2012-04-17 Pedro Alves <palves@redhat.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "gdb-demangle.h"
40 #include "expression.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "macrotab.h"
43 #include "language.h"
44 #include "complaints.h"
45 #include "bcache.h"
46 #include "dwarf2expr.h"
47 #include "dwarf2loc.h"
48 #include "cp-support.h"
49 #include "hashtab.h"
50 #include "command.h"
51 #include "gdbcmd.h"
52 #include "block.h"
53 #include "addrmap.h"
54 #include "typeprint.h"
55 #include "jv-lang.h"
56 #include "psympriv.h"
57 #include "exceptions.h"
58 #include "gdb_stat.h"
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "valprint.h"
63 #include <ctype.h>
64
65 #include <fcntl.h>
66 #include "gdb_string.h"
67 #include "gdb_assert.h"
68 #include <sys/types.h>
69 #ifdef HAVE_ZLIB_H
70 #include <zlib.h>
71 #endif
72 #ifdef HAVE_MMAP
73 #include <sys/mman.h>
74 #ifndef MAP_FAILED
75 #define MAP_FAILED ((void *) -1)
76 #endif
77 #endif
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When non-zero, dump DIEs after they are read in. */
83 static int dwarf2_die_debug = 0;
84
85 /* When non-zero, cross-check physname against demangler. */
86 static int check_physname = 0;
87
88 /* When non-zero, do not reject deprecated .gdb_index sections. */
89 int use_deprecated_index_sections = 0;
90
91 static int pagesize;
92
93 /* When set, the file that we're processing is known to have debugging
94 info for C++ namespaces. GCC 3.3.x did not produce this information,
95 but later versions do. */
96
97 static int processing_has_namespace_info;
98
99 static const struct objfile_data *dwarf2_objfile_data_key;
100
101 struct dwarf2_section_info
102 {
103 asection *asection;
104 gdb_byte *buffer;
105 bfd_size_type size;
106 /* Not NULL if the section was actually mmapped. */
107 void *map_addr;
108 /* Page aligned size of mmapped area. */
109 bfd_size_type map_len;
110 /* True if we have tried to read this section. */
111 int readin;
112 };
113
114 typedef struct dwarf2_section_info dwarf2_section_info_def;
115 DEF_VEC_O (dwarf2_section_info_def);
116
117 /* All offsets in the index are of this type. It must be
118 architecture-independent. */
119 typedef uint32_t offset_type;
120
121 DEF_VEC_I (offset_type);
122
123 /* A description of the mapped index. The file format is described in
124 a comment by the code that writes the index. */
125 struct mapped_index
126 {
127 /* Index data format version. */
128 int version;
129
130 /* The total length of the buffer. */
131 off_t total_size;
132
133 /* A pointer to the address table data. */
134 const gdb_byte *address_table;
135
136 /* Size of the address table data in bytes. */
137 offset_type address_table_size;
138
139 /* The symbol table, implemented as a hash table. */
140 const offset_type *symbol_table;
141
142 /* Size in slots, each slot is 2 offset_types. */
143 offset_type symbol_table_slots;
144
145 /* A pointer to the constant pool. */
146 const char *constant_pool;
147 };
148
149 /* Collection of data recorded per objfile.
150 This hangs off of dwarf2_objfile_data_key. */
151
152 struct dwarf2_per_objfile
153 {
154 struct dwarf2_section_info info;
155 struct dwarf2_section_info abbrev;
156 struct dwarf2_section_info line;
157 struct dwarf2_section_info loc;
158 struct dwarf2_section_info macinfo;
159 struct dwarf2_section_info macro;
160 struct dwarf2_section_info str;
161 struct dwarf2_section_info ranges;
162 struct dwarf2_section_info frame;
163 struct dwarf2_section_info eh_frame;
164 struct dwarf2_section_info gdb_index;
165
166 VEC (dwarf2_section_info_def) *types;
167
168 /* Back link. */
169 struct objfile *objfile;
170
171 /* Table of all the compilation units. This is used to locate
172 the target compilation unit of a particular reference. */
173 struct dwarf2_per_cu_data **all_comp_units;
174
175 /* The number of compilation units in ALL_COMP_UNITS. */
176 int n_comp_units;
177
178 /* The number of .debug_types-related CUs. */
179 int n_type_units;
180
181 /* The .debug_types-related CUs (TUs). */
182 struct dwarf2_per_cu_data **all_type_units;
183
184 /* A chain of compilation units that are currently read in, so that
185 they can be freed later. */
186 struct dwarf2_per_cu_data *read_in_chain;
187
188 /* A table mapping .debug_types signatures to its signatured_type entry.
189 This is NULL if the .debug_types section hasn't been read in yet. */
190 htab_t signatured_types;
191
192 /* A flag indicating wether this objfile has a section loaded at a
193 VMA of 0. */
194 int has_section_at_zero;
195
196 /* True if we are using the mapped index,
197 or we are faking it for OBJF_READNOW's sake. */
198 unsigned char using_index;
199
200 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
201 struct mapped_index *index_table;
202
203 /* When using index_table, this keeps track of all quick_file_names entries.
204 TUs can share line table entries with CUs or other TUs, and there can be
205 a lot more TUs than unique line tables, so we maintain a separate table
206 of all line table entries to support the sharing. */
207 htab_t quick_file_names_table;
208
209 /* Set during partial symbol reading, to prevent queueing of full
210 symbols. */
211 int reading_partial_symbols;
212
213 /* Table mapping type .debug_info DIE offsets to types.
214 This is NULL if not allocated yet.
215 It (currently) makes sense to allocate debug_types_type_hash lazily.
216 To keep things simple we allocate both lazily. */
217 htab_t debug_info_type_hash;
218
219 /* Table mapping type .debug_types DIE sect_offset to types.
220 This is NULL if not allocated yet. */
221 htab_t debug_types_type_hash;
222 };
223
224 static struct dwarf2_per_objfile *dwarf2_per_objfile;
225
226 /* Default names of the debugging sections. */
227
228 /* Note that if the debugging section has been compressed, it might
229 have a name like .zdebug_info. */
230
231 static const struct dwarf2_debug_sections dwarf2_elf_names =
232 {
233 { ".debug_info", ".zdebug_info" },
234 { ".debug_abbrev", ".zdebug_abbrev" },
235 { ".debug_line", ".zdebug_line" },
236 { ".debug_loc", ".zdebug_loc" },
237 { ".debug_macinfo", ".zdebug_macinfo" },
238 { ".debug_macro", ".zdebug_macro" },
239 { ".debug_str", ".zdebug_str" },
240 { ".debug_ranges", ".zdebug_ranges" },
241 { ".debug_types", ".zdebug_types" },
242 { ".debug_frame", ".zdebug_frame" },
243 { ".eh_frame", NULL },
244 { ".gdb_index", ".zgdb_index" },
245 23
246 };
247
248 /* local data types */
249
250 /* We hold several abbreviation tables in memory at the same time. */
251 #ifndef ABBREV_HASH_SIZE
252 #define ABBREV_HASH_SIZE 121
253 #endif
254
255 /* The data in a compilation unit header, after target2host
256 translation, looks like this. */
257 struct comp_unit_head
258 {
259 unsigned int length;
260 short version;
261 unsigned char addr_size;
262 unsigned char signed_addr_p;
263 sect_offset abbrev_offset;
264
265 /* Size of file offsets; either 4 or 8. */
266 unsigned int offset_size;
267
268 /* Size of the length field; either 4 or 12. */
269 unsigned int initial_length_size;
270
271 /* Offset to the first byte of this compilation unit header in the
272 .debug_info section, for resolving relative reference dies. */
273 sect_offset offset;
274
275 /* Offset to first die in this cu from the start of the cu.
276 This will be the first byte following the compilation unit header. */
277 cu_offset first_die_offset;
278 };
279
280 /* Type used for delaying computation of method physnames.
281 See comments for compute_delayed_physnames. */
282 struct delayed_method_info
283 {
284 /* The type to which the method is attached, i.e., its parent class. */
285 struct type *type;
286
287 /* The index of the method in the type's function fieldlists. */
288 int fnfield_index;
289
290 /* The index of the method in the fieldlist. */
291 int index;
292
293 /* The name of the DIE. */
294 const char *name;
295
296 /* The DIE associated with this method. */
297 struct die_info *die;
298 };
299
300 typedef struct delayed_method_info delayed_method_info;
301 DEF_VEC_O (delayed_method_info);
302
303 /* Internal state when decoding a particular compilation unit. */
304 struct dwarf2_cu
305 {
306 /* The objfile containing this compilation unit. */
307 struct objfile *objfile;
308
309 /* The header of the compilation unit. */
310 struct comp_unit_head header;
311
312 /* Base address of this compilation unit. */
313 CORE_ADDR base_address;
314
315 /* Non-zero if base_address has been set. */
316 int base_known;
317
318 /* The language we are debugging. */
319 enum language language;
320 const struct language_defn *language_defn;
321
322 const char *producer;
323
324 /* The generic symbol table building routines have separate lists for
325 file scope symbols and all all other scopes (local scopes). So
326 we need to select the right one to pass to add_symbol_to_list().
327 We do it by keeping a pointer to the correct list in list_in_scope.
328
329 FIXME: The original dwarf code just treated the file scope as the
330 first local scope, and all other local scopes as nested local
331 scopes, and worked fine. Check to see if we really need to
332 distinguish these in buildsym.c. */
333 struct pending **list_in_scope;
334
335 /* DWARF abbreviation table associated with this compilation unit. */
336 struct abbrev_info **dwarf2_abbrevs;
337
338 /* Storage for the abbrev table. */
339 struct obstack abbrev_obstack;
340
341 /* Hash table holding all the loaded partial DIEs
342 with partial_die->offset.SECT_OFF as hash. */
343 htab_t partial_dies;
344
345 /* Storage for things with the same lifetime as this read-in compilation
346 unit, including partial DIEs. */
347 struct obstack comp_unit_obstack;
348
349 /* When multiple dwarf2_cu structures are living in memory, this field
350 chains them all together, so that they can be released efficiently.
351 We will probably also want a generation counter so that most-recently-used
352 compilation units are cached... */
353 struct dwarf2_per_cu_data *read_in_chain;
354
355 /* Backchain to our per_cu entry if the tree has been built. */
356 struct dwarf2_per_cu_data *per_cu;
357
358 /* How many compilation units ago was this CU last referenced? */
359 int last_used;
360
361 /* A hash table of DIE cu_offset for following references with
362 die_info->offset.sect_off as hash. */
363 htab_t die_hash;
364
365 /* Full DIEs if read in. */
366 struct die_info *dies;
367
368 /* A set of pointers to dwarf2_per_cu_data objects for compilation
369 units referenced by this one. Only set during full symbol processing;
370 partial symbol tables do not have dependencies. */
371 htab_t dependencies;
372
373 /* Header data from the line table, during full symbol processing. */
374 struct line_header *line_header;
375
376 /* A list of methods which need to have physnames computed
377 after all type information has been read. */
378 VEC (delayed_method_info) *method_list;
379
380 /* To be copied to symtab->call_site_htab. */
381 htab_t call_site_htab;
382
383 /* Mark used when releasing cached dies. */
384 unsigned int mark : 1;
385
386 /* This CU references .debug_loc. See the symtab->locations_valid field.
387 This test is imperfect as there may exist optimized debug code not using
388 any location list and still facing inlining issues if handled as
389 unoptimized code. For a future better test see GCC PR other/32998. */
390 unsigned int has_loclist : 1;
391
392 /* These cache the results of producer_is_gxx_lt_4_6.
393 CHECKED_PRODUCER is set if PRODUCER_IS_GXX_LT_4_6 is valid. This
394 information is cached because profiling CU expansion showed
395 excessive time spent in producer_is_gxx_lt_4_6. */
396 unsigned int checked_producer : 1;
397 unsigned int producer_is_gxx_lt_4_6 : 1;
398 };
399
400 /* Persistent data held for a compilation unit, even when not
401 processing it. We put a pointer to this structure in the
402 read_symtab_private field of the psymtab. */
403
404 struct dwarf2_per_cu_data
405 {
406 /* The start offset and length of this compilation unit. 2**29-1
407 bytes should suffice to store the length of any compilation unit
408 - if it doesn't, GDB will fall over anyway.
409 NOTE: Unlike comp_unit_head.length, this length includes
410 initial_length_size. */
411 sect_offset offset;
412 unsigned int length : 29;
413
414 /* Flag indicating this compilation unit will be read in before
415 any of the current compilation units are processed. */
416 unsigned int queued : 1;
417
418 /* This flag will be set when reading partial DIEs if we need to load
419 absolutely all DIEs for this compilation unit, instead of just the ones
420 we think are interesting. It gets set if we look for a DIE in the
421 hash table and don't find it. */
422 unsigned int load_all_dies : 1;
423
424 /* Non-null if this CU is from .debug_types; in which case it points
425 to the section. Otherwise it's from .debug_info. */
426 struct dwarf2_section_info *debug_types_section;
427
428 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
429 of the CU cache it gets reset to NULL again. */
430 struct dwarf2_cu *cu;
431
432 /* The corresponding objfile.
433 Normally we can get the objfile from dwarf2_per_objfile.
434 However we can enter this file with just a "per_cu" handle. */
435 struct objfile *objfile;
436
437 /* When using partial symbol tables, the 'psymtab' field is active.
438 Otherwise the 'quick' field is active. */
439 union
440 {
441 /* The partial symbol table associated with this compilation unit,
442 or NULL for partial units (which do not have an associated
443 symtab). */
444 struct partial_symtab *psymtab;
445
446 /* Data needed by the "quick" functions. */
447 struct dwarf2_per_cu_quick_data *quick;
448 } v;
449 };
450
451 /* Entry in the signatured_types hash table. */
452
453 struct signatured_type
454 {
455 ULONGEST signature;
456
457 /* Offset in this TU of the type defined by this TU. */
458 cu_offset type_offset;
459
460 /* The CU(/TU) of this type. */
461 struct dwarf2_per_cu_data per_cu;
462 };
463
464 /* Struct used to pass misc. parameters to read_die_and_children, et
465 al. which are used for both .debug_info and .debug_types dies.
466 All parameters here are unchanging for the life of the call. This
467 struct exists to abstract away the constant parameters of die
468 reading. */
469
470 struct die_reader_specs
471 {
472 /* The bfd of this objfile. */
473 bfd* abfd;
474
475 /* The CU of the DIE we are parsing. */
476 struct dwarf2_cu *cu;
477
478 /* Pointer to start of section buffer.
479 This is either the start of .debug_info or .debug_types. */
480 const gdb_byte *buffer;
481 };
482
483 /* The line number information for a compilation unit (found in the
484 .debug_line section) begins with a "statement program header",
485 which contains the following information. */
486 struct line_header
487 {
488 unsigned int total_length;
489 unsigned short version;
490 unsigned int header_length;
491 unsigned char minimum_instruction_length;
492 unsigned char maximum_ops_per_instruction;
493 unsigned char default_is_stmt;
494 int line_base;
495 unsigned char line_range;
496 unsigned char opcode_base;
497
498 /* standard_opcode_lengths[i] is the number of operands for the
499 standard opcode whose value is i. This means that
500 standard_opcode_lengths[0] is unused, and the last meaningful
501 element is standard_opcode_lengths[opcode_base - 1]. */
502 unsigned char *standard_opcode_lengths;
503
504 /* The include_directories table. NOTE! These strings are not
505 allocated with xmalloc; instead, they are pointers into
506 debug_line_buffer. If you try to free them, `free' will get
507 indigestion. */
508 unsigned int num_include_dirs, include_dirs_size;
509 char **include_dirs;
510
511 /* The file_names table. NOTE! These strings are not allocated
512 with xmalloc; instead, they are pointers into debug_line_buffer.
513 Don't try to free them directly. */
514 unsigned int num_file_names, file_names_size;
515 struct file_entry
516 {
517 char *name;
518 unsigned int dir_index;
519 unsigned int mod_time;
520 unsigned int length;
521 int included_p; /* Non-zero if referenced by the Line Number Program. */
522 struct symtab *symtab; /* The associated symbol table, if any. */
523 } *file_names;
524
525 /* The start and end of the statement program following this
526 header. These point into dwarf2_per_objfile->line_buffer. */
527 gdb_byte *statement_program_start, *statement_program_end;
528 };
529
530 /* When we construct a partial symbol table entry we only
531 need this much information. */
532 struct partial_die_info
533 {
534 /* Offset of this DIE. */
535 sect_offset offset;
536
537 /* DWARF-2 tag for this DIE. */
538 ENUM_BITFIELD(dwarf_tag) tag : 16;
539
540 /* Assorted flags describing the data found in this DIE. */
541 unsigned int has_children : 1;
542 unsigned int is_external : 1;
543 unsigned int is_declaration : 1;
544 unsigned int has_type : 1;
545 unsigned int has_specification : 1;
546 unsigned int has_pc_info : 1;
547 unsigned int may_be_inlined : 1;
548
549 /* Flag set if the SCOPE field of this structure has been
550 computed. */
551 unsigned int scope_set : 1;
552
553 /* Flag set if the DIE has a byte_size attribute. */
554 unsigned int has_byte_size : 1;
555
556 /* Flag set if any of the DIE's children are template arguments. */
557 unsigned int has_template_arguments : 1;
558
559 /* Flag set if fixup_partial_die has been called on this die. */
560 unsigned int fixup_called : 1;
561
562 /* The name of this DIE. Normally the value of DW_AT_name, but
563 sometimes a default name for unnamed DIEs. */
564 char *name;
565
566 /* The linkage name, if present. */
567 const char *linkage_name;
568
569 /* The scope to prepend to our children. This is generally
570 allocated on the comp_unit_obstack, so will disappear
571 when this compilation unit leaves the cache. */
572 char *scope;
573
574 /* The location description associated with this DIE, if any. */
575 struct dwarf_block *locdesc;
576
577 /* If HAS_PC_INFO, the PC range associated with this DIE. */
578 CORE_ADDR lowpc;
579 CORE_ADDR highpc;
580
581 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
582 DW_AT_sibling, if any. */
583 /* NOTE: This member isn't strictly necessary, read_partial_die could
584 return DW_AT_sibling values to its caller load_partial_dies. */
585 gdb_byte *sibling;
586
587 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
588 DW_AT_specification (or DW_AT_abstract_origin or
589 DW_AT_extension). */
590 sect_offset spec_offset;
591
592 /* Pointers to this DIE's parent, first child, and next sibling,
593 if any. */
594 struct partial_die_info *die_parent, *die_child, *die_sibling;
595 };
596
597 /* This data structure holds the information of an abbrev. */
598 struct abbrev_info
599 {
600 unsigned int number; /* number identifying abbrev */
601 enum dwarf_tag tag; /* dwarf tag */
602 unsigned short has_children; /* boolean */
603 unsigned short num_attrs; /* number of attributes */
604 struct attr_abbrev *attrs; /* an array of attribute descriptions */
605 struct abbrev_info *next; /* next in chain */
606 };
607
608 struct attr_abbrev
609 {
610 ENUM_BITFIELD(dwarf_attribute) name : 16;
611 ENUM_BITFIELD(dwarf_form) form : 16;
612 };
613
614 /* Attributes have a name and a value. */
615 struct attribute
616 {
617 ENUM_BITFIELD(dwarf_attribute) name : 16;
618 ENUM_BITFIELD(dwarf_form) form : 15;
619
620 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
621 field should be in u.str (existing only for DW_STRING) but it is kept
622 here for better struct attribute alignment. */
623 unsigned int string_is_canonical : 1;
624
625 union
626 {
627 char *str;
628 struct dwarf_block *blk;
629 ULONGEST unsnd;
630 LONGEST snd;
631 CORE_ADDR addr;
632 struct signatured_type *signatured_type;
633 }
634 u;
635 };
636
637 /* This data structure holds a complete die structure. */
638 struct die_info
639 {
640 /* DWARF-2 tag for this DIE. */
641 ENUM_BITFIELD(dwarf_tag) tag : 16;
642
643 /* Number of attributes */
644 unsigned char num_attrs;
645
646 /* True if we're presently building the full type name for the
647 type derived from this DIE. */
648 unsigned char building_fullname : 1;
649
650 /* Abbrev number */
651 unsigned int abbrev;
652
653 /* Offset in .debug_info or .debug_types section. */
654 sect_offset offset;
655
656 /* The dies in a compilation unit form an n-ary tree. PARENT
657 points to this die's parent; CHILD points to the first child of
658 this node; and all the children of a given node are chained
659 together via their SIBLING fields. */
660 struct die_info *child; /* Its first child, if any. */
661 struct die_info *sibling; /* Its next sibling, if any. */
662 struct die_info *parent; /* Its parent, if any. */
663
664 /* An array of attributes, with NUM_ATTRS elements. There may be
665 zero, but it's not common and zero-sized arrays are not
666 sufficiently portable C. */
667 struct attribute attrs[1];
668 };
669
670 /* Get at parts of an attribute structure. */
671
672 #define DW_STRING(attr) ((attr)->u.str)
673 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
674 #define DW_UNSND(attr) ((attr)->u.unsnd)
675 #define DW_BLOCK(attr) ((attr)->u.blk)
676 #define DW_SND(attr) ((attr)->u.snd)
677 #define DW_ADDR(attr) ((attr)->u.addr)
678 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
679
680 /* Blocks are a bunch of untyped bytes. */
681 struct dwarf_block
682 {
683 unsigned int size;
684
685 /* Valid only if SIZE is not zero. */
686 gdb_byte *data;
687 };
688
689 #ifndef ATTR_ALLOC_CHUNK
690 #define ATTR_ALLOC_CHUNK 4
691 #endif
692
693 /* Allocate fields for structs, unions and enums in this size. */
694 #ifndef DW_FIELD_ALLOC_CHUNK
695 #define DW_FIELD_ALLOC_CHUNK 4
696 #endif
697
698 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
699 but this would require a corresponding change in unpack_field_as_long
700 and friends. */
701 static int bits_per_byte = 8;
702
703 /* The routines that read and process dies for a C struct or C++ class
704 pass lists of data member fields and lists of member function fields
705 in an instance of a field_info structure, as defined below. */
706 struct field_info
707 {
708 /* List of data member and baseclasses fields. */
709 struct nextfield
710 {
711 struct nextfield *next;
712 int accessibility;
713 int virtuality;
714 struct field field;
715 }
716 *fields, *baseclasses;
717
718 /* Number of fields (including baseclasses). */
719 int nfields;
720
721 /* Number of baseclasses. */
722 int nbaseclasses;
723
724 /* Set if the accesibility of one of the fields is not public. */
725 int non_public_fields;
726
727 /* Member function fields array, entries are allocated in the order they
728 are encountered in the object file. */
729 struct nextfnfield
730 {
731 struct nextfnfield *next;
732 struct fn_field fnfield;
733 }
734 *fnfields;
735
736 /* Member function fieldlist array, contains name of possibly overloaded
737 member function, number of overloaded member functions and a pointer
738 to the head of the member function field chain. */
739 struct fnfieldlist
740 {
741 char *name;
742 int length;
743 struct nextfnfield *head;
744 }
745 *fnfieldlists;
746
747 /* Number of entries in the fnfieldlists array. */
748 int nfnfields;
749
750 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
751 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
752 struct typedef_field_list
753 {
754 struct typedef_field field;
755 struct typedef_field_list *next;
756 }
757 *typedef_field_list;
758 unsigned typedef_field_list_count;
759 };
760
761 /* One item on the queue of compilation units to read in full symbols
762 for. */
763 struct dwarf2_queue_item
764 {
765 struct dwarf2_per_cu_data *per_cu;
766 struct dwarf2_queue_item *next;
767 };
768
769 /* The current queue. */
770 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
771
772 /* Loaded secondary compilation units are kept in memory until they
773 have not been referenced for the processing of this many
774 compilation units. Set this to zero to disable caching. Cache
775 sizes of up to at least twenty will improve startup time for
776 typical inter-CU-reference binaries, at an obvious memory cost. */
777 static int dwarf2_max_cache_age = 5;
778 static void
779 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
780 struct cmd_list_element *c, const char *value)
781 {
782 fprintf_filtered (file, _("The upper bound on the age of cached "
783 "dwarf2 compilation units is %s.\n"),
784 value);
785 }
786
787
788 /* Various complaints about symbol reading that don't abort the process. */
789
790 static void
791 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
792 {
793 complaint (&symfile_complaints,
794 _("statement list doesn't fit in .debug_line section"));
795 }
796
797 static void
798 dwarf2_debug_line_missing_file_complaint (void)
799 {
800 complaint (&symfile_complaints,
801 _(".debug_line section has line data without a file"));
802 }
803
804 static void
805 dwarf2_debug_line_missing_end_sequence_complaint (void)
806 {
807 complaint (&symfile_complaints,
808 _(".debug_line section has line "
809 "program sequence without an end"));
810 }
811
812 static void
813 dwarf2_complex_location_expr_complaint (void)
814 {
815 complaint (&symfile_complaints, _("location expression too complex"));
816 }
817
818 static void
819 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
820 int arg3)
821 {
822 complaint (&symfile_complaints,
823 _("const value length mismatch for '%s', got %d, expected %d"),
824 arg1, arg2, arg3);
825 }
826
827 static void
828 dwarf2_macros_too_long_complaint (struct dwarf2_section_info *section)
829 {
830 complaint (&symfile_complaints,
831 _("macro info runs off end of `%s' section"),
832 section->asection->name);
833 }
834
835 static void
836 dwarf2_macro_malformed_definition_complaint (const char *arg1)
837 {
838 complaint (&symfile_complaints,
839 _("macro debug info contains a "
840 "malformed macro definition:\n`%s'"),
841 arg1);
842 }
843
844 static void
845 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
846 {
847 complaint (&symfile_complaints,
848 _("invalid attribute class or form for '%s' in '%s'"),
849 arg1, arg2);
850 }
851
852 /* local function prototypes */
853
854 static void dwarf2_locate_sections (bfd *, asection *, void *);
855
856 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
857 struct objfile *);
858
859 static void dwarf2_find_base_address (struct die_info *die,
860 struct dwarf2_cu *cu);
861
862 static void dwarf2_build_psymtabs_hard (struct objfile *);
863
864 static void scan_partial_symbols (struct partial_die_info *,
865 CORE_ADDR *, CORE_ADDR *,
866 int, struct dwarf2_cu *);
867
868 static void add_partial_symbol (struct partial_die_info *,
869 struct dwarf2_cu *);
870
871 static void add_partial_namespace (struct partial_die_info *pdi,
872 CORE_ADDR *lowpc, CORE_ADDR *highpc,
873 int need_pc, struct dwarf2_cu *cu);
874
875 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
876 CORE_ADDR *highpc, int need_pc,
877 struct dwarf2_cu *cu);
878
879 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
880 struct dwarf2_cu *cu);
881
882 static void add_partial_subprogram (struct partial_die_info *pdi,
883 CORE_ADDR *lowpc, CORE_ADDR *highpc,
884 int need_pc, struct dwarf2_cu *cu);
885
886 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
887 gdb_byte *buffer, gdb_byte *info_ptr,
888 bfd *abfd, struct dwarf2_cu *cu);
889
890 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
891
892 static void psymtab_to_symtab_1 (struct partial_symtab *);
893
894 static void dwarf2_read_abbrevs (struct dwarf2_cu *cu);
895
896 static void dwarf2_free_abbrev_table (void *);
897
898 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
899
900 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
901 struct dwarf2_cu *);
902
903 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
904 struct dwarf2_cu *);
905
906 static struct partial_die_info *load_partial_dies (bfd *,
907 gdb_byte *, gdb_byte *,
908 int, struct dwarf2_cu *);
909
910 static gdb_byte *read_partial_die (struct partial_die_info *,
911 struct abbrev_info *abbrev,
912 unsigned int, bfd *,
913 gdb_byte *, gdb_byte *,
914 struct dwarf2_cu *);
915
916 static struct partial_die_info *find_partial_die (sect_offset,
917 struct dwarf2_cu *);
918
919 static void fixup_partial_die (struct partial_die_info *,
920 struct dwarf2_cu *);
921
922 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
923 bfd *, gdb_byte *, struct dwarf2_cu *);
924
925 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
926 bfd *, gdb_byte *, struct dwarf2_cu *);
927
928 static unsigned int read_1_byte (bfd *, gdb_byte *);
929
930 static int read_1_signed_byte (bfd *, gdb_byte *);
931
932 static unsigned int read_2_bytes (bfd *, gdb_byte *);
933
934 static unsigned int read_4_bytes (bfd *, gdb_byte *);
935
936 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
937
938 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
939 unsigned int *);
940
941 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
942
943 static LONGEST read_checked_initial_length_and_offset
944 (bfd *, gdb_byte *, const struct comp_unit_head *,
945 unsigned int *, unsigned int *);
946
947 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
948 unsigned int *);
949
950 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
951
952 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
953
954 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
955
956 static char *read_indirect_string (bfd *, gdb_byte *,
957 const struct comp_unit_head *,
958 unsigned int *);
959
960 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
961
962 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
963
964 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
965
966 static void set_cu_language (unsigned int, struct dwarf2_cu *);
967
968 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
969 struct dwarf2_cu *);
970
971 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
972 unsigned int,
973 struct dwarf2_cu *);
974
975 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
976 struct dwarf2_cu *cu);
977
978 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
979
980 static struct die_info *die_specification (struct die_info *die,
981 struct dwarf2_cu **);
982
983 static void free_line_header (struct line_header *lh);
984
985 static void add_file_name (struct line_header *, char *, unsigned int,
986 unsigned int, unsigned int);
987
988 static struct line_header *(dwarf_decode_line_header
989 (unsigned int offset,
990 bfd *abfd, struct dwarf2_cu *cu));
991
992 static void dwarf_decode_lines (struct line_header *, const char *,
993 struct dwarf2_cu *, struct partial_symtab *,
994 int);
995
996 static void dwarf2_start_subfile (char *, const char *, const char *);
997
998 static struct symbol *new_symbol (struct die_info *, struct type *,
999 struct dwarf2_cu *);
1000
1001 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1002 struct dwarf2_cu *, struct symbol *);
1003
1004 static void dwarf2_const_value (struct attribute *, struct symbol *,
1005 struct dwarf2_cu *);
1006
1007 static void dwarf2_const_value_attr (struct attribute *attr,
1008 struct type *type,
1009 const char *name,
1010 struct obstack *obstack,
1011 struct dwarf2_cu *cu, long *value,
1012 gdb_byte **bytes,
1013 struct dwarf2_locexpr_baton **baton);
1014
1015 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1016
1017 static int need_gnat_info (struct dwarf2_cu *);
1018
1019 static struct type *die_descriptive_type (struct die_info *,
1020 struct dwarf2_cu *);
1021
1022 static void set_descriptive_type (struct type *, struct die_info *,
1023 struct dwarf2_cu *);
1024
1025 static struct type *die_containing_type (struct die_info *,
1026 struct dwarf2_cu *);
1027
1028 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1029 struct dwarf2_cu *);
1030
1031 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1032
1033 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1034
1035 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1036
1037 static char *typename_concat (struct obstack *obs, const char *prefix,
1038 const char *suffix, int physname,
1039 struct dwarf2_cu *cu);
1040
1041 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1042
1043 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1044
1045 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1046
1047 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1048
1049 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1050
1051 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1052 struct dwarf2_cu *, struct partial_symtab *);
1053
1054 static int dwarf2_get_pc_bounds (struct die_info *,
1055 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1056 struct partial_symtab *);
1057
1058 static void get_scope_pc_bounds (struct die_info *,
1059 CORE_ADDR *, CORE_ADDR *,
1060 struct dwarf2_cu *);
1061
1062 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1063 CORE_ADDR, struct dwarf2_cu *);
1064
1065 static void dwarf2_add_field (struct field_info *, struct die_info *,
1066 struct dwarf2_cu *);
1067
1068 static void dwarf2_attach_fields_to_type (struct field_info *,
1069 struct type *, struct dwarf2_cu *);
1070
1071 static void dwarf2_add_member_fn (struct field_info *,
1072 struct die_info *, struct type *,
1073 struct dwarf2_cu *);
1074
1075 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1076 struct type *,
1077 struct dwarf2_cu *);
1078
1079 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1080
1081 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1082
1083 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1084
1085 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1086
1087 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1088
1089 static struct type *read_module_type (struct die_info *die,
1090 struct dwarf2_cu *cu);
1091
1092 static const char *namespace_name (struct die_info *die,
1093 int *is_anonymous, struct dwarf2_cu *);
1094
1095 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1096
1097 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1098
1099 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1100 struct dwarf2_cu *);
1101
1102 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1103
1104 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1105 gdb_byte *info_ptr,
1106 gdb_byte **new_info_ptr,
1107 struct die_info *parent);
1108
1109 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1110 gdb_byte *info_ptr,
1111 gdb_byte **new_info_ptr,
1112 struct die_info *parent);
1113
1114 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1115 gdb_byte *info_ptr,
1116 gdb_byte **new_info_ptr,
1117 struct die_info *parent);
1118
1119 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1120 struct die_info **, gdb_byte *,
1121 int *);
1122
1123 static void process_die (struct die_info *, struct dwarf2_cu *);
1124
1125 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1126 struct obstack *);
1127
1128 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1129
1130 static const char *dwarf2_full_name (char *name,
1131 struct die_info *die,
1132 struct dwarf2_cu *cu);
1133
1134 static struct die_info *dwarf2_extension (struct die_info *die,
1135 struct dwarf2_cu **);
1136
1137 static char *dwarf_tag_name (unsigned int);
1138
1139 static char *dwarf_attr_name (unsigned int);
1140
1141 static char *dwarf_form_name (unsigned int);
1142
1143 static char *dwarf_bool_name (unsigned int);
1144
1145 static char *dwarf_type_encoding_name (unsigned int);
1146
1147 #if 0
1148 static char *dwarf_cfi_name (unsigned int);
1149 #endif
1150
1151 static struct die_info *sibling_die (struct die_info *);
1152
1153 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1154
1155 static void dump_die_for_error (struct die_info *);
1156
1157 static void dump_die_1 (struct ui_file *, int level, int max_level,
1158 struct die_info *);
1159
1160 /*static*/ void dump_die (struct die_info *, int max_level);
1161
1162 static void store_in_ref_table (struct die_info *,
1163 struct dwarf2_cu *);
1164
1165 static int is_ref_attr (struct attribute *);
1166
1167 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1168
1169 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1170
1171 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1172 struct attribute *,
1173 struct dwarf2_cu **);
1174
1175 static struct die_info *follow_die_ref (struct die_info *,
1176 struct attribute *,
1177 struct dwarf2_cu **);
1178
1179 static struct die_info *follow_die_sig (struct die_info *,
1180 struct attribute *,
1181 struct dwarf2_cu **);
1182
1183 static struct signatured_type *lookup_signatured_type_at_offset
1184 (struct objfile *objfile,
1185 struct dwarf2_section_info *section, sect_offset offset);
1186
1187 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1188
1189 static void read_signatured_type (struct signatured_type *);
1190
1191 /* memory allocation interface */
1192
1193 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1194
1195 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1196
1197 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1198
1199 static void dwarf_decode_macros (struct line_header *, unsigned int,
1200 char *, bfd *, struct dwarf2_cu *,
1201 struct dwarf2_section_info *,
1202 int);
1203
1204 static int attr_form_is_block (struct attribute *);
1205
1206 static int attr_form_is_section_offset (struct attribute *);
1207
1208 static int attr_form_is_constant (struct attribute *);
1209
1210 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1211 struct dwarf2_loclist_baton *baton,
1212 struct attribute *attr);
1213
1214 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1215 struct symbol *sym,
1216 struct dwarf2_cu *cu);
1217
1218 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1219 struct abbrev_info *abbrev,
1220 struct dwarf2_cu *cu);
1221
1222 static void free_stack_comp_unit (void *);
1223
1224 static hashval_t partial_die_hash (const void *item);
1225
1226 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1227
1228 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1229 (sect_offset offset, struct objfile *objfile);
1230
1231 static void init_one_comp_unit (struct dwarf2_cu *cu,
1232 struct dwarf2_per_cu_data *per_cu);
1233
1234 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1235 struct die_info *comp_unit_die);
1236
1237 static void free_heap_comp_unit (void *);
1238
1239 static void free_cached_comp_units (void *);
1240
1241 static void age_cached_comp_units (void);
1242
1243 static void free_one_cached_comp_unit (void *);
1244
1245 static struct type *set_die_type (struct die_info *, struct type *,
1246 struct dwarf2_cu *);
1247
1248 static void create_all_comp_units (struct objfile *);
1249
1250 static int create_all_type_units (struct objfile *);
1251
1252 static void load_full_comp_unit (struct dwarf2_per_cu_data *);
1253
1254 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1255
1256 static void dwarf2_add_dependence (struct dwarf2_cu *,
1257 struct dwarf2_per_cu_data *);
1258
1259 static void dwarf2_mark (struct dwarf2_cu *);
1260
1261 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1262
1263 static struct type *get_die_type_at_offset (sect_offset,
1264 struct dwarf2_per_cu_data *per_cu);
1265
1266 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1267
1268 static void dwarf2_release_queue (void *dummy);
1269
1270 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu);
1271
1272 static void process_queue (void);
1273
1274 static void find_file_and_directory (struct die_info *die,
1275 struct dwarf2_cu *cu,
1276 char **name, char **comp_dir);
1277
1278 static char *file_full_name (int file, struct line_header *lh,
1279 const char *comp_dir);
1280
1281 static gdb_byte *read_and_check_comp_unit_head
1282 (struct comp_unit_head *header,
1283 struct dwarf2_section_info *section, gdb_byte *info_ptr,
1284 int is_debug_types_section);
1285
1286 static void init_cu_die_reader (struct die_reader_specs *reader,
1287 struct dwarf2_cu *cu);
1288
1289 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1290
1291 #if WORDS_BIGENDIAN
1292
1293 /* Convert VALUE between big- and little-endian. */
1294 static offset_type
1295 byte_swap (offset_type value)
1296 {
1297 offset_type result;
1298
1299 result = (value & 0xff) << 24;
1300 result |= (value & 0xff00) << 8;
1301 result |= (value & 0xff0000) >> 8;
1302 result |= (value & 0xff000000) >> 24;
1303 return result;
1304 }
1305
1306 #define MAYBE_SWAP(V) byte_swap (V)
1307
1308 #else
1309 #define MAYBE_SWAP(V) (V)
1310 #endif /* WORDS_BIGENDIAN */
1311
1312 /* The suffix for an index file. */
1313 #define INDEX_SUFFIX ".gdb-index"
1314
1315 static const char *dwarf2_physname (char *name, struct die_info *die,
1316 struct dwarf2_cu *cu);
1317
1318 /* Try to locate the sections we need for DWARF 2 debugging
1319 information and return true if we have enough to do something.
1320 NAMES points to the dwarf2 section names, or is NULL if the standard
1321 ELF names are used. */
1322
1323 int
1324 dwarf2_has_info (struct objfile *objfile,
1325 const struct dwarf2_debug_sections *names)
1326 {
1327 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1328 if (!dwarf2_per_objfile)
1329 {
1330 /* Initialize per-objfile state. */
1331 struct dwarf2_per_objfile *data
1332 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1333
1334 memset (data, 0, sizeof (*data));
1335 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1336 dwarf2_per_objfile = data;
1337
1338 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1339 (void *) names);
1340 dwarf2_per_objfile->objfile = objfile;
1341 }
1342 return (dwarf2_per_objfile->info.asection != NULL
1343 && dwarf2_per_objfile->abbrev.asection != NULL);
1344 }
1345
1346 /* When loading sections, we look either for uncompressed section or for
1347 compressed section names. */
1348
1349 static int
1350 section_is_p (const char *section_name,
1351 const struct dwarf2_section_names *names)
1352 {
1353 if (names->normal != NULL
1354 && strcmp (section_name, names->normal) == 0)
1355 return 1;
1356 if (names->compressed != NULL
1357 && strcmp (section_name, names->compressed) == 0)
1358 return 1;
1359 return 0;
1360 }
1361
1362 /* This function is mapped across the sections and remembers the
1363 offset and size of each of the debugging sections we are interested
1364 in. */
1365
1366 static void
1367 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1368 {
1369 const struct dwarf2_debug_sections *names;
1370
1371 if (vnames == NULL)
1372 names = &dwarf2_elf_names;
1373 else
1374 names = (const struct dwarf2_debug_sections *) vnames;
1375
1376 if (section_is_p (sectp->name, &names->info))
1377 {
1378 dwarf2_per_objfile->info.asection = sectp;
1379 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1380 }
1381 else if (section_is_p (sectp->name, &names->abbrev))
1382 {
1383 dwarf2_per_objfile->abbrev.asection = sectp;
1384 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1385 }
1386 else if (section_is_p (sectp->name, &names->line))
1387 {
1388 dwarf2_per_objfile->line.asection = sectp;
1389 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1390 }
1391 else if (section_is_p (sectp->name, &names->loc))
1392 {
1393 dwarf2_per_objfile->loc.asection = sectp;
1394 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1395 }
1396 else if (section_is_p (sectp->name, &names->macinfo))
1397 {
1398 dwarf2_per_objfile->macinfo.asection = sectp;
1399 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1400 }
1401 else if (section_is_p (sectp->name, &names->macro))
1402 {
1403 dwarf2_per_objfile->macro.asection = sectp;
1404 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1405 }
1406 else if (section_is_p (sectp->name, &names->str))
1407 {
1408 dwarf2_per_objfile->str.asection = sectp;
1409 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1410 }
1411 else if (section_is_p (sectp->name, &names->frame))
1412 {
1413 dwarf2_per_objfile->frame.asection = sectp;
1414 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1415 }
1416 else if (section_is_p (sectp->name, &names->eh_frame))
1417 {
1418 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1419
1420 if (aflag & SEC_HAS_CONTENTS)
1421 {
1422 dwarf2_per_objfile->eh_frame.asection = sectp;
1423 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1424 }
1425 }
1426 else if (section_is_p (sectp->name, &names->ranges))
1427 {
1428 dwarf2_per_objfile->ranges.asection = sectp;
1429 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1430 }
1431 else if (section_is_p (sectp->name, &names->types))
1432 {
1433 struct dwarf2_section_info type_section;
1434
1435 memset (&type_section, 0, sizeof (type_section));
1436 type_section.asection = sectp;
1437 type_section.size = bfd_get_section_size (sectp);
1438
1439 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1440 &type_section);
1441 }
1442 else if (section_is_p (sectp->name, &names->gdb_index))
1443 {
1444 dwarf2_per_objfile->gdb_index.asection = sectp;
1445 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1446 }
1447
1448 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1449 && bfd_section_vma (abfd, sectp) == 0)
1450 dwarf2_per_objfile->has_section_at_zero = 1;
1451 }
1452
1453 /* Decompress a section that was compressed using zlib. Store the
1454 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1455
1456 static void
1457 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1458 gdb_byte **outbuf, bfd_size_type *outsize)
1459 {
1460 bfd *abfd = objfile->obfd;
1461 #ifndef HAVE_ZLIB_H
1462 error (_("Support for zlib-compressed DWARF data (from '%s') "
1463 "is disabled in this copy of GDB"),
1464 bfd_get_filename (abfd));
1465 #else
1466 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1467 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1468 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1469 bfd_size_type uncompressed_size;
1470 gdb_byte *uncompressed_buffer;
1471 z_stream strm;
1472 int rc;
1473 int header_size = 12;
1474
1475 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1476 || bfd_bread (compressed_buffer,
1477 compressed_size, abfd) != compressed_size)
1478 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1479 bfd_get_filename (abfd));
1480
1481 /* Read the zlib header. In this case, it should be "ZLIB" followed
1482 by the uncompressed section size, 8 bytes in big-endian order. */
1483 if (compressed_size < header_size
1484 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1485 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1486 bfd_get_filename (abfd));
1487 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1488 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1489 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1490 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1491 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1492 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1493 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1494 uncompressed_size += compressed_buffer[11];
1495
1496 /* It is possible the section consists of several compressed
1497 buffers concatenated together, so we uncompress in a loop. */
1498 strm.zalloc = NULL;
1499 strm.zfree = NULL;
1500 strm.opaque = NULL;
1501 strm.avail_in = compressed_size - header_size;
1502 strm.next_in = (Bytef*) compressed_buffer + header_size;
1503 strm.avail_out = uncompressed_size;
1504 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1505 uncompressed_size);
1506 rc = inflateInit (&strm);
1507 while (strm.avail_in > 0)
1508 {
1509 if (rc != Z_OK)
1510 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1511 bfd_get_filename (abfd), rc);
1512 strm.next_out = ((Bytef*) uncompressed_buffer
1513 + (uncompressed_size - strm.avail_out));
1514 rc = inflate (&strm, Z_FINISH);
1515 if (rc != Z_STREAM_END)
1516 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1517 bfd_get_filename (abfd), rc);
1518 rc = inflateReset (&strm);
1519 }
1520 rc = inflateEnd (&strm);
1521 if (rc != Z_OK
1522 || strm.avail_out != 0)
1523 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1524 bfd_get_filename (abfd), rc);
1525
1526 do_cleanups (cleanup);
1527 *outbuf = uncompressed_buffer;
1528 *outsize = uncompressed_size;
1529 #endif
1530 }
1531
1532 /* A helper function that decides whether a section is empty. */
1533
1534 static int
1535 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1536 {
1537 return info->asection == NULL || info->size == 0;
1538 }
1539
1540 /* Read the contents of the section INFO from object file specified by
1541 OBJFILE, store info about the section into INFO.
1542 If the section is compressed, uncompress it before returning. */
1543
1544 static void
1545 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1546 {
1547 bfd *abfd = objfile->obfd;
1548 asection *sectp = info->asection;
1549 gdb_byte *buf, *retbuf;
1550 unsigned char header[4];
1551
1552 if (info->readin)
1553 return;
1554 info->buffer = NULL;
1555 info->map_addr = NULL;
1556 info->readin = 1;
1557
1558 if (dwarf2_section_empty_p (info))
1559 return;
1560
1561 /* Check if the file has a 4-byte header indicating compression. */
1562 if (info->size > sizeof (header)
1563 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1564 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1565 {
1566 /* Upon decompression, update the buffer and its size. */
1567 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1568 {
1569 zlib_decompress_section (objfile, sectp, &info->buffer,
1570 &info->size);
1571 return;
1572 }
1573 }
1574
1575 #ifdef HAVE_MMAP
1576 if (pagesize == 0)
1577 pagesize = getpagesize ();
1578
1579 /* Only try to mmap sections which are large enough: we don't want to
1580 waste space due to fragmentation. Also, only try mmap for sections
1581 without relocations. */
1582
1583 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1584 {
1585 info->buffer = bfd_mmap (abfd, 0, info->size, PROT_READ,
1586 MAP_PRIVATE, sectp->filepos,
1587 &info->map_addr, &info->map_len);
1588
1589 if ((caddr_t)info->buffer != MAP_FAILED)
1590 {
1591 #if HAVE_POSIX_MADVISE
1592 posix_madvise (info->map_addr, info->map_len, POSIX_MADV_WILLNEED);
1593 #endif
1594 return;
1595 }
1596 }
1597 #endif
1598
1599 /* If we get here, we are a normal, not-compressed section. */
1600 info->buffer = buf
1601 = obstack_alloc (&objfile->objfile_obstack, info->size);
1602
1603 /* When debugging .o files, we may need to apply relocations; see
1604 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1605 We never compress sections in .o files, so we only need to
1606 try this when the section is not compressed. */
1607 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1608 if (retbuf != NULL)
1609 {
1610 info->buffer = retbuf;
1611 return;
1612 }
1613
1614 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1615 || bfd_bread (buf, info->size, abfd) != info->size)
1616 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1617 bfd_get_filename (abfd));
1618 }
1619
1620 /* A helper function that returns the size of a section in a safe way.
1621 If you are positive that the section has been read before using the
1622 size, then it is safe to refer to the dwarf2_section_info object's
1623 "size" field directly. In other cases, you must call this
1624 function, because for compressed sections the size field is not set
1625 correctly until the section has been read. */
1626
1627 static bfd_size_type
1628 dwarf2_section_size (struct objfile *objfile,
1629 struct dwarf2_section_info *info)
1630 {
1631 if (!info->readin)
1632 dwarf2_read_section (objfile, info);
1633 return info->size;
1634 }
1635
1636 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1637 SECTION_NAME. */
1638
1639 void
1640 dwarf2_get_section_info (struct objfile *objfile,
1641 enum dwarf2_section_enum sect,
1642 asection **sectp, gdb_byte **bufp,
1643 bfd_size_type *sizep)
1644 {
1645 struct dwarf2_per_objfile *data
1646 = objfile_data (objfile, dwarf2_objfile_data_key);
1647 struct dwarf2_section_info *info;
1648
1649 /* We may see an objfile without any DWARF, in which case we just
1650 return nothing. */
1651 if (data == NULL)
1652 {
1653 *sectp = NULL;
1654 *bufp = NULL;
1655 *sizep = 0;
1656 return;
1657 }
1658 switch (sect)
1659 {
1660 case DWARF2_DEBUG_FRAME:
1661 info = &data->frame;
1662 break;
1663 case DWARF2_EH_FRAME:
1664 info = &data->eh_frame;
1665 break;
1666 default:
1667 gdb_assert_not_reached ("unexpected section");
1668 }
1669
1670 dwarf2_read_section (objfile, info);
1671
1672 *sectp = info->asection;
1673 *bufp = info->buffer;
1674 *sizep = info->size;
1675 }
1676
1677 \f
1678 /* DWARF quick_symbols_functions support. */
1679
1680 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1681 unique line tables, so we maintain a separate table of all .debug_line
1682 derived entries to support the sharing.
1683 All the quick functions need is the list of file names. We discard the
1684 line_header when we're done and don't need to record it here. */
1685 struct quick_file_names
1686 {
1687 /* The offset in .debug_line of the line table. We hash on this. */
1688 unsigned int offset;
1689
1690 /* The number of entries in file_names, real_names. */
1691 unsigned int num_file_names;
1692
1693 /* The file names from the line table, after being run through
1694 file_full_name. */
1695 const char **file_names;
1696
1697 /* The file names from the line table after being run through
1698 gdb_realpath. These are computed lazily. */
1699 const char **real_names;
1700 };
1701
1702 /* When using the index (and thus not using psymtabs), each CU has an
1703 object of this type. This is used to hold information needed by
1704 the various "quick" methods. */
1705 struct dwarf2_per_cu_quick_data
1706 {
1707 /* The file table. This can be NULL if there was no file table
1708 or it's currently not read in.
1709 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1710 struct quick_file_names *file_names;
1711
1712 /* The corresponding symbol table. This is NULL if symbols for this
1713 CU have not yet been read. */
1714 struct symtab *symtab;
1715
1716 /* A temporary mark bit used when iterating over all CUs in
1717 expand_symtabs_matching. */
1718 unsigned int mark : 1;
1719
1720 /* True if we've tried to read the file table and found there isn't one.
1721 There will be no point in trying to read it again next time. */
1722 unsigned int no_file_data : 1;
1723 };
1724
1725 /* Hash function for a quick_file_names. */
1726
1727 static hashval_t
1728 hash_file_name_entry (const void *e)
1729 {
1730 const struct quick_file_names *file_data = e;
1731
1732 return file_data->offset;
1733 }
1734
1735 /* Equality function for a quick_file_names. */
1736
1737 static int
1738 eq_file_name_entry (const void *a, const void *b)
1739 {
1740 const struct quick_file_names *ea = a;
1741 const struct quick_file_names *eb = b;
1742
1743 return ea->offset == eb->offset;
1744 }
1745
1746 /* Delete function for a quick_file_names. */
1747
1748 static void
1749 delete_file_name_entry (void *e)
1750 {
1751 struct quick_file_names *file_data = e;
1752 int i;
1753
1754 for (i = 0; i < file_data->num_file_names; ++i)
1755 {
1756 xfree ((void*) file_data->file_names[i]);
1757 if (file_data->real_names)
1758 xfree ((void*) file_data->real_names[i]);
1759 }
1760
1761 /* The space for the struct itself lives on objfile_obstack,
1762 so we don't free it here. */
1763 }
1764
1765 /* Create a quick_file_names hash table. */
1766
1767 static htab_t
1768 create_quick_file_names_table (unsigned int nr_initial_entries)
1769 {
1770 return htab_create_alloc (nr_initial_entries,
1771 hash_file_name_entry, eq_file_name_entry,
1772 delete_file_name_entry, xcalloc, xfree);
1773 }
1774
1775 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
1776 have to be created afterwards. You should call age_cached_comp_units after
1777 processing PER_CU->CU. dw2_setup must have been already called. */
1778
1779 static void
1780 load_cu (struct dwarf2_per_cu_data *per_cu)
1781 {
1782 if (per_cu->debug_types_section)
1783 load_full_type_unit (per_cu);
1784 else
1785 load_full_comp_unit (per_cu);
1786
1787 gdb_assert (per_cu->cu != NULL);
1788
1789 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
1790 }
1791
1792 /* Read in the symbols for PER_CU. */
1793
1794 static void
1795 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
1796 {
1797 struct cleanup *back_to;
1798
1799 back_to = make_cleanup (dwarf2_release_queue, NULL);
1800
1801 queue_comp_unit (per_cu);
1802
1803 load_cu (per_cu);
1804
1805 process_queue ();
1806
1807 /* Age the cache, releasing compilation units that have not
1808 been used recently. */
1809 age_cached_comp_units ();
1810
1811 do_cleanups (back_to);
1812 }
1813
1814 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1815 the objfile from which this CU came. Returns the resulting symbol
1816 table. */
1817
1818 static struct symtab *
1819 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
1820 {
1821 if (!per_cu->v.quick->symtab)
1822 {
1823 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1824 increment_reading_symtab ();
1825 dw2_do_instantiate_symtab (per_cu);
1826 do_cleanups (back_to);
1827 }
1828 return per_cu->v.quick->symtab;
1829 }
1830
1831 /* Return the CU given its index. */
1832
1833 static struct dwarf2_per_cu_data *
1834 dw2_get_cu (int index)
1835 {
1836 if (index >= dwarf2_per_objfile->n_comp_units)
1837 {
1838 index -= dwarf2_per_objfile->n_comp_units;
1839 return dwarf2_per_objfile->all_type_units[index];
1840 }
1841 return dwarf2_per_objfile->all_comp_units[index];
1842 }
1843
1844 /* A helper function that knows how to read a 64-bit value in a way
1845 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1846 otherwise. */
1847
1848 static int
1849 extract_cu_value (const char *bytes, ULONGEST *result)
1850 {
1851 if (sizeof (ULONGEST) < 8)
1852 {
1853 int i;
1854
1855 /* Ignore the upper 4 bytes if they are all zero. */
1856 for (i = 0; i < 4; ++i)
1857 if (bytes[i + 4] != 0)
1858 return 0;
1859
1860 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1861 }
1862 else
1863 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1864 return 1;
1865 }
1866
1867 /* Read the CU list from the mapped index, and use it to create all
1868 the CU objects for this objfile. Return 0 if something went wrong,
1869 1 if everything went ok. */
1870
1871 static int
1872 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1873 offset_type cu_list_elements)
1874 {
1875 offset_type i;
1876
1877 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1878 dwarf2_per_objfile->all_comp_units
1879 = obstack_alloc (&objfile->objfile_obstack,
1880 dwarf2_per_objfile->n_comp_units
1881 * sizeof (struct dwarf2_per_cu_data *));
1882
1883 for (i = 0; i < cu_list_elements; i += 2)
1884 {
1885 struct dwarf2_per_cu_data *the_cu;
1886 ULONGEST offset, length;
1887
1888 if (!extract_cu_value (cu_list, &offset)
1889 || !extract_cu_value (cu_list + 8, &length))
1890 return 0;
1891 cu_list += 2 * 8;
1892
1893 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1894 struct dwarf2_per_cu_data);
1895 the_cu->offset.sect_off = offset;
1896 the_cu->length = length;
1897 the_cu->objfile = objfile;
1898 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1899 struct dwarf2_per_cu_quick_data);
1900 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1901 }
1902
1903 return 1;
1904 }
1905
1906 /* Create the signatured type hash table from the index. */
1907
1908 static int
1909 create_signatured_type_table_from_index (struct objfile *objfile,
1910 struct dwarf2_section_info *section,
1911 const gdb_byte *bytes,
1912 offset_type elements)
1913 {
1914 offset_type i;
1915 htab_t sig_types_hash;
1916
1917 dwarf2_per_objfile->n_type_units = elements / 3;
1918 dwarf2_per_objfile->all_type_units
1919 = obstack_alloc (&objfile->objfile_obstack,
1920 dwarf2_per_objfile->n_type_units
1921 * sizeof (struct dwarf2_per_cu_data *));
1922
1923 sig_types_hash = allocate_signatured_type_table (objfile);
1924
1925 for (i = 0; i < elements; i += 3)
1926 {
1927 struct signatured_type *sig_type;
1928 ULONGEST offset, type_offset_in_tu, signature;
1929 void **slot;
1930
1931 if (!extract_cu_value (bytes, &offset)
1932 || !extract_cu_value (bytes + 8, &type_offset_in_tu))
1933 return 0;
1934 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1935 bytes += 3 * 8;
1936
1937 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1938 struct signatured_type);
1939 sig_type->signature = signature;
1940 sig_type->type_offset.cu_off = type_offset_in_tu;
1941 sig_type->per_cu.debug_types_section = section;
1942 sig_type->per_cu.offset.sect_off = offset;
1943 sig_type->per_cu.objfile = objfile;
1944 sig_type->per_cu.v.quick
1945 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1946 struct dwarf2_per_cu_quick_data);
1947
1948 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
1949 *slot = sig_type;
1950
1951 dwarf2_per_objfile->all_type_units[i / 3] = &sig_type->per_cu;
1952 }
1953
1954 dwarf2_per_objfile->signatured_types = sig_types_hash;
1955
1956 return 1;
1957 }
1958
1959 /* Read the address map data from the mapped index, and use it to
1960 populate the objfile's psymtabs_addrmap. */
1961
1962 static void
1963 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1964 {
1965 const gdb_byte *iter, *end;
1966 struct obstack temp_obstack;
1967 struct addrmap *mutable_map;
1968 struct cleanup *cleanup;
1969 CORE_ADDR baseaddr;
1970
1971 obstack_init (&temp_obstack);
1972 cleanup = make_cleanup_obstack_free (&temp_obstack);
1973 mutable_map = addrmap_create_mutable (&temp_obstack);
1974
1975 iter = index->address_table;
1976 end = iter + index->address_table_size;
1977
1978 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1979
1980 while (iter < end)
1981 {
1982 ULONGEST hi, lo, cu_index;
1983 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1984 iter += 8;
1985 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1986 iter += 8;
1987 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1988 iter += 4;
1989
1990 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1991 dw2_get_cu (cu_index));
1992 }
1993
1994 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1995 &objfile->objfile_obstack);
1996 do_cleanups (cleanup);
1997 }
1998
1999 /* The hash function for strings in the mapped index. This is the same as
2000 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2001 implementation. This is necessary because the hash function is tied to the
2002 format of the mapped index file. The hash values do not have to match with
2003 SYMBOL_HASH_NEXT.
2004
2005 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2006
2007 static hashval_t
2008 mapped_index_string_hash (int index_version, const void *p)
2009 {
2010 const unsigned char *str = (const unsigned char *) p;
2011 hashval_t r = 0;
2012 unsigned char c;
2013
2014 while ((c = *str++) != 0)
2015 {
2016 if (index_version >= 5)
2017 c = tolower (c);
2018 r = r * 67 + c - 113;
2019 }
2020
2021 return r;
2022 }
2023
2024 /* Find a slot in the mapped index INDEX for the object named NAME.
2025 If NAME is found, set *VEC_OUT to point to the CU vector in the
2026 constant pool and return 1. If NAME cannot be found, return 0. */
2027
2028 static int
2029 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2030 offset_type **vec_out)
2031 {
2032 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2033 offset_type hash;
2034 offset_type slot, step;
2035 int (*cmp) (const char *, const char *);
2036
2037 if (current_language->la_language == language_cplus
2038 || current_language->la_language == language_java
2039 || current_language->la_language == language_fortran)
2040 {
2041 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2042 not contain any. */
2043 const char *paren = strchr (name, '(');
2044
2045 if (paren)
2046 {
2047 char *dup;
2048
2049 dup = xmalloc (paren - name + 1);
2050 memcpy (dup, name, paren - name);
2051 dup[paren - name] = 0;
2052
2053 make_cleanup (xfree, dup);
2054 name = dup;
2055 }
2056 }
2057
2058 /* Index version 4 did not support case insensitive searches. But the
2059 indices for case insensitive languages are built in lowercase, therefore
2060 simulate our NAME being searched is also lowercased. */
2061 hash = mapped_index_string_hash ((index->version == 4
2062 && case_sensitivity == case_sensitive_off
2063 ? 5 : index->version),
2064 name);
2065
2066 slot = hash & (index->symbol_table_slots - 1);
2067 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2068 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2069
2070 for (;;)
2071 {
2072 /* Convert a slot number to an offset into the table. */
2073 offset_type i = 2 * slot;
2074 const char *str;
2075 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2076 {
2077 do_cleanups (back_to);
2078 return 0;
2079 }
2080
2081 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2082 if (!cmp (name, str))
2083 {
2084 *vec_out = (offset_type *) (index->constant_pool
2085 + MAYBE_SWAP (index->symbol_table[i + 1]));
2086 do_cleanups (back_to);
2087 return 1;
2088 }
2089
2090 slot = (slot + step) & (index->symbol_table_slots - 1);
2091 }
2092 }
2093
2094 /* Read the index file. If everything went ok, initialize the "quick"
2095 elements of all the CUs and return 1. Otherwise, return 0. */
2096
2097 static int
2098 dwarf2_read_index (struct objfile *objfile)
2099 {
2100 char *addr;
2101 struct mapped_index *map;
2102 offset_type *metadata;
2103 const gdb_byte *cu_list;
2104 const gdb_byte *types_list = NULL;
2105 offset_type version, cu_list_elements;
2106 offset_type types_list_elements = 0;
2107 int i;
2108
2109 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
2110 return 0;
2111
2112 /* Older elfutils strip versions could keep the section in the main
2113 executable while splitting it for the separate debug info file. */
2114 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2115 & SEC_HAS_CONTENTS) == 0)
2116 return 0;
2117
2118 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2119
2120 addr = dwarf2_per_objfile->gdb_index.buffer;
2121 /* Version check. */
2122 version = MAYBE_SWAP (*(offset_type *) addr);
2123 /* Versions earlier than 3 emitted every copy of a psymbol. This
2124 causes the index to behave very poorly for certain requests. Version 3
2125 contained incomplete addrmap. So, it seems better to just ignore such
2126 indices. */
2127 if (version < 4)
2128 {
2129 static int warning_printed = 0;
2130 if (!warning_printed)
2131 {
2132 warning (_("Skipping obsolete .gdb_index section in %s."),
2133 objfile->name);
2134 warning_printed = 1;
2135 }
2136 return 0;
2137 }
2138 /* Index version 4 uses a different hash function than index version
2139 5 and later.
2140
2141 Versions earlier than 6 did not emit psymbols for inlined
2142 functions. Using these files will cause GDB not to be able to
2143 set breakpoints on inlined functions by name, so we ignore these
2144 indices unless the --use-deprecated-index-sections command line
2145 option was supplied. */
2146 if (version < 6 && !use_deprecated_index_sections)
2147 {
2148 static int warning_printed = 0;
2149 if (!warning_printed)
2150 {
2151 warning (_("Skipping deprecated .gdb_index section in %s, pass "
2152 "--use-deprecated-index-sections to use them anyway"),
2153 objfile->name);
2154 warning_printed = 1;
2155 }
2156 return 0;
2157 }
2158 /* Indexes with higher version than the one supported by GDB may be no
2159 longer backward compatible. */
2160 if (version > 6)
2161 return 0;
2162
2163 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2164 map->version = version;
2165 map->total_size = dwarf2_per_objfile->gdb_index.size;
2166
2167 metadata = (offset_type *) (addr + sizeof (offset_type));
2168
2169 i = 0;
2170 cu_list = addr + MAYBE_SWAP (metadata[i]);
2171 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2172 / 8);
2173 ++i;
2174
2175 types_list = addr + MAYBE_SWAP (metadata[i]);
2176 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2177 - MAYBE_SWAP (metadata[i]))
2178 / 8);
2179 ++i;
2180
2181 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2182 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2183 - MAYBE_SWAP (metadata[i]));
2184 ++i;
2185
2186 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2187 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2188 - MAYBE_SWAP (metadata[i]))
2189 / (2 * sizeof (offset_type)));
2190 ++i;
2191
2192 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2193
2194 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2195 return 0;
2196
2197 if (types_list_elements)
2198 {
2199 struct dwarf2_section_info *section;
2200
2201 /* We can only handle a single .debug_types when we have an
2202 index. */
2203 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2204 return 0;
2205
2206 section = VEC_index (dwarf2_section_info_def,
2207 dwarf2_per_objfile->types, 0);
2208
2209 if (!create_signatured_type_table_from_index (objfile, section,
2210 types_list,
2211 types_list_elements))
2212 return 0;
2213 }
2214
2215 create_addrmap_from_index (objfile, map);
2216
2217 dwarf2_per_objfile->index_table = map;
2218 dwarf2_per_objfile->using_index = 1;
2219 dwarf2_per_objfile->quick_file_names_table =
2220 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2221
2222 return 1;
2223 }
2224
2225 /* A helper for the "quick" functions which sets the global
2226 dwarf2_per_objfile according to OBJFILE. */
2227
2228 static void
2229 dw2_setup (struct objfile *objfile)
2230 {
2231 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2232 gdb_assert (dwarf2_per_objfile);
2233 }
2234
2235 /* A helper for the "quick" functions which attempts to read the line
2236 table for THIS_CU. */
2237
2238 static struct quick_file_names *
2239 dw2_get_file_names (struct objfile *objfile,
2240 struct dwarf2_per_cu_data *this_cu)
2241 {
2242 bfd *abfd = objfile->obfd;
2243 struct line_header *lh;
2244 struct attribute *attr;
2245 struct cleanup *cleanups;
2246 struct die_info *comp_unit_die;
2247 struct dwarf2_section_info* sec;
2248 gdb_byte *info_ptr;
2249 int has_children, i;
2250 struct dwarf2_cu cu;
2251 unsigned int bytes_read;
2252 struct die_reader_specs reader_specs;
2253 char *name, *comp_dir;
2254 void **slot;
2255 struct quick_file_names *qfn;
2256 unsigned int line_offset;
2257
2258 if (this_cu->v.quick->file_names != NULL)
2259 return this_cu->v.quick->file_names;
2260 /* If we know there is no line data, no point in looking again. */
2261 if (this_cu->v.quick->no_file_data)
2262 return NULL;
2263
2264 init_one_comp_unit (&cu, this_cu);
2265 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2266
2267 if (this_cu->debug_types_section)
2268 sec = this_cu->debug_types_section;
2269 else
2270 sec = &dwarf2_per_objfile->info;
2271 dwarf2_read_section (objfile, sec);
2272 info_ptr = sec->buffer + this_cu->offset.sect_off;
2273
2274 info_ptr = read_and_check_comp_unit_head (&cu.header, sec, info_ptr,
2275 this_cu->debug_types_section != NULL);
2276
2277 /* Skip dummy compilation units. */
2278 if (info_ptr >= (sec->buffer + sec->size)
2279 || peek_abbrev_code (abfd, info_ptr) == 0)
2280 {
2281 do_cleanups (cleanups);
2282 return NULL;
2283 }
2284
2285 dwarf2_read_abbrevs (&cu);
2286 make_cleanup (dwarf2_free_abbrev_table, &cu);
2287
2288 init_cu_die_reader (&reader_specs, &cu);
2289 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2290 &has_children);
2291
2292 lh = NULL;
2293 slot = NULL;
2294 line_offset = 0;
2295 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2296 if (attr)
2297 {
2298 struct quick_file_names find_entry;
2299
2300 line_offset = DW_UNSND (attr);
2301
2302 /* We may have already read in this line header (TU line header sharing).
2303 If we have we're done. */
2304 find_entry.offset = line_offset;
2305 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2306 &find_entry, INSERT);
2307 if (*slot != NULL)
2308 {
2309 do_cleanups (cleanups);
2310 this_cu->v.quick->file_names = *slot;
2311 return *slot;
2312 }
2313
2314 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2315 }
2316 if (lh == NULL)
2317 {
2318 do_cleanups (cleanups);
2319 this_cu->v.quick->no_file_data = 1;
2320 return NULL;
2321 }
2322
2323 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2324 qfn->offset = line_offset;
2325 gdb_assert (slot != NULL);
2326 *slot = qfn;
2327
2328 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2329
2330 qfn->num_file_names = lh->num_file_names;
2331 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2332 lh->num_file_names * sizeof (char *));
2333 for (i = 0; i < lh->num_file_names; ++i)
2334 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2335 qfn->real_names = NULL;
2336
2337 free_line_header (lh);
2338 do_cleanups (cleanups);
2339
2340 this_cu->v.quick->file_names = qfn;
2341 return qfn;
2342 }
2343
2344 /* A helper for the "quick" functions which computes and caches the
2345 real path for a given file name from the line table. */
2346
2347 static const char *
2348 dw2_get_real_path (struct objfile *objfile,
2349 struct quick_file_names *qfn, int index)
2350 {
2351 if (qfn->real_names == NULL)
2352 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2353 qfn->num_file_names, sizeof (char *));
2354
2355 if (qfn->real_names[index] == NULL)
2356 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2357
2358 return qfn->real_names[index];
2359 }
2360
2361 static struct symtab *
2362 dw2_find_last_source_symtab (struct objfile *objfile)
2363 {
2364 int index;
2365
2366 dw2_setup (objfile);
2367 index = dwarf2_per_objfile->n_comp_units - 1;
2368 return dw2_instantiate_symtab (dw2_get_cu (index));
2369 }
2370
2371 /* Traversal function for dw2_forget_cached_source_info. */
2372
2373 static int
2374 dw2_free_cached_file_names (void **slot, void *info)
2375 {
2376 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2377
2378 if (file_data->real_names)
2379 {
2380 int i;
2381
2382 for (i = 0; i < file_data->num_file_names; ++i)
2383 {
2384 xfree ((void*) file_data->real_names[i]);
2385 file_data->real_names[i] = NULL;
2386 }
2387 }
2388
2389 return 1;
2390 }
2391
2392 static void
2393 dw2_forget_cached_source_info (struct objfile *objfile)
2394 {
2395 dw2_setup (objfile);
2396
2397 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2398 dw2_free_cached_file_names, NULL);
2399 }
2400
2401 /* Helper function for dw2_map_symtabs_matching_filename that expands
2402 the symtabs and calls the iterator. */
2403
2404 static int
2405 dw2_map_expand_apply (struct objfile *objfile,
2406 struct dwarf2_per_cu_data *per_cu,
2407 const char *name,
2408 const char *full_path, const char *real_path,
2409 int (*callback) (struct symtab *, void *),
2410 void *data)
2411 {
2412 struct symtab *last_made = objfile->symtabs;
2413
2414 /* Don't visit already-expanded CUs. */
2415 if (per_cu->v.quick->symtab)
2416 return 0;
2417
2418 /* This may expand more than one symtab, and we want to iterate over
2419 all of them. */
2420 dw2_instantiate_symtab (per_cu);
2421
2422 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
2423 objfile->symtabs, last_made);
2424 }
2425
2426 /* Implementation of the map_symtabs_matching_filename method. */
2427
2428 static int
2429 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
2430 const char *full_path, const char *real_path,
2431 int (*callback) (struct symtab *, void *),
2432 void *data)
2433 {
2434 int i;
2435 const char *name_basename = lbasename (name);
2436 int name_len = strlen (name);
2437 int is_abs = IS_ABSOLUTE_PATH (name);
2438
2439 dw2_setup (objfile);
2440
2441 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2442 + dwarf2_per_objfile->n_type_units); ++i)
2443 {
2444 int j;
2445 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2446 struct quick_file_names *file_data;
2447
2448 /* We only need to look at symtabs not already expanded. */
2449 if (per_cu->v.quick->symtab)
2450 continue;
2451
2452 file_data = dw2_get_file_names (objfile, per_cu);
2453 if (file_data == NULL)
2454 continue;
2455
2456 for (j = 0; j < file_data->num_file_names; ++j)
2457 {
2458 const char *this_name = file_data->file_names[j];
2459
2460 if (FILENAME_CMP (name, this_name) == 0
2461 || (!is_abs && compare_filenames_for_search (this_name,
2462 name, name_len)))
2463 {
2464 if (dw2_map_expand_apply (objfile, per_cu,
2465 name, full_path, real_path,
2466 callback, data))
2467 return 1;
2468 }
2469
2470 /* Before we invoke realpath, which can get expensive when many
2471 files are involved, do a quick comparison of the basenames. */
2472 if (! basenames_may_differ
2473 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
2474 continue;
2475
2476 if (full_path != NULL)
2477 {
2478 const char *this_real_name = dw2_get_real_path (objfile,
2479 file_data, j);
2480
2481 if (this_real_name != NULL
2482 && (FILENAME_CMP (full_path, this_real_name) == 0
2483 || (!is_abs
2484 && compare_filenames_for_search (this_real_name,
2485 name, name_len))))
2486 {
2487 if (dw2_map_expand_apply (objfile, per_cu,
2488 name, full_path, real_path,
2489 callback, data))
2490 return 1;
2491 }
2492 }
2493
2494 if (real_path != NULL)
2495 {
2496 const char *this_real_name = dw2_get_real_path (objfile,
2497 file_data, j);
2498
2499 if (this_real_name != NULL
2500 && (FILENAME_CMP (real_path, this_real_name) == 0
2501 || (!is_abs
2502 && compare_filenames_for_search (this_real_name,
2503 name, name_len))))
2504 {
2505 if (dw2_map_expand_apply (objfile, per_cu,
2506 name, full_path, real_path,
2507 callback, data))
2508 return 1;
2509 }
2510 }
2511 }
2512 }
2513
2514 return 0;
2515 }
2516
2517 static struct symtab *
2518 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2519 const char *name, domain_enum domain)
2520 {
2521 /* We do all the work in the pre_expand_symtabs_matching hook
2522 instead. */
2523 return NULL;
2524 }
2525
2526 /* A helper function that expands all symtabs that hold an object
2527 named NAME. */
2528
2529 static void
2530 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2531 {
2532 dw2_setup (objfile);
2533
2534 /* index_table is NULL if OBJF_READNOW. */
2535 if (dwarf2_per_objfile->index_table)
2536 {
2537 offset_type *vec;
2538
2539 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2540 name, &vec))
2541 {
2542 offset_type i, len = MAYBE_SWAP (*vec);
2543 for (i = 0; i < len; ++i)
2544 {
2545 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2546 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2547
2548 dw2_instantiate_symtab (per_cu);
2549 }
2550 }
2551 }
2552 }
2553
2554 static void
2555 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2556 enum block_enum block_kind, const char *name,
2557 domain_enum domain)
2558 {
2559 dw2_do_expand_symtabs_matching (objfile, name);
2560 }
2561
2562 static void
2563 dw2_print_stats (struct objfile *objfile)
2564 {
2565 int i, count;
2566
2567 dw2_setup (objfile);
2568 count = 0;
2569 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2570 + dwarf2_per_objfile->n_type_units); ++i)
2571 {
2572 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2573
2574 if (!per_cu->v.quick->symtab)
2575 ++count;
2576 }
2577 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2578 }
2579
2580 static void
2581 dw2_dump (struct objfile *objfile)
2582 {
2583 /* Nothing worth printing. */
2584 }
2585
2586 static void
2587 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2588 struct section_offsets *delta)
2589 {
2590 /* There's nothing to relocate here. */
2591 }
2592
2593 static void
2594 dw2_expand_symtabs_for_function (struct objfile *objfile,
2595 const char *func_name)
2596 {
2597 dw2_do_expand_symtabs_matching (objfile, func_name);
2598 }
2599
2600 static void
2601 dw2_expand_all_symtabs (struct objfile *objfile)
2602 {
2603 int i;
2604
2605 dw2_setup (objfile);
2606
2607 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2608 + dwarf2_per_objfile->n_type_units); ++i)
2609 {
2610 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2611
2612 dw2_instantiate_symtab (per_cu);
2613 }
2614 }
2615
2616 static void
2617 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2618 const char *filename)
2619 {
2620 int i;
2621
2622 dw2_setup (objfile);
2623
2624 /* We don't need to consider type units here.
2625 This is only called for examining code, e.g. expand_line_sal.
2626 There can be an order of magnitude (or more) more type units
2627 than comp units, and we avoid them if we can. */
2628
2629 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2630 {
2631 int j;
2632 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2633 struct quick_file_names *file_data;
2634
2635 /* We only need to look at symtabs not already expanded. */
2636 if (per_cu->v.quick->symtab)
2637 continue;
2638
2639 file_data = dw2_get_file_names (objfile, per_cu);
2640 if (file_data == NULL)
2641 continue;
2642
2643 for (j = 0; j < file_data->num_file_names; ++j)
2644 {
2645 const char *this_name = file_data->file_names[j];
2646 if (FILENAME_CMP (this_name, filename) == 0)
2647 {
2648 dw2_instantiate_symtab (per_cu);
2649 break;
2650 }
2651 }
2652 }
2653 }
2654
2655 static const char *
2656 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2657 {
2658 struct dwarf2_per_cu_data *per_cu;
2659 offset_type *vec;
2660 struct quick_file_names *file_data;
2661
2662 dw2_setup (objfile);
2663
2664 /* index_table is NULL if OBJF_READNOW. */
2665 if (!dwarf2_per_objfile->index_table)
2666 {
2667 struct symtab *s;
2668
2669 ALL_OBJFILE_SYMTABS (objfile, s)
2670 if (s->primary)
2671 {
2672 struct blockvector *bv = BLOCKVECTOR (s);
2673 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2674 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
2675
2676 if (sym)
2677 return sym->symtab->filename;
2678 }
2679 return NULL;
2680 }
2681
2682 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2683 name, &vec))
2684 return NULL;
2685
2686 /* Note that this just looks at the very first one named NAME -- but
2687 actually we are looking for a function. find_main_filename
2688 should be rewritten so that it doesn't require a custom hook. It
2689 could just use the ordinary symbol tables. */
2690 /* vec[0] is the length, which must always be >0. */
2691 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2692
2693 file_data = dw2_get_file_names (objfile, per_cu);
2694 if (file_data == NULL)
2695 return NULL;
2696
2697 return file_data->file_names[file_data->num_file_names - 1];
2698 }
2699
2700 static void
2701 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2702 struct objfile *objfile, int global,
2703 int (*callback) (struct block *,
2704 struct symbol *, void *),
2705 void *data, symbol_compare_ftype *match,
2706 symbol_compare_ftype *ordered_compare)
2707 {
2708 /* Currently unimplemented; used for Ada. The function can be called if the
2709 current language is Ada for a non-Ada objfile using GNU index. As Ada
2710 does not look for non-Ada symbols this function should just return. */
2711 }
2712
2713 static void
2714 dw2_expand_symtabs_matching
2715 (struct objfile *objfile,
2716 int (*file_matcher) (const char *, void *),
2717 int (*name_matcher) (const char *, void *),
2718 enum search_domain kind,
2719 void *data)
2720 {
2721 int i;
2722 offset_type iter;
2723 struct mapped_index *index;
2724
2725 dw2_setup (objfile);
2726
2727 /* index_table is NULL if OBJF_READNOW. */
2728 if (!dwarf2_per_objfile->index_table)
2729 return;
2730 index = dwarf2_per_objfile->index_table;
2731
2732 if (file_matcher != NULL)
2733 {
2734 struct cleanup *cleanup;
2735 htab_t visited_found, visited_not_found;
2736
2737 visited_found = htab_create_alloc (10,
2738 htab_hash_pointer, htab_eq_pointer,
2739 NULL, xcalloc, xfree);
2740 cleanup = make_cleanup_htab_delete (visited_found);
2741 visited_not_found = htab_create_alloc (10,
2742 htab_hash_pointer, htab_eq_pointer,
2743 NULL, xcalloc, xfree);
2744 make_cleanup_htab_delete (visited_not_found);
2745
2746 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2747 + dwarf2_per_objfile->n_type_units); ++i)
2748 {
2749 int j;
2750 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2751 struct quick_file_names *file_data;
2752 void **slot;
2753
2754 per_cu->v.quick->mark = 0;
2755
2756 /* We only need to look at symtabs not already expanded. */
2757 if (per_cu->v.quick->symtab)
2758 continue;
2759
2760 file_data = dw2_get_file_names (objfile, per_cu);
2761 if (file_data == NULL)
2762 continue;
2763
2764 if (htab_find (visited_not_found, file_data) != NULL)
2765 continue;
2766 else if (htab_find (visited_found, file_data) != NULL)
2767 {
2768 per_cu->v.quick->mark = 1;
2769 continue;
2770 }
2771
2772 for (j = 0; j < file_data->num_file_names; ++j)
2773 {
2774 if (file_matcher (file_data->file_names[j], data))
2775 {
2776 per_cu->v.quick->mark = 1;
2777 break;
2778 }
2779 }
2780
2781 slot = htab_find_slot (per_cu->v.quick->mark
2782 ? visited_found
2783 : visited_not_found,
2784 file_data, INSERT);
2785 *slot = file_data;
2786 }
2787
2788 do_cleanups (cleanup);
2789 }
2790
2791 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2792 {
2793 offset_type idx = 2 * iter;
2794 const char *name;
2795 offset_type *vec, vec_len, vec_idx;
2796
2797 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2798 continue;
2799
2800 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2801
2802 if (! (*name_matcher) (name, data))
2803 continue;
2804
2805 /* The name was matched, now expand corresponding CUs that were
2806 marked. */
2807 vec = (offset_type *) (index->constant_pool
2808 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2809 vec_len = MAYBE_SWAP (vec[0]);
2810 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2811 {
2812 struct dwarf2_per_cu_data *per_cu;
2813
2814 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2815 if (file_matcher == NULL || per_cu->v.quick->mark)
2816 dw2_instantiate_symtab (per_cu);
2817 }
2818 }
2819 }
2820
2821 static struct symtab *
2822 dw2_find_pc_sect_symtab (struct objfile *objfile,
2823 struct minimal_symbol *msymbol,
2824 CORE_ADDR pc,
2825 struct obj_section *section,
2826 int warn_if_readin)
2827 {
2828 struct dwarf2_per_cu_data *data;
2829
2830 dw2_setup (objfile);
2831
2832 if (!objfile->psymtabs_addrmap)
2833 return NULL;
2834
2835 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2836 if (!data)
2837 return NULL;
2838
2839 if (warn_if_readin && data->v.quick->symtab)
2840 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2841 paddress (get_objfile_arch (objfile), pc));
2842
2843 return dw2_instantiate_symtab (data);
2844 }
2845
2846 static void
2847 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
2848 void *data, int need_fullname)
2849 {
2850 int i;
2851 struct cleanup *cleanup;
2852 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
2853 NULL, xcalloc, xfree);
2854
2855 cleanup = make_cleanup_htab_delete (visited);
2856 dw2_setup (objfile);
2857
2858 /* We can ignore file names coming from already-expanded CUs. */
2859 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2860 + dwarf2_per_objfile->n_type_units); ++i)
2861 {
2862 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2863
2864 if (per_cu->v.quick->symtab)
2865 {
2866 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
2867 INSERT);
2868
2869 *slot = per_cu->v.quick->file_names;
2870 }
2871 }
2872
2873 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2874 + dwarf2_per_objfile->n_type_units); ++i)
2875 {
2876 int j;
2877 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2878 struct quick_file_names *file_data;
2879 void **slot;
2880
2881 /* We only need to look at symtabs not already expanded. */
2882 if (per_cu->v.quick->symtab)
2883 continue;
2884
2885 file_data = dw2_get_file_names (objfile, per_cu);
2886 if (file_data == NULL)
2887 continue;
2888
2889 slot = htab_find_slot (visited, file_data, INSERT);
2890 if (*slot)
2891 {
2892 /* Already visited. */
2893 continue;
2894 }
2895 *slot = file_data;
2896
2897 for (j = 0; j < file_data->num_file_names; ++j)
2898 {
2899 const char *this_real_name;
2900
2901 if (need_fullname)
2902 this_real_name = dw2_get_real_path (objfile, file_data, j);
2903 else
2904 this_real_name = NULL;
2905 (*fun) (file_data->file_names[j], this_real_name, data);
2906 }
2907 }
2908
2909 do_cleanups (cleanup);
2910 }
2911
2912 static int
2913 dw2_has_symbols (struct objfile *objfile)
2914 {
2915 return 1;
2916 }
2917
2918 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2919 {
2920 dw2_has_symbols,
2921 dw2_find_last_source_symtab,
2922 dw2_forget_cached_source_info,
2923 dw2_map_symtabs_matching_filename,
2924 dw2_lookup_symbol,
2925 dw2_pre_expand_symtabs_matching,
2926 dw2_print_stats,
2927 dw2_dump,
2928 dw2_relocate,
2929 dw2_expand_symtabs_for_function,
2930 dw2_expand_all_symtabs,
2931 dw2_expand_symtabs_with_filename,
2932 dw2_find_symbol_file,
2933 dw2_map_matching_symbols,
2934 dw2_expand_symtabs_matching,
2935 dw2_find_pc_sect_symtab,
2936 dw2_map_symbol_filenames
2937 };
2938
2939 /* Initialize for reading DWARF for this objfile. Return 0 if this
2940 file will use psymtabs, or 1 if using the GNU index. */
2941
2942 int
2943 dwarf2_initialize_objfile (struct objfile *objfile)
2944 {
2945 /* If we're about to read full symbols, don't bother with the
2946 indices. In this case we also don't care if some other debug
2947 format is making psymtabs, because they are all about to be
2948 expanded anyway. */
2949 if ((objfile->flags & OBJF_READNOW))
2950 {
2951 int i;
2952
2953 dwarf2_per_objfile->using_index = 1;
2954 create_all_comp_units (objfile);
2955 create_all_type_units (objfile);
2956 dwarf2_per_objfile->quick_file_names_table =
2957 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2958
2959 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2960 + dwarf2_per_objfile->n_type_units); ++i)
2961 {
2962 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2963
2964 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2965 struct dwarf2_per_cu_quick_data);
2966 }
2967
2968 /* Return 1 so that gdb sees the "quick" functions. However,
2969 these functions will be no-ops because we will have expanded
2970 all symtabs. */
2971 return 1;
2972 }
2973
2974 if (dwarf2_read_index (objfile))
2975 return 1;
2976
2977 return 0;
2978 }
2979
2980 \f
2981
2982 /* Build a partial symbol table. */
2983
2984 void
2985 dwarf2_build_psymtabs (struct objfile *objfile)
2986 {
2987 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2988 {
2989 init_psymbol_list (objfile, 1024);
2990 }
2991
2992 dwarf2_build_psymtabs_hard (objfile);
2993 }
2994
2995 /* Return TRUE if OFFSET is within CU_HEADER. */
2996
2997 static inline int
2998 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
2999 {
3000 sect_offset bottom = { cu_header->offset.sect_off };
3001 sect_offset top = { (cu_header->offset.sect_off + cu_header->length
3002 + cu_header->initial_length_size) };
3003
3004 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3005 }
3006
3007 /* Read in the comp unit header information from the debug_info at info_ptr.
3008 NOTE: This leaves members offset, first_die_offset to be filled in
3009 by the caller. */
3010
3011 static gdb_byte *
3012 read_comp_unit_head (struct comp_unit_head *cu_header,
3013 gdb_byte *info_ptr, bfd *abfd)
3014 {
3015 int signed_addr;
3016 unsigned int bytes_read;
3017
3018 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3019 cu_header->initial_length_size = bytes_read;
3020 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3021 info_ptr += bytes_read;
3022 cu_header->version = read_2_bytes (abfd, info_ptr);
3023 info_ptr += 2;
3024 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3025 &bytes_read);
3026 info_ptr += bytes_read;
3027 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3028 info_ptr += 1;
3029 signed_addr = bfd_get_sign_extend_vma (abfd);
3030 if (signed_addr < 0)
3031 internal_error (__FILE__, __LINE__,
3032 _("read_comp_unit_head: dwarf from non elf file"));
3033 cu_header->signed_addr_p = signed_addr;
3034
3035 return info_ptr;
3036 }
3037
3038 /* Subroutine of read_and_check_comp_unit_head and
3039 read_and_check_type_unit_head to simplify them.
3040 Perform various error checking on the header. */
3041
3042 static void
3043 error_check_comp_unit_head (struct comp_unit_head *header,
3044 struct dwarf2_section_info *section)
3045 {
3046 bfd *abfd = section->asection->owner;
3047 const char *filename = bfd_get_filename (abfd);
3048
3049 if (header->version != 2 && header->version != 3 && header->version != 4)
3050 error (_("Dwarf Error: wrong version in compilation unit header "
3051 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3052 filename);
3053
3054 if (header->abbrev_offset.sect_off
3055 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
3056 &dwarf2_per_objfile->abbrev))
3057 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3058 "(offset 0x%lx + 6) [in module %s]"),
3059 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3060 filename);
3061
3062 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3063 avoid potential 32-bit overflow. */
3064 if (((unsigned long) header->offset.sect_off
3065 + header->length + header->initial_length_size)
3066 > section->size)
3067 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3068 "(offset 0x%lx + 0) [in module %s]"),
3069 (long) header->length, (long) header->offset.sect_off,
3070 filename);
3071 }
3072
3073 /* Read in a CU/TU header and perform some basic error checking.
3074 The contents of the header are stored in HEADER.
3075 The result is a pointer to the start of the first DIE. */
3076
3077 static gdb_byte *
3078 read_and_check_comp_unit_head (struct comp_unit_head *header,
3079 struct dwarf2_section_info *section,
3080 gdb_byte *info_ptr,
3081 int is_debug_types_section)
3082 {
3083 gdb_byte *beg_of_comp_unit = info_ptr;
3084 bfd *abfd = section->asection->owner;
3085
3086 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3087
3088 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3089
3090 /* If we're reading a type unit, skip over the signature and
3091 type_offset fields. */
3092 if (is_debug_types_section)
3093 info_ptr += 8 /*signature*/ + header->offset_size;
3094
3095 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3096
3097 error_check_comp_unit_head (header, section);
3098
3099 return info_ptr;
3100 }
3101
3102 /* Read in the types comp unit header information from .debug_types entry at
3103 types_ptr. The result is a pointer to one past the end of the header. */
3104
3105 static gdb_byte *
3106 read_and_check_type_unit_head (struct comp_unit_head *header,
3107 struct dwarf2_section_info *section,
3108 gdb_byte *info_ptr,
3109 ULONGEST *signature, cu_offset *type_offset)
3110 {
3111 gdb_byte *beg_of_comp_unit = info_ptr;
3112 bfd *abfd = section->asection->owner;
3113
3114 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3115
3116 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3117
3118 /* If we're reading a type unit, skip over the signature and
3119 type_offset fields. */
3120 if (signature != NULL)
3121 *signature = read_8_bytes (abfd, info_ptr);
3122 info_ptr += 8;
3123 if (type_offset != NULL)
3124 type_offset->cu_off = read_offset_1 (abfd, info_ptr, header->offset_size);
3125 info_ptr += header->offset_size;
3126
3127 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3128
3129 error_check_comp_unit_head (header, section);
3130
3131 return info_ptr;
3132 }
3133
3134 /* Allocate a new partial symtab for file named NAME and mark this new
3135 partial symtab as being an include of PST. */
3136
3137 static void
3138 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3139 struct objfile *objfile)
3140 {
3141 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3142
3143 subpst->section_offsets = pst->section_offsets;
3144 subpst->textlow = 0;
3145 subpst->texthigh = 0;
3146
3147 subpst->dependencies = (struct partial_symtab **)
3148 obstack_alloc (&objfile->objfile_obstack,
3149 sizeof (struct partial_symtab *));
3150 subpst->dependencies[0] = pst;
3151 subpst->number_of_dependencies = 1;
3152
3153 subpst->globals_offset = 0;
3154 subpst->n_global_syms = 0;
3155 subpst->statics_offset = 0;
3156 subpst->n_static_syms = 0;
3157 subpst->symtab = NULL;
3158 subpst->read_symtab = pst->read_symtab;
3159 subpst->readin = 0;
3160
3161 /* No private part is necessary for include psymtabs. This property
3162 can be used to differentiate between such include psymtabs and
3163 the regular ones. */
3164 subpst->read_symtab_private = NULL;
3165 }
3166
3167 /* Read the Line Number Program data and extract the list of files
3168 included by the source file represented by PST. Build an include
3169 partial symtab for each of these included files. */
3170
3171 static void
3172 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
3173 struct die_info *die,
3174 struct partial_symtab *pst)
3175 {
3176 struct objfile *objfile = cu->objfile;
3177 bfd *abfd = objfile->obfd;
3178 struct line_header *lh = NULL;
3179 struct attribute *attr;
3180
3181 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3182 if (attr)
3183 {
3184 unsigned int line_offset = DW_UNSND (attr);
3185
3186 lh = dwarf_decode_line_header (line_offset, abfd, cu);
3187 }
3188 if (lh == NULL)
3189 return; /* No linetable, so no includes. */
3190
3191 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
3192 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
3193
3194 free_line_header (lh);
3195 }
3196
3197 static hashval_t
3198 hash_signatured_type (const void *item)
3199 {
3200 const struct signatured_type *sig_type = item;
3201
3202 /* This drops the top 32 bits of the signature, but is ok for a hash. */
3203 return sig_type->signature;
3204 }
3205
3206 static int
3207 eq_signatured_type (const void *item_lhs, const void *item_rhs)
3208 {
3209 const struct signatured_type *lhs = item_lhs;
3210 const struct signatured_type *rhs = item_rhs;
3211
3212 return lhs->signature == rhs->signature;
3213 }
3214
3215 /* Allocate a hash table for signatured types. */
3216
3217 static htab_t
3218 allocate_signatured_type_table (struct objfile *objfile)
3219 {
3220 return htab_create_alloc_ex (41,
3221 hash_signatured_type,
3222 eq_signatured_type,
3223 NULL,
3224 &objfile->objfile_obstack,
3225 hashtab_obstack_allocate,
3226 dummy_obstack_deallocate);
3227 }
3228
3229 /* A helper function to add a signatured type CU to a table. */
3230
3231 static int
3232 add_signatured_type_cu_to_table (void **slot, void *datum)
3233 {
3234 struct signatured_type *sigt = *slot;
3235 struct dwarf2_per_cu_data ***datap = datum;
3236
3237 **datap = &sigt->per_cu;
3238 ++*datap;
3239
3240 return 1;
3241 }
3242
3243 /* Create the hash table of all entries in the .debug_types section(s).
3244 The result is zero if there are no .debug_types sections,
3245 otherwise non-zero. */
3246
3247 static int
3248 create_all_type_units (struct objfile *objfile)
3249 {
3250 htab_t types_htab = NULL;
3251 struct dwarf2_per_cu_data **iter;
3252 int ix;
3253 struct dwarf2_section_info *section;
3254
3255 if (VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types))
3256 {
3257 dwarf2_per_objfile->signatured_types = NULL;
3258 return 0;
3259 }
3260
3261 for (ix = 0;
3262 VEC_iterate (dwarf2_section_info_def, dwarf2_per_objfile->types,
3263 ix, section);
3264 ++ix)
3265 {
3266 gdb_byte *info_ptr, *end_ptr;
3267
3268 dwarf2_read_section (objfile, section);
3269 info_ptr = section->buffer;
3270
3271 if (info_ptr == NULL)
3272 continue;
3273
3274 if (types_htab == NULL)
3275 types_htab = allocate_signatured_type_table (objfile);
3276
3277 if (dwarf2_die_debug)
3278 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3279
3280 end_ptr = info_ptr + section->size;
3281 while (info_ptr < end_ptr)
3282 {
3283 sect_offset offset;
3284 cu_offset type_offset;
3285 ULONGEST signature;
3286 struct signatured_type *sig_type;
3287 void **slot;
3288 gdb_byte *ptr = info_ptr;
3289 struct comp_unit_head header;
3290
3291 offset.sect_off = ptr - section->buffer;
3292
3293 /* We need to read the type's signature in order to build the hash
3294 table, but we don't need anything else just yet. */
3295
3296 ptr = read_and_check_type_unit_head (&header, section, ptr,
3297 &signature, &type_offset);
3298
3299 /* Skip dummy type units. */
3300 if (ptr >= end_ptr || peek_abbrev_code (objfile->obfd, ptr) == 0)
3301 {
3302 info_ptr = info_ptr + header.initial_length_size + header.length;
3303 continue;
3304 }
3305
3306 sig_type = obstack_alloc (&objfile->objfile_obstack, sizeof (*sig_type));
3307 memset (sig_type, 0, sizeof (*sig_type));
3308 sig_type->signature = signature;
3309 sig_type->type_offset = type_offset;
3310 sig_type->per_cu.objfile = objfile;
3311 sig_type->per_cu.debug_types_section = section;
3312 sig_type->per_cu.offset = offset;
3313
3314 slot = htab_find_slot (types_htab, sig_type, INSERT);
3315 gdb_assert (slot != NULL);
3316 if (*slot != NULL)
3317 {
3318 const struct signatured_type *dup_sig = *slot;
3319
3320 complaint (&symfile_complaints,
3321 _("debug type entry at offset 0x%x is duplicate to the "
3322 "entry at offset 0x%x, signature 0x%s"),
3323 offset.sect_off, dup_sig->per_cu.offset.sect_off,
3324 phex (signature, sizeof (signature)));
3325 gdb_assert (signature == dup_sig->signature);
3326 }
3327 *slot = sig_type;
3328
3329 if (dwarf2_die_debug)
3330 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3331 offset.sect_off,
3332 phex (signature, sizeof (signature)));
3333
3334 info_ptr = info_ptr + header.initial_length_size + header.length;
3335 }
3336 }
3337
3338 dwarf2_per_objfile->signatured_types = types_htab;
3339
3340 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
3341 dwarf2_per_objfile->all_type_units
3342 = obstack_alloc (&objfile->objfile_obstack,
3343 dwarf2_per_objfile->n_type_units
3344 * sizeof (struct dwarf2_per_cu_data *));
3345 iter = &dwarf2_per_objfile->all_type_units[0];
3346 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
3347 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
3348 == dwarf2_per_objfile->n_type_units);
3349
3350 return 1;
3351 }
3352
3353 /* Lookup a signature based type.
3354 Returns NULL if signature SIG is not present in the table. */
3355
3356 static struct signatured_type *
3357 lookup_signatured_type (ULONGEST sig)
3358 {
3359 struct signatured_type find_entry, *entry;
3360
3361 if (dwarf2_per_objfile->signatured_types == NULL)
3362 {
3363 complaint (&symfile_complaints,
3364 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
3365 return 0;
3366 }
3367
3368 find_entry.signature = sig;
3369 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3370 return entry;
3371 }
3372
3373 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3374
3375 static void
3376 init_cu_die_reader (struct die_reader_specs *reader,
3377 struct dwarf2_cu *cu)
3378 {
3379 reader->abfd = cu->objfile->obfd;
3380 reader->cu = cu;
3381 if (cu->per_cu->debug_types_section)
3382 {
3383 gdb_assert (cu->per_cu->debug_types_section->readin);
3384 reader->buffer = cu->per_cu->debug_types_section->buffer;
3385 }
3386 else
3387 {
3388 gdb_assert (dwarf2_per_objfile->info.readin);
3389 reader->buffer = dwarf2_per_objfile->info.buffer;
3390 }
3391 }
3392
3393 /* Find the base address of the compilation unit for range lists and
3394 location lists. It will normally be specified by DW_AT_low_pc.
3395 In DWARF-3 draft 4, the base address could be overridden by
3396 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3397 compilation units with discontinuous ranges. */
3398
3399 static void
3400 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3401 {
3402 struct attribute *attr;
3403
3404 cu->base_known = 0;
3405 cu->base_address = 0;
3406
3407 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3408 if (attr)
3409 {
3410 cu->base_address = DW_ADDR (attr);
3411 cu->base_known = 1;
3412 }
3413 else
3414 {
3415 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3416 if (attr)
3417 {
3418 cu->base_address = DW_ADDR (attr);
3419 cu->base_known = 1;
3420 }
3421 }
3422 }
3423
3424 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3425 to combine the common parts.
3426 Process compilation unit THIS_CU for a psymtab.
3427 SECTION is the section the CU/TU comes from,
3428 either .debug_info or .debug_types. */
3429
3430 static void
3431 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
3432 struct dwarf2_section_info *section,
3433 int is_debug_types_section)
3434 {
3435 struct objfile *objfile = this_cu->objfile;
3436 bfd *abfd = objfile->obfd;
3437 gdb_byte *buffer = section->buffer;
3438 gdb_byte *info_ptr = buffer + this_cu->offset.sect_off;
3439 unsigned int buffer_size = section->size;
3440 gdb_byte *beg_of_comp_unit = info_ptr;
3441 struct die_info *comp_unit_die;
3442 struct partial_symtab *pst;
3443 CORE_ADDR baseaddr;
3444 struct cleanup *back_to_inner;
3445 struct dwarf2_cu cu;
3446 int has_children, has_pc_info;
3447 struct attribute *attr;
3448 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3449 struct die_reader_specs reader_specs;
3450 const char *filename;
3451
3452 /* If this compilation unit was already read in, free the
3453 cached copy in order to read it in again. This is
3454 necessary because we skipped some symbols when we first
3455 read in the compilation unit (see load_partial_dies).
3456 This problem could be avoided, but the benefit is
3457 unclear. */
3458 if (this_cu->cu != NULL)
3459 free_one_cached_comp_unit (this_cu->cu);
3460
3461 /* Note that this is a pointer to our stack frame, being
3462 added to a global data structure. It will be cleaned up
3463 in free_stack_comp_unit when we finish with this
3464 compilation unit. */
3465 init_one_comp_unit (&cu, this_cu);
3466 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3467
3468 info_ptr = read_and_check_comp_unit_head (&cu.header, section, info_ptr,
3469 is_debug_types_section);
3470
3471 /* Skip dummy compilation units. */
3472 if (info_ptr >= buffer + buffer_size
3473 || peek_abbrev_code (abfd, info_ptr) == 0)
3474 {
3475 do_cleanups (back_to_inner);
3476 return;
3477 }
3478
3479 cu.list_in_scope = &file_symbols;
3480
3481 /* Read the abbrevs for this compilation unit into a table. */
3482 dwarf2_read_abbrevs (&cu);
3483 make_cleanup (dwarf2_free_abbrev_table, &cu);
3484
3485 /* Read the compilation unit die. */
3486 init_cu_die_reader (&reader_specs, &cu);
3487 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3488 &has_children);
3489
3490 if (is_debug_types_section)
3491 {
3492 /* LENGTH has not been set yet for type units. */
3493 gdb_assert (this_cu->offset.sect_off == cu.header.offset.sect_off);
3494 this_cu->length = cu.header.length + cu.header.initial_length_size;
3495 }
3496 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3497 {
3498 do_cleanups (back_to_inner);
3499 return;
3500 }
3501
3502 prepare_one_comp_unit (&cu, comp_unit_die);
3503
3504 /* Allocate a new partial symbol table structure. */
3505 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3506 if (attr == NULL || !DW_STRING (attr))
3507 filename = "";
3508 else
3509 filename = DW_STRING (attr);
3510 pst = start_psymtab_common (objfile, objfile->section_offsets,
3511 filename,
3512 /* TEXTLOW and TEXTHIGH are set below. */
3513 0,
3514 objfile->global_psymbols.next,
3515 objfile->static_psymbols.next);
3516 pst->psymtabs_addrmap_supported = 1;
3517
3518 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3519 if (attr != NULL)
3520 pst->dirname = DW_STRING (attr);
3521
3522 pst->read_symtab_private = this_cu;
3523
3524 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3525
3526 /* Store the function that reads in the rest of the symbol table. */
3527 pst->read_symtab = dwarf2_psymtab_to_symtab;
3528
3529 this_cu->v.psymtab = pst;
3530
3531 dwarf2_find_base_address (comp_unit_die, &cu);
3532
3533 /* Possibly set the default values of LOWPC and HIGHPC from
3534 `DW_AT_ranges'. */
3535 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3536 &best_highpc, &cu, pst);
3537 if (has_pc_info == 1 && best_lowpc < best_highpc)
3538 /* Store the contiguous range if it is not empty; it can be empty for
3539 CUs with no code. */
3540 addrmap_set_empty (objfile->psymtabs_addrmap,
3541 best_lowpc + baseaddr,
3542 best_highpc + baseaddr - 1, pst);
3543
3544 /* Check if comp unit has_children.
3545 If so, read the rest of the partial symbols from this comp unit.
3546 If not, there's no more debug_info for this comp unit. */
3547 if (has_children)
3548 {
3549 struct partial_die_info *first_die;
3550 CORE_ADDR lowpc, highpc;
3551
3552 lowpc = ((CORE_ADDR) -1);
3553 highpc = ((CORE_ADDR) 0);
3554
3555 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3556
3557 scan_partial_symbols (first_die, &lowpc, &highpc,
3558 ! has_pc_info, &cu);
3559
3560 /* If we didn't find a lowpc, set it to highpc to avoid
3561 complaints from `maint check'. */
3562 if (lowpc == ((CORE_ADDR) -1))
3563 lowpc = highpc;
3564
3565 /* If the compilation unit didn't have an explicit address range,
3566 then use the information extracted from its child dies. */
3567 if (! has_pc_info)
3568 {
3569 best_lowpc = lowpc;
3570 best_highpc = highpc;
3571 }
3572 }
3573 pst->textlow = best_lowpc + baseaddr;
3574 pst->texthigh = best_highpc + baseaddr;
3575
3576 pst->n_global_syms = objfile->global_psymbols.next -
3577 (objfile->global_psymbols.list + pst->globals_offset);
3578 pst->n_static_syms = objfile->static_psymbols.next -
3579 (objfile->static_psymbols.list + pst->statics_offset);
3580 sort_pst_symbols (pst);
3581
3582 if (is_debug_types_section)
3583 {
3584 /* It's not clear we want to do anything with stmt lists here.
3585 Waiting to see what gcc ultimately does. */
3586 }
3587 else
3588 {
3589 /* Get the list of files included in the current compilation unit,
3590 and build a psymtab for each of them. */
3591 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3592 }
3593
3594 do_cleanups (back_to_inner);
3595 }
3596
3597 /* Traversal function for htab_traverse_noresize.
3598 Process one .debug_types comp-unit. */
3599
3600 static int
3601 process_type_comp_unit (void **slot, void *info)
3602 {
3603 struct signatured_type *entry = (struct signatured_type *) *slot;
3604 struct dwarf2_per_cu_data *this_cu;
3605
3606 gdb_assert (info == NULL);
3607 this_cu = &entry->per_cu;
3608
3609 gdb_assert (this_cu->debug_types_section->readin);
3610 process_psymtab_comp_unit (this_cu, this_cu->debug_types_section, 1);
3611
3612 return 1;
3613 }
3614
3615 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3616 Build partial symbol tables for the .debug_types comp-units. */
3617
3618 static void
3619 build_type_psymtabs (struct objfile *objfile)
3620 {
3621 if (! create_all_type_units (objfile))
3622 return;
3623
3624 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3625 process_type_comp_unit, NULL);
3626 }
3627
3628 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3629
3630 static void
3631 psymtabs_addrmap_cleanup (void *o)
3632 {
3633 struct objfile *objfile = o;
3634
3635 objfile->psymtabs_addrmap = NULL;
3636 }
3637
3638 /* Build the partial symbol table by doing a quick pass through the
3639 .debug_info and .debug_abbrev sections. */
3640
3641 static void
3642 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3643 {
3644 struct cleanup *back_to, *addrmap_cleanup;
3645 struct obstack temp_obstack;
3646 int i;
3647
3648 dwarf2_per_objfile->reading_partial_symbols = 1;
3649
3650 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3651
3652 /* Any cached compilation units will be linked by the per-objfile
3653 read_in_chain. Make sure to free them when we're done. */
3654 back_to = make_cleanup (free_cached_comp_units, NULL);
3655
3656 build_type_psymtabs (objfile);
3657
3658 create_all_comp_units (objfile);
3659
3660 /* Create a temporary address map on a temporary obstack. We later
3661 copy this to the final obstack. */
3662 obstack_init (&temp_obstack);
3663 make_cleanup_obstack_free (&temp_obstack);
3664 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3665 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3666
3667 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3668 {
3669 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3670
3671 process_psymtab_comp_unit (per_cu, &dwarf2_per_objfile->info, 0);
3672 }
3673
3674 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3675 &objfile->objfile_obstack);
3676 discard_cleanups (addrmap_cleanup);
3677
3678 do_cleanups (back_to);
3679 }
3680
3681 /* Load the partial DIEs for a secondary CU into memory. */
3682
3683 static void
3684 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
3685 {
3686 struct objfile *objfile = this_cu->objfile;
3687 bfd *abfd = objfile->obfd;
3688 gdb_byte *info_ptr;
3689 struct die_info *comp_unit_die;
3690 struct dwarf2_cu *cu;
3691 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3692 int has_children;
3693 struct die_reader_specs reader_specs;
3694 int read_cu = 0;
3695 struct dwarf2_section_info *section = &dwarf2_per_objfile->info;
3696
3697 gdb_assert (! this_cu->debug_types_section);
3698
3699 gdb_assert (section->readin);
3700 info_ptr = section->buffer + this_cu->offset.sect_off;
3701
3702 if (this_cu->cu == NULL)
3703 {
3704 cu = xmalloc (sizeof (*cu));
3705 init_one_comp_unit (cu, this_cu);
3706
3707 read_cu = 1;
3708
3709 /* If an error occurs while loading, release our storage. */
3710 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
3711
3712 info_ptr = read_and_check_comp_unit_head (&cu->header, section, info_ptr,
3713 0);
3714
3715 /* Skip dummy compilation units. */
3716 if (info_ptr >= (section->buffer + section->size)
3717 || peek_abbrev_code (abfd, info_ptr) == 0)
3718 {
3719 do_cleanups (free_cu_cleanup);
3720 return;
3721 }
3722 }
3723 else
3724 {
3725 cu = this_cu->cu;
3726 info_ptr += cu->header.first_die_offset.cu_off;
3727 }
3728
3729 /* Read the abbrevs for this compilation unit into a table. */
3730 gdb_assert (cu->dwarf2_abbrevs == NULL);
3731 dwarf2_read_abbrevs (cu);
3732 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3733
3734 /* Read the compilation unit die. */
3735 init_cu_die_reader (&reader_specs, cu);
3736 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3737 &has_children);
3738
3739 prepare_one_comp_unit (cu, comp_unit_die);
3740
3741 /* Check if comp unit has_children.
3742 If so, read the rest of the partial symbols from this comp unit.
3743 If not, there's no more debug_info for this comp unit. */
3744 if (has_children)
3745 load_partial_dies (abfd, section->buffer, info_ptr, 0, cu);
3746
3747 do_cleanups (free_abbrevs_cleanup);
3748
3749 if (read_cu)
3750 {
3751 /* We've successfully allocated this compilation unit. Let our
3752 caller clean it up when finished with it. */
3753 discard_cleanups (free_cu_cleanup);
3754
3755 /* Link this CU into read_in_chain. */
3756 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3757 dwarf2_per_objfile->read_in_chain = this_cu;
3758 }
3759 }
3760
3761 /* Create a list of all compilation units in OBJFILE.
3762 This is only done for -readnow and building partial symtabs. */
3763
3764 static void
3765 create_all_comp_units (struct objfile *objfile)
3766 {
3767 int n_allocated;
3768 int n_comp_units;
3769 struct dwarf2_per_cu_data **all_comp_units;
3770 gdb_byte *info_ptr;
3771
3772 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3773 info_ptr = dwarf2_per_objfile->info.buffer;
3774
3775 n_comp_units = 0;
3776 n_allocated = 10;
3777 all_comp_units = xmalloc (n_allocated
3778 * sizeof (struct dwarf2_per_cu_data *));
3779
3780 while (info_ptr < dwarf2_per_objfile->info.buffer
3781 + dwarf2_per_objfile->info.size)
3782 {
3783 unsigned int length, initial_length_size;
3784 struct dwarf2_per_cu_data *this_cu;
3785 sect_offset offset;
3786
3787 offset.sect_off = info_ptr - dwarf2_per_objfile->info.buffer;
3788
3789 /* Read just enough information to find out where the next
3790 compilation unit is. */
3791 length = read_initial_length (objfile->obfd, info_ptr,
3792 &initial_length_size);
3793
3794 /* Save the compilation unit for later lookup. */
3795 this_cu = obstack_alloc (&objfile->objfile_obstack,
3796 sizeof (struct dwarf2_per_cu_data));
3797 memset (this_cu, 0, sizeof (*this_cu));
3798 this_cu->offset = offset;
3799 this_cu->length = length + initial_length_size;
3800 this_cu->objfile = objfile;
3801
3802 if (n_comp_units == n_allocated)
3803 {
3804 n_allocated *= 2;
3805 all_comp_units = xrealloc (all_comp_units,
3806 n_allocated
3807 * sizeof (struct dwarf2_per_cu_data *));
3808 }
3809 all_comp_units[n_comp_units++] = this_cu;
3810
3811 info_ptr = info_ptr + this_cu->length;
3812 }
3813
3814 dwarf2_per_objfile->all_comp_units
3815 = obstack_alloc (&objfile->objfile_obstack,
3816 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3817 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3818 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3819 xfree (all_comp_units);
3820 dwarf2_per_objfile->n_comp_units = n_comp_units;
3821 }
3822
3823 /* Process all loaded DIEs for compilation unit CU, starting at
3824 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3825 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3826 DW_AT_ranges). If NEED_PC is set, then this function will set
3827 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3828 and record the covered ranges in the addrmap. */
3829
3830 static void
3831 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3832 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3833 {
3834 struct partial_die_info *pdi;
3835
3836 /* Now, march along the PDI's, descending into ones which have
3837 interesting children but skipping the children of the other ones,
3838 until we reach the end of the compilation unit. */
3839
3840 pdi = first_die;
3841
3842 while (pdi != NULL)
3843 {
3844 fixup_partial_die (pdi, cu);
3845
3846 /* Anonymous namespaces or modules have no name but have interesting
3847 children, so we need to look at them. Ditto for anonymous
3848 enums. */
3849
3850 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3851 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3852 {
3853 switch (pdi->tag)
3854 {
3855 case DW_TAG_subprogram:
3856 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3857 break;
3858 case DW_TAG_constant:
3859 case DW_TAG_variable:
3860 case DW_TAG_typedef:
3861 case DW_TAG_union_type:
3862 if (!pdi->is_declaration)
3863 {
3864 add_partial_symbol (pdi, cu);
3865 }
3866 break;
3867 case DW_TAG_class_type:
3868 case DW_TAG_interface_type:
3869 case DW_TAG_structure_type:
3870 if (!pdi->is_declaration)
3871 {
3872 add_partial_symbol (pdi, cu);
3873 }
3874 break;
3875 case DW_TAG_enumeration_type:
3876 if (!pdi->is_declaration)
3877 add_partial_enumeration (pdi, cu);
3878 break;
3879 case DW_TAG_base_type:
3880 case DW_TAG_subrange_type:
3881 /* File scope base type definitions are added to the partial
3882 symbol table. */
3883 add_partial_symbol (pdi, cu);
3884 break;
3885 case DW_TAG_namespace:
3886 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3887 break;
3888 case DW_TAG_module:
3889 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3890 break;
3891 default:
3892 break;
3893 }
3894 }
3895
3896 /* If the die has a sibling, skip to the sibling. */
3897
3898 pdi = pdi->die_sibling;
3899 }
3900 }
3901
3902 /* Functions used to compute the fully scoped name of a partial DIE.
3903
3904 Normally, this is simple. For C++, the parent DIE's fully scoped
3905 name is concatenated with "::" and the partial DIE's name. For
3906 Java, the same thing occurs except that "." is used instead of "::".
3907 Enumerators are an exception; they use the scope of their parent
3908 enumeration type, i.e. the name of the enumeration type is not
3909 prepended to the enumerator.
3910
3911 There are two complexities. One is DW_AT_specification; in this
3912 case "parent" means the parent of the target of the specification,
3913 instead of the direct parent of the DIE. The other is compilers
3914 which do not emit DW_TAG_namespace; in this case we try to guess
3915 the fully qualified name of structure types from their members'
3916 linkage names. This must be done using the DIE's children rather
3917 than the children of any DW_AT_specification target. We only need
3918 to do this for structures at the top level, i.e. if the target of
3919 any DW_AT_specification (if any; otherwise the DIE itself) does not
3920 have a parent. */
3921
3922 /* Compute the scope prefix associated with PDI's parent, in
3923 compilation unit CU. The result will be allocated on CU's
3924 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3925 field. NULL is returned if no prefix is necessary. */
3926 static char *
3927 partial_die_parent_scope (struct partial_die_info *pdi,
3928 struct dwarf2_cu *cu)
3929 {
3930 char *grandparent_scope;
3931 struct partial_die_info *parent, *real_pdi;
3932
3933 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3934 then this means the parent of the specification DIE. */
3935
3936 real_pdi = pdi;
3937 while (real_pdi->has_specification)
3938 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3939
3940 parent = real_pdi->die_parent;
3941 if (parent == NULL)
3942 return NULL;
3943
3944 if (parent->scope_set)
3945 return parent->scope;
3946
3947 fixup_partial_die (parent, cu);
3948
3949 grandparent_scope = partial_die_parent_scope (parent, cu);
3950
3951 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3952 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3953 Work around this problem here. */
3954 if (cu->language == language_cplus
3955 && parent->tag == DW_TAG_namespace
3956 && strcmp (parent->name, "::") == 0
3957 && grandparent_scope == NULL)
3958 {
3959 parent->scope = NULL;
3960 parent->scope_set = 1;
3961 return NULL;
3962 }
3963
3964 if (pdi->tag == DW_TAG_enumerator)
3965 /* Enumerators should not get the name of the enumeration as a prefix. */
3966 parent->scope = grandparent_scope;
3967 else if (parent->tag == DW_TAG_namespace
3968 || parent->tag == DW_TAG_module
3969 || parent->tag == DW_TAG_structure_type
3970 || parent->tag == DW_TAG_class_type
3971 || parent->tag == DW_TAG_interface_type
3972 || parent->tag == DW_TAG_union_type
3973 || parent->tag == DW_TAG_enumeration_type)
3974 {
3975 if (grandparent_scope == NULL)
3976 parent->scope = parent->name;
3977 else
3978 parent->scope = typename_concat (&cu->comp_unit_obstack,
3979 grandparent_scope,
3980 parent->name, 0, cu);
3981 }
3982 else
3983 {
3984 /* FIXME drow/2004-04-01: What should we be doing with
3985 function-local names? For partial symbols, we should probably be
3986 ignoring them. */
3987 complaint (&symfile_complaints,
3988 _("unhandled containing DIE tag %d for DIE at %d"),
3989 parent->tag, pdi->offset.sect_off);
3990 parent->scope = grandparent_scope;
3991 }
3992
3993 parent->scope_set = 1;
3994 return parent->scope;
3995 }
3996
3997 /* Return the fully scoped name associated with PDI, from compilation unit
3998 CU. The result will be allocated with malloc. */
3999 static char *
4000 partial_die_full_name (struct partial_die_info *pdi,
4001 struct dwarf2_cu *cu)
4002 {
4003 char *parent_scope;
4004
4005 /* If this is a template instantiation, we can not work out the
4006 template arguments from partial DIEs. So, unfortunately, we have
4007 to go through the full DIEs. At least any work we do building
4008 types here will be reused if full symbols are loaded later. */
4009 if (pdi->has_template_arguments)
4010 {
4011 fixup_partial_die (pdi, cu);
4012
4013 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
4014 {
4015 struct die_info *die;
4016 struct attribute attr;
4017 struct dwarf2_cu *ref_cu = cu;
4018
4019 /* DW_FORM_ref_addr is using section offset. */
4020 attr.name = 0;
4021 attr.form = DW_FORM_ref_addr;
4022 attr.u.addr = pdi->offset.sect_off;
4023 die = follow_die_ref (NULL, &attr, &ref_cu);
4024
4025 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
4026 }
4027 }
4028
4029 parent_scope = partial_die_parent_scope (pdi, cu);
4030 if (parent_scope == NULL)
4031 return NULL;
4032 else
4033 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
4034 }
4035
4036 static void
4037 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
4038 {
4039 struct objfile *objfile = cu->objfile;
4040 CORE_ADDR addr = 0;
4041 char *actual_name = NULL;
4042 CORE_ADDR baseaddr;
4043 int built_actual_name = 0;
4044
4045 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4046
4047 actual_name = partial_die_full_name (pdi, cu);
4048 if (actual_name)
4049 built_actual_name = 1;
4050
4051 if (actual_name == NULL)
4052 actual_name = pdi->name;
4053
4054 switch (pdi->tag)
4055 {
4056 case DW_TAG_subprogram:
4057 if (pdi->is_external || cu->language == language_ada)
4058 {
4059 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
4060 of the global scope. But in Ada, we want to be able to access
4061 nested procedures globally. So all Ada subprograms are stored
4062 in the global scope. */
4063 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4064 mst_text, objfile); */
4065 add_psymbol_to_list (actual_name, strlen (actual_name),
4066 built_actual_name,
4067 VAR_DOMAIN, LOC_BLOCK,
4068 &objfile->global_psymbols,
4069 0, pdi->lowpc + baseaddr,
4070 cu->language, objfile);
4071 }
4072 else
4073 {
4074 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4075 mst_file_text, objfile); */
4076 add_psymbol_to_list (actual_name, strlen (actual_name),
4077 built_actual_name,
4078 VAR_DOMAIN, LOC_BLOCK,
4079 &objfile->static_psymbols,
4080 0, pdi->lowpc + baseaddr,
4081 cu->language, objfile);
4082 }
4083 break;
4084 case DW_TAG_constant:
4085 {
4086 struct psymbol_allocation_list *list;
4087
4088 if (pdi->is_external)
4089 list = &objfile->global_psymbols;
4090 else
4091 list = &objfile->static_psymbols;
4092 add_psymbol_to_list (actual_name, strlen (actual_name),
4093 built_actual_name, VAR_DOMAIN, LOC_STATIC,
4094 list, 0, 0, cu->language, objfile);
4095 }
4096 break;
4097 case DW_TAG_variable:
4098 if (pdi->locdesc)
4099 addr = decode_locdesc (pdi->locdesc, cu);
4100
4101 if (pdi->locdesc
4102 && addr == 0
4103 && !dwarf2_per_objfile->has_section_at_zero)
4104 {
4105 /* A global or static variable may also have been stripped
4106 out by the linker if unused, in which case its address
4107 will be nullified; do not add such variables into partial
4108 symbol table then. */
4109 }
4110 else if (pdi->is_external)
4111 {
4112 /* Global Variable.
4113 Don't enter into the minimal symbol tables as there is
4114 a minimal symbol table entry from the ELF symbols already.
4115 Enter into partial symbol table if it has a location
4116 descriptor or a type.
4117 If the location descriptor is missing, new_symbol will create
4118 a LOC_UNRESOLVED symbol, the address of the variable will then
4119 be determined from the minimal symbol table whenever the variable
4120 is referenced.
4121 The address for the partial symbol table entry is not
4122 used by GDB, but it comes in handy for debugging partial symbol
4123 table building. */
4124
4125 if (pdi->locdesc || pdi->has_type)
4126 add_psymbol_to_list (actual_name, strlen (actual_name),
4127 built_actual_name,
4128 VAR_DOMAIN, LOC_STATIC,
4129 &objfile->global_psymbols,
4130 0, addr + baseaddr,
4131 cu->language, objfile);
4132 }
4133 else
4134 {
4135 /* Static Variable. Skip symbols without location descriptors. */
4136 if (pdi->locdesc == NULL)
4137 {
4138 if (built_actual_name)
4139 xfree (actual_name);
4140 return;
4141 }
4142 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
4143 mst_file_data, objfile); */
4144 add_psymbol_to_list (actual_name, strlen (actual_name),
4145 built_actual_name,
4146 VAR_DOMAIN, LOC_STATIC,
4147 &objfile->static_psymbols,
4148 0, addr + baseaddr,
4149 cu->language, objfile);
4150 }
4151 break;
4152 case DW_TAG_typedef:
4153 case DW_TAG_base_type:
4154 case DW_TAG_subrange_type:
4155 add_psymbol_to_list (actual_name, strlen (actual_name),
4156 built_actual_name,
4157 VAR_DOMAIN, LOC_TYPEDEF,
4158 &objfile->static_psymbols,
4159 0, (CORE_ADDR) 0, cu->language, objfile);
4160 break;
4161 case DW_TAG_namespace:
4162 add_psymbol_to_list (actual_name, strlen (actual_name),
4163 built_actual_name,
4164 VAR_DOMAIN, LOC_TYPEDEF,
4165 &objfile->global_psymbols,
4166 0, (CORE_ADDR) 0, cu->language, objfile);
4167 break;
4168 case DW_TAG_class_type:
4169 case DW_TAG_interface_type:
4170 case DW_TAG_structure_type:
4171 case DW_TAG_union_type:
4172 case DW_TAG_enumeration_type:
4173 /* Skip external references. The DWARF standard says in the section
4174 about "Structure, Union, and Class Type Entries": "An incomplete
4175 structure, union or class type is represented by a structure,
4176 union or class entry that does not have a byte size attribute
4177 and that has a DW_AT_declaration attribute." */
4178 if (!pdi->has_byte_size && pdi->is_declaration)
4179 {
4180 if (built_actual_name)
4181 xfree (actual_name);
4182 return;
4183 }
4184
4185 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
4186 static vs. global. */
4187 add_psymbol_to_list (actual_name, strlen (actual_name),
4188 built_actual_name,
4189 STRUCT_DOMAIN, LOC_TYPEDEF,
4190 (cu->language == language_cplus
4191 || cu->language == language_java)
4192 ? &objfile->global_psymbols
4193 : &objfile->static_psymbols,
4194 0, (CORE_ADDR) 0, cu->language, objfile);
4195
4196 break;
4197 case DW_TAG_enumerator:
4198 add_psymbol_to_list (actual_name, strlen (actual_name),
4199 built_actual_name,
4200 VAR_DOMAIN, LOC_CONST,
4201 (cu->language == language_cplus
4202 || cu->language == language_java)
4203 ? &objfile->global_psymbols
4204 : &objfile->static_psymbols,
4205 0, (CORE_ADDR) 0, cu->language, objfile);
4206 break;
4207 default:
4208 break;
4209 }
4210
4211 if (built_actual_name)
4212 xfree (actual_name);
4213 }
4214
4215 /* Read a partial die corresponding to a namespace; also, add a symbol
4216 corresponding to that namespace to the symbol table. NAMESPACE is
4217 the name of the enclosing namespace. */
4218
4219 static void
4220 add_partial_namespace (struct partial_die_info *pdi,
4221 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4222 int need_pc, struct dwarf2_cu *cu)
4223 {
4224 /* Add a symbol for the namespace. */
4225
4226 add_partial_symbol (pdi, cu);
4227
4228 /* Now scan partial symbols in that namespace. */
4229
4230 if (pdi->has_children)
4231 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4232 }
4233
4234 /* Read a partial die corresponding to a Fortran module. */
4235
4236 static void
4237 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4238 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4239 {
4240 /* Now scan partial symbols in that module. */
4241
4242 if (pdi->has_children)
4243 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4244 }
4245
4246 /* Read a partial die corresponding to a subprogram and create a partial
4247 symbol for that subprogram. When the CU language allows it, this
4248 routine also defines a partial symbol for each nested subprogram
4249 that this subprogram contains.
4250
4251 DIE my also be a lexical block, in which case we simply search
4252 recursively for suprograms defined inside that lexical block.
4253 Again, this is only performed when the CU language allows this
4254 type of definitions. */
4255
4256 static void
4257 add_partial_subprogram (struct partial_die_info *pdi,
4258 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4259 int need_pc, struct dwarf2_cu *cu)
4260 {
4261 if (pdi->tag == DW_TAG_subprogram)
4262 {
4263 if (pdi->has_pc_info)
4264 {
4265 if (pdi->lowpc < *lowpc)
4266 *lowpc = pdi->lowpc;
4267 if (pdi->highpc > *highpc)
4268 *highpc = pdi->highpc;
4269 if (need_pc)
4270 {
4271 CORE_ADDR baseaddr;
4272 struct objfile *objfile = cu->objfile;
4273
4274 baseaddr = ANOFFSET (objfile->section_offsets,
4275 SECT_OFF_TEXT (objfile));
4276 addrmap_set_empty (objfile->psymtabs_addrmap,
4277 pdi->lowpc + baseaddr,
4278 pdi->highpc - 1 + baseaddr,
4279 cu->per_cu->v.psymtab);
4280 }
4281 }
4282
4283 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
4284 {
4285 if (!pdi->is_declaration)
4286 /* Ignore subprogram DIEs that do not have a name, they are
4287 illegal. Do not emit a complaint at this point, we will
4288 do so when we convert this psymtab into a symtab. */
4289 if (pdi->name)
4290 add_partial_symbol (pdi, cu);
4291 }
4292 }
4293
4294 if (! pdi->has_children)
4295 return;
4296
4297 if (cu->language == language_ada)
4298 {
4299 pdi = pdi->die_child;
4300 while (pdi != NULL)
4301 {
4302 fixup_partial_die (pdi, cu);
4303 if (pdi->tag == DW_TAG_subprogram
4304 || pdi->tag == DW_TAG_lexical_block)
4305 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4306 pdi = pdi->die_sibling;
4307 }
4308 }
4309 }
4310
4311 /* Read a partial die corresponding to an enumeration type. */
4312
4313 static void
4314 add_partial_enumeration (struct partial_die_info *enum_pdi,
4315 struct dwarf2_cu *cu)
4316 {
4317 struct partial_die_info *pdi;
4318
4319 if (enum_pdi->name != NULL)
4320 add_partial_symbol (enum_pdi, cu);
4321
4322 pdi = enum_pdi->die_child;
4323 while (pdi)
4324 {
4325 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4326 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4327 else
4328 add_partial_symbol (pdi, cu);
4329 pdi = pdi->die_sibling;
4330 }
4331 }
4332
4333 /* Return the initial uleb128 in the die at INFO_PTR. */
4334
4335 static unsigned int
4336 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
4337 {
4338 unsigned int bytes_read;
4339
4340 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4341 }
4342
4343 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4344 Return the corresponding abbrev, or NULL if the number is zero (indicating
4345 an empty DIE). In either case *BYTES_READ will be set to the length of
4346 the initial number. */
4347
4348 static struct abbrev_info *
4349 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4350 struct dwarf2_cu *cu)
4351 {
4352 bfd *abfd = cu->objfile->obfd;
4353 unsigned int abbrev_number;
4354 struct abbrev_info *abbrev;
4355
4356 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4357
4358 if (abbrev_number == 0)
4359 return NULL;
4360
4361 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4362 if (!abbrev)
4363 {
4364 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4365 abbrev_number, bfd_get_filename (abfd));
4366 }
4367
4368 return abbrev;
4369 }
4370
4371 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4372 Returns a pointer to the end of a series of DIEs, terminated by an empty
4373 DIE. Any children of the skipped DIEs will also be skipped. */
4374
4375 static gdb_byte *
4376 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4377 {
4378 struct abbrev_info *abbrev;
4379 unsigned int bytes_read;
4380
4381 while (1)
4382 {
4383 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4384 if (abbrev == NULL)
4385 return info_ptr + bytes_read;
4386 else
4387 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4388 }
4389 }
4390
4391 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4392 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4393 abbrev corresponding to that skipped uleb128 should be passed in
4394 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4395 children. */
4396
4397 static gdb_byte *
4398 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4399 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4400 {
4401 unsigned int bytes_read;
4402 struct attribute attr;
4403 bfd *abfd = cu->objfile->obfd;
4404 unsigned int form, i;
4405
4406 for (i = 0; i < abbrev->num_attrs; i++)
4407 {
4408 /* The only abbrev we care about is DW_AT_sibling. */
4409 if (abbrev->attrs[i].name == DW_AT_sibling)
4410 {
4411 read_attribute (&attr, &abbrev->attrs[i],
4412 abfd, info_ptr, cu);
4413 if (attr.form == DW_FORM_ref_addr)
4414 complaint (&symfile_complaints,
4415 _("ignoring absolute DW_AT_sibling"));
4416 else
4417 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
4418 }
4419
4420 /* If it isn't DW_AT_sibling, skip this attribute. */
4421 form = abbrev->attrs[i].form;
4422 skip_attribute:
4423 switch (form)
4424 {
4425 case DW_FORM_ref_addr:
4426 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4427 and later it is offset sized. */
4428 if (cu->header.version == 2)
4429 info_ptr += cu->header.addr_size;
4430 else
4431 info_ptr += cu->header.offset_size;
4432 break;
4433 case DW_FORM_addr:
4434 info_ptr += cu->header.addr_size;
4435 break;
4436 case DW_FORM_data1:
4437 case DW_FORM_ref1:
4438 case DW_FORM_flag:
4439 info_ptr += 1;
4440 break;
4441 case DW_FORM_flag_present:
4442 break;
4443 case DW_FORM_data2:
4444 case DW_FORM_ref2:
4445 info_ptr += 2;
4446 break;
4447 case DW_FORM_data4:
4448 case DW_FORM_ref4:
4449 info_ptr += 4;
4450 break;
4451 case DW_FORM_data8:
4452 case DW_FORM_ref8:
4453 case DW_FORM_ref_sig8:
4454 info_ptr += 8;
4455 break;
4456 case DW_FORM_string:
4457 read_direct_string (abfd, info_ptr, &bytes_read);
4458 info_ptr += bytes_read;
4459 break;
4460 case DW_FORM_sec_offset:
4461 case DW_FORM_strp:
4462 info_ptr += cu->header.offset_size;
4463 break;
4464 case DW_FORM_exprloc:
4465 case DW_FORM_block:
4466 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4467 info_ptr += bytes_read;
4468 break;
4469 case DW_FORM_block1:
4470 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4471 break;
4472 case DW_FORM_block2:
4473 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4474 break;
4475 case DW_FORM_block4:
4476 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4477 break;
4478 case DW_FORM_sdata:
4479 case DW_FORM_udata:
4480 case DW_FORM_ref_udata:
4481 info_ptr = skip_leb128 (abfd, info_ptr);
4482 break;
4483 case DW_FORM_indirect:
4484 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4485 info_ptr += bytes_read;
4486 /* We need to continue parsing from here, so just go back to
4487 the top. */
4488 goto skip_attribute;
4489
4490 default:
4491 error (_("Dwarf Error: Cannot handle %s "
4492 "in DWARF reader [in module %s]"),
4493 dwarf_form_name (form),
4494 bfd_get_filename (abfd));
4495 }
4496 }
4497
4498 if (abbrev->has_children)
4499 return skip_children (buffer, info_ptr, cu);
4500 else
4501 return info_ptr;
4502 }
4503
4504 /* Locate ORIG_PDI's sibling.
4505 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4506 in BUFFER. */
4507
4508 static gdb_byte *
4509 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4510 gdb_byte *buffer, gdb_byte *info_ptr,
4511 bfd *abfd, struct dwarf2_cu *cu)
4512 {
4513 /* Do we know the sibling already? */
4514
4515 if (orig_pdi->sibling)
4516 return orig_pdi->sibling;
4517
4518 /* Are there any children to deal with? */
4519
4520 if (!orig_pdi->has_children)
4521 return info_ptr;
4522
4523 /* Skip the children the long way. */
4524
4525 return skip_children (buffer, info_ptr, cu);
4526 }
4527
4528 /* Expand this partial symbol table into a full symbol table. */
4529
4530 static void
4531 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4532 {
4533 if (pst != NULL)
4534 {
4535 if (pst->readin)
4536 {
4537 warning (_("bug: psymtab for %s is already read in."),
4538 pst->filename);
4539 }
4540 else
4541 {
4542 if (info_verbose)
4543 {
4544 printf_filtered (_("Reading in symbols for %s..."),
4545 pst->filename);
4546 gdb_flush (gdb_stdout);
4547 }
4548
4549 /* Restore our global data. */
4550 dwarf2_per_objfile = objfile_data (pst->objfile,
4551 dwarf2_objfile_data_key);
4552
4553 /* If this psymtab is constructed from a debug-only objfile, the
4554 has_section_at_zero flag will not necessarily be correct. We
4555 can get the correct value for this flag by looking at the data
4556 associated with the (presumably stripped) associated objfile. */
4557 if (pst->objfile->separate_debug_objfile_backlink)
4558 {
4559 struct dwarf2_per_objfile *dpo_backlink
4560 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4561 dwarf2_objfile_data_key);
4562
4563 dwarf2_per_objfile->has_section_at_zero
4564 = dpo_backlink->has_section_at_zero;
4565 }
4566
4567 dwarf2_per_objfile->reading_partial_symbols = 0;
4568
4569 psymtab_to_symtab_1 (pst);
4570
4571 /* Finish up the debug error message. */
4572 if (info_verbose)
4573 printf_filtered (_("done.\n"));
4574 }
4575 }
4576 }
4577 \f
4578 /* Reading in full CUs. */
4579
4580 /* Add PER_CU to the queue. */
4581
4582 static void
4583 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
4584 {
4585 struct dwarf2_queue_item *item;
4586
4587 per_cu->queued = 1;
4588 item = xmalloc (sizeof (*item));
4589 item->per_cu = per_cu;
4590 item->next = NULL;
4591
4592 if (dwarf2_queue == NULL)
4593 dwarf2_queue = item;
4594 else
4595 dwarf2_queue_tail->next = item;
4596
4597 dwarf2_queue_tail = item;
4598 }
4599
4600 /* Process the queue. */
4601
4602 static void
4603 process_queue (void)
4604 {
4605 struct dwarf2_queue_item *item, *next_item;
4606
4607 /* The queue starts out with one item, but following a DIE reference
4608 may load a new CU, adding it to the end of the queue. */
4609 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4610 {
4611 if (dwarf2_per_objfile->using_index
4612 ? !item->per_cu->v.quick->symtab
4613 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4614 process_full_comp_unit (item->per_cu);
4615
4616 item->per_cu->queued = 0;
4617 next_item = item->next;
4618 xfree (item);
4619 }
4620
4621 dwarf2_queue_tail = NULL;
4622 }
4623
4624 /* Free all allocated queue entries. This function only releases anything if
4625 an error was thrown; if the queue was processed then it would have been
4626 freed as we went along. */
4627
4628 static void
4629 dwarf2_release_queue (void *dummy)
4630 {
4631 struct dwarf2_queue_item *item, *last;
4632
4633 item = dwarf2_queue;
4634 while (item)
4635 {
4636 /* Anything still marked queued is likely to be in an
4637 inconsistent state, so discard it. */
4638 if (item->per_cu->queued)
4639 {
4640 if (item->per_cu->cu != NULL)
4641 free_one_cached_comp_unit (item->per_cu->cu);
4642 item->per_cu->queued = 0;
4643 }
4644
4645 last = item;
4646 item = item->next;
4647 xfree (last);
4648 }
4649
4650 dwarf2_queue = dwarf2_queue_tail = NULL;
4651 }
4652
4653 /* Read in full symbols for PST, and anything it depends on. */
4654
4655 static void
4656 psymtab_to_symtab_1 (struct partial_symtab *pst)
4657 {
4658 struct dwarf2_per_cu_data *per_cu;
4659 struct cleanup *back_to;
4660 int i;
4661
4662 for (i = 0; i < pst->number_of_dependencies; i++)
4663 if (!pst->dependencies[i]->readin)
4664 {
4665 /* Inform about additional files that need to be read in. */
4666 if (info_verbose)
4667 {
4668 /* FIXME: i18n: Need to make this a single string. */
4669 fputs_filtered (" ", gdb_stdout);
4670 wrap_here ("");
4671 fputs_filtered ("and ", gdb_stdout);
4672 wrap_here ("");
4673 printf_filtered ("%s...", pst->dependencies[i]->filename);
4674 wrap_here (""); /* Flush output. */
4675 gdb_flush (gdb_stdout);
4676 }
4677 psymtab_to_symtab_1 (pst->dependencies[i]);
4678 }
4679
4680 per_cu = pst->read_symtab_private;
4681
4682 if (per_cu == NULL)
4683 {
4684 /* It's an include file, no symbols to read for it.
4685 Everything is in the parent symtab. */
4686 pst->readin = 1;
4687 return;
4688 }
4689
4690 dw2_do_instantiate_symtab (per_cu);
4691 }
4692
4693 /* Load the DIEs associated with PER_CU into memory. */
4694
4695 static void
4696 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4697 {
4698 struct objfile *objfile = per_cu->objfile;
4699 bfd *abfd = objfile->obfd;
4700 struct dwarf2_cu *cu;
4701 sect_offset offset;
4702 gdb_byte *info_ptr, *beg_of_comp_unit;
4703 struct cleanup *free_cu_cleanup = NULL;
4704 struct attribute *attr;
4705 int read_cu = 0;
4706
4707 gdb_assert (! per_cu->debug_types_section);
4708
4709 /* Set local variables from the partial symbol table info. */
4710 offset = per_cu->offset;
4711
4712 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4713 info_ptr = dwarf2_per_objfile->info.buffer + offset.sect_off;
4714 beg_of_comp_unit = info_ptr;
4715
4716 if (per_cu->cu == NULL)
4717 {
4718 cu = xmalloc (sizeof (*cu));
4719 init_one_comp_unit (cu, per_cu);
4720
4721 read_cu = 1;
4722
4723 /* If an error occurs while loading, release our storage. */
4724 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4725
4726 /* Read in the comp_unit header. */
4727 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4728
4729 /* Skip dummy compilation units. */
4730 if (info_ptr >= (dwarf2_per_objfile->info.buffer
4731 + dwarf2_per_objfile->info.size)
4732 || peek_abbrev_code (abfd, info_ptr) == 0)
4733 {
4734 do_cleanups (free_cu_cleanup);
4735 return;
4736 }
4737
4738 /* Complete the cu_header. */
4739 cu->header.offset = offset;
4740 cu->header.first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4741 }
4742 else
4743 {
4744 cu = per_cu->cu;
4745 info_ptr += cu->header.first_die_offset.cu_off;
4746 }
4747
4748 cu->dies = read_comp_unit (info_ptr, cu);
4749
4750 /* We try not to read any attributes in this function, because not
4751 all CUs needed for references have been loaded yet, and symbol
4752 table processing isn't initialized. But we have to set the CU language,
4753 or we won't be able to build types correctly. */
4754 prepare_one_comp_unit (cu, cu->dies);
4755
4756 /* Similarly, if we do not read the producer, we can not apply
4757 producer-specific interpretation. */
4758 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4759 if (attr)
4760 cu->producer = DW_STRING (attr);
4761
4762 if (read_cu)
4763 {
4764 /* We've successfully allocated this compilation unit. Let our
4765 caller clean it up when finished with it. */
4766 discard_cleanups (free_cu_cleanup);
4767
4768 /* Link this CU into read_in_chain. */
4769 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4770 dwarf2_per_objfile->read_in_chain = per_cu;
4771 }
4772 }
4773
4774 /* Add a DIE to the delayed physname list. */
4775
4776 static void
4777 add_to_method_list (struct type *type, int fnfield_index, int index,
4778 const char *name, struct die_info *die,
4779 struct dwarf2_cu *cu)
4780 {
4781 struct delayed_method_info mi;
4782 mi.type = type;
4783 mi.fnfield_index = fnfield_index;
4784 mi.index = index;
4785 mi.name = name;
4786 mi.die = die;
4787 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4788 }
4789
4790 /* A cleanup for freeing the delayed method list. */
4791
4792 static void
4793 free_delayed_list (void *ptr)
4794 {
4795 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4796 if (cu->method_list != NULL)
4797 {
4798 VEC_free (delayed_method_info, cu->method_list);
4799 cu->method_list = NULL;
4800 }
4801 }
4802
4803 /* Compute the physnames of any methods on the CU's method list.
4804
4805 The computation of method physnames is delayed in order to avoid the
4806 (bad) condition that one of the method's formal parameters is of an as yet
4807 incomplete type. */
4808
4809 static void
4810 compute_delayed_physnames (struct dwarf2_cu *cu)
4811 {
4812 int i;
4813 struct delayed_method_info *mi;
4814 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4815 {
4816 const char *physname;
4817 struct fn_fieldlist *fn_flp
4818 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4819 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
4820 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4821 }
4822 }
4823
4824 /* Generate full symbol information for PER_CU, whose DIEs have
4825 already been loaded into memory. */
4826
4827 static void
4828 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4829 {
4830 struct dwarf2_cu *cu = per_cu->cu;
4831 struct objfile *objfile = per_cu->objfile;
4832 CORE_ADDR lowpc, highpc;
4833 struct symtab *symtab;
4834 struct cleanup *back_to, *delayed_list_cleanup;
4835 CORE_ADDR baseaddr;
4836
4837 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4838
4839 buildsym_init ();
4840 back_to = make_cleanup (really_free_pendings, NULL);
4841 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4842
4843 cu->list_in_scope = &file_symbols;
4844
4845 /* Do line number decoding in read_file_scope () */
4846 process_die (cu->dies, cu);
4847
4848 /* Now that we have processed all the DIEs in the CU, all the types
4849 should be complete, and it should now be safe to compute all of the
4850 physnames. */
4851 compute_delayed_physnames (cu);
4852 do_cleanups (delayed_list_cleanup);
4853
4854 /* Some compilers don't define a DW_AT_high_pc attribute for the
4855 compilation unit. If the DW_AT_high_pc is missing, synthesize
4856 it, by scanning the DIE's below the compilation unit. */
4857 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4858
4859 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4860
4861 if (symtab != NULL)
4862 {
4863 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4864
4865 /* Set symtab language to language from DW_AT_language. If the
4866 compilation is from a C file generated by language preprocessors, do
4867 not set the language if it was already deduced by start_subfile. */
4868 if (!(cu->language == language_c && symtab->language != language_c))
4869 symtab->language = cu->language;
4870
4871 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
4872 produce DW_AT_location with location lists but it can be possibly
4873 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
4874 there were bugs in prologue debug info, fixed later in GCC-4.5
4875 by "unwind info for epilogues" patch (which is not directly related).
4876
4877 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
4878 needed, it would be wrong due to missing DW_AT_producer there.
4879
4880 Still one can confuse GDB by using non-standard GCC compilation
4881 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
4882 */
4883 if (cu->has_loclist && gcc_4_minor >= 5)
4884 symtab->locations_valid = 1;
4885
4886 if (gcc_4_minor >= 5)
4887 symtab->epilogue_unwind_valid = 1;
4888
4889 symtab->call_site_htab = cu->call_site_htab;
4890 }
4891
4892 if (dwarf2_per_objfile->using_index)
4893 per_cu->v.quick->symtab = symtab;
4894 else
4895 {
4896 struct partial_symtab *pst = per_cu->v.psymtab;
4897 pst->symtab = symtab;
4898 pst->readin = 1;
4899 }
4900
4901 do_cleanups (back_to);
4902 }
4903
4904 /* Process a die and its children. */
4905
4906 static void
4907 process_die (struct die_info *die, struct dwarf2_cu *cu)
4908 {
4909 switch (die->tag)
4910 {
4911 case DW_TAG_padding:
4912 break;
4913 case DW_TAG_compile_unit:
4914 read_file_scope (die, cu);
4915 break;
4916 case DW_TAG_type_unit:
4917 read_type_unit_scope (die, cu);
4918 break;
4919 case DW_TAG_subprogram:
4920 case DW_TAG_inlined_subroutine:
4921 read_func_scope (die, cu);
4922 break;
4923 case DW_TAG_lexical_block:
4924 case DW_TAG_try_block:
4925 case DW_TAG_catch_block:
4926 read_lexical_block_scope (die, cu);
4927 break;
4928 case DW_TAG_GNU_call_site:
4929 read_call_site_scope (die, cu);
4930 break;
4931 case DW_TAG_class_type:
4932 case DW_TAG_interface_type:
4933 case DW_TAG_structure_type:
4934 case DW_TAG_union_type:
4935 process_structure_scope (die, cu);
4936 break;
4937 case DW_TAG_enumeration_type:
4938 process_enumeration_scope (die, cu);
4939 break;
4940
4941 /* These dies have a type, but processing them does not create
4942 a symbol or recurse to process the children. Therefore we can
4943 read them on-demand through read_type_die. */
4944 case DW_TAG_subroutine_type:
4945 case DW_TAG_set_type:
4946 case DW_TAG_array_type:
4947 case DW_TAG_pointer_type:
4948 case DW_TAG_ptr_to_member_type:
4949 case DW_TAG_reference_type:
4950 case DW_TAG_string_type:
4951 break;
4952
4953 case DW_TAG_base_type:
4954 case DW_TAG_subrange_type:
4955 case DW_TAG_typedef:
4956 /* Add a typedef symbol for the type definition, if it has a
4957 DW_AT_name. */
4958 new_symbol (die, read_type_die (die, cu), cu);
4959 break;
4960 case DW_TAG_common_block:
4961 read_common_block (die, cu);
4962 break;
4963 case DW_TAG_common_inclusion:
4964 break;
4965 case DW_TAG_namespace:
4966 processing_has_namespace_info = 1;
4967 read_namespace (die, cu);
4968 break;
4969 case DW_TAG_module:
4970 processing_has_namespace_info = 1;
4971 read_module (die, cu);
4972 break;
4973 case DW_TAG_imported_declaration:
4974 case DW_TAG_imported_module:
4975 processing_has_namespace_info = 1;
4976 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4977 || cu->language != language_fortran))
4978 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4979 dwarf_tag_name (die->tag));
4980 read_import_statement (die, cu);
4981 break;
4982 default:
4983 new_symbol (die, NULL, cu);
4984 break;
4985 }
4986 }
4987
4988 /* A helper function for dwarf2_compute_name which determines whether DIE
4989 needs to have the name of the scope prepended to the name listed in the
4990 die. */
4991
4992 static int
4993 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4994 {
4995 struct attribute *attr;
4996
4997 switch (die->tag)
4998 {
4999 case DW_TAG_namespace:
5000 case DW_TAG_typedef:
5001 case DW_TAG_class_type:
5002 case DW_TAG_interface_type:
5003 case DW_TAG_structure_type:
5004 case DW_TAG_union_type:
5005 case DW_TAG_enumeration_type:
5006 case DW_TAG_enumerator:
5007 case DW_TAG_subprogram:
5008 case DW_TAG_member:
5009 return 1;
5010
5011 case DW_TAG_variable:
5012 case DW_TAG_constant:
5013 /* We only need to prefix "globally" visible variables. These include
5014 any variable marked with DW_AT_external or any variable that
5015 lives in a namespace. [Variables in anonymous namespaces
5016 require prefixing, but they are not DW_AT_external.] */
5017
5018 if (dwarf2_attr (die, DW_AT_specification, cu))
5019 {
5020 struct dwarf2_cu *spec_cu = cu;
5021
5022 return die_needs_namespace (die_specification (die, &spec_cu),
5023 spec_cu);
5024 }
5025
5026 attr = dwarf2_attr (die, DW_AT_external, cu);
5027 if (attr == NULL && die->parent->tag != DW_TAG_namespace
5028 && die->parent->tag != DW_TAG_module)
5029 return 0;
5030 /* A variable in a lexical block of some kind does not need a
5031 namespace, even though in C++ such variables may be external
5032 and have a mangled name. */
5033 if (die->parent->tag == DW_TAG_lexical_block
5034 || die->parent->tag == DW_TAG_try_block
5035 || die->parent->tag == DW_TAG_catch_block
5036 || die->parent->tag == DW_TAG_subprogram)
5037 return 0;
5038 return 1;
5039
5040 default:
5041 return 0;
5042 }
5043 }
5044
5045 /* Retrieve the last character from a mem_file. */
5046
5047 static void
5048 do_ui_file_peek_last (void *object, const char *buffer, long length)
5049 {
5050 char *last_char_p = (char *) object;
5051
5052 if (length > 0)
5053 *last_char_p = buffer[length - 1];
5054 }
5055
5056 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
5057 compute the physname for the object, which include a method's
5058 formal parameters (C++/Java) and return type (Java).
5059
5060 For Ada, return the DIE's linkage name rather than the fully qualified
5061 name. PHYSNAME is ignored..
5062
5063 The result is allocated on the objfile_obstack and canonicalized. */
5064
5065 static const char *
5066 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
5067 int physname)
5068 {
5069 struct objfile *objfile = cu->objfile;
5070
5071 if (name == NULL)
5072 name = dwarf2_name (die, cu);
5073
5074 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
5075 compute it by typename_concat inside GDB. */
5076 if (cu->language == language_ada
5077 || (cu->language == language_fortran && physname))
5078 {
5079 /* For Ada unit, we prefer the linkage name over the name, as
5080 the former contains the exported name, which the user expects
5081 to be able to reference. Ideally, we want the user to be able
5082 to reference this entity using either natural or linkage name,
5083 but we haven't started looking at this enhancement yet. */
5084 struct attribute *attr;
5085
5086 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5087 if (attr == NULL)
5088 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5089 if (attr && DW_STRING (attr))
5090 return DW_STRING (attr);
5091 }
5092
5093 /* These are the only languages we know how to qualify names in. */
5094 if (name != NULL
5095 && (cu->language == language_cplus || cu->language == language_java
5096 || cu->language == language_fortran))
5097 {
5098 if (die_needs_namespace (die, cu))
5099 {
5100 long length;
5101 const char *prefix;
5102 struct ui_file *buf;
5103
5104 prefix = determine_prefix (die, cu);
5105 buf = mem_fileopen ();
5106 if (*prefix != '\0')
5107 {
5108 char *prefixed_name = typename_concat (NULL, prefix, name,
5109 physname, cu);
5110
5111 fputs_unfiltered (prefixed_name, buf);
5112 xfree (prefixed_name);
5113 }
5114 else
5115 fputs_unfiltered (name, buf);
5116
5117 /* Template parameters may be specified in the DIE's DW_AT_name, or
5118 as children with DW_TAG_template_type_param or
5119 DW_TAG_value_type_param. If the latter, add them to the name
5120 here. If the name already has template parameters, then
5121 skip this step; some versions of GCC emit both, and
5122 it is more efficient to use the pre-computed name.
5123
5124 Something to keep in mind about this process: it is very
5125 unlikely, or in some cases downright impossible, to produce
5126 something that will match the mangled name of a function.
5127 If the definition of the function has the same debug info,
5128 we should be able to match up with it anyway. But fallbacks
5129 using the minimal symbol, for instance to find a method
5130 implemented in a stripped copy of libstdc++, will not work.
5131 If we do not have debug info for the definition, we will have to
5132 match them up some other way.
5133
5134 When we do name matching there is a related problem with function
5135 templates; two instantiated function templates are allowed to
5136 differ only by their return types, which we do not add here. */
5137
5138 if (cu->language == language_cplus && strchr (name, '<') == NULL)
5139 {
5140 struct attribute *attr;
5141 struct die_info *child;
5142 int first = 1;
5143
5144 die->building_fullname = 1;
5145
5146 for (child = die->child; child != NULL; child = child->sibling)
5147 {
5148 struct type *type;
5149 long value;
5150 gdb_byte *bytes;
5151 struct dwarf2_locexpr_baton *baton;
5152 struct value *v;
5153
5154 if (child->tag != DW_TAG_template_type_param
5155 && child->tag != DW_TAG_template_value_param)
5156 continue;
5157
5158 if (first)
5159 {
5160 fputs_unfiltered ("<", buf);
5161 first = 0;
5162 }
5163 else
5164 fputs_unfiltered (", ", buf);
5165
5166 attr = dwarf2_attr (child, DW_AT_type, cu);
5167 if (attr == NULL)
5168 {
5169 complaint (&symfile_complaints,
5170 _("template parameter missing DW_AT_type"));
5171 fputs_unfiltered ("UNKNOWN_TYPE", buf);
5172 continue;
5173 }
5174 type = die_type (child, cu);
5175
5176 if (child->tag == DW_TAG_template_type_param)
5177 {
5178 c_print_type (type, "", buf, -1, 0);
5179 continue;
5180 }
5181
5182 attr = dwarf2_attr (child, DW_AT_const_value, cu);
5183 if (attr == NULL)
5184 {
5185 complaint (&symfile_complaints,
5186 _("template parameter missing "
5187 "DW_AT_const_value"));
5188 fputs_unfiltered ("UNKNOWN_VALUE", buf);
5189 continue;
5190 }
5191
5192 dwarf2_const_value_attr (attr, type, name,
5193 &cu->comp_unit_obstack, cu,
5194 &value, &bytes, &baton);
5195
5196 if (TYPE_NOSIGN (type))
5197 /* GDB prints characters as NUMBER 'CHAR'. If that's
5198 changed, this can use value_print instead. */
5199 c_printchar (value, type, buf);
5200 else
5201 {
5202 struct value_print_options opts;
5203
5204 if (baton != NULL)
5205 v = dwarf2_evaluate_loc_desc (type, NULL,
5206 baton->data,
5207 baton->size,
5208 baton->per_cu);
5209 else if (bytes != NULL)
5210 {
5211 v = allocate_value (type);
5212 memcpy (value_contents_writeable (v), bytes,
5213 TYPE_LENGTH (type));
5214 }
5215 else
5216 v = value_from_longest (type, value);
5217
5218 /* Specify decimal so that we do not depend on
5219 the radix. */
5220 get_formatted_print_options (&opts, 'd');
5221 opts.raw = 1;
5222 value_print (v, buf, &opts);
5223 release_value (v);
5224 value_free (v);
5225 }
5226 }
5227
5228 die->building_fullname = 0;
5229
5230 if (!first)
5231 {
5232 /* Close the argument list, with a space if necessary
5233 (nested templates). */
5234 char last_char = '\0';
5235 ui_file_put (buf, do_ui_file_peek_last, &last_char);
5236 if (last_char == '>')
5237 fputs_unfiltered (" >", buf);
5238 else
5239 fputs_unfiltered (">", buf);
5240 }
5241 }
5242
5243 /* For Java and C++ methods, append formal parameter type
5244 information, if PHYSNAME. */
5245
5246 if (physname && die->tag == DW_TAG_subprogram
5247 && (cu->language == language_cplus
5248 || cu->language == language_java))
5249 {
5250 struct type *type = read_type_die (die, cu);
5251
5252 c_type_print_args (type, buf, 1, cu->language);
5253
5254 if (cu->language == language_java)
5255 {
5256 /* For java, we must append the return type to method
5257 names. */
5258 if (die->tag == DW_TAG_subprogram)
5259 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5260 0, 0);
5261 }
5262 else if (cu->language == language_cplus)
5263 {
5264 /* Assume that an artificial first parameter is
5265 "this", but do not crash if it is not. RealView
5266 marks unnamed (and thus unused) parameters as
5267 artificial; there is no way to differentiate
5268 the two cases. */
5269 if (TYPE_NFIELDS (type) > 0
5270 && TYPE_FIELD_ARTIFICIAL (type, 0)
5271 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
5272 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5273 0))))
5274 fputs_unfiltered (" const", buf);
5275 }
5276 }
5277
5278 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
5279 &length);
5280 ui_file_delete (buf);
5281
5282 if (cu->language == language_cplus)
5283 {
5284 char *cname
5285 = dwarf2_canonicalize_name (name, cu,
5286 &objfile->objfile_obstack);
5287
5288 if (cname != NULL)
5289 name = cname;
5290 }
5291 }
5292 }
5293
5294 return name;
5295 }
5296
5297 /* Return the fully qualified name of DIE, based on its DW_AT_name.
5298 If scope qualifiers are appropriate they will be added. The result
5299 will be allocated on the objfile_obstack, or NULL if the DIE does
5300 not have a name. NAME may either be from a previous call to
5301 dwarf2_name or NULL.
5302
5303 The output string will be canonicalized (if C++/Java). */
5304
5305 static const char *
5306 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5307 {
5308 return dwarf2_compute_name (name, die, cu, 0);
5309 }
5310
5311 /* Construct a physname for the given DIE in CU. NAME may either be
5312 from a previous call to dwarf2_name or NULL. The result will be
5313 allocated on the objfile_objstack or NULL if the DIE does not have a
5314 name.
5315
5316 The output string will be canonicalized (if C++/Java). */
5317
5318 static const char *
5319 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5320 {
5321 struct objfile *objfile = cu->objfile;
5322 struct attribute *attr;
5323 const char *retval, *mangled = NULL, *canon = NULL;
5324 struct cleanup *back_to;
5325 int need_copy = 1;
5326
5327 /* In this case dwarf2_compute_name is just a shortcut not building anything
5328 on its own. */
5329 if (!die_needs_namespace (die, cu))
5330 return dwarf2_compute_name (name, die, cu, 1);
5331
5332 back_to = make_cleanup (null_cleanup, NULL);
5333
5334 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5335 if (!attr)
5336 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5337
5338 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
5339 has computed. */
5340 if (attr && DW_STRING (attr))
5341 {
5342 char *demangled;
5343
5344 mangled = DW_STRING (attr);
5345
5346 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
5347 type. It is easier for GDB users to search for such functions as
5348 `name(params)' than `long name(params)'. In such case the minimal
5349 symbol names do not match the full symbol names but for template
5350 functions there is never a need to look up their definition from their
5351 declaration so the only disadvantage remains the minimal symbol
5352 variant `long name(params)' does not have the proper inferior type.
5353 */
5354
5355 demangled = cplus_demangle (mangled, (DMGL_PARAMS | DMGL_ANSI
5356 | (cu->language == language_java
5357 ? DMGL_JAVA | DMGL_RET_POSTFIX
5358 : DMGL_RET_DROP)));
5359 if (demangled)
5360 {
5361 make_cleanup (xfree, demangled);
5362 canon = demangled;
5363 }
5364 else
5365 {
5366 canon = mangled;
5367 need_copy = 0;
5368 }
5369 }
5370
5371 if (canon == NULL || check_physname)
5372 {
5373 const char *physname = dwarf2_compute_name (name, die, cu, 1);
5374
5375 if (canon != NULL && strcmp (physname, canon) != 0)
5376 {
5377 /* It may not mean a bug in GDB. The compiler could also
5378 compute DW_AT_linkage_name incorrectly. But in such case
5379 GDB would need to be bug-to-bug compatible. */
5380
5381 complaint (&symfile_complaints,
5382 _("Computed physname <%s> does not match demangled <%s> "
5383 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
5384 physname, canon, mangled, die->offset.sect_off, objfile->name);
5385
5386 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
5387 is available here - over computed PHYSNAME. It is safer
5388 against both buggy GDB and buggy compilers. */
5389
5390 retval = canon;
5391 }
5392 else
5393 {
5394 retval = physname;
5395 need_copy = 0;
5396 }
5397 }
5398 else
5399 retval = canon;
5400
5401 if (need_copy)
5402 retval = obsavestring (retval, strlen (retval),
5403 &objfile->objfile_obstack);
5404
5405 do_cleanups (back_to);
5406 return retval;
5407 }
5408
5409 /* Read the import statement specified by the given die and record it. */
5410
5411 static void
5412 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5413 {
5414 struct objfile *objfile = cu->objfile;
5415 struct attribute *import_attr;
5416 struct die_info *imported_die, *child_die;
5417 struct dwarf2_cu *imported_cu;
5418 const char *imported_name;
5419 const char *imported_name_prefix;
5420 const char *canonical_name;
5421 const char *import_alias;
5422 const char *imported_declaration = NULL;
5423 const char *import_prefix;
5424 VEC (const_char_ptr) *excludes = NULL;
5425 struct cleanup *cleanups;
5426
5427 char *temp;
5428
5429 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5430 if (import_attr == NULL)
5431 {
5432 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5433 dwarf_tag_name (die->tag));
5434 return;
5435 }
5436
5437 imported_cu = cu;
5438 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5439 imported_name = dwarf2_name (imported_die, imported_cu);
5440 if (imported_name == NULL)
5441 {
5442 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5443
5444 The import in the following code:
5445 namespace A
5446 {
5447 typedef int B;
5448 }
5449
5450 int main ()
5451 {
5452 using A::B;
5453 B b;
5454 return b;
5455 }
5456
5457 ...
5458 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5459 <52> DW_AT_decl_file : 1
5460 <53> DW_AT_decl_line : 6
5461 <54> DW_AT_import : <0x75>
5462 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5463 <59> DW_AT_name : B
5464 <5b> DW_AT_decl_file : 1
5465 <5c> DW_AT_decl_line : 2
5466 <5d> DW_AT_type : <0x6e>
5467 ...
5468 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5469 <76> DW_AT_byte_size : 4
5470 <77> DW_AT_encoding : 5 (signed)
5471
5472 imports the wrong die ( 0x75 instead of 0x58 ).
5473 This case will be ignored until the gcc bug is fixed. */
5474 return;
5475 }
5476
5477 /* Figure out the local name after import. */
5478 import_alias = dwarf2_name (die, cu);
5479
5480 /* Figure out where the statement is being imported to. */
5481 import_prefix = determine_prefix (die, cu);
5482
5483 /* Figure out what the scope of the imported die is and prepend it
5484 to the name of the imported die. */
5485 imported_name_prefix = determine_prefix (imported_die, imported_cu);
5486
5487 if (imported_die->tag != DW_TAG_namespace
5488 && imported_die->tag != DW_TAG_module)
5489 {
5490 imported_declaration = imported_name;
5491 canonical_name = imported_name_prefix;
5492 }
5493 else if (strlen (imported_name_prefix) > 0)
5494 {
5495 temp = alloca (strlen (imported_name_prefix)
5496 + 2 + strlen (imported_name) + 1);
5497 strcpy (temp, imported_name_prefix);
5498 strcat (temp, "::");
5499 strcat (temp, imported_name);
5500 canonical_name = temp;
5501 }
5502 else
5503 canonical_name = imported_name;
5504
5505 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
5506
5507 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
5508 for (child_die = die->child; child_die && child_die->tag;
5509 child_die = sibling_die (child_die))
5510 {
5511 /* DWARF-4: A Fortran use statement with a “rename list” may be
5512 represented by an imported module entry with an import attribute
5513 referring to the module and owned entries corresponding to those
5514 entities that are renamed as part of being imported. */
5515
5516 if (child_die->tag != DW_TAG_imported_declaration)
5517 {
5518 complaint (&symfile_complaints,
5519 _("child DW_TAG_imported_declaration expected "
5520 "- DIE at 0x%x [in module %s]"),
5521 child_die->offset.sect_off, objfile->name);
5522 continue;
5523 }
5524
5525 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
5526 if (import_attr == NULL)
5527 {
5528 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5529 dwarf_tag_name (child_die->tag));
5530 continue;
5531 }
5532
5533 imported_cu = cu;
5534 imported_die = follow_die_ref_or_sig (child_die, import_attr,
5535 &imported_cu);
5536 imported_name = dwarf2_name (imported_die, imported_cu);
5537 if (imported_name == NULL)
5538 {
5539 complaint (&symfile_complaints,
5540 _("child DW_TAG_imported_declaration has unknown "
5541 "imported name - DIE at 0x%x [in module %s]"),
5542 child_die->offset.sect_off, objfile->name);
5543 continue;
5544 }
5545
5546 VEC_safe_push (const_char_ptr, excludes, imported_name);
5547
5548 process_die (child_die, cu);
5549 }
5550
5551 cp_add_using_directive (import_prefix,
5552 canonical_name,
5553 import_alias,
5554 imported_declaration,
5555 excludes,
5556 &objfile->objfile_obstack);
5557
5558 do_cleanups (cleanups);
5559 }
5560
5561 /* Cleanup function for read_file_scope. */
5562
5563 static void
5564 free_cu_line_header (void *arg)
5565 {
5566 struct dwarf2_cu *cu = arg;
5567
5568 free_line_header (cu->line_header);
5569 cu->line_header = NULL;
5570 }
5571
5572 static void
5573 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5574 char **name, char **comp_dir)
5575 {
5576 struct attribute *attr;
5577
5578 *name = NULL;
5579 *comp_dir = NULL;
5580
5581 /* Find the filename. Do not use dwarf2_name here, since the filename
5582 is not a source language identifier. */
5583 attr = dwarf2_attr (die, DW_AT_name, cu);
5584 if (attr)
5585 {
5586 *name = DW_STRING (attr);
5587 }
5588
5589 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5590 if (attr)
5591 *comp_dir = DW_STRING (attr);
5592 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5593 {
5594 *comp_dir = ldirname (*name);
5595 if (*comp_dir != NULL)
5596 make_cleanup (xfree, *comp_dir);
5597 }
5598 if (*comp_dir != NULL)
5599 {
5600 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5601 directory, get rid of it. */
5602 char *cp = strchr (*comp_dir, ':');
5603
5604 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5605 *comp_dir = cp + 1;
5606 }
5607
5608 if (*name == NULL)
5609 *name = "<unknown>";
5610 }
5611
5612 /* Handle DW_AT_stmt_list for a compilation unit or type unit.
5613 DIE is the DW_TAG_compile_unit or DW_TAG_type_unit die for CU.
5614 COMP_DIR is the compilation directory.
5615 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
5616
5617 static void
5618 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
5619 const char *comp_dir, int want_line_info)
5620 {
5621 struct attribute *attr;
5622 struct objfile *objfile = cu->objfile;
5623 bfd *abfd = objfile->obfd;
5624
5625 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5626 if (attr)
5627 {
5628 unsigned int line_offset = DW_UNSND (attr);
5629 struct line_header *line_header
5630 = dwarf_decode_line_header (line_offset, abfd, cu);
5631
5632 if (line_header)
5633 {
5634 cu->line_header = line_header;
5635 make_cleanup (free_cu_line_header, cu);
5636 dwarf_decode_lines (line_header, comp_dir, cu, NULL, want_line_info);
5637 }
5638 }
5639 }
5640
5641 /* Process DW_TAG_compile_unit. */
5642
5643 static void
5644 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5645 {
5646 struct objfile *objfile = cu->objfile;
5647 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5648 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5649 CORE_ADDR highpc = ((CORE_ADDR) 0);
5650 struct attribute *attr;
5651 char *name = NULL;
5652 char *comp_dir = NULL;
5653 struct die_info *child_die;
5654 bfd *abfd = objfile->obfd;
5655 CORE_ADDR baseaddr;
5656
5657 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5658
5659 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5660
5661 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5662 from finish_block. */
5663 if (lowpc == ((CORE_ADDR) -1))
5664 lowpc = highpc;
5665 lowpc += baseaddr;
5666 highpc += baseaddr;
5667
5668 find_file_and_directory (die, cu, &name, &comp_dir);
5669
5670 attr = dwarf2_attr (die, DW_AT_language, cu);
5671 if (attr)
5672 {
5673 set_cu_language (DW_UNSND (attr), cu);
5674 }
5675
5676 attr = dwarf2_attr (die, DW_AT_producer, cu);
5677 if (attr)
5678 cu->producer = DW_STRING (attr);
5679
5680 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5681 standardised yet. As a workaround for the language detection we fall
5682 back to the DW_AT_producer string. */
5683 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5684 cu->language = language_opencl;
5685
5686 /* We assume that we're processing GCC output. */
5687 processing_gcc_compilation = 2;
5688
5689 processing_has_namespace_info = 0;
5690
5691 start_symtab (name, comp_dir, lowpc);
5692 record_debugformat ("DWARF 2");
5693 record_producer (cu->producer);
5694
5695 /* Decode line number information if present. We do this before
5696 processing child DIEs, so that the line header table is available
5697 for DW_AT_decl_file. */
5698 handle_DW_AT_stmt_list (die, cu, comp_dir, 1);
5699
5700 /* Process all dies in compilation unit. */
5701 if (die->child != NULL)
5702 {
5703 child_die = die->child;
5704 while (child_die && child_die->tag)
5705 {
5706 process_die (child_die, cu);
5707 child_die = sibling_die (child_die);
5708 }
5709 }
5710
5711 /* Decode macro information, if present. Dwarf 2 macro information
5712 refers to information in the line number info statement program
5713 header, so we can only read it if we've read the header
5714 successfully. */
5715 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
5716 if (attr && cu->line_header)
5717 {
5718 if (dwarf2_attr (die, DW_AT_macro_info, cu))
5719 complaint (&symfile_complaints,
5720 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
5721
5722 dwarf_decode_macros (cu->line_header, DW_UNSND (attr),
5723 comp_dir, abfd, cu,
5724 &dwarf2_per_objfile->macro, 1);
5725 }
5726 else
5727 {
5728 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5729 if (attr && cu->line_header)
5730 {
5731 unsigned int macro_offset = DW_UNSND (attr);
5732
5733 dwarf_decode_macros (cu->line_header, macro_offset,
5734 comp_dir, abfd, cu,
5735 &dwarf2_per_objfile->macinfo, 0);
5736 }
5737 }
5738
5739 do_cleanups (back_to);
5740 }
5741
5742 /* Process DW_TAG_type_unit.
5743 For TUs we want to skip the first top level sibling if it's not the
5744 actual type being defined by this TU. In this case the first top
5745 level sibling is there to provide context only. */
5746
5747 static void
5748 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5749 {
5750 struct objfile *objfile = cu->objfile;
5751 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5752 CORE_ADDR lowpc;
5753 struct attribute *attr;
5754 char *name = NULL;
5755 char *comp_dir = NULL;
5756 struct die_info *child_die;
5757 bfd *abfd = objfile->obfd;
5758
5759 /* start_symtab needs a low pc, but we don't really have one.
5760 Do what read_file_scope would do in the absence of such info. */
5761 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5762
5763 /* Find the filename. Do not use dwarf2_name here, since the filename
5764 is not a source language identifier. */
5765 attr = dwarf2_attr (die, DW_AT_name, cu);
5766 if (attr)
5767 name = DW_STRING (attr);
5768
5769 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5770 if (attr)
5771 comp_dir = DW_STRING (attr);
5772 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5773 {
5774 comp_dir = ldirname (name);
5775 if (comp_dir != NULL)
5776 make_cleanup (xfree, comp_dir);
5777 }
5778
5779 if (name == NULL)
5780 name = "<unknown>";
5781
5782 attr = dwarf2_attr (die, DW_AT_language, cu);
5783 if (attr)
5784 set_cu_language (DW_UNSND (attr), cu);
5785
5786 /* This isn't technically needed today. It is done for symmetry
5787 with read_file_scope. */
5788 attr = dwarf2_attr (die, DW_AT_producer, cu);
5789 if (attr)
5790 cu->producer = DW_STRING (attr);
5791
5792 /* We assume that we're processing GCC output. */
5793 processing_gcc_compilation = 2;
5794
5795 processing_has_namespace_info = 0;
5796
5797 start_symtab (name, comp_dir, lowpc);
5798 record_debugformat ("DWARF 2");
5799 record_producer (cu->producer);
5800
5801 /* Decode line number information if present. We do this before
5802 processing child DIEs, so that the line header table is available
5803 for DW_AT_decl_file.
5804 We don't need the pc/line-number mapping for type units. */
5805 handle_DW_AT_stmt_list (die, cu, comp_dir, 0);
5806
5807 /* Process the dies in the type unit. */
5808 if (die->child == NULL)
5809 {
5810 dump_die_for_error (die);
5811 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5812 bfd_get_filename (abfd));
5813 }
5814
5815 child_die = die->child;
5816
5817 while (child_die && child_die->tag)
5818 {
5819 process_die (child_die, cu);
5820
5821 child_die = sibling_die (child_die);
5822 }
5823
5824 do_cleanups (back_to);
5825 }
5826
5827 /* qsort helper for inherit_abstract_dies. */
5828
5829 static int
5830 unsigned_int_compar (const void *ap, const void *bp)
5831 {
5832 unsigned int a = *(unsigned int *) ap;
5833 unsigned int b = *(unsigned int *) bp;
5834
5835 return (a > b) - (b > a);
5836 }
5837
5838 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5839 Inherit only the children of the DW_AT_abstract_origin DIE not being
5840 already referenced by DW_AT_abstract_origin from the children of the
5841 current DIE. */
5842
5843 static void
5844 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5845 {
5846 struct die_info *child_die;
5847 unsigned die_children_count;
5848 /* CU offsets which were referenced by children of the current DIE. */
5849 sect_offset *offsets;
5850 sect_offset *offsets_end, *offsetp;
5851 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5852 struct die_info *origin_die;
5853 /* Iterator of the ORIGIN_DIE children. */
5854 struct die_info *origin_child_die;
5855 struct cleanup *cleanups;
5856 struct attribute *attr;
5857 struct dwarf2_cu *origin_cu;
5858 struct pending **origin_previous_list_in_scope;
5859
5860 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5861 if (!attr)
5862 return;
5863
5864 /* Note that following die references may follow to a die in a
5865 different cu. */
5866
5867 origin_cu = cu;
5868 origin_die = follow_die_ref (die, attr, &origin_cu);
5869
5870 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5871 symbols in. */
5872 origin_previous_list_in_scope = origin_cu->list_in_scope;
5873 origin_cu->list_in_scope = cu->list_in_scope;
5874
5875 if (die->tag != origin_die->tag
5876 && !(die->tag == DW_TAG_inlined_subroutine
5877 && origin_die->tag == DW_TAG_subprogram))
5878 complaint (&symfile_complaints,
5879 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5880 die->offset.sect_off, origin_die->offset.sect_off);
5881
5882 child_die = die->child;
5883 die_children_count = 0;
5884 while (child_die && child_die->tag)
5885 {
5886 child_die = sibling_die (child_die);
5887 die_children_count++;
5888 }
5889 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5890 cleanups = make_cleanup (xfree, offsets);
5891
5892 offsets_end = offsets;
5893 child_die = die->child;
5894 while (child_die && child_die->tag)
5895 {
5896 /* For each CHILD_DIE, find the corresponding child of
5897 ORIGIN_DIE. If there is more than one layer of
5898 DW_AT_abstract_origin, follow them all; there shouldn't be,
5899 but GCC versions at least through 4.4 generate this (GCC PR
5900 40573). */
5901 struct die_info *child_origin_die = child_die;
5902 struct dwarf2_cu *child_origin_cu = cu;
5903
5904 while (1)
5905 {
5906 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5907 child_origin_cu);
5908 if (attr == NULL)
5909 break;
5910 child_origin_die = follow_die_ref (child_origin_die, attr,
5911 &child_origin_cu);
5912 }
5913
5914 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5915 counterpart may exist. */
5916 if (child_origin_die != child_die)
5917 {
5918 if (child_die->tag != child_origin_die->tag
5919 && !(child_die->tag == DW_TAG_inlined_subroutine
5920 && child_origin_die->tag == DW_TAG_subprogram))
5921 complaint (&symfile_complaints,
5922 _("Child DIE 0x%x and its abstract origin 0x%x have "
5923 "different tags"), child_die->offset.sect_off,
5924 child_origin_die->offset.sect_off);
5925 if (child_origin_die->parent != origin_die)
5926 complaint (&symfile_complaints,
5927 _("Child DIE 0x%x and its abstract origin 0x%x have "
5928 "different parents"), child_die->offset.sect_off,
5929 child_origin_die->offset.sect_off);
5930 else
5931 *offsets_end++ = child_origin_die->offset;
5932 }
5933 child_die = sibling_die (child_die);
5934 }
5935 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5936 unsigned_int_compar);
5937 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5938 if (offsetp[-1].sect_off == offsetp->sect_off)
5939 complaint (&symfile_complaints,
5940 _("Multiple children of DIE 0x%x refer "
5941 "to DIE 0x%x as their abstract origin"),
5942 die->offset.sect_off, offsetp->sect_off);
5943
5944 offsetp = offsets;
5945 origin_child_die = origin_die->child;
5946 while (origin_child_die && origin_child_die->tag)
5947 {
5948 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5949 while (offsetp < offsets_end
5950 && offsetp->sect_off < origin_child_die->offset.sect_off)
5951 offsetp++;
5952 if (offsetp >= offsets_end
5953 || offsetp->sect_off > origin_child_die->offset.sect_off)
5954 {
5955 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5956 process_die (origin_child_die, origin_cu);
5957 }
5958 origin_child_die = sibling_die (origin_child_die);
5959 }
5960 origin_cu->list_in_scope = origin_previous_list_in_scope;
5961
5962 do_cleanups (cleanups);
5963 }
5964
5965 static void
5966 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5967 {
5968 struct objfile *objfile = cu->objfile;
5969 struct context_stack *new;
5970 CORE_ADDR lowpc;
5971 CORE_ADDR highpc;
5972 struct die_info *child_die;
5973 struct attribute *attr, *call_line, *call_file;
5974 char *name;
5975 CORE_ADDR baseaddr;
5976 struct block *block;
5977 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5978 VEC (symbolp) *template_args = NULL;
5979 struct template_symbol *templ_func = NULL;
5980
5981 if (inlined_func)
5982 {
5983 /* If we do not have call site information, we can't show the
5984 caller of this inlined function. That's too confusing, so
5985 only use the scope for local variables. */
5986 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5987 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5988 if (call_line == NULL || call_file == NULL)
5989 {
5990 read_lexical_block_scope (die, cu);
5991 return;
5992 }
5993 }
5994
5995 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5996
5997 name = dwarf2_name (die, cu);
5998
5999 /* Ignore functions with missing or empty names. These are actually
6000 illegal according to the DWARF standard. */
6001 if (name == NULL)
6002 {
6003 complaint (&symfile_complaints,
6004 _("missing name for subprogram DIE at %d"),
6005 die->offset.sect_off);
6006 return;
6007 }
6008
6009 /* Ignore functions with missing or invalid low and high pc attributes. */
6010 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
6011 {
6012 attr = dwarf2_attr (die, DW_AT_external, cu);
6013 if (!attr || !DW_UNSND (attr))
6014 complaint (&symfile_complaints,
6015 _("cannot get low and high bounds "
6016 "for subprogram DIE at %d"),
6017 die->offset.sect_off);
6018 return;
6019 }
6020
6021 lowpc += baseaddr;
6022 highpc += baseaddr;
6023
6024 /* If we have any template arguments, then we must allocate a
6025 different sort of symbol. */
6026 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
6027 {
6028 if (child_die->tag == DW_TAG_template_type_param
6029 || child_die->tag == DW_TAG_template_value_param)
6030 {
6031 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6032 struct template_symbol);
6033 templ_func->base.is_cplus_template_function = 1;
6034 break;
6035 }
6036 }
6037
6038 new = push_context (0, lowpc);
6039 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
6040 (struct symbol *) templ_func);
6041
6042 /* If there is a location expression for DW_AT_frame_base, record
6043 it. */
6044 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
6045 if (attr)
6046 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
6047 expression is being recorded directly in the function's symbol
6048 and not in a separate frame-base object. I guess this hack is
6049 to avoid adding some sort of frame-base adjunct/annex to the
6050 function's symbol :-(. The problem with doing this is that it
6051 results in a function symbol with a location expression that
6052 has nothing to do with the location of the function, ouch! The
6053 relationship should be: a function's symbol has-a frame base; a
6054 frame-base has-a location expression. */
6055 dwarf2_symbol_mark_computed (attr, new->name, cu);
6056
6057 cu->list_in_scope = &local_symbols;
6058
6059 if (die->child != NULL)
6060 {
6061 child_die = die->child;
6062 while (child_die && child_die->tag)
6063 {
6064 if (child_die->tag == DW_TAG_template_type_param
6065 || child_die->tag == DW_TAG_template_value_param)
6066 {
6067 struct symbol *arg = new_symbol (child_die, NULL, cu);
6068
6069 if (arg != NULL)
6070 VEC_safe_push (symbolp, template_args, arg);
6071 }
6072 else
6073 process_die (child_die, cu);
6074 child_die = sibling_die (child_die);
6075 }
6076 }
6077
6078 inherit_abstract_dies (die, cu);
6079
6080 /* If we have a DW_AT_specification, we might need to import using
6081 directives from the context of the specification DIE. See the
6082 comment in determine_prefix. */
6083 if (cu->language == language_cplus
6084 && dwarf2_attr (die, DW_AT_specification, cu))
6085 {
6086 struct dwarf2_cu *spec_cu = cu;
6087 struct die_info *spec_die = die_specification (die, &spec_cu);
6088
6089 while (spec_die)
6090 {
6091 child_die = spec_die->child;
6092 while (child_die && child_die->tag)
6093 {
6094 if (child_die->tag == DW_TAG_imported_module)
6095 process_die (child_die, spec_cu);
6096 child_die = sibling_die (child_die);
6097 }
6098
6099 /* In some cases, GCC generates specification DIEs that
6100 themselves contain DW_AT_specification attributes. */
6101 spec_die = die_specification (spec_die, &spec_cu);
6102 }
6103 }
6104
6105 new = pop_context ();
6106 /* Make a block for the local symbols within. */
6107 block = finish_block (new->name, &local_symbols, new->old_blocks,
6108 lowpc, highpc, objfile);
6109
6110 /* For C++, set the block's scope. */
6111 if (cu->language == language_cplus || cu->language == language_fortran)
6112 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
6113 determine_prefix (die, cu),
6114 processing_has_namespace_info);
6115
6116 /* If we have address ranges, record them. */
6117 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6118
6119 /* Attach template arguments to function. */
6120 if (! VEC_empty (symbolp, template_args))
6121 {
6122 gdb_assert (templ_func != NULL);
6123
6124 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
6125 templ_func->template_arguments
6126 = obstack_alloc (&objfile->objfile_obstack,
6127 (templ_func->n_template_arguments
6128 * sizeof (struct symbol *)));
6129 memcpy (templ_func->template_arguments,
6130 VEC_address (symbolp, template_args),
6131 (templ_func->n_template_arguments * sizeof (struct symbol *)));
6132 VEC_free (symbolp, template_args);
6133 }
6134
6135 /* In C++, we can have functions nested inside functions (e.g., when
6136 a function declares a class that has methods). This means that
6137 when we finish processing a function scope, we may need to go
6138 back to building a containing block's symbol lists. */
6139 local_symbols = new->locals;
6140 param_symbols = new->params;
6141 using_directives = new->using_directives;
6142
6143 /* If we've finished processing a top-level function, subsequent
6144 symbols go in the file symbol list. */
6145 if (outermost_context_p ())
6146 cu->list_in_scope = &file_symbols;
6147 }
6148
6149 /* Process all the DIES contained within a lexical block scope. Start
6150 a new scope, process the dies, and then close the scope. */
6151
6152 static void
6153 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
6154 {
6155 struct objfile *objfile = cu->objfile;
6156 struct context_stack *new;
6157 CORE_ADDR lowpc, highpc;
6158 struct die_info *child_die;
6159 CORE_ADDR baseaddr;
6160
6161 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6162
6163 /* Ignore blocks with missing or invalid low and high pc attributes. */
6164 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
6165 as multiple lexical blocks? Handling children in a sane way would
6166 be nasty. Might be easier to properly extend generic blocks to
6167 describe ranges. */
6168 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
6169 return;
6170 lowpc += baseaddr;
6171 highpc += baseaddr;
6172
6173 push_context (0, lowpc);
6174 if (die->child != NULL)
6175 {
6176 child_die = die->child;
6177 while (child_die && child_die->tag)
6178 {
6179 process_die (child_die, cu);
6180 child_die = sibling_die (child_die);
6181 }
6182 }
6183 new = pop_context ();
6184
6185 if (local_symbols != NULL || using_directives != NULL)
6186 {
6187 struct block *block
6188 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
6189 highpc, objfile);
6190
6191 /* Note that recording ranges after traversing children, as we
6192 do here, means that recording a parent's ranges entails
6193 walking across all its children's ranges as they appear in
6194 the address map, which is quadratic behavior.
6195
6196 It would be nicer to record the parent's ranges before
6197 traversing its children, simply overriding whatever you find
6198 there. But since we don't even decide whether to create a
6199 block until after we've traversed its children, that's hard
6200 to do. */
6201 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6202 }
6203 local_symbols = new->locals;
6204 using_directives = new->using_directives;
6205 }
6206
6207 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
6208
6209 static void
6210 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
6211 {
6212 struct objfile *objfile = cu->objfile;
6213 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6214 CORE_ADDR pc, baseaddr;
6215 struct attribute *attr;
6216 struct call_site *call_site, call_site_local;
6217 void **slot;
6218 int nparams;
6219 struct die_info *child_die;
6220
6221 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6222
6223 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6224 if (!attr)
6225 {
6226 complaint (&symfile_complaints,
6227 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
6228 "DIE 0x%x [in module %s]"),
6229 die->offset.sect_off, objfile->name);
6230 return;
6231 }
6232 pc = DW_ADDR (attr) + baseaddr;
6233
6234 if (cu->call_site_htab == NULL)
6235 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
6236 NULL, &objfile->objfile_obstack,
6237 hashtab_obstack_allocate, NULL);
6238 call_site_local.pc = pc;
6239 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
6240 if (*slot != NULL)
6241 {
6242 complaint (&symfile_complaints,
6243 _("Duplicate PC %s for DW_TAG_GNU_call_site "
6244 "DIE 0x%x [in module %s]"),
6245 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
6246 return;
6247 }
6248
6249 /* Count parameters at the caller. */
6250
6251 nparams = 0;
6252 for (child_die = die->child; child_die && child_die->tag;
6253 child_die = sibling_die (child_die))
6254 {
6255 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6256 {
6257 complaint (&symfile_complaints,
6258 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
6259 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6260 child_die->tag, child_die->offset.sect_off, objfile->name);
6261 continue;
6262 }
6263
6264 nparams++;
6265 }
6266
6267 call_site = obstack_alloc (&objfile->objfile_obstack,
6268 (sizeof (*call_site)
6269 + (sizeof (*call_site->parameter)
6270 * (nparams - 1))));
6271 *slot = call_site;
6272 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
6273 call_site->pc = pc;
6274
6275 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
6276 {
6277 struct die_info *func_die;
6278
6279 /* Skip also over DW_TAG_inlined_subroutine. */
6280 for (func_die = die->parent;
6281 func_die && func_die->tag != DW_TAG_subprogram
6282 && func_die->tag != DW_TAG_subroutine_type;
6283 func_die = func_die->parent);
6284
6285 /* DW_AT_GNU_all_call_sites is a superset
6286 of DW_AT_GNU_all_tail_call_sites. */
6287 if (func_die
6288 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
6289 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
6290 {
6291 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
6292 not complete. But keep CALL_SITE for look ups via call_site_htab,
6293 both the initial caller containing the real return address PC and
6294 the final callee containing the current PC of a chain of tail
6295 calls do not need to have the tail call list complete. But any
6296 function candidate for a virtual tail call frame searched via
6297 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
6298 determined unambiguously. */
6299 }
6300 else
6301 {
6302 struct type *func_type = NULL;
6303
6304 if (func_die)
6305 func_type = get_die_type (func_die, cu);
6306 if (func_type != NULL)
6307 {
6308 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
6309
6310 /* Enlist this call site to the function. */
6311 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
6312 TYPE_TAIL_CALL_LIST (func_type) = call_site;
6313 }
6314 else
6315 complaint (&symfile_complaints,
6316 _("Cannot find function owning DW_TAG_GNU_call_site "
6317 "DIE 0x%x [in module %s]"),
6318 die->offset.sect_off, objfile->name);
6319 }
6320 }
6321
6322 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
6323 if (attr == NULL)
6324 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
6325 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
6326 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
6327 /* Keep NULL DWARF_BLOCK. */;
6328 else if (attr_form_is_block (attr))
6329 {
6330 struct dwarf2_locexpr_baton *dlbaton;
6331
6332 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
6333 dlbaton->data = DW_BLOCK (attr)->data;
6334 dlbaton->size = DW_BLOCK (attr)->size;
6335 dlbaton->per_cu = cu->per_cu;
6336
6337 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
6338 }
6339 else if (is_ref_attr (attr))
6340 {
6341 struct dwarf2_cu *target_cu = cu;
6342 struct die_info *target_die;
6343
6344 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
6345 gdb_assert (target_cu->objfile == objfile);
6346 if (die_is_declaration (target_die, target_cu))
6347 {
6348 const char *target_physname;
6349
6350 target_physname = dwarf2_physname (NULL, target_die, target_cu);
6351 if (target_physname == NULL)
6352 complaint (&symfile_complaints,
6353 _("DW_AT_GNU_call_site_target target DIE has invalid "
6354 "physname, for referencing DIE 0x%x [in module %s]"),
6355 die->offset.sect_off, objfile->name);
6356 else
6357 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
6358 }
6359 else
6360 {
6361 CORE_ADDR lowpc;
6362
6363 /* DW_AT_entry_pc should be preferred. */
6364 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
6365 complaint (&symfile_complaints,
6366 _("DW_AT_GNU_call_site_target target DIE has invalid "
6367 "low pc, for referencing DIE 0x%x [in module %s]"),
6368 die->offset.sect_off, objfile->name);
6369 else
6370 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
6371 }
6372 }
6373 else
6374 complaint (&symfile_complaints,
6375 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
6376 "block nor reference, for DIE 0x%x [in module %s]"),
6377 die->offset.sect_off, objfile->name);
6378
6379 call_site->per_cu = cu->per_cu;
6380
6381 for (child_die = die->child;
6382 child_die && child_die->tag;
6383 child_die = sibling_die (child_die))
6384 {
6385 struct dwarf2_locexpr_baton *dlbaton;
6386 struct call_site_parameter *parameter;
6387
6388 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6389 {
6390 /* Already printed the complaint above. */
6391 continue;
6392 }
6393
6394 gdb_assert (call_site->parameter_count < nparams);
6395 parameter = &call_site->parameter[call_site->parameter_count];
6396
6397 /* DW_AT_location specifies the register number. Value of the data
6398 assumed for the register is contained in DW_AT_GNU_call_site_value. */
6399
6400 attr = dwarf2_attr (child_die, DW_AT_location, cu);
6401 if (!attr || !attr_form_is_block (attr))
6402 {
6403 complaint (&symfile_complaints,
6404 _("No DW_FORM_block* DW_AT_location for "
6405 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6406 child_die->offset.sect_off, objfile->name);
6407 continue;
6408 }
6409 parameter->dwarf_reg = dwarf_block_to_dwarf_reg (DW_BLOCK (attr)->data,
6410 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size]);
6411 if (parameter->dwarf_reg == -1
6412 && !dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (attr)->data,
6413 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size],
6414 &parameter->fb_offset))
6415 {
6416 complaint (&symfile_complaints,
6417 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
6418 "for DW_FORM_block* DW_AT_location for "
6419 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6420 child_die->offset.sect_off, objfile->name);
6421 continue;
6422 }
6423
6424 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
6425 if (!attr_form_is_block (attr))
6426 {
6427 complaint (&symfile_complaints,
6428 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
6429 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6430 child_die->offset.sect_off, objfile->name);
6431 continue;
6432 }
6433 parameter->value = DW_BLOCK (attr)->data;
6434 parameter->value_size = DW_BLOCK (attr)->size;
6435
6436 /* Parameters are not pre-cleared by memset above. */
6437 parameter->data_value = NULL;
6438 parameter->data_value_size = 0;
6439 call_site->parameter_count++;
6440
6441 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
6442 if (attr)
6443 {
6444 if (!attr_form_is_block (attr))
6445 complaint (&symfile_complaints,
6446 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
6447 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6448 child_die->offset.sect_off, objfile->name);
6449 else
6450 {
6451 parameter->data_value = DW_BLOCK (attr)->data;
6452 parameter->data_value_size = DW_BLOCK (attr)->size;
6453 }
6454 }
6455 }
6456 }
6457
6458 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
6459 Return 1 if the attributes are present and valid, otherwise, return 0.
6460 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
6461
6462 static int
6463 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
6464 CORE_ADDR *high_return, struct dwarf2_cu *cu,
6465 struct partial_symtab *ranges_pst)
6466 {
6467 struct objfile *objfile = cu->objfile;
6468 struct comp_unit_head *cu_header = &cu->header;
6469 bfd *obfd = objfile->obfd;
6470 unsigned int addr_size = cu_header->addr_size;
6471 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6472 /* Base address selection entry. */
6473 CORE_ADDR base;
6474 int found_base;
6475 unsigned int dummy;
6476 gdb_byte *buffer;
6477 CORE_ADDR marker;
6478 int low_set;
6479 CORE_ADDR low = 0;
6480 CORE_ADDR high = 0;
6481 CORE_ADDR baseaddr;
6482
6483 found_base = cu->base_known;
6484 base = cu->base_address;
6485
6486 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
6487 if (offset >= dwarf2_per_objfile->ranges.size)
6488 {
6489 complaint (&symfile_complaints,
6490 _("Offset %d out of bounds for DW_AT_ranges attribute"),
6491 offset);
6492 return 0;
6493 }
6494 buffer = dwarf2_per_objfile->ranges.buffer + offset;
6495
6496 /* Read in the largest possible address. */
6497 marker = read_address (obfd, buffer, cu, &dummy);
6498 if ((marker & mask) == mask)
6499 {
6500 /* If we found the largest possible address, then
6501 read the base address. */
6502 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6503 buffer += 2 * addr_size;
6504 offset += 2 * addr_size;
6505 found_base = 1;
6506 }
6507
6508 low_set = 0;
6509
6510 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6511
6512 while (1)
6513 {
6514 CORE_ADDR range_beginning, range_end;
6515
6516 range_beginning = read_address (obfd, buffer, cu, &dummy);
6517 buffer += addr_size;
6518 range_end = read_address (obfd, buffer, cu, &dummy);
6519 buffer += addr_size;
6520 offset += 2 * addr_size;
6521
6522 /* An end of list marker is a pair of zero addresses. */
6523 if (range_beginning == 0 && range_end == 0)
6524 /* Found the end of list entry. */
6525 break;
6526
6527 /* Each base address selection entry is a pair of 2 values.
6528 The first is the largest possible address, the second is
6529 the base address. Check for a base address here. */
6530 if ((range_beginning & mask) == mask)
6531 {
6532 /* If we found the largest possible address, then
6533 read the base address. */
6534 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6535 found_base = 1;
6536 continue;
6537 }
6538
6539 if (!found_base)
6540 {
6541 /* We have no valid base address for the ranges
6542 data. */
6543 complaint (&symfile_complaints,
6544 _("Invalid .debug_ranges data (no base address)"));
6545 return 0;
6546 }
6547
6548 if (range_beginning > range_end)
6549 {
6550 /* Inverted range entries are invalid. */
6551 complaint (&symfile_complaints,
6552 _("Invalid .debug_ranges data (inverted range)"));
6553 return 0;
6554 }
6555
6556 /* Empty range entries have no effect. */
6557 if (range_beginning == range_end)
6558 continue;
6559
6560 range_beginning += base;
6561 range_end += base;
6562
6563 if (ranges_pst != NULL)
6564 addrmap_set_empty (objfile->psymtabs_addrmap,
6565 range_beginning + baseaddr,
6566 range_end - 1 + baseaddr,
6567 ranges_pst);
6568
6569 /* FIXME: This is recording everything as a low-high
6570 segment of consecutive addresses. We should have a
6571 data structure for discontiguous block ranges
6572 instead. */
6573 if (! low_set)
6574 {
6575 low = range_beginning;
6576 high = range_end;
6577 low_set = 1;
6578 }
6579 else
6580 {
6581 if (range_beginning < low)
6582 low = range_beginning;
6583 if (range_end > high)
6584 high = range_end;
6585 }
6586 }
6587
6588 if (! low_set)
6589 /* If the first entry is an end-of-list marker, the range
6590 describes an empty scope, i.e. no instructions. */
6591 return 0;
6592
6593 if (low_return)
6594 *low_return = low;
6595 if (high_return)
6596 *high_return = high;
6597 return 1;
6598 }
6599
6600 /* Get low and high pc attributes from a die. Return 1 if the attributes
6601 are present and valid, otherwise, return 0. Return -1 if the range is
6602 discontinuous, i.e. derived from DW_AT_ranges information. */
6603 static int
6604 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
6605 CORE_ADDR *highpc, struct dwarf2_cu *cu,
6606 struct partial_symtab *pst)
6607 {
6608 struct attribute *attr;
6609 CORE_ADDR low = 0;
6610 CORE_ADDR high = 0;
6611 int ret = 0;
6612
6613 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6614 if (attr)
6615 {
6616 high = DW_ADDR (attr);
6617 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6618 if (attr)
6619 low = DW_ADDR (attr);
6620 else
6621 /* Found high w/o low attribute. */
6622 return 0;
6623
6624 /* Found consecutive range of addresses. */
6625 ret = 1;
6626 }
6627 else
6628 {
6629 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6630 if (attr != NULL)
6631 {
6632 /* Value of the DW_AT_ranges attribute is the offset in the
6633 .debug_ranges section. */
6634 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
6635 return 0;
6636 /* Found discontinuous range of addresses. */
6637 ret = -1;
6638 }
6639 }
6640
6641 /* read_partial_die has also the strict LOW < HIGH requirement. */
6642 if (high <= low)
6643 return 0;
6644
6645 /* When using the GNU linker, .gnu.linkonce. sections are used to
6646 eliminate duplicate copies of functions and vtables and such.
6647 The linker will arbitrarily choose one and discard the others.
6648 The AT_*_pc values for such functions refer to local labels in
6649 these sections. If the section from that file was discarded, the
6650 labels are not in the output, so the relocs get a value of 0.
6651 If this is a discarded function, mark the pc bounds as invalid,
6652 so that GDB will ignore it. */
6653 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
6654 return 0;
6655
6656 *lowpc = low;
6657 if (highpc)
6658 *highpc = high;
6659 return ret;
6660 }
6661
6662 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
6663 its low and high PC addresses. Do nothing if these addresses could not
6664 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6665 and HIGHPC to the high address if greater than HIGHPC. */
6666
6667 static void
6668 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6669 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6670 struct dwarf2_cu *cu)
6671 {
6672 CORE_ADDR low, high;
6673 struct die_info *child = die->child;
6674
6675 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
6676 {
6677 *lowpc = min (*lowpc, low);
6678 *highpc = max (*highpc, high);
6679 }
6680
6681 /* If the language does not allow nested subprograms (either inside
6682 subprograms or lexical blocks), we're done. */
6683 if (cu->language != language_ada)
6684 return;
6685
6686 /* Check all the children of the given DIE. If it contains nested
6687 subprograms, then check their pc bounds. Likewise, we need to
6688 check lexical blocks as well, as they may also contain subprogram
6689 definitions. */
6690 while (child && child->tag)
6691 {
6692 if (child->tag == DW_TAG_subprogram
6693 || child->tag == DW_TAG_lexical_block)
6694 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6695 child = sibling_die (child);
6696 }
6697 }
6698
6699 /* Get the low and high pc's represented by the scope DIE, and store
6700 them in *LOWPC and *HIGHPC. If the correct values can't be
6701 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6702
6703 static void
6704 get_scope_pc_bounds (struct die_info *die,
6705 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6706 struct dwarf2_cu *cu)
6707 {
6708 CORE_ADDR best_low = (CORE_ADDR) -1;
6709 CORE_ADDR best_high = (CORE_ADDR) 0;
6710 CORE_ADDR current_low, current_high;
6711
6712 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6713 {
6714 best_low = current_low;
6715 best_high = current_high;
6716 }
6717 else
6718 {
6719 struct die_info *child = die->child;
6720
6721 while (child && child->tag)
6722 {
6723 switch (child->tag) {
6724 case DW_TAG_subprogram:
6725 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6726 break;
6727 case DW_TAG_namespace:
6728 case DW_TAG_module:
6729 /* FIXME: carlton/2004-01-16: Should we do this for
6730 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6731 that current GCC's always emit the DIEs corresponding
6732 to definitions of methods of classes as children of a
6733 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6734 the DIEs giving the declarations, which could be
6735 anywhere). But I don't see any reason why the
6736 standards says that they have to be there. */
6737 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6738
6739 if (current_low != ((CORE_ADDR) -1))
6740 {
6741 best_low = min (best_low, current_low);
6742 best_high = max (best_high, current_high);
6743 }
6744 break;
6745 default:
6746 /* Ignore. */
6747 break;
6748 }
6749
6750 child = sibling_die (child);
6751 }
6752 }
6753
6754 *lowpc = best_low;
6755 *highpc = best_high;
6756 }
6757
6758 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
6759 in DIE. */
6760 static void
6761 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6762 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6763 {
6764 struct objfile *objfile = cu->objfile;
6765 struct attribute *attr;
6766
6767 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6768 if (attr)
6769 {
6770 CORE_ADDR high = DW_ADDR (attr);
6771
6772 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6773 if (attr)
6774 {
6775 CORE_ADDR low = DW_ADDR (attr);
6776
6777 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6778 }
6779 }
6780
6781 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6782 if (attr)
6783 {
6784 bfd *obfd = objfile->obfd;
6785
6786 /* The value of the DW_AT_ranges attribute is the offset of the
6787 address range list in the .debug_ranges section. */
6788 unsigned long offset = DW_UNSND (attr);
6789 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6790
6791 /* For some target architectures, but not others, the
6792 read_address function sign-extends the addresses it returns.
6793 To recognize base address selection entries, we need a
6794 mask. */
6795 unsigned int addr_size = cu->header.addr_size;
6796 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6797
6798 /* The base address, to which the next pair is relative. Note
6799 that this 'base' is a DWARF concept: most entries in a range
6800 list are relative, to reduce the number of relocs against the
6801 debugging information. This is separate from this function's
6802 'baseaddr' argument, which GDB uses to relocate debugging
6803 information from a shared library based on the address at
6804 which the library was loaded. */
6805 CORE_ADDR base = cu->base_address;
6806 int base_known = cu->base_known;
6807
6808 gdb_assert (dwarf2_per_objfile->ranges.readin);
6809 if (offset >= dwarf2_per_objfile->ranges.size)
6810 {
6811 complaint (&symfile_complaints,
6812 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6813 offset);
6814 return;
6815 }
6816
6817 for (;;)
6818 {
6819 unsigned int bytes_read;
6820 CORE_ADDR start, end;
6821
6822 start = read_address (obfd, buffer, cu, &bytes_read);
6823 buffer += bytes_read;
6824 end = read_address (obfd, buffer, cu, &bytes_read);
6825 buffer += bytes_read;
6826
6827 /* Did we find the end of the range list? */
6828 if (start == 0 && end == 0)
6829 break;
6830
6831 /* Did we find a base address selection entry? */
6832 else if ((start & base_select_mask) == base_select_mask)
6833 {
6834 base = end;
6835 base_known = 1;
6836 }
6837
6838 /* We found an ordinary address range. */
6839 else
6840 {
6841 if (!base_known)
6842 {
6843 complaint (&symfile_complaints,
6844 _("Invalid .debug_ranges data "
6845 "(no base address)"));
6846 return;
6847 }
6848
6849 if (start > end)
6850 {
6851 /* Inverted range entries are invalid. */
6852 complaint (&symfile_complaints,
6853 _("Invalid .debug_ranges data "
6854 "(inverted range)"));
6855 return;
6856 }
6857
6858 /* Empty range entries have no effect. */
6859 if (start == end)
6860 continue;
6861
6862 record_block_range (block,
6863 baseaddr + base + start,
6864 baseaddr + base + end - 1);
6865 }
6866 }
6867 }
6868 }
6869
6870 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
6871 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
6872 during 4.6.0 experimental. */
6873
6874 static int
6875 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
6876 {
6877 const char *cs;
6878 int major, minor, release;
6879 int result = 0;
6880
6881 if (cu->producer == NULL)
6882 {
6883 /* For unknown compilers expect their behavior is DWARF version
6884 compliant.
6885
6886 GCC started to support .debug_types sections by -gdwarf-4 since
6887 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
6888 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
6889 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
6890 interpreted incorrectly by GDB now - GCC PR debug/48229. */
6891
6892 return 0;
6893 }
6894
6895 if (cu->checked_producer)
6896 return cu->producer_is_gxx_lt_4_6;
6897
6898 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
6899
6900 if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) != 0)
6901 {
6902 /* For non-GCC compilers expect their behavior is DWARF version
6903 compliant. */
6904 }
6905 else
6906 {
6907 cs = &cu->producer[strlen ("GNU ")];
6908 while (*cs && !isdigit (*cs))
6909 cs++;
6910 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
6911 {
6912 /* Not recognized as GCC. */
6913 }
6914 else
6915 result = major < 4 || (major == 4 && minor < 6);
6916 }
6917
6918 cu->checked_producer = 1;
6919 cu->producer_is_gxx_lt_4_6 = result;
6920
6921 return result;
6922 }
6923
6924 /* Return the default accessibility type if it is not overriden by
6925 DW_AT_accessibility. */
6926
6927 static enum dwarf_access_attribute
6928 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
6929 {
6930 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
6931 {
6932 /* The default DWARF 2 accessibility for members is public, the default
6933 accessibility for inheritance is private. */
6934
6935 if (die->tag != DW_TAG_inheritance)
6936 return DW_ACCESS_public;
6937 else
6938 return DW_ACCESS_private;
6939 }
6940 else
6941 {
6942 /* DWARF 3+ defines the default accessibility a different way. The same
6943 rules apply now for DW_TAG_inheritance as for the members and it only
6944 depends on the container kind. */
6945
6946 if (die->parent->tag == DW_TAG_class_type)
6947 return DW_ACCESS_private;
6948 else
6949 return DW_ACCESS_public;
6950 }
6951 }
6952
6953 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
6954 offset. If the attribute was not found return 0, otherwise return
6955 1. If it was found but could not properly be handled, set *OFFSET
6956 to 0. */
6957
6958 static int
6959 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
6960 LONGEST *offset)
6961 {
6962 struct attribute *attr;
6963
6964 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6965 if (attr != NULL)
6966 {
6967 *offset = 0;
6968
6969 /* Note that we do not check for a section offset first here.
6970 This is because DW_AT_data_member_location is new in DWARF 4,
6971 so if we see it, we can assume that a constant form is really
6972 a constant and not a section offset. */
6973 if (attr_form_is_constant (attr))
6974 *offset = dwarf2_get_attr_constant_value (attr, 0);
6975 else if (attr_form_is_section_offset (attr))
6976 dwarf2_complex_location_expr_complaint ();
6977 else if (attr_form_is_block (attr))
6978 *offset = decode_locdesc (DW_BLOCK (attr), cu);
6979 else
6980 dwarf2_complex_location_expr_complaint ();
6981
6982 return 1;
6983 }
6984
6985 return 0;
6986 }
6987
6988 /* Add an aggregate field to the field list. */
6989
6990 static void
6991 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6992 struct dwarf2_cu *cu)
6993 {
6994 struct objfile *objfile = cu->objfile;
6995 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6996 struct nextfield *new_field;
6997 struct attribute *attr;
6998 struct field *fp;
6999 char *fieldname = "";
7000
7001 /* Allocate a new field list entry and link it in. */
7002 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
7003 make_cleanup (xfree, new_field);
7004 memset (new_field, 0, sizeof (struct nextfield));
7005
7006 if (die->tag == DW_TAG_inheritance)
7007 {
7008 new_field->next = fip->baseclasses;
7009 fip->baseclasses = new_field;
7010 }
7011 else
7012 {
7013 new_field->next = fip->fields;
7014 fip->fields = new_field;
7015 }
7016 fip->nfields++;
7017
7018 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
7019 if (attr)
7020 new_field->accessibility = DW_UNSND (attr);
7021 else
7022 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
7023 if (new_field->accessibility != DW_ACCESS_public)
7024 fip->non_public_fields = 1;
7025
7026 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7027 if (attr)
7028 new_field->virtuality = DW_UNSND (attr);
7029 else
7030 new_field->virtuality = DW_VIRTUALITY_none;
7031
7032 fp = &new_field->field;
7033
7034 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
7035 {
7036 LONGEST offset;
7037
7038 /* Data member other than a C++ static data member. */
7039
7040 /* Get type of field. */
7041 fp->type = die_type (die, cu);
7042
7043 SET_FIELD_BITPOS (*fp, 0);
7044
7045 /* Get bit size of field (zero if none). */
7046 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
7047 if (attr)
7048 {
7049 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
7050 }
7051 else
7052 {
7053 FIELD_BITSIZE (*fp) = 0;
7054 }
7055
7056 /* Get bit offset of field. */
7057 if (handle_data_member_location (die, cu, &offset))
7058 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7059 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
7060 if (attr)
7061 {
7062 if (gdbarch_bits_big_endian (gdbarch))
7063 {
7064 /* For big endian bits, the DW_AT_bit_offset gives the
7065 additional bit offset from the MSB of the containing
7066 anonymous object to the MSB of the field. We don't
7067 have to do anything special since we don't need to
7068 know the size of the anonymous object. */
7069 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
7070 }
7071 else
7072 {
7073 /* For little endian bits, compute the bit offset to the
7074 MSB of the anonymous object, subtract off the number of
7075 bits from the MSB of the field to the MSB of the
7076 object, and then subtract off the number of bits of
7077 the field itself. The result is the bit offset of
7078 the LSB of the field. */
7079 int anonymous_size;
7080 int bit_offset = DW_UNSND (attr);
7081
7082 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7083 if (attr)
7084 {
7085 /* The size of the anonymous object containing
7086 the bit field is explicit, so use the
7087 indicated size (in bytes). */
7088 anonymous_size = DW_UNSND (attr);
7089 }
7090 else
7091 {
7092 /* The size of the anonymous object containing
7093 the bit field must be inferred from the type
7094 attribute of the data member containing the
7095 bit field. */
7096 anonymous_size = TYPE_LENGTH (fp->type);
7097 }
7098 SET_FIELD_BITPOS (*fp,
7099 (FIELD_BITPOS (*fp)
7100 + anonymous_size * bits_per_byte
7101 - bit_offset - FIELD_BITSIZE (*fp)));
7102 }
7103 }
7104
7105 /* Get name of field. */
7106 fieldname = dwarf2_name (die, cu);
7107 if (fieldname == NULL)
7108 fieldname = "";
7109
7110 /* The name is already allocated along with this objfile, so we don't
7111 need to duplicate it for the type. */
7112 fp->name = fieldname;
7113
7114 /* Change accessibility for artificial fields (e.g. virtual table
7115 pointer or virtual base class pointer) to private. */
7116 if (dwarf2_attr (die, DW_AT_artificial, cu))
7117 {
7118 FIELD_ARTIFICIAL (*fp) = 1;
7119 new_field->accessibility = DW_ACCESS_private;
7120 fip->non_public_fields = 1;
7121 }
7122 }
7123 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
7124 {
7125 /* C++ static member. */
7126
7127 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
7128 is a declaration, but all versions of G++ as of this writing
7129 (so through at least 3.2.1) incorrectly generate
7130 DW_TAG_variable tags. */
7131
7132 const char *physname;
7133
7134 /* Get name of field. */
7135 fieldname = dwarf2_name (die, cu);
7136 if (fieldname == NULL)
7137 return;
7138
7139 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7140 if (attr
7141 /* Only create a symbol if this is an external value.
7142 new_symbol checks this and puts the value in the global symbol
7143 table, which we want. If it is not external, new_symbol
7144 will try to put the value in cu->list_in_scope which is wrong. */
7145 && dwarf2_flag_true_p (die, DW_AT_external, cu))
7146 {
7147 /* A static const member, not much different than an enum as far as
7148 we're concerned, except that we can support more types. */
7149 new_symbol (die, NULL, cu);
7150 }
7151
7152 /* Get physical name. */
7153 physname = dwarf2_physname (fieldname, die, cu);
7154
7155 /* The name is already allocated along with this objfile, so we don't
7156 need to duplicate it for the type. */
7157 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
7158 FIELD_TYPE (*fp) = die_type (die, cu);
7159 FIELD_NAME (*fp) = fieldname;
7160 }
7161 else if (die->tag == DW_TAG_inheritance)
7162 {
7163 LONGEST offset;
7164
7165 /* C++ base class field. */
7166 if (handle_data_member_location (die, cu, &offset))
7167 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7168 FIELD_BITSIZE (*fp) = 0;
7169 FIELD_TYPE (*fp) = die_type (die, cu);
7170 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
7171 fip->nbaseclasses++;
7172 }
7173 }
7174
7175 /* Add a typedef defined in the scope of the FIP's class. */
7176
7177 static void
7178 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
7179 struct dwarf2_cu *cu)
7180 {
7181 struct objfile *objfile = cu->objfile;
7182 struct typedef_field_list *new_field;
7183 struct attribute *attr;
7184 struct typedef_field *fp;
7185 char *fieldname = "";
7186
7187 /* Allocate a new field list entry and link it in. */
7188 new_field = xzalloc (sizeof (*new_field));
7189 make_cleanup (xfree, new_field);
7190
7191 gdb_assert (die->tag == DW_TAG_typedef);
7192
7193 fp = &new_field->field;
7194
7195 /* Get name of field. */
7196 fp->name = dwarf2_name (die, cu);
7197 if (fp->name == NULL)
7198 return;
7199
7200 fp->type = read_type_die (die, cu);
7201
7202 new_field->next = fip->typedef_field_list;
7203 fip->typedef_field_list = new_field;
7204 fip->typedef_field_list_count++;
7205 }
7206
7207 /* Create the vector of fields, and attach it to the type. */
7208
7209 static void
7210 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
7211 struct dwarf2_cu *cu)
7212 {
7213 int nfields = fip->nfields;
7214
7215 /* Record the field count, allocate space for the array of fields,
7216 and create blank accessibility bitfields if necessary. */
7217 TYPE_NFIELDS (type) = nfields;
7218 TYPE_FIELDS (type) = (struct field *)
7219 TYPE_ALLOC (type, sizeof (struct field) * nfields);
7220 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
7221
7222 if (fip->non_public_fields && cu->language != language_ada)
7223 {
7224 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7225
7226 TYPE_FIELD_PRIVATE_BITS (type) =
7227 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7228 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
7229
7230 TYPE_FIELD_PROTECTED_BITS (type) =
7231 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7232 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
7233
7234 TYPE_FIELD_IGNORE_BITS (type) =
7235 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7236 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
7237 }
7238
7239 /* If the type has baseclasses, allocate and clear a bit vector for
7240 TYPE_FIELD_VIRTUAL_BITS. */
7241 if (fip->nbaseclasses && cu->language != language_ada)
7242 {
7243 int num_bytes = B_BYTES (fip->nbaseclasses);
7244 unsigned char *pointer;
7245
7246 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7247 pointer = TYPE_ALLOC (type, num_bytes);
7248 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
7249 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
7250 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
7251 }
7252
7253 /* Copy the saved-up fields into the field vector. Start from the head of
7254 the list, adding to the tail of the field array, so that they end up in
7255 the same order in the array in which they were added to the list. */
7256 while (nfields-- > 0)
7257 {
7258 struct nextfield *fieldp;
7259
7260 if (fip->fields)
7261 {
7262 fieldp = fip->fields;
7263 fip->fields = fieldp->next;
7264 }
7265 else
7266 {
7267 fieldp = fip->baseclasses;
7268 fip->baseclasses = fieldp->next;
7269 }
7270
7271 TYPE_FIELD (type, nfields) = fieldp->field;
7272 switch (fieldp->accessibility)
7273 {
7274 case DW_ACCESS_private:
7275 if (cu->language != language_ada)
7276 SET_TYPE_FIELD_PRIVATE (type, nfields);
7277 break;
7278
7279 case DW_ACCESS_protected:
7280 if (cu->language != language_ada)
7281 SET_TYPE_FIELD_PROTECTED (type, nfields);
7282 break;
7283
7284 case DW_ACCESS_public:
7285 break;
7286
7287 default:
7288 /* Unknown accessibility. Complain and treat it as public. */
7289 {
7290 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7291 fieldp->accessibility);
7292 }
7293 break;
7294 }
7295 if (nfields < fip->nbaseclasses)
7296 {
7297 switch (fieldp->virtuality)
7298 {
7299 case DW_VIRTUALITY_virtual:
7300 case DW_VIRTUALITY_pure_virtual:
7301 if (cu->language == language_ada)
7302 error (_("unexpected virtuality in component of Ada type"));
7303 SET_TYPE_FIELD_VIRTUAL (type, nfields);
7304 break;
7305 }
7306 }
7307 }
7308 }
7309
7310 /* Add a member function to the proper fieldlist. */
7311
7312 static void
7313 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
7314 struct type *type, struct dwarf2_cu *cu)
7315 {
7316 struct objfile *objfile = cu->objfile;
7317 struct attribute *attr;
7318 struct fnfieldlist *flp;
7319 int i;
7320 struct fn_field *fnp;
7321 char *fieldname;
7322 struct nextfnfield *new_fnfield;
7323 struct type *this_type;
7324 enum dwarf_access_attribute accessibility;
7325
7326 if (cu->language == language_ada)
7327 error (_("unexpected member function in Ada type"));
7328
7329 /* Get name of member function. */
7330 fieldname = dwarf2_name (die, cu);
7331 if (fieldname == NULL)
7332 return;
7333
7334 /* Look up member function name in fieldlist. */
7335 for (i = 0; i < fip->nfnfields; i++)
7336 {
7337 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
7338 break;
7339 }
7340
7341 /* Create new list element if necessary. */
7342 if (i < fip->nfnfields)
7343 flp = &fip->fnfieldlists[i];
7344 else
7345 {
7346 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
7347 {
7348 fip->fnfieldlists = (struct fnfieldlist *)
7349 xrealloc (fip->fnfieldlists,
7350 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
7351 * sizeof (struct fnfieldlist));
7352 if (fip->nfnfields == 0)
7353 make_cleanup (free_current_contents, &fip->fnfieldlists);
7354 }
7355 flp = &fip->fnfieldlists[fip->nfnfields];
7356 flp->name = fieldname;
7357 flp->length = 0;
7358 flp->head = NULL;
7359 i = fip->nfnfields++;
7360 }
7361
7362 /* Create a new member function field and chain it to the field list
7363 entry. */
7364 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
7365 make_cleanup (xfree, new_fnfield);
7366 memset (new_fnfield, 0, sizeof (struct nextfnfield));
7367 new_fnfield->next = flp->head;
7368 flp->head = new_fnfield;
7369 flp->length++;
7370
7371 /* Fill in the member function field info. */
7372 fnp = &new_fnfield->fnfield;
7373
7374 /* Delay processing of the physname until later. */
7375 if (cu->language == language_cplus || cu->language == language_java)
7376 {
7377 add_to_method_list (type, i, flp->length - 1, fieldname,
7378 die, cu);
7379 }
7380 else
7381 {
7382 const char *physname = dwarf2_physname (fieldname, die, cu);
7383 fnp->physname = physname ? physname : "";
7384 }
7385
7386 fnp->type = alloc_type (objfile);
7387 this_type = read_type_die (die, cu);
7388 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
7389 {
7390 int nparams = TYPE_NFIELDS (this_type);
7391
7392 /* TYPE is the domain of this method, and THIS_TYPE is the type
7393 of the method itself (TYPE_CODE_METHOD). */
7394 smash_to_method_type (fnp->type, type,
7395 TYPE_TARGET_TYPE (this_type),
7396 TYPE_FIELDS (this_type),
7397 TYPE_NFIELDS (this_type),
7398 TYPE_VARARGS (this_type));
7399
7400 /* Handle static member functions.
7401 Dwarf2 has no clean way to discern C++ static and non-static
7402 member functions. G++ helps GDB by marking the first
7403 parameter for non-static member functions (which is the this
7404 pointer) as artificial. We obtain this information from
7405 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
7406 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
7407 fnp->voffset = VOFFSET_STATIC;
7408 }
7409 else
7410 complaint (&symfile_complaints, _("member function type missing for '%s'"),
7411 dwarf2_full_name (fieldname, die, cu));
7412
7413 /* Get fcontext from DW_AT_containing_type if present. */
7414 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7415 fnp->fcontext = die_containing_type (die, cu);
7416
7417 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
7418 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
7419
7420 /* Get accessibility. */
7421 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
7422 if (attr)
7423 accessibility = DW_UNSND (attr);
7424 else
7425 accessibility = dwarf2_default_access_attribute (die, cu);
7426 switch (accessibility)
7427 {
7428 case DW_ACCESS_private:
7429 fnp->is_private = 1;
7430 break;
7431 case DW_ACCESS_protected:
7432 fnp->is_protected = 1;
7433 break;
7434 }
7435
7436 /* Check for artificial methods. */
7437 attr = dwarf2_attr (die, DW_AT_artificial, cu);
7438 if (attr && DW_UNSND (attr) != 0)
7439 fnp->is_artificial = 1;
7440
7441 /* Get index in virtual function table if it is a virtual member
7442 function. For older versions of GCC, this is an offset in the
7443 appropriate virtual table, as specified by DW_AT_containing_type.
7444 For everyone else, it is an expression to be evaluated relative
7445 to the object address. */
7446
7447 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
7448 if (attr)
7449 {
7450 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
7451 {
7452 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
7453 {
7454 /* Old-style GCC. */
7455 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
7456 }
7457 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
7458 || (DW_BLOCK (attr)->size > 1
7459 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
7460 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
7461 {
7462 struct dwarf_block blk;
7463 int offset;
7464
7465 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
7466 ? 1 : 2);
7467 blk.size = DW_BLOCK (attr)->size - offset;
7468 blk.data = DW_BLOCK (attr)->data + offset;
7469 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
7470 if ((fnp->voffset % cu->header.addr_size) != 0)
7471 dwarf2_complex_location_expr_complaint ();
7472 else
7473 fnp->voffset /= cu->header.addr_size;
7474 fnp->voffset += 2;
7475 }
7476 else
7477 dwarf2_complex_location_expr_complaint ();
7478
7479 if (!fnp->fcontext)
7480 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
7481 }
7482 else if (attr_form_is_section_offset (attr))
7483 {
7484 dwarf2_complex_location_expr_complaint ();
7485 }
7486 else
7487 {
7488 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
7489 fieldname);
7490 }
7491 }
7492 else
7493 {
7494 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7495 if (attr && DW_UNSND (attr))
7496 {
7497 /* GCC does this, as of 2008-08-25; PR debug/37237. */
7498 complaint (&symfile_complaints,
7499 _("Member function \"%s\" (offset %d) is virtual "
7500 "but the vtable offset is not specified"),
7501 fieldname, die->offset.sect_off);
7502 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7503 TYPE_CPLUS_DYNAMIC (type) = 1;
7504 }
7505 }
7506 }
7507
7508 /* Create the vector of member function fields, and attach it to the type. */
7509
7510 static void
7511 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
7512 struct dwarf2_cu *cu)
7513 {
7514 struct fnfieldlist *flp;
7515 int i;
7516
7517 if (cu->language == language_ada)
7518 error (_("unexpected member functions in Ada type"));
7519
7520 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7521 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
7522 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
7523
7524 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
7525 {
7526 struct nextfnfield *nfp = flp->head;
7527 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
7528 int k;
7529
7530 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
7531 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
7532 fn_flp->fn_fields = (struct fn_field *)
7533 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
7534 for (k = flp->length; (k--, nfp); nfp = nfp->next)
7535 fn_flp->fn_fields[k] = nfp->fnfield;
7536 }
7537
7538 TYPE_NFN_FIELDS (type) = fip->nfnfields;
7539 }
7540
7541 /* Returns non-zero if NAME is the name of a vtable member in CU's
7542 language, zero otherwise. */
7543 static int
7544 is_vtable_name (const char *name, struct dwarf2_cu *cu)
7545 {
7546 static const char vptr[] = "_vptr";
7547 static const char vtable[] = "vtable";
7548
7549 /* Look for the C++ and Java forms of the vtable. */
7550 if ((cu->language == language_java
7551 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
7552 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
7553 && is_cplus_marker (name[sizeof (vptr) - 1])))
7554 return 1;
7555
7556 return 0;
7557 }
7558
7559 /* GCC outputs unnamed structures that are really pointers to member
7560 functions, with the ABI-specified layout. If TYPE describes
7561 such a structure, smash it into a member function type.
7562
7563 GCC shouldn't do this; it should just output pointer to member DIEs.
7564 This is GCC PR debug/28767. */
7565
7566 static void
7567 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
7568 {
7569 struct type *pfn_type, *domain_type, *new_type;
7570
7571 /* Check for a structure with no name and two children. */
7572 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
7573 return;
7574
7575 /* Check for __pfn and __delta members. */
7576 if (TYPE_FIELD_NAME (type, 0) == NULL
7577 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
7578 || TYPE_FIELD_NAME (type, 1) == NULL
7579 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
7580 return;
7581
7582 /* Find the type of the method. */
7583 pfn_type = TYPE_FIELD_TYPE (type, 0);
7584 if (pfn_type == NULL
7585 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
7586 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
7587 return;
7588
7589 /* Look for the "this" argument. */
7590 pfn_type = TYPE_TARGET_TYPE (pfn_type);
7591 if (TYPE_NFIELDS (pfn_type) == 0
7592 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
7593 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
7594 return;
7595
7596 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
7597 new_type = alloc_type (objfile);
7598 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
7599 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
7600 TYPE_VARARGS (pfn_type));
7601 smash_to_methodptr_type (type, new_type);
7602 }
7603
7604 /* Called when we find the DIE that starts a structure or union scope
7605 (definition) to create a type for the structure or union. Fill in
7606 the type's name and general properties; the members will not be
7607 processed until process_structure_type.
7608
7609 NOTE: we need to call these functions regardless of whether or not the
7610 DIE has a DW_AT_name attribute, since it might be an anonymous
7611 structure or union. This gets the type entered into our set of
7612 user defined types.
7613
7614 However, if the structure is incomplete (an opaque struct/union)
7615 then suppress creating a symbol table entry for it since gdb only
7616 wants to find the one with the complete definition. Note that if
7617 it is complete, we just call new_symbol, which does it's own
7618 checking about whether the struct/union is anonymous or not (and
7619 suppresses creating a symbol table entry itself). */
7620
7621 static struct type *
7622 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
7623 {
7624 struct objfile *objfile = cu->objfile;
7625 struct type *type;
7626 struct attribute *attr;
7627 char *name;
7628
7629 /* If the definition of this type lives in .debug_types, read that type.
7630 Don't follow DW_AT_specification though, that will take us back up
7631 the chain and we want to go down. */
7632 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7633 if (attr)
7634 {
7635 struct dwarf2_cu *type_cu = cu;
7636 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7637
7638 /* We could just recurse on read_structure_type, but we need to call
7639 get_die_type to ensure only one type for this DIE is created.
7640 This is important, for example, because for c++ classes we need
7641 TYPE_NAME set which is only done by new_symbol. Blech. */
7642 type = read_type_die (type_die, type_cu);
7643
7644 /* TYPE_CU may not be the same as CU.
7645 Ensure TYPE is recorded in CU's type_hash table. */
7646 return set_die_type (die, type, cu);
7647 }
7648
7649 type = alloc_type (objfile);
7650 INIT_CPLUS_SPECIFIC (type);
7651
7652 name = dwarf2_name (die, cu);
7653 if (name != NULL)
7654 {
7655 if (cu->language == language_cplus
7656 || cu->language == language_java)
7657 {
7658 char *full_name = (char *) dwarf2_full_name (name, die, cu);
7659
7660 /* dwarf2_full_name might have already finished building the DIE's
7661 type. If so, there is no need to continue. */
7662 if (get_die_type (die, cu) != NULL)
7663 return get_die_type (die, cu);
7664
7665 TYPE_TAG_NAME (type) = full_name;
7666 if (die->tag == DW_TAG_structure_type
7667 || die->tag == DW_TAG_class_type)
7668 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7669 }
7670 else
7671 {
7672 /* The name is already allocated along with this objfile, so
7673 we don't need to duplicate it for the type. */
7674 TYPE_TAG_NAME (type) = (char *) name;
7675 if (die->tag == DW_TAG_class_type)
7676 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7677 }
7678 }
7679
7680 if (die->tag == DW_TAG_structure_type)
7681 {
7682 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7683 }
7684 else if (die->tag == DW_TAG_union_type)
7685 {
7686 TYPE_CODE (type) = TYPE_CODE_UNION;
7687 }
7688 else
7689 {
7690 TYPE_CODE (type) = TYPE_CODE_CLASS;
7691 }
7692
7693 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
7694 TYPE_DECLARED_CLASS (type) = 1;
7695
7696 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7697 if (attr)
7698 {
7699 TYPE_LENGTH (type) = DW_UNSND (attr);
7700 }
7701 else
7702 {
7703 TYPE_LENGTH (type) = 0;
7704 }
7705
7706 TYPE_STUB_SUPPORTED (type) = 1;
7707 if (die_is_declaration (die, cu))
7708 TYPE_STUB (type) = 1;
7709 else if (attr == NULL && die->child == NULL
7710 && producer_is_realview (cu->producer))
7711 /* RealView does not output the required DW_AT_declaration
7712 on incomplete types. */
7713 TYPE_STUB (type) = 1;
7714
7715 /* We need to add the type field to the die immediately so we don't
7716 infinitely recurse when dealing with pointers to the structure
7717 type within the structure itself. */
7718 set_die_type (die, type, cu);
7719
7720 /* set_die_type should be already done. */
7721 set_descriptive_type (type, die, cu);
7722
7723 return type;
7724 }
7725
7726 /* Finish creating a structure or union type, including filling in
7727 its members and creating a symbol for it. */
7728
7729 static void
7730 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
7731 {
7732 struct objfile *objfile = cu->objfile;
7733 struct die_info *child_die = die->child;
7734 struct type *type;
7735
7736 type = get_die_type (die, cu);
7737 if (type == NULL)
7738 type = read_structure_type (die, cu);
7739
7740 if (die->child != NULL && ! die_is_declaration (die, cu))
7741 {
7742 struct field_info fi;
7743 struct die_info *child_die;
7744 VEC (symbolp) *template_args = NULL;
7745 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7746
7747 memset (&fi, 0, sizeof (struct field_info));
7748
7749 child_die = die->child;
7750
7751 while (child_die && child_die->tag)
7752 {
7753 if (child_die->tag == DW_TAG_member
7754 || child_die->tag == DW_TAG_variable)
7755 {
7756 /* NOTE: carlton/2002-11-05: A C++ static data member
7757 should be a DW_TAG_member that is a declaration, but
7758 all versions of G++ as of this writing (so through at
7759 least 3.2.1) incorrectly generate DW_TAG_variable
7760 tags for them instead. */
7761 dwarf2_add_field (&fi, child_die, cu);
7762 }
7763 else if (child_die->tag == DW_TAG_subprogram)
7764 {
7765 /* C++ member function. */
7766 dwarf2_add_member_fn (&fi, child_die, type, cu);
7767 }
7768 else if (child_die->tag == DW_TAG_inheritance)
7769 {
7770 /* C++ base class field. */
7771 dwarf2_add_field (&fi, child_die, cu);
7772 }
7773 else if (child_die->tag == DW_TAG_typedef)
7774 dwarf2_add_typedef (&fi, child_die, cu);
7775 else if (child_die->tag == DW_TAG_template_type_param
7776 || child_die->tag == DW_TAG_template_value_param)
7777 {
7778 struct symbol *arg = new_symbol (child_die, NULL, cu);
7779
7780 if (arg != NULL)
7781 VEC_safe_push (symbolp, template_args, arg);
7782 }
7783
7784 child_die = sibling_die (child_die);
7785 }
7786
7787 /* Attach template arguments to type. */
7788 if (! VEC_empty (symbolp, template_args))
7789 {
7790 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7791 TYPE_N_TEMPLATE_ARGUMENTS (type)
7792 = VEC_length (symbolp, template_args);
7793 TYPE_TEMPLATE_ARGUMENTS (type)
7794 = obstack_alloc (&objfile->objfile_obstack,
7795 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7796 * sizeof (struct symbol *)));
7797 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7798 VEC_address (symbolp, template_args),
7799 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7800 * sizeof (struct symbol *)));
7801 VEC_free (symbolp, template_args);
7802 }
7803
7804 /* Attach fields and member functions to the type. */
7805 if (fi.nfields)
7806 dwarf2_attach_fields_to_type (&fi, type, cu);
7807 if (fi.nfnfields)
7808 {
7809 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7810
7811 /* Get the type which refers to the base class (possibly this
7812 class itself) which contains the vtable pointer for the current
7813 class from the DW_AT_containing_type attribute. This use of
7814 DW_AT_containing_type is a GNU extension. */
7815
7816 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7817 {
7818 struct type *t = die_containing_type (die, cu);
7819
7820 TYPE_VPTR_BASETYPE (type) = t;
7821 if (type == t)
7822 {
7823 int i;
7824
7825 /* Our own class provides vtbl ptr. */
7826 for (i = TYPE_NFIELDS (t) - 1;
7827 i >= TYPE_N_BASECLASSES (t);
7828 --i)
7829 {
7830 const char *fieldname = TYPE_FIELD_NAME (t, i);
7831
7832 if (is_vtable_name (fieldname, cu))
7833 {
7834 TYPE_VPTR_FIELDNO (type) = i;
7835 break;
7836 }
7837 }
7838
7839 /* Complain if virtual function table field not found. */
7840 if (i < TYPE_N_BASECLASSES (t))
7841 complaint (&symfile_complaints,
7842 _("virtual function table pointer "
7843 "not found when defining class '%s'"),
7844 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7845 "");
7846 }
7847 else
7848 {
7849 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7850 }
7851 }
7852 else if (cu->producer
7853 && strncmp (cu->producer,
7854 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7855 {
7856 /* The IBM XLC compiler does not provide direct indication
7857 of the containing type, but the vtable pointer is
7858 always named __vfp. */
7859
7860 int i;
7861
7862 for (i = TYPE_NFIELDS (type) - 1;
7863 i >= TYPE_N_BASECLASSES (type);
7864 --i)
7865 {
7866 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7867 {
7868 TYPE_VPTR_FIELDNO (type) = i;
7869 TYPE_VPTR_BASETYPE (type) = type;
7870 break;
7871 }
7872 }
7873 }
7874 }
7875
7876 /* Copy fi.typedef_field_list linked list elements content into the
7877 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7878 if (fi.typedef_field_list)
7879 {
7880 int i = fi.typedef_field_list_count;
7881
7882 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7883 TYPE_TYPEDEF_FIELD_ARRAY (type)
7884 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7885 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7886
7887 /* Reverse the list order to keep the debug info elements order. */
7888 while (--i >= 0)
7889 {
7890 struct typedef_field *dest, *src;
7891
7892 dest = &TYPE_TYPEDEF_FIELD (type, i);
7893 src = &fi.typedef_field_list->field;
7894 fi.typedef_field_list = fi.typedef_field_list->next;
7895 *dest = *src;
7896 }
7897 }
7898
7899 do_cleanups (back_to);
7900
7901 if (HAVE_CPLUS_STRUCT (type))
7902 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
7903 }
7904
7905 quirk_gcc_member_function_pointer (type, objfile);
7906
7907 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7908 snapshots) has been known to create a die giving a declaration
7909 for a class that has, as a child, a die giving a definition for a
7910 nested class. So we have to process our children even if the
7911 current die is a declaration. Normally, of course, a declaration
7912 won't have any children at all. */
7913
7914 while (child_die != NULL && child_die->tag)
7915 {
7916 if (child_die->tag == DW_TAG_member
7917 || child_die->tag == DW_TAG_variable
7918 || child_die->tag == DW_TAG_inheritance
7919 || child_die->tag == DW_TAG_template_value_param
7920 || child_die->tag == DW_TAG_template_type_param)
7921 {
7922 /* Do nothing. */
7923 }
7924 else
7925 process_die (child_die, cu);
7926
7927 child_die = sibling_die (child_die);
7928 }
7929
7930 /* Do not consider external references. According to the DWARF standard,
7931 these DIEs are identified by the fact that they have no byte_size
7932 attribute, and a declaration attribute. */
7933 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7934 || !die_is_declaration (die, cu))
7935 new_symbol (die, type, cu);
7936 }
7937
7938 /* Given a DW_AT_enumeration_type die, set its type. We do not
7939 complete the type's fields yet, or create any symbols. */
7940
7941 static struct type *
7942 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7943 {
7944 struct objfile *objfile = cu->objfile;
7945 struct type *type;
7946 struct attribute *attr;
7947 const char *name;
7948
7949 /* If the definition of this type lives in .debug_types, read that type.
7950 Don't follow DW_AT_specification though, that will take us back up
7951 the chain and we want to go down. */
7952 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7953 if (attr)
7954 {
7955 struct dwarf2_cu *type_cu = cu;
7956 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7957
7958 type = read_type_die (type_die, type_cu);
7959
7960 /* TYPE_CU may not be the same as CU.
7961 Ensure TYPE is recorded in CU's type_hash table. */
7962 return set_die_type (die, type, cu);
7963 }
7964
7965 type = alloc_type (objfile);
7966
7967 TYPE_CODE (type) = TYPE_CODE_ENUM;
7968 name = dwarf2_full_name (NULL, die, cu);
7969 if (name != NULL)
7970 TYPE_TAG_NAME (type) = (char *) name;
7971
7972 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7973 if (attr)
7974 {
7975 TYPE_LENGTH (type) = DW_UNSND (attr);
7976 }
7977 else
7978 {
7979 TYPE_LENGTH (type) = 0;
7980 }
7981
7982 /* The enumeration DIE can be incomplete. In Ada, any type can be
7983 declared as private in the package spec, and then defined only
7984 inside the package body. Such types are known as Taft Amendment
7985 Types. When another package uses such a type, an incomplete DIE
7986 may be generated by the compiler. */
7987 if (die_is_declaration (die, cu))
7988 TYPE_STUB (type) = 1;
7989
7990 return set_die_type (die, type, cu);
7991 }
7992
7993 /* Given a pointer to a die which begins an enumeration, process all
7994 the dies that define the members of the enumeration, and create the
7995 symbol for the enumeration type.
7996
7997 NOTE: We reverse the order of the element list. */
7998
7999 static void
8000 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
8001 {
8002 struct type *this_type;
8003
8004 this_type = get_die_type (die, cu);
8005 if (this_type == NULL)
8006 this_type = read_enumeration_type (die, cu);
8007
8008 if (die->child != NULL)
8009 {
8010 struct die_info *child_die;
8011 struct symbol *sym;
8012 struct field *fields = NULL;
8013 int num_fields = 0;
8014 int unsigned_enum = 1;
8015 char *name;
8016 int flag_enum = 1;
8017 ULONGEST mask = 0;
8018
8019 child_die = die->child;
8020 while (child_die && child_die->tag)
8021 {
8022 if (child_die->tag != DW_TAG_enumerator)
8023 {
8024 process_die (child_die, cu);
8025 }
8026 else
8027 {
8028 name = dwarf2_name (child_die, cu);
8029 if (name)
8030 {
8031 sym = new_symbol (child_die, this_type, cu);
8032 if (SYMBOL_VALUE (sym) < 0)
8033 {
8034 unsigned_enum = 0;
8035 flag_enum = 0;
8036 }
8037 else if ((mask & SYMBOL_VALUE (sym)) != 0)
8038 flag_enum = 0;
8039 else
8040 mask |= SYMBOL_VALUE (sym);
8041
8042 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
8043 {
8044 fields = (struct field *)
8045 xrealloc (fields,
8046 (num_fields + DW_FIELD_ALLOC_CHUNK)
8047 * sizeof (struct field));
8048 }
8049
8050 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
8051 FIELD_TYPE (fields[num_fields]) = NULL;
8052 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
8053 FIELD_BITSIZE (fields[num_fields]) = 0;
8054
8055 num_fields++;
8056 }
8057 }
8058
8059 child_die = sibling_die (child_die);
8060 }
8061
8062 if (num_fields)
8063 {
8064 TYPE_NFIELDS (this_type) = num_fields;
8065 TYPE_FIELDS (this_type) = (struct field *)
8066 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
8067 memcpy (TYPE_FIELDS (this_type), fields,
8068 sizeof (struct field) * num_fields);
8069 xfree (fields);
8070 }
8071 if (unsigned_enum)
8072 TYPE_UNSIGNED (this_type) = 1;
8073 if (flag_enum)
8074 TYPE_FLAG_ENUM (this_type) = 1;
8075 }
8076
8077 /* If we are reading an enum from a .debug_types unit, and the enum
8078 is a declaration, and the enum is not the signatured type in the
8079 unit, then we do not want to add a symbol for it. Adding a
8080 symbol would in some cases obscure the true definition of the
8081 enum, giving users an incomplete type when the definition is
8082 actually available. Note that we do not want to do this for all
8083 enums which are just declarations, because C++0x allows forward
8084 enum declarations. */
8085 if (cu->per_cu->debug_types_section
8086 && die_is_declaration (die, cu))
8087 {
8088 struct signatured_type *sig_type;
8089
8090 sig_type
8091 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
8092 cu->per_cu->debug_types_section,
8093 cu->per_cu->offset);
8094 if (sig_type->per_cu.offset.sect_off + sig_type->type_offset.cu_off
8095 != die->offset.sect_off)
8096 return;
8097 }
8098
8099 new_symbol (die, this_type, cu);
8100 }
8101
8102 /* Extract all information from a DW_TAG_array_type DIE and put it in
8103 the DIE's type field. For now, this only handles one dimensional
8104 arrays. */
8105
8106 static struct type *
8107 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
8108 {
8109 struct objfile *objfile = cu->objfile;
8110 struct die_info *child_die;
8111 struct type *type;
8112 struct type *element_type, *range_type, *index_type;
8113 struct type **range_types = NULL;
8114 struct attribute *attr;
8115 int ndim = 0;
8116 struct cleanup *back_to;
8117 char *name;
8118
8119 element_type = die_type (die, cu);
8120
8121 /* The die_type call above may have already set the type for this DIE. */
8122 type = get_die_type (die, cu);
8123 if (type)
8124 return type;
8125
8126 /* Irix 6.2 native cc creates array types without children for
8127 arrays with unspecified length. */
8128 if (die->child == NULL)
8129 {
8130 index_type = objfile_type (objfile)->builtin_int;
8131 range_type = create_range_type (NULL, index_type, 0, -1);
8132 type = create_array_type (NULL, element_type, range_type);
8133 return set_die_type (die, type, cu);
8134 }
8135
8136 back_to = make_cleanup (null_cleanup, NULL);
8137 child_die = die->child;
8138 while (child_die && child_die->tag)
8139 {
8140 if (child_die->tag == DW_TAG_subrange_type)
8141 {
8142 struct type *child_type = read_type_die (child_die, cu);
8143
8144 if (child_type != NULL)
8145 {
8146 /* The range type was succesfully read. Save it for the
8147 array type creation. */
8148 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
8149 {
8150 range_types = (struct type **)
8151 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
8152 * sizeof (struct type *));
8153 if (ndim == 0)
8154 make_cleanup (free_current_contents, &range_types);
8155 }
8156 range_types[ndim++] = child_type;
8157 }
8158 }
8159 child_die = sibling_die (child_die);
8160 }
8161
8162 /* Dwarf2 dimensions are output from left to right, create the
8163 necessary array types in backwards order. */
8164
8165 type = element_type;
8166
8167 if (read_array_order (die, cu) == DW_ORD_col_major)
8168 {
8169 int i = 0;
8170
8171 while (i < ndim)
8172 type = create_array_type (NULL, type, range_types[i++]);
8173 }
8174 else
8175 {
8176 while (ndim-- > 0)
8177 type = create_array_type (NULL, type, range_types[ndim]);
8178 }
8179
8180 /* Understand Dwarf2 support for vector types (like they occur on
8181 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
8182 array type. This is not part of the Dwarf2/3 standard yet, but a
8183 custom vendor extension. The main difference between a regular
8184 array and the vector variant is that vectors are passed by value
8185 to functions. */
8186 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
8187 if (attr)
8188 make_vector_type (type);
8189
8190 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
8191 implementation may choose to implement triple vectors using this
8192 attribute. */
8193 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8194 if (attr)
8195 {
8196 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
8197 TYPE_LENGTH (type) = DW_UNSND (attr);
8198 else
8199 complaint (&symfile_complaints,
8200 _("DW_AT_byte_size for array type smaller "
8201 "than the total size of elements"));
8202 }
8203
8204 name = dwarf2_name (die, cu);
8205 if (name)
8206 TYPE_NAME (type) = name;
8207
8208 /* Install the type in the die. */
8209 set_die_type (die, type, cu);
8210
8211 /* set_die_type should be already done. */
8212 set_descriptive_type (type, die, cu);
8213
8214 do_cleanups (back_to);
8215
8216 return type;
8217 }
8218
8219 static enum dwarf_array_dim_ordering
8220 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
8221 {
8222 struct attribute *attr;
8223
8224 attr = dwarf2_attr (die, DW_AT_ordering, cu);
8225
8226 if (attr) return DW_SND (attr);
8227
8228 /* GNU F77 is a special case, as at 08/2004 array type info is the
8229 opposite order to the dwarf2 specification, but data is still
8230 laid out as per normal fortran.
8231
8232 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
8233 version checking. */
8234
8235 if (cu->language == language_fortran
8236 && cu->producer && strstr (cu->producer, "GNU F77"))
8237 {
8238 return DW_ORD_row_major;
8239 }
8240
8241 switch (cu->language_defn->la_array_ordering)
8242 {
8243 case array_column_major:
8244 return DW_ORD_col_major;
8245 case array_row_major:
8246 default:
8247 return DW_ORD_row_major;
8248 };
8249 }
8250
8251 /* Extract all information from a DW_TAG_set_type DIE and put it in
8252 the DIE's type field. */
8253
8254 static struct type *
8255 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
8256 {
8257 struct type *domain_type, *set_type;
8258 struct attribute *attr;
8259
8260 domain_type = die_type (die, cu);
8261
8262 /* The die_type call above may have already set the type for this DIE. */
8263 set_type = get_die_type (die, cu);
8264 if (set_type)
8265 return set_type;
8266
8267 set_type = create_set_type (NULL, domain_type);
8268
8269 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8270 if (attr)
8271 TYPE_LENGTH (set_type) = DW_UNSND (attr);
8272
8273 return set_die_type (die, set_type, cu);
8274 }
8275
8276 /* First cut: install each common block member as a global variable. */
8277
8278 static void
8279 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
8280 {
8281 struct die_info *child_die;
8282 struct attribute *attr;
8283 struct symbol *sym;
8284 CORE_ADDR base = (CORE_ADDR) 0;
8285
8286 attr = dwarf2_attr (die, DW_AT_location, cu);
8287 if (attr)
8288 {
8289 /* Support the .debug_loc offsets. */
8290 if (attr_form_is_block (attr))
8291 {
8292 base = decode_locdesc (DW_BLOCK (attr), cu);
8293 }
8294 else if (attr_form_is_section_offset (attr))
8295 {
8296 dwarf2_complex_location_expr_complaint ();
8297 }
8298 else
8299 {
8300 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8301 "common block member");
8302 }
8303 }
8304 if (die->child != NULL)
8305 {
8306 child_die = die->child;
8307 while (child_die && child_die->tag)
8308 {
8309 LONGEST offset;
8310
8311 sym = new_symbol (child_die, NULL, cu);
8312 if (sym != NULL
8313 && handle_data_member_location (child_die, cu, &offset))
8314 {
8315 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
8316 add_symbol_to_list (sym, &global_symbols);
8317 }
8318 child_die = sibling_die (child_die);
8319 }
8320 }
8321 }
8322
8323 /* Create a type for a C++ namespace. */
8324
8325 static struct type *
8326 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
8327 {
8328 struct objfile *objfile = cu->objfile;
8329 const char *previous_prefix, *name;
8330 int is_anonymous;
8331 struct type *type;
8332
8333 /* For extensions, reuse the type of the original namespace. */
8334 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
8335 {
8336 struct die_info *ext_die;
8337 struct dwarf2_cu *ext_cu = cu;
8338
8339 ext_die = dwarf2_extension (die, &ext_cu);
8340 type = read_type_die (ext_die, ext_cu);
8341
8342 /* EXT_CU may not be the same as CU.
8343 Ensure TYPE is recorded in CU's type_hash table. */
8344 return set_die_type (die, type, cu);
8345 }
8346
8347 name = namespace_name (die, &is_anonymous, cu);
8348
8349 /* Now build the name of the current namespace. */
8350
8351 previous_prefix = determine_prefix (die, cu);
8352 if (previous_prefix[0] != '\0')
8353 name = typename_concat (&objfile->objfile_obstack,
8354 previous_prefix, name, 0, cu);
8355
8356 /* Create the type. */
8357 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
8358 objfile);
8359 TYPE_NAME (type) = (char *) name;
8360 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8361
8362 return set_die_type (die, type, cu);
8363 }
8364
8365 /* Read a C++ namespace. */
8366
8367 static void
8368 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
8369 {
8370 struct objfile *objfile = cu->objfile;
8371 int is_anonymous;
8372
8373 /* Add a symbol associated to this if we haven't seen the namespace
8374 before. Also, add a using directive if it's an anonymous
8375 namespace. */
8376
8377 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
8378 {
8379 struct type *type;
8380
8381 type = read_type_die (die, cu);
8382 new_symbol (die, type, cu);
8383
8384 namespace_name (die, &is_anonymous, cu);
8385 if (is_anonymous)
8386 {
8387 const char *previous_prefix = determine_prefix (die, cu);
8388
8389 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
8390 NULL, NULL, &objfile->objfile_obstack);
8391 }
8392 }
8393
8394 if (die->child != NULL)
8395 {
8396 struct die_info *child_die = die->child;
8397
8398 while (child_die && child_die->tag)
8399 {
8400 process_die (child_die, cu);
8401 child_die = sibling_die (child_die);
8402 }
8403 }
8404 }
8405
8406 /* Read a Fortran module as type. This DIE can be only a declaration used for
8407 imported module. Still we need that type as local Fortran "use ... only"
8408 declaration imports depend on the created type in determine_prefix. */
8409
8410 static struct type *
8411 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
8412 {
8413 struct objfile *objfile = cu->objfile;
8414 char *module_name;
8415 struct type *type;
8416
8417 module_name = dwarf2_name (die, cu);
8418 if (!module_name)
8419 complaint (&symfile_complaints,
8420 _("DW_TAG_module has no name, offset 0x%x"),
8421 die->offset.sect_off);
8422 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
8423
8424 /* determine_prefix uses TYPE_TAG_NAME. */
8425 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8426
8427 return set_die_type (die, type, cu);
8428 }
8429
8430 /* Read a Fortran module. */
8431
8432 static void
8433 read_module (struct die_info *die, struct dwarf2_cu *cu)
8434 {
8435 struct die_info *child_die = die->child;
8436
8437 while (child_die && child_die->tag)
8438 {
8439 process_die (child_die, cu);
8440 child_die = sibling_die (child_die);
8441 }
8442 }
8443
8444 /* Return the name of the namespace represented by DIE. Set
8445 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
8446 namespace. */
8447
8448 static const char *
8449 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
8450 {
8451 struct die_info *current_die;
8452 const char *name = NULL;
8453
8454 /* Loop through the extensions until we find a name. */
8455
8456 for (current_die = die;
8457 current_die != NULL;
8458 current_die = dwarf2_extension (die, &cu))
8459 {
8460 name = dwarf2_name (current_die, cu);
8461 if (name != NULL)
8462 break;
8463 }
8464
8465 /* Is it an anonymous namespace? */
8466
8467 *is_anonymous = (name == NULL);
8468 if (*is_anonymous)
8469 name = CP_ANONYMOUS_NAMESPACE_STR;
8470
8471 return name;
8472 }
8473
8474 /* Extract all information from a DW_TAG_pointer_type DIE and add to
8475 the user defined type vector. */
8476
8477 static struct type *
8478 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
8479 {
8480 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
8481 struct comp_unit_head *cu_header = &cu->header;
8482 struct type *type;
8483 struct attribute *attr_byte_size;
8484 struct attribute *attr_address_class;
8485 int byte_size, addr_class;
8486 struct type *target_type;
8487
8488 target_type = die_type (die, cu);
8489
8490 /* The die_type call above may have already set the type for this DIE. */
8491 type = get_die_type (die, cu);
8492 if (type)
8493 return type;
8494
8495 type = lookup_pointer_type (target_type);
8496
8497 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8498 if (attr_byte_size)
8499 byte_size = DW_UNSND (attr_byte_size);
8500 else
8501 byte_size = cu_header->addr_size;
8502
8503 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8504 if (attr_address_class)
8505 addr_class = DW_UNSND (attr_address_class);
8506 else
8507 addr_class = DW_ADDR_none;
8508
8509 /* If the pointer size or address class is different than the
8510 default, create a type variant marked as such and set the
8511 length accordingly. */
8512 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
8513 {
8514 if (gdbarch_address_class_type_flags_p (gdbarch))
8515 {
8516 int type_flags;
8517
8518 type_flags = gdbarch_address_class_type_flags
8519 (gdbarch, byte_size, addr_class);
8520 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
8521 == 0);
8522 type = make_type_with_address_space (type, type_flags);
8523 }
8524 else if (TYPE_LENGTH (type) != byte_size)
8525 {
8526 complaint (&symfile_complaints,
8527 _("invalid pointer size %d"), byte_size);
8528 }
8529 else
8530 {
8531 /* Should we also complain about unhandled address classes? */
8532 }
8533 }
8534
8535 TYPE_LENGTH (type) = byte_size;
8536 return set_die_type (die, type, cu);
8537 }
8538
8539 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
8540 the user defined type vector. */
8541
8542 static struct type *
8543 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
8544 {
8545 struct type *type;
8546 struct type *to_type;
8547 struct type *domain;
8548
8549 to_type = die_type (die, cu);
8550 domain = die_containing_type (die, cu);
8551
8552 /* The calls above may have already set the type for this DIE. */
8553 type = get_die_type (die, cu);
8554 if (type)
8555 return type;
8556
8557 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
8558 type = lookup_methodptr_type (to_type);
8559 else
8560 type = lookup_memberptr_type (to_type, domain);
8561
8562 return set_die_type (die, type, cu);
8563 }
8564
8565 /* Extract all information from a DW_TAG_reference_type DIE and add to
8566 the user defined type vector. */
8567
8568 static struct type *
8569 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
8570 {
8571 struct comp_unit_head *cu_header = &cu->header;
8572 struct type *type, *target_type;
8573 struct attribute *attr;
8574
8575 target_type = die_type (die, cu);
8576
8577 /* The die_type call above may have already set the type for this DIE. */
8578 type = get_die_type (die, cu);
8579 if (type)
8580 return type;
8581
8582 type = lookup_reference_type (target_type);
8583 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8584 if (attr)
8585 {
8586 TYPE_LENGTH (type) = DW_UNSND (attr);
8587 }
8588 else
8589 {
8590 TYPE_LENGTH (type) = cu_header->addr_size;
8591 }
8592 return set_die_type (die, type, cu);
8593 }
8594
8595 static struct type *
8596 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
8597 {
8598 struct type *base_type, *cv_type;
8599
8600 base_type = die_type (die, cu);
8601
8602 /* The die_type call above may have already set the type for this DIE. */
8603 cv_type = get_die_type (die, cu);
8604 if (cv_type)
8605 return cv_type;
8606
8607 /* In case the const qualifier is applied to an array type, the element type
8608 is so qualified, not the array type (section 6.7.3 of C99). */
8609 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
8610 {
8611 struct type *el_type, *inner_array;
8612
8613 base_type = copy_type (base_type);
8614 inner_array = base_type;
8615
8616 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
8617 {
8618 TYPE_TARGET_TYPE (inner_array) =
8619 copy_type (TYPE_TARGET_TYPE (inner_array));
8620 inner_array = TYPE_TARGET_TYPE (inner_array);
8621 }
8622
8623 el_type = TYPE_TARGET_TYPE (inner_array);
8624 TYPE_TARGET_TYPE (inner_array) =
8625 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
8626
8627 return set_die_type (die, base_type, cu);
8628 }
8629
8630 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
8631 return set_die_type (die, cv_type, cu);
8632 }
8633
8634 static struct type *
8635 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
8636 {
8637 struct type *base_type, *cv_type;
8638
8639 base_type = die_type (die, cu);
8640
8641 /* The die_type call above may have already set the type for this DIE. */
8642 cv_type = get_die_type (die, cu);
8643 if (cv_type)
8644 return cv_type;
8645
8646 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
8647 return set_die_type (die, cv_type, cu);
8648 }
8649
8650 /* Extract all information from a DW_TAG_string_type DIE and add to
8651 the user defined type vector. It isn't really a user defined type,
8652 but it behaves like one, with other DIE's using an AT_user_def_type
8653 attribute to reference it. */
8654
8655 static struct type *
8656 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
8657 {
8658 struct objfile *objfile = cu->objfile;
8659 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8660 struct type *type, *range_type, *index_type, *char_type;
8661 struct attribute *attr;
8662 unsigned int length;
8663
8664 attr = dwarf2_attr (die, DW_AT_string_length, cu);
8665 if (attr)
8666 {
8667 length = DW_UNSND (attr);
8668 }
8669 else
8670 {
8671 /* Check for the DW_AT_byte_size attribute. */
8672 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8673 if (attr)
8674 {
8675 length = DW_UNSND (attr);
8676 }
8677 else
8678 {
8679 length = 1;
8680 }
8681 }
8682
8683 index_type = objfile_type (objfile)->builtin_int;
8684 range_type = create_range_type (NULL, index_type, 1, length);
8685 char_type = language_string_char_type (cu->language_defn, gdbarch);
8686 type = create_string_type (NULL, char_type, range_type);
8687
8688 return set_die_type (die, type, cu);
8689 }
8690
8691 /* Handle DIES due to C code like:
8692
8693 struct foo
8694 {
8695 int (*funcp)(int a, long l);
8696 int b;
8697 };
8698
8699 ('funcp' generates a DW_TAG_subroutine_type DIE). */
8700
8701 static struct type *
8702 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
8703 {
8704 struct objfile *objfile = cu->objfile;
8705 struct type *type; /* Type that this function returns. */
8706 struct type *ftype; /* Function that returns above type. */
8707 struct attribute *attr;
8708
8709 type = die_type (die, cu);
8710
8711 /* The die_type call above may have already set the type for this DIE. */
8712 ftype = get_die_type (die, cu);
8713 if (ftype)
8714 return ftype;
8715
8716 ftype = lookup_function_type (type);
8717
8718 /* All functions in C++, Pascal and Java have prototypes. */
8719 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
8720 if ((attr && (DW_UNSND (attr) != 0))
8721 || cu->language == language_cplus
8722 || cu->language == language_java
8723 || cu->language == language_pascal)
8724 TYPE_PROTOTYPED (ftype) = 1;
8725 else if (producer_is_realview (cu->producer))
8726 /* RealView does not emit DW_AT_prototyped. We can not
8727 distinguish prototyped and unprototyped functions; default to
8728 prototyped, since that is more common in modern code (and
8729 RealView warns about unprototyped functions). */
8730 TYPE_PROTOTYPED (ftype) = 1;
8731
8732 /* Store the calling convention in the type if it's available in
8733 the subroutine die. Otherwise set the calling convention to
8734 the default value DW_CC_normal. */
8735 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
8736 if (attr)
8737 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
8738 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
8739 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
8740 else
8741 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
8742
8743 /* We need to add the subroutine type to the die immediately so
8744 we don't infinitely recurse when dealing with parameters
8745 declared as the same subroutine type. */
8746 set_die_type (die, ftype, cu);
8747
8748 if (die->child != NULL)
8749 {
8750 struct type *void_type = objfile_type (objfile)->builtin_void;
8751 struct die_info *child_die;
8752 int nparams, iparams;
8753
8754 /* Count the number of parameters.
8755 FIXME: GDB currently ignores vararg functions, but knows about
8756 vararg member functions. */
8757 nparams = 0;
8758 child_die = die->child;
8759 while (child_die && child_die->tag)
8760 {
8761 if (child_die->tag == DW_TAG_formal_parameter)
8762 nparams++;
8763 else if (child_die->tag == DW_TAG_unspecified_parameters)
8764 TYPE_VARARGS (ftype) = 1;
8765 child_die = sibling_die (child_die);
8766 }
8767
8768 /* Allocate storage for parameters and fill them in. */
8769 TYPE_NFIELDS (ftype) = nparams;
8770 TYPE_FIELDS (ftype) = (struct field *)
8771 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
8772
8773 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
8774 even if we error out during the parameters reading below. */
8775 for (iparams = 0; iparams < nparams; iparams++)
8776 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8777
8778 iparams = 0;
8779 child_die = die->child;
8780 while (child_die && child_die->tag)
8781 {
8782 if (child_die->tag == DW_TAG_formal_parameter)
8783 {
8784 struct type *arg_type;
8785
8786 /* DWARF version 2 has no clean way to discern C++
8787 static and non-static member functions. G++ helps
8788 GDB by marking the first parameter for non-static
8789 member functions (which is the this pointer) as
8790 artificial. We pass this information to
8791 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8792
8793 DWARF version 3 added DW_AT_object_pointer, which GCC
8794 4.5 does not yet generate. */
8795 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
8796 if (attr)
8797 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8798 else
8799 {
8800 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8801
8802 /* GCC/43521: In java, the formal parameter
8803 "this" is sometimes not marked with DW_AT_artificial. */
8804 if (cu->language == language_java)
8805 {
8806 const char *name = dwarf2_name (child_die, cu);
8807
8808 if (name && !strcmp (name, "this"))
8809 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8810 }
8811 }
8812 arg_type = die_type (child_die, cu);
8813
8814 /* RealView does not mark THIS as const, which the testsuite
8815 expects. GCC marks THIS as const in method definitions,
8816 but not in the class specifications (GCC PR 43053). */
8817 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8818 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8819 {
8820 int is_this = 0;
8821 struct dwarf2_cu *arg_cu = cu;
8822 const char *name = dwarf2_name (child_die, cu);
8823
8824 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8825 if (attr)
8826 {
8827 /* If the compiler emits this, use it. */
8828 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8829 is_this = 1;
8830 }
8831 else if (name && strcmp (name, "this") == 0)
8832 /* Function definitions will have the argument names. */
8833 is_this = 1;
8834 else if (name == NULL && iparams == 0)
8835 /* Declarations may not have the names, so like
8836 elsewhere in GDB, assume an artificial first
8837 argument is "this". */
8838 is_this = 1;
8839
8840 if (is_this)
8841 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8842 arg_type, 0);
8843 }
8844
8845 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8846 iparams++;
8847 }
8848 child_die = sibling_die (child_die);
8849 }
8850 }
8851
8852 return ftype;
8853 }
8854
8855 static struct type *
8856 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8857 {
8858 struct objfile *objfile = cu->objfile;
8859 const char *name = NULL;
8860 struct type *this_type, *target_type;
8861
8862 name = dwarf2_full_name (NULL, die, cu);
8863 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8864 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8865 TYPE_NAME (this_type) = (char *) name;
8866 set_die_type (die, this_type, cu);
8867 target_type = die_type (die, cu);
8868 if (target_type != this_type)
8869 TYPE_TARGET_TYPE (this_type) = target_type;
8870 else
8871 {
8872 /* Self-referential typedefs are, it seems, not allowed by the DWARF
8873 spec and cause infinite loops in GDB. */
8874 complaint (&symfile_complaints,
8875 _("Self-referential DW_TAG_typedef "
8876 "- DIE at 0x%x [in module %s]"),
8877 die->offset.sect_off, objfile->name);
8878 TYPE_TARGET_TYPE (this_type) = NULL;
8879 }
8880 return this_type;
8881 }
8882
8883 /* Find a representation of a given base type and install
8884 it in the TYPE field of the die. */
8885
8886 static struct type *
8887 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8888 {
8889 struct objfile *objfile = cu->objfile;
8890 struct type *type;
8891 struct attribute *attr;
8892 int encoding = 0, size = 0;
8893 char *name;
8894 enum type_code code = TYPE_CODE_INT;
8895 int type_flags = 0;
8896 struct type *target_type = NULL;
8897
8898 attr = dwarf2_attr (die, DW_AT_encoding, cu);
8899 if (attr)
8900 {
8901 encoding = DW_UNSND (attr);
8902 }
8903 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8904 if (attr)
8905 {
8906 size = DW_UNSND (attr);
8907 }
8908 name = dwarf2_name (die, cu);
8909 if (!name)
8910 {
8911 complaint (&symfile_complaints,
8912 _("DW_AT_name missing from DW_TAG_base_type"));
8913 }
8914
8915 switch (encoding)
8916 {
8917 case DW_ATE_address:
8918 /* Turn DW_ATE_address into a void * pointer. */
8919 code = TYPE_CODE_PTR;
8920 type_flags |= TYPE_FLAG_UNSIGNED;
8921 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8922 break;
8923 case DW_ATE_boolean:
8924 code = TYPE_CODE_BOOL;
8925 type_flags |= TYPE_FLAG_UNSIGNED;
8926 break;
8927 case DW_ATE_complex_float:
8928 code = TYPE_CODE_COMPLEX;
8929 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8930 break;
8931 case DW_ATE_decimal_float:
8932 code = TYPE_CODE_DECFLOAT;
8933 break;
8934 case DW_ATE_float:
8935 code = TYPE_CODE_FLT;
8936 break;
8937 case DW_ATE_signed:
8938 break;
8939 case DW_ATE_unsigned:
8940 type_flags |= TYPE_FLAG_UNSIGNED;
8941 if (cu->language == language_fortran
8942 && name
8943 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
8944 code = TYPE_CODE_CHAR;
8945 break;
8946 case DW_ATE_signed_char:
8947 if (cu->language == language_ada || cu->language == language_m2
8948 || cu->language == language_pascal
8949 || cu->language == language_fortran)
8950 code = TYPE_CODE_CHAR;
8951 break;
8952 case DW_ATE_unsigned_char:
8953 if (cu->language == language_ada || cu->language == language_m2
8954 || cu->language == language_pascal
8955 || cu->language == language_fortran)
8956 code = TYPE_CODE_CHAR;
8957 type_flags |= TYPE_FLAG_UNSIGNED;
8958 break;
8959 case DW_ATE_UTF:
8960 /* We just treat this as an integer and then recognize the
8961 type by name elsewhere. */
8962 break;
8963
8964 default:
8965 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8966 dwarf_type_encoding_name (encoding));
8967 break;
8968 }
8969
8970 type = init_type (code, size, type_flags, NULL, objfile);
8971 TYPE_NAME (type) = name;
8972 TYPE_TARGET_TYPE (type) = target_type;
8973
8974 if (name && strcmp (name, "char") == 0)
8975 TYPE_NOSIGN (type) = 1;
8976
8977 return set_die_type (die, type, cu);
8978 }
8979
8980 /* Read the given DW_AT_subrange DIE. */
8981
8982 static struct type *
8983 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8984 {
8985 struct type *base_type;
8986 struct type *range_type;
8987 struct attribute *attr;
8988 LONGEST low = 0;
8989 LONGEST high = -1;
8990 char *name;
8991 LONGEST negative_mask;
8992
8993 base_type = die_type (die, cu);
8994 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8995 check_typedef (base_type);
8996
8997 /* The die_type call above may have already set the type for this DIE. */
8998 range_type = get_die_type (die, cu);
8999 if (range_type)
9000 return range_type;
9001
9002 if (cu->language == language_fortran)
9003 {
9004 /* FORTRAN implies a lower bound of 1, if not given. */
9005 low = 1;
9006 }
9007
9008 /* FIXME: For variable sized arrays either of these could be
9009 a variable rather than a constant value. We'll allow it,
9010 but we don't know how to handle it. */
9011 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
9012 if (attr)
9013 low = dwarf2_get_attr_constant_value (attr, 0);
9014
9015 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
9016 if (attr)
9017 {
9018 if (attr_form_is_block (attr) || is_ref_attr (attr))
9019 {
9020 /* GCC encodes arrays with unspecified or dynamic length
9021 with a DW_FORM_block1 attribute or a reference attribute.
9022 FIXME: GDB does not yet know how to handle dynamic
9023 arrays properly, treat them as arrays with unspecified
9024 length for now.
9025
9026 FIXME: jimb/2003-09-22: GDB does not really know
9027 how to handle arrays of unspecified length
9028 either; we just represent them as zero-length
9029 arrays. Choose an appropriate upper bound given
9030 the lower bound we've computed above. */
9031 high = low - 1;
9032 }
9033 else
9034 high = dwarf2_get_attr_constant_value (attr, 1);
9035 }
9036 else
9037 {
9038 attr = dwarf2_attr (die, DW_AT_count, cu);
9039 if (attr)
9040 {
9041 int count = dwarf2_get_attr_constant_value (attr, 1);
9042 high = low + count - 1;
9043 }
9044 else
9045 {
9046 /* Unspecified array length. */
9047 high = low - 1;
9048 }
9049 }
9050
9051 /* Dwarf-2 specifications explicitly allows to create subrange types
9052 without specifying a base type.
9053 In that case, the base type must be set to the type of
9054 the lower bound, upper bound or count, in that order, if any of these
9055 three attributes references an object that has a type.
9056 If no base type is found, the Dwarf-2 specifications say that
9057 a signed integer type of size equal to the size of an address should
9058 be used.
9059 For the following C code: `extern char gdb_int [];'
9060 GCC produces an empty range DIE.
9061 FIXME: muller/2010-05-28: Possible references to object for low bound,
9062 high bound or count are not yet handled by this code. */
9063 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
9064 {
9065 struct objfile *objfile = cu->objfile;
9066 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9067 int addr_size = gdbarch_addr_bit (gdbarch) /8;
9068 struct type *int_type = objfile_type (objfile)->builtin_int;
9069
9070 /* Test "int", "long int", and "long long int" objfile types,
9071 and select the first one having a size above or equal to the
9072 architecture address size. */
9073 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9074 base_type = int_type;
9075 else
9076 {
9077 int_type = objfile_type (objfile)->builtin_long;
9078 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9079 base_type = int_type;
9080 else
9081 {
9082 int_type = objfile_type (objfile)->builtin_long_long;
9083 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9084 base_type = int_type;
9085 }
9086 }
9087 }
9088
9089 negative_mask =
9090 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
9091 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
9092 low |= negative_mask;
9093 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
9094 high |= negative_mask;
9095
9096 range_type = create_range_type (NULL, base_type, low, high);
9097
9098 /* Mark arrays with dynamic length at least as an array of unspecified
9099 length. GDB could check the boundary but before it gets implemented at
9100 least allow accessing the array elements. */
9101 if (attr && attr_form_is_block (attr))
9102 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9103
9104 /* Ada expects an empty array on no boundary attributes. */
9105 if (attr == NULL && cu->language != language_ada)
9106 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9107
9108 name = dwarf2_name (die, cu);
9109 if (name)
9110 TYPE_NAME (range_type) = name;
9111
9112 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9113 if (attr)
9114 TYPE_LENGTH (range_type) = DW_UNSND (attr);
9115
9116 set_die_type (die, range_type, cu);
9117
9118 /* set_die_type should be already done. */
9119 set_descriptive_type (range_type, die, cu);
9120
9121 return range_type;
9122 }
9123
9124 static struct type *
9125 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
9126 {
9127 struct type *type;
9128
9129 /* For now, we only support the C meaning of an unspecified type: void. */
9130
9131 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
9132 TYPE_NAME (type) = dwarf2_name (die, cu);
9133
9134 return set_die_type (die, type, cu);
9135 }
9136
9137 /* Trivial hash function for die_info: the hash value of a DIE
9138 is its offset in .debug_info for this objfile. */
9139
9140 static hashval_t
9141 die_hash (const void *item)
9142 {
9143 const struct die_info *die = item;
9144
9145 return die->offset.sect_off;
9146 }
9147
9148 /* Trivial comparison function for die_info structures: two DIEs
9149 are equal if they have the same offset. */
9150
9151 static int
9152 die_eq (const void *item_lhs, const void *item_rhs)
9153 {
9154 const struct die_info *die_lhs = item_lhs;
9155 const struct die_info *die_rhs = item_rhs;
9156
9157 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
9158 }
9159
9160 /* Read a whole compilation unit into a linked list of dies. */
9161
9162 static struct die_info *
9163 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
9164 {
9165 struct die_reader_specs reader_specs;
9166 int read_abbrevs = 0;
9167 struct cleanup *back_to = NULL;
9168 struct die_info *die;
9169
9170 if (cu->dwarf2_abbrevs == NULL)
9171 {
9172 dwarf2_read_abbrevs (cu);
9173 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
9174 read_abbrevs = 1;
9175 }
9176
9177 gdb_assert (cu->die_hash == NULL);
9178 cu->die_hash
9179 = htab_create_alloc_ex (cu->header.length / 12,
9180 die_hash,
9181 die_eq,
9182 NULL,
9183 &cu->comp_unit_obstack,
9184 hashtab_obstack_allocate,
9185 dummy_obstack_deallocate);
9186
9187 init_cu_die_reader (&reader_specs, cu);
9188
9189 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
9190
9191 if (read_abbrevs)
9192 do_cleanups (back_to);
9193
9194 return die;
9195 }
9196
9197 /* Main entry point for reading a DIE and all children.
9198 Read the DIE and dump it if requested. */
9199
9200 static struct die_info *
9201 read_die_and_children (const struct die_reader_specs *reader,
9202 gdb_byte *info_ptr,
9203 gdb_byte **new_info_ptr,
9204 struct die_info *parent)
9205 {
9206 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
9207 new_info_ptr, parent);
9208
9209 if (dwarf2_die_debug)
9210 {
9211 fprintf_unfiltered (gdb_stdlog,
9212 "\nRead die from %s of %s:\n",
9213 (reader->cu->per_cu->debug_types_section
9214 ? ".debug_types"
9215 : ".debug_info"),
9216 reader->abfd->filename);
9217 dump_die (result, dwarf2_die_debug);
9218 }
9219
9220 return result;
9221 }
9222
9223 /* Read a single die and all its descendents. Set the die's sibling
9224 field to NULL; set other fields in the die correctly, and set all
9225 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
9226 location of the info_ptr after reading all of those dies. PARENT
9227 is the parent of the die in question. */
9228
9229 static struct die_info *
9230 read_die_and_children_1 (const struct die_reader_specs *reader,
9231 gdb_byte *info_ptr,
9232 gdb_byte **new_info_ptr,
9233 struct die_info *parent)
9234 {
9235 struct die_info *die;
9236 gdb_byte *cur_ptr;
9237 int has_children;
9238
9239 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
9240 if (die == NULL)
9241 {
9242 *new_info_ptr = cur_ptr;
9243 return NULL;
9244 }
9245 store_in_ref_table (die, reader->cu);
9246
9247 if (has_children)
9248 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
9249 else
9250 {
9251 die->child = NULL;
9252 *new_info_ptr = cur_ptr;
9253 }
9254
9255 die->sibling = NULL;
9256 die->parent = parent;
9257 return die;
9258 }
9259
9260 /* Read a die, all of its descendents, and all of its siblings; set
9261 all of the fields of all of the dies correctly. Arguments are as
9262 in read_die_and_children. */
9263
9264 static struct die_info *
9265 read_die_and_siblings (const struct die_reader_specs *reader,
9266 gdb_byte *info_ptr,
9267 gdb_byte **new_info_ptr,
9268 struct die_info *parent)
9269 {
9270 struct die_info *first_die, *last_sibling;
9271 gdb_byte *cur_ptr;
9272
9273 cur_ptr = info_ptr;
9274 first_die = last_sibling = NULL;
9275
9276 while (1)
9277 {
9278 struct die_info *die
9279 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
9280
9281 if (die == NULL)
9282 {
9283 *new_info_ptr = cur_ptr;
9284 return first_die;
9285 }
9286
9287 if (!first_die)
9288 first_die = die;
9289 else
9290 last_sibling->sibling = die;
9291
9292 last_sibling = die;
9293 }
9294 }
9295
9296 /* Read the die from the .debug_info section buffer. Set DIEP to
9297 point to a newly allocated die with its information, except for its
9298 child, sibling, and parent fields. Set HAS_CHILDREN to tell
9299 whether the die has children or not. */
9300
9301 static gdb_byte *
9302 read_full_die (const struct die_reader_specs *reader,
9303 struct die_info **diep, gdb_byte *info_ptr,
9304 int *has_children)
9305 {
9306 unsigned int abbrev_number, bytes_read, i;
9307 sect_offset offset;
9308 struct abbrev_info *abbrev;
9309 struct die_info *die;
9310 struct dwarf2_cu *cu = reader->cu;
9311 bfd *abfd = reader->abfd;
9312
9313 offset.sect_off = info_ptr - reader->buffer;
9314 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9315 info_ptr += bytes_read;
9316 if (!abbrev_number)
9317 {
9318 *diep = NULL;
9319 *has_children = 0;
9320 return info_ptr;
9321 }
9322
9323 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
9324 if (!abbrev)
9325 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
9326 abbrev_number,
9327 bfd_get_filename (abfd));
9328
9329 die = dwarf_alloc_die (cu, abbrev->num_attrs);
9330 die->offset = offset;
9331 die->tag = abbrev->tag;
9332 die->abbrev = abbrev_number;
9333
9334 die->num_attrs = abbrev->num_attrs;
9335
9336 for (i = 0; i < abbrev->num_attrs; ++i)
9337 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
9338 abfd, info_ptr, cu);
9339
9340 *diep = die;
9341 *has_children = abbrev->has_children;
9342 return info_ptr;
9343 }
9344
9345 /* In DWARF version 2, the description of the debugging information is
9346 stored in a separate .debug_abbrev section. Before we read any
9347 dies from a section we read in all abbreviations and install them
9348 in a hash table. This function also sets flags in CU describing
9349 the data found in the abbrev table. */
9350
9351 static void
9352 dwarf2_read_abbrevs (struct dwarf2_cu *cu)
9353 {
9354 bfd *abfd = cu->objfile->obfd;
9355 struct comp_unit_head *cu_header = &cu->header;
9356 gdb_byte *abbrev_ptr;
9357 struct abbrev_info *cur_abbrev;
9358 unsigned int abbrev_number, bytes_read, abbrev_name;
9359 unsigned int abbrev_form, hash_number;
9360 struct attr_abbrev *cur_attrs;
9361 unsigned int allocated_attrs;
9362
9363 /* Initialize dwarf2 abbrevs. */
9364 obstack_init (&cu->abbrev_obstack);
9365 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
9366 (ABBREV_HASH_SIZE
9367 * sizeof (struct abbrev_info *)));
9368 memset (cu->dwarf2_abbrevs, 0,
9369 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
9370
9371 dwarf2_read_section (dwarf2_per_objfile->objfile,
9372 &dwarf2_per_objfile->abbrev);
9373 abbrev_ptr = (dwarf2_per_objfile->abbrev.buffer
9374 + cu_header->abbrev_offset.sect_off);
9375 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9376 abbrev_ptr += bytes_read;
9377
9378 allocated_attrs = ATTR_ALLOC_CHUNK;
9379 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
9380
9381 /* Loop until we reach an abbrev number of 0. */
9382 while (abbrev_number)
9383 {
9384 cur_abbrev = dwarf_alloc_abbrev (cu);
9385
9386 /* read in abbrev header */
9387 cur_abbrev->number = abbrev_number;
9388 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9389 abbrev_ptr += bytes_read;
9390 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
9391 abbrev_ptr += 1;
9392
9393 /* now read in declarations */
9394 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9395 abbrev_ptr += bytes_read;
9396 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9397 abbrev_ptr += bytes_read;
9398 while (abbrev_name)
9399 {
9400 if (cur_abbrev->num_attrs == allocated_attrs)
9401 {
9402 allocated_attrs += ATTR_ALLOC_CHUNK;
9403 cur_attrs
9404 = xrealloc (cur_attrs, (allocated_attrs
9405 * sizeof (struct attr_abbrev)));
9406 }
9407
9408 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
9409 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
9410 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9411 abbrev_ptr += bytes_read;
9412 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9413 abbrev_ptr += bytes_read;
9414 }
9415
9416 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
9417 (cur_abbrev->num_attrs
9418 * sizeof (struct attr_abbrev)));
9419 memcpy (cur_abbrev->attrs, cur_attrs,
9420 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
9421
9422 hash_number = abbrev_number % ABBREV_HASH_SIZE;
9423 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
9424 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
9425
9426 /* Get next abbreviation.
9427 Under Irix6 the abbreviations for a compilation unit are not
9428 always properly terminated with an abbrev number of 0.
9429 Exit loop if we encounter an abbreviation which we have
9430 already read (which means we are about to read the abbreviations
9431 for the next compile unit) or if the end of the abbreviation
9432 table is reached. */
9433 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
9434 >= dwarf2_per_objfile->abbrev.size)
9435 break;
9436 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9437 abbrev_ptr += bytes_read;
9438 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
9439 break;
9440 }
9441
9442 xfree (cur_attrs);
9443 }
9444
9445 /* Release the memory used by the abbrev table for a compilation unit. */
9446
9447 static void
9448 dwarf2_free_abbrev_table (void *ptr_to_cu)
9449 {
9450 struct dwarf2_cu *cu = ptr_to_cu;
9451
9452 obstack_free (&cu->abbrev_obstack, NULL);
9453 cu->dwarf2_abbrevs = NULL;
9454 }
9455
9456 /* Lookup an abbrev_info structure in the abbrev hash table. */
9457
9458 static struct abbrev_info *
9459 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
9460 {
9461 unsigned int hash_number;
9462 struct abbrev_info *abbrev;
9463
9464 hash_number = number % ABBREV_HASH_SIZE;
9465 abbrev = cu->dwarf2_abbrevs[hash_number];
9466
9467 while (abbrev)
9468 {
9469 if (abbrev->number == number)
9470 return abbrev;
9471 else
9472 abbrev = abbrev->next;
9473 }
9474 return NULL;
9475 }
9476
9477 /* Returns nonzero if TAG represents a type that we might generate a partial
9478 symbol for. */
9479
9480 static int
9481 is_type_tag_for_partial (int tag)
9482 {
9483 switch (tag)
9484 {
9485 #if 0
9486 /* Some types that would be reasonable to generate partial symbols for,
9487 that we don't at present. */
9488 case DW_TAG_array_type:
9489 case DW_TAG_file_type:
9490 case DW_TAG_ptr_to_member_type:
9491 case DW_TAG_set_type:
9492 case DW_TAG_string_type:
9493 case DW_TAG_subroutine_type:
9494 #endif
9495 case DW_TAG_base_type:
9496 case DW_TAG_class_type:
9497 case DW_TAG_interface_type:
9498 case DW_TAG_enumeration_type:
9499 case DW_TAG_structure_type:
9500 case DW_TAG_subrange_type:
9501 case DW_TAG_typedef:
9502 case DW_TAG_union_type:
9503 return 1;
9504 default:
9505 return 0;
9506 }
9507 }
9508
9509 /* Load all DIEs that are interesting for partial symbols into memory. */
9510
9511 static struct partial_die_info *
9512 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
9513 int building_psymtab, struct dwarf2_cu *cu)
9514 {
9515 struct objfile *objfile = cu->objfile;
9516 struct partial_die_info *part_die;
9517 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
9518 struct abbrev_info *abbrev;
9519 unsigned int bytes_read;
9520 unsigned int load_all = 0;
9521 int nesting_level = 1;
9522
9523 parent_die = NULL;
9524 last_die = NULL;
9525
9526 gdb_assert (cu->per_cu != NULL);
9527 if (cu->per_cu->load_all_dies)
9528 load_all = 1;
9529
9530 cu->partial_dies
9531 = htab_create_alloc_ex (cu->header.length / 12,
9532 partial_die_hash,
9533 partial_die_eq,
9534 NULL,
9535 &cu->comp_unit_obstack,
9536 hashtab_obstack_allocate,
9537 dummy_obstack_deallocate);
9538
9539 part_die = obstack_alloc (&cu->comp_unit_obstack,
9540 sizeof (struct partial_die_info));
9541
9542 while (1)
9543 {
9544 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
9545
9546 /* A NULL abbrev means the end of a series of children. */
9547 if (abbrev == NULL)
9548 {
9549 if (--nesting_level == 0)
9550 {
9551 /* PART_DIE was probably the last thing allocated on the
9552 comp_unit_obstack, so we could call obstack_free
9553 here. We don't do that because the waste is small,
9554 and will be cleaned up when we're done with this
9555 compilation unit. This way, we're also more robust
9556 against other users of the comp_unit_obstack. */
9557 return first_die;
9558 }
9559 info_ptr += bytes_read;
9560 last_die = parent_die;
9561 parent_die = parent_die->die_parent;
9562 continue;
9563 }
9564
9565 /* Check for template arguments. We never save these; if
9566 they're seen, we just mark the parent, and go on our way. */
9567 if (parent_die != NULL
9568 && cu->language == language_cplus
9569 && (abbrev->tag == DW_TAG_template_type_param
9570 || abbrev->tag == DW_TAG_template_value_param))
9571 {
9572 parent_die->has_template_arguments = 1;
9573
9574 if (!load_all)
9575 {
9576 /* We don't need a partial DIE for the template argument. */
9577 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
9578 cu);
9579 continue;
9580 }
9581 }
9582
9583 /* We only recurse into c++ subprograms looking for template arguments.
9584 Skip their other children. */
9585 if (!load_all
9586 && cu->language == language_cplus
9587 && parent_die != NULL
9588 && parent_die->tag == DW_TAG_subprogram)
9589 {
9590 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9591 continue;
9592 }
9593
9594 /* Check whether this DIE is interesting enough to save. Normally
9595 we would not be interested in members here, but there may be
9596 later variables referencing them via DW_AT_specification (for
9597 static members). */
9598 if (!load_all
9599 && !is_type_tag_for_partial (abbrev->tag)
9600 && abbrev->tag != DW_TAG_constant
9601 && abbrev->tag != DW_TAG_enumerator
9602 && abbrev->tag != DW_TAG_subprogram
9603 && abbrev->tag != DW_TAG_lexical_block
9604 && abbrev->tag != DW_TAG_variable
9605 && abbrev->tag != DW_TAG_namespace
9606 && abbrev->tag != DW_TAG_module
9607 && abbrev->tag != DW_TAG_member)
9608 {
9609 /* Otherwise we skip to the next sibling, if any. */
9610 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9611 continue;
9612 }
9613
9614 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
9615 buffer, info_ptr, cu);
9616
9617 /* This two-pass algorithm for processing partial symbols has a
9618 high cost in cache pressure. Thus, handle some simple cases
9619 here which cover the majority of C partial symbols. DIEs
9620 which neither have specification tags in them, nor could have
9621 specification tags elsewhere pointing at them, can simply be
9622 processed and discarded.
9623
9624 This segment is also optional; scan_partial_symbols and
9625 add_partial_symbol will handle these DIEs if we chain
9626 them in normally. When compilers which do not emit large
9627 quantities of duplicate debug information are more common,
9628 this code can probably be removed. */
9629
9630 /* Any complete simple types at the top level (pretty much all
9631 of them, for a language without namespaces), can be processed
9632 directly. */
9633 if (parent_die == NULL
9634 && part_die->has_specification == 0
9635 && part_die->is_declaration == 0
9636 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
9637 || part_die->tag == DW_TAG_base_type
9638 || part_die->tag == DW_TAG_subrange_type))
9639 {
9640 if (building_psymtab && part_die->name != NULL)
9641 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9642 VAR_DOMAIN, LOC_TYPEDEF,
9643 &objfile->static_psymbols,
9644 0, (CORE_ADDR) 0, cu->language, objfile);
9645 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9646 continue;
9647 }
9648
9649 /* The exception for DW_TAG_typedef with has_children above is
9650 a workaround of GCC PR debug/47510. In the case of this complaint
9651 type_name_no_tag_or_error will error on such types later.
9652
9653 GDB skipped children of DW_TAG_typedef by the shortcut above and then
9654 it could not find the child DIEs referenced later, this is checked
9655 above. In correct DWARF DW_TAG_typedef should have no children. */
9656
9657 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
9658 complaint (&symfile_complaints,
9659 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9660 "- DIE at 0x%x [in module %s]"),
9661 part_die->offset.sect_off, objfile->name);
9662
9663 /* If we're at the second level, and we're an enumerator, and
9664 our parent has no specification (meaning possibly lives in a
9665 namespace elsewhere), then we can add the partial symbol now
9666 instead of queueing it. */
9667 if (part_die->tag == DW_TAG_enumerator
9668 && parent_die != NULL
9669 && parent_die->die_parent == NULL
9670 && parent_die->tag == DW_TAG_enumeration_type
9671 && parent_die->has_specification == 0)
9672 {
9673 if (part_die->name == NULL)
9674 complaint (&symfile_complaints,
9675 _("malformed enumerator DIE ignored"));
9676 else if (building_psymtab)
9677 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9678 VAR_DOMAIN, LOC_CONST,
9679 (cu->language == language_cplus
9680 || cu->language == language_java)
9681 ? &objfile->global_psymbols
9682 : &objfile->static_psymbols,
9683 0, (CORE_ADDR) 0, cu->language, objfile);
9684
9685 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9686 continue;
9687 }
9688
9689 /* We'll save this DIE so link it in. */
9690 part_die->die_parent = parent_die;
9691 part_die->die_sibling = NULL;
9692 part_die->die_child = NULL;
9693
9694 if (last_die && last_die == parent_die)
9695 last_die->die_child = part_die;
9696 else if (last_die)
9697 last_die->die_sibling = part_die;
9698
9699 last_die = part_die;
9700
9701 if (first_die == NULL)
9702 first_die = part_die;
9703
9704 /* Maybe add the DIE to the hash table. Not all DIEs that we
9705 find interesting need to be in the hash table, because we
9706 also have the parent/sibling/child chains; only those that we
9707 might refer to by offset later during partial symbol reading.
9708
9709 For now this means things that might have be the target of a
9710 DW_AT_specification, DW_AT_abstract_origin, or
9711 DW_AT_extension. DW_AT_extension will refer only to
9712 namespaces; DW_AT_abstract_origin refers to functions (and
9713 many things under the function DIE, but we do not recurse
9714 into function DIEs during partial symbol reading) and
9715 possibly variables as well; DW_AT_specification refers to
9716 declarations. Declarations ought to have the DW_AT_declaration
9717 flag. It happens that GCC forgets to put it in sometimes, but
9718 only for functions, not for types.
9719
9720 Adding more things than necessary to the hash table is harmless
9721 except for the performance cost. Adding too few will result in
9722 wasted time in find_partial_die, when we reread the compilation
9723 unit with load_all_dies set. */
9724
9725 if (load_all
9726 || abbrev->tag == DW_TAG_constant
9727 || abbrev->tag == DW_TAG_subprogram
9728 || abbrev->tag == DW_TAG_variable
9729 || abbrev->tag == DW_TAG_namespace
9730 || part_die->is_declaration)
9731 {
9732 void **slot;
9733
9734 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9735 part_die->offset.sect_off, INSERT);
9736 *slot = part_die;
9737 }
9738
9739 part_die = obstack_alloc (&cu->comp_unit_obstack,
9740 sizeof (struct partial_die_info));
9741
9742 /* For some DIEs we want to follow their children (if any). For C
9743 we have no reason to follow the children of structures; for other
9744 languages we have to, so that we can get at method physnames
9745 to infer fully qualified class names, for DW_AT_specification,
9746 and for C++ template arguments. For C++, we also look one level
9747 inside functions to find template arguments (if the name of the
9748 function does not already contain the template arguments).
9749
9750 For Ada, we need to scan the children of subprograms and lexical
9751 blocks as well because Ada allows the definition of nested
9752 entities that could be interesting for the debugger, such as
9753 nested subprograms for instance. */
9754 if (last_die->has_children
9755 && (load_all
9756 || last_die->tag == DW_TAG_namespace
9757 || last_die->tag == DW_TAG_module
9758 || last_die->tag == DW_TAG_enumeration_type
9759 || (cu->language == language_cplus
9760 && last_die->tag == DW_TAG_subprogram
9761 && (last_die->name == NULL
9762 || strchr (last_die->name, '<') == NULL))
9763 || (cu->language != language_c
9764 && (last_die->tag == DW_TAG_class_type
9765 || last_die->tag == DW_TAG_interface_type
9766 || last_die->tag == DW_TAG_structure_type
9767 || last_die->tag == DW_TAG_union_type))
9768 || (cu->language == language_ada
9769 && (last_die->tag == DW_TAG_subprogram
9770 || last_die->tag == DW_TAG_lexical_block))))
9771 {
9772 nesting_level++;
9773 parent_die = last_die;
9774 continue;
9775 }
9776
9777 /* Otherwise we skip to the next sibling, if any. */
9778 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
9779
9780 /* Back to the top, do it again. */
9781 }
9782 }
9783
9784 /* Read a minimal amount of information into the minimal die structure. */
9785
9786 static gdb_byte *
9787 read_partial_die (struct partial_die_info *part_die,
9788 struct abbrev_info *abbrev,
9789 unsigned int abbrev_len, bfd *abfd,
9790 gdb_byte *buffer, gdb_byte *info_ptr,
9791 struct dwarf2_cu *cu)
9792 {
9793 struct objfile *objfile = cu->objfile;
9794 unsigned int i;
9795 struct attribute attr;
9796 int has_low_pc_attr = 0;
9797 int has_high_pc_attr = 0;
9798
9799 memset (part_die, 0, sizeof (struct partial_die_info));
9800
9801 part_die->offset.sect_off = info_ptr - buffer;
9802
9803 info_ptr += abbrev_len;
9804
9805 if (abbrev == NULL)
9806 return info_ptr;
9807
9808 part_die->tag = abbrev->tag;
9809 part_die->has_children = abbrev->has_children;
9810
9811 for (i = 0; i < abbrev->num_attrs; ++i)
9812 {
9813 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
9814
9815 /* Store the data if it is of an attribute we want to keep in a
9816 partial symbol table. */
9817 switch (attr.name)
9818 {
9819 case DW_AT_name:
9820 switch (part_die->tag)
9821 {
9822 case DW_TAG_compile_unit:
9823 case DW_TAG_type_unit:
9824 /* Compilation units have a DW_AT_name that is a filename, not
9825 a source language identifier. */
9826 case DW_TAG_enumeration_type:
9827 case DW_TAG_enumerator:
9828 /* These tags always have simple identifiers already; no need
9829 to canonicalize them. */
9830 part_die->name = DW_STRING (&attr);
9831 break;
9832 default:
9833 part_die->name
9834 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
9835 &objfile->objfile_obstack);
9836 break;
9837 }
9838 break;
9839 case DW_AT_linkage_name:
9840 case DW_AT_MIPS_linkage_name:
9841 /* Note that both forms of linkage name might appear. We
9842 assume they will be the same, and we only store the last
9843 one we see. */
9844 if (cu->language == language_ada)
9845 part_die->name = DW_STRING (&attr);
9846 part_die->linkage_name = DW_STRING (&attr);
9847 break;
9848 case DW_AT_low_pc:
9849 has_low_pc_attr = 1;
9850 part_die->lowpc = DW_ADDR (&attr);
9851 break;
9852 case DW_AT_high_pc:
9853 has_high_pc_attr = 1;
9854 part_die->highpc = DW_ADDR (&attr);
9855 break;
9856 case DW_AT_location:
9857 /* Support the .debug_loc offsets. */
9858 if (attr_form_is_block (&attr))
9859 {
9860 part_die->locdesc = DW_BLOCK (&attr);
9861 }
9862 else if (attr_form_is_section_offset (&attr))
9863 {
9864 dwarf2_complex_location_expr_complaint ();
9865 }
9866 else
9867 {
9868 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9869 "partial symbol information");
9870 }
9871 break;
9872 case DW_AT_external:
9873 part_die->is_external = DW_UNSND (&attr);
9874 break;
9875 case DW_AT_declaration:
9876 part_die->is_declaration = DW_UNSND (&attr);
9877 break;
9878 case DW_AT_type:
9879 part_die->has_type = 1;
9880 break;
9881 case DW_AT_abstract_origin:
9882 case DW_AT_specification:
9883 case DW_AT_extension:
9884 part_die->has_specification = 1;
9885 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9886 break;
9887 case DW_AT_sibling:
9888 /* Ignore absolute siblings, they might point outside of
9889 the current compile unit. */
9890 if (attr.form == DW_FORM_ref_addr)
9891 complaint (&symfile_complaints,
9892 _("ignoring absolute DW_AT_sibling"));
9893 else
9894 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
9895 break;
9896 case DW_AT_byte_size:
9897 part_die->has_byte_size = 1;
9898 break;
9899 case DW_AT_calling_convention:
9900 /* DWARF doesn't provide a way to identify a program's source-level
9901 entry point. DW_AT_calling_convention attributes are only meant
9902 to describe functions' calling conventions.
9903
9904 However, because it's a necessary piece of information in
9905 Fortran, and because DW_CC_program is the only piece of debugging
9906 information whose definition refers to a 'main program' at all,
9907 several compilers have begun marking Fortran main programs with
9908 DW_CC_program --- even when those functions use the standard
9909 calling conventions.
9910
9911 So until DWARF specifies a way to provide this information and
9912 compilers pick up the new representation, we'll support this
9913 practice. */
9914 if (DW_UNSND (&attr) == DW_CC_program
9915 && cu->language == language_fortran)
9916 {
9917 set_main_name (part_die->name);
9918
9919 /* As this DIE has a static linkage the name would be difficult
9920 to look up later. */
9921 language_of_main = language_fortran;
9922 }
9923 break;
9924 case DW_AT_inline:
9925 if (DW_UNSND (&attr) == DW_INL_inlined
9926 || DW_UNSND (&attr) == DW_INL_declared_inlined)
9927 part_die->may_be_inlined = 1;
9928 break;
9929 default:
9930 break;
9931 }
9932 }
9933
9934 if (has_low_pc_attr && has_high_pc_attr)
9935 {
9936 /* When using the GNU linker, .gnu.linkonce. sections are used to
9937 eliminate duplicate copies of functions and vtables and such.
9938 The linker will arbitrarily choose one and discard the others.
9939 The AT_*_pc values for such functions refer to local labels in
9940 these sections. If the section from that file was discarded, the
9941 labels are not in the output, so the relocs get a value of 0.
9942 If this is a discarded function, mark the pc bounds as invalid,
9943 so that GDB will ignore it. */
9944 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9945 {
9946 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9947
9948 complaint (&symfile_complaints,
9949 _("DW_AT_low_pc %s is zero "
9950 "for DIE at 0x%x [in module %s]"),
9951 paddress (gdbarch, part_die->lowpc),
9952 part_die->offset.sect_off, objfile->name);
9953 }
9954 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
9955 else if (part_die->lowpc >= part_die->highpc)
9956 {
9957 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9958
9959 complaint (&symfile_complaints,
9960 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9961 "for DIE at 0x%x [in module %s]"),
9962 paddress (gdbarch, part_die->lowpc),
9963 paddress (gdbarch, part_die->highpc),
9964 part_die->offset.sect_off, objfile->name);
9965 }
9966 else
9967 part_die->has_pc_info = 1;
9968 }
9969
9970 return info_ptr;
9971 }
9972
9973 /* Find a cached partial DIE at OFFSET in CU. */
9974
9975 static struct partial_die_info *
9976 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
9977 {
9978 struct partial_die_info *lookup_die = NULL;
9979 struct partial_die_info part_die;
9980
9981 part_die.offset = offset;
9982 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
9983 offset.sect_off);
9984
9985 return lookup_die;
9986 }
9987
9988 /* Find a partial DIE at OFFSET, which may or may not be in CU,
9989 except in the case of .debug_types DIEs which do not reference
9990 outside their CU (they do however referencing other types via
9991 DW_FORM_ref_sig8). */
9992
9993 static struct partial_die_info *
9994 find_partial_die (sect_offset offset, struct dwarf2_cu *cu)
9995 {
9996 struct objfile *objfile = cu->objfile;
9997 struct dwarf2_per_cu_data *per_cu = NULL;
9998 struct partial_die_info *pd = NULL;
9999
10000 if (offset_in_cu_p (&cu->header, offset))
10001 {
10002 pd = find_partial_die_in_comp_unit (offset, cu);
10003 if (pd != NULL)
10004 return pd;
10005 /* We missed recording what we needed.
10006 Load all dies and try again. */
10007 per_cu = cu->per_cu;
10008 }
10009 else
10010 {
10011 /* TUs don't reference other CUs/TUs (except via type signatures). */
10012 if (cu->per_cu->debug_types_section)
10013 {
10014 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
10015 " external reference to offset 0x%lx [in module %s].\n"),
10016 (long) cu->header.offset.sect_off, (long) offset.sect_off,
10017 bfd_get_filename (objfile->obfd));
10018 }
10019 per_cu = dwarf2_find_containing_comp_unit (offset, objfile);
10020
10021 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
10022 load_partial_comp_unit (per_cu);
10023
10024 per_cu->cu->last_used = 0;
10025 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
10026 }
10027
10028 if (pd == NULL && per_cu->load_all_dies == 0)
10029 {
10030 struct cleanup *back_to;
10031 struct partial_die_info comp_unit_die;
10032 struct abbrev_info *abbrev;
10033 unsigned int bytes_read;
10034 char *info_ptr;
10035 struct dwarf2_section_info *sec;
10036
10037 per_cu->load_all_dies = 1;
10038
10039 if (per_cu->debug_types_section)
10040 sec = per_cu->debug_types_section;
10041 else
10042 sec = &dwarf2_per_objfile->info;
10043
10044 /* Re-read the DIEs, this time reading all of them.
10045 NOTE: We don't discard the previous set of DIEs.
10046 This doesn't happen very often so it's (hopefully) not a problem. */
10047 back_to = make_cleanup (null_cleanup, 0);
10048 if (per_cu->cu->dwarf2_abbrevs == NULL)
10049 {
10050 dwarf2_read_abbrevs (per_cu->cu);
10051 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
10052 }
10053 info_ptr = (sec->buffer
10054 + per_cu->cu->header.offset.sect_off
10055 + per_cu->cu->header.first_die_offset.cu_off);
10056 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
10057 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
10058 objfile->obfd, sec->buffer, info_ptr,
10059 per_cu->cu);
10060 if (comp_unit_die.has_children)
10061 load_partial_dies (objfile->obfd, sec->buffer, info_ptr, 0,
10062 per_cu->cu);
10063 do_cleanups (back_to);
10064
10065 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
10066 }
10067
10068 if (pd == NULL)
10069 internal_error (__FILE__, __LINE__,
10070 _("could not find partial DIE 0x%x "
10071 "in cache [from module %s]\n"),
10072 offset.sect_off, bfd_get_filename (objfile->obfd));
10073 return pd;
10074 }
10075
10076 /* See if we can figure out if the class lives in a namespace. We do
10077 this by looking for a member function; its demangled name will
10078 contain namespace info, if there is any. */
10079
10080 static void
10081 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
10082 struct dwarf2_cu *cu)
10083 {
10084 /* NOTE: carlton/2003-10-07: Getting the info this way changes
10085 what template types look like, because the demangler
10086 frequently doesn't give the same name as the debug info. We
10087 could fix this by only using the demangled name to get the
10088 prefix (but see comment in read_structure_type). */
10089
10090 struct partial_die_info *real_pdi;
10091 struct partial_die_info *child_pdi;
10092
10093 /* If this DIE (this DIE's specification, if any) has a parent, then
10094 we should not do this. We'll prepend the parent's fully qualified
10095 name when we create the partial symbol. */
10096
10097 real_pdi = struct_pdi;
10098 while (real_pdi->has_specification)
10099 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
10100
10101 if (real_pdi->die_parent != NULL)
10102 return;
10103
10104 for (child_pdi = struct_pdi->die_child;
10105 child_pdi != NULL;
10106 child_pdi = child_pdi->die_sibling)
10107 {
10108 if (child_pdi->tag == DW_TAG_subprogram
10109 && child_pdi->linkage_name != NULL)
10110 {
10111 char *actual_class_name
10112 = language_class_name_from_physname (cu->language_defn,
10113 child_pdi->linkage_name);
10114 if (actual_class_name != NULL)
10115 {
10116 struct_pdi->name
10117 = obsavestring (actual_class_name,
10118 strlen (actual_class_name),
10119 &cu->objfile->objfile_obstack);
10120 xfree (actual_class_name);
10121 }
10122 break;
10123 }
10124 }
10125 }
10126
10127 /* Adjust PART_DIE before generating a symbol for it. This function
10128 may set the is_external flag or change the DIE's name. */
10129
10130 static void
10131 fixup_partial_die (struct partial_die_info *part_die,
10132 struct dwarf2_cu *cu)
10133 {
10134 /* Once we've fixed up a die, there's no point in doing so again.
10135 This also avoids a memory leak if we were to call
10136 guess_partial_die_structure_name multiple times. */
10137 if (part_die->fixup_called)
10138 return;
10139
10140 /* If we found a reference attribute and the DIE has no name, try
10141 to find a name in the referred to DIE. */
10142
10143 if (part_die->name == NULL && part_die->has_specification)
10144 {
10145 struct partial_die_info *spec_die;
10146
10147 spec_die = find_partial_die (part_die->spec_offset, cu);
10148
10149 fixup_partial_die (spec_die, cu);
10150
10151 if (spec_die->name)
10152 {
10153 part_die->name = spec_die->name;
10154
10155 /* Copy DW_AT_external attribute if it is set. */
10156 if (spec_die->is_external)
10157 part_die->is_external = spec_die->is_external;
10158 }
10159 }
10160
10161 /* Set default names for some unnamed DIEs. */
10162
10163 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
10164 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
10165
10166 /* If there is no parent die to provide a namespace, and there are
10167 children, see if we can determine the namespace from their linkage
10168 name. */
10169 if (cu->language == language_cplus
10170 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
10171 && part_die->die_parent == NULL
10172 && part_die->has_children
10173 && (part_die->tag == DW_TAG_class_type
10174 || part_die->tag == DW_TAG_structure_type
10175 || part_die->tag == DW_TAG_union_type))
10176 guess_partial_die_structure_name (part_die, cu);
10177
10178 /* GCC might emit a nameless struct or union that has a linkage
10179 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
10180 if (part_die->name == NULL
10181 && (part_die->tag == DW_TAG_class_type
10182 || part_die->tag == DW_TAG_interface_type
10183 || part_die->tag == DW_TAG_structure_type
10184 || part_die->tag == DW_TAG_union_type)
10185 && part_die->linkage_name != NULL)
10186 {
10187 char *demangled;
10188
10189 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
10190 if (demangled)
10191 {
10192 const char *base;
10193
10194 /* Strip any leading namespaces/classes, keep only the base name.
10195 DW_AT_name for named DIEs does not contain the prefixes. */
10196 base = strrchr (demangled, ':');
10197 if (base && base > demangled && base[-1] == ':')
10198 base++;
10199 else
10200 base = demangled;
10201
10202 part_die->name = obsavestring (base, strlen (base),
10203 &cu->objfile->objfile_obstack);
10204 xfree (demangled);
10205 }
10206 }
10207
10208 part_die->fixup_called = 1;
10209 }
10210
10211 /* Read an attribute value described by an attribute form. */
10212
10213 static gdb_byte *
10214 read_attribute_value (struct attribute *attr, unsigned form,
10215 bfd *abfd, gdb_byte *info_ptr,
10216 struct dwarf2_cu *cu)
10217 {
10218 struct comp_unit_head *cu_header = &cu->header;
10219 unsigned int bytes_read;
10220 struct dwarf_block *blk;
10221
10222 attr->form = form;
10223 switch (form)
10224 {
10225 case DW_FORM_ref_addr:
10226 if (cu->header.version == 2)
10227 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10228 else
10229 DW_ADDR (attr) = read_offset (abfd, info_ptr,
10230 &cu->header, &bytes_read);
10231 info_ptr += bytes_read;
10232 break;
10233 case DW_FORM_addr:
10234 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10235 info_ptr += bytes_read;
10236 break;
10237 case DW_FORM_block2:
10238 blk = dwarf_alloc_block (cu);
10239 blk->size = read_2_bytes (abfd, info_ptr);
10240 info_ptr += 2;
10241 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10242 info_ptr += blk->size;
10243 DW_BLOCK (attr) = blk;
10244 break;
10245 case DW_FORM_block4:
10246 blk = dwarf_alloc_block (cu);
10247 blk->size = read_4_bytes (abfd, info_ptr);
10248 info_ptr += 4;
10249 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10250 info_ptr += blk->size;
10251 DW_BLOCK (attr) = blk;
10252 break;
10253 case DW_FORM_data2:
10254 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
10255 info_ptr += 2;
10256 break;
10257 case DW_FORM_data4:
10258 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
10259 info_ptr += 4;
10260 break;
10261 case DW_FORM_data8:
10262 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
10263 info_ptr += 8;
10264 break;
10265 case DW_FORM_sec_offset:
10266 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
10267 info_ptr += bytes_read;
10268 break;
10269 case DW_FORM_string:
10270 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
10271 DW_STRING_IS_CANONICAL (attr) = 0;
10272 info_ptr += bytes_read;
10273 break;
10274 case DW_FORM_strp:
10275 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
10276 &bytes_read);
10277 DW_STRING_IS_CANONICAL (attr) = 0;
10278 info_ptr += bytes_read;
10279 break;
10280 case DW_FORM_exprloc:
10281 case DW_FORM_block:
10282 blk = dwarf_alloc_block (cu);
10283 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10284 info_ptr += bytes_read;
10285 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10286 info_ptr += blk->size;
10287 DW_BLOCK (attr) = blk;
10288 break;
10289 case DW_FORM_block1:
10290 blk = dwarf_alloc_block (cu);
10291 blk->size = read_1_byte (abfd, info_ptr);
10292 info_ptr += 1;
10293 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10294 info_ptr += blk->size;
10295 DW_BLOCK (attr) = blk;
10296 break;
10297 case DW_FORM_data1:
10298 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10299 info_ptr += 1;
10300 break;
10301 case DW_FORM_flag:
10302 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10303 info_ptr += 1;
10304 break;
10305 case DW_FORM_flag_present:
10306 DW_UNSND (attr) = 1;
10307 break;
10308 case DW_FORM_sdata:
10309 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
10310 info_ptr += bytes_read;
10311 break;
10312 case DW_FORM_udata:
10313 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10314 info_ptr += bytes_read;
10315 break;
10316 case DW_FORM_ref1:
10317 DW_ADDR (attr) = (cu->header.offset.sect_off
10318 + read_1_byte (abfd, info_ptr));
10319 info_ptr += 1;
10320 break;
10321 case DW_FORM_ref2:
10322 DW_ADDR (attr) = (cu->header.offset.sect_off
10323 + read_2_bytes (abfd, info_ptr));
10324 info_ptr += 2;
10325 break;
10326 case DW_FORM_ref4:
10327 DW_ADDR (attr) = (cu->header.offset.sect_off
10328 + read_4_bytes (abfd, info_ptr));
10329 info_ptr += 4;
10330 break;
10331 case DW_FORM_ref8:
10332 DW_ADDR (attr) = (cu->header.offset.sect_off
10333 + read_8_bytes (abfd, info_ptr));
10334 info_ptr += 8;
10335 break;
10336 case DW_FORM_ref_sig8:
10337 /* Convert the signature to something we can record in DW_UNSND
10338 for later lookup.
10339 NOTE: This is NULL if the type wasn't found. */
10340 DW_SIGNATURED_TYPE (attr) =
10341 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
10342 info_ptr += 8;
10343 break;
10344 case DW_FORM_ref_udata:
10345 DW_ADDR (attr) = (cu->header.offset.sect_off
10346 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
10347 info_ptr += bytes_read;
10348 break;
10349 case DW_FORM_indirect:
10350 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10351 info_ptr += bytes_read;
10352 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
10353 break;
10354 default:
10355 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
10356 dwarf_form_name (form),
10357 bfd_get_filename (abfd));
10358 }
10359
10360 /* We have seen instances where the compiler tried to emit a byte
10361 size attribute of -1 which ended up being encoded as an unsigned
10362 0xffffffff. Although 0xffffffff is technically a valid size value,
10363 an object of this size seems pretty unlikely so we can relatively
10364 safely treat these cases as if the size attribute was invalid and
10365 treat them as zero by default. */
10366 if (attr->name == DW_AT_byte_size
10367 && form == DW_FORM_data4
10368 && DW_UNSND (attr) >= 0xffffffff)
10369 {
10370 complaint
10371 (&symfile_complaints,
10372 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
10373 hex_string (DW_UNSND (attr)));
10374 DW_UNSND (attr) = 0;
10375 }
10376
10377 return info_ptr;
10378 }
10379
10380 /* Read an attribute described by an abbreviated attribute. */
10381
10382 static gdb_byte *
10383 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
10384 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
10385 {
10386 attr->name = abbrev->name;
10387 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
10388 }
10389
10390 /* Read dwarf information from a buffer. */
10391
10392 static unsigned int
10393 read_1_byte (bfd *abfd, gdb_byte *buf)
10394 {
10395 return bfd_get_8 (abfd, buf);
10396 }
10397
10398 static int
10399 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
10400 {
10401 return bfd_get_signed_8 (abfd, buf);
10402 }
10403
10404 static unsigned int
10405 read_2_bytes (bfd *abfd, gdb_byte *buf)
10406 {
10407 return bfd_get_16 (abfd, buf);
10408 }
10409
10410 static int
10411 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
10412 {
10413 return bfd_get_signed_16 (abfd, buf);
10414 }
10415
10416 static unsigned int
10417 read_4_bytes (bfd *abfd, gdb_byte *buf)
10418 {
10419 return bfd_get_32 (abfd, buf);
10420 }
10421
10422 static int
10423 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
10424 {
10425 return bfd_get_signed_32 (abfd, buf);
10426 }
10427
10428 static ULONGEST
10429 read_8_bytes (bfd *abfd, gdb_byte *buf)
10430 {
10431 return bfd_get_64 (abfd, buf);
10432 }
10433
10434 static CORE_ADDR
10435 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
10436 unsigned int *bytes_read)
10437 {
10438 struct comp_unit_head *cu_header = &cu->header;
10439 CORE_ADDR retval = 0;
10440
10441 if (cu_header->signed_addr_p)
10442 {
10443 switch (cu_header->addr_size)
10444 {
10445 case 2:
10446 retval = bfd_get_signed_16 (abfd, buf);
10447 break;
10448 case 4:
10449 retval = bfd_get_signed_32 (abfd, buf);
10450 break;
10451 case 8:
10452 retval = bfd_get_signed_64 (abfd, buf);
10453 break;
10454 default:
10455 internal_error (__FILE__, __LINE__,
10456 _("read_address: bad switch, signed [in module %s]"),
10457 bfd_get_filename (abfd));
10458 }
10459 }
10460 else
10461 {
10462 switch (cu_header->addr_size)
10463 {
10464 case 2:
10465 retval = bfd_get_16 (abfd, buf);
10466 break;
10467 case 4:
10468 retval = bfd_get_32 (abfd, buf);
10469 break;
10470 case 8:
10471 retval = bfd_get_64 (abfd, buf);
10472 break;
10473 default:
10474 internal_error (__FILE__, __LINE__,
10475 _("read_address: bad switch, "
10476 "unsigned [in module %s]"),
10477 bfd_get_filename (abfd));
10478 }
10479 }
10480
10481 *bytes_read = cu_header->addr_size;
10482 return retval;
10483 }
10484
10485 /* Read the initial length from a section. The (draft) DWARF 3
10486 specification allows the initial length to take up either 4 bytes
10487 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
10488 bytes describe the length and all offsets will be 8 bytes in length
10489 instead of 4.
10490
10491 An older, non-standard 64-bit format is also handled by this
10492 function. The older format in question stores the initial length
10493 as an 8-byte quantity without an escape value. Lengths greater
10494 than 2^32 aren't very common which means that the initial 4 bytes
10495 is almost always zero. Since a length value of zero doesn't make
10496 sense for the 32-bit format, this initial zero can be considered to
10497 be an escape value which indicates the presence of the older 64-bit
10498 format. As written, the code can't detect (old format) lengths
10499 greater than 4GB. If it becomes necessary to handle lengths
10500 somewhat larger than 4GB, we could allow other small values (such
10501 as the non-sensical values of 1, 2, and 3) to also be used as
10502 escape values indicating the presence of the old format.
10503
10504 The value returned via bytes_read should be used to increment the
10505 relevant pointer after calling read_initial_length().
10506
10507 [ Note: read_initial_length() and read_offset() are based on the
10508 document entitled "DWARF Debugging Information Format", revision
10509 3, draft 8, dated November 19, 2001. This document was obtained
10510 from:
10511
10512 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
10513
10514 This document is only a draft and is subject to change. (So beware.)
10515
10516 Details regarding the older, non-standard 64-bit format were
10517 determined empirically by examining 64-bit ELF files produced by
10518 the SGI toolchain on an IRIX 6.5 machine.
10519
10520 - Kevin, July 16, 2002
10521 ] */
10522
10523 static LONGEST
10524 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
10525 {
10526 LONGEST length = bfd_get_32 (abfd, buf);
10527
10528 if (length == 0xffffffff)
10529 {
10530 length = bfd_get_64 (abfd, buf + 4);
10531 *bytes_read = 12;
10532 }
10533 else if (length == 0)
10534 {
10535 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
10536 length = bfd_get_64 (abfd, buf);
10537 *bytes_read = 8;
10538 }
10539 else
10540 {
10541 *bytes_read = 4;
10542 }
10543
10544 return length;
10545 }
10546
10547 /* Cover function for read_initial_length.
10548 Returns the length of the object at BUF, and stores the size of the
10549 initial length in *BYTES_READ and stores the size that offsets will be in
10550 *OFFSET_SIZE.
10551 If the initial length size is not equivalent to that specified in
10552 CU_HEADER then issue a complaint.
10553 This is useful when reading non-comp-unit headers. */
10554
10555 static LONGEST
10556 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
10557 const struct comp_unit_head *cu_header,
10558 unsigned int *bytes_read,
10559 unsigned int *offset_size)
10560 {
10561 LONGEST length = read_initial_length (abfd, buf, bytes_read);
10562
10563 gdb_assert (cu_header->initial_length_size == 4
10564 || cu_header->initial_length_size == 8
10565 || cu_header->initial_length_size == 12);
10566
10567 if (cu_header->initial_length_size != *bytes_read)
10568 complaint (&symfile_complaints,
10569 _("intermixed 32-bit and 64-bit DWARF sections"));
10570
10571 *offset_size = (*bytes_read == 4) ? 4 : 8;
10572 return length;
10573 }
10574
10575 /* Read an offset from the data stream. The size of the offset is
10576 given by cu_header->offset_size. */
10577
10578 static LONGEST
10579 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
10580 unsigned int *bytes_read)
10581 {
10582 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
10583
10584 *bytes_read = cu_header->offset_size;
10585 return offset;
10586 }
10587
10588 /* Read an offset from the data stream. */
10589
10590 static LONGEST
10591 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
10592 {
10593 LONGEST retval = 0;
10594
10595 switch (offset_size)
10596 {
10597 case 4:
10598 retval = bfd_get_32 (abfd, buf);
10599 break;
10600 case 8:
10601 retval = bfd_get_64 (abfd, buf);
10602 break;
10603 default:
10604 internal_error (__FILE__, __LINE__,
10605 _("read_offset_1: bad switch [in module %s]"),
10606 bfd_get_filename (abfd));
10607 }
10608
10609 return retval;
10610 }
10611
10612 static gdb_byte *
10613 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
10614 {
10615 /* If the size of a host char is 8 bits, we can return a pointer
10616 to the buffer, otherwise we have to copy the data to a buffer
10617 allocated on the temporary obstack. */
10618 gdb_assert (HOST_CHAR_BIT == 8);
10619 return buf;
10620 }
10621
10622 static char *
10623 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10624 {
10625 /* If the size of a host char is 8 bits, we can return a pointer
10626 to the string, otherwise we have to copy the string to a buffer
10627 allocated on the temporary obstack. */
10628 gdb_assert (HOST_CHAR_BIT == 8);
10629 if (*buf == '\0')
10630 {
10631 *bytes_read_ptr = 1;
10632 return NULL;
10633 }
10634 *bytes_read_ptr = strlen ((char *) buf) + 1;
10635 return (char *) buf;
10636 }
10637
10638 static char *
10639 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
10640 {
10641 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
10642 if (dwarf2_per_objfile->str.buffer == NULL)
10643 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
10644 bfd_get_filename (abfd));
10645 if (str_offset >= dwarf2_per_objfile->str.size)
10646 error (_("DW_FORM_strp pointing outside of "
10647 ".debug_str section [in module %s]"),
10648 bfd_get_filename (abfd));
10649 gdb_assert (HOST_CHAR_BIT == 8);
10650 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
10651 return NULL;
10652 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
10653 }
10654
10655 static char *
10656 read_indirect_string (bfd *abfd, gdb_byte *buf,
10657 const struct comp_unit_head *cu_header,
10658 unsigned int *bytes_read_ptr)
10659 {
10660 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
10661
10662 return read_indirect_string_at_offset (abfd, str_offset);
10663 }
10664
10665 static unsigned long
10666 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10667 {
10668 unsigned long result;
10669 unsigned int num_read;
10670 int i, shift;
10671 unsigned char byte;
10672
10673 result = 0;
10674 shift = 0;
10675 num_read = 0;
10676 i = 0;
10677 while (1)
10678 {
10679 byte = bfd_get_8 (abfd, buf);
10680 buf++;
10681 num_read++;
10682 result |= ((unsigned long)(byte & 127) << shift);
10683 if ((byte & 128) == 0)
10684 {
10685 break;
10686 }
10687 shift += 7;
10688 }
10689 *bytes_read_ptr = num_read;
10690 return result;
10691 }
10692
10693 static long
10694 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10695 {
10696 long result;
10697 int i, shift, num_read;
10698 unsigned char byte;
10699
10700 result = 0;
10701 shift = 0;
10702 num_read = 0;
10703 i = 0;
10704 while (1)
10705 {
10706 byte = bfd_get_8 (abfd, buf);
10707 buf++;
10708 num_read++;
10709 result |= ((long)(byte & 127) << shift);
10710 shift += 7;
10711 if ((byte & 128) == 0)
10712 {
10713 break;
10714 }
10715 }
10716 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
10717 result |= -(((long)1) << shift);
10718 *bytes_read_ptr = num_read;
10719 return result;
10720 }
10721
10722 /* Return a pointer to just past the end of an LEB128 number in BUF. */
10723
10724 static gdb_byte *
10725 skip_leb128 (bfd *abfd, gdb_byte *buf)
10726 {
10727 int byte;
10728
10729 while (1)
10730 {
10731 byte = bfd_get_8 (abfd, buf);
10732 buf++;
10733 if ((byte & 128) == 0)
10734 return buf;
10735 }
10736 }
10737
10738 static void
10739 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
10740 {
10741 switch (lang)
10742 {
10743 case DW_LANG_C89:
10744 case DW_LANG_C99:
10745 case DW_LANG_C:
10746 cu->language = language_c;
10747 break;
10748 case DW_LANG_C_plus_plus:
10749 cu->language = language_cplus;
10750 break;
10751 case DW_LANG_D:
10752 cu->language = language_d;
10753 break;
10754 case DW_LANG_Fortran77:
10755 case DW_LANG_Fortran90:
10756 case DW_LANG_Fortran95:
10757 cu->language = language_fortran;
10758 break;
10759 case DW_LANG_Mips_Assembler:
10760 cu->language = language_asm;
10761 break;
10762 case DW_LANG_Java:
10763 cu->language = language_java;
10764 break;
10765 case DW_LANG_Ada83:
10766 case DW_LANG_Ada95:
10767 cu->language = language_ada;
10768 break;
10769 case DW_LANG_Modula2:
10770 cu->language = language_m2;
10771 break;
10772 case DW_LANG_Pascal83:
10773 cu->language = language_pascal;
10774 break;
10775 case DW_LANG_ObjC:
10776 cu->language = language_objc;
10777 break;
10778 case DW_LANG_Cobol74:
10779 case DW_LANG_Cobol85:
10780 default:
10781 cu->language = language_minimal;
10782 break;
10783 }
10784 cu->language_defn = language_def (cu->language);
10785 }
10786
10787 /* Return the named attribute or NULL if not there. */
10788
10789 static struct attribute *
10790 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
10791 {
10792 for (;;)
10793 {
10794 unsigned int i;
10795 struct attribute *spec = NULL;
10796
10797 for (i = 0; i < die->num_attrs; ++i)
10798 {
10799 if (die->attrs[i].name == name)
10800 return &die->attrs[i];
10801 if (die->attrs[i].name == DW_AT_specification
10802 || die->attrs[i].name == DW_AT_abstract_origin)
10803 spec = &die->attrs[i];
10804 }
10805
10806 if (!spec)
10807 break;
10808
10809 die = follow_die_ref (die, spec, &cu);
10810 }
10811
10812 return NULL;
10813 }
10814
10815 /* Return the named attribute or NULL if not there,
10816 but do not follow DW_AT_specification, etc.
10817 This is for use in contexts where we're reading .debug_types dies.
10818 Following DW_AT_specification, DW_AT_abstract_origin will take us
10819 back up the chain, and we want to go down. */
10820
10821 static struct attribute *
10822 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
10823 struct dwarf2_cu *cu)
10824 {
10825 unsigned int i;
10826
10827 for (i = 0; i < die->num_attrs; ++i)
10828 if (die->attrs[i].name == name)
10829 return &die->attrs[i];
10830
10831 return NULL;
10832 }
10833
10834 /* Return non-zero iff the attribute NAME is defined for the given DIE,
10835 and holds a non-zero value. This function should only be used for
10836 DW_FORM_flag or DW_FORM_flag_present attributes. */
10837
10838 static int
10839 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
10840 {
10841 struct attribute *attr = dwarf2_attr (die, name, cu);
10842
10843 return (attr && DW_UNSND (attr));
10844 }
10845
10846 static int
10847 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
10848 {
10849 /* A DIE is a declaration if it has a DW_AT_declaration attribute
10850 which value is non-zero. However, we have to be careful with
10851 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
10852 (via dwarf2_flag_true_p) follows this attribute. So we may
10853 end up accidently finding a declaration attribute that belongs
10854 to a different DIE referenced by the specification attribute,
10855 even though the given DIE does not have a declaration attribute. */
10856 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
10857 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
10858 }
10859
10860 /* Return the die giving the specification for DIE, if there is
10861 one. *SPEC_CU is the CU containing DIE on input, and the CU
10862 containing the return value on output. If there is no
10863 specification, but there is an abstract origin, that is
10864 returned. */
10865
10866 static struct die_info *
10867 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
10868 {
10869 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
10870 *spec_cu);
10871
10872 if (spec_attr == NULL)
10873 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10874
10875 if (spec_attr == NULL)
10876 return NULL;
10877 else
10878 return follow_die_ref (die, spec_attr, spec_cu);
10879 }
10880
10881 /* Free the line_header structure *LH, and any arrays and strings it
10882 refers to.
10883 NOTE: This is also used as a "cleanup" function. */
10884
10885 static void
10886 free_line_header (struct line_header *lh)
10887 {
10888 if (lh->standard_opcode_lengths)
10889 xfree (lh->standard_opcode_lengths);
10890
10891 /* Remember that all the lh->file_names[i].name pointers are
10892 pointers into debug_line_buffer, and don't need to be freed. */
10893 if (lh->file_names)
10894 xfree (lh->file_names);
10895
10896 /* Similarly for the include directory names. */
10897 if (lh->include_dirs)
10898 xfree (lh->include_dirs);
10899
10900 xfree (lh);
10901 }
10902
10903 /* Add an entry to LH's include directory table. */
10904
10905 static void
10906 add_include_dir (struct line_header *lh, char *include_dir)
10907 {
10908 /* Grow the array if necessary. */
10909 if (lh->include_dirs_size == 0)
10910 {
10911 lh->include_dirs_size = 1; /* for testing */
10912 lh->include_dirs = xmalloc (lh->include_dirs_size
10913 * sizeof (*lh->include_dirs));
10914 }
10915 else if (lh->num_include_dirs >= lh->include_dirs_size)
10916 {
10917 lh->include_dirs_size *= 2;
10918 lh->include_dirs = xrealloc (lh->include_dirs,
10919 (lh->include_dirs_size
10920 * sizeof (*lh->include_dirs)));
10921 }
10922
10923 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10924 }
10925
10926 /* Add an entry to LH's file name table. */
10927
10928 static void
10929 add_file_name (struct line_header *lh,
10930 char *name,
10931 unsigned int dir_index,
10932 unsigned int mod_time,
10933 unsigned int length)
10934 {
10935 struct file_entry *fe;
10936
10937 /* Grow the array if necessary. */
10938 if (lh->file_names_size == 0)
10939 {
10940 lh->file_names_size = 1; /* for testing */
10941 lh->file_names = xmalloc (lh->file_names_size
10942 * sizeof (*lh->file_names));
10943 }
10944 else if (lh->num_file_names >= lh->file_names_size)
10945 {
10946 lh->file_names_size *= 2;
10947 lh->file_names = xrealloc (lh->file_names,
10948 (lh->file_names_size
10949 * sizeof (*lh->file_names)));
10950 }
10951
10952 fe = &lh->file_names[lh->num_file_names++];
10953 fe->name = name;
10954 fe->dir_index = dir_index;
10955 fe->mod_time = mod_time;
10956 fe->length = length;
10957 fe->included_p = 0;
10958 fe->symtab = NULL;
10959 }
10960
10961 /* Read the statement program header starting at OFFSET in
10962 .debug_line, according to the endianness of ABFD. Return a pointer
10963 to a struct line_header, allocated using xmalloc.
10964
10965 NOTE: the strings in the include directory and file name tables of
10966 the returned object point into debug_line_buffer, and must not be
10967 freed. */
10968
10969 static struct line_header *
10970 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10971 struct dwarf2_cu *cu)
10972 {
10973 struct cleanup *back_to;
10974 struct line_header *lh;
10975 gdb_byte *line_ptr;
10976 unsigned int bytes_read, offset_size;
10977 int i;
10978 char *cur_dir, *cur_file;
10979
10980 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10981 if (dwarf2_per_objfile->line.buffer == NULL)
10982 {
10983 complaint (&symfile_complaints, _("missing .debug_line section"));
10984 return 0;
10985 }
10986
10987 /* Make sure that at least there's room for the total_length field.
10988 That could be 12 bytes long, but we're just going to fudge that. */
10989 if (offset + 4 >= dwarf2_per_objfile->line.size)
10990 {
10991 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10992 return 0;
10993 }
10994
10995 lh = xmalloc (sizeof (*lh));
10996 memset (lh, 0, sizeof (*lh));
10997 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10998 (void *) lh);
10999
11000 line_ptr = dwarf2_per_objfile->line.buffer + offset;
11001
11002 /* Read in the header. */
11003 lh->total_length =
11004 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
11005 &bytes_read, &offset_size);
11006 line_ptr += bytes_read;
11007 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
11008 + dwarf2_per_objfile->line.size))
11009 {
11010 dwarf2_statement_list_fits_in_line_number_section_complaint ();
11011 return 0;
11012 }
11013 lh->statement_program_end = line_ptr + lh->total_length;
11014 lh->version = read_2_bytes (abfd, line_ptr);
11015 line_ptr += 2;
11016 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
11017 line_ptr += offset_size;
11018 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
11019 line_ptr += 1;
11020 if (lh->version >= 4)
11021 {
11022 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
11023 line_ptr += 1;
11024 }
11025 else
11026 lh->maximum_ops_per_instruction = 1;
11027
11028 if (lh->maximum_ops_per_instruction == 0)
11029 {
11030 lh->maximum_ops_per_instruction = 1;
11031 complaint (&symfile_complaints,
11032 _("invalid maximum_ops_per_instruction "
11033 "in `.debug_line' section"));
11034 }
11035
11036 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
11037 line_ptr += 1;
11038 lh->line_base = read_1_signed_byte (abfd, line_ptr);
11039 line_ptr += 1;
11040 lh->line_range = read_1_byte (abfd, line_ptr);
11041 line_ptr += 1;
11042 lh->opcode_base = read_1_byte (abfd, line_ptr);
11043 line_ptr += 1;
11044 lh->standard_opcode_lengths
11045 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
11046
11047 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
11048 for (i = 1; i < lh->opcode_base; ++i)
11049 {
11050 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
11051 line_ptr += 1;
11052 }
11053
11054 /* Read directory table. */
11055 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
11056 {
11057 line_ptr += bytes_read;
11058 add_include_dir (lh, cur_dir);
11059 }
11060 line_ptr += bytes_read;
11061
11062 /* Read file name table. */
11063 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
11064 {
11065 unsigned int dir_index, mod_time, length;
11066
11067 line_ptr += bytes_read;
11068 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11069 line_ptr += bytes_read;
11070 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11071 line_ptr += bytes_read;
11072 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11073 line_ptr += bytes_read;
11074
11075 add_file_name (lh, cur_file, dir_index, mod_time, length);
11076 }
11077 line_ptr += bytes_read;
11078 lh->statement_program_start = line_ptr;
11079
11080 if (line_ptr > (dwarf2_per_objfile->line.buffer
11081 + dwarf2_per_objfile->line.size))
11082 complaint (&symfile_complaints,
11083 _("line number info header doesn't "
11084 "fit in `.debug_line' section"));
11085
11086 discard_cleanups (back_to);
11087 return lh;
11088 }
11089
11090 /* Subroutine of dwarf_decode_lines to simplify it.
11091 Return the file name of the psymtab for included file FILE_INDEX
11092 in line header LH of PST.
11093 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11094 If space for the result is malloc'd, it will be freed by a cleanup.
11095 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
11096
11097 static char *
11098 psymtab_include_file_name (const struct line_header *lh, int file_index,
11099 const struct partial_symtab *pst,
11100 const char *comp_dir)
11101 {
11102 const struct file_entry fe = lh->file_names [file_index];
11103 char *include_name = fe.name;
11104 char *include_name_to_compare = include_name;
11105 char *dir_name = NULL;
11106 const char *pst_filename;
11107 char *copied_name = NULL;
11108 int file_is_pst;
11109
11110 if (fe.dir_index)
11111 dir_name = lh->include_dirs[fe.dir_index - 1];
11112
11113 if (!IS_ABSOLUTE_PATH (include_name)
11114 && (dir_name != NULL || comp_dir != NULL))
11115 {
11116 /* Avoid creating a duplicate psymtab for PST.
11117 We do this by comparing INCLUDE_NAME and PST_FILENAME.
11118 Before we do the comparison, however, we need to account
11119 for DIR_NAME and COMP_DIR.
11120 First prepend dir_name (if non-NULL). If we still don't
11121 have an absolute path prepend comp_dir (if non-NULL).
11122 However, the directory we record in the include-file's
11123 psymtab does not contain COMP_DIR (to match the
11124 corresponding symtab(s)).
11125
11126 Example:
11127
11128 bash$ cd /tmp
11129 bash$ gcc -g ./hello.c
11130 include_name = "hello.c"
11131 dir_name = "."
11132 DW_AT_comp_dir = comp_dir = "/tmp"
11133 DW_AT_name = "./hello.c" */
11134
11135 if (dir_name != NULL)
11136 {
11137 include_name = concat (dir_name, SLASH_STRING,
11138 include_name, (char *)NULL);
11139 include_name_to_compare = include_name;
11140 make_cleanup (xfree, include_name);
11141 }
11142 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
11143 {
11144 include_name_to_compare = concat (comp_dir, SLASH_STRING,
11145 include_name, (char *)NULL);
11146 }
11147 }
11148
11149 pst_filename = pst->filename;
11150 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
11151 {
11152 copied_name = concat (pst->dirname, SLASH_STRING,
11153 pst_filename, (char *)NULL);
11154 pst_filename = copied_name;
11155 }
11156
11157 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
11158
11159 if (include_name_to_compare != include_name)
11160 xfree (include_name_to_compare);
11161 if (copied_name != NULL)
11162 xfree (copied_name);
11163
11164 if (file_is_pst)
11165 return NULL;
11166 return include_name;
11167 }
11168
11169 /* Ignore this record_line request. */
11170
11171 static void
11172 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
11173 {
11174 return;
11175 }
11176
11177 /* Subroutine of dwarf_decode_lines to simplify it.
11178 Process the line number information in LH. */
11179
11180 static void
11181 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
11182 struct dwarf2_cu *cu, struct partial_symtab *pst)
11183 {
11184 gdb_byte *line_ptr, *extended_end;
11185 gdb_byte *line_end;
11186 unsigned int bytes_read, extended_len;
11187 unsigned char op_code, extended_op, adj_opcode;
11188 CORE_ADDR baseaddr;
11189 struct objfile *objfile = cu->objfile;
11190 bfd *abfd = objfile->obfd;
11191 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11192 const int decode_for_pst_p = (pst != NULL);
11193 struct subfile *last_subfile = NULL;
11194 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
11195 = record_line;
11196
11197 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11198
11199 line_ptr = lh->statement_program_start;
11200 line_end = lh->statement_program_end;
11201
11202 /* Read the statement sequences until there's nothing left. */
11203 while (line_ptr < line_end)
11204 {
11205 /* state machine registers */
11206 CORE_ADDR address = 0;
11207 unsigned int file = 1;
11208 unsigned int line = 1;
11209 unsigned int column = 0;
11210 int is_stmt = lh->default_is_stmt;
11211 int basic_block = 0;
11212 int end_sequence = 0;
11213 CORE_ADDR addr;
11214 unsigned char op_index = 0;
11215
11216 if (!decode_for_pst_p && lh->num_file_names >= file)
11217 {
11218 /* Start a subfile for the current file of the state machine. */
11219 /* lh->include_dirs and lh->file_names are 0-based, but the
11220 directory and file name numbers in the statement program
11221 are 1-based. */
11222 struct file_entry *fe = &lh->file_names[file - 1];
11223 char *dir = NULL;
11224
11225 if (fe->dir_index)
11226 dir = lh->include_dirs[fe->dir_index - 1];
11227
11228 dwarf2_start_subfile (fe->name, dir, comp_dir);
11229 }
11230
11231 /* Decode the table. */
11232 while (!end_sequence)
11233 {
11234 op_code = read_1_byte (abfd, line_ptr);
11235 line_ptr += 1;
11236 if (line_ptr > line_end)
11237 {
11238 dwarf2_debug_line_missing_end_sequence_complaint ();
11239 break;
11240 }
11241
11242 if (op_code >= lh->opcode_base)
11243 {
11244 /* Special operand. */
11245 adj_opcode = op_code - lh->opcode_base;
11246 address += (((op_index + (adj_opcode / lh->line_range))
11247 / lh->maximum_ops_per_instruction)
11248 * lh->minimum_instruction_length);
11249 op_index = ((op_index + (adj_opcode / lh->line_range))
11250 % lh->maximum_ops_per_instruction);
11251 line += lh->line_base + (adj_opcode % lh->line_range);
11252 if (lh->num_file_names < file || file == 0)
11253 dwarf2_debug_line_missing_file_complaint ();
11254 /* For now we ignore lines not starting on an
11255 instruction boundary. */
11256 else if (op_index == 0)
11257 {
11258 lh->file_names[file - 1].included_p = 1;
11259 if (!decode_for_pst_p && is_stmt)
11260 {
11261 if (last_subfile != current_subfile)
11262 {
11263 addr = gdbarch_addr_bits_remove (gdbarch, address);
11264 if (last_subfile)
11265 (*p_record_line) (last_subfile, 0, addr);
11266 last_subfile = current_subfile;
11267 }
11268 /* Append row to matrix using current values. */
11269 addr = gdbarch_addr_bits_remove (gdbarch, address);
11270 (*p_record_line) (current_subfile, line, addr);
11271 }
11272 }
11273 basic_block = 0;
11274 }
11275 else switch (op_code)
11276 {
11277 case DW_LNS_extended_op:
11278 extended_len = read_unsigned_leb128 (abfd, line_ptr,
11279 &bytes_read);
11280 line_ptr += bytes_read;
11281 extended_end = line_ptr + extended_len;
11282 extended_op = read_1_byte (abfd, line_ptr);
11283 line_ptr += 1;
11284 switch (extended_op)
11285 {
11286 case DW_LNE_end_sequence:
11287 p_record_line = record_line;
11288 end_sequence = 1;
11289 break;
11290 case DW_LNE_set_address:
11291 address = read_address (abfd, line_ptr, cu, &bytes_read);
11292
11293 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
11294 {
11295 /* This line table is for a function which has been
11296 GCd by the linker. Ignore it. PR gdb/12528 */
11297
11298 long line_offset
11299 = line_ptr - dwarf2_per_objfile->line.buffer;
11300
11301 complaint (&symfile_complaints,
11302 _(".debug_line address at offset 0x%lx is 0 "
11303 "[in module %s]"),
11304 line_offset, objfile->name);
11305 p_record_line = noop_record_line;
11306 }
11307
11308 op_index = 0;
11309 line_ptr += bytes_read;
11310 address += baseaddr;
11311 break;
11312 case DW_LNE_define_file:
11313 {
11314 char *cur_file;
11315 unsigned int dir_index, mod_time, length;
11316
11317 cur_file = read_direct_string (abfd, line_ptr,
11318 &bytes_read);
11319 line_ptr += bytes_read;
11320 dir_index =
11321 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11322 line_ptr += bytes_read;
11323 mod_time =
11324 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11325 line_ptr += bytes_read;
11326 length =
11327 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11328 line_ptr += bytes_read;
11329 add_file_name (lh, cur_file, dir_index, mod_time, length);
11330 }
11331 break;
11332 case DW_LNE_set_discriminator:
11333 /* The discriminator is not interesting to the debugger;
11334 just ignore it. */
11335 line_ptr = extended_end;
11336 break;
11337 default:
11338 complaint (&symfile_complaints,
11339 _("mangled .debug_line section"));
11340 return;
11341 }
11342 /* Make sure that we parsed the extended op correctly. If e.g.
11343 we expected a different address size than the producer used,
11344 we may have read the wrong number of bytes. */
11345 if (line_ptr != extended_end)
11346 {
11347 complaint (&symfile_complaints,
11348 _("mangled .debug_line section"));
11349 return;
11350 }
11351 break;
11352 case DW_LNS_copy:
11353 if (lh->num_file_names < file || file == 0)
11354 dwarf2_debug_line_missing_file_complaint ();
11355 else
11356 {
11357 lh->file_names[file - 1].included_p = 1;
11358 if (!decode_for_pst_p && is_stmt)
11359 {
11360 if (last_subfile != current_subfile)
11361 {
11362 addr = gdbarch_addr_bits_remove (gdbarch, address);
11363 if (last_subfile)
11364 (*p_record_line) (last_subfile, 0, addr);
11365 last_subfile = current_subfile;
11366 }
11367 addr = gdbarch_addr_bits_remove (gdbarch, address);
11368 (*p_record_line) (current_subfile, line, addr);
11369 }
11370 }
11371 basic_block = 0;
11372 break;
11373 case DW_LNS_advance_pc:
11374 {
11375 CORE_ADDR adjust
11376 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11377
11378 address += (((op_index + adjust)
11379 / lh->maximum_ops_per_instruction)
11380 * lh->minimum_instruction_length);
11381 op_index = ((op_index + adjust)
11382 % lh->maximum_ops_per_instruction);
11383 line_ptr += bytes_read;
11384 }
11385 break;
11386 case DW_LNS_advance_line:
11387 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
11388 line_ptr += bytes_read;
11389 break;
11390 case DW_LNS_set_file:
11391 {
11392 /* The arrays lh->include_dirs and lh->file_names are
11393 0-based, but the directory and file name numbers in
11394 the statement program are 1-based. */
11395 struct file_entry *fe;
11396 char *dir = NULL;
11397
11398 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11399 line_ptr += bytes_read;
11400 if (lh->num_file_names < file || file == 0)
11401 dwarf2_debug_line_missing_file_complaint ();
11402 else
11403 {
11404 fe = &lh->file_names[file - 1];
11405 if (fe->dir_index)
11406 dir = lh->include_dirs[fe->dir_index - 1];
11407 if (!decode_for_pst_p)
11408 {
11409 last_subfile = current_subfile;
11410 dwarf2_start_subfile (fe->name, dir, comp_dir);
11411 }
11412 }
11413 }
11414 break;
11415 case DW_LNS_set_column:
11416 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11417 line_ptr += bytes_read;
11418 break;
11419 case DW_LNS_negate_stmt:
11420 is_stmt = (!is_stmt);
11421 break;
11422 case DW_LNS_set_basic_block:
11423 basic_block = 1;
11424 break;
11425 /* Add to the address register of the state machine the
11426 address increment value corresponding to special opcode
11427 255. I.e., this value is scaled by the minimum
11428 instruction length since special opcode 255 would have
11429 scaled the increment. */
11430 case DW_LNS_const_add_pc:
11431 {
11432 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
11433
11434 address += (((op_index + adjust)
11435 / lh->maximum_ops_per_instruction)
11436 * lh->minimum_instruction_length);
11437 op_index = ((op_index + adjust)
11438 % lh->maximum_ops_per_instruction);
11439 }
11440 break;
11441 case DW_LNS_fixed_advance_pc:
11442 address += read_2_bytes (abfd, line_ptr);
11443 op_index = 0;
11444 line_ptr += 2;
11445 break;
11446 default:
11447 {
11448 /* Unknown standard opcode, ignore it. */
11449 int i;
11450
11451 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
11452 {
11453 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11454 line_ptr += bytes_read;
11455 }
11456 }
11457 }
11458 }
11459 if (lh->num_file_names < file || file == 0)
11460 dwarf2_debug_line_missing_file_complaint ();
11461 else
11462 {
11463 lh->file_names[file - 1].included_p = 1;
11464 if (!decode_for_pst_p)
11465 {
11466 addr = gdbarch_addr_bits_remove (gdbarch, address);
11467 (*p_record_line) (current_subfile, 0, addr);
11468 }
11469 }
11470 }
11471 }
11472
11473 /* Decode the Line Number Program (LNP) for the given line_header
11474 structure and CU. The actual information extracted and the type
11475 of structures created from the LNP depends on the value of PST.
11476
11477 1. If PST is NULL, then this procedure uses the data from the program
11478 to create all necessary symbol tables, and their linetables.
11479
11480 2. If PST is not NULL, this procedure reads the program to determine
11481 the list of files included by the unit represented by PST, and
11482 builds all the associated partial symbol tables.
11483
11484 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11485 It is used for relative paths in the line table.
11486 NOTE: When processing partial symtabs (pst != NULL),
11487 comp_dir == pst->dirname.
11488
11489 NOTE: It is important that psymtabs have the same file name (via strcmp)
11490 as the corresponding symtab. Since COMP_DIR is not used in the name of the
11491 symtab we don't use it in the name of the psymtabs we create.
11492 E.g. expand_line_sal requires this when finding psymtabs to expand.
11493 A good testcase for this is mb-inline.exp. */
11494
11495 static void
11496 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
11497 struct dwarf2_cu *cu, struct partial_symtab *pst,
11498 int want_line_info)
11499 {
11500 struct objfile *objfile = cu->objfile;
11501 const int decode_for_pst_p = (pst != NULL);
11502 struct subfile *first_subfile = current_subfile;
11503
11504 if (want_line_info)
11505 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
11506
11507 if (decode_for_pst_p)
11508 {
11509 int file_index;
11510
11511 /* Now that we're done scanning the Line Header Program, we can
11512 create the psymtab of each included file. */
11513 for (file_index = 0; file_index < lh->num_file_names; file_index++)
11514 if (lh->file_names[file_index].included_p == 1)
11515 {
11516 char *include_name =
11517 psymtab_include_file_name (lh, file_index, pst, comp_dir);
11518 if (include_name != NULL)
11519 dwarf2_create_include_psymtab (include_name, pst, objfile);
11520 }
11521 }
11522 else
11523 {
11524 /* Make sure a symtab is created for every file, even files
11525 which contain only variables (i.e. no code with associated
11526 line numbers). */
11527 int i;
11528
11529 for (i = 0; i < lh->num_file_names; i++)
11530 {
11531 char *dir = NULL;
11532 struct file_entry *fe;
11533
11534 fe = &lh->file_names[i];
11535 if (fe->dir_index)
11536 dir = lh->include_dirs[fe->dir_index - 1];
11537 dwarf2_start_subfile (fe->name, dir, comp_dir);
11538
11539 /* Skip the main file; we don't need it, and it must be
11540 allocated last, so that it will show up before the
11541 non-primary symtabs in the objfile's symtab list. */
11542 if (current_subfile == first_subfile)
11543 continue;
11544
11545 if (current_subfile->symtab == NULL)
11546 current_subfile->symtab = allocate_symtab (current_subfile->name,
11547 objfile);
11548 fe->symtab = current_subfile->symtab;
11549 }
11550 }
11551 }
11552
11553 /* Start a subfile for DWARF. FILENAME is the name of the file and
11554 DIRNAME the name of the source directory which contains FILENAME
11555 or NULL if not known. COMP_DIR is the compilation directory for the
11556 linetable's compilation unit or NULL if not known.
11557 This routine tries to keep line numbers from identical absolute and
11558 relative file names in a common subfile.
11559
11560 Using the `list' example from the GDB testsuite, which resides in
11561 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
11562 of /srcdir/list0.c yields the following debugging information for list0.c:
11563
11564 DW_AT_name: /srcdir/list0.c
11565 DW_AT_comp_dir: /compdir
11566 files.files[0].name: list0.h
11567 files.files[0].dir: /srcdir
11568 files.files[1].name: list0.c
11569 files.files[1].dir: /srcdir
11570
11571 The line number information for list0.c has to end up in a single
11572 subfile, so that `break /srcdir/list0.c:1' works as expected.
11573 start_subfile will ensure that this happens provided that we pass the
11574 concatenation of files.files[1].dir and files.files[1].name as the
11575 subfile's name. */
11576
11577 static void
11578 dwarf2_start_subfile (char *filename, const char *dirname,
11579 const char *comp_dir)
11580 {
11581 char *fullname;
11582
11583 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
11584 `start_symtab' will always pass the contents of DW_AT_comp_dir as
11585 second argument to start_subfile. To be consistent, we do the
11586 same here. In order not to lose the line information directory,
11587 we concatenate it to the filename when it makes sense.
11588 Note that the Dwarf3 standard says (speaking of filenames in line
11589 information): ``The directory index is ignored for file names
11590 that represent full path names''. Thus ignoring dirname in the
11591 `else' branch below isn't an issue. */
11592
11593 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
11594 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
11595 else
11596 fullname = filename;
11597
11598 start_subfile (fullname, comp_dir);
11599
11600 if (fullname != filename)
11601 xfree (fullname);
11602 }
11603
11604 static void
11605 var_decode_location (struct attribute *attr, struct symbol *sym,
11606 struct dwarf2_cu *cu)
11607 {
11608 struct objfile *objfile = cu->objfile;
11609 struct comp_unit_head *cu_header = &cu->header;
11610
11611 /* NOTE drow/2003-01-30: There used to be a comment and some special
11612 code here to turn a symbol with DW_AT_external and a
11613 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
11614 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
11615 with some versions of binutils) where shared libraries could have
11616 relocations against symbols in their debug information - the
11617 minimal symbol would have the right address, but the debug info
11618 would not. It's no longer necessary, because we will explicitly
11619 apply relocations when we read in the debug information now. */
11620
11621 /* A DW_AT_location attribute with no contents indicates that a
11622 variable has been optimized away. */
11623 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
11624 {
11625 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11626 return;
11627 }
11628
11629 /* Handle one degenerate form of location expression specially, to
11630 preserve GDB's previous behavior when section offsets are
11631 specified. If this is just a DW_OP_addr then mark this symbol
11632 as LOC_STATIC. */
11633
11634 if (attr_form_is_block (attr)
11635 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
11636 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
11637 {
11638 unsigned int dummy;
11639
11640 SYMBOL_VALUE_ADDRESS (sym) =
11641 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
11642 SYMBOL_CLASS (sym) = LOC_STATIC;
11643 fixup_symbol_section (sym, objfile);
11644 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
11645 SYMBOL_SECTION (sym));
11646 return;
11647 }
11648
11649 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
11650 expression evaluator, and use LOC_COMPUTED only when necessary
11651 (i.e. when the value of a register or memory location is
11652 referenced, or a thread-local block, etc.). Then again, it might
11653 not be worthwhile. I'm assuming that it isn't unless performance
11654 or memory numbers show me otherwise. */
11655
11656 dwarf2_symbol_mark_computed (attr, sym, cu);
11657 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11658
11659 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
11660 cu->has_loclist = 1;
11661 }
11662
11663 /* Given a pointer to a DWARF information entry, figure out if we need
11664 to make a symbol table entry for it, and if so, create a new entry
11665 and return a pointer to it.
11666 If TYPE is NULL, determine symbol type from the die, otherwise
11667 used the passed type.
11668 If SPACE is not NULL, use it to hold the new symbol. If it is
11669 NULL, allocate a new symbol on the objfile's obstack. */
11670
11671 static struct symbol *
11672 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
11673 struct symbol *space)
11674 {
11675 struct objfile *objfile = cu->objfile;
11676 struct symbol *sym = NULL;
11677 char *name;
11678 struct attribute *attr = NULL;
11679 struct attribute *attr2 = NULL;
11680 CORE_ADDR baseaddr;
11681 struct pending **list_to_add = NULL;
11682
11683 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11684
11685 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11686
11687 name = dwarf2_name (die, cu);
11688 if (name)
11689 {
11690 const char *linkagename;
11691 int suppress_add = 0;
11692
11693 if (space)
11694 sym = space;
11695 else
11696 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
11697 OBJSTAT (objfile, n_syms++);
11698
11699 /* Cache this symbol's name and the name's demangled form (if any). */
11700 SYMBOL_SET_LANGUAGE (sym, cu->language);
11701 linkagename = dwarf2_physname (name, die, cu);
11702 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
11703
11704 /* Fortran does not have mangling standard and the mangling does differ
11705 between gfortran, iFort etc. */
11706 if (cu->language == language_fortran
11707 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
11708 symbol_set_demangled_name (&(sym->ginfo),
11709 (char *) dwarf2_full_name (name, die, cu),
11710 NULL);
11711
11712 /* Default assumptions.
11713 Use the passed type or decode it from the die. */
11714 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11715 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11716 if (type != NULL)
11717 SYMBOL_TYPE (sym) = type;
11718 else
11719 SYMBOL_TYPE (sym) = die_type (die, cu);
11720 attr = dwarf2_attr (die,
11721 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
11722 cu);
11723 if (attr)
11724 {
11725 SYMBOL_LINE (sym) = DW_UNSND (attr);
11726 }
11727
11728 attr = dwarf2_attr (die,
11729 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
11730 cu);
11731 if (attr)
11732 {
11733 int file_index = DW_UNSND (attr);
11734
11735 if (cu->line_header == NULL
11736 || file_index > cu->line_header->num_file_names)
11737 complaint (&symfile_complaints,
11738 _("file index out of range"));
11739 else if (file_index > 0)
11740 {
11741 struct file_entry *fe;
11742
11743 fe = &cu->line_header->file_names[file_index - 1];
11744 SYMBOL_SYMTAB (sym) = fe->symtab;
11745 }
11746 }
11747
11748 switch (die->tag)
11749 {
11750 case DW_TAG_label:
11751 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11752 if (attr)
11753 {
11754 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
11755 }
11756 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
11757 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
11758 SYMBOL_CLASS (sym) = LOC_LABEL;
11759 add_symbol_to_list (sym, cu->list_in_scope);
11760 break;
11761 case DW_TAG_subprogram:
11762 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11763 finish_block. */
11764 SYMBOL_CLASS (sym) = LOC_BLOCK;
11765 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11766 if ((attr2 && (DW_UNSND (attr2) != 0))
11767 || cu->language == language_ada)
11768 {
11769 /* Subprograms marked external are stored as a global symbol.
11770 Ada subprograms, whether marked external or not, are always
11771 stored as a global symbol, because we want to be able to
11772 access them globally. For instance, we want to be able
11773 to break on a nested subprogram without having to
11774 specify the context. */
11775 list_to_add = &global_symbols;
11776 }
11777 else
11778 {
11779 list_to_add = cu->list_in_scope;
11780 }
11781 break;
11782 case DW_TAG_inlined_subroutine:
11783 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11784 finish_block. */
11785 SYMBOL_CLASS (sym) = LOC_BLOCK;
11786 SYMBOL_INLINED (sym) = 1;
11787 list_to_add = cu->list_in_scope;
11788 break;
11789 case DW_TAG_template_value_param:
11790 suppress_add = 1;
11791 /* Fall through. */
11792 case DW_TAG_constant:
11793 case DW_TAG_variable:
11794 case DW_TAG_member:
11795 /* Compilation with minimal debug info may result in
11796 variables with missing type entries. Change the
11797 misleading `void' type to something sensible. */
11798 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
11799 SYMBOL_TYPE (sym)
11800 = objfile_type (objfile)->nodebug_data_symbol;
11801
11802 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11803 /* In the case of DW_TAG_member, we should only be called for
11804 static const members. */
11805 if (die->tag == DW_TAG_member)
11806 {
11807 /* dwarf2_add_field uses die_is_declaration,
11808 so we do the same. */
11809 gdb_assert (die_is_declaration (die, cu));
11810 gdb_assert (attr);
11811 }
11812 if (attr)
11813 {
11814 dwarf2_const_value (attr, sym, cu);
11815 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11816 if (!suppress_add)
11817 {
11818 if (attr2 && (DW_UNSND (attr2) != 0))
11819 list_to_add = &global_symbols;
11820 else
11821 list_to_add = cu->list_in_scope;
11822 }
11823 break;
11824 }
11825 attr = dwarf2_attr (die, DW_AT_location, cu);
11826 if (attr)
11827 {
11828 var_decode_location (attr, sym, cu);
11829 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11830 if (SYMBOL_CLASS (sym) == LOC_STATIC
11831 && SYMBOL_VALUE_ADDRESS (sym) == 0
11832 && !dwarf2_per_objfile->has_section_at_zero)
11833 {
11834 /* When a static variable is eliminated by the linker,
11835 the corresponding debug information is not stripped
11836 out, but the variable address is set to null;
11837 do not add such variables into symbol table. */
11838 }
11839 else if (attr2 && (DW_UNSND (attr2) != 0))
11840 {
11841 /* Workaround gfortran PR debug/40040 - it uses
11842 DW_AT_location for variables in -fPIC libraries which may
11843 get overriden by other libraries/executable and get
11844 a different address. Resolve it by the minimal symbol
11845 which may come from inferior's executable using copy
11846 relocation. Make this workaround only for gfortran as for
11847 other compilers GDB cannot guess the minimal symbol
11848 Fortran mangling kind. */
11849 if (cu->language == language_fortran && die->parent
11850 && die->parent->tag == DW_TAG_module
11851 && cu->producer
11852 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
11853 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11854
11855 /* A variable with DW_AT_external is never static,
11856 but it may be block-scoped. */
11857 list_to_add = (cu->list_in_scope == &file_symbols
11858 ? &global_symbols : cu->list_in_scope);
11859 }
11860 else
11861 list_to_add = cu->list_in_scope;
11862 }
11863 else
11864 {
11865 /* We do not know the address of this symbol.
11866 If it is an external symbol and we have type information
11867 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11868 The address of the variable will then be determined from
11869 the minimal symbol table whenever the variable is
11870 referenced. */
11871 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11872 if (attr2 && (DW_UNSND (attr2) != 0)
11873 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
11874 {
11875 /* A variable with DW_AT_external is never static, but it
11876 may be block-scoped. */
11877 list_to_add = (cu->list_in_scope == &file_symbols
11878 ? &global_symbols : cu->list_in_scope);
11879
11880 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11881 }
11882 else if (!die_is_declaration (die, cu))
11883 {
11884 /* Use the default LOC_OPTIMIZED_OUT class. */
11885 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
11886 if (!suppress_add)
11887 list_to_add = cu->list_in_scope;
11888 }
11889 }
11890 break;
11891 case DW_TAG_formal_parameter:
11892 /* If we are inside a function, mark this as an argument. If
11893 not, we might be looking at an argument to an inlined function
11894 when we do not have enough information to show inlined frames;
11895 pretend it's a local variable in that case so that the user can
11896 still see it. */
11897 if (context_stack_depth > 0
11898 && context_stack[context_stack_depth - 1].name != NULL)
11899 SYMBOL_IS_ARGUMENT (sym) = 1;
11900 attr = dwarf2_attr (die, DW_AT_location, cu);
11901 if (attr)
11902 {
11903 var_decode_location (attr, sym, cu);
11904 }
11905 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11906 if (attr)
11907 {
11908 dwarf2_const_value (attr, sym, cu);
11909 }
11910
11911 list_to_add = cu->list_in_scope;
11912 break;
11913 case DW_TAG_unspecified_parameters:
11914 /* From varargs functions; gdb doesn't seem to have any
11915 interest in this information, so just ignore it for now.
11916 (FIXME?) */
11917 break;
11918 case DW_TAG_template_type_param:
11919 suppress_add = 1;
11920 /* Fall through. */
11921 case DW_TAG_class_type:
11922 case DW_TAG_interface_type:
11923 case DW_TAG_structure_type:
11924 case DW_TAG_union_type:
11925 case DW_TAG_set_type:
11926 case DW_TAG_enumeration_type:
11927 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11928 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11929
11930 {
11931 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11932 really ever be static objects: otherwise, if you try
11933 to, say, break of a class's method and you're in a file
11934 which doesn't mention that class, it won't work unless
11935 the check for all static symbols in lookup_symbol_aux
11936 saves you. See the OtherFileClass tests in
11937 gdb.c++/namespace.exp. */
11938
11939 if (!suppress_add)
11940 {
11941 list_to_add = (cu->list_in_scope == &file_symbols
11942 && (cu->language == language_cplus
11943 || cu->language == language_java)
11944 ? &global_symbols : cu->list_in_scope);
11945
11946 /* The semantics of C++ state that "struct foo {
11947 ... }" also defines a typedef for "foo". A Java
11948 class declaration also defines a typedef for the
11949 class. */
11950 if (cu->language == language_cplus
11951 || cu->language == language_java
11952 || cu->language == language_ada)
11953 {
11954 /* The symbol's name is already allocated along
11955 with this objfile, so we don't need to
11956 duplicate it for the type. */
11957 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11958 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11959 }
11960 }
11961 }
11962 break;
11963 case DW_TAG_typedef:
11964 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11965 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11966 list_to_add = cu->list_in_scope;
11967 break;
11968 case DW_TAG_base_type:
11969 case DW_TAG_subrange_type:
11970 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11971 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11972 list_to_add = cu->list_in_scope;
11973 break;
11974 case DW_TAG_enumerator:
11975 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11976 if (attr)
11977 {
11978 dwarf2_const_value (attr, sym, cu);
11979 }
11980 {
11981 /* NOTE: carlton/2003-11-10: See comment above in the
11982 DW_TAG_class_type, etc. block. */
11983
11984 list_to_add = (cu->list_in_scope == &file_symbols
11985 && (cu->language == language_cplus
11986 || cu->language == language_java)
11987 ? &global_symbols : cu->list_in_scope);
11988 }
11989 break;
11990 case DW_TAG_namespace:
11991 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11992 list_to_add = &global_symbols;
11993 break;
11994 default:
11995 /* Not a tag we recognize. Hopefully we aren't processing
11996 trash data, but since we must specifically ignore things
11997 we don't recognize, there is nothing else we should do at
11998 this point. */
11999 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
12000 dwarf_tag_name (die->tag));
12001 break;
12002 }
12003
12004 if (suppress_add)
12005 {
12006 sym->hash_next = objfile->template_symbols;
12007 objfile->template_symbols = sym;
12008 list_to_add = NULL;
12009 }
12010
12011 if (list_to_add != NULL)
12012 add_symbol_to_list (sym, list_to_add);
12013
12014 /* For the benefit of old versions of GCC, check for anonymous
12015 namespaces based on the demangled name. */
12016 if (!processing_has_namespace_info
12017 && cu->language == language_cplus)
12018 cp_scan_for_anonymous_namespaces (sym, objfile);
12019 }
12020 return (sym);
12021 }
12022
12023 /* A wrapper for new_symbol_full that always allocates a new symbol. */
12024
12025 static struct symbol *
12026 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
12027 {
12028 return new_symbol_full (die, type, cu, NULL);
12029 }
12030
12031 /* Given an attr with a DW_FORM_dataN value in host byte order,
12032 zero-extend it as appropriate for the symbol's type. The DWARF
12033 standard (v4) is not entirely clear about the meaning of using
12034 DW_FORM_dataN for a constant with a signed type, where the type is
12035 wider than the data. The conclusion of a discussion on the DWARF
12036 list was that this is unspecified. We choose to always zero-extend
12037 because that is the interpretation long in use by GCC. */
12038
12039 static gdb_byte *
12040 dwarf2_const_value_data (struct attribute *attr, struct type *type,
12041 const char *name, struct obstack *obstack,
12042 struct dwarf2_cu *cu, long *value, int bits)
12043 {
12044 struct objfile *objfile = cu->objfile;
12045 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
12046 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
12047 LONGEST l = DW_UNSND (attr);
12048
12049 if (bits < sizeof (*value) * 8)
12050 {
12051 l &= ((LONGEST) 1 << bits) - 1;
12052 *value = l;
12053 }
12054 else if (bits == sizeof (*value) * 8)
12055 *value = l;
12056 else
12057 {
12058 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
12059 store_unsigned_integer (bytes, bits / 8, byte_order, l);
12060 return bytes;
12061 }
12062
12063 return NULL;
12064 }
12065
12066 /* Read a constant value from an attribute. Either set *VALUE, or if
12067 the value does not fit in *VALUE, set *BYTES - either already
12068 allocated on the objfile obstack, or newly allocated on OBSTACK,
12069 or, set *BATON, if we translated the constant to a location
12070 expression. */
12071
12072 static void
12073 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
12074 const char *name, struct obstack *obstack,
12075 struct dwarf2_cu *cu,
12076 long *value, gdb_byte **bytes,
12077 struct dwarf2_locexpr_baton **baton)
12078 {
12079 struct objfile *objfile = cu->objfile;
12080 struct comp_unit_head *cu_header = &cu->header;
12081 struct dwarf_block *blk;
12082 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
12083 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
12084
12085 *value = 0;
12086 *bytes = NULL;
12087 *baton = NULL;
12088
12089 switch (attr->form)
12090 {
12091 case DW_FORM_addr:
12092 {
12093 gdb_byte *data;
12094
12095 if (TYPE_LENGTH (type) != cu_header->addr_size)
12096 dwarf2_const_value_length_mismatch_complaint (name,
12097 cu_header->addr_size,
12098 TYPE_LENGTH (type));
12099 /* Symbols of this form are reasonably rare, so we just
12100 piggyback on the existing location code rather than writing
12101 a new implementation of symbol_computed_ops. */
12102 *baton = obstack_alloc (&objfile->objfile_obstack,
12103 sizeof (struct dwarf2_locexpr_baton));
12104 (*baton)->per_cu = cu->per_cu;
12105 gdb_assert ((*baton)->per_cu);
12106
12107 (*baton)->size = 2 + cu_header->addr_size;
12108 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
12109 (*baton)->data = data;
12110
12111 data[0] = DW_OP_addr;
12112 store_unsigned_integer (&data[1], cu_header->addr_size,
12113 byte_order, DW_ADDR (attr));
12114 data[cu_header->addr_size + 1] = DW_OP_stack_value;
12115 }
12116 break;
12117 case DW_FORM_string:
12118 case DW_FORM_strp:
12119 /* DW_STRING is already allocated on the objfile obstack, point
12120 directly to it. */
12121 *bytes = (gdb_byte *) DW_STRING (attr);
12122 break;
12123 case DW_FORM_block1:
12124 case DW_FORM_block2:
12125 case DW_FORM_block4:
12126 case DW_FORM_block:
12127 case DW_FORM_exprloc:
12128 blk = DW_BLOCK (attr);
12129 if (TYPE_LENGTH (type) != blk->size)
12130 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
12131 TYPE_LENGTH (type));
12132 *bytes = blk->data;
12133 break;
12134
12135 /* The DW_AT_const_value attributes are supposed to carry the
12136 symbol's value "represented as it would be on the target
12137 architecture." By the time we get here, it's already been
12138 converted to host endianness, so we just need to sign- or
12139 zero-extend it as appropriate. */
12140 case DW_FORM_data1:
12141 *bytes = dwarf2_const_value_data (attr, type, name,
12142 obstack, cu, value, 8);
12143 break;
12144 case DW_FORM_data2:
12145 *bytes = dwarf2_const_value_data (attr, type, name,
12146 obstack, cu, value, 16);
12147 break;
12148 case DW_FORM_data4:
12149 *bytes = dwarf2_const_value_data (attr, type, name,
12150 obstack, cu, value, 32);
12151 break;
12152 case DW_FORM_data8:
12153 *bytes = dwarf2_const_value_data (attr, type, name,
12154 obstack, cu, value, 64);
12155 break;
12156
12157 case DW_FORM_sdata:
12158 *value = DW_SND (attr);
12159 break;
12160
12161 case DW_FORM_udata:
12162 *value = DW_UNSND (attr);
12163 break;
12164
12165 default:
12166 complaint (&symfile_complaints,
12167 _("unsupported const value attribute form: '%s'"),
12168 dwarf_form_name (attr->form));
12169 *value = 0;
12170 break;
12171 }
12172 }
12173
12174
12175 /* Copy constant value from an attribute to a symbol. */
12176
12177 static void
12178 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
12179 struct dwarf2_cu *cu)
12180 {
12181 struct objfile *objfile = cu->objfile;
12182 struct comp_unit_head *cu_header = &cu->header;
12183 long value;
12184 gdb_byte *bytes;
12185 struct dwarf2_locexpr_baton *baton;
12186
12187 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
12188 SYMBOL_PRINT_NAME (sym),
12189 &objfile->objfile_obstack, cu,
12190 &value, &bytes, &baton);
12191
12192 if (baton != NULL)
12193 {
12194 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
12195 SYMBOL_LOCATION_BATON (sym) = baton;
12196 SYMBOL_CLASS (sym) = LOC_COMPUTED;
12197 }
12198 else if (bytes != NULL)
12199 {
12200 SYMBOL_VALUE_BYTES (sym) = bytes;
12201 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
12202 }
12203 else
12204 {
12205 SYMBOL_VALUE (sym) = value;
12206 SYMBOL_CLASS (sym) = LOC_CONST;
12207 }
12208 }
12209
12210 /* Return the type of the die in question using its DW_AT_type attribute. */
12211
12212 static struct type *
12213 die_type (struct die_info *die, struct dwarf2_cu *cu)
12214 {
12215 struct attribute *type_attr;
12216
12217 type_attr = dwarf2_attr (die, DW_AT_type, cu);
12218 if (!type_attr)
12219 {
12220 /* A missing DW_AT_type represents a void type. */
12221 return objfile_type (cu->objfile)->builtin_void;
12222 }
12223
12224 return lookup_die_type (die, type_attr, cu);
12225 }
12226
12227 /* True iff CU's producer generates GNAT Ada auxiliary information
12228 that allows to find parallel types through that information instead
12229 of having to do expensive parallel lookups by type name. */
12230
12231 static int
12232 need_gnat_info (struct dwarf2_cu *cu)
12233 {
12234 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
12235 of GNAT produces this auxiliary information, without any indication
12236 that it is produced. Part of enhancing the FSF version of GNAT
12237 to produce that information will be to put in place an indicator
12238 that we can use in order to determine whether the descriptive type
12239 info is available or not. One suggestion that has been made is
12240 to use a new attribute, attached to the CU die. For now, assume
12241 that the descriptive type info is not available. */
12242 return 0;
12243 }
12244
12245 /* Return the auxiliary type of the die in question using its
12246 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
12247 attribute is not present. */
12248
12249 static struct type *
12250 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
12251 {
12252 struct attribute *type_attr;
12253
12254 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
12255 if (!type_attr)
12256 return NULL;
12257
12258 return lookup_die_type (die, type_attr, cu);
12259 }
12260
12261 /* If DIE has a descriptive_type attribute, then set the TYPE's
12262 descriptive type accordingly. */
12263
12264 static void
12265 set_descriptive_type (struct type *type, struct die_info *die,
12266 struct dwarf2_cu *cu)
12267 {
12268 struct type *descriptive_type = die_descriptive_type (die, cu);
12269
12270 if (descriptive_type)
12271 {
12272 ALLOCATE_GNAT_AUX_TYPE (type);
12273 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
12274 }
12275 }
12276
12277 /* Return the containing type of the die in question using its
12278 DW_AT_containing_type attribute. */
12279
12280 static struct type *
12281 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
12282 {
12283 struct attribute *type_attr;
12284
12285 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
12286 if (!type_attr)
12287 error (_("Dwarf Error: Problem turning containing type into gdb type "
12288 "[in module %s]"), cu->objfile->name);
12289
12290 return lookup_die_type (die, type_attr, cu);
12291 }
12292
12293 /* Look up the type of DIE in CU using its type attribute ATTR.
12294 If there is no type substitute an error marker. */
12295
12296 static struct type *
12297 lookup_die_type (struct die_info *die, struct attribute *attr,
12298 struct dwarf2_cu *cu)
12299 {
12300 struct objfile *objfile = cu->objfile;
12301 struct type *this_type;
12302
12303 /* First see if we have it cached. */
12304
12305 if (is_ref_attr (attr))
12306 {
12307 sect_offset offset = dwarf2_get_ref_die_offset (attr);
12308
12309 this_type = get_die_type_at_offset (offset, cu->per_cu);
12310 }
12311 else if (attr->form == DW_FORM_ref_sig8)
12312 {
12313 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
12314 struct dwarf2_cu *sig_cu;
12315 sect_offset offset;
12316
12317 /* sig_type will be NULL if the signatured type is missing from
12318 the debug info. */
12319 if (sig_type == NULL)
12320 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
12321 "at 0x%x [in module %s]"),
12322 die->offset.sect_off, objfile->name);
12323
12324 gdb_assert (sig_type->per_cu.debug_types_section);
12325 offset.sect_off = (sig_type->per_cu.offset.sect_off
12326 + sig_type->type_offset.cu_off);
12327 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
12328 }
12329 else
12330 {
12331 dump_die_for_error (die);
12332 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
12333 dwarf_attr_name (attr->name), objfile->name);
12334 }
12335
12336 /* If not cached we need to read it in. */
12337
12338 if (this_type == NULL)
12339 {
12340 struct die_info *type_die;
12341 struct dwarf2_cu *type_cu = cu;
12342
12343 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
12344 /* If the type is cached, we should have found it above. */
12345 gdb_assert (get_die_type (type_die, type_cu) == NULL);
12346 this_type = read_type_die_1 (type_die, type_cu);
12347 }
12348
12349 /* If we still don't have a type use an error marker. */
12350
12351 if (this_type == NULL)
12352 {
12353 char *message, *saved;
12354
12355 /* read_type_die already issued a complaint. */
12356 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
12357 objfile->name,
12358 cu->header.offset.sect_off,
12359 die->offset.sect_off);
12360 saved = obstack_copy0 (&objfile->objfile_obstack,
12361 message, strlen (message));
12362 xfree (message);
12363
12364 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
12365 }
12366
12367 return this_type;
12368 }
12369
12370 /* Return the type in DIE, CU.
12371 Returns NULL for invalid types.
12372
12373 This first does a lookup in the appropriate type_hash table,
12374 and only reads the die in if necessary.
12375
12376 NOTE: This can be called when reading in partial or full symbols. */
12377
12378 static struct type *
12379 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
12380 {
12381 struct type *this_type;
12382
12383 this_type = get_die_type (die, cu);
12384 if (this_type)
12385 return this_type;
12386
12387 return read_type_die_1 (die, cu);
12388 }
12389
12390 /* Read the type in DIE, CU.
12391 Returns NULL for invalid types. */
12392
12393 static struct type *
12394 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
12395 {
12396 struct type *this_type = NULL;
12397
12398 switch (die->tag)
12399 {
12400 case DW_TAG_class_type:
12401 case DW_TAG_interface_type:
12402 case DW_TAG_structure_type:
12403 case DW_TAG_union_type:
12404 this_type = read_structure_type (die, cu);
12405 break;
12406 case DW_TAG_enumeration_type:
12407 this_type = read_enumeration_type (die, cu);
12408 break;
12409 case DW_TAG_subprogram:
12410 case DW_TAG_subroutine_type:
12411 case DW_TAG_inlined_subroutine:
12412 this_type = read_subroutine_type (die, cu);
12413 break;
12414 case DW_TAG_array_type:
12415 this_type = read_array_type (die, cu);
12416 break;
12417 case DW_TAG_set_type:
12418 this_type = read_set_type (die, cu);
12419 break;
12420 case DW_TAG_pointer_type:
12421 this_type = read_tag_pointer_type (die, cu);
12422 break;
12423 case DW_TAG_ptr_to_member_type:
12424 this_type = read_tag_ptr_to_member_type (die, cu);
12425 break;
12426 case DW_TAG_reference_type:
12427 this_type = read_tag_reference_type (die, cu);
12428 break;
12429 case DW_TAG_const_type:
12430 this_type = read_tag_const_type (die, cu);
12431 break;
12432 case DW_TAG_volatile_type:
12433 this_type = read_tag_volatile_type (die, cu);
12434 break;
12435 case DW_TAG_string_type:
12436 this_type = read_tag_string_type (die, cu);
12437 break;
12438 case DW_TAG_typedef:
12439 this_type = read_typedef (die, cu);
12440 break;
12441 case DW_TAG_subrange_type:
12442 this_type = read_subrange_type (die, cu);
12443 break;
12444 case DW_TAG_base_type:
12445 this_type = read_base_type (die, cu);
12446 break;
12447 case DW_TAG_unspecified_type:
12448 this_type = read_unspecified_type (die, cu);
12449 break;
12450 case DW_TAG_namespace:
12451 this_type = read_namespace_type (die, cu);
12452 break;
12453 case DW_TAG_module:
12454 this_type = read_module_type (die, cu);
12455 break;
12456 default:
12457 complaint (&symfile_complaints,
12458 _("unexpected tag in read_type_die: '%s'"),
12459 dwarf_tag_name (die->tag));
12460 break;
12461 }
12462
12463 return this_type;
12464 }
12465
12466 /* See if we can figure out if the class lives in a namespace. We do
12467 this by looking for a member function; its demangled name will
12468 contain namespace info, if there is any.
12469 Return the computed name or NULL.
12470 Space for the result is allocated on the objfile's obstack.
12471 This is the full-die version of guess_partial_die_structure_name.
12472 In this case we know DIE has no useful parent. */
12473
12474 static char *
12475 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
12476 {
12477 struct die_info *spec_die;
12478 struct dwarf2_cu *spec_cu;
12479 struct die_info *child;
12480
12481 spec_cu = cu;
12482 spec_die = die_specification (die, &spec_cu);
12483 if (spec_die != NULL)
12484 {
12485 die = spec_die;
12486 cu = spec_cu;
12487 }
12488
12489 for (child = die->child;
12490 child != NULL;
12491 child = child->sibling)
12492 {
12493 if (child->tag == DW_TAG_subprogram)
12494 {
12495 struct attribute *attr;
12496
12497 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
12498 if (attr == NULL)
12499 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
12500 if (attr != NULL)
12501 {
12502 char *actual_name
12503 = language_class_name_from_physname (cu->language_defn,
12504 DW_STRING (attr));
12505 char *name = NULL;
12506
12507 if (actual_name != NULL)
12508 {
12509 char *die_name = dwarf2_name (die, cu);
12510
12511 if (die_name != NULL
12512 && strcmp (die_name, actual_name) != 0)
12513 {
12514 /* Strip off the class name from the full name.
12515 We want the prefix. */
12516 int die_name_len = strlen (die_name);
12517 int actual_name_len = strlen (actual_name);
12518
12519 /* Test for '::' as a sanity check. */
12520 if (actual_name_len > die_name_len + 2
12521 && actual_name[actual_name_len
12522 - die_name_len - 1] == ':')
12523 name =
12524 obsavestring (actual_name,
12525 actual_name_len - die_name_len - 2,
12526 &cu->objfile->objfile_obstack);
12527 }
12528 }
12529 xfree (actual_name);
12530 return name;
12531 }
12532 }
12533 }
12534
12535 return NULL;
12536 }
12537
12538 /* GCC might emit a nameless typedef that has a linkage name. Determine the
12539 prefix part in such case. See
12540 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12541
12542 static char *
12543 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
12544 {
12545 struct attribute *attr;
12546 char *base;
12547
12548 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
12549 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
12550 return NULL;
12551
12552 attr = dwarf2_attr (die, DW_AT_name, cu);
12553 if (attr != NULL && DW_STRING (attr) != NULL)
12554 return NULL;
12555
12556 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12557 if (attr == NULL)
12558 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12559 if (attr == NULL || DW_STRING (attr) == NULL)
12560 return NULL;
12561
12562 /* dwarf2_name had to be already called. */
12563 gdb_assert (DW_STRING_IS_CANONICAL (attr));
12564
12565 /* Strip the base name, keep any leading namespaces/classes. */
12566 base = strrchr (DW_STRING (attr), ':');
12567 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
12568 return "";
12569
12570 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
12571 &cu->objfile->objfile_obstack);
12572 }
12573
12574 /* Return the name of the namespace/class that DIE is defined within,
12575 or "" if we can't tell. The caller should not xfree the result.
12576
12577 For example, if we're within the method foo() in the following
12578 code:
12579
12580 namespace N {
12581 class C {
12582 void foo () {
12583 }
12584 };
12585 }
12586
12587 then determine_prefix on foo's die will return "N::C". */
12588
12589 static const char *
12590 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
12591 {
12592 struct die_info *parent, *spec_die;
12593 struct dwarf2_cu *spec_cu;
12594 struct type *parent_type;
12595 char *retval;
12596
12597 if (cu->language != language_cplus && cu->language != language_java
12598 && cu->language != language_fortran)
12599 return "";
12600
12601 retval = anonymous_struct_prefix (die, cu);
12602 if (retval)
12603 return retval;
12604
12605 /* We have to be careful in the presence of DW_AT_specification.
12606 For example, with GCC 3.4, given the code
12607
12608 namespace N {
12609 void foo() {
12610 // Definition of N::foo.
12611 }
12612 }
12613
12614 then we'll have a tree of DIEs like this:
12615
12616 1: DW_TAG_compile_unit
12617 2: DW_TAG_namespace // N
12618 3: DW_TAG_subprogram // declaration of N::foo
12619 4: DW_TAG_subprogram // definition of N::foo
12620 DW_AT_specification // refers to die #3
12621
12622 Thus, when processing die #4, we have to pretend that we're in
12623 the context of its DW_AT_specification, namely the contex of die
12624 #3. */
12625 spec_cu = cu;
12626 spec_die = die_specification (die, &spec_cu);
12627 if (spec_die == NULL)
12628 parent = die->parent;
12629 else
12630 {
12631 parent = spec_die->parent;
12632 cu = spec_cu;
12633 }
12634
12635 if (parent == NULL)
12636 return "";
12637 else if (parent->building_fullname)
12638 {
12639 const char *name;
12640 const char *parent_name;
12641
12642 /* It has been seen on RealView 2.2 built binaries,
12643 DW_TAG_template_type_param types actually _defined_ as
12644 children of the parent class:
12645
12646 enum E {};
12647 template class <class Enum> Class{};
12648 Class<enum E> class_e;
12649
12650 1: DW_TAG_class_type (Class)
12651 2: DW_TAG_enumeration_type (E)
12652 3: DW_TAG_enumerator (enum1:0)
12653 3: DW_TAG_enumerator (enum2:1)
12654 ...
12655 2: DW_TAG_template_type_param
12656 DW_AT_type DW_FORM_ref_udata (E)
12657
12658 Besides being broken debug info, it can put GDB into an
12659 infinite loop. Consider:
12660
12661 When we're building the full name for Class<E>, we'll start
12662 at Class, and go look over its template type parameters,
12663 finding E. We'll then try to build the full name of E, and
12664 reach here. We're now trying to build the full name of E,
12665 and look over the parent DIE for containing scope. In the
12666 broken case, if we followed the parent DIE of E, we'd again
12667 find Class, and once again go look at its template type
12668 arguments, etc., etc. Simply don't consider such parent die
12669 as source-level parent of this die (it can't be, the language
12670 doesn't allow it), and break the loop here. */
12671 name = dwarf2_name (die, cu);
12672 parent_name = dwarf2_name (parent, cu);
12673 complaint (&symfile_complaints,
12674 _("template param type '%s' defined within parent '%s'"),
12675 name ? name : "<unknown>",
12676 parent_name ? parent_name : "<unknown>");
12677 return "";
12678 }
12679 else
12680 switch (parent->tag)
12681 {
12682 case DW_TAG_namespace:
12683 parent_type = read_type_die (parent, cu);
12684 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
12685 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
12686 Work around this problem here. */
12687 if (cu->language == language_cplus
12688 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
12689 return "";
12690 /* We give a name to even anonymous namespaces. */
12691 return TYPE_TAG_NAME (parent_type);
12692 case DW_TAG_class_type:
12693 case DW_TAG_interface_type:
12694 case DW_TAG_structure_type:
12695 case DW_TAG_union_type:
12696 case DW_TAG_module:
12697 parent_type = read_type_die (parent, cu);
12698 if (TYPE_TAG_NAME (parent_type) != NULL)
12699 return TYPE_TAG_NAME (parent_type);
12700 else
12701 /* An anonymous structure is only allowed non-static data
12702 members; no typedefs, no member functions, et cetera.
12703 So it does not need a prefix. */
12704 return "";
12705 case DW_TAG_compile_unit:
12706 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
12707 if (cu->language == language_cplus
12708 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
12709 && die->child != NULL
12710 && (die->tag == DW_TAG_class_type
12711 || die->tag == DW_TAG_structure_type
12712 || die->tag == DW_TAG_union_type))
12713 {
12714 char *name = guess_full_die_structure_name (die, cu);
12715 if (name != NULL)
12716 return name;
12717 }
12718 return "";
12719 default:
12720 return determine_prefix (parent, cu);
12721 }
12722 }
12723
12724 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
12725 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
12726 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
12727 an obconcat, otherwise allocate storage for the result. The CU argument is
12728 used to determine the language and hence, the appropriate separator. */
12729
12730 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
12731
12732 static char *
12733 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
12734 int physname, struct dwarf2_cu *cu)
12735 {
12736 const char *lead = "";
12737 const char *sep;
12738
12739 if (suffix == NULL || suffix[0] == '\0'
12740 || prefix == NULL || prefix[0] == '\0')
12741 sep = "";
12742 else if (cu->language == language_java)
12743 sep = ".";
12744 else if (cu->language == language_fortran && physname)
12745 {
12746 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
12747 DW_AT_MIPS_linkage_name is preferred and used instead. */
12748
12749 lead = "__";
12750 sep = "_MOD_";
12751 }
12752 else
12753 sep = "::";
12754
12755 if (prefix == NULL)
12756 prefix = "";
12757 if (suffix == NULL)
12758 suffix = "";
12759
12760 if (obs == NULL)
12761 {
12762 char *retval
12763 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
12764
12765 strcpy (retval, lead);
12766 strcat (retval, prefix);
12767 strcat (retval, sep);
12768 strcat (retval, suffix);
12769 return retval;
12770 }
12771 else
12772 {
12773 /* We have an obstack. */
12774 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
12775 }
12776 }
12777
12778 /* Return sibling of die, NULL if no sibling. */
12779
12780 static struct die_info *
12781 sibling_die (struct die_info *die)
12782 {
12783 return die->sibling;
12784 }
12785
12786 /* Get name of a die, return NULL if not found. */
12787
12788 static char *
12789 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
12790 struct obstack *obstack)
12791 {
12792 if (name && cu->language == language_cplus)
12793 {
12794 char *canon_name = cp_canonicalize_string (name);
12795
12796 if (canon_name != NULL)
12797 {
12798 if (strcmp (canon_name, name) != 0)
12799 name = obsavestring (canon_name, strlen (canon_name),
12800 obstack);
12801 xfree (canon_name);
12802 }
12803 }
12804
12805 return name;
12806 }
12807
12808 /* Get name of a die, return NULL if not found. */
12809
12810 static char *
12811 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
12812 {
12813 struct attribute *attr;
12814
12815 attr = dwarf2_attr (die, DW_AT_name, cu);
12816 if ((!attr || !DW_STRING (attr))
12817 && die->tag != DW_TAG_class_type
12818 && die->tag != DW_TAG_interface_type
12819 && die->tag != DW_TAG_structure_type
12820 && die->tag != DW_TAG_union_type)
12821 return NULL;
12822
12823 switch (die->tag)
12824 {
12825 case DW_TAG_compile_unit:
12826 /* Compilation units have a DW_AT_name that is a filename, not
12827 a source language identifier. */
12828 case DW_TAG_enumeration_type:
12829 case DW_TAG_enumerator:
12830 /* These tags always have simple identifiers already; no need
12831 to canonicalize them. */
12832 return DW_STRING (attr);
12833
12834 case DW_TAG_subprogram:
12835 /* Java constructors will all be named "<init>", so return
12836 the class name when we see this special case. */
12837 if (cu->language == language_java
12838 && DW_STRING (attr) != NULL
12839 && strcmp (DW_STRING (attr), "<init>") == 0)
12840 {
12841 struct dwarf2_cu *spec_cu = cu;
12842 struct die_info *spec_die;
12843
12844 /* GCJ will output '<init>' for Java constructor names.
12845 For this special case, return the name of the parent class. */
12846
12847 /* GCJ may output suprogram DIEs with AT_specification set.
12848 If so, use the name of the specified DIE. */
12849 spec_die = die_specification (die, &spec_cu);
12850 if (spec_die != NULL)
12851 return dwarf2_name (spec_die, spec_cu);
12852
12853 do
12854 {
12855 die = die->parent;
12856 if (die->tag == DW_TAG_class_type)
12857 return dwarf2_name (die, cu);
12858 }
12859 while (die->tag != DW_TAG_compile_unit);
12860 }
12861 break;
12862
12863 case DW_TAG_class_type:
12864 case DW_TAG_interface_type:
12865 case DW_TAG_structure_type:
12866 case DW_TAG_union_type:
12867 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
12868 structures or unions. These were of the form "._%d" in GCC 4.1,
12869 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
12870 and GCC 4.4. We work around this problem by ignoring these. */
12871 if (attr && DW_STRING (attr)
12872 && (strncmp (DW_STRING (attr), "._", 2) == 0
12873 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
12874 return NULL;
12875
12876 /* GCC might emit a nameless typedef that has a linkage name. See
12877 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12878 if (!attr || DW_STRING (attr) == NULL)
12879 {
12880 char *demangled = NULL;
12881
12882 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12883 if (attr == NULL)
12884 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12885
12886 if (attr == NULL || DW_STRING (attr) == NULL)
12887 return NULL;
12888
12889 /* Avoid demangling DW_STRING (attr) the second time on a second
12890 call for the same DIE. */
12891 if (!DW_STRING_IS_CANONICAL (attr))
12892 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
12893
12894 if (demangled)
12895 {
12896 char *base;
12897
12898 /* FIXME: we already did this for the partial symbol... */
12899 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
12900 &cu->objfile->objfile_obstack);
12901 DW_STRING_IS_CANONICAL (attr) = 1;
12902 xfree (demangled);
12903
12904 /* Strip any leading namespaces/classes, keep only the base name.
12905 DW_AT_name for named DIEs does not contain the prefixes. */
12906 base = strrchr (DW_STRING (attr), ':');
12907 if (base && base > DW_STRING (attr) && base[-1] == ':')
12908 return &base[1];
12909 else
12910 return DW_STRING (attr);
12911 }
12912 }
12913 break;
12914
12915 default:
12916 break;
12917 }
12918
12919 if (!DW_STRING_IS_CANONICAL (attr))
12920 {
12921 DW_STRING (attr)
12922 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
12923 &cu->objfile->objfile_obstack);
12924 DW_STRING_IS_CANONICAL (attr) = 1;
12925 }
12926 return DW_STRING (attr);
12927 }
12928
12929 /* Return the die that this die in an extension of, or NULL if there
12930 is none. *EXT_CU is the CU containing DIE on input, and the CU
12931 containing the return value on output. */
12932
12933 static struct die_info *
12934 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
12935 {
12936 struct attribute *attr;
12937
12938 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
12939 if (attr == NULL)
12940 return NULL;
12941
12942 return follow_die_ref (die, attr, ext_cu);
12943 }
12944
12945 /* Convert a DIE tag into its string name. */
12946
12947 static char *
12948 dwarf_tag_name (unsigned tag)
12949 {
12950 switch (tag)
12951 {
12952 case DW_TAG_padding:
12953 return "DW_TAG_padding";
12954 case DW_TAG_array_type:
12955 return "DW_TAG_array_type";
12956 case DW_TAG_class_type:
12957 return "DW_TAG_class_type";
12958 case DW_TAG_entry_point:
12959 return "DW_TAG_entry_point";
12960 case DW_TAG_enumeration_type:
12961 return "DW_TAG_enumeration_type";
12962 case DW_TAG_formal_parameter:
12963 return "DW_TAG_formal_parameter";
12964 case DW_TAG_imported_declaration:
12965 return "DW_TAG_imported_declaration";
12966 case DW_TAG_label:
12967 return "DW_TAG_label";
12968 case DW_TAG_lexical_block:
12969 return "DW_TAG_lexical_block";
12970 case DW_TAG_member:
12971 return "DW_TAG_member";
12972 case DW_TAG_pointer_type:
12973 return "DW_TAG_pointer_type";
12974 case DW_TAG_reference_type:
12975 return "DW_TAG_reference_type";
12976 case DW_TAG_compile_unit:
12977 return "DW_TAG_compile_unit";
12978 case DW_TAG_string_type:
12979 return "DW_TAG_string_type";
12980 case DW_TAG_structure_type:
12981 return "DW_TAG_structure_type";
12982 case DW_TAG_subroutine_type:
12983 return "DW_TAG_subroutine_type";
12984 case DW_TAG_typedef:
12985 return "DW_TAG_typedef";
12986 case DW_TAG_union_type:
12987 return "DW_TAG_union_type";
12988 case DW_TAG_unspecified_parameters:
12989 return "DW_TAG_unspecified_parameters";
12990 case DW_TAG_variant:
12991 return "DW_TAG_variant";
12992 case DW_TAG_common_block:
12993 return "DW_TAG_common_block";
12994 case DW_TAG_common_inclusion:
12995 return "DW_TAG_common_inclusion";
12996 case DW_TAG_inheritance:
12997 return "DW_TAG_inheritance";
12998 case DW_TAG_inlined_subroutine:
12999 return "DW_TAG_inlined_subroutine";
13000 case DW_TAG_module:
13001 return "DW_TAG_module";
13002 case DW_TAG_ptr_to_member_type:
13003 return "DW_TAG_ptr_to_member_type";
13004 case DW_TAG_set_type:
13005 return "DW_TAG_set_type";
13006 case DW_TAG_subrange_type:
13007 return "DW_TAG_subrange_type";
13008 case DW_TAG_with_stmt:
13009 return "DW_TAG_with_stmt";
13010 case DW_TAG_access_declaration:
13011 return "DW_TAG_access_declaration";
13012 case DW_TAG_base_type:
13013 return "DW_TAG_base_type";
13014 case DW_TAG_catch_block:
13015 return "DW_TAG_catch_block";
13016 case DW_TAG_const_type:
13017 return "DW_TAG_const_type";
13018 case DW_TAG_constant:
13019 return "DW_TAG_constant";
13020 case DW_TAG_enumerator:
13021 return "DW_TAG_enumerator";
13022 case DW_TAG_file_type:
13023 return "DW_TAG_file_type";
13024 case DW_TAG_friend:
13025 return "DW_TAG_friend";
13026 case DW_TAG_namelist:
13027 return "DW_TAG_namelist";
13028 case DW_TAG_namelist_item:
13029 return "DW_TAG_namelist_item";
13030 case DW_TAG_packed_type:
13031 return "DW_TAG_packed_type";
13032 case DW_TAG_subprogram:
13033 return "DW_TAG_subprogram";
13034 case DW_TAG_template_type_param:
13035 return "DW_TAG_template_type_param";
13036 case DW_TAG_template_value_param:
13037 return "DW_TAG_template_value_param";
13038 case DW_TAG_thrown_type:
13039 return "DW_TAG_thrown_type";
13040 case DW_TAG_try_block:
13041 return "DW_TAG_try_block";
13042 case DW_TAG_variant_part:
13043 return "DW_TAG_variant_part";
13044 case DW_TAG_variable:
13045 return "DW_TAG_variable";
13046 case DW_TAG_volatile_type:
13047 return "DW_TAG_volatile_type";
13048 case DW_TAG_dwarf_procedure:
13049 return "DW_TAG_dwarf_procedure";
13050 case DW_TAG_restrict_type:
13051 return "DW_TAG_restrict_type";
13052 case DW_TAG_interface_type:
13053 return "DW_TAG_interface_type";
13054 case DW_TAG_namespace:
13055 return "DW_TAG_namespace";
13056 case DW_TAG_imported_module:
13057 return "DW_TAG_imported_module";
13058 case DW_TAG_unspecified_type:
13059 return "DW_TAG_unspecified_type";
13060 case DW_TAG_partial_unit:
13061 return "DW_TAG_partial_unit";
13062 case DW_TAG_imported_unit:
13063 return "DW_TAG_imported_unit";
13064 case DW_TAG_condition:
13065 return "DW_TAG_condition";
13066 case DW_TAG_shared_type:
13067 return "DW_TAG_shared_type";
13068 case DW_TAG_type_unit:
13069 return "DW_TAG_type_unit";
13070 case DW_TAG_MIPS_loop:
13071 return "DW_TAG_MIPS_loop";
13072 case DW_TAG_HP_array_descriptor:
13073 return "DW_TAG_HP_array_descriptor";
13074 case DW_TAG_format_label:
13075 return "DW_TAG_format_label";
13076 case DW_TAG_function_template:
13077 return "DW_TAG_function_template";
13078 case DW_TAG_class_template:
13079 return "DW_TAG_class_template";
13080 case DW_TAG_GNU_BINCL:
13081 return "DW_TAG_GNU_BINCL";
13082 case DW_TAG_GNU_EINCL:
13083 return "DW_TAG_GNU_EINCL";
13084 case DW_TAG_upc_shared_type:
13085 return "DW_TAG_upc_shared_type";
13086 case DW_TAG_upc_strict_type:
13087 return "DW_TAG_upc_strict_type";
13088 case DW_TAG_upc_relaxed_type:
13089 return "DW_TAG_upc_relaxed_type";
13090 case DW_TAG_PGI_kanji_type:
13091 return "DW_TAG_PGI_kanji_type";
13092 case DW_TAG_PGI_interface_block:
13093 return "DW_TAG_PGI_interface_block";
13094 case DW_TAG_GNU_call_site:
13095 return "DW_TAG_GNU_call_site";
13096 default:
13097 return "DW_TAG_<unknown>";
13098 }
13099 }
13100
13101 /* Convert a DWARF attribute code into its string name. */
13102
13103 static char *
13104 dwarf_attr_name (unsigned attr)
13105 {
13106 switch (attr)
13107 {
13108 case DW_AT_sibling:
13109 return "DW_AT_sibling";
13110 case DW_AT_location:
13111 return "DW_AT_location";
13112 case DW_AT_name:
13113 return "DW_AT_name";
13114 case DW_AT_ordering:
13115 return "DW_AT_ordering";
13116 case DW_AT_subscr_data:
13117 return "DW_AT_subscr_data";
13118 case DW_AT_byte_size:
13119 return "DW_AT_byte_size";
13120 case DW_AT_bit_offset:
13121 return "DW_AT_bit_offset";
13122 case DW_AT_bit_size:
13123 return "DW_AT_bit_size";
13124 case DW_AT_element_list:
13125 return "DW_AT_element_list";
13126 case DW_AT_stmt_list:
13127 return "DW_AT_stmt_list";
13128 case DW_AT_low_pc:
13129 return "DW_AT_low_pc";
13130 case DW_AT_high_pc:
13131 return "DW_AT_high_pc";
13132 case DW_AT_language:
13133 return "DW_AT_language";
13134 case DW_AT_member:
13135 return "DW_AT_member";
13136 case DW_AT_discr:
13137 return "DW_AT_discr";
13138 case DW_AT_discr_value:
13139 return "DW_AT_discr_value";
13140 case DW_AT_visibility:
13141 return "DW_AT_visibility";
13142 case DW_AT_import:
13143 return "DW_AT_import";
13144 case DW_AT_string_length:
13145 return "DW_AT_string_length";
13146 case DW_AT_common_reference:
13147 return "DW_AT_common_reference";
13148 case DW_AT_comp_dir:
13149 return "DW_AT_comp_dir";
13150 case DW_AT_const_value:
13151 return "DW_AT_const_value";
13152 case DW_AT_containing_type:
13153 return "DW_AT_containing_type";
13154 case DW_AT_default_value:
13155 return "DW_AT_default_value";
13156 case DW_AT_inline:
13157 return "DW_AT_inline";
13158 case DW_AT_is_optional:
13159 return "DW_AT_is_optional";
13160 case DW_AT_lower_bound:
13161 return "DW_AT_lower_bound";
13162 case DW_AT_producer:
13163 return "DW_AT_producer";
13164 case DW_AT_prototyped:
13165 return "DW_AT_prototyped";
13166 case DW_AT_return_addr:
13167 return "DW_AT_return_addr";
13168 case DW_AT_start_scope:
13169 return "DW_AT_start_scope";
13170 case DW_AT_bit_stride:
13171 return "DW_AT_bit_stride";
13172 case DW_AT_upper_bound:
13173 return "DW_AT_upper_bound";
13174 case DW_AT_abstract_origin:
13175 return "DW_AT_abstract_origin";
13176 case DW_AT_accessibility:
13177 return "DW_AT_accessibility";
13178 case DW_AT_address_class:
13179 return "DW_AT_address_class";
13180 case DW_AT_artificial:
13181 return "DW_AT_artificial";
13182 case DW_AT_base_types:
13183 return "DW_AT_base_types";
13184 case DW_AT_calling_convention:
13185 return "DW_AT_calling_convention";
13186 case DW_AT_count:
13187 return "DW_AT_count";
13188 case DW_AT_data_member_location:
13189 return "DW_AT_data_member_location";
13190 case DW_AT_decl_column:
13191 return "DW_AT_decl_column";
13192 case DW_AT_decl_file:
13193 return "DW_AT_decl_file";
13194 case DW_AT_decl_line:
13195 return "DW_AT_decl_line";
13196 case DW_AT_declaration:
13197 return "DW_AT_declaration";
13198 case DW_AT_discr_list:
13199 return "DW_AT_discr_list";
13200 case DW_AT_encoding:
13201 return "DW_AT_encoding";
13202 case DW_AT_external:
13203 return "DW_AT_external";
13204 case DW_AT_frame_base:
13205 return "DW_AT_frame_base";
13206 case DW_AT_friend:
13207 return "DW_AT_friend";
13208 case DW_AT_identifier_case:
13209 return "DW_AT_identifier_case";
13210 case DW_AT_macro_info:
13211 return "DW_AT_macro_info";
13212 case DW_AT_namelist_items:
13213 return "DW_AT_namelist_items";
13214 case DW_AT_priority:
13215 return "DW_AT_priority";
13216 case DW_AT_segment:
13217 return "DW_AT_segment";
13218 case DW_AT_specification:
13219 return "DW_AT_specification";
13220 case DW_AT_static_link:
13221 return "DW_AT_static_link";
13222 case DW_AT_type:
13223 return "DW_AT_type";
13224 case DW_AT_use_location:
13225 return "DW_AT_use_location";
13226 case DW_AT_variable_parameter:
13227 return "DW_AT_variable_parameter";
13228 case DW_AT_virtuality:
13229 return "DW_AT_virtuality";
13230 case DW_AT_vtable_elem_location:
13231 return "DW_AT_vtable_elem_location";
13232 /* DWARF 3 values. */
13233 case DW_AT_allocated:
13234 return "DW_AT_allocated";
13235 case DW_AT_associated:
13236 return "DW_AT_associated";
13237 case DW_AT_data_location:
13238 return "DW_AT_data_location";
13239 case DW_AT_byte_stride:
13240 return "DW_AT_byte_stride";
13241 case DW_AT_entry_pc:
13242 return "DW_AT_entry_pc";
13243 case DW_AT_use_UTF8:
13244 return "DW_AT_use_UTF8";
13245 case DW_AT_extension:
13246 return "DW_AT_extension";
13247 case DW_AT_ranges:
13248 return "DW_AT_ranges";
13249 case DW_AT_trampoline:
13250 return "DW_AT_trampoline";
13251 case DW_AT_call_column:
13252 return "DW_AT_call_column";
13253 case DW_AT_call_file:
13254 return "DW_AT_call_file";
13255 case DW_AT_call_line:
13256 return "DW_AT_call_line";
13257 case DW_AT_description:
13258 return "DW_AT_description";
13259 case DW_AT_binary_scale:
13260 return "DW_AT_binary_scale";
13261 case DW_AT_decimal_scale:
13262 return "DW_AT_decimal_scale";
13263 case DW_AT_small:
13264 return "DW_AT_small";
13265 case DW_AT_decimal_sign:
13266 return "DW_AT_decimal_sign";
13267 case DW_AT_digit_count:
13268 return "DW_AT_digit_count";
13269 case DW_AT_picture_string:
13270 return "DW_AT_picture_string";
13271 case DW_AT_mutable:
13272 return "DW_AT_mutable";
13273 case DW_AT_threads_scaled:
13274 return "DW_AT_threads_scaled";
13275 case DW_AT_explicit:
13276 return "DW_AT_explicit";
13277 case DW_AT_object_pointer:
13278 return "DW_AT_object_pointer";
13279 case DW_AT_endianity:
13280 return "DW_AT_endianity";
13281 case DW_AT_elemental:
13282 return "DW_AT_elemental";
13283 case DW_AT_pure:
13284 return "DW_AT_pure";
13285 case DW_AT_recursive:
13286 return "DW_AT_recursive";
13287 /* DWARF 4 values. */
13288 case DW_AT_signature:
13289 return "DW_AT_signature";
13290 case DW_AT_linkage_name:
13291 return "DW_AT_linkage_name";
13292 /* SGI/MIPS extensions. */
13293 #ifdef MIPS /* collides with DW_AT_HP_block_index */
13294 case DW_AT_MIPS_fde:
13295 return "DW_AT_MIPS_fde";
13296 #endif
13297 case DW_AT_MIPS_loop_begin:
13298 return "DW_AT_MIPS_loop_begin";
13299 case DW_AT_MIPS_tail_loop_begin:
13300 return "DW_AT_MIPS_tail_loop_begin";
13301 case DW_AT_MIPS_epilog_begin:
13302 return "DW_AT_MIPS_epilog_begin";
13303 case DW_AT_MIPS_loop_unroll_factor:
13304 return "DW_AT_MIPS_loop_unroll_factor";
13305 case DW_AT_MIPS_software_pipeline_depth:
13306 return "DW_AT_MIPS_software_pipeline_depth";
13307 case DW_AT_MIPS_linkage_name:
13308 return "DW_AT_MIPS_linkage_name";
13309 case DW_AT_MIPS_stride:
13310 return "DW_AT_MIPS_stride";
13311 case DW_AT_MIPS_abstract_name:
13312 return "DW_AT_MIPS_abstract_name";
13313 case DW_AT_MIPS_clone_origin:
13314 return "DW_AT_MIPS_clone_origin";
13315 case DW_AT_MIPS_has_inlines:
13316 return "DW_AT_MIPS_has_inlines";
13317 /* HP extensions. */
13318 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
13319 case DW_AT_HP_block_index:
13320 return "DW_AT_HP_block_index";
13321 #endif
13322 case DW_AT_HP_unmodifiable:
13323 return "DW_AT_HP_unmodifiable";
13324 case DW_AT_HP_actuals_stmt_list:
13325 return "DW_AT_HP_actuals_stmt_list";
13326 case DW_AT_HP_proc_per_section:
13327 return "DW_AT_HP_proc_per_section";
13328 case DW_AT_HP_raw_data_ptr:
13329 return "DW_AT_HP_raw_data_ptr";
13330 case DW_AT_HP_pass_by_reference:
13331 return "DW_AT_HP_pass_by_reference";
13332 case DW_AT_HP_opt_level:
13333 return "DW_AT_HP_opt_level";
13334 case DW_AT_HP_prof_version_id:
13335 return "DW_AT_HP_prof_version_id";
13336 case DW_AT_HP_opt_flags:
13337 return "DW_AT_HP_opt_flags";
13338 case DW_AT_HP_cold_region_low_pc:
13339 return "DW_AT_HP_cold_region_low_pc";
13340 case DW_AT_HP_cold_region_high_pc:
13341 return "DW_AT_HP_cold_region_high_pc";
13342 case DW_AT_HP_all_variables_modifiable:
13343 return "DW_AT_HP_all_variables_modifiable";
13344 case DW_AT_HP_linkage_name:
13345 return "DW_AT_HP_linkage_name";
13346 case DW_AT_HP_prof_flags:
13347 return "DW_AT_HP_prof_flags";
13348 /* GNU extensions. */
13349 case DW_AT_sf_names:
13350 return "DW_AT_sf_names";
13351 case DW_AT_src_info:
13352 return "DW_AT_src_info";
13353 case DW_AT_mac_info:
13354 return "DW_AT_mac_info";
13355 case DW_AT_src_coords:
13356 return "DW_AT_src_coords";
13357 case DW_AT_body_begin:
13358 return "DW_AT_body_begin";
13359 case DW_AT_body_end:
13360 return "DW_AT_body_end";
13361 case DW_AT_GNU_vector:
13362 return "DW_AT_GNU_vector";
13363 case DW_AT_GNU_odr_signature:
13364 return "DW_AT_GNU_odr_signature";
13365 /* VMS extensions. */
13366 case DW_AT_VMS_rtnbeg_pd_address:
13367 return "DW_AT_VMS_rtnbeg_pd_address";
13368 /* UPC extension. */
13369 case DW_AT_upc_threads_scaled:
13370 return "DW_AT_upc_threads_scaled";
13371 /* PGI (STMicroelectronics) extensions. */
13372 case DW_AT_PGI_lbase:
13373 return "DW_AT_PGI_lbase";
13374 case DW_AT_PGI_soffset:
13375 return "DW_AT_PGI_soffset";
13376 case DW_AT_PGI_lstride:
13377 return "DW_AT_PGI_lstride";
13378 default:
13379 return "DW_AT_<unknown>";
13380 }
13381 }
13382
13383 /* Convert a DWARF value form code into its string name. */
13384
13385 static char *
13386 dwarf_form_name (unsigned form)
13387 {
13388 switch (form)
13389 {
13390 case DW_FORM_addr:
13391 return "DW_FORM_addr";
13392 case DW_FORM_block2:
13393 return "DW_FORM_block2";
13394 case DW_FORM_block4:
13395 return "DW_FORM_block4";
13396 case DW_FORM_data2:
13397 return "DW_FORM_data2";
13398 case DW_FORM_data4:
13399 return "DW_FORM_data4";
13400 case DW_FORM_data8:
13401 return "DW_FORM_data8";
13402 case DW_FORM_string:
13403 return "DW_FORM_string";
13404 case DW_FORM_block:
13405 return "DW_FORM_block";
13406 case DW_FORM_block1:
13407 return "DW_FORM_block1";
13408 case DW_FORM_data1:
13409 return "DW_FORM_data1";
13410 case DW_FORM_flag:
13411 return "DW_FORM_flag";
13412 case DW_FORM_sdata:
13413 return "DW_FORM_sdata";
13414 case DW_FORM_strp:
13415 return "DW_FORM_strp";
13416 case DW_FORM_udata:
13417 return "DW_FORM_udata";
13418 case DW_FORM_ref_addr:
13419 return "DW_FORM_ref_addr";
13420 case DW_FORM_ref1:
13421 return "DW_FORM_ref1";
13422 case DW_FORM_ref2:
13423 return "DW_FORM_ref2";
13424 case DW_FORM_ref4:
13425 return "DW_FORM_ref4";
13426 case DW_FORM_ref8:
13427 return "DW_FORM_ref8";
13428 case DW_FORM_ref_udata:
13429 return "DW_FORM_ref_udata";
13430 case DW_FORM_indirect:
13431 return "DW_FORM_indirect";
13432 case DW_FORM_sec_offset:
13433 return "DW_FORM_sec_offset";
13434 case DW_FORM_exprloc:
13435 return "DW_FORM_exprloc";
13436 case DW_FORM_flag_present:
13437 return "DW_FORM_flag_present";
13438 case DW_FORM_ref_sig8:
13439 return "DW_FORM_ref_sig8";
13440 default:
13441 return "DW_FORM_<unknown>";
13442 }
13443 }
13444
13445 /* Convert a DWARF stack opcode into its string name. */
13446
13447 const char *
13448 dwarf_stack_op_name (unsigned op)
13449 {
13450 switch (op)
13451 {
13452 case DW_OP_addr:
13453 return "DW_OP_addr";
13454 case DW_OP_deref:
13455 return "DW_OP_deref";
13456 case DW_OP_const1u:
13457 return "DW_OP_const1u";
13458 case DW_OP_const1s:
13459 return "DW_OP_const1s";
13460 case DW_OP_const2u:
13461 return "DW_OP_const2u";
13462 case DW_OP_const2s:
13463 return "DW_OP_const2s";
13464 case DW_OP_const4u:
13465 return "DW_OP_const4u";
13466 case DW_OP_const4s:
13467 return "DW_OP_const4s";
13468 case DW_OP_const8u:
13469 return "DW_OP_const8u";
13470 case DW_OP_const8s:
13471 return "DW_OP_const8s";
13472 case DW_OP_constu:
13473 return "DW_OP_constu";
13474 case DW_OP_consts:
13475 return "DW_OP_consts";
13476 case DW_OP_dup:
13477 return "DW_OP_dup";
13478 case DW_OP_drop:
13479 return "DW_OP_drop";
13480 case DW_OP_over:
13481 return "DW_OP_over";
13482 case DW_OP_pick:
13483 return "DW_OP_pick";
13484 case DW_OP_swap:
13485 return "DW_OP_swap";
13486 case DW_OP_rot:
13487 return "DW_OP_rot";
13488 case DW_OP_xderef:
13489 return "DW_OP_xderef";
13490 case DW_OP_abs:
13491 return "DW_OP_abs";
13492 case DW_OP_and:
13493 return "DW_OP_and";
13494 case DW_OP_div:
13495 return "DW_OP_div";
13496 case DW_OP_minus:
13497 return "DW_OP_minus";
13498 case DW_OP_mod:
13499 return "DW_OP_mod";
13500 case DW_OP_mul:
13501 return "DW_OP_mul";
13502 case DW_OP_neg:
13503 return "DW_OP_neg";
13504 case DW_OP_not:
13505 return "DW_OP_not";
13506 case DW_OP_or:
13507 return "DW_OP_or";
13508 case DW_OP_plus:
13509 return "DW_OP_plus";
13510 case DW_OP_plus_uconst:
13511 return "DW_OP_plus_uconst";
13512 case DW_OP_shl:
13513 return "DW_OP_shl";
13514 case DW_OP_shr:
13515 return "DW_OP_shr";
13516 case DW_OP_shra:
13517 return "DW_OP_shra";
13518 case DW_OP_xor:
13519 return "DW_OP_xor";
13520 case DW_OP_bra:
13521 return "DW_OP_bra";
13522 case DW_OP_eq:
13523 return "DW_OP_eq";
13524 case DW_OP_ge:
13525 return "DW_OP_ge";
13526 case DW_OP_gt:
13527 return "DW_OP_gt";
13528 case DW_OP_le:
13529 return "DW_OP_le";
13530 case DW_OP_lt:
13531 return "DW_OP_lt";
13532 case DW_OP_ne:
13533 return "DW_OP_ne";
13534 case DW_OP_skip:
13535 return "DW_OP_skip";
13536 case DW_OP_lit0:
13537 return "DW_OP_lit0";
13538 case DW_OP_lit1:
13539 return "DW_OP_lit1";
13540 case DW_OP_lit2:
13541 return "DW_OP_lit2";
13542 case DW_OP_lit3:
13543 return "DW_OP_lit3";
13544 case DW_OP_lit4:
13545 return "DW_OP_lit4";
13546 case DW_OP_lit5:
13547 return "DW_OP_lit5";
13548 case DW_OP_lit6:
13549 return "DW_OP_lit6";
13550 case DW_OP_lit7:
13551 return "DW_OP_lit7";
13552 case DW_OP_lit8:
13553 return "DW_OP_lit8";
13554 case DW_OP_lit9:
13555 return "DW_OP_lit9";
13556 case DW_OP_lit10:
13557 return "DW_OP_lit10";
13558 case DW_OP_lit11:
13559 return "DW_OP_lit11";
13560 case DW_OP_lit12:
13561 return "DW_OP_lit12";
13562 case DW_OP_lit13:
13563 return "DW_OP_lit13";
13564 case DW_OP_lit14:
13565 return "DW_OP_lit14";
13566 case DW_OP_lit15:
13567 return "DW_OP_lit15";
13568 case DW_OP_lit16:
13569 return "DW_OP_lit16";
13570 case DW_OP_lit17:
13571 return "DW_OP_lit17";
13572 case DW_OP_lit18:
13573 return "DW_OP_lit18";
13574 case DW_OP_lit19:
13575 return "DW_OP_lit19";
13576 case DW_OP_lit20:
13577 return "DW_OP_lit20";
13578 case DW_OP_lit21:
13579 return "DW_OP_lit21";
13580 case DW_OP_lit22:
13581 return "DW_OP_lit22";
13582 case DW_OP_lit23:
13583 return "DW_OP_lit23";
13584 case DW_OP_lit24:
13585 return "DW_OP_lit24";
13586 case DW_OP_lit25:
13587 return "DW_OP_lit25";
13588 case DW_OP_lit26:
13589 return "DW_OP_lit26";
13590 case DW_OP_lit27:
13591 return "DW_OP_lit27";
13592 case DW_OP_lit28:
13593 return "DW_OP_lit28";
13594 case DW_OP_lit29:
13595 return "DW_OP_lit29";
13596 case DW_OP_lit30:
13597 return "DW_OP_lit30";
13598 case DW_OP_lit31:
13599 return "DW_OP_lit31";
13600 case DW_OP_reg0:
13601 return "DW_OP_reg0";
13602 case DW_OP_reg1:
13603 return "DW_OP_reg1";
13604 case DW_OP_reg2:
13605 return "DW_OP_reg2";
13606 case DW_OP_reg3:
13607 return "DW_OP_reg3";
13608 case DW_OP_reg4:
13609 return "DW_OP_reg4";
13610 case DW_OP_reg5:
13611 return "DW_OP_reg5";
13612 case DW_OP_reg6:
13613 return "DW_OP_reg6";
13614 case DW_OP_reg7:
13615 return "DW_OP_reg7";
13616 case DW_OP_reg8:
13617 return "DW_OP_reg8";
13618 case DW_OP_reg9:
13619 return "DW_OP_reg9";
13620 case DW_OP_reg10:
13621 return "DW_OP_reg10";
13622 case DW_OP_reg11:
13623 return "DW_OP_reg11";
13624 case DW_OP_reg12:
13625 return "DW_OP_reg12";
13626 case DW_OP_reg13:
13627 return "DW_OP_reg13";
13628 case DW_OP_reg14:
13629 return "DW_OP_reg14";
13630 case DW_OP_reg15:
13631 return "DW_OP_reg15";
13632 case DW_OP_reg16:
13633 return "DW_OP_reg16";
13634 case DW_OP_reg17:
13635 return "DW_OP_reg17";
13636 case DW_OP_reg18:
13637 return "DW_OP_reg18";
13638 case DW_OP_reg19:
13639 return "DW_OP_reg19";
13640 case DW_OP_reg20:
13641 return "DW_OP_reg20";
13642 case DW_OP_reg21:
13643 return "DW_OP_reg21";
13644 case DW_OP_reg22:
13645 return "DW_OP_reg22";
13646 case DW_OP_reg23:
13647 return "DW_OP_reg23";
13648 case DW_OP_reg24:
13649 return "DW_OP_reg24";
13650 case DW_OP_reg25:
13651 return "DW_OP_reg25";
13652 case DW_OP_reg26:
13653 return "DW_OP_reg26";
13654 case DW_OP_reg27:
13655 return "DW_OP_reg27";
13656 case DW_OP_reg28:
13657 return "DW_OP_reg28";
13658 case DW_OP_reg29:
13659 return "DW_OP_reg29";
13660 case DW_OP_reg30:
13661 return "DW_OP_reg30";
13662 case DW_OP_reg31:
13663 return "DW_OP_reg31";
13664 case DW_OP_breg0:
13665 return "DW_OP_breg0";
13666 case DW_OP_breg1:
13667 return "DW_OP_breg1";
13668 case DW_OP_breg2:
13669 return "DW_OP_breg2";
13670 case DW_OP_breg3:
13671 return "DW_OP_breg3";
13672 case DW_OP_breg4:
13673 return "DW_OP_breg4";
13674 case DW_OP_breg5:
13675 return "DW_OP_breg5";
13676 case DW_OP_breg6:
13677 return "DW_OP_breg6";
13678 case DW_OP_breg7:
13679 return "DW_OP_breg7";
13680 case DW_OP_breg8:
13681 return "DW_OP_breg8";
13682 case DW_OP_breg9:
13683 return "DW_OP_breg9";
13684 case DW_OP_breg10:
13685 return "DW_OP_breg10";
13686 case DW_OP_breg11:
13687 return "DW_OP_breg11";
13688 case DW_OP_breg12:
13689 return "DW_OP_breg12";
13690 case DW_OP_breg13:
13691 return "DW_OP_breg13";
13692 case DW_OP_breg14:
13693 return "DW_OP_breg14";
13694 case DW_OP_breg15:
13695 return "DW_OP_breg15";
13696 case DW_OP_breg16:
13697 return "DW_OP_breg16";
13698 case DW_OP_breg17:
13699 return "DW_OP_breg17";
13700 case DW_OP_breg18:
13701 return "DW_OP_breg18";
13702 case DW_OP_breg19:
13703 return "DW_OP_breg19";
13704 case DW_OP_breg20:
13705 return "DW_OP_breg20";
13706 case DW_OP_breg21:
13707 return "DW_OP_breg21";
13708 case DW_OP_breg22:
13709 return "DW_OP_breg22";
13710 case DW_OP_breg23:
13711 return "DW_OP_breg23";
13712 case DW_OP_breg24:
13713 return "DW_OP_breg24";
13714 case DW_OP_breg25:
13715 return "DW_OP_breg25";
13716 case DW_OP_breg26:
13717 return "DW_OP_breg26";
13718 case DW_OP_breg27:
13719 return "DW_OP_breg27";
13720 case DW_OP_breg28:
13721 return "DW_OP_breg28";
13722 case DW_OP_breg29:
13723 return "DW_OP_breg29";
13724 case DW_OP_breg30:
13725 return "DW_OP_breg30";
13726 case DW_OP_breg31:
13727 return "DW_OP_breg31";
13728 case DW_OP_regx:
13729 return "DW_OP_regx";
13730 case DW_OP_fbreg:
13731 return "DW_OP_fbreg";
13732 case DW_OP_bregx:
13733 return "DW_OP_bregx";
13734 case DW_OP_piece:
13735 return "DW_OP_piece";
13736 case DW_OP_deref_size:
13737 return "DW_OP_deref_size";
13738 case DW_OP_xderef_size:
13739 return "DW_OP_xderef_size";
13740 case DW_OP_nop:
13741 return "DW_OP_nop";
13742 /* DWARF 3 extensions. */
13743 case DW_OP_push_object_address:
13744 return "DW_OP_push_object_address";
13745 case DW_OP_call2:
13746 return "DW_OP_call2";
13747 case DW_OP_call4:
13748 return "DW_OP_call4";
13749 case DW_OP_call_ref:
13750 return "DW_OP_call_ref";
13751 case DW_OP_form_tls_address:
13752 return "DW_OP_form_tls_address";
13753 case DW_OP_call_frame_cfa:
13754 return "DW_OP_call_frame_cfa";
13755 case DW_OP_bit_piece:
13756 return "DW_OP_bit_piece";
13757 /* DWARF 4 extensions. */
13758 case DW_OP_implicit_value:
13759 return "DW_OP_implicit_value";
13760 case DW_OP_stack_value:
13761 return "DW_OP_stack_value";
13762 /* GNU extensions. */
13763 case DW_OP_GNU_push_tls_address:
13764 return "DW_OP_GNU_push_tls_address";
13765 case DW_OP_GNU_uninit:
13766 return "DW_OP_GNU_uninit";
13767 case DW_OP_GNU_encoded_addr:
13768 return "DW_OP_GNU_encoded_addr";
13769 case DW_OP_GNU_implicit_pointer:
13770 return "DW_OP_GNU_implicit_pointer";
13771 case DW_OP_GNU_entry_value:
13772 return "DW_OP_GNU_entry_value";
13773 case DW_OP_GNU_const_type:
13774 return "DW_OP_GNU_const_type";
13775 case DW_OP_GNU_regval_type:
13776 return "DW_OP_GNU_regval_type";
13777 case DW_OP_GNU_deref_type:
13778 return "DW_OP_GNU_deref_type";
13779 case DW_OP_GNU_convert:
13780 return "DW_OP_GNU_convert";
13781 case DW_OP_GNU_reinterpret:
13782 return "DW_OP_GNU_reinterpret";
13783 case DW_OP_GNU_parameter_ref:
13784 return "DW_OP_GNU_parameter_ref";
13785 default:
13786 return NULL;
13787 }
13788 }
13789
13790 static char *
13791 dwarf_bool_name (unsigned mybool)
13792 {
13793 if (mybool)
13794 return "TRUE";
13795 else
13796 return "FALSE";
13797 }
13798
13799 /* Convert a DWARF type code into its string name. */
13800
13801 static char *
13802 dwarf_type_encoding_name (unsigned enc)
13803 {
13804 switch (enc)
13805 {
13806 case DW_ATE_void:
13807 return "DW_ATE_void";
13808 case DW_ATE_address:
13809 return "DW_ATE_address";
13810 case DW_ATE_boolean:
13811 return "DW_ATE_boolean";
13812 case DW_ATE_complex_float:
13813 return "DW_ATE_complex_float";
13814 case DW_ATE_float:
13815 return "DW_ATE_float";
13816 case DW_ATE_signed:
13817 return "DW_ATE_signed";
13818 case DW_ATE_signed_char:
13819 return "DW_ATE_signed_char";
13820 case DW_ATE_unsigned:
13821 return "DW_ATE_unsigned";
13822 case DW_ATE_unsigned_char:
13823 return "DW_ATE_unsigned_char";
13824 /* DWARF 3. */
13825 case DW_ATE_imaginary_float:
13826 return "DW_ATE_imaginary_float";
13827 case DW_ATE_packed_decimal:
13828 return "DW_ATE_packed_decimal";
13829 case DW_ATE_numeric_string:
13830 return "DW_ATE_numeric_string";
13831 case DW_ATE_edited:
13832 return "DW_ATE_edited";
13833 case DW_ATE_signed_fixed:
13834 return "DW_ATE_signed_fixed";
13835 case DW_ATE_unsigned_fixed:
13836 return "DW_ATE_unsigned_fixed";
13837 case DW_ATE_decimal_float:
13838 return "DW_ATE_decimal_float";
13839 /* DWARF 4. */
13840 case DW_ATE_UTF:
13841 return "DW_ATE_UTF";
13842 /* HP extensions. */
13843 case DW_ATE_HP_float80:
13844 return "DW_ATE_HP_float80";
13845 case DW_ATE_HP_complex_float80:
13846 return "DW_ATE_HP_complex_float80";
13847 case DW_ATE_HP_float128:
13848 return "DW_ATE_HP_float128";
13849 case DW_ATE_HP_complex_float128:
13850 return "DW_ATE_HP_complex_float128";
13851 case DW_ATE_HP_floathpintel:
13852 return "DW_ATE_HP_floathpintel";
13853 case DW_ATE_HP_imaginary_float80:
13854 return "DW_ATE_HP_imaginary_float80";
13855 case DW_ATE_HP_imaginary_float128:
13856 return "DW_ATE_HP_imaginary_float128";
13857 default:
13858 return "DW_ATE_<unknown>";
13859 }
13860 }
13861
13862 /* Convert a DWARF call frame info operation to its string name. */
13863
13864 #if 0
13865 static char *
13866 dwarf_cfi_name (unsigned cfi_opc)
13867 {
13868 switch (cfi_opc)
13869 {
13870 case DW_CFA_advance_loc:
13871 return "DW_CFA_advance_loc";
13872 case DW_CFA_offset:
13873 return "DW_CFA_offset";
13874 case DW_CFA_restore:
13875 return "DW_CFA_restore";
13876 case DW_CFA_nop:
13877 return "DW_CFA_nop";
13878 case DW_CFA_set_loc:
13879 return "DW_CFA_set_loc";
13880 case DW_CFA_advance_loc1:
13881 return "DW_CFA_advance_loc1";
13882 case DW_CFA_advance_loc2:
13883 return "DW_CFA_advance_loc2";
13884 case DW_CFA_advance_loc4:
13885 return "DW_CFA_advance_loc4";
13886 case DW_CFA_offset_extended:
13887 return "DW_CFA_offset_extended";
13888 case DW_CFA_restore_extended:
13889 return "DW_CFA_restore_extended";
13890 case DW_CFA_undefined:
13891 return "DW_CFA_undefined";
13892 case DW_CFA_same_value:
13893 return "DW_CFA_same_value";
13894 case DW_CFA_register:
13895 return "DW_CFA_register";
13896 case DW_CFA_remember_state:
13897 return "DW_CFA_remember_state";
13898 case DW_CFA_restore_state:
13899 return "DW_CFA_restore_state";
13900 case DW_CFA_def_cfa:
13901 return "DW_CFA_def_cfa";
13902 case DW_CFA_def_cfa_register:
13903 return "DW_CFA_def_cfa_register";
13904 case DW_CFA_def_cfa_offset:
13905 return "DW_CFA_def_cfa_offset";
13906 /* DWARF 3. */
13907 case DW_CFA_def_cfa_expression:
13908 return "DW_CFA_def_cfa_expression";
13909 case DW_CFA_expression:
13910 return "DW_CFA_expression";
13911 case DW_CFA_offset_extended_sf:
13912 return "DW_CFA_offset_extended_sf";
13913 case DW_CFA_def_cfa_sf:
13914 return "DW_CFA_def_cfa_sf";
13915 case DW_CFA_def_cfa_offset_sf:
13916 return "DW_CFA_def_cfa_offset_sf";
13917 case DW_CFA_val_offset:
13918 return "DW_CFA_val_offset";
13919 case DW_CFA_val_offset_sf:
13920 return "DW_CFA_val_offset_sf";
13921 case DW_CFA_val_expression:
13922 return "DW_CFA_val_expression";
13923 /* SGI/MIPS specific. */
13924 case DW_CFA_MIPS_advance_loc8:
13925 return "DW_CFA_MIPS_advance_loc8";
13926 /* GNU extensions. */
13927 case DW_CFA_GNU_window_save:
13928 return "DW_CFA_GNU_window_save";
13929 case DW_CFA_GNU_args_size:
13930 return "DW_CFA_GNU_args_size";
13931 case DW_CFA_GNU_negative_offset_extended:
13932 return "DW_CFA_GNU_negative_offset_extended";
13933 default:
13934 return "DW_CFA_<unknown>";
13935 }
13936 }
13937 #endif
13938
13939 static void
13940 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
13941 {
13942 unsigned int i;
13943
13944 print_spaces (indent, f);
13945 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
13946 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
13947
13948 if (die->parent != NULL)
13949 {
13950 print_spaces (indent, f);
13951 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
13952 die->parent->offset.sect_off);
13953 }
13954
13955 print_spaces (indent, f);
13956 fprintf_unfiltered (f, " has children: %s\n",
13957 dwarf_bool_name (die->child != NULL));
13958
13959 print_spaces (indent, f);
13960 fprintf_unfiltered (f, " attributes:\n");
13961
13962 for (i = 0; i < die->num_attrs; ++i)
13963 {
13964 print_spaces (indent, f);
13965 fprintf_unfiltered (f, " %s (%s) ",
13966 dwarf_attr_name (die->attrs[i].name),
13967 dwarf_form_name (die->attrs[i].form));
13968
13969 switch (die->attrs[i].form)
13970 {
13971 case DW_FORM_ref_addr:
13972 case DW_FORM_addr:
13973 fprintf_unfiltered (f, "address: ");
13974 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
13975 break;
13976 case DW_FORM_block2:
13977 case DW_FORM_block4:
13978 case DW_FORM_block:
13979 case DW_FORM_block1:
13980 fprintf_unfiltered (f, "block: size %d",
13981 DW_BLOCK (&die->attrs[i])->size);
13982 break;
13983 case DW_FORM_exprloc:
13984 fprintf_unfiltered (f, "expression: size %u",
13985 DW_BLOCK (&die->attrs[i])->size);
13986 break;
13987 case DW_FORM_ref1:
13988 case DW_FORM_ref2:
13989 case DW_FORM_ref4:
13990 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
13991 (long) (DW_ADDR (&die->attrs[i])));
13992 break;
13993 case DW_FORM_data1:
13994 case DW_FORM_data2:
13995 case DW_FORM_data4:
13996 case DW_FORM_data8:
13997 case DW_FORM_udata:
13998 case DW_FORM_sdata:
13999 fprintf_unfiltered (f, "constant: %s",
14000 pulongest (DW_UNSND (&die->attrs[i])));
14001 break;
14002 case DW_FORM_sec_offset:
14003 fprintf_unfiltered (f, "section offset: %s",
14004 pulongest (DW_UNSND (&die->attrs[i])));
14005 break;
14006 case DW_FORM_ref_sig8:
14007 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
14008 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
14009 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
14010 else
14011 fprintf_unfiltered (f, "signatured type, offset: unknown");
14012 break;
14013 case DW_FORM_string:
14014 case DW_FORM_strp:
14015 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
14016 DW_STRING (&die->attrs[i])
14017 ? DW_STRING (&die->attrs[i]) : "",
14018 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
14019 break;
14020 case DW_FORM_flag:
14021 if (DW_UNSND (&die->attrs[i]))
14022 fprintf_unfiltered (f, "flag: TRUE");
14023 else
14024 fprintf_unfiltered (f, "flag: FALSE");
14025 break;
14026 case DW_FORM_flag_present:
14027 fprintf_unfiltered (f, "flag: TRUE");
14028 break;
14029 case DW_FORM_indirect:
14030 /* The reader will have reduced the indirect form to
14031 the "base form" so this form should not occur. */
14032 fprintf_unfiltered (f,
14033 "unexpected attribute form: DW_FORM_indirect");
14034 break;
14035 default:
14036 fprintf_unfiltered (f, "unsupported attribute form: %d.",
14037 die->attrs[i].form);
14038 break;
14039 }
14040 fprintf_unfiltered (f, "\n");
14041 }
14042 }
14043
14044 static void
14045 dump_die_for_error (struct die_info *die)
14046 {
14047 dump_die_shallow (gdb_stderr, 0, die);
14048 }
14049
14050 static void
14051 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
14052 {
14053 int indent = level * 4;
14054
14055 gdb_assert (die != NULL);
14056
14057 if (level >= max_level)
14058 return;
14059
14060 dump_die_shallow (f, indent, die);
14061
14062 if (die->child != NULL)
14063 {
14064 print_spaces (indent, f);
14065 fprintf_unfiltered (f, " Children:");
14066 if (level + 1 < max_level)
14067 {
14068 fprintf_unfiltered (f, "\n");
14069 dump_die_1 (f, level + 1, max_level, die->child);
14070 }
14071 else
14072 {
14073 fprintf_unfiltered (f,
14074 " [not printed, max nesting level reached]\n");
14075 }
14076 }
14077
14078 if (die->sibling != NULL && level > 0)
14079 {
14080 dump_die_1 (f, level, max_level, die->sibling);
14081 }
14082 }
14083
14084 /* This is called from the pdie macro in gdbinit.in.
14085 It's not static so gcc will keep a copy callable from gdb. */
14086
14087 void
14088 dump_die (struct die_info *die, int max_level)
14089 {
14090 dump_die_1 (gdb_stdlog, 0, max_level, die);
14091 }
14092
14093 static void
14094 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
14095 {
14096 void **slot;
14097
14098 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
14099 INSERT);
14100
14101 *slot = die;
14102 }
14103
14104 /* DW_ADDR is always stored already as sect_offset; despite for the forms
14105 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
14106
14107 static int
14108 is_ref_attr (struct attribute *attr)
14109 {
14110 switch (attr->form)
14111 {
14112 case DW_FORM_ref_addr:
14113 case DW_FORM_ref1:
14114 case DW_FORM_ref2:
14115 case DW_FORM_ref4:
14116 case DW_FORM_ref8:
14117 case DW_FORM_ref_udata:
14118 return 1;
14119 default:
14120 return 0;
14121 }
14122 }
14123
14124 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
14125 required kind. */
14126
14127 static sect_offset
14128 dwarf2_get_ref_die_offset (struct attribute *attr)
14129 {
14130 sect_offset retval = { DW_ADDR (attr) };
14131
14132 if (is_ref_attr (attr))
14133 return retval;
14134
14135 retval.sect_off = 0;
14136 complaint (&symfile_complaints,
14137 _("unsupported die ref attribute form: '%s'"),
14138 dwarf_form_name (attr->form));
14139 return retval;
14140 }
14141
14142 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
14143 * the value held by the attribute is not constant. */
14144
14145 static LONGEST
14146 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
14147 {
14148 if (attr->form == DW_FORM_sdata)
14149 return DW_SND (attr);
14150 else if (attr->form == DW_FORM_udata
14151 || attr->form == DW_FORM_data1
14152 || attr->form == DW_FORM_data2
14153 || attr->form == DW_FORM_data4
14154 || attr->form == DW_FORM_data8)
14155 return DW_UNSND (attr);
14156 else
14157 {
14158 complaint (&symfile_complaints,
14159 _("Attribute value is not a constant (%s)"),
14160 dwarf_form_name (attr->form));
14161 return default_value;
14162 }
14163 }
14164
14165 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
14166 unit and add it to our queue.
14167 The result is non-zero if PER_CU was queued, otherwise the result is zero
14168 meaning either PER_CU is already queued or it is already loaded. */
14169
14170 static int
14171 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
14172 struct dwarf2_per_cu_data *per_cu)
14173 {
14174 /* We may arrive here during partial symbol reading, if we need full
14175 DIEs to process an unusual case (e.g. template arguments). Do
14176 not queue PER_CU, just tell our caller to load its DIEs. */
14177 if (dwarf2_per_objfile->reading_partial_symbols)
14178 {
14179 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
14180 return 1;
14181 return 0;
14182 }
14183
14184 /* Mark the dependence relation so that we don't flush PER_CU
14185 too early. */
14186 dwarf2_add_dependence (this_cu, per_cu);
14187
14188 /* If it's already on the queue, we have nothing to do. */
14189 if (per_cu->queued)
14190 return 0;
14191
14192 /* If the compilation unit is already loaded, just mark it as
14193 used. */
14194 if (per_cu->cu != NULL)
14195 {
14196 per_cu->cu->last_used = 0;
14197 return 0;
14198 }
14199
14200 /* Add it to the queue. */
14201 queue_comp_unit (per_cu);
14202
14203 return 1;
14204 }
14205
14206 /* Follow reference or signature attribute ATTR of SRC_DIE.
14207 On entry *REF_CU is the CU of SRC_DIE.
14208 On exit *REF_CU is the CU of the result. */
14209
14210 static struct die_info *
14211 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
14212 struct dwarf2_cu **ref_cu)
14213 {
14214 struct die_info *die;
14215
14216 if (is_ref_attr (attr))
14217 die = follow_die_ref (src_die, attr, ref_cu);
14218 else if (attr->form == DW_FORM_ref_sig8)
14219 die = follow_die_sig (src_die, attr, ref_cu);
14220 else
14221 {
14222 dump_die_for_error (src_die);
14223 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
14224 (*ref_cu)->objfile->name);
14225 }
14226
14227 return die;
14228 }
14229
14230 /* Follow reference OFFSET.
14231 On entry *REF_CU is the CU of the source die referencing OFFSET.
14232 On exit *REF_CU is the CU of the result.
14233 Returns NULL if OFFSET is invalid. */
14234
14235 static struct die_info *
14236 follow_die_offset (sect_offset offset, struct dwarf2_cu **ref_cu)
14237 {
14238 struct die_info temp_die;
14239 struct dwarf2_cu *target_cu, *cu = *ref_cu;
14240
14241 gdb_assert (cu->per_cu != NULL);
14242
14243 target_cu = cu;
14244
14245 if (cu->per_cu->debug_types_section)
14246 {
14247 /* .debug_types CUs cannot reference anything outside their CU.
14248 If they need to, they have to reference a signatured type via
14249 DW_FORM_ref_sig8. */
14250 if (! offset_in_cu_p (&cu->header, offset))
14251 return NULL;
14252 }
14253 else if (! offset_in_cu_p (&cu->header, offset))
14254 {
14255 struct dwarf2_per_cu_data *per_cu;
14256
14257 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
14258
14259 /* If necessary, add it to the queue and load its DIEs. */
14260 if (maybe_queue_comp_unit (cu, per_cu))
14261 load_full_comp_unit (per_cu);
14262
14263 target_cu = per_cu->cu;
14264 }
14265 else if (cu->dies == NULL)
14266 {
14267 /* We're loading full DIEs during partial symbol reading. */
14268 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
14269 load_full_comp_unit (cu->per_cu);
14270 }
14271
14272 *ref_cu = target_cu;
14273 temp_die.offset = offset;
14274 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
14275 }
14276
14277 /* Follow reference attribute ATTR of SRC_DIE.
14278 On entry *REF_CU is the CU of SRC_DIE.
14279 On exit *REF_CU is the CU of the result. */
14280
14281 static struct die_info *
14282 follow_die_ref (struct die_info *src_die, struct attribute *attr,
14283 struct dwarf2_cu **ref_cu)
14284 {
14285 sect_offset offset = dwarf2_get_ref_die_offset (attr);
14286 struct dwarf2_cu *cu = *ref_cu;
14287 struct die_info *die;
14288
14289 die = follow_die_offset (offset, ref_cu);
14290 if (!die)
14291 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
14292 "at 0x%x [in module %s]"),
14293 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
14294
14295 return die;
14296 }
14297
14298 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
14299 Returned value is intended for DW_OP_call*. Returned
14300 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
14301
14302 struct dwarf2_locexpr_baton
14303 dwarf2_fetch_die_location_block (cu_offset offset_in_cu,
14304 struct dwarf2_per_cu_data *per_cu,
14305 CORE_ADDR (*get_frame_pc) (void *baton),
14306 void *baton)
14307 {
14308 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
14309 struct dwarf2_cu *cu;
14310 struct die_info *die;
14311 struct attribute *attr;
14312 struct dwarf2_locexpr_baton retval;
14313
14314 dw2_setup (per_cu->objfile);
14315
14316 if (per_cu->cu == NULL)
14317 load_cu (per_cu);
14318 cu = per_cu->cu;
14319
14320 die = follow_die_offset (offset, &cu);
14321 if (!die)
14322 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
14323 offset.sect_off, per_cu->objfile->name);
14324
14325 attr = dwarf2_attr (die, DW_AT_location, cu);
14326 if (!attr)
14327 {
14328 /* DWARF: "If there is no such attribute, then there is no effect.".
14329 DATA is ignored if SIZE is 0. */
14330
14331 retval.data = NULL;
14332 retval.size = 0;
14333 }
14334 else if (attr_form_is_section_offset (attr))
14335 {
14336 struct dwarf2_loclist_baton loclist_baton;
14337 CORE_ADDR pc = (*get_frame_pc) (baton);
14338 size_t size;
14339
14340 fill_in_loclist_baton (cu, &loclist_baton, attr);
14341
14342 retval.data = dwarf2_find_location_expression (&loclist_baton,
14343 &size, pc);
14344 retval.size = size;
14345 }
14346 else
14347 {
14348 if (!attr_form_is_block (attr))
14349 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
14350 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
14351 offset.sect_off, per_cu->objfile->name);
14352
14353 retval.data = DW_BLOCK (attr)->data;
14354 retval.size = DW_BLOCK (attr)->size;
14355 }
14356 retval.per_cu = cu->per_cu;
14357
14358 age_cached_comp_units ();
14359
14360 return retval;
14361 }
14362
14363 /* Return the type of the DIE at DIE_OFFSET in the CU named by
14364 PER_CU. */
14365
14366 struct type *
14367 dwarf2_get_die_type (cu_offset die_offset,
14368 struct dwarf2_per_cu_data *per_cu)
14369 {
14370 sect_offset die_offset_sect;
14371
14372 dw2_setup (per_cu->objfile);
14373
14374 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
14375 return get_die_type_at_offset (die_offset_sect, per_cu);
14376 }
14377
14378 /* Follow the signature attribute ATTR in SRC_DIE.
14379 On entry *REF_CU is the CU of SRC_DIE.
14380 On exit *REF_CU is the CU of the result. */
14381
14382 static struct die_info *
14383 follow_die_sig (struct die_info *src_die, struct attribute *attr,
14384 struct dwarf2_cu **ref_cu)
14385 {
14386 struct objfile *objfile = (*ref_cu)->objfile;
14387 struct die_info temp_die;
14388 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
14389 struct dwarf2_cu *sig_cu;
14390 struct die_info *die;
14391
14392 /* sig_type will be NULL if the signatured type is missing from
14393 the debug info. */
14394 if (sig_type == NULL)
14395 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
14396 "at 0x%x [in module %s]"),
14397 src_die->offset.sect_off, objfile->name);
14398
14399 /* If necessary, add it to the queue and load its DIEs. */
14400
14401 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
14402 read_signatured_type (sig_type);
14403
14404 gdb_assert (sig_type->per_cu.cu != NULL);
14405
14406 sig_cu = sig_type->per_cu.cu;
14407 temp_die.offset.sect_off = (sig_type->per_cu.offset.sect_off
14408 + sig_type->type_offset.cu_off);
14409 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
14410 temp_die.offset.sect_off);
14411 if (die)
14412 {
14413 *ref_cu = sig_cu;
14414 return die;
14415 }
14416
14417 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
14418 "from DIE at 0x%x [in module %s]"),
14419 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
14420 }
14421
14422 /* Given an offset of a signatured type, return its signatured_type. */
14423
14424 static struct signatured_type *
14425 lookup_signatured_type_at_offset (struct objfile *objfile,
14426 struct dwarf2_section_info *section,
14427 sect_offset offset)
14428 {
14429 gdb_byte *info_ptr = section->buffer + offset.sect_off;
14430 unsigned int length, initial_length_size;
14431 unsigned int sig_offset;
14432 struct signatured_type find_entry, *sig_type;
14433
14434 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
14435 sig_offset = (initial_length_size
14436 + 2 /*version*/
14437 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
14438 + 1 /*address_size*/);
14439 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
14440 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
14441
14442 /* This is only used to lookup previously recorded types.
14443 If we didn't find it, it's our bug. */
14444 gdb_assert (sig_type != NULL);
14445 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
14446
14447 return sig_type;
14448 }
14449
14450 /* Load the DIEs associated with type unit PER_CU into memory. */
14451
14452 static void
14453 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
14454 {
14455 struct objfile *objfile = per_cu->objfile;
14456 struct dwarf2_section_info *sect = per_cu->debug_types_section;
14457 sect_offset offset = per_cu->offset;
14458 struct signatured_type *sig_type;
14459
14460 dwarf2_read_section (objfile, sect);
14461
14462 /* We have the section offset, but we need the signature to do the
14463 hash table lookup. */
14464 /* FIXME: This is sorta unnecessary, read_signatured_type only uses
14465 the signature to assert we found the right one.
14466 Ok, but it's a lot of work. We should simplify things so any needed
14467 assert doesn't require all this clumsiness. */
14468 sig_type = lookup_signatured_type_at_offset (objfile, sect, offset);
14469
14470 gdb_assert (sig_type->per_cu.cu == NULL);
14471
14472 read_signatured_type (sig_type);
14473
14474 gdb_assert (sig_type->per_cu.cu != NULL);
14475 }
14476
14477 /* Read in a signatured type and build its CU and DIEs. */
14478
14479 static void
14480 read_signatured_type (struct signatured_type *sig_type)
14481 {
14482 struct objfile *objfile = sig_type->per_cu.objfile;
14483 gdb_byte *types_ptr;
14484 struct die_reader_specs reader_specs;
14485 struct dwarf2_cu *cu;
14486 ULONGEST signature;
14487 struct cleanup *back_to, *free_cu_cleanup;
14488 struct dwarf2_section_info *section = sig_type->per_cu.debug_types_section;
14489
14490 dwarf2_read_section (objfile, section);
14491 types_ptr = section->buffer + sig_type->per_cu.offset.sect_off;
14492
14493 gdb_assert (sig_type->per_cu.cu == NULL);
14494
14495 cu = xmalloc (sizeof (*cu));
14496 init_one_comp_unit (cu, &sig_type->per_cu);
14497
14498 /* If an error occurs while loading, release our storage. */
14499 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
14500
14501 types_ptr = read_and_check_type_unit_head (&cu->header, section, types_ptr,
14502 &signature, NULL);
14503 gdb_assert (signature == sig_type->signature);
14504
14505 cu->die_hash
14506 = htab_create_alloc_ex (cu->header.length / 12,
14507 die_hash,
14508 die_eq,
14509 NULL,
14510 &cu->comp_unit_obstack,
14511 hashtab_obstack_allocate,
14512 dummy_obstack_deallocate);
14513
14514 dwarf2_read_abbrevs (cu);
14515 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
14516
14517 init_cu_die_reader (&reader_specs, cu);
14518
14519 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
14520 NULL /*parent*/);
14521
14522 /* We try not to read any attributes in this function, because not
14523 all CUs needed for references have been loaded yet, and symbol
14524 table processing isn't initialized. But we have to set the CU language,
14525 or we won't be able to build types correctly. */
14526 prepare_one_comp_unit (cu, cu->dies);
14527
14528 do_cleanups (back_to);
14529
14530 /* We've successfully allocated this compilation unit. Let our caller
14531 clean it up when finished with it. */
14532 discard_cleanups (free_cu_cleanup);
14533
14534 /* Link this TU into read_in_chain. */
14535 sig_type->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
14536 dwarf2_per_objfile->read_in_chain = &sig_type->per_cu;
14537 }
14538
14539 /* Decode simple location descriptions.
14540 Given a pointer to a dwarf block that defines a location, compute
14541 the location and return the value.
14542
14543 NOTE drow/2003-11-18: This function is called in two situations
14544 now: for the address of static or global variables (partial symbols
14545 only) and for offsets into structures which are expected to be
14546 (more or less) constant. The partial symbol case should go away,
14547 and only the constant case should remain. That will let this
14548 function complain more accurately. A few special modes are allowed
14549 without complaint for global variables (for instance, global
14550 register values and thread-local values).
14551
14552 A location description containing no operations indicates that the
14553 object is optimized out. The return value is 0 for that case.
14554 FIXME drow/2003-11-16: No callers check for this case any more; soon all
14555 callers will only want a very basic result and this can become a
14556 complaint.
14557
14558 Note that stack[0] is unused except as a default error return. */
14559
14560 static CORE_ADDR
14561 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
14562 {
14563 struct objfile *objfile = cu->objfile;
14564 int i;
14565 int size = blk->size;
14566 gdb_byte *data = blk->data;
14567 CORE_ADDR stack[64];
14568 int stacki;
14569 unsigned int bytes_read, unsnd;
14570 gdb_byte op;
14571
14572 i = 0;
14573 stacki = 0;
14574 stack[stacki] = 0;
14575 stack[++stacki] = 0;
14576
14577 while (i < size)
14578 {
14579 op = data[i++];
14580 switch (op)
14581 {
14582 case DW_OP_lit0:
14583 case DW_OP_lit1:
14584 case DW_OP_lit2:
14585 case DW_OP_lit3:
14586 case DW_OP_lit4:
14587 case DW_OP_lit5:
14588 case DW_OP_lit6:
14589 case DW_OP_lit7:
14590 case DW_OP_lit8:
14591 case DW_OP_lit9:
14592 case DW_OP_lit10:
14593 case DW_OP_lit11:
14594 case DW_OP_lit12:
14595 case DW_OP_lit13:
14596 case DW_OP_lit14:
14597 case DW_OP_lit15:
14598 case DW_OP_lit16:
14599 case DW_OP_lit17:
14600 case DW_OP_lit18:
14601 case DW_OP_lit19:
14602 case DW_OP_lit20:
14603 case DW_OP_lit21:
14604 case DW_OP_lit22:
14605 case DW_OP_lit23:
14606 case DW_OP_lit24:
14607 case DW_OP_lit25:
14608 case DW_OP_lit26:
14609 case DW_OP_lit27:
14610 case DW_OP_lit28:
14611 case DW_OP_lit29:
14612 case DW_OP_lit30:
14613 case DW_OP_lit31:
14614 stack[++stacki] = op - DW_OP_lit0;
14615 break;
14616
14617 case DW_OP_reg0:
14618 case DW_OP_reg1:
14619 case DW_OP_reg2:
14620 case DW_OP_reg3:
14621 case DW_OP_reg4:
14622 case DW_OP_reg5:
14623 case DW_OP_reg6:
14624 case DW_OP_reg7:
14625 case DW_OP_reg8:
14626 case DW_OP_reg9:
14627 case DW_OP_reg10:
14628 case DW_OP_reg11:
14629 case DW_OP_reg12:
14630 case DW_OP_reg13:
14631 case DW_OP_reg14:
14632 case DW_OP_reg15:
14633 case DW_OP_reg16:
14634 case DW_OP_reg17:
14635 case DW_OP_reg18:
14636 case DW_OP_reg19:
14637 case DW_OP_reg20:
14638 case DW_OP_reg21:
14639 case DW_OP_reg22:
14640 case DW_OP_reg23:
14641 case DW_OP_reg24:
14642 case DW_OP_reg25:
14643 case DW_OP_reg26:
14644 case DW_OP_reg27:
14645 case DW_OP_reg28:
14646 case DW_OP_reg29:
14647 case DW_OP_reg30:
14648 case DW_OP_reg31:
14649 stack[++stacki] = op - DW_OP_reg0;
14650 if (i < size)
14651 dwarf2_complex_location_expr_complaint ();
14652 break;
14653
14654 case DW_OP_regx:
14655 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
14656 i += bytes_read;
14657 stack[++stacki] = unsnd;
14658 if (i < size)
14659 dwarf2_complex_location_expr_complaint ();
14660 break;
14661
14662 case DW_OP_addr:
14663 stack[++stacki] = read_address (objfile->obfd, &data[i],
14664 cu, &bytes_read);
14665 i += bytes_read;
14666 break;
14667
14668 case DW_OP_const1u:
14669 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
14670 i += 1;
14671 break;
14672
14673 case DW_OP_const1s:
14674 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
14675 i += 1;
14676 break;
14677
14678 case DW_OP_const2u:
14679 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
14680 i += 2;
14681 break;
14682
14683 case DW_OP_const2s:
14684 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
14685 i += 2;
14686 break;
14687
14688 case DW_OP_const4u:
14689 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
14690 i += 4;
14691 break;
14692
14693 case DW_OP_const4s:
14694 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
14695 i += 4;
14696 break;
14697
14698 case DW_OP_const8u:
14699 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
14700 i += 8;
14701 break;
14702
14703 case DW_OP_constu:
14704 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
14705 &bytes_read);
14706 i += bytes_read;
14707 break;
14708
14709 case DW_OP_consts:
14710 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
14711 i += bytes_read;
14712 break;
14713
14714 case DW_OP_dup:
14715 stack[stacki + 1] = stack[stacki];
14716 stacki++;
14717 break;
14718
14719 case DW_OP_plus:
14720 stack[stacki - 1] += stack[stacki];
14721 stacki--;
14722 break;
14723
14724 case DW_OP_plus_uconst:
14725 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
14726 &bytes_read);
14727 i += bytes_read;
14728 break;
14729
14730 case DW_OP_minus:
14731 stack[stacki - 1] -= stack[stacki];
14732 stacki--;
14733 break;
14734
14735 case DW_OP_deref:
14736 /* If we're not the last op, then we definitely can't encode
14737 this using GDB's address_class enum. This is valid for partial
14738 global symbols, although the variable's address will be bogus
14739 in the psymtab. */
14740 if (i < size)
14741 dwarf2_complex_location_expr_complaint ();
14742 break;
14743
14744 case DW_OP_GNU_push_tls_address:
14745 /* The top of the stack has the offset from the beginning
14746 of the thread control block at which the variable is located. */
14747 /* Nothing should follow this operator, so the top of stack would
14748 be returned. */
14749 /* This is valid for partial global symbols, but the variable's
14750 address will be bogus in the psymtab. Make it always at least
14751 non-zero to not look as a variable garbage collected by linker
14752 which have DW_OP_addr 0. */
14753 if (i < size)
14754 dwarf2_complex_location_expr_complaint ();
14755 stack[stacki]++;
14756 break;
14757
14758 case DW_OP_GNU_uninit:
14759 break;
14760
14761 default:
14762 {
14763 const char *name = dwarf_stack_op_name (op);
14764
14765 if (name)
14766 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
14767 name);
14768 else
14769 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
14770 op);
14771 }
14772
14773 return (stack[stacki]);
14774 }
14775
14776 /* Enforce maximum stack depth of SIZE-1 to avoid writing
14777 outside of the allocated space. Also enforce minimum>0. */
14778 if (stacki >= ARRAY_SIZE (stack) - 1)
14779 {
14780 complaint (&symfile_complaints,
14781 _("location description stack overflow"));
14782 return 0;
14783 }
14784
14785 if (stacki <= 0)
14786 {
14787 complaint (&symfile_complaints,
14788 _("location description stack underflow"));
14789 return 0;
14790 }
14791 }
14792 return (stack[stacki]);
14793 }
14794
14795 /* memory allocation interface */
14796
14797 static struct dwarf_block *
14798 dwarf_alloc_block (struct dwarf2_cu *cu)
14799 {
14800 struct dwarf_block *blk;
14801
14802 blk = (struct dwarf_block *)
14803 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
14804 return (blk);
14805 }
14806
14807 static struct abbrev_info *
14808 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
14809 {
14810 struct abbrev_info *abbrev;
14811
14812 abbrev = (struct abbrev_info *)
14813 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
14814 memset (abbrev, 0, sizeof (struct abbrev_info));
14815 return (abbrev);
14816 }
14817
14818 static struct die_info *
14819 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
14820 {
14821 struct die_info *die;
14822 size_t size = sizeof (struct die_info);
14823
14824 if (num_attrs > 1)
14825 size += (num_attrs - 1) * sizeof (struct attribute);
14826
14827 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
14828 memset (die, 0, sizeof (struct die_info));
14829 return (die);
14830 }
14831
14832 \f
14833 /* Macro support. */
14834
14835 /* Return the full name of file number I in *LH's file name table.
14836 Use COMP_DIR as the name of the current directory of the
14837 compilation. The result is allocated using xmalloc; the caller is
14838 responsible for freeing it. */
14839 static char *
14840 file_full_name (int file, struct line_header *lh, const char *comp_dir)
14841 {
14842 /* Is the file number a valid index into the line header's file name
14843 table? Remember that file numbers start with one, not zero. */
14844 if (1 <= file && file <= lh->num_file_names)
14845 {
14846 struct file_entry *fe = &lh->file_names[file - 1];
14847
14848 if (IS_ABSOLUTE_PATH (fe->name))
14849 return xstrdup (fe->name);
14850 else
14851 {
14852 const char *dir;
14853 int dir_len;
14854 char *full_name;
14855
14856 if (fe->dir_index)
14857 dir = lh->include_dirs[fe->dir_index - 1];
14858 else
14859 dir = comp_dir;
14860
14861 if (dir)
14862 {
14863 dir_len = strlen (dir);
14864 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
14865 strcpy (full_name, dir);
14866 full_name[dir_len] = '/';
14867 strcpy (full_name + dir_len + 1, fe->name);
14868 return full_name;
14869 }
14870 else
14871 return xstrdup (fe->name);
14872 }
14873 }
14874 else
14875 {
14876 /* The compiler produced a bogus file number. We can at least
14877 record the macro definitions made in the file, even if we
14878 won't be able to find the file by name. */
14879 char fake_name[80];
14880
14881 sprintf (fake_name, "<bad macro file number %d>", file);
14882
14883 complaint (&symfile_complaints,
14884 _("bad file number in macro information (%d)"),
14885 file);
14886
14887 return xstrdup (fake_name);
14888 }
14889 }
14890
14891
14892 static struct macro_source_file *
14893 macro_start_file (int file, int line,
14894 struct macro_source_file *current_file,
14895 const char *comp_dir,
14896 struct line_header *lh, struct objfile *objfile)
14897 {
14898 /* The full name of this source file. */
14899 char *full_name = file_full_name (file, lh, comp_dir);
14900
14901 /* We don't create a macro table for this compilation unit
14902 at all until we actually get a filename. */
14903 if (! pending_macros)
14904 pending_macros = new_macro_table (&objfile->objfile_obstack,
14905 objfile->macro_cache);
14906
14907 if (! current_file)
14908 /* If we have no current file, then this must be the start_file
14909 directive for the compilation unit's main source file. */
14910 current_file = macro_set_main (pending_macros, full_name);
14911 else
14912 current_file = macro_include (current_file, line, full_name);
14913
14914 xfree (full_name);
14915
14916 return current_file;
14917 }
14918
14919
14920 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
14921 followed by a null byte. */
14922 static char *
14923 copy_string (const char *buf, int len)
14924 {
14925 char *s = xmalloc (len + 1);
14926
14927 memcpy (s, buf, len);
14928 s[len] = '\0';
14929 return s;
14930 }
14931
14932
14933 static const char *
14934 consume_improper_spaces (const char *p, const char *body)
14935 {
14936 if (*p == ' ')
14937 {
14938 complaint (&symfile_complaints,
14939 _("macro definition contains spaces "
14940 "in formal argument list:\n`%s'"),
14941 body);
14942
14943 while (*p == ' ')
14944 p++;
14945 }
14946
14947 return p;
14948 }
14949
14950
14951 static void
14952 parse_macro_definition (struct macro_source_file *file, int line,
14953 const char *body)
14954 {
14955 const char *p;
14956
14957 /* The body string takes one of two forms. For object-like macro
14958 definitions, it should be:
14959
14960 <macro name> " " <definition>
14961
14962 For function-like macro definitions, it should be:
14963
14964 <macro name> "() " <definition>
14965 or
14966 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
14967
14968 Spaces may appear only where explicitly indicated, and in the
14969 <definition>.
14970
14971 The Dwarf 2 spec says that an object-like macro's name is always
14972 followed by a space, but versions of GCC around March 2002 omit
14973 the space when the macro's definition is the empty string.
14974
14975 The Dwarf 2 spec says that there should be no spaces between the
14976 formal arguments in a function-like macro's formal argument list,
14977 but versions of GCC around March 2002 include spaces after the
14978 commas. */
14979
14980
14981 /* Find the extent of the macro name. The macro name is terminated
14982 by either a space or null character (for an object-like macro) or
14983 an opening paren (for a function-like macro). */
14984 for (p = body; *p; p++)
14985 if (*p == ' ' || *p == '(')
14986 break;
14987
14988 if (*p == ' ' || *p == '\0')
14989 {
14990 /* It's an object-like macro. */
14991 int name_len = p - body;
14992 char *name = copy_string (body, name_len);
14993 const char *replacement;
14994
14995 if (*p == ' ')
14996 replacement = body + name_len + 1;
14997 else
14998 {
14999 dwarf2_macro_malformed_definition_complaint (body);
15000 replacement = body + name_len;
15001 }
15002
15003 macro_define_object (file, line, name, replacement);
15004
15005 xfree (name);
15006 }
15007 else if (*p == '(')
15008 {
15009 /* It's a function-like macro. */
15010 char *name = copy_string (body, p - body);
15011 int argc = 0;
15012 int argv_size = 1;
15013 char **argv = xmalloc (argv_size * sizeof (*argv));
15014
15015 p++;
15016
15017 p = consume_improper_spaces (p, body);
15018
15019 /* Parse the formal argument list. */
15020 while (*p && *p != ')')
15021 {
15022 /* Find the extent of the current argument name. */
15023 const char *arg_start = p;
15024
15025 while (*p && *p != ',' && *p != ')' && *p != ' ')
15026 p++;
15027
15028 if (! *p || p == arg_start)
15029 dwarf2_macro_malformed_definition_complaint (body);
15030 else
15031 {
15032 /* Make sure argv has room for the new argument. */
15033 if (argc >= argv_size)
15034 {
15035 argv_size *= 2;
15036 argv = xrealloc (argv, argv_size * sizeof (*argv));
15037 }
15038
15039 argv[argc++] = copy_string (arg_start, p - arg_start);
15040 }
15041
15042 p = consume_improper_spaces (p, body);
15043
15044 /* Consume the comma, if present. */
15045 if (*p == ',')
15046 {
15047 p++;
15048
15049 p = consume_improper_spaces (p, body);
15050 }
15051 }
15052
15053 if (*p == ')')
15054 {
15055 p++;
15056
15057 if (*p == ' ')
15058 /* Perfectly formed definition, no complaints. */
15059 macro_define_function (file, line, name,
15060 argc, (const char **) argv,
15061 p + 1);
15062 else if (*p == '\0')
15063 {
15064 /* Complain, but do define it. */
15065 dwarf2_macro_malformed_definition_complaint (body);
15066 macro_define_function (file, line, name,
15067 argc, (const char **) argv,
15068 p);
15069 }
15070 else
15071 /* Just complain. */
15072 dwarf2_macro_malformed_definition_complaint (body);
15073 }
15074 else
15075 /* Just complain. */
15076 dwarf2_macro_malformed_definition_complaint (body);
15077
15078 xfree (name);
15079 {
15080 int i;
15081
15082 for (i = 0; i < argc; i++)
15083 xfree (argv[i]);
15084 }
15085 xfree (argv);
15086 }
15087 else
15088 dwarf2_macro_malformed_definition_complaint (body);
15089 }
15090
15091 /* Skip some bytes from BYTES according to the form given in FORM.
15092 Returns the new pointer. */
15093
15094 static gdb_byte *
15095 skip_form_bytes (bfd *abfd, gdb_byte *bytes,
15096 enum dwarf_form form,
15097 unsigned int offset_size,
15098 struct dwarf2_section_info *section)
15099 {
15100 unsigned int bytes_read;
15101
15102 switch (form)
15103 {
15104 case DW_FORM_data1:
15105 case DW_FORM_flag:
15106 ++bytes;
15107 break;
15108
15109 case DW_FORM_data2:
15110 bytes += 2;
15111 break;
15112
15113 case DW_FORM_data4:
15114 bytes += 4;
15115 break;
15116
15117 case DW_FORM_data8:
15118 bytes += 8;
15119 break;
15120
15121 case DW_FORM_string:
15122 read_direct_string (abfd, bytes, &bytes_read);
15123 bytes += bytes_read;
15124 break;
15125
15126 case DW_FORM_sec_offset:
15127 case DW_FORM_strp:
15128 bytes += offset_size;
15129 break;
15130
15131 case DW_FORM_block:
15132 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
15133 bytes += bytes_read;
15134 break;
15135
15136 case DW_FORM_block1:
15137 bytes += 1 + read_1_byte (abfd, bytes);
15138 break;
15139 case DW_FORM_block2:
15140 bytes += 2 + read_2_bytes (abfd, bytes);
15141 break;
15142 case DW_FORM_block4:
15143 bytes += 4 + read_4_bytes (abfd, bytes);
15144 break;
15145
15146 case DW_FORM_sdata:
15147 case DW_FORM_udata:
15148 bytes = skip_leb128 (abfd, bytes);
15149 break;
15150
15151 default:
15152 {
15153 complain:
15154 complaint (&symfile_complaints,
15155 _("invalid form 0x%x in `%s'"),
15156 form,
15157 section->asection->name);
15158 return NULL;
15159 }
15160 }
15161
15162 return bytes;
15163 }
15164
15165 /* A helper for dwarf_decode_macros that handles skipping an unknown
15166 opcode. Returns an updated pointer to the macro data buffer; or,
15167 on error, issues a complaint and returns NULL. */
15168
15169 static gdb_byte *
15170 skip_unknown_opcode (unsigned int opcode,
15171 gdb_byte **opcode_definitions,
15172 gdb_byte *mac_ptr,
15173 bfd *abfd,
15174 unsigned int offset_size,
15175 struct dwarf2_section_info *section)
15176 {
15177 unsigned int bytes_read, i;
15178 unsigned long arg;
15179 gdb_byte *defn;
15180
15181 if (opcode_definitions[opcode] == NULL)
15182 {
15183 complaint (&symfile_complaints,
15184 _("unrecognized DW_MACFINO opcode 0x%x"),
15185 opcode);
15186 return NULL;
15187 }
15188
15189 defn = opcode_definitions[opcode];
15190 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
15191 defn += bytes_read;
15192
15193 for (i = 0; i < arg; ++i)
15194 {
15195 mac_ptr = skip_form_bytes (abfd, mac_ptr, defn[i], offset_size, section);
15196 if (mac_ptr == NULL)
15197 {
15198 /* skip_form_bytes already issued the complaint. */
15199 return NULL;
15200 }
15201 }
15202
15203 return mac_ptr;
15204 }
15205
15206 /* A helper function which parses the header of a macro section.
15207 If the macro section is the extended (for now called "GNU") type,
15208 then this updates *OFFSET_SIZE. Returns a pointer to just after
15209 the header, or issues a complaint and returns NULL on error. */
15210
15211 static gdb_byte *
15212 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
15213 bfd *abfd,
15214 gdb_byte *mac_ptr,
15215 unsigned int *offset_size,
15216 int section_is_gnu)
15217 {
15218 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
15219
15220 if (section_is_gnu)
15221 {
15222 unsigned int version, flags;
15223
15224 version = read_2_bytes (abfd, mac_ptr);
15225 if (version != 4)
15226 {
15227 complaint (&symfile_complaints,
15228 _("unrecognized version `%d' in .debug_macro section"),
15229 version);
15230 return NULL;
15231 }
15232 mac_ptr += 2;
15233
15234 flags = read_1_byte (abfd, mac_ptr);
15235 ++mac_ptr;
15236 *offset_size = (flags & 1) ? 8 : 4;
15237
15238 if ((flags & 2) != 0)
15239 /* We don't need the line table offset. */
15240 mac_ptr += *offset_size;
15241
15242 /* Vendor opcode descriptions. */
15243 if ((flags & 4) != 0)
15244 {
15245 unsigned int i, count;
15246
15247 count = read_1_byte (abfd, mac_ptr);
15248 ++mac_ptr;
15249 for (i = 0; i < count; ++i)
15250 {
15251 unsigned int opcode, bytes_read;
15252 unsigned long arg;
15253
15254 opcode = read_1_byte (abfd, mac_ptr);
15255 ++mac_ptr;
15256 opcode_definitions[opcode] = mac_ptr;
15257 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15258 mac_ptr += bytes_read;
15259 mac_ptr += arg;
15260 }
15261 }
15262 }
15263
15264 return mac_ptr;
15265 }
15266
15267 /* A helper for dwarf_decode_macros that handles the GNU extensions,
15268 including DW_MACRO_GNU_transparent_include. */
15269
15270 static void
15271 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
15272 struct macro_source_file *current_file,
15273 struct line_header *lh, char *comp_dir,
15274 struct dwarf2_section_info *section,
15275 int section_is_gnu,
15276 unsigned int offset_size,
15277 struct objfile *objfile,
15278 htab_t include_hash)
15279 {
15280 enum dwarf_macro_record_type macinfo_type;
15281 int at_commandline;
15282 gdb_byte *opcode_definitions[256];
15283
15284 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15285 &offset_size, section_is_gnu);
15286 if (mac_ptr == NULL)
15287 {
15288 /* We already issued a complaint. */
15289 return;
15290 }
15291
15292 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
15293 GDB is still reading the definitions from command line. First
15294 DW_MACINFO_start_file will need to be ignored as it was already executed
15295 to create CURRENT_FILE for the main source holding also the command line
15296 definitions. On first met DW_MACINFO_start_file this flag is reset to
15297 normally execute all the remaining DW_MACINFO_start_file macinfos. */
15298
15299 at_commandline = 1;
15300
15301 do
15302 {
15303 /* Do we at least have room for a macinfo type byte? */
15304 if (mac_ptr >= mac_end)
15305 {
15306 dwarf2_macros_too_long_complaint (section);
15307 break;
15308 }
15309
15310 macinfo_type = read_1_byte (abfd, mac_ptr);
15311 mac_ptr++;
15312
15313 /* Note that we rely on the fact that the corresponding GNU and
15314 DWARF constants are the same. */
15315 switch (macinfo_type)
15316 {
15317 /* A zero macinfo type indicates the end of the macro
15318 information. */
15319 case 0:
15320 break;
15321
15322 case DW_MACRO_GNU_define:
15323 case DW_MACRO_GNU_undef:
15324 case DW_MACRO_GNU_define_indirect:
15325 case DW_MACRO_GNU_undef_indirect:
15326 {
15327 unsigned int bytes_read;
15328 int line;
15329 char *body;
15330 int is_define;
15331
15332 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15333 mac_ptr += bytes_read;
15334
15335 if (macinfo_type == DW_MACRO_GNU_define
15336 || macinfo_type == DW_MACRO_GNU_undef)
15337 {
15338 body = read_direct_string (abfd, mac_ptr, &bytes_read);
15339 mac_ptr += bytes_read;
15340 }
15341 else
15342 {
15343 LONGEST str_offset;
15344
15345 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
15346 mac_ptr += offset_size;
15347
15348 body = read_indirect_string_at_offset (abfd, str_offset);
15349 }
15350
15351 is_define = (macinfo_type == DW_MACRO_GNU_define
15352 || macinfo_type == DW_MACRO_GNU_define_indirect);
15353 if (! current_file)
15354 {
15355 /* DWARF violation as no main source is present. */
15356 complaint (&symfile_complaints,
15357 _("debug info with no main source gives macro %s "
15358 "on line %d: %s"),
15359 is_define ? _("definition") : _("undefinition"),
15360 line, body);
15361 break;
15362 }
15363 if ((line == 0 && !at_commandline)
15364 || (line != 0 && at_commandline))
15365 complaint (&symfile_complaints,
15366 _("debug info gives %s macro %s with %s line %d: %s"),
15367 at_commandline ? _("command-line") : _("in-file"),
15368 is_define ? _("definition") : _("undefinition"),
15369 line == 0 ? _("zero") : _("non-zero"), line, body);
15370
15371 if (is_define)
15372 parse_macro_definition (current_file, line, body);
15373 else
15374 {
15375 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
15376 || macinfo_type == DW_MACRO_GNU_undef_indirect);
15377 macro_undef (current_file, line, body);
15378 }
15379 }
15380 break;
15381
15382 case DW_MACRO_GNU_start_file:
15383 {
15384 unsigned int bytes_read;
15385 int line, file;
15386
15387 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15388 mac_ptr += bytes_read;
15389 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15390 mac_ptr += bytes_read;
15391
15392 if ((line == 0 && !at_commandline)
15393 || (line != 0 && at_commandline))
15394 complaint (&symfile_complaints,
15395 _("debug info gives source %d included "
15396 "from %s at %s line %d"),
15397 file, at_commandline ? _("command-line") : _("file"),
15398 line == 0 ? _("zero") : _("non-zero"), line);
15399
15400 if (at_commandline)
15401 {
15402 /* This DW_MACRO_GNU_start_file was executed in the
15403 pass one. */
15404 at_commandline = 0;
15405 }
15406 else
15407 current_file = macro_start_file (file, line,
15408 current_file, comp_dir,
15409 lh, objfile);
15410 }
15411 break;
15412
15413 case DW_MACRO_GNU_end_file:
15414 if (! current_file)
15415 complaint (&symfile_complaints,
15416 _("macro debug info has an unmatched "
15417 "`close_file' directive"));
15418 else
15419 {
15420 current_file = current_file->included_by;
15421 if (! current_file)
15422 {
15423 enum dwarf_macro_record_type next_type;
15424
15425 /* GCC circa March 2002 doesn't produce the zero
15426 type byte marking the end of the compilation
15427 unit. Complain if it's not there, but exit no
15428 matter what. */
15429
15430 /* Do we at least have room for a macinfo type byte? */
15431 if (mac_ptr >= mac_end)
15432 {
15433 dwarf2_macros_too_long_complaint (section);
15434 return;
15435 }
15436
15437 /* We don't increment mac_ptr here, so this is just
15438 a look-ahead. */
15439 next_type = read_1_byte (abfd, mac_ptr);
15440 if (next_type != 0)
15441 complaint (&symfile_complaints,
15442 _("no terminating 0-type entry for "
15443 "macros in `.debug_macinfo' section"));
15444
15445 return;
15446 }
15447 }
15448 break;
15449
15450 case DW_MACRO_GNU_transparent_include:
15451 {
15452 LONGEST offset;
15453 void **slot;
15454
15455 offset = read_offset_1 (abfd, mac_ptr, offset_size);
15456 mac_ptr += offset_size;
15457
15458 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
15459 if (*slot != NULL)
15460 {
15461 /* This has actually happened; see
15462 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
15463 complaint (&symfile_complaints,
15464 _("recursive DW_MACRO_GNU_transparent_include in "
15465 ".debug_macro section"));
15466 }
15467 else
15468 {
15469 *slot = mac_ptr;
15470
15471 dwarf_decode_macro_bytes (abfd,
15472 section->buffer + offset,
15473 mac_end, current_file,
15474 lh, comp_dir,
15475 section, section_is_gnu,
15476 offset_size, objfile, include_hash);
15477
15478 htab_remove_elt (include_hash, mac_ptr);
15479 }
15480 }
15481 break;
15482
15483 case DW_MACINFO_vendor_ext:
15484 if (!section_is_gnu)
15485 {
15486 unsigned int bytes_read;
15487 int constant;
15488
15489 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15490 mac_ptr += bytes_read;
15491 read_direct_string (abfd, mac_ptr, &bytes_read);
15492 mac_ptr += bytes_read;
15493
15494 /* We don't recognize any vendor extensions. */
15495 break;
15496 }
15497 /* FALLTHROUGH */
15498
15499 default:
15500 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15501 mac_ptr, abfd, offset_size,
15502 section);
15503 if (mac_ptr == NULL)
15504 return;
15505 break;
15506 }
15507 } while (macinfo_type != 0);
15508 }
15509
15510 static void
15511 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
15512 char *comp_dir, bfd *abfd,
15513 struct dwarf2_cu *cu,
15514 struct dwarf2_section_info *section,
15515 int section_is_gnu)
15516 {
15517 struct objfile *objfile = dwarf2_per_objfile->objfile;
15518 gdb_byte *mac_ptr, *mac_end;
15519 struct macro_source_file *current_file = 0;
15520 enum dwarf_macro_record_type macinfo_type;
15521 unsigned int offset_size = cu->header.offset_size;
15522 gdb_byte *opcode_definitions[256];
15523 struct cleanup *cleanup;
15524 htab_t include_hash;
15525 void **slot;
15526
15527 dwarf2_read_section (objfile, section);
15528 if (section->buffer == NULL)
15529 {
15530 complaint (&symfile_complaints, _("missing %s section"),
15531 section->asection->name);
15532 return;
15533 }
15534
15535 /* First pass: Find the name of the base filename.
15536 This filename is needed in order to process all macros whose definition
15537 (or undefinition) comes from the command line. These macros are defined
15538 before the first DW_MACINFO_start_file entry, and yet still need to be
15539 associated to the base file.
15540
15541 To determine the base file name, we scan the macro definitions until we
15542 reach the first DW_MACINFO_start_file entry. We then initialize
15543 CURRENT_FILE accordingly so that any macro definition found before the
15544 first DW_MACINFO_start_file can still be associated to the base file. */
15545
15546 mac_ptr = section->buffer + offset;
15547 mac_end = section->buffer + section->size;
15548
15549 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15550 &offset_size, section_is_gnu);
15551 if (mac_ptr == NULL)
15552 {
15553 /* We already issued a complaint. */
15554 return;
15555 }
15556
15557 do
15558 {
15559 /* Do we at least have room for a macinfo type byte? */
15560 if (mac_ptr >= mac_end)
15561 {
15562 /* Complaint is printed during the second pass as GDB will probably
15563 stop the first pass earlier upon finding
15564 DW_MACINFO_start_file. */
15565 break;
15566 }
15567
15568 macinfo_type = read_1_byte (abfd, mac_ptr);
15569 mac_ptr++;
15570
15571 /* Note that we rely on the fact that the corresponding GNU and
15572 DWARF constants are the same. */
15573 switch (macinfo_type)
15574 {
15575 /* A zero macinfo type indicates the end of the macro
15576 information. */
15577 case 0:
15578 break;
15579
15580 case DW_MACRO_GNU_define:
15581 case DW_MACRO_GNU_undef:
15582 /* Only skip the data by MAC_PTR. */
15583 {
15584 unsigned int bytes_read;
15585
15586 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15587 mac_ptr += bytes_read;
15588 read_direct_string (abfd, mac_ptr, &bytes_read);
15589 mac_ptr += bytes_read;
15590 }
15591 break;
15592
15593 case DW_MACRO_GNU_start_file:
15594 {
15595 unsigned int bytes_read;
15596 int line, file;
15597
15598 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15599 mac_ptr += bytes_read;
15600 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15601 mac_ptr += bytes_read;
15602
15603 current_file = macro_start_file (file, line, current_file,
15604 comp_dir, lh, objfile);
15605 }
15606 break;
15607
15608 case DW_MACRO_GNU_end_file:
15609 /* No data to skip by MAC_PTR. */
15610 break;
15611
15612 case DW_MACRO_GNU_define_indirect:
15613 case DW_MACRO_GNU_undef_indirect:
15614 {
15615 unsigned int bytes_read;
15616
15617 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15618 mac_ptr += bytes_read;
15619 mac_ptr += offset_size;
15620 }
15621 break;
15622
15623 case DW_MACRO_GNU_transparent_include:
15624 /* Note that, according to the spec, a transparent include
15625 chain cannot call DW_MACRO_GNU_start_file. So, we can just
15626 skip this opcode. */
15627 mac_ptr += offset_size;
15628 break;
15629
15630 case DW_MACINFO_vendor_ext:
15631 /* Only skip the data by MAC_PTR. */
15632 if (!section_is_gnu)
15633 {
15634 unsigned int bytes_read;
15635
15636 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15637 mac_ptr += bytes_read;
15638 read_direct_string (abfd, mac_ptr, &bytes_read);
15639 mac_ptr += bytes_read;
15640 }
15641 /* FALLTHROUGH */
15642
15643 default:
15644 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15645 mac_ptr, abfd, offset_size,
15646 section);
15647 if (mac_ptr == NULL)
15648 return;
15649 break;
15650 }
15651 } while (macinfo_type != 0 && current_file == NULL);
15652
15653 /* Second pass: Process all entries.
15654
15655 Use the AT_COMMAND_LINE flag to determine whether we are still processing
15656 command-line macro definitions/undefinitions. This flag is unset when we
15657 reach the first DW_MACINFO_start_file entry. */
15658
15659 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
15660 NULL, xcalloc, xfree);
15661 cleanup = make_cleanup_htab_delete (include_hash);
15662 mac_ptr = section->buffer + offset;
15663 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
15664 *slot = mac_ptr;
15665 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
15666 current_file, lh, comp_dir, section, section_is_gnu,
15667 offset_size, objfile, include_hash);
15668 do_cleanups (cleanup);
15669 }
15670
15671 /* Check if the attribute's form is a DW_FORM_block*
15672 if so return true else false. */
15673 static int
15674 attr_form_is_block (struct attribute *attr)
15675 {
15676 return (attr == NULL ? 0 :
15677 attr->form == DW_FORM_block1
15678 || attr->form == DW_FORM_block2
15679 || attr->form == DW_FORM_block4
15680 || attr->form == DW_FORM_block
15681 || attr->form == DW_FORM_exprloc);
15682 }
15683
15684 /* Return non-zero if ATTR's value is a section offset --- classes
15685 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
15686 You may use DW_UNSND (attr) to retrieve such offsets.
15687
15688 Section 7.5.4, "Attribute Encodings", explains that no attribute
15689 may have a value that belongs to more than one of these classes; it
15690 would be ambiguous if we did, because we use the same forms for all
15691 of them. */
15692 static int
15693 attr_form_is_section_offset (struct attribute *attr)
15694 {
15695 return (attr->form == DW_FORM_data4
15696 || attr->form == DW_FORM_data8
15697 || attr->form == DW_FORM_sec_offset);
15698 }
15699
15700
15701 /* Return non-zero if ATTR's value falls in the 'constant' class, or
15702 zero otherwise. When this function returns true, you can apply
15703 dwarf2_get_attr_constant_value to it.
15704
15705 However, note that for some attributes you must check
15706 attr_form_is_section_offset before using this test. DW_FORM_data4
15707 and DW_FORM_data8 are members of both the constant class, and of
15708 the classes that contain offsets into other debug sections
15709 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
15710 that, if an attribute's can be either a constant or one of the
15711 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
15712 taken as section offsets, not constants. */
15713 static int
15714 attr_form_is_constant (struct attribute *attr)
15715 {
15716 switch (attr->form)
15717 {
15718 case DW_FORM_sdata:
15719 case DW_FORM_udata:
15720 case DW_FORM_data1:
15721 case DW_FORM_data2:
15722 case DW_FORM_data4:
15723 case DW_FORM_data8:
15724 return 1;
15725 default:
15726 return 0;
15727 }
15728 }
15729
15730 /* A helper function that fills in a dwarf2_loclist_baton. */
15731
15732 static void
15733 fill_in_loclist_baton (struct dwarf2_cu *cu,
15734 struct dwarf2_loclist_baton *baton,
15735 struct attribute *attr)
15736 {
15737 dwarf2_read_section (dwarf2_per_objfile->objfile,
15738 &dwarf2_per_objfile->loc);
15739
15740 baton->per_cu = cu->per_cu;
15741 gdb_assert (baton->per_cu);
15742 /* We don't know how long the location list is, but make sure we
15743 don't run off the edge of the section. */
15744 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
15745 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
15746 baton->base_address = cu->base_address;
15747 }
15748
15749 static void
15750 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
15751 struct dwarf2_cu *cu)
15752 {
15753 struct objfile *objfile = dwarf2_per_objfile->objfile;
15754
15755 if (attr_form_is_section_offset (attr)
15756 /* ".debug_loc" may not exist at all, or the offset may be outside
15757 the section. If so, fall through to the complaint in the
15758 other branch. */
15759 && DW_UNSND (attr) < dwarf2_section_size (objfile,
15760 &dwarf2_per_objfile->loc))
15761 {
15762 struct dwarf2_loclist_baton *baton;
15763
15764 baton = obstack_alloc (&objfile->objfile_obstack,
15765 sizeof (struct dwarf2_loclist_baton));
15766
15767 fill_in_loclist_baton (cu, baton, attr);
15768
15769 if (cu->base_known == 0)
15770 complaint (&symfile_complaints,
15771 _("Location list used without "
15772 "specifying the CU base address."));
15773
15774 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
15775 SYMBOL_LOCATION_BATON (sym) = baton;
15776 }
15777 else
15778 {
15779 struct dwarf2_locexpr_baton *baton;
15780
15781 baton = obstack_alloc (&objfile->objfile_obstack,
15782 sizeof (struct dwarf2_locexpr_baton));
15783 baton->per_cu = cu->per_cu;
15784 gdb_assert (baton->per_cu);
15785
15786 if (attr_form_is_block (attr))
15787 {
15788 /* Note that we're just copying the block's data pointer
15789 here, not the actual data. We're still pointing into the
15790 info_buffer for SYM's objfile; right now we never release
15791 that buffer, but when we do clean up properly this may
15792 need to change. */
15793 baton->size = DW_BLOCK (attr)->size;
15794 baton->data = DW_BLOCK (attr)->data;
15795 }
15796 else
15797 {
15798 dwarf2_invalid_attrib_class_complaint ("location description",
15799 SYMBOL_NATURAL_NAME (sym));
15800 baton->size = 0;
15801 }
15802
15803 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
15804 SYMBOL_LOCATION_BATON (sym) = baton;
15805 }
15806 }
15807
15808 /* Return the OBJFILE associated with the compilation unit CU. If CU
15809 came from a separate debuginfo file, then the master objfile is
15810 returned. */
15811
15812 struct objfile *
15813 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
15814 {
15815 struct objfile *objfile = per_cu->objfile;
15816
15817 /* Return the master objfile, so that we can report and look up the
15818 correct file containing this variable. */
15819 if (objfile->separate_debug_objfile_backlink)
15820 objfile = objfile->separate_debug_objfile_backlink;
15821
15822 return objfile;
15823 }
15824
15825 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
15826 (CU_HEADERP is unused in such case) or prepare a temporary copy at
15827 CU_HEADERP first. */
15828
15829 static const struct comp_unit_head *
15830 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
15831 struct dwarf2_per_cu_data *per_cu)
15832 {
15833 struct objfile *objfile;
15834 struct dwarf2_per_objfile *per_objfile;
15835 gdb_byte *info_ptr;
15836
15837 if (per_cu->cu)
15838 return &per_cu->cu->header;
15839
15840 objfile = per_cu->objfile;
15841 per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15842 info_ptr = per_objfile->info.buffer + per_cu->offset.sect_off;
15843
15844 memset (cu_headerp, 0, sizeof (*cu_headerp));
15845 read_comp_unit_head (cu_headerp, info_ptr, objfile->obfd);
15846
15847 return cu_headerp;
15848 }
15849
15850 /* Return the address size given in the compilation unit header for CU. */
15851
15852 int
15853 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
15854 {
15855 struct comp_unit_head cu_header_local;
15856 const struct comp_unit_head *cu_headerp;
15857
15858 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15859
15860 return cu_headerp->addr_size;
15861 }
15862
15863 /* Return the offset size given in the compilation unit header for CU. */
15864
15865 int
15866 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
15867 {
15868 struct comp_unit_head cu_header_local;
15869 const struct comp_unit_head *cu_headerp;
15870
15871 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15872
15873 return cu_headerp->offset_size;
15874 }
15875
15876 /* See its dwarf2loc.h declaration. */
15877
15878 int
15879 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
15880 {
15881 struct comp_unit_head cu_header_local;
15882 const struct comp_unit_head *cu_headerp;
15883
15884 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15885
15886 if (cu_headerp->version == 2)
15887 return cu_headerp->addr_size;
15888 else
15889 return cu_headerp->offset_size;
15890 }
15891
15892 /* Return the text offset of the CU. The returned offset comes from
15893 this CU's objfile. If this objfile came from a separate debuginfo
15894 file, then the offset may be different from the corresponding
15895 offset in the parent objfile. */
15896
15897 CORE_ADDR
15898 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
15899 {
15900 struct objfile *objfile = per_cu->objfile;
15901
15902 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15903 }
15904
15905 /* Locate the .debug_info compilation unit from CU's objfile which contains
15906 the DIE at OFFSET. Raises an error on failure. */
15907
15908 static struct dwarf2_per_cu_data *
15909 dwarf2_find_containing_comp_unit (sect_offset offset,
15910 struct objfile *objfile)
15911 {
15912 struct dwarf2_per_cu_data *this_cu;
15913 int low, high;
15914
15915 low = 0;
15916 high = dwarf2_per_objfile->n_comp_units - 1;
15917 while (high > low)
15918 {
15919 int mid = low + (high - low) / 2;
15920
15921 if (dwarf2_per_objfile->all_comp_units[mid]->offset.sect_off
15922 >= offset.sect_off)
15923 high = mid;
15924 else
15925 low = mid + 1;
15926 }
15927 gdb_assert (low == high);
15928 if (dwarf2_per_objfile->all_comp_units[low]->offset.sect_off
15929 > offset.sect_off)
15930 {
15931 if (low == 0)
15932 error (_("Dwarf Error: could not find partial DIE containing "
15933 "offset 0x%lx [in module %s]"),
15934 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
15935
15936 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
15937 <= offset.sect_off);
15938 return dwarf2_per_objfile->all_comp_units[low-1];
15939 }
15940 else
15941 {
15942 this_cu = dwarf2_per_objfile->all_comp_units[low];
15943 if (low == dwarf2_per_objfile->n_comp_units - 1
15944 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
15945 error (_("invalid dwarf2 offset %u"), offset.sect_off);
15946 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
15947 return this_cu;
15948 }
15949 }
15950
15951 /* Initialize dwarf2_cu CU, owned by PER_CU. */
15952
15953 static void
15954 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
15955 {
15956 memset (cu, 0, sizeof (*cu));
15957 per_cu->cu = cu;
15958 cu->per_cu = per_cu;
15959 cu->objfile = per_cu->objfile;
15960 obstack_init (&cu->comp_unit_obstack);
15961 }
15962
15963 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
15964
15965 static void
15966 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
15967 {
15968 struct attribute *attr;
15969
15970 /* Set the language we're debugging. */
15971 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
15972 if (attr)
15973 set_cu_language (DW_UNSND (attr), cu);
15974 else
15975 {
15976 cu->language = language_minimal;
15977 cu->language_defn = language_def (cu->language);
15978 }
15979 }
15980
15981 /* Release one cached compilation unit, CU. We unlink it from the tree
15982 of compilation units, but we don't remove it from the read_in_chain;
15983 the caller is responsible for that.
15984 NOTE: DATA is a void * because this function is also used as a
15985 cleanup routine. */
15986
15987 static void
15988 free_heap_comp_unit (void *data)
15989 {
15990 struct dwarf2_cu *cu = data;
15991
15992 gdb_assert (cu->per_cu != NULL);
15993 cu->per_cu->cu = NULL;
15994 cu->per_cu = NULL;
15995
15996 obstack_free (&cu->comp_unit_obstack, NULL);
15997
15998 xfree (cu);
15999 }
16000
16001 /* This cleanup function is passed the address of a dwarf2_cu on the stack
16002 when we're finished with it. We can't free the pointer itself, but be
16003 sure to unlink it from the cache. Also release any associated storage
16004 and perform cache maintenance.
16005
16006 Only used during partial symbol parsing. */
16007
16008 static void
16009 free_stack_comp_unit (void *data)
16010 {
16011 struct dwarf2_cu *cu = data;
16012
16013 gdb_assert (cu->per_cu != NULL);
16014 cu->per_cu->cu = NULL;
16015 cu->per_cu = NULL;
16016
16017 obstack_free (&cu->comp_unit_obstack, NULL);
16018 cu->partial_dies = NULL;
16019
16020 /* The previous code only did this if per_cu != NULL.
16021 But that would always succeed, so now we just unconditionally do
16022 the aging. This seems like the wrong place to do such aging,
16023 but cleaning that up is left for later. */
16024 age_cached_comp_units ();
16025 }
16026
16027 /* Free all cached compilation units. */
16028
16029 static void
16030 free_cached_comp_units (void *data)
16031 {
16032 struct dwarf2_per_cu_data *per_cu, **last_chain;
16033
16034 per_cu = dwarf2_per_objfile->read_in_chain;
16035 last_chain = &dwarf2_per_objfile->read_in_chain;
16036 while (per_cu != NULL)
16037 {
16038 struct dwarf2_per_cu_data *next_cu;
16039
16040 next_cu = per_cu->cu->read_in_chain;
16041
16042 free_heap_comp_unit (per_cu->cu);
16043 *last_chain = next_cu;
16044
16045 per_cu = next_cu;
16046 }
16047 }
16048
16049 /* Increase the age counter on each cached compilation unit, and free
16050 any that are too old. */
16051
16052 static void
16053 age_cached_comp_units (void)
16054 {
16055 struct dwarf2_per_cu_data *per_cu, **last_chain;
16056
16057 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
16058 per_cu = dwarf2_per_objfile->read_in_chain;
16059 while (per_cu != NULL)
16060 {
16061 per_cu->cu->last_used ++;
16062 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
16063 dwarf2_mark (per_cu->cu);
16064 per_cu = per_cu->cu->read_in_chain;
16065 }
16066
16067 per_cu = dwarf2_per_objfile->read_in_chain;
16068 last_chain = &dwarf2_per_objfile->read_in_chain;
16069 while (per_cu != NULL)
16070 {
16071 struct dwarf2_per_cu_data *next_cu;
16072
16073 next_cu = per_cu->cu->read_in_chain;
16074
16075 if (!per_cu->cu->mark)
16076 {
16077 free_heap_comp_unit (per_cu->cu);
16078 *last_chain = next_cu;
16079 }
16080 else
16081 last_chain = &per_cu->cu->read_in_chain;
16082
16083 per_cu = next_cu;
16084 }
16085 }
16086
16087 /* Remove a single compilation unit from the cache. */
16088
16089 static void
16090 free_one_cached_comp_unit (void *target_cu)
16091 {
16092 struct dwarf2_per_cu_data *per_cu, **last_chain;
16093
16094 per_cu = dwarf2_per_objfile->read_in_chain;
16095 last_chain = &dwarf2_per_objfile->read_in_chain;
16096 while (per_cu != NULL)
16097 {
16098 struct dwarf2_per_cu_data *next_cu;
16099
16100 next_cu = per_cu->cu->read_in_chain;
16101
16102 if (per_cu->cu == target_cu)
16103 {
16104 free_heap_comp_unit (per_cu->cu);
16105 *last_chain = next_cu;
16106 break;
16107 }
16108 else
16109 last_chain = &per_cu->cu->read_in_chain;
16110
16111 per_cu = next_cu;
16112 }
16113 }
16114
16115 /* Release all extra memory associated with OBJFILE. */
16116
16117 void
16118 dwarf2_free_objfile (struct objfile *objfile)
16119 {
16120 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
16121
16122 if (dwarf2_per_objfile == NULL)
16123 return;
16124
16125 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
16126 free_cached_comp_units (NULL);
16127
16128 if (dwarf2_per_objfile->quick_file_names_table)
16129 htab_delete (dwarf2_per_objfile->quick_file_names_table);
16130
16131 /* Everything else should be on the objfile obstack. */
16132 }
16133
16134 /* A pair of DIE offset and GDB type pointer. We store these
16135 in a hash table separate from the DIEs, and preserve them
16136 when the DIEs are flushed out of cache. */
16137
16138 struct dwarf2_offset_and_type
16139 {
16140 sect_offset offset;
16141 struct type *type;
16142 };
16143
16144 /* Hash function for a dwarf2_offset_and_type. */
16145
16146 static hashval_t
16147 offset_and_type_hash (const void *item)
16148 {
16149 const struct dwarf2_offset_and_type *ofs = item;
16150
16151 return ofs->offset.sect_off;
16152 }
16153
16154 /* Equality function for a dwarf2_offset_and_type. */
16155
16156 static int
16157 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
16158 {
16159 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
16160 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
16161
16162 return ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off;
16163 }
16164
16165 /* Set the type associated with DIE to TYPE. Save it in CU's hash
16166 table if necessary. For convenience, return TYPE.
16167
16168 The DIEs reading must have careful ordering to:
16169 * Not cause infite loops trying to read in DIEs as a prerequisite for
16170 reading current DIE.
16171 * Not trying to dereference contents of still incompletely read in types
16172 while reading in other DIEs.
16173 * Enable referencing still incompletely read in types just by a pointer to
16174 the type without accessing its fields.
16175
16176 Therefore caller should follow these rules:
16177 * Try to fetch any prerequisite types we may need to build this DIE type
16178 before building the type and calling set_die_type.
16179 * After building type call set_die_type for current DIE as soon as
16180 possible before fetching more types to complete the current type.
16181 * Make the type as complete as possible before fetching more types. */
16182
16183 static struct type *
16184 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16185 {
16186 struct dwarf2_offset_and_type **slot, ofs;
16187 struct objfile *objfile = cu->objfile;
16188 htab_t *type_hash_ptr;
16189
16190 /* For Ada types, make sure that the gnat-specific data is always
16191 initialized (if not already set). There are a few types where
16192 we should not be doing so, because the type-specific area is
16193 already used to hold some other piece of info (eg: TYPE_CODE_FLT
16194 where the type-specific area is used to store the floatformat).
16195 But this is not a problem, because the gnat-specific information
16196 is actually not needed for these types. */
16197 if (need_gnat_info (cu)
16198 && TYPE_CODE (type) != TYPE_CODE_FUNC
16199 && TYPE_CODE (type) != TYPE_CODE_FLT
16200 && !HAVE_GNAT_AUX_INFO (type))
16201 INIT_GNAT_SPECIFIC (type);
16202
16203 if (cu->per_cu->debug_types_section)
16204 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
16205 else
16206 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
16207
16208 if (*type_hash_ptr == NULL)
16209 {
16210 *type_hash_ptr
16211 = htab_create_alloc_ex (127,
16212 offset_and_type_hash,
16213 offset_and_type_eq,
16214 NULL,
16215 &objfile->objfile_obstack,
16216 hashtab_obstack_allocate,
16217 dummy_obstack_deallocate);
16218 }
16219
16220 ofs.offset = die->offset;
16221 ofs.type = type;
16222 slot = (struct dwarf2_offset_and_type **)
16223 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset.sect_off,
16224 INSERT);
16225 if (*slot)
16226 complaint (&symfile_complaints,
16227 _("A problem internal to GDB: DIE 0x%x has type already set"),
16228 die->offset.sect_off);
16229 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
16230 **slot = ofs;
16231 return type;
16232 }
16233
16234 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
16235 table, or return NULL if the die does not have a saved type. */
16236
16237 static struct type *
16238 get_die_type_at_offset (sect_offset offset,
16239 struct dwarf2_per_cu_data *per_cu)
16240 {
16241 struct dwarf2_offset_and_type *slot, ofs;
16242 htab_t type_hash;
16243
16244 if (per_cu->debug_types_section)
16245 type_hash = dwarf2_per_objfile->debug_types_type_hash;
16246 else
16247 type_hash = dwarf2_per_objfile->debug_info_type_hash;
16248 if (type_hash == NULL)
16249 return NULL;
16250
16251 ofs.offset = offset;
16252 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset.sect_off);
16253 if (slot)
16254 return slot->type;
16255 else
16256 return NULL;
16257 }
16258
16259 /* Look up the type for DIE in the appropriate type_hash table,
16260 or return NULL if DIE does not have a saved type. */
16261
16262 static struct type *
16263 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
16264 {
16265 return get_die_type_at_offset (die->offset, cu->per_cu);
16266 }
16267
16268 /* Add a dependence relationship from CU to REF_PER_CU. */
16269
16270 static void
16271 dwarf2_add_dependence (struct dwarf2_cu *cu,
16272 struct dwarf2_per_cu_data *ref_per_cu)
16273 {
16274 void **slot;
16275
16276 if (cu->dependencies == NULL)
16277 cu->dependencies
16278 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
16279 NULL, &cu->comp_unit_obstack,
16280 hashtab_obstack_allocate,
16281 dummy_obstack_deallocate);
16282
16283 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
16284 if (*slot == NULL)
16285 *slot = ref_per_cu;
16286 }
16287
16288 /* Subroutine of dwarf2_mark to pass to htab_traverse.
16289 Set the mark field in every compilation unit in the
16290 cache that we must keep because we are keeping CU. */
16291
16292 static int
16293 dwarf2_mark_helper (void **slot, void *data)
16294 {
16295 struct dwarf2_per_cu_data *per_cu;
16296
16297 per_cu = (struct dwarf2_per_cu_data *) *slot;
16298
16299 /* cu->dependencies references may not yet have been ever read if QUIT aborts
16300 reading of the chain. As such dependencies remain valid it is not much
16301 useful to track and undo them during QUIT cleanups. */
16302 if (per_cu->cu == NULL)
16303 return 1;
16304
16305 if (per_cu->cu->mark)
16306 return 1;
16307 per_cu->cu->mark = 1;
16308
16309 if (per_cu->cu->dependencies != NULL)
16310 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
16311
16312 return 1;
16313 }
16314
16315 /* Set the mark field in CU and in every other compilation unit in the
16316 cache that we must keep because we are keeping CU. */
16317
16318 static void
16319 dwarf2_mark (struct dwarf2_cu *cu)
16320 {
16321 if (cu->mark)
16322 return;
16323 cu->mark = 1;
16324 if (cu->dependencies != NULL)
16325 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
16326 }
16327
16328 static void
16329 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
16330 {
16331 while (per_cu)
16332 {
16333 per_cu->cu->mark = 0;
16334 per_cu = per_cu->cu->read_in_chain;
16335 }
16336 }
16337
16338 /* Trivial hash function for partial_die_info: the hash value of a DIE
16339 is its offset in .debug_info for this objfile. */
16340
16341 static hashval_t
16342 partial_die_hash (const void *item)
16343 {
16344 const struct partial_die_info *part_die = item;
16345
16346 return part_die->offset.sect_off;
16347 }
16348
16349 /* Trivial comparison function for partial_die_info structures: two DIEs
16350 are equal if they have the same offset. */
16351
16352 static int
16353 partial_die_eq (const void *item_lhs, const void *item_rhs)
16354 {
16355 const struct partial_die_info *part_die_lhs = item_lhs;
16356 const struct partial_die_info *part_die_rhs = item_rhs;
16357
16358 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
16359 }
16360
16361 static struct cmd_list_element *set_dwarf2_cmdlist;
16362 static struct cmd_list_element *show_dwarf2_cmdlist;
16363
16364 static void
16365 set_dwarf2_cmd (char *args, int from_tty)
16366 {
16367 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
16368 }
16369
16370 static void
16371 show_dwarf2_cmd (char *args, int from_tty)
16372 {
16373 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
16374 }
16375
16376 /* If section described by INFO was mmapped, munmap it now. */
16377
16378 static void
16379 munmap_section_buffer (struct dwarf2_section_info *info)
16380 {
16381 if (info->map_addr != NULL)
16382 {
16383 #ifdef HAVE_MMAP
16384 int res;
16385
16386 res = munmap (info->map_addr, info->map_len);
16387 gdb_assert (res == 0);
16388 #else
16389 /* Without HAVE_MMAP, we should never be here to begin with. */
16390 gdb_assert_not_reached ("no mmap support");
16391 #endif
16392 }
16393 }
16394
16395 /* munmap debug sections for OBJFILE, if necessary. */
16396
16397 static void
16398 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
16399 {
16400 struct dwarf2_per_objfile *data = d;
16401 int ix;
16402 struct dwarf2_section_info *section;
16403
16404 /* This is sorted according to the order they're defined in to make it easier
16405 to keep in sync. */
16406 munmap_section_buffer (&data->info);
16407 munmap_section_buffer (&data->abbrev);
16408 munmap_section_buffer (&data->line);
16409 munmap_section_buffer (&data->loc);
16410 munmap_section_buffer (&data->macinfo);
16411 munmap_section_buffer (&data->macro);
16412 munmap_section_buffer (&data->str);
16413 munmap_section_buffer (&data->ranges);
16414 munmap_section_buffer (&data->frame);
16415 munmap_section_buffer (&data->eh_frame);
16416 munmap_section_buffer (&data->gdb_index);
16417
16418 for (ix = 0;
16419 VEC_iterate (dwarf2_section_info_def, data->types, ix, section);
16420 ++ix)
16421 munmap_section_buffer (section);
16422
16423 VEC_free (dwarf2_section_info_def, data->types);
16424 }
16425
16426 \f
16427 /* The "save gdb-index" command. */
16428
16429 /* The contents of the hash table we create when building the string
16430 table. */
16431 struct strtab_entry
16432 {
16433 offset_type offset;
16434 const char *str;
16435 };
16436
16437 /* Hash function for a strtab_entry.
16438
16439 Function is used only during write_hash_table so no index format backward
16440 compatibility is needed. */
16441
16442 static hashval_t
16443 hash_strtab_entry (const void *e)
16444 {
16445 const struct strtab_entry *entry = e;
16446 return mapped_index_string_hash (INT_MAX, entry->str);
16447 }
16448
16449 /* Equality function for a strtab_entry. */
16450
16451 static int
16452 eq_strtab_entry (const void *a, const void *b)
16453 {
16454 const struct strtab_entry *ea = a;
16455 const struct strtab_entry *eb = b;
16456 return !strcmp (ea->str, eb->str);
16457 }
16458
16459 /* Create a strtab_entry hash table. */
16460
16461 static htab_t
16462 create_strtab (void)
16463 {
16464 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
16465 xfree, xcalloc, xfree);
16466 }
16467
16468 /* Add a string to the constant pool. Return the string's offset in
16469 host order. */
16470
16471 static offset_type
16472 add_string (htab_t table, struct obstack *cpool, const char *str)
16473 {
16474 void **slot;
16475 struct strtab_entry entry;
16476 struct strtab_entry *result;
16477
16478 entry.str = str;
16479 slot = htab_find_slot (table, &entry, INSERT);
16480 if (*slot)
16481 result = *slot;
16482 else
16483 {
16484 result = XNEW (struct strtab_entry);
16485 result->offset = obstack_object_size (cpool);
16486 result->str = str;
16487 obstack_grow_str0 (cpool, str);
16488 *slot = result;
16489 }
16490 return result->offset;
16491 }
16492
16493 /* An entry in the symbol table. */
16494 struct symtab_index_entry
16495 {
16496 /* The name of the symbol. */
16497 const char *name;
16498 /* The offset of the name in the constant pool. */
16499 offset_type index_offset;
16500 /* A sorted vector of the indices of all the CUs that hold an object
16501 of this name. */
16502 VEC (offset_type) *cu_indices;
16503 };
16504
16505 /* The symbol table. This is a power-of-2-sized hash table. */
16506 struct mapped_symtab
16507 {
16508 offset_type n_elements;
16509 offset_type size;
16510 struct symtab_index_entry **data;
16511 };
16512
16513 /* Hash function for a symtab_index_entry. */
16514
16515 static hashval_t
16516 hash_symtab_entry (const void *e)
16517 {
16518 const struct symtab_index_entry *entry = e;
16519 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
16520 sizeof (offset_type) * VEC_length (offset_type,
16521 entry->cu_indices),
16522 0);
16523 }
16524
16525 /* Equality function for a symtab_index_entry. */
16526
16527 static int
16528 eq_symtab_entry (const void *a, const void *b)
16529 {
16530 const struct symtab_index_entry *ea = a;
16531 const struct symtab_index_entry *eb = b;
16532 int len = VEC_length (offset_type, ea->cu_indices);
16533 if (len != VEC_length (offset_type, eb->cu_indices))
16534 return 0;
16535 return !memcmp (VEC_address (offset_type, ea->cu_indices),
16536 VEC_address (offset_type, eb->cu_indices),
16537 sizeof (offset_type) * len);
16538 }
16539
16540 /* Destroy a symtab_index_entry. */
16541
16542 static void
16543 delete_symtab_entry (void *p)
16544 {
16545 struct symtab_index_entry *entry = p;
16546 VEC_free (offset_type, entry->cu_indices);
16547 xfree (entry);
16548 }
16549
16550 /* Create a hash table holding symtab_index_entry objects. */
16551
16552 static htab_t
16553 create_symbol_hash_table (void)
16554 {
16555 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
16556 delete_symtab_entry, xcalloc, xfree);
16557 }
16558
16559 /* Create a new mapped symtab object. */
16560
16561 static struct mapped_symtab *
16562 create_mapped_symtab (void)
16563 {
16564 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
16565 symtab->n_elements = 0;
16566 symtab->size = 1024;
16567 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16568 return symtab;
16569 }
16570
16571 /* Destroy a mapped_symtab. */
16572
16573 static void
16574 cleanup_mapped_symtab (void *p)
16575 {
16576 struct mapped_symtab *symtab = p;
16577 /* The contents of the array are freed when the other hash table is
16578 destroyed. */
16579 xfree (symtab->data);
16580 xfree (symtab);
16581 }
16582
16583 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
16584 the slot.
16585
16586 Function is used only during write_hash_table so no index format backward
16587 compatibility is needed. */
16588
16589 static struct symtab_index_entry **
16590 find_slot (struct mapped_symtab *symtab, const char *name)
16591 {
16592 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
16593
16594 index = hash & (symtab->size - 1);
16595 step = ((hash * 17) & (symtab->size - 1)) | 1;
16596
16597 for (;;)
16598 {
16599 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
16600 return &symtab->data[index];
16601 index = (index + step) & (symtab->size - 1);
16602 }
16603 }
16604
16605 /* Expand SYMTAB's hash table. */
16606
16607 static void
16608 hash_expand (struct mapped_symtab *symtab)
16609 {
16610 offset_type old_size = symtab->size;
16611 offset_type i;
16612 struct symtab_index_entry **old_entries = symtab->data;
16613
16614 symtab->size *= 2;
16615 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16616
16617 for (i = 0; i < old_size; ++i)
16618 {
16619 if (old_entries[i])
16620 {
16621 struct symtab_index_entry **slot = find_slot (symtab,
16622 old_entries[i]->name);
16623 *slot = old_entries[i];
16624 }
16625 }
16626
16627 xfree (old_entries);
16628 }
16629
16630 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
16631 is the index of the CU in which the symbol appears. */
16632
16633 static void
16634 add_index_entry (struct mapped_symtab *symtab, const char *name,
16635 offset_type cu_index)
16636 {
16637 struct symtab_index_entry **slot;
16638
16639 ++symtab->n_elements;
16640 if (4 * symtab->n_elements / 3 >= symtab->size)
16641 hash_expand (symtab);
16642
16643 slot = find_slot (symtab, name);
16644 if (!*slot)
16645 {
16646 *slot = XNEW (struct symtab_index_entry);
16647 (*slot)->name = name;
16648 (*slot)->cu_indices = NULL;
16649 }
16650 /* Don't push an index twice. Due to how we add entries we only
16651 have to check the last one. */
16652 if (VEC_empty (offset_type, (*slot)->cu_indices)
16653 || VEC_last (offset_type, (*slot)->cu_indices) != cu_index)
16654 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
16655 }
16656
16657 /* Add a vector of indices to the constant pool. */
16658
16659 static offset_type
16660 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
16661 struct symtab_index_entry *entry)
16662 {
16663 void **slot;
16664
16665 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
16666 if (!*slot)
16667 {
16668 offset_type len = VEC_length (offset_type, entry->cu_indices);
16669 offset_type val = MAYBE_SWAP (len);
16670 offset_type iter;
16671 int i;
16672
16673 *slot = entry;
16674 entry->index_offset = obstack_object_size (cpool);
16675
16676 obstack_grow (cpool, &val, sizeof (val));
16677 for (i = 0;
16678 VEC_iterate (offset_type, entry->cu_indices, i, iter);
16679 ++i)
16680 {
16681 val = MAYBE_SWAP (iter);
16682 obstack_grow (cpool, &val, sizeof (val));
16683 }
16684 }
16685 else
16686 {
16687 struct symtab_index_entry *old_entry = *slot;
16688 entry->index_offset = old_entry->index_offset;
16689 entry = old_entry;
16690 }
16691 return entry->index_offset;
16692 }
16693
16694 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
16695 constant pool entries going into the obstack CPOOL. */
16696
16697 static void
16698 write_hash_table (struct mapped_symtab *symtab,
16699 struct obstack *output, struct obstack *cpool)
16700 {
16701 offset_type i;
16702 htab_t symbol_hash_table;
16703 htab_t str_table;
16704
16705 symbol_hash_table = create_symbol_hash_table ();
16706 str_table = create_strtab ();
16707
16708 /* We add all the index vectors to the constant pool first, to
16709 ensure alignment is ok. */
16710 for (i = 0; i < symtab->size; ++i)
16711 {
16712 if (symtab->data[i])
16713 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
16714 }
16715
16716 /* Now write out the hash table. */
16717 for (i = 0; i < symtab->size; ++i)
16718 {
16719 offset_type str_off, vec_off;
16720
16721 if (symtab->data[i])
16722 {
16723 str_off = add_string (str_table, cpool, symtab->data[i]->name);
16724 vec_off = symtab->data[i]->index_offset;
16725 }
16726 else
16727 {
16728 /* While 0 is a valid constant pool index, it is not valid
16729 to have 0 for both offsets. */
16730 str_off = 0;
16731 vec_off = 0;
16732 }
16733
16734 str_off = MAYBE_SWAP (str_off);
16735 vec_off = MAYBE_SWAP (vec_off);
16736
16737 obstack_grow (output, &str_off, sizeof (str_off));
16738 obstack_grow (output, &vec_off, sizeof (vec_off));
16739 }
16740
16741 htab_delete (str_table);
16742 htab_delete (symbol_hash_table);
16743 }
16744
16745 /* Struct to map psymtab to CU index in the index file. */
16746 struct psymtab_cu_index_map
16747 {
16748 struct partial_symtab *psymtab;
16749 unsigned int cu_index;
16750 };
16751
16752 static hashval_t
16753 hash_psymtab_cu_index (const void *item)
16754 {
16755 const struct psymtab_cu_index_map *map = item;
16756
16757 return htab_hash_pointer (map->psymtab);
16758 }
16759
16760 static int
16761 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
16762 {
16763 const struct psymtab_cu_index_map *lhs = item_lhs;
16764 const struct psymtab_cu_index_map *rhs = item_rhs;
16765
16766 return lhs->psymtab == rhs->psymtab;
16767 }
16768
16769 /* Helper struct for building the address table. */
16770 struct addrmap_index_data
16771 {
16772 struct objfile *objfile;
16773 struct obstack *addr_obstack;
16774 htab_t cu_index_htab;
16775
16776 /* Non-zero if the previous_* fields are valid.
16777 We can't write an entry until we see the next entry (since it is only then
16778 that we know the end of the entry). */
16779 int previous_valid;
16780 /* Index of the CU in the table of all CUs in the index file. */
16781 unsigned int previous_cu_index;
16782 /* Start address of the CU. */
16783 CORE_ADDR previous_cu_start;
16784 };
16785
16786 /* Write an address entry to OBSTACK. */
16787
16788 static void
16789 add_address_entry (struct objfile *objfile, struct obstack *obstack,
16790 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
16791 {
16792 offset_type cu_index_to_write;
16793 char addr[8];
16794 CORE_ADDR baseaddr;
16795
16796 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16797
16798 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
16799 obstack_grow (obstack, addr, 8);
16800 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
16801 obstack_grow (obstack, addr, 8);
16802 cu_index_to_write = MAYBE_SWAP (cu_index);
16803 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
16804 }
16805
16806 /* Worker function for traversing an addrmap to build the address table. */
16807
16808 static int
16809 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
16810 {
16811 struct addrmap_index_data *data = datap;
16812 struct partial_symtab *pst = obj;
16813 offset_type cu_index;
16814 void **slot;
16815
16816 if (data->previous_valid)
16817 add_address_entry (data->objfile, data->addr_obstack,
16818 data->previous_cu_start, start_addr,
16819 data->previous_cu_index);
16820
16821 data->previous_cu_start = start_addr;
16822 if (pst != NULL)
16823 {
16824 struct psymtab_cu_index_map find_map, *map;
16825 find_map.psymtab = pst;
16826 map = htab_find (data->cu_index_htab, &find_map);
16827 gdb_assert (map != NULL);
16828 data->previous_cu_index = map->cu_index;
16829 data->previous_valid = 1;
16830 }
16831 else
16832 data->previous_valid = 0;
16833
16834 return 0;
16835 }
16836
16837 /* Write OBJFILE's address map to OBSTACK.
16838 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
16839 in the index file. */
16840
16841 static void
16842 write_address_map (struct objfile *objfile, struct obstack *obstack,
16843 htab_t cu_index_htab)
16844 {
16845 struct addrmap_index_data addrmap_index_data;
16846
16847 /* When writing the address table, we have to cope with the fact that
16848 the addrmap iterator only provides the start of a region; we have to
16849 wait until the next invocation to get the start of the next region. */
16850
16851 addrmap_index_data.objfile = objfile;
16852 addrmap_index_data.addr_obstack = obstack;
16853 addrmap_index_data.cu_index_htab = cu_index_htab;
16854 addrmap_index_data.previous_valid = 0;
16855
16856 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
16857 &addrmap_index_data);
16858
16859 /* It's highly unlikely the last entry (end address = 0xff...ff)
16860 is valid, but we should still handle it.
16861 The end address is recorded as the start of the next region, but that
16862 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
16863 anyway. */
16864 if (addrmap_index_data.previous_valid)
16865 add_address_entry (objfile, obstack,
16866 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
16867 addrmap_index_data.previous_cu_index);
16868 }
16869
16870 /* Add a list of partial symbols to SYMTAB. */
16871
16872 static void
16873 write_psymbols (struct mapped_symtab *symtab,
16874 htab_t psyms_seen,
16875 struct partial_symbol **psymp,
16876 int count,
16877 offset_type cu_index,
16878 int is_static)
16879 {
16880 for (; count-- > 0; ++psymp)
16881 {
16882 void **slot, *lookup;
16883
16884 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
16885 error (_("Ada is not currently supported by the index"));
16886
16887 /* We only want to add a given psymbol once. However, we also
16888 want to account for whether it is global or static. So, we
16889 may add it twice, using slightly different values. */
16890 if (is_static)
16891 {
16892 uintptr_t val = 1 | (uintptr_t) *psymp;
16893
16894 lookup = (void *) val;
16895 }
16896 else
16897 lookup = *psymp;
16898
16899 /* Only add a given psymbol once. */
16900 slot = htab_find_slot (psyms_seen, lookup, INSERT);
16901 if (!*slot)
16902 {
16903 *slot = lookup;
16904 add_index_entry (symtab, SYMBOL_SEARCH_NAME (*psymp), cu_index);
16905 }
16906 }
16907 }
16908
16909 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
16910 exception if there is an error. */
16911
16912 static void
16913 write_obstack (FILE *file, struct obstack *obstack)
16914 {
16915 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
16916 file)
16917 != obstack_object_size (obstack))
16918 error (_("couldn't data write to file"));
16919 }
16920
16921 /* Unlink a file if the argument is not NULL. */
16922
16923 static void
16924 unlink_if_set (void *p)
16925 {
16926 char **filename = p;
16927 if (*filename)
16928 unlink (*filename);
16929 }
16930
16931 /* A helper struct used when iterating over debug_types. */
16932 struct signatured_type_index_data
16933 {
16934 struct objfile *objfile;
16935 struct mapped_symtab *symtab;
16936 struct obstack *types_list;
16937 htab_t psyms_seen;
16938 int cu_index;
16939 };
16940
16941 /* A helper function that writes a single signatured_type to an
16942 obstack. */
16943
16944 static int
16945 write_one_signatured_type (void **slot, void *d)
16946 {
16947 struct signatured_type_index_data *info = d;
16948 struct signatured_type *entry = (struct signatured_type *) *slot;
16949 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
16950 struct partial_symtab *psymtab = per_cu->v.psymtab;
16951 gdb_byte val[8];
16952
16953 write_psymbols (info->symtab,
16954 info->psyms_seen,
16955 info->objfile->global_psymbols.list
16956 + psymtab->globals_offset,
16957 psymtab->n_global_syms, info->cu_index,
16958 0);
16959 write_psymbols (info->symtab,
16960 info->psyms_seen,
16961 info->objfile->static_psymbols.list
16962 + psymtab->statics_offset,
16963 psymtab->n_static_syms, info->cu_index,
16964 1);
16965
16966 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
16967 entry->per_cu.offset.sect_off);
16968 obstack_grow (info->types_list, val, 8);
16969 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset.cu_off);
16970 obstack_grow (info->types_list, val, 8);
16971 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
16972 obstack_grow (info->types_list, val, 8);
16973
16974 ++info->cu_index;
16975
16976 return 1;
16977 }
16978
16979 /* Create an index file for OBJFILE in the directory DIR. */
16980
16981 static void
16982 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
16983 {
16984 struct cleanup *cleanup;
16985 char *filename, *cleanup_filename;
16986 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
16987 struct obstack cu_list, types_cu_list;
16988 int i;
16989 FILE *out_file;
16990 struct mapped_symtab *symtab;
16991 offset_type val, size_of_contents, total_len;
16992 struct stat st;
16993 char buf[8];
16994 htab_t psyms_seen;
16995 htab_t cu_index_htab;
16996 struct psymtab_cu_index_map *psymtab_cu_index_map;
16997
16998 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
16999 return;
17000
17001 if (dwarf2_per_objfile->using_index)
17002 error (_("Cannot use an index to create the index"));
17003
17004 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
17005 error (_("Cannot make an index when the file has multiple .debug_types sections"));
17006
17007 if (stat (objfile->name, &st) < 0)
17008 perror_with_name (objfile->name);
17009
17010 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
17011 INDEX_SUFFIX, (char *) NULL);
17012 cleanup = make_cleanup (xfree, filename);
17013
17014 out_file = fopen (filename, "wb");
17015 if (!out_file)
17016 error (_("Can't open `%s' for writing"), filename);
17017
17018 cleanup_filename = filename;
17019 make_cleanup (unlink_if_set, &cleanup_filename);
17020
17021 symtab = create_mapped_symtab ();
17022 make_cleanup (cleanup_mapped_symtab, symtab);
17023
17024 obstack_init (&addr_obstack);
17025 make_cleanup_obstack_free (&addr_obstack);
17026
17027 obstack_init (&cu_list);
17028 make_cleanup_obstack_free (&cu_list);
17029
17030 obstack_init (&types_cu_list);
17031 make_cleanup_obstack_free (&types_cu_list);
17032
17033 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
17034 NULL, xcalloc, xfree);
17035 make_cleanup_htab_delete (psyms_seen);
17036
17037 /* While we're scanning CU's create a table that maps a psymtab pointer
17038 (which is what addrmap records) to its index (which is what is recorded
17039 in the index file). This will later be needed to write the address
17040 table. */
17041 cu_index_htab = htab_create_alloc (100,
17042 hash_psymtab_cu_index,
17043 eq_psymtab_cu_index,
17044 NULL, xcalloc, xfree);
17045 make_cleanup_htab_delete (cu_index_htab);
17046 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
17047 xmalloc (sizeof (struct psymtab_cu_index_map)
17048 * dwarf2_per_objfile->n_comp_units);
17049 make_cleanup (xfree, psymtab_cu_index_map);
17050
17051 /* The CU list is already sorted, so we don't need to do additional
17052 work here. Also, the debug_types entries do not appear in
17053 all_comp_units, but only in their own hash table. */
17054 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
17055 {
17056 struct dwarf2_per_cu_data *per_cu
17057 = dwarf2_per_objfile->all_comp_units[i];
17058 struct partial_symtab *psymtab = per_cu->v.psymtab;
17059 gdb_byte val[8];
17060 struct psymtab_cu_index_map *map;
17061 void **slot;
17062
17063 write_psymbols (symtab,
17064 psyms_seen,
17065 objfile->global_psymbols.list + psymtab->globals_offset,
17066 psymtab->n_global_syms, i,
17067 0);
17068 write_psymbols (symtab,
17069 psyms_seen,
17070 objfile->static_psymbols.list + psymtab->statics_offset,
17071 psymtab->n_static_syms, i,
17072 1);
17073
17074 map = &psymtab_cu_index_map[i];
17075 map->psymtab = psymtab;
17076 map->cu_index = i;
17077 slot = htab_find_slot (cu_index_htab, map, INSERT);
17078 gdb_assert (slot != NULL);
17079 gdb_assert (*slot == NULL);
17080 *slot = map;
17081
17082 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
17083 per_cu->offset.sect_off);
17084 obstack_grow (&cu_list, val, 8);
17085 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
17086 obstack_grow (&cu_list, val, 8);
17087 }
17088
17089 /* Dump the address map. */
17090 write_address_map (objfile, &addr_obstack, cu_index_htab);
17091
17092 /* Write out the .debug_type entries, if any. */
17093 if (dwarf2_per_objfile->signatured_types)
17094 {
17095 struct signatured_type_index_data sig_data;
17096
17097 sig_data.objfile = objfile;
17098 sig_data.symtab = symtab;
17099 sig_data.types_list = &types_cu_list;
17100 sig_data.psyms_seen = psyms_seen;
17101 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
17102 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
17103 write_one_signatured_type, &sig_data);
17104 }
17105
17106 obstack_init (&constant_pool);
17107 make_cleanup_obstack_free (&constant_pool);
17108 obstack_init (&symtab_obstack);
17109 make_cleanup_obstack_free (&symtab_obstack);
17110 write_hash_table (symtab, &symtab_obstack, &constant_pool);
17111
17112 obstack_init (&contents);
17113 make_cleanup_obstack_free (&contents);
17114 size_of_contents = 6 * sizeof (offset_type);
17115 total_len = size_of_contents;
17116
17117 /* The version number. */
17118 val = MAYBE_SWAP (6);
17119 obstack_grow (&contents, &val, sizeof (val));
17120
17121 /* The offset of the CU list from the start of the file. */
17122 val = MAYBE_SWAP (total_len);
17123 obstack_grow (&contents, &val, sizeof (val));
17124 total_len += obstack_object_size (&cu_list);
17125
17126 /* The offset of the types CU list from the start of the file. */
17127 val = MAYBE_SWAP (total_len);
17128 obstack_grow (&contents, &val, sizeof (val));
17129 total_len += obstack_object_size (&types_cu_list);
17130
17131 /* The offset of the address table from the start of the file. */
17132 val = MAYBE_SWAP (total_len);
17133 obstack_grow (&contents, &val, sizeof (val));
17134 total_len += obstack_object_size (&addr_obstack);
17135
17136 /* The offset of the symbol table from the start of the file. */
17137 val = MAYBE_SWAP (total_len);
17138 obstack_grow (&contents, &val, sizeof (val));
17139 total_len += obstack_object_size (&symtab_obstack);
17140
17141 /* The offset of the constant pool from the start of the file. */
17142 val = MAYBE_SWAP (total_len);
17143 obstack_grow (&contents, &val, sizeof (val));
17144 total_len += obstack_object_size (&constant_pool);
17145
17146 gdb_assert (obstack_object_size (&contents) == size_of_contents);
17147
17148 write_obstack (out_file, &contents);
17149 write_obstack (out_file, &cu_list);
17150 write_obstack (out_file, &types_cu_list);
17151 write_obstack (out_file, &addr_obstack);
17152 write_obstack (out_file, &symtab_obstack);
17153 write_obstack (out_file, &constant_pool);
17154
17155 fclose (out_file);
17156
17157 /* We want to keep the file, so we set cleanup_filename to NULL
17158 here. See unlink_if_set. */
17159 cleanup_filename = NULL;
17160
17161 do_cleanups (cleanup);
17162 }
17163
17164 /* Implementation of the `save gdb-index' command.
17165
17166 Note that the file format used by this command is documented in the
17167 GDB manual. Any changes here must be documented there. */
17168
17169 static void
17170 save_gdb_index_command (char *arg, int from_tty)
17171 {
17172 struct objfile *objfile;
17173
17174 if (!arg || !*arg)
17175 error (_("usage: save gdb-index DIRECTORY"));
17176
17177 ALL_OBJFILES (objfile)
17178 {
17179 struct stat st;
17180
17181 /* If the objfile does not correspond to an actual file, skip it. */
17182 if (stat (objfile->name, &st) < 0)
17183 continue;
17184
17185 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
17186 if (dwarf2_per_objfile)
17187 {
17188 volatile struct gdb_exception except;
17189
17190 TRY_CATCH (except, RETURN_MASK_ERROR)
17191 {
17192 write_psymtabs_to_index (objfile, arg);
17193 }
17194 if (except.reason < 0)
17195 exception_fprintf (gdb_stderr, except,
17196 _("Error while writing index for `%s': "),
17197 objfile->name);
17198 }
17199 }
17200 }
17201
17202 \f
17203
17204 int dwarf2_always_disassemble;
17205
17206 static void
17207 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
17208 struct cmd_list_element *c, const char *value)
17209 {
17210 fprintf_filtered (file,
17211 _("Whether to always disassemble "
17212 "DWARF expressions is %s.\n"),
17213 value);
17214 }
17215
17216 static void
17217 show_check_physname (struct ui_file *file, int from_tty,
17218 struct cmd_list_element *c, const char *value)
17219 {
17220 fprintf_filtered (file,
17221 _("Whether to check \"physname\" is %s.\n"),
17222 value);
17223 }
17224
17225 void _initialize_dwarf2_read (void);
17226
17227 void
17228 _initialize_dwarf2_read (void)
17229 {
17230 struct cmd_list_element *c;
17231
17232 dwarf2_objfile_data_key
17233 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
17234
17235 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
17236 Set DWARF 2 specific variables.\n\
17237 Configure DWARF 2 variables such as the cache size"),
17238 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
17239 0/*allow-unknown*/, &maintenance_set_cmdlist);
17240
17241 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
17242 Show DWARF 2 specific variables\n\
17243 Show DWARF 2 variables such as the cache size"),
17244 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
17245 0/*allow-unknown*/, &maintenance_show_cmdlist);
17246
17247 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
17248 &dwarf2_max_cache_age, _("\
17249 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
17250 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
17251 A higher limit means that cached compilation units will be stored\n\
17252 in memory longer, and more total memory will be used. Zero disables\n\
17253 caching, which can slow down startup."),
17254 NULL,
17255 show_dwarf2_max_cache_age,
17256 &set_dwarf2_cmdlist,
17257 &show_dwarf2_cmdlist);
17258
17259 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
17260 &dwarf2_always_disassemble, _("\
17261 Set whether `info address' always disassembles DWARF expressions."), _("\
17262 Show whether `info address' always disassembles DWARF expressions."), _("\
17263 When enabled, DWARF expressions are always printed in an assembly-like\n\
17264 syntax. When disabled, expressions will be printed in a more\n\
17265 conversational style, when possible."),
17266 NULL,
17267 show_dwarf2_always_disassemble,
17268 &set_dwarf2_cmdlist,
17269 &show_dwarf2_cmdlist);
17270
17271 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
17272 Set debugging of the dwarf2 DIE reader."), _("\
17273 Show debugging of the dwarf2 DIE reader."), _("\
17274 When enabled (non-zero), DIEs are dumped after they are read in.\n\
17275 The value is the maximum depth to print."),
17276 NULL,
17277 NULL,
17278 &setdebuglist, &showdebuglist);
17279
17280 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
17281 Set cross-checking of \"physname\" code against demangler."), _("\
17282 Show cross-checking of \"physname\" code against demangler."), _("\
17283 When enabled, GDB's internal \"physname\" code is checked against\n\
17284 the demangler."),
17285 NULL, show_check_physname,
17286 &setdebuglist, &showdebuglist);
17287
17288 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
17289 _("\
17290 Save a gdb-index file.\n\
17291 Usage: save gdb-index DIRECTORY"),
17292 &save_cmdlist);
17293 set_cmd_completer (c, filename_completer);
17294 }
This page took 0.569814 seconds and 4 git commands to generate.