units (struct objfile *objfile)
6653 {
6654 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6655 if (get_dwp_file () == NULL
6656 && dwarf2_per_objfile->dwo_files != NULL)
6657 {
6658 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6659 process_dwo_file_for_skeletonless_type_units,
6660 objfile);
6661 }
6662 }
6663
6664 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6665
6666 static void
6667 psymtabs_addrmap_cleanup (void *o)
6668 {
6669 struct objfile *objfile = (struct objfile *) o;
6670
6671 objfile->psymtabs_addrmap = NULL;
6672 }
6673
6674 /* Compute the 'user' field for each psymtab in OBJFILE. */
6675
6676 static void
6677 set_partial_user (struct objfile *objfile)
6678 {
6679 int i;
6680
6681 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6682 {
6683 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6684 struct partial_symtab *pst = per_cu->v.psymtab;
6685 int j;
6686
6687 if (pst == NULL)
6688 continue;
6689
6690 for (j = 0; j < pst->number_of_dependencies; ++j)
6691 {
6692 /* Set the 'user' field only if it is not already set. */
6693 if (pst->dependencies[j]->user == NULL)
6694 pst->dependencies[j]->user = pst;
6695 }
6696 }
6697 }
6698
6699 /* Build the partial symbol table by doing a quick pass through the
6700 .debug_info and .debug_abbrev sections. */
6701
6702 static void
6703 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6704 {
6705 struct cleanup *back_to, *addrmap_cleanup;
6706 int i;
6707
6708 if (dwarf_read_debug)
6709 {
6710 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6711 objfile_name (objfile));
6712 }
6713
6714 dwarf2_per_objfile->reading_partial_symbols = 1;
6715
6716 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6717
6718 /* Any cached compilation units will be linked by the per-objfile
6719 read_in_chain. Make sure to free them when we're done. */
6720 back_to = make_cleanup (free_cached_comp_units, NULL);
6721
6722 build_type_psymtabs (objfile);
6723
6724 create_all_comp_units (objfile);
6725
6726 /* Create a temporary address map on a temporary obstack. We later
6727 copy this to the final obstack. */
6728 auto_obstack temp_obstack;
6729 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6730 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6731
6732 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6733 {
6734 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6735
6736 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6737 }
6738
6739 /* This has to wait until we read the CUs, we need the list of DWOs. */
6740 process_skeletonless_type_units (objfile);
6741
6742 /* Now that all TUs have been processed we can fill in the dependencies. */
6743 if (dwarf2_per_objfile->type_unit_groups != NULL)
6744 {
6745 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6746 build_type_psymtab_dependencies, NULL);
6747 }
6748
6749 if (dwarf_read_debug)
6750 print_tu_stats ();
6751
6752 set_partial_user (objfile);
6753
6754 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6755 &objfile->objfile_obstack);
6756 discard_cleanups (addrmap_cleanup);
6757
6758 do_cleanups (back_to);
6759
6760 if (dwarf_read_debug)
6761 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6762 objfile_name (objfile));
6763 }
6764
6765 /* die_reader_func for load_partial_comp_unit. */
6766
6767 static void
6768 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6769 const gdb_byte *info_ptr,
6770 struct die_info *comp_unit_die,
6771 int has_children,
6772 void *data)
6773 {
6774 struct dwarf2_cu *cu = reader->cu;
6775
6776 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6777
6778 /* Check if comp unit has_children.
6779 If so, read the rest of the partial symbols from this comp unit.
6780 If not, there's no more debug_info for this comp unit. */
6781 if (has_children)
6782 load_partial_dies (reader, info_ptr, 0);
6783 }
6784
6785 /* Load the partial DIEs for a secondary CU into memory.
6786 This is also used when rereading a primary CU with load_all_dies. */
6787
6788 static void
6789 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6790 {
6791 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6792 load_partial_comp_unit_reader, NULL);
6793 }
6794
6795 static void
6796 read_comp_units_from_section (struct objfile *objfile,
6797 struct dwarf2_section_info *section,
6798 struct dwarf2_section_info *abbrev_section,
6799 unsigned int is_dwz,
6800 int *n_allocated,
6801 int *n_comp_units,
6802 struct dwarf2_per_cu_data ***all_comp_units)
6803 {
6804 const gdb_byte *info_ptr;
6805 bfd *abfd = get_section_bfd_owner (section);
6806
6807 if (dwarf_read_debug)
6808 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6809 get_section_name (section),
6810 get_section_file_name (section));
6811
6812 dwarf2_read_section (objfile, section);
6813
6814 info_ptr = section->buffer;
6815
6816 while (info_ptr < section->buffer + section->size)
6817 {
6818 struct dwarf2_per_cu_data *this_cu;
6819
6820 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
6821
6822 comp_unit_head cu_header;
6823 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
6824 info_ptr, rcuh_kind::COMPILE);
6825
6826 /* Save the compilation unit for later lookup. */
6827 if (cu_header.unit_type != DW_UT_type)
6828 {
6829 this_cu = XOBNEW (&objfile->objfile_obstack,
6830 struct dwarf2_per_cu_data);
6831 memset (this_cu, 0, sizeof (*this_cu));
6832 }
6833 else
6834 {
6835 auto sig_type = XOBNEW (&objfile->objfile_obstack,
6836 struct signatured_type);
6837 memset (sig_type, 0, sizeof (*sig_type));
6838 sig_type->signature = cu_header.signature;
6839 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
6840 this_cu = &sig_type->per_cu;
6841 }
6842 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
6843 this_cu->sect_off = sect_off;
6844 this_cu->length = cu_header.length + cu_header.initial_length_size;
6845 this_cu->is_dwz = is_dwz;
6846 this_cu->objfile = objfile;
6847 this_cu->section = section;
6848
6849 if (*n_comp_units == *n_allocated)
6850 {
6851 *n_allocated *= 2;
6852 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6853 *all_comp_units, *n_allocated);
6854 }
6855 (*all_comp_units)[*n_comp_units] = this_cu;
6856 ++*n_comp_units;
6857
6858 info_ptr = info_ptr + this_cu->length;
6859 }
6860 }
6861
6862 /* Create a list of all compilation units in OBJFILE.
6863 This is only done for -readnow and building partial symtabs. */
6864
6865 static void
6866 create_all_comp_units (struct objfile *objfile)
6867 {
6868 int n_allocated;
6869 int n_comp_units;
6870 struct dwarf2_per_cu_data **all_comp_units;
6871 struct dwz_file *dwz;
6872
6873 n_comp_units = 0;
6874 n_allocated = 10;
6875 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6876
6877 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
6878 &dwarf2_per_objfile->abbrev, 0,
6879 &n_allocated, &n_comp_units, &all_comp_units);
6880
6881 dwz = dwarf2_get_dwz_file ();
6882 if (dwz != NULL)
6883 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
6884 &n_allocated, &n_comp_units,
6885 &all_comp_units);
6886
6887 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6888 struct dwarf2_per_cu_data *,
6889 n_comp_units);
6890 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6891 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6892 xfree (all_comp_units);
6893 dwarf2_per_objfile->n_comp_units = n_comp_units;
6894 }
6895
6896 /* Process all loaded DIEs for compilation unit CU, starting at
6897 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6898 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6899 DW_AT_ranges). See the comments of add_partial_subprogram on how
6900 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6901
6902 static void
6903 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6904 CORE_ADDR *highpc, int set_addrmap,
6905 struct dwarf2_cu *cu)
6906 {
6907 struct partial_die_info *pdi;
6908
6909 /* Now, march along the PDI's, descending into ones which have
6910 interesting children but skipping the children of the other ones,
6911 until we reach the end of the compilation unit. */
6912
6913 pdi = first_die;
6914
6915 while (pdi != NULL)
6916 {
6917 fixup_partial_die (pdi, cu);
6918
6919 /* Anonymous namespaces or modules have no name but have interesting
6920 children, so we need to look at them. Ditto for anonymous
6921 enums. */
6922
6923 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6924 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6925 || pdi->tag == DW_TAG_imported_unit)
6926 {
6927 switch (pdi->tag)
6928 {
6929 case DW_TAG_subprogram:
6930 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6931 break;
6932 case DW_TAG_constant:
6933 case DW_TAG_variable:
6934 case DW_TAG_typedef:
6935 case DW_TAG_union_type:
6936 if (!pdi->is_declaration)
6937 {
6938 add_partial_symbol (pdi, cu);
6939 }
6940 break;
6941 case DW_TAG_class_type:
6942 case DW_TAG_interface_type:
6943 case DW_TAG_structure_type:
6944 if (!pdi->is_declaration)
6945 {
6946 add_partial_symbol (pdi, cu);
6947 }
6948 if (cu->language == language_rust && pdi->has_children)
6949 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6950 set_addrmap, cu);
6951 break;
6952 case DW_TAG_enumeration_type:
6953 if (!pdi->is_declaration)
6954 add_partial_enumeration (pdi, cu);
6955 break;
6956 case DW_TAG_base_type:
6957 case DW_TAG_subrange_type:
6958 /* File scope base type definitions are added to the partial
6959 symbol table. */
6960 add_partial_symbol (pdi, cu);
6961 break;
6962 case DW_TAG_namespace:
6963 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6964 break;
6965 case DW_TAG_module:
6966 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6967 break;
6968 case DW_TAG_imported_unit:
6969 {
6970 struct dwarf2_per_cu_data *per_cu;
6971
6972 /* For now we don't handle imported units in type units. */
6973 if (cu->per_cu->is_debug_types)
6974 {
6975 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6976 " supported in type units [in module %s]"),
6977 objfile_name (cu->objfile));
6978 }
6979
6980 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
6981 pdi->is_dwz,
6982 cu->objfile);
6983
6984 /* Go read the partial unit, if needed. */
6985 if (per_cu->v.psymtab == NULL)
6986 process_psymtab_comp_unit (per_cu, 1, cu->language);
6987
6988 VEC_safe_push (dwarf2_per_cu_ptr,
6989 cu->per_cu->imported_symtabs, per_cu);
6990 }
6991 break;
6992 case DW_TAG_imported_declaration:
6993 add_partial_symbol (pdi, cu);
6994 break;
6995 default:
6996 break;
6997 }
6998 }
6999
7000 /* If the die has a sibling, skip to the sibling. */
7001
7002 pdi = pdi->die_sibling;
7003 }
7004 }
7005
7006 /* Functions used to compute the fully scoped name of a partial DIE.
7007
7008 Normally, this is simple. For C++, the parent DIE's fully scoped
7009 name is concatenated with "::" and the partial DIE's name.
7010 Enumerators are an exception; they use the scope of their parent
7011 enumeration type, i.e. the name of the enumeration type is not
7012 prepended to the enumerator.
7013
7014 There are two complexities. One is DW_AT_specification; in this
7015 case "parent" means the parent of the target of the specification,
7016 instead of the direct parent of the DIE. The other is compilers
7017 which do not emit DW_TAG_namespace; in this case we try to guess
7018 the fully qualified name of structure types from their members'
7019 linkage names. This must be done using the DIE's children rather
7020 than the children of any DW_AT_specification target. We only need
7021 to do this for structures at the top level, i.e. if the target of
7022 any DW_AT_specification (if any; otherwise the DIE itself) does not
7023 have a parent. */
7024
7025 /* Compute the scope prefix associated with PDI's parent, in
7026 compilation unit CU. The result will be allocated on CU's
7027 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7028 field. NULL is returned if no prefix is necessary. */
7029 static const char *
7030 partial_die_parent_scope (struct partial_die_info *pdi,
7031 struct dwarf2_cu *cu)
7032 {
7033 const char *grandparent_scope;
7034 struct partial_die_info *parent, *real_pdi;
7035
7036 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7037 then this means the parent of the specification DIE. */
7038
7039 real_pdi = pdi;
7040 while (real_pdi->has_specification)
7041 real_pdi = find_partial_die (real_pdi->spec_offset,
7042 real_pdi->spec_is_dwz, cu);
7043
7044 parent = real_pdi->die_parent;
7045 if (parent == NULL)
7046 return NULL;
7047
7048 if (parent->scope_set)
7049 return parent->scope;
7050
7051 fixup_partial_die (parent, cu);
7052
7053 grandparent_scope = partial_die_parent_scope (parent, cu);
7054
7055 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7056 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7057 Work around this problem here. */
7058 if (cu->language == language_cplus
7059 && parent->tag == DW_TAG_namespace
7060 && strcmp (parent->name, "::") == 0
7061 && grandparent_scope == NULL)
7062 {
7063 parent->scope = NULL;
7064 parent->scope_set = 1;
7065 return NULL;
7066 }
7067
7068 if (pdi->tag == DW_TAG_enumerator)
7069 /* Enumerators should not get the name of the enumeration as a prefix. */
7070 parent->scope = grandparent_scope;
7071 else if (parent->tag == DW_TAG_namespace
7072 || parent->tag == DW_TAG_module
7073 || parent->tag == DW_TAG_structure_type
7074 || parent->tag == DW_TAG_class_type
7075 || parent->tag == DW_TAG_interface_type
7076 || parent->tag == DW_TAG_union_type
7077 || parent->tag == DW_TAG_enumeration_type)
7078 {
7079 if (grandparent_scope == NULL)
7080 parent->scope = parent->name;
7081 else
7082 parent->scope = typename_concat (&cu->comp_unit_obstack,
7083 grandparent_scope,
7084 parent->name, 0, cu);
7085 }
7086 else
7087 {
7088 /* FIXME drow/2004-04-01: What should we be doing with
7089 function-local names? For partial symbols, we should probably be
7090 ignoring them. */
7091 complaint (&symfile_complaints,
7092 _("unhandled containing DIE tag %d for DIE at %d"),
7093 parent->tag, to_underlying (pdi->sect_off));
7094 parent->scope = grandparent_scope;
7095 }
7096
7097 parent->scope_set = 1;
7098 return parent->scope;
7099 }
7100
7101 /* Return the fully scoped name associated with PDI, from compilation unit
7102 CU. The result will be allocated with malloc. */
7103
7104 static char *
7105 partial_die_full_name (struct partial_die_info *pdi,
7106 struct dwarf2_cu *cu)
7107 {
7108 const char *parent_scope;
7109
7110 /* If this is a template instantiation, we can not work out the
7111 template arguments from partial DIEs. So, unfortunately, we have
7112 to go through the full DIEs. At least any work we do building
7113 types here will be reused if full symbols are loaded later. */
7114 if (pdi->has_template_arguments)
7115 {
7116 fixup_partial_die (pdi, cu);
7117
7118 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7119 {
7120 struct die_info *die;
7121 struct attribute attr;
7122 struct dwarf2_cu *ref_cu = cu;
7123
7124 /* DW_FORM_ref_addr is using section offset. */
7125 attr.name = (enum dwarf_attribute) 0;
7126 attr.form = DW_FORM_ref_addr;
7127 attr.u.unsnd = to_underlying (pdi->sect_off);
7128 die = follow_die_ref (NULL, &attr, &ref_cu);
7129
7130 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7131 }
7132 }
7133
7134 parent_scope = partial_die_parent_scope (pdi, cu);
7135 if (parent_scope == NULL)
7136 return NULL;
7137 else
7138 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7139 }
7140
7141 static void
7142 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7143 {
7144 struct objfile *objfile = cu->objfile;
7145 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7146 CORE_ADDR addr = 0;
7147 const char *actual_name = NULL;
7148 CORE_ADDR baseaddr;
7149 char *built_actual_name;
7150
7151 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7152
7153 built_actual_name = partial_die_full_name (pdi, cu);
7154 if (built_actual_name != NULL)
7155 actual_name = built_actual_name;
7156
7157 if (actual_name == NULL)
7158 actual_name = pdi->name;
7159
7160 switch (pdi->tag)
7161 {
7162 case DW_TAG_subprogram:
7163 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
7164 if (pdi->is_external || cu->language == language_ada)
7165 {
7166 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7167 of the global scope. But in Ada, we want to be able to access
7168 nested procedures globally. So all Ada subprograms are stored
7169 in the global scope. */
7170 add_psymbol_to_list (actual_name, strlen (actual_name),
7171 built_actual_name != NULL,
7172 VAR_DOMAIN, LOC_BLOCK,
7173 &objfile->global_psymbols,
7174 addr, cu->language, objfile);
7175 }
7176 else
7177 {
7178 add_psymbol_to_list (actual_name, strlen (actual_name),
7179 built_actual_name != NULL,
7180 VAR_DOMAIN, LOC_BLOCK,
7181 &objfile->static_psymbols,
7182 addr, cu->language, objfile);
7183 }
7184
7185 if (pdi->main_subprogram && actual_name != NULL)
7186 set_objfile_main_name (objfile, actual_name, cu->language);
7187 break;
7188 case DW_TAG_constant:
7189 {
7190 struct psymbol_allocation_list *list;
7191
7192 if (pdi->is_external)
7193 list = &objfile->global_psymbols;
7194 else
7195 list = &objfile->static_psymbols;
7196 add_psymbol_to_list (actual_name, strlen (actual_name),
7197 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7198 list, 0, cu->language, objfile);
7199 }
7200 break;
7201 case DW_TAG_variable:
7202 if (pdi->d.locdesc)
7203 addr = decode_locdesc (pdi->d.locdesc, cu);
7204
7205 if (pdi->d.locdesc
7206 && addr == 0
7207 && !dwarf2_per_objfile->has_section_at_zero)
7208 {
7209 /* A global or static variable may also have been stripped
7210 out by the linker if unused, in which case its address
7211 will be nullified; do not add such variables into partial
7212 symbol table then. */
7213 }
7214 else if (pdi->is_external)
7215 {
7216 /* Global Variable.
7217 Don't enter into the minimal symbol tables as there is
7218 a minimal symbol table entry from the ELF symbols already.
7219 Enter into partial symbol table if it has a location
7220 descriptor or a type.
7221 If the location descriptor is missing, new_symbol will create
7222 a LOC_UNRESOLVED symbol, the address of the variable will then
7223 be determined from the minimal symbol table whenever the variable
7224 is referenced.
7225 The address for the partial symbol table entry is not
7226 used by GDB, but it comes in handy for debugging partial symbol
7227 table building. */
7228
7229 if (pdi->d.locdesc || pdi->has_type)
7230 add_psymbol_to_list (actual_name, strlen (actual_name),
7231 built_actual_name != NULL,
7232 VAR_DOMAIN, LOC_STATIC,
7233 &objfile->global_psymbols,
7234 addr + baseaddr,
7235 cu->language, objfile);
7236 }
7237 else
7238 {
7239 int has_loc = pdi->d.locdesc != NULL;
7240
7241 /* Static Variable. Skip symbols whose value we cannot know (those
7242 without location descriptors or constant values). */
7243 if (!has_loc && !pdi->has_const_value)
7244 {
7245 xfree (built_actual_name);
7246 return;
7247 }
7248
7249 add_psymbol_to_list (actual_name, strlen (actual_name),
7250 built_actual_name != NULL,
7251 VAR_DOMAIN, LOC_STATIC,
7252 &objfile->static_psymbols,
7253 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7254 cu->language, objfile);
7255 }
7256 break;
7257 case DW_TAG_typedef:
7258 case DW_TAG_base_type:
7259 case DW_TAG_subrange_type:
7260 add_psymbol_to_list (actual_name, strlen (actual_name),
7261 built_actual_name != NULL,
7262 VAR_DOMAIN, LOC_TYPEDEF,
7263 &objfile->static_psymbols,
7264 0, cu->language, objfile);
7265 break;
7266 case DW_TAG_imported_declaration:
7267 case DW_TAG_namespace:
7268 add_psymbol_to_list (actual_name, strlen (actual_name),
7269 built_actual_name != NULL,
7270 VAR_DOMAIN, LOC_TYPEDEF,
7271 &objfile->global_psymbols,
7272 0, cu->language, objfile);
7273 break;
7274 case DW_TAG_module:
7275 add_psymbol_to_list (actual_name, strlen (actual_name),
7276 built_actual_name != NULL,
7277 MODULE_DOMAIN, LOC_TYPEDEF,
7278 &objfile->global_psymbols,
7279 0, cu->language, objfile);
7280 break;
7281 case DW_TAG_class_type:
7282 case DW_TAG_interface_type:
7283 case DW_TAG_structure_type:
7284 case DW_TAG_union_type:
7285 case DW_TAG_enumeration_type:
7286 /* Skip external references. The DWARF standard says in the section
7287 about "Structure, Union, and Class Type Entries": "An incomplete
7288 structure, union or class type is represented by a structure,
7289 union or class entry that does not have a byte size attribute
7290 and that has a DW_AT_declaration attribute." */
7291 if (!pdi->has_byte_size && pdi->is_declaration)
7292 {
7293 xfree (built_actual_name);
7294 return;
7295 }
7296
7297 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7298 static vs. global. */
7299 add_psymbol_to_list (actual_name, strlen (actual_name),
7300 built_actual_name != NULL,
7301 STRUCT_DOMAIN, LOC_TYPEDEF,
7302 cu->language == language_cplus
7303 ? &objfile->global_psymbols
7304 : &objfile->static_psymbols,
7305 0, cu->language, objfile);
7306
7307 break;
7308 case DW_TAG_enumerator:
7309 add_psymbol_to_list (actual_name, strlen (actual_name),
7310 built_actual_name != NULL,
7311 VAR_DOMAIN, LOC_CONST,
7312 cu->language == language_cplus
7313 ? &objfile->global_psymbols
7314 : &objfile->static_psymbols,
7315 0, cu->language, objfile);
7316 break;
7317 default:
7318 break;
7319 }
7320
7321 xfree (built_actual_name);
7322 }
7323
7324 /* Read a partial die corresponding to a namespace; also, add a symbol
7325 corresponding to that namespace to the symbol table. NAMESPACE is
7326 the name of the enclosing namespace. */
7327
7328 static void
7329 add_partial_namespace (struct partial_die_info *pdi,
7330 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7331 int set_addrmap, struct dwarf2_cu *cu)
7332 {
7333 /* Add a symbol for the namespace. */
7334
7335 add_partial_symbol (pdi, cu);
7336
7337 /* Now scan partial symbols in that namespace. */
7338
7339 if (pdi->has_children)
7340 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7341 }
7342
7343 /* Read a partial die corresponding to a Fortran module. */
7344
7345 static void
7346 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7347 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7348 {
7349 /* Add a symbol for the namespace. */
7350
7351 add_partial_symbol (pdi, cu);
7352
7353 /* Now scan partial symbols in that module. */
7354
7355 if (pdi->has_children)
7356 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7357 }
7358
7359 /* Read a partial die corresponding to a subprogram and create a partial
7360 symbol for that subprogram. When the CU language allows it, this
7361 routine also defines a partial symbol for each nested subprogram
7362 that this subprogram contains. If SET_ADDRMAP is true, record the
7363 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7364 and highest PC values found in PDI.
7365
7366 PDI may also be a lexical block, in which case we simply search
7367 recursively for subprograms defined inside that lexical block.
7368 Again, this is only performed when the CU language allows this
7369 type of definitions. */
7370
7371 static void
7372 add_partial_subprogram (struct partial_die_info *pdi,
7373 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7374 int set_addrmap, struct dwarf2_cu *cu)
7375 {
7376 if (pdi->tag == DW_TAG_subprogram)
7377 {
7378 if (pdi->has_pc_info)
7379 {
7380 if (pdi->lowpc < *lowpc)
7381 *lowpc = pdi->lowpc;
7382 if (pdi->highpc > *highpc)
7383 *highpc = pdi->highpc;
7384 if (set_addrmap)
7385 {
7386 struct objfile *objfile = cu->objfile;
7387 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7388 CORE_ADDR baseaddr;
7389 CORE_ADDR highpc;
7390 CORE_ADDR lowpc;
7391
7392 baseaddr = ANOFFSET (objfile->section_offsets,
7393 SECT_OFF_TEXT (objfile));
7394 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7395 pdi->lowpc + baseaddr);
7396 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7397 pdi->highpc + baseaddr);
7398 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7399 cu->per_cu->v.psymtab);
7400 }
7401 }
7402
7403 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7404 {
7405 if (!pdi->is_declaration)
7406 /* Ignore subprogram DIEs that do not have a name, they are
7407 illegal. Do not emit a complaint at this point, we will
7408 do so when we convert this psymtab into a symtab. */
7409 if (pdi->name)
7410 add_partial_symbol (pdi, cu);
7411 }
7412 }
7413
7414 if (! pdi->has_children)
7415 return;
7416
7417 if (cu->language == language_ada)
7418 {
7419 pdi = pdi->die_child;
7420 while (pdi != NULL)
7421 {
7422 fixup_partial_die (pdi, cu);
7423 if (pdi->tag == DW_TAG_subprogram
7424 || pdi->tag == DW_TAG_lexical_block)
7425 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7426 pdi = pdi->die_sibling;
7427 }
7428 }
7429 }
7430
7431 /* Read a partial die corresponding to an enumeration type. */
7432
7433 static void
7434 add_partial_enumeration (struct partial_die_info *enum_pdi,
7435 struct dwarf2_cu *cu)
7436 {
7437 struct partial_die_info *pdi;
7438
7439 if (enum_pdi->name != NULL)
7440 add_partial_symbol (enum_pdi, cu);
7441
7442 pdi = enum_pdi->die_child;
7443 while (pdi)
7444 {
7445 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7446 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7447 else
7448 add_partial_symbol (pdi, cu);
7449 pdi = pdi->die_sibling;
7450 }
7451 }
7452
7453 /* Return the initial uleb128 in the die at INFO_PTR. */
7454
7455 static unsigned int
7456 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7457 {
7458 unsigned int bytes_read;
7459
7460 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7461 }
7462
7463 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7464 Return the corresponding abbrev, or NULL if the number is zero (indicating
7465 an empty DIE). In either case *BYTES_READ will be set to the length of
7466 the initial number. */
7467
7468 static struct abbrev_info *
7469 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7470 struct dwarf2_cu *cu)
7471 {
7472 bfd *abfd = cu->objfile->obfd;
7473 unsigned int abbrev_number;
7474 struct abbrev_info *abbrev;
7475
7476 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7477
7478 if (abbrev_number == 0)
7479 return NULL;
7480
7481 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7482 if (!abbrev)
7483 {
7484 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7485 " at offset 0x%x [in module %s]"),
7486 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7487 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
7488 }
7489
7490 return abbrev;
7491 }
7492
7493 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7494 Returns a pointer to the end of a series of DIEs, terminated by an empty
7495 DIE. Any children of the skipped DIEs will also be skipped. */
7496
7497 static const gdb_byte *
7498 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7499 {
7500 struct dwarf2_cu *cu = reader->cu;
7501 struct abbrev_info *abbrev;
7502 unsigned int bytes_read;
7503
7504 while (1)
7505 {
7506 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7507 if (abbrev == NULL)
7508 return info_ptr + bytes_read;
7509 else
7510 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7511 }
7512 }
7513
7514 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7515 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7516 abbrev corresponding to that skipped uleb128 should be passed in
7517 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7518 children. */
7519
7520 static const gdb_byte *
7521 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7522 struct abbrev_info *abbrev)
7523 {
7524 unsigned int bytes_read;
7525 struct attribute attr;
7526 bfd *abfd = reader->abfd;
7527 struct dwarf2_cu *cu = reader->cu;
7528 const gdb_byte *buffer = reader->buffer;
7529 const gdb_byte *buffer_end = reader->buffer_end;
7530 unsigned int form, i;
7531
7532 for (i = 0; i < abbrev->num_attrs; i++)
7533 {
7534 /* The only abbrev we care about is DW_AT_sibling. */
7535 if (abbrev->attrs[i].name == DW_AT_sibling)
7536 {
7537 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7538 if (attr.form == DW_FORM_ref_addr)
7539 complaint (&symfile_complaints,
7540 _("ignoring absolute DW_AT_sibling"));
7541 else
7542 {
7543 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7544 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
7545
7546 if (sibling_ptr < info_ptr)
7547 complaint (&symfile_complaints,
7548 _("DW_AT_sibling points backwards"));
7549 else if (sibling_ptr > reader->buffer_end)
7550 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7551 else
7552 return sibling_ptr;
7553 }
7554 }
7555
7556 /* If it isn't DW_AT_sibling, skip this attribute. */
7557 form = abbrev->attrs[i].form;
7558 skip_attribute:
7559 switch (form)
7560 {
7561 case DW_FORM_ref_addr:
7562 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7563 and later it is offset sized. */
7564 if (cu->header.version == 2)
7565 info_ptr += cu->header.addr_size;
7566 else
7567 info_ptr += cu->header.offset_size;
7568 break;
7569 case DW_FORM_GNU_ref_alt:
7570 info_ptr += cu->header.offset_size;
7571 break;
7572 case DW_FORM_addr:
7573 info_ptr += cu->header.addr_size;
7574 break;
7575 case DW_FORM_data1:
7576 case DW_FORM_ref1:
7577 case DW_FORM_flag:
7578 info_ptr += 1;
7579 break;
7580 case DW_FORM_flag_present:
7581 case DW_FORM_implicit_const:
7582 break;
7583 case DW_FORM_data2:
7584 case DW_FORM_ref2:
7585 info_ptr += 2;
7586 break;
7587 case DW_FORM_data4:
7588 case DW_FORM_ref4:
7589 info_ptr += 4;
7590 break;
7591 case DW_FORM_data8:
7592 case DW_FORM_ref8:
7593 case DW_FORM_ref_sig8:
7594 info_ptr += 8;
7595 break;
7596 case DW_FORM_data16:
7597 info_ptr += 16;
7598 break;
7599 case DW_FORM_string:
7600 read_direct_string (abfd, info_ptr, &bytes_read);
7601 info_ptr += bytes_read;
7602 break;
7603 case DW_FORM_sec_offset:
7604 case DW_FORM_strp:
7605 case DW_FORM_GNU_strp_alt:
7606 info_ptr += cu->header.offset_size;
7607 break;
7608 case DW_FORM_exprloc:
7609 case DW_FORM_block:
7610 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7611 info_ptr += bytes_read;
7612 break;
7613 case DW_FORM_block1:
7614 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7615 break;
7616 case DW_FORM_block2:
7617 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7618 break;
7619 case DW_FORM_block4:
7620 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7621 break;
7622 case DW_FORM_sdata:
7623 case DW_FORM_udata:
7624 case DW_FORM_ref_udata:
7625 case DW_FORM_GNU_addr_index:
7626 case DW_FORM_GNU_str_index:
7627 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7628 break;
7629 case DW_FORM_indirect:
7630 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7631 info_ptr += bytes_read;
7632 /* We need to continue parsing from here, so just go back to
7633 the top. */
7634 goto skip_attribute;
7635
7636 default:
7637 error (_("Dwarf Error: Cannot handle %s "
7638 "in DWARF reader [in module %s]"),
7639 dwarf_form_name (form),
7640 bfd_get_filename (abfd));
7641 }
7642 }
7643
7644 if (abbrev->has_children)
7645 return skip_children (reader, info_ptr);
7646 else
7647 return info_ptr;
7648 }
7649
7650 /* Locate ORIG_PDI's sibling.
7651 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7652
7653 static const gdb_byte *
7654 locate_pdi_sibling (const struct die_reader_specs *reader,
7655 struct partial_die_info *orig_pdi,
7656 const gdb_byte *info_ptr)
7657 {
7658 /* Do we know the sibling already? */
7659
7660 if (orig_pdi->sibling)
7661 return orig_pdi->sibling;
7662
7663 /* Are there any children to deal with? */
7664
7665 if (!orig_pdi->has_children)
7666 return info_ptr;
7667
7668 /* Skip the children the long way. */
7669
7670 return skip_children (reader, info_ptr);
7671 }
7672
7673 /* Expand this partial symbol table into a full symbol table. SELF is
7674 not NULL. */
7675
7676 static void
7677 dwarf2_read_symtab (struct partial_symtab *self,
7678 struct objfile *objfile)
7679 {
7680 if (self->readin)
7681 {
7682 warning (_("bug: psymtab for %s is already read in."),
7683 self->filename);
7684 }
7685 else
7686 {
7687 if (info_verbose)
7688 {
7689 printf_filtered (_("Reading in symbols for %s..."),
7690 self->filename);
7691 gdb_flush (gdb_stdout);
7692 }
7693
7694 /* Restore our global data. */
7695 dwarf2_per_objfile
7696 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7697 dwarf2_objfile_data_key);
7698
7699 /* If this psymtab is constructed from a debug-only objfile, the
7700 has_section_at_zero flag will not necessarily be correct. We
7701 can get the correct value for this flag by looking at the data
7702 associated with the (presumably stripped) associated objfile. */
7703 if (objfile->separate_debug_objfile_backlink)
7704 {
7705 struct dwarf2_per_objfile *dpo_backlink
7706 = ((struct dwarf2_per_objfile *)
7707 objfile_data (objfile->separate_debug_objfile_backlink,
7708 dwarf2_objfile_data_key));
7709
7710 dwarf2_per_objfile->has_section_at_zero
7711 = dpo_backlink->has_section_at_zero;
7712 }
7713
7714 dwarf2_per_objfile->reading_partial_symbols = 0;
7715
7716 psymtab_to_symtab_1 (self);
7717
7718 /* Finish up the debug error message. */
7719 if (info_verbose)
7720 printf_filtered (_("done.\n"));
7721 }
7722
7723 process_cu_includes ();
7724 }
7725 \f
7726 /* Reading in full CUs. */
7727
7728 /* Add PER_CU to the queue. */
7729
7730 static void
7731 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7732 enum language pretend_language)
7733 {
7734 struct dwarf2_queue_item *item;
7735
7736 per_cu->queued = 1;
7737 item = XNEW (struct dwarf2_queue_item);
7738 item->per_cu = per_cu;
7739 item->pretend_language = pretend_language;
7740 item->next = NULL;
7741
7742 if (dwarf2_queue == NULL)
7743 dwarf2_queue = item;
7744 else
7745 dwarf2_queue_tail->next = item;
7746
7747 dwarf2_queue_tail = item;
7748 }
7749
7750 /* If PER_CU is not yet queued, add it to the queue.
7751 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7752 dependency.
7753 The result is non-zero if PER_CU was queued, otherwise the result is zero
7754 meaning either PER_CU is already queued or it is already loaded.
7755
7756 N.B. There is an invariant here that if a CU is queued then it is loaded.
7757 The caller is required to load PER_CU if we return non-zero. */
7758
7759 static int
7760 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7761 struct dwarf2_per_cu_data *per_cu,
7762 enum language pretend_language)
7763 {
7764 /* We may arrive here during partial symbol reading, if we need full
7765 DIEs to process an unusual case (e.g. template arguments). Do
7766 not queue PER_CU, just tell our caller to load its DIEs. */
7767 if (dwarf2_per_objfile->reading_partial_symbols)
7768 {
7769 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7770 return 1;
7771 return 0;
7772 }
7773
7774 /* Mark the dependence relation so that we don't flush PER_CU
7775 too early. */
7776 if (dependent_cu != NULL)
7777 dwarf2_add_dependence (dependent_cu, per_cu);
7778
7779 /* If it's already on the queue, we have nothing to do. */
7780 if (per_cu->queued)
7781 return 0;
7782
7783 /* If the compilation unit is already loaded, just mark it as
7784 used. */
7785 if (per_cu->cu != NULL)
7786 {
7787 per_cu->cu->last_used = 0;
7788 return 0;
7789 }
7790
7791 /* Add it to the queue. */
7792 queue_comp_unit (per_cu, pretend_language);
7793
7794 return 1;
7795 }
7796
7797 /* Process the queue. */
7798
7799 static void
7800 process_queue (void)
7801 {
7802 struct dwarf2_queue_item *item, *next_item;
7803
7804 if (dwarf_read_debug)
7805 {
7806 fprintf_unfiltered (gdb_stdlog,
7807 "Expanding one or more symtabs of objfile %s ...\n",
7808 objfile_name (dwarf2_per_objfile->objfile));
7809 }
7810
7811 /* The queue starts out with one item, but following a DIE reference
7812 may load a new CU, adding it to the end of the queue. */
7813 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7814 {
7815 if ((dwarf2_per_objfile->using_index
7816 ? !item->per_cu->v.quick->compunit_symtab
7817 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7818 /* Skip dummy CUs. */
7819 && item->per_cu->cu != NULL)
7820 {
7821 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7822 unsigned int debug_print_threshold;
7823 char buf[100];
7824
7825 if (per_cu->is_debug_types)
7826 {
7827 struct signatured_type *sig_type =
7828 (struct signatured_type *) per_cu;
7829
7830 sprintf (buf, "TU %s at offset 0x%x",
7831 hex_string (sig_type->signature),
7832 to_underlying (per_cu->sect_off));
7833 /* There can be 100s of TUs.
7834 Only print them in verbose mode. */
7835 debug_print_threshold = 2;
7836 }
7837 else
7838 {
7839 sprintf (buf, "CU at offset 0x%x",
7840 to_underlying (per_cu->sect_off));
7841 debug_print_threshold = 1;
7842 }
7843
7844 if (dwarf_read_debug >= debug_print_threshold)
7845 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7846
7847 if (per_cu->is_debug_types)
7848 process_full_type_unit (per_cu, item->pretend_language);
7849 else
7850 process_full_comp_unit (per_cu, item->pretend_language);
7851
7852 if (dwarf_read_debug >= debug_print_threshold)
7853 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7854 }
7855
7856 item->per_cu->queued = 0;
7857 next_item = item->next;
7858 xfree (item);
7859 }
7860
7861 dwarf2_queue_tail = NULL;
7862
7863 if (dwarf_read_debug)
7864 {
7865 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7866 objfile_name (dwarf2_per_objfile->objfile));
7867 }
7868 }
7869
7870 /* Free all allocated queue entries. This function only releases anything if
7871 an error was thrown; if the queue was processed then it would have been
7872 freed as we went along. */
7873
7874 static void
7875 dwarf2_release_queue (void *dummy)
7876 {
7877 struct dwarf2_queue_item *item, *last;
7878
7879 item = dwarf2_queue;
7880 while (item)
7881 {
7882 /* Anything still marked queued is likely to be in an
7883 inconsistent state, so discard it. */
7884 if (item->per_cu->queued)
7885 {
7886 if (item->per_cu->cu != NULL)
7887 free_one_cached_comp_unit (item->per_cu);
7888 item->per_cu->queued = 0;
7889 }
7890
7891 last = item;
7892 item = item->next;
7893 xfree (last);
7894 }
7895
7896 dwarf2_queue = dwarf2_queue_tail = NULL;
7897 }
7898
7899 /* Read in full symbols for PST, and anything it depends on. */
7900
7901 static void
7902 psymtab_to_symtab_1 (struct partial_symtab *pst)
7903 {
7904 struct dwarf2_per_cu_data *per_cu;
7905 int i;
7906
7907 if (pst->readin)
7908 return;
7909
7910 for (i = 0; i < pst->number_of_dependencies; i++)
7911 if (!pst->dependencies[i]->readin
7912 && pst->dependencies[i]->user == NULL)
7913 {
7914 /* Inform about additional files that need to be read in. */
7915 if (info_verbose)
7916 {
7917 /* FIXME: i18n: Need to make this a single string. */
7918 fputs_filtered (" ", gdb_stdout);
7919 wrap_here ("");
7920 fputs_filtered ("and ", gdb_stdout);
7921 wrap_here ("");
7922 printf_filtered ("%s...", pst->dependencies[i]->filename);
7923 wrap_here (""); /* Flush output. */
7924 gdb_flush (gdb_stdout);
7925 }
7926 psymtab_to_symtab_1 (pst->dependencies[i]);
7927 }
7928
7929 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7930
7931 if (per_cu == NULL)
7932 {
7933 /* It's an include file, no symbols to read for it.
7934 Everything is in the parent symtab. */
7935 pst->readin = 1;
7936 return;
7937 }
7938
7939 dw2_do_instantiate_symtab (per_cu);
7940 }
7941
7942 /* Trivial hash function for die_info: the hash value of a DIE
7943 is its offset in .debug_info for this objfile. */
7944
7945 static hashval_t
7946 die_hash (const void *item)
7947 {
7948 const struct die_info *die = (const struct die_info *) item;
7949
7950 return to_underlying (die->sect_off);
7951 }
7952
7953 /* Trivial comparison function for die_info structures: two DIEs
7954 are equal if they have the same offset. */
7955
7956 static int
7957 die_eq (const void *item_lhs, const void *item_rhs)
7958 {
7959 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7960 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7961
7962 return die_lhs->sect_off == die_rhs->sect_off;
7963 }
7964
7965 /* die_reader_func for load_full_comp_unit.
7966 This is identical to read_signatured_type_reader,
7967 but is kept separate for now. */
7968
7969 static void
7970 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7971 const gdb_byte *info_ptr,
7972 struct die_info *comp_unit_die,
7973 int has_children,
7974 void *data)
7975 {
7976 struct dwarf2_cu *cu = reader->cu;
7977 enum language *language_ptr = (enum language *) data;
7978
7979 gdb_assert (cu->die_hash == NULL);
7980 cu->die_hash =
7981 htab_create_alloc_ex (cu->header.length / 12,
7982 die_hash,
7983 die_eq,
7984 NULL,
7985 &cu->comp_unit_obstack,
7986 hashtab_obstack_allocate,
7987 dummy_obstack_deallocate);
7988
7989 if (has_children)
7990 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7991 &info_ptr, comp_unit_die);
7992 cu->dies = comp_unit_die;
7993 /* comp_unit_die is not stored in die_hash, no need. */
7994
7995 /* We try not to read any attributes in this function, because not
7996 all CUs needed for references have been loaded yet, and symbol
7997 table processing isn't initialized. But we have to set the CU language,
7998 or we won't be able to build types correctly.
7999 Similarly, if we do not read the producer, we can not apply
8000 producer-specific interpretation. */
8001 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
8002 }
8003
8004 /* Load the DIEs associated with PER_CU into memory. */
8005
8006 static void
8007 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8008 enum language pretend_language)
8009 {
8010 gdb_assert (! this_cu->is_debug_types);
8011
8012 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8013 load_full_comp_unit_reader, &pretend_language);
8014 }
8015
8016 /* Add a DIE to the delayed physname list. */
8017
8018 static void
8019 add_to_method_list (struct type *type, int fnfield_index, int index,
8020 const char *name, struct die_info *die,
8021 struct dwarf2_cu *cu)
8022 {
8023 struct delayed_method_info mi;
8024 mi.type = type;
8025 mi.fnfield_index = fnfield_index;
8026 mi.index = index;
8027 mi.name = name;
8028 mi.die = die;
8029 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8030 }
8031
8032 /* A cleanup for freeing the delayed method list. */
8033
8034 static void
8035 free_delayed_list (void *ptr)
8036 {
8037 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8038 if (cu->method_list != NULL)
8039 {
8040 VEC_free (delayed_method_info, cu->method_list);
8041 cu->method_list = NULL;
8042 }
8043 }
8044
8045 /* Compute the physnames of any methods on the CU's method list.
8046
8047 The computation of method physnames is delayed in order to avoid the
8048 (bad) condition that one of the method's formal parameters is of an as yet
8049 incomplete type. */
8050
8051 static void
8052 compute_delayed_physnames (struct dwarf2_cu *cu)
8053 {
8054 int i;
8055 struct delayed_method_info *mi;
8056 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8057 {
8058 const char *physname;
8059 struct fn_fieldlist *fn_flp
8060 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
8061 physname = dwarf2_physname (mi->name, mi->die, cu);
8062 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8063 = physname ? physname : "";
8064 }
8065 }
8066
8067 /* Go objects should be embedded in a DW_TAG_module DIE,
8068 and it's not clear if/how imported objects will appear.
8069 To keep Go support simple until that's worked out,
8070 go back through what we've read and create something usable.
8071 We could do this while processing each DIE, and feels kinda cleaner,
8072 but that way is more invasive.
8073 This is to, for example, allow the user to type "p var" or "b main"
8074 without having to specify the package name, and allow lookups
8075 of module.object to work in contexts that use the expression
8076 parser. */
8077
8078 static void
8079 fixup_go_packaging (struct dwarf2_cu *cu)
8080 {
8081 char *package_name = NULL;
8082 struct pending *list;
8083 int i;
8084
8085 for (list = global_symbols; list != NULL; list = list->next)
8086 {
8087 for (i = 0; i < list->nsyms; ++i)
8088 {
8089 struct symbol *sym = list->symbol[i];
8090
8091 if (SYMBOL_LANGUAGE (sym) == language_go
8092 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8093 {
8094 char *this_package_name = go_symbol_package_name (sym);
8095
8096 if (this_package_name == NULL)
8097 continue;
8098 if (package_name == NULL)
8099 package_name = this_package_name;
8100 else
8101 {
8102 if (strcmp (package_name, this_package_name) != 0)
8103 complaint (&symfile_complaints,
8104 _("Symtab %s has objects from two different Go packages: %s and %s"),
8105 (symbol_symtab (sym) != NULL
8106 ? symtab_to_filename_for_display
8107 (symbol_symtab (sym))
8108 : objfile_name (cu->objfile)),
8109 this_package_name, package_name);
8110 xfree (this_package_name);
8111 }
8112 }
8113 }
8114 }
8115
8116 if (package_name != NULL)
8117 {
8118 struct objfile *objfile = cu->objfile;
8119 const char *saved_package_name
8120 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8121 package_name,
8122 strlen (package_name));
8123 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8124 saved_package_name);
8125 struct symbol *sym;
8126
8127 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8128
8129 sym = allocate_symbol (objfile);
8130 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
8131 SYMBOL_SET_NAMES (sym, saved_package_name,
8132 strlen (saved_package_name), 0, objfile);
8133 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8134 e.g., "main" finds the "main" module and not C's main(). */
8135 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8136 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8137 SYMBOL_TYPE (sym) = type;
8138
8139 add_symbol_to_list (sym, &global_symbols);
8140
8141 xfree (package_name);
8142 }
8143 }
8144
8145 /* Return the symtab for PER_CU. This works properly regardless of
8146 whether we're using the index or psymtabs. */
8147
8148 static struct compunit_symtab *
8149 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
8150 {
8151 return (dwarf2_per_objfile->using_index
8152 ? per_cu->v.quick->compunit_symtab
8153 : per_cu->v.psymtab->compunit_symtab);
8154 }
8155
8156 /* A helper function for computing the list of all symbol tables
8157 included by PER_CU. */
8158
8159 static void
8160 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
8161 htab_t all_children, htab_t all_type_symtabs,
8162 struct dwarf2_per_cu_data *per_cu,
8163 struct compunit_symtab *immediate_parent)
8164 {
8165 void **slot;
8166 int ix;
8167 struct compunit_symtab *cust;
8168 struct dwarf2_per_cu_data *iter;
8169
8170 slot = htab_find_slot (all_children, per_cu, INSERT);
8171 if (*slot != NULL)
8172 {
8173 /* This inclusion and its children have been processed. */
8174 return;
8175 }
8176
8177 *slot = per_cu;
8178 /* Only add a CU if it has a symbol table. */
8179 cust = get_compunit_symtab (per_cu);
8180 if (cust != NULL)
8181 {
8182 /* If this is a type unit only add its symbol table if we haven't
8183 seen it yet (type unit per_cu's can share symtabs). */
8184 if (per_cu->is_debug_types)
8185 {
8186 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8187 if (*slot == NULL)
8188 {
8189 *slot = cust;
8190 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8191 if (cust->user == NULL)
8192 cust->user = immediate_parent;
8193 }
8194 }
8195 else
8196 {
8197 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8198 if (cust->user == NULL)
8199 cust->user = immediate_parent;
8200 }
8201 }
8202
8203 for (ix = 0;
8204 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8205 ++ix)
8206 {
8207 recursively_compute_inclusions (result, all_children,
8208 all_type_symtabs, iter, cust);
8209 }
8210 }
8211
8212 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8213 PER_CU. */
8214
8215 static void
8216 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8217 {
8218 gdb_assert (! per_cu->is_debug_types);
8219
8220 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8221 {
8222 int ix, len;
8223 struct dwarf2_per_cu_data *per_cu_iter;
8224 struct compunit_symtab *compunit_symtab_iter;
8225 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8226 htab_t all_children, all_type_symtabs;
8227 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8228
8229 /* If we don't have a symtab, we can just skip this case. */
8230 if (cust == NULL)
8231 return;
8232
8233 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8234 NULL, xcalloc, xfree);
8235 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8236 NULL, xcalloc, xfree);
8237
8238 for (ix = 0;
8239 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8240 ix, per_cu_iter);
8241 ++ix)
8242 {
8243 recursively_compute_inclusions (&result_symtabs, all_children,
8244 all_type_symtabs, per_cu_iter,
8245 cust);
8246 }
8247
8248 /* Now we have a transitive closure of all the included symtabs. */
8249 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8250 cust->includes
8251 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8252 struct compunit_symtab *, len + 1);
8253 for (ix = 0;
8254 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8255 compunit_symtab_iter);
8256 ++ix)
8257 cust->includes[ix] = compunit_symtab_iter;
8258 cust->includes[len] = NULL;
8259
8260 VEC_free (compunit_symtab_ptr, result_symtabs);
8261 htab_delete (all_children);
8262 htab_delete (all_type_symtabs);
8263 }
8264 }
8265
8266 /* Compute the 'includes' field for the symtabs of all the CUs we just
8267 read. */
8268
8269 static void
8270 process_cu_includes (void)
8271 {
8272 int ix;
8273 struct dwarf2_per_cu_data *iter;
8274
8275 for (ix = 0;
8276 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8277 ix, iter);
8278 ++ix)
8279 {
8280 if (! iter->is_debug_types)
8281 compute_compunit_symtab_includes (iter);
8282 }
8283
8284 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8285 }
8286
8287 /* Generate full symbol information for PER_CU, whose DIEs have
8288 already been loaded into memory. */
8289
8290 static void
8291 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8292 enum language pretend_language)
8293 {
8294 struct dwarf2_cu *cu = per_cu->cu;
8295 struct objfile *objfile = per_cu->objfile;
8296 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8297 CORE_ADDR lowpc, highpc;
8298 struct compunit_symtab *cust;
8299 struct cleanup *back_to, *delayed_list_cleanup;
8300 CORE_ADDR baseaddr;
8301 struct block *static_block;
8302 CORE_ADDR addr;
8303
8304 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8305
8306 buildsym_init ();
8307 back_to = make_cleanup (really_free_pendings, NULL);
8308 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8309
8310 cu->list_in_scope = &file_symbols;
8311
8312 cu->language = pretend_language;
8313 cu->language_defn = language_def (cu->language);
8314
8315 /* Do line number decoding in read_file_scope () */
8316 process_die (cu->dies, cu);
8317
8318 /* For now fudge the Go package. */
8319 if (cu->language == language_go)
8320 fixup_go_packaging (cu);
8321
8322 /* Now that we have processed all the DIEs in the CU, all the types
8323 should be complete, and it should now be safe to compute all of the
8324 physnames. */
8325 compute_delayed_physnames (cu);
8326 do_cleanups (delayed_list_cleanup);
8327
8328 /* Some compilers don't define a DW_AT_high_pc attribute for the
8329 compilation unit. If the DW_AT_high_pc is missing, synthesize
8330 it, by scanning the DIE's below the compilation unit. */
8331 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8332
8333 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8334 static_block = end_symtab_get_static_block (addr, 0, 1);
8335
8336 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8337 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8338 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8339 addrmap to help ensure it has an accurate map of pc values belonging to
8340 this comp unit. */
8341 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8342
8343 cust = end_symtab_from_static_block (static_block,
8344 SECT_OFF_TEXT (objfile), 0);
8345
8346 if (cust != NULL)
8347 {
8348 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8349
8350 /* Set symtab language to language from DW_AT_language. If the
8351 compilation is from a C file generated by language preprocessors, do
8352 not set the language if it was already deduced by start_subfile. */
8353 if (!(cu->language == language_c
8354 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8355 COMPUNIT_FILETABS (cust)->language = cu->language;
8356
8357 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8358 produce DW_AT_location with location lists but it can be possibly
8359 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8360 there were bugs in prologue debug info, fixed later in GCC-4.5
8361 by "unwind info for epilogues" patch (which is not directly related).
8362
8363 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8364 needed, it would be wrong due to missing DW_AT_producer there.
8365
8366 Still one can confuse GDB by using non-standard GCC compilation
8367 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8368 */
8369 if (cu->has_loclist && gcc_4_minor >= 5)
8370 cust->locations_valid = 1;
8371
8372 if (gcc_4_minor >= 5)
8373 cust->epilogue_unwind_valid = 1;
8374
8375 cust->call_site_htab = cu->call_site_htab;
8376 }
8377
8378 if (dwarf2_per_objfile->using_index)
8379 per_cu->v.quick->compunit_symtab = cust;
8380 else
8381 {
8382 struct partial_symtab *pst = per_cu->v.psymtab;
8383 pst->compunit_symtab = cust;
8384 pst->readin = 1;
8385 }
8386
8387 /* Push it for inclusion processing later. */
8388 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8389
8390 do_cleanups (back_to);
8391 }
8392
8393 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8394 already been loaded into memory. */
8395
8396 static void
8397 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8398 enum language pretend_language)
8399 {
8400 struct dwarf2_cu *cu = per_cu->cu;
8401 struct objfile *objfile = per_cu->objfile;
8402 struct compunit_symtab *cust;
8403 struct cleanup *back_to, *delayed_list_cleanup;
8404 struct signatured_type *sig_type;
8405
8406 gdb_assert (per_cu->is_debug_types);
8407 sig_type = (struct signatured_type *) per_cu;
8408
8409 buildsym_init ();
8410 back_to = make_cleanup (really_free_pendings, NULL);
8411 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8412
8413 cu->list_in_scope = &file_symbols;
8414
8415 cu->language = pretend_language;
8416 cu->language_defn = language_def (cu->language);
8417
8418 /* The symbol tables are set up in read_type_unit_scope. */
8419 process_die (cu->dies, cu);
8420
8421 /* For now fudge the Go package. */
8422 if (cu->language == language_go)
8423 fixup_go_packaging (cu);
8424
8425 /* Now that we have processed all the DIEs in the CU, all the types
8426 should be complete, and it should now be safe to compute all of the
8427 physnames. */
8428 compute_delayed_physnames (cu);
8429 do_cleanups (delayed_list_cleanup);
8430
8431 /* TUs share symbol tables.
8432 If this is the first TU to use this symtab, complete the construction
8433 of it with end_expandable_symtab. Otherwise, complete the addition of
8434 this TU's symbols to the existing symtab. */
8435 if (sig_type->type_unit_group->compunit_symtab == NULL)
8436 {
8437 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8438 sig_type->type_unit_group->compunit_symtab = cust;
8439
8440 if (cust != NULL)
8441 {
8442 /* Set symtab language to language from DW_AT_language. If the
8443 compilation is from a C file generated by language preprocessors,
8444 do not set the language if it was already deduced by
8445 start_subfile. */
8446 if (!(cu->language == language_c
8447 && COMPUNIT_FILETABS (cust)->language != language_c))
8448 COMPUNIT_FILETABS (cust)->language = cu->language;
8449 }
8450 }
8451 else
8452 {
8453 augment_type_symtab ();
8454 cust = sig_type->type_unit_group->compunit_symtab;
8455 }
8456
8457 if (dwarf2_per_objfile->using_index)
8458 per_cu->v.quick->compunit_symtab = cust;
8459 else
8460 {
8461 struct partial_symtab *pst = per_cu->v.psymtab;
8462 pst->compunit_symtab = cust;
8463 pst->readin = 1;
8464 }
8465
8466 do_cleanups (back_to);
8467 }
8468
8469 /* Process an imported unit DIE. */
8470
8471 static void
8472 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8473 {
8474 struct attribute *attr;
8475
8476 /* For now we don't handle imported units in type units. */
8477 if (cu->per_cu->is_debug_types)
8478 {
8479 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8480 " supported in type units [in module %s]"),
8481 objfile_name (cu->objfile));
8482 }
8483
8484 attr = dwarf2_attr (die, DW_AT_import, cu);
8485 if (attr != NULL)
8486 {
8487 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8488 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8489 dwarf2_per_cu_data *per_cu
8490 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
8491
8492 /* If necessary, add it to the queue and load its DIEs. */
8493 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8494 load_full_comp_unit (per_cu, cu->language);
8495
8496 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8497 per_cu);
8498 }
8499 }
8500
8501 /* RAII object that represents a process_die scope: i.e.,
8502 starts/finishes processing a DIE. */
8503 class process_die_scope
8504 {
8505 public:
8506 process_die_scope (die_info *die, dwarf2_cu *cu)
8507 : m_die (die), m_cu (cu)
8508 {
8509 /* We should only be processing DIEs not already in process. */
8510 gdb_assert (!m_die->in_process);
8511 m_die->in_process = true;
8512 }
8513
8514 ~process_die_scope ()
8515 {
8516 m_die->in_process = false;
8517
8518 /* If we're done processing the DIE for the CU that owns the line
8519 header, we don't need the line header anymore. */
8520 if (m_cu->line_header_die_owner == m_die)
8521 {
8522 delete m_cu->line_header;
8523 m_cu->line_header = NULL;
8524 m_cu->line_header_die_owner = NULL;
8525 }
8526 }
8527
8528 private:
8529 die_info *m_die;
8530 dwarf2_cu *m_cu;
8531 };
8532
8533 /* Process a die and its children. */
8534
8535 static void
8536 process_die (struct die_info *die, struct dwarf2_cu *cu)
8537 {
8538 process_die_scope scope (die, cu);
8539
8540 switch (die->tag)
8541 {
8542 case DW_TAG_padding:
8543 break;
8544 case DW_TAG_compile_unit:
8545 case DW_TAG_partial_unit:
8546 read_file_scope (die, cu);
8547 break;
8548 case DW_TAG_type_unit:
8549 read_type_unit_scope (die, cu);
8550 break;
8551 case DW_TAG_subprogram:
8552 case DW_TAG_inlined_subroutine:
8553 read_func_scope (die, cu);
8554 break;
8555 case DW_TAG_lexical_block:
8556 case DW_TAG_try_block:
8557 case DW_TAG_catch_block:
8558 read_lexical_block_scope (die, cu);
8559 break;
8560 case DW_TAG_call_site:
8561 case DW_TAG_GNU_call_site:
8562 read_call_site_scope (die, cu);
8563 break;
8564 case DW_TAG_class_type:
8565 case DW_TAG_interface_type:
8566 case DW_TAG_structure_type:
8567 case DW_TAG_union_type:
8568 process_structure_scope (die, cu);
8569 break;
8570 case DW_TAG_enumeration_type:
8571 process_enumeration_scope (die, cu);
8572 break;
8573
8574 /* These dies have a type, but processing them does not create
8575 a symbol or recurse to process the children. Therefore we can
8576 read them on-demand through read_type_die. */
8577 case DW_TAG_subroutine_type:
8578 case DW_TAG_set_type:
8579 case DW_TAG_array_type:
8580 case DW_TAG_pointer_type:
8581 case DW_TAG_ptr_to_member_type:
8582 case DW_TAG_reference_type:
8583 case DW_TAG_rvalue_reference_type:
8584 case DW_TAG_string_type:
8585 break;
8586
8587 case DW_TAG_base_type:
8588 case DW_TAG_subrange_type:
8589 case DW_TAG_typedef:
8590 /* Add a typedef symbol for the type definition, if it has a
8591 DW_AT_name. */
8592 new_symbol (die, read_type_die (die, cu), cu);
8593 break;
8594 case DW_TAG_common_block:
8595 read_common_block (die, cu);
8596 break;
8597 case DW_TAG_common_inclusion:
8598 break;
8599 case DW_TAG_namespace:
8600 cu->processing_has_namespace_info = 1;
8601 read_namespace (die, cu);
8602 break;
8603 case DW_TAG_module:
8604 cu->processing_has_namespace_info = 1;
8605 read_module (die, cu);
8606 break;
8607 case DW_TAG_imported_declaration:
8608 cu->processing_has_namespace_info = 1;
8609 if (read_namespace_alias (die, cu))
8610 break;
8611 /* The declaration is not a global namespace alias: fall through. */
8612 case DW_TAG_imported_module:
8613 cu->processing_has_namespace_info = 1;
8614 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8615 || cu->language != language_fortran))
8616 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8617 dwarf_tag_name (die->tag));
8618 read_import_statement (die, cu);
8619 break;
8620
8621 case DW_TAG_imported_unit:
8622 process_imported_unit_die (die, cu);
8623 break;
8624
8625 default:
8626 new_symbol (die, NULL, cu);
8627 break;
8628 }
8629 }
8630 \f
8631 /* DWARF name computation. */
8632
8633 /* A helper function for dwarf2_compute_name which determines whether DIE
8634 needs to have the name of the scope prepended to the name listed in the
8635 die. */
8636
8637 static int
8638 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8639 {
8640 struct attribute *attr;
8641
8642 switch (die->tag)
8643 {
8644 case DW_TAG_namespace:
8645 case DW_TAG_typedef:
8646 case DW_TAG_class_type:
8647 case DW_TAG_interface_type:
8648 case DW_TAG_structure_type:
8649 case DW_TAG_union_type:
8650 case DW_TAG_enumeration_type:
8651 case DW_TAG_enumerator:
8652 case DW_TAG_subprogram:
8653 case DW_TAG_inlined_subroutine:
8654 case DW_TAG_member:
8655 case DW_TAG_imported_declaration:
8656 return 1;
8657
8658 case DW_TAG_variable:
8659 case DW_TAG_constant:
8660 /* We only need to prefix "globally" visible variables. These include
8661 any variable marked with DW_AT_external or any variable that
8662 lives in a namespace. [Variables in anonymous namespaces
8663 require prefixing, but they are not DW_AT_external.] */
8664
8665 if (dwarf2_attr (die, DW_AT_specification, cu))
8666 {
8667 struct dwarf2_cu *spec_cu = cu;
8668
8669 return die_needs_namespace (die_specification (die, &spec_cu),
8670 spec_cu);
8671 }
8672
8673 attr = dwarf2_attr (die, DW_AT_external, cu);
8674 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8675 && die->parent->tag != DW_TAG_module)
8676 return 0;
8677 /* A variable in a lexical block of some kind does not need a
8678 namespace, even though in C++ such variables may be external
8679 and have a mangled name. */
8680 if (die->parent->tag == DW_TAG_lexical_block
8681 || die->parent->tag == DW_TAG_try_block
8682 || die->parent->tag == DW_TAG_catch_block
8683 || die->parent->tag == DW_TAG_subprogram)
8684 return 0;
8685 return 1;
8686
8687 default:
8688 return 0;
8689 }
8690 }
8691
8692 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8693 compute the physname for the object, which include a method's:
8694 - formal parameters (C++),
8695 - receiver type (Go),
8696
8697 The term "physname" is a bit confusing.
8698 For C++, for example, it is the demangled name.
8699 For Go, for example, it's the mangled name.
8700
8701 For Ada, return the DIE's linkage name rather than the fully qualified
8702 name. PHYSNAME is ignored..
8703
8704 The result is allocated on the objfile_obstack and canonicalized. */
8705
8706 static const char *
8707 dwarf2_compute_name (const char *name,
8708 struct die_info *die, struct dwarf2_cu *cu,
8709 int physname)
8710 {
8711 struct objfile *objfile = cu->objfile;
8712
8713 if (name == NULL)
8714 name = dwarf2_name (die, cu);
8715
8716 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8717 but otherwise compute it by typename_concat inside GDB.
8718 FIXME: Actually this is not really true, or at least not always true.
8719 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8720 Fortran names because there is no mangling standard. So new_symbol_full
8721 will set the demangled name to the result of dwarf2_full_name, and it is
8722 the demangled name that GDB uses if it exists. */
8723 if (cu->language == language_ada
8724 || (cu->language == language_fortran && physname))
8725 {
8726 /* For Ada unit, we prefer the linkage name over the name, as
8727 the former contains the exported name, which the user expects
8728 to be able to reference. Ideally, we want the user to be able
8729 to reference this entity using either natural or linkage name,
8730 but we haven't started looking at this enhancement yet. */
8731 const char *linkage_name;
8732
8733 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8734 if (linkage_name == NULL)
8735 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8736 if (linkage_name != NULL)
8737 return linkage_name;
8738 }
8739
8740 /* These are the only languages we know how to qualify names in. */
8741 if (name != NULL
8742 && (cu->language == language_cplus
8743 || cu->language == language_fortran || cu->language == language_d
8744 || cu->language == language_rust))
8745 {
8746 if (die_needs_namespace (die, cu))
8747 {
8748 long length;
8749 const char *prefix;
8750 const char *canonical_name = NULL;
8751
8752 string_file buf;
8753
8754 prefix = determine_prefix (die, cu);
8755 if (*prefix != '\0')
8756 {
8757 char *prefixed_name = typename_concat (NULL, prefix, name,
8758 physname, cu);
8759
8760 buf.puts (prefixed_name);
8761 xfree (prefixed_name);
8762 }
8763 else
8764 buf.puts (name);
8765
8766 /* Template parameters may be specified in the DIE's DW_AT_name, or
8767 as children with DW_TAG_template_type_param or
8768 DW_TAG_value_type_param. If the latter, add them to the name
8769 here. If the name already has template parameters, then
8770 skip this step; some versions of GCC emit both, and
8771 it is more efficient to use the pre-computed name.
8772
8773 Something to keep in mind about this process: it is very
8774 unlikely, or in some cases downright impossible, to produce
8775 something that will match the mangled name of a function.
8776 If the definition of the function has the same debug info,
8777 we should be able to match up with it anyway. But fallbacks
8778 using the minimal symbol, for instance to find a method
8779 implemented in a stripped copy of libstdc++, will not work.
8780 If we do not have debug info for the definition, we will have to
8781 match them up some other way.
8782
8783 When we do name matching there is a related problem with function
8784 templates; two instantiated function templates are allowed to
8785 differ only by their return types, which we do not add here. */
8786
8787 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8788 {
8789 struct attribute *attr;
8790 struct die_info *child;
8791 int first = 1;
8792
8793 die->building_fullname = 1;
8794
8795 for (child = die->child; child != NULL; child = child->sibling)
8796 {
8797 struct type *type;
8798 LONGEST value;
8799 const gdb_byte *bytes;
8800 struct dwarf2_locexpr_baton *baton;
8801 struct value *v;
8802
8803 if (child->tag != DW_TAG_template_type_param
8804 && child->tag != DW_TAG_template_value_param)
8805 continue;
8806
8807 if (first)
8808 {
8809 buf.puts ("<");
8810 first = 0;
8811 }
8812 else
8813 buf.puts (", ");
8814
8815 attr = dwarf2_attr (child, DW_AT_type, cu);
8816 if (attr == NULL)
8817 {
8818 complaint (&symfile_complaints,
8819 _("template parameter missing DW_AT_type"));
8820 buf.puts ("UNKNOWN_TYPE");
8821 continue;
8822 }
8823 type = die_type (child, cu);
8824
8825 if (child->tag == DW_TAG_template_type_param)
8826 {
8827 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8828 continue;
8829 }
8830
8831 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8832 if (attr == NULL)
8833 {
8834 complaint (&symfile_complaints,
8835 _("template parameter missing "
8836 "DW_AT_const_value"));
8837 buf.puts ("UNKNOWN_VALUE");
8838 continue;
8839 }
8840
8841 dwarf2_const_value_attr (attr, type, name,
8842 &cu->comp_unit_obstack, cu,
8843 &value, &bytes, &baton);
8844
8845 if (TYPE_NOSIGN (type))
8846 /* GDB prints characters as NUMBER 'CHAR'. If that's
8847 changed, this can use value_print instead. */
8848 c_printchar (value, type, &buf);
8849 else
8850 {
8851 struct value_print_options opts;
8852
8853 if (baton != NULL)
8854 v = dwarf2_evaluate_loc_desc (type, NULL,
8855 baton->data,
8856 baton->size,
8857 baton->per_cu);
8858 else if (bytes != NULL)
8859 {
8860 v = allocate_value (type);
8861 memcpy (value_contents_writeable (v), bytes,
8862 TYPE_LENGTH (type));
8863 }
8864 else
8865 v = value_from_longest (type, value);
8866
8867 /* Specify decimal so that we do not depend on
8868 the radix. */
8869 get_formatted_print_options (&opts, 'd');
8870 opts.raw = 1;
8871 value_print (v, &buf, &opts);
8872 release_value (v);
8873 value_free (v);
8874 }
8875 }
8876
8877 die->building_fullname = 0;
8878
8879 if (!first)
8880 {
8881 /* Close the argument list, with a space if necessary
8882 (nested templates). */
8883 if (!buf.empty () && buf.string ().back () == '>')
8884 buf.puts (" >");
8885 else
8886 buf.puts (">");
8887 }
8888 }
8889
8890 /* For C++ methods, append formal parameter type
8891 information, if PHYSNAME. */
8892
8893 if (physname && die->tag == DW_TAG_subprogram
8894 && cu->language == language_cplus)
8895 {
8896 struct type *type = read_type_die (die, cu);
8897
8898 c_type_print_args (type, &buf, 1, cu->language,
8899 &type_print_raw_options);
8900
8901 if (cu->language == language_cplus)
8902 {
8903 /* Assume that an artificial first parameter is
8904 "this", but do not crash if it is not. RealView
8905 marks unnamed (and thus unused) parameters as
8906 artificial; there is no way to differentiate
8907 the two cases. */
8908 if (TYPE_NFIELDS (type) > 0
8909 && TYPE_FIELD_ARTIFICIAL (type, 0)
8910 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8911 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8912 0))))
8913 buf.puts (" const");
8914 }
8915 }
8916
8917 const std::string &intermediate_name = buf.string ();
8918
8919 if (cu->language == language_cplus)
8920 canonical_name
8921 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8922 &objfile->per_bfd->storage_obstack);
8923
8924 /* If we only computed INTERMEDIATE_NAME, or if
8925 INTERMEDIATE_NAME is already canonical, then we need to
8926 copy it to the appropriate obstack. */
8927 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8928 name = ((const char *)
8929 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8930 intermediate_name.c_str (),
8931 intermediate_name.length ()));
8932 else
8933 name = canonical_name;
8934 }
8935 }
8936
8937 return name;
8938 }
8939
8940 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8941 If scope qualifiers are appropriate they will be added. The result
8942 will be allocated on the storage_obstack, or NULL if the DIE does
8943 not have a name. NAME may either be from a previous call to
8944 dwarf2_name or NULL.
8945
8946 The output string will be canonicalized (if C++). */
8947
8948 static const char *
8949 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8950 {
8951 return dwarf2_compute_name (name, die, cu, 0);
8952 }
8953
8954 /* Construct a physname for the given DIE in CU. NAME may either be
8955 from a previous call to dwarf2_name or NULL. The result will be
8956 allocated on the objfile_objstack or NULL if the DIE does not have a
8957 name.
8958
8959 The output string will be canonicalized (if C++). */
8960
8961 static const char *
8962 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8963 {
8964 struct objfile *objfile = cu->objfile;
8965 const char *retval, *mangled = NULL, *canon = NULL;
8966 struct cleanup *back_to;
8967 int need_copy = 1;
8968
8969 /* In this case dwarf2_compute_name is just a shortcut not building anything
8970 on its own. */
8971 if (!die_needs_namespace (die, cu))
8972 return dwarf2_compute_name (name, die, cu, 1);
8973
8974 back_to = make_cleanup (null_cleanup, NULL);
8975
8976 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8977 if (mangled == NULL)
8978 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8979
8980 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8981 See https://github.com/rust-lang/rust/issues/32925. */
8982 if (cu->language == language_rust && mangled != NULL
8983 && strchr (mangled, '{') != NULL)
8984 mangled = NULL;
8985
8986 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8987 has computed. */
8988 if (mangled != NULL)
8989 {
8990 char *demangled;
8991
8992 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8993 type. It is easier for GDB users to search for such functions as
8994 `name(params)' than `long name(params)'. In such case the minimal
8995 symbol names do not match the full symbol names but for template
8996 functions there is never a need to look up their definition from their
8997 declaration so the only disadvantage remains the minimal symbol
8998 variant `long name(params)' does not have the proper inferior type.
8999 */
9000
9001 if (cu->language == language_go)
9002 {
9003 /* This is a lie, but we already lie to the caller new_symbol_full.
9004 new_symbol_full assumes we return the mangled name.
9005 This just undoes that lie until things are cleaned up. */
9006 demangled = NULL;
9007 }
9008 else
9009 {
9010 demangled = gdb_demangle (mangled,
9011 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
9012 }
9013 if (demangled)
9014 {
9015 make_cleanup (xfree, demangled);
9016 canon = demangled;
9017 }
9018 else
9019 {
9020 canon = mangled;
9021 need_copy = 0;
9022 }
9023 }
9024
9025 if (canon == NULL || check_physname)
9026 {
9027 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9028
9029 if (canon != NULL && strcmp (physname, canon) != 0)
9030 {
9031 /* It may not mean a bug in GDB. The compiler could also
9032 compute DW_AT_linkage_name incorrectly. But in such case
9033 GDB would need to be bug-to-bug compatible. */
9034
9035 complaint (&symfile_complaints,
9036 _("Computed physname <%s> does not match demangled <%s> "
9037 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9038 physname, canon, mangled, to_underlying (die->sect_off),
9039 objfile_name (objfile));
9040
9041 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9042 is available here - over computed PHYSNAME. It is safer
9043 against both buggy GDB and buggy compilers. */
9044
9045 retval = canon;
9046 }
9047 else
9048 {
9049 retval = physname;
9050 need_copy = 0;
9051 }
9052 }
9053 else
9054 retval = canon;
9055
9056 if (need_copy)
9057 retval = ((const char *)
9058 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9059 retval, strlen (retval)));
9060
9061 do_cleanups (back_to);
9062 return retval;
9063 }
9064
9065 /* Inspect DIE in CU for a namespace alias. If one exists, record
9066 a new symbol for it.
9067
9068 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9069
9070 static int
9071 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9072 {
9073 struct attribute *attr;
9074
9075 /* If the die does not have a name, this is not a namespace
9076 alias. */
9077 attr = dwarf2_attr (die, DW_AT_name, cu);
9078 if (attr != NULL)
9079 {
9080 int num;
9081 struct die_info *d = die;
9082 struct dwarf2_cu *imported_cu = cu;
9083
9084 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9085 keep inspecting DIEs until we hit the underlying import. */
9086 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
9087 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9088 {
9089 attr = dwarf2_attr (d, DW_AT_import, cu);
9090 if (attr == NULL)
9091 break;
9092
9093 d = follow_die_ref (d, attr, &imported_cu);
9094 if (d->tag != DW_TAG_imported_declaration)
9095 break;
9096 }
9097
9098 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9099 {
9100 complaint (&symfile_complaints,
9101 _("DIE at 0x%x has too many recursively imported "
9102 "declarations"), to_underlying (d->sect_off));
9103 return 0;
9104 }
9105
9106 if (attr != NULL)
9107 {
9108 struct type *type;
9109 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9110
9111 type = get_die_type_at_offset (sect_off, cu->per_cu);
9112 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9113 {
9114 /* This declaration is a global namespace alias. Add
9115 a symbol for it whose type is the aliased namespace. */
9116 new_symbol (die, type, cu);
9117 return 1;
9118 }
9119 }
9120 }
9121
9122 return 0;
9123 }
9124
9125 /* Return the using directives repository (global or local?) to use in the
9126 current context for LANGUAGE.
9127
9128 For Ada, imported declarations can materialize renamings, which *may* be
9129 global. However it is impossible (for now?) in DWARF to distinguish
9130 "external" imported declarations and "static" ones. As all imported
9131 declarations seem to be static in all other languages, make them all CU-wide
9132 global only in Ada. */
9133
9134 static struct using_direct **
9135 using_directives (enum language language)
9136 {
9137 if (language == language_ada && context_stack_depth == 0)
9138 return &global_using_directives;
9139 else
9140 return &local_using_directives;
9141 }
9142
9143 /* Read the import statement specified by the given die and record it. */
9144
9145 static void
9146 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9147 {
9148 struct objfile *objfile = cu->objfile;
9149 struct attribute *import_attr;
9150 struct die_info *imported_die, *child_die;
9151 struct dwarf2_cu *imported_cu;
9152 const char *imported_name;
9153 const char *imported_name_prefix;
9154 const char *canonical_name;
9155 const char *import_alias;
9156 const char *imported_declaration = NULL;
9157 const char *import_prefix;
9158 VEC (const_char_ptr) *excludes = NULL;
9159 struct cleanup *cleanups;
9160
9161 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9162 if (import_attr == NULL)
9163 {
9164 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9165 dwarf_tag_name (die->tag));
9166 return;
9167 }
9168
9169 imported_cu = cu;
9170 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9171 imported_name = dwarf2_name (imported_die, imported_cu);
9172 if (imported_name == NULL)
9173 {
9174 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9175
9176 The import in the following code:
9177 namespace A
9178 {
9179 typedef int B;
9180 }
9181
9182 int main ()
9183 {
9184 using A::B;
9185 B b;
9186 return b;
9187 }
9188
9189 ...
9190 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9191 <52> DW_AT_decl_file : 1
9192 <53> DW_AT_decl_line : 6
9193 <54> DW_AT_import : <0x75>
9194 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9195 <59> DW_AT_name : B
9196 <5b> DW_AT_decl_file : 1
9197 <5c> DW_AT_decl_line : 2
9198 <5d> DW_AT_type : <0x6e>
9199 ...
9200 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9201 <76> DW_AT_byte_size : 4
9202 <77> DW_AT_encoding : 5 (signed)
9203
9204 imports the wrong die ( 0x75 instead of 0x58 ).
9205 This case will be ignored until the gcc bug is fixed. */
9206 return;
9207 }
9208
9209 /* Figure out the local name after import. */
9210 import_alias = dwarf2_name (die, cu);
9211
9212 /* Figure out where the statement is being imported to. */
9213 import_prefix = determine_prefix (die, cu);
9214
9215 /* Figure out what the scope of the imported die is and prepend it
9216 to the name of the imported die. */
9217 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9218
9219 if (imported_die->tag != DW_TAG_namespace
9220 && imported_die->tag != DW_TAG_module)
9221 {
9222 imported_declaration = imported_name;
9223 canonical_name = imported_name_prefix;
9224 }
9225 else if (strlen (imported_name_prefix) > 0)
9226 canonical_name = obconcat (&objfile->objfile_obstack,
9227 imported_name_prefix,
9228 (cu->language == language_d ? "." : "::"),
9229 imported_name, (char *) NULL);
9230 else
9231 canonical_name = imported_name;
9232
9233 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
9234
9235 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9236 for (child_die = die->child; child_die && child_die->tag;
9237 child_die = sibling_die (child_die))
9238 {
9239 /* DWARF-4: A Fortran use statement with a “rename list” may be
9240 represented by an imported module entry with an import attribute
9241 referring to the module and owned entries corresponding to those
9242 entities that are renamed as part of being imported. */
9243
9244 if (child_die->tag != DW_TAG_imported_declaration)
9245 {
9246 complaint (&symfile_complaints,
9247 _("child DW_TAG_imported_declaration expected "
9248 "- DIE at 0x%x [in module %s]"),
9249 to_underlying (child_die->sect_off), objfile_name (objfile));
9250 continue;
9251 }
9252
9253 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9254 if (import_attr == NULL)
9255 {
9256 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9257 dwarf_tag_name (child_die->tag));
9258 continue;
9259 }
9260
9261 imported_cu = cu;
9262 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9263 &imported_cu);
9264 imported_name = dwarf2_name (imported_die, imported_cu);
9265 if (imported_name == NULL)
9266 {
9267 complaint (&symfile_complaints,
9268 _("child DW_TAG_imported_declaration has unknown "
9269 "imported name - DIE at 0x%x [in module %s]"),
9270 to_underlying (child_die->sect_off), objfile_name (objfile));
9271 continue;
9272 }
9273
9274 VEC_safe_push (const_char_ptr, excludes, imported_name);
9275
9276 process_die (child_die, cu);
9277 }
9278
9279 add_using_directive (using_directives (cu->language),
9280 import_prefix,
9281 canonical_name,
9282 import_alias,
9283 imported_declaration,
9284 excludes,
9285 0,
9286 &objfile->objfile_obstack);
9287
9288 do_cleanups (cleanups);
9289 }
9290
9291 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9292 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9293 this, it was first present in GCC release 4.3.0. */
9294
9295 static int
9296 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9297 {
9298 if (!cu->checked_producer)
9299 check_producer (cu);
9300
9301 return cu->producer_is_gcc_lt_4_3;
9302 }
9303
9304 static file_and_directory
9305 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9306 {
9307 file_and_directory res;
9308
9309 /* Find the filename. Do not use dwarf2_name here, since the filename
9310 is not a source language identifier. */
9311 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9312 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9313
9314 if (res.comp_dir == NULL
9315 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9316 && IS_ABSOLUTE_PATH (res.name))
9317 {
9318 res.comp_dir_storage = ldirname (res.name);
9319 if (!res.comp_dir_storage.empty ())
9320 res.comp_dir = res.comp_dir_storage.c_str ();
9321 }
9322 if (res.comp_dir != NULL)
9323 {
9324 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9325 directory, get rid of it. */
9326 const char *cp = strchr (res.comp_dir, ':');
9327
9328 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9329 res.comp_dir = cp + 1;
9330 }
9331
9332 if (res.name == NULL)
9333 res.name = "<unknown>";
9334
9335 return res;
9336 }
9337
9338 /* Handle DW_AT_stmt_list for a compilation unit.
9339 DIE is the DW_TAG_compile_unit die for CU.
9340 COMP_DIR is the compilation directory. LOWPC is passed to
9341 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9342
9343 static void
9344 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9345 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9346 {
9347 struct objfile *objfile = dwarf2_per_objfile->objfile;
9348 struct attribute *attr;
9349 struct line_header line_header_local;
9350 hashval_t line_header_local_hash;
9351 unsigned u;
9352 void **slot;
9353 int decode_mapping;
9354
9355 gdb_assert (! cu->per_cu->is_debug_types);
9356
9357 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9358 if (attr == NULL)
9359 return;
9360
9361 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9362
9363 /* The line header hash table is only created if needed (it exists to
9364 prevent redundant reading of the line table for partial_units).
9365 If we're given a partial_unit, we'll need it. If we're given a
9366 compile_unit, then use the line header hash table if it's already
9367 created, but don't create one just yet. */
9368
9369 if (dwarf2_per_objfile->line_header_hash == NULL
9370 && die->tag == DW_TAG_partial_unit)
9371 {
9372 dwarf2_per_objfile->line_header_hash
9373 = htab_create_alloc_ex (127, line_header_hash_voidp,
9374 line_header_eq_voidp,
9375 free_line_header_voidp,
9376 &objfile->objfile_obstack,
9377 hashtab_obstack_allocate,
9378 dummy_obstack_deallocate);
9379 }
9380
9381 line_header_local.sect_off = line_offset;
9382 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9383 line_header_local_hash = line_header_hash (&line_header_local);
9384 if (dwarf2_per_objfile->line_header_hash != NULL)
9385 {
9386 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9387 &line_header_local,
9388 line_header_local_hash, NO_INSERT);
9389
9390 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9391 is not present in *SLOT (since if there is something in *SLOT then
9392 it will be for a partial_unit). */
9393 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9394 {
9395 gdb_assert (*slot != NULL);
9396 cu->line_header = (struct line_header *) *slot;
9397 return;
9398 }
9399 }
9400
9401 /* dwarf_decode_line_header does not yet provide sufficient information.
9402 We always have to call also dwarf_decode_lines for it. */
9403 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9404 if (lh == NULL)
9405 return;
9406
9407 cu->line_header = lh.release ();
9408 cu->line_header_die_owner = die;
9409
9410 if (dwarf2_per_objfile->line_header_hash == NULL)
9411 slot = NULL;
9412 else
9413 {
9414 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9415 &line_header_local,
9416 line_header_local_hash, INSERT);
9417 gdb_assert (slot != NULL);
9418 }
9419 if (slot != NULL && *slot == NULL)
9420 {
9421 /* This newly decoded line number information unit will be owned
9422 by line_header_hash hash table. */
9423 *slot = cu->line_header;
9424 cu->line_header_die_owner = NULL;
9425 }
9426 else
9427 {
9428 /* We cannot free any current entry in (*slot) as that struct line_header
9429 may be already used by multiple CUs. Create only temporary decoded
9430 line_header for this CU - it may happen at most once for each line
9431 number information unit. And if we're not using line_header_hash
9432 then this is what we want as well. */
9433 gdb_assert (die->tag != DW_TAG_partial_unit);
9434 }
9435 decode_mapping = (die->tag != DW_TAG_partial_unit);
9436 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9437 decode_mapping);
9438
9439 }
9440
9441 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9442
9443 static void
9444 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9445 {
9446 struct objfile *objfile = dwarf2_per_objfile->objfile;
9447 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9448 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9449 CORE_ADDR highpc = ((CORE_ADDR) 0);
9450 struct attribute *attr;
9451 struct die_info *child_die;
9452 CORE_ADDR baseaddr;
9453
9454 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9455
9456 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9457
9458 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9459 from finish_block. */
9460 if (lowpc == ((CORE_ADDR) -1))
9461 lowpc = highpc;
9462 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9463
9464 file_and_directory fnd = find_file_and_directory (die, cu);
9465
9466 prepare_one_comp_unit (cu, die, cu->language);
9467
9468 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9469 standardised yet. As a workaround for the language detection we fall
9470 back to the DW_AT_producer string. */
9471 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9472 cu->language = language_opencl;
9473
9474 /* Similar hack for Go. */
9475 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9476 set_cu_language (DW_LANG_Go, cu);
9477
9478 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
9479
9480 /* Decode line number information if present. We do this before
9481 processing child DIEs, so that the line header table is available
9482 for DW_AT_decl_file. */
9483 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
9484
9485 /* Process all dies in compilation unit. */
9486 if (die->child != NULL)
9487 {
9488 child_die = die->child;
9489 while (child_die && child_die->tag)
9490 {
9491 process_die (child_die, cu);
9492 child_die = sibling_die (child_die);
9493 }
9494 }
9495
9496 /* Decode macro information, if present. Dwarf 2 macro information
9497 refers to information in the line number info statement program
9498 header, so we can only read it if we've read the header
9499 successfully. */
9500 attr = dwarf2_attr (die, DW_AT_macros, cu);
9501 if (attr == NULL)
9502 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9503 if (attr && cu->line_header)
9504 {
9505 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9506 complaint (&symfile_complaints,
9507 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9508
9509 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9510 }
9511 else
9512 {
9513 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9514 if (attr && cu->line_header)
9515 {
9516 unsigned int macro_offset = DW_UNSND (attr);
9517
9518 dwarf_decode_macros (cu, macro_offset, 0);
9519 }
9520 }
9521 }
9522
9523 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9524 Create the set of symtabs used by this TU, or if this TU is sharing
9525 symtabs with another TU and the symtabs have already been created
9526 then restore those symtabs in the line header.
9527 We don't need the pc/line-number mapping for type units. */
9528
9529 static void
9530 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9531 {
9532 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9533 struct type_unit_group *tu_group;
9534 int first_time;
9535 struct attribute *attr;
9536 unsigned int i;
9537 struct signatured_type *sig_type;
9538
9539 gdb_assert (per_cu->is_debug_types);
9540 sig_type = (struct signatured_type *) per_cu;
9541
9542 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9543
9544 /* If we're using .gdb_index (includes -readnow) then
9545 per_cu->type_unit_group may not have been set up yet. */
9546 if (sig_type->type_unit_group == NULL)
9547 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9548 tu_group = sig_type->type_unit_group;
9549
9550 /* If we've already processed this stmt_list there's no real need to
9551 do it again, we could fake it and just recreate the part we need
9552 (file name,index -> symtab mapping). If data shows this optimization
9553 is useful we can do it then. */
9554 first_time = tu_group->compunit_symtab == NULL;
9555
9556 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9557 debug info. */
9558 line_header_up lh;
9559 if (attr != NULL)
9560 {
9561 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9562 lh = dwarf_decode_line_header (line_offset, cu);
9563 }
9564 if (lh == NULL)
9565 {
9566 if (first_time)
9567 dwarf2_start_symtab (cu, "", NULL, 0);
9568 else
9569 {
9570 gdb_assert (tu_group->symtabs == NULL);
9571 restart_symtab (tu_group->compunit_symtab, "", 0);
9572 }
9573 return;
9574 }
9575
9576 cu->line_header = lh.release ();
9577 cu->line_header_die_owner = die;
9578
9579 if (first_time)
9580 {
9581 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9582
9583 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9584 still initializing it, and our caller (a few levels up)
9585 process_full_type_unit still needs to know if this is the first
9586 time. */
9587
9588 tu_group->num_symtabs = cu->line_header->file_names.size ();
9589 tu_group->symtabs = XNEWVEC (struct symtab *,
9590 cu->line_header->file_names.size ());
9591
9592 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9593 {
9594 file_entry &fe = cu->line_header->file_names[i];
9595
9596 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
9597
9598 if (current_subfile->symtab == NULL)
9599 {
9600 /* NOTE: start_subfile will recognize when it's been
9601 passed a file it has already seen. So we can't
9602 assume there's a simple mapping from
9603 cu->line_header->file_names to subfiles, plus
9604 cu->line_header->file_names may contain dups. */
9605 current_subfile->symtab
9606 = allocate_symtab (cust, current_subfile->name);
9607 }
9608
9609 fe.symtab = current_subfile->symtab;
9610 tu_group->symtabs[i] = fe.symtab;
9611 }
9612 }
9613 else
9614 {
9615 restart_symtab (tu_group->compunit_symtab, "", 0);
9616
9617 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9618 {
9619 file_entry &fe = cu->line_header->file_names[i];
9620
9621 fe.symtab = tu_group->symtabs[i];
9622 }
9623 }
9624
9625 /* The main symtab is allocated last. Type units don't have DW_AT_name
9626 so they don't have a "real" (so to speak) symtab anyway.
9627 There is later code that will assign the main symtab to all symbols
9628 that don't have one. We need to handle the case of a symbol with a
9629 missing symtab (DW_AT_decl_file) anyway. */
9630 }
9631
9632 /* Process DW_TAG_type_unit.
9633 For TUs we want to skip the first top level sibling if it's not the
9634 actual type being defined by this TU. In this case the first top
9635 level sibling is there to provide context only. */
9636
9637 static void
9638 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9639 {
9640 struct die_info *child_die;
9641
9642 prepare_one_comp_unit (cu, die, language_minimal);
9643
9644 /* Initialize (or reinitialize) the machinery for building symtabs.
9645 We do this before processing child DIEs, so that the line header table
9646 is available for DW_AT_decl_file. */
9647 setup_type_unit_groups (die, cu);
9648
9649 if (die->child != NULL)
9650 {
9651 child_die = die->child;
9652 while (child_die && child_die->tag)
9653 {
9654 process_die (child_die, cu);
9655 child_die = sibling_die (child_die);
9656 }
9657 }
9658 }
9659 \f
9660 /* DWO/DWP files.
9661
9662 http://gcc.gnu.org/wiki/DebugFission
9663 http://gcc.gnu.org/wiki/DebugFissionDWP
9664
9665 To simplify handling of both DWO files ("object" files with the DWARF info)
9666 and DWP files (a file with the DWOs packaged up into one file), we treat
9667 DWP files as having a collection of virtual DWO files. */
9668
9669 static hashval_t
9670 hash_dwo_file (const void *item)
9671 {
9672 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9673 hashval_t hash;
9674
9675 hash = htab_hash_string (dwo_file->dwo_name);
9676 if (dwo_file->comp_dir != NULL)
9677 hash += htab_hash_string (dwo_file->comp_dir);
9678 return hash;
9679 }
9680
9681 static int
9682 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9683 {
9684 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9685 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9686
9687 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9688 return 0;
9689 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9690 return lhs->comp_dir == rhs->comp_dir;
9691 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9692 }
9693
9694 /* Allocate a hash table for DWO files. */
9695
9696 static htab_t
9697 allocate_dwo_file_hash_table (void)
9698 {
9699 struct objfile *objfile = dwarf2_per_objfile->objfile;
9700
9701 return htab_create_alloc_ex (41,
9702 hash_dwo_file,
9703 eq_dwo_file,
9704 NULL,
9705 &objfile->objfile_obstack,
9706 hashtab_obstack_allocate,
9707 dummy_obstack_deallocate);
9708 }
9709
9710 /* Lookup DWO file DWO_NAME. */
9711
9712 static void **
9713 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9714 {
9715 struct dwo_file find_entry;
9716 void **slot;
9717
9718 if (dwarf2_per_objfile->dwo_files == NULL)
9719 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9720
9721 memset (&find_entry, 0, sizeof (find_entry));
9722 find_entry.dwo_name = dwo_name;
9723 find_entry.comp_dir = comp_dir;
9724 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9725
9726 return slot;
9727 }
9728
9729 static hashval_t
9730 hash_dwo_unit (const void *item)
9731 {
9732 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9733
9734 /* This drops the top 32 bits of the id, but is ok for a hash. */
9735 return dwo_unit->signature;
9736 }
9737
9738 static int
9739 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9740 {
9741 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9742 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9743
9744 /* The signature is assumed to be unique within the DWO file.
9745 So while object file CU dwo_id's always have the value zero,
9746 that's OK, assuming each object file DWO file has only one CU,
9747 and that's the rule for now. */
9748 return lhs->signature == rhs->signature;
9749 }
9750
9751 /* Allocate a hash table for DWO CUs,TUs.
9752 There is one of these tables for each of CUs,TUs for each DWO file. */
9753
9754 static htab_t
9755 allocate_dwo_unit_table (struct objfile *objfile)
9756 {
9757 /* Start out with a pretty small number.
9758 Generally DWO files contain only one CU and maybe some TUs. */
9759 return htab_create_alloc_ex (3,
9760 hash_dwo_unit,
9761 eq_dwo_unit,
9762 NULL,
9763 &objfile->objfile_obstack,
9764 hashtab_obstack_allocate,
9765 dummy_obstack_deallocate);
9766 }
9767
9768 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9769
9770 struct create_dwo_cu_data
9771 {
9772 struct dwo_file *dwo_file;
9773 struct dwo_unit dwo_unit;
9774 };
9775
9776 /* die_reader_func for create_dwo_cu. */
9777
9778 static void
9779 create_dwo_cu_reader (const struct die_reader_specs *reader,
9780 const gdb_byte *info_ptr,
9781 struct die_info *comp_unit_die,
9782 int has_children,
9783 void *datap)
9784 {
9785 struct dwarf2_cu *cu = reader->cu;
9786 sect_offset sect_off = cu->per_cu->sect_off;
9787 struct dwarf2_section_info *section = cu->per_cu->section;
9788 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9789 struct dwo_file *dwo_file = data->dwo_file;
9790 struct dwo_unit *dwo_unit = &data->dwo_unit;
9791 struct attribute *attr;
9792
9793 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9794 if (attr == NULL)
9795 {
9796 complaint (&symfile_complaints,
9797 _("Dwarf Error: debug entry at offset 0x%x is missing"
9798 " its dwo_id [in module %s]"),
9799 to_underlying (sect_off), dwo_file->dwo_name);
9800 return;
9801 }
9802
9803 dwo_unit->dwo_file = dwo_file;
9804 dwo_unit->signature = DW_UNSND (attr);
9805 dwo_unit->section = section;
9806 dwo_unit->sect_off = sect_off;
9807 dwo_unit->length = cu->per_cu->length;
9808
9809 if (dwarf_read_debug)
9810 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9811 to_underlying (sect_off),
9812 hex_string (dwo_unit->signature));
9813 }
9814
9815 /* Create the dwo_units for the CUs in a DWO_FILE.
9816 Note: This function processes DWO files only, not DWP files. */
9817
9818 static void
9819 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9820 htab_t &cus_htab)
9821 {
9822 struct objfile *objfile = dwarf2_per_objfile->objfile;
9823 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
9824 const gdb_byte *info_ptr, *end_ptr;
9825
9826 dwarf2_read_section (objfile, &section);
9827 info_ptr = section.buffer;
9828
9829 if (info_ptr == NULL)
9830 return;
9831
9832 if (dwarf_read_debug)
9833 {
9834 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9835 get_section_name (&section),
9836 get_section_file_name (&section));
9837 }
9838
9839 end_ptr = info_ptr + section.size;
9840 while (info_ptr < end_ptr)
9841 {
9842 struct dwarf2_per_cu_data per_cu;
9843 struct create_dwo_cu_data create_dwo_cu_data;
9844 struct dwo_unit *dwo_unit;
9845 void **slot;
9846 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
9847
9848 memset (&create_dwo_cu_data.dwo_unit, 0,
9849 sizeof (create_dwo_cu_data.dwo_unit));
9850 memset (&per_cu, 0, sizeof (per_cu));
9851 per_cu.objfile = objfile;
9852 per_cu.is_debug_types = 0;
9853 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9854 per_cu.section = &section;
9855 create_dwo_cu_data.dwo_file = &dwo_file;
9856
9857 init_cutu_and_read_dies_no_follow (
9858 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9859 info_ptr += per_cu.length;
9860
9861 // If the unit could not be parsed, skip it.
9862 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9863 continue;
9864
9865 if (cus_htab == NULL)
9866 cus_htab = allocate_dwo_unit_table (objfile);
9867
9868 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9869 *dwo_unit = create_dwo_cu_data.dwo_unit;
9870 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9871 gdb_assert (slot != NULL);
9872 if (*slot != NULL)
9873 {
9874 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9875 sect_offset dup_sect_off = dup_cu->sect_off;
9876
9877 complaint (&symfile_complaints,
9878 _("debug cu entry at offset 0x%x is duplicate to"
9879 " the entry at offset 0x%x, signature %s"),
9880 to_underlying (sect_off), to_underlying (dup_sect_off),
9881 hex_string (dwo_unit->signature));
9882 }
9883 *slot = (void *)dwo_unit;
9884 }
9885 }
9886
9887 /* DWP file .debug_{cu,tu}_index section format:
9888 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9889
9890 DWP Version 1:
9891
9892 Both index sections have the same format, and serve to map a 64-bit
9893 signature to a set of section numbers. Each section begins with a header,
9894 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9895 indexes, and a pool of 32-bit section numbers. The index sections will be
9896 aligned at 8-byte boundaries in the file.
9897
9898 The index section header consists of:
9899
9900 V, 32 bit version number
9901 -, 32 bits unused
9902 N, 32 bit number of compilation units or type units in the index
9903 M, 32 bit number of slots in the hash table
9904
9905 Numbers are recorded using the byte order of the application binary.
9906
9907 The hash table begins at offset 16 in the section, and consists of an array
9908 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9909 order of the application binary). Unused slots in the hash table are 0.
9910 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9911
9912 The parallel table begins immediately after the hash table
9913 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9914 array of 32-bit indexes (using the byte order of the application binary),
9915 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9916 table contains a 32-bit index into the pool of section numbers. For unused
9917 hash table slots, the corresponding entry in the parallel table will be 0.
9918
9919 The pool of section numbers begins immediately following the hash table
9920 (at offset 16 + 12 * M from the beginning of the section). The pool of
9921 section numbers consists of an array of 32-bit words (using the byte order
9922 of the application binary). Each item in the array is indexed starting
9923 from 0. The hash table entry provides the index of the first section
9924 number in the set. Additional section numbers in the set follow, and the
9925 set is terminated by a 0 entry (section number 0 is not used in ELF).
9926
9927 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9928 section must be the first entry in the set, and the .debug_abbrev.dwo must
9929 be the second entry. Other members of the set may follow in any order.
9930
9931 ---
9932
9933 DWP Version 2:
9934
9935 DWP Version 2 combines all the .debug_info, etc. sections into one,
9936 and the entries in the index tables are now offsets into these sections.
9937 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9938 section.
9939
9940 Index Section Contents:
9941 Header
9942 Hash Table of Signatures dwp_hash_table.hash_table
9943 Parallel Table of Indices dwp_hash_table.unit_table
9944 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9945 Table of Section Sizes dwp_hash_table.v2.sizes
9946
9947 The index section header consists of:
9948
9949 V, 32 bit version number
9950 L, 32 bit number of columns in the table of section offsets
9951 N, 32 bit number of compilation units or type units in the index
9952 M, 32 bit number of slots in the hash table
9953
9954 Numbers are recorded using the byte order of the application binary.
9955
9956 The hash table has the same format as version 1.
9957 The parallel table of indices has the same format as version 1,
9958 except that the entries are origin-1 indices into the table of sections
9959 offsets and the table of section sizes.
9960
9961 The table of offsets begins immediately following the parallel table
9962 (at offset 16 + 12 * M from the beginning of the section). The table is
9963 a two-dimensional array of 32-bit words (using the byte order of the
9964 application binary), with L columns and N+1 rows, in row-major order.
9965 Each row in the array is indexed starting from 0. The first row provides
9966 a key to the remaining rows: each column in this row provides an identifier
9967 for a debug section, and the offsets in the same column of subsequent rows
9968 refer to that section. The section identifiers are:
9969
9970 DW_SECT_INFO 1 .debug_info.dwo
9971 DW_SECT_TYPES 2 .debug_types.dwo
9972 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9973 DW_SECT_LINE 4 .debug_line.dwo
9974 DW_SECT_LOC 5 .debug_loc.dwo
9975 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9976 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9977 DW_SECT_MACRO 8 .debug_macro.dwo
9978
9979 The offsets provided by the CU and TU index sections are the base offsets
9980 for the contributions made by each CU or TU to the corresponding section
9981 in the package file. Each CU and TU header contains an abbrev_offset
9982 field, used to find the abbreviations table for that CU or TU within the
9983 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9984 be interpreted as relative to the base offset given in the index section.
9985 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9986 should be interpreted as relative to the base offset for .debug_line.dwo,
9987 and offsets into other debug sections obtained from DWARF attributes should
9988 also be interpreted as relative to the corresponding base offset.
9989
9990 The table of sizes begins immediately following the table of offsets.
9991 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9992 with L columns and N rows, in row-major order. Each row in the array is
9993 indexed starting from 1 (row 0 is shared by the two tables).
9994
9995 ---
9996
9997 Hash table lookup is handled the same in version 1 and 2:
9998
9999 We assume that N and M will not exceed 2^32 - 1.
10000 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10001
10002 Given a 64-bit compilation unit signature or a type signature S, an entry
10003 in the hash table is located as follows:
10004
10005 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10006 the low-order k bits all set to 1.
10007
10008 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
10009
10010 3) If the hash table entry at index H matches the signature, use that
10011 entry. If the hash table entry at index H is unused (all zeroes),
10012 terminate the search: the signature is not present in the table.
10013
10014 4) Let H = (H + H') modulo M. Repeat at Step 3.
10015
10016 Because M > N and H' and M are relatively prime, the search is guaranteed
10017 to stop at an unused slot or find the match. */
10018
10019 /* Create a hash table to map DWO IDs to their CU/TU entry in
10020 .debug_{info,types}.dwo in DWP_FILE.
10021 Returns NULL if there isn't one.
10022 Note: This function processes DWP files only, not DWO files. */
10023
10024 static struct dwp_hash_table *
10025 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10026 {
10027 struct objfile *objfile = dwarf2_per_objfile->objfile;
10028 bfd *dbfd = dwp_file->dbfd;
10029 const gdb_byte *index_ptr, *index_end;
10030 struct dwarf2_section_info *index;
10031 uint32_t version, nr_columns, nr_units, nr_slots;
10032 struct dwp_hash_table *htab;
10033
10034 if (is_debug_types)
10035 index = &dwp_file->sections.tu_index;
10036 else
10037 index = &dwp_file->sections.cu_index;
10038
10039 if (dwarf2_section_empty_p (index))
10040 return NULL;
10041 dwarf2_read_section (objfile, index);
10042
10043 index_ptr = index->buffer;
10044 index_end = index_ptr + index->size;
10045
10046 version = read_4_bytes (dbfd, index_ptr);
10047 index_ptr += 4;
10048 if (version == 2)
10049 nr_columns = read_4_bytes (dbfd, index_ptr);
10050 else
10051 nr_columns = 0;
10052 index_ptr += 4;
10053 nr_units = read_4_bytes (dbfd, index_ptr);
10054 index_ptr += 4;
10055 nr_slots = read_4_bytes (dbfd, index_ptr);
10056 index_ptr += 4;
10057
10058 if (version != 1 && version != 2)
10059 {
10060 error (_("Dwarf Error: unsupported DWP file version (%s)"
10061 " [in module %s]"),
10062 pulongest (version), dwp_file->name);
10063 }
10064 if (nr_slots != (nr_slots & -nr_slots))
10065 {
10066 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
10067 " is not power of 2 [in module %s]"),
10068 pulongest (nr_slots), dwp_file->name);
10069 }
10070
10071 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
10072 htab->version = version;
10073 htab->nr_columns = nr_columns;
10074 htab->nr_units = nr_units;
10075 htab->nr_slots = nr_slots;
10076 htab->hash_table = index_ptr;
10077 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
10078
10079 /* Exit early if the table is empty. */
10080 if (nr_slots == 0 || nr_units == 0
10081 || (version == 2 && nr_columns == 0))
10082 {
10083 /* All must be zero. */
10084 if (nr_slots != 0 || nr_units != 0
10085 || (version == 2 && nr_columns != 0))
10086 {
10087 complaint (&symfile_complaints,
10088 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10089 " all zero [in modules %s]"),
10090 dwp_file->name);
10091 }
10092 return htab;
10093 }
10094
10095 if (version == 1)
10096 {
10097 htab->section_pool.v1.indices =
10098 htab->unit_table + sizeof (uint32_t) * nr_slots;
10099 /* It's harder to decide whether the section is too small in v1.
10100 V1 is deprecated anyway so we punt. */
10101 }
10102 else
10103 {
10104 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10105 int *ids = htab->section_pool.v2.section_ids;
10106 /* Reverse map for error checking. */
10107 int ids_seen[DW_SECT_MAX + 1];
10108 int i;
10109
10110 if (nr_columns < 2)
10111 {
10112 error (_("Dwarf Error: bad DWP hash table, too few columns"
10113 " in section table [in module %s]"),
10114 dwp_file->name);
10115 }
10116 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10117 {
10118 error (_("Dwarf Error: bad DWP hash table, too many columns"
10119 " in section table [in module %s]"),
10120 dwp_file->name);
10121 }
10122 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10123 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10124 for (i = 0; i < nr_columns; ++i)
10125 {
10126 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10127
10128 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10129 {
10130 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10131 " in section table [in module %s]"),
10132 id, dwp_file->name);
10133 }
10134 if (ids_seen[id] != -1)
10135 {
10136 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10137 " id %d in section table [in module %s]"),
10138 id, dwp_file->name);
10139 }
10140 ids_seen[id] = i;
10141 ids[i] = id;
10142 }
10143 /* Must have exactly one info or types section. */
10144 if (((ids_seen[DW_SECT_INFO] != -1)
10145 + (ids_seen[DW_SECT_TYPES] != -1))
10146 != 1)
10147 {
10148 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10149 " DWO info/types section [in module %s]"),
10150 dwp_file->name);
10151 }
10152 /* Must have an abbrev section. */
10153 if (ids_seen[DW_SECT_ABBREV] == -1)
10154 {
10155 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10156 " section [in module %s]"),
10157 dwp_file->name);
10158 }
10159 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10160 htab->section_pool.v2.sizes =
10161 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10162 * nr_units * nr_columns);
10163 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10164 * nr_units * nr_columns))
10165 > index_end)
10166 {
10167 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10168 " [in module %s]"),
10169 dwp_file->name);
10170 }
10171 }
10172
10173 return htab;
10174 }
10175
10176 /* Update SECTIONS with the data from SECTP.
10177
10178 This function is like the other "locate" section routines that are
10179 passed to bfd_map_over_sections, but in this context the sections to
10180 read comes from the DWP V1 hash table, not the full ELF section table.
10181
10182 The result is non-zero for success, or zero if an error was found. */
10183
10184 static int
10185 locate_v1_virtual_dwo_sections (asection *sectp,
10186 struct virtual_v1_dwo_sections *sections)
10187 {
10188 const struct dwop_section_names *names = &dwop_section_names;
10189
10190 if (section_is_p (sectp->name, &names->abbrev_dwo))
10191 {
10192 /* There can be only one. */
10193 if (sections->abbrev.s.section != NULL)
10194 return 0;
10195 sections->abbrev.s.section = sectp;
10196 sections->abbrev.size = bfd_get_section_size (sectp);
10197 }
10198 else if (section_is_p (sectp->name, &names->info_dwo)
10199 || section_is_p (sectp->name, &names->types_dwo))
10200 {
10201 /* There can be only one. */
10202 if (sections->info_or_types.s.section != NULL)
10203 return 0;
10204 sections->info_or_types.s.section = sectp;
10205 sections->info_or_types.size = bfd_get_section_size (sectp);
10206 }
10207 else if (section_is_p (sectp->name, &names->line_dwo))
10208 {
10209 /* There can be only one. */
10210 if (sections->line.s.section != NULL)
10211 return 0;
10212 sections->line.s.section = sectp;
10213 sections->line.size = bfd_get_section_size (sectp);
10214 }
10215 else if (section_is_p (sectp->name, &names->loc_dwo))
10216 {
10217 /* There can be only one. */
10218 if (sections->loc.s.section != NULL)
10219 return 0;
10220 sections->loc.s.section = sectp;
10221 sections->loc.size = bfd_get_section_size (sectp);
10222 }
10223 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10224 {
10225 /* There can be only one. */
10226 if (sections->macinfo.s.section != NULL)
10227 return 0;
10228 sections->macinfo.s.section = sectp;
10229 sections->macinfo.size = bfd_get_section_size (sectp);
10230 }
10231 else if (section_is_p (sectp->name, &names->macro_dwo))
10232 {
10233 /* There can be only one. */
10234 if (sections->macro.s.section != NULL)
10235 return 0;
10236 sections->macro.s.section = sectp;
10237 sections->macro.size = bfd_get_section_size (sectp);
10238 }
10239 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10240 {
10241 /* There can be only one. */
10242 if (sections->str_offsets.s.section != NULL)
10243 return 0;
10244 sections->str_offsets.s.section = sectp;
10245 sections->str_offsets.size = bfd_get_section_size (sectp);
10246 }
10247 else
10248 {
10249 /* No other kind of section is valid. */
10250 return 0;
10251 }
10252
10253 return 1;
10254 }
10255
10256 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10257 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10258 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10259 This is for DWP version 1 files. */
10260
10261 static struct dwo_unit *
10262 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10263 uint32_t unit_index,
10264 const char *comp_dir,
10265 ULONGEST signature, int is_debug_types)
10266 {
10267 struct objfile *objfile = dwarf2_per_objfile->objfile;
10268 const struct dwp_hash_table *dwp_htab =
10269 is_debug_types ? dwp_file->tus : dwp_file->cus;
10270 bfd *dbfd = dwp_file->dbfd;
10271 const char *kind = is_debug_types ? "TU" : "CU";
10272 struct dwo_file *dwo_file;
10273 struct dwo_unit *dwo_unit;
10274 struct virtual_v1_dwo_sections sections;
10275 void **dwo_file_slot;
10276 char *virtual_dwo_name;
10277 struct cleanup *cleanups;
10278 int i;
10279
10280 gdb_assert (dwp_file->version == 1);
10281
10282 if (dwarf_read_debug)
10283 {
10284 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10285 kind,
10286 pulongest (unit_index), hex_string (signature),
10287 dwp_file->name);
10288 }
10289
10290 /* Fetch the sections of this DWO unit.
10291 Put a limit on the number of sections we look for so that bad data
10292 doesn't cause us to loop forever. */
10293
10294 #define MAX_NR_V1_DWO_SECTIONS \
10295 (1 /* .debug_info or .debug_types */ \
10296 + 1 /* .debug_abbrev */ \
10297 + 1 /* .debug_line */ \
10298 + 1 /* .debug_loc */ \
10299 + 1 /* .debug_str_offsets */ \
10300 + 1 /* .debug_macro or .debug_macinfo */ \
10301 + 1 /* trailing zero */)
10302
10303 memset (&sections, 0, sizeof (sections));
10304 cleanups = make_cleanup (null_cleanup, 0);
10305
10306 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10307 {
10308 asection *sectp;
10309 uint32_t section_nr =
10310 read_4_bytes (dbfd,
10311 dwp_htab->section_pool.v1.indices
10312 + (unit_index + i) * sizeof (uint32_t));
10313
10314 if (section_nr == 0)
10315 break;
10316 if (section_nr >= dwp_file->num_sections)
10317 {
10318 error (_("Dwarf Error: bad DWP hash table, section number too large"
10319 " [in module %s]"),
10320 dwp_file->name);
10321 }
10322
10323 sectp = dwp_file->elf_sections[section_nr];
10324 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10325 {
10326 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10327 " [in module %s]"),
10328 dwp_file->name);
10329 }
10330 }
10331
10332 if (i < 2
10333 || dwarf2_section_empty_p (&sections.info_or_types)
10334 || dwarf2_section_empty_p (&sections.abbrev))
10335 {
10336 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10337 " [in module %s]"),
10338 dwp_file->name);
10339 }
10340 if (i == MAX_NR_V1_DWO_SECTIONS)
10341 {
10342 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10343 " [in module %s]"),
10344 dwp_file->name);
10345 }
10346
10347 /* It's easier for the rest of the code if we fake a struct dwo_file and
10348 have dwo_unit "live" in that. At least for now.
10349
10350 The DWP file can be made up of a random collection of CUs and TUs.
10351 However, for each CU + set of TUs that came from the same original DWO
10352 file, we can combine them back into a virtual DWO file to save space
10353 (fewer struct dwo_file objects to allocate). Remember that for really
10354 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10355
10356 virtual_dwo_name =
10357 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10358 get_section_id (&sections.abbrev),
10359 get_section_id (&sections.line),
10360 get_section_id (&sections.loc),
10361 get_section_id (&sections.str_offsets));
10362 make_cleanup (xfree, virtual_dwo_name);
10363 /* Can we use an existing virtual DWO file? */
10364 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10365 /* Create one if necessary. */
10366 if (*dwo_file_slot == NULL)
10367 {
10368 if (dwarf_read_debug)
10369 {
10370 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10371 virtual_dwo_name);
10372 }
10373 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10374 dwo_file->dwo_name
10375 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10376 virtual_dwo_name,
10377 strlen (virtual_dwo_name));
10378 dwo_file->comp_dir = comp_dir;
10379 dwo_file->sections.abbrev = sections.abbrev;
10380 dwo_file->sections.line = sections.line;
10381 dwo_file->sections.loc = sections.loc;
10382 dwo_file->sections.macinfo = sections.macinfo;
10383 dwo_file->sections.macro = sections.macro;
10384 dwo_file->sections.str_offsets = sections.str_offsets;
10385 /* The "str" section is global to the entire DWP file. */
10386 dwo_file->sections.str = dwp_file->sections.str;
10387 /* The info or types section is assigned below to dwo_unit,
10388 there's no need to record it in dwo_file.
10389 Also, we can't simply record type sections in dwo_file because
10390 we record a pointer into the vector in dwo_unit. As we collect more
10391 types we'll grow the vector and eventually have to reallocate space
10392 for it, invalidating all copies of pointers into the previous
10393 contents. */
10394 *dwo_file_slot = dwo_file;
10395 }
10396 else
10397 {
10398 if (dwarf_read_debug)
10399 {
10400 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10401 virtual_dwo_name);
10402 }
10403 dwo_file = (struct dwo_file *) *dwo_file_slot;
10404 }
10405 do_cleanups (cleanups);
10406
10407 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10408 dwo_unit->dwo_file = dwo_file;
10409 dwo_unit->signature = signature;
10410 dwo_unit->section =
10411 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10412 *dwo_unit->section = sections.info_or_types;
10413 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10414
10415 return dwo_unit;
10416 }
10417
10418 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10419 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10420 piece within that section used by a TU/CU, return a virtual section
10421 of just that piece. */
10422
10423 static struct dwarf2_section_info
10424 create_dwp_v2_section (struct dwarf2_section_info *section,
10425 bfd_size_type offset, bfd_size_type size)
10426 {
10427 struct dwarf2_section_info result;
10428 asection *sectp;
10429
10430 gdb_assert (section != NULL);
10431 gdb_assert (!section->is_virtual);
10432
10433 memset (&result, 0, sizeof (result));
10434 result.s.containing_section = section;
10435 result.is_virtual = 1;
10436
10437 if (size == 0)
10438 return result;
10439
10440 sectp = get_section_bfd_section (section);
10441
10442 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10443 bounds of the real section. This is a pretty-rare event, so just
10444 flag an error (easier) instead of a warning and trying to cope. */
10445 if (sectp == NULL
10446 || offset + size > bfd_get_section_size (sectp))
10447 {
10448 bfd *abfd = sectp->owner;
10449
10450 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10451 " in section %s [in module %s]"),
10452 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10453 objfile_name (dwarf2_per_objfile->objfile));
10454 }
10455
10456 result.virtual_offset = offset;
10457 result.size = size;
10458 return result;
10459 }
10460
10461 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10462 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10463 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10464 This is for DWP version 2 files. */
10465
10466 static struct dwo_unit *
10467 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10468 uint32_t unit_index,
10469 const char *comp_dir,
10470 ULONGEST signature, int is_debug_types)
10471 {
10472 struct objfile *objfile = dwarf2_per_objfile->objfile;
10473 const struct dwp_hash_table *dwp_htab =
10474 is_debug_types ? dwp_file->tus : dwp_file->cus;
10475 bfd *dbfd = dwp_file->dbfd;
10476 const char *kind = is_debug_types ? "TU" : "CU";
10477 struct dwo_file *dwo_file;
10478 struct dwo_unit *dwo_unit;
10479 struct virtual_v2_dwo_sections sections;
10480 void **dwo_file_slot;
10481 char *virtual_dwo_name;
10482 struct cleanup *cleanups;
10483 int i;
10484
10485 gdb_assert (dwp_file->version == 2);
10486
10487 if (dwarf_read_debug)
10488 {
10489 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10490 kind,
10491 pulongest (unit_index), hex_string (signature),
10492 dwp_file->name);
10493 }
10494
10495 /* Fetch the section offsets of this DWO unit. */
10496
10497 memset (&sections, 0, sizeof (sections));
10498 cleanups = make_cleanup (null_cleanup, 0);
10499
10500 for (i = 0; i < dwp_htab->nr_columns; ++i)
10501 {
10502 uint32_t offset = read_4_bytes (dbfd,
10503 dwp_htab->section_pool.v2.offsets
10504 + (((unit_index - 1) * dwp_htab->nr_columns
10505 + i)
10506 * sizeof (uint32_t)));
10507 uint32_t size = read_4_bytes (dbfd,
10508 dwp_htab->section_pool.v2.sizes
10509 + (((unit_index - 1) * dwp_htab->nr_columns
10510 + i)
10511 * sizeof (uint32_t)));
10512
10513 switch (dwp_htab->section_pool.v2.section_ids[i])
10514 {
10515 case DW_SECT_INFO:
10516 case DW_SECT_TYPES:
10517 sections.info_or_types_offset = offset;
10518 sections.info_or_types_size = size;
10519 break;
10520 case DW_SECT_ABBREV:
10521 sections.abbrev_offset = offset;
10522 sections.abbrev_size = size;
10523 break;
10524 case DW_SECT_LINE:
10525 sections.line_offset = offset;
10526 sections.line_size = size;
10527 break;
10528 case DW_SECT_LOC:
10529 sections.loc_offset = offset;
10530 sections.loc_size = size;
10531 break;
10532 case DW_SECT_STR_OFFSETS:
10533 sections.str_offsets_offset = offset;
10534 sections.str_offsets_size = size;
10535 break;
10536 case DW_SECT_MACINFO:
10537 sections.macinfo_offset = offset;
10538 sections.macinfo_size = size;
10539 break;
10540 case DW_SECT_MACRO:
10541 sections.macro_offset = offset;
10542 sections.macro_size = size;
10543 break;
10544 }
10545 }
10546
10547 /* It's easier for the rest of the code if we fake a struct dwo_file and
10548 have dwo_unit "live" in that. At least for now.
10549
10550 The DWP file can be made up of a random collection of CUs and TUs.
10551 However, for each CU + set of TUs that came from the same original DWO
10552 file, we can combine them back into a virtual DWO file to save space
10553 (fewer struct dwo_file objects to allocate). Remember that for really
10554 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10555
10556 virtual_dwo_name =
10557 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10558 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10559 (long) (sections.line_size ? sections.line_offset : 0),
10560 (long) (sections.loc_size ? sections.loc_offset : 0),
10561 (long) (sections.str_offsets_size
10562 ? sections.str_offsets_offset : 0));
10563 make_cleanup (xfree, virtual_dwo_name);
10564 /* Can we use an existing virtual DWO file? */
10565 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10566 /* Create one if necessary. */
10567 if (*dwo_file_slot == NULL)
10568 {
10569 if (dwarf_read_debug)
10570 {
10571 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10572 virtual_dwo_name);
10573 }
10574 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10575 dwo_file->dwo_name
10576 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10577 virtual_dwo_name,
10578 strlen (virtual_dwo_name));
10579 dwo_file->comp_dir = comp_dir;
10580 dwo_file->sections.abbrev =
10581 create_dwp_v2_section (&dwp_file->sections.abbrev,
10582 sections.abbrev_offset, sections.abbrev_size);
10583 dwo_file->sections.line =
10584 create_dwp_v2_section (&dwp_file->sections.line,
10585 sections.line_offset, sections.line_size);
10586 dwo_file->sections.loc =
10587 create_dwp_v2_section (&dwp_file->sections.loc,
10588 sections.loc_offset, sections.loc_size);
10589 dwo_file->sections.macinfo =
10590 create_dwp_v2_section (&dwp_file->sections.macinfo,
10591 sections.macinfo_offset, sections.macinfo_size);
10592 dwo_file->sections.macro =
10593 create_dwp_v2_section (&dwp_file->sections.macro,
10594 sections.macro_offset, sections.macro_size);
10595 dwo_file->sections.str_offsets =
10596 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10597 sections.str_offsets_offset,
10598 sections.str_offsets_size);
10599 /* The "str" section is global to the entire DWP file. */
10600 dwo_file->sections.str = dwp_file->sections.str;
10601 /* The info or types section is assigned below to dwo_unit,
10602 there's no need to record it in dwo_file.
10603 Also, we can't simply record type sections in dwo_file because
10604 we record a pointer into the vector in dwo_unit. As we collect more
10605 types we'll grow the vector and eventually have to reallocate space
10606 for it, invalidating all copies of pointers into the previous
10607 contents. */
10608 *dwo_file_slot = dwo_file;
10609 }
10610 else
10611 {
10612 if (dwarf_read_debug)
10613 {
10614 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10615 virtual_dwo_name);
10616 }
10617 dwo_file = (struct dwo_file *) *dwo_file_slot;
10618 }
10619 do_cleanups (cleanups);
10620
10621 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10622 dwo_unit->dwo_file = dwo_file;
10623 dwo_unit->signature = signature;
10624 dwo_unit->section =
10625 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10626 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10627 ? &dwp_file->sections.types
10628 : &dwp_file->sections.info,
10629 sections.info_or_types_offset,
10630 sections.info_or_types_size);
10631 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10632
10633 return dwo_unit;
10634 }
10635
10636 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10637 Returns NULL if the signature isn't found. */
10638
10639 static struct dwo_unit *
10640 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10641 ULONGEST signature, int is_debug_types)
10642 {
10643 const struct dwp_hash_table *dwp_htab =
10644 is_debug_types ? dwp_file->tus : dwp_file->cus;
10645 bfd *dbfd = dwp_file->dbfd;
10646 uint32_t mask = dwp_htab->nr_slots - 1;
10647 uint32_t hash = signature & mask;
10648 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10649 unsigned int i;
10650 void **slot;
10651 struct dwo_unit find_dwo_cu;
10652
10653 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10654 find_dwo_cu.signature = signature;
10655 slot = htab_find_slot (is_debug_types
10656 ? dwp_file->loaded_tus
10657 : dwp_file->loaded_cus,
10658 &find_dwo_cu, INSERT);
10659
10660 if (*slot != NULL)
10661 return (struct dwo_unit *) *slot;
10662
10663 /* Use a for loop so that we don't loop forever on bad debug info. */
10664 for (i = 0; i < dwp_htab->nr_slots; ++i)
10665 {
10666 ULONGEST signature_in_table;
10667
10668 signature_in_table =
10669 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10670 if (signature_in_table == signature)
10671 {
10672 uint32_t unit_index =
10673 read_4_bytes (dbfd,
10674 dwp_htab->unit_table + hash * sizeof (uint32_t));
10675
10676 if (dwp_file->version == 1)
10677 {
10678 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10679 comp_dir, signature,
10680 is_debug_types);
10681 }
10682 else
10683 {
10684 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10685 comp_dir, signature,
10686 is_debug_types);
10687 }
10688 return (struct dwo_unit *) *slot;
10689 }
10690 if (signature_in_table == 0)
10691 return NULL;
10692 hash = (hash + hash2) & mask;
10693 }
10694
10695 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10696 " [in module %s]"),
10697 dwp_file->name);
10698 }
10699
10700 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10701 Open the file specified by FILE_NAME and hand it off to BFD for
10702 preliminary analysis. Return a newly initialized bfd *, which
10703 includes a canonicalized copy of FILE_NAME.
10704 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10705 SEARCH_CWD is true if the current directory is to be searched.
10706 It will be searched before debug-file-directory.
10707 If successful, the file is added to the bfd include table of the
10708 objfile's bfd (see gdb_bfd_record_inclusion).
10709 If unable to find/open the file, return NULL.
10710 NOTE: This function is derived from symfile_bfd_open. */
10711
10712 static gdb_bfd_ref_ptr
10713 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10714 {
10715 int desc, flags;
10716 char *absolute_name;
10717 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10718 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10719 to debug_file_directory. */
10720 char *search_path;
10721 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10722
10723 if (search_cwd)
10724 {
10725 if (*debug_file_directory != '\0')
10726 search_path = concat (".", dirname_separator_string,
10727 debug_file_directory, (char *) NULL);
10728 else
10729 search_path = xstrdup (".");
10730 }
10731 else
10732 search_path = xstrdup (debug_file_directory);
10733
10734 flags = OPF_RETURN_REALPATH;
10735 if (is_dwp)
10736 flags |= OPF_SEARCH_IN_PATH;
10737 desc = openp (search_path, flags, file_name,
10738 O_RDONLY | O_BINARY, &absolute_name);
10739 xfree (search_path);
10740 if (desc < 0)
10741 return NULL;
10742
10743 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10744 xfree (absolute_name);
10745 if (sym_bfd == NULL)
10746 return NULL;
10747 bfd_set_cacheable (sym_bfd.get (), 1);
10748
10749 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10750 return NULL;
10751
10752 /* Success. Record the bfd as having been included by the objfile's bfd.
10753 This is important because things like demangled_names_hash lives in the
10754 objfile's per_bfd space and may have references to things like symbol
10755 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10756 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10757
10758 return sym_bfd;
10759 }
10760
10761 /* Try to open DWO file FILE_NAME.
10762 COMP_DIR is the DW_AT_comp_dir attribute.
10763 The result is the bfd handle of the file.
10764 If there is a problem finding or opening the file, return NULL.
10765 Upon success, the canonicalized path of the file is stored in the bfd,
10766 same as symfile_bfd_open. */
10767
10768 static gdb_bfd_ref_ptr
10769 open_dwo_file (const char *file_name, const char *comp_dir)
10770 {
10771 if (IS_ABSOLUTE_PATH (file_name))
10772 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10773
10774 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10775
10776 if (comp_dir != NULL)
10777 {
10778 char *path_to_try = concat (comp_dir, SLASH_STRING,
10779 file_name, (char *) NULL);
10780
10781 /* NOTE: If comp_dir is a relative path, this will also try the
10782 search path, which seems useful. */
10783 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10784 1 /*search_cwd*/));
10785 xfree (path_to_try);
10786 if (abfd != NULL)
10787 return abfd;
10788 }
10789
10790 /* That didn't work, try debug-file-directory, which, despite its name,
10791 is a list of paths. */
10792
10793 if (*debug_file_directory == '\0')
10794 return NULL;
10795
10796 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10797 }
10798
10799 /* This function is mapped across the sections and remembers the offset and
10800 size of each of the DWO debugging sections we are interested in. */
10801
10802 static void
10803 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10804 {
10805 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10806 const struct dwop_section_names *names = &dwop_section_names;
10807
10808 if (section_is_p (sectp->name, &names->abbrev_dwo))
10809 {
10810 dwo_sections->abbrev.s.section = sectp;
10811 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10812 }
10813 else if (section_is_p (sectp->name, &names->info_dwo))
10814 {
10815 dwo_sections->info.s.section = sectp;
10816 dwo_sections->info.size = bfd_get_section_size (sectp);
10817 }
10818 else if (section_is_p (sectp->name, &names->line_dwo))
10819 {
10820 dwo_sections->line.s.section = sectp;
10821 dwo_sections->line.size = bfd_get_section_size (sectp);
10822 }
10823 else if (section_is_p (sectp->name, &names->loc_dwo))
10824 {
10825 dwo_sections->loc.s.section = sectp;
10826 dwo_sections->loc.size = bfd_get_section_size (sectp);
10827 }
10828 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10829 {
10830 dwo_sections->macinfo.s.section = sectp;
10831 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10832 }
10833 else if (section_is_p (sectp->name, &names->macro_dwo))
10834 {
10835 dwo_sections->macro.s.section = sectp;
10836 dwo_sections->macro.size = bfd_get_section_size (sectp);
10837 }
10838 else if (section_is_p (sectp->name, &names->str_dwo))
10839 {
10840 dwo_sections->str.s.section = sectp;
10841 dwo_sections->str.size = bfd_get_section_size (sectp);
10842 }
10843 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10844 {
10845 dwo_sections->str_offsets.s.section = sectp;
10846 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10847 }
10848 else if (section_is_p (sectp->name, &names->types_dwo))
10849 {
10850 struct dwarf2_section_info type_section;
10851
10852 memset (&type_section, 0, sizeof (type_section));
10853 type_section.s.section = sectp;
10854 type_section.size = bfd_get_section_size (sectp);
10855 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10856 &type_section);
10857 }
10858 }
10859
10860 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10861 by PER_CU. This is for the non-DWP case.
10862 The result is NULL if DWO_NAME can't be found. */
10863
10864 static struct dwo_file *
10865 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10866 const char *dwo_name, const char *comp_dir)
10867 {
10868 struct objfile *objfile = dwarf2_per_objfile->objfile;
10869 struct dwo_file *dwo_file;
10870 struct cleanup *cleanups;
10871
10872 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10873 if (dbfd == NULL)
10874 {
10875 if (dwarf_read_debug)
10876 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10877 return NULL;
10878 }
10879 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10880 dwo_file->dwo_name = dwo_name;
10881 dwo_file->comp_dir = comp_dir;
10882 dwo_file->dbfd = dbfd.release ();
10883
10884 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10885
10886 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10887 &dwo_file->sections);
10888
10889 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
10890
10891 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10892 dwo_file->tus);
10893
10894 discard_cleanups (cleanups);
10895
10896 if (dwarf_read_debug)
10897 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10898
10899 return dwo_file;
10900 }
10901
10902 /* This function is mapped across the sections and remembers the offset and
10903 size of each of the DWP debugging sections common to version 1 and 2 that
10904 we are interested in. */
10905
10906 static void
10907 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10908 void *dwp_file_ptr)
10909 {
10910 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10911 const struct dwop_section_names *names = &dwop_section_names;
10912 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10913
10914 /* Record the ELF section number for later lookup: this is what the
10915 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10916 gdb_assert (elf_section_nr < dwp_file->num_sections);
10917 dwp_file->elf_sections[elf_section_nr] = sectp;
10918
10919 /* Look for specific sections that we need. */
10920 if (section_is_p (sectp->name, &names->str_dwo))
10921 {
10922 dwp_file->sections.str.s.section = sectp;
10923 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10924 }
10925 else if (section_is_p (sectp->name, &names->cu_index))
10926 {
10927 dwp_file->sections.cu_index.s.section = sectp;
10928 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10929 }
10930 else if (section_is_p (sectp->name, &names->tu_index))
10931 {
10932 dwp_file->sections.tu_index.s.section = sectp;
10933 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10934 }
10935 }
10936
10937 /* This function is mapped across the sections and remembers the offset and
10938 size of each of the DWP version 2 debugging sections that we are interested
10939 in. This is split into a separate function because we don't know if we
10940 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10941
10942 static void
10943 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10944 {
10945 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10946 const struct dwop_section_names *names = &dwop_section_names;
10947 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10948
10949 /* Record the ELF section number for later lookup: this is what the
10950 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10951 gdb_assert (elf_section_nr < dwp_file->num_sections);
10952 dwp_file->elf_sections[elf_section_nr] = sectp;
10953
10954 /* Look for specific sections that we need. */
10955 if (section_is_p (sectp->name, &names->abbrev_dwo))
10956 {
10957 dwp_file->sections.abbrev.s.section = sectp;
10958 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10959 }
10960 else if (section_is_p (sectp->name, &names->info_dwo))
10961 {
10962 dwp_file->sections.info.s.section = sectp;
10963 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10964 }
10965 else if (section_is_p (sectp->name, &names->line_dwo))
10966 {
10967 dwp_file->sections.line.s.section = sectp;
10968 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10969 }
10970 else if (section_is_p (sectp->name, &names->loc_dwo))
10971 {
10972 dwp_file->sections.loc.s.section = sectp;
10973 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10974 }
10975 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10976 {
10977 dwp_file->sections.macinfo.s.section = sectp;
10978 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10979 }
10980 else if (section_is_p (sectp->name, &names->macro_dwo))
10981 {
10982 dwp_file->sections.macro.s.section = sectp;
10983 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10984 }
10985 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10986 {
10987 dwp_file->sections.str_offsets.s.section = sectp;
10988 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10989 }
10990 else if (section_is_p (sectp->name, &names->types_dwo))
10991 {
10992 dwp_file->sections.types.s.section = sectp;
10993 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10994 }
10995 }
10996
10997 /* Hash function for dwp_file loaded CUs/TUs. */
10998
10999 static hashval_t
11000 hash_dwp_loaded_cutus (const void *item)
11001 {
11002 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11003
11004 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11005 return dwo_unit->signature;
11006 }
11007
11008 /* Equality function for dwp_file loaded CUs/TUs. */
11009
11010 static int
11011 eq_dwp_loaded_cutus (const void *a, const void *b)
11012 {
11013 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11014 const struct dwo_unit *dub = (const struct dwo_unit *) b;
11015
11016 return dua->signature == dub->signature;
11017 }
11018
11019 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
11020
11021 static htab_t
11022 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11023 {
11024 return htab_create_alloc_ex (3,
11025 hash_dwp_loaded_cutus,
11026 eq_dwp_loaded_cutus,
11027 NULL,
11028 &objfile->objfile_obstack,
11029 hashtab_obstack_allocate,
11030 dummy_obstack_deallocate);
11031 }
11032
11033 /* Try to open DWP file FILE_NAME.
11034 The result is the bfd handle of the file.
11035 If there is a problem finding or opening the file, return NULL.
11036 Upon success, the canonicalized path of the file is stored in the bfd,
11037 same as symfile_bfd_open. */
11038
11039 static gdb_bfd_ref_ptr
11040 open_dwp_file (const char *file_name)
11041 {
11042 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11043 1 /*search_cwd*/));
11044 if (abfd != NULL)
11045 return abfd;
11046
11047 /* Work around upstream bug 15652.
11048 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11049 [Whether that's a "bug" is debatable, but it is getting in our way.]
11050 We have no real idea where the dwp file is, because gdb's realpath-ing
11051 of the executable's path may have discarded the needed info.
11052 [IWBN if the dwp file name was recorded in the executable, akin to
11053 .gnu_debuglink, but that doesn't exist yet.]
11054 Strip the directory from FILE_NAME and search again. */
11055 if (*debug_file_directory != '\0')
11056 {
11057 /* Don't implicitly search the current directory here.
11058 If the user wants to search "." to handle this case,
11059 it must be added to debug-file-directory. */
11060 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11061 0 /*search_cwd*/);
11062 }
11063
11064 return NULL;
11065 }
11066
11067 /* Initialize the use of the DWP file for the current objfile.
11068 By convention the name of the DWP file is ${objfile}.dwp.
11069 The result is NULL if it can't be found. */
11070
11071 static struct dwp_file *
11072 open_and_init_dwp_file (void)
11073 {
11074 struct objfile *objfile = dwarf2_per_objfile->objfile;
11075 struct dwp_file *dwp_file;
11076
11077 /* Try to find first .dwp for the binary file before any symbolic links
11078 resolving. */
11079
11080 /* If the objfile is a debug file, find the name of the real binary
11081 file and get the name of dwp file from there. */
11082 std::string dwp_name;
11083 if (objfile->separate_debug_objfile_backlink != NULL)
11084 {
11085 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11086 const char *backlink_basename = lbasename (backlink->original_name);
11087
11088 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
11089 }
11090 else
11091 dwp_name = objfile->original_name;
11092
11093 dwp_name += ".dwp";
11094
11095 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
11096 if (dbfd == NULL
11097 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11098 {
11099 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
11100 dwp_name = objfile_name (objfile);
11101 dwp_name += ".dwp";
11102 dbfd = open_dwp_file (dwp_name.c_str ());
11103 }
11104
11105 if (dbfd == NULL)
11106 {
11107 if (dwarf_read_debug)
11108 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
11109 return NULL;
11110 }
11111 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
11112 dwp_file->name = bfd_get_filename (dbfd.get ());
11113 dwp_file->dbfd = dbfd.release ();
11114
11115 /* +1: section 0 is unused */
11116 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
11117 dwp_file->elf_sections =
11118 OBSTACK_CALLOC (&objfile->objfile_obstack,
11119 dwp_file->num_sections, asection *);
11120
11121 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11122 dwp_file);
11123
11124 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11125
11126 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11127
11128 /* The DWP file version is stored in the hash table. Oh well. */
11129 if (dwp_file->cus->version != dwp_file->tus->version)
11130 {
11131 /* Technically speaking, we should try to limp along, but this is
11132 pretty bizarre. We use pulongest here because that's the established
11133 portability solution (e.g, we cannot use %u for uint32_t). */
11134 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11135 " TU version %s [in DWP file %s]"),
11136 pulongest (dwp_file->cus->version),
11137 pulongest (dwp_file->tus->version), dwp_name.c_str ());
11138 }
11139 dwp_file->version = dwp_file->cus->version;
11140
11141 if (dwp_file->version == 2)
11142 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11143 dwp_file);
11144
11145 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11146 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
11147
11148 if (dwarf_read_debug)
11149 {
11150 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11151 fprintf_unfiltered (gdb_stdlog,
11152 " %s CUs, %s TUs\n",
11153 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11154 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
11155 }
11156
11157 return dwp_file;
11158 }
11159
11160 /* Wrapper around open_and_init_dwp_file, only open it once. */
11161
11162 static struct dwp_file *
11163 get_dwp_file (void)
11164 {
11165 if (! dwarf2_per_objfile->dwp_checked)
11166 {
11167 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11168 dwarf2_per_objfile->dwp_checked = 1;
11169 }
11170 return dwarf2_per_objfile->dwp_file;
11171 }
11172
11173 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11174 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11175 or in the DWP file for the objfile, referenced by THIS_UNIT.
11176 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
11177 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11178
11179 This is called, for example, when wanting to read a variable with a
11180 complex location. Therefore we don't want to do file i/o for every call.
11181 Therefore we don't want to look for a DWO file on every call.
11182 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11183 then we check if we've already seen DWO_NAME, and only THEN do we check
11184 for a DWO file.
11185
11186 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11187 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11188
11189 static struct dwo_unit *
11190 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11191 const char *dwo_name, const char *comp_dir,
11192 ULONGEST signature, int is_debug_types)
11193 {
11194 struct objfile *objfile = dwarf2_per_objfile->objfile;
11195 const char *kind = is_debug_types ? "TU" : "CU";
11196 void **dwo_file_slot;
11197 struct dwo_file *dwo_file;
11198 struct dwp_file *dwp_file;
11199
11200 /* First see if there's a DWP file.
11201 If we have a DWP file but didn't find the DWO inside it, don't
11202 look for the original DWO file. It makes gdb behave differently
11203 depending on whether one is debugging in the build tree. */
11204
11205 dwp_file = get_dwp_file ();
11206 if (dwp_file != NULL)
11207 {
11208 const struct dwp_hash_table *dwp_htab =
11209 is_debug_types ? dwp_file->tus : dwp_file->cus;
11210
11211 if (dwp_htab != NULL)
11212 {
11213 struct dwo_unit *dwo_cutu =
11214 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11215 signature, is_debug_types);
11216
11217 if (dwo_cutu != NULL)
11218 {
11219 if (dwarf_read_debug)
11220 {
11221 fprintf_unfiltered (gdb_stdlog,
11222 "Virtual DWO %s %s found: @%s\n",
11223 kind, hex_string (signature),
11224 host_address_to_string (dwo_cutu));
11225 }
11226 return dwo_cutu;
11227 }
11228 }
11229 }
11230 else
11231 {
11232 /* No DWP file, look for the DWO file. */
11233
11234 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11235 if (*dwo_file_slot == NULL)
11236 {
11237 /* Read in the file and build a table of the CUs/TUs it contains. */
11238 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11239 }
11240 /* NOTE: This will be NULL if unable to open the file. */
11241 dwo_file = (struct dwo_file *) *dwo_file_slot;
11242
11243 if (dwo_file != NULL)
11244 {
11245 struct dwo_unit *dwo_cutu = NULL;
11246
11247 if (is_debug_types && dwo_file->tus)
11248 {
11249 struct dwo_unit find_dwo_cutu;
11250
11251 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11252 find_dwo_cutu.signature = signature;
11253 dwo_cutu
11254 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11255 }
11256 else if (!is_debug_types && dwo_file->cus)
11257 {
11258 struct dwo_unit find_dwo_cutu;
11259
11260 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11261 find_dwo_cutu.signature = signature;
11262 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11263 &find_dwo_cutu);
11264 }
11265
11266 if (dwo_cutu != NULL)
11267 {
11268 if (dwarf_read_debug)
11269 {
11270 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11271 kind, dwo_name, hex_string (signature),
11272 host_address_to_string (dwo_cutu));
11273 }
11274 return dwo_cutu;
11275 }
11276 }
11277 }
11278
11279 /* We didn't find it. This could mean a dwo_id mismatch, or
11280 someone deleted the DWO/DWP file, or the search path isn't set up
11281 correctly to find the file. */
11282
11283 if (dwarf_read_debug)
11284 {
11285 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11286 kind, dwo_name, hex_string (signature));
11287 }
11288
11289 /* This is a warning and not a complaint because it can be caused by
11290 pilot error (e.g., user accidentally deleting the DWO). */
11291 {
11292 /* Print the name of the DWP file if we looked there, helps the user
11293 better diagnose the problem. */
11294 char *dwp_text = NULL;
11295 struct cleanup *cleanups;
11296
11297 if (dwp_file != NULL)
11298 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11299 cleanups = make_cleanup (xfree, dwp_text);
11300
11301 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11302 " [in module %s]"),
11303 kind, dwo_name, hex_string (signature),
11304 dwp_text != NULL ? dwp_text : "",
11305 this_unit->is_debug_types ? "TU" : "CU",
11306 to_underlying (this_unit->sect_off), objfile_name (objfile));
11307
11308 do_cleanups (cleanups);
11309 }
11310 return NULL;
11311 }
11312
11313 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11314 See lookup_dwo_cutu_unit for details. */
11315
11316 static struct dwo_unit *
11317 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11318 const char *dwo_name, const char *comp_dir,
11319 ULONGEST signature)
11320 {
11321 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11322 }
11323
11324 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11325 See lookup_dwo_cutu_unit for details. */
11326
11327 static struct dwo_unit *
11328 lookup_dwo_type_unit (struct signatured_type *this_tu,
11329 const char *dwo_name, const char *comp_dir)
11330 {
11331 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11332 }
11333
11334 /* Traversal function for queue_and_load_all_dwo_tus. */
11335
11336 static int
11337 queue_and_load_dwo_tu (void **slot, void *info)
11338 {
11339 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11340 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11341 ULONGEST signature = dwo_unit->signature;
11342 struct signatured_type *sig_type =
11343 lookup_dwo_signatured_type (per_cu->cu, signature);
11344
11345 if (sig_type != NULL)
11346 {
11347 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11348
11349 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11350 a real dependency of PER_CU on SIG_TYPE. That is detected later
11351 while processing PER_CU. */
11352 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11353 load_full_type_unit (sig_cu);
11354 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11355 }
11356
11357 return 1;
11358 }
11359
11360 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11361 The DWO may have the only definition of the type, though it may not be
11362 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11363 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11364
11365 static void
11366 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11367 {
11368 struct dwo_unit *dwo_unit;
11369 struct dwo_file *dwo_file;
11370
11371 gdb_assert (!per_cu->is_debug_types);
11372 gdb_assert (get_dwp_file () == NULL);
11373 gdb_assert (per_cu->cu != NULL);
11374
11375 dwo_unit = per_cu->cu->dwo_unit;
11376 gdb_assert (dwo_unit != NULL);
11377
11378 dwo_file = dwo_unit->dwo_file;
11379 if (dwo_file->tus != NULL)
11380 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11381 }
11382
11383 /* Free all resources associated with DWO_FILE.
11384 Close the DWO file and munmap the sections.
11385 All memory should be on the objfile obstack. */
11386
11387 static void
11388 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11389 {
11390
11391 /* Note: dbfd is NULL for virtual DWO files. */
11392 gdb_bfd_unref (dwo_file->dbfd);
11393
11394 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11395 }
11396
11397 /* Wrapper for free_dwo_file for use in cleanups. */
11398
11399 static void
11400 free_dwo_file_cleanup (void *arg)
11401 {
11402 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11403 struct objfile *objfile = dwarf2_per_objfile->objfile;
11404
11405 free_dwo_file (dwo_file, objfile);
11406 }
11407
11408 /* Traversal function for free_dwo_files. */
11409
11410 static int
11411 free_dwo_file_from_slot (void **slot, void *info)
11412 {
11413 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11414 struct objfile *objfile = (struct objfile *) info;
11415
11416 free_dwo_file (dwo_file, objfile);
11417
11418 return 1;
11419 }
11420
11421 /* Free all resources associated with DWO_FILES. */
11422
11423 static void
11424 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11425 {
11426 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11427 }
11428 \f
11429 /* Read in various DIEs. */
11430
11431 /* qsort helper for inherit_abstract_dies. */
11432
11433 static int
11434 unsigned_int_compar (const void *ap, const void *bp)
11435 {
11436 unsigned int a = *(unsigned int *) ap;
11437 unsigned int b = *(unsigned int *) bp;
11438
11439 return (a > b) - (b > a);
11440 }
11441
11442 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11443 Inherit only the children of the DW_AT_abstract_origin DIE not being
11444 already referenced by DW_AT_abstract_origin from the children of the
11445 current DIE. */
11446
11447 static void
11448 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11449 {
11450 struct die_info *child_die;
11451 unsigned die_children_count;
11452 /* CU offsets which were referenced by children of the current DIE. */
11453 sect_offset *offsets;
11454 sect_offset *offsets_end, *offsetp;
11455 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11456 struct die_info *origin_die;
11457 /* Iterator of the ORIGIN_DIE children. */
11458 struct die_info *origin_child_die;
11459 struct cleanup *cleanups;
11460 struct attribute *attr;
11461 struct dwarf2_cu *origin_cu;
11462 struct pending **origin_previous_list_in_scope;
11463
11464 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11465 if (!attr)
11466 return;
11467
11468 /* Note that following die references may follow to a die in a
11469 different cu. */
11470
11471 origin_cu = cu;
11472 origin_die = follow_die_ref (die, attr, &origin_cu);
11473
11474 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11475 symbols in. */
11476 origin_previous_list_in_scope = origin_cu->list_in_scope;
11477 origin_cu->list_in_scope = cu->list_in_scope;
11478
11479 if (die->tag != origin_die->tag
11480 && !(die->tag == DW_TAG_inlined_subroutine
11481 && origin_die->tag == DW_TAG_subprogram))
11482 complaint (&symfile_complaints,
11483 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11484 to_underlying (die->sect_off),
11485 to_underlying (origin_die->sect_off));
11486
11487 child_die = die->child;
11488 die_children_count = 0;
11489 while (child_die && child_die->tag)
11490 {
11491 child_die = sibling_die (child_die);
11492 die_children_count++;
11493 }
11494 offsets = XNEWVEC (sect_offset, die_children_count);
11495 cleanups = make_cleanup (xfree, offsets);
11496
11497 offsets_end = offsets;
11498 for (child_die = die->child;
11499 child_die && child_die->tag;
11500 child_die = sibling_die (child_die))
11501 {
11502 struct die_info *child_origin_die;
11503 struct dwarf2_cu *child_origin_cu;
11504
11505 /* We are trying to process concrete instance entries:
11506 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11507 it's not relevant to our analysis here. i.e. detecting DIEs that are
11508 present in the abstract instance but not referenced in the concrete
11509 one. */
11510 if (child_die->tag == DW_TAG_call_site
11511 || child_die->tag == DW_TAG_GNU_call_site)
11512 continue;
11513
11514 /* For each CHILD_DIE, find the corresponding child of
11515 ORIGIN_DIE. If there is more than one layer of
11516 DW_AT_abstract_origin, follow them all; there shouldn't be,
11517 but GCC versions at least through 4.4 generate this (GCC PR
11518 40573). */
11519 child_origin_die = child_die;
11520 child_origin_cu = cu;
11521 while (1)
11522 {
11523 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11524 child_origin_cu);
11525 if (attr == NULL)
11526 break;
11527 child_origin_die = follow_die_ref (child_origin_die, attr,
11528 &child_origin_cu);
11529 }
11530
11531 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11532 counterpart may exist. */
11533 if (child_origin_die != child_die)
11534 {
11535 if (child_die->tag != child_origin_die->tag
11536 && !(child_die->tag == DW_TAG_inlined_subroutine
11537 && child_origin_die->tag == DW_TAG_subprogram))
11538 complaint (&symfile_complaints,
11539 _("Child DIE 0x%x and its abstract origin 0x%x have "
11540 "different tags"),
11541 to_underlying (child_die->sect_off),
11542 to_underlying (child_origin_die->sect_off));
11543 if (child_origin_die->parent != origin_die)
11544 complaint (&symfile_complaints,
11545 _("Child DIE 0x%x and its abstract origin 0x%x have "
11546 "different parents"),
11547 to_underlying (child_die->sect_off),
11548 to_underlying (child_origin_die->sect_off));
11549 else
11550 *offsets_end++ = child_origin_die->sect_off;
11551 }
11552 }
11553 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11554 unsigned_int_compar);
11555 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11556 if (offsetp[-1] == *offsetp)
11557 complaint (&symfile_complaints,
11558 _("Multiple children of DIE 0x%x refer "
11559 "to DIE 0x%x as their abstract origin"),
11560 to_underlying (die->sect_off), to_underlying (*offsetp));
11561
11562 offsetp = offsets;
11563 origin_child_die = origin_die->child;
11564 while (origin_child_die && origin_child_die->tag)
11565 {
11566 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11567 while (offsetp < offsets_end
11568 && *offsetp < origin_child_die->sect_off)
11569 offsetp++;
11570 if (offsetp >= offsets_end
11571 || *offsetp > origin_child_die->sect_off)
11572 {
11573 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11574 Check whether we're already processing ORIGIN_CHILD_DIE.
11575 This can happen with mutually referenced abstract_origins.
11576 PR 16581. */
11577 if (!origin_child_die->in_process)
11578 process_die (origin_child_die, origin_cu);
11579 }
11580 origin_child_die = sibling_die (origin_child_die);
11581 }
11582 origin_cu->list_in_scope = origin_previous_list_in_scope;
11583
11584 do_cleanups (cleanups);
11585 }
11586
11587 static void
11588 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11589 {
11590 struct objfile *objfile = cu->objfile;
11591 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11592 struct context_stack *newobj;
11593 CORE_ADDR lowpc;
11594 CORE_ADDR highpc;
11595 struct die_info *child_die;
11596 struct attribute *attr, *call_line, *call_file;
11597 const char *name;
11598 CORE_ADDR baseaddr;
11599 struct block *block;
11600 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11601 VEC (symbolp) *template_args = NULL;
11602 struct template_symbol *templ_func = NULL;
11603
11604 if (inlined_func)
11605 {
11606 /* If we do not have call site information, we can't show the
11607 caller of this inlined function. That's too confusing, so
11608 only use the scope for local variables. */
11609 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11610 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11611 if (call_line == NULL || call_file == NULL)
11612 {
11613 read_lexical_block_scope (die, cu);
11614 return;
11615 }
11616 }
11617
11618 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11619
11620 name = dwarf2_name (die, cu);
11621
11622 /* Ignore functions with missing or empty names. These are actually
11623 illegal according to the DWARF standard. */
11624 if (name == NULL)
11625 {
11626 complaint (&symfile_complaints,
11627 _("missing name for subprogram DIE at %d"),
11628 to_underlying (die->sect_off));
11629 return;
11630 }
11631
11632 /* Ignore functions with missing or invalid low and high pc attributes. */
11633 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11634 <= PC_BOUNDS_INVALID)
11635 {
11636 attr = dwarf2_attr (die, DW_AT_external, cu);
11637 if (!attr || !DW_UNSND (attr))
11638 complaint (&symfile_complaints,
11639 _("cannot get low and high bounds "
11640 "for subprogram DIE at %d"),
11641 to_underlying (die->sect_off));
11642 return;
11643 }
11644
11645 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11646 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11647
11648 /* If we have any template arguments, then we must allocate a
11649 different sort of symbol. */
11650 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11651 {
11652 if (child_die->tag == DW_TAG_template_type_param
11653 || child_die->tag == DW_TAG_template_value_param)
11654 {
11655 templ_func = allocate_template_symbol (objfile);
11656 templ_func->base.is_cplus_template_function = 1;
11657 break;
11658 }
11659 }
11660
11661 newobj = push_context (0, lowpc);
11662 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11663 (struct symbol *) templ_func);
11664
11665 /* If there is a location expression for DW_AT_frame_base, record
11666 it. */
11667 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11668 if (attr)
11669 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11670
11671 /* If there is a location for the static link, record it. */
11672 newobj->static_link = NULL;
11673 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11674 if (attr)
11675 {
11676 newobj->static_link
11677 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11678 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11679 }
11680
11681 cu->list_in_scope = &local_symbols;
11682
11683 if (die->child != NULL)
11684 {
11685 child_die = die->child;
11686 while (child_die && child_die->tag)
11687 {
11688 if (child_die->tag == DW_TAG_template_type_param
11689 || child_die->tag == DW_TAG_template_value_param)
11690 {
11691 struct symbol *arg = new_symbol (child_die, NULL, cu);
11692
11693 if (arg != NULL)
11694 VEC_safe_push (symbolp, template_args, arg);
11695 }
11696 else
11697 process_die (child_die, cu);
11698 child_die = sibling_die (child_die);
11699 }
11700 }
11701
11702 inherit_abstract_dies (die, cu);
11703
11704 /* If we have a DW_AT_specification, we might need to import using
11705 directives from the context of the specification DIE. See the
11706 comment in determine_prefix. */
11707 if (cu->language == language_cplus
11708 && dwarf2_attr (die, DW_AT_specification, cu))
11709 {
11710 struct dwarf2_cu *spec_cu = cu;
11711 struct die_info *spec_die = die_specification (die, &spec_cu);
11712
11713 while (spec_die)
11714 {
11715 child_die = spec_die->child;
11716 while (child_die && child_die->tag)
11717 {
11718 if (child_die->tag == DW_TAG_imported_module)
11719 process_die (child_die, spec_cu);
11720 child_die = sibling_die (child_die);
11721 }
11722
11723 /* In some cases, GCC generates specification DIEs that
11724 themselves contain DW_AT_specification attributes. */
11725 spec_die = die_specification (spec_die, &spec_cu);
11726 }
11727 }
11728
11729 newobj = pop_context ();
11730 /* Make a block for the local symbols within. */
11731 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11732 newobj->static_link, lowpc, highpc);
11733
11734 /* For C++, set the block's scope. */
11735 if ((cu->language == language_cplus
11736 || cu->language == language_fortran
11737 || cu->language == language_d
11738 || cu->language == language_rust)
11739 && cu->processing_has_namespace_info)
11740 block_set_scope (block, determine_prefix (die, cu),
11741 &objfile->objfile_obstack);
11742
11743 /* If we have address ranges, record them. */
11744 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11745
11746 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11747
11748 /* Attach template arguments to function. */
11749 if (! VEC_empty (symbolp, template_args))
11750 {
11751 gdb_assert (templ_func != NULL);
11752
11753 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11754 templ_func->template_arguments
11755 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11756 templ_func->n_template_arguments);
11757 memcpy (templ_func->template_arguments,
11758 VEC_address (symbolp, template_args),
11759 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11760 VEC_free (symbolp, template_args);
11761 }
11762
11763 /* In C++, we can have functions nested inside functions (e.g., when
11764 a function declares a class that has methods). This means that
11765 when we finish processing a function scope, we may need to go
11766 back to building a containing block's symbol lists. */
11767 local_symbols = newobj->locals;
11768 local_using_directives = newobj->local_using_directives;
11769
11770 /* If we've finished processing a top-level function, subsequent
11771 symbols go in the file symbol list. */
11772 if (outermost_context_p ())
11773 cu->list_in_scope = &file_symbols;
11774 }
11775
11776 /* Process all the DIES contained within a lexical block scope. Start
11777 a new scope, process the dies, and then close the scope. */
11778
11779 static void
11780 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11781 {
11782 struct objfile *objfile = cu->objfile;
11783 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11784 struct context_stack *newobj;
11785 CORE_ADDR lowpc, highpc;
11786 struct die_info *child_die;
11787 CORE_ADDR baseaddr;
11788
11789 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11790
11791 /* Ignore blocks with missing or invalid low and high pc attributes. */
11792 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11793 as multiple lexical blocks? Handling children in a sane way would
11794 be nasty. Might be easier to properly extend generic blocks to
11795 describe ranges. */
11796 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11797 {
11798 case PC_BOUNDS_NOT_PRESENT:
11799 /* DW_TAG_lexical_block has no attributes, process its children as if
11800 there was no wrapping by that DW_TAG_lexical_block.
11801 GCC does no longer produces such DWARF since GCC r224161. */
11802 for (child_die = die->child;
11803 child_die != NULL && child_die->tag;
11804 child_die = sibling_die (child_die))
11805 process_die (child_die, cu);
11806 return;
11807 case PC_BOUNDS_INVALID:
11808 return;
11809 }
11810 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11811 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11812
11813 push_context (0, lowpc);
11814 if (die->child != NULL)
11815 {
11816 child_die = die->child;
11817 while (child_die && child_die->tag)
11818 {
11819 process_die (child_die, cu);
11820 child_die = sibling_die (child_die);
11821 }
11822 }
11823 inherit_abstract_dies (die, cu);
11824 newobj = pop_context ();
11825
11826 if (local_symbols != NULL || local_using_directives != NULL)
11827 {
11828 struct block *block
11829 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11830 newobj->start_addr, highpc);
11831
11832 /* Note that recording ranges after traversing children, as we
11833 do here, means that recording a parent's ranges entails
11834 walking across all its children's ranges as they appear in
11835 the address map, which is quadratic behavior.
11836
11837 It would be nicer to record the parent's ranges before
11838 traversing its children, simply overriding whatever you find
11839 there. But since we don't even decide whether to create a
11840 block until after we've traversed its children, that's hard
11841 to do. */
11842 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11843 }
11844 local_symbols = newobj->locals;
11845 local_using_directives = newobj->local_using_directives;
11846 }
11847
11848 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
11849
11850 static void
11851 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11852 {
11853 struct objfile *objfile = cu->objfile;
11854 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11855 CORE_ADDR pc, baseaddr;
11856 struct attribute *attr;
11857 struct call_site *call_site, call_site_local;
11858 void **slot;
11859 int nparams;
11860 struct die_info *child_die;
11861
11862 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11863
11864 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11865 if (attr == NULL)
11866 {
11867 /* This was a pre-DWARF-5 GNU extension alias
11868 for DW_AT_call_return_pc. */
11869 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11870 }
11871 if (!attr)
11872 {
11873 complaint (&symfile_complaints,
11874 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
11875 "DIE 0x%x [in module %s]"),
11876 to_underlying (die->sect_off), objfile_name (objfile));
11877 return;
11878 }
11879 pc = attr_value_as_address (attr) + baseaddr;
11880 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11881
11882 if (cu->call_site_htab == NULL)
11883 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11884 NULL, &objfile->objfile_obstack,
11885 hashtab_obstack_allocate, NULL);
11886 call_site_local.pc = pc;
11887 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11888 if (*slot != NULL)
11889 {
11890 complaint (&symfile_complaints,
11891 _("Duplicate PC %s for DW_TAG_call_site "
11892 "DIE 0x%x [in module %s]"),
11893 paddress (gdbarch, pc), to_underlying (die->sect_off),
11894 objfile_name (objfile));
11895 return;
11896 }
11897
11898 /* Count parameters at the caller. */
11899
11900 nparams = 0;
11901 for (child_die = die->child; child_die && child_die->tag;
11902 child_die = sibling_die (child_die))
11903 {
11904 if (child_die->tag != DW_TAG_call_site_parameter
11905 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11906 {
11907 complaint (&symfile_complaints,
11908 _("Tag %d is not DW_TAG_call_site_parameter in "
11909 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11910 child_die->tag, to_underlying (child_die->sect_off),
11911 objfile_name (objfile));
11912 continue;
11913 }
11914
11915 nparams++;
11916 }
11917
11918 call_site
11919 = ((struct call_site *)
11920 obstack_alloc (&objfile->objfile_obstack,
11921 sizeof (*call_site)
11922 + (sizeof (*call_site->parameter) * (nparams - 1))));
11923 *slot = call_site;
11924 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11925 call_site->pc = pc;
11926
11927 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11928 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11929 {
11930 struct die_info *func_die;
11931
11932 /* Skip also over DW_TAG_inlined_subroutine. */
11933 for (func_die = die->parent;
11934 func_die && func_die->tag != DW_TAG_subprogram
11935 && func_die->tag != DW_TAG_subroutine_type;
11936 func_die = func_die->parent);
11937
11938 /* DW_AT_call_all_calls is a superset
11939 of DW_AT_call_all_tail_calls. */
11940 if (func_die
11941 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
11942 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11943 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
11944 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11945 {
11946 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11947 not complete. But keep CALL_SITE for look ups via call_site_htab,
11948 both the initial caller containing the real return address PC and
11949 the final callee containing the current PC of a chain of tail
11950 calls do not need to have the tail call list complete. But any
11951 function candidate for a virtual tail call frame searched via
11952 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11953 determined unambiguously. */
11954 }
11955 else
11956 {
11957 struct type *func_type = NULL;
11958
11959 if (func_die)
11960 func_type = get_die_type (func_die, cu);
11961 if (func_type != NULL)
11962 {
11963 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11964
11965 /* Enlist this call site to the function. */
11966 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11967 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11968 }
11969 else
11970 complaint (&symfile_complaints,
11971 _("Cannot find function owning DW_TAG_call_site "
11972 "DIE 0x%x [in module %s]"),
11973 to_underlying (die->sect_off), objfile_name (objfile));
11974 }
11975 }
11976
11977 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11978 if (attr == NULL)
11979 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11980 if (attr == NULL)
11981 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
11982 if (attr == NULL)
11983 {
11984 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
11985 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11986 }
11987 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11988 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11989 /* Keep NULL DWARF_BLOCK. */;
11990 else if (attr_form_is_block (attr))
11991 {
11992 struct dwarf2_locexpr_baton *dlbaton;
11993
11994 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11995 dlbaton->data = DW_BLOCK (attr)->data;
11996 dlbaton->size = DW_BLOCK (attr)->size;
11997 dlbaton->per_cu = cu->per_cu;
11998
11999 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12000 }
12001 else if (attr_form_is_ref (attr))
12002 {
12003 struct dwarf2_cu *target_cu = cu;
12004 struct die_info *target_die;
12005
12006 target_die = follow_die_ref (die, attr, &target_cu);
12007 gdb_assert (target_cu->objfile == objfile);
12008 if (die_is_declaration (target_die, target_cu))
12009 {
12010 const char *target_physname;
12011
12012 /* Prefer the mangled name; otherwise compute the demangled one. */
12013 target_physname = dwarf2_string_attr (target_die,
12014 DW_AT_linkage_name,
12015 target_cu);
12016 if (target_physname == NULL)
12017 target_physname = dwarf2_string_attr (target_die,
12018 DW_AT_MIPS_linkage_name,
12019 target_cu);
12020 if (target_physname == NULL)
12021 target_physname = dwarf2_physname (NULL, target_die, target_cu);
12022 if (target_physname == NULL)
12023 complaint (&symfile_complaints,
12024 _("DW_AT_call_target target DIE has invalid "
12025 "physname, for referencing DIE 0x%x [in module %s]"),
12026 to_underlying (die->sect_off), objfile_name (objfile));
12027 else
12028 SET_FIELD_PHYSNAME (call_site->target, target_physname);
12029 }
12030 else
12031 {
12032 CORE_ADDR lowpc;
12033
12034 /* DW_AT_entry_pc should be preferred. */
12035 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
12036 <= PC_BOUNDS_INVALID)
12037 complaint (&symfile_complaints,
12038 _("DW_AT_call_target target DIE has invalid "
12039 "low pc, for referencing DIE 0x%x [in module %s]"),
12040 to_underlying (die->sect_off), objfile_name (objfile));
12041 else
12042 {
12043 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12044 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12045 }
12046 }
12047 }
12048 else
12049 complaint (&symfile_complaints,
12050 _("DW_TAG_call_site DW_AT_call_target is neither "
12051 "block nor reference, for DIE 0x%x [in module %s]"),
12052 to_underlying (die->sect_off), objfile_name (objfile));
12053
12054 call_site->per_cu = cu->per_cu;
12055
12056 for (child_die = die->child;
12057 child_die && child_die->tag;
12058 child_die = sibling_die (child_die))
12059 {
12060 struct call_site_parameter *parameter;
12061 struct attribute *loc, *origin;
12062
12063 if (child_die->tag != DW_TAG_call_site_parameter
12064 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12065 {
12066 /* Already printed the complaint above. */
12067 continue;
12068 }
12069
12070 gdb_assert (call_site->parameter_count < nparams);
12071 parameter = &call_site->parameter[call_site->parameter_count];
12072
12073 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12074 specifies DW_TAG_formal_parameter. Value of the data assumed for the
12075 register is contained in DW_AT_call_value. */
12076
12077 loc = dwarf2_attr (child_die, DW_AT_location, cu);
12078 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12079 if (origin == NULL)
12080 {
12081 /* This was a pre-DWARF-5 GNU extension alias
12082 for DW_AT_call_parameter. */
12083 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12084 }
12085 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
12086 {
12087 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
12088
12089 sect_offset sect_off
12090 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12091 if (!offset_in_cu_p (&cu->header, sect_off))
12092 {
12093 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12094 binding can be done only inside one CU. Such referenced DIE
12095 therefore cannot be even moved to DW_TAG_partial_unit. */
12096 complaint (&symfile_complaints,
12097 _("DW_AT_call_parameter offset is not in CU for "
12098 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12099 to_underlying (child_die->sect_off),
12100 objfile_name (objfile));
12101 continue;
12102 }
12103 parameter->u.param_cu_off
12104 = (cu_offset) (sect_off - cu->header.sect_off);
12105 }
12106 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
12107 {
12108 complaint (&symfile_complaints,
12109 _("No DW_FORM_block* DW_AT_location for "
12110 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12111 to_underlying (child_die->sect_off), objfile_name (objfile));
12112 continue;
12113 }
12114 else
12115 {
12116 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12117 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12118 if (parameter->u.dwarf_reg != -1)
12119 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12120 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12121 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12122 &parameter->u.fb_offset))
12123 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12124 else
12125 {
12126 complaint (&symfile_complaints,
12127 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12128 "for DW_FORM_block* DW_AT_location is supported for "
12129 "DW_TAG_call_site child DIE 0x%x "
12130 "[in module %s]"),
12131 to_underlying (child_die->sect_off),
12132 objfile_name (objfile));
12133 continue;
12134 }
12135 }
12136
12137 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12138 if (attr == NULL)
12139 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
12140 if (!attr_form_is_block (attr))
12141 {
12142 complaint (&symfile_complaints,
12143 _("No DW_FORM_block* DW_AT_call_value for "
12144 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12145 to_underlying (child_die->sect_off),
12146 objfile_name (objfile));
12147 continue;
12148 }
12149 parameter->value = DW_BLOCK (attr)->data;
12150 parameter->value_size = DW_BLOCK (attr)->size;
12151
12152 /* Parameters are not pre-cleared by memset above. */
12153 parameter->data_value = NULL;
12154 parameter->data_value_size = 0;
12155 call_site->parameter_count++;
12156
12157 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12158 if (attr == NULL)
12159 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
12160 if (attr)
12161 {
12162 if (!attr_form_is_block (attr))
12163 complaint (&symfile_complaints,
12164 _("No DW_FORM_block* DW_AT_call_data_value for "
12165 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12166 to_underlying (child_die->sect_off),
12167 objfile_name (objfile));
12168 else
12169 {
12170 parameter->data_value = DW_BLOCK (attr)->data;
12171 parameter->data_value_size = DW_BLOCK (attr)->size;
12172 }
12173 }
12174 }
12175 }
12176
12177 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12178 reading .debug_rnglists.
12179 Callback's type should be:
12180 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12181 Return true if the attributes are present and valid, otherwise,
12182 return false. */
12183
12184 template <typename Callback>
12185 static bool
12186 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12187 Callback &&callback)
12188 {
12189 struct objfile *objfile = cu->objfile;
12190 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12191 struct comp_unit_head *cu_header = &cu->header;
12192 bfd *obfd = objfile->obfd;
12193 unsigned int addr_size = cu_header->addr_size;
12194 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12195 /* Base address selection entry. */
12196 CORE_ADDR base;
12197 int found_base;
12198 unsigned int dummy;
12199 const gdb_byte *buffer;
12200 CORE_ADDR low = 0;
12201 CORE_ADDR high = 0;
12202 CORE_ADDR baseaddr;
12203 bool overflow = false;
12204
12205 found_base = cu->base_known;
12206 base = cu->base_address;
12207
12208 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12209 if (offset >= dwarf2_per_objfile->rnglists.size)
12210 {
12211 complaint (&symfile_complaints,
12212 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12213 offset);
12214 return false;
12215 }
12216 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12217
12218 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12219
12220 while (1)
12221 {
12222 /* Initialize it due to a false compiler warning. */
12223 CORE_ADDR range_beginning = 0, range_end = 0;
12224 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12225 + dwarf2_per_objfile->rnglists.size);
12226 unsigned int bytes_read;
12227
12228 if (buffer == buf_end)
12229 {
12230 overflow = true;
12231 break;
12232 }
12233 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12234 switch (rlet)
12235 {
12236 case DW_RLE_end_of_list:
12237 break;
12238 case DW_RLE_base_address:
12239 if (buffer + cu->header.addr_size > buf_end)
12240 {
12241 overflow = true;
12242 break;
12243 }
12244 base = read_address (obfd, buffer, cu, &bytes_read);
12245 found_base = 1;
12246 buffer += bytes_read;
12247 break;
12248 case DW_RLE_start_length:
12249 if (buffer + cu->header.addr_size > buf_end)
12250 {
12251 overflow = true;
12252 break;
12253 }
12254 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12255 buffer += bytes_read;
12256 range_end = (range_beginning
12257 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12258 buffer += bytes_read;
12259 if (buffer > buf_end)
12260 {
12261 overflow = true;
12262 break;
12263 }
12264 break;
12265 case DW_RLE_offset_pair:
12266 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12267 buffer += bytes_read;
12268 if (buffer > buf_end)
12269 {
12270 overflow = true;
12271 break;
12272 }
12273 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12274 buffer += bytes_read;
12275 if (buffer > buf_end)
12276 {
12277 overflow = true;
12278 break;
12279 }
12280 break;
12281 case DW_RLE_start_end:
12282 if (buffer + 2 * cu->header.addr_size > buf_end)
12283 {
12284 overflow = true;
12285 break;
12286 }
12287 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12288 buffer += bytes_read;
12289 range_end = read_address (obfd, buffer, cu, &bytes_read);
12290 buffer += bytes_read;
12291 break;
12292 default:
12293 complaint (&symfile_complaints,
12294 _("Invalid .debug_rnglists data (no base address)"));
12295 return false;
12296 }
12297 if (rlet == DW_RLE_end_of_list || overflow)
12298 break;
12299 if (rlet == DW_RLE_base_address)
12300 continue;
12301
12302 if (!found_base)
12303 {
12304 /* We have no valid base address for the ranges
12305 data. */
12306 complaint (&symfile_complaints,
12307 _("Invalid .debug_rnglists data (no base address)"));
12308 return false;
12309 }
12310
12311 if (range_beginning > range_end)
12312 {
12313 /* Inverted range entries are invalid. */
12314 complaint (&symfile_complaints,
12315 _("Invalid .debug_rnglists data (inverted range)"));
12316 return false;
12317 }
12318
12319 /* Empty range entries have no effect. */
12320 if (range_beginning == range_end)
12321 continue;
12322
12323 range_beginning += base;
12324 range_end += base;
12325
12326 /* A not-uncommon case of bad debug info.
12327 Don't pollute the addrmap with bad data. */
12328 if (range_beginning + baseaddr == 0
12329 && !dwarf2_per_objfile->has_section_at_zero)
12330 {
12331 complaint (&symfile_complaints,
12332 _(".debug_rnglists entry has start address of zero"
12333 " [in module %s]"), objfile_name (objfile));
12334 continue;
12335 }
12336
12337 callback (range_beginning, range_end);
12338 }
12339
12340 if (overflow)
12341 {
12342 complaint (&symfile_complaints,
12343 _("Offset %d is not terminated "
12344 "for DW_AT_ranges attribute"),
12345 offset);
12346 return false;
12347 }
12348
12349 return true;
12350 }
12351
12352 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12353 Callback's type should be:
12354 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12355 Return 1 if the attributes are present and valid, otherwise, return 0. */
12356
12357 template <typename Callback>
12358 static int
12359 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12360 Callback &&callback)
12361 {
12362 struct objfile *objfile = cu->objfile;
12363 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12364 struct comp_unit_head *cu_header = &cu->header;
12365 bfd *obfd = objfile->obfd;
12366 unsigned int addr_size = cu_header->addr_size;
12367 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12368 /* Base address selection entry. */
12369 CORE_ADDR base;
12370 int found_base;
12371 unsigned int dummy;
12372 const gdb_byte *buffer;
12373 CORE_ADDR baseaddr;
12374
12375 if (cu_header->version >= 5)
12376 return dwarf2_rnglists_process (offset, cu, callback);
12377
12378 found_base = cu->base_known;
12379 base = cu->base_address;
12380
12381 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12382 if (offset >= dwarf2_per_objfile->ranges.size)
12383 {
12384 complaint (&symfile_complaints,
12385 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12386 offset);
12387 return 0;
12388 }
12389 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12390
12391 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12392
12393 while (1)
12394 {
12395 CORE_ADDR range_beginning, range_end;
12396
12397 range_beginning = read_address (obfd, buffer, cu, &dummy);
12398 buffer += addr_size;
12399 range_end = read_address (obfd, buffer, cu, &dummy);
12400 buffer += addr_size;
12401 offset += 2 * addr_size;
12402
12403 /* An end of list marker is a pair of zero addresses. */
12404 if (range_beginning == 0 && range_end == 0)
12405 /* Found the end of list entry. */
12406 break;
12407
12408 /* Each base address selection entry is a pair of 2 values.
12409 The first is the largest possible address, the second is
12410 the base address. Check for a base address here. */
12411 if ((range_beginning & mask) == mask)
12412 {
12413 /* If we found the largest possible address, then we already
12414 have the base address in range_end. */
12415 base = range_end;
12416 found_base = 1;
12417 continue;
12418 }
12419
12420 if (!found_base)
12421 {
12422 /* We have no valid base address for the ranges
12423 data. */
12424 complaint (&symfile_complaints,
12425 _("Invalid .debug_ranges data (no base address)"));
12426 return 0;
12427 }
12428
12429 if (range_beginning > range_end)
12430 {
12431 /* Inverted range entries are invalid. */
12432 complaint (&symfile_complaints,
12433 _("Invalid .debug_ranges data (inverted range)"));
12434 return 0;
12435 }
12436
12437 /* Empty range entries have no effect. */
12438 if (range_beginning == range_end)
12439 continue;
12440
12441 range_beginning += base;
12442 range_end += base;
12443
12444 /* A not-uncommon case of bad debug info.
12445 Don't pollute the addrmap with bad data. */
12446 if (range_beginning + baseaddr == 0
12447 && !dwarf2_per_objfile->has_section_at_zero)
12448 {
12449 complaint (&symfile_complaints,
12450 _(".debug_ranges entry has start address of zero"
12451 " [in module %s]"), objfile_name (objfile));
12452 continue;
12453 }
12454
12455 callback (range_beginning, range_end);
12456 }
12457
12458 return 1;
12459 }
12460
12461 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12462 Return 1 if the attributes are present and valid, otherwise, return 0.
12463 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12464
12465 static int
12466 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12467 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12468 struct partial_symtab *ranges_pst)
12469 {
12470 struct objfile *objfile = cu->objfile;
12471 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12472 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12473 SECT_OFF_TEXT (objfile));
12474 int low_set = 0;
12475 CORE_ADDR low = 0;
12476 CORE_ADDR high = 0;
12477 int retval;
12478
12479 retval = dwarf2_ranges_process (offset, cu,
12480 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12481 {
12482 if (ranges_pst != NULL)
12483 {
12484 CORE_ADDR lowpc;
12485 CORE_ADDR highpc;
12486
12487 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12488 range_beginning + baseaddr);
12489 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12490 range_end + baseaddr);
12491 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12492 ranges_pst);
12493 }
12494
12495 /* FIXME: This is recording everything as a low-high
12496 segment of consecutive addresses. We should have a
12497 data structure for discontiguous block ranges
12498 instead. */
12499 if (! low_set)
12500 {
12501 low = range_beginning;
12502 high = range_end;
12503 low_set = 1;
12504 }
12505 else
12506 {
12507 if (range_beginning < low)
12508 low = range_beginning;
12509 if (range_end > high)
12510 high = range_end;
12511 }
12512 });
12513 if (!retval)
12514 return 0;
12515
12516 if (! low_set)
12517 /* If the first entry is an end-of-list marker, the range
12518 describes an empty scope, i.e. no instructions. */
12519 return 0;
12520
12521 if (low_return)
12522 *low_return = low;
12523 if (high_return)
12524 *high_return = high;
12525 return 1;
12526 }
12527
12528 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12529 definition for the return value. *LOWPC and *HIGHPC are set iff
12530 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12531
12532 static enum pc_bounds_kind
12533 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12534 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12535 struct partial_symtab *pst)
12536 {
12537 struct attribute *attr;
12538 struct attribute *attr_high;
12539 CORE_ADDR low = 0;
12540 CORE_ADDR high = 0;
12541 enum pc_bounds_kind ret;
12542
12543 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12544 if (attr_high)
12545 {
12546 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12547 if (attr)
12548 {
12549 low = attr_value_as_address (attr);
12550 high = attr_value_as_address (attr_high);
12551 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12552 high += low;
12553 }
12554 else
12555 /* Found high w/o low attribute. */
12556 return PC_BOUNDS_INVALID;
12557
12558 /* Found consecutive range of addresses. */
12559 ret = PC_BOUNDS_HIGH_LOW;
12560 }
12561 else
12562 {
12563 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12564 if (attr != NULL)
12565 {
12566 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12567 We take advantage of the fact that DW_AT_ranges does not appear
12568 in DW_TAG_compile_unit of DWO files. */
12569 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12570 unsigned int ranges_offset = (DW_UNSND (attr)
12571 + (need_ranges_base
12572 ? cu->ranges_base
12573 : 0));
12574
12575 /* Value of the DW_AT_ranges attribute is the offset in the
12576 .debug_ranges section. */
12577 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12578 return PC_BOUNDS_INVALID;
12579 /* Found discontinuous range of addresses. */
12580 ret = PC_BOUNDS_RANGES;
12581 }
12582 else
12583 return PC_BOUNDS_NOT_PRESENT;
12584 }
12585
12586 /* read_partial_die has also the strict LOW < HIGH requirement. */
12587 if (high <= low)
12588 return PC_BOUNDS_INVALID;
12589
12590 /* When using the GNU linker, .gnu.linkonce. sections are used to
12591 eliminate duplicate copies of functions and vtables and such.
12592 The linker will arbitrarily choose one and discard the others.
12593 The AT_*_pc values for such functions refer to local labels in
12594 these sections. If the section from that file was discarded, the
12595 labels are not in the output, so the relocs get a value of 0.
12596 If this is a discarded function, mark the pc bounds as invalid,
12597 so that GDB will ignore it. */
12598 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12599 return PC_BOUNDS_INVALID;
12600
12601 *lowpc = low;
12602 if (highpc)
12603 *highpc = high;
12604 return ret;
12605 }
12606
12607 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12608 its low and high PC addresses. Do nothing if these addresses could not
12609 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12610 and HIGHPC to the high address if greater than HIGHPC. */
12611
12612 static void
12613 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12614 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12615 struct dwarf2_cu *cu)
12616 {
12617 CORE_ADDR low, high;
12618 struct die_info *child = die->child;
12619
12620 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12621 {
12622 *lowpc = std::min (*lowpc, low);
12623 *highpc = std::max (*highpc, high);
12624 }
12625
12626 /* If the language does not allow nested subprograms (either inside
12627 subprograms or lexical blocks), we're done. */
12628 if (cu->language != language_ada)
12629 return;
12630
12631 /* Check all the children of the given DIE. If it contains nested
12632 subprograms, then check their pc bounds. Likewise, we need to
12633 check lexical blocks as well, as they may also contain subprogram
12634 definitions. */
12635 while (child && child->tag)
12636 {
12637 if (child->tag == DW_TAG_subprogram
12638 || child->tag == DW_TAG_lexical_block)
12639 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12640 child = sibling_die (child);
12641 }
12642 }
12643
12644 /* Get the low and high pc's represented by the scope DIE, and store
12645 them in *LOWPC and *HIGHPC. If the correct values can't be
12646 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12647
12648 static void
12649 get_scope_pc_bounds (struct die_info *die,
12650 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12651 struct dwarf2_cu *cu)
12652 {
12653 CORE_ADDR best_low = (CORE_ADDR) -1;
12654 CORE_ADDR best_high = (CORE_ADDR) 0;
12655 CORE_ADDR current_low, current_high;
12656
12657 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12658 >= PC_BOUNDS_RANGES)
12659 {
12660 best_low = current_low;
12661 best_high = current_high;
12662 }
12663 else
12664 {
12665 struct die_info *child = die->child;
12666
12667 while (child && child->tag)
12668 {
12669 switch (child->tag) {
12670 case DW_TAG_subprogram:
12671 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12672 break;
12673 case DW_TAG_namespace:
12674 case DW_TAG_module:
12675 /* FIXME: carlton/2004-01-16: Should we do this for
12676 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12677 that current GCC's always emit the DIEs corresponding
12678 to definitions of methods of classes as children of a
12679 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12680 the DIEs giving the declarations, which could be
12681 anywhere). But I don't see any reason why the
12682 standards says that they have to be there. */
12683 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12684
12685 if (current_low != ((CORE_ADDR) -1))
12686 {
12687 best_low = std::min (best_low, current_low);
12688 best_high = std::max (best_high, current_high);
12689 }
12690 break;
12691 default:
12692 /* Ignore. */
12693 break;
12694 }
12695
12696 child = sibling_die (child);
12697 }
12698 }
12699
12700 *lowpc = best_low;
12701 *highpc = best_high;
12702 }
12703
12704 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12705 in DIE. */
12706
12707 static void
12708 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12709 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12710 {
12711 struct objfile *objfile = cu->objfile;
12712 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12713 struct attribute *attr;
12714 struct attribute *attr_high;
12715
12716 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12717 if (attr_high)
12718 {
12719 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12720 if (attr)
12721 {
12722 CORE_ADDR low = attr_value_as_address (attr);
12723 CORE_ADDR high = attr_value_as_address (attr_high);
12724
12725 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12726 high += low;
12727
12728 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12729 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12730 record_block_range (block, low, high - 1);
12731 }
12732 }
12733
12734 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12735 if (attr)
12736 {
12737 bfd *obfd = objfile->obfd;
12738 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12739 We take advantage of the fact that DW_AT_ranges does not appear
12740 in DW_TAG_compile_unit of DWO files. */
12741 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12742
12743 /* The value of the DW_AT_ranges attribute is the offset of the
12744 address range list in the .debug_ranges section. */
12745 unsigned long offset = (DW_UNSND (attr)
12746 + (need_ranges_base ? cu->ranges_base : 0));
12747 const gdb_byte *buffer;
12748
12749 /* For some target architectures, but not others, the
12750 read_address function sign-extends the addresses it returns.
12751 To recognize base address selection entries, we need a
12752 mask. */
12753 unsigned int addr_size = cu->header.addr_size;
12754 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12755
12756 /* The base address, to which the next pair is relative. Note
12757 that this 'base' is a DWARF concept: most entries in a range
12758 list are relative, to reduce the number of relocs against the
12759 debugging information. This is separate from this function's
12760 'baseaddr' argument, which GDB uses to relocate debugging
12761 information from a shared library based on the address at
12762 which the library was loaded. */
12763 CORE_ADDR base = cu->base_address;
12764 int base_known = cu->base_known;
12765
12766 dwarf2_ranges_process (offset, cu,
12767 [&] (CORE_ADDR start, CORE_ADDR end)
12768 {
12769 start += baseaddr;
12770 end += baseaddr;
12771 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12772 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12773 record_block_range (block, start, end - 1);
12774 });
12775 }
12776 }
12777
12778 /* Check whether the producer field indicates either of GCC < 4.6, or the
12779 Intel C/C++ compiler, and cache the result in CU. */
12780
12781 static void
12782 check_producer (struct dwarf2_cu *cu)
12783 {
12784 int major, minor;
12785
12786 if (cu->producer == NULL)
12787 {
12788 /* For unknown compilers expect their behavior is DWARF version
12789 compliant.
12790
12791 GCC started to support .debug_types sections by -gdwarf-4 since
12792 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12793 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12794 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12795 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12796 }
12797 else if (producer_is_gcc (cu->producer, &major, &minor))
12798 {
12799 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12800 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12801 }
12802 else if (startswith (cu->producer, "Intel(R) C"))
12803 cu->producer_is_icc = 1;
12804 else
12805 {
12806 /* For other non-GCC compilers, expect their behavior is DWARF version
12807 compliant. */
12808 }
12809
12810 cu->checked_producer = 1;
12811 }
12812
12813 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12814 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12815 during 4.6.0 experimental. */
12816
12817 static int
12818 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12819 {
12820 if (!cu->checked_producer)
12821 check_producer (cu);
12822
12823 return cu->producer_is_gxx_lt_4_6;
12824 }
12825
12826 /* Return the default accessibility type if it is not overriden by
12827 DW_AT_accessibility. */
12828
12829 static enum dwarf_access_attribute
12830 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12831 {
12832 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12833 {
12834 /* The default DWARF 2 accessibility for members is public, the default
12835 accessibility for inheritance is private. */
12836
12837 if (die->tag != DW_TAG_inheritance)
12838 return DW_ACCESS_public;
12839 else
12840 return DW_ACCESS_private;
12841 }
12842 else
12843 {
12844 /* DWARF 3+ defines the default accessibility a different way. The same
12845 rules apply now for DW_TAG_inheritance as for the members and it only
12846 depends on the container kind. */
12847
12848 if (die->parent->tag == DW_TAG_class_type)
12849 return DW_ACCESS_private;
12850 else
12851 return DW_ACCESS_public;
12852 }
12853 }
12854
12855 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12856 offset. If the attribute was not found return 0, otherwise return
12857 1. If it was found but could not properly be handled, set *OFFSET
12858 to 0. */
12859
12860 static int
12861 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12862 LONGEST *offset)
12863 {
12864 struct attribute *attr;
12865
12866 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12867 if (attr != NULL)
12868 {
12869 *offset = 0;
12870
12871 /* Note that we do not check for a section offset first here.
12872 This is because DW_AT_data_member_location is new in DWARF 4,
12873 so if we see it, we can assume that a constant form is really
12874 a constant and not a section offset. */
12875 if (attr_form_is_constant (attr))
12876 *offset = dwarf2_get_attr_constant_value (attr, 0);
12877 else if (attr_form_is_section_offset (attr))
12878 dwarf2_complex_location_expr_complaint ();
12879 else if (attr_form_is_block (attr))
12880 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12881 else
12882 dwarf2_complex_location_expr_complaint ();
12883
12884 return 1;
12885 }
12886
12887 return 0;
12888 }
12889
12890 /* Add an aggregate field to the field list. */
12891
12892 static void
12893 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12894 struct dwarf2_cu *cu)
12895 {
12896 struct objfile *objfile = cu->objfile;
12897 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12898 struct nextfield *new_field;
12899 struct attribute *attr;
12900 struct field *fp;
12901 const char *fieldname = "";
12902
12903 /* Allocate a new field list entry and link it in. */
12904 new_field = XNEW (struct nextfield);
12905 make_cleanup (xfree, new_field);
12906 memset (new_field, 0, sizeof (struct nextfield));
12907
12908 if (die->tag == DW_TAG_inheritance)
12909 {
12910 new_field->next = fip->baseclasses;
12911 fip->baseclasses = new_field;
12912 }
12913 else
12914 {
12915 new_field->next = fip->fields;
12916 fip->fields = new_field;
12917 }
12918 fip->nfields++;
12919
12920 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12921 if (attr)
12922 new_field->accessibility = DW_UNSND (attr);
12923 else
12924 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12925 if (new_field->accessibility != DW_ACCESS_public)
12926 fip->non_public_fields = 1;
12927
12928 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12929 if (attr)
12930 new_field->virtuality = DW_UNSND (attr);
12931 else
12932 new_field->virtuality = DW_VIRTUALITY_none;
12933
12934 fp = &new_field->field;
12935
12936 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12937 {
12938 LONGEST offset;
12939
12940 /* Data member other than a C++ static data member. */
12941
12942 /* Get type of field. */
12943 fp->type = die_type (die, cu);
12944
12945 SET_FIELD_BITPOS (*fp, 0);
12946
12947 /* Get bit size of field (zero if none). */
12948 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12949 if (attr)
12950 {
12951 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12952 }
12953 else
12954 {
12955 FIELD_BITSIZE (*fp) = 0;
12956 }
12957
12958 /* Get bit offset of field. */
12959 if (handle_data_member_location (die, cu, &offset))
12960 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12961 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12962 if (attr)
12963 {
12964 if (gdbarch_bits_big_endian (gdbarch))
12965 {
12966 /* For big endian bits, the DW_AT_bit_offset gives the
12967 additional bit offset from the MSB of the containing
12968 anonymous object to the MSB of the field. We don't
12969 have to do anything special since we don't need to
12970 know the size of the anonymous object. */
12971 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12972 }
12973 else
12974 {
12975 /* For little endian bits, compute the bit offset to the
12976 MSB of the anonymous object, subtract off the number of
12977 bits from the MSB of the field to the MSB of the
12978 object, and then subtract off the number of bits of
12979 the field itself. The result is the bit offset of
12980 the LSB of the field. */
12981 int anonymous_size;
12982 int bit_offset = DW_UNSND (attr);
12983
12984 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12985 if (attr)
12986 {
12987 /* The size of the anonymous object containing
12988 the bit field is explicit, so use the
12989 indicated size (in bytes). */
12990 anonymous_size = DW_UNSND (attr);
12991 }
12992 else
12993 {
12994 /* The size of the anonymous object containing
12995 the bit field must be inferred from the type
12996 attribute of the data member containing the
12997 bit field. */
12998 anonymous_size = TYPE_LENGTH (fp->type);
12999 }
13000 SET_FIELD_BITPOS (*fp,
13001 (FIELD_BITPOS (*fp)
13002 + anonymous_size * bits_per_byte
13003 - bit_offset - FIELD_BITSIZE (*fp)));
13004 }
13005 }
13006 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13007 if (attr != NULL)
13008 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13009 + dwarf2_get_attr_constant_value (attr, 0)));
13010
13011 /* Get name of field. */
13012 fieldname = dwarf2_name (die, cu);
13013 if (fieldname == NULL)
13014 fieldname = "";
13015
13016 /* The name is already allocated along with this objfile, so we don't
13017 need to duplicate it for the type. */
13018 fp->name = fieldname;
13019
13020 /* Change accessibility for artificial fields (e.g. virtual table
13021 pointer or virtual base class pointer) to private. */
13022 if (dwarf2_attr (die, DW_AT_artificial, cu))
13023 {
13024 FIELD_ARTIFICIAL (*fp) = 1;
13025 new_field->accessibility = DW_ACCESS_private;
13026 fip->non_public_fields = 1;
13027 }
13028 }
13029 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
13030 {
13031 /* C++ static member. */
13032
13033 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13034 is a declaration, but all versions of G++ as of this writing
13035 (so through at least 3.2.1) incorrectly generate
13036 DW_TAG_variable tags. */
13037
13038 const char *physname;
13039
13040 /* Get name of field. */
13041 fieldname = dwarf2_name (die, cu);
13042 if (fieldname == NULL)
13043 return;
13044
13045 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13046 if (attr
13047 /* Only create a symbol if this is an external value.
13048 new_symbol checks this and puts the value in the global symbol
13049 table, which we want. If it is not external, new_symbol
13050 will try to put the value in cu->list_in_scope which is wrong. */
13051 && dwarf2_flag_true_p (die, DW_AT_external, cu))
13052 {
13053 /* A static const member, not much different than an enum as far as
13054 we're concerned, except that we can support more types. */
13055 new_symbol (die, NULL, cu);
13056 }
13057
13058 /* Get physical name. */
13059 physname = dwarf2_physname (fieldname, die, cu);
13060
13061 /* The name is already allocated along with this objfile, so we don't
13062 need to duplicate it for the type. */
13063 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
13064 FIELD_TYPE (*fp) = die_type (die, cu);
13065 FIELD_NAME (*fp) = fieldname;
13066 }
13067 else if (die->tag == DW_TAG_inheritance)
13068 {
13069 LONGEST offset;
13070
13071 /* C++ base class field. */
13072 if (handle_data_member_location (die, cu, &offset))
13073 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13074 FIELD_BITSIZE (*fp) = 0;
13075 FIELD_TYPE (*fp) = die_type (die, cu);
13076 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13077 fip->nbaseclasses++;
13078 }
13079 }
13080
13081 /* Add a typedef defined in the scope of the FIP's class. */
13082
13083 static void
13084 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13085 struct dwarf2_cu *cu)
13086 {
13087 struct typedef_field_list *new_field;
13088 struct typedef_field *fp;
13089
13090 /* Allocate a new field list entry and link it in. */
13091 new_field = XCNEW (struct typedef_field_list);
13092 make_cleanup (xfree, new_field);
13093
13094 gdb_assert (die->tag == DW_TAG_typedef);
13095
13096 fp = &new_field->field;
13097
13098 /* Get name of field. */
13099 fp->name = dwarf2_name (die, cu);
13100 if (fp->name == NULL)
13101 return;
13102
13103 fp->type = read_type_die (die, cu);
13104
13105 new_field->next = fip->typedef_field_list;
13106 fip->typedef_field_list = new_field;
13107 fip->typedef_field_list_count++;
13108 }
13109
13110 /* Create the vector of fields, and attach it to the type. */
13111
13112 static void
13113 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
13114 struct dwarf2_cu *cu)
13115 {
13116 int nfields = fip->nfields;
13117
13118 /* Record the field count, allocate space for the array of fields,
13119 and create blank accessibility bitfields if necessary. */
13120 TYPE_NFIELDS (type) = nfields;
13121 TYPE_FIELDS (type) = (struct field *)
13122 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13123 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13124
13125 if (fip->non_public_fields && cu->language != language_ada)
13126 {
13127 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13128
13129 TYPE_FIELD_PRIVATE_BITS (type) =
13130 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13131 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13132
13133 TYPE_FIELD_PROTECTED_BITS (type) =
13134 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13135 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13136
13137 TYPE_FIELD_IGNORE_BITS (type) =
13138 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13139 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
13140 }
13141
13142 /* If the type has baseclasses, allocate and clear a bit vector for
13143 TYPE_FIELD_VIRTUAL_BITS. */
13144 if (fip->nbaseclasses && cu->language != language_ada)
13145 {
13146 int num_bytes = B_BYTES (fip->nbaseclasses);
13147 unsigned char *pointer;
13148
13149 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13150 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
13151 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
13152 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13153 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13154 }
13155
13156 /* Copy the saved-up fields into the field vector. Start from the head of
13157 the list, adding to the tail of the field array, so that they end up in
13158 the same order in the array in which they were added to the list. */
13159 while (nfields-- > 0)
13160 {
13161 struct nextfield *fieldp;
13162
13163 if (fip->fields)
13164 {
13165 fieldp = fip->fields;
13166 fip->fields = fieldp->next;
13167 }
13168 else
13169 {
13170 fieldp = fip->baseclasses;
13171 fip->baseclasses = fieldp->next;
13172 }
13173
13174 TYPE_FIELD (type, nfields) = fieldp->field;
13175 switch (fieldp->accessibility)
13176 {
13177 case DW_ACCESS_private:
13178 if (cu->language != language_ada)
13179 SET_TYPE_FIELD_PRIVATE (type, nfields);
13180 break;
13181
13182 case DW_ACCESS_protected:
13183 if (cu->language != language_ada)
13184 SET_TYPE_FIELD_PROTECTED (type, nfields);
13185 break;
13186
13187 case DW_ACCESS_public:
13188 break;
13189
13190 default:
13191 /* Unknown accessibility. Complain and treat it as public. */
13192 {
13193 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13194 fieldp->accessibility);
13195 }
13196 break;
13197 }
13198 if (nfields < fip->nbaseclasses)
13199 {
13200 switch (fieldp->virtuality)
13201 {
13202 case DW_VIRTUALITY_virtual:
13203 case DW_VIRTUALITY_pure_virtual:
13204 if (cu->language == language_ada)
13205 error (_("unexpected virtuality in component of Ada type"));
13206 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13207 break;
13208 }
13209 }
13210 }
13211 }
13212
13213 /* Return true if this member function is a constructor, false
13214 otherwise. */
13215
13216 static int
13217 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13218 {
13219 const char *fieldname;
13220 const char *type_name;
13221 int len;
13222
13223 if (die->parent == NULL)
13224 return 0;
13225
13226 if (die->parent->tag != DW_TAG_structure_type
13227 && die->parent->tag != DW_TAG_union_type
13228 && die->parent->tag != DW_TAG_class_type)
13229 return 0;
13230
13231 fieldname = dwarf2_name (die, cu);
13232 type_name = dwarf2_name (die->parent, cu);
13233 if (fieldname == NULL || type_name == NULL)
13234 return 0;
13235
13236 len = strlen (fieldname);
13237 return (strncmp (fieldname, type_name, len) == 0
13238 && (type_name[len] == '\0' || type_name[len] == '<'));
13239 }
13240
13241 /* Add a member function to the proper fieldlist. */
13242
13243 static void
13244 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13245 struct type *type, struct dwarf2_cu *cu)
13246 {
13247 struct objfile *objfile = cu->objfile;
13248 struct attribute *attr;
13249 struct fnfieldlist *flp;
13250 int i;
13251 struct fn_field *fnp;
13252 const char *fieldname;
13253 struct nextfnfield *new_fnfield;
13254 struct type *this_type;
13255 enum dwarf_access_attribute accessibility;
13256
13257 if (cu->language == language_ada)
13258 error (_("unexpected member function in Ada type"));
13259
13260 /* Get name of member function. */
13261 fieldname = dwarf2_name (die, cu);
13262 if (fieldname == NULL)
13263 return;
13264
13265 /* Look up member function name in fieldlist. */
13266 for (i = 0; i < fip->nfnfields; i++)
13267 {
13268 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13269 break;
13270 }
13271
13272 /* Create new list element if necessary. */
13273 if (i < fip->nfnfields)
13274 flp = &fip->fnfieldlists[i];
13275 else
13276 {
13277 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13278 {
13279 fip->fnfieldlists = (struct fnfieldlist *)
13280 xrealloc (fip->fnfieldlists,
13281 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13282 * sizeof (struct fnfieldlist));
13283 if (fip->nfnfields == 0)
13284 make_cleanup (free_current_contents, &fip->fnfieldlists);
13285 }
13286 flp = &fip->fnfieldlists[fip->nfnfields];
13287 flp->name = fieldname;
13288 flp->length = 0;
13289 flp->head = NULL;
13290 i = fip->nfnfields++;
13291 }
13292
13293 /* Create a new member function field and chain it to the field list
13294 entry. */
13295 new_fnfield = XNEW (struct nextfnfield);
13296 make_cleanup (xfree, new_fnfield);
13297 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13298 new_fnfield->next = flp->head;
13299 flp->head = new_fnfield;
13300 flp->length++;
13301
13302 /* Fill in the member function field info. */
13303 fnp = &new_fnfield->fnfield;
13304
13305 /* Delay processing of the physname until later. */
13306 if (cu->language == language_cplus)
13307 {
13308 add_to_method_list (type, i, flp->length - 1, fieldname,
13309 die, cu);
13310 }
13311 else
13312 {
13313 const char *physname = dwarf2_physname (fieldname, die, cu);
13314 fnp->physname = physname ? physname : "";
13315 }
13316
13317 fnp->type = alloc_type (objfile);
13318 this_type = read_type_die (die, cu);
13319 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13320 {
13321 int nparams = TYPE_NFIELDS (this_type);
13322
13323 /* TYPE is the domain of this method, and THIS_TYPE is the type
13324 of the method itself (TYPE_CODE_METHOD). */
13325 smash_to_method_type (fnp->type, type,
13326 TYPE_TARGET_TYPE (this_type),
13327 TYPE_FIELDS (this_type),
13328 TYPE_NFIELDS (this_type),
13329 TYPE_VARARGS (this_type));
13330
13331 /* Handle static member functions.
13332 Dwarf2 has no clean way to discern C++ static and non-static
13333 member functions. G++ helps GDB by marking the first
13334 parameter for non-static member functions (which is the this
13335 pointer) as artificial. We obtain this information from
13336 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13337 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13338 fnp->voffset = VOFFSET_STATIC;
13339 }
13340 else
13341 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13342 dwarf2_full_name (fieldname, die, cu));
13343
13344 /* Get fcontext from DW_AT_containing_type if present. */
13345 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13346 fnp->fcontext = die_containing_type (die, cu);
13347
13348 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13349 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13350
13351 /* Get accessibility. */
13352 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13353 if (attr)
13354 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13355 else
13356 accessibility = dwarf2_default_access_attribute (die, cu);
13357 switch (accessibility)
13358 {
13359 case DW_ACCESS_private:
13360 fnp->is_private = 1;
13361 break;
13362 case DW_ACCESS_protected:
13363 fnp->is_protected = 1;
13364 break;
13365 }
13366
13367 /* Check for artificial methods. */
13368 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13369 if (attr && DW_UNSND (attr) != 0)
13370 fnp->is_artificial = 1;
13371
13372 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13373
13374 /* Get index in virtual function table if it is a virtual member
13375 function. For older versions of GCC, this is an offset in the
13376 appropriate virtual table, as specified by DW_AT_containing_type.
13377 For everyone else, it is an expression to be evaluated relative
13378 to the object address. */
13379
13380 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13381 if (attr)
13382 {
13383 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13384 {
13385 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13386 {
13387 /* Old-style GCC. */
13388 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13389 }
13390 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13391 || (DW_BLOCK (attr)->size > 1
13392 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13393 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13394 {
13395 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13396 if ((fnp->voffset % cu->header.addr_size) != 0)
13397 dwarf2_complex_location_expr_complaint ();
13398 else
13399 fnp->voffset /= cu->header.addr_size;
13400 fnp->voffset += 2;
13401 }
13402 else
13403 dwarf2_complex_location_expr_complaint ();
13404
13405 if (!fnp->fcontext)
13406 {
13407 /* If there is no `this' field and no DW_AT_containing_type,
13408 we cannot actually find a base class context for the
13409 vtable! */
13410 if (TYPE_NFIELDS (this_type) == 0
13411 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13412 {
13413 complaint (&symfile_complaints,
13414 _("cannot determine context for virtual member "
13415 "function \"%s\" (offset %d)"),
13416 fieldname, to_underlying (die->sect_off));
13417 }
13418 else
13419 {
13420 fnp->fcontext
13421 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13422 }
13423 }
13424 }
13425 else if (attr_form_is_section_offset (attr))
13426 {
13427 dwarf2_complex_location_expr_complaint ();
13428 }
13429 else
13430 {
13431 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13432 fieldname);
13433 }
13434 }
13435 else
13436 {
13437 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13438 if (attr && DW_UNSND (attr))
13439 {
13440 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13441 complaint (&symfile_complaints,
13442 _("Member function \"%s\" (offset %d) is virtual "
13443 "but the vtable offset is not specified"),
13444 fieldname, to_underlying (die->sect_off));
13445 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13446 TYPE_CPLUS_DYNAMIC (type) = 1;
13447 }
13448 }
13449 }
13450
13451 /* Create the vector of member function fields, and attach it to the type. */
13452
13453 static void
13454 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13455 struct dwarf2_cu *cu)
13456 {
13457 struct fnfieldlist *flp;
13458 int i;
13459
13460 if (cu->language == language_ada)
13461 error (_("unexpected member functions in Ada type"));
13462
13463 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13464 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13465 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13466
13467 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13468 {
13469 struct nextfnfield *nfp = flp->head;
13470 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13471 int k;
13472
13473 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13474 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13475 fn_flp->fn_fields = (struct fn_field *)
13476 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13477 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13478 fn_flp->fn_fields[k] = nfp->fnfield;
13479 }
13480
13481 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13482 }
13483
13484 /* Returns non-zero if NAME is the name of a vtable member in CU's
13485 language, zero otherwise. */
13486 static int
13487 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13488 {
13489 static const char vptr[] = "_vptr";
13490 static const char vtable[] = "vtable";
13491
13492 /* Look for the C++ form of the vtable. */
13493 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13494 return 1;
13495
13496 return 0;
13497 }
13498
13499 /* GCC outputs unnamed structures that are really pointers to member
13500 functions, with the ABI-specified layout. If TYPE describes
13501 such a structure, smash it into a member function type.
13502
13503 GCC shouldn't do this; it should just output pointer to member DIEs.
13504 This is GCC PR debug/28767. */
13505
13506 static void
13507 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13508 {
13509 struct type *pfn_type, *self_type, *new_type;
13510
13511 /* Check for a structure with no name and two children. */
13512 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13513 return;
13514
13515 /* Check for __pfn and __delta members. */
13516 if (TYPE_FIELD_NAME (type, 0) == NULL
13517 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13518 || TYPE_FIELD_NAME (type, 1) == NULL
13519 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13520 return;
13521
13522 /* Find the type of the method. */
13523 pfn_type = TYPE_FIELD_TYPE (type, 0);
13524 if (pfn_type == NULL
13525 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13526 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13527 return;
13528
13529 /* Look for the "this" argument. */
13530 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13531 if (TYPE_NFIELDS (pfn_type) == 0
13532 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13533 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13534 return;
13535
13536 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13537 new_type = alloc_type (objfile);
13538 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13539 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13540 TYPE_VARARGS (pfn_type));
13541 smash_to_methodptr_type (type, new_type);
13542 }
13543
13544 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13545 (icc). */
13546
13547 static int
13548 producer_is_icc (struct dwarf2_cu *cu)
13549 {
13550 if (!cu->checked_producer)
13551 check_producer (cu);
13552
13553 return cu->producer_is_icc;
13554 }
13555
13556 /* Called when we find the DIE that starts a structure or union scope
13557 (definition) to create a type for the structure or union. Fill in
13558 the type's name and general properties; the members will not be
13559 processed until process_structure_scope. A symbol table entry for
13560 the type will also not be done until process_structure_scope (assuming
13561 the type has a name).
13562
13563 NOTE: we need to call these functions regardless of whether or not the
13564 DIE has a DW_AT_name attribute, since it might be an anonymous
13565 structure or union. This gets the type entered into our set of
13566 user defined types. */
13567
13568 static struct type *
13569 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13570 {
13571 struct objfile *objfile = cu->objfile;
13572 struct type *type;
13573 struct attribute *attr;
13574 const char *name;
13575
13576 /* If the definition of this type lives in .debug_types, read that type.
13577 Don't follow DW_AT_specification though, that will take us back up
13578 the chain and we want to go down. */
13579 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13580 if (attr)
13581 {
13582 type = get_DW_AT_signature_type (die, attr, cu);
13583
13584 /* The type's CU may not be the same as CU.
13585 Ensure TYPE is recorded with CU in die_type_hash. */
13586 return set_die_type (die, type, cu);
13587 }
13588
13589 type = alloc_type (objfile);
13590 INIT_CPLUS_SPECIFIC (type);
13591
13592 name = dwarf2_name (die, cu);
13593 if (name != NULL)
13594 {
13595 if (cu->language == language_cplus
13596 || cu->language == language_d
13597 || cu->language == language_rust)
13598 {
13599 const char *full_name = dwarf2_full_name (name, die, cu);
13600
13601 /* dwarf2_full_name might have already finished building the DIE's
13602 type. If so, there is no need to continue. */
13603 if (get_die_type (die, cu) != NULL)
13604 return get_die_type (die, cu);
13605
13606 TYPE_TAG_NAME (type) = full_name;
13607 if (die->tag == DW_TAG_structure_type
13608 || die->tag == DW_TAG_class_type)
13609 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13610 }
13611 else
13612 {
13613 /* The name is already allocated along with this objfile, so
13614 we don't need to duplicate it for the type. */
13615 TYPE_TAG_NAME (type) = name;
13616 if (die->tag == DW_TAG_class_type)
13617 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13618 }
13619 }
13620
13621 if (die->tag == DW_TAG_structure_type)
13622 {
13623 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13624 }
13625 else if (die->tag == DW_TAG_union_type)
13626 {
13627 TYPE_CODE (type) = TYPE_CODE_UNION;
13628 }
13629 else
13630 {
13631 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13632 }
13633
13634 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13635 TYPE_DECLARED_CLASS (type) = 1;
13636
13637 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13638 if (attr)
13639 {
13640 if (attr_form_is_constant (attr))
13641 TYPE_LENGTH (type) = DW_UNSND (attr);
13642 else
13643 {
13644 /* For the moment, dynamic type sizes are not supported
13645 by GDB's struct type. The actual size is determined
13646 on-demand when resolving the type of a given object,
13647 so set the type's length to zero for now. Otherwise,
13648 we record an expression as the length, and that expression
13649 could lead to a very large value, which could eventually
13650 lead to us trying to allocate that much memory when creating
13651 a value of that type. */
13652 TYPE_LENGTH (type) = 0;
13653 }
13654 }
13655 else
13656 {
13657 TYPE_LENGTH (type) = 0;
13658 }
13659
13660 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13661 {
13662 /* ICC does not output the required DW_AT_declaration
13663 on incomplete types, but gives them a size of zero. */
13664 TYPE_STUB (type) = 1;
13665 }
13666 else
13667 TYPE_STUB_SUPPORTED (type) = 1;
13668
13669 if (die_is_declaration (die, cu))
13670 TYPE_STUB (type) = 1;
13671 else if (attr == NULL && die->child == NULL
13672 && producer_is_realview (cu->producer))
13673 /* RealView does not output the required DW_AT_declaration
13674 on incomplete types. */
13675 TYPE_STUB (type) = 1;
13676
13677 /* We need to add the type field to the die immediately so we don't
13678 infinitely recurse when dealing with pointers to the structure
13679 type within the structure itself. */
13680 set_die_type (die, type, cu);
13681
13682 /* set_die_type should be already done. */
13683 set_descriptive_type (type, die, cu);
13684
13685 return type;
13686 }
13687
13688 /* Finish creating a structure or union type, including filling in
13689 its members and creating a symbol for it. */
13690
13691 static void
13692 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13693 {
13694 struct objfile *objfile = cu->objfile;
13695 struct die_info *child_die;
13696 struct type *type;
13697
13698 type = get_die_type (die, cu);
13699 if (type == NULL)
13700 type = read_structure_type (die, cu);
13701
13702 if (die->child != NULL && ! die_is_declaration (die, cu))
13703 {
13704 struct field_info fi;
13705 VEC (symbolp) *template_args = NULL;
13706 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13707
13708 memset (&fi, 0, sizeof (struct field_info));
13709
13710 child_die = die->child;
13711
13712 while (child_die && child_die->tag)
13713 {
13714 if (child_die->tag == DW_TAG_member
13715 || child_die->tag == DW_TAG_variable)
13716 {
13717 /* NOTE: carlton/2002-11-05: A C++ static data member
13718 should be a DW_TAG_member that is a declaration, but
13719 all versions of G++ as of this writing (so through at
13720 least 3.2.1) incorrectly generate DW_TAG_variable
13721 tags for them instead. */
13722 dwarf2_add_field (&fi, child_die, cu);
13723 }
13724 else if (child_die->tag == DW_TAG_subprogram)
13725 {
13726 /* Rust doesn't have member functions in the C++ sense.
13727 However, it does emit ordinary functions as children
13728 of a struct DIE. */
13729 if (cu->language == language_rust)
13730 read_func_scope (child_die, cu);
13731 else
13732 {
13733 /* C++ member function. */
13734 dwarf2_add_member_fn (&fi, child_die, type, cu);
13735 }
13736 }
13737 else if (child_die->tag == DW_TAG_inheritance)
13738 {
13739 /* C++ base class field. */
13740 dwarf2_add_field (&fi, child_die, cu);
13741 }
13742 else if (child_die->tag == DW_TAG_typedef)
13743 dwarf2_add_typedef (&fi, child_die, cu);
13744 else if (child_die->tag == DW_TAG_template_type_param
13745 || child_die->tag == DW_TAG_template_value_param)
13746 {
13747 struct symbol *arg = new_symbol (child_die, NULL, cu);
13748
13749 if (arg != NULL)
13750 VEC_safe_push (symbolp, template_args, arg);
13751 }
13752
13753 child_die = sibling_die (child_die);
13754 }
13755
13756 /* Attach template arguments to type. */
13757 if (! VEC_empty (symbolp, template_args))
13758 {
13759 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13760 TYPE_N_TEMPLATE_ARGUMENTS (type)
13761 = VEC_length (symbolp, template_args);
13762 TYPE_TEMPLATE_ARGUMENTS (type)
13763 = XOBNEWVEC (&objfile->objfile_obstack,
13764 struct symbol *,
13765 TYPE_N_TEMPLATE_ARGUMENTS (type));
13766 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13767 VEC_address (symbolp, template_args),
13768 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13769 * sizeof (struct symbol *)));
13770 VEC_free (symbolp, template_args);
13771 }
13772
13773 /* Attach fields and member functions to the type. */
13774 if (fi.nfields)
13775 dwarf2_attach_fields_to_type (&fi, type, cu);
13776 if (fi.nfnfields)
13777 {
13778 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13779
13780 /* Get the type which refers to the base class (possibly this
13781 class itself) which contains the vtable pointer for the current
13782 class from the DW_AT_containing_type attribute. This use of
13783 DW_AT_containing_type is a GNU extension. */
13784
13785 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13786 {
13787 struct type *t = die_containing_type (die, cu);
13788
13789 set_type_vptr_basetype (type, t);
13790 if (type == t)
13791 {
13792 int i;
13793
13794 /* Our own class provides vtbl ptr. */
13795 for (i = TYPE_NFIELDS (t) - 1;
13796 i >= TYPE_N_BASECLASSES (t);
13797 --i)
13798 {
13799 const char *fieldname = TYPE_FIELD_NAME (t, i);
13800
13801 if (is_vtable_name (fieldname, cu))
13802 {
13803 set_type_vptr_fieldno (type, i);
13804 break;
13805 }
13806 }
13807
13808 /* Complain if virtual function table field not found. */
13809 if (i < TYPE_N_BASECLASSES (t))
13810 complaint (&symfile_complaints,
13811 _("virtual function table pointer "
13812 "not found when defining class '%s'"),
13813 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13814 "");
13815 }
13816 else
13817 {
13818 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13819 }
13820 }
13821 else if (cu->producer
13822 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13823 {
13824 /* The IBM XLC compiler does not provide direct indication
13825 of the containing type, but the vtable pointer is
13826 always named __vfp. */
13827
13828 int i;
13829
13830 for (i = TYPE_NFIELDS (type) - 1;
13831 i >= TYPE_N_BASECLASSES (type);
13832 --i)
13833 {
13834 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13835 {
13836 set_type_vptr_fieldno (type, i);
13837 set_type_vptr_basetype (type, type);
13838 break;
13839 }
13840 }
13841 }
13842 }
13843
13844 /* Copy fi.typedef_field_list linked list elements content into the
13845 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13846 if (fi.typedef_field_list)
13847 {
13848 int i = fi.typedef_field_list_count;
13849
13850 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13851 TYPE_TYPEDEF_FIELD_ARRAY (type)
13852 = ((struct typedef_field *)
13853 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13854 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13855
13856 /* Reverse the list order to keep the debug info elements order. */
13857 while (--i >= 0)
13858 {
13859 struct typedef_field *dest, *src;
13860
13861 dest = &TYPE_TYPEDEF_FIELD (type, i);
13862 src = &fi.typedef_field_list->field;
13863 fi.typedef_field_list = fi.typedef_field_list->next;
13864 *dest = *src;
13865 }
13866 }
13867
13868 do_cleanups (back_to);
13869 }
13870
13871 quirk_gcc_member_function_pointer (type, objfile);
13872
13873 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13874 snapshots) has been known to create a die giving a declaration
13875 for a class that has, as a child, a die giving a definition for a
13876 nested class. So we have to process our children even if the
13877 current die is a declaration. Normally, of course, a declaration
13878 won't have any children at all. */
13879
13880 child_die = die->child;
13881
13882 while (child_die != NULL && child_die->tag)
13883 {
13884 if (child_die->tag == DW_TAG_member
13885 || child_die->tag == DW_TAG_variable
13886 || child_die->tag == DW_TAG_inheritance
13887 || child_die->tag == DW_TAG_template_value_param
13888 || child_die->tag == DW_TAG_template_type_param)
13889 {
13890 /* Do nothing. */
13891 }
13892 else
13893 process_die (child_die, cu);
13894
13895 child_die = sibling_die (child_die);
13896 }
13897
13898 /* Do not consider external references. According to the DWARF standard,
13899 these DIEs are identified by the fact that they have no byte_size
13900 attribute, and a declaration attribute. */
13901 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13902 || !die_is_declaration (die, cu))
13903 new_symbol (die, type, cu);
13904 }
13905
13906 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13907 update TYPE using some information only available in DIE's children. */
13908
13909 static void
13910 update_enumeration_type_from_children (struct die_info *die,
13911 struct type *type,
13912 struct dwarf2_cu *cu)
13913 {
13914 struct die_info *child_die;
13915 int unsigned_enum = 1;
13916 int flag_enum = 1;
13917 ULONGEST mask = 0;
13918
13919 auto_obstack obstack;
13920
13921 for (child_die = die->child;
13922 child_die != NULL && child_die->tag;
13923 child_die = sibling_die (child_die))
13924 {
13925 struct attribute *attr;
13926 LONGEST value;
13927 const gdb_byte *bytes;
13928 struct dwarf2_locexpr_baton *baton;
13929 const char *name;
13930
13931 if (child_die->tag != DW_TAG_enumerator)
13932 continue;
13933
13934 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13935 if (attr == NULL)
13936 continue;
13937
13938 name = dwarf2_name (child_die, cu);
13939 if (name == NULL)
13940 name = "<anonymous enumerator>";
13941
13942 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13943 &value, &bytes, &baton);
13944 if (value < 0)
13945 {
13946 unsigned_enum = 0;
13947 flag_enum = 0;
13948 }
13949 else if ((mask & value) != 0)
13950 flag_enum = 0;
13951 else
13952 mask |= value;
13953
13954 /* If we already know that the enum type is neither unsigned, nor
13955 a flag type, no need to look at the rest of the enumerates. */
13956 if (!unsigned_enum && !flag_enum)
13957 break;
13958 }
13959
13960 if (unsigned_enum)
13961 TYPE_UNSIGNED (type) = 1;
13962 if (flag_enum)
13963 TYPE_FLAG_ENUM (type) = 1;
13964 }
13965
13966 /* Given a DW_AT_enumeration_type die, set its type. We do not
13967 complete the type's fields yet, or create any symbols. */
13968
13969 static struct type *
13970 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13971 {
13972 struct objfile *objfile = cu->objfile;
13973 struct type *type;
13974 struct attribute *attr;
13975 const char *name;
13976
13977 /* If the definition of this type lives in .debug_types, read that type.
13978 Don't follow DW_AT_specification though, that will take us back up
13979 the chain and we want to go down. */
13980 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13981 if (attr)
13982 {
13983 type = get_DW_AT_signature_type (die, attr, cu);
13984
13985 /* The type's CU may not be the same as CU.
13986 Ensure TYPE is recorded with CU in die_type_hash. */
13987 return set_die_type (die, type, cu);
13988 }
13989
13990 type = alloc_type (objfile);
13991
13992 TYPE_CODE (type) = TYPE_CODE_ENUM;
13993 name = dwarf2_full_name (NULL, die, cu);
13994 if (name != NULL)
13995 TYPE_TAG_NAME (type) = name;
13996
13997 attr = dwarf2_attr (die, DW_AT_type, cu);
13998 if (attr != NULL)
13999 {
14000 struct type *underlying_type = die_type (die, cu);
14001
14002 TYPE_TARGET_TYPE (type) = underlying_type;
14003 }
14004
14005 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14006 if (attr)
14007 {
14008 TYPE_LENGTH (type) = DW_UNSND (attr);
14009 }
14010 else
14011 {
14012 TYPE_LENGTH (type) = 0;
14013 }
14014
14015 /* The enumeration DIE can be incomplete. In Ada, any type can be
14016 declared as private in the package spec, and then defined only
14017 inside the package body. Such types are known as Taft Amendment
14018 Types. When another package uses such a type, an incomplete DIE
14019 may be generated by the compiler. */
14020 if (die_is_declaration (die, cu))
14021 TYPE_STUB (type) = 1;
14022
14023 /* Finish the creation of this type by using the enum's children.
14024 We must call this even when the underlying type has been provided
14025 so that we can determine if we're looking at a "flag" enum. */
14026 update_enumeration_type_from_children (die, type, cu);
14027
14028 /* If this type has an underlying type that is not a stub, then we
14029 may use its attributes. We always use the "unsigned" attribute
14030 in this situation, because ordinarily we guess whether the type
14031 is unsigned -- but the guess can be wrong and the underlying type
14032 can tell us the reality. However, we defer to a local size
14033 attribute if one exists, because this lets the compiler override
14034 the underlying type if needed. */
14035 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14036 {
14037 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14038 if (TYPE_LENGTH (type) == 0)
14039 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14040 }
14041
14042 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14043
14044 return set_die_type (die, type, cu);
14045 }
14046
14047 /* Given a pointer to a die which begins an enumeration, process all
14048 the dies that define the members of the enumeration, and create the
14049 symbol for the enumeration type.
14050
14051 NOTE: We reverse the order of the element list. */
14052
14053 static void
14054 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14055 {
14056 struct type *this_type;
14057
14058 this_type = get_die_type (die, cu);
14059 if (this_type == NULL)
14060 this_type = read_enumeration_type (die, cu);
14061
14062 if (die->child != NULL)
14063 {
14064 struct die_info *child_die;
14065 struct symbol *sym;
14066 struct field *fields = NULL;
14067 int num_fields = 0;
14068 const char *name;
14069
14070 child_die = die->child;
14071 while (child_die && child_die->tag)
14072 {
14073 if (child_die->tag != DW_TAG_enumerator)
14074 {
14075 process_die (child_die, cu);
14076 }
14077 else
14078 {
14079 name = dwarf2_name (child_die, cu);
14080 if (name)
14081 {
14082 sym = new_symbol (child_die, this_type, cu);
14083
14084 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14085 {
14086 fields = (struct field *)
14087 xrealloc (fields,
14088 (num_fields + DW_FIELD_ALLOC_CHUNK)
14089 * sizeof (struct field));
14090 }
14091
14092 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
14093 FIELD_TYPE (fields[num_fields]) = NULL;
14094 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
14095 FIELD_BITSIZE (fields[num_fields]) = 0;
14096
14097 num_fields++;
14098 }
14099 }
14100
14101 child_die = sibling_die (child_die);
14102 }
14103
14104 if (num_fields)
14105 {
14106 TYPE_NFIELDS (this_type) = num_fields;
14107 TYPE_FIELDS (this_type) = (struct field *)
14108 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14109 memcpy (TYPE_FIELDS (this_type), fields,
14110 sizeof (struct field) * num_fields);
14111 xfree (fields);
14112 }
14113 }
14114
14115 /* If we are reading an enum from a .debug_types unit, and the enum
14116 is a declaration, and the enum is not the signatured type in the
14117 unit, then we do not want to add a symbol for it. Adding a
14118 symbol would in some cases obscure the true definition of the
14119 enum, giving users an incomplete type when the definition is
14120 actually available. Note that we do not want to do this for all
14121 enums which are just declarations, because C++0x allows forward
14122 enum declarations. */
14123 if (cu->per_cu->is_debug_types
14124 && die_is_declaration (die, cu))
14125 {
14126 struct signatured_type *sig_type;
14127
14128 sig_type = (struct signatured_type *) cu->per_cu;
14129 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14130 if (sig_type->type_offset_in_section != die->sect_off)
14131 return;
14132 }
14133
14134 new_symbol (die, this_type, cu);
14135 }
14136
14137 /* Extract all information from a DW_TAG_array_type DIE and put it in
14138 the DIE's type field. For now, this only handles one dimensional
14139 arrays. */
14140
14141 static struct type *
14142 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
14143 {
14144 struct objfile *objfile = cu->objfile;
14145 struct die_info *child_die;
14146 struct type *type;
14147 struct type *element_type, *range_type, *index_type;
14148 struct type **range_types = NULL;
14149 struct attribute *attr;
14150 int ndim = 0;
14151 struct cleanup *back_to;
14152 const char *name;
14153 unsigned int bit_stride = 0;
14154
14155 element_type = die_type (die, cu);
14156
14157 /* The die_type call above may have already set the type for this DIE. */
14158 type = get_die_type (die, cu);
14159 if (type)
14160 return type;
14161
14162 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14163 if (attr != NULL)
14164 bit_stride = DW_UNSND (attr) * 8;
14165
14166 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14167 if (attr != NULL)
14168 bit_stride = DW_UNSND (attr);
14169
14170 /* Irix 6.2 native cc creates array types without children for
14171 arrays with unspecified length. */
14172 if (die->child == NULL)
14173 {
14174 index_type = objfile_type (objfile)->builtin_int;
14175 range_type = create_static_range_type (NULL, index_type, 0, -1);
14176 type = create_array_type_with_stride (NULL, element_type, range_type,
14177 bit_stride);
14178 return set_die_type (die, type, cu);
14179 }
14180
14181 back_to = make_cleanup (null_cleanup, NULL);
14182 child_die = die->child;
14183 while (child_die && child_die->tag)
14184 {
14185 if (child_die->tag == DW_TAG_subrange_type)
14186 {
14187 struct type *child_type = read_type_die (child_die, cu);
14188
14189 if (child_type != NULL)
14190 {
14191 /* The range type was succesfully read. Save it for the
14192 array type creation. */
14193 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14194 {
14195 range_types = (struct type **)
14196 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14197 * sizeof (struct type *));
14198 if (ndim == 0)
14199 make_cleanup (free_current_contents, &range_types);
14200 }
14201 range_types[ndim++] = child_type;
14202 }
14203 }
14204 child_die = sibling_die (child_die);
14205 }
14206
14207 /* Dwarf2 dimensions are output from left to right, create the
14208 necessary array types in backwards order. */
14209
14210 type = element_type;
14211
14212 if (read_array_order (die, cu) == DW_ORD_col_major)
14213 {
14214 int i = 0;
14215
14216 while (i < ndim)
14217 type = create_array_type_with_stride (NULL, type, range_types[i++],
14218 bit_stride);
14219 }
14220 else
14221 {
14222 while (ndim-- > 0)
14223 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14224 bit_stride);
14225 }
14226
14227 /* Understand Dwarf2 support for vector types (like they occur on
14228 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14229 array type. This is not part of the Dwarf2/3 standard yet, but a
14230 custom vendor extension. The main difference between a regular
14231 array and the vector variant is that vectors are passed by value
14232 to functions. */
14233 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14234 if (attr)
14235 make_vector_type (type);
14236
14237 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14238 implementation may choose to implement triple vectors using this
14239 attribute. */
14240 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14241 if (attr)
14242 {
14243 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14244 TYPE_LENGTH (type) = DW_UNSND (attr);
14245 else
14246 complaint (&symfile_complaints,
14247 _("DW_AT_byte_size for array type smaller "
14248 "than the total size of elements"));
14249 }
14250
14251 name = dwarf2_name (die, cu);
14252 if (name)
14253 TYPE_NAME (type) = name;
14254
14255 /* Install the type in the die. */
14256 set_die_type (die, type, cu);
14257
14258 /* set_die_type should be already done. */
14259 set_descriptive_type (type, die, cu);
14260
14261 do_cleanups (back_to);
14262
14263 return type;
14264 }
14265
14266 static enum dwarf_array_dim_ordering
14267 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14268 {
14269 struct attribute *attr;
14270
14271 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14272
14273 if (attr)
14274 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14275
14276 /* GNU F77 is a special case, as at 08/2004 array type info is the
14277 opposite order to the dwarf2 specification, but data is still
14278 laid out as per normal fortran.
14279
14280 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14281 version checking. */
14282
14283 if (cu->language == language_fortran
14284 && cu->producer && strstr (cu->producer, "GNU F77"))
14285 {
14286 return DW_ORD_row_major;
14287 }
14288
14289 switch (cu->language_defn->la_array_ordering)
14290 {
14291 case array_column_major:
14292 return DW_ORD_col_major;
14293 case array_row_major:
14294 default:
14295 return DW_ORD_row_major;
14296 };
14297 }
14298
14299 /* Extract all information from a DW_TAG_set_type DIE and put it in
14300 the DIE's type field. */
14301
14302 static struct type *
14303 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14304 {
14305 struct type *domain_type, *set_type;
14306 struct attribute *attr;
14307
14308 domain_type = die_type (die, cu);
14309
14310 /* The die_type call above may have already set the type for this DIE. */
14311 set_type = get_die_type (die, cu);
14312 if (set_type)
14313 return set_type;
14314
14315 set_type = create_set_type (NULL, domain_type);
14316
14317 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14318 if (attr)
14319 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14320
14321 return set_die_type (die, set_type, cu);
14322 }
14323
14324 /* A helper for read_common_block that creates a locexpr baton.
14325 SYM is the symbol which we are marking as computed.
14326 COMMON_DIE is the DIE for the common block.
14327 COMMON_LOC is the location expression attribute for the common
14328 block itself.
14329 MEMBER_LOC is the location expression attribute for the particular
14330 member of the common block that we are processing.
14331 CU is the CU from which the above come. */
14332
14333 static void
14334 mark_common_block_symbol_computed (struct symbol *sym,
14335 struct die_info *common_die,
14336 struct attribute *common_loc,
14337 struct attribute *member_loc,
14338 struct dwarf2_cu *cu)
14339 {
14340 struct objfile *objfile = dwarf2_per_objfile->objfile;
14341 struct dwarf2_locexpr_baton *baton;
14342 gdb_byte *ptr;
14343 unsigned int cu_off;
14344 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14345 LONGEST offset = 0;
14346
14347 gdb_assert (common_loc && member_loc);
14348 gdb_assert (attr_form_is_block (common_loc));
14349 gdb_assert (attr_form_is_block (member_loc)
14350 || attr_form_is_constant (member_loc));
14351
14352 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14353 baton->per_cu = cu->per_cu;
14354 gdb_assert (baton->per_cu);
14355
14356 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14357
14358 if (attr_form_is_constant (member_loc))
14359 {
14360 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14361 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14362 }
14363 else
14364 baton->size += DW_BLOCK (member_loc)->size;
14365
14366 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14367 baton->data = ptr;
14368
14369 *ptr++ = DW_OP_call4;
14370 cu_off = common_die->sect_off - cu->per_cu->sect_off;
14371 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14372 ptr += 4;
14373
14374 if (attr_form_is_constant (member_loc))
14375 {
14376 *ptr++ = DW_OP_addr;
14377 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14378 ptr += cu->header.addr_size;
14379 }
14380 else
14381 {
14382 /* We have to copy the data here, because DW_OP_call4 will only
14383 use a DW_AT_location attribute. */
14384 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14385 ptr += DW_BLOCK (member_loc)->size;
14386 }
14387
14388 *ptr++ = DW_OP_plus;
14389 gdb_assert (ptr - baton->data == baton->size);
14390
14391 SYMBOL_LOCATION_BATON (sym) = baton;
14392 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14393 }
14394
14395 /* Create appropriate locally-scoped variables for all the
14396 DW_TAG_common_block entries. Also create a struct common_block
14397 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14398 is used to sepate the common blocks name namespace from regular
14399 variable names. */
14400
14401 static void
14402 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14403 {
14404 struct attribute *attr;
14405
14406 attr = dwarf2_attr (die, DW_AT_location, cu);
14407 if (attr)
14408 {
14409 /* Support the .debug_loc offsets. */
14410 if (attr_form_is_block (attr))
14411 {
14412 /* Ok. */
14413 }
14414 else if (attr_form_is_section_offset (attr))
14415 {
14416 dwarf2_complex_location_expr_complaint ();
14417 attr = NULL;
14418 }
14419 else
14420 {
14421 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14422 "common block member");
14423 attr = NULL;
14424 }
14425 }
14426
14427 if (die->child != NULL)
14428 {
14429 struct objfile *objfile = cu->objfile;
14430 struct die_info *child_die;
14431 size_t n_entries = 0, size;
14432 struct common_block *common_block;
14433 struct symbol *sym;
14434
14435 for (child_die = die->child;
14436 child_die && child_die->tag;
14437 child_die = sibling_die (child_die))
14438 ++n_entries;
14439
14440 size = (sizeof (struct common_block)
14441 + (n_entries - 1) * sizeof (struct symbol *));
14442 common_block
14443 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14444 size);
14445 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14446 common_block->n_entries = 0;
14447
14448 for (child_die = die->child;
14449 child_die && child_die->tag;
14450 child_die = sibling_die (child_die))
14451 {
14452 /* Create the symbol in the DW_TAG_common_block block in the current
14453 symbol scope. */
14454 sym = new_symbol (child_die, NULL, cu);
14455 if (sym != NULL)
14456 {
14457 struct attribute *member_loc;
14458
14459 common_block->contents[common_block->n_entries++] = sym;
14460
14461 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14462 cu);
14463 if (member_loc)
14464 {
14465 /* GDB has handled this for a long time, but it is
14466 not specified by DWARF. It seems to have been
14467 emitted by gfortran at least as recently as:
14468 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14469 complaint (&symfile_complaints,
14470 _("Variable in common block has "
14471 "DW_AT_data_member_location "
14472 "- DIE at 0x%x [in module %s]"),
14473 to_underlying (child_die->sect_off),
14474 objfile_name (cu->objfile));
14475
14476 if (attr_form_is_section_offset (member_loc))
14477 dwarf2_complex_location_expr_complaint ();
14478 else if (attr_form_is_constant (member_loc)
14479 || attr_form_is_block (member_loc))
14480 {
14481 if (attr)
14482 mark_common_block_symbol_computed (sym, die, attr,
14483 member_loc, cu);
14484 }
14485 else
14486 dwarf2_complex_location_expr_complaint ();
14487 }
14488 }
14489 }
14490
14491 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14492 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14493 }
14494 }
14495
14496 /* Create a type for a C++ namespace. */
14497
14498 static struct type *
14499 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14500 {
14501 struct objfile *objfile = cu->objfile;
14502 const char *previous_prefix, *name;
14503 int is_anonymous;
14504 struct type *type;
14505
14506 /* For extensions, reuse the type of the original namespace. */
14507 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14508 {
14509 struct die_info *ext_die;
14510 struct dwarf2_cu *ext_cu = cu;
14511
14512 ext_die = dwarf2_extension (die, &ext_cu);
14513 type = read_type_die (ext_die, ext_cu);
14514
14515 /* EXT_CU may not be the same as CU.
14516 Ensure TYPE is recorded with CU in die_type_hash. */
14517 return set_die_type (die, type, cu);
14518 }
14519
14520 name = namespace_name (die, &is_anonymous, cu);
14521
14522 /* Now build the name of the current namespace. */
14523
14524 previous_prefix = determine_prefix (die, cu);
14525 if (previous_prefix[0] != '\0')
14526 name = typename_concat (&objfile->objfile_obstack,
14527 previous_prefix, name, 0, cu);
14528
14529 /* Create the type. */
14530 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14531 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14532
14533 return set_die_type (die, type, cu);
14534 }
14535
14536 /* Read a namespace scope. */
14537
14538 static void
14539 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14540 {
14541 struct objfile *objfile = cu->objfile;
14542 int is_anonymous;
14543
14544 /* Add a symbol associated to this if we haven't seen the namespace
14545 before. Also, add a using directive if it's an anonymous
14546 namespace. */
14547
14548 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14549 {
14550 struct type *type;
14551
14552 type = read_type_die (die, cu);
14553 new_symbol (die, type, cu);
14554
14555 namespace_name (die, &is_anonymous, cu);
14556 if (is_anonymous)
14557 {
14558 const char *previous_prefix = determine_prefix (die, cu);
14559
14560 add_using_directive (using_directives (cu->language),
14561 previous_prefix, TYPE_NAME (type), NULL,
14562 NULL, NULL, 0, &objfile->objfile_obstack);
14563 }
14564 }
14565
14566 if (die->child != NULL)
14567 {
14568 struct die_info *child_die = die->child;
14569
14570 while (child_die && child_die->tag)
14571 {
14572 process_die (child_die, cu);
14573 child_die = sibling_die (child_die);
14574 }
14575 }
14576 }
14577
14578 /* Read a Fortran module as type. This DIE can be only a declaration used for
14579 imported module. Still we need that type as local Fortran "use ... only"
14580 declaration imports depend on the created type in determine_prefix. */
14581
14582 static struct type *
14583 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14584 {
14585 struct objfile *objfile = cu->objfile;
14586 const char *module_name;
14587 struct type *type;
14588
14589 module_name = dwarf2_name (die, cu);
14590 if (!module_name)
14591 complaint (&symfile_complaints,
14592 _("DW_TAG_module has no name, offset 0x%x"),
14593 to_underlying (die->sect_off));
14594 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14595
14596 /* determine_prefix uses TYPE_TAG_NAME. */
14597 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14598
14599 return set_die_type (die, type, cu);
14600 }
14601
14602 /* Read a Fortran module. */
14603
14604 static void
14605 read_module (struct die_info *die, struct dwarf2_cu *cu)
14606 {
14607 struct die_info *child_die = die->child;
14608 struct type *type;
14609
14610 type = read_type_die (die, cu);
14611 new_symbol (die, type, cu);
14612
14613 while (child_die && child_die->tag)
14614 {
14615 process_die (child_die, cu);
14616 child_die = sibling_die (child_die);
14617 }
14618 }
14619
14620 /* Return the name of the namespace represented by DIE. Set
14621 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14622 namespace. */
14623
14624 static const char *
14625 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14626 {
14627 struct die_info *current_die;
14628 const char *name = NULL;
14629
14630 /* Loop through the extensions until we find a name. */
14631
14632 for (current_die = die;
14633 current_die != NULL;
14634 current_die = dwarf2_extension (die, &cu))
14635 {
14636 /* We don't use dwarf2_name here so that we can detect the absence
14637 of a name -> anonymous namespace. */
14638 name = dwarf2_string_attr (die, DW_AT_name, cu);
14639
14640 if (name != NULL)
14641 break;
14642 }
14643
14644 /* Is it an anonymous namespace? */
14645
14646 *is_anonymous = (name == NULL);
14647 if (*is_anonymous)
14648 name = CP_ANONYMOUS_NAMESPACE_STR;
14649
14650 return name;
14651 }
14652
14653 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14654 the user defined type vector. */
14655
14656 static struct type *
14657 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14658 {
14659 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14660 struct comp_unit_head *cu_header = &cu->header;
14661 struct type *type;
14662 struct attribute *attr_byte_size;
14663 struct attribute *attr_address_class;
14664 int byte_size, addr_class;
14665 struct type *target_type;
14666
14667 target_type = die_type (die, cu);
14668
14669 /* The die_type call above may have already set the type for this DIE. */
14670 type = get_die_type (die, cu);
14671 if (type)
14672 return type;
14673
14674 type = lookup_pointer_type (target_type);
14675
14676 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14677 if (attr_byte_size)
14678 byte_size = DW_UNSND (attr_byte_size);
14679 else
14680 byte_size = cu_header->addr_size;
14681
14682 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14683 if (attr_address_class)
14684 addr_class = DW_UNSND (attr_address_class);
14685 else
14686 addr_class = DW_ADDR_none;
14687
14688 /* If the pointer size or address class is different than the
14689 default, create a type variant marked as such and set the
14690 length accordingly. */
14691 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14692 {
14693 if (gdbarch_address_class_type_flags_p (gdbarch))
14694 {
14695 int type_flags;
14696
14697 type_flags = gdbarch_address_class_type_flags
14698 (gdbarch, byte_size, addr_class);
14699 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14700 == 0);
14701 type = make_type_with_address_space (type, type_flags);
14702 }
14703 else if (TYPE_LENGTH (type) != byte_size)
14704 {
14705 complaint (&symfile_complaints,
14706 _("invalid pointer size %d"), byte_size);
14707 }
14708 else
14709 {
14710 /* Should we also complain about unhandled address classes? */
14711 }
14712 }
14713
14714 TYPE_LENGTH (type) = byte_size;
14715 return set_die_type (die, type, cu);
14716 }
14717
14718 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14719 the user defined type vector. */
14720
14721 static struct type *
14722 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14723 {
14724 struct type *type;
14725 struct type *to_type;
14726 struct type *domain;
14727
14728 to_type = die_type (die, cu);
14729 domain = die_containing_type (die, cu);
14730
14731 /* The calls above may have already set the type for this DIE. */
14732 type = get_die_type (die, cu);
14733 if (type)
14734 return type;
14735
14736 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14737 type = lookup_methodptr_type (to_type);
14738 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14739 {
14740 struct type *new_type = alloc_type (cu->objfile);
14741
14742 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14743 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14744 TYPE_VARARGS (to_type));
14745 type = lookup_methodptr_type (new_type);
14746 }
14747 else
14748 type = lookup_memberptr_type (to_type, domain);
14749
14750 return set_die_type (die, type, cu);
14751 }
14752
14753 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
14754 the user defined type vector. */
14755
14756 static struct type *
14757 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14758 enum type_code refcode)
14759 {
14760 struct comp_unit_head *cu_header = &cu->header;
14761 struct type *type, *target_type;
14762 struct attribute *attr;
14763
14764 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14765
14766 target_type = die_type (die, cu);
14767
14768 /* The die_type call above may have already set the type for this DIE. */
14769 type = get_die_type (die, cu);
14770 if (type)
14771 return type;
14772
14773 type = lookup_reference_type (target_type, refcode);
14774 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14775 if (attr)
14776 {
14777 TYPE_LENGTH (type) = DW_UNSND (attr);
14778 }
14779 else
14780 {
14781 TYPE_LENGTH (type) = cu_header->addr_size;
14782 }
14783 return set_die_type (die, type, cu);
14784 }
14785
14786 /* Add the given cv-qualifiers to the element type of the array. GCC
14787 outputs DWARF type qualifiers that apply to an array, not the
14788 element type. But GDB relies on the array element type to carry
14789 the cv-qualifiers. This mimics section 6.7.3 of the C99
14790 specification. */
14791
14792 static struct type *
14793 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14794 struct type *base_type, int cnst, int voltl)
14795 {
14796 struct type *el_type, *inner_array;
14797
14798 base_type = copy_type (base_type);
14799 inner_array = base_type;
14800
14801 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14802 {
14803 TYPE_TARGET_TYPE (inner_array) =
14804 copy_type (TYPE_TARGET_TYPE (inner_array));
14805 inner_array = TYPE_TARGET_TYPE (inner_array);
14806 }
14807
14808 el_type = TYPE_TARGET_TYPE (inner_array);
14809 cnst |= TYPE_CONST (el_type);
14810 voltl |= TYPE_VOLATILE (el_type);
14811 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14812
14813 return set_die_type (die, base_type, cu);
14814 }
14815
14816 static struct type *
14817 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14818 {
14819 struct type *base_type, *cv_type;
14820
14821 base_type = die_type (die, cu);
14822
14823 /* The die_type call above may have already set the type for this DIE. */
14824 cv_type = get_die_type (die, cu);
14825 if (cv_type)
14826 return cv_type;
14827
14828 /* In case the const qualifier is applied to an array type, the element type
14829 is so qualified, not the array type (section 6.7.3 of C99). */
14830 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14831 return add_array_cv_type (die, cu, base_type, 1, 0);
14832
14833 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14834 return set_die_type (die, cv_type, cu);
14835 }
14836
14837 static struct type *
14838 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14839 {
14840 struct type *base_type, *cv_type;
14841
14842 base_type = die_type (die, cu);
14843
14844 /* The die_type call above may have already set the type for this DIE. */
14845 cv_type = get_die_type (die, cu);
14846 if (cv_type)
14847 return cv_type;
14848
14849 /* In case the volatile qualifier is applied to an array type, the
14850 element type is so qualified, not the array type (section 6.7.3
14851 of C99). */
14852 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14853 return add_array_cv_type (die, cu, base_type, 0, 1);
14854
14855 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14856 return set_die_type (die, cv_type, cu);
14857 }
14858
14859 /* Handle DW_TAG_restrict_type. */
14860
14861 static struct type *
14862 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14863 {
14864 struct type *base_type, *cv_type;
14865
14866 base_type = die_type (die, cu);
14867
14868 /* The die_type call above may have already set the type for this DIE. */
14869 cv_type = get_die_type (die, cu);
14870 if (cv_type)
14871 return cv_type;
14872
14873 cv_type = make_restrict_type (base_type);
14874 return set_die_type (die, cv_type, cu);
14875 }
14876
14877 /* Handle DW_TAG_atomic_type. */
14878
14879 static struct type *
14880 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14881 {
14882 struct type *base_type, *cv_type;
14883
14884 base_type = die_type (die, cu);
14885
14886 /* The die_type call above may have already set the type for this DIE. */
14887 cv_type = get_die_type (die, cu);
14888 if (cv_type)
14889 return cv_type;
14890
14891 cv_type = make_atomic_type (base_type);
14892 return set_die_type (die, cv_type, cu);
14893 }
14894
14895 /* Extract all information from a DW_TAG_string_type DIE and add to
14896 the user defined type vector. It isn't really a user defined type,
14897 but it behaves like one, with other DIE's using an AT_user_def_type
14898 attribute to reference it. */
14899
14900 static struct type *
14901 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14902 {
14903 struct objfile *objfile = cu->objfile;
14904 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14905 struct type *type, *range_type, *index_type, *char_type;
14906 struct attribute *attr;
14907 unsigned int length;
14908
14909 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14910 if (attr)
14911 {
14912 length = DW_UNSND (attr);
14913 }
14914 else
14915 {
14916 /* Check for the DW_AT_byte_size attribute. */
14917 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14918 if (attr)
14919 {
14920 length = DW_UNSND (attr);
14921 }
14922 else
14923 {
14924 length = 1;
14925 }
14926 }
14927
14928 index_type = objfile_type (objfile)->builtin_int;
14929 range_type = create_static_range_type (NULL, index_type, 1, length);
14930 char_type = language_string_char_type (cu->language_defn, gdbarch);
14931 type = create_string_type (NULL, char_type, range_type);
14932
14933 return set_die_type (die, type, cu);
14934 }
14935
14936 /* Assuming that DIE corresponds to a function, returns nonzero
14937 if the function is prototyped. */
14938
14939 static int
14940 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14941 {
14942 struct attribute *attr;
14943
14944 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14945 if (attr && (DW_UNSND (attr) != 0))
14946 return 1;
14947
14948 /* The DWARF standard implies that the DW_AT_prototyped attribute
14949 is only meaninful for C, but the concept also extends to other
14950 languages that allow unprototyped functions (Eg: Objective C).
14951 For all other languages, assume that functions are always
14952 prototyped. */
14953 if (cu->language != language_c
14954 && cu->language != language_objc
14955 && cu->language != language_opencl)
14956 return 1;
14957
14958 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14959 prototyped and unprototyped functions; default to prototyped,
14960 since that is more common in modern code (and RealView warns
14961 about unprototyped functions). */
14962 if (producer_is_realview (cu->producer))
14963 return 1;
14964
14965 return 0;
14966 }
14967
14968 /* Handle DIES due to C code like:
14969
14970 struct foo
14971 {
14972 int (*funcp)(int a, long l);
14973 int b;
14974 };
14975
14976 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14977
14978 static struct type *
14979 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14980 {
14981 struct objfile *objfile = cu->objfile;
14982 struct type *type; /* Type that this function returns. */
14983 struct type *ftype; /* Function that returns above type. */
14984 struct attribute *attr;
14985
14986 type = die_type (die, cu);
14987
14988 /* The die_type call above may have already set the type for this DIE. */
14989 ftype = get_die_type (die, cu);
14990 if (ftype)
14991 return ftype;
14992
14993 ftype = lookup_function_type (type);
14994
14995 if (prototyped_function_p (die, cu))
14996 TYPE_PROTOTYPED (ftype) = 1;
14997
14998 /* Store the calling convention in the type if it's available in
14999 the subroutine die. Otherwise set the calling convention to
15000 the default value DW_CC_normal. */
15001 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15002 if (attr)
15003 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
15004 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
15005 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
15006 else
15007 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
15008
15009 /* Record whether the function returns normally to its caller or not
15010 if the DWARF producer set that information. */
15011 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15012 if (attr && (DW_UNSND (attr) != 0))
15013 TYPE_NO_RETURN (ftype) = 1;
15014
15015 /* We need to add the subroutine type to the die immediately so
15016 we don't infinitely recurse when dealing with parameters
15017 declared as the same subroutine type. */
15018 set_die_type (die, ftype, cu);
15019
15020 if (die->child != NULL)
15021 {
15022 struct type *void_type = objfile_type (objfile)->builtin_void;
15023 struct die_info *child_die;
15024 int nparams, iparams;
15025
15026 /* Count the number of parameters.
15027 FIXME: GDB currently ignores vararg functions, but knows about
15028 vararg member functions. */
15029 nparams = 0;
15030 child_die = die->child;
15031 while (child_die && child_die->tag)
15032 {
15033 if (child_die->tag == DW_TAG_formal_parameter)
15034 nparams++;
15035 else if (child_die->tag == DW_TAG_unspecified_parameters)
15036 TYPE_VARARGS (ftype) = 1;
15037 child_die = sibling_die (child_die);
15038 }
15039
15040 /* Allocate storage for parameters and fill them in. */
15041 TYPE_NFIELDS (ftype) = nparams;
15042 TYPE_FIELDS (ftype) = (struct field *)
15043 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
15044
15045 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15046 even if we error out during the parameters reading below. */
15047 for (iparams = 0; iparams < nparams; iparams++)
15048 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15049
15050 iparams = 0;
15051 child_die = die->child;
15052 while (child_die && child_die->tag)
15053 {
15054 if (child_die->tag == DW_TAG_formal_parameter)
15055 {
15056 struct type *arg_type;
15057
15058 /* DWARF version 2 has no clean way to discern C++
15059 static and non-static member functions. G++ helps
15060 GDB by marking the first parameter for non-static
15061 member functions (which is the this pointer) as
15062 artificial. We pass this information to
15063 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15064
15065 DWARF version 3 added DW_AT_object_pointer, which GCC
15066 4.5 does not yet generate. */
15067 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
15068 if (attr)
15069 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15070 else
15071 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
15072 arg_type = die_type (child_die, cu);
15073
15074 /* RealView does not mark THIS as const, which the testsuite
15075 expects. GCC marks THIS as const in method definitions,
15076 but not in the class specifications (GCC PR 43053). */
15077 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15078 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15079 {
15080 int is_this = 0;
15081 struct dwarf2_cu *arg_cu = cu;
15082 const char *name = dwarf2_name (child_die, cu);
15083
15084 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15085 if (attr)
15086 {
15087 /* If the compiler emits this, use it. */
15088 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15089 is_this = 1;
15090 }
15091 else if (name && strcmp (name, "this") == 0)
15092 /* Function definitions will have the argument names. */
15093 is_this = 1;
15094 else if (name == NULL && iparams == 0)
15095 /* Declarations may not have the names, so like
15096 elsewhere in GDB, assume an artificial first
15097 argument is "this". */
15098 is_this = 1;
15099
15100 if (is_this)
15101 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15102 arg_type, 0);
15103 }
15104
15105 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
15106 iparams++;
15107 }
15108 child_die = sibling_die (child_die);
15109 }
15110 }
15111
15112 return ftype;
15113 }
15114
15115 static struct type *
15116 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
15117 {
15118 struct objfile *objfile = cu->objfile;
15119 const char *name = NULL;
15120 struct type *this_type, *target_type;
15121
15122 name = dwarf2_full_name (NULL, die, cu);
15123 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15124 TYPE_TARGET_STUB (this_type) = 1;
15125 set_die_type (die, this_type, cu);
15126 target_type = die_type (die, cu);
15127 if (target_type != this_type)
15128 TYPE_TARGET_TYPE (this_type) = target_type;
15129 else
15130 {
15131 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15132 spec and cause infinite loops in GDB. */
15133 complaint (&symfile_complaints,
15134 _("Self-referential DW_TAG_typedef "
15135 "- DIE at 0x%x [in module %s]"),
15136 to_underlying (die->sect_off), objfile_name (objfile));
15137 TYPE_TARGET_TYPE (this_type) = NULL;
15138 }
15139 return this_type;
15140 }
15141
15142 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15143 (which may be different from NAME) to the architecture back-end to allow
15144 it to guess the correct format if necessary. */
15145
15146 static struct type *
15147 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15148 const char *name_hint)
15149 {
15150 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15151 const struct floatformat **format;
15152 struct type *type;
15153
15154 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15155 if (format)
15156 type = init_float_type (objfile, bits, name, format);
15157 else
15158 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
15159
15160 return type;
15161 }
15162
15163 /* Find a representation of a given base type and install
15164 it in the TYPE field of the die. */
15165
15166 static struct type *
15167 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
15168 {
15169 struct objfile *objfile = cu->objfile;
15170 struct type *type;
15171 struct attribute *attr;
15172 int encoding = 0, bits = 0;
15173 const char *name;
15174
15175 attr = dwarf2_attr (die, DW_AT_encoding, cu);
15176 if (attr)
15177 {
15178 encoding = DW_UNSND (attr);
15179 }
15180 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15181 if (attr)
15182 {
15183 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
15184 }
15185 name = dwarf2_name (die, cu);
15186 if (!name)
15187 {
15188 complaint (&symfile_complaints,
15189 _("DW_AT_name missing from DW_TAG_base_type"));
15190 }
15191
15192 switch (encoding)
15193 {
15194 case DW_ATE_address:
15195 /* Turn DW_ATE_address into a void * pointer. */
15196 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15197 type = init_pointer_type (objfile, bits, name, type);
15198 break;
15199 case DW_ATE_boolean:
15200 type = init_boolean_type (objfile, bits, 1, name);
15201 break;
15202 case DW_ATE_complex_float:
15203 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15204 type = init_complex_type (objfile, name, type);
15205 break;
15206 case DW_ATE_decimal_float:
15207 type = init_decfloat_type (objfile, bits, name);
15208 break;
15209 case DW_ATE_float:
15210 type = dwarf2_init_float_type (objfile, bits, name, name);
15211 break;
15212 case DW_ATE_signed:
15213 type = init_integer_type (objfile, bits, 0, name);
15214 break;
15215 case DW_ATE_unsigned:
15216 if (cu->language == language_fortran
15217 && name
15218 && startswith (name, "character("))
15219 type = init_character_type (objfile, bits, 1, name);
15220 else
15221 type = init_integer_type (objfile, bits, 1, name);
15222 break;
15223 case DW_ATE_signed_char:
15224 if (cu->language == language_ada || cu->language == language_m2
15225 || cu->language == language_pascal
15226 || cu->language == language_fortran)
15227 type = init_character_type (objfile, bits, 0, name);
15228 else
15229 type = init_integer_type (objfile, bits, 0, name);
15230 break;
15231 case DW_ATE_unsigned_char:
15232 if (cu->language == language_ada || cu->language == language_m2
15233 || cu->language == language_pascal
15234 || cu->language == language_fortran
15235 || cu->language == language_rust)
15236 type = init_character_type (objfile, bits, 1, name);
15237 else
15238 type = init_integer_type (objfile, bits, 1, name);
15239 break;
15240 case DW_ATE_UTF:
15241 {
15242 gdbarch *arch = get_objfile_arch (objfile);
15243
15244 if (bits == 16)
15245 type = builtin_type (arch)->builtin_char16;
15246 else if (bits == 32)
15247 type = builtin_type (arch)->builtin_char32;
15248 else
15249 {
15250 complaint (&symfile_complaints,
15251 _("unsupported DW_ATE_UTF bit size: '%d'"),
15252 bits);
15253 type = init_integer_type (objfile, bits, 1, name);
15254 }
15255 return set_die_type (die, type, cu);
15256 }
15257 break;
15258
15259 default:
15260 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15261 dwarf_type_encoding_name (encoding));
15262 type = init_type (objfile, TYPE_CODE_ERROR,
15263 bits / TARGET_CHAR_BIT, name);
15264 break;
15265 }
15266
15267 if (name && strcmp (name, "char") == 0)
15268 TYPE_NOSIGN (type) = 1;
15269
15270 return set_die_type (die, type, cu);
15271 }
15272
15273 /* Parse dwarf attribute if it's a block, reference or constant and put the
15274 resulting value of the attribute into struct bound_prop.
15275 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15276
15277 static int
15278 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15279 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15280 {
15281 struct dwarf2_property_baton *baton;
15282 struct obstack *obstack = &cu->objfile->objfile_obstack;
15283
15284 if (attr == NULL || prop == NULL)
15285 return 0;
15286
15287 if (attr_form_is_block (attr))
15288 {
15289 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15290 baton->referenced_type = NULL;
15291 baton->locexpr.per_cu = cu->per_cu;
15292 baton->locexpr.size = DW_BLOCK (attr)->size;
15293 baton->locexpr.data = DW_BLOCK (attr)->data;
15294 prop->data.baton = baton;
15295 prop->kind = PROP_LOCEXPR;
15296 gdb_assert (prop->data.baton != NULL);
15297 }
15298 else if (attr_form_is_ref (attr))
15299 {
15300 struct dwarf2_cu *target_cu = cu;
15301 struct die_info *target_die;
15302 struct attribute *target_attr;
15303
15304 target_die = follow_die_ref (die, attr, &target_cu);
15305 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15306 if (target_attr == NULL)
15307 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15308 target_cu);
15309 if (target_attr == NULL)
15310 return 0;
15311
15312 switch (target_attr->name)
15313 {
15314 case DW_AT_location:
15315 if (attr_form_is_section_offset (target_attr))
15316 {
15317 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15318 baton->referenced_type = die_type (target_die, target_cu);
15319 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15320 prop->data.baton = baton;
15321 prop->kind = PROP_LOCLIST;
15322 gdb_assert (prop->data.baton != NULL);
15323 }
15324 else if (attr_form_is_block (target_attr))
15325 {
15326 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15327 baton->referenced_type = die_type (target_die, target_cu);
15328 baton->locexpr.per_cu = cu->per_cu;
15329 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15330 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15331 prop->data.baton = baton;
15332 prop->kind = PROP_LOCEXPR;
15333 gdb_assert (prop->data.baton != NULL);
15334 }
15335 else
15336 {
15337 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15338 "dynamic property");
15339 return 0;
15340 }
15341 break;
15342 case DW_AT_data_member_location:
15343 {
15344 LONGEST offset;
15345
15346 if (!handle_data_member_location (target_die, target_cu,
15347 &offset))
15348 return 0;
15349
15350 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15351 baton->referenced_type = read_type_die (target_die->parent,
15352 target_cu);
15353 baton->offset_info.offset = offset;
15354 baton->offset_info.type = die_type (target_die, target_cu);
15355 prop->data.baton = baton;
15356 prop->kind = PROP_ADDR_OFFSET;
15357 break;
15358 }
15359 }
15360 }
15361 else if (attr_form_is_constant (attr))
15362 {
15363 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15364 prop->kind = PROP_CONST;
15365 }
15366 else
15367 {
15368 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15369 dwarf2_name (die, cu));
15370 return 0;
15371 }
15372
15373 return 1;
15374 }
15375
15376 /* Read the given DW_AT_subrange DIE. */
15377
15378 static struct type *
15379 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15380 {
15381 struct type *base_type, *orig_base_type;
15382 struct type *range_type;
15383 struct attribute *attr;
15384 struct dynamic_prop low, high;
15385 int low_default_is_valid;
15386 int high_bound_is_count = 0;
15387 const char *name;
15388 LONGEST negative_mask;
15389
15390 orig_base_type = die_type (die, cu);
15391 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15392 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15393 creating the range type, but we use the result of check_typedef
15394 when examining properties of the type. */
15395 base_type = check_typedef (orig_base_type);
15396
15397 /* The die_type call above may have already set the type for this DIE. */
15398 range_type = get_die_type (die, cu);
15399 if (range_type)
15400 return range_type;
15401
15402 low.kind = PROP_CONST;
15403 high.kind = PROP_CONST;
15404 high.data.const_val = 0;
15405
15406 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15407 omitting DW_AT_lower_bound. */
15408 switch (cu->language)
15409 {
15410 case language_c:
15411 case language_cplus:
15412 low.data.const_val = 0;
15413 low_default_is_valid = 1;
15414 break;
15415 case language_fortran:
15416 low.data.const_val = 1;
15417 low_default_is_valid = 1;
15418 break;
15419 case language_d:
15420 case language_objc:
15421 case language_rust:
15422 low.data.const_val = 0;
15423 low_default_is_valid = (cu->header.version >= 4);
15424 break;
15425 case language_ada:
15426 case language_m2:
15427 case language_pascal:
15428 low.data.const_val = 1;
15429 low_default_is_valid = (cu->header.version >= 4);
15430 break;
15431 default:
15432 low.data.const_val = 0;
15433 low_default_is_valid = 0;
15434 break;
15435 }
15436
15437 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15438 if (attr)
15439 attr_to_dynamic_prop (attr, die, cu, &low);
15440 else if (!low_default_is_valid)
15441 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15442 "- DIE at 0x%x [in module %s]"),
15443 to_underlying (die->sect_off), objfile_name (cu->objfile));
15444
15445 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15446 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15447 {
15448 attr = dwarf2_attr (die, DW_AT_count, cu);
15449 if (attr_to_dynamic_prop (attr, die, cu, &high))
15450 {
15451 /* If bounds are constant do the final calculation here. */
15452 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15453 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15454 else
15455 high_bound_is_count = 1;
15456 }
15457 }
15458
15459 /* Dwarf-2 specifications explicitly allows to create subrange types
15460 without specifying a base type.
15461 In that case, the base type must be set to the type of
15462 the lower bound, upper bound or count, in that order, if any of these
15463 three attributes references an object that has a type.
15464 If no base type is found, the Dwarf-2 specifications say that
15465 a signed integer type of size equal to the size of an address should
15466 be used.
15467 For the following C code: `extern char gdb_int [];'
15468 GCC produces an empty range DIE.
15469 FIXME: muller/2010-05-28: Possible references to object for low bound,
15470 high bound or count are not yet handled by this code. */
15471 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15472 {
15473 struct objfile *objfile = cu->objfile;
15474 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15475 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15476 struct type *int_type = objfile_type (objfile)->builtin_int;
15477
15478 /* Test "int", "long int", and "long long int" objfile types,
15479 and select the first one having a size above or equal to the
15480 architecture address size. */
15481 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15482 base_type = int_type;
15483 else
15484 {
15485 int_type = objfile_type (objfile)->builtin_long;
15486 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15487 base_type = int_type;
15488 else
15489 {
15490 int_type = objfile_type (objfile)->builtin_long_long;
15491 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15492 base_type = int_type;
15493 }
15494 }
15495 }
15496
15497 /* Normally, the DWARF producers are expected to use a signed
15498 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15499 But this is unfortunately not always the case, as witnessed
15500 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15501 is used instead. To work around that ambiguity, we treat
15502 the bounds as signed, and thus sign-extend their values, when
15503 the base type is signed. */
15504 negative_mask =
15505 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15506 if (low.kind == PROP_CONST
15507 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15508 low.data.const_val |= negative_mask;
15509 if (high.kind == PROP_CONST
15510 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15511 high.data.const_val |= negative_mask;
15512
15513 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15514
15515 if (high_bound_is_count)
15516 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15517
15518 /* Ada expects an empty array on no boundary attributes. */
15519 if (attr == NULL && cu->language != language_ada)
15520 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15521
15522 name = dwarf2_name (die, cu);
15523 if (name)
15524 TYPE_NAME (range_type) = name;
15525
15526 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15527 if (attr)
15528 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15529
15530 set_die_type (die, range_type, cu);
15531
15532 /* set_die_type should be already done. */
15533 set_descriptive_type (range_type, die, cu);
15534
15535 return range_type;
15536 }
15537
15538 static struct type *
15539 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15540 {
15541 struct type *type;
15542
15543 /* For now, we only support the C meaning of an unspecified type: void. */
15544
15545 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15546 TYPE_NAME (type) = dwarf2_name (die, cu);
15547
15548 return set_die_type (die, type, cu);
15549 }
15550
15551 /* Read a single die and all its descendents. Set the die's sibling
15552 field to NULL; set other fields in the die correctly, and set all
15553 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15554 location of the info_ptr after reading all of those dies. PARENT
15555 is the parent of the die in question. */
15556
15557 static struct die_info *
15558 read_die_and_children (const struct die_reader_specs *reader,
15559 const gdb_byte *info_ptr,
15560 const gdb_byte **new_info_ptr,
15561 struct die_info *parent)
15562 {
15563 struct die_info *die;
15564 const gdb_byte *cur_ptr;
15565 int has_children;
15566
15567 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15568 if (die == NULL)
15569 {
15570 *new_info_ptr = cur_ptr;
15571 return NULL;
15572 }
15573 store_in_ref_table (die, reader->cu);
15574
15575 if (has_children)
15576 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15577 else
15578 {
15579 die->child = NULL;
15580 *new_info_ptr = cur_ptr;
15581 }
15582
15583 die->sibling = NULL;
15584 die->parent = parent;
15585 return die;
15586 }
15587
15588 /* Read a die, all of its descendents, and all of its siblings; set
15589 all of the fields of all of the dies correctly. Arguments are as
15590 in read_die_and_children. */
15591
15592 static struct die_info *
15593 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15594 const gdb_byte *info_ptr,
15595 const gdb_byte **new_info_ptr,
15596 struct die_info *parent)
15597 {
15598 struct die_info *first_die, *last_sibling;
15599 const gdb_byte *cur_ptr;
15600
15601 cur_ptr = info_ptr;
15602 first_die = last_sibling = NULL;
15603
15604 while (1)
15605 {
15606 struct die_info *die
15607 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15608
15609 if (die == NULL)
15610 {
15611 *new_info_ptr = cur_ptr;
15612 return first_die;
15613 }
15614
15615 if (!first_die)
15616 first_die = die;
15617 else
15618 last_sibling->sibling = die;
15619
15620 last_sibling = die;
15621 }
15622 }
15623
15624 /* Read a die, all of its descendents, and all of its siblings; set
15625 all of the fields of all of the dies correctly. Arguments are as
15626 in read_die_and_children.
15627 This the main entry point for reading a DIE and all its children. */
15628
15629 static struct die_info *
15630 read_die_and_siblings (const struct die_reader_specs *reader,
15631 const gdb_byte *info_ptr,
15632 const gdb_byte **new_info_ptr,
15633 struct die_info *parent)
15634 {
15635 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15636 new_info_ptr, parent);
15637
15638 if (dwarf_die_debug)
15639 {
15640 fprintf_unfiltered (gdb_stdlog,
15641 "Read die from %s@0x%x of %s:\n",
15642 get_section_name (reader->die_section),
15643 (unsigned) (info_ptr - reader->die_section->buffer),
15644 bfd_get_filename (reader->abfd));
15645 dump_die (die, dwarf_die_debug);
15646 }
15647
15648 return die;
15649 }
15650
15651 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15652 attributes.
15653 The caller is responsible for filling in the extra attributes
15654 and updating (*DIEP)->num_attrs.
15655 Set DIEP to point to a newly allocated die with its information,
15656 except for its child, sibling, and parent fields.
15657 Set HAS_CHILDREN to tell whether the die has children or not. */
15658
15659 static const gdb_byte *
15660 read_full_die_1 (const struct die_reader_specs *reader,
15661 struct die_info **diep, const gdb_byte *info_ptr,
15662 int *has_children, int num_extra_attrs)
15663 {
15664 unsigned int abbrev_number, bytes_read, i;
15665 struct abbrev_info *abbrev;
15666 struct die_info *die;
15667 struct dwarf2_cu *cu = reader->cu;
15668 bfd *abfd = reader->abfd;
15669
15670 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
15671 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15672 info_ptr += bytes_read;
15673 if (!abbrev_number)
15674 {
15675 *diep = NULL;
15676 *has_children = 0;
15677 return info_ptr;
15678 }
15679
15680 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15681 if (!abbrev)
15682 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15683 abbrev_number,
15684 bfd_get_filename (abfd));
15685
15686 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15687 die->sect_off = sect_off;
15688 die->tag = abbrev->tag;
15689 die->abbrev = abbrev_number;
15690
15691 /* Make the result usable.
15692 The caller needs to update num_attrs after adding the extra
15693 attributes. */
15694 die->num_attrs = abbrev->num_attrs;
15695
15696 for (i = 0; i < abbrev->num_attrs; ++i)
15697 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15698 info_ptr);
15699
15700 *diep = die;
15701 *has_children = abbrev->has_children;
15702 return info_ptr;
15703 }
15704
15705 /* Read a die and all its attributes.
15706 Set DIEP to point to a newly allocated die with its information,
15707 except for its child, sibling, and parent fields.
15708 Set HAS_CHILDREN to tell whether the die has children or not. */
15709
15710 static const gdb_byte *
15711 read_full_die (const struct die_reader_specs *reader,
15712 struct die_info **diep, const gdb_byte *info_ptr,
15713 int *has_children)
15714 {
15715 const gdb_byte *result;
15716
15717 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15718
15719 if (dwarf_die_debug)
15720 {
15721 fprintf_unfiltered (gdb_stdlog,
15722 "Read die from %s@0x%x of %s:\n",
15723 get_section_name (reader->die_section),
15724 (unsigned) (info_ptr - reader->die_section->buffer),
15725 bfd_get_filename (reader->abfd));
15726 dump_die (*diep, dwarf_die_debug);
15727 }
15728
15729 return result;
15730 }
15731 \f
15732 /* Abbreviation tables.
15733
15734 In DWARF version 2, the description of the debugging information is
15735 stored in a separate .debug_abbrev section. Before we read any
15736 dies from a section we read in all abbreviations and install them
15737 in a hash table. */
15738
15739 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15740
15741 static struct abbrev_info *
15742 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15743 {
15744 struct abbrev_info *abbrev;
15745
15746 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15747 memset (abbrev, 0, sizeof (struct abbrev_info));
15748
15749 return abbrev;
15750 }
15751
15752 /* Add an abbreviation to the table. */
15753
15754 static void
15755 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15756 unsigned int abbrev_number,
15757 struct abbrev_info *abbrev)
15758 {
15759 unsigned int hash_number;
15760
15761 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15762 abbrev->next = abbrev_table->abbrevs[hash_number];
15763 abbrev_table->abbrevs[hash_number] = abbrev;
15764 }
15765
15766 /* Look up an abbrev in the table.
15767 Returns NULL if the abbrev is not found. */
15768
15769 static struct abbrev_info *
15770 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15771 unsigned int abbrev_number)
15772 {
15773 unsigned int hash_number;
15774 struct abbrev_info *abbrev;
15775
15776 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15777 abbrev = abbrev_table->abbrevs[hash_number];
15778
15779 while (abbrev)
15780 {
15781 if (abbrev->number == abbrev_number)
15782 return abbrev;
15783 abbrev = abbrev->next;
15784 }
15785 return NULL;
15786 }
15787
15788 /* Read in an abbrev table. */
15789
15790 static struct abbrev_table *
15791 abbrev_table_read_table (struct dwarf2_section_info *section,
15792 sect_offset sect_off)
15793 {
15794 struct objfile *objfile = dwarf2_per_objfile->objfile;
15795 bfd *abfd = get_section_bfd_owner (section);
15796 struct abbrev_table *abbrev_table;
15797 const gdb_byte *abbrev_ptr;
15798 struct abbrev_info *cur_abbrev;
15799 unsigned int abbrev_number, bytes_read, abbrev_name;
15800 unsigned int abbrev_form;
15801 struct attr_abbrev *cur_attrs;
15802 unsigned int allocated_attrs;
15803
15804 abbrev_table = XNEW (struct abbrev_table);
15805 abbrev_table->sect_off = sect_off;
15806 obstack_init (&abbrev_table->abbrev_obstack);
15807 abbrev_table->abbrevs =
15808 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15809 ABBREV_HASH_SIZE);
15810 memset (abbrev_table->abbrevs, 0,
15811 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15812
15813 dwarf2_read_section (objfile, section);
15814 abbrev_ptr = section->buffer + to_underlying (sect_off);
15815 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15816 abbrev_ptr += bytes_read;
15817
15818 allocated_attrs = ATTR_ALLOC_CHUNK;
15819 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15820
15821 /* Loop until we reach an abbrev number of 0. */
15822 while (abbrev_number)
15823 {
15824 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15825
15826 /* read in abbrev header */
15827 cur_abbrev->number = abbrev_number;
15828 cur_abbrev->tag
15829 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15830 abbrev_ptr += bytes_read;
15831 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15832 abbrev_ptr += 1;
15833
15834 /* now read in declarations */
15835 for (;;)
15836 {
15837 LONGEST implicit_const;
15838
15839 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15840 abbrev_ptr += bytes_read;
15841 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15842 abbrev_ptr += bytes_read;
15843 if (abbrev_form == DW_FORM_implicit_const)
15844 {
15845 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15846 &bytes_read);
15847 abbrev_ptr += bytes_read;
15848 }
15849 else
15850 {
15851 /* Initialize it due to a false compiler warning. */
15852 implicit_const = -1;
15853 }
15854
15855 if (abbrev_name == 0)
15856 break;
15857
15858 if (cur_abbrev->num_attrs == allocated_attrs)
15859 {
15860 allocated_attrs += ATTR_ALLOC_CHUNK;
15861 cur_attrs
15862 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15863 }
15864
15865 cur_attrs[cur_abbrev->num_attrs].name
15866 = (enum dwarf_attribute) abbrev_name;
15867 cur_attrs[cur_abbrev->num_attrs].form
15868 = (enum dwarf_form) abbrev_form;
15869 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
15870 ++cur_abbrev->num_attrs;
15871 }
15872
15873 cur_abbrev->attrs =
15874 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15875 cur_abbrev->num_attrs);
15876 memcpy (cur_abbrev->attrs, cur_attrs,
15877 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15878
15879 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15880
15881 /* Get next abbreviation.
15882 Under Irix6 the abbreviations for a compilation unit are not
15883 always properly terminated with an abbrev number of 0.
15884 Exit loop if we encounter an abbreviation which we have
15885 already read (which means we are about to read the abbreviations
15886 for the next compile unit) or if the end of the abbreviation
15887 table is reached. */
15888 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15889 break;
15890 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15891 abbrev_ptr += bytes_read;
15892 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15893 break;
15894 }
15895
15896 xfree (cur_attrs);
15897 return abbrev_table;
15898 }
15899
15900 /* Free the resources held by ABBREV_TABLE. */
15901
15902 static void
15903 abbrev_table_free (struct abbrev_table *abbrev_table)
15904 {
15905 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15906 xfree (abbrev_table);
15907 }
15908
15909 /* Same as abbrev_table_free but as a cleanup.
15910 We pass in a pointer to the pointer to the table so that we can
15911 set the pointer to NULL when we're done. It also simplifies
15912 build_type_psymtabs_1. */
15913
15914 static void
15915 abbrev_table_free_cleanup (void *table_ptr)
15916 {
15917 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15918
15919 if (*abbrev_table_ptr != NULL)
15920 abbrev_table_free (*abbrev_table_ptr);
15921 *abbrev_table_ptr = NULL;
15922 }
15923
15924 /* Read the abbrev table for CU from ABBREV_SECTION. */
15925
15926 static void
15927 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15928 struct dwarf2_section_info *abbrev_section)
15929 {
15930 cu->abbrev_table =
15931 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
15932 }
15933
15934 /* Release the memory used by the abbrev table for a compilation unit. */
15935
15936 static void
15937 dwarf2_free_abbrev_table (void *ptr_to_cu)
15938 {
15939 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15940
15941 if (cu->abbrev_table != NULL)
15942 abbrev_table_free (cu->abbrev_table);
15943 /* Set this to NULL so that we SEGV if we try to read it later,
15944 and also because free_comp_unit verifies this is NULL. */
15945 cu->abbrev_table = NULL;
15946 }
15947 \f
15948 /* Returns nonzero if TAG represents a type that we might generate a partial
15949 symbol for. */
15950
15951 static int
15952 is_type_tag_for_partial (int tag)
15953 {
15954 switch (tag)
15955 {
15956 #if 0
15957 /* Some types that would be reasonable to generate partial symbols for,
15958 that we don't at present. */
15959 case DW_TAG_array_type:
15960 case DW_TAG_file_type:
15961 case DW_TAG_ptr_to_member_type:
15962 case DW_TAG_set_type:
15963 case DW_TAG_string_type:
15964 case DW_TAG_subroutine_type:
15965 #endif
15966 case DW_TAG_base_type:
15967 case DW_TAG_class_type:
15968 case DW_TAG_interface_type:
15969 case DW_TAG_enumeration_type:
15970 case DW_TAG_structure_type:
15971 case DW_TAG_subrange_type:
15972 case DW_TAG_typedef:
15973 case DW_TAG_union_type:
15974 return 1;
15975 default:
15976 return 0;
15977 }
15978 }
15979
15980 /* Load all DIEs that are interesting for partial symbols into memory. */
15981
15982 static struct partial_die_info *
15983 load_partial_dies (const struct die_reader_specs *reader,
15984 const gdb_byte *info_ptr, int building_psymtab)
15985 {
15986 struct dwarf2_cu *cu = reader->cu;
15987 struct objfile *objfile = cu->objfile;
15988 struct partial_die_info *part_die;
15989 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15990 struct abbrev_info *abbrev;
15991 unsigned int bytes_read;
15992 unsigned int load_all = 0;
15993 int nesting_level = 1;
15994
15995 parent_die = NULL;
15996 last_die = NULL;
15997
15998 gdb_assert (cu->per_cu != NULL);
15999 if (cu->per_cu->load_all_dies)
16000 load_all = 1;
16001
16002 cu->partial_dies
16003 = htab_create_alloc_ex (cu->header.length / 12,
16004 partial_die_hash,
16005 partial_die_eq,
16006 NULL,
16007 &cu->comp_unit_obstack,
16008 hashtab_obstack_allocate,
16009 dummy_obstack_deallocate);
16010
16011 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16012
16013 while (1)
16014 {
16015 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16016
16017 /* A NULL abbrev means the end of a series of children. */
16018 if (abbrev == NULL)
16019 {
16020 if (--nesting_level == 0)
16021 {
16022 /* PART_DIE was probably the last thing allocated on the
16023 comp_unit_obstack, so we could call obstack_free
16024 here. We don't do that because the waste is small,
16025 and will be cleaned up when we're done with this
16026 compilation unit. This way, we're also more robust
16027 against other users of the comp_unit_obstack. */
16028 return first_die;
16029 }
16030 info_ptr += bytes_read;
16031 last_die = parent_die;
16032 parent_die = parent_die->die_parent;
16033 continue;
16034 }
16035
16036 /* Check for template arguments. We never save these; if
16037 they're seen, we just mark the parent, and go on our way. */
16038 if (parent_die != NULL
16039 && cu->language == language_cplus
16040 && (abbrev->tag == DW_TAG_template_type_param
16041 || abbrev->tag == DW_TAG_template_value_param))
16042 {
16043 parent_die->has_template_arguments = 1;
16044
16045 if (!load_all)
16046 {
16047 /* We don't need a partial DIE for the template argument. */
16048 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16049 continue;
16050 }
16051 }
16052
16053 /* We only recurse into c++ subprograms looking for template arguments.
16054 Skip their other children. */
16055 if (!load_all
16056 && cu->language == language_cplus
16057 && parent_die != NULL
16058 && parent_die->tag == DW_TAG_subprogram)
16059 {
16060 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16061 continue;
16062 }
16063
16064 /* Check whether this DIE is interesting enough to save. Normally
16065 we would not be interested in members here, but there may be
16066 later variables referencing them via DW_AT_specification (for
16067 static members). */
16068 if (!load_all
16069 && !is_type_tag_for_partial (abbrev->tag)
16070 && abbrev->tag != DW_TAG_constant
16071 && abbrev->tag != DW_TAG_enumerator
16072 && abbrev->tag != DW_TAG_subprogram
16073 && abbrev->tag != DW_TAG_lexical_block
16074 && abbrev->tag != DW_TAG_variable
16075 && abbrev->tag != DW_TAG_namespace
16076 && abbrev->tag != DW_TAG_module
16077 && abbrev->tag != DW_TAG_member
16078 && abbrev->tag != DW_TAG_imported_unit
16079 && abbrev->tag != DW_TAG_imported_declaration)
16080 {
16081 /* Otherwise we skip to the next sibling, if any. */
16082 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16083 continue;
16084 }
16085
16086 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16087 info_ptr);
16088
16089 /* This two-pass algorithm for processing partial symbols has a
16090 high cost in cache pressure. Thus, handle some simple cases
16091 here which cover the majority of C partial symbols. DIEs
16092 which neither have specification tags in them, nor could have
16093 specification tags elsewhere pointing at them, can simply be
16094 processed and discarded.
16095
16096 This segment is also optional; scan_partial_symbols and
16097 add_partial_symbol will handle these DIEs if we chain
16098 them in normally. When compilers which do not emit large
16099 quantities of duplicate debug information are more common,
16100 this code can probably be removed. */
16101
16102 /* Any complete simple types at the top level (pretty much all
16103 of them, for a language without namespaces), can be processed
16104 directly. */
16105 if (parent_die == NULL
16106 && part_die->has_specification == 0
16107 && part_die->is_declaration == 0
16108 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
16109 || part_die->tag == DW_TAG_base_type
16110 || part_die->tag == DW_TAG_subrange_type))
16111 {
16112 if (building_psymtab && part_die->name != NULL)
16113 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16114 VAR_DOMAIN, LOC_TYPEDEF,
16115 &objfile->static_psymbols,
16116 0, cu->language, objfile);
16117 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16118 continue;
16119 }
16120
16121 /* The exception for DW_TAG_typedef with has_children above is
16122 a workaround of GCC PR debug/47510. In the case of this complaint
16123 type_name_no_tag_or_error will error on such types later.
16124
16125 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16126 it could not find the child DIEs referenced later, this is checked
16127 above. In correct DWARF DW_TAG_typedef should have no children. */
16128
16129 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16130 complaint (&symfile_complaints,
16131 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16132 "- DIE at 0x%x [in module %s]"),
16133 to_underlying (part_die->sect_off), objfile_name (objfile));
16134
16135 /* If we're at the second level, and we're an enumerator, and
16136 our parent has no specification (meaning possibly lives in a
16137 namespace elsewhere), then we can add the partial symbol now
16138 instead of queueing it. */
16139 if (part_die->tag == DW_TAG_enumerator
16140 && parent_die != NULL
16141 && parent_die->die_parent == NULL
16142 && parent_die->tag == DW_TAG_enumeration_type
16143 && parent_die->has_specification == 0)
16144 {
16145 if (part_die->name == NULL)
16146 complaint (&symfile_complaints,
16147 _("malformed enumerator DIE ignored"));
16148 else if (building_psymtab)
16149 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16150 VAR_DOMAIN, LOC_CONST,
16151 cu->language == language_cplus
16152 ? &objfile->global_psymbols
16153 : &objfile->static_psymbols,
16154 0, cu->language, objfile);
16155
16156 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16157 continue;
16158 }
16159
16160 /* We'll save this DIE so link it in. */
16161 part_die->die_parent = parent_die;
16162 part_die->die_sibling = NULL;
16163 part_die->die_child = NULL;
16164
16165 if (last_die && last_die == parent_die)
16166 last_die->die_child = part_die;
16167 else if (last_die)
16168 last_die->die_sibling = part_die;
16169
16170 last_die = part_die;
16171
16172 if (first_die == NULL)
16173 first_die = part_die;
16174
16175 /* Maybe add the DIE to the hash table. Not all DIEs that we
16176 find interesting need to be in the hash table, because we
16177 also have the parent/sibling/child chains; only those that we
16178 might refer to by offset later during partial symbol reading.
16179
16180 For now this means things that might have be the target of a
16181 DW_AT_specification, DW_AT_abstract_origin, or
16182 DW_AT_extension. DW_AT_extension will refer only to
16183 namespaces; DW_AT_abstract_origin refers to functions (and
16184 many things under the function DIE, but we do not recurse
16185 into function DIEs during partial symbol reading) and
16186 possibly variables as well; DW_AT_specification refers to
16187 declarations. Declarations ought to have the DW_AT_declaration
16188 flag. It happens that GCC forgets to put it in sometimes, but
16189 only for functions, not for types.
16190
16191 Adding more things than necessary to the hash table is harmless
16192 except for the performance cost. Adding too few will result in
16193 wasted time in find_partial_die, when we reread the compilation
16194 unit with load_all_dies set. */
16195
16196 if (load_all
16197 || abbrev->tag == DW_TAG_constant
16198 || abbrev->tag == DW_TAG_subprogram
16199 || abbrev->tag == DW_TAG_variable
16200 || abbrev->tag == DW_TAG_namespace
16201 || part_die->is_declaration)
16202 {
16203 void **slot;
16204
16205 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16206 to_underlying (part_die->sect_off),
16207 INSERT);
16208 *slot = part_die;
16209 }
16210
16211 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16212
16213 /* For some DIEs we want to follow their children (if any). For C
16214 we have no reason to follow the children of structures; for other
16215 languages we have to, so that we can get at method physnames
16216 to infer fully qualified class names, for DW_AT_specification,
16217 and for C++ template arguments. For C++, we also look one level
16218 inside functions to find template arguments (if the name of the
16219 function does not already contain the template arguments).
16220
16221 For Ada, we need to scan the children of subprograms and lexical
16222 blocks as well because Ada allows the definition of nested
16223 entities that could be interesting for the debugger, such as
16224 nested subprograms for instance. */
16225 if (last_die->has_children
16226 && (load_all
16227 || last_die->tag == DW_TAG_namespace
16228 || last_die->tag == DW_TAG_module
16229 || last_die->tag == DW_TAG_enumeration_type
16230 || (cu->language == language_cplus
16231 && last_die->tag == DW_TAG_subprogram
16232 && (last_die->name == NULL
16233 || strchr (last_die->name, '<') == NULL))
16234 || (cu->language != language_c
16235 && (last_die->tag == DW_TAG_class_type
16236 || last_die->tag == DW_TAG_interface_type
16237 || last_die->tag == DW_TAG_structure_type
16238 || last_die->tag == DW_TAG_union_type))
16239 || (cu->language == language_ada
16240 && (last_die->tag == DW_TAG_subprogram
16241 || last_die->tag == DW_TAG_lexical_block))))
16242 {
16243 nesting_level++;
16244 parent_die = last_die;
16245 continue;
16246 }
16247
16248 /* Otherwise we skip to the next sibling, if any. */
16249 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16250
16251 /* Back to the top, do it again. */
16252 }
16253 }
16254
16255 /* Read a minimal amount of information into the minimal die structure. */
16256
16257 static const gdb_byte *
16258 read_partial_die (const struct die_reader_specs *reader,
16259 struct partial_die_info *part_die,
16260 struct abbrev_info *abbrev, unsigned int abbrev_len,
16261 const gdb_byte *info_ptr)
16262 {
16263 struct dwarf2_cu *cu = reader->cu;
16264 struct objfile *objfile = cu->objfile;
16265 const gdb_byte *buffer = reader->buffer;
16266 unsigned int i;
16267 struct attribute attr;
16268 int has_low_pc_attr = 0;
16269 int has_high_pc_attr = 0;
16270 int high_pc_relative = 0;
16271
16272 memset (part_die, 0, sizeof (struct partial_die_info));
16273
16274 part_die->sect_off = (sect_offset) (info_ptr - buffer);
16275
16276 info_ptr += abbrev_len;
16277
16278 if (abbrev == NULL)
16279 return info_ptr;
16280
16281 part_die->tag = abbrev->tag;
16282 part_die->has_children = abbrev->has_children;
16283
16284 for (i = 0; i < abbrev->num_attrs; ++i)
16285 {
16286 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16287
16288 /* Store the data if it is of an attribute we want to keep in a
16289 partial symbol table. */
16290 switch (attr.name)
16291 {
16292 case DW_AT_name:
16293 switch (part_die->tag)
16294 {
16295 case DW_TAG_compile_unit:
16296 case DW_TAG_partial_unit:
16297 case DW_TAG_type_unit:
16298 /* Compilation units have a DW_AT_name that is a filename, not
16299 a source language identifier. */
16300 case DW_TAG_enumeration_type:
16301 case DW_TAG_enumerator:
16302 /* These tags always have simple identifiers already; no need
16303 to canonicalize them. */
16304 part_die->name = DW_STRING (&attr);
16305 break;
16306 default:
16307 part_die->name
16308 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16309 &objfile->per_bfd->storage_obstack);
16310 break;
16311 }
16312 break;
16313 case DW_AT_linkage_name:
16314 case DW_AT_MIPS_linkage_name:
16315 /* Note that both forms of linkage name might appear. We
16316 assume they will be the same, and we only store the last
16317 one we see. */
16318 if (cu->language == language_ada)
16319 part_die->name = DW_STRING (&attr);
16320 part_die->linkage_name = DW_STRING (&attr);
16321 break;
16322 case DW_AT_low_pc:
16323 has_low_pc_attr = 1;
16324 part_die->lowpc = attr_value_as_address (&attr);
16325 break;
16326 case DW_AT_high_pc:
16327 has_high_pc_attr = 1;
16328 part_die->highpc = attr_value_as_address (&attr);
16329 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16330 high_pc_relative = 1;
16331 break;
16332 case DW_AT_location:
16333 /* Support the .debug_loc offsets. */
16334 if (attr_form_is_block (&attr))
16335 {
16336 part_die->d.locdesc = DW_BLOCK (&attr);
16337 }
16338 else if (attr_form_is_section_offset (&attr))
16339 {
16340 dwarf2_complex_location_expr_complaint ();
16341 }
16342 else
16343 {
16344 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16345 "partial symbol information");
16346 }
16347 break;
16348 case DW_AT_external:
16349 part_die->is_external = DW_UNSND (&attr);
16350 break;
16351 case DW_AT_declaration:
16352 part_die->is_declaration = DW_UNSND (&attr);
16353 break;
16354 case DW_AT_type:
16355 part_die->has_type = 1;
16356 break;
16357 case DW_AT_abstract_origin:
16358 case DW_AT_specification:
16359 case DW_AT_extension:
16360 part_die->has_specification = 1;
16361 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16362 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16363 || cu->per_cu->is_dwz);
16364 break;
16365 case DW_AT_sibling:
16366 /* Ignore absolute siblings, they might point outside of
16367 the current compile unit. */
16368 if (attr.form == DW_FORM_ref_addr)
16369 complaint (&symfile_complaints,
16370 _("ignoring absolute DW_AT_sibling"));
16371 else
16372 {
16373 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16374 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
16375
16376 if (sibling_ptr < info_ptr)
16377 complaint (&symfile_complaints,
16378 _("DW_AT_sibling points backwards"));
16379 else if (sibling_ptr > reader->buffer_end)
16380 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16381 else
16382 part_die->sibling = sibling_ptr;
16383 }
16384 break;
16385 case DW_AT_byte_size:
16386 part_die->has_byte_size = 1;
16387 break;
16388 case DW_AT_const_value:
16389 part_die->has_const_value = 1;
16390 break;
16391 case DW_AT_calling_convention:
16392 /* DWARF doesn't provide a way to identify a program's source-level
16393 entry point. DW_AT_calling_convention attributes are only meant
16394 to describe functions' calling conventions.
16395
16396 However, because it's a necessary piece of information in
16397 Fortran, and before DWARF 4 DW_CC_program was the only
16398 piece of debugging information whose definition refers to
16399 a 'main program' at all, several compilers marked Fortran
16400 main programs with DW_CC_program --- even when those
16401 functions use the standard calling conventions.
16402
16403 Although DWARF now specifies a way to provide this
16404 information, we support this practice for backward
16405 compatibility. */
16406 if (DW_UNSND (&attr) == DW_CC_program
16407 && cu->language == language_fortran)
16408 part_die->main_subprogram = 1;
16409 break;
16410 case DW_AT_inline:
16411 if (DW_UNSND (&attr) == DW_INL_inlined
16412 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16413 part_die->may_be_inlined = 1;
16414 break;
16415
16416 case DW_AT_import:
16417 if (part_die->tag == DW_TAG_imported_unit)
16418 {
16419 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
16420 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16421 || cu->per_cu->is_dwz);
16422 }
16423 break;
16424
16425 case DW_AT_main_subprogram:
16426 part_die->main_subprogram = DW_UNSND (&attr);
16427 break;
16428
16429 default:
16430 break;
16431 }
16432 }
16433
16434 if (high_pc_relative)
16435 part_die->highpc += part_die->lowpc;
16436
16437 if (has_low_pc_attr && has_high_pc_attr)
16438 {
16439 /* When using the GNU linker, .gnu.linkonce. sections are used to
16440 eliminate duplicate copies of functions and vtables and such.
16441 The linker will arbitrarily choose one and discard the others.
16442 The AT_*_pc values for such functions refer to local labels in
16443 these sections. If the section from that file was discarded, the
16444 labels are not in the output, so the relocs get a value of 0.
16445 If this is a discarded function, mark the pc bounds as invalid,
16446 so that GDB will ignore it. */
16447 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16448 {
16449 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16450
16451 complaint (&symfile_complaints,
16452 _("DW_AT_low_pc %s is zero "
16453 "for DIE at 0x%x [in module %s]"),
16454 paddress (gdbarch, part_die->lowpc),
16455 to_underlying (part_die->sect_off), objfile_name (objfile));
16456 }
16457 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16458 else if (part_die->lowpc >= part_die->highpc)
16459 {
16460 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16461
16462 complaint (&symfile_complaints,
16463 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16464 "for DIE at 0x%x [in module %s]"),
16465 paddress (gdbarch, part_die->lowpc),
16466 paddress (gdbarch, part_die->highpc),
16467 to_underlying (part_die->sect_off),
16468 objfile_name (objfile));
16469 }
16470 else
16471 part_die->has_pc_info = 1;
16472 }
16473
16474 return info_ptr;
16475 }
16476
16477 /* Find a cached partial DIE at OFFSET in CU. */
16478
16479 static struct partial_die_info *
16480 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
16481 {
16482 struct partial_die_info *lookup_die = NULL;
16483 struct partial_die_info part_die;
16484
16485 part_die.sect_off = sect_off;
16486 lookup_die = ((struct partial_die_info *)
16487 htab_find_with_hash (cu->partial_dies, &part_die,
16488 to_underlying (sect_off)));
16489
16490 return lookup_die;
16491 }
16492
16493 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16494 except in the case of .debug_types DIEs which do not reference
16495 outside their CU (they do however referencing other types via
16496 DW_FORM_ref_sig8). */
16497
16498 static struct partial_die_info *
16499 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
16500 {
16501 struct objfile *objfile = cu->objfile;
16502 struct dwarf2_per_cu_data *per_cu = NULL;
16503 struct partial_die_info *pd = NULL;
16504
16505 if (offset_in_dwz == cu->per_cu->is_dwz
16506 && offset_in_cu_p (&cu->header, sect_off))
16507 {
16508 pd = find_partial_die_in_comp_unit (sect_off, cu);
16509 if (pd != NULL)
16510 return pd;
16511 /* We missed recording what we needed.
16512 Load all dies and try again. */
16513 per_cu = cu->per_cu;
16514 }
16515 else
16516 {
16517 /* TUs don't reference other CUs/TUs (except via type signatures). */
16518 if (cu->per_cu->is_debug_types)
16519 {
16520 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16521 " external reference to offset 0x%x [in module %s].\n"),
16522 to_underlying (cu->header.sect_off), to_underlying (sect_off),
16523 bfd_get_filename (objfile->obfd));
16524 }
16525 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
16526 objfile);
16527
16528 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16529 load_partial_comp_unit (per_cu);
16530
16531 per_cu->cu->last_used = 0;
16532 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16533 }
16534
16535 /* If we didn't find it, and not all dies have been loaded,
16536 load them all and try again. */
16537
16538 if (pd == NULL && per_cu->load_all_dies == 0)
16539 {
16540 per_cu->load_all_dies = 1;
16541
16542 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16543 THIS_CU->cu may already be in use. So we can't just free it and
16544 replace its DIEs with the ones we read in. Instead, we leave those
16545 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16546 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16547 set. */
16548 load_partial_comp_unit (per_cu);
16549
16550 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16551 }
16552
16553 if (pd == NULL)
16554 internal_error (__FILE__, __LINE__,
16555 _("could not find partial DIE 0x%x "
16556 "in cache [from module %s]\n"),
16557 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
16558 return pd;
16559 }
16560
16561 /* See if we can figure out if the class lives in a namespace. We do
16562 this by looking for a member function; its demangled name will
16563 contain namespace info, if there is any. */
16564
16565 static void
16566 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16567 struct dwarf2_cu *cu)
16568 {
16569 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16570 what template types look like, because the demangler
16571 frequently doesn't give the same name as the debug info. We
16572 could fix this by only using the demangled name to get the
16573 prefix (but see comment in read_structure_type). */
16574
16575 struct partial_die_info *real_pdi;
16576 struct partial_die_info *child_pdi;
16577
16578 /* If this DIE (this DIE's specification, if any) has a parent, then
16579 we should not do this. We'll prepend the parent's fully qualified
16580 name when we create the partial symbol. */
16581
16582 real_pdi = struct_pdi;
16583 while (real_pdi->has_specification)
16584 real_pdi = find_partial_die (real_pdi->spec_offset,
16585 real_pdi->spec_is_dwz, cu);
16586
16587 if (real_pdi->die_parent != NULL)
16588 return;
16589
16590 for (child_pdi = struct_pdi->die_child;
16591 child_pdi != NULL;
16592 child_pdi = child_pdi->die_sibling)
16593 {
16594 if (child_pdi->tag == DW_TAG_subprogram
16595 && child_pdi->linkage_name != NULL)
16596 {
16597 char *actual_class_name
16598 = language_class_name_from_physname (cu->language_defn,
16599 child_pdi->linkage_name);
16600 if (actual_class_name != NULL)
16601 {
16602 struct_pdi->name
16603 = ((const char *)
16604 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16605 actual_class_name,
16606 strlen (actual_class_name)));
16607 xfree (actual_class_name);
16608 }
16609 break;
16610 }
16611 }
16612 }
16613
16614 /* Adjust PART_DIE before generating a symbol for it. This function
16615 may set the is_external flag or change the DIE's name. */
16616
16617 static void
16618 fixup_partial_die (struct partial_die_info *part_die,
16619 struct dwarf2_cu *cu)
16620 {
16621 /* Once we've fixed up a die, there's no point in doing so again.
16622 This also avoids a memory leak if we were to call
16623 guess_partial_die_structure_name multiple times. */
16624 if (part_die->fixup_called)
16625 return;
16626
16627 /* If we found a reference attribute and the DIE has no name, try
16628 to find a name in the referred to DIE. */
16629
16630 if (part_die->name == NULL && part_die->has_specification)
16631 {
16632 struct partial_die_info *spec_die;
16633
16634 spec_die = find_partial_die (part_die->spec_offset,
16635 part_die->spec_is_dwz, cu);
16636
16637 fixup_partial_die (spec_die, cu);
16638
16639 if (spec_die->name)
16640 {
16641 part_die->name = spec_die->name;
16642
16643 /* Copy DW_AT_external attribute if it is set. */
16644 if (spec_die->is_external)
16645 part_die->is_external = spec_die->is_external;
16646 }
16647 }
16648
16649 /* Set default names for some unnamed DIEs. */
16650
16651 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16652 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16653
16654 /* If there is no parent die to provide a namespace, and there are
16655 children, see if we can determine the namespace from their linkage
16656 name. */
16657 if (cu->language == language_cplus
16658 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16659 && part_die->die_parent == NULL
16660 && part_die->has_children
16661 && (part_die->tag == DW_TAG_class_type
16662 || part_die->tag == DW_TAG_structure_type
16663 || part_die->tag == DW_TAG_union_type))
16664 guess_partial_die_structure_name (part_die, cu);
16665
16666 /* GCC might emit a nameless struct or union that has a linkage
16667 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16668 if (part_die->name == NULL
16669 && (part_die->tag == DW_TAG_class_type
16670 || part_die->tag == DW_TAG_interface_type
16671 || part_die->tag == DW_TAG_structure_type
16672 || part_die->tag == DW_TAG_union_type)
16673 && part_die->linkage_name != NULL)
16674 {
16675 char *demangled;
16676
16677 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16678 if (demangled)
16679 {
16680 const char *base;
16681
16682 /* Strip any leading namespaces/classes, keep only the base name.
16683 DW_AT_name for named DIEs does not contain the prefixes. */
16684 base = strrchr (demangled, ':');
16685 if (base && base > demangled && base[-1] == ':')
16686 base++;
16687 else
16688 base = demangled;
16689
16690 part_die->name
16691 = ((const char *)
16692 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16693 base, strlen (base)));
16694 xfree (demangled);
16695 }
16696 }
16697
16698 part_die->fixup_called = 1;
16699 }
16700
16701 /* Read an attribute value described by an attribute form. */
16702
16703 static const gdb_byte *
16704 read_attribute_value (const struct die_reader_specs *reader,
16705 struct attribute *attr, unsigned form,
16706 LONGEST implicit_const, const gdb_byte *info_ptr)
16707 {
16708 struct dwarf2_cu *cu = reader->cu;
16709 struct objfile *objfile = cu->objfile;
16710 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16711 bfd *abfd = reader->abfd;
16712 struct comp_unit_head *cu_header = &cu->header;
16713 unsigned int bytes_read;
16714 struct dwarf_block *blk;
16715
16716 attr->form = (enum dwarf_form) form;
16717 switch (form)
16718 {
16719 case DW_FORM_ref_addr:
16720 if (cu->header.version == 2)
16721 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16722 else
16723 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16724 &cu->header, &bytes_read);
16725 info_ptr += bytes_read;
16726 break;
16727 case DW_FORM_GNU_ref_alt:
16728 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16729 info_ptr += bytes_read;
16730 break;
16731 case DW_FORM_addr:
16732 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16733 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16734 info_ptr += bytes_read;
16735 break;
16736 case DW_FORM_block2:
16737 blk = dwarf_alloc_block (cu);
16738 blk->size = read_2_bytes (abfd, info_ptr);
16739 info_ptr += 2;
16740 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16741 info_ptr += blk->size;
16742 DW_BLOCK (attr) = blk;
16743 break;
16744 case DW_FORM_block4:
16745 blk = dwarf_alloc_block (cu);
16746 blk->size = read_4_bytes (abfd, info_ptr);
16747 info_ptr += 4;
16748 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16749 info_ptr += blk->size;
16750 DW_BLOCK (attr) = blk;
16751 break;
16752 case DW_FORM_data2:
16753 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16754 info_ptr += 2;
16755 break;
16756 case DW_FORM_data4:
16757 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16758 info_ptr += 4;
16759 break;
16760 case DW_FORM_data8:
16761 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16762 info_ptr += 8;
16763 break;
16764 case DW_FORM_data16:
16765 blk = dwarf_alloc_block (cu);
16766 blk->size = 16;
16767 blk->data = read_n_bytes (abfd, info_ptr, 16);
16768 info_ptr += 16;
16769 DW_BLOCK (attr) = blk;
16770 break;
16771 case DW_FORM_sec_offset:
16772 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16773 info_ptr += bytes_read;
16774 break;
16775 case DW_FORM_string:
16776 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16777 DW_STRING_IS_CANONICAL (attr) = 0;
16778 info_ptr += bytes_read;
16779 break;
16780 case DW_FORM_strp:
16781 if (!cu->per_cu->is_dwz)
16782 {
16783 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16784 &bytes_read);
16785 DW_STRING_IS_CANONICAL (attr) = 0;
16786 info_ptr += bytes_read;
16787 break;
16788 }
16789 /* FALLTHROUGH */
16790 case DW_FORM_line_strp:
16791 if (!cu->per_cu->is_dwz)
16792 {
16793 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16794 cu_header, &bytes_read);
16795 DW_STRING_IS_CANONICAL (attr) = 0;
16796 info_ptr += bytes_read;
16797 break;
16798 }
16799 /* FALLTHROUGH */
16800 case DW_FORM_GNU_strp_alt:
16801 {
16802 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16803 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16804 &bytes_read);
16805
16806 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16807 DW_STRING_IS_CANONICAL (attr) = 0;
16808 info_ptr += bytes_read;
16809 }
16810 break;
16811 case DW_FORM_exprloc:
16812 case DW_FORM_block:
16813 blk = dwarf_alloc_block (cu);
16814 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16815 info_ptr += bytes_read;
16816 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16817 info_ptr += blk->size;
16818 DW_BLOCK (attr) = blk;
16819 break;
16820 case DW_FORM_block1:
16821 blk = dwarf_alloc_block (cu);
16822 blk->size = read_1_byte (abfd, info_ptr);
16823 info_ptr += 1;
16824 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16825 info_ptr += blk->size;
16826 DW_BLOCK (attr) = blk;
16827 break;
16828 case DW_FORM_data1:
16829 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16830 info_ptr += 1;
16831 break;
16832 case DW_FORM_flag:
16833 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16834 info_ptr += 1;
16835 break;
16836 case DW_FORM_flag_present:
16837 DW_UNSND (attr) = 1;
16838 break;
16839 case DW_FORM_sdata:
16840 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16841 info_ptr += bytes_read;
16842 break;
16843 case DW_FORM_udata:
16844 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16845 info_ptr += bytes_read;
16846 break;
16847 case DW_FORM_ref1:
16848 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16849 + read_1_byte (abfd, info_ptr));
16850 info_ptr += 1;
16851 break;
16852 case DW_FORM_ref2:
16853 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16854 + read_2_bytes (abfd, info_ptr));
16855 info_ptr += 2;
16856 break;
16857 case DW_FORM_ref4:
16858 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16859 + read_4_bytes (abfd, info_ptr));
16860 info_ptr += 4;
16861 break;
16862 case DW_FORM_ref8:
16863 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16864 + read_8_bytes (abfd, info_ptr));
16865 info_ptr += 8;
16866 break;
16867 case DW_FORM_ref_sig8:
16868 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16869 info_ptr += 8;
16870 break;
16871 case DW_FORM_ref_udata:
16872 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16873 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16874 info_ptr += bytes_read;
16875 break;
16876 case DW_FORM_indirect:
16877 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16878 info_ptr += bytes_read;
16879 if (form == DW_FORM_implicit_const)
16880 {
16881 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16882 info_ptr += bytes_read;
16883 }
16884 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16885 info_ptr);
16886 break;
16887 case DW_FORM_implicit_const:
16888 DW_SND (attr) = implicit_const;
16889 break;
16890 case DW_FORM_GNU_addr_index:
16891 if (reader->dwo_file == NULL)
16892 {
16893 /* For now flag a hard error.
16894 Later we can turn this into a complaint. */
16895 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16896 dwarf_form_name (form),
16897 bfd_get_filename (abfd));
16898 }
16899 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16900 info_ptr += bytes_read;
16901 break;
16902 case DW_FORM_GNU_str_index:
16903 if (reader->dwo_file == NULL)
16904 {
16905 /* For now flag a hard error.
16906 Later we can turn this into a complaint if warranted. */
16907 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16908 dwarf_form_name (form),
16909 bfd_get_filename (abfd));
16910 }
16911 {
16912 ULONGEST str_index =
16913 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16914
16915 DW_STRING (attr) = read_str_index (reader, str_index);
16916 DW_STRING_IS_CANONICAL (attr) = 0;
16917 info_ptr += bytes_read;
16918 }
16919 break;
16920 default:
16921 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16922 dwarf_form_name (form),
16923 bfd_get_filename (abfd));
16924 }
16925
16926 /* Super hack. */
16927 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16928 attr->form = DW_FORM_GNU_ref_alt;
16929
16930 /* We have seen instances where the compiler tried to emit a byte
16931 size attribute of -1 which ended up being encoded as an unsigned
16932 0xffffffff. Although 0xffffffff is technically a valid size value,
16933 an object of this size seems pretty unlikely so we can relatively
16934 safely treat these cases as if the size attribute was invalid and
16935 treat them as zero by default. */
16936 if (attr->name == DW_AT_byte_size
16937 && form == DW_FORM_data4
16938 && DW_UNSND (attr) >= 0xffffffff)
16939 {
16940 complaint
16941 (&symfile_complaints,
16942 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16943 hex_string (DW_UNSND (attr)));
16944 DW_UNSND (attr) = 0;
16945 }
16946
16947 return info_ptr;
16948 }
16949
16950 /* Read an attribute described by an abbreviated attribute. */
16951
16952 static const gdb_byte *
16953 read_attribute (const struct die_reader_specs *reader,
16954 struct attribute *attr, struct attr_abbrev *abbrev,
16955 const gdb_byte *info_ptr)
16956 {
16957 attr->name = abbrev->name;
16958 return read_attribute_value (reader, attr, abbrev->form,
16959 abbrev->implicit_const, info_ptr);
16960 }
16961
16962 /* Read dwarf information from a buffer. */
16963
16964 static unsigned int
16965 read_1_byte (bfd *abfd, const gdb_byte *buf)
16966 {
16967 return bfd_get_8 (abfd, buf);
16968 }
16969
16970 static int
16971 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16972 {
16973 return bfd_get_signed_8 (abfd, buf);
16974 }
16975
16976 static unsigned int
16977 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16978 {
16979 return bfd_get_16 (abfd, buf);
16980 }
16981
16982 static int
16983 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16984 {
16985 return bfd_get_signed_16 (abfd, buf);
16986 }
16987
16988 static unsigned int
16989 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16990 {
16991 return bfd_get_32 (abfd, buf);
16992 }
16993
16994 static int
16995 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16996 {
16997 return bfd_get_signed_32 (abfd, buf);
16998 }
16999
17000 static ULONGEST
17001 read_8_bytes (bfd *abfd, const gdb_byte *buf)
17002 {
17003 return bfd_get_64 (abfd, buf);
17004 }
17005
17006 static CORE_ADDR
17007 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
17008 unsigned int *bytes_read)
17009 {
17010 struct comp_unit_head *cu_header = &cu->header;
17011 CORE_ADDR retval = 0;
17012
17013 if (cu_header->signed_addr_p)
17014 {
17015 switch (cu_header->addr_size)
17016 {
17017 case 2:
17018 retval = bfd_get_signed_16 (abfd, buf);
17019 break;
17020 case 4:
17021 retval = bfd_get_signed_32 (abfd, buf);
17022 break;
17023 case 8:
17024 retval = bfd_get_signed_64 (abfd, buf);
17025 break;
17026 default:
17027 internal_error (__FILE__, __LINE__,
17028 _("read_address: bad switch, signed [in module %s]"),
17029 bfd_get_filename (abfd));
17030 }
17031 }
17032 else
17033 {
17034 switch (cu_header->addr_size)
17035 {
17036 case 2:
17037 retval = bfd_get_16 (abfd, buf);
17038 break;
17039 case 4:
17040 retval = bfd_get_32 (abfd, buf);
17041 break;
17042 case 8:
17043 retval = bfd_get_64 (abfd, buf);
17044 break;
17045 default:
17046 internal_error (__FILE__, __LINE__,
17047 _("read_address: bad switch, "
17048 "unsigned [in module %s]"),
17049 bfd_get_filename (abfd));
17050 }
17051 }
17052
17053 *bytes_read = cu_header->addr_size;
17054 return retval;
17055 }
17056
17057 /* Read the initial length from a section. The (draft) DWARF 3
17058 specification allows the initial length to take up either 4 bytes
17059 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17060 bytes describe the length and all offsets will be 8 bytes in length
17061 instead of 4.
17062
17063 An older, non-standard 64-bit format is also handled by this
17064 function. The older format in question stores the initial length
17065 as an 8-byte quantity without an escape value. Lengths greater
17066 than 2^32 aren't very common which means that the initial 4 bytes
17067 is almost always zero. Since a length value of zero doesn't make
17068 sense for the 32-bit format, this initial zero can be considered to
17069 be an escape value which indicates the presence of the older 64-bit
17070 format. As written, the code can't detect (old format) lengths
17071 greater than 4GB. If it becomes necessary to handle lengths
17072 somewhat larger than 4GB, we could allow other small values (such
17073 as the non-sensical values of 1, 2, and 3) to also be used as
17074 escape values indicating the presence of the old format.
17075
17076 The value returned via bytes_read should be used to increment the
17077 relevant pointer after calling read_initial_length().
17078
17079 [ Note: read_initial_length() and read_offset() are based on the
17080 document entitled "DWARF Debugging Information Format", revision
17081 3, draft 8, dated November 19, 2001. This document was obtained
17082 from:
17083
17084 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
17085
17086 This document is only a draft and is subject to change. (So beware.)
17087
17088 Details regarding the older, non-standard 64-bit format were
17089 determined empirically by examining 64-bit ELF files produced by
17090 the SGI toolchain on an IRIX 6.5 machine.
17091
17092 - Kevin, July 16, 2002
17093 ] */
17094
17095 static LONGEST
17096 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
17097 {
17098 LONGEST length = bfd_get_32 (abfd, buf);
17099
17100 if (length == 0xffffffff)
17101 {
17102 length = bfd_get_64 (abfd, buf + 4);
17103 *bytes_read = 12;
17104 }
17105 else if (length == 0)
17106 {
17107 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
17108 length = bfd_get_64 (abfd, buf);
17109 *bytes_read = 8;
17110 }
17111 else
17112 {
17113 *bytes_read = 4;
17114 }
17115
17116 return length;
17117 }
17118
17119 /* Cover function for read_initial_length.
17120 Returns the length of the object at BUF, and stores the size of the
17121 initial length in *BYTES_READ and stores the size that offsets will be in
17122 *OFFSET_SIZE.
17123 If the initial length size is not equivalent to that specified in
17124 CU_HEADER then issue a complaint.
17125 This is useful when reading non-comp-unit headers. */
17126
17127 static LONGEST
17128 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
17129 const struct comp_unit_head *cu_header,
17130 unsigned int *bytes_read,
17131 unsigned int *offset_size)
17132 {
17133 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17134
17135 gdb_assert (cu_header->initial_length_size == 4
17136 || cu_header->initial_length_size == 8
17137 || cu_header->initial_length_size == 12);
17138
17139 if (cu_header->initial_length_size != *bytes_read)
17140 complaint (&symfile_complaints,
17141 _("intermixed 32-bit and 64-bit DWARF sections"));
17142
17143 *offset_size = (*bytes_read == 4) ? 4 : 8;
17144 return length;
17145 }
17146
17147 /* Read an offset from the data stream. The size of the offset is
17148 given by cu_header->offset_size. */
17149
17150 static LONGEST
17151 read_offset (bfd *abfd, const gdb_byte *buf,
17152 const struct comp_unit_head *cu_header,
17153 unsigned int *bytes_read)
17154 {
17155 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
17156
17157 *bytes_read = cu_header->offset_size;
17158 return offset;
17159 }
17160
17161 /* Read an offset from the data stream. */
17162
17163 static LONGEST
17164 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
17165 {
17166 LONGEST retval = 0;
17167
17168 switch (offset_size)
17169 {
17170 case 4:
17171 retval = bfd_get_32 (abfd, buf);
17172 break;
17173 case 8:
17174 retval = bfd_get_64 (abfd, buf);
17175 break;
17176 default:
17177 internal_error (__FILE__, __LINE__,
17178 _("read_offset_1: bad switch [in module %s]"),
17179 bfd_get_filename (abfd));
17180 }
17181
17182 return retval;
17183 }
17184
17185 static const gdb_byte *
17186 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
17187 {
17188 /* If the size of a host char is 8 bits, we can return a pointer
17189 to the buffer, otherwise we have to copy the data to a buffer
17190 allocated on the temporary obstack. */
17191 gdb_assert (HOST_CHAR_BIT == 8);
17192 return buf;
17193 }
17194
17195 static const char *
17196 read_direct_string (bfd *abfd, const gdb_byte *buf,
17197 unsigned int *bytes_read_ptr)
17198 {
17199 /* If the size of a host char is 8 bits, we can return a pointer
17200 to the string, otherwise we have to copy the string to a buffer
17201 allocated on the temporary obstack. */
17202 gdb_assert (HOST_CHAR_BIT == 8);
17203 if (*buf == '\0')
17204 {
17205 *bytes_read_ptr = 1;
17206 return NULL;
17207 }
17208 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17209 return (const char *) buf;
17210 }
17211
17212 /* Return pointer to string at section SECT offset STR_OFFSET with error
17213 reporting strings FORM_NAME and SECT_NAME. */
17214
17215 static const char *
17216 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17217 struct dwarf2_section_info *sect,
17218 const char *form_name,
17219 const char *sect_name)
17220 {
17221 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17222 if (sect->buffer == NULL)
17223 error (_("%s used without %s section [in module %s]"),
17224 form_name, sect_name, bfd_get_filename (abfd));
17225 if (str_offset >= sect->size)
17226 error (_("%s pointing outside of %s section [in module %s]"),
17227 form_name, sect_name, bfd_get_filename (abfd));
17228 gdb_assert (HOST_CHAR_BIT == 8);
17229 if (sect->buffer[str_offset] == '\0')
17230 return NULL;
17231 return (const char *) (sect->buffer + str_offset);
17232 }
17233
17234 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17235
17236 static const char *
17237 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17238 {
17239 return read_indirect_string_at_offset_from (abfd, str_offset,
17240 &dwarf2_per_objfile->str,
17241 "DW_FORM_strp", ".debug_str");
17242 }
17243
17244 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17245
17246 static const char *
17247 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17248 {
17249 return read_indirect_string_at_offset_from (abfd, str_offset,
17250 &dwarf2_per_objfile->line_str,
17251 "DW_FORM_line_strp",
17252 ".debug_line_str");
17253 }
17254
17255 /* Read a string at offset STR_OFFSET in the .debug_str section from
17256 the .dwz file DWZ. Throw an error if the offset is too large. If
17257 the string consists of a single NUL byte, return NULL; otherwise
17258 return a pointer to the string. */
17259
17260 static const char *
17261 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17262 {
17263 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17264
17265 if (dwz->str.buffer == NULL)
17266 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17267 "section [in module %s]"),
17268 bfd_get_filename (dwz->dwz_bfd));
17269 if (str_offset >= dwz->str.size)
17270 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17271 ".debug_str section [in module %s]"),
17272 bfd_get_filename (dwz->dwz_bfd));
17273 gdb_assert (HOST_CHAR_BIT == 8);
17274 if (dwz->str.buffer[str_offset] == '\0')
17275 return NULL;
17276 return (const char *) (dwz->str.buffer + str_offset);
17277 }
17278
17279 /* Return pointer to string at .debug_str offset as read from BUF.
17280 BUF is assumed to be in a compilation unit described by CU_HEADER.
17281 Return *BYTES_READ_PTR count of bytes read from BUF. */
17282
17283 static const char *
17284 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17285 const struct comp_unit_head *cu_header,
17286 unsigned int *bytes_read_ptr)
17287 {
17288 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17289
17290 return read_indirect_string_at_offset (abfd, str_offset);
17291 }
17292
17293 /* Return pointer to string at .debug_line_str offset as read from BUF.
17294 BUF is assumed to be in a compilation unit described by CU_HEADER.
17295 Return *BYTES_READ_PTR count of bytes read from BUF. */
17296
17297 static const char *
17298 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17299 const struct comp_unit_head *cu_header,
17300 unsigned int *bytes_read_ptr)
17301 {
17302 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17303
17304 return read_indirect_line_string_at_offset (abfd, str_offset);
17305 }
17306
17307 ULONGEST
17308 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17309 unsigned int *bytes_read_ptr)
17310 {
17311 ULONGEST result;
17312 unsigned int num_read;
17313 int shift;
17314 unsigned char byte;
17315
17316 result = 0;
17317 shift = 0;
17318 num_read = 0;
17319 while (1)
17320 {
17321 byte = bfd_get_8 (abfd, buf);
17322 buf++;
17323 num_read++;
17324 result |= ((ULONGEST) (byte & 127) << shift);
17325 if ((byte & 128) == 0)
17326 {
17327 break;
17328 }
17329 shift += 7;
17330 }
17331 *bytes_read_ptr = num_read;
17332 return result;
17333 }
17334
17335 static LONGEST
17336 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17337 unsigned int *bytes_read_ptr)
17338 {
17339 LONGEST result;
17340 int shift, num_read;
17341 unsigned char byte;
17342
17343 result = 0;
17344 shift = 0;
17345 num_read = 0;
17346 while (1)
17347 {
17348 byte = bfd_get_8 (abfd, buf);
17349 buf++;
17350 num_read++;
17351 result |= ((LONGEST) (byte & 127) << shift);
17352 shift += 7;
17353 if ((byte & 128) == 0)
17354 {
17355 break;
17356 }
17357 }
17358 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17359 result |= -(((LONGEST) 1) << shift);
17360 *bytes_read_ptr = num_read;
17361 return result;
17362 }
17363
17364 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17365 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17366 ADDR_SIZE is the size of addresses from the CU header. */
17367
17368 static CORE_ADDR
17369 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17370 {
17371 struct objfile *objfile = dwarf2_per_objfile->objfile;
17372 bfd *abfd = objfile->obfd;
17373 const gdb_byte *info_ptr;
17374
17375 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17376 if (dwarf2_per_objfile->addr.buffer == NULL)
17377 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17378 objfile_name (objfile));
17379 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17380 error (_("DW_FORM_addr_index pointing outside of "
17381 ".debug_addr section [in module %s]"),
17382 objfile_name (objfile));
17383 info_ptr = (dwarf2_per_objfile->addr.buffer
17384 + addr_base + addr_index * addr_size);
17385 if (addr_size == 4)
17386 return bfd_get_32 (abfd, info_ptr);
17387 else
17388 return bfd_get_64 (abfd, info_ptr);
17389 }
17390
17391 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17392
17393 static CORE_ADDR
17394 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17395 {
17396 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17397 }
17398
17399 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17400
17401 static CORE_ADDR
17402 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17403 unsigned int *bytes_read)
17404 {
17405 bfd *abfd = cu->objfile->obfd;
17406 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17407
17408 return read_addr_index (cu, addr_index);
17409 }
17410
17411 /* Data structure to pass results from dwarf2_read_addr_index_reader
17412 back to dwarf2_read_addr_index. */
17413
17414 struct dwarf2_read_addr_index_data
17415 {
17416 ULONGEST addr_base;
17417 int addr_size;
17418 };
17419
17420 /* die_reader_func for dwarf2_read_addr_index. */
17421
17422 static void
17423 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17424 const gdb_byte *info_ptr,
17425 struct die_info *comp_unit_die,
17426 int has_children,
17427 void *data)
17428 {
17429 struct dwarf2_cu *cu = reader->cu;
17430 struct dwarf2_read_addr_index_data *aidata =
17431 (struct dwarf2_read_addr_index_data *) data;
17432
17433 aidata->addr_base = cu->addr_base;
17434 aidata->addr_size = cu->header.addr_size;
17435 }
17436
17437 /* Given an index in .debug_addr, fetch the value.
17438 NOTE: This can be called during dwarf expression evaluation,
17439 long after the debug information has been read, and thus per_cu->cu
17440 may no longer exist. */
17441
17442 CORE_ADDR
17443 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17444 unsigned int addr_index)
17445 {
17446 struct objfile *objfile = per_cu->objfile;
17447 struct dwarf2_cu *cu = per_cu->cu;
17448 ULONGEST addr_base;
17449 int addr_size;
17450
17451 /* This is intended to be called from outside this file. */
17452 dw2_setup (objfile);
17453
17454 /* We need addr_base and addr_size.
17455 If we don't have PER_CU->cu, we have to get it.
17456 Nasty, but the alternative is storing the needed info in PER_CU,
17457 which at this point doesn't seem justified: it's not clear how frequently
17458 it would get used and it would increase the size of every PER_CU.
17459 Entry points like dwarf2_per_cu_addr_size do a similar thing
17460 so we're not in uncharted territory here.
17461 Alas we need to be a bit more complicated as addr_base is contained
17462 in the DIE.
17463
17464 We don't need to read the entire CU(/TU).
17465 We just need the header and top level die.
17466
17467 IWBN to use the aging mechanism to let us lazily later discard the CU.
17468 For now we skip this optimization. */
17469
17470 if (cu != NULL)
17471 {
17472 addr_base = cu->addr_base;
17473 addr_size = cu->header.addr_size;
17474 }
17475 else
17476 {
17477 struct dwarf2_read_addr_index_data aidata;
17478
17479 /* Note: We can't use init_cutu_and_read_dies_simple here,
17480 we need addr_base. */
17481 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17482 dwarf2_read_addr_index_reader, &aidata);
17483 addr_base = aidata.addr_base;
17484 addr_size = aidata.addr_size;
17485 }
17486
17487 return read_addr_index_1 (addr_index, addr_base, addr_size);
17488 }
17489
17490 /* Given a DW_FORM_GNU_str_index, fetch the string.
17491 This is only used by the Fission support. */
17492
17493 static const char *
17494 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17495 {
17496 struct objfile *objfile = dwarf2_per_objfile->objfile;
17497 const char *objf_name = objfile_name (objfile);
17498 bfd *abfd = objfile->obfd;
17499 struct dwarf2_cu *cu = reader->cu;
17500 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17501 struct dwarf2_section_info *str_offsets_section =
17502 &reader->dwo_file->sections.str_offsets;
17503 const gdb_byte *info_ptr;
17504 ULONGEST str_offset;
17505 static const char form_name[] = "DW_FORM_GNU_str_index";
17506
17507 dwarf2_read_section (objfile, str_section);
17508 dwarf2_read_section (objfile, str_offsets_section);
17509 if (str_section->buffer == NULL)
17510 error (_("%s used without .debug_str.dwo section"
17511 " in CU at offset 0x%x [in module %s]"),
17512 form_name, to_underlying (cu->header.sect_off), objf_name);
17513 if (str_offsets_section->buffer == NULL)
17514 error (_("%s used without .debug_str_offsets.dwo section"
17515 " in CU at offset 0x%x [in module %s]"),
17516 form_name, to_underlying (cu->header.sect_off), objf_name);
17517 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17518 error (_("%s pointing outside of .debug_str_offsets.dwo"
17519 " section in CU at offset 0x%x [in module %s]"),
17520 form_name, to_underlying (cu->header.sect_off), objf_name);
17521 info_ptr = (str_offsets_section->buffer
17522 + str_index * cu->header.offset_size);
17523 if (cu->header.offset_size == 4)
17524 str_offset = bfd_get_32 (abfd, info_ptr);
17525 else
17526 str_offset = bfd_get_64 (abfd, info_ptr);
17527 if (str_offset >= str_section->size)
17528 error (_("Offset from %s pointing outside of"
17529 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17530 form_name, to_underlying (cu->header.sect_off), objf_name);
17531 return (const char *) (str_section->buffer + str_offset);
17532 }
17533
17534 /* Return the length of an LEB128 number in BUF. */
17535
17536 static int
17537 leb128_size (const gdb_byte *buf)
17538 {
17539 const gdb_byte *begin = buf;
17540 gdb_byte byte;
17541
17542 while (1)
17543 {
17544 byte = *buf++;
17545 if ((byte & 128) == 0)
17546 return buf - begin;
17547 }
17548 }
17549
17550 static void
17551 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17552 {
17553 switch (lang)
17554 {
17555 case DW_LANG_C89:
17556 case DW_LANG_C99:
17557 case DW_LANG_C11:
17558 case DW_LANG_C:
17559 case DW_LANG_UPC:
17560 cu->language = language_c;
17561 break;
17562 case DW_LANG_Java:
17563 case DW_LANG_C_plus_plus:
17564 case DW_LANG_C_plus_plus_11:
17565 case DW_LANG_C_plus_plus_14:
17566 cu->language = language_cplus;
17567 break;
17568 case DW_LANG_D:
17569 cu->language = language_d;
17570 break;
17571 case DW_LANG_Fortran77:
17572 case DW_LANG_Fortran90:
17573 case DW_LANG_Fortran95:
17574 case DW_LANG_Fortran03:
17575 case DW_LANG_Fortran08:
17576 cu->language = language_fortran;
17577 break;
17578 case DW_LANG_Go:
17579 cu->language = language_go;
17580 break;
17581 case DW_LANG_Mips_Assembler:
17582 cu->language = language_asm;
17583 break;
17584 case DW_LANG_Ada83:
17585 case DW_LANG_Ada95:
17586 cu->language = language_ada;
17587 break;
17588 case DW_LANG_Modula2:
17589 cu->language = language_m2;
17590 break;
17591 case DW_LANG_Pascal83:
17592 cu->language = language_pascal;
17593 break;
17594 case DW_LANG_ObjC:
17595 cu->language = language_objc;
17596 break;
17597 case DW_LANG_Rust:
17598 case DW_LANG_Rust_old:
17599 cu->language = language_rust;
17600 break;
17601 case DW_LANG_Cobol74:
17602 case DW_LANG_Cobol85:
17603 default:
17604 cu->language = language_minimal;
17605 break;
17606 }
17607 cu->language_defn = language_def (cu->language);
17608 }
17609
17610 /* Return the named attribute or NULL if not there. */
17611
17612 static struct attribute *
17613 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17614 {
17615 for (;;)
17616 {
17617 unsigned int i;
17618 struct attribute *spec = NULL;
17619
17620 for (i = 0; i < die->num_attrs; ++i)
17621 {
17622 if (die->attrs[i].name == name)
17623 return &die->attrs[i];
17624 if (die->attrs[i].name == DW_AT_specification
17625 || die->attrs[i].name == DW_AT_abstract_origin)
17626 spec = &die->attrs[i];
17627 }
17628
17629 if (!spec)
17630 break;
17631
17632 die = follow_die_ref (die, spec, &cu);
17633 }
17634
17635 return NULL;
17636 }
17637
17638 /* Return the named attribute or NULL if not there,
17639 but do not follow DW_AT_specification, etc.
17640 This is for use in contexts where we're reading .debug_types dies.
17641 Following DW_AT_specification, DW_AT_abstract_origin will take us
17642 back up the chain, and we want to go down. */
17643
17644 static struct attribute *
17645 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17646 {
17647 unsigned int i;
17648
17649 for (i = 0; i < die->num_attrs; ++i)
17650 if (die->attrs[i].name == name)
17651 return &die->attrs[i];
17652
17653 return NULL;
17654 }
17655
17656 /* Return the string associated with a string-typed attribute, or NULL if it
17657 is either not found or is of an incorrect type. */
17658
17659 static const char *
17660 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17661 {
17662 struct attribute *attr;
17663 const char *str = NULL;
17664
17665 attr = dwarf2_attr (die, name, cu);
17666
17667 if (attr != NULL)
17668 {
17669 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17670 || attr->form == DW_FORM_string
17671 || attr->form == DW_FORM_GNU_str_index
17672 || attr->form == DW_FORM_GNU_strp_alt)
17673 str = DW_STRING (attr);
17674 else
17675 complaint (&symfile_complaints,
17676 _("string type expected for attribute %s for "
17677 "DIE at 0x%x in module %s"),
17678 dwarf_attr_name (name), to_underlying (die->sect_off),
17679 objfile_name (cu->objfile));
17680 }
17681
17682 return str;
17683 }
17684
17685 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17686 and holds a non-zero value. This function should only be used for
17687 DW_FORM_flag or DW_FORM_flag_present attributes. */
17688
17689 static int
17690 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17691 {
17692 struct attribute *attr = dwarf2_attr (die, name, cu);
17693
17694 return (attr && DW_UNSND (attr));
17695 }
17696
17697 static int
17698 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17699 {
17700 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17701 which value is non-zero. However, we have to be careful with
17702 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17703 (via dwarf2_flag_true_p) follows this attribute. So we may
17704 end up accidently finding a declaration attribute that belongs
17705 to a different DIE referenced by the specification attribute,
17706 even though the given DIE does not have a declaration attribute. */
17707 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17708 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17709 }
17710
17711 /* Return the die giving the specification for DIE, if there is
17712 one. *SPEC_CU is the CU containing DIE on input, and the CU
17713 containing the return value on output. If there is no
17714 specification, but there is an abstract origin, that is
17715 returned. */
17716
17717 static struct die_info *
17718 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17719 {
17720 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17721 *spec_cu);
17722
17723 if (spec_attr == NULL)
17724 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17725
17726 if (spec_attr == NULL)
17727 return NULL;
17728 else
17729 return follow_die_ref (die, spec_attr, spec_cu);
17730 }
17731
17732 /* Stub for free_line_header to match void * callback types. */
17733
17734 static void
17735 free_line_header_voidp (void *arg)
17736 {
17737 struct line_header *lh = (struct line_header *) arg;
17738
17739 delete lh;
17740 }
17741
17742 void
17743 line_header::add_include_dir (const char *include_dir)
17744 {
17745 if (dwarf_line_debug >= 2)
17746 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17747 include_dirs.size () + 1, include_dir);
17748
17749 include_dirs.push_back (include_dir);
17750 }
17751
17752 void
17753 line_header::add_file_name (const char *name,
17754 dir_index d_index,
17755 unsigned int mod_time,
17756 unsigned int length)
17757 {
17758 if (dwarf_line_debug >= 2)
17759 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17760 (unsigned) file_names.size () + 1, name);
17761
17762 file_names.emplace_back (name, d_index, mod_time, length);
17763 }
17764
17765 /* A convenience function to find the proper .debug_line section for a CU. */
17766
17767 static struct dwarf2_section_info *
17768 get_debug_line_section (struct dwarf2_cu *cu)
17769 {
17770 struct dwarf2_section_info *section;
17771
17772 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17773 DWO file. */
17774 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17775 section = &cu->dwo_unit->dwo_file->sections.line;
17776 else if (cu->per_cu->is_dwz)
17777 {
17778 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17779
17780 section = &dwz->line;
17781 }
17782 else
17783 section = &dwarf2_per_objfile->line;
17784
17785 return section;
17786 }
17787
17788 /* Read directory or file name entry format, starting with byte of
17789 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17790 entries count and the entries themselves in the described entry
17791 format. */
17792
17793 static void
17794 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17795 struct line_header *lh,
17796 const struct comp_unit_head *cu_header,
17797 void (*callback) (struct line_header *lh,
17798 const char *name,
17799 dir_index d_index,
17800 unsigned int mod_time,
17801 unsigned int length))
17802 {
17803 gdb_byte format_count, formati;
17804 ULONGEST data_count, datai;
17805 const gdb_byte *buf = *bufp;
17806 const gdb_byte *format_header_data;
17807 int i;
17808 unsigned int bytes_read;
17809
17810 format_count = read_1_byte (abfd, buf);
17811 buf += 1;
17812 format_header_data = buf;
17813 for (formati = 0; formati < format_count; formati++)
17814 {
17815 read_unsigned_leb128 (abfd, buf, &bytes_read);
17816 buf += bytes_read;
17817 read_unsigned_leb128 (abfd, buf, &bytes_read);
17818 buf += bytes_read;
17819 }
17820
17821 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17822 buf += bytes_read;
17823 for (datai = 0; datai < data_count; datai++)
17824 {
17825 const gdb_byte *format = format_header_data;
17826 struct file_entry fe;
17827
17828 for (formati = 0; formati < format_count; formati++)
17829 {
17830 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17831 format += bytes_read;
17832
17833 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
17834 format += bytes_read;
17835
17836 gdb::optional<const char *> string;
17837 gdb::optional<unsigned int> uint;
17838
17839 switch (form)
17840 {
17841 case DW_FORM_string:
17842 string.emplace (read_direct_string (abfd, buf, &bytes_read));
17843 buf += bytes_read;
17844 break;
17845
17846 case DW_FORM_line_strp:
17847 string.emplace (read_indirect_line_string (abfd, buf,
17848 cu_header,
17849 &bytes_read));
17850 buf += bytes_read;
17851 break;
17852
17853 case DW_FORM_data1:
17854 uint.emplace (read_1_byte (abfd, buf));
17855 buf += 1;
17856 break;
17857
17858 case DW_FORM_data2:
17859 uint.emplace (read_2_bytes (abfd, buf));
17860 buf += 2;
17861 break;
17862
17863 case DW_FORM_data4:
17864 uint.emplace (read_4_bytes (abfd, buf));
17865 buf += 4;
17866 break;
17867
17868 case DW_FORM_data8:
17869 uint.emplace (read_8_bytes (abfd, buf));
17870 buf += 8;
17871 break;
17872
17873 case DW_FORM_udata:
17874 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
17875 buf += bytes_read;
17876 break;
17877
17878 case DW_FORM_block:
17879 /* It is valid only for DW_LNCT_timestamp which is ignored by
17880 current GDB. */
17881 break;
17882 }
17883
17884 switch (content_type)
17885 {
17886 case DW_LNCT_path:
17887 if (string.has_value ())
17888 fe.name = *string;
17889 break;
17890 case DW_LNCT_directory_index:
17891 if (uint.has_value ())
17892 fe.d_index = (dir_index) *uint;
17893 break;
17894 case DW_LNCT_timestamp:
17895 if (uint.has_value ())
17896 fe.mod_time = *uint;
17897 break;
17898 case DW_LNCT_size:
17899 if (uint.has_value ())
17900 fe.length = *uint;
17901 break;
17902 case DW_LNCT_MD5:
17903 break;
17904 default:
17905 complaint (&symfile_complaints,
17906 _("Unknown format content type %s"),
17907 pulongest (content_type));
17908 }
17909 }
17910
17911 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
17912 }
17913
17914 *bufp = buf;
17915 }
17916
17917 /* Read the statement program header starting at OFFSET in
17918 .debug_line, or .debug_line.dwo. Return a pointer
17919 to a struct line_header, allocated using xmalloc.
17920 Returns NULL if there is a problem reading the header, e.g., if it
17921 has a version we don't understand.
17922
17923 NOTE: the strings in the include directory and file name tables of
17924 the returned object point into the dwarf line section buffer,
17925 and must not be freed. */
17926
17927 static line_header_up
17928 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
17929 {
17930 const gdb_byte *line_ptr;
17931 unsigned int bytes_read, offset_size;
17932 int i;
17933 const char *cur_dir, *cur_file;
17934 struct dwarf2_section_info *section;
17935 bfd *abfd;
17936
17937 section = get_debug_line_section (cu);
17938 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17939 if (section->buffer == NULL)
17940 {
17941 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17942 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17943 else
17944 complaint (&symfile_complaints, _("missing .debug_line section"));
17945 return 0;
17946 }
17947
17948 /* We can't do this until we know the section is non-empty.
17949 Only then do we know we have such a section. */
17950 abfd = get_section_bfd_owner (section);
17951
17952 /* Make sure that at least there's room for the total_length field.
17953 That could be 12 bytes long, but we're just going to fudge that. */
17954 if (to_underlying (sect_off) + 4 >= section->size)
17955 {
17956 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17957 return 0;
17958 }
17959
17960 line_header_up lh (new line_header ());
17961
17962 lh->sect_off = sect_off;
17963 lh->offset_in_dwz = cu->per_cu->is_dwz;
17964
17965 line_ptr = section->buffer + to_underlying (sect_off);
17966
17967 /* Read in the header. */
17968 lh->total_length =
17969 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17970 &bytes_read, &offset_size);
17971 line_ptr += bytes_read;
17972 if (line_ptr + lh->total_length > (section->buffer + section->size))
17973 {
17974 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17975 return 0;
17976 }
17977 lh->statement_program_end = line_ptr + lh->total_length;
17978 lh->version = read_2_bytes (abfd, line_ptr);
17979 line_ptr += 2;
17980 if (lh->version > 5)
17981 {
17982 /* This is a version we don't understand. The format could have
17983 changed in ways we don't handle properly so just punt. */
17984 complaint (&symfile_complaints,
17985 _("unsupported version in .debug_line section"));
17986 return NULL;
17987 }
17988 if (lh->version >= 5)
17989 {
17990 gdb_byte segment_selector_size;
17991
17992 /* Skip address size. */
17993 read_1_byte (abfd, line_ptr);
17994 line_ptr += 1;
17995
17996 segment_selector_size = read_1_byte (abfd, line_ptr);
17997 line_ptr += 1;
17998 if (segment_selector_size != 0)
17999 {
18000 complaint (&symfile_complaints,
18001 _("unsupported segment selector size %u "
18002 "in .debug_line section"),
18003 segment_selector_size);
18004 return NULL;
18005 }
18006 }
18007 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
18008 line_ptr += offset_size;
18009 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
18010 line_ptr += 1;
18011 if (lh->version >= 4)
18012 {
18013 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18014 line_ptr += 1;
18015 }
18016 else
18017 lh->maximum_ops_per_instruction = 1;
18018
18019 if (lh->maximum_ops_per_instruction == 0)
18020 {
18021 lh->maximum_ops_per_instruction = 1;
18022 complaint (&symfile_complaints,
18023 _("invalid maximum_ops_per_instruction "
18024 "in `.debug_line' section"));
18025 }
18026
18027 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18028 line_ptr += 1;
18029 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18030 line_ptr += 1;
18031 lh->line_range = read_1_byte (abfd, line_ptr);
18032 line_ptr += 1;
18033 lh->opcode_base = read_1_byte (abfd, line_ptr);
18034 line_ptr += 1;
18035 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
18036
18037 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18038 for (i = 1; i < lh->opcode_base; ++i)
18039 {
18040 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18041 line_ptr += 1;
18042 }
18043
18044 if (lh->version >= 5)
18045 {
18046 /* Read directory table. */
18047 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18048 [] (struct line_header *lh, const char *name,
18049 dir_index d_index, unsigned int mod_time,
18050 unsigned int length)
18051 {
18052 lh->add_include_dir (name);
18053 });
18054
18055 /* Read file name table. */
18056 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18057 [] (struct line_header *lh, const char *name,
18058 dir_index d_index, unsigned int mod_time,
18059 unsigned int length)
18060 {
18061 lh->add_file_name (name, d_index, mod_time, length);
18062 });
18063 }
18064 else
18065 {
18066 /* Read directory table. */
18067 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18068 {
18069 line_ptr += bytes_read;
18070 lh->add_include_dir (cur_dir);
18071 }
18072 line_ptr += bytes_read;
18073
18074 /* Read file name table. */
18075 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18076 {
18077 unsigned int mod_time, length;
18078 dir_index d_index;
18079
18080 line_ptr += bytes_read;
18081 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18082 line_ptr += bytes_read;
18083 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18084 line_ptr += bytes_read;
18085 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18086 line_ptr += bytes_read;
18087
18088 lh->add_file_name (cur_file, d_index, mod_time, length);
18089 }
18090 line_ptr += bytes_read;
18091 }
18092 lh->statement_program_start = line_ptr;
18093
18094 if (line_ptr > (section->buffer + section->size))
18095 complaint (&symfile_complaints,
18096 _("line number info header doesn't "
18097 "fit in `.debug_line' section"));
18098
18099 return lh;
18100 }
18101
18102 /* Subroutine of dwarf_decode_lines to simplify it.
18103 Return the file name of the psymtab for included file FILE_INDEX
18104 in line header LH of PST.
18105 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18106 If space for the result is malloc'd, it will be freed by a cleanup.
18107 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18108
18109 The function creates dangling cleanup registration. */
18110
18111 static const char *
18112 psymtab_include_file_name (const struct line_header *lh, int file_index,
18113 const struct partial_symtab *pst,
18114 const char *comp_dir)
18115 {
18116 const file_entry &fe = lh->file_names[file_index];
18117 const char *include_name = fe.name;
18118 const char *include_name_to_compare = include_name;
18119 const char *pst_filename;
18120 char *copied_name = NULL;
18121 int file_is_pst;
18122
18123 const char *dir_name = fe.include_dir (lh);
18124
18125 if (!IS_ABSOLUTE_PATH (include_name)
18126 && (dir_name != NULL || comp_dir != NULL))
18127 {
18128 /* Avoid creating a duplicate psymtab for PST.
18129 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18130 Before we do the comparison, however, we need to account
18131 for DIR_NAME and COMP_DIR.
18132 First prepend dir_name (if non-NULL). If we still don't
18133 have an absolute path prepend comp_dir (if non-NULL).
18134 However, the directory we record in the include-file's
18135 psymtab does not contain COMP_DIR (to match the
18136 corresponding symtab(s)).
18137
18138 Example:
18139
18140 bash$ cd /tmp
18141 bash$ gcc -g ./hello.c
18142 include_name = "hello.c"
18143 dir_name = "."
18144 DW_AT_comp_dir = comp_dir = "/tmp"
18145 DW_AT_name = "./hello.c"
18146
18147 */
18148
18149 if (dir_name != NULL)
18150 {
18151 char *tem = concat (dir_name, SLASH_STRING,
18152 include_name, (char *)NULL);
18153
18154 make_cleanup (xfree, tem);
18155 include_name = tem;
18156 include_name_to_compare = include_name;
18157 }
18158 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18159 {
18160 char *tem = concat (comp_dir, SLASH_STRING,
18161 include_name, (char *)NULL);
18162
18163 make_cleanup (xfree, tem);
18164 include_name_to_compare = tem;
18165 }
18166 }
18167
18168 pst_filename = pst->filename;
18169 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18170 {
18171 copied_name = concat (pst->dirname, SLASH_STRING,
18172 pst_filename, (char *)NULL);
18173 pst_filename = copied_name;
18174 }
18175
18176 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18177
18178 if (copied_name != NULL)
18179 xfree (copied_name);
18180
18181 if (file_is_pst)
18182 return NULL;
18183 return include_name;
18184 }
18185
18186 /* State machine to track the state of the line number program. */
18187
18188 class lnp_state_machine
18189 {
18190 public:
18191 /* Initialize a machine state for the start of a line number
18192 program. */
18193 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18194
18195 file_entry *current_file ()
18196 {
18197 /* lh->file_names is 0-based, but the file name numbers in the
18198 statement program are 1-based. */
18199 return m_line_header->file_name_at (m_file);
18200 }
18201
18202 /* Record the line in the state machine. END_SEQUENCE is true if
18203 we're processing the end of a sequence. */
18204 void record_line (bool end_sequence);
18205
18206 /* Check address and if invalid nop-out the rest of the lines in this
18207 sequence. */
18208 void check_line_address (struct dwarf2_cu *cu,
18209 const gdb_byte *line_ptr,
18210 CORE_ADDR lowpc, CORE_ADDR address);
18211
18212 void handle_set_discriminator (unsigned int discriminator)
18213 {
18214 m_discriminator = discriminator;
18215 m_line_has_non_zero_discriminator |= discriminator != 0;
18216 }
18217
18218 /* Handle DW_LNE_set_address. */
18219 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18220 {
18221 m_op_index = 0;
18222 address += baseaddr;
18223 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18224 }
18225
18226 /* Handle DW_LNS_advance_pc. */
18227 void handle_advance_pc (CORE_ADDR adjust);
18228
18229 /* Handle a special opcode. */
18230 void handle_special_opcode (unsigned char op_code);
18231
18232 /* Handle DW_LNS_advance_line. */
18233 void handle_advance_line (int line_delta)
18234 {
18235 advance_line (line_delta);
18236 }
18237
18238 /* Handle DW_LNS_set_file. */
18239 void handle_set_file (file_name_index file);
18240
18241 /* Handle DW_LNS_negate_stmt. */
18242 void handle_negate_stmt ()
18243 {
18244 m_is_stmt = !m_is_stmt;
18245 }
18246
18247 /* Handle DW_LNS_const_add_pc. */
18248 void handle_const_add_pc ();
18249
18250 /* Handle DW_LNS_fixed_advance_pc. */
18251 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18252 {
18253 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18254 m_op_index = 0;
18255 }
18256
18257 /* Handle DW_LNS_copy. */
18258 void handle_copy ()
18259 {
18260 record_line (false);
18261 m_discriminator = 0;
18262 }
18263
18264 /* Handle DW_LNE_end_sequence. */
18265 void handle_end_sequence ()
18266 {
18267 m_record_line_callback = ::record_line;
18268 }
18269
18270 private:
18271 /* Advance the line by LINE_DELTA. */
18272 void advance_line (int line_delta)
18273 {
18274 m_line += line_delta;
18275
18276 if (line_delta != 0)
18277 m_line_has_non_zero_discriminator = m_discriminator != 0;
18278 }
18279
18280 gdbarch *m_gdbarch;
18281
18282 /* True if we're recording lines.
18283 Otherwise we're building partial symtabs and are just interested in
18284 finding include files mentioned by the line number program. */
18285 bool m_record_lines_p;
18286
18287 /* The line number header. */
18288 line_header *m_line_header;
18289
18290 /* These are part of the standard DWARF line number state machine,
18291 and initialized according to the DWARF spec. */
18292
18293 unsigned char m_op_index = 0;
18294 /* The line table index (1-based) of the current file. */
18295 file_name_index m_file = (file_name_index) 1;
18296 unsigned int m_line = 1;
18297
18298 /* These are initialized in the constructor. */
18299
18300 CORE_ADDR m_address;
18301 bool m_is_stmt;
18302 unsigned int m_discriminator;
18303
18304 /* Additional bits of state we need to track. */
18305
18306 /* The last file that we called dwarf2_start_subfile for.
18307 This is only used for TLLs. */
18308 unsigned int m_last_file = 0;
18309 /* The last file a line number was recorded for. */
18310 struct subfile *m_last_subfile = NULL;
18311
18312 /* The function to call to record a line. */
18313 record_line_ftype *m_record_line_callback = NULL;
18314
18315 /* The last line number that was recorded, used to coalesce
18316 consecutive entries for the same line. This can happen, for
18317 example, when discriminators are present. PR 17276. */
18318 unsigned int m_last_line = 0;
18319 bool m_line_has_non_zero_discriminator = false;
18320 };
18321
18322 void
18323 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18324 {
18325 CORE_ADDR addr_adj = (((m_op_index + adjust)
18326 / m_line_header->maximum_ops_per_instruction)
18327 * m_line_header->minimum_instruction_length);
18328 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18329 m_op_index = ((m_op_index + adjust)
18330 % m_line_header->maximum_ops_per_instruction);
18331 }
18332
18333 void
18334 lnp_state_machine::handle_special_opcode (unsigned char op_code)
18335 {
18336 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18337 CORE_ADDR addr_adj = (((m_op_index
18338 + (adj_opcode / m_line_header->line_range))
18339 / m_line_header->maximum_ops_per_instruction)
18340 * m_line_header->minimum_instruction_length);
18341 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18342 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18343 % m_line_header->maximum_ops_per_instruction);
18344
18345 int line_delta = (m_line_header->line_base
18346 + (adj_opcode % m_line_header->line_range));
18347 advance_line (line_delta);
18348 record_line (false);
18349 m_discriminator = 0;
18350 }
18351
18352 void
18353 lnp_state_machine::handle_set_file (file_name_index file)
18354 {
18355 m_file = file;
18356
18357 const file_entry *fe = current_file ();
18358 if (fe == NULL)
18359 dwarf2_debug_line_missing_file_complaint ();
18360 else if (m_record_lines_p)
18361 {
18362 const char *dir = fe->include_dir (m_line_header);
18363
18364 m_last_subfile = current_subfile;
18365 m_line_has_non_zero_discriminator = m_discriminator != 0;
18366 dwarf2_start_subfile (fe->name, dir);
18367 }
18368 }
18369
18370 void
18371 lnp_state_machine::handle_const_add_pc ()
18372 {
18373 CORE_ADDR adjust
18374 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18375
18376 CORE_ADDR addr_adj
18377 = (((m_op_index + adjust)
18378 / m_line_header->maximum_ops_per_instruction)
18379 * m_line_header->minimum_instruction_length);
18380
18381 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18382 m_op_index = ((m_op_index + adjust)
18383 % m_line_header->maximum_ops_per_instruction);
18384 }
18385
18386 /* Ignore this record_line request. */
18387
18388 static void
18389 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18390 {
18391 return;
18392 }
18393
18394 /* Return non-zero if we should add LINE to the line number table.
18395 LINE is the line to add, LAST_LINE is the last line that was added,
18396 LAST_SUBFILE is the subfile for LAST_LINE.
18397 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18398 had a non-zero discriminator.
18399
18400 We have to be careful in the presence of discriminators.
18401 E.g., for this line:
18402
18403 for (i = 0; i < 100000; i++);
18404
18405 clang can emit four line number entries for that one line,
18406 each with a different discriminator.
18407 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18408
18409 However, we want gdb to coalesce all four entries into one.
18410 Otherwise the user could stepi into the middle of the line and
18411 gdb would get confused about whether the pc really was in the
18412 middle of the line.
18413
18414 Things are further complicated by the fact that two consecutive
18415 line number entries for the same line is a heuristic used by gcc
18416 to denote the end of the prologue. So we can't just discard duplicate
18417 entries, we have to be selective about it. The heuristic we use is
18418 that we only collapse consecutive entries for the same line if at least
18419 one of those entries has a non-zero discriminator. PR 17276.
18420
18421 Note: Addresses in the line number state machine can never go backwards
18422 within one sequence, thus this coalescing is ok. */
18423
18424 static int
18425 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18426 int line_has_non_zero_discriminator,
18427 struct subfile *last_subfile)
18428 {
18429 if (current_subfile != last_subfile)
18430 return 1;
18431 if (line != last_line)
18432 return 1;
18433 /* Same line for the same file that we've seen already.
18434 As a last check, for pr 17276, only record the line if the line
18435 has never had a non-zero discriminator. */
18436 if (!line_has_non_zero_discriminator)
18437 return 1;
18438 return 0;
18439 }
18440
18441 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18442 in the line table of subfile SUBFILE. */
18443
18444 static void
18445 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18446 unsigned int line, CORE_ADDR address,
18447 record_line_ftype p_record_line)
18448 {
18449 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18450
18451 if (dwarf_line_debug)
18452 {
18453 fprintf_unfiltered (gdb_stdlog,
18454 "Recording line %u, file %s, address %s\n",
18455 line, lbasename (subfile->name),
18456 paddress (gdbarch, address));
18457 }
18458
18459 (*p_record_line) (subfile, line, addr);
18460 }
18461
18462 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18463 Mark the end of a set of line number records.
18464 The arguments are the same as for dwarf_record_line_1.
18465 If SUBFILE is NULL the request is ignored. */
18466
18467 static void
18468 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18469 CORE_ADDR address, record_line_ftype p_record_line)
18470 {
18471 if (subfile == NULL)
18472 return;
18473
18474 if (dwarf_line_debug)
18475 {
18476 fprintf_unfiltered (gdb_stdlog,
18477 "Finishing current line, file %s, address %s\n",
18478 lbasename (subfile->name),
18479 paddress (gdbarch, address));
18480 }
18481
18482 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18483 }
18484
18485 void
18486 lnp_state_machine::record_line (bool end_sequence)
18487 {
18488 if (dwarf_line_debug)
18489 {
18490 fprintf_unfiltered (gdb_stdlog,
18491 "Processing actual line %u: file %u,"
18492 " address %s, is_stmt %u, discrim %u\n",
18493 m_line, to_underlying (m_file),
18494 paddress (m_gdbarch, m_address),
18495 m_is_stmt, m_discriminator);
18496 }
18497
18498 file_entry *fe = current_file ();
18499
18500 if (fe == NULL)
18501 dwarf2_debug_line_missing_file_complaint ();
18502 /* For now we ignore lines not starting on an instruction boundary.
18503 But not when processing end_sequence for compatibility with the
18504 previous version of the code. */
18505 else if (m_op_index == 0 || end_sequence)
18506 {
18507 fe->included_p = 1;
18508 if (m_record_lines_p && m_is_stmt)
18509 {
18510 if (m_last_subfile != current_subfile || end_sequence)
18511 {
18512 dwarf_finish_line (m_gdbarch, m_last_subfile,
18513 m_address, m_record_line_callback);
18514 }
18515
18516 if (!end_sequence)
18517 {
18518 if (dwarf_record_line_p (m_line, m_last_line,
18519 m_line_has_non_zero_discriminator,
18520 m_last_subfile))
18521 {
18522 dwarf_record_line_1 (m_gdbarch, current_subfile,
18523 m_line, m_address,
18524 m_record_line_callback);
18525 }
18526 m_last_subfile = current_subfile;
18527 m_last_line = m_line;
18528 }
18529 }
18530 }
18531 }
18532
18533 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18534 bool record_lines_p)
18535 {
18536 m_gdbarch = arch;
18537 m_record_lines_p = record_lines_p;
18538 m_line_header = lh;
18539
18540 m_record_line_callback = ::record_line;
18541
18542 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18543 was a line entry for it so that the backend has a chance to adjust it
18544 and also record it in case it needs it. This is currently used by MIPS
18545 code, cf. `mips_adjust_dwarf2_line'. */
18546 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18547 m_is_stmt = lh->default_is_stmt;
18548 m_discriminator = 0;
18549 }
18550
18551 void
18552 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18553 const gdb_byte *line_ptr,
18554 CORE_ADDR lowpc, CORE_ADDR address)
18555 {
18556 /* If address < lowpc then it's not a usable value, it's outside the
18557 pc range of the CU. However, we restrict the test to only address
18558 values of zero to preserve GDB's previous behaviour which is to
18559 handle the specific case of a function being GC'd by the linker. */
18560
18561 if (address == 0 && address < lowpc)
18562 {
18563 /* This line table is for a function which has been
18564 GCd by the linker. Ignore it. PR gdb/12528 */
18565
18566 struct objfile *objfile = cu->objfile;
18567 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18568
18569 complaint (&symfile_complaints,
18570 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18571 line_offset, objfile_name (objfile));
18572 m_record_line_callback = noop_record_line;
18573 /* Note: record_line_callback is left as noop_record_line until
18574 we see DW_LNE_end_sequence. */
18575 }
18576 }
18577
18578 /* Subroutine of dwarf_decode_lines to simplify it.
18579 Process the line number information in LH.
18580 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18581 program in order to set included_p for every referenced header. */
18582
18583 static void
18584 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18585 const int decode_for_pst_p, CORE_ADDR lowpc)
18586 {
18587 const gdb_byte *line_ptr, *extended_end;
18588 const gdb_byte *line_end;
18589 unsigned int bytes_read, extended_len;
18590 unsigned char op_code, extended_op;
18591 CORE_ADDR baseaddr;
18592 struct objfile *objfile = cu->objfile;
18593 bfd *abfd = objfile->obfd;
18594 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18595 /* True if we're recording line info (as opposed to building partial
18596 symtabs and just interested in finding include files mentioned by
18597 the line number program). */
18598 bool record_lines_p = !decode_for_pst_p;
18599
18600 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18601
18602 line_ptr = lh->statement_program_start;
18603 line_end = lh->statement_program_end;
18604
18605 /* Read the statement sequences until there's nothing left. */
18606 while (line_ptr < line_end)
18607 {
18608 /* The DWARF line number program state machine. Reset the state
18609 machine at the start of each sequence. */
18610 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18611 bool end_sequence = false;
18612
18613 if (record_lines_p)
18614 {
18615 /* Start a subfile for the current file of the state
18616 machine. */
18617 const file_entry *fe = state_machine.current_file ();
18618
18619 if (fe != NULL)
18620 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
18621 }
18622
18623 /* Decode the table. */
18624 while (line_ptr < line_end && !end_sequence)
18625 {
18626 op_code = read_1_byte (abfd, line_ptr);
18627 line_ptr += 1;
18628
18629 if (op_code >= lh->opcode_base)
18630 {
18631 /* Special opcode. */
18632 state_machine.handle_special_opcode (op_code);
18633 }
18634 else switch (op_code)
18635 {
18636 case DW_LNS_extended_op:
18637 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18638 &bytes_read);
18639 line_ptr += bytes_read;
18640 extended_end = line_ptr + extended_len;
18641 extended_op = read_1_byte (abfd, line_ptr);
18642 line_ptr += 1;
18643 switch (extended_op)
18644 {
18645 case DW_LNE_end_sequence:
18646 state_machine.handle_end_sequence ();
18647 end_sequence = true;
18648 break;
18649 case DW_LNE_set_address:
18650 {
18651 CORE_ADDR address
18652 = read_address (abfd, line_ptr, cu, &bytes_read);
18653 line_ptr += bytes_read;
18654
18655 state_machine.check_line_address (cu, line_ptr,
18656 lowpc, address);
18657 state_machine.handle_set_address (baseaddr, address);
18658 }
18659 break;
18660 case DW_LNE_define_file:
18661 {
18662 const char *cur_file;
18663 unsigned int mod_time, length;
18664 dir_index dindex;
18665
18666 cur_file = read_direct_string (abfd, line_ptr,
18667 &bytes_read);
18668 line_ptr += bytes_read;
18669 dindex = (dir_index)
18670 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18671 line_ptr += bytes_read;
18672 mod_time =
18673 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18674 line_ptr += bytes_read;
18675 length =
18676 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18677 line_ptr += bytes_read;
18678 lh->add_file_name (cur_file, dindex, mod_time, length);
18679 }
18680 break;
18681 case DW_LNE_set_discriminator:
18682 {
18683 /* The discriminator is not interesting to the
18684 debugger; just ignore it. We still need to
18685 check its value though:
18686 if there are consecutive entries for the same
18687 (non-prologue) line we want to coalesce them.
18688 PR 17276. */
18689 unsigned int discr
18690 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18691 line_ptr += bytes_read;
18692
18693 state_machine.handle_set_discriminator (discr);
18694 }
18695 break;
18696 default:
18697 complaint (&symfile_complaints,
18698 _("mangled .debug_line section"));
18699 return;
18700 }
18701 /* Make sure that we parsed the extended op correctly. If e.g.
18702 we expected a different address size than the producer used,
18703 we may have read the wrong number of bytes. */
18704 if (line_ptr != extended_end)
18705 {
18706 complaint (&symfile_complaints,
18707 _("mangled .debug_line section"));
18708 return;
18709 }
18710 break;
18711 case DW_LNS_copy:
18712 state_machine.handle_copy ();
18713 break;
18714 case DW_LNS_advance_pc:
18715 {
18716 CORE_ADDR adjust
18717 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18718 line_ptr += bytes_read;
18719
18720 state_machine.handle_advance_pc (adjust);
18721 }
18722 break;
18723 case DW_LNS_advance_line:
18724 {
18725 int line_delta
18726 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18727 line_ptr += bytes_read;
18728
18729 state_machine.handle_advance_line (line_delta);
18730 }
18731 break;
18732 case DW_LNS_set_file:
18733 {
18734 file_name_index file
18735 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18736 &bytes_read);
18737 line_ptr += bytes_read;
18738
18739 state_machine.handle_set_file (file);
18740 }
18741 break;
18742 case DW_LNS_set_column:
18743 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18744 line_ptr += bytes_read;
18745 break;
18746 case DW_LNS_negate_stmt:
18747 state_machine.handle_negate_stmt ();
18748 break;
18749 case DW_LNS_set_basic_block:
18750 break;
18751 /* Add to the address register of the state machine the
18752 address increment value corresponding to special opcode
18753 255. I.e., this value is scaled by the minimum
18754 instruction length since special opcode 255 would have
18755 scaled the increment. */
18756 case DW_LNS_const_add_pc:
18757 state_machine.handle_const_add_pc ();
18758 break;
18759 case DW_LNS_fixed_advance_pc:
18760 {
18761 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
18762 line_ptr += 2;
18763
18764 state_machine.handle_fixed_advance_pc (addr_adj);
18765 }
18766 break;
18767 default:
18768 {
18769 /* Unknown standard opcode, ignore it. */
18770 int i;
18771
18772 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18773 {
18774 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18775 line_ptr += bytes_read;
18776 }
18777 }
18778 }
18779 }
18780
18781 if (!end_sequence)
18782 dwarf2_debug_line_missing_end_sequence_complaint ();
18783
18784 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18785 in which case we still finish recording the last line). */
18786 state_machine.record_line (true);
18787 }
18788 }
18789
18790 /* Decode the Line Number Program (LNP) for the given line_header
18791 structure and CU. The actual information extracted and the type
18792 of structures created from the LNP depends on the value of PST.
18793
18794 1. If PST is NULL, then this procedure uses the data from the program
18795 to create all necessary symbol tables, and their linetables.
18796
18797 2. If PST is not NULL, this procedure reads the program to determine
18798 the list of files included by the unit represented by PST, and
18799 builds all the associated partial symbol tables.
18800
18801 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18802 It is used for relative paths in the line table.
18803 NOTE: When processing partial symtabs (pst != NULL),
18804 comp_dir == pst->dirname.
18805
18806 NOTE: It is important that psymtabs have the same file name (via strcmp)
18807 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18808 symtab we don't use it in the name of the psymtabs we create.
18809 E.g. expand_line_sal requires this when finding psymtabs to expand.
18810 A good testcase for this is mb-inline.exp.
18811
18812 LOWPC is the lowest address in CU (or 0 if not known).
18813
18814 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18815 for its PC<->lines mapping information. Otherwise only the filename
18816 table is read in. */
18817
18818 static void
18819 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18820 struct dwarf2_cu *cu, struct partial_symtab *pst,
18821 CORE_ADDR lowpc, int decode_mapping)
18822 {
18823 struct objfile *objfile = cu->objfile;
18824 const int decode_for_pst_p = (pst != NULL);
18825
18826 if (decode_mapping)
18827 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18828
18829 if (decode_for_pst_p)
18830 {
18831 int file_index;
18832
18833 /* Now that we're done scanning the Line Header Program, we can
18834 create the psymtab of each included file. */
18835 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
18836 if (lh->file_names[file_index].included_p == 1)
18837 {
18838 const char *include_name =
18839 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18840 if (include_name != NULL)
18841 dwarf2_create_include_psymtab (include_name, pst, objfile);
18842 }
18843 }
18844 else
18845 {
18846 /* Make sure a symtab is created for every file, even files
18847 which contain only variables (i.e. no code with associated
18848 line numbers). */
18849 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18850 int i;
18851
18852 for (i = 0; i < lh->file_names.size (); i++)
18853 {
18854 file_entry &fe = lh->file_names[i];
18855
18856 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
18857
18858 if (current_subfile->symtab == NULL)
18859 {
18860 current_subfile->symtab
18861 = allocate_symtab (cust, current_subfile->name);
18862 }
18863 fe.symtab = current_subfile->symtab;
18864 }
18865 }
18866 }
18867
18868 /* Start a subfile for DWARF. FILENAME is the name of the file and
18869 DIRNAME the name of the source directory which contains FILENAME
18870 or NULL if not known.
18871 This routine tries to keep line numbers from identical absolute and
18872 relative file names in a common subfile.
18873
18874 Using the `list' example from the GDB testsuite, which resides in
18875 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18876 of /srcdir/list0.c yields the following debugging information for list0.c:
18877
18878 DW_AT_name: /srcdir/list0.c
18879 DW_AT_comp_dir: /compdir
18880 files.files[0].name: list0.h
18881 files.files[0].dir: /srcdir
18882 files.files[1].name: list0.c
18883 files.files[1].dir: /srcdir
18884
18885 The line number information for list0.c has to end up in a single
18886 subfile, so that `break /srcdir/list0.c:1' works as expected.
18887 start_subfile will ensure that this happens provided that we pass the
18888 concatenation of files.files[1].dir and files.files[1].name as the
18889 subfile's name. */
18890
18891 static void
18892 dwarf2_start_subfile (const char *filename, const char *dirname)
18893 {
18894 char *copy = NULL;
18895
18896 /* In order not to lose the line information directory,
18897 we concatenate it to the filename when it makes sense.
18898 Note that the Dwarf3 standard says (speaking of filenames in line
18899 information): ``The directory index is ignored for file names
18900 that represent full path names''. Thus ignoring dirname in the
18901 `else' branch below isn't an issue. */
18902
18903 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18904 {
18905 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18906 filename = copy;
18907 }
18908
18909 start_subfile (filename);
18910
18911 if (copy != NULL)
18912 xfree (copy);
18913 }
18914
18915 /* Start a symtab for DWARF.
18916 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18917
18918 static struct compunit_symtab *
18919 dwarf2_start_symtab (struct dwarf2_cu *cu,
18920 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18921 {
18922 struct compunit_symtab *cust
18923 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18924
18925 record_debugformat ("DWARF 2");
18926 record_producer (cu->producer);
18927
18928 /* We assume that we're processing GCC output. */
18929 processing_gcc_compilation = 2;
18930
18931 cu->processing_has_namespace_info = 0;
18932
18933 return cust;
18934 }
18935
18936 static void
18937 var_decode_location (struct attribute *attr, struct symbol *sym,
18938 struct dwarf2_cu *cu)
18939 {
18940 struct objfile *objfile = cu->objfile;
18941 struct comp_unit_head *cu_header = &cu->header;
18942
18943 /* NOTE drow/2003-01-30: There used to be a comment and some special
18944 code here to turn a symbol with DW_AT_external and a
18945 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18946 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18947 with some versions of binutils) where shared libraries could have
18948 relocations against symbols in their debug information - the
18949 minimal symbol would have the right address, but the debug info
18950 would not. It's no longer necessary, because we will explicitly
18951 apply relocations when we read in the debug information now. */
18952
18953 /* A DW_AT_location attribute with no contents indicates that a
18954 variable has been optimized away. */
18955 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18956 {
18957 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18958 return;
18959 }
18960
18961 /* Handle one degenerate form of location expression specially, to
18962 preserve GDB's previous behavior when section offsets are
18963 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18964 then mark this symbol as LOC_STATIC. */
18965
18966 if (attr_form_is_block (attr)
18967 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18968 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18969 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18970 && (DW_BLOCK (attr)->size
18971 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18972 {
18973 unsigned int dummy;
18974
18975 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18976 SYMBOL_VALUE_ADDRESS (sym) =
18977 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18978 else
18979 SYMBOL_VALUE_ADDRESS (sym) =
18980 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18981 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18982 fixup_symbol_section (sym, objfile);
18983 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18984 SYMBOL_SECTION (sym));
18985 return;
18986 }
18987
18988 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18989 expression evaluator, and use LOC_COMPUTED only when necessary
18990 (i.e. when the value of a register or memory location is
18991 referenced, or a thread-local block, etc.). Then again, it might
18992 not be worthwhile. I'm assuming that it isn't unless performance
18993 or memory numbers show me otherwise. */
18994
18995 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18996
18997 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18998 cu->has_loclist = 1;
18999 }
19000
19001 /* Given a pointer to a DWARF information entry, figure out if we need
19002 to make a symbol table entry for it, and if so, create a new entry
19003 and return a pointer to it.
19004 If TYPE is NULL, determine symbol type from the die, otherwise
19005 used the passed type.
19006 If SPACE is not NULL, use it to hold the new symbol. If it is
19007 NULL, allocate a new symbol on the objfile's obstack. */
19008
19009 static struct symbol *
19010 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
19011 struct symbol *space)
19012 {
19013 struct objfile *objfile = cu->objfile;
19014 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19015 struct symbol *sym = NULL;
19016 const char *name;
19017 struct attribute *attr = NULL;
19018 struct attribute *attr2 = NULL;
19019 CORE_ADDR baseaddr;
19020 struct pending **list_to_add = NULL;
19021
19022 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
19023
19024 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19025
19026 name = dwarf2_name (die, cu);
19027 if (name)
19028 {
19029 const char *linkagename;
19030 int suppress_add = 0;
19031
19032 if (space)
19033 sym = space;
19034 else
19035 sym = allocate_symbol (objfile);
19036 OBJSTAT (objfile, n_syms++);
19037
19038 /* Cache this symbol's name and the name's demangled form (if any). */
19039 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
19040 linkagename = dwarf2_physname (name, die, cu);
19041 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
19042
19043 /* Fortran does not have mangling standard and the mangling does differ
19044 between gfortran, iFort etc. */
19045 if (cu->language == language_fortran
19046 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
19047 symbol_set_demangled_name (&(sym->ginfo),
19048 dwarf2_full_name (name, die, cu),
19049 NULL);
19050
19051 /* Default assumptions.
19052 Use the passed type or decode it from the die. */
19053 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19054 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19055 if (type != NULL)
19056 SYMBOL_TYPE (sym) = type;
19057 else
19058 SYMBOL_TYPE (sym) = die_type (die, cu);
19059 attr = dwarf2_attr (die,
19060 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19061 cu);
19062 if (attr)
19063 {
19064 SYMBOL_LINE (sym) = DW_UNSND (attr);
19065 }
19066
19067 attr = dwarf2_attr (die,
19068 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19069 cu);
19070 if (attr)
19071 {
19072 file_name_index file_index = (file_name_index) DW_UNSND (attr);
19073 struct file_entry *fe;
19074
19075 if (cu->line_header != NULL)
19076 fe = cu->line_header->file_name_at (file_index);
19077 else
19078 fe = NULL;
19079
19080 if (fe == NULL)
19081 complaint (&symfile_complaints,
19082 _("file index out of range"));
19083 else
19084 symbol_set_symtab (sym, fe->symtab);
19085 }
19086
19087 switch (die->tag)
19088 {
19089 case DW_TAG_label:
19090 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
19091 if (attr)
19092 {
19093 CORE_ADDR addr;
19094
19095 addr = attr_value_as_address (attr);
19096 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19097 SYMBOL_VALUE_ADDRESS (sym) = addr;
19098 }
19099 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19100 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
19101 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
19102 add_symbol_to_list (sym, cu->list_in_scope);
19103 break;
19104 case DW_TAG_subprogram:
19105 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19106 finish_block. */
19107 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19108 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19109 if ((attr2 && (DW_UNSND (attr2) != 0))
19110 || cu->language == language_ada)
19111 {
19112 /* Subprograms marked external are stored as a global symbol.
19113 Ada subprograms, whether marked external or not, are always
19114 stored as a global symbol, because we want to be able to
19115 access them globally. For instance, we want to be able
19116 to break on a nested subprogram without having to
19117 specify the context. */
19118 list_to_add = &global_symbols;
19119 }
19120 else
19121 {
19122 list_to_add = cu->list_in_scope;
19123 }
19124 break;
19125 case DW_TAG_inlined_subroutine:
19126 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19127 finish_block. */
19128 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19129 SYMBOL_INLINED (sym) = 1;
19130 list_to_add = cu->list_in_scope;
19131 break;
19132 case DW_TAG_template_value_param:
19133 suppress_add = 1;
19134 /* Fall through. */
19135 case DW_TAG_constant:
19136 case DW_TAG_variable:
19137 case DW_TAG_member:
19138 /* Compilation with minimal debug info may result in
19139 variables with missing type entries. Change the
19140 misleading `void' type to something sensible. */
19141 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
19142 SYMBOL_TYPE (sym)
19143 = objfile_type (objfile)->nodebug_data_symbol;
19144
19145 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19146 /* In the case of DW_TAG_member, we should only be called for
19147 static const members. */
19148 if (die->tag == DW_TAG_member)
19149 {
19150 /* dwarf2_add_field uses die_is_declaration,
19151 so we do the same. */
19152 gdb_assert (die_is_declaration (die, cu));
19153 gdb_assert (attr);
19154 }
19155 if (attr)
19156 {
19157 dwarf2_const_value (attr, sym, cu);
19158 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19159 if (!suppress_add)
19160 {
19161 if (attr2 && (DW_UNSND (attr2) != 0))
19162 list_to_add = &global_symbols;
19163 else
19164 list_to_add = cu->list_in_scope;
19165 }
19166 break;
19167 }
19168 attr = dwarf2_attr (die, DW_AT_location, cu);
19169 if (attr)
19170 {
19171 var_decode_location (attr, sym, cu);
19172 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19173
19174 /* Fortran explicitly imports any global symbols to the local
19175 scope by DW_TAG_common_block. */
19176 if (cu->language == language_fortran && die->parent
19177 && die->parent->tag == DW_TAG_common_block)
19178 attr2 = NULL;
19179
19180 if (SYMBOL_CLASS (sym) == LOC_STATIC
19181 && SYMBOL_VALUE_ADDRESS (sym) == 0
19182 && !dwarf2_per_objfile->has_section_at_zero)
19183 {
19184 /* When a static variable is eliminated by the linker,
19185 the corresponding debug information is not stripped
19186 out, but the variable address is set to null;
19187 do not add such variables into symbol table. */
19188 }
19189 else if (attr2 && (DW_UNSND (attr2) != 0))
19190 {
19191 /* Workaround gfortran PR debug/40040 - it uses
19192 DW_AT_location for variables in -fPIC libraries which may
19193 get overriden by other libraries/executable and get
19194 a different address. Resolve it by the minimal symbol
19195 which may come from inferior's executable using copy
19196 relocation. Make this workaround only for gfortran as for
19197 other compilers GDB cannot guess the minimal symbol
19198 Fortran mangling kind. */
19199 if (cu->language == language_fortran && die->parent
19200 && die->parent->tag == DW_TAG_module
19201 && cu->producer
19202 && startswith (cu->producer, "GNU Fortran"))
19203 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19204
19205 /* A variable with DW_AT_external is never static,
19206 but it may be block-scoped. */
19207 list_to_add = (cu->list_in_scope == &file_symbols
19208 ? &global_symbols : cu->list_in_scope);
19209 }
19210 else
19211 list_to_add = cu->list_in_scope;
19212 }
19213 else
19214 {
19215 /* We do not know the address of this symbol.
19216 If it is an external symbol and we have type information
19217 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19218 The address of the variable will then be determined from
19219 the minimal symbol table whenever the variable is
19220 referenced. */
19221 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19222
19223 /* Fortran explicitly imports any global symbols to the local
19224 scope by DW_TAG_common_block. */
19225 if (cu->language == language_fortran && die->parent
19226 && die->parent->tag == DW_TAG_common_block)
19227 {
19228 /* SYMBOL_CLASS doesn't matter here because
19229 read_common_block is going to reset it. */
19230 if (!suppress_add)
19231 list_to_add = cu->list_in_scope;
19232 }
19233 else if (attr2 && (DW_UNSND (attr2) != 0)
19234 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19235 {
19236 /* A variable with DW_AT_external is never static, but it
19237 may be block-scoped. */
19238 list_to_add = (cu->list_in_scope == &file_symbols
19239 ? &global_symbols : cu->list_in_scope);
19240
19241 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19242 }
19243 else if (!die_is_declaration (die, cu))
19244 {
19245 /* Use the default LOC_OPTIMIZED_OUT class. */
19246 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19247 if (!suppress_add)
19248 list_to_add = cu->list_in_scope;
19249 }
19250 }
19251 break;
19252 case DW_TAG_formal_parameter:
19253 /* If we are inside a function, mark this as an argument. If
19254 not, we might be looking at an argument to an inlined function
19255 when we do not have enough information to show inlined frames;
19256 pretend it's a local variable in that case so that the user can
19257 still see it. */
19258 if (context_stack_depth > 0
19259 && context_stack[context_stack_depth - 1].name != NULL)
19260 SYMBOL_IS_ARGUMENT (sym) = 1;
19261 attr = dwarf2_attr (die, DW_AT_location, cu);
19262 if (attr)
19263 {
19264 var_decode_location (attr, sym, cu);
19265 }
19266 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19267 if (attr)
19268 {
19269 dwarf2_const_value (attr, sym, cu);
19270 }
19271
19272 list_to_add = cu->list_in_scope;
19273 break;
19274 case DW_TAG_unspecified_parameters:
19275 /* From varargs functions; gdb doesn't seem to have any
19276 interest in this information, so just ignore it for now.
19277 (FIXME?) */
19278 break;
19279 case DW_TAG_template_type_param:
19280 suppress_add = 1;
19281 /* Fall through. */
19282 case DW_TAG_class_type:
19283 case DW_TAG_interface_type:
19284 case DW_TAG_structure_type:
19285 case DW_TAG_union_type:
19286 case DW_TAG_set_type:
19287 case DW_TAG_enumeration_type:
19288 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19289 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19290
19291 {
19292 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19293 really ever be static objects: otherwise, if you try
19294 to, say, break of a class's method and you're in a file
19295 which doesn't mention that class, it won't work unless
19296 the check for all static symbols in lookup_symbol_aux
19297 saves you. See the OtherFileClass tests in
19298 gdb.c++/namespace.exp. */
19299
19300 if (!suppress_add)
19301 {
19302 list_to_add = (cu->list_in_scope == &file_symbols
19303 && cu->language == language_cplus
19304 ? &global_symbols : cu->list_in_scope);
19305
19306 /* The semantics of C++ state that "struct foo {
19307 ... }" also defines a typedef for "foo". */
19308 if (cu->language == language_cplus
19309 || cu->language == language_ada
19310 || cu->language == language_d
19311 || cu->language == language_rust)
19312 {
19313 /* The symbol's name is already allocated along
19314 with this objfile, so we don't need to
19315 duplicate it for the type. */
19316 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19317 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19318 }
19319 }
19320 }
19321 break;
19322 case DW_TAG_typedef:
19323 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19324 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19325 list_to_add = cu->list_in_scope;
19326 break;
19327 case DW_TAG_base_type:
19328 case DW_TAG_subrange_type:
19329 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19330 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19331 list_to_add = cu->list_in_scope;
19332 break;
19333 case DW_TAG_enumerator:
19334 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19335 if (attr)
19336 {
19337 dwarf2_const_value (attr, sym, cu);
19338 }
19339 {
19340 /* NOTE: carlton/2003-11-10: See comment above in the
19341 DW_TAG_class_type, etc. block. */
19342
19343 list_to_add = (cu->list_in_scope == &file_symbols
19344 && cu->language == language_cplus
19345 ? &global_symbols : cu->list_in_scope);
19346 }
19347 break;
19348 case DW_TAG_imported_declaration:
19349 case DW_TAG_namespace:
19350 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19351 list_to_add = &global_symbols;
19352 break;
19353 case DW_TAG_module:
19354 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19355 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19356 list_to_add = &global_symbols;
19357 break;
19358 case DW_TAG_common_block:
19359 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19360 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19361 add_symbol_to_list (sym, cu->list_in_scope);
19362 break;
19363 default:
19364 /* Not a tag we recognize. Hopefully we aren't processing
19365 trash data, but since we must specifically ignore things
19366 we don't recognize, there is nothing else we should do at
19367 this point. */
19368 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19369 dwarf_tag_name (die->tag));
19370 break;
19371 }
19372
19373 if (suppress_add)
19374 {
19375 sym->hash_next = objfile->template_symbols;
19376 objfile->template_symbols = sym;
19377 list_to_add = NULL;
19378 }
19379
19380 if (list_to_add != NULL)
19381 add_symbol_to_list (sym, list_to_add);
19382
19383 /* For the benefit of old versions of GCC, check for anonymous
19384 namespaces based on the demangled name. */
19385 if (!cu->processing_has_namespace_info
19386 && cu->language == language_cplus)
19387 cp_scan_for_anonymous_namespaces (sym, objfile);
19388 }
19389 return (sym);
19390 }
19391
19392 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19393
19394 static struct symbol *
19395 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19396 {
19397 return new_symbol_full (die, type, cu, NULL);
19398 }
19399
19400 /* Given an attr with a DW_FORM_dataN value in host byte order,
19401 zero-extend it as appropriate for the symbol's type. The DWARF
19402 standard (v4) is not entirely clear about the meaning of using
19403 DW_FORM_dataN for a constant with a signed type, where the type is
19404 wider than the data. The conclusion of a discussion on the DWARF
19405 list was that this is unspecified. We choose to always zero-extend
19406 because that is the interpretation long in use by GCC. */
19407
19408 static gdb_byte *
19409 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19410 struct dwarf2_cu *cu, LONGEST *value, int bits)
19411 {
19412 struct objfile *objfile = cu->objfile;
19413 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19414 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19415 LONGEST l = DW_UNSND (attr);
19416
19417 if (bits < sizeof (*value) * 8)
19418 {
19419 l &= ((LONGEST) 1 << bits) - 1;
19420 *value = l;
19421 }
19422 else if (bits == sizeof (*value) * 8)
19423 *value = l;
19424 else
19425 {
19426 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19427 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19428 return bytes;
19429 }
19430
19431 return NULL;
19432 }
19433
19434 /* Read a constant value from an attribute. Either set *VALUE, or if
19435 the value does not fit in *VALUE, set *BYTES - either already
19436 allocated on the objfile obstack, or newly allocated on OBSTACK,
19437 or, set *BATON, if we translated the constant to a location
19438 expression. */
19439
19440 static void
19441 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19442 const char *name, struct obstack *obstack,
19443 struct dwarf2_cu *cu,
19444 LONGEST *value, const gdb_byte **bytes,
19445 struct dwarf2_locexpr_baton **baton)
19446 {
19447 struct objfile *objfile = cu->objfile;
19448 struct comp_unit_head *cu_header = &cu->header;
19449 struct dwarf_block *blk;
19450 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19451 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19452
19453 *value = 0;
19454 *bytes = NULL;
19455 *baton = NULL;
19456
19457 switch (attr->form)
19458 {
19459 case DW_FORM_addr:
19460 case DW_FORM_GNU_addr_index:
19461 {
19462 gdb_byte *data;
19463
19464 if (TYPE_LENGTH (type) != cu_header->addr_size)
19465 dwarf2_const_value_length_mismatch_complaint (name,
19466 cu_header->addr_size,
19467 TYPE_LENGTH (type));
19468 /* Symbols of this form are reasonably rare, so we just
19469 piggyback on the existing location code rather than writing
19470 a new implementation of symbol_computed_ops. */
19471 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19472 (*baton)->per_cu = cu->per_cu;
19473 gdb_assert ((*baton)->per_cu);
19474
19475 (*baton)->size = 2 + cu_header->addr_size;
19476 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19477 (*baton)->data = data;
19478
19479 data[0] = DW_OP_addr;
19480 store_unsigned_integer (&data[1], cu_header->addr_size,
19481 byte_order, DW_ADDR (attr));
19482 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19483 }
19484 break;
19485 case DW_FORM_string:
19486 case DW_FORM_strp:
19487 case DW_FORM_GNU_str_index:
19488 case DW_FORM_GNU_strp_alt:
19489 /* DW_STRING is already allocated on the objfile obstack, point
19490 directly to it. */
19491 *bytes = (const gdb_byte *) DW_STRING (attr);
19492 break;
19493 case DW_FORM_block1:
19494 case DW_FORM_block2:
19495 case DW_FORM_block4:
19496 case DW_FORM_block:
19497 case DW_FORM_exprloc:
19498 case DW_FORM_data16:
19499 blk = DW_BLOCK (attr);
19500 if (TYPE_LENGTH (type) != blk->size)
19501 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19502 TYPE_LENGTH (type));
19503 *bytes = blk->data;
19504 break;
19505
19506 /* The DW_AT_const_value attributes are supposed to carry the
19507 symbol's value "represented as it would be on the target
19508 architecture." By the time we get here, it's already been
19509 converted to host endianness, so we just need to sign- or
19510 zero-extend it as appropriate. */
19511 case DW_FORM_data1:
19512 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19513 break;
19514 case DW_FORM_data2:
19515 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19516 break;
19517 case DW_FORM_data4:
19518 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19519 break;
19520 case DW_FORM_data8:
19521 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19522 break;
19523
19524 case DW_FORM_sdata:
19525 case DW_FORM_implicit_const:
19526 *value = DW_SND (attr);
19527 break;
19528
19529 case DW_FORM_udata:
19530 *value = DW_UNSND (attr);
19531 break;
19532
19533 default:
19534 complaint (&symfile_complaints,
19535 _("unsupported const value attribute form: '%s'"),
19536 dwarf_form_name (attr->form));
19537 *value = 0;
19538 break;
19539 }
19540 }
19541
19542
19543 /* Copy constant value from an attribute to a symbol. */
19544
19545 static void
19546 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19547 struct dwarf2_cu *cu)
19548 {
19549 struct objfile *objfile = cu->objfile;
19550 LONGEST value;
19551 const gdb_byte *bytes;
19552 struct dwarf2_locexpr_baton *baton;
19553
19554 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19555 SYMBOL_PRINT_NAME (sym),
19556 &objfile->objfile_obstack, cu,
19557 &value, &bytes, &baton);
19558
19559 if (baton != NULL)
19560 {
19561 SYMBOL_LOCATION_BATON (sym) = baton;
19562 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19563 }
19564 else if (bytes != NULL)
19565 {
19566 SYMBOL_VALUE_BYTES (sym) = bytes;
19567 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19568 }
19569 else
19570 {
19571 SYMBOL_VALUE (sym) = value;
19572 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19573 }
19574 }
19575
19576 /* Return the type of the die in question using its DW_AT_type attribute. */
19577
19578 static struct type *
19579 die_type (struct die_info *die, struct dwarf2_cu *cu)
19580 {
19581 struct attribute *type_attr;
19582
19583 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19584 if (!type_attr)
19585 {
19586 /* A missing DW_AT_type represents a void type. */
19587 return objfile_type (cu->objfile)->builtin_void;
19588 }
19589
19590 return lookup_die_type (die, type_attr, cu);
19591 }
19592
19593 /* True iff CU's producer generates GNAT Ada auxiliary information
19594 that allows to find parallel types through that information instead
19595 of having to do expensive parallel lookups by type name. */
19596
19597 static int
19598 need_gnat_info (struct dwarf2_cu *cu)
19599 {
19600 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19601 of GNAT produces this auxiliary information, without any indication
19602 that it is produced. Part of enhancing the FSF version of GNAT
19603 to produce that information will be to put in place an indicator
19604 that we can use in order to determine whether the descriptive type
19605 info is available or not. One suggestion that has been made is
19606 to use a new attribute, attached to the CU die. For now, assume
19607 that the descriptive type info is not available. */
19608 return 0;
19609 }
19610
19611 /* Return the auxiliary type of the die in question using its
19612 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19613 attribute is not present. */
19614
19615 static struct type *
19616 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19617 {
19618 struct attribute *type_attr;
19619
19620 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19621 if (!type_attr)
19622 return NULL;
19623
19624 return lookup_die_type (die, type_attr, cu);
19625 }
19626
19627 /* If DIE has a descriptive_type attribute, then set the TYPE's
19628 descriptive type accordingly. */
19629
19630 static void
19631 set_descriptive_type (struct type *type, struct die_info *die,
19632 struct dwarf2_cu *cu)
19633 {
19634 struct type *descriptive_type = die_descriptive_type (die, cu);
19635
19636 if (descriptive_type)
19637 {
19638 ALLOCATE_GNAT_AUX_TYPE (type);
19639 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19640 }
19641 }
19642
19643 /* Return the containing type of the die in question using its
19644 DW_AT_containing_type attribute. */
19645
19646 static struct type *
19647 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19648 {
19649 struct attribute *type_attr;
19650
19651 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19652 if (!type_attr)
19653 error (_("Dwarf Error: Problem turning containing type into gdb type "
19654 "[in module %s]"), objfile_name (cu->objfile));
19655
19656 return lookup_die_type (die, type_attr, cu);
19657 }
19658
19659 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19660
19661 static struct type *
19662 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19663 {
19664 struct objfile *objfile = dwarf2_per_objfile->objfile;
19665 char *message, *saved;
19666
19667 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19668 objfile_name (objfile),
19669 to_underlying (cu->header.sect_off),
19670 to_underlying (die->sect_off));
19671 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19672 message, strlen (message));
19673 xfree (message);
19674
19675 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19676 }
19677
19678 /* Look up the type of DIE in CU using its type attribute ATTR.
19679 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19680 DW_AT_containing_type.
19681 If there is no type substitute an error marker. */
19682
19683 static struct type *
19684 lookup_die_type (struct die_info *die, const struct attribute *attr,
19685 struct dwarf2_cu *cu)
19686 {
19687 struct objfile *objfile = cu->objfile;
19688 struct type *this_type;
19689
19690 gdb_assert (attr->name == DW_AT_type
19691 || attr->name == DW_AT_GNAT_descriptive_type
19692 || attr->name == DW_AT_containing_type);
19693
19694 /* First see if we have it cached. */
19695
19696 if (attr->form == DW_FORM_GNU_ref_alt)
19697 {
19698 struct dwarf2_per_cu_data *per_cu;
19699 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19700
19701 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19702 this_type = get_die_type_at_offset (sect_off, per_cu);
19703 }
19704 else if (attr_form_is_ref (attr))
19705 {
19706 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19707
19708 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
19709 }
19710 else if (attr->form == DW_FORM_ref_sig8)
19711 {
19712 ULONGEST signature = DW_SIGNATURE (attr);
19713
19714 return get_signatured_type (die, signature, cu);
19715 }
19716 else
19717 {
19718 complaint (&symfile_complaints,
19719 _("Dwarf Error: Bad type attribute %s in DIE"
19720 " at 0x%x [in module %s]"),
19721 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
19722 objfile_name (objfile));
19723 return build_error_marker_type (cu, die);
19724 }
19725
19726 /* If not cached we need to read it in. */
19727
19728 if (this_type == NULL)
19729 {
19730 struct die_info *type_die = NULL;
19731 struct dwarf2_cu *type_cu = cu;
19732
19733 if (attr_form_is_ref (attr))
19734 type_die = follow_die_ref (die, attr, &type_cu);
19735 if (type_die == NULL)
19736 return build_error_marker_type (cu, die);
19737 /* If we find the type now, it's probably because the type came
19738 from an inter-CU reference and the type's CU got expanded before
19739 ours. */
19740 this_type = read_type_die (type_die, type_cu);
19741 }
19742
19743 /* If we still don't have a type use an error marker. */
19744
19745 if (this_type == NULL)
19746 return build_error_marker_type (cu, die);
19747
19748 return this_type;
19749 }
19750
19751 /* Return the type in DIE, CU.
19752 Returns NULL for invalid types.
19753
19754 This first does a lookup in die_type_hash,
19755 and only reads the die in if necessary.
19756
19757 NOTE: This can be called when reading in partial or full symbols. */
19758
19759 static struct type *
19760 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19761 {
19762 struct type *this_type;
19763
19764 this_type = get_die_type (die, cu);
19765 if (this_type)
19766 return this_type;
19767
19768 return read_type_die_1 (die, cu);
19769 }
19770
19771 /* Read the type in DIE, CU.
19772 Returns NULL for invalid types. */
19773
19774 static struct type *
19775 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19776 {
19777 struct type *this_type = NULL;
19778
19779 switch (die->tag)
19780 {
19781 case DW_TAG_class_type:
19782 case DW_TAG_interface_type:
19783 case DW_TAG_structure_type:
19784 case DW_TAG_union_type:
19785 this_type = read_structure_type (die, cu);
19786 break;
19787 case DW_TAG_enumeration_type:
19788 this_type = read_enumeration_type (die, cu);
19789 break;
19790 case DW_TAG_subprogram:
19791 case DW_TAG_subroutine_type:
19792 case DW_TAG_inlined_subroutine:
19793 this_type = read_subroutine_type (die, cu);
19794 break;
19795 case DW_TAG_array_type:
19796 this_type = read_array_type (die, cu);
19797 break;
19798 case DW_TAG_set_type:
19799 this_type = read_set_type (die, cu);
19800 break;
19801 case DW_TAG_pointer_type:
19802 this_type = read_tag_pointer_type (die, cu);
19803 break;
19804 case DW_TAG_ptr_to_member_type:
19805 this_type = read_tag_ptr_to_member_type (die, cu);
19806 break;
19807 case DW_TAG_reference_type:
19808 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19809 break;
19810 case DW_TAG_rvalue_reference_type:
19811 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
19812 break;
19813 case DW_TAG_const_type:
19814 this_type = read_tag_const_type (die, cu);
19815 break;
19816 case DW_TAG_volatile_type:
19817 this_type = read_tag_volatile_type (die, cu);
19818 break;
19819 case DW_TAG_restrict_type:
19820 this_type = read_tag_restrict_type (die, cu);
19821 break;
19822 case DW_TAG_string_type:
19823 this_type = read_tag_string_type (die, cu);
19824 break;
19825 case DW_TAG_typedef:
19826 this_type = read_typedef (die, cu);
19827 break;
19828 case DW_TAG_subrange_type:
19829 this_type = read_subrange_type (die, cu);
19830 break;
19831 case DW_TAG_base_type:
19832 this_type = read_base_type (die, cu);
19833 break;
19834 case DW_TAG_unspecified_type:
19835 this_type = read_unspecified_type (die, cu);
19836 break;
19837 case DW_TAG_namespace:
19838 this_type = read_namespace_type (die, cu);
19839 break;
19840 case DW_TAG_module:
19841 this_type = read_module_type (die, cu);
19842 break;
19843 case DW_TAG_atomic_type:
19844 this_type = read_tag_atomic_type (die, cu);
19845 break;
19846 default:
19847 complaint (&symfile_complaints,
19848 _("unexpected tag in read_type_die: '%s'"),
19849 dwarf_tag_name (die->tag));
19850 break;
19851 }
19852
19853 return this_type;
19854 }
19855
19856 /* See if we can figure out if the class lives in a namespace. We do
19857 this by looking for a member function; its demangled name will
19858 contain namespace info, if there is any.
19859 Return the computed name or NULL.
19860 Space for the result is allocated on the objfile's obstack.
19861 This is the full-die version of guess_partial_die_structure_name.
19862 In this case we know DIE has no useful parent. */
19863
19864 static char *
19865 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19866 {
19867 struct die_info *spec_die;
19868 struct dwarf2_cu *spec_cu;
19869 struct die_info *child;
19870
19871 spec_cu = cu;
19872 spec_die = die_specification (die, &spec_cu);
19873 if (spec_die != NULL)
19874 {
19875 die = spec_die;
19876 cu = spec_cu;
19877 }
19878
19879 for (child = die->child;
19880 child != NULL;
19881 child = child->sibling)
19882 {
19883 if (child->tag == DW_TAG_subprogram)
19884 {
19885 const char *linkage_name;
19886
19887 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19888 if (linkage_name == NULL)
19889 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19890 cu);
19891 if (linkage_name != NULL)
19892 {
19893 char *actual_name
19894 = language_class_name_from_physname (cu->language_defn,
19895 linkage_name);
19896 char *name = NULL;
19897
19898 if (actual_name != NULL)
19899 {
19900 const char *die_name = dwarf2_name (die, cu);
19901
19902 if (die_name != NULL
19903 && strcmp (die_name, actual_name) != 0)
19904 {
19905 /* Strip off the class name from the full name.
19906 We want the prefix. */
19907 int die_name_len = strlen (die_name);
19908 int actual_name_len = strlen (actual_name);
19909
19910 /* Test for '::' as a sanity check. */
19911 if (actual_name_len > die_name_len + 2
19912 && actual_name[actual_name_len
19913 - die_name_len - 1] == ':')
19914 name = (char *) obstack_copy0 (
19915 &cu->objfile->per_bfd->storage_obstack,
19916 actual_name, actual_name_len - die_name_len - 2);
19917 }
19918 }
19919 xfree (actual_name);
19920 return name;
19921 }
19922 }
19923 }
19924
19925 return NULL;
19926 }
19927
19928 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19929 prefix part in such case. See
19930 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19931
19932 static const char *
19933 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19934 {
19935 struct attribute *attr;
19936 const char *base;
19937
19938 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19939 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19940 return NULL;
19941
19942 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19943 return NULL;
19944
19945 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19946 if (attr == NULL)
19947 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19948 if (attr == NULL || DW_STRING (attr) == NULL)
19949 return NULL;
19950
19951 /* dwarf2_name had to be already called. */
19952 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19953
19954 /* Strip the base name, keep any leading namespaces/classes. */
19955 base = strrchr (DW_STRING (attr), ':');
19956 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19957 return "";
19958
19959 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19960 DW_STRING (attr),
19961 &base[-1] - DW_STRING (attr));
19962 }
19963
19964 /* Return the name of the namespace/class that DIE is defined within,
19965 or "" if we can't tell. The caller should not xfree the result.
19966
19967 For example, if we're within the method foo() in the following
19968 code:
19969
19970 namespace N {
19971 class C {
19972 void foo () {
19973 }
19974 };
19975 }
19976
19977 then determine_prefix on foo's die will return "N::C". */
19978
19979 static const char *
19980 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19981 {
19982 struct die_info *parent, *spec_die;
19983 struct dwarf2_cu *spec_cu;
19984 struct type *parent_type;
19985 const char *retval;
19986
19987 if (cu->language != language_cplus
19988 && cu->language != language_fortran && cu->language != language_d
19989 && cu->language != language_rust)
19990 return "";
19991
19992 retval = anonymous_struct_prefix (die, cu);
19993 if (retval)
19994 return retval;
19995
19996 /* We have to be careful in the presence of DW_AT_specification.
19997 For example, with GCC 3.4, given the code
19998
19999 namespace N {
20000 void foo() {
20001 // Definition of N::foo.
20002 }
20003 }
20004
20005 then we'll have a tree of DIEs like this:
20006
20007 1: DW_TAG_compile_unit
20008 2: DW_TAG_namespace // N
20009 3: DW_TAG_subprogram // declaration of N::foo
20010 4: DW_TAG_subprogram // definition of N::foo
20011 DW_AT_specification // refers to die #3
20012
20013 Thus, when processing die #4, we have to pretend that we're in
20014 the context of its DW_AT_specification, namely the contex of die
20015 #3. */
20016 spec_cu = cu;
20017 spec_die = die_specification (die, &spec_cu);
20018 if (spec_die == NULL)
20019 parent = die->parent;
20020 else
20021 {
20022 parent = spec_die->parent;
20023 cu = spec_cu;
20024 }
20025
20026 if (parent == NULL)
20027 return "";
20028 else if (parent->building_fullname)
20029 {
20030 const char *name;
20031 const char *parent_name;
20032
20033 /* It has been seen on RealView 2.2 built binaries,
20034 DW_TAG_template_type_param types actually _defined_ as
20035 children of the parent class:
20036
20037 enum E {};
20038 template class <class Enum> Class{};
20039 Class<enum E> class_e;
20040
20041 1: DW_TAG_class_type (Class)
20042 2: DW_TAG_enumeration_type (E)
20043 3: DW_TAG_enumerator (enum1:0)
20044 3: DW_TAG_enumerator (enum2:1)
20045 ...
20046 2: DW_TAG_template_type_param
20047 DW_AT_type DW_FORM_ref_udata (E)
20048
20049 Besides being broken debug info, it can put GDB into an
20050 infinite loop. Consider:
20051
20052 When we're building the full name for Class<E>, we'll start
20053 at Class, and go look over its template type parameters,
20054 finding E. We'll then try to build the full name of E, and
20055 reach here. We're now trying to build the full name of E,
20056 and look over the parent DIE for containing scope. In the
20057 broken case, if we followed the parent DIE of E, we'd again
20058 find Class, and once again go look at its template type
20059 arguments, etc., etc. Simply don't consider such parent die
20060 as source-level parent of this die (it can't be, the language
20061 doesn't allow it), and break the loop here. */
20062 name = dwarf2_name (die, cu);
20063 parent_name = dwarf2_name (parent, cu);
20064 complaint (&symfile_complaints,
20065 _("template param type '%s' defined within parent '%s'"),
20066 name ? name : "<unknown>",
20067 parent_name ? parent_name : "<unknown>");
20068 return "";
20069 }
20070 else
20071 switch (parent->tag)
20072 {
20073 case DW_TAG_namespace:
20074 parent_type = read_type_die (parent, cu);
20075 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20076 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20077 Work around this problem here. */
20078 if (cu->language == language_cplus
20079 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20080 return "";
20081 /* We give a name to even anonymous namespaces. */
20082 return TYPE_TAG_NAME (parent_type);
20083 case DW_TAG_class_type:
20084 case DW_TAG_interface_type:
20085 case DW_TAG_structure_type:
20086 case DW_TAG_union_type:
20087 case DW_TAG_module:
20088 parent_type = read_type_die (parent, cu);
20089 if (TYPE_TAG_NAME (parent_type) != NULL)
20090 return TYPE_TAG_NAME (parent_type);
20091 else
20092 /* An anonymous structure is only allowed non-static data
20093 members; no typedefs, no member functions, et cetera.
20094 So it does not need a prefix. */
20095 return "";
20096 case DW_TAG_compile_unit:
20097 case DW_TAG_partial_unit:
20098 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20099 if (cu->language == language_cplus
20100 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
20101 && die->child != NULL
20102 && (die->tag == DW_TAG_class_type
20103 || die->tag == DW_TAG_structure_type
20104 || die->tag == DW_TAG_union_type))
20105 {
20106 char *name = guess_full_die_structure_name (die, cu);
20107 if (name != NULL)
20108 return name;
20109 }
20110 return "";
20111 case DW_TAG_enumeration_type:
20112 parent_type = read_type_die (parent, cu);
20113 if (TYPE_DECLARED_CLASS (parent_type))
20114 {
20115 if (TYPE_TAG_NAME (parent_type) != NULL)
20116 return TYPE_TAG_NAME (parent_type);
20117 return "";
20118 }
20119 /* Fall through. */
20120 default:
20121 return determine_prefix (parent, cu);
20122 }
20123 }
20124
20125 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20126 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20127 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20128 an obconcat, otherwise allocate storage for the result. The CU argument is
20129 used to determine the language and hence, the appropriate separator. */
20130
20131 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
20132
20133 static char *
20134 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20135 int physname, struct dwarf2_cu *cu)
20136 {
20137 const char *lead = "";
20138 const char *sep;
20139
20140 if (suffix == NULL || suffix[0] == '\0'
20141 || prefix == NULL || prefix[0] == '\0')
20142 sep = "";
20143 else if (cu->language == language_d)
20144 {
20145 /* For D, the 'main' function could be defined in any module, but it
20146 should never be prefixed. */
20147 if (strcmp (suffix, "D main") == 0)
20148 {
20149 prefix = "";
20150 sep = "";
20151 }
20152 else
20153 sep = ".";
20154 }
20155 else if (cu->language == language_fortran && physname)
20156 {
20157 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20158 DW_AT_MIPS_linkage_name is preferred and used instead. */
20159
20160 lead = "__";
20161 sep = "_MOD_";
20162 }
20163 else
20164 sep = "::";
20165
20166 if (prefix == NULL)
20167 prefix = "";
20168 if (suffix == NULL)
20169 suffix = "";
20170
20171 if (obs == NULL)
20172 {
20173 char *retval
20174 = ((char *)
20175 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
20176
20177 strcpy (retval, lead);
20178 strcat (retval, prefix);
20179 strcat (retval, sep);
20180 strcat (retval, suffix);
20181 return retval;
20182 }
20183 else
20184 {
20185 /* We have an obstack. */
20186 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
20187 }
20188 }
20189
20190 /* Return sibling of die, NULL if no sibling. */
20191
20192 static struct die_info *
20193 sibling_die (struct die_info *die)
20194 {
20195 return die->sibling;
20196 }
20197
20198 /* Get name of a die, return NULL if not found. */
20199
20200 static const char *
20201 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20202 struct obstack *obstack)
20203 {
20204 if (name && cu->language == language_cplus)
20205 {
20206 std::string canon_name = cp_canonicalize_string (name);
20207
20208 if (!canon_name.empty ())
20209 {
20210 if (canon_name != name)
20211 name = (const char *) obstack_copy0 (obstack,
20212 canon_name.c_str (),
20213 canon_name.length ());
20214 }
20215 }
20216
20217 return name;
20218 }
20219
20220 /* Get name of a die, return NULL if not found.
20221 Anonymous namespaces are converted to their magic string. */
20222
20223 static const char *
20224 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20225 {
20226 struct attribute *attr;
20227
20228 attr = dwarf2_attr (die, DW_AT_name, cu);
20229 if ((!attr || !DW_STRING (attr))
20230 && die->tag != DW_TAG_namespace
20231 && die->tag != DW_TAG_class_type
20232 && die->tag != DW_TAG_interface_type
20233 && die->tag != DW_TAG_structure_type
20234 && die->tag != DW_TAG_union_type)
20235 return NULL;
20236
20237 switch (die->tag)
20238 {
20239 case DW_TAG_compile_unit:
20240 case DW_TAG_partial_unit:
20241 /* Compilation units have a DW_AT_name that is a filename, not
20242 a source language identifier. */
20243 case DW_TAG_enumeration_type:
20244 case DW_TAG_enumerator:
20245 /* These tags always have simple identifiers already; no need
20246 to canonicalize them. */
20247 return DW_STRING (attr);
20248
20249 case DW_TAG_namespace:
20250 if (attr != NULL && DW_STRING (attr) != NULL)
20251 return DW_STRING (attr);
20252 return CP_ANONYMOUS_NAMESPACE_STR;
20253
20254 case DW_TAG_class_type:
20255 case DW_TAG_interface_type:
20256 case DW_TAG_structure_type:
20257 case DW_TAG_union_type:
20258 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20259 structures or unions. These were of the form "._%d" in GCC 4.1,
20260 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20261 and GCC 4.4. We work around this problem by ignoring these. */
20262 if (attr && DW_STRING (attr)
20263 && (startswith (DW_STRING (attr), "._")
20264 || startswith (DW_STRING (attr), "<anonymous")))
20265 return NULL;
20266
20267 /* GCC might emit a nameless typedef that has a linkage name. See
20268 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20269 if (!attr || DW_STRING (attr) == NULL)
20270 {
20271 char *demangled = NULL;
20272
20273 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
20274 if (attr == NULL)
20275 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
20276
20277 if (attr == NULL || DW_STRING (attr) == NULL)
20278 return NULL;
20279
20280 /* Avoid demangling DW_STRING (attr) the second time on a second
20281 call for the same DIE. */
20282 if (!DW_STRING_IS_CANONICAL (attr))
20283 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20284
20285 if (demangled)
20286 {
20287 const char *base;
20288
20289 /* FIXME: we already did this for the partial symbol... */
20290 DW_STRING (attr)
20291 = ((const char *)
20292 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20293 demangled, strlen (demangled)));
20294 DW_STRING_IS_CANONICAL (attr) = 1;
20295 xfree (demangled);
20296
20297 /* Strip any leading namespaces/classes, keep only the base name.
20298 DW_AT_name for named DIEs does not contain the prefixes. */
20299 base = strrchr (DW_STRING (attr), ':');
20300 if (base && base > DW_STRING (attr) && base[-1] == ':')
20301 return &base[1];
20302 else
20303 return DW_STRING (attr);
20304 }
20305 }
20306 break;
20307
20308 default:
20309 break;
20310 }
20311
20312 if (!DW_STRING_IS_CANONICAL (attr))
20313 {
20314 DW_STRING (attr)
20315 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20316 &cu->objfile->per_bfd->storage_obstack);
20317 DW_STRING_IS_CANONICAL (attr) = 1;
20318 }
20319 return DW_STRING (attr);
20320 }
20321
20322 /* Return the die that this die in an extension of, or NULL if there
20323 is none. *EXT_CU is the CU containing DIE on input, and the CU
20324 containing the return value on output. */
20325
20326 static struct die_info *
20327 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20328 {
20329 struct attribute *attr;
20330
20331 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20332 if (attr == NULL)
20333 return NULL;
20334
20335 return follow_die_ref (die, attr, ext_cu);
20336 }
20337
20338 /* Convert a DIE tag into its string name. */
20339
20340 static const char *
20341 dwarf_tag_name (unsigned tag)
20342 {
20343 const char *name = get_DW_TAG_name (tag);
20344
20345 if (name == NULL)
20346 return "DW_TAG_<unknown>";
20347
20348 return name;
20349 }
20350
20351 /* Convert a DWARF attribute code into its string name. */
20352
20353 static const char *
20354 dwarf_attr_name (unsigned attr)
20355 {
20356 const char *name;
20357
20358 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20359 if (attr == DW_AT_MIPS_fde)
20360 return "DW_AT_MIPS_fde";
20361 #else
20362 if (attr == DW_AT_HP_block_index)
20363 return "DW_AT_HP_block_index";
20364 #endif
20365
20366 name = get_DW_AT_name (attr);
20367
20368 if (name == NULL)
20369 return "DW_AT_<unknown>";
20370
20371 return name;
20372 }
20373
20374 /* Convert a DWARF value form code into its string name. */
20375
20376 static const char *
20377 dwarf_form_name (unsigned form)
20378 {
20379 const char *name = get_DW_FORM_name (form);
20380
20381 if (name == NULL)
20382 return "DW_FORM_<unknown>";
20383
20384 return name;
20385 }
20386
20387 static const char *
20388 dwarf_bool_name (unsigned mybool)
20389 {
20390 if (mybool)
20391 return "TRUE";
20392 else
20393 return "FALSE";
20394 }
20395
20396 /* Convert a DWARF type code into its string name. */
20397
20398 static const char *
20399 dwarf_type_encoding_name (unsigned enc)
20400 {
20401 const char *name = get_DW_ATE_name (enc);
20402
20403 if (name == NULL)
20404 return "DW_ATE_<unknown>";
20405
20406 return name;
20407 }
20408
20409 static void
20410 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20411 {
20412 unsigned int i;
20413
20414 print_spaces (indent, f);
20415 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20416 dwarf_tag_name (die->tag), die->abbrev,
20417 to_underlying (die->sect_off));
20418
20419 if (die->parent != NULL)
20420 {
20421 print_spaces (indent, f);
20422 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20423 to_underlying (die->parent->sect_off));
20424 }
20425
20426 print_spaces (indent, f);
20427 fprintf_unfiltered (f, " has children: %s\n",
20428 dwarf_bool_name (die->child != NULL));
20429
20430 print_spaces (indent, f);
20431 fprintf_unfiltered (f, " attributes:\n");
20432
20433 for (i = 0; i < die->num_attrs; ++i)
20434 {
20435 print_spaces (indent, f);
20436 fprintf_unfiltered (f, " %s (%s) ",
20437 dwarf_attr_name (die->attrs[i].name),
20438 dwarf_form_name (die->attrs[i].form));
20439
20440 switch (die->attrs[i].form)
20441 {
20442 case DW_FORM_addr:
20443 case DW_FORM_GNU_addr_index:
20444 fprintf_unfiltered (f, "address: ");
20445 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20446 break;
20447 case DW_FORM_block2:
20448 case DW_FORM_block4:
20449 case DW_FORM_block:
20450 case DW_FORM_block1:
20451 fprintf_unfiltered (f, "block: size %s",
20452 pulongest (DW_BLOCK (&die->attrs[i])->size));
20453 break;
20454 case DW_FORM_exprloc:
20455 fprintf_unfiltered (f, "expression: size %s",
20456 pulongest (DW_BLOCK (&die->attrs[i])->size));
20457 break;
20458 case DW_FORM_data16:
20459 fprintf_unfiltered (f, "constant of 16 bytes");
20460 break;
20461 case DW_FORM_ref_addr:
20462 fprintf_unfiltered (f, "ref address: ");
20463 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20464 break;
20465 case DW_FORM_GNU_ref_alt:
20466 fprintf_unfiltered (f, "alt ref address: ");
20467 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20468 break;
20469 case DW_FORM_ref1:
20470 case DW_FORM_ref2:
20471 case DW_FORM_ref4:
20472 case DW_FORM_ref8:
20473 case DW_FORM_ref_udata:
20474 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20475 (long) (DW_UNSND (&die->attrs[i])));
20476 break;
20477 case DW_FORM_data1:
20478 case DW_FORM_data2:
20479 case DW_FORM_data4:
20480 case DW_FORM_data8:
20481 case DW_FORM_udata:
20482 case DW_FORM_sdata:
20483 fprintf_unfiltered (f, "constant: %s",
20484 pulongest (DW_UNSND (&die->attrs[i])));
20485 break;
20486 case DW_FORM_sec_offset:
20487 fprintf_unfiltered (f, "section offset: %s",
20488 pulongest (DW_UNSND (&die->attrs[i])));
20489 break;
20490 case DW_FORM_ref_sig8:
20491 fprintf_unfiltered (f, "signature: %s",
20492 hex_string (DW_SIGNATURE (&die->attrs[i])));
20493 break;
20494 case DW_FORM_string:
20495 case DW_FORM_strp:
20496 case DW_FORM_line_strp:
20497 case DW_FORM_GNU_str_index:
20498 case DW_FORM_GNU_strp_alt:
20499 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20500 DW_STRING (&die->attrs[i])
20501 ? DW_STRING (&die->attrs[i]) : "",
20502 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20503 break;
20504 case DW_FORM_flag:
20505 if (DW_UNSND (&die->attrs[i]))
20506 fprintf_unfiltered (f, "flag: TRUE");
20507 else
20508 fprintf_unfiltered (f, "flag: FALSE");
20509 break;
20510 case DW_FORM_flag_present:
20511 fprintf_unfiltered (f, "flag: TRUE");
20512 break;
20513 case DW_FORM_indirect:
20514 /* The reader will have reduced the indirect form to
20515 the "base form" so this form should not occur. */
20516 fprintf_unfiltered (f,
20517 "unexpected attribute form: DW_FORM_indirect");
20518 break;
20519 case DW_FORM_implicit_const:
20520 fprintf_unfiltered (f, "constant: %s",
20521 plongest (DW_SND (&die->attrs[i])));
20522 break;
20523 default:
20524 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20525 die->attrs[i].form);
20526 break;
20527 }
20528 fprintf_unfiltered (f, "\n");
20529 }
20530 }
20531
20532 static void
20533 dump_die_for_error (struct die_info *die)
20534 {
20535 dump_die_shallow (gdb_stderr, 0, die);
20536 }
20537
20538 static void
20539 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20540 {
20541 int indent = level * 4;
20542
20543 gdb_assert (die != NULL);
20544
20545 if (level >= max_level)
20546 return;
20547
20548 dump_die_shallow (f, indent, die);
20549
20550 if (die->child != NULL)
20551 {
20552 print_spaces (indent, f);
20553 fprintf_unfiltered (f, " Children:");
20554 if (level + 1 < max_level)
20555 {
20556 fprintf_unfiltered (f, "\n");
20557 dump_die_1 (f, level + 1, max_level, die->child);
20558 }
20559 else
20560 {
20561 fprintf_unfiltered (f,
20562 " [not printed, max nesting level reached]\n");
20563 }
20564 }
20565
20566 if (die->sibling != NULL && level > 0)
20567 {
20568 dump_die_1 (f, level, max_level, die->sibling);
20569 }
20570 }
20571
20572 /* This is called from the pdie macro in gdbinit.in.
20573 It's not static so gcc will keep a copy callable from gdb. */
20574
20575 void
20576 dump_die (struct die_info *die, int max_level)
20577 {
20578 dump_die_1 (gdb_stdlog, 0, max_level, die);
20579 }
20580
20581 static void
20582 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20583 {
20584 void **slot;
20585
20586 slot = htab_find_slot_with_hash (cu->die_hash, die,
20587 to_underlying (die->sect_off),
20588 INSERT);
20589
20590 *slot = die;
20591 }
20592
20593 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20594 required kind. */
20595
20596 static sect_offset
20597 dwarf2_get_ref_die_offset (const struct attribute *attr)
20598 {
20599 if (attr_form_is_ref (attr))
20600 return (sect_offset) DW_UNSND (attr);
20601
20602 complaint (&symfile_complaints,
20603 _("unsupported die ref attribute form: '%s'"),
20604 dwarf_form_name (attr->form));
20605 return {};
20606 }
20607
20608 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20609 * the value held by the attribute is not constant. */
20610
20611 static LONGEST
20612 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20613 {
20614 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
20615 return DW_SND (attr);
20616 else if (attr->form == DW_FORM_udata
20617 || attr->form == DW_FORM_data1
20618 || attr->form == DW_FORM_data2
20619 || attr->form == DW_FORM_data4
20620 || attr->form == DW_FORM_data8)
20621 return DW_UNSND (attr);
20622 else
20623 {
20624 /* For DW_FORM_data16 see attr_form_is_constant. */
20625 complaint (&symfile_complaints,
20626 _("Attribute value is not a constant (%s)"),
20627 dwarf_form_name (attr->form));
20628 return default_value;
20629 }
20630 }
20631
20632 /* Follow reference or signature attribute ATTR of SRC_DIE.
20633 On entry *REF_CU is the CU of SRC_DIE.
20634 On exit *REF_CU is the CU of the result. */
20635
20636 static struct die_info *
20637 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20638 struct dwarf2_cu **ref_cu)
20639 {
20640 struct die_info *die;
20641
20642 if (attr_form_is_ref (attr))
20643 die = follow_die_ref (src_die, attr, ref_cu);
20644 else if (attr->form == DW_FORM_ref_sig8)
20645 die = follow_die_sig (src_die, attr, ref_cu);
20646 else
20647 {
20648 dump_die_for_error (src_die);
20649 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20650 objfile_name ((*ref_cu)->objfile));
20651 }
20652
20653 return die;
20654 }
20655
20656 /* Follow reference OFFSET.
20657 On entry *REF_CU is the CU of the source die referencing OFFSET.
20658 On exit *REF_CU is the CU of the result.
20659 Returns NULL if OFFSET is invalid. */
20660
20661 static struct die_info *
20662 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
20663 struct dwarf2_cu **ref_cu)
20664 {
20665 struct die_info temp_die;
20666 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20667
20668 gdb_assert (cu->per_cu != NULL);
20669
20670 target_cu = cu;
20671
20672 if (cu->per_cu->is_debug_types)
20673 {
20674 /* .debug_types CUs cannot reference anything outside their CU.
20675 If they need to, they have to reference a signatured type via
20676 DW_FORM_ref_sig8. */
20677 if (!offset_in_cu_p (&cu->header, sect_off))
20678 return NULL;
20679 }
20680 else if (offset_in_dwz != cu->per_cu->is_dwz
20681 || !offset_in_cu_p (&cu->header, sect_off))
20682 {
20683 struct dwarf2_per_cu_data *per_cu;
20684
20685 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
20686 cu->objfile);
20687
20688 /* If necessary, add it to the queue and load its DIEs. */
20689 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20690 load_full_comp_unit (per_cu, cu->language);
20691
20692 target_cu = per_cu->cu;
20693 }
20694 else if (cu->dies == NULL)
20695 {
20696 /* We're loading full DIEs during partial symbol reading. */
20697 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20698 load_full_comp_unit (cu->per_cu, language_minimal);
20699 }
20700
20701 *ref_cu = target_cu;
20702 temp_die.sect_off = sect_off;
20703 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20704 &temp_die,
20705 to_underlying (sect_off));
20706 }
20707
20708 /* Follow reference attribute ATTR of SRC_DIE.
20709 On entry *REF_CU is the CU of SRC_DIE.
20710 On exit *REF_CU is the CU of the result. */
20711
20712 static struct die_info *
20713 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20714 struct dwarf2_cu **ref_cu)
20715 {
20716 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20717 struct dwarf2_cu *cu = *ref_cu;
20718 struct die_info *die;
20719
20720 die = follow_die_offset (sect_off,
20721 (attr->form == DW_FORM_GNU_ref_alt
20722 || cu->per_cu->is_dwz),
20723 ref_cu);
20724 if (!die)
20725 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20726 "at 0x%x [in module %s]"),
20727 to_underlying (sect_off), to_underlying (src_die->sect_off),
20728 objfile_name (cu->objfile));
20729
20730 return die;
20731 }
20732
20733 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
20734 Returned value is intended for DW_OP_call*. Returned
20735 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20736
20737 struct dwarf2_locexpr_baton
20738 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
20739 struct dwarf2_per_cu_data *per_cu,
20740 CORE_ADDR (*get_frame_pc) (void *baton),
20741 void *baton)
20742 {
20743 struct dwarf2_cu *cu;
20744 struct die_info *die;
20745 struct attribute *attr;
20746 struct dwarf2_locexpr_baton retval;
20747
20748 dw2_setup (per_cu->objfile);
20749
20750 if (per_cu->cu == NULL)
20751 load_cu (per_cu);
20752 cu = per_cu->cu;
20753 if (cu == NULL)
20754 {
20755 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20756 Instead just throw an error, not much else we can do. */
20757 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20758 to_underlying (sect_off), objfile_name (per_cu->objfile));
20759 }
20760
20761 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20762 if (!die)
20763 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20764 to_underlying (sect_off), objfile_name (per_cu->objfile));
20765
20766 attr = dwarf2_attr (die, DW_AT_location, cu);
20767 if (!attr)
20768 {
20769 /* DWARF: "If there is no such attribute, then there is no effect.".
20770 DATA is ignored if SIZE is 0. */
20771
20772 retval.data = NULL;
20773 retval.size = 0;
20774 }
20775 else if (attr_form_is_section_offset (attr))
20776 {
20777 struct dwarf2_loclist_baton loclist_baton;
20778 CORE_ADDR pc = (*get_frame_pc) (baton);
20779 size_t size;
20780
20781 fill_in_loclist_baton (cu, &loclist_baton, attr);
20782
20783 retval.data = dwarf2_find_location_expression (&loclist_baton,
20784 &size, pc);
20785 retval.size = size;
20786 }
20787 else
20788 {
20789 if (!attr_form_is_block (attr))
20790 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20791 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20792 to_underlying (sect_off), objfile_name (per_cu->objfile));
20793
20794 retval.data = DW_BLOCK (attr)->data;
20795 retval.size = DW_BLOCK (attr)->size;
20796 }
20797 retval.per_cu = cu->per_cu;
20798
20799 age_cached_comp_units ();
20800
20801 return retval;
20802 }
20803
20804 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20805 offset. */
20806
20807 struct dwarf2_locexpr_baton
20808 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20809 struct dwarf2_per_cu_data *per_cu,
20810 CORE_ADDR (*get_frame_pc) (void *baton),
20811 void *baton)
20812 {
20813 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
20814
20815 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
20816 }
20817
20818 /* Write a constant of a given type as target-ordered bytes into
20819 OBSTACK. */
20820
20821 static const gdb_byte *
20822 write_constant_as_bytes (struct obstack *obstack,
20823 enum bfd_endian byte_order,
20824 struct type *type,
20825 ULONGEST value,
20826 LONGEST *len)
20827 {
20828 gdb_byte *result;
20829
20830 *len = TYPE_LENGTH (type);
20831 result = (gdb_byte *) obstack_alloc (obstack, *len);
20832 store_unsigned_integer (result, *len, byte_order, value);
20833
20834 return result;
20835 }
20836
20837 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20838 pointer to the constant bytes and set LEN to the length of the
20839 data. If memory is needed, allocate it on OBSTACK. If the DIE
20840 does not have a DW_AT_const_value, return NULL. */
20841
20842 const gdb_byte *
20843 dwarf2_fetch_constant_bytes (sect_offset sect_off,
20844 struct dwarf2_per_cu_data *per_cu,
20845 struct obstack *obstack,
20846 LONGEST *len)
20847 {
20848 struct dwarf2_cu *cu;
20849 struct die_info *die;
20850 struct attribute *attr;
20851 const gdb_byte *result = NULL;
20852 struct type *type;
20853 LONGEST value;
20854 enum bfd_endian byte_order;
20855
20856 dw2_setup (per_cu->objfile);
20857
20858 if (per_cu->cu == NULL)
20859 load_cu (per_cu);
20860 cu = per_cu->cu;
20861 if (cu == NULL)
20862 {
20863 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20864 Instead just throw an error, not much else we can do. */
20865 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20866 to_underlying (sect_off), objfile_name (per_cu->objfile));
20867 }
20868
20869 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20870 if (!die)
20871 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20872 to_underlying (sect_off), objfile_name (per_cu->objfile));
20873
20874
20875 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20876 if (attr == NULL)
20877 return NULL;
20878
20879 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20880 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20881
20882 switch (attr->form)
20883 {
20884 case DW_FORM_addr:
20885 case DW_FORM_GNU_addr_index:
20886 {
20887 gdb_byte *tem;
20888
20889 *len = cu->header.addr_size;
20890 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20891 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20892 result = tem;
20893 }
20894 break;
20895 case DW_FORM_string:
20896 case DW_FORM_strp:
20897 case DW_FORM_GNU_str_index:
20898 case DW_FORM_GNU_strp_alt:
20899 /* DW_STRING is already allocated on the objfile obstack, point
20900 directly to it. */
20901 result = (const gdb_byte *) DW_STRING (attr);
20902 *len = strlen (DW_STRING (attr));
20903 break;
20904 case DW_FORM_block1:
20905 case DW_FORM_block2:
20906 case DW_FORM_block4:
20907 case DW_FORM_block:
20908 case DW_FORM_exprloc:
20909 case DW_FORM_data16:
20910 result = DW_BLOCK (attr)->data;
20911 *len = DW_BLOCK (attr)->size;
20912 break;
20913
20914 /* The DW_AT_const_value attributes are supposed to carry the
20915 symbol's value "represented as it would be on the target
20916 architecture." By the time we get here, it's already been
20917 converted to host endianness, so we just need to sign- or
20918 zero-extend it as appropriate. */
20919 case DW_FORM_data1:
20920 type = die_type (die, cu);
20921 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20922 if (result == NULL)
20923 result = write_constant_as_bytes (obstack, byte_order,
20924 type, value, len);
20925 break;
20926 case DW_FORM_data2:
20927 type = die_type (die, cu);
20928 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20929 if (result == NULL)
20930 result = write_constant_as_bytes (obstack, byte_order,
20931 type, value, len);
20932 break;
20933 case DW_FORM_data4:
20934 type = die_type (die, cu);
20935 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20936 if (result == NULL)
20937 result = write_constant_as_bytes (obstack, byte_order,
20938 type, value, len);
20939 break;
20940 case DW_FORM_data8:
20941 type = die_type (die, cu);
20942 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20943 if (result == NULL)
20944 result = write_constant_as_bytes (obstack, byte_order,
20945 type, value, len);
20946 break;
20947
20948 case DW_FORM_sdata:
20949 case DW_FORM_implicit_const:
20950 type = die_type (die, cu);
20951 result = write_constant_as_bytes (obstack, byte_order,
20952 type, DW_SND (attr), len);
20953 break;
20954
20955 case DW_FORM_udata:
20956 type = die_type (die, cu);
20957 result = write_constant_as_bytes (obstack, byte_order,
20958 type, DW_UNSND (attr), len);
20959 break;
20960
20961 default:
20962 complaint (&symfile_complaints,
20963 _("unsupported const value attribute form: '%s'"),
20964 dwarf_form_name (attr->form));
20965 break;
20966 }
20967
20968 return result;
20969 }
20970
20971 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
20972 valid type for this die is found. */
20973
20974 struct type *
20975 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
20976 struct dwarf2_per_cu_data *per_cu)
20977 {
20978 struct dwarf2_cu *cu;
20979 struct die_info *die;
20980
20981 dw2_setup (per_cu->objfile);
20982
20983 if (per_cu->cu == NULL)
20984 load_cu (per_cu);
20985 cu = per_cu->cu;
20986 if (!cu)
20987 return NULL;
20988
20989 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20990 if (!die)
20991 return NULL;
20992
20993 return die_type (die, cu);
20994 }
20995
20996 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20997 PER_CU. */
20998
20999 struct type *
21000 dwarf2_get_die_type (cu_offset die_offset,
21001 struct dwarf2_per_cu_data *per_cu)
21002 {
21003 dw2_setup (per_cu->objfile);
21004
21005 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
21006 return get_die_type_at_offset (die_offset_sect, per_cu);
21007 }
21008
21009 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
21010 On entry *REF_CU is the CU of SRC_DIE.
21011 On exit *REF_CU is the CU of the result.
21012 Returns NULL if the referenced DIE isn't found. */
21013
21014 static struct die_info *
21015 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
21016 struct dwarf2_cu **ref_cu)
21017 {
21018 struct die_info temp_die;
21019 struct dwarf2_cu *sig_cu;
21020 struct die_info *die;
21021
21022 /* While it might be nice to assert sig_type->type == NULL here,
21023 we can get here for DW_AT_imported_declaration where we need
21024 the DIE not the type. */
21025
21026 /* If necessary, add it to the queue and load its DIEs. */
21027
21028 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
21029 read_signatured_type (sig_type);
21030
21031 sig_cu = sig_type->per_cu.cu;
21032 gdb_assert (sig_cu != NULL);
21033 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21034 temp_die.sect_off = sig_type->type_offset_in_section;
21035 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
21036 to_underlying (temp_die.sect_off));
21037 if (die)
21038 {
21039 /* For .gdb_index version 7 keep track of included TUs.
21040 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21041 if (dwarf2_per_objfile->index_table != NULL
21042 && dwarf2_per_objfile->index_table->version <= 7)
21043 {
21044 VEC_safe_push (dwarf2_per_cu_ptr,
21045 (*ref_cu)->per_cu->imported_symtabs,
21046 sig_cu->per_cu);
21047 }
21048
21049 *ref_cu = sig_cu;
21050 return die;
21051 }
21052
21053 return NULL;
21054 }
21055
21056 /* Follow signatured type referenced by ATTR in SRC_DIE.
21057 On entry *REF_CU is the CU of SRC_DIE.
21058 On exit *REF_CU is the CU of the result.
21059 The result is the DIE of the type.
21060 If the referenced type cannot be found an error is thrown. */
21061
21062 static struct die_info *
21063 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
21064 struct dwarf2_cu **ref_cu)
21065 {
21066 ULONGEST signature = DW_SIGNATURE (attr);
21067 struct signatured_type *sig_type;
21068 struct die_info *die;
21069
21070 gdb_assert (attr->form == DW_FORM_ref_sig8);
21071
21072 sig_type = lookup_signatured_type (*ref_cu, signature);
21073 /* sig_type will be NULL if the signatured type is missing from
21074 the debug info. */
21075 if (sig_type == NULL)
21076 {
21077 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21078 " from DIE at 0x%x [in module %s]"),
21079 hex_string (signature), to_underlying (src_die->sect_off),
21080 objfile_name ((*ref_cu)->objfile));
21081 }
21082
21083 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21084 if (die == NULL)
21085 {
21086 dump_die_for_error (src_die);
21087 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21088 " from DIE at 0x%x [in module %s]"),
21089 hex_string (signature), to_underlying (src_die->sect_off),
21090 objfile_name ((*ref_cu)->objfile));
21091 }
21092
21093 return die;
21094 }
21095
21096 /* Get the type specified by SIGNATURE referenced in DIE/CU,
21097 reading in and processing the type unit if necessary. */
21098
21099 static struct type *
21100 get_signatured_type (struct die_info *die, ULONGEST signature,
21101 struct dwarf2_cu *cu)
21102 {
21103 struct signatured_type *sig_type;
21104 struct dwarf2_cu *type_cu;
21105 struct die_info *type_die;
21106 struct type *type;
21107
21108 sig_type = lookup_signatured_type (cu, signature);
21109 /* sig_type will be NULL if the signatured type is missing from
21110 the debug info. */
21111 if (sig_type == NULL)
21112 {
21113 complaint (&symfile_complaints,
21114 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21115 " from DIE at 0x%x [in module %s]"),
21116 hex_string (signature), to_underlying (die->sect_off),
21117 objfile_name (dwarf2_per_objfile->objfile));
21118 return build_error_marker_type (cu, die);
21119 }
21120
21121 /* If we already know the type we're done. */
21122 if (sig_type->type != NULL)
21123 return sig_type->type;
21124
21125 type_cu = cu;
21126 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21127 if (type_die != NULL)
21128 {
21129 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21130 is created. This is important, for example, because for c++ classes
21131 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21132 type = read_type_die (type_die, type_cu);
21133 if (type == NULL)
21134 {
21135 complaint (&symfile_complaints,
21136 _("Dwarf Error: Cannot build signatured type %s"
21137 " referenced from DIE at 0x%x [in module %s]"),
21138 hex_string (signature), to_underlying (die->sect_off),
21139 objfile_name (dwarf2_per_objfile->objfile));
21140 type = build_error_marker_type (cu, die);
21141 }
21142 }
21143 else
21144 {
21145 complaint (&symfile_complaints,
21146 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21147 " from DIE at 0x%x [in module %s]"),
21148 hex_string (signature), to_underlying (die->sect_off),
21149 objfile_name (dwarf2_per_objfile->objfile));
21150 type = build_error_marker_type (cu, die);
21151 }
21152 sig_type->type = type;
21153
21154 return type;
21155 }
21156
21157 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21158 reading in and processing the type unit if necessary. */
21159
21160 static struct type *
21161 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
21162 struct dwarf2_cu *cu) /* ARI: editCase function */
21163 {
21164 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
21165 if (attr_form_is_ref (attr))
21166 {
21167 struct dwarf2_cu *type_cu = cu;
21168 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21169
21170 return read_type_die (type_die, type_cu);
21171 }
21172 else if (attr->form == DW_FORM_ref_sig8)
21173 {
21174 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21175 }
21176 else
21177 {
21178 complaint (&symfile_complaints,
21179 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21180 " at 0x%x [in module %s]"),
21181 dwarf_form_name (attr->form), to_underlying (die->sect_off),
21182 objfile_name (dwarf2_per_objfile->objfile));
21183 return build_error_marker_type (cu, die);
21184 }
21185 }
21186
21187 /* Load the DIEs associated with type unit PER_CU into memory. */
21188
21189 static void
21190 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
21191 {
21192 struct signatured_type *sig_type;
21193
21194 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21195 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21196
21197 /* We have the per_cu, but we need the signatured_type.
21198 Fortunately this is an easy translation. */
21199 gdb_assert (per_cu->is_debug_types);
21200 sig_type = (struct signatured_type *) per_cu;
21201
21202 gdb_assert (per_cu->cu == NULL);
21203
21204 read_signatured_type (sig_type);
21205
21206 gdb_assert (per_cu->cu != NULL);
21207 }
21208
21209 /* die_reader_func for read_signatured_type.
21210 This is identical to load_full_comp_unit_reader,
21211 but is kept separate for now. */
21212
21213 static void
21214 read_signatured_type_reader (const struct die_reader_specs *reader,
21215 const gdb_byte *info_ptr,
21216 struct die_info *comp_unit_die,
21217 int has_children,
21218 void *data)
21219 {
21220 struct dwarf2_cu *cu = reader->cu;
21221
21222 gdb_assert (cu->die_hash == NULL);
21223 cu->die_hash =
21224 htab_create_alloc_ex (cu->header.length / 12,
21225 die_hash,
21226 die_eq,
21227 NULL,
21228 &cu->comp_unit_obstack,
21229 hashtab_obstack_allocate,
21230 dummy_obstack_deallocate);
21231
21232 if (has_children)
21233 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21234 &info_ptr, comp_unit_die);
21235 cu->dies = comp_unit_die;
21236 /* comp_unit_die is not stored in die_hash, no need. */
21237
21238 /* We try not to read any attributes in this function, because not
21239 all CUs needed for references have been loaded yet, and symbol
21240 table processing isn't initialized. But we have to set the CU language,
21241 or we won't be able to build types correctly.
21242 Similarly, if we do not read the producer, we can not apply
21243 producer-specific interpretation. */
21244 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21245 }
21246
21247 /* Read in a signatured type and build its CU and DIEs.
21248 If the type is a stub for the real type in a DWO file,
21249 read in the real type from the DWO file as well. */
21250
21251 static void
21252 read_signatured_type (struct signatured_type *sig_type)
21253 {
21254 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21255
21256 gdb_assert (per_cu->is_debug_types);
21257 gdb_assert (per_cu->cu == NULL);
21258
21259 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21260 read_signatured_type_reader, NULL);
21261 sig_type->per_cu.tu_read = 1;
21262 }
21263
21264 /* Decode simple location descriptions.
21265 Given a pointer to a dwarf block that defines a location, compute
21266 the location and return the value.
21267
21268 NOTE drow/2003-11-18: This function is called in two situations
21269 now: for the address of static or global variables (partial symbols
21270 only) and for offsets into structures which are expected to be
21271 (more or less) constant. The partial symbol case should go away,
21272 and only the constant case should remain. That will let this
21273 function complain more accurately. A few special modes are allowed
21274 without complaint for global variables (for instance, global
21275 register values and thread-local values).
21276
21277 A location description containing no operations indicates that the
21278 object is optimized out. The return value is 0 for that case.
21279 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21280 callers will only want a very basic result and this can become a
21281 complaint.
21282
21283 Note that stack[0] is unused except as a default error return. */
21284
21285 static CORE_ADDR
21286 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21287 {
21288 struct objfile *objfile = cu->objfile;
21289 size_t i;
21290 size_t size = blk->size;
21291 const gdb_byte *data = blk->data;
21292 CORE_ADDR stack[64];
21293 int stacki;
21294 unsigned int bytes_read, unsnd;
21295 gdb_byte op;
21296
21297 i = 0;
21298 stacki = 0;
21299 stack[stacki] = 0;
21300 stack[++stacki] = 0;
21301
21302 while (i < size)
21303 {
21304 op = data[i++];
21305 switch (op)
21306 {
21307 case DW_OP_lit0:
21308 case DW_OP_lit1:
21309 case DW_OP_lit2:
21310 case DW_OP_lit3:
21311 case DW_OP_lit4:
21312 case DW_OP_lit5:
21313 case DW_OP_lit6:
21314 case DW_OP_lit7:
21315 case DW_OP_lit8:
21316 case DW_OP_lit9:
21317 case DW_OP_lit10:
21318 case DW_OP_lit11:
21319 case DW_OP_lit12:
21320 case DW_OP_lit13:
21321 case DW_OP_lit14:
21322 case DW_OP_lit15:
21323 case DW_OP_lit16:
21324 case DW_OP_lit17:
21325 case DW_OP_lit18:
21326 case DW_OP_lit19:
21327 case DW_OP_lit20:
21328 case DW_OP_lit21:
21329 case DW_OP_lit22:
21330 case DW_OP_lit23:
21331 case DW_OP_lit24:
21332 case DW_OP_lit25:
21333 case DW_OP_lit26:
21334 case DW_OP_lit27:
21335 case DW_OP_lit28:
21336 case DW_OP_lit29:
21337 case DW_OP_lit30:
21338 case DW_OP_lit31:
21339 stack[++stacki] = op - DW_OP_lit0;
21340 break;
21341
21342 case DW_OP_reg0:
21343 case DW_OP_reg1:
21344 case DW_OP_reg2:
21345 case DW_OP_reg3:
21346 case DW_OP_reg4:
21347 case DW_OP_reg5:
21348 case DW_OP_reg6:
21349 case DW_OP_reg7:
21350 case DW_OP_reg8:
21351 case DW_OP_reg9:
21352 case DW_OP_reg10:
21353 case DW_OP_reg11:
21354 case DW_OP_reg12:
21355 case DW_OP_reg13:
21356 case DW_OP_reg14:
21357 case DW_OP_reg15:
21358 case DW_OP_reg16:
21359 case DW_OP_reg17:
21360 case DW_OP_reg18:
21361 case DW_OP_reg19:
21362 case DW_OP_reg20:
21363 case DW_OP_reg21:
21364 case DW_OP_reg22:
21365 case DW_OP_reg23:
21366 case DW_OP_reg24:
21367 case DW_OP_reg25:
21368 case DW_OP_reg26:
21369 case DW_OP_reg27:
21370 case DW_OP_reg28:
21371 case DW_OP_reg29:
21372 case DW_OP_reg30:
21373 case DW_OP_reg31:
21374 stack[++stacki] = op - DW_OP_reg0;
21375 if (i < size)
21376 dwarf2_complex_location_expr_complaint ();
21377 break;
21378
21379 case DW_OP_regx:
21380 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21381 i += bytes_read;
21382 stack[++stacki] = unsnd;
21383 if (i < size)
21384 dwarf2_complex_location_expr_complaint ();
21385 break;
21386
21387 case DW_OP_addr:
21388 stack[++stacki] = read_address (objfile->obfd, &data[i],
21389 cu, &bytes_read);
21390 i += bytes_read;
21391 break;
21392
21393 case DW_OP_const1u:
21394 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21395 i += 1;
21396 break;
21397
21398 case DW_OP_const1s:
21399 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21400 i += 1;
21401 break;
21402
21403 case DW_OP_const2u:
21404 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21405 i += 2;
21406 break;
21407
21408 case DW_OP_const2s:
21409 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21410 i += 2;
21411 break;
21412
21413 case DW_OP_const4u:
21414 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21415 i += 4;
21416 break;
21417
21418 case DW_OP_const4s:
21419 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21420 i += 4;
21421 break;
21422
21423 case DW_OP_const8u:
21424 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21425 i += 8;
21426 break;
21427
21428 case DW_OP_constu:
21429 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21430 &bytes_read);
21431 i += bytes_read;
21432 break;
21433
21434 case DW_OP_consts:
21435 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21436 i += bytes_read;
21437 break;
21438
21439 case DW_OP_dup:
21440 stack[stacki + 1] = stack[stacki];
21441 stacki++;
21442 break;
21443
21444 case DW_OP_plus:
21445 stack[stacki - 1] += stack[stacki];
21446 stacki--;
21447 break;
21448
21449 case DW_OP_plus_uconst:
21450 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21451 &bytes_read);
21452 i += bytes_read;
21453 break;
21454
21455 case DW_OP_minus:
21456 stack[stacki - 1] -= stack[stacki];
21457 stacki--;
21458 break;
21459
21460 case DW_OP_deref:
21461 /* If we're not the last op, then we definitely can't encode
21462 this using GDB's address_class enum. This is valid for partial
21463 global symbols, although the variable's address will be bogus
21464 in the psymtab. */
21465 if (i < size)
21466 dwarf2_complex_location_expr_complaint ();
21467 break;
21468
21469 case DW_OP_GNU_push_tls_address:
21470 case DW_OP_form_tls_address:
21471 /* The top of the stack has the offset from the beginning
21472 of the thread control block at which the variable is located. */
21473 /* Nothing should follow this operator, so the top of stack would
21474 be returned. */
21475 /* This is valid for partial global symbols, but the variable's
21476 address will be bogus in the psymtab. Make it always at least
21477 non-zero to not look as a variable garbage collected by linker
21478 which have DW_OP_addr 0. */
21479 if (i < size)
21480 dwarf2_complex_location_expr_complaint ();
21481 stack[stacki]++;
21482 break;
21483
21484 case DW_OP_GNU_uninit:
21485 break;
21486
21487 case DW_OP_GNU_addr_index:
21488 case DW_OP_GNU_const_index:
21489 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21490 &bytes_read);
21491 i += bytes_read;
21492 break;
21493
21494 default:
21495 {
21496 const char *name = get_DW_OP_name (op);
21497
21498 if (name)
21499 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21500 name);
21501 else
21502 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21503 op);
21504 }
21505
21506 return (stack[stacki]);
21507 }
21508
21509 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21510 outside of the allocated space. Also enforce minimum>0. */
21511 if (stacki >= ARRAY_SIZE (stack) - 1)
21512 {
21513 complaint (&symfile_complaints,
21514 _("location description stack overflow"));
21515 return 0;
21516 }
21517
21518 if (stacki <= 0)
21519 {
21520 complaint (&symfile_complaints,
21521 _("location description stack underflow"));
21522 return 0;
21523 }
21524 }
21525 return (stack[stacki]);
21526 }
21527
21528 /* memory allocation interface */
21529
21530 static struct dwarf_block *
21531 dwarf_alloc_block (struct dwarf2_cu *cu)
21532 {
21533 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21534 }
21535
21536 static struct die_info *
21537 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21538 {
21539 struct die_info *die;
21540 size_t size = sizeof (struct die_info);
21541
21542 if (num_attrs > 1)
21543 size += (num_attrs - 1) * sizeof (struct attribute);
21544
21545 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21546 memset (die, 0, sizeof (struct die_info));
21547 return (die);
21548 }
21549
21550 \f
21551 /* Macro support. */
21552
21553 /* Return file name relative to the compilation directory of file number I in
21554 *LH's file name table. The result is allocated using xmalloc; the caller is
21555 responsible for freeing it. */
21556
21557 static char *
21558 file_file_name (int file, struct line_header *lh)
21559 {
21560 /* Is the file number a valid index into the line header's file name
21561 table? Remember that file numbers start with one, not zero. */
21562 if (1 <= file && file <= lh->file_names.size ())
21563 {
21564 const file_entry &fe = lh->file_names[file - 1];
21565
21566 if (!IS_ABSOLUTE_PATH (fe.name))
21567 {
21568 const char *dir = fe.include_dir (lh);
21569 if (dir != NULL)
21570 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21571 }
21572 return xstrdup (fe.name);
21573 }
21574 else
21575 {
21576 /* The compiler produced a bogus file number. We can at least
21577 record the macro definitions made in the file, even if we
21578 won't be able to find the file by name. */
21579 char fake_name[80];
21580
21581 xsnprintf (fake_name, sizeof (fake_name),
21582 "<bad macro file number %d>", file);
21583
21584 complaint (&symfile_complaints,
21585 _("bad file number in macro information (%d)"),
21586 file);
21587
21588 return xstrdup (fake_name);
21589 }
21590 }
21591
21592 /* Return the full name of file number I in *LH's file name table.
21593 Use COMP_DIR as the name of the current directory of the
21594 compilation. The result is allocated using xmalloc; the caller is
21595 responsible for freeing it. */
21596 static char *
21597 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21598 {
21599 /* Is the file number a valid index into the line header's file name
21600 table? Remember that file numbers start with one, not zero. */
21601 if (1 <= file && file <= lh->file_names.size ())
21602 {
21603 char *relative = file_file_name (file, lh);
21604
21605 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21606 return relative;
21607 return reconcat (relative, comp_dir, SLASH_STRING,
21608 relative, (char *) NULL);
21609 }
21610 else
21611 return file_file_name (file, lh);
21612 }
21613
21614
21615 static struct macro_source_file *
21616 macro_start_file (int file, int line,
21617 struct macro_source_file *current_file,
21618 struct line_header *lh)
21619 {
21620 /* File name relative to the compilation directory of this source file. */
21621 char *file_name = file_file_name (file, lh);
21622
21623 if (! current_file)
21624 {
21625 /* Note: We don't create a macro table for this compilation unit
21626 at all until we actually get a filename. */
21627 struct macro_table *macro_table = get_macro_table ();
21628
21629 /* If we have no current file, then this must be the start_file
21630 directive for the compilation unit's main source file. */
21631 current_file = macro_set_main (macro_table, file_name);
21632 macro_define_special (macro_table);
21633 }
21634 else
21635 current_file = macro_include (current_file, line, file_name);
21636
21637 xfree (file_name);
21638
21639 return current_file;
21640 }
21641
21642
21643 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21644 followed by a null byte. */
21645 static char *
21646 copy_string (const char *buf, int len)
21647 {
21648 char *s = (char *) xmalloc (len + 1);
21649
21650 memcpy (s, buf, len);
21651 s[len] = '\0';
21652 return s;
21653 }
21654
21655
21656 static const char *
21657 consume_improper_spaces (const char *p, const char *body)
21658 {
21659 if (*p == ' ')
21660 {
21661 complaint (&symfile_complaints,
21662 _("macro definition contains spaces "
21663 "in formal argument list:\n`%s'"),
21664 body);
21665
21666 while (*p == ' ')
21667 p++;
21668 }
21669
21670 return p;
21671 }
21672
21673
21674 static void
21675 parse_macro_definition (struct macro_source_file *file, int line,
21676 const char *body)
21677 {
21678 const char *p;
21679
21680 /* The body string takes one of two forms. For object-like macro
21681 definitions, it should be:
21682
21683 <macro name> " " <definition>
21684
21685 For function-like macro definitions, it should be:
21686
21687 <macro name> "() " <definition>
21688 or
21689 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21690
21691 Spaces may appear only where explicitly indicated, and in the
21692 <definition>.
21693
21694 The Dwarf 2 spec says that an object-like macro's name is always
21695 followed by a space, but versions of GCC around March 2002 omit
21696 the space when the macro's definition is the empty string.
21697
21698 The Dwarf 2 spec says that there should be no spaces between the
21699 formal arguments in a function-like macro's formal argument list,
21700 but versions of GCC around March 2002 include spaces after the
21701 commas. */
21702
21703
21704 /* Find the extent of the macro name. The macro name is terminated
21705 by either a space or null character (for an object-like macro) or
21706 an opening paren (for a function-like macro). */
21707 for (p = body; *p; p++)
21708 if (*p == ' ' || *p == '(')
21709 break;
21710
21711 if (*p == ' ' || *p == '\0')
21712 {
21713 /* It's an object-like macro. */
21714 int name_len = p - body;
21715 char *name = copy_string (body, name_len);
21716 const char *replacement;
21717
21718 if (*p == ' ')
21719 replacement = body + name_len + 1;
21720 else
21721 {
21722 dwarf2_macro_malformed_definition_complaint (body);
21723 replacement = body + name_len;
21724 }
21725
21726 macro_define_object (file, line, name, replacement);
21727
21728 xfree (name);
21729 }
21730 else if (*p == '(')
21731 {
21732 /* It's a function-like macro. */
21733 char *name = copy_string (body, p - body);
21734 int argc = 0;
21735 int argv_size = 1;
21736 char **argv = XNEWVEC (char *, argv_size);
21737
21738 p++;
21739
21740 p = consume_improper_spaces (p, body);
21741
21742 /* Parse the formal argument list. */
21743 while (*p && *p != ')')
21744 {
21745 /* Find the extent of the current argument name. */
21746 const char *arg_start = p;
21747
21748 while (*p && *p != ',' && *p != ')' && *p != ' ')
21749 p++;
21750
21751 if (! *p || p == arg_start)
21752 dwarf2_macro_malformed_definition_complaint (body);
21753 else
21754 {
21755 /* Make sure argv has room for the new argument. */
21756 if (argc >= argv_size)
21757 {
21758 argv_size *= 2;
21759 argv = XRESIZEVEC (char *, argv, argv_size);
21760 }
21761
21762 argv[argc++] = copy_string (arg_start, p - arg_start);
21763 }
21764
21765 p = consume_improper_spaces (p, body);
21766
21767 /* Consume the comma, if present. */
21768 if (*p == ',')
21769 {
21770 p++;
21771
21772 p = consume_improper_spaces (p, body);
21773 }
21774 }
21775
21776 if (*p == ')')
21777 {
21778 p++;
21779
21780 if (*p == ' ')
21781 /* Perfectly formed definition, no complaints. */
21782 macro_define_function (file, line, name,
21783 argc, (const char **) argv,
21784 p + 1);
21785 else if (*p == '\0')
21786 {
21787 /* Complain, but do define it. */
21788 dwarf2_macro_malformed_definition_complaint (body);
21789 macro_define_function (file, line, name,
21790 argc, (const char **) argv,
21791 p);
21792 }
21793 else
21794 /* Just complain. */
21795 dwarf2_macro_malformed_definition_complaint (body);
21796 }
21797 else
21798 /* Just complain. */
21799 dwarf2_macro_malformed_definition_complaint (body);
21800
21801 xfree (name);
21802 {
21803 int i;
21804
21805 for (i = 0; i < argc; i++)
21806 xfree (argv[i]);
21807 }
21808 xfree (argv);
21809 }
21810 else
21811 dwarf2_macro_malformed_definition_complaint (body);
21812 }
21813
21814 /* Skip some bytes from BYTES according to the form given in FORM.
21815 Returns the new pointer. */
21816
21817 static const gdb_byte *
21818 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21819 enum dwarf_form form,
21820 unsigned int offset_size,
21821 struct dwarf2_section_info *section)
21822 {
21823 unsigned int bytes_read;
21824
21825 switch (form)
21826 {
21827 case DW_FORM_data1:
21828 case DW_FORM_flag:
21829 ++bytes;
21830 break;
21831
21832 case DW_FORM_data2:
21833 bytes += 2;
21834 break;
21835
21836 case DW_FORM_data4:
21837 bytes += 4;
21838 break;
21839
21840 case DW_FORM_data8:
21841 bytes += 8;
21842 break;
21843
21844 case DW_FORM_data16:
21845 bytes += 16;
21846 break;
21847
21848 case DW_FORM_string:
21849 read_direct_string (abfd, bytes, &bytes_read);
21850 bytes += bytes_read;
21851 break;
21852
21853 case DW_FORM_sec_offset:
21854 case DW_FORM_strp:
21855 case DW_FORM_GNU_strp_alt:
21856 bytes += offset_size;
21857 break;
21858
21859 case DW_FORM_block:
21860 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21861 bytes += bytes_read;
21862 break;
21863
21864 case DW_FORM_block1:
21865 bytes += 1 + read_1_byte (abfd, bytes);
21866 break;
21867 case DW_FORM_block2:
21868 bytes += 2 + read_2_bytes (abfd, bytes);
21869 break;
21870 case DW_FORM_block4:
21871 bytes += 4 + read_4_bytes (abfd, bytes);
21872 break;
21873
21874 case DW_FORM_sdata:
21875 case DW_FORM_udata:
21876 case DW_FORM_GNU_addr_index:
21877 case DW_FORM_GNU_str_index:
21878 bytes = gdb_skip_leb128 (bytes, buffer_end);
21879 if (bytes == NULL)
21880 {
21881 dwarf2_section_buffer_overflow_complaint (section);
21882 return NULL;
21883 }
21884 break;
21885
21886 case DW_FORM_implicit_const:
21887 break;
21888
21889 default:
21890 {
21891 complain:
21892 complaint (&symfile_complaints,
21893 _("invalid form 0x%x in `%s'"),
21894 form, get_section_name (section));
21895 return NULL;
21896 }
21897 }
21898
21899 return bytes;
21900 }
21901
21902 /* A helper for dwarf_decode_macros that handles skipping an unknown
21903 opcode. Returns an updated pointer to the macro data buffer; or,
21904 on error, issues a complaint and returns NULL. */
21905
21906 static const gdb_byte *
21907 skip_unknown_opcode (unsigned int opcode,
21908 const gdb_byte **opcode_definitions,
21909 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21910 bfd *abfd,
21911 unsigned int offset_size,
21912 struct dwarf2_section_info *section)
21913 {
21914 unsigned int bytes_read, i;
21915 unsigned long arg;
21916 const gdb_byte *defn;
21917
21918 if (opcode_definitions[opcode] == NULL)
21919 {
21920 complaint (&symfile_complaints,
21921 _("unrecognized DW_MACFINO opcode 0x%x"),
21922 opcode);
21923 return NULL;
21924 }
21925
21926 defn = opcode_definitions[opcode];
21927 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21928 defn += bytes_read;
21929
21930 for (i = 0; i < arg; ++i)
21931 {
21932 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21933 (enum dwarf_form) defn[i], offset_size,
21934 section);
21935 if (mac_ptr == NULL)
21936 {
21937 /* skip_form_bytes already issued the complaint. */
21938 return NULL;
21939 }
21940 }
21941
21942 return mac_ptr;
21943 }
21944
21945 /* A helper function which parses the header of a macro section.
21946 If the macro section is the extended (for now called "GNU") type,
21947 then this updates *OFFSET_SIZE. Returns a pointer to just after
21948 the header, or issues a complaint and returns NULL on error. */
21949
21950 static const gdb_byte *
21951 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21952 bfd *abfd,
21953 const gdb_byte *mac_ptr,
21954 unsigned int *offset_size,
21955 int section_is_gnu)
21956 {
21957 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21958
21959 if (section_is_gnu)
21960 {
21961 unsigned int version, flags;
21962
21963 version = read_2_bytes (abfd, mac_ptr);
21964 if (version != 4 && version != 5)
21965 {
21966 complaint (&symfile_complaints,
21967 _("unrecognized version `%d' in .debug_macro section"),
21968 version);
21969 return NULL;
21970 }
21971 mac_ptr += 2;
21972
21973 flags = read_1_byte (abfd, mac_ptr);
21974 ++mac_ptr;
21975 *offset_size = (flags & 1) ? 8 : 4;
21976
21977 if ((flags & 2) != 0)
21978 /* We don't need the line table offset. */
21979 mac_ptr += *offset_size;
21980
21981 /* Vendor opcode descriptions. */
21982 if ((flags & 4) != 0)
21983 {
21984 unsigned int i, count;
21985
21986 count = read_1_byte (abfd, mac_ptr);
21987 ++mac_ptr;
21988 for (i = 0; i < count; ++i)
21989 {
21990 unsigned int opcode, bytes_read;
21991 unsigned long arg;
21992
21993 opcode = read_1_byte (abfd, mac_ptr);
21994 ++mac_ptr;
21995 opcode_definitions[opcode] = mac_ptr;
21996 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21997 mac_ptr += bytes_read;
21998 mac_ptr += arg;
21999 }
22000 }
22001 }
22002
22003 return mac_ptr;
22004 }
22005
22006 /* A helper for dwarf_decode_macros that handles the GNU extensions,
22007 including DW_MACRO_import. */
22008
22009 static void
22010 dwarf_decode_macro_bytes (bfd *abfd,
22011 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
22012 struct macro_source_file *current_file,
22013 struct line_header *lh,
22014 struct dwarf2_section_info *section,
22015 int section_is_gnu, int section_is_dwz,
22016 unsigned int offset_size,
22017 htab_t include_hash)
22018 {
22019 struct objfile *objfile = dwarf2_per_objfile->objfile;
22020 enum dwarf_macro_record_type macinfo_type;
22021 int at_commandline;
22022 const gdb_byte *opcode_definitions[256];
22023
22024 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22025 &offset_size, section_is_gnu);
22026 if (mac_ptr == NULL)
22027 {
22028 /* We already issued a complaint. */
22029 return;
22030 }
22031
22032 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
22033 GDB is still reading the definitions from command line. First
22034 DW_MACINFO_start_file will need to be ignored as it was already executed
22035 to create CURRENT_FILE for the main source holding also the command line
22036 definitions. On first met DW_MACINFO_start_file this flag is reset to
22037 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22038
22039 at_commandline = 1;
22040
22041 do
22042 {
22043 /* Do we at least have room for a macinfo type byte? */
22044 if (mac_ptr >= mac_end)
22045 {
22046 dwarf2_section_buffer_overflow_complaint (section);
22047 break;
22048 }
22049
22050 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22051 mac_ptr++;
22052
22053 /* Note that we rely on the fact that the corresponding GNU and
22054 DWARF constants are the same. */
22055 switch (macinfo_type)
22056 {
22057 /* A zero macinfo type indicates the end of the macro
22058 information. */
22059 case 0:
22060 break;
22061
22062 case DW_MACRO_define:
22063 case DW_MACRO_undef:
22064 case DW_MACRO_define_strp:
22065 case DW_MACRO_undef_strp:
22066 case DW_MACRO_define_sup:
22067 case DW_MACRO_undef_sup:
22068 {
22069 unsigned int bytes_read;
22070 int line;
22071 const char *body;
22072 int is_define;
22073
22074 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22075 mac_ptr += bytes_read;
22076
22077 if (macinfo_type == DW_MACRO_define
22078 || macinfo_type == DW_MACRO_undef)
22079 {
22080 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22081 mac_ptr += bytes_read;
22082 }
22083 else
22084 {
22085 LONGEST str_offset;
22086
22087 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22088 mac_ptr += offset_size;
22089
22090 if (macinfo_type == DW_MACRO_define_sup
22091 || macinfo_type == DW_MACRO_undef_sup
22092 || section_is_dwz)
22093 {
22094 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22095
22096 body = read_indirect_string_from_dwz (dwz, str_offset);
22097 }
22098 else
22099 body = read_indirect_string_at_offset (abfd, str_offset);
22100 }
22101
22102 is_define = (macinfo_type == DW_MACRO_define
22103 || macinfo_type == DW_MACRO_define_strp
22104 || macinfo_type == DW_MACRO_define_sup);
22105 if (! current_file)
22106 {
22107 /* DWARF violation as no main source is present. */
22108 complaint (&symfile_complaints,
22109 _("debug info with no main source gives macro %s "
22110 "on line %d: %s"),
22111 is_define ? _("definition") : _("undefinition"),
22112 line, body);
22113 break;
22114 }
22115 if ((line == 0 && !at_commandline)
22116 || (line != 0 && at_commandline))
22117 complaint (&symfile_complaints,
22118 _("debug info gives %s macro %s with %s line %d: %s"),
22119 at_commandline ? _("command-line") : _("in-file"),
22120 is_define ? _("definition") : _("undefinition"),
22121 line == 0 ? _("zero") : _("non-zero"), line, body);
22122
22123 if (is_define)
22124 parse_macro_definition (current_file, line, body);
22125 else
22126 {
22127 gdb_assert (macinfo_type == DW_MACRO_undef
22128 || macinfo_type == DW_MACRO_undef_strp
22129 || macinfo_type == DW_MACRO_undef_sup);
22130 macro_undef (current_file, line, body);
22131 }
22132 }
22133 break;
22134
22135 case DW_MACRO_start_file:
22136 {
22137 unsigned int bytes_read;
22138 int line, file;
22139
22140 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22141 mac_ptr += bytes_read;
22142 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22143 mac_ptr += bytes_read;
22144
22145 if ((line == 0 && !at_commandline)
22146 || (line != 0 && at_commandline))
22147 complaint (&symfile_complaints,
22148 _("debug info gives source %d included "
22149 "from %s at %s line %d"),
22150 file, at_commandline ? _("command-line") : _("file"),
22151 line == 0 ? _("zero") : _("non-zero"), line);
22152
22153 if (at_commandline)
22154 {
22155 /* This DW_MACRO_start_file was executed in the
22156 pass one. */
22157 at_commandline = 0;
22158 }
22159 else
22160 current_file = macro_start_file (file, line, current_file, lh);
22161 }
22162 break;
22163
22164 case DW_MACRO_end_file:
22165 if (! current_file)
22166 complaint (&symfile_complaints,
22167 _("macro debug info has an unmatched "
22168 "`close_file' directive"));
22169 else
22170 {
22171 current_file = current_file->included_by;
22172 if (! current_file)
22173 {
22174 enum dwarf_macro_record_type next_type;
22175
22176 /* GCC circa March 2002 doesn't produce the zero
22177 type byte marking the end of the compilation
22178 unit. Complain if it's not there, but exit no
22179 matter what. */
22180
22181 /* Do we at least have room for a macinfo type byte? */
22182 if (mac_ptr >= mac_end)
22183 {
22184 dwarf2_section_buffer_overflow_complaint (section);
22185 return;
22186 }
22187
22188 /* We don't increment mac_ptr here, so this is just
22189 a look-ahead. */
22190 next_type
22191 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22192 mac_ptr);
22193 if (next_type != 0)
22194 complaint (&symfile_complaints,
22195 _("no terminating 0-type entry for "
22196 "macros in `.debug_macinfo' section"));
22197
22198 return;
22199 }
22200 }
22201 break;
22202
22203 case DW_MACRO_import:
22204 case DW_MACRO_import_sup:
22205 {
22206 LONGEST offset;
22207 void **slot;
22208 bfd *include_bfd = abfd;
22209 struct dwarf2_section_info *include_section = section;
22210 const gdb_byte *include_mac_end = mac_end;
22211 int is_dwz = section_is_dwz;
22212 const gdb_byte *new_mac_ptr;
22213
22214 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22215 mac_ptr += offset_size;
22216
22217 if (macinfo_type == DW_MACRO_import_sup)
22218 {
22219 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22220
22221 dwarf2_read_section (objfile, &dwz->macro);
22222
22223 include_section = &dwz->macro;
22224 include_bfd = get_section_bfd_owner (include_section);
22225 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22226 is_dwz = 1;
22227 }
22228
22229 new_mac_ptr = include_section->buffer + offset;
22230 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22231
22232 if (*slot != NULL)
22233 {
22234 /* This has actually happened; see
22235 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22236 complaint (&symfile_complaints,
22237 _("recursive DW_MACRO_import in "
22238 ".debug_macro section"));
22239 }
22240 else
22241 {
22242 *slot = (void *) new_mac_ptr;
22243
22244 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22245 include_mac_end, current_file, lh,
22246 section, section_is_gnu, is_dwz,
22247 offset_size, include_hash);
22248
22249 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22250 }
22251 }
22252 break;
22253
22254 case DW_MACINFO_vendor_ext:
22255 if (!section_is_gnu)
22256 {
22257 unsigned int bytes_read;
22258
22259 /* This reads the constant, but since we don't recognize
22260 any vendor extensions, we ignore it. */
22261 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22262 mac_ptr += bytes_read;
22263 read_direct_string (abfd, mac_ptr, &bytes_read);
22264 mac_ptr += bytes_read;
22265
22266 /* We don't recognize any vendor extensions. */
22267 break;
22268 }
22269 /* FALLTHROUGH */
22270
22271 default:
22272 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22273 mac_ptr, mac_end, abfd, offset_size,
22274 section);
22275 if (mac_ptr == NULL)
22276 return;
22277 break;
22278 }
22279 } while (macinfo_type != 0);
22280 }
22281
22282 static void
22283 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22284 int section_is_gnu)
22285 {
22286 struct objfile *objfile = dwarf2_per_objfile->objfile;
22287 struct line_header *lh = cu->line_header;
22288 bfd *abfd;
22289 const gdb_byte *mac_ptr, *mac_end;
22290 struct macro_source_file *current_file = 0;
22291 enum dwarf_macro_record_type macinfo_type;
22292 unsigned int offset_size = cu->header.offset_size;
22293 const gdb_byte *opcode_definitions[256];
22294 struct cleanup *cleanup;
22295 void **slot;
22296 struct dwarf2_section_info *section;
22297 const char *section_name;
22298
22299 if (cu->dwo_unit != NULL)
22300 {
22301 if (section_is_gnu)
22302 {
22303 section = &cu->dwo_unit->dwo_file->sections.macro;
22304 section_name = ".debug_macro.dwo";
22305 }
22306 else
22307 {
22308 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22309 section_name = ".debug_macinfo.dwo";
22310 }
22311 }
22312 else
22313 {
22314 if (section_is_gnu)
22315 {
22316 section = &dwarf2_per_objfile->macro;
22317 section_name = ".debug_macro";
22318 }
22319 else
22320 {
22321 section = &dwarf2_per_objfile->macinfo;
22322 section_name = ".debug_macinfo";
22323 }
22324 }
22325
22326 dwarf2_read_section (objfile, section);
22327 if (section->buffer == NULL)
22328 {
22329 complaint (&symfile_complaints, _("missing %s section"), section_name);
22330 return;
22331 }
22332 abfd = get_section_bfd_owner (section);
22333
22334 /* First pass: Find the name of the base filename.
22335 This filename is needed in order to process all macros whose definition
22336 (or undefinition) comes from the command line. These macros are defined
22337 before the first DW_MACINFO_start_file entry, and yet still need to be
22338 associated to the base file.
22339
22340 To determine the base file name, we scan the macro definitions until we
22341 reach the first DW_MACINFO_start_file entry. We then initialize
22342 CURRENT_FILE accordingly so that any macro definition found before the
22343 first DW_MACINFO_start_file can still be associated to the base file. */
22344
22345 mac_ptr = section->buffer + offset;
22346 mac_end = section->buffer + section->size;
22347
22348 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22349 &offset_size, section_is_gnu);
22350 if (mac_ptr == NULL)
22351 {
22352 /* We already issued a complaint. */
22353 return;
22354 }
22355
22356 do
22357 {
22358 /* Do we at least have room for a macinfo type byte? */
22359 if (mac_ptr >= mac_end)
22360 {
22361 /* Complaint is printed during the second pass as GDB will probably
22362 stop the first pass earlier upon finding
22363 DW_MACINFO_start_file. */
22364 break;
22365 }
22366
22367 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22368 mac_ptr++;
22369
22370 /* Note that we rely on the fact that the corresponding GNU and
22371 DWARF constants are the same. */
22372 switch (macinfo_type)
22373 {
22374 /* A zero macinfo type indicates the end of the macro
22375 information. */
22376 case 0:
22377 break;
22378
22379 case DW_MACRO_define:
22380 case DW_MACRO_undef:
22381 /* Only skip the data by MAC_PTR. */
22382 {
22383 unsigned int bytes_read;
22384
22385 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22386 mac_ptr += bytes_read;
22387 read_direct_string (abfd, mac_ptr, &bytes_read);
22388 mac_ptr += bytes_read;
22389 }
22390 break;
22391
22392 case DW_MACRO_start_file:
22393 {
22394 unsigned int bytes_read;
22395 int line, file;
22396
22397 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22398 mac_ptr += bytes_read;
22399 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22400 mac_ptr += bytes_read;
22401
22402 current_file = macro_start_file (file, line, current_file, lh);
22403 }
22404 break;
22405
22406 case DW_MACRO_end_file:
22407 /* No data to skip by MAC_PTR. */
22408 break;
22409
22410 case DW_MACRO_define_strp:
22411 case DW_MACRO_undef_strp:
22412 case DW_MACRO_define_sup:
22413 case DW_MACRO_undef_sup:
22414 {
22415 unsigned int bytes_read;
22416
22417 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22418 mac_ptr += bytes_read;
22419 mac_ptr += offset_size;
22420 }
22421 break;
22422
22423 case DW_MACRO_import:
22424 case DW_MACRO_import_sup:
22425 /* Note that, according to the spec, a transparent include
22426 chain cannot call DW_MACRO_start_file. So, we can just
22427 skip this opcode. */
22428 mac_ptr += offset_size;
22429 break;
22430
22431 case DW_MACINFO_vendor_ext:
22432 /* Only skip the data by MAC_PTR. */
22433 if (!section_is_gnu)
22434 {
22435 unsigned int bytes_read;
22436
22437 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22438 mac_ptr += bytes_read;
22439 read_direct_string (abfd, mac_ptr, &bytes_read);
22440 mac_ptr += bytes_read;
22441 }
22442 /* FALLTHROUGH */
22443
22444 default:
22445 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22446 mac_ptr, mac_end, abfd, offset_size,
22447 section);
22448 if (mac_ptr == NULL)
22449 return;
22450 break;
22451 }
22452 } while (macinfo_type != 0 && current_file == NULL);
22453
22454 /* Second pass: Process all entries.
22455
22456 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22457 command-line macro definitions/undefinitions. This flag is unset when we
22458 reach the first DW_MACINFO_start_file entry. */
22459
22460 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22461 htab_eq_pointer,
22462 NULL, xcalloc, xfree));
22463 mac_ptr = section->buffer + offset;
22464 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22465 *slot = (void *) mac_ptr;
22466 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22467 current_file, lh, section,
22468 section_is_gnu, 0, offset_size,
22469 include_hash.get ());
22470 }
22471
22472 /* Check if the attribute's form is a DW_FORM_block*
22473 if so return true else false. */
22474
22475 static int
22476 attr_form_is_block (const struct attribute *attr)
22477 {
22478 return (attr == NULL ? 0 :
22479 attr->form == DW_FORM_block1
22480 || attr->form == DW_FORM_block2
22481 || attr->form == DW_FORM_block4
22482 || attr->form == DW_FORM_block
22483 || attr->form == DW_FORM_exprloc);
22484 }
22485
22486 /* Return non-zero if ATTR's value is a section offset --- classes
22487 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22488 You may use DW_UNSND (attr) to retrieve such offsets.
22489
22490 Section 7.5.4, "Attribute Encodings", explains that no attribute
22491 may have a value that belongs to more than one of these classes; it
22492 would be ambiguous if we did, because we use the same forms for all
22493 of them. */
22494
22495 static int
22496 attr_form_is_section_offset (const struct attribute *attr)
22497 {
22498 return (attr->form == DW_FORM_data4
22499 || attr->form == DW_FORM_data8
22500 || attr->form == DW_FORM_sec_offset);
22501 }
22502
22503 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22504 zero otherwise. When this function returns true, you can apply
22505 dwarf2_get_attr_constant_value to it.
22506
22507 However, note that for some attributes you must check
22508 attr_form_is_section_offset before using this test. DW_FORM_data4
22509 and DW_FORM_data8 are members of both the constant class, and of
22510 the classes that contain offsets into other debug sections
22511 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22512 that, if an attribute's can be either a constant or one of the
22513 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22514 taken as section offsets, not constants.
22515
22516 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22517 cannot handle that. */
22518
22519 static int
22520 attr_form_is_constant (const struct attribute *attr)
22521 {
22522 switch (attr->form)
22523 {
22524 case DW_FORM_sdata:
22525 case DW_FORM_udata:
22526 case DW_FORM_data1:
22527 case DW_FORM_data2:
22528 case DW_FORM_data4:
22529 case DW_FORM_data8:
22530 case DW_FORM_implicit_const:
22531 return 1;
22532 default:
22533 return 0;
22534 }
22535 }
22536
22537
22538 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22539 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22540
22541 static int
22542 attr_form_is_ref (const struct attribute *attr)
22543 {
22544 switch (attr->form)
22545 {
22546 case DW_FORM_ref_addr:
22547 case DW_FORM_ref1:
22548 case DW_FORM_ref2:
22549 case DW_FORM_ref4:
22550 case DW_FORM_ref8:
22551 case DW_FORM_ref_udata:
22552 case DW_FORM_GNU_ref_alt:
22553 return 1;
22554 default:
22555 return 0;
22556 }
22557 }
22558
22559 /* Return the .debug_loc section to use for CU.
22560 For DWO files use .debug_loc.dwo. */
22561
22562 static struct dwarf2_section_info *
22563 cu_debug_loc_section (struct dwarf2_cu *cu)
22564 {
22565 if (cu->dwo_unit)
22566 {
22567 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22568
22569 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22570 }
22571 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22572 : &dwarf2_per_objfile->loc);
22573 }
22574
22575 /* A helper function that fills in a dwarf2_loclist_baton. */
22576
22577 static void
22578 fill_in_loclist_baton (struct dwarf2_cu *cu,
22579 struct dwarf2_loclist_baton *baton,
22580 const struct attribute *attr)
22581 {
22582 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22583
22584 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22585
22586 baton->per_cu = cu->per_cu;
22587 gdb_assert (baton->per_cu);
22588 /* We don't know how long the location list is, but make sure we
22589 don't run off the edge of the section. */
22590 baton->size = section->size - DW_UNSND (attr);
22591 baton->data = section->buffer + DW_UNSND (attr);
22592 baton->base_address = cu->base_address;
22593 baton->from_dwo = cu->dwo_unit != NULL;
22594 }
22595
22596 static void
22597 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22598 struct dwarf2_cu *cu, int is_block)
22599 {
22600 struct objfile *objfile = dwarf2_per_objfile->objfile;
22601 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22602
22603 if (attr_form_is_section_offset (attr)
22604 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22605 the section. If so, fall through to the complaint in the
22606 other branch. */
22607 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22608 {
22609 struct dwarf2_loclist_baton *baton;
22610
22611 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22612
22613 fill_in_loclist_baton (cu, baton, attr);
22614
22615 if (cu->base_known == 0)
22616 complaint (&symfile_complaints,
22617 _("Location list used without "
22618 "specifying the CU base address."));
22619
22620 SYMBOL_ACLASS_INDEX (sym) = (is_block
22621 ? dwarf2_loclist_block_index
22622 : dwarf2_loclist_index);
22623 SYMBOL_LOCATION_BATON (sym) = baton;
22624 }
22625 else
22626 {
22627 struct dwarf2_locexpr_baton *baton;
22628
22629 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22630 baton->per_cu = cu->per_cu;
22631 gdb_assert (baton->per_cu);
22632
22633 if (attr_form_is_block (attr))
22634 {
22635 /* Note that we're just copying the block's data pointer
22636 here, not the actual data. We're still pointing into the
22637 info_buffer for SYM's objfile; right now we never release
22638 that buffer, but when we do clean up properly this may
22639 need to change. */
22640 baton->size = DW_BLOCK (attr)->size;
22641 baton->data = DW_BLOCK (attr)->data;
22642 }
22643 else
22644 {
22645 dwarf2_invalid_attrib_class_complaint ("location description",
22646 SYMBOL_NATURAL_NAME (sym));
22647 baton->size = 0;
22648 }
22649
22650 SYMBOL_ACLASS_INDEX (sym) = (is_block
22651 ? dwarf2_locexpr_block_index
22652 : dwarf2_locexpr_index);
22653 SYMBOL_LOCATION_BATON (sym) = baton;
22654 }
22655 }
22656
22657 /* Return the OBJFILE associated with the compilation unit CU. If CU
22658 came from a separate debuginfo file, then the master objfile is
22659 returned. */
22660
22661 struct objfile *
22662 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22663 {
22664 struct objfile *objfile = per_cu->objfile;
22665
22666 /* Return the master objfile, so that we can report and look up the
22667 correct file containing this variable. */
22668 if (objfile->separate_debug_objfile_backlink)
22669 objfile = objfile->separate_debug_objfile_backlink;
22670
22671 return objfile;
22672 }
22673
22674 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22675 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22676 CU_HEADERP first. */
22677
22678 static const struct comp_unit_head *
22679 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22680 struct dwarf2_per_cu_data *per_cu)
22681 {
22682 const gdb_byte *info_ptr;
22683
22684 if (per_cu->cu)
22685 return &per_cu->cu->header;
22686
22687 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
22688
22689 memset (cu_headerp, 0, sizeof (*cu_headerp));
22690 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22691 rcuh_kind::COMPILE);
22692
22693 return cu_headerp;
22694 }
22695
22696 /* Return the address size given in the compilation unit header for CU. */
22697
22698 int
22699 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22700 {
22701 struct comp_unit_head cu_header_local;
22702 const struct comp_unit_head *cu_headerp;
22703
22704 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22705
22706 return cu_headerp->addr_size;
22707 }
22708
22709 /* Return the offset size given in the compilation unit header for CU. */
22710
22711 int
22712 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22713 {
22714 struct comp_unit_head cu_header_local;
22715 const struct comp_unit_head *cu_headerp;
22716
22717 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22718
22719 return cu_headerp->offset_size;
22720 }
22721
22722 /* See its dwarf2loc.h declaration. */
22723
22724 int
22725 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22726 {
22727 struct comp_unit_head cu_header_local;
22728 const struct comp_unit_head *cu_headerp;
22729
22730 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22731
22732 if (cu_headerp->version == 2)
22733 return cu_headerp->addr_size;
22734 else
22735 return cu_headerp->offset_size;
22736 }
22737
22738 /* Return the text offset of the CU. The returned offset comes from
22739 this CU's objfile. If this objfile came from a separate debuginfo
22740 file, then the offset may be different from the corresponding
22741 offset in the parent objfile. */
22742
22743 CORE_ADDR
22744 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22745 {
22746 struct objfile *objfile = per_cu->objfile;
22747
22748 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22749 }
22750
22751 /* Return DWARF version number of PER_CU. */
22752
22753 short
22754 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22755 {
22756 return per_cu->dwarf_version;
22757 }
22758
22759 /* Locate the .debug_info compilation unit from CU's objfile which contains
22760 the DIE at OFFSET. Raises an error on failure. */
22761
22762 static struct dwarf2_per_cu_data *
22763 dwarf2_find_containing_comp_unit (sect_offset sect_off,
22764 unsigned int offset_in_dwz,
22765 struct objfile *objfile)
22766 {
22767 struct dwarf2_per_cu_data *this_cu;
22768 int low, high;
22769 const sect_offset *cu_off;
22770
22771 low = 0;
22772 high = dwarf2_per_objfile->n_comp_units - 1;
22773 while (high > low)
22774 {
22775 struct dwarf2_per_cu_data *mid_cu;
22776 int mid = low + (high - low) / 2;
22777
22778 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22779 cu_off = &mid_cu->sect_off;
22780 if (mid_cu->is_dwz > offset_in_dwz
22781 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
22782 high = mid;
22783 else
22784 low = mid + 1;
22785 }
22786 gdb_assert (low == high);
22787 this_cu = dwarf2_per_objfile->all_comp_units[low];
22788 cu_off = &this_cu->sect_off;
22789 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
22790 {
22791 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22792 error (_("Dwarf Error: could not find partial DIE containing "
22793 "offset 0x%x [in module %s]"),
22794 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
22795
22796 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22797 <= sect_off);
22798 return dwarf2_per_objfile->all_comp_units[low-1];
22799 }
22800 else
22801 {
22802 this_cu = dwarf2_per_objfile->all_comp_units[low];
22803 if (low == dwarf2_per_objfile->n_comp_units - 1
22804 && sect_off >= this_cu->sect_off + this_cu->length)
22805 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22806 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
22807 return this_cu;
22808 }
22809 }
22810
22811 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22812
22813 static void
22814 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22815 {
22816 memset (cu, 0, sizeof (*cu));
22817 per_cu->cu = cu;
22818 cu->per_cu = per_cu;
22819 cu->objfile = per_cu->objfile;
22820 obstack_init (&cu->comp_unit_obstack);
22821 }
22822
22823 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22824
22825 static void
22826 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22827 enum language pretend_language)
22828 {
22829 struct attribute *attr;
22830
22831 /* Set the language we're debugging. */
22832 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22833 if (attr)
22834 set_cu_language (DW_UNSND (attr), cu);
22835 else
22836 {
22837 cu->language = pretend_language;
22838 cu->language_defn = language_def (cu->language);
22839 }
22840
22841 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22842 }
22843
22844 /* Release one cached compilation unit, CU. We unlink it from the tree
22845 of compilation units, but we don't remove it from the read_in_chain;
22846 the caller is responsible for that.
22847 NOTE: DATA is a void * because this function is also used as a
22848 cleanup routine. */
22849
22850 static void
22851 free_heap_comp_unit (void *data)
22852 {
22853 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22854
22855 gdb_assert (cu->per_cu != NULL);
22856 cu->per_cu->cu = NULL;
22857 cu->per_cu = NULL;
22858
22859 obstack_free (&cu->comp_unit_obstack, NULL);
22860
22861 xfree (cu);
22862 }
22863
22864 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22865 when we're finished with it. We can't free the pointer itself, but be
22866 sure to unlink it from the cache. Also release any associated storage. */
22867
22868 static void
22869 free_stack_comp_unit (void *data)
22870 {
22871 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22872
22873 gdb_assert (cu->per_cu != NULL);
22874 cu->per_cu->cu = NULL;
22875 cu->per_cu = NULL;
22876
22877 obstack_free (&cu->comp_unit_obstack, NULL);
22878 cu->partial_dies = NULL;
22879 }
22880
22881 /* Free all cached compilation units. */
22882
22883 static void
22884 free_cached_comp_units (void *data)
22885 {
22886 dwarf2_per_objfile->free_cached_comp_units ();
22887 }
22888
22889 /* Increase the age counter on each cached compilation unit, and free
22890 any that are too old. */
22891
22892 static void
22893 age_cached_comp_units (void)
22894 {
22895 struct dwarf2_per_cu_data *per_cu, **last_chain;
22896
22897 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22898 per_cu = dwarf2_per_objfile->read_in_chain;
22899 while (per_cu != NULL)
22900 {
22901 per_cu->cu->last_used ++;
22902 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22903 dwarf2_mark (per_cu->cu);
22904 per_cu = per_cu->cu->read_in_chain;
22905 }
22906
22907 per_cu = dwarf2_per_objfile->read_in_chain;
22908 last_chain = &dwarf2_per_objfile->read_in_chain;
22909 while (per_cu != NULL)
22910 {
22911 struct dwarf2_per_cu_data *next_cu;
22912
22913 next_cu = per_cu->cu->read_in_chain;
22914
22915 if (!per_cu->cu->mark)
22916 {
22917 free_heap_comp_unit (per_cu->cu);
22918 *last_chain = next_cu;
22919 }
22920 else
22921 last_chain = &per_cu->cu->read_in_chain;
22922
22923 per_cu = next_cu;
22924 }
22925 }
22926
22927 /* Remove a single compilation unit from the cache. */
22928
22929 static void
22930 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22931 {
22932 struct dwarf2_per_cu_data *per_cu, **last_chain;
22933
22934 per_cu = dwarf2_per_objfile->read_in_chain;
22935 last_chain = &dwarf2_per_objfile->read_in_chain;
22936 while (per_cu != NULL)
22937 {
22938 struct dwarf2_per_cu_data *next_cu;
22939
22940 next_cu = per_cu->cu->read_in_chain;
22941
22942 if (per_cu == target_per_cu)
22943 {
22944 free_heap_comp_unit (per_cu->cu);
22945 per_cu->cu = NULL;
22946 *last_chain = next_cu;
22947 break;
22948 }
22949 else
22950 last_chain = &per_cu->cu->read_in_chain;
22951
22952 per_cu = next_cu;
22953 }
22954 }
22955
22956 /* Release all extra memory associated with OBJFILE. */
22957
22958 void
22959 dwarf2_free_objfile (struct objfile *objfile)
22960 {
22961 dwarf2_per_objfile
22962 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22963 dwarf2_objfile_data_key);
22964
22965 if (dwarf2_per_objfile == NULL)
22966 return;
22967
22968 dwarf2_per_objfile->~dwarf2_per_objfile ();
22969 }
22970
22971 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22972 We store these in a hash table separate from the DIEs, and preserve them
22973 when the DIEs are flushed out of cache.
22974
22975 The CU "per_cu" pointer is needed because offset alone is not enough to
22976 uniquely identify the type. A file may have multiple .debug_types sections,
22977 or the type may come from a DWO file. Furthermore, while it's more logical
22978 to use per_cu->section+offset, with Fission the section with the data is in
22979 the DWO file but we don't know that section at the point we need it.
22980 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22981 because we can enter the lookup routine, get_die_type_at_offset, from
22982 outside this file, and thus won't necessarily have PER_CU->cu.
22983 Fortunately, PER_CU is stable for the life of the objfile. */
22984
22985 struct dwarf2_per_cu_offset_and_type
22986 {
22987 const struct dwarf2_per_cu_data *per_cu;
22988 sect_offset sect_off;
22989 struct type *type;
22990 };
22991
22992 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22993
22994 static hashval_t
22995 per_cu_offset_and_type_hash (const void *item)
22996 {
22997 const struct dwarf2_per_cu_offset_and_type *ofs
22998 = (const struct dwarf2_per_cu_offset_and_type *) item;
22999
23000 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23001 }
23002
23003 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23004
23005 static int
23006 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23007 {
23008 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23009 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23010 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23011 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23012
23013 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23014 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23015 }
23016
23017 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23018 table if necessary. For convenience, return TYPE.
23019
23020 The DIEs reading must have careful ordering to:
23021 * Not cause infite loops trying to read in DIEs as a prerequisite for
23022 reading current DIE.
23023 * Not trying to dereference contents of still incompletely read in types
23024 while reading in other DIEs.
23025 * Enable referencing still incompletely read in types just by a pointer to
23026 the type without accessing its fields.
23027
23028 Therefore caller should follow these rules:
23029 * Try to fetch any prerequisite types we may need to build this DIE type
23030 before building the type and calling set_die_type.
23031 * After building type call set_die_type for current DIE as soon as
23032 possible before fetching more types to complete the current type.
23033 * Make the type as complete as possible before fetching more types. */
23034
23035 static struct type *
23036 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23037 {
23038 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23039 struct objfile *objfile = cu->objfile;
23040 struct attribute *attr;
23041 struct dynamic_prop prop;
23042
23043 /* For Ada types, make sure that the gnat-specific data is always
23044 initialized (if not already set). There are a few types where
23045 we should not be doing so, because the type-specific area is
23046 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23047 where the type-specific area is used to store the floatformat).
23048 But this is not a problem, because the gnat-specific information
23049 is actually not needed for these types. */
23050 if (need_gnat_info (cu)
23051 && TYPE_CODE (type) != TYPE_CODE_FUNC
23052 && TYPE_CODE (type) != TYPE_CODE_FLT
23053 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23054 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23055 && TYPE_CODE (type) != TYPE_CODE_METHOD
23056 && !HAVE_GNAT_AUX_INFO (type))
23057 INIT_GNAT_SPECIFIC (type);
23058
23059 /* Read DW_AT_allocated and set in type. */
23060 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23061 if (attr_form_is_block (attr))
23062 {
23063 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23064 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23065 }
23066 else if (attr != NULL)
23067 {
23068 complaint (&symfile_complaints,
23069 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23070 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23071 to_underlying (die->sect_off));
23072 }
23073
23074 /* Read DW_AT_associated and set in type. */
23075 attr = dwarf2_attr (die, DW_AT_associated, cu);
23076 if (attr_form_is_block (attr))
23077 {
23078 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23079 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23080 }
23081 else if (attr != NULL)
23082 {
23083 complaint (&symfile_complaints,
23084 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23085 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23086 to_underlying (die->sect_off));
23087 }
23088
23089 /* Read DW_AT_data_location and set in type. */
23090 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23091 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23092 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
23093
23094 if (dwarf2_per_objfile->die_type_hash == NULL)
23095 {
23096 dwarf2_per_objfile->die_type_hash =
23097 htab_create_alloc_ex (127,
23098 per_cu_offset_and_type_hash,
23099 per_cu_offset_and_type_eq,
23100 NULL,
23101 &objfile->objfile_obstack,
23102 hashtab_obstack_allocate,
23103 dummy_obstack_deallocate);
23104 }
23105
23106 ofs.per_cu = cu->per_cu;
23107 ofs.sect_off = die->sect_off;
23108 ofs.type = type;
23109 slot = (struct dwarf2_per_cu_offset_and_type **)
23110 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
23111 if (*slot)
23112 complaint (&symfile_complaints,
23113 _("A problem internal to GDB: DIE 0x%x has type already set"),
23114 to_underlying (die->sect_off));
23115 *slot = XOBNEW (&objfile->objfile_obstack,
23116 struct dwarf2_per_cu_offset_and_type);
23117 **slot = ofs;
23118 return type;
23119 }
23120
23121 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23122 or return NULL if the die does not have a saved type. */
23123
23124 static struct type *
23125 get_die_type_at_offset (sect_offset sect_off,
23126 struct dwarf2_per_cu_data *per_cu)
23127 {
23128 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23129
23130 if (dwarf2_per_objfile->die_type_hash == NULL)
23131 return NULL;
23132
23133 ofs.per_cu = per_cu;
23134 ofs.sect_off = sect_off;
23135 slot = ((struct dwarf2_per_cu_offset_and_type *)
23136 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
23137 if (slot)
23138 return slot->type;
23139 else
23140 return NULL;
23141 }
23142
23143 /* Look up the type for DIE in CU in die_type_hash,
23144 or return NULL if DIE does not have a saved type. */
23145
23146 static struct type *
23147 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23148 {
23149 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23150 }
23151
23152 /* Add a dependence relationship from CU to REF_PER_CU. */
23153
23154 static void
23155 dwarf2_add_dependence (struct dwarf2_cu *cu,
23156 struct dwarf2_per_cu_data *ref_per_cu)
23157 {
23158 void **slot;
23159
23160 if (cu->dependencies == NULL)
23161 cu->dependencies
23162 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23163 NULL, &cu->comp_unit_obstack,
23164 hashtab_obstack_allocate,
23165 dummy_obstack_deallocate);
23166
23167 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23168 if (*slot == NULL)
23169 *slot = ref_per_cu;
23170 }
23171
23172 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23173 Set the mark field in every compilation unit in the
23174 cache that we must keep because we are keeping CU. */
23175
23176 static int
23177 dwarf2_mark_helper (void **slot, void *data)
23178 {
23179 struct dwarf2_per_cu_data *per_cu;
23180
23181 per_cu = (struct dwarf2_per_cu_data *) *slot;
23182
23183 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23184 reading of the chain. As such dependencies remain valid it is not much
23185 useful to track and undo them during QUIT cleanups. */
23186 if (per_cu->cu == NULL)
23187 return 1;
23188
23189 if (per_cu->cu->mark)
23190 return 1;
23191 per_cu->cu->mark = 1;
23192
23193 if (per_cu->cu->dependencies != NULL)
23194 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23195
23196 return 1;
23197 }
23198
23199 /* Set the mark field in CU and in every other compilation unit in the
23200 cache that we must keep because we are keeping CU. */
23201
23202 static void
23203 dwarf2_mark (struct dwarf2_cu *cu)
23204 {
23205 if (cu->mark)
23206 return;
23207 cu->mark = 1;
23208 if (cu->dependencies != NULL)
23209 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23210 }
23211
23212 static void
23213 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23214 {
23215 while (per_cu)
23216 {
23217 per_cu->cu->mark = 0;
23218 per_cu = per_cu->cu->read_in_chain;
23219 }
23220 }
23221
23222 /* Trivial hash function for partial_die_info: the hash value of a DIE
23223 is its offset in .debug_info for this objfile. */
23224
23225 static hashval_t
23226 partial_die_hash (const void *item)
23227 {
23228 const struct partial_die_info *part_die
23229 = (const struct partial_die_info *) item;
23230
23231 return to_underlying (part_die->sect_off);
23232 }
23233
23234 /* Trivial comparison function for partial_die_info structures: two DIEs
23235 are equal if they have the same offset. */
23236
23237 static int
23238 partial_die_eq (const void *item_lhs, const void *item_rhs)
23239 {
23240 const struct partial_die_info *part_die_lhs
23241 = (const struct partial_die_info *) item_lhs;
23242 const struct partial_die_info *part_die_rhs
23243 = (const struct partial_die_info *) item_rhs;
23244
23245 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23246 }
23247
23248 static struct cmd_list_element *set_dwarf_cmdlist;
23249 static struct cmd_list_element *show_dwarf_cmdlist;
23250
23251 static void
23252 set_dwarf_cmd (char *args, int from_tty)
23253 {
23254 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23255 gdb_stdout);
23256 }
23257
23258 static void
23259 show_dwarf_cmd (char *args, int from_tty)
23260 {
23261 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23262 }
23263
23264 /* Free data associated with OBJFILE, if necessary. */
23265
23266 static void
23267 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23268 {
23269 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23270 int ix;
23271
23272 /* Make sure we don't accidentally use dwarf2_per_objfile while
23273 cleaning up. */
23274 dwarf2_per_objfile = NULL;
23275
23276 for (ix = 0; ix < data->n_comp_units; ++ix)
23277 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23278
23279 for (ix = 0; ix < data->n_type_units; ++ix)
23280 VEC_free (dwarf2_per_cu_ptr,
23281 data->all_type_units[ix]->per_cu.imported_symtabs);
23282 xfree (data->all_type_units);
23283
23284 VEC_free (dwarf2_section_info_def, data->types);
23285
23286 if (data->dwo_files)
23287 free_dwo_files (data->dwo_files, objfile);
23288 if (data->dwp_file)
23289 gdb_bfd_unref (data->dwp_file->dbfd);
23290
23291 if (data->dwz_file && data->dwz_file->dwz_bfd)
23292 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23293 }
23294
23295 \f
23296 /* The "save gdb-index" command. */
23297
23298 /* In-memory buffer to prepare data to be written later to a file. */
23299 class data_buf
23300 {
23301 public:
23302 /* Copy DATA to the end of the buffer. */
23303 template<typename T>
23304 void append_data (const T &data)
23305 {
23306 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23307 reinterpret_cast<const gdb_byte *> (&data + 1),
23308 grow (sizeof (data)));
23309 }
23310
23311 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23312 terminating zero is appended too. */
23313 void append_cstr0 (const char *cstr)
23314 {
23315 const size_t size = strlen (cstr) + 1;
23316 std::copy (cstr, cstr + size, grow (size));
23317 }
23318
23319 /* Accept a host-format integer in VAL and append it to the buffer
23320 as a target-format integer which is LEN bytes long. */
23321 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23322 {
23323 ::store_unsigned_integer (grow (len), len, byte_order, val);
23324 }
23325
23326 /* Return the size of the buffer. */
23327 size_t size () const
23328 {
23329 return m_vec.size ();
23330 }
23331
23332 /* Write the buffer to FILE. */
23333 void file_write (FILE *file) const
23334 {
23335 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23336 error (_("couldn't write data to file"));
23337 }
23338
23339 private:
23340 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23341 the start of the new block. */
23342 gdb_byte *grow (size_t size)
23343 {
23344 m_vec.resize (m_vec.size () + size);
23345 return &*m_vec.end () - size;
23346 }
23347
23348 gdb::byte_vector m_vec;
23349 };
23350
23351 /* An entry in the symbol table. */
23352 struct symtab_index_entry
23353 {
23354 /* The name of the symbol. */
23355 const char *name;
23356 /* The offset of the name in the constant pool. */
23357 offset_type index_offset;
23358 /* A sorted vector of the indices of all the CUs that hold an object
23359 of this name. */
23360 std::vector<offset_type> cu_indices;
23361 };
23362
23363 /* The symbol table. This is a power-of-2-sized hash table. */
23364 struct mapped_symtab
23365 {
23366 mapped_symtab ()
23367 {
23368 data.resize (1024);
23369 }
23370
23371 offset_type n_elements = 0;
23372 std::vector<symtab_index_entry> data;
23373 };
23374
23375 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
23376 the slot.
23377
23378 Function is used only during write_hash_table so no index format backward
23379 compatibility is needed. */
23380
23381 static symtab_index_entry &
23382 find_slot (struct mapped_symtab *symtab, const char *name)
23383 {
23384 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23385
23386 index = hash & (symtab->data.size () - 1);
23387 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
23388
23389 for (;;)
23390 {
23391 if (symtab->data[index].name == NULL
23392 || strcmp (name, symtab->data[index].name) == 0)
23393 return symtab->data[index];
23394 index = (index + step) & (symtab->data.size () - 1);
23395 }
23396 }
23397
23398 /* Expand SYMTAB's hash table. */
23399
23400 static void
23401 hash_expand (struct mapped_symtab *symtab)
23402 {
23403 auto old_entries = std::move (symtab->data);
23404
23405 symtab->data.clear ();
23406 symtab->data.resize (old_entries.size () * 2);
23407
23408 for (auto &it : old_entries)
23409 if (it.name != NULL)
23410 {
23411 auto &ref = find_slot (symtab, it.name);
23412 ref = std::move (it);
23413 }
23414 }
23415
23416 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23417 CU_INDEX is the index of the CU in which the symbol appears.
23418 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23419
23420 static void
23421 add_index_entry (struct mapped_symtab *symtab, const char *name,
23422 int is_static, gdb_index_symbol_kind kind,
23423 offset_type cu_index)
23424 {
23425 offset_type cu_index_and_attrs;
23426
23427 ++symtab->n_elements;
23428 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
23429 hash_expand (symtab);
23430
23431 symtab_index_entry &slot = find_slot (symtab, name);
23432 if (slot.name == NULL)
23433 {
23434 slot.name = name;
23435 /* index_offset is set later. */
23436 }
23437
23438 cu_index_and_attrs = 0;
23439 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23440 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23441 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23442
23443 /* We don't want to record an index value twice as we want to avoid the
23444 duplication.
23445 We process all global symbols and then all static symbols
23446 (which would allow us to avoid the duplication by only having to check
23447 the last entry pushed), but a symbol could have multiple kinds in one CU.
23448 To keep things simple we don't worry about the duplication here and
23449 sort and uniqufy the list after we've processed all symbols. */
23450 slot.cu_indices.push_back (cu_index_and_attrs);
23451 }
23452
23453 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23454
23455 static void
23456 uniquify_cu_indices (struct mapped_symtab *symtab)
23457 {
23458 for (auto &entry : symtab->data)
23459 {
23460 if (entry.name != NULL && !entry.cu_indices.empty ())
23461 {
23462 auto &cu_indices = entry.cu_indices;
23463 std::sort (cu_indices.begin (), cu_indices.end ());
23464 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23465 cu_indices.erase (from, cu_indices.end ());
23466 }
23467 }
23468 }
23469
23470 /* A form of 'const char *' suitable for container keys. Only the
23471 pointer is stored. The strings themselves are compared, not the
23472 pointers. */
23473 class c_str_view
23474 {
23475 public:
23476 c_str_view (const char *cstr)
23477 : m_cstr (cstr)
23478 {}
23479
23480 bool operator== (const c_str_view &other) const
23481 {
23482 return strcmp (m_cstr, other.m_cstr) == 0;
23483 }
23484
23485 private:
23486 friend class c_str_view_hasher;
23487 const char *const m_cstr;
23488 };
23489
23490 /* A std::unordered_map::hasher for c_str_view that uses the right
23491 hash function for strings in a mapped index. */
23492 class c_str_view_hasher
23493 {
23494 public:
23495 size_t operator () (const c_str_view &x) const
23496 {
23497 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23498 }
23499 };
23500
23501 /* A std::unordered_map::hasher for std::vector<>. */
23502 template<typename T>
23503 class vector_hasher
23504 {
23505 public:
23506 size_t operator () (const std::vector<T> &key) const
23507 {
23508 return iterative_hash (key.data (),
23509 sizeof (key.front ()) * key.size (), 0);
23510 }
23511 };
23512
23513 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23514 constant pool entries going into the data buffer CPOOL. */
23515
23516 static void
23517 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23518 {
23519 {
23520 /* Elements are sorted vectors of the indices of all the CUs that
23521 hold an object of this name. */
23522 std::unordered_map<std::vector<offset_type>, offset_type,
23523 vector_hasher<offset_type>>
23524 symbol_hash_table;
23525
23526 /* We add all the index vectors to the constant pool first, to
23527 ensure alignment is ok. */
23528 for (symtab_index_entry &entry : symtab->data)
23529 {
23530 if (entry.name == NULL)
23531 continue;
23532 gdb_assert (entry.index_offset == 0);
23533
23534 /* Finding before inserting is faster than always trying to
23535 insert, because inserting always allocates a node, does the
23536 lookup, and then destroys the new node if another node
23537 already had the same key. C++17 try_emplace will avoid
23538 this. */
23539 const auto found
23540 = symbol_hash_table.find (entry.cu_indices);
23541 if (found != symbol_hash_table.end ())
23542 {
23543 entry.index_offset = found->second;
23544 continue;
23545 }
23546
23547 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23548 entry.index_offset = cpool.size ();
23549 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23550 for (const auto index : entry.cu_indices)
23551 cpool.append_data (MAYBE_SWAP (index));
23552 }
23553 }
23554
23555 /* Now write out the hash table. */
23556 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
23557 for (const auto &entry : symtab->data)
23558 {
23559 offset_type str_off, vec_off;
23560
23561 if (entry.name != NULL)
23562 {
23563 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
23564 if (insertpair.second)
23565 cpool.append_cstr0 (entry.name);
23566 str_off = insertpair.first->second;
23567 vec_off = entry.index_offset;
23568 }
23569 else
23570 {
23571 /* While 0 is a valid constant pool index, it is not valid
23572 to have 0 for both offsets. */
23573 str_off = 0;
23574 vec_off = 0;
23575 }
23576
23577 output.append_data (MAYBE_SWAP (str_off));
23578 output.append_data (MAYBE_SWAP (vec_off));
23579 }
23580 }
23581
23582 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
23583
23584 /* Helper struct for building the address table. */
23585 struct addrmap_index_data
23586 {
23587 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23588 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23589 {}
23590
23591 struct objfile *objfile;
23592 data_buf &addr_vec;
23593 psym_index_map &cu_index_htab;
23594
23595 /* Non-zero if the previous_* fields are valid.
23596 We can't write an entry until we see the next entry (since it is only then
23597 that we know the end of the entry). */
23598 int previous_valid;
23599 /* Index of the CU in the table of all CUs in the index file. */
23600 unsigned int previous_cu_index;
23601 /* Start address of the CU. */
23602 CORE_ADDR previous_cu_start;
23603 };
23604
23605 /* Write an address entry to ADDR_VEC. */
23606
23607 static void
23608 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
23609 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23610 {
23611 CORE_ADDR baseaddr;
23612
23613 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23614
23615 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23616 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
23617 addr_vec.append_data (MAYBE_SWAP (cu_index));
23618 }
23619
23620 /* Worker function for traversing an addrmap to build the address table. */
23621
23622 static int
23623 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23624 {
23625 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23626 struct partial_symtab *pst = (struct partial_symtab *) obj;
23627
23628 if (data->previous_valid)
23629 add_address_entry (data->objfile, data->addr_vec,
23630 data->previous_cu_start, start_addr,
23631 data->previous_cu_index);
23632
23633 data->previous_cu_start = start_addr;
23634 if (pst != NULL)
23635 {
23636 const auto it = data->cu_index_htab.find (pst);
23637 gdb_assert (it != data->cu_index_htab.cend ());
23638 data->previous_cu_index = it->second;
23639 data->previous_valid = 1;
23640 }
23641 else
23642 data->previous_valid = 0;
23643
23644 return 0;
23645 }
23646
23647 /* Write OBJFILE's address map to ADDR_VEC.
23648 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23649 in the index file. */
23650
23651 static void
23652 write_address_map (struct objfile *objfile, data_buf &addr_vec,
23653 psym_index_map &cu_index_htab)
23654 {
23655 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
23656
23657 /* When writing the address table, we have to cope with the fact that
23658 the addrmap iterator only provides the start of a region; we have to
23659 wait until the next invocation to get the start of the next region. */
23660
23661 addrmap_index_data.objfile = objfile;
23662 addrmap_index_data.previous_valid = 0;
23663
23664 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23665 &addrmap_index_data);
23666
23667 /* It's highly unlikely the last entry (end address = 0xff...ff)
23668 is valid, but we should still handle it.
23669 The end address is recorded as the start of the next region, but that
23670 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23671 anyway. */
23672 if (addrmap_index_data.previous_valid)
23673 add_address_entry (objfile, addr_vec,
23674 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23675 addrmap_index_data.previous_cu_index);
23676 }
23677
23678 /* Return the symbol kind of PSYM. */
23679
23680 static gdb_index_symbol_kind
23681 symbol_kind (struct partial_symbol *psym)
23682 {
23683 domain_enum domain = PSYMBOL_DOMAIN (psym);
23684 enum address_class aclass = PSYMBOL_CLASS (psym);
23685
23686 switch (domain)
23687 {
23688 case VAR_DOMAIN:
23689 switch (aclass)
23690 {
23691 case LOC_BLOCK:
23692 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23693 case LOC_TYPEDEF:
23694 return GDB_INDEX_SYMBOL_KIND_TYPE;
23695 case LOC_COMPUTED:
23696 case LOC_CONST_BYTES:
23697 case LOC_OPTIMIZED_OUT:
23698 case LOC_STATIC:
23699 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23700 case LOC_CONST:
23701 /* Note: It's currently impossible to recognize psyms as enum values
23702 short of reading the type info. For now punt. */
23703 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23704 default:
23705 /* There are other LOC_FOO values that one might want to classify
23706 as variables, but dwarf2read.c doesn't currently use them. */
23707 return GDB_INDEX_SYMBOL_KIND_OTHER;
23708 }
23709 case STRUCT_DOMAIN:
23710 return GDB_INDEX_SYMBOL_KIND_TYPE;
23711 default:
23712 return GDB_INDEX_SYMBOL_KIND_OTHER;
23713 }
23714 }
23715
23716 /* Add a list of partial symbols to SYMTAB. */
23717
23718 static void
23719 write_psymbols (struct mapped_symtab *symtab,
23720 std::unordered_set<partial_symbol *> &psyms_seen,
23721 struct partial_symbol **psymp,
23722 int count,
23723 offset_type cu_index,
23724 int is_static)
23725 {
23726 for (; count-- > 0; ++psymp)
23727 {
23728 struct partial_symbol *psym = *psymp;
23729
23730 if (SYMBOL_LANGUAGE (psym) == language_ada)
23731 error (_("Ada is not currently supported by the index"));
23732
23733 /* Only add a given psymbol once. */
23734 if (psyms_seen.insert (psym).second)
23735 {
23736 gdb_index_symbol_kind kind = symbol_kind (psym);
23737
23738 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23739 is_static, kind, cu_index);
23740 }
23741 }
23742 }
23743
23744 /* A helper struct used when iterating over debug_types. */
23745 struct signatured_type_index_data
23746 {
23747 signatured_type_index_data (data_buf &types_list_,
23748 std::unordered_set<partial_symbol *> &psyms_seen_)
23749 : types_list (types_list_), psyms_seen (psyms_seen_)
23750 {}
23751
23752 struct objfile *objfile;
23753 struct mapped_symtab *symtab;
23754 data_buf &types_list;
23755 std::unordered_set<partial_symbol *> &psyms_seen;
23756 int cu_index;
23757 };
23758
23759 /* A helper function that writes a single signatured_type to an
23760 obstack. */
23761
23762 static int
23763 write_one_signatured_type (void **slot, void *d)
23764 {
23765 struct signatured_type_index_data *info
23766 = (struct signatured_type_index_data *) d;
23767 struct signatured_type *entry = (struct signatured_type *) *slot;
23768 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23769
23770 write_psymbols (info->symtab,
23771 info->psyms_seen,
23772 info->objfile->global_psymbols.list
23773 + psymtab->globals_offset,
23774 psymtab->n_global_syms, info->cu_index,
23775 0);
23776 write_psymbols (info->symtab,
23777 info->psyms_seen,
23778 info->objfile->static_psymbols.list
23779 + psymtab->statics_offset,
23780 psymtab->n_static_syms, info->cu_index,
23781 1);
23782
23783 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23784 to_underlying (entry->per_cu.sect_off));
23785 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23786 to_underlying (entry->type_offset_in_tu));
23787 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
23788
23789 ++info->cu_index;
23790
23791 return 1;
23792 }
23793
23794 /* Recurse into all "included" dependencies and count their symbols as
23795 if they appeared in this psymtab. */
23796
23797 static void
23798 recursively_count_psymbols (struct partial_symtab *psymtab,
23799 size_t &psyms_seen)
23800 {
23801 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23802 if (psymtab->dependencies[i]->user != NULL)
23803 recursively_count_psymbols (psymtab->dependencies[i],
23804 psyms_seen);
23805
23806 psyms_seen += psymtab->n_global_syms;
23807 psyms_seen += psymtab->n_static_syms;
23808 }
23809
23810 /* Recurse into all "included" dependencies and write their symbols as
23811 if they appeared in this psymtab. */
23812
23813 static void
23814 recursively_write_psymbols (struct objfile *objfile,
23815 struct partial_symtab *psymtab,
23816 struct mapped_symtab *symtab,
23817 std::unordered_set<partial_symbol *> &psyms_seen,
23818 offset_type cu_index)
23819 {
23820 int i;
23821
23822 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23823 if (psymtab->dependencies[i]->user != NULL)
23824 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23825 symtab, psyms_seen, cu_index);
23826
23827 write_psymbols (symtab,
23828 psyms_seen,
23829 objfile->global_psymbols.list + psymtab->globals_offset,
23830 psymtab->n_global_syms, cu_index,
23831 0);
23832 write_psymbols (symtab,
23833 psyms_seen,
23834 objfile->static_psymbols.list + psymtab->statics_offset,
23835 psymtab->n_static_syms, cu_index,
23836 1);
23837 }
23838
23839 /* Create an index file for OBJFILE in the directory DIR. */
23840
23841 static void
23842 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23843 {
23844 if (dwarf2_per_objfile->using_index)
23845 error (_("Cannot use an index to create the index"));
23846
23847 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23848 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23849
23850 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23851 return;
23852
23853 struct stat st;
23854 if (stat (objfile_name (objfile), &st) < 0)
23855 perror_with_name (objfile_name (objfile));
23856
23857 std::string filename (std::string (dir) + SLASH_STRING
23858 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
23859
23860 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
23861 if (!out_file)
23862 error (_("Can't open `%s' for writing"), filename.c_str ());
23863
23864 /* Order matters here; we want FILE to be closed before FILENAME is
23865 unlinked, because on MS-Windows one cannot delete a file that is
23866 still open. (Don't call anything here that might throw until
23867 file_closer is created.) */
23868 gdb::unlinker unlink_file (filename.c_str ());
23869 gdb_file_up close_out_file (out_file);
23870
23871 mapped_symtab symtab;
23872 data_buf cu_list;
23873
23874 /* While we're scanning CU's create a table that maps a psymtab pointer
23875 (which is what addrmap records) to its index (which is what is recorded
23876 in the index file). This will later be needed to write the address
23877 table. */
23878 psym_index_map cu_index_htab;
23879 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
23880
23881 /* The CU list is already sorted, so we don't need to do additional
23882 work here. Also, the debug_types entries do not appear in
23883 all_comp_units, but only in their own hash table. */
23884
23885 /* The psyms_seen set is potentially going to be largish (~40k
23886 elements when indexing a -g3 build of GDB itself). Estimate the
23887 number of elements in order to avoid too many rehashes, which
23888 require rebuilding buckets and thus many trips to
23889 malloc/free. */
23890 size_t psyms_count = 0;
23891 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23892 {
23893 struct dwarf2_per_cu_data *per_cu
23894 = dwarf2_per_objfile->all_comp_units[i];
23895 struct partial_symtab *psymtab = per_cu->v.psymtab;
23896
23897 if (psymtab != NULL && psymtab->user == NULL)
23898 recursively_count_psymbols (psymtab, psyms_count);
23899 }
23900 /* Generating an index for gdb itself shows a ratio of
23901 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23902 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
23903 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23904 {
23905 struct dwarf2_per_cu_data *per_cu
23906 = dwarf2_per_objfile->all_comp_units[i];
23907 struct partial_symtab *psymtab = per_cu->v.psymtab;
23908
23909 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23910 It may be referenced from a local scope but in such case it does not
23911 need to be present in .gdb_index. */
23912 if (psymtab == NULL)
23913 continue;
23914
23915 if (psymtab->user == NULL)
23916 recursively_write_psymbols (objfile, psymtab, &symtab,
23917 psyms_seen, i);
23918
23919 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23920 gdb_assert (insertpair.second);
23921
23922 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23923 to_underlying (per_cu->sect_off));
23924 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
23925 }
23926
23927 /* Dump the address map. */
23928 data_buf addr_vec;
23929 write_address_map (objfile, addr_vec, cu_index_htab);
23930
23931 /* Write out the .debug_type entries, if any. */
23932 data_buf types_cu_list;
23933 if (dwarf2_per_objfile->signatured_types)
23934 {
23935 signatured_type_index_data sig_data (types_cu_list,
23936 psyms_seen);
23937
23938 sig_data.objfile = objfile;
23939 sig_data.symtab = &symtab;
23940 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23941 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23942 write_one_signatured_type, &sig_data);
23943 }
23944
23945 /* Now that we've processed all symbols we can shrink their cu_indices
23946 lists. */
23947 uniquify_cu_indices (&symtab);
23948
23949 data_buf symtab_vec, constant_pool;
23950 write_hash_table (&symtab, symtab_vec, constant_pool);
23951
23952 data_buf contents;
23953 const offset_type size_of_contents = 6 * sizeof (offset_type);
23954 offset_type total_len = size_of_contents;
23955
23956 /* The version number. */
23957 contents.append_data (MAYBE_SWAP (8));
23958
23959 /* The offset of the CU list from the start of the file. */
23960 contents.append_data (MAYBE_SWAP (total_len));
23961 total_len += cu_list.size ();
23962
23963 /* The offset of the types CU list from the start of the file. */
23964 contents.append_data (MAYBE_SWAP (total_len));
23965 total_len += types_cu_list.size ();
23966
23967 /* The offset of the address table from the start of the file. */
23968 contents.append_data (MAYBE_SWAP (total_len));
23969 total_len += addr_vec.size ();
23970
23971 /* The offset of the symbol table from the start of the file. */
23972 contents.append_data (MAYBE_SWAP (total_len));
23973 total_len += symtab_vec.size ();
23974
23975 /* The offset of the constant pool from the start of the file. */
23976 contents.append_data (MAYBE_SWAP (total_len));
23977 total_len += constant_pool.size ();
23978
23979 gdb_assert (contents.size () == size_of_contents);
23980
23981 contents.file_write (out_file);
23982 cu_list.file_write (out_file);
23983 types_cu_list.file_write (out_file);
23984 addr_vec.file_write (out_file);
23985 symtab_vec.file_write (out_file);
23986 constant_pool.file_write (out_file);
23987
23988 /* We want to keep the file. */
23989 unlink_file.keep ();
23990 }
23991
23992 /* Implementation of the `save gdb-index' command.
23993
23994 Note that the file format used by this command is documented in the
23995 GDB manual. Any changes here must be documented there. */
23996
23997 static void
23998 save_gdb_index_command (char *arg, int from_tty)
23999 {
24000 struct objfile *objfile;
24001
24002 if (!arg || !*arg)
24003 error (_("usage: save gdb-index DIRECTORY"));
24004
24005 ALL_OBJFILES (objfile)
24006 {
24007 struct stat st;
24008
24009 /* If the objfile does not correspond to an actual file, skip it. */
24010 if (stat (objfile_name (objfile), &st) < 0)
24011 continue;
24012
24013 dwarf2_per_objfile
24014 = (struct dwarf2_per_objfile *) objfile_data (objfile,
24015 dwarf2_objfile_data_key);
24016 if (dwarf2_per_objfile)
24017 {
24018
24019 TRY
24020 {
24021 write_psymtabs_to_index (objfile, arg);
24022 }
24023 CATCH (except, RETURN_MASK_ERROR)
24024 {
24025 exception_fprintf (gdb_stderr, except,
24026 _("Error while writing index for `%s': "),
24027 objfile_name (objfile));
24028 }
24029 END_CATCH
24030 }
24031 }
24032 }
24033
24034 \f
24035
24036 int dwarf_always_disassemble;
24037
24038 static void
24039 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24040 struct cmd_list_element *c, const char *value)
24041 {
24042 fprintf_filtered (file,
24043 _("Whether to always disassemble "
24044 "DWARF expressions is %s.\n"),
24045 value);
24046 }
24047
24048 static void
24049 show_check_physname (struct ui_file *file, int from_tty,
24050 struct cmd_list_element *c, const char *value)
24051 {
24052 fprintf_filtered (file,
24053 _("Whether to check \"physname\" is %s.\n"),
24054 value);
24055 }
24056
24057 void _initialize_dwarf2_read (void);
24058
24059 void
24060 _initialize_dwarf2_read (void)
24061 {
24062 struct cmd_list_element *c;
24063
24064 dwarf2_objfile_data_key
24065 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24066
24067 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24068 Set DWARF specific variables.\n\
24069 Configure DWARF variables such as the cache size"),
24070 &set_dwarf_cmdlist, "maintenance set dwarf ",
24071 0/*allow-unknown*/, &maintenance_set_cmdlist);
24072
24073 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24074 Show DWARF specific variables\n\
24075 Show DWARF variables such as the cache size"),
24076 &show_dwarf_cmdlist, "maintenance show dwarf ",
24077 0/*allow-unknown*/, &maintenance_show_cmdlist);
24078
24079 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24080 &dwarf_max_cache_age, _("\
24081 Set the upper bound on the age of cached DWARF compilation units."), _("\
24082 Show the upper bound on the age of cached DWARF compilation units."), _("\
24083 A higher limit means that cached compilation units will be stored\n\
24084 in memory longer, and more total memory will be used. Zero disables\n\
24085 caching, which can slow down startup."),
24086 NULL,
24087 show_dwarf_max_cache_age,
24088 &set_dwarf_cmdlist,
24089 &show_dwarf_cmdlist);
24090
24091 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24092 &dwarf_always_disassemble, _("\
24093 Set whether `info address' always disassembles DWARF expressions."), _("\
24094 Show whether `info address' always disassembles DWARF expressions."), _("\
24095 When enabled, DWARF expressions are always printed in an assembly-like\n\
24096 syntax. When disabled, expressions will be printed in a more\n\
24097 conversational style, when possible."),
24098 NULL,
24099 show_dwarf_always_disassemble,
24100 &set_dwarf_cmdlist,
24101 &show_dwarf_cmdlist);
24102
24103 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24104 Set debugging of the DWARF reader."), _("\
24105 Show debugging of the DWARF reader."), _("\
24106 When enabled (non-zero), debugging messages are printed during DWARF\n\
24107 reading and symtab expansion. A value of 1 (one) provides basic\n\
24108 information. A value greater than 1 provides more verbose information."),
24109 NULL,
24110 NULL,
24111 &setdebuglist, &showdebuglist);
24112
24113 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24114 Set debugging of the DWARF DIE reader."), _("\
24115 Show debugging of the DWARF DIE reader."), _("\
24116 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24117 The value is the maximum depth to print."),
24118 NULL,
24119 NULL,
24120 &setdebuglist, &showdebuglist);
24121
24122 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24123 Set debugging of the dwarf line reader."), _("\
24124 Show debugging of the dwarf line reader."), _("\
24125 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24126 A value of 1 (one) provides basic information.\n\
24127 A value greater than 1 provides more verbose information."),
24128 NULL,
24129 NULL,
24130 &setdebuglist, &showdebuglist);
24131
24132 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24133 Set cross-checking of \"physname\" code against demangler."), _("\
24134 Show cross-checking of \"physname\" code against demangler."), _("\
24135 When enabled, GDB's internal \"physname\" code is checked against\n\
24136 the demangler."),
24137 NULL, show_check_physname,
24138 &setdebuglist, &showdebuglist);
24139
24140 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24141 no_class, &use_deprecated_index_sections, _("\
24142 Set whether to use deprecated gdb_index sections."), _("\
24143 Show whether to use deprecated gdb_index sections."), _("\
24144 When enabled, deprecated .gdb_index sections are used anyway.\n\
24145 Normally they are ignored either because of a missing feature or\n\
24146 performance issue.\n\
24147 Warning: This option must be enabled before gdb reads the file."),
24148 NULL,
24149 NULL,
24150 &setlist, &showlist);
24151
24152 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24153 _("\
24154 Save a gdb-index file.\n\
24155 Usage: save gdb-index DIRECTORY"),
24156 &save_cmdlist);
24157 set_cmd_completer (c, filename_completer);
24158
24159 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24160 &dwarf2_locexpr_funcs);
24161 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24162 &dwarf2_loclist_funcs);
24163
24164 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24165 &dwarf2_block_frame_base_locexpr_funcs);
24166 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24167 &dwarf2_block_frame_base_loclist_funcs);
24168 }
This page took 0.635302 seconds and 4 git commands to generate.