f48b931a3f3d5c012573db886f4a2ee381e6bd57
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "common/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "common/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "common/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return dwarf2_objfile_data_key.get (objfile);
285 }
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
312 23
313 };
314
315 /* List of DWO/DWP sections. */
316
317 static const struct dwop_section_names
318 {
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
331 }
332 dwop_section_names =
333 {
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
346 };
347
348 /* local data types */
349
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
353 {
354 unsigned int length;
355 short version;
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
359
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
362
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
365
366 enum dwarf_unit_type unit_type;
367
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
371
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
375
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
378 ULONGEST signature;
379
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
382 };
383
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
387 {
388 /* The type to which the method is attached, i.e., its parent class. */
389 struct type *type;
390
391 /* The index of the method in the type's function fieldlists. */
392 int fnfield_index;
393
394 /* The index of the method in the fieldlist. */
395 int index;
396
397 /* The name of the DIE. */
398 const char *name;
399
400 /* The DIE associated with this method. */
401 struct die_info *die;
402 };
403
404 /* Internal state when decoding a particular compilation unit. */
405 struct dwarf2_cu
406 {
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
408 ~dwarf2_cu ();
409
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
411
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
418
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
423 CORE_ADDR low_pc);
424
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
433
434 /* Non-zero if base_address has been set. */
435 int base_known = 0;
436
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
440
441 const char *producer = nullptr;
442
443 private:
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
447
448 public:
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
459
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
463
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
467
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
473
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
476
477 /* How many compilation units ago was this CU last referenced? */
478 int last_used = 0;
479
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
483
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
486
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
491
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
500
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
504
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
507
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit = nullptr;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
523
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
535
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
543
544 /* Mark used when releasing cached dies. */
545 bool mark : 1;
546
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
552
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
563
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
567
568 bool processing_has_namespace_info : 1;
569
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
571
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
574 dwarf2_cu *ancestor;
575
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
578 {
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
582
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
586
587 return nullptr;
588 }
589 };
590
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
593
594 struct stmt_list_hash
595 {
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
598
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
601 };
602
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
605
606 struct type_unit_group
607 {
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
615
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
620
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
625
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
628
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
632
633 /* The symbol tables for this TU (obtained from the files listed in
634 DW_AT_stmt_list).
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
642 };
643
644 /* These sections are what may appear in a (real or virtual) DWO file. */
645
646 struct dwo_sections
647 {
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 VEC (dwarf2_section_info_def) *types;
659 };
660
661 /* CUs/TUs in DWP/DWO files. */
662
663 struct dwo_unit
664 {
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
667
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
671 ULONGEST signature;
672
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
675
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
678 unsigned int length;
679
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
682 };
683
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
687
688 enum dwp_v2_section_ids
689 {
690 DW_SECT_MIN = 1
691 };
692
693 /* Data for one DWO file.
694
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
703
704 struct dwo_file
705 {
706 /* The DW_AT_GNU_dwo_name attribute.
707 For virtual DWO files the name is constructed from the section offsets
708 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
709 from related CU+TUs. */
710 const char *dwo_name;
711
712 /* The DW_AT_comp_dir attribute. */
713 const char *comp_dir;
714
715 /* The bfd, when the file is open. Otherwise this is NULL.
716 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
717 bfd *dbfd;
718
719 /* The sections that make up this DWO file.
720 Remember that for virtual DWO files in DWP V2, these are virtual
721 sections (for lack of a better name). */
722 struct dwo_sections sections;
723
724 /* The CUs in the file.
725 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
726 an extension to handle LLVM's Link Time Optimization output (where
727 multiple source files may be compiled into a single object/dwo pair). */
728 htab_t cus;
729
730 /* Table of TUs in the file.
731 Each element is a struct dwo_unit. */
732 htab_t tus;
733 };
734
735 /* These sections are what may appear in a DWP file. */
736
737 struct dwp_sections
738 {
739 /* These are used by both DWP version 1 and 2. */
740 struct dwarf2_section_info str;
741 struct dwarf2_section_info cu_index;
742 struct dwarf2_section_info tu_index;
743
744 /* These are only used by DWP version 2 files.
745 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
746 sections are referenced by section number, and are not recorded here.
747 In DWP version 2 there is at most one copy of all these sections, each
748 section being (effectively) comprised of the concatenation of all of the
749 individual sections that exist in the version 1 format.
750 To keep the code simple we treat each of these concatenated pieces as a
751 section itself (a virtual section?). */
752 struct dwarf2_section_info abbrev;
753 struct dwarf2_section_info info;
754 struct dwarf2_section_info line;
755 struct dwarf2_section_info loc;
756 struct dwarf2_section_info macinfo;
757 struct dwarf2_section_info macro;
758 struct dwarf2_section_info str_offsets;
759 struct dwarf2_section_info types;
760 };
761
762 /* These sections are what may appear in a virtual DWO file in DWP version 1.
763 A virtual DWO file is a DWO file as it appears in a DWP file. */
764
765 struct virtual_v1_dwo_sections
766 {
767 struct dwarf2_section_info abbrev;
768 struct dwarf2_section_info line;
769 struct dwarf2_section_info loc;
770 struct dwarf2_section_info macinfo;
771 struct dwarf2_section_info macro;
772 struct dwarf2_section_info str_offsets;
773 /* Each DWP hash table entry records one CU or one TU.
774 That is recorded here, and copied to dwo_unit.section. */
775 struct dwarf2_section_info info_or_types;
776 };
777
778 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
779 In version 2, the sections of the DWO files are concatenated together
780 and stored in one section of that name. Thus each ELF section contains
781 several "virtual" sections. */
782
783 struct virtual_v2_dwo_sections
784 {
785 bfd_size_type abbrev_offset;
786 bfd_size_type abbrev_size;
787
788 bfd_size_type line_offset;
789 bfd_size_type line_size;
790
791 bfd_size_type loc_offset;
792 bfd_size_type loc_size;
793
794 bfd_size_type macinfo_offset;
795 bfd_size_type macinfo_size;
796
797 bfd_size_type macro_offset;
798 bfd_size_type macro_size;
799
800 bfd_size_type str_offsets_offset;
801 bfd_size_type str_offsets_size;
802
803 /* Each DWP hash table entry records one CU or one TU.
804 That is recorded here, and copied to dwo_unit.section. */
805 bfd_size_type info_or_types_offset;
806 bfd_size_type info_or_types_size;
807 };
808
809 /* Contents of DWP hash tables. */
810
811 struct dwp_hash_table
812 {
813 uint32_t version, nr_columns;
814 uint32_t nr_units, nr_slots;
815 const gdb_byte *hash_table, *unit_table;
816 union
817 {
818 struct
819 {
820 const gdb_byte *indices;
821 } v1;
822 struct
823 {
824 /* This is indexed by column number and gives the id of the section
825 in that column. */
826 #define MAX_NR_V2_DWO_SECTIONS \
827 (1 /* .debug_info or .debug_types */ \
828 + 1 /* .debug_abbrev */ \
829 + 1 /* .debug_line */ \
830 + 1 /* .debug_loc */ \
831 + 1 /* .debug_str_offsets */ \
832 + 1 /* .debug_macro or .debug_macinfo */)
833 int section_ids[MAX_NR_V2_DWO_SECTIONS];
834 const gdb_byte *offsets;
835 const gdb_byte *sizes;
836 } v2;
837 } section_pool;
838 };
839
840 /* Data for one DWP file. */
841
842 struct dwp_file
843 {
844 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
845 : name (name_),
846 dbfd (std::move (abfd))
847 {
848 }
849
850 /* Name of the file. */
851 const char *name;
852
853 /* File format version. */
854 int version = 0;
855
856 /* The bfd. */
857 gdb_bfd_ref_ptr dbfd;
858
859 /* Section info for this file. */
860 struct dwp_sections sections {};
861
862 /* Table of CUs in the file. */
863 const struct dwp_hash_table *cus = nullptr;
864
865 /* Table of TUs in the file. */
866 const struct dwp_hash_table *tus = nullptr;
867
868 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
869 htab_t loaded_cus {};
870 htab_t loaded_tus {};
871
872 /* Table to map ELF section numbers to their sections.
873 This is only needed for the DWP V1 file format. */
874 unsigned int num_sections = 0;
875 asection **elf_sections = nullptr;
876 };
877
878 /* This represents a '.dwz' file. */
879
880 struct dwz_file
881 {
882 dwz_file (gdb_bfd_ref_ptr &&bfd)
883 : dwz_bfd (std::move (bfd))
884 {
885 }
886
887 /* A dwz file can only contain a few sections. */
888 struct dwarf2_section_info abbrev {};
889 struct dwarf2_section_info info {};
890 struct dwarf2_section_info str {};
891 struct dwarf2_section_info line {};
892 struct dwarf2_section_info macro {};
893 struct dwarf2_section_info gdb_index {};
894 struct dwarf2_section_info debug_names {};
895
896 /* The dwz's BFD. */
897 gdb_bfd_ref_ptr dwz_bfd;
898
899 /* If we loaded the index from an external file, this contains the
900 resources associated to the open file, memory mapping, etc. */
901 std::unique_ptr<index_cache_resource> index_cache_res;
902 };
903
904 /* Struct used to pass misc. parameters to read_die_and_children, et
905 al. which are used for both .debug_info and .debug_types dies.
906 All parameters here are unchanging for the life of the call. This
907 struct exists to abstract away the constant parameters of die reading. */
908
909 struct die_reader_specs
910 {
911 /* The bfd of die_section. */
912 bfd* abfd;
913
914 /* The CU of the DIE we are parsing. */
915 struct dwarf2_cu *cu;
916
917 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
918 struct dwo_file *dwo_file;
919
920 /* The section the die comes from.
921 This is either .debug_info or .debug_types, or the .dwo variants. */
922 struct dwarf2_section_info *die_section;
923
924 /* die_section->buffer. */
925 const gdb_byte *buffer;
926
927 /* The end of the buffer. */
928 const gdb_byte *buffer_end;
929
930 /* The value of the DW_AT_comp_dir attribute. */
931 const char *comp_dir;
932
933 /* The abbreviation table to use when reading the DIEs. */
934 struct abbrev_table *abbrev_table;
935 };
936
937 /* Type of function passed to init_cutu_and_read_dies, et.al. */
938 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
939 const gdb_byte *info_ptr,
940 struct die_info *comp_unit_die,
941 int has_children,
942 void *data);
943
944 /* A 1-based directory index. This is a strong typedef to prevent
945 accidentally using a directory index as a 0-based index into an
946 array/vector. */
947 enum class dir_index : unsigned int {};
948
949 /* Likewise, a 1-based file name index. */
950 enum class file_name_index : unsigned int {};
951
952 struct file_entry
953 {
954 file_entry () = default;
955
956 file_entry (const char *name_, dir_index d_index_,
957 unsigned int mod_time_, unsigned int length_)
958 : name (name_),
959 d_index (d_index_),
960 mod_time (mod_time_),
961 length (length_)
962 {}
963
964 /* Return the include directory at D_INDEX stored in LH. Returns
965 NULL if D_INDEX is out of bounds. */
966 const char *include_dir (const line_header *lh) const;
967
968 /* The file name. Note this is an observing pointer. The memory is
969 owned by debug_line_buffer. */
970 const char *name {};
971
972 /* The directory index (1-based). */
973 dir_index d_index {};
974
975 unsigned int mod_time {};
976
977 unsigned int length {};
978
979 /* True if referenced by the Line Number Program. */
980 bool included_p {};
981
982 /* The associated symbol table, if any. */
983 struct symtab *symtab {};
984 };
985
986 /* The line number information for a compilation unit (found in the
987 .debug_line section) begins with a "statement program header",
988 which contains the following information. */
989 struct line_header
990 {
991 line_header ()
992 : offset_in_dwz {}
993 {}
994
995 /* Add an entry to the include directory table. */
996 void add_include_dir (const char *include_dir);
997
998 /* Add an entry to the file name table. */
999 void add_file_name (const char *name, dir_index d_index,
1000 unsigned int mod_time, unsigned int length);
1001
1002 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1003 is out of bounds. */
1004 const char *include_dir_at (dir_index index) const
1005 {
1006 /* Convert directory index number (1-based) to vector index
1007 (0-based). */
1008 size_t vec_index = to_underlying (index) - 1;
1009
1010 if (vec_index >= include_dirs.size ())
1011 return NULL;
1012 return include_dirs[vec_index];
1013 }
1014
1015 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1016 is out of bounds. */
1017 file_entry *file_name_at (file_name_index index)
1018 {
1019 /* Convert file name index number (1-based) to vector index
1020 (0-based). */
1021 size_t vec_index = to_underlying (index) - 1;
1022
1023 if (vec_index >= file_names.size ())
1024 return NULL;
1025 return &file_names[vec_index];
1026 }
1027
1028 /* Offset of line number information in .debug_line section. */
1029 sect_offset sect_off {};
1030
1031 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1032 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1033
1034 unsigned int total_length {};
1035 unsigned short version {};
1036 unsigned int header_length {};
1037 unsigned char minimum_instruction_length {};
1038 unsigned char maximum_ops_per_instruction {};
1039 unsigned char default_is_stmt {};
1040 int line_base {};
1041 unsigned char line_range {};
1042 unsigned char opcode_base {};
1043
1044 /* standard_opcode_lengths[i] is the number of operands for the
1045 standard opcode whose value is i. This means that
1046 standard_opcode_lengths[0] is unused, and the last meaningful
1047 element is standard_opcode_lengths[opcode_base - 1]. */
1048 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1049
1050 /* The include_directories table. Note these are observing
1051 pointers. The memory is owned by debug_line_buffer. */
1052 std::vector<const char *> include_dirs;
1053
1054 /* The file_names table. */
1055 std::vector<file_entry> file_names;
1056
1057 /* The start and end of the statement program following this
1058 header. These point into dwarf2_per_objfile->line_buffer. */
1059 const gdb_byte *statement_program_start {}, *statement_program_end {};
1060 };
1061
1062 typedef std::unique_ptr<line_header> line_header_up;
1063
1064 const char *
1065 file_entry::include_dir (const line_header *lh) const
1066 {
1067 return lh->include_dir_at (d_index);
1068 }
1069
1070 /* When we construct a partial symbol table entry we only
1071 need this much information. */
1072 struct partial_die_info : public allocate_on_obstack
1073 {
1074 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1075
1076 /* Disable assign but still keep copy ctor, which is needed
1077 load_partial_dies. */
1078 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1079
1080 /* Adjust the partial die before generating a symbol for it. This
1081 function may set the is_external flag or change the DIE's
1082 name. */
1083 void fixup (struct dwarf2_cu *cu);
1084
1085 /* Read a minimal amount of information into the minimal die
1086 structure. */
1087 const gdb_byte *read (const struct die_reader_specs *reader,
1088 const struct abbrev_info &abbrev,
1089 const gdb_byte *info_ptr);
1090
1091 /* Offset of this DIE. */
1092 const sect_offset sect_off;
1093
1094 /* DWARF-2 tag for this DIE. */
1095 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1096
1097 /* Assorted flags describing the data found in this DIE. */
1098 const unsigned int has_children : 1;
1099
1100 unsigned int is_external : 1;
1101 unsigned int is_declaration : 1;
1102 unsigned int has_type : 1;
1103 unsigned int has_specification : 1;
1104 unsigned int has_pc_info : 1;
1105 unsigned int may_be_inlined : 1;
1106
1107 /* This DIE has been marked DW_AT_main_subprogram. */
1108 unsigned int main_subprogram : 1;
1109
1110 /* Flag set if the SCOPE field of this structure has been
1111 computed. */
1112 unsigned int scope_set : 1;
1113
1114 /* Flag set if the DIE has a byte_size attribute. */
1115 unsigned int has_byte_size : 1;
1116
1117 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1118 unsigned int has_const_value : 1;
1119
1120 /* Flag set if any of the DIE's children are template arguments. */
1121 unsigned int has_template_arguments : 1;
1122
1123 /* Flag set if fixup has been called on this die. */
1124 unsigned int fixup_called : 1;
1125
1126 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1127 unsigned int is_dwz : 1;
1128
1129 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1130 unsigned int spec_is_dwz : 1;
1131
1132 /* The name of this DIE. Normally the value of DW_AT_name, but
1133 sometimes a default name for unnamed DIEs. */
1134 const char *name = nullptr;
1135
1136 /* The linkage name, if present. */
1137 const char *linkage_name = nullptr;
1138
1139 /* The scope to prepend to our children. This is generally
1140 allocated on the comp_unit_obstack, so will disappear
1141 when this compilation unit leaves the cache. */
1142 const char *scope = nullptr;
1143
1144 /* Some data associated with the partial DIE. The tag determines
1145 which field is live. */
1146 union
1147 {
1148 /* The location description associated with this DIE, if any. */
1149 struct dwarf_block *locdesc;
1150 /* The offset of an import, for DW_TAG_imported_unit. */
1151 sect_offset sect_off;
1152 } d {};
1153
1154 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1155 CORE_ADDR lowpc = 0;
1156 CORE_ADDR highpc = 0;
1157
1158 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1159 DW_AT_sibling, if any. */
1160 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1161 could return DW_AT_sibling values to its caller load_partial_dies. */
1162 const gdb_byte *sibling = nullptr;
1163
1164 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1165 DW_AT_specification (or DW_AT_abstract_origin or
1166 DW_AT_extension). */
1167 sect_offset spec_offset {};
1168
1169 /* Pointers to this DIE's parent, first child, and next sibling,
1170 if any. */
1171 struct partial_die_info *die_parent = nullptr;
1172 struct partial_die_info *die_child = nullptr;
1173 struct partial_die_info *die_sibling = nullptr;
1174
1175 friend struct partial_die_info *
1176 dwarf2_cu::find_partial_die (sect_offset sect_off);
1177
1178 private:
1179 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1180 partial_die_info (sect_offset sect_off)
1181 : partial_die_info (sect_off, DW_TAG_padding, 0)
1182 {
1183 }
1184
1185 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1186 int has_children_)
1187 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1188 {
1189 is_external = 0;
1190 is_declaration = 0;
1191 has_type = 0;
1192 has_specification = 0;
1193 has_pc_info = 0;
1194 may_be_inlined = 0;
1195 main_subprogram = 0;
1196 scope_set = 0;
1197 has_byte_size = 0;
1198 has_const_value = 0;
1199 has_template_arguments = 0;
1200 fixup_called = 0;
1201 is_dwz = 0;
1202 spec_is_dwz = 0;
1203 }
1204 };
1205
1206 /* This data structure holds the information of an abbrev. */
1207 struct abbrev_info
1208 {
1209 unsigned int number; /* number identifying abbrev */
1210 enum dwarf_tag tag; /* dwarf tag */
1211 unsigned short has_children; /* boolean */
1212 unsigned short num_attrs; /* number of attributes */
1213 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1214 struct abbrev_info *next; /* next in chain */
1215 };
1216
1217 struct attr_abbrev
1218 {
1219 ENUM_BITFIELD(dwarf_attribute) name : 16;
1220 ENUM_BITFIELD(dwarf_form) form : 16;
1221
1222 /* It is valid only if FORM is DW_FORM_implicit_const. */
1223 LONGEST implicit_const;
1224 };
1225
1226 /* Size of abbrev_table.abbrev_hash_table. */
1227 #define ABBREV_HASH_SIZE 121
1228
1229 /* Top level data structure to contain an abbreviation table. */
1230
1231 struct abbrev_table
1232 {
1233 explicit abbrev_table (sect_offset off)
1234 : sect_off (off)
1235 {
1236 m_abbrevs =
1237 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1238 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1239 }
1240
1241 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1242
1243 /* Allocate space for a struct abbrev_info object in
1244 ABBREV_TABLE. */
1245 struct abbrev_info *alloc_abbrev ();
1246
1247 /* Add an abbreviation to the table. */
1248 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1249
1250 /* Look up an abbrev in the table.
1251 Returns NULL if the abbrev is not found. */
1252
1253 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1254
1255
1256 /* Where the abbrev table came from.
1257 This is used as a sanity check when the table is used. */
1258 const sect_offset sect_off;
1259
1260 /* Storage for the abbrev table. */
1261 auto_obstack abbrev_obstack;
1262
1263 private:
1264
1265 /* Hash table of abbrevs.
1266 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1267 It could be statically allocated, but the previous code didn't so we
1268 don't either. */
1269 struct abbrev_info **m_abbrevs;
1270 };
1271
1272 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1273
1274 /* Attributes have a name and a value. */
1275 struct attribute
1276 {
1277 ENUM_BITFIELD(dwarf_attribute) name : 16;
1278 ENUM_BITFIELD(dwarf_form) form : 15;
1279
1280 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1281 field should be in u.str (existing only for DW_STRING) but it is kept
1282 here for better struct attribute alignment. */
1283 unsigned int string_is_canonical : 1;
1284
1285 union
1286 {
1287 const char *str;
1288 struct dwarf_block *blk;
1289 ULONGEST unsnd;
1290 LONGEST snd;
1291 CORE_ADDR addr;
1292 ULONGEST signature;
1293 }
1294 u;
1295 };
1296
1297 /* This data structure holds a complete die structure. */
1298 struct die_info
1299 {
1300 /* DWARF-2 tag for this DIE. */
1301 ENUM_BITFIELD(dwarf_tag) tag : 16;
1302
1303 /* Number of attributes */
1304 unsigned char num_attrs;
1305
1306 /* True if we're presently building the full type name for the
1307 type derived from this DIE. */
1308 unsigned char building_fullname : 1;
1309
1310 /* True if this die is in process. PR 16581. */
1311 unsigned char in_process : 1;
1312
1313 /* Abbrev number */
1314 unsigned int abbrev;
1315
1316 /* Offset in .debug_info or .debug_types section. */
1317 sect_offset sect_off;
1318
1319 /* The dies in a compilation unit form an n-ary tree. PARENT
1320 points to this die's parent; CHILD points to the first child of
1321 this node; and all the children of a given node are chained
1322 together via their SIBLING fields. */
1323 struct die_info *child; /* Its first child, if any. */
1324 struct die_info *sibling; /* Its next sibling, if any. */
1325 struct die_info *parent; /* Its parent, if any. */
1326
1327 /* An array of attributes, with NUM_ATTRS elements. There may be
1328 zero, but it's not common and zero-sized arrays are not
1329 sufficiently portable C. */
1330 struct attribute attrs[1];
1331 };
1332
1333 /* Get at parts of an attribute structure. */
1334
1335 #define DW_STRING(attr) ((attr)->u.str)
1336 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1337 #define DW_UNSND(attr) ((attr)->u.unsnd)
1338 #define DW_BLOCK(attr) ((attr)->u.blk)
1339 #define DW_SND(attr) ((attr)->u.snd)
1340 #define DW_ADDR(attr) ((attr)->u.addr)
1341 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1342
1343 /* Blocks are a bunch of untyped bytes. */
1344 struct dwarf_block
1345 {
1346 size_t size;
1347
1348 /* Valid only if SIZE is not zero. */
1349 const gdb_byte *data;
1350 };
1351
1352 #ifndef ATTR_ALLOC_CHUNK
1353 #define ATTR_ALLOC_CHUNK 4
1354 #endif
1355
1356 /* Allocate fields for structs, unions and enums in this size. */
1357 #ifndef DW_FIELD_ALLOC_CHUNK
1358 #define DW_FIELD_ALLOC_CHUNK 4
1359 #endif
1360
1361 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1362 but this would require a corresponding change in unpack_field_as_long
1363 and friends. */
1364 static int bits_per_byte = 8;
1365
1366 /* When reading a variant or variant part, we track a bit more
1367 information about the field, and store it in an object of this
1368 type. */
1369
1370 struct variant_field
1371 {
1372 /* If we see a DW_TAG_variant, then this will be the discriminant
1373 value. */
1374 ULONGEST discriminant_value;
1375 /* If we see a DW_TAG_variant, then this will be set if this is the
1376 default branch. */
1377 bool default_branch;
1378 /* While reading a DW_TAG_variant_part, this will be set if this
1379 field is the discriminant. */
1380 bool is_discriminant;
1381 };
1382
1383 struct nextfield
1384 {
1385 int accessibility = 0;
1386 int virtuality = 0;
1387 /* Extra information to describe a variant or variant part. */
1388 struct variant_field variant {};
1389 struct field field {};
1390 };
1391
1392 struct fnfieldlist
1393 {
1394 const char *name = nullptr;
1395 std::vector<struct fn_field> fnfields;
1396 };
1397
1398 /* The routines that read and process dies for a C struct or C++ class
1399 pass lists of data member fields and lists of member function fields
1400 in an instance of a field_info structure, as defined below. */
1401 struct field_info
1402 {
1403 /* List of data member and baseclasses fields. */
1404 std::vector<struct nextfield> fields;
1405 std::vector<struct nextfield> baseclasses;
1406
1407 /* Number of fields (including baseclasses). */
1408 int nfields = 0;
1409
1410 /* Set if the accesibility of one of the fields is not public. */
1411 int non_public_fields = 0;
1412
1413 /* Member function fieldlist array, contains name of possibly overloaded
1414 member function, number of overloaded member functions and a pointer
1415 to the head of the member function field chain. */
1416 std::vector<struct fnfieldlist> fnfieldlists;
1417
1418 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1419 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1420 std::vector<struct decl_field> typedef_field_list;
1421
1422 /* Nested types defined by this class and the number of elements in this
1423 list. */
1424 std::vector<struct decl_field> nested_types_list;
1425 };
1426
1427 /* One item on the queue of compilation units to read in full symbols
1428 for. */
1429 struct dwarf2_queue_item
1430 {
1431 struct dwarf2_per_cu_data *per_cu;
1432 enum language pretend_language;
1433 struct dwarf2_queue_item *next;
1434 };
1435
1436 /* The current queue. */
1437 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1438
1439 /* Loaded secondary compilation units are kept in memory until they
1440 have not been referenced for the processing of this many
1441 compilation units. Set this to zero to disable caching. Cache
1442 sizes of up to at least twenty will improve startup time for
1443 typical inter-CU-reference binaries, at an obvious memory cost. */
1444 static int dwarf_max_cache_age = 5;
1445 static void
1446 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1447 struct cmd_list_element *c, const char *value)
1448 {
1449 fprintf_filtered (file, _("The upper bound on the age of cached "
1450 "DWARF compilation units is %s.\n"),
1451 value);
1452 }
1453 \f
1454 /* local function prototypes */
1455
1456 static const char *get_section_name (const struct dwarf2_section_info *);
1457
1458 static const char *get_section_file_name (const struct dwarf2_section_info *);
1459
1460 static void dwarf2_find_base_address (struct die_info *die,
1461 struct dwarf2_cu *cu);
1462
1463 static struct partial_symtab *create_partial_symtab
1464 (struct dwarf2_per_cu_data *per_cu, const char *name);
1465
1466 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1467 const gdb_byte *info_ptr,
1468 struct die_info *type_unit_die,
1469 int has_children, void *data);
1470
1471 static void dwarf2_build_psymtabs_hard
1472 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1473
1474 static void scan_partial_symbols (struct partial_die_info *,
1475 CORE_ADDR *, CORE_ADDR *,
1476 int, struct dwarf2_cu *);
1477
1478 static void add_partial_symbol (struct partial_die_info *,
1479 struct dwarf2_cu *);
1480
1481 static void add_partial_namespace (struct partial_die_info *pdi,
1482 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1483 int set_addrmap, struct dwarf2_cu *cu);
1484
1485 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1486 CORE_ADDR *highpc, int set_addrmap,
1487 struct dwarf2_cu *cu);
1488
1489 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1490 struct dwarf2_cu *cu);
1491
1492 static void add_partial_subprogram (struct partial_die_info *pdi,
1493 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1494 int need_pc, struct dwarf2_cu *cu);
1495
1496 static void dwarf2_read_symtab (struct partial_symtab *,
1497 struct objfile *);
1498
1499 static void psymtab_to_symtab_1 (struct partial_symtab *);
1500
1501 static abbrev_table_up abbrev_table_read_table
1502 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1503 sect_offset);
1504
1505 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1506
1507 static struct partial_die_info *load_partial_dies
1508 (const struct die_reader_specs *, const gdb_byte *, int);
1509
1510 /* A pair of partial_die_info and compilation unit. */
1511 struct cu_partial_die_info
1512 {
1513 /* The compilation unit of the partial_die_info. */
1514 struct dwarf2_cu *cu;
1515 /* A partial_die_info. */
1516 struct partial_die_info *pdi;
1517
1518 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1519 : cu (cu),
1520 pdi (pdi)
1521 { /* Nothhing. */ }
1522
1523 private:
1524 cu_partial_die_info () = delete;
1525 };
1526
1527 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1528 struct dwarf2_cu *);
1529
1530 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1531 struct attribute *, struct attr_abbrev *,
1532 const gdb_byte *);
1533
1534 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1535
1536 static int read_1_signed_byte (bfd *, const gdb_byte *);
1537
1538 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1539
1540 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1541 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1542
1543 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1544
1545 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1546
1547 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1548 unsigned int *);
1549
1550 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1551
1552 static LONGEST read_checked_initial_length_and_offset
1553 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1554 unsigned int *, unsigned int *);
1555
1556 static LONGEST read_offset (bfd *, const gdb_byte *,
1557 const struct comp_unit_head *,
1558 unsigned int *);
1559
1560 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1561
1562 static sect_offset read_abbrev_offset
1563 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1564 struct dwarf2_section_info *, sect_offset);
1565
1566 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1567
1568 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1569
1570 static const char *read_indirect_string
1571 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1572 const struct comp_unit_head *, unsigned int *);
1573
1574 static const char *read_indirect_line_string
1575 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1576 const struct comp_unit_head *, unsigned int *);
1577
1578 static const char *read_indirect_string_at_offset
1579 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1580 LONGEST str_offset);
1581
1582 static const char *read_indirect_string_from_dwz
1583 (struct objfile *objfile, struct dwz_file *, LONGEST);
1584
1585 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1586
1587 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1588 const gdb_byte *,
1589 unsigned int *);
1590
1591 static const char *read_str_index (const struct die_reader_specs *reader,
1592 ULONGEST str_index);
1593
1594 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1595
1596 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1597 struct dwarf2_cu *);
1598
1599 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1600 unsigned int);
1601
1602 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1603 struct dwarf2_cu *cu);
1604
1605 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1606 struct dwarf2_cu *cu);
1607
1608 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1609
1610 static struct die_info *die_specification (struct die_info *die,
1611 struct dwarf2_cu **);
1612
1613 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1614 struct dwarf2_cu *cu);
1615
1616 static void dwarf_decode_lines (struct line_header *, const char *,
1617 struct dwarf2_cu *, struct partial_symtab *,
1618 CORE_ADDR, int decode_mapping);
1619
1620 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1621 const char *);
1622
1623 static struct symbol *new_symbol (struct die_info *, struct type *,
1624 struct dwarf2_cu *, struct symbol * = NULL);
1625
1626 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1627 struct dwarf2_cu *);
1628
1629 static void dwarf2_const_value_attr (const struct attribute *attr,
1630 struct type *type,
1631 const char *name,
1632 struct obstack *obstack,
1633 struct dwarf2_cu *cu, LONGEST *value,
1634 const gdb_byte **bytes,
1635 struct dwarf2_locexpr_baton **baton);
1636
1637 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1638
1639 static int need_gnat_info (struct dwarf2_cu *);
1640
1641 static struct type *die_descriptive_type (struct die_info *,
1642 struct dwarf2_cu *);
1643
1644 static void set_descriptive_type (struct type *, struct die_info *,
1645 struct dwarf2_cu *);
1646
1647 static struct type *die_containing_type (struct die_info *,
1648 struct dwarf2_cu *);
1649
1650 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1651 struct dwarf2_cu *);
1652
1653 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1654
1655 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1656
1657 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1658
1659 static char *typename_concat (struct obstack *obs, const char *prefix,
1660 const char *suffix, int physname,
1661 struct dwarf2_cu *cu);
1662
1663 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1664
1665 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1666
1667 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1668
1669 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1670
1671 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1672
1673 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1674
1675 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1676 struct dwarf2_cu *, struct partial_symtab *);
1677
1678 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1679 values. Keep the items ordered with increasing constraints compliance. */
1680 enum pc_bounds_kind
1681 {
1682 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1683 PC_BOUNDS_NOT_PRESENT,
1684
1685 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1686 were present but they do not form a valid range of PC addresses. */
1687 PC_BOUNDS_INVALID,
1688
1689 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1690 PC_BOUNDS_RANGES,
1691
1692 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1693 PC_BOUNDS_HIGH_LOW,
1694 };
1695
1696 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1697 CORE_ADDR *, CORE_ADDR *,
1698 struct dwarf2_cu *,
1699 struct partial_symtab *);
1700
1701 static void get_scope_pc_bounds (struct die_info *,
1702 CORE_ADDR *, CORE_ADDR *,
1703 struct dwarf2_cu *);
1704
1705 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1706 CORE_ADDR, struct dwarf2_cu *);
1707
1708 static void dwarf2_add_field (struct field_info *, struct die_info *,
1709 struct dwarf2_cu *);
1710
1711 static void dwarf2_attach_fields_to_type (struct field_info *,
1712 struct type *, struct dwarf2_cu *);
1713
1714 static void dwarf2_add_member_fn (struct field_info *,
1715 struct die_info *, struct type *,
1716 struct dwarf2_cu *);
1717
1718 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1719 struct type *,
1720 struct dwarf2_cu *);
1721
1722 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1723
1724 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1725
1726 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1727
1728 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1729
1730 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1731
1732 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1733
1734 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1735
1736 static struct type *read_module_type (struct die_info *die,
1737 struct dwarf2_cu *cu);
1738
1739 static const char *namespace_name (struct die_info *die,
1740 int *is_anonymous, struct dwarf2_cu *);
1741
1742 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1743
1744 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1745
1746 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1747 struct dwarf2_cu *);
1748
1749 static struct die_info *read_die_and_siblings_1
1750 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1751 struct die_info *);
1752
1753 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1754 const gdb_byte *info_ptr,
1755 const gdb_byte **new_info_ptr,
1756 struct die_info *parent);
1757
1758 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1759 struct die_info **, const gdb_byte *,
1760 int *, int);
1761
1762 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1763 struct die_info **, const gdb_byte *,
1764 int *);
1765
1766 static void process_die (struct die_info *, struct dwarf2_cu *);
1767
1768 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1769 struct obstack *);
1770
1771 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1772
1773 static const char *dwarf2_full_name (const char *name,
1774 struct die_info *die,
1775 struct dwarf2_cu *cu);
1776
1777 static const char *dwarf2_physname (const char *name, struct die_info *die,
1778 struct dwarf2_cu *cu);
1779
1780 static struct die_info *dwarf2_extension (struct die_info *die,
1781 struct dwarf2_cu **);
1782
1783 static const char *dwarf_tag_name (unsigned int);
1784
1785 static const char *dwarf_attr_name (unsigned int);
1786
1787 static const char *dwarf_form_name (unsigned int);
1788
1789 static const char *dwarf_bool_name (unsigned int);
1790
1791 static const char *dwarf_type_encoding_name (unsigned int);
1792
1793 static struct die_info *sibling_die (struct die_info *);
1794
1795 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1796
1797 static void dump_die_for_error (struct die_info *);
1798
1799 static void dump_die_1 (struct ui_file *, int level, int max_level,
1800 struct die_info *);
1801
1802 /*static*/ void dump_die (struct die_info *, int max_level);
1803
1804 static void store_in_ref_table (struct die_info *,
1805 struct dwarf2_cu *);
1806
1807 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1808
1809 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1810
1811 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1812 const struct attribute *,
1813 struct dwarf2_cu **);
1814
1815 static struct die_info *follow_die_ref (struct die_info *,
1816 const struct attribute *,
1817 struct dwarf2_cu **);
1818
1819 static struct die_info *follow_die_sig (struct die_info *,
1820 const struct attribute *,
1821 struct dwarf2_cu **);
1822
1823 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1824 struct dwarf2_cu *);
1825
1826 static struct type *get_DW_AT_signature_type (struct die_info *,
1827 const struct attribute *,
1828 struct dwarf2_cu *);
1829
1830 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1831
1832 static void read_signatured_type (struct signatured_type *);
1833
1834 static int attr_to_dynamic_prop (const struct attribute *attr,
1835 struct die_info *die, struct dwarf2_cu *cu,
1836 struct dynamic_prop *prop);
1837
1838 /* memory allocation interface */
1839
1840 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1841
1842 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1843
1844 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1845
1846 static int attr_form_is_block (const struct attribute *);
1847
1848 static int attr_form_is_section_offset (const struct attribute *);
1849
1850 static int attr_form_is_constant (const struct attribute *);
1851
1852 static int attr_form_is_ref (const struct attribute *);
1853
1854 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1855 struct dwarf2_loclist_baton *baton,
1856 const struct attribute *attr);
1857
1858 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1859 struct symbol *sym,
1860 struct dwarf2_cu *cu,
1861 int is_block);
1862
1863 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1864 const gdb_byte *info_ptr,
1865 struct abbrev_info *abbrev);
1866
1867 static hashval_t partial_die_hash (const void *item);
1868
1869 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1870
1871 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1872 (sect_offset sect_off, unsigned int offset_in_dwz,
1873 struct dwarf2_per_objfile *dwarf2_per_objfile);
1874
1875 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1876 struct die_info *comp_unit_die,
1877 enum language pretend_language);
1878
1879 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1880
1881 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1882
1883 static struct type *set_die_type (struct die_info *, struct type *,
1884 struct dwarf2_cu *);
1885
1886 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1887
1888 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1889
1890 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1891 enum language);
1892
1893 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1894 enum language);
1895
1896 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1897 enum language);
1898
1899 static void dwarf2_add_dependence (struct dwarf2_cu *,
1900 struct dwarf2_per_cu_data *);
1901
1902 static void dwarf2_mark (struct dwarf2_cu *);
1903
1904 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1905
1906 static struct type *get_die_type_at_offset (sect_offset,
1907 struct dwarf2_per_cu_data *);
1908
1909 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1910
1911 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1912 enum language pretend_language);
1913
1914 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1915
1916 /* Class, the destructor of which frees all allocated queue entries. This
1917 will only have work to do if an error was thrown while processing the
1918 dwarf. If no error was thrown then the queue entries should have all
1919 been processed, and freed, as we went along. */
1920
1921 class dwarf2_queue_guard
1922 {
1923 public:
1924 dwarf2_queue_guard () = default;
1925
1926 /* Free any entries remaining on the queue. There should only be
1927 entries left if we hit an error while processing the dwarf. */
1928 ~dwarf2_queue_guard ()
1929 {
1930 struct dwarf2_queue_item *item, *last;
1931
1932 item = dwarf2_queue;
1933 while (item)
1934 {
1935 /* Anything still marked queued is likely to be in an
1936 inconsistent state, so discard it. */
1937 if (item->per_cu->queued)
1938 {
1939 if (item->per_cu->cu != NULL)
1940 free_one_cached_comp_unit (item->per_cu);
1941 item->per_cu->queued = 0;
1942 }
1943
1944 last = item;
1945 item = item->next;
1946 xfree (last);
1947 }
1948
1949 dwarf2_queue = dwarf2_queue_tail = NULL;
1950 }
1951 };
1952
1953 /* The return type of find_file_and_directory. Note, the enclosed
1954 string pointers are only valid while this object is valid. */
1955
1956 struct file_and_directory
1957 {
1958 /* The filename. This is never NULL. */
1959 const char *name;
1960
1961 /* The compilation directory. NULL if not known. If we needed to
1962 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1963 points directly to the DW_AT_comp_dir string attribute owned by
1964 the obstack that owns the DIE. */
1965 const char *comp_dir;
1966
1967 /* If we needed to build a new string for comp_dir, this is what
1968 owns the storage. */
1969 std::string comp_dir_storage;
1970 };
1971
1972 static file_and_directory find_file_and_directory (struct die_info *die,
1973 struct dwarf2_cu *cu);
1974
1975 static char *file_full_name (int file, struct line_header *lh,
1976 const char *comp_dir);
1977
1978 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1979 enum class rcuh_kind { COMPILE, TYPE };
1980
1981 static const gdb_byte *read_and_check_comp_unit_head
1982 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1983 struct comp_unit_head *header,
1984 struct dwarf2_section_info *section,
1985 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1986 rcuh_kind section_kind);
1987
1988 static void init_cutu_and_read_dies
1989 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1990 int use_existing_cu, int keep, bool skip_partial,
1991 die_reader_func_ftype *die_reader_func, void *data);
1992
1993 static void init_cutu_and_read_dies_simple
1994 (struct dwarf2_per_cu_data *this_cu,
1995 die_reader_func_ftype *die_reader_func, void *data);
1996
1997 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1998
1999 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2000
2001 static struct dwo_unit *lookup_dwo_unit_in_dwp
2002 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2003 struct dwp_file *dwp_file, const char *comp_dir,
2004 ULONGEST signature, int is_debug_types);
2005
2006 static struct dwp_file *get_dwp_file
2007 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2008
2009 static struct dwo_unit *lookup_dwo_comp_unit
2010 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2011
2012 static struct dwo_unit *lookup_dwo_type_unit
2013 (struct signatured_type *, const char *, const char *);
2014
2015 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2016
2017 static void free_dwo_file (struct dwo_file *);
2018
2019 /* A unique_ptr helper to free a dwo_file. */
2020
2021 struct dwo_file_deleter
2022 {
2023 void operator() (struct dwo_file *df) const
2024 {
2025 free_dwo_file (df);
2026 }
2027 };
2028
2029 /* A unique pointer to a dwo_file. */
2030
2031 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2032
2033 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2034
2035 static void check_producer (struct dwarf2_cu *cu);
2036
2037 static void free_line_header_voidp (void *arg);
2038 \f
2039 /* Various complaints about symbol reading that don't abort the process. */
2040
2041 static void
2042 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2043 {
2044 complaint (_("statement list doesn't fit in .debug_line section"));
2045 }
2046
2047 static void
2048 dwarf2_debug_line_missing_file_complaint (void)
2049 {
2050 complaint (_(".debug_line section has line data without a file"));
2051 }
2052
2053 static void
2054 dwarf2_debug_line_missing_end_sequence_complaint (void)
2055 {
2056 complaint (_(".debug_line section has line "
2057 "program sequence without an end"));
2058 }
2059
2060 static void
2061 dwarf2_complex_location_expr_complaint (void)
2062 {
2063 complaint (_("location expression too complex"));
2064 }
2065
2066 static void
2067 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2068 int arg3)
2069 {
2070 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2071 arg1, arg2, arg3);
2072 }
2073
2074 static void
2075 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2076 {
2077 complaint (_("debug info runs off end of %s section"
2078 " [in module %s]"),
2079 get_section_name (section),
2080 get_section_file_name (section));
2081 }
2082
2083 static void
2084 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2085 {
2086 complaint (_("macro debug info contains a "
2087 "malformed macro definition:\n`%s'"),
2088 arg1);
2089 }
2090
2091 static void
2092 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2093 {
2094 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2095 arg1, arg2);
2096 }
2097
2098 /* Hash function for line_header_hash. */
2099
2100 static hashval_t
2101 line_header_hash (const struct line_header *ofs)
2102 {
2103 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2104 }
2105
2106 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2107
2108 static hashval_t
2109 line_header_hash_voidp (const void *item)
2110 {
2111 const struct line_header *ofs = (const struct line_header *) item;
2112
2113 return line_header_hash (ofs);
2114 }
2115
2116 /* Equality function for line_header_hash. */
2117
2118 static int
2119 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2120 {
2121 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2122 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2123
2124 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2125 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2126 }
2127
2128 \f
2129
2130 /* Read the given attribute value as an address, taking the attribute's
2131 form into account. */
2132
2133 static CORE_ADDR
2134 attr_value_as_address (struct attribute *attr)
2135 {
2136 CORE_ADDR addr;
2137
2138 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2139 && attr->form != DW_FORM_GNU_addr_index)
2140 {
2141 /* Aside from a few clearly defined exceptions, attributes that
2142 contain an address must always be in DW_FORM_addr form.
2143 Unfortunately, some compilers happen to be violating this
2144 requirement by encoding addresses using other forms, such
2145 as DW_FORM_data4 for example. For those broken compilers,
2146 we try to do our best, without any guarantee of success,
2147 to interpret the address correctly. It would also be nice
2148 to generate a complaint, but that would require us to maintain
2149 a list of legitimate cases where a non-address form is allowed,
2150 as well as update callers to pass in at least the CU's DWARF
2151 version. This is more overhead than what we're willing to
2152 expand for a pretty rare case. */
2153 addr = DW_UNSND (attr);
2154 }
2155 else
2156 addr = DW_ADDR (attr);
2157
2158 return addr;
2159 }
2160
2161 /* See declaration. */
2162
2163 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2164 const dwarf2_debug_sections *names)
2165 : objfile (objfile_)
2166 {
2167 if (names == NULL)
2168 names = &dwarf2_elf_names;
2169
2170 bfd *obfd = objfile->obfd;
2171
2172 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2173 locate_sections (obfd, sec, *names);
2174 }
2175
2176 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2177
2178 dwarf2_per_objfile::~dwarf2_per_objfile ()
2179 {
2180 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2181 free_cached_comp_units ();
2182
2183 if (quick_file_names_table)
2184 htab_delete (quick_file_names_table);
2185
2186 if (line_header_hash)
2187 htab_delete (line_header_hash);
2188
2189 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2190 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2191
2192 for (signatured_type *sig_type : all_type_units)
2193 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2194
2195 VEC_free (dwarf2_section_info_def, types);
2196
2197 if (dwo_files != NULL)
2198 free_dwo_files (dwo_files, objfile);
2199
2200 /* Everything else should be on the objfile obstack. */
2201 }
2202
2203 /* See declaration. */
2204
2205 void
2206 dwarf2_per_objfile::free_cached_comp_units ()
2207 {
2208 dwarf2_per_cu_data *per_cu = read_in_chain;
2209 dwarf2_per_cu_data **last_chain = &read_in_chain;
2210 while (per_cu != NULL)
2211 {
2212 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2213
2214 delete per_cu->cu;
2215 *last_chain = next_cu;
2216 per_cu = next_cu;
2217 }
2218 }
2219
2220 /* A helper class that calls free_cached_comp_units on
2221 destruction. */
2222
2223 class free_cached_comp_units
2224 {
2225 public:
2226
2227 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2228 : m_per_objfile (per_objfile)
2229 {
2230 }
2231
2232 ~free_cached_comp_units ()
2233 {
2234 m_per_objfile->free_cached_comp_units ();
2235 }
2236
2237 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2238
2239 private:
2240
2241 dwarf2_per_objfile *m_per_objfile;
2242 };
2243
2244 /* Try to locate the sections we need for DWARF 2 debugging
2245 information and return true if we have enough to do something.
2246 NAMES points to the dwarf2 section names, or is NULL if the standard
2247 ELF names are used. */
2248
2249 int
2250 dwarf2_has_info (struct objfile *objfile,
2251 const struct dwarf2_debug_sections *names)
2252 {
2253 if (objfile->flags & OBJF_READNEVER)
2254 return 0;
2255
2256 struct dwarf2_per_objfile *dwarf2_per_objfile
2257 = get_dwarf2_per_objfile (objfile);
2258
2259 if (dwarf2_per_objfile == NULL)
2260 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2261 names);
2262
2263 return (!dwarf2_per_objfile->info.is_virtual
2264 && dwarf2_per_objfile->info.s.section != NULL
2265 && !dwarf2_per_objfile->abbrev.is_virtual
2266 && dwarf2_per_objfile->abbrev.s.section != NULL);
2267 }
2268
2269 /* Return the containing section of virtual section SECTION. */
2270
2271 static struct dwarf2_section_info *
2272 get_containing_section (const struct dwarf2_section_info *section)
2273 {
2274 gdb_assert (section->is_virtual);
2275 return section->s.containing_section;
2276 }
2277
2278 /* Return the bfd owner of SECTION. */
2279
2280 static struct bfd *
2281 get_section_bfd_owner (const struct dwarf2_section_info *section)
2282 {
2283 if (section->is_virtual)
2284 {
2285 section = get_containing_section (section);
2286 gdb_assert (!section->is_virtual);
2287 }
2288 return section->s.section->owner;
2289 }
2290
2291 /* Return the bfd section of SECTION.
2292 Returns NULL if the section is not present. */
2293
2294 static asection *
2295 get_section_bfd_section (const struct dwarf2_section_info *section)
2296 {
2297 if (section->is_virtual)
2298 {
2299 section = get_containing_section (section);
2300 gdb_assert (!section->is_virtual);
2301 }
2302 return section->s.section;
2303 }
2304
2305 /* Return the name of SECTION. */
2306
2307 static const char *
2308 get_section_name (const struct dwarf2_section_info *section)
2309 {
2310 asection *sectp = get_section_bfd_section (section);
2311
2312 gdb_assert (sectp != NULL);
2313 return bfd_section_name (get_section_bfd_owner (section), sectp);
2314 }
2315
2316 /* Return the name of the file SECTION is in. */
2317
2318 static const char *
2319 get_section_file_name (const struct dwarf2_section_info *section)
2320 {
2321 bfd *abfd = get_section_bfd_owner (section);
2322
2323 return bfd_get_filename (abfd);
2324 }
2325
2326 /* Return the id of SECTION.
2327 Returns 0 if SECTION doesn't exist. */
2328
2329 static int
2330 get_section_id (const struct dwarf2_section_info *section)
2331 {
2332 asection *sectp = get_section_bfd_section (section);
2333
2334 if (sectp == NULL)
2335 return 0;
2336 return sectp->id;
2337 }
2338
2339 /* Return the flags of SECTION.
2340 SECTION (or containing section if this is a virtual section) must exist. */
2341
2342 static int
2343 get_section_flags (const struct dwarf2_section_info *section)
2344 {
2345 asection *sectp = get_section_bfd_section (section);
2346
2347 gdb_assert (sectp != NULL);
2348 return bfd_get_section_flags (sectp->owner, sectp);
2349 }
2350
2351 /* When loading sections, we look either for uncompressed section or for
2352 compressed section names. */
2353
2354 static int
2355 section_is_p (const char *section_name,
2356 const struct dwarf2_section_names *names)
2357 {
2358 if (names->normal != NULL
2359 && strcmp (section_name, names->normal) == 0)
2360 return 1;
2361 if (names->compressed != NULL
2362 && strcmp (section_name, names->compressed) == 0)
2363 return 1;
2364 return 0;
2365 }
2366
2367 /* See declaration. */
2368
2369 void
2370 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2371 const dwarf2_debug_sections &names)
2372 {
2373 flagword aflag = bfd_get_section_flags (abfd, sectp);
2374
2375 if ((aflag & SEC_HAS_CONTENTS) == 0)
2376 {
2377 }
2378 else if (section_is_p (sectp->name, &names.info))
2379 {
2380 this->info.s.section = sectp;
2381 this->info.size = bfd_get_section_size (sectp);
2382 }
2383 else if (section_is_p (sectp->name, &names.abbrev))
2384 {
2385 this->abbrev.s.section = sectp;
2386 this->abbrev.size = bfd_get_section_size (sectp);
2387 }
2388 else if (section_is_p (sectp->name, &names.line))
2389 {
2390 this->line.s.section = sectp;
2391 this->line.size = bfd_get_section_size (sectp);
2392 }
2393 else if (section_is_p (sectp->name, &names.loc))
2394 {
2395 this->loc.s.section = sectp;
2396 this->loc.size = bfd_get_section_size (sectp);
2397 }
2398 else if (section_is_p (sectp->name, &names.loclists))
2399 {
2400 this->loclists.s.section = sectp;
2401 this->loclists.size = bfd_get_section_size (sectp);
2402 }
2403 else if (section_is_p (sectp->name, &names.macinfo))
2404 {
2405 this->macinfo.s.section = sectp;
2406 this->macinfo.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.macro))
2409 {
2410 this->macro.s.section = sectp;
2411 this->macro.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.str))
2414 {
2415 this->str.s.section = sectp;
2416 this->str.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &names.line_str))
2419 {
2420 this->line_str.s.section = sectp;
2421 this->line_str.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.addr))
2424 {
2425 this->addr.s.section = sectp;
2426 this->addr.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.frame))
2429 {
2430 this->frame.s.section = sectp;
2431 this->frame.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.eh_frame))
2434 {
2435 this->eh_frame.s.section = sectp;
2436 this->eh_frame.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.ranges))
2439 {
2440 this->ranges.s.section = sectp;
2441 this->ranges.size = bfd_get_section_size (sectp);
2442 }
2443 else if (section_is_p (sectp->name, &names.rnglists))
2444 {
2445 this->rnglists.s.section = sectp;
2446 this->rnglists.size = bfd_get_section_size (sectp);
2447 }
2448 else if (section_is_p (sectp->name, &names.types))
2449 {
2450 struct dwarf2_section_info type_section;
2451
2452 memset (&type_section, 0, sizeof (type_section));
2453 type_section.s.section = sectp;
2454 type_section.size = bfd_get_section_size (sectp);
2455
2456 VEC_safe_push (dwarf2_section_info_def, this->types,
2457 &type_section);
2458 }
2459 else if (section_is_p (sectp->name, &names.gdb_index))
2460 {
2461 this->gdb_index.s.section = sectp;
2462 this->gdb_index.size = bfd_get_section_size (sectp);
2463 }
2464 else if (section_is_p (sectp->name, &names.debug_names))
2465 {
2466 this->debug_names.s.section = sectp;
2467 this->debug_names.size = bfd_get_section_size (sectp);
2468 }
2469 else if (section_is_p (sectp->name, &names.debug_aranges))
2470 {
2471 this->debug_aranges.s.section = sectp;
2472 this->debug_aranges.size = bfd_get_section_size (sectp);
2473 }
2474
2475 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2476 && bfd_section_vma (abfd, sectp) == 0)
2477 this->has_section_at_zero = true;
2478 }
2479
2480 /* A helper function that decides whether a section is empty,
2481 or not present. */
2482
2483 static int
2484 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2485 {
2486 if (section->is_virtual)
2487 return section->size == 0;
2488 return section->s.section == NULL || section->size == 0;
2489 }
2490
2491 /* See dwarf2read.h. */
2492
2493 void
2494 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2495 {
2496 asection *sectp;
2497 bfd *abfd;
2498 gdb_byte *buf, *retbuf;
2499
2500 if (info->readin)
2501 return;
2502 info->buffer = NULL;
2503 info->readin = 1;
2504
2505 if (dwarf2_section_empty_p (info))
2506 return;
2507
2508 sectp = get_section_bfd_section (info);
2509
2510 /* If this is a virtual section we need to read in the real one first. */
2511 if (info->is_virtual)
2512 {
2513 struct dwarf2_section_info *containing_section =
2514 get_containing_section (info);
2515
2516 gdb_assert (sectp != NULL);
2517 if ((sectp->flags & SEC_RELOC) != 0)
2518 {
2519 error (_("Dwarf Error: DWP format V2 with relocations is not"
2520 " supported in section %s [in module %s]"),
2521 get_section_name (info), get_section_file_name (info));
2522 }
2523 dwarf2_read_section (objfile, containing_section);
2524 /* Other code should have already caught virtual sections that don't
2525 fit. */
2526 gdb_assert (info->virtual_offset + info->size
2527 <= containing_section->size);
2528 /* If the real section is empty or there was a problem reading the
2529 section we shouldn't get here. */
2530 gdb_assert (containing_section->buffer != NULL);
2531 info->buffer = containing_section->buffer + info->virtual_offset;
2532 return;
2533 }
2534
2535 /* If the section has relocations, we must read it ourselves.
2536 Otherwise we attach it to the BFD. */
2537 if ((sectp->flags & SEC_RELOC) == 0)
2538 {
2539 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2540 return;
2541 }
2542
2543 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2544 info->buffer = buf;
2545
2546 /* When debugging .o files, we may need to apply relocations; see
2547 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2548 We never compress sections in .o files, so we only need to
2549 try this when the section is not compressed. */
2550 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2551 if (retbuf != NULL)
2552 {
2553 info->buffer = retbuf;
2554 return;
2555 }
2556
2557 abfd = get_section_bfd_owner (info);
2558 gdb_assert (abfd != NULL);
2559
2560 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2561 || bfd_bread (buf, info->size, abfd) != info->size)
2562 {
2563 error (_("Dwarf Error: Can't read DWARF data"
2564 " in section %s [in module %s]"),
2565 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2566 }
2567 }
2568
2569 /* A helper function that returns the size of a section in a safe way.
2570 If you are positive that the section has been read before using the
2571 size, then it is safe to refer to the dwarf2_section_info object's
2572 "size" field directly. In other cases, you must call this
2573 function, because for compressed sections the size field is not set
2574 correctly until the section has been read. */
2575
2576 static bfd_size_type
2577 dwarf2_section_size (struct objfile *objfile,
2578 struct dwarf2_section_info *info)
2579 {
2580 if (!info->readin)
2581 dwarf2_read_section (objfile, info);
2582 return info->size;
2583 }
2584
2585 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2586 SECTION_NAME. */
2587
2588 void
2589 dwarf2_get_section_info (struct objfile *objfile,
2590 enum dwarf2_section_enum sect,
2591 asection **sectp, const gdb_byte **bufp,
2592 bfd_size_type *sizep)
2593 {
2594 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2595 struct dwarf2_section_info *info;
2596
2597 /* We may see an objfile without any DWARF, in which case we just
2598 return nothing. */
2599 if (data == NULL)
2600 {
2601 *sectp = NULL;
2602 *bufp = NULL;
2603 *sizep = 0;
2604 return;
2605 }
2606 switch (sect)
2607 {
2608 case DWARF2_DEBUG_FRAME:
2609 info = &data->frame;
2610 break;
2611 case DWARF2_EH_FRAME:
2612 info = &data->eh_frame;
2613 break;
2614 default:
2615 gdb_assert_not_reached ("unexpected section");
2616 }
2617
2618 dwarf2_read_section (objfile, info);
2619
2620 *sectp = get_section_bfd_section (info);
2621 *bufp = info->buffer;
2622 *sizep = info->size;
2623 }
2624
2625 /* A helper function to find the sections for a .dwz file. */
2626
2627 static void
2628 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2629 {
2630 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2631
2632 /* Note that we only support the standard ELF names, because .dwz
2633 is ELF-only (at the time of writing). */
2634 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2635 {
2636 dwz_file->abbrev.s.section = sectp;
2637 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2638 }
2639 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2640 {
2641 dwz_file->info.s.section = sectp;
2642 dwz_file->info.size = bfd_get_section_size (sectp);
2643 }
2644 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2645 {
2646 dwz_file->str.s.section = sectp;
2647 dwz_file->str.size = bfd_get_section_size (sectp);
2648 }
2649 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2650 {
2651 dwz_file->line.s.section = sectp;
2652 dwz_file->line.size = bfd_get_section_size (sectp);
2653 }
2654 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2655 {
2656 dwz_file->macro.s.section = sectp;
2657 dwz_file->macro.size = bfd_get_section_size (sectp);
2658 }
2659 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2660 {
2661 dwz_file->gdb_index.s.section = sectp;
2662 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2663 }
2664 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2665 {
2666 dwz_file->debug_names.s.section = sectp;
2667 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2668 }
2669 }
2670
2671 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2672 there is no .gnu_debugaltlink section in the file. Error if there
2673 is such a section but the file cannot be found. */
2674
2675 static struct dwz_file *
2676 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2677 {
2678 const char *filename;
2679 bfd_size_type buildid_len_arg;
2680 size_t buildid_len;
2681 bfd_byte *buildid;
2682
2683 if (dwarf2_per_objfile->dwz_file != NULL)
2684 return dwarf2_per_objfile->dwz_file.get ();
2685
2686 bfd_set_error (bfd_error_no_error);
2687 gdb::unique_xmalloc_ptr<char> data
2688 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2689 &buildid_len_arg, &buildid));
2690 if (data == NULL)
2691 {
2692 if (bfd_get_error () == bfd_error_no_error)
2693 return NULL;
2694 error (_("could not read '.gnu_debugaltlink' section: %s"),
2695 bfd_errmsg (bfd_get_error ()));
2696 }
2697
2698 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2699
2700 buildid_len = (size_t) buildid_len_arg;
2701
2702 filename = data.get ();
2703
2704 std::string abs_storage;
2705 if (!IS_ABSOLUTE_PATH (filename))
2706 {
2707 gdb::unique_xmalloc_ptr<char> abs
2708 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2709
2710 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2711 filename = abs_storage.c_str ();
2712 }
2713
2714 /* First try the file name given in the section. If that doesn't
2715 work, try to use the build-id instead. */
2716 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2717 if (dwz_bfd != NULL)
2718 {
2719 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2720 dwz_bfd.reset (nullptr);
2721 }
2722
2723 if (dwz_bfd == NULL)
2724 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2725
2726 if (dwz_bfd == NULL)
2727 error (_("could not find '.gnu_debugaltlink' file for %s"),
2728 objfile_name (dwarf2_per_objfile->objfile));
2729
2730 std::unique_ptr<struct dwz_file> result
2731 (new struct dwz_file (std::move (dwz_bfd)));
2732
2733 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2734 result.get ());
2735
2736 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2737 result->dwz_bfd.get ());
2738 dwarf2_per_objfile->dwz_file = std::move (result);
2739 return dwarf2_per_objfile->dwz_file.get ();
2740 }
2741 \f
2742 /* DWARF quick_symbols_functions support. */
2743
2744 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2745 unique line tables, so we maintain a separate table of all .debug_line
2746 derived entries to support the sharing.
2747 All the quick functions need is the list of file names. We discard the
2748 line_header when we're done and don't need to record it here. */
2749 struct quick_file_names
2750 {
2751 /* The data used to construct the hash key. */
2752 struct stmt_list_hash hash;
2753
2754 /* The number of entries in file_names, real_names. */
2755 unsigned int num_file_names;
2756
2757 /* The file names from the line table, after being run through
2758 file_full_name. */
2759 const char **file_names;
2760
2761 /* The file names from the line table after being run through
2762 gdb_realpath. These are computed lazily. */
2763 const char **real_names;
2764 };
2765
2766 /* When using the index (and thus not using psymtabs), each CU has an
2767 object of this type. This is used to hold information needed by
2768 the various "quick" methods. */
2769 struct dwarf2_per_cu_quick_data
2770 {
2771 /* The file table. This can be NULL if there was no file table
2772 or it's currently not read in.
2773 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2774 struct quick_file_names *file_names;
2775
2776 /* The corresponding symbol table. This is NULL if symbols for this
2777 CU have not yet been read. */
2778 struct compunit_symtab *compunit_symtab;
2779
2780 /* A temporary mark bit used when iterating over all CUs in
2781 expand_symtabs_matching. */
2782 unsigned int mark : 1;
2783
2784 /* True if we've tried to read the file table and found there isn't one.
2785 There will be no point in trying to read it again next time. */
2786 unsigned int no_file_data : 1;
2787 };
2788
2789 /* Utility hash function for a stmt_list_hash. */
2790
2791 static hashval_t
2792 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2793 {
2794 hashval_t v = 0;
2795
2796 if (stmt_list_hash->dwo_unit != NULL)
2797 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2798 v += to_underlying (stmt_list_hash->line_sect_off);
2799 return v;
2800 }
2801
2802 /* Utility equality function for a stmt_list_hash. */
2803
2804 static int
2805 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2806 const struct stmt_list_hash *rhs)
2807 {
2808 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2809 return 0;
2810 if (lhs->dwo_unit != NULL
2811 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2812 return 0;
2813
2814 return lhs->line_sect_off == rhs->line_sect_off;
2815 }
2816
2817 /* Hash function for a quick_file_names. */
2818
2819 static hashval_t
2820 hash_file_name_entry (const void *e)
2821 {
2822 const struct quick_file_names *file_data
2823 = (const struct quick_file_names *) e;
2824
2825 return hash_stmt_list_entry (&file_data->hash);
2826 }
2827
2828 /* Equality function for a quick_file_names. */
2829
2830 static int
2831 eq_file_name_entry (const void *a, const void *b)
2832 {
2833 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2834 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2835
2836 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2837 }
2838
2839 /* Delete function for a quick_file_names. */
2840
2841 static void
2842 delete_file_name_entry (void *e)
2843 {
2844 struct quick_file_names *file_data = (struct quick_file_names *) e;
2845 int i;
2846
2847 for (i = 0; i < file_data->num_file_names; ++i)
2848 {
2849 xfree ((void*) file_data->file_names[i]);
2850 if (file_data->real_names)
2851 xfree ((void*) file_data->real_names[i]);
2852 }
2853
2854 /* The space for the struct itself lives on objfile_obstack,
2855 so we don't free it here. */
2856 }
2857
2858 /* Create a quick_file_names hash table. */
2859
2860 static htab_t
2861 create_quick_file_names_table (unsigned int nr_initial_entries)
2862 {
2863 return htab_create_alloc (nr_initial_entries,
2864 hash_file_name_entry, eq_file_name_entry,
2865 delete_file_name_entry, xcalloc, xfree);
2866 }
2867
2868 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2869 have to be created afterwards. You should call age_cached_comp_units after
2870 processing PER_CU->CU. dw2_setup must have been already called. */
2871
2872 static void
2873 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2874 {
2875 if (per_cu->is_debug_types)
2876 load_full_type_unit (per_cu);
2877 else
2878 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2879
2880 if (per_cu->cu == NULL)
2881 return; /* Dummy CU. */
2882
2883 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2884 }
2885
2886 /* Read in the symbols for PER_CU. */
2887
2888 static void
2889 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2890 {
2891 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2892
2893 /* Skip type_unit_groups, reading the type units they contain
2894 is handled elsewhere. */
2895 if (IS_TYPE_UNIT_GROUP (per_cu))
2896 return;
2897
2898 /* The destructor of dwarf2_queue_guard frees any entries left on
2899 the queue. After this point we're guaranteed to leave this function
2900 with the dwarf queue empty. */
2901 dwarf2_queue_guard q_guard;
2902
2903 if (dwarf2_per_objfile->using_index
2904 ? per_cu->v.quick->compunit_symtab == NULL
2905 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2906 {
2907 queue_comp_unit (per_cu, language_minimal);
2908 load_cu (per_cu, skip_partial);
2909
2910 /* If we just loaded a CU from a DWO, and we're working with an index
2911 that may badly handle TUs, load all the TUs in that DWO as well.
2912 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2913 if (!per_cu->is_debug_types
2914 && per_cu->cu != NULL
2915 && per_cu->cu->dwo_unit != NULL
2916 && dwarf2_per_objfile->index_table != NULL
2917 && dwarf2_per_objfile->index_table->version <= 7
2918 /* DWP files aren't supported yet. */
2919 && get_dwp_file (dwarf2_per_objfile) == NULL)
2920 queue_and_load_all_dwo_tus (per_cu);
2921 }
2922
2923 process_queue (dwarf2_per_objfile);
2924
2925 /* Age the cache, releasing compilation units that have not
2926 been used recently. */
2927 age_cached_comp_units (dwarf2_per_objfile);
2928 }
2929
2930 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2931 the objfile from which this CU came. Returns the resulting symbol
2932 table. */
2933
2934 static struct compunit_symtab *
2935 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2936 {
2937 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2938
2939 gdb_assert (dwarf2_per_objfile->using_index);
2940 if (!per_cu->v.quick->compunit_symtab)
2941 {
2942 free_cached_comp_units freer (dwarf2_per_objfile);
2943 scoped_restore decrementer = increment_reading_symtab ();
2944 dw2_do_instantiate_symtab (per_cu, skip_partial);
2945 process_cu_includes (dwarf2_per_objfile);
2946 }
2947
2948 return per_cu->v.quick->compunit_symtab;
2949 }
2950
2951 /* See declaration. */
2952
2953 dwarf2_per_cu_data *
2954 dwarf2_per_objfile::get_cutu (int index)
2955 {
2956 if (index >= this->all_comp_units.size ())
2957 {
2958 index -= this->all_comp_units.size ();
2959 gdb_assert (index < this->all_type_units.size ());
2960 return &this->all_type_units[index]->per_cu;
2961 }
2962
2963 return this->all_comp_units[index];
2964 }
2965
2966 /* See declaration. */
2967
2968 dwarf2_per_cu_data *
2969 dwarf2_per_objfile::get_cu (int index)
2970 {
2971 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2972
2973 return this->all_comp_units[index];
2974 }
2975
2976 /* See declaration. */
2977
2978 signatured_type *
2979 dwarf2_per_objfile::get_tu (int index)
2980 {
2981 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2982
2983 return this->all_type_units[index];
2984 }
2985
2986 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2987 objfile_obstack, and constructed with the specified field
2988 values. */
2989
2990 static dwarf2_per_cu_data *
2991 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2992 struct dwarf2_section_info *section,
2993 int is_dwz,
2994 sect_offset sect_off, ULONGEST length)
2995 {
2996 struct objfile *objfile = dwarf2_per_objfile->objfile;
2997 dwarf2_per_cu_data *the_cu
2998 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2999 struct dwarf2_per_cu_data);
3000 the_cu->sect_off = sect_off;
3001 the_cu->length = length;
3002 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3003 the_cu->section = section;
3004 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3005 struct dwarf2_per_cu_quick_data);
3006 the_cu->is_dwz = is_dwz;
3007 return the_cu;
3008 }
3009
3010 /* A helper for create_cus_from_index that handles a given list of
3011 CUs. */
3012
3013 static void
3014 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3015 const gdb_byte *cu_list, offset_type n_elements,
3016 struct dwarf2_section_info *section,
3017 int is_dwz)
3018 {
3019 for (offset_type i = 0; i < n_elements; i += 2)
3020 {
3021 gdb_static_assert (sizeof (ULONGEST) >= 8);
3022
3023 sect_offset sect_off
3024 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3025 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3026 cu_list += 2 * 8;
3027
3028 dwarf2_per_cu_data *per_cu
3029 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3030 sect_off, length);
3031 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3032 }
3033 }
3034
3035 /* Read the CU list from the mapped index, and use it to create all
3036 the CU objects for this objfile. */
3037
3038 static void
3039 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3040 const gdb_byte *cu_list, offset_type cu_list_elements,
3041 const gdb_byte *dwz_list, offset_type dwz_elements)
3042 {
3043 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3044 dwarf2_per_objfile->all_comp_units.reserve
3045 ((cu_list_elements + dwz_elements) / 2);
3046
3047 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3048 &dwarf2_per_objfile->info, 0);
3049
3050 if (dwz_elements == 0)
3051 return;
3052
3053 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3054 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3055 &dwz->info, 1);
3056 }
3057
3058 /* Create the signatured type hash table from the index. */
3059
3060 static void
3061 create_signatured_type_table_from_index
3062 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3063 struct dwarf2_section_info *section,
3064 const gdb_byte *bytes,
3065 offset_type elements)
3066 {
3067 struct objfile *objfile = dwarf2_per_objfile->objfile;
3068
3069 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3070 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3071
3072 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3073
3074 for (offset_type i = 0; i < elements; i += 3)
3075 {
3076 struct signatured_type *sig_type;
3077 ULONGEST signature;
3078 void **slot;
3079 cu_offset type_offset_in_tu;
3080
3081 gdb_static_assert (sizeof (ULONGEST) >= 8);
3082 sect_offset sect_off
3083 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3084 type_offset_in_tu
3085 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3086 BFD_ENDIAN_LITTLE);
3087 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3088 bytes += 3 * 8;
3089
3090 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3091 struct signatured_type);
3092 sig_type->signature = signature;
3093 sig_type->type_offset_in_tu = type_offset_in_tu;
3094 sig_type->per_cu.is_debug_types = 1;
3095 sig_type->per_cu.section = section;
3096 sig_type->per_cu.sect_off = sect_off;
3097 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3098 sig_type->per_cu.v.quick
3099 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3100 struct dwarf2_per_cu_quick_data);
3101
3102 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3103 *slot = sig_type;
3104
3105 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3106 }
3107
3108 dwarf2_per_objfile->signatured_types = sig_types_hash;
3109 }
3110
3111 /* Create the signatured type hash table from .debug_names. */
3112
3113 static void
3114 create_signatured_type_table_from_debug_names
3115 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3116 const mapped_debug_names &map,
3117 struct dwarf2_section_info *section,
3118 struct dwarf2_section_info *abbrev_section)
3119 {
3120 struct objfile *objfile = dwarf2_per_objfile->objfile;
3121
3122 dwarf2_read_section (objfile, section);
3123 dwarf2_read_section (objfile, abbrev_section);
3124
3125 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3126 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3127
3128 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3129
3130 for (uint32_t i = 0; i < map.tu_count; ++i)
3131 {
3132 struct signatured_type *sig_type;
3133 void **slot;
3134
3135 sect_offset sect_off
3136 = (sect_offset) (extract_unsigned_integer
3137 (map.tu_table_reordered + i * map.offset_size,
3138 map.offset_size,
3139 map.dwarf5_byte_order));
3140
3141 comp_unit_head cu_header;
3142 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3143 abbrev_section,
3144 section->buffer + to_underlying (sect_off),
3145 rcuh_kind::TYPE);
3146
3147 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3148 struct signatured_type);
3149 sig_type->signature = cu_header.signature;
3150 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3151 sig_type->per_cu.is_debug_types = 1;
3152 sig_type->per_cu.section = section;
3153 sig_type->per_cu.sect_off = sect_off;
3154 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3155 sig_type->per_cu.v.quick
3156 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3157 struct dwarf2_per_cu_quick_data);
3158
3159 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3160 *slot = sig_type;
3161
3162 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3163 }
3164
3165 dwarf2_per_objfile->signatured_types = sig_types_hash;
3166 }
3167
3168 /* Read the address map data from the mapped index, and use it to
3169 populate the objfile's psymtabs_addrmap. */
3170
3171 static void
3172 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3173 struct mapped_index *index)
3174 {
3175 struct objfile *objfile = dwarf2_per_objfile->objfile;
3176 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3177 const gdb_byte *iter, *end;
3178 struct addrmap *mutable_map;
3179 CORE_ADDR baseaddr;
3180
3181 auto_obstack temp_obstack;
3182
3183 mutable_map = addrmap_create_mutable (&temp_obstack);
3184
3185 iter = index->address_table.data ();
3186 end = iter + index->address_table.size ();
3187
3188 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3189
3190 while (iter < end)
3191 {
3192 ULONGEST hi, lo, cu_index;
3193 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3194 iter += 8;
3195 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3196 iter += 8;
3197 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3198 iter += 4;
3199
3200 if (lo > hi)
3201 {
3202 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3203 hex_string (lo), hex_string (hi));
3204 continue;
3205 }
3206
3207 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3208 {
3209 complaint (_(".gdb_index address table has invalid CU number %u"),
3210 (unsigned) cu_index);
3211 continue;
3212 }
3213
3214 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3215 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3216 addrmap_set_empty (mutable_map, lo, hi - 1,
3217 dwarf2_per_objfile->get_cu (cu_index));
3218 }
3219
3220 objfile->partial_symtabs->psymtabs_addrmap
3221 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3222 }
3223
3224 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3225 populate the objfile's psymtabs_addrmap. */
3226
3227 static void
3228 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3229 struct dwarf2_section_info *section)
3230 {
3231 struct objfile *objfile = dwarf2_per_objfile->objfile;
3232 bfd *abfd = objfile->obfd;
3233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3234 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3235 SECT_OFF_TEXT (objfile));
3236
3237 auto_obstack temp_obstack;
3238 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3239
3240 std::unordered_map<sect_offset,
3241 dwarf2_per_cu_data *,
3242 gdb::hash_enum<sect_offset>>
3243 debug_info_offset_to_per_cu;
3244 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3245 {
3246 const auto insertpair
3247 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3248 if (!insertpair.second)
3249 {
3250 warning (_("Section .debug_aranges in %s has duplicate "
3251 "debug_info_offset %s, ignoring .debug_aranges."),
3252 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3253 return;
3254 }
3255 }
3256
3257 dwarf2_read_section (objfile, section);
3258
3259 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3260
3261 const gdb_byte *addr = section->buffer;
3262
3263 while (addr < section->buffer + section->size)
3264 {
3265 const gdb_byte *const entry_addr = addr;
3266 unsigned int bytes_read;
3267
3268 const LONGEST entry_length = read_initial_length (abfd, addr,
3269 &bytes_read);
3270 addr += bytes_read;
3271
3272 const gdb_byte *const entry_end = addr + entry_length;
3273 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3274 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3275 if (addr + entry_length > section->buffer + section->size)
3276 {
3277 warning (_("Section .debug_aranges in %s entry at offset %zu "
3278 "length %s exceeds section length %s, "
3279 "ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 plongest (bytes_read + entry_length),
3282 pulongest (section->size));
3283 return;
3284 }
3285
3286 /* The version number. */
3287 const uint16_t version = read_2_bytes (abfd, addr);
3288 addr += 2;
3289 if (version != 2)
3290 {
3291 warning (_("Section .debug_aranges in %s entry at offset %zu "
3292 "has unsupported version %d, ignoring .debug_aranges."),
3293 objfile_name (objfile), entry_addr - section->buffer,
3294 version);
3295 return;
3296 }
3297
3298 const uint64_t debug_info_offset
3299 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3300 addr += offset_size;
3301 const auto per_cu_it
3302 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3303 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3304 {
3305 warning (_("Section .debug_aranges in %s entry at offset %zu "
3306 "debug_info_offset %s does not exists, "
3307 "ignoring .debug_aranges."),
3308 objfile_name (objfile), entry_addr - section->buffer,
3309 pulongest (debug_info_offset));
3310 return;
3311 }
3312 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3313
3314 const uint8_t address_size = *addr++;
3315 if (address_size < 1 || address_size > 8)
3316 {
3317 warning (_("Section .debug_aranges in %s entry at offset %zu "
3318 "address_size %u is invalid, ignoring .debug_aranges."),
3319 objfile_name (objfile), entry_addr - section->buffer,
3320 address_size);
3321 return;
3322 }
3323
3324 const uint8_t segment_selector_size = *addr++;
3325 if (segment_selector_size != 0)
3326 {
3327 warning (_("Section .debug_aranges in %s entry at offset %zu "
3328 "segment_selector_size %u is not supported, "
3329 "ignoring .debug_aranges."),
3330 objfile_name (objfile), entry_addr - section->buffer,
3331 segment_selector_size);
3332 return;
3333 }
3334
3335 /* Must pad to an alignment boundary that is twice the address
3336 size. It is undocumented by the DWARF standard but GCC does
3337 use it. */
3338 for (size_t padding = ((-(addr - section->buffer))
3339 & (2 * address_size - 1));
3340 padding > 0; padding--)
3341 if (*addr++ != 0)
3342 {
3343 warning (_("Section .debug_aranges in %s entry at offset %zu "
3344 "padding is not zero, ignoring .debug_aranges."),
3345 objfile_name (objfile), entry_addr - section->buffer);
3346 return;
3347 }
3348
3349 for (;;)
3350 {
3351 if (addr + 2 * address_size > entry_end)
3352 {
3353 warning (_("Section .debug_aranges in %s entry at offset %zu "
3354 "address list is not properly terminated, "
3355 "ignoring .debug_aranges."),
3356 objfile_name (objfile), entry_addr - section->buffer);
3357 return;
3358 }
3359 ULONGEST start = extract_unsigned_integer (addr, address_size,
3360 dwarf5_byte_order);
3361 addr += address_size;
3362 ULONGEST length = extract_unsigned_integer (addr, address_size,
3363 dwarf5_byte_order);
3364 addr += address_size;
3365 if (start == 0 && length == 0)
3366 break;
3367 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3368 {
3369 /* Symbol was eliminated due to a COMDAT group. */
3370 continue;
3371 }
3372 ULONGEST end = start + length;
3373 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3374 - baseaddr);
3375 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3376 - baseaddr);
3377 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3378 }
3379 }
3380
3381 objfile->partial_symtabs->psymtabs_addrmap
3382 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3383 }
3384
3385 /* Find a slot in the mapped index INDEX for the object named NAME.
3386 If NAME is found, set *VEC_OUT to point to the CU vector in the
3387 constant pool and return true. If NAME cannot be found, return
3388 false. */
3389
3390 static bool
3391 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3392 offset_type **vec_out)
3393 {
3394 offset_type hash;
3395 offset_type slot, step;
3396 int (*cmp) (const char *, const char *);
3397
3398 gdb::unique_xmalloc_ptr<char> without_params;
3399 if (current_language->la_language == language_cplus
3400 || current_language->la_language == language_fortran
3401 || current_language->la_language == language_d)
3402 {
3403 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3404 not contain any. */
3405
3406 if (strchr (name, '(') != NULL)
3407 {
3408 without_params = cp_remove_params (name);
3409
3410 if (without_params != NULL)
3411 name = without_params.get ();
3412 }
3413 }
3414
3415 /* Index version 4 did not support case insensitive searches. But the
3416 indices for case insensitive languages are built in lowercase, therefore
3417 simulate our NAME being searched is also lowercased. */
3418 hash = mapped_index_string_hash ((index->version == 4
3419 && case_sensitivity == case_sensitive_off
3420 ? 5 : index->version),
3421 name);
3422
3423 slot = hash & (index->symbol_table.size () - 1);
3424 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3425 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3426
3427 for (;;)
3428 {
3429 const char *str;
3430
3431 const auto &bucket = index->symbol_table[slot];
3432 if (bucket.name == 0 && bucket.vec == 0)
3433 return false;
3434
3435 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3436 if (!cmp (name, str))
3437 {
3438 *vec_out = (offset_type *) (index->constant_pool
3439 + MAYBE_SWAP (bucket.vec));
3440 return true;
3441 }
3442
3443 slot = (slot + step) & (index->symbol_table.size () - 1);
3444 }
3445 }
3446
3447 /* A helper function that reads the .gdb_index from BUFFER and fills
3448 in MAP. FILENAME is the name of the file containing the data;
3449 it is used for error reporting. DEPRECATED_OK is true if it is
3450 ok to use deprecated sections.
3451
3452 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3453 out parameters that are filled in with information about the CU and
3454 TU lists in the section.
3455
3456 Returns true if all went well, false otherwise. */
3457
3458 static bool
3459 read_gdb_index_from_buffer (struct objfile *objfile,
3460 const char *filename,
3461 bool deprecated_ok,
3462 gdb::array_view<const gdb_byte> buffer,
3463 struct mapped_index *map,
3464 const gdb_byte **cu_list,
3465 offset_type *cu_list_elements,
3466 const gdb_byte **types_list,
3467 offset_type *types_list_elements)
3468 {
3469 const gdb_byte *addr = &buffer[0];
3470
3471 /* Version check. */
3472 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3473 /* Versions earlier than 3 emitted every copy of a psymbol. This
3474 causes the index to behave very poorly for certain requests. Version 3
3475 contained incomplete addrmap. So, it seems better to just ignore such
3476 indices. */
3477 if (version < 4)
3478 {
3479 static int warning_printed = 0;
3480 if (!warning_printed)
3481 {
3482 warning (_("Skipping obsolete .gdb_index section in %s."),
3483 filename);
3484 warning_printed = 1;
3485 }
3486 return 0;
3487 }
3488 /* Index version 4 uses a different hash function than index version
3489 5 and later.
3490
3491 Versions earlier than 6 did not emit psymbols for inlined
3492 functions. Using these files will cause GDB not to be able to
3493 set breakpoints on inlined functions by name, so we ignore these
3494 indices unless the user has done
3495 "set use-deprecated-index-sections on". */
3496 if (version < 6 && !deprecated_ok)
3497 {
3498 static int warning_printed = 0;
3499 if (!warning_printed)
3500 {
3501 warning (_("\
3502 Skipping deprecated .gdb_index section in %s.\n\
3503 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3504 to use the section anyway."),
3505 filename);
3506 warning_printed = 1;
3507 }
3508 return 0;
3509 }
3510 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3511 of the TU (for symbols coming from TUs),
3512 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3513 Plus gold-generated indices can have duplicate entries for global symbols,
3514 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3515 These are just performance bugs, and we can't distinguish gdb-generated
3516 indices from gold-generated ones, so issue no warning here. */
3517
3518 /* Indexes with higher version than the one supported by GDB may be no
3519 longer backward compatible. */
3520 if (version > 8)
3521 return 0;
3522
3523 map->version = version;
3524
3525 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3526
3527 int i = 0;
3528 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3529 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3530 / 8);
3531 ++i;
3532
3533 *types_list = addr + MAYBE_SWAP (metadata[i]);
3534 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3535 - MAYBE_SWAP (metadata[i]))
3536 / 8);
3537 ++i;
3538
3539 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3540 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3541 map->address_table
3542 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3543 ++i;
3544
3545 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3546 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3547 map->symbol_table
3548 = gdb::array_view<mapped_index::symbol_table_slot>
3549 ((mapped_index::symbol_table_slot *) symbol_table,
3550 (mapped_index::symbol_table_slot *) symbol_table_end);
3551
3552 ++i;
3553 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3554
3555 return 1;
3556 }
3557
3558 /* Callback types for dwarf2_read_gdb_index. */
3559
3560 typedef gdb::function_view
3561 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3562 get_gdb_index_contents_ftype;
3563 typedef gdb::function_view
3564 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3565 get_gdb_index_contents_dwz_ftype;
3566
3567 /* Read .gdb_index. If everything went ok, initialize the "quick"
3568 elements of all the CUs and return 1. Otherwise, return 0. */
3569
3570 static int
3571 dwarf2_read_gdb_index
3572 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3573 get_gdb_index_contents_ftype get_gdb_index_contents,
3574 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3575 {
3576 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3577 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3578 struct dwz_file *dwz;
3579 struct objfile *objfile = dwarf2_per_objfile->objfile;
3580
3581 gdb::array_view<const gdb_byte> main_index_contents
3582 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3583
3584 if (main_index_contents.empty ())
3585 return 0;
3586
3587 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3588 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3589 use_deprecated_index_sections,
3590 main_index_contents, map.get (), &cu_list,
3591 &cu_list_elements, &types_list,
3592 &types_list_elements))
3593 return 0;
3594
3595 /* Don't use the index if it's empty. */
3596 if (map->symbol_table.empty ())
3597 return 0;
3598
3599 /* If there is a .dwz file, read it so we can get its CU list as
3600 well. */
3601 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3602 if (dwz != NULL)
3603 {
3604 struct mapped_index dwz_map;
3605 const gdb_byte *dwz_types_ignore;
3606 offset_type dwz_types_elements_ignore;
3607
3608 gdb::array_view<const gdb_byte> dwz_index_content
3609 = get_gdb_index_contents_dwz (objfile, dwz);
3610
3611 if (dwz_index_content.empty ())
3612 return 0;
3613
3614 if (!read_gdb_index_from_buffer (objfile,
3615 bfd_get_filename (dwz->dwz_bfd), 1,
3616 dwz_index_content, &dwz_map,
3617 &dwz_list, &dwz_list_elements,
3618 &dwz_types_ignore,
3619 &dwz_types_elements_ignore))
3620 {
3621 warning (_("could not read '.gdb_index' section from %s; skipping"),
3622 bfd_get_filename (dwz->dwz_bfd));
3623 return 0;
3624 }
3625 }
3626
3627 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3628 dwz_list, dwz_list_elements);
3629
3630 if (types_list_elements)
3631 {
3632 struct dwarf2_section_info *section;
3633
3634 /* We can only handle a single .debug_types when we have an
3635 index. */
3636 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3637 return 0;
3638
3639 section = VEC_index (dwarf2_section_info_def,
3640 dwarf2_per_objfile->types, 0);
3641
3642 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3643 types_list, types_list_elements);
3644 }
3645
3646 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3647
3648 dwarf2_per_objfile->index_table = std::move (map);
3649 dwarf2_per_objfile->using_index = 1;
3650 dwarf2_per_objfile->quick_file_names_table =
3651 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3652
3653 return 1;
3654 }
3655
3656 /* die_reader_func for dw2_get_file_names. */
3657
3658 static void
3659 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3660 const gdb_byte *info_ptr,
3661 struct die_info *comp_unit_die,
3662 int has_children,
3663 void *data)
3664 {
3665 struct dwarf2_cu *cu = reader->cu;
3666 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3667 struct dwarf2_per_objfile *dwarf2_per_objfile
3668 = cu->per_cu->dwarf2_per_objfile;
3669 struct objfile *objfile = dwarf2_per_objfile->objfile;
3670 struct dwarf2_per_cu_data *lh_cu;
3671 struct attribute *attr;
3672 int i;
3673 void **slot;
3674 struct quick_file_names *qfn;
3675
3676 gdb_assert (! this_cu->is_debug_types);
3677
3678 /* Our callers never want to match partial units -- instead they
3679 will match the enclosing full CU. */
3680 if (comp_unit_die->tag == DW_TAG_partial_unit)
3681 {
3682 this_cu->v.quick->no_file_data = 1;
3683 return;
3684 }
3685
3686 lh_cu = this_cu;
3687 slot = NULL;
3688
3689 line_header_up lh;
3690 sect_offset line_offset {};
3691
3692 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3693 if (attr)
3694 {
3695 struct quick_file_names find_entry;
3696
3697 line_offset = (sect_offset) DW_UNSND (attr);
3698
3699 /* We may have already read in this line header (TU line header sharing).
3700 If we have we're done. */
3701 find_entry.hash.dwo_unit = cu->dwo_unit;
3702 find_entry.hash.line_sect_off = line_offset;
3703 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3704 &find_entry, INSERT);
3705 if (*slot != NULL)
3706 {
3707 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3708 return;
3709 }
3710
3711 lh = dwarf_decode_line_header (line_offset, cu);
3712 }
3713 if (lh == NULL)
3714 {
3715 lh_cu->v.quick->no_file_data = 1;
3716 return;
3717 }
3718
3719 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3720 qfn->hash.dwo_unit = cu->dwo_unit;
3721 qfn->hash.line_sect_off = line_offset;
3722 gdb_assert (slot != NULL);
3723 *slot = qfn;
3724
3725 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3726
3727 qfn->num_file_names = lh->file_names.size ();
3728 qfn->file_names =
3729 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3730 for (i = 0; i < lh->file_names.size (); ++i)
3731 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3732 qfn->real_names = NULL;
3733
3734 lh_cu->v.quick->file_names = qfn;
3735 }
3736
3737 /* A helper for the "quick" functions which attempts to read the line
3738 table for THIS_CU. */
3739
3740 static struct quick_file_names *
3741 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3742 {
3743 /* This should never be called for TUs. */
3744 gdb_assert (! this_cu->is_debug_types);
3745 /* Nor type unit groups. */
3746 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3747
3748 if (this_cu->v.quick->file_names != NULL)
3749 return this_cu->v.quick->file_names;
3750 /* If we know there is no line data, no point in looking again. */
3751 if (this_cu->v.quick->no_file_data)
3752 return NULL;
3753
3754 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3755
3756 if (this_cu->v.quick->no_file_data)
3757 return NULL;
3758 return this_cu->v.quick->file_names;
3759 }
3760
3761 /* A helper for the "quick" functions which computes and caches the
3762 real path for a given file name from the line table. */
3763
3764 static const char *
3765 dw2_get_real_path (struct objfile *objfile,
3766 struct quick_file_names *qfn, int index)
3767 {
3768 if (qfn->real_names == NULL)
3769 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3770 qfn->num_file_names, const char *);
3771
3772 if (qfn->real_names[index] == NULL)
3773 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3774
3775 return qfn->real_names[index];
3776 }
3777
3778 static struct symtab *
3779 dw2_find_last_source_symtab (struct objfile *objfile)
3780 {
3781 struct dwarf2_per_objfile *dwarf2_per_objfile
3782 = get_dwarf2_per_objfile (objfile);
3783 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3784 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3785
3786 if (cust == NULL)
3787 return NULL;
3788
3789 return compunit_primary_filetab (cust);
3790 }
3791
3792 /* Traversal function for dw2_forget_cached_source_info. */
3793
3794 static int
3795 dw2_free_cached_file_names (void **slot, void *info)
3796 {
3797 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3798
3799 if (file_data->real_names)
3800 {
3801 int i;
3802
3803 for (i = 0; i < file_data->num_file_names; ++i)
3804 {
3805 xfree ((void*) file_data->real_names[i]);
3806 file_data->real_names[i] = NULL;
3807 }
3808 }
3809
3810 return 1;
3811 }
3812
3813 static void
3814 dw2_forget_cached_source_info (struct objfile *objfile)
3815 {
3816 struct dwarf2_per_objfile *dwarf2_per_objfile
3817 = get_dwarf2_per_objfile (objfile);
3818
3819 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3820 dw2_free_cached_file_names, NULL);
3821 }
3822
3823 /* Helper function for dw2_map_symtabs_matching_filename that expands
3824 the symtabs and calls the iterator. */
3825
3826 static int
3827 dw2_map_expand_apply (struct objfile *objfile,
3828 struct dwarf2_per_cu_data *per_cu,
3829 const char *name, const char *real_path,
3830 gdb::function_view<bool (symtab *)> callback)
3831 {
3832 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3833
3834 /* Don't visit already-expanded CUs. */
3835 if (per_cu->v.quick->compunit_symtab)
3836 return 0;
3837
3838 /* This may expand more than one symtab, and we want to iterate over
3839 all of them. */
3840 dw2_instantiate_symtab (per_cu, false);
3841
3842 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3843 last_made, callback);
3844 }
3845
3846 /* Implementation of the map_symtabs_matching_filename method. */
3847
3848 static bool
3849 dw2_map_symtabs_matching_filename
3850 (struct objfile *objfile, const char *name, const char *real_path,
3851 gdb::function_view<bool (symtab *)> callback)
3852 {
3853 const char *name_basename = lbasename (name);
3854 struct dwarf2_per_objfile *dwarf2_per_objfile
3855 = get_dwarf2_per_objfile (objfile);
3856
3857 /* The rule is CUs specify all the files, including those used by
3858 any TU, so there's no need to scan TUs here. */
3859
3860 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3861 {
3862 /* We only need to look at symtabs not already expanded. */
3863 if (per_cu->v.quick->compunit_symtab)
3864 continue;
3865
3866 quick_file_names *file_data = dw2_get_file_names (per_cu);
3867 if (file_data == NULL)
3868 continue;
3869
3870 for (int j = 0; j < file_data->num_file_names; ++j)
3871 {
3872 const char *this_name = file_data->file_names[j];
3873 const char *this_real_name;
3874
3875 if (compare_filenames_for_search (this_name, name))
3876 {
3877 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3878 callback))
3879 return true;
3880 continue;
3881 }
3882
3883 /* Before we invoke realpath, which can get expensive when many
3884 files are involved, do a quick comparison of the basenames. */
3885 if (! basenames_may_differ
3886 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3887 continue;
3888
3889 this_real_name = dw2_get_real_path (objfile, file_data, j);
3890 if (compare_filenames_for_search (this_real_name, name))
3891 {
3892 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3893 callback))
3894 return true;
3895 continue;
3896 }
3897
3898 if (real_path != NULL)
3899 {
3900 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3901 gdb_assert (IS_ABSOLUTE_PATH (name));
3902 if (this_real_name != NULL
3903 && FILENAME_CMP (real_path, this_real_name) == 0)
3904 {
3905 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3906 callback))
3907 return true;
3908 continue;
3909 }
3910 }
3911 }
3912 }
3913
3914 return false;
3915 }
3916
3917 /* Struct used to manage iterating over all CUs looking for a symbol. */
3918
3919 struct dw2_symtab_iterator
3920 {
3921 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3922 struct dwarf2_per_objfile *dwarf2_per_objfile;
3923 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3924 int want_specific_block;
3925 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3926 Unused if !WANT_SPECIFIC_BLOCK. */
3927 int block_index;
3928 /* The kind of symbol we're looking for. */
3929 domain_enum domain;
3930 /* The list of CUs from the index entry of the symbol,
3931 or NULL if not found. */
3932 offset_type *vec;
3933 /* The next element in VEC to look at. */
3934 int next;
3935 /* The number of elements in VEC, or zero if there is no match. */
3936 int length;
3937 /* Have we seen a global version of the symbol?
3938 If so we can ignore all further global instances.
3939 This is to work around gold/15646, inefficient gold-generated
3940 indices. */
3941 int global_seen;
3942 };
3943
3944 /* Initialize the index symtab iterator ITER.
3945 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3946 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3947
3948 static void
3949 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3950 struct dwarf2_per_objfile *dwarf2_per_objfile,
3951 int want_specific_block,
3952 int block_index,
3953 domain_enum domain,
3954 const char *name)
3955 {
3956 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3957 iter->want_specific_block = want_specific_block;
3958 iter->block_index = block_index;
3959 iter->domain = domain;
3960 iter->next = 0;
3961 iter->global_seen = 0;
3962
3963 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3964
3965 /* index is NULL if OBJF_READNOW. */
3966 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3967 iter->length = MAYBE_SWAP (*iter->vec);
3968 else
3969 {
3970 iter->vec = NULL;
3971 iter->length = 0;
3972 }
3973 }
3974
3975 /* Return the next matching CU or NULL if there are no more. */
3976
3977 static struct dwarf2_per_cu_data *
3978 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3979 {
3980 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3981
3982 for ( ; iter->next < iter->length; ++iter->next)
3983 {
3984 offset_type cu_index_and_attrs =
3985 MAYBE_SWAP (iter->vec[iter->next + 1]);
3986 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3987 int want_static = iter->block_index != GLOBAL_BLOCK;
3988 /* This value is only valid for index versions >= 7. */
3989 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3990 gdb_index_symbol_kind symbol_kind =
3991 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3992 /* Only check the symbol attributes if they're present.
3993 Indices prior to version 7 don't record them,
3994 and indices >= 7 may elide them for certain symbols
3995 (gold does this). */
3996 int attrs_valid =
3997 (dwarf2_per_objfile->index_table->version >= 7
3998 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3999
4000 /* Don't crash on bad data. */
4001 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4002 + dwarf2_per_objfile->all_type_units.size ()))
4003 {
4004 complaint (_(".gdb_index entry has bad CU index"
4005 " [in module %s]"),
4006 objfile_name (dwarf2_per_objfile->objfile));
4007 continue;
4008 }
4009
4010 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4011
4012 /* Skip if already read in. */
4013 if (per_cu->v.quick->compunit_symtab)
4014 continue;
4015
4016 /* Check static vs global. */
4017 if (attrs_valid)
4018 {
4019 if (iter->want_specific_block
4020 && want_static != is_static)
4021 continue;
4022 /* Work around gold/15646. */
4023 if (!is_static && iter->global_seen)
4024 continue;
4025 if (!is_static)
4026 iter->global_seen = 1;
4027 }
4028
4029 /* Only check the symbol's kind if it has one. */
4030 if (attrs_valid)
4031 {
4032 switch (iter->domain)
4033 {
4034 case VAR_DOMAIN:
4035 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4036 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4037 /* Some types are also in VAR_DOMAIN. */
4038 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4039 continue;
4040 break;
4041 case STRUCT_DOMAIN:
4042 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4043 continue;
4044 break;
4045 case LABEL_DOMAIN:
4046 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4047 continue;
4048 break;
4049 default:
4050 break;
4051 }
4052 }
4053
4054 ++iter->next;
4055 return per_cu;
4056 }
4057
4058 return NULL;
4059 }
4060
4061 static struct compunit_symtab *
4062 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4063 const char *name, domain_enum domain)
4064 {
4065 struct compunit_symtab *stab_best = NULL;
4066 struct dwarf2_per_objfile *dwarf2_per_objfile
4067 = get_dwarf2_per_objfile (objfile);
4068
4069 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4070
4071 struct dw2_symtab_iterator iter;
4072 struct dwarf2_per_cu_data *per_cu;
4073
4074 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4075
4076 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4077 {
4078 struct symbol *sym, *with_opaque = NULL;
4079 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4080 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4081 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4082
4083 sym = block_find_symbol (block, name, domain,
4084 block_find_non_opaque_type_preferred,
4085 &with_opaque);
4086
4087 /* Some caution must be observed with overloaded functions
4088 and methods, since the index will not contain any overload
4089 information (but NAME might contain it). */
4090
4091 if (sym != NULL
4092 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4093 return stab;
4094 if (with_opaque != NULL
4095 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4096 stab_best = stab;
4097
4098 /* Keep looking through other CUs. */
4099 }
4100
4101 return stab_best;
4102 }
4103
4104 static void
4105 dw2_print_stats (struct objfile *objfile)
4106 {
4107 struct dwarf2_per_objfile *dwarf2_per_objfile
4108 = get_dwarf2_per_objfile (objfile);
4109 int total = (dwarf2_per_objfile->all_comp_units.size ()
4110 + dwarf2_per_objfile->all_type_units.size ());
4111 int count = 0;
4112
4113 for (int i = 0; i < total; ++i)
4114 {
4115 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4116
4117 if (!per_cu->v.quick->compunit_symtab)
4118 ++count;
4119 }
4120 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4121 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4122 }
4123
4124 /* This dumps minimal information about the index.
4125 It is called via "mt print objfiles".
4126 One use is to verify .gdb_index has been loaded by the
4127 gdb.dwarf2/gdb-index.exp testcase. */
4128
4129 static void
4130 dw2_dump (struct objfile *objfile)
4131 {
4132 struct dwarf2_per_objfile *dwarf2_per_objfile
4133 = get_dwarf2_per_objfile (objfile);
4134
4135 gdb_assert (dwarf2_per_objfile->using_index);
4136 printf_filtered (".gdb_index:");
4137 if (dwarf2_per_objfile->index_table != NULL)
4138 {
4139 printf_filtered (" version %d\n",
4140 dwarf2_per_objfile->index_table->version);
4141 }
4142 else
4143 printf_filtered (" faked for \"readnow\"\n");
4144 printf_filtered ("\n");
4145 }
4146
4147 static void
4148 dw2_expand_symtabs_for_function (struct objfile *objfile,
4149 const char *func_name)
4150 {
4151 struct dwarf2_per_objfile *dwarf2_per_objfile
4152 = get_dwarf2_per_objfile (objfile);
4153
4154 struct dw2_symtab_iterator iter;
4155 struct dwarf2_per_cu_data *per_cu;
4156
4157 /* Note: It doesn't matter what we pass for block_index here. */
4158 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4159 func_name);
4160
4161 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4162 dw2_instantiate_symtab (per_cu, false);
4163
4164 }
4165
4166 static void
4167 dw2_expand_all_symtabs (struct objfile *objfile)
4168 {
4169 struct dwarf2_per_objfile *dwarf2_per_objfile
4170 = get_dwarf2_per_objfile (objfile);
4171 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4172 + dwarf2_per_objfile->all_type_units.size ());
4173
4174 for (int i = 0; i < total_units; ++i)
4175 {
4176 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4177
4178 /* We don't want to directly expand a partial CU, because if we
4179 read it with the wrong language, then assertion failures can
4180 be triggered later on. See PR symtab/23010. So, tell
4181 dw2_instantiate_symtab to skip partial CUs -- any important
4182 partial CU will be read via DW_TAG_imported_unit anyway. */
4183 dw2_instantiate_symtab (per_cu, true);
4184 }
4185 }
4186
4187 static void
4188 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4189 const char *fullname)
4190 {
4191 struct dwarf2_per_objfile *dwarf2_per_objfile
4192 = get_dwarf2_per_objfile (objfile);
4193
4194 /* We don't need to consider type units here.
4195 This is only called for examining code, e.g. expand_line_sal.
4196 There can be an order of magnitude (or more) more type units
4197 than comp units, and we avoid them if we can. */
4198
4199 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4200 {
4201 /* We only need to look at symtabs not already expanded. */
4202 if (per_cu->v.quick->compunit_symtab)
4203 continue;
4204
4205 quick_file_names *file_data = dw2_get_file_names (per_cu);
4206 if (file_data == NULL)
4207 continue;
4208
4209 for (int j = 0; j < file_data->num_file_names; ++j)
4210 {
4211 const char *this_fullname = file_data->file_names[j];
4212
4213 if (filename_cmp (this_fullname, fullname) == 0)
4214 {
4215 dw2_instantiate_symtab (per_cu, false);
4216 break;
4217 }
4218 }
4219 }
4220 }
4221
4222 static void
4223 dw2_map_matching_symbols (struct objfile *objfile,
4224 const char * name, domain_enum domain,
4225 int global,
4226 int (*callback) (const struct block *,
4227 struct symbol *, void *),
4228 void *data, symbol_name_match_type match,
4229 symbol_compare_ftype *ordered_compare)
4230 {
4231 /* Currently unimplemented; used for Ada. The function can be called if the
4232 current language is Ada for a non-Ada objfile using GNU index. As Ada
4233 does not look for non-Ada symbols this function should just return. */
4234 }
4235
4236 /* Symbol name matcher for .gdb_index names.
4237
4238 Symbol names in .gdb_index have a few particularities:
4239
4240 - There's no indication of which is the language of each symbol.
4241
4242 Since each language has its own symbol name matching algorithm,
4243 and we don't know which language is the right one, we must match
4244 each symbol against all languages. This would be a potential
4245 performance problem if it were not mitigated by the
4246 mapped_index::name_components lookup table, which significantly
4247 reduces the number of times we need to call into this matcher,
4248 making it a non-issue.
4249
4250 - Symbol names in the index have no overload (parameter)
4251 information. I.e., in C++, "foo(int)" and "foo(long)" both
4252 appear as "foo" in the index, for example.
4253
4254 This means that the lookup names passed to the symbol name
4255 matcher functions must have no parameter information either
4256 because (e.g.) symbol search name "foo" does not match
4257 lookup-name "foo(int)" [while swapping search name for lookup
4258 name would match].
4259 */
4260 class gdb_index_symbol_name_matcher
4261 {
4262 public:
4263 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4264 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4265
4266 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4267 Returns true if any matcher matches. */
4268 bool matches (const char *symbol_name);
4269
4270 private:
4271 /* A reference to the lookup name we're matching against. */
4272 const lookup_name_info &m_lookup_name;
4273
4274 /* A vector holding all the different symbol name matchers, for all
4275 languages. */
4276 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4277 };
4278
4279 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4280 (const lookup_name_info &lookup_name)
4281 : m_lookup_name (lookup_name)
4282 {
4283 /* Prepare the vector of comparison functions upfront, to avoid
4284 doing the same work for each symbol. Care is taken to avoid
4285 matching with the same matcher more than once if/when multiple
4286 languages use the same matcher function. */
4287 auto &matchers = m_symbol_name_matcher_funcs;
4288 matchers.reserve (nr_languages);
4289
4290 matchers.push_back (default_symbol_name_matcher);
4291
4292 for (int i = 0; i < nr_languages; i++)
4293 {
4294 const language_defn *lang = language_def ((enum language) i);
4295 symbol_name_matcher_ftype *name_matcher
4296 = get_symbol_name_matcher (lang, m_lookup_name);
4297
4298 /* Don't insert the same comparison routine more than once.
4299 Note that we do this linear walk instead of a seemingly
4300 cheaper sorted insert, or use a std::set or something like
4301 that, because relative order of function addresses is not
4302 stable. This is not a problem in practice because the number
4303 of supported languages is low, and the cost here is tiny
4304 compared to the number of searches we'll do afterwards using
4305 this object. */
4306 if (name_matcher != default_symbol_name_matcher
4307 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4308 == matchers.end ()))
4309 matchers.push_back (name_matcher);
4310 }
4311 }
4312
4313 bool
4314 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4315 {
4316 for (auto matches_name : m_symbol_name_matcher_funcs)
4317 if (matches_name (symbol_name, m_lookup_name, NULL))
4318 return true;
4319
4320 return false;
4321 }
4322
4323 /* Starting from a search name, return the string that finds the upper
4324 bound of all strings that start with SEARCH_NAME in a sorted name
4325 list. Returns the empty string to indicate that the upper bound is
4326 the end of the list. */
4327
4328 static std::string
4329 make_sort_after_prefix_name (const char *search_name)
4330 {
4331 /* When looking to complete "func", we find the upper bound of all
4332 symbols that start with "func" by looking for where we'd insert
4333 the closest string that would follow "func" in lexicographical
4334 order. Usually, that's "func"-with-last-character-incremented,
4335 i.e. "fund". Mind non-ASCII characters, though. Usually those
4336 will be UTF-8 multi-byte sequences, but we can't be certain.
4337 Especially mind the 0xff character, which is a valid character in
4338 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4339 rule out compilers allowing it in identifiers. Note that
4340 conveniently, strcmp/strcasecmp are specified to compare
4341 characters interpreted as unsigned char. So what we do is treat
4342 the whole string as a base 256 number composed of a sequence of
4343 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4344 to 0, and carries 1 to the following more-significant position.
4345 If the very first character in SEARCH_NAME ends up incremented
4346 and carries/overflows, then the upper bound is the end of the
4347 list. The string after the empty string is also the empty
4348 string.
4349
4350 Some examples of this operation:
4351
4352 SEARCH_NAME => "+1" RESULT
4353
4354 "abc" => "abd"
4355 "ab\xff" => "ac"
4356 "\xff" "a" "\xff" => "\xff" "b"
4357 "\xff" => ""
4358 "\xff\xff" => ""
4359 "" => ""
4360
4361 Then, with these symbols for example:
4362
4363 func
4364 func1
4365 fund
4366
4367 completing "func" looks for symbols between "func" and
4368 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4369 which finds "func" and "func1", but not "fund".
4370
4371 And with:
4372
4373 funcÿ (Latin1 'ÿ' [0xff])
4374 funcÿ1
4375 fund
4376
4377 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4378 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4379
4380 And with:
4381
4382 ÿÿ (Latin1 'ÿ' [0xff])
4383 ÿÿ1
4384
4385 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4386 the end of the list.
4387 */
4388 std::string after = search_name;
4389 while (!after.empty () && (unsigned char) after.back () == 0xff)
4390 after.pop_back ();
4391 if (!after.empty ())
4392 after.back () = (unsigned char) after.back () + 1;
4393 return after;
4394 }
4395
4396 /* See declaration. */
4397
4398 std::pair<std::vector<name_component>::const_iterator,
4399 std::vector<name_component>::const_iterator>
4400 mapped_index_base::find_name_components_bounds
4401 (const lookup_name_info &lookup_name_without_params) const
4402 {
4403 auto *name_cmp
4404 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4405
4406 const char *cplus
4407 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4408
4409 /* Comparison function object for lower_bound that matches against a
4410 given symbol name. */
4411 auto lookup_compare_lower = [&] (const name_component &elem,
4412 const char *name)
4413 {
4414 const char *elem_qualified = this->symbol_name_at (elem.idx);
4415 const char *elem_name = elem_qualified + elem.name_offset;
4416 return name_cmp (elem_name, name) < 0;
4417 };
4418
4419 /* Comparison function object for upper_bound that matches against a
4420 given symbol name. */
4421 auto lookup_compare_upper = [&] (const char *name,
4422 const name_component &elem)
4423 {
4424 const char *elem_qualified = this->symbol_name_at (elem.idx);
4425 const char *elem_name = elem_qualified + elem.name_offset;
4426 return name_cmp (name, elem_name) < 0;
4427 };
4428
4429 auto begin = this->name_components.begin ();
4430 auto end = this->name_components.end ();
4431
4432 /* Find the lower bound. */
4433 auto lower = [&] ()
4434 {
4435 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4436 return begin;
4437 else
4438 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4439 } ();
4440
4441 /* Find the upper bound. */
4442 auto upper = [&] ()
4443 {
4444 if (lookup_name_without_params.completion_mode ())
4445 {
4446 /* In completion mode, we want UPPER to point past all
4447 symbols names that have the same prefix. I.e., with
4448 these symbols, and completing "func":
4449
4450 function << lower bound
4451 function1
4452 other_function << upper bound
4453
4454 We find the upper bound by looking for the insertion
4455 point of "func"-with-last-character-incremented,
4456 i.e. "fund". */
4457 std::string after = make_sort_after_prefix_name (cplus);
4458 if (after.empty ())
4459 return end;
4460 return std::lower_bound (lower, end, after.c_str (),
4461 lookup_compare_lower);
4462 }
4463 else
4464 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4465 } ();
4466
4467 return {lower, upper};
4468 }
4469
4470 /* See declaration. */
4471
4472 void
4473 mapped_index_base::build_name_components ()
4474 {
4475 if (!this->name_components.empty ())
4476 return;
4477
4478 this->name_components_casing = case_sensitivity;
4479 auto *name_cmp
4480 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4481
4482 /* The code below only knows how to break apart components of C++
4483 symbol names (and other languages that use '::' as
4484 namespace/module separator). If we add support for wild matching
4485 to some language that uses some other operator (E.g., Ada, Go and
4486 D use '.'), then we'll need to try splitting the symbol name
4487 according to that language too. Note that Ada does support wild
4488 matching, but doesn't currently support .gdb_index. */
4489 auto count = this->symbol_name_count ();
4490 for (offset_type idx = 0; idx < count; idx++)
4491 {
4492 if (this->symbol_name_slot_invalid (idx))
4493 continue;
4494
4495 const char *name = this->symbol_name_at (idx);
4496
4497 /* Add each name component to the name component table. */
4498 unsigned int previous_len = 0;
4499 for (unsigned int current_len = cp_find_first_component (name);
4500 name[current_len] != '\0';
4501 current_len += cp_find_first_component (name + current_len))
4502 {
4503 gdb_assert (name[current_len] == ':');
4504 this->name_components.push_back ({previous_len, idx});
4505 /* Skip the '::'. */
4506 current_len += 2;
4507 previous_len = current_len;
4508 }
4509 this->name_components.push_back ({previous_len, idx});
4510 }
4511
4512 /* Sort name_components elements by name. */
4513 auto name_comp_compare = [&] (const name_component &left,
4514 const name_component &right)
4515 {
4516 const char *left_qualified = this->symbol_name_at (left.idx);
4517 const char *right_qualified = this->symbol_name_at (right.idx);
4518
4519 const char *left_name = left_qualified + left.name_offset;
4520 const char *right_name = right_qualified + right.name_offset;
4521
4522 return name_cmp (left_name, right_name) < 0;
4523 };
4524
4525 std::sort (this->name_components.begin (),
4526 this->name_components.end (),
4527 name_comp_compare);
4528 }
4529
4530 /* Helper for dw2_expand_symtabs_matching that works with a
4531 mapped_index_base instead of the containing objfile. This is split
4532 to a separate function in order to be able to unit test the
4533 name_components matching using a mock mapped_index_base. For each
4534 symbol name that matches, calls MATCH_CALLBACK, passing it the
4535 symbol's index in the mapped_index_base symbol table. */
4536
4537 static void
4538 dw2_expand_symtabs_matching_symbol
4539 (mapped_index_base &index,
4540 const lookup_name_info &lookup_name_in,
4541 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4542 enum search_domain kind,
4543 gdb::function_view<void (offset_type)> match_callback)
4544 {
4545 lookup_name_info lookup_name_without_params
4546 = lookup_name_in.make_ignore_params ();
4547 gdb_index_symbol_name_matcher lookup_name_matcher
4548 (lookup_name_without_params);
4549
4550 /* Build the symbol name component sorted vector, if we haven't
4551 yet. */
4552 index.build_name_components ();
4553
4554 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4555
4556 /* Now for each symbol name in range, check to see if we have a name
4557 match, and if so, call the MATCH_CALLBACK callback. */
4558
4559 /* The same symbol may appear more than once in the range though.
4560 E.g., if we're looking for symbols that complete "w", and we have
4561 a symbol named "w1::w2", we'll find the two name components for
4562 that same symbol in the range. To be sure we only call the
4563 callback once per symbol, we first collect the symbol name
4564 indexes that matched in a temporary vector and ignore
4565 duplicates. */
4566 std::vector<offset_type> matches;
4567 matches.reserve (std::distance (bounds.first, bounds.second));
4568
4569 for (; bounds.first != bounds.second; ++bounds.first)
4570 {
4571 const char *qualified = index.symbol_name_at (bounds.first->idx);
4572
4573 if (!lookup_name_matcher.matches (qualified)
4574 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4575 continue;
4576
4577 matches.push_back (bounds.first->idx);
4578 }
4579
4580 std::sort (matches.begin (), matches.end ());
4581
4582 /* Finally call the callback, once per match. */
4583 ULONGEST prev = -1;
4584 for (offset_type idx : matches)
4585 {
4586 if (prev != idx)
4587 {
4588 match_callback (idx);
4589 prev = idx;
4590 }
4591 }
4592
4593 /* Above we use a type wider than idx's for 'prev', since 0 and
4594 (offset_type)-1 are both possible values. */
4595 static_assert (sizeof (prev) > sizeof (offset_type), "");
4596 }
4597
4598 #if GDB_SELF_TEST
4599
4600 namespace selftests { namespace dw2_expand_symtabs_matching {
4601
4602 /* A mock .gdb_index/.debug_names-like name index table, enough to
4603 exercise dw2_expand_symtabs_matching_symbol, which works with the
4604 mapped_index_base interface. Builds an index from the symbol list
4605 passed as parameter to the constructor. */
4606 class mock_mapped_index : public mapped_index_base
4607 {
4608 public:
4609 mock_mapped_index (gdb::array_view<const char *> symbols)
4610 : m_symbol_table (symbols)
4611 {}
4612
4613 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4614
4615 /* Return the number of names in the symbol table. */
4616 size_t symbol_name_count () const override
4617 {
4618 return m_symbol_table.size ();
4619 }
4620
4621 /* Get the name of the symbol at IDX in the symbol table. */
4622 const char *symbol_name_at (offset_type idx) const override
4623 {
4624 return m_symbol_table[idx];
4625 }
4626
4627 private:
4628 gdb::array_view<const char *> m_symbol_table;
4629 };
4630
4631 /* Convenience function that converts a NULL pointer to a "<null>"
4632 string, to pass to print routines. */
4633
4634 static const char *
4635 string_or_null (const char *str)
4636 {
4637 return str != NULL ? str : "<null>";
4638 }
4639
4640 /* Check if a lookup_name_info built from
4641 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4642 index. EXPECTED_LIST is the list of expected matches, in expected
4643 matching order. If no match expected, then an empty list is
4644 specified. Returns true on success. On failure prints a warning
4645 indicating the file:line that failed, and returns false. */
4646
4647 static bool
4648 check_match (const char *file, int line,
4649 mock_mapped_index &mock_index,
4650 const char *name, symbol_name_match_type match_type,
4651 bool completion_mode,
4652 std::initializer_list<const char *> expected_list)
4653 {
4654 lookup_name_info lookup_name (name, match_type, completion_mode);
4655
4656 bool matched = true;
4657
4658 auto mismatch = [&] (const char *expected_str,
4659 const char *got)
4660 {
4661 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4662 "expected=\"%s\", got=\"%s\"\n"),
4663 file, line,
4664 (match_type == symbol_name_match_type::FULL
4665 ? "FULL" : "WILD"),
4666 name, string_or_null (expected_str), string_or_null (got));
4667 matched = false;
4668 };
4669
4670 auto expected_it = expected_list.begin ();
4671 auto expected_end = expected_list.end ();
4672
4673 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4674 NULL, ALL_DOMAIN,
4675 [&] (offset_type idx)
4676 {
4677 const char *matched_name = mock_index.symbol_name_at (idx);
4678 const char *expected_str
4679 = expected_it == expected_end ? NULL : *expected_it++;
4680
4681 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4682 mismatch (expected_str, matched_name);
4683 });
4684
4685 const char *expected_str
4686 = expected_it == expected_end ? NULL : *expected_it++;
4687 if (expected_str != NULL)
4688 mismatch (expected_str, NULL);
4689
4690 return matched;
4691 }
4692
4693 /* The symbols added to the mock mapped_index for testing (in
4694 canonical form). */
4695 static const char *test_symbols[] = {
4696 "function",
4697 "std::bar",
4698 "std::zfunction",
4699 "std::zfunction2",
4700 "w1::w2",
4701 "ns::foo<char*>",
4702 "ns::foo<int>",
4703 "ns::foo<long>",
4704 "ns2::tmpl<int>::foo2",
4705 "(anonymous namespace)::A::B::C",
4706
4707 /* These are used to check that the increment-last-char in the
4708 matching algorithm for completion doesn't match "t1_fund" when
4709 completing "t1_func". */
4710 "t1_func",
4711 "t1_func1",
4712 "t1_fund",
4713 "t1_fund1",
4714
4715 /* A UTF-8 name with multi-byte sequences to make sure that
4716 cp-name-parser understands this as a single identifier ("função"
4717 is "function" in PT). */
4718 u8"u8função",
4719
4720 /* \377 (0xff) is Latin1 'ÿ'. */
4721 "yfunc\377",
4722
4723 /* \377 (0xff) is Latin1 'ÿ'. */
4724 "\377",
4725 "\377\377123",
4726
4727 /* A name with all sorts of complications. Starts with "z" to make
4728 it easier for the completion tests below. */
4729 #define Z_SYM_NAME \
4730 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4731 "::tuple<(anonymous namespace)::ui*, " \
4732 "std::default_delete<(anonymous namespace)::ui>, void>"
4733
4734 Z_SYM_NAME
4735 };
4736
4737 /* Returns true if the mapped_index_base::find_name_component_bounds
4738 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4739 in completion mode. */
4740
4741 static bool
4742 check_find_bounds_finds (mapped_index_base &index,
4743 const char *search_name,
4744 gdb::array_view<const char *> expected_syms)
4745 {
4746 lookup_name_info lookup_name (search_name,
4747 symbol_name_match_type::FULL, true);
4748
4749 auto bounds = index.find_name_components_bounds (lookup_name);
4750
4751 size_t distance = std::distance (bounds.first, bounds.second);
4752 if (distance != expected_syms.size ())
4753 return false;
4754
4755 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4756 {
4757 auto nc_elem = bounds.first + exp_elem;
4758 const char *qualified = index.symbol_name_at (nc_elem->idx);
4759 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4760 return false;
4761 }
4762
4763 return true;
4764 }
4765
4766 /* Test the lower-level mapped_index::find_name_component_bounds
4767 method. */
4768
4769 static void
4770 test_mapped_index_find_name_component_bounds ()
4771 {
4772 mock_mapped_index mock_index (test_symbols);
4773
4774 mock_index.build_name_components ();
4775
4776 /* Test the lower-level mapped_index::find_name_component_bounds
4777 method in completion mode. */
4778 {
4779 static const char *expected_syms[] = {
4780 "t1_func",
4781 "t1_func1",
4782 };
4783
4784 SELF_CHECK (check_find_bounds_finds (mock_index,
4785 "t1_func", expected_syms));
4786 }
4787
4788 /* Check that the increment-last-char in the name matching algorithm
4789 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4790 {
4791 static const char *expected_syms1[] = {
4792 "\377",
4793 "\377\377123",
4794 };
4795 SELF_CHECK (check_find_bounds_finds (mock_index,
4796 "\377", expected_syms1));
4797
4798 static const char *expected_syms2[] = {
4799 "\377\377123",
4800 };
4801 SELF_CHECK (check_find_bounds_finds (mock_index,
4802 "\377\377", expected_syms2));
4803 }
4804 }
4805
4806 /* Test dw2_expand_symtabs_matching_symbol. */
4807
4808 static void
4809 test_dw2_expand_symtabs_matching_symbol ()
4810 {
4811 mock_mapped_index mock_index (test_symbols);
4812
4813 /* We let all tests run until the end even if some fails, for debug
4814 convenience. */
4815 bool any_mismatch = false;
4816
4817 /* Create the expected symbols list (an initializer_list). Needed
4818 because lists have commas, and we need to pass them to CHECK,
4819 which is a macro. */
4820 #define EXPECT(...) { __VA_ARGS__ }
4821
4822 /* Wrapper for check_match that passes down the current
4823 __FILE__/__LINE__. */
4824 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4825 any_mismatch |= !check_match (__FILE__, __LINE__, \
4826 mock_index, \
4827 NAME, MATCH_TYPE, COMPLETION_MODE, \
4828 EXPECTED_LIST)
4829
4830 /* Identity checks. */
4831 for (const char *sym : test_symbols)
4832 {
4833 /* Should be able to match all existing symbols. */
4834 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4835 EXPECT (sym));
4836
4837 /* Should be able to match all existing symbols with
4838 parameters. */
4839 std::string with_params = std::string (sym) + "(int)";
4840 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4841 EXPECT (sym));
4842
4843 /* Should be able to match all existing symbols with
4844 parameters and qualifiers. */
4845 with_params = std::string (sym) + " ( int ) const";
4846 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4847 EXPECT (sym));
4848
4849 /* This should really find sym, but cp-name-parser.y doesn't
4850 know about lvalue/rvalue qualifiers yet. */
4851 with_params = std::string (sym) + " ( int ) &&";
4852 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4853 {});
4854 }
4855
4856 /* Check that the name matching algorithm for completion doesn't get
4857 confused with Latin1 'ÿ' / 0xff. */
4858 {
4859 static const char str[] = "\377";
4860 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4861 EXPECT ("\377", "\377\377123"));
4862 }
4863
4864 /* Check that the increment-last-char in the matching algorithm for
4865 completion doesn't match "t1_fund" when completing "t1_func". */
4866 {
4867 static const char str[] = "t1_func";
4868 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4869 EXPECT ("t1_func", "t1_func1"));
4870 }
4871
4872 /* Check that completion mode works at each prefix of the expected
4873 symbol name. */
4874 {
4875 static const char str[] = "function(int)";
4876 size_t len = strlen (str);
4877 std::string lookup;
4878
4879 for (size_t i = 1; i < len; i++)
4880 {
4881 lookup.assign (str, i);
4882 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4883 EXPECT ("function"));
4884 }
4885 }
4886
4887 /* While "w" is a prefix of both components, the match function
4888 should still only be called once. */
4889 {
4890 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4891 EXPECT ("w1::w2"));
4892 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4893 EXPECT ("w1::w2"));
4894 }
4895
4896 /* Same, with a "complicated" symbol. */
4897 {
4898 static const char str[] = Z_SYM_NAME;
4899 size_t len = strlen (str);
4900 std::string lookup;
4901
4902 for (size_t i = 1; i < len; i++)
4903 {
4904 lookup.assign (str, i);
4905 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4906 EXPECT (Z_SYM_NAME));
4907 }
4908 }
4909
4910 /* In FULL mode, an incomplete symbol doesn't match. */
4911 {
4912 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4913 {});
4914 }
4915
4916 /* A complete symbol with parameters matches any overload, since the
4917 index has no overload info. */
4918 {
4919 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4920 EXPECT ("std::zfunction", "std::zfunction2"));
4921 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4922 EXPECT ("std::zfunction", "std::zfunction2"));
4923 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4924 EXPECT ("std::zfunction", "std::zfunction2"));
4925 }
4926
4927 /* Check that whitespace is ignored appropriately. A symbol with a
4928 template argument list. */
4929 {
4930 static const char expected[] = "ns::foo<int>";
4931 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4932 EXPECT (expected));
4933 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4934 EXPECT (expected));
4935 }
4936
4937 /* Check that whitespace is ignored appropriately. A symbol with a
4938 template argument list that includes a pointer. */
4939 {
4940 static const char expected[] = "ns::foo<char*>";
4941 /* Try both completion and non-completion modes. */
4942 static const bool completion_mode[2] = {false, true};
4943 for (size_t i = 0; i < 2; i++)
4944 {
4945 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4946 completion_mode[i], EXPECT (expected));
4947 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4948 completion_mode[i], EXPECT (expected));
4949
4950 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4951 completion_mode[i], EXPECT (expected));
4952 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4953 completion_mode[i], EXPECT (expected));
4954 }
4955 }
4956
4957 {
4958 /* Check method qualifiers are ignored. */
4959 static const char expected[] = "ns::foo<char*>";
4960 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4961 symbol_name_match_type::FULL, true, EXPECT (expected));
4962 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4963 symbol_name_match_type::FULL, true, EXPECT (expected));
4964 CHECK_MATCH ("foo < char * > ( int ) const",
4965 symbol_name_match_type::WILD, true, EXPECT (expected));
4966 CHECK_MATCH ("foo < char * > ( int ) &&",
4967 symbol_name_match_type::WILD, true, EXPECT (expected));
4968 }
4969
4970 /* Test lookup names that don't match anything. */
4971 {
4972 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4973 {});
4974
4975 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4976 {});
4977 }
4978
4979 /* Some wild matching tests, exercising "(anonymous namespace)",
4980 which should not be confused with a parameter list. */
4981 {
4982 static const char *syms[] = {
4983 "A::B::C",
4984 "B::C",
4985 "C",
4986 "A :: B :: C ( int )",
4987 "B :: C ( int )",
4988 "C ( int )",
4989 };
4990
4991 for (const char *s : syms)
4992 {
4993 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4994 EXPECT ("(anonymous namespace)::A::B::C"));
4995 }
4996 }
4997
4998 {
4999 static const char expected[] = "ns2::tmpl<int>::foo2";
5000 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5001 EXPECT (expected));
5002 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5003 EXPECT (expected));
5004 }
5005
5006 SELF_CHECK (!any_mismatch);
5007
5008 #undef EXPECT
5009 #undef CHECK_MATCH
5010 }
5011
5012 static void
5013 run_test ()
5014 {
5015 test_mapped_index_find_name_component_bounds ();
5016 test_dw2_expand_symtabs_matching_symbol ();
5017 }
5018
5019 }} // namespace selftests::dw2_expand_symtabs_matching
5020
5021 #endif /* GDB_SELF_TEST */
5022
5023 /* If FILE_MATCHER is NULL or if PER_CU has
5024 dwarf2_per_cu_quick_data::MARK set (see
5025 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5026 EXPANSION_NOTIFY on it. */
5027
5028 static void
5029 dw2_expand_symtabs_matching_one
5030 (struct dwarf2_per_cu_data *per_cu,
5031 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5032 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5033 {
5034 if (file_matcher == NULL || per_cu->v.quick->mark)
5035 {
5036 bool symtab_was_null
5037 = (per_cu->v.quick->compunit_symtab == NULL);
5038
5039 dw2_instantiate_symtab (per_cu, false);
5040
5041 if (expansion_notify != NULL
5042 && symtab_was_null
5043 && per_cu->v.quick->compunit_symtab != NULL)
5044 expansion_notify (per_cu->v.quick->compunit_symtab);
5045 }
5046 }
5047
5048 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5049 matched, to expand corresponding CUs that were marked. IDX is the
5050 index of the symbol name that matched. */
5051
5052 static void
5053 dw2_expand_marked_cus
5054 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5055 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5056 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5057 search_domain kind)
5058 {
5059 offset_type *vec, vec_len, vec_idx;
5060 bool global_seen = false;
5061 mapped_index &index = *dwarf2_per_objfile->index_table;
5062
5063 vec = (offset_type *) (index.constant_pool
5064 + MAYBE_SWAP (index.symbol_table[idx].vec));
5065 vec_len = MAYBE_SWAP (vec[0]);
5066 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5067 {
5068 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5069 /* This value is only valid for index versions >= 7. */
5070 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5071 gdb_index_symbol_kind symbol_kind =
5072 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5073 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5074 /* Only check the symbol attributes if they're present.
5075 Indices prior to version 7 don't record them,
5076 and indices >= 7 may elide them for certain symbols
5077 (gold does this). */
5078 int attrs_valid =
5079 (index.version >= 7
5080 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5081
5082 /* Work around gold/15646. */
5083 if (attrs_valid)
5084 {
5085 if (!is_static && global_seen)
5086 continue;
5087 if (!is_static)
5088 global_seen = true;
5089 }
5090
5091 /* Only check the symbol's kind if it has one. */
5092 if (attrs_valid)
5093 {
5094 switch (kind)
5095 {
5096 case VARIABLES_DOMAIN:
5097 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5098 continue;
5099 break;
5100 case FUNCTIONS_DOMAIN:
5101 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5102 continue;
5103 break;
5104 case TYPES_DOMAIN:
5105 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5106 continue;
5107 break;
5108 default:
5109 break;
5110 }
5111 }
5112
5113 /* Don't crash on bad data. */
5114 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5115 + dwarf2_per_objfile->all_type_units.size ()))
5116 {
5117 complaint (_(".gdb_index entry has bad CU index"
5118 " [in module %s]"),
5119 objfile_name (dwarf2_per_objfile->objfile));
5120 continue;
5121 }
5122
5123 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5124 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5125 expansion_notify);
5126 }
5127 }
5128
5129 /* If FILE_MATCHER is non-NULL, set all the
5130 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5131 that match FILE_MATCHER. */
5132
5133 static void
5134 dw_expand_symtabs_matching_file_matcher
5135 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5136 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5137 {
5138 if (file_matcher == NULL)
5139 return;
5140
5141 objfile *const objfile = dwarf2_per_objfile->objfile;
5142
5143 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5144 htab_eq_pointer,
5145 NULL, xcalloc, xfree));
5146 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5147 htab_eq_pointer,
5148 NULL, xcalloc, xfree));
5149
5150 /* The rule is CUs specify all the files, including those used by
5151 any TU, so there's no need to scan TUs here. */
5152
5153 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5154 {
5155 QUIT;
5156
5157 per_cu->v.quick->mark = 0;
5158
5159 /* We only need to look at symtabs not already expanded. */
5160 if (per_cu->v.quick->compunit_symtab)
5161 continue;
5162
5163 quick_file_names *file_data = dw2_get_file_names (per_cu);
5164 if (file_data == NULL)
5165 continue;
5166
5167 if (htab_find (visited_not_found.get (), file_data) != NULL)
5168 continue;
5169 else if (htab_find (visited_found.get (), file_data) != NULL)
5170 {
5171 per_cu->v.quick->mark = 1;
5172 continue;
5173 }
5174
5175 for (int j = 0; j < file_data->num_file_names; ++j)
5176 {
5177 const char *this_real_name;
5178
5179 if (file_matcher (file_data->file_names[j], false))
5180 {
5181 per_cu->v.quick->mark = 1;
5182 break;
5183 }
5184
5185 /* Before we invoke realpath, which can get expensive when many
5186 files are involved, do a quick comparison of the basenames. */
5187 if (!basenames_may_differ
5188 && !file_matcher (lbasename (file_data->file_names[j]),
5189 true))
5190 continue;
5191
5192 this_real_name = dw2_get_real_path (objfile, file_data, j);
5193 if (file_matcher (this_real_name, false))
5194 {
5195 per_cu->v.quick->mark = 1;
5196 break;
5197 }
5198 }
5199
5200 void **slot = htab_find_slot (per_cu->v.quick->mark
5201 ? visited_found.get ()
5202 : visited_not_found.get (),
5203 file_data, INSERT);
5204 *slot = file_data;
5205 }
5206 }
5207
5208 static void
5209 dw2_expand_symtabs_matching
5210 (struct objfile *objfile,
5211 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5212 const lookup_name_info &lookup_name,
5213 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5214 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5215 enum search_domain kind)
5216 {
5217 struct dwarf2_per_objfile *dwarf2_per_objfile
5218 = get_dwarf2_per_objfile (objfile);
5219
5220 /* index_table is NULL if OBJF_READNOW. */
5221 if (!dwarf2_per_objfile->index_table)
5222 return;
5223
5224 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5225
5226 mapped_index &index = *dwarf2_per_objfile->index_table;
5227
5228 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5229 symbol_matcher,
5230 kind, [&] (offset_type idx)
5231 {
5232 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5233 expansion_notify, kind);
5234 });
5235 }
5236
5237 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5238 symtab. */
5239
5240 static struct compunit_symtab *
5241 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5242 CORE_ADDR pc)
5243 {
5244 int i;
5245
5246 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5247 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5248 return cust;
5249
5250 if (cust->includes == NULL)
5251 return NULL;
5252
5253 for (i = 0; cust->includes[i]; ++i)
5254 {
5255 struct compunit_symtab *s = cust->includes[i];
5256
5257 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5258 if (s != NULL)
5259 return s;
5260 }
5261
5262 return NULL;
5263 }
5264
5265 static struct compunit_symtab *
5266 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5267 struct bound_minimal_symbol msymbol,
5268 CORE_ADDR pc,
5269 struct obj_section *section,
5270 int warn_if_readin)
5271 {
5272 struct dwarf2_per_cu_data *data;
5273 struct compunit_symtab *result;
5274
5275 if (!objfile->partial_symtabs->psymtabs_addrmap)
5276 return NULL;
5277
5278 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5279 SECT_OFF_TEXT (objfile));
5280 data = (struct dwarf2_per_cu_data *) addrmap_find
5281 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5282 if (!data)
5283 return NULL;
5284
5285 if (warn_if_readin && data->v.quick->compunit_symtab)
5286 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5287 paddress (get_objfile_arch (objfile), pc));
5288
5289 result
5290 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5291 false),
5292 pc);
5293 gdb_assert (result != NULL);
5294 return result;
5295 }
5296
5297 static void
5298 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5299 void *data, int need_fullname)
5300 {
5301 struct dwarf2_per_objfile *dwarf2_per_objfile
5302 = get_dwarf2_per_objfile (objfile);
5303
5304 if (!dwarf2_per_objfile->filenames_cache)
5305 {
5306 dwarf2_per_objfile->filenames_cache.emplace ();
5307
5308 htab_up visited (htab_create_alloc (10,
5309 htab_hash_pointer, htab_eq_pointer,
5310 NULL, xcalloc, xfree));
5311
5312 /* The rule is CUs specify all the files, including those used
5313 by any TU, so there's no need to scan TUs here. We can
5314 ignore file names coming from already-expanded CUs. */
5315
5316 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5317 {
5318 if (per_cu->v.quick->compunit_symtab)
5319 {
5320 void **slot = htab_find_slot (visited.get (),
5321 per_cu->v.quick->file_names,
5322 INSERT);
5323
5324 *slot = per_cu->v.quick->file_names;
5325 }
5326 }
5327
5328 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5329 {
5330 /* We only need to look at symtabs not already expanded. */
5331 if (per_cu->v.quick->compunit_symtab)
5332 continue;
5333
5334 quick_file_names *file_data = dw2_get_file_names (per_cu);
5335 if (file_data == NULL)
5336 continue;
5337
5338 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5339 if (*slot)
5340 {
5341 /* Already visited. */
5342 continue;
5343 }
5344 *slot = file_data;
5345
5346 for (int j = 0; j < file_data->num_file_names; ++j)
5347 {
5348 const char *filename = file_data->file_names[j];
5349 dwarf2_per_objfile->filenames_cache->seen (filename);
5350 }
5351 }
5352 }
5353
5354 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5355 {
5356 gdb::unique_xmalloc_ptr<char> this_real_name;
5357
5358 if (need_fullname)
5359 this_real_name = gdb_realpath (filename);
5360 (*fun) (filename, this_real_name.get (), data);
5361 });
5362 }
5363
5364 static int
5365 dw2_has_symbols (struct objfile *objfile)
5366 {
5367 return 1;
5368 }
5369
5370 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5371 {
5372 dw2_has_symbols,
5373 dw2_find_last_source_symtab,
5374 dw2_forget_cached_source_info,
5375 dw2_map_symtabs_matching_filename,
5376 dw2_lookup_symbol,
5377 dw2_print_stats,
5378 dw2_dump,
5379 dw2_expand_symtabs_for_function,
5380 dw2_expand_all_symtabs,
5381 dw2_expand_symtabs_with_fullname,
5382 dw2_map_matching_symbols,
5383 dw2_expand_symtabs_matching,
5384 dw2_find_pc_sect_compunit_symtab,
5385 NULL,
5386 dw2_map_symbol_filenames
5387 };
5388
5389 /* DWARF-5 debug_names reader. */
5390
5391 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5392 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5393
5394 /* A helper function that reads the .debug_names section in SECTION
5395 and fills in MAP. FILENAME is the name of the file containing the
5396 section; it is used for error reporting.
5397
5398 Returns true if all went well, false otherwise. */
5399
5400 static bool
5401 read_debug_names_from_section (struct objfile *objfile,
5402 const char *filename,
5403 struct dwarf2_section_info *section,
5404 mapped_debug_names &map)
5405 {
5406 if (dwarf2_section_empty_p (section))
5407 return false;
5408
5409 /* Older elfutils strip versions could keep the section in the main
5410 executable while splitting it for the separate debug info file. */
5411 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5412 return false;
5413
5414 dwarf2_read_section (objfile, section);
5415
5416 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5417
5418 const gdb_byte *addr = section->buffer;
5419
5420 bfd *const abfd = get_section_bfd_owner (section);
5421
5422 unsigned int bytes_read;
5423 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5424 addr += bytes_read;
5425
5426 map.dwarf5_is_dwarf64 = bytes_read != 4;
5427 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5428 if (bytes_read + length != section->size)
5429 {
5430 /* There may be multiple per-CU indices. */
5431 warning (_("Section .debug_names in %s length %s does not match "
5432 "section length %s, ignoring .debug_names."),
5433 filename, plongest (bytes_read + length),
5434 pulongest (section->size));
5435 return false;
5436 }
5437
5438 /* The version number. */
5439 uint16_t version = read_2_bytes (abfd, addr);
5440 addr += 2;
5441 if (version != 5)
5442 {
5443 warning (_("Section .debug_names in %s has unsupported version %d, "
5444 "ignoring .debug_names."),
5445 filename, version);
5446 return false;
5447 }
5448
5449 /* Padding. */
5450 uint16_t padding = read_2_bytes (abfd, addr);
5451 addr += 2;
5452 if (padding != 0)
5453 {
5454 warning (_("Section .debug_names in %s has unsupported padding %d, "
5455 "ignoring .debug_names."),
5456 filename, padding);
5457 return false;
5458 }
5459
5460 /* comp_unit_count - The number of CUs in the CU list. */
5461 map.cu_count = read_4_bytes (abfd, addr);
5462 addr += 4;
5463
5464 /* local_type_unit_count - The number of TUs in the local TU
5465 list. */
5466 map.tu_count = read_4_bytes (abfd, addr);
5467 addr += 4;
5468
5469 /* foreign_type_unit_count - The number of TUs in the foreign TU
5470 list. */
5471 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5472 addr += 4;
5473 if (foreign_tu_count != 0)
5474 {
5475 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5476 "ignoring .debug_names."),
5477 filename, static_cast<unsigned long> (foreign_tu_count));
5478 return false;
5479 }
5480
5481 /* bucket_count - The number of hash buckets in the hash lookup
5482 table. */
5483 map.bucket_count = read_4_bytes (abfd, addr);
5484 addr += 4;
5485
5486 /* name_count - The number of unique names in the index. */
5487 map.name_count = read_4_bytes (abfd, addr);
5488 addr += 4;
5489
5490 /* abbrev_table_size - The size in bytes of the abbreviations
5491 table. */
5492 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5493 addr += 4;
5494
5495 /* augmentation_string_size - The size in bytes of the augmentation
5496 string. This value is rounded up to a multiple of 4. */
5497 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5498 addr += 4;
5499 map.augmentation_is_gdb = ((augmentation_string_size
5500 == sizeof (dwarf5_augmentation))
5501 && memcmp (addr, dwarf5_augmentation,
5502 sizeof (dwarf5_augmentation)) == 0);
5503 augmentation_string_size += (-augmentation_string_size) & 3;
5504 addr += augmentation_string_size;
5505
5506 /* List of CUs */
5507 map.cu_table_reordered = addr;
5508 addr += map.cu_count * map.offset_size;
5509
5510 /* List of Local TUs */
5511 map.tu_table_reordered = addr;
5512 addr += map.tu_count * map.offset_size;
5513
5514 /* Hash Lookup Table */
5515 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5516 addr += map.bucket_count * 4;
5517 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5518 addr += map.name_count * 4;
5519
5520 /* Name Table */
5521 map.name_table_string_offs_reordered = addr;
5522 addr += map.name_count * map.offset_size;
5523 map.name_table_entry_offs_reordered = addr;
5524 addr += map.name_count * map.offset_size;
5525
5526 const gdb_byte *abbrev_table_start = addr;
5527 for (;;)
5528 {
5529 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5530 addr += bytes_read;
5531 if (index_num == 0)
5532 break;
5533
5534 const auto insertpair
5535 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5536 if (!insertpair.second)
5537 {
5538 warning (_("Section .debug_names in %s has duplicate index %s, "
5539 "ignoring .debug_names."),
5540 filename, pulongest (index_num));
5541 return false;
5542 }
5543 mapped_debug_names::index_val &indexval = insertpair.first->second;
5544 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5545 addr += bytes_read;
5546
5547 for (;;)
5548 {
5549 mapped_debug_names::index_val::attr attr;
5550 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5551 addr += bytes_read;
5552 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5553 addr += bytes_read;
5554 if (attr.form == DW_FORM_implicit_const)
5555 {
5556 attr.implicit_const = read_signed_leb128 (abfd, addr,
5557 &bytes_read);
5558 addr += bytes_read;
5559 }
5560 if (attr.dw_idx == 0 && attr.form == 0)
5561 break;
5562 indexval.attr_vec.push_back (std::move (attr));
5563 }
5564 }
5565 if (addr != abbrev_table_start + abbrev_table_size)
5566 {
5567 warning (_("Section .debug_names in %s has abbreviation_table "
5568 "of size %zu vs. written as %u, ignoring .debug_names."),
5569 filename, addr - abbrev_table_start, abbrev_table_size);
5570 return false;
5571 }
5572 map.entry_pool = addr;
5573
5574 return true;
5575 }
5576
5577 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5578 list. */
5579
5580 static void
5581 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5582 const mapped_debug_names &map,
5583 dwarf2_section_info &section,
5584 bool is_dwz)
5585 {
5586 sect_offset sect_off_prev;
5587 for (uint32_t i = 0; i <= map.cu_count; ++i)
5588 {
5589 sect_offset sect_off_next;
5590 if (i < map.cu_count)
5591 {
5592 sect_off_next
5593 = (sect_offset) (extract_unsigned_integer
5594 (map.cu_table_reordered + i * map.offset_size,
5595 map.offset_size,
5596 map.dwarf5_byte_order));
5597 }
5598 else
5599 sect_off_next = (sect_offset) section.size;
5600 if (i >= 1)
5601 {
5602 const ULONGEST length = sect_off_next - sect_off_prev;
5603 dwarf2_per_cu_data *per_cu
5604 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5605 sect_off_prev, length);
5606 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5607 }
5608 sect_off_prev = sect_off_next;
5609 }
5610 }
5611
5612 /* Read the CU list from the mapped index, and use it to create all
5613 the CU objects for this dwarf2_per_objfile. */
5614
5615 static void
5616 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5617 const mapped_debug_names &map,
5618 const mapped_debug_names &dwz_map)
5619 {
5620 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5621 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5622
5623 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5624 dwarf2_per_objfile->info,
5625 false /* is_dwz */);
5626
5627 if (dwz_map.cu_count == 0)
5628 return;
5629
5630 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5631 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5632 true /* is_dwz */);
5633 }
5634
5635 /* Read .debug_names. If everything went ok, initialize the "quick"
5636 elements of all the CUs and return true. Otherwise, return false. */
5637
5638 static bool
5639 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5640 {
5641 std::unique_ptr<mapped_debug_names> map
5642 (new mapped_debug_names (dwarf2_per_objfile));
5643 mapped_debug_names dwz_map (dwarf2_per_objfile);
5644 struct objfile *objfile = dwarf2_per_objfile->objfile;
5645
5646 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5647 &dwarf2_per_objfile->debug_names,
5648 *map))
5649 return false;
5650
5651 /* Don't use the index if it's empty. */
5652 if (map->name_count == 0)
5653 return false;
5654
5655 /* If there is a .dwz file, read it so we can get its CU list as
5656 well. */
5657 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5658 if (dwz != NULL)
5659 {
5660 if (!read_debug_names_from_section (objfile,
5661 bfd_get_filename (dwz->dwz_bfd),
5662 &dwz->debug_names, dwz_map))
5663 {
5664 warning (_("could not read '.debug_names' section from %s; skipping"),
5665 bfd_get_filename (dwz->dwz_bfd));
5666 return false;
5667 }
5668 }
5669
5670 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5671
5672 if (map->tu_count != 0)
5673 {
5674 /* We can only handle a single .debug_types when we have an
5675 index. */
5676 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5677 return false;
5678
5679 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5680 dwarf2_per_objfile->types, 0);
5681
5682 create_signatured_type_table_from_debug_names
5683 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5684 }
5685
5686 create_addrmap_from_aranges (dwarf2_per_objfile,
5687 &dwarf2_per_objfile->debug_aranges);
5688
5689 dwarf2_per_objfile->debug_names_table = std::move (map);
5690 dwarf2_per_objfile->using_index = 1;
5691 dwarf2_per_objfile->quick_file_names_table =
5692 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5693
5694 return true;
5695 }
5696
5697 /* Type used to manage iterating over all CUs looking for a symbol for
5698 .debug_names. */
5699
5700 class dw2_debug_names_iterator
5701 {
5702 public:
5703 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5704 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5705 dw2_debug_names_iterator (const mapped_debug_names &map,
5706 bool want_specific_block,
5707 block_enum block_index, domain_enum domain,
5708 const char *name)
5709 : m_map (map), m_want_specific_block (want_specific_block),
5710 m_block_index (block_index), m_domain (domain),
5711 m_addr (find_vec_in_debug_names (map, name))
5712 {}
5713
5714 dw2_debug_names_iterator (const mapped_debug_names &map,
5715 search_domain search, uint32_t namei)
5716 : m_map (map),
5717 m_search (search),
5718 m_addr (find_vec_in_debug_names (map, namei))
5719 {}
5720
5721 /* Return the next matching CU or NULL if there are no more. */
5722 dwarf2_per_cu_data *next ();
5723
5724 private:
5725 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5726 const char *name);
5727 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5728 uint32_t namei);
5729
5730 /* The internalized form of .debug_names. */
5731 const mapped_debug_names &m_map;
5732
5733 /* If true, only look for symbols that match BLOCK_INDEX. */
5734 const bool m_want_specific_block = false;
5735
5736 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5737 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5738 value. */
5739 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5740
5741 /* The kind of symbol we're looking for. */
5742 const domain_enum m_domain = UNDEF_DOMAIN;
5743 const search_domain m_search = ALL_DOMAIN;
5744
5745 /* The list of CUs from the index entry of the symbol, or NULL if
5746 not found. */
5747 const gdb_byte *m_addr;
5748 };
5749
5750 const char *
5751 mapped_debug_names::namei_to_name (uint32_t namei) const
5752 {
5753 const ULONGEST namei_string_offs
5754 = extract_unsigned_integer ((name_table_string_offs_reordered
5755 + namei * offset_size),
5756 offset_size,
5757 dwarf5_byte_order);
5758 return read_indirect_string_at_offset
5759 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5760 }
5761
5762 /* Find a slot in .debug_names for the object named NAME. If NAME is
5763 found, return pointer to its pool data. If NAME cannot be found,
5764 return NULL. */
5765
5766 const gdb_byte *
5767 dw2_debug_names_iterator::find_vec_in_debug_names
5768 (const mapped_debug_names &map, const char *name)
5769 {
5770 int (*cmp) (const char *, const char *);
5771
5772 if (current_language->la_language == language_cplus
5773 || current_language->la_language == language_fortran
5774 || current_language->la_language == language_d)
5775 {
5776 /* NAME is already canonical. Drop any qualifiers as
5777 .debug_names does not contain any. */
5778
5779 if (strchr (name, '(') != NULL)
5780 {
5781 gdb::unique_xmalloc_ptr<char> without_params
5782 = cp_remove_params (name);
5783
5784 if (without_params != NULL)
5785 {
5786 name = without_params.get();
5787 }
5788 }
5789 }
5790
5791 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5792
5793 const uint32_t full_hash = dwarf5_djb_hash (name);
5794 uint32_t namei
5795 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5796 (map.bucket_table_reordered
5797 + (full_hash % map.bucket_count)), 4,
5798 map.dwarf5_byte_order);
5799 if (namei == 0)
5800 return NULL;
5801 --namei;
5802 if (namei >= map.name_count)
5803 {
5804 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5805 "[in module %s]"),
5806 namei, map.name_count,
5807 objfile_name (map.dwarf2_per_objfile->objfile));
5808 return NULL;
5809 }
5810
5811 for (;;)
5812 {
5813 const uint32_t namei_full_hash
5814 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5815 (map.hash_table_reordered + namei), 4,
5816 map.dwarf5_byte_order);
5817 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5818 return NULL;
5819
5820 if (full_hash == namei_full_hash)
5821 {
5822 const char *const namei_string = map.namei_to_name (namei);
5823
5824 #if 0 /* An expensive sanity check. */
5825 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5826 {
5827 complaint (_("Wrong .debug_names hash for string at index %u "
5828 "[in module %s]"),
5829 namei, objfile_name (dwarf2_per_objfile->objfile));
5830 return NULL;
5831 }
5832 #endif
5833
5834 if (cmp (namei_string, name) == 0)
5835 {
5836 const ULONGEST namei_entry_offs
5837 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5838 + namei * map.offset_size),
5839 map.offset_size, map.dwarf5_byte_order);
5840 return map.entry_pool + namei_entry_offs;
5841 }
5842 }
5843
5844 ++namei;
5845 if (namei >= map.name_count)
5846 return NULL;
5847 }
5848 }
5849
5850 const gdb_byte *
5851 dw2_debug_names_iterator::find_vec_in_debug_names
5852 (const mapped_debug_names &map, uint32_t namei)
5853 {
5854 if (namei >= map.name_count)
5855 {
5856 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5857 "[in module %s]"),
5858 namei, map.name_count,
5859 objfile_name (map.dwarf2_per_objfile->objfile));
5860 return NULL;
5861 }
5862
5863 const ULONGEST namei_entry_offs
5864 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5865 + namei * map.offset_size),
5866 map.offset_size, map.dwarf5_byte_order);
5867 return map.entry_pool + namei_entry_offs;
5868 }
5869
5870 /* See dw2_debug_names_iterator. */
5871
5872 dwarf2_per_cu_data *
5873 dw2_debug_names_iterator::next ()
5874 {
5875 if (m_addr == NULL)
5876 return NULL;
5877
5878 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5879 struct objfile *objfile = dwarf2_per_objfile->objfile;
5880 bfd *const abfd = objfile->obfd;
5881
5882 again:
5883
5884 unsigned int bytes_read;
5885 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5886 m_addr += bytes_read;
5887 if (abbrev == 0)
5888 return NULL;
5889
5890 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5891 if (indexval_it == m_map.abbrev_map.cend ())
5892 {
5893 complaint (_("Wrong .debug_names undefined abbrev code %s "
5894 "[in module %s]"),
5895 pulongest (abbrev), objfile_name (objfile));
5896 return NULL;
5897 }
5898 const mapped_debug_names::index_val &indexval = indexval_it->second;
5899 bool have_is_static = false;
5900 bool is_static;
5901 dwarf2_per_cu_data *per_cu = NULL;
5902 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5903 {
5904 ULONGEST ull;
5905 switch (attr.form)
5906 {
5907 case DW_FORM_implicit_const:
5908 ull = attr.implicit_const;
5909 break;
5910 case DW_FORM_flag_present:
5911 ull = 1;
5912 break;
5913 case DW_FORM_udata:
5914 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5915 m_addr += bytes_read;
5916 break;
5917 default:
5918 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5919 dwarf_form_name (attr.form),
5920 objfile_name (objfile));
5921 return NULL;
5922 }
5923 switch (attr.dw_idx)
5924 {
5925 case DW_IDX_compile_unit:
5926 /* Don't crash on bad data. */
5927 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5928 {
5929 complaint (_(".debug_names entry has bad CU index %s"
5930 " [in module %s]"),
5931 pulongest (ull),
5932 objfile_name (dwarf2_per_objfile->objfile));
5933 continue;
5934 }
5935 per_cu = dwarf2_per_objfile->get_cutu (ull);
5936 break;
5937 case DW_IDX_type_unit:
5938 /* Don't crash on bad data. */
5939 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5940 {
5941 complaint (_(".debug_names entry has bad TU index %s"
5942 " [in module %s]"),
5943 pulongest (ull),
5944 objfile_name (dwarf2_per_objfile->objfile));
5945 continue;
5946 }
5947 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5948 break;
5949 case DW_IDX_GNU_internal:
5950 if (!m_map.augmentation_is_gdb)
5951 break;
5952 have_is_static = true;
5953 is_static = true;
5954 break;
5955 case DW_IDX_GNU_external:
5956 if (!m_map.augmentation_is_gdb)
5957 break;
5958 have_is_static = true;
5959 is_static = false;
5960 break;
5961 }
5962 }
5963
5964 /* Skip if already read in. */
5965 if (per_cu->v.quick->compunit_symtab)
5966 goto again;
5967
5968 /* Check static vs global. */
5969 if (have_is_static)
5970 {
5971 const bool want_static = m_block_index != GLOBAL_BLOCK;
5972 if (m_want_specific_block && want_static != is_static)
5973 goto again;
5974 }
5975
5976 /* Match dw2_symtab_iter_next, symbol_kind
5977 and debug_names::psymbol_tag. */
5978 switch (m_domain)
5979 {
5980 case VAR_DOMAIN:
5981 switch (indexval.dwarf_tag)
5982 {
5983 case DW_TAG_variable:
5984 case DW_TAG_subprogram:
5985 /* Some types are also in VAR_DOMAIN. */
5986 case DW_TAG_typedef:
5987 case DW_TAG_structure_type:
5988 break;
5989 default:
5990 goto again;
5991 }
5992 break;
5993 case STRUCT_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_typedef:
5997 case DW_TAG_structure_type:
5998 break;
5999 default:
6000 goto again;
6001 }
6002 break;
6003 case LABEL_DOMAIN:
6004 switch (indexval.dwarf_tag)
6005 {
6006 case 0:
6007 case DW_TAG_variable:
6008 break;
6009 default:
6010 goto again;
6011 }
6012 break;
6013 default:
6014 break;
6015 }
6016
6017 /* Match dw2_expand_symtabs_matching, symbol_kind and
6018 debug_names::psymbol_tag. */
6019 switch (m_search)
6020 {
6021 case VARIABLES_DOMAIN:
6022 switch (indexval.dwarf_tag)
6023 {
6024 case DW_TAG_variable:
6025 break;
6026 default:
6027 goto again;
6028 }
6029 break;
6030 case FUNCTIONS_DOMAIN:
6031 switch (indexval.dwarf_tag)
6032 {
6033 case DW_TAG_subprogram:
6034 break;
6035 default:
6036 goto again;
6037 }
6038 break;
6039 case TYPES_DOMAIN:
6040 switch (indexval.dwarf_tag)
6041 {
6042 case DW_TAG_typedef:
6043 case DW_TAG_structure_type:
6044 break;
6045 default:
6046 goto again;
6047 }
6048 break;
6049 default:
6050 break;
6051 }
6052
6053 return per_cu;
6054 }
6055
6056 static struct compunit_symtab *
6057 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6058 const char *name, domain_enum domain)
6059 {
6060 const block_enum block_index = static_cast<block_enum> (block_index_int);
6061 struct dwarf2_per_objfile *dwarf2_per_objfile
6062 = get_dwarf2_per_objfile (objfile);
6063
6064 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6065 if (!mapp)
6066 {
6067 /* index is NULL if OBJF_READNOW. */
6068 return NULL;
6069 }
6070 const auto &map = *mapp;
6071
6072 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6073 block_index, domain, name);
6074
6075 struct compunit_symtab *stab_best = NULL;
6076 struct dwarf2_per_cu_data *per_cu;
6077 while ((per_cu = iter.next ()) != NULL)
6078 {
6079 struct symbol *sym, *with_opaque = NULL;
6080 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6081 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6082 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6083
6084 sym = block_find_symbol (block, name, domain,
6085 block_find_non_opaque_type_preferred,
6086 &with_opaque);
6087
6088 /* Some caution must be observed with overloaded functions and
6089 methods, since the index will not contain any overload
6090 information (but NAME might contain it). */
6091
6092 if (sym != NULL
6093 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6094 return stab;
6095 if (with_opaque != NULL
6096 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6097 stab_best = stab;
6098
6099 /* Keep looking through other CUs. */
6100 }
6101
6102 return stab_best;
6103 }
6104
6105 /* This dumps minimal information about .debug_names. It is called
6106 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6107 uses this to verify that .debug_names has been loaded. */
6108
6109 static void
6110 dw2_debug_names_dump (struct objfile *objfile)
6111 {
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6114
6115 gdb_assert (dwarf2_per_objfile->using_index);
6116 printf_filtered (".debug_names:");
6117 if (dwarf2_per_objfile->debug_names_table)
6118 printf_filtered (" exists\n");
6119 else
6120 printf_filtered (" faked for \"readnow\"\n");
6121 printf_filtered ("\n");
6122 }
6123
6124 static void
6125 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6126 const char *func_name)
6127 {
6128 struct dwarf2_per_objfile *dwarf2_per_objfile
6129 = get_dwarf2_per_objfile (objfile);
6130
6131 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6132 if (dwarf2_per_objfile->debug_names_table)
6133 {
6134 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6135
6136 /* Note: It doesn't matter what we pass for block_index here. */
6137 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6138 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6139
6140 struct dwarf2_per_cu_data *per_cu;
6141 while ((per_cu = iter.next ()) != NULL)
6142 dw2_instantiate_symtab (per_cu, false);
6143 }
6144 }
6145
6146 static void
6147 dw2_debug_names_expand_symtabs_matching
6148 (struct objfile *objfile,
6149 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6150 const lookup_name_info &lookup_name,
6151 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6152 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6153 enum search_domain kind)
6154 {
6155 struct dwarf2_per_objfile *dwarf2_per_objfile
6156 = get_dwarf2_per_objfile (objfile);
6157
6158 /* debug_names_table is NULL if OBJF_READNOW. */
6159 if (!dwarf2_per_objfile->debug_names_table)
6160 return;
6161
6162 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6163
6164 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6165
6166 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6167 symbol_matcher,
6168 kind, [&] (offset_type namei)
6169 {
6170 /* The name was matched, now expand corresponding CUs that were
6171 marked. */
6172 dw2_debug_names_iterator iter (map, kind, namei);
6173
6174 struct dwarf2_per_cu_data *per_cu;
6175 while ((per_cu = iter.next ()) != NULL)
6176 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6177 expansion_notify);
6178 });
6179 }
6180
6181 const struct quick_symbol_functions dwarf2_debug_names_functions =
6182 {
6183 dw2_has_symbols,
6184 dw2_find_last_source_symtab,
6185 dw2_forget_cached_source_info,
6186 dw2_map_symtabs_matching_filename,
6187 dw2_debug_names_lookup_symbol,
6188 dw2_print_stats,
6189 dw2_debug_names_dump,
6190 dw2_debug_names_expand_symtabs_for_function,
6191 dw2_expand_all_symtabs,
6192 dw2_expand_symtabs_with_fullname,
6193 dw2_map_matching_symbols,
6194 dw2_debug_names_expand_symtabs_matching,
6195 dw2_find_pc_sect_compunit_symtab,
6196 NULL,
6197 dw2_map_symbol_filenames
6198 };
6199
6200 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6201 to either a dwarf2_per_objfile or dwz_file object. */
6202
6203 template <typename T>
6204 static gdb::array_view<const gdb_byte>
6205 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6206 {
6207 dwarf2_section_info *section = &section_owner->gdb_index;
6208
6209 if (dwarf2_section_empty_p (section))
6210 return {};
6211
6212 /* Older elfutils strip versions could keep the section in the main
6213 executable while splitting it for the separate debug info file. */
6214 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6215 return {};
6216
6217 dwarf2_read_section (obj, section);
6218
6219 /* dwarf2_section_info::size is a bfd_size_type, while
6220 gdb::array_view works with size_t. On 32-bit hosts, with
6221 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6222 is 32-bit. So we need an explicit narrowing conversion here.
6223 This is fine, because it's impossible to allocate or mmap an
6224 array/buffer larger than what size_t can represent. */
6225 return gdb::make_array_view (section->buffer, section->size);
6226 }
6227
6228 /* Lookup the index cache for the contents of the index associated to
6229 DWARF2_OBJ. */
6230
6231 static gdb::array_view<const gdb_byte>
6232 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6233 {
6234 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6235 if (build_id == nullptr)
6236 return {};
6237
6238 return global_index_cache.lookup_gdb_index (build_id,
6239 &dwarf2_obj->index_cache_res);
6240 }
6241
6242 /* Same as the above, but for DWZ. */
6243
6244 static gdb::array_view<const gdb_byte>
6245 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6246 {
6247 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6248 if (build_id == nullptr)
6249 return {};
6250
6251 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6252 }
6253
6254 /* See symfile.h. */
6255
6256 bool
6257 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6258 {
6259 struct dwarf2_per_objfile *dwarf2_per_objfile
6260 = get_dwarf2_per_objfile (objfile);
6261
6262 /* If we're about to read full symbols, don't bother with the
6263 indices. In this case we also don't care if some other debug
6264 format is making psymtabs, because they are all about to be
6265 expanded anyway. */
6266 if ((objfile->flags & OBJF_READNOW))
6267 {
6268 dwarf2_per_objfile->using_index = 1;
6269 create_all_comp_units (dwarf2_per_objfile);
6270 create_all_type_units (dwarf2_per_objfile);
6271 dwarf2_per_objfile->quick_file_names_table
6272 = create_quick_file_names_table
6273 (dwarf2_per_objfile->all_comp_units.size ());
6274
6275 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6276 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6277 {
6278 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6279
6280 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6281 struct dwarf2_per_cu_quick_data);
6282 }
6283
6284 /* Return 1 so that gdb sees the "quick" functions. However,
6285 these functions will be no-ops because we will have expanded
6286 all symtabs. */
6287 *index_kind = dw_index_kind::GDB_INDEX;
6288 return true;
6289 }
6290
6291 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6292 {
6293 *index_kind = dw_index_kind::DEBUG_NAMES;
6294 return true;
6295 }
6296
6297 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6298 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6299 get_gdb_index_contents_from_section<dwz_file>))
6300 {
6301 *index_kind = dw_index_kind::GDB_INDEX;
6302 return true;
6303 }
6304
6305 /* ... otherwise, try to find the index in the index cache. */
6306 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6307 get_gdb_index_contents_from_cache,
6308 get_gdb_index_contents_from_cache_dwz))
6309 {
6310 global_index_cache.hit ();
6311 *index_kind = dw_index_kind::GDB_INDEX;
6312 return true;
6313 }
6314
6315 global_index_cache.miss ();
6316 return false;
6317 }
6318
6319 \f
6320
6321 /* Build a partial symbol table. */
6322
6323 void
6324 dwarf2_build_psymtabs (struct objfile *objfile)
6325 {
6326 struct dwarf2_per_objfile *dwarf2_per_objfile
6327 = get_dwarf2_per_objfile (objfile);
6328
6329 init_psymbol_list (objfile, 1024);
6330
6331 try
6332 {
6333 /* This isn't really ideal: all the data we allocate on the
6334 objfile's obstack is still uselessly kept around. However,
6335 freeing it seems unsafe. */
6336 psymtab_discarder psymtabs (objfile);
6337 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6338 psymtabs.keep ();
6339
6340 /* (maybe) store an index in the cache. */
6341 global_index_cache.store (dwarf2_per_objfile);
6342 }
6343 catch (const gdb_exception_error &except)
6344 {
6345 exception_print (gdb_stderr, except);
6346 }
6347 }
6348
6349 /* Return the total length of the CU described by HEADER. */
6350
6351 static unsigned int
6352 get_cu_length (const struct comp_unit_head *header)
6353 {
6354 return header->initial_length_size + header->length;
6355 }
6356
6357 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6358
6359 static inline bool
6360 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6361 {
6362 sect_offset bottom = cu_header->sect_off;
6363 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6364
6365 return sect_off >= bottom && sect_off < top;
6366 }
6367
6368 /* Find the base address of the compilation unit for range lists and
6369 location lists. It will normally be specified by DW_AT_low_pc.
6370 In DWARF-3 draft 4, the base address could be overridden by
6371 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6372 compilation units with discontinuous ranges. */
6373
6374 static void
6375 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6376 {
6377 struct attribute *attr;
6378
6379 cu->base_known = 0;
6380 cu->base_address = 0;
6381
6382 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6383 if (attr)
6384 {
6385 cu->base_address = attr_value_as_address (attr);
6386 cu->base_known = 1;
6387 }
6388 else
6389 {
6390 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6391 if (attr)
6392 {
6393 cu->base_address = attr_value_as_address (attr);
6394 cu->base_known = 1;
6395 }
6396 }
6397 }
6398
6399 /* Read in the comp unit header information from the debug_info at info_ptr.
6400 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6401 NOTE: This leaves members offset, first_die_offset to be filled in
6402 by the caller. */
6403
6404 static const gdb_byte *
6405 read_comp_unit_head (struct comp_unit_head *cu_header,
6406 const gdb_byte *info_ptr,
6407 struct dwarf2_section_info *section,
6408 rcuh_kind section_kind)
6409 {
6410 int signed_addr;
6411 unsigned int bytes_read;
6412 const char *filename = get_section_file_name (section);
6413 bfd *abfd = get_section_bfd_owner (section);
6414
6415 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6416 cu_header->initial_length_size = bytes_read;
6417 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6418 info_ptr += bytes_read;
6419 cu_header->version = read_2_bytes (abfd, info_ptr);
6420 if (cu_header->version < 2 || cu_header->version > 5)
6421 error (_("Dwarf Error: wrong version in compilation unit header "
6422 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6423 cu_header->version, filename);
6424 info_ptr += 2;
6425 if (cu_header->version < 5)
6426 switch (section_kind)
6427 {
6428 case rcuh_kind::COMPILE:
6429 cu_header->unit_type = DW_UT_compile;
6430 break;
6431 case rcuh_kind::TYPE:
6432 cu_header->unit_type = DW_UT_type;
6433 break;
6434 default:
6435 internal_error (__FILE__, __LINE__,
6436 _("read_comp_unit_head: invalid section_kind"));
6437 }
6438 else
6439 {
6440 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6441 (read_1_byte (abfd, info_ptr));
6442 info_ptr += 1;
6443 switch (cu_header->unit_type)
6444 {
6445 case DW_UT_compile:
6446 if (section_kind != rcuh_kind::COMPILE)
6447 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6448 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6449 filename);
6450 break;
6451 case DW_UT_type:
6452 section_kind = rcuh_kind::TYPE;
6453 break;
6454 default:
6455 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6456 "(is %d, should be %d or %d) [in module %s]"),
6457 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6458 }
6459
6460 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6461 info_ptr += 1;
6462 }
6463 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6464 cu_header,
6465 &bytes_read);
6466 info_ptr += bytes_read;
6467 if (cu_header->version < 5)
6468 {
6469 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6470 info_ptr += 1;
6471 }
6472 signed_addr = bfd_get_sign_extend_vma (abfd);
6473 if (signed_addr < 0)
6474 internal_error (__FILE__, __LINE__,
6475 _("read_comp_unit_head: dwarf from non elf file"));
6476 cu_header->signed_addr_p = signed_addr;
6477
6478 if (section_kind == rcuh_kind::TYPE)
6479 {
6480 LONGEST type_offset;
6481
6482 cu_header->signature = read_8_bytes (abfd, info_ptr);
6483 info_ptr += 8;
6484
6485 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6486 info_ptr += bytes_read;
6487 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6488 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6489 error (_("Dwarf Error: Too big type_offset in compilation unit "
6490 "header (is %s) [in module %s]"), plongest (type_offset),
6491 filename);
6492 }
6493
6494 return info_ptr;
6495 }
6496
6497 /* Helper function that returns the proper abbrev section for
6498 THIS_CU. */
6499
6500 static struct dwarf2_section_info *
6501 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6502 {
6503 struct dwarf2_section_info *abbrev;
6504 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6505
6506 if (this_cu->is_dwz)
6507 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6508 else
6509 abbrev = &dwarf2_per_objfile->abbrev;
6510
6511 return abbrev;
6512 }
6513
6514 /* Subroutine of read_and_check_comp_unit_head and
6515 read_and_check_type_unit_head to simplify them.
6516 Perform various error checking on the header. */
6517
6518 static void
6519 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6520 struct comp_unit_head *header,
6521 struct dwarf2_section_info *section,
6522 struct dwarf2_section_info *abbrev_section)
6523 {
6524 const char *filename = get_section_file_name (section);
6525
6526 if (to_underlying (header->abbrev_sect_off)
6527 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6528 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6529 "(offset %s + 6) [in module %s]"),
6530 sect_offset_str (header->abbrev_sect_off),
6531 sect_offset_str (header->sect_off),
6532 filename);
6533
6534 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6535 avoid potential 32-bit overflow. */
6536 if (((ULONGEST) header->sect_off + get_cu_length (header))
6537 > section->size)
6538 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6539 "(offset %s + 0) [in module %s]"),
6540 header->length, sect_offset_str (header->sect_off),
6541 filename);
6542 }
6543
6544 /* Read in a CU/TU header and perform some basic error checking.
6545 The contents of the header are stored in HEADER.
6546 The result is a pointer to the start of the first DIE. */
6547
6548 static const gdb_byte *
6549 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6550 struct comp_unit_head *header,
6551 struct dwarf2_section_info *section,
6552 struct dwarf2_section_info *abbrev_section,
6553 const gdb_byte *info_ptr,
6554 rcuh_kind section_kind)
6555 {
6556 const gdb_byte *beg_of_comp_unit = info_ptr;
6557
6558 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6559
6560 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6561
6562 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6563
6564 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6565 abbrev_section);
6566
6567 return info_ptr;
6568 }
6569
6570 /* Fetch the abbreviation table offset from a comp or type unit header. */
6571
6572 static sect_offset
6573 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6574 struct dwarf2_section_info *section,
6575 sect_offset sect_off)
6576 {
6577 bfd *abfd = get_section_bfd_owner (section);
6578 const gdb_byte *info_ptr;
6579 unsigned int initial_length_size, offset_size;
6580 uint16_t version;
6581
6582 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6583 info_ptr = section->buffer + to_underlying (sect_off);
6584 read_initial_length (abfd, info_ptr, &initial_length_size);
6585 offset_size = initial_length_size == 4 ? 4 : 8;
6586 info_ptr += initial_length_size;
6587
6588 version = read_2_bytes (abfd, info_ptr);
6589 info_ptr += 2;
6590 if (version >= 5)
6591 {
6592 /* Skip unit type and address size. */
6593 info_ptr += 2;
6594 }
6595
6596 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6597 }
6598
6599 /* Allocate a new partial symtab for file named NAME and mark this new
6600 partial symtab as being an include of PST. */
6601
6602 static void
6603 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6604 struct objfile *objfile)
6605 {
6606 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6607
6608 if (!IS_ABSOLUTE_PATH (subpst->filename))
6609 {
6610 /* It shares objfile->objfile_obstack. */
6611 subpst->dirname = pst->dirname;
6612 }
6613
6614 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6615 subpst->dependencies[0] = pst;
6616 subpst->number_of_dependencies = 1;
6617
6618 subpst->read_symtab = pst->read_symtab;
6619
6620 /* No private part is necessary for include psymtabs. This property
6621 can be used to differentiate between such include psymtabs and
6622 the regular ones. */
6623 subpst->read_symtab_private = NULL;
6624 }
6625
6626 /* Read the Line Number Program data and extract the list of files
6627 included by the source file represented by PST. Build an include
6628 partial symtab for each of these included files. */
6629
6630 static void
6631 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6632 struct die_info *die,
6633 struct partial_symtab *pst)
6634 {
6635 line_header_up lh;
6636 struct attribute *attr;
6637
6638 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6639 if (attr)
6640 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6641 if (lh == NULL)
6642 return; /* No linetable, so no includes. */
6643
6644 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6645 that we pass in the raw text_low here; that is ok because we're
6646 only decoding the line table to make include partial symtabs, and
6647 so the addresses aren't really used. */
6648 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6649 pst->raw_text_low (), 1);
6650 }
6651
6652 static hashval_t
6653 hash_signatured_type (const void *item)
6654 {
6655 const struct signatured_type *sig_type
6656 = (const struct signatured_type *) item;
6657
6658 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6659 return sig_type->signature;
6660 }
6661
6662 static int
6663 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6664 {
6665 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6666 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6667
6668 return lhs->signature == rhs->signature;
6669 }
6670
6671 /* Allocate a hash table for signatured types. */
6672
6673 static htab_t
6674 allocate_signatured_type_table (struct objfile *objfile)
6675 {
6676 return htab_create_alloc_ex (41,
6677 hash_signatured_type,
6678 eq_signatured_type,
6679 NULL,
6680 &objfile->objfile_obstack,
6681 hashtab_obstack_allocate,
6682 dummy_obstack_deallocate);
6683 }
6684
6685 /* A helper function to add a signatured type CU to a table. */
6686
6687 static int
6688 add_signatured_type_cu_to_table (void **slot, void *datum)
6689 {
6690 struct signatured_type *sigt = (struct signatured_type *) *slot;
6691 std::vector<signatured_type *> *all_type_units
6692 = (std::vector<signatured_type *> *) datum;
6693
6694 all_type_units->push_back (sigt);
6695
6696 return 1;
6697 }
6698
6699 /* A helper for create_debug_types_hash_table. Read types from SECTION
6700 and fill them into TYPES_HTAB. It will process only type units,
6701 therefore DW_UT_type. */
6702
6703 static void
6704 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6705 struct dwo_file *dwo_file,
6706 dwarf2_section_info *section, htab_t &types_htab,
6707 rcuh_kind section_kind)
6708 {
6709 struct objfile *objfile = dwarf2_per_objfile->objfile;
6710 struct dwarf2_section_info *abbrev_section;
6711 bfd *abfd;
6712 const gdb_byte *info_ptr, *end_ptr;
6713
6714 abbrev_section = (dwo_file != NULL
6715 ? &dwo_file->sections.abbrev
6716 : &dwarf2_per_objfile->abbrev);
6717
6718 if (dwarf_read_debug)
6719 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6720 get_section_name (section),
6721 get_section_file_name (abbrev_section));
6722
6723 dwarf2_read_section (objfile, section);
6724 info_ptr = section->buffer;
6725
6726 if (info_ptr == NULL)
6727 return;
6728
6729 /* We can't set abfd until now because the section may be empty or
6730 not present, in which case the bfd is unknown. */
6731 abfd = get_section_bfd_owner (section);
6732
6733 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6734 because we don't need to read any dies: the signature is in the
6735 header. */
6736
6737 end_ptr = info_ptr + section->size;
6738 while (info_ptr < end_ptr)
6739 {
6740 struct signatured_type *sig_type;
6741 struct dwo_unit *dwo_tu;
6742 void **slot;
6743 const gdb_byte *ptr = info_ptr;
6744 struct comp_unit_head header;
6745 unsigned int length;
6746
6747 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6748
6749 /* Initialize it due to a false compiler warning. */
6750 header.signature = -1;
6751 header.type_cu_offset_in_tu = (cu_offset) -1;
6752
6753 /* We need to read the type's signature in order to build the hash
6754 table, but we don't need anything else just yet. */
6755
6756 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6757 abbrev_section, ptr, section_kind);
6758
6759 length = get_cu_length (&header);
6760
6761 /* Skip dummy type units. */
6762 if (ptr >= info_ptr + length
6763 || peek_abbrev_code (abfd, ptr) == 0
6764 || header.unit_type != DW_UT_type)
6765 {
6766 info_ptr += length;
6767 continue;
6768 }
6769
6770 if (types_htab == NULL)
6771 {
6772 if (dwo_file)
6773 types_htab = allocate_dwo_unit_table (objfile);
6774 else
6775 types_htab = allocate_signatured_type_table (objfile);
6776 }
6777
6778 if (dwo_file)
6779 {
6780 sig_type = NULL;
6781 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6782 struct dwo_unit);
6783 dwo_tu->dwo_file = dwo_file;
6784 dwo_tu->signature = header.signature;
6785 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6786 dwo_tu->section = section;
6787 dwo_tu->sect_off = sect_off;
6788 dwo_tu->length = length;
6789 }
6790 else
6791 {
6792 /* N.B.: type_offset is not usable if this type uses a DWO file.
6793 The real type_offset is in the DWO file. */
6794 dwo_tu = NULL;
6795 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6796 struct signatured_type);
6797 sig_type->signature = header.signature;
6798 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6799 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6800 sig_type->per_cu.is_debug_types = 1;
6801 sig_type->per_cu.section = section;
6802 sig_type->per_cu.sect_off = sect_off;
6803 sig_type->per_cu.length = length;
6804 }
6805
6806 slot = htab_find_slot (types_htab,
6807 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6808 INSERT);
6809 gdb_assert (slot != NULL);
6810 if (*slot != NULL)
6811 {
6812 sect_offset dup_sect_off;
6813
6814 if (dwo_file)
6815 {
6816 const struct dwo_unit *dup_tu
6817 = (const struct dwo_unit *) *slot;
6818
6819 dup_sect_off = dup_tu->sect_off;
6820 }
6821 else
6822 {
6823 const struct signatured_type *dup_tu
6824 = (const struct signatured_type *) *slot;
6825
6826 dup_sect_off = dup_tu->per_cu.sect_off;
6827 }
6828
6829 complaint (_("debug type entry at offset %s is duplicate to"
6830 " the entry at offset %s, signature %s"),
6831 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6832 hex_string (header.signature));
6833 }
6834 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6835
6836 if (dwarf_read_debug > 1)
6837 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6838 sect_offset_str (sect_off),
6839 hex_string (header.signature));
6840
6841 info_ptr += length;
6842 }
6843 }
6844
6845 /* Create the hash table of all entries in the .debug_types
6846 (or .debug_types.dwo) section(s).
6847 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6848 otherwise it is NULL.
6849
6850 The result is a pointer to the hash table or NULL if there are no types.
6851
6852 Note: This function processes DWO files only, not DWP files. */
6853
6854 static void
6855 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6856 struct dwo_file *dwo_file,
6857 VEC (dwarf2_section_info_def) *types,
6858 htab_t &types_htab)
6859 {
6860 int ix;
6861 struct dwarf2_section_info *section;
6862
6863 if (VEC_empty (dwarf2_section_info_def, types))
6864 return;
6865
6866 for (ix = 0;
6867 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6868 ++ix)
6869 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6870 types_htab, rcuh_kind::TYPE);
6871 }
6872
6873 /* Create the hash table of all entries in the .debug_types section,
6874 and initialize all_type_units.
6875 The result is zero if there is an error (e.g. missing .debug_types section),
6876 otherwise non-zero. */
6877
6878 static int
6879 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6880 {
6881 htab_t types_htab = NULL;
6882
6883 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6884 &dwarf2_per_objfile->info, types_htab,
6885 rcuh_kind::COMPILE);
6886 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6887 dwarf2_per_objfile->types, types_htab);
6888 if (types_htab == NULL)
6889 {
6890 dwarf2_per_objfile->signatured_types = NULL;
6891 return 0;
6892 }
6893
6894 dwarf2_per_objfile->signatured_types = types_htab;
6895
6896 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6897 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6898
6899 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6900 &dwarf2_per_objfile->all_type_units);
6901
6902 return 1;
6903 }
6904
6905 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6906 If SLOT is non-NULL, it is the entry to use in the hash table.
6907 Otherwise we find one. */
6908
6909 static struct signatured_type *
6910 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6911 void **slot)
6912 {
6913 struct objfile *objfile = dwarf2_per_objfile->objfile;
6914
6915 if (dwarf2_per_objfile->all_type_units.size ()
6916 == dwarf2_per_objfile->all_type_units.capacity ())
6917 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6918
6919 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6920 struct signatured_type);
6921
6922 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6923 sig_type->signature = sig;
6924 sig_type->per_cu.is_debug_types = 1;
6925 if (dwarf2_per_objfile->using_index)
6926 {
6927 sig_type->per_cu.v.quick =
6928 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6929 struct dwarf2_per_cu_quick_data);
6930 }
6931
6932 if (slot == NULL)
6933 {
6934 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6935 sig_type, INSERT);
6936 }
6937 gdb_assert (*slot == NULL);
6938 *slot = sig_type;
6939 /* The rest of sig_type must be filled in by the caller. */
6940 return sig_type;
6941 }
6942
6943 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6944 Fill in SIG_ENTRY with DWO_ENTRY. */
6945
6946 static void
6947 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6948 struct signatured_type *sig_entry,
6949 struct dwo_unit *dwo_entry)
6950 {
6951 /* Make sure we're not clobbering something we don't expect to. */
6952 gdb_assert (! sig_entry->per_cu.queued);
6953 gdb_assert (sig_entry->per_cu.cu == NULL);
6954 if (dwarf2_per_objfile->using_index)
6955 {
6956 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6957 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6958 }
6959 else
6960 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6961 gdb_assert (sig_entry->signature == dwo_entry->signature);
6962 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6963 gdb_assert (sig_entry->type_unit_group == NULL);
6964 gdb_assert (sig_entry->dwo_unit == NULL);
6965
6966 sig_entry->per_cu.section = dwo_entry->section;
6967 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6968 sig_entry->per_cu.length = dwo_entry->length;
6969 sig_entry->per_cu.reading_dwo_directly = 1;
6970 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6971 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6972 sig_entry->dwo_unit = dwo_entry;
6973 }
6974
6975 /* Subroutine of lookup_signatured_type.
6976 If we haven't read the TU yet, create the signatured_type data structure
6977 for a TU to be read in directly from a DWO file, bypassing the stub.
6978 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6979 using .gdb_index, then when reading a CU we want to stay in the DWO file
6980 containing that CU. Otherwise we could end up reading several other DWO
6981 files (due to comdat folding) to process the transitive closure of all the
6982 mentioned TUs, and that can be slow. The current DWO file will have every
6983 type signature that it needs.
6984 We only do this for .gdb_index because in the psymtab case we already have
6985 to read all the DWOs to build the type unit groups. */
6986
6987 static struct signatured_type *
6988 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6989 {
6990 struct dwarf2_per_objfile *dwarf2_per_objfile
6991 = cu->per_cu->dwarf2_per_objfile;
6992 struct objfile *objfile = dwarf2_per_objfile->objfile;
6993 struct dwo_file *dwo_file;
6994 struct dwo_unit find_dwo_entry, *dwo_entry;
6995 struct signatured_type find_sig_entry, *sig_entry;
6996 void **slot;
6997
6998 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6999
7000 /* If TU skeletons have been removed then we may not have read in any
7001 TUs yet. */
7002 if (dwarf2_per_objfile->signatured_types == NULL)
7003 {
7004 dwarf2_per_objfile->signatured_types
7005 = allocate_signatured_type_table (objfile);
7006 }
7007
7008 /* We only ever need to read in one copy of a signatured type.
7009 Use the global signatured_types array to do our own comdat-folding
7010 of types. If this is the first time we're reading this TU, and
7011 the TU has an entry in .gdb_index, replace the recorded data from
7012 .gdb_index with this TU. */
7013
7014 find_sig_entry.signature = sig;
7015 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7016 &find_sig_entry, INSERT);
7017 sig_entry = (struct signatured_type *) *slot;
7018
7019 /* We can get here with the TU already read, *or* in the process of being
7020 read. Don't reassign the global entry to point to this DWO if that's
7021 the case. Also note that if the TU is already being read, it may not
7022 have come from a DWO, the program may be a mix of Fission-compiled
7023 code and non-Fission-compiled code. */
7024
7025 /* Have we already tried to read this TU?
7026 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7027 needn't exist in the global table yet). */
7028 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7029 return sig_entry;
7030
7031 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7032 dwo_unit of the TU itself. */
7033 dwo_file = cu->dwo_unit->dwo_file;
7034
7035 /* Ok, this is the first time we're reading this TU. */
7036 if (dwo_file->tus == NULL)
7037 return NULL;
7038 find_dwo_entry.signature = sig;
7039 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7040 if (dwo_entry == NULL)
7041 return NULL;
7042
7043 /* If the global table doesn't have an entry for this TU, add one. */
7044 if (sig_entry == NULL)
7045 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7046
7047 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7048 sig_entry->per_cu.tu_read = 1;
7049 return sig_entry;
7050 }
7051
7052 /* Subroutine of lookup_signatured_type.
7053 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7054 then try the DWP file. If the TU stub (skeleton) has been removed then
7055 it won't be in .gdb_index. */
7056
7057 static struct signatured_type *
7058 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7059 {
7060 struct dwarf2_per_objfile *dwarf2_per_objfile
7061 = cu->per_cu->dwarf2_per_objfile;
7062 struct objfile *objfile = dwarf2_per_objfile->objfile;
7063 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7064 struct dwo_unit *dwo_entry;
7065 struct signatured_type find_sig_entry, *sig_entry;
7066 void **slot;
7067
7068 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7069 gdb_assert (dwp_file != NULL);
7070
7071 /* If TU skeletons have been removed then we may not have read in any
7072 TUs yet. */
7073 if (dwarf2_per_objfile->signatured_types == NULL)
7074 {
7075 dwarf2_per_objfile->signatured_types
7076 = allocate_signatured_type_table (objfile);
7077 }
7078
7079 find_sig_entry.signature = sig;
7080 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7081 &find_sig_entry, INSERT);
7082 sig_entry = (struct signatured_type *) *slot;
7083
7084 /* Have we already tried to read this TU?
7085 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7086 needn't exist in the global table yet). */
7087 if (sig_entry != NULL)
7088 return sig_entry;
7089
7090 if (dwp_file->tus == NULL)
7091 return NULL;
7092 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7093 sig, 1 /* is_debug_types */);
7094 if (dwo_entry == NULL)
7095 return NULL;
7096
7097 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7098 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7099
7100 return sig_entry;
7101 }
7102
7103 /* Lookup a signature based type for DW_FORM_ref_sig8.
7104 Returns NULL if signature SIG is not present in the table.
7105 It is up to the caller to complain about this. */
7106
7107 static struct signatured_type *
7108 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7109 {
7110 struct dwarf2_per_objfile *dwarf2_per_objfile
7111 = cu->per_cu->dwarf2_per_objfile;
7112
7113 if (cu->dwo_unit
7114 && dwarf2_per_objfile->using_index)
7115 {
7116 /* We're in a DWO/DWP file, and we're using .gdb_index.
7117 These cases require special processing. */
7118 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7119 return lookup_dwo_signatured_type (cu, sig);
7120 else
7121 return lookup_dwp_signatured_type (cu, sig);
7122 }
7123 else
7124 {
7125 struct signatured_type find_entry, *entry;
7126
7127 if (dwarf2_per_objfile->signatured_types == NULL)
7128 return NULL;
7129 find_entry.signature = sig;
7130 entry = ((struct signatured_type *)
7131 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7132 return entry;
7133 }
7134 }
7135 \f
7136 /* Low level DIE reading support. */
7137
7138 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7139
7140 static void
7141 init_cu_die_reader (struct die_reader_specs *reader,
7142 struct dwarf2_cu *cu,
7143 struct dwarf2_section_info *section,
7144 struct dwo_file *dwo_file,
7145 struct abbrev_table *abbrev_table)
7146 {
7147 gdb_assert (section->readin && section->buffer != NULL);
7148 reader->abfd = get_section_bfd_owner (section);
7149 reader->cu = cu;
7150 reader->dwo_file = dwo_file;
7151 reader->die_section = section;
7152 reader->buffer = section->buffer;
7153 reader->buffer_end = section->buffer + section->size;
7154 reader->comp_dir = NULL;
7155 reader->abbrev_table = abbrev_table;
7156 }
7157
7158 /* Subroutine of init_cutu_and_read_dies to simplify it.
7159 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7160 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7161 already.
7162
7163 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7164 from it to the DIE in the DWO. If NULL we are skipping the stub.
7165 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7166 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7167 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7168 STUB_COMP_DIR may be non-NULL.
7169 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7170 are filled in with the info of the DIE from the DWO file.
7171 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7172 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7173 kept around for at least as long as *RESULT_READER.
7174
7175 The result is non-zero if a valid (non-dummy) DIE was found. */
7176
7177 static int
7178 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7179 struct dwo_unit *dwo_unit,
7180 struct die_info *stub_comp_unit_die,
7181 const char *stub_comp_dir,
7182 struct die_reader_specs *result_reader,
7183 const gdb_byte **result_info_ptr,
7184 struct die_info **result_comp_unit_die,
7185 int *result_has_children,
7186 abbrev_table_up *result_dwo_abbrev_table)
7187 {
7188 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7189 struct objfile *objfile = dwarf2_per_objfile->objfile;
7190 struct dwarf2_cu *cu = this_cu->cu;
7191 bfd *abfd;
7192 const gdb_byte *begin_info_ptr, *info_ptr;
7193 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7194 int i,num_extra_attrs;
7195 struct dwarf2_section_info *dwo_abbrev_section;
7196 struct attribute *attr;
7197 struct die_info *comp_unit_die;
7198
7199 /* At most one of these may be provided. */
7200 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7201
7202 /* These attributes aren't processed until later:
7203 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7204 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7205 referenced later. However, these attributes are found in the stub
7206 which we won't have later. In order to not impose this complication
7207 on the rest of the code, we read them here and copy them to the
7208 DWO CU/TU die. */
7209
7210 stmt_list = NULL;
7211 low_pc = NULL;
7212 high_pc = NULL;
7213 ranges = NULL;
7214 comp_dir = NULL;
7215
7216 if (stub_comp_unit_die != NULL)
7217 {
7218 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7219 DWO file. */
7220 if (! this_cu->is_debug_types)
7221 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7222 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7223 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7224 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7225 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7226
7227 /* There should be a DW_AT_addr_base attribute here (if needed).
7228 We need the value before we can process DW_FORM_GNU_addr_index
7229 or DW_FORM_addrx. */
7230 cu->addr_base = 0;
7231 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7232 if (attr)
7233 cu->addr_base = DW_UNSND (attr);
7234
7235 /* There should be a DW_AT_ranges_base attribute here (if needed).
7236 We need the value before we can process DW_AT_ranges. */
7237 cu->ranges_base = 0;
7238 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7239 if (attr)
7240 cu->ranges_base = DW_UNSND (attr);
7241 }
7242 else if (stub_comp_dir != NULL)
7243 {
7244 /* Reconstruct the comp_dir attribute to simplify the code below. */
7245 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7246 comp_dir->name = DW_AT_comp_dir;
7247 comp_dir->form = DW_FORM_string;
7248 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7249 DW_STRING (comp_dir) = stub_comp_dir;
7250 }
7251
7252 /* Set up for reading the DWO CU/TU. */
7253 cu->dwo_unit = dwo_unit;
7254 dwarf2_section_info *section = dwo_unit->section;
7255 dwarf2_read_section (objfile, section);
7256 abfd = get_section_bfd_owner (section);
7257 begin_info_ptr = info_ptr = (section->buffer
7258 + to_underlying (dwo_unit->sect_off));
7259 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7260
7261 if (this_cu->is_debug_types)
7262 {
7263 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7264
7265 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7266 &cu->header, section,
7267 dwo_abbrev_section,
7268 info_ptr, rcuh_kind::TYPE);
7269 /* This is not an assert because it can be caused by bad debug info. */
7270 if (sig_type->signature != cu->header.signature)
7271 {
7272 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7273 " TU at offset %s [in module %s]"),
7274 hex_string (sig_type->signature),
7275 hex_string (cu->header.signature),
7276 sect_offset_str (dwo_unit->sect_off),
7277 bfd_get_filename (abfd));
7278 }
7279 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7280 /* For DWOs coming from DWP files, we don't know the CU length
7281 nor the type's offset in the TU until now. */
7282 dwo_unit->length = get_cu_length (&cu->header);
7283 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7284
7285 /* Establish the type offset that can be used to lookup the type.
7286 For DWO files, we don't know it until now. */
7287 sig_type->type_offset_in_section
7288 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7289 }
7290 else
7291 {
7292 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7293 &cu->header, section,
7294 dwo_abbrev_section,
7295 info_ptr, rcuh_kind::COMPILE);
7296 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7297 /* For DWOs coming from DWP files, we don't know the CU length
7298 until now. */
7299 dwo_unit->length = get_cu_length (&cu->header);
7300 }
7301
7302 *result_dwo_abbrev_table
7303 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7304 cu->header.abbrev_sect_off);
7305 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7306 result_dwo_abbrev_table->get ());
7307
7308 /* Read in the die, but leave space to copy over the attributes
7309 from the stub. This has the benefit of simplifying the rest of
7310 the code - all the work to maintain the illusion of a single
7311 DW_TAG_{compile,type}_unit DIE is done here. */
7312 num_extra_attrs = ((stmt_list != NULL)
7313 + (low_pc != NULL)
7314 + (high_pc != NULL)
7315 + (ranges != NULL)
7316 + (comp_dir != NULL));
7317 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7318 result_has_children, num_extra_attrs);
7319
7320 /* Copy over the attributes from the stub to the DIE we just read in. */
7321 comp_unit_die = *result_comp_unit_die;
7322 i = comp_unit_die->num_attrs;
7323 if (stmt_list != NULL)
7324 comp_unit_die->attrs[i++] = *stmt_list;
7325 if (low_pc != NULL)
7326 comp_unit_die->attrs[i++] = *low_pc;
7327 if (high_pc != NULL)
7328 comp_unit_die->attrs[i++] = *high_pc;
7329 if (ranges != NULL)
7330 comp_unit_die->attrs[i++] = *ranges;
7331 if (comp_dir != NULL)
7332 comp_unit_die->attrs[i++] = *comp_dir;
7333 comp_unit_die->num_attrs += num_extra_attrs;
7334
7335 if (dwarf_die_debug)
7336 {
7337 fprintf_unfiltered (gdb_stdlog,
7338 "Read die from %s@0x%x of %s:\n",
7339 get_section_name (section),
7340 (unsigned) (begin_info_ptr - section->buffer),
7341 bfd_get_filename (abfd));
7342 dump_die (comp_unit_die, dwarf_die_debug);
7343 }
7344
7345 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7346 TUs by skipping the stub and going directly to the entry in the DWO file.
7347 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7348 to get it via circuitous means. Blech. */
7349 if (comp_dir != NULL)
7350 result_reader->comp_dir = DW_STRING (comp_dir);
7351
7352 /* Skip dummy compilation units. */
7353 if (info_ptr >= begin_info_ptr + dwo_unit->length
7354 || peek_abbrev_code (abfd, info_ptr) == 0)
7355 return 0;
7356
7357 *result_info_ptr = info_ptr;
7358 return 1;
7359 }
7360
7361 /* Subroutine of init_cutu_and_read_dies to simplify it.
7362 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7363 Returns NULL if the specified DWO unit cannot be found. */
7364
7365 static struct dwo_unit *
7366 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7367 struct die_info *comp_unit_die)
7368 {
7369 struct dwarf2_cu *cu = this_cu->cu;
7370 ULONGEST signature;
7371 struct dwo_unit *dwo_unit;
7372 const char *comp_dir, *dwo_name;
7373
7374 gdb_assert (cu != NULL);
7375
7376 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7377 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7378 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7379
7380 if (this_cu->is_debug_types)
7381 {
7382 struct signatured_type *sig_type;
7383
7384 /* Since this_cu is the first member of struct signatured_type,
7385 we can go from a pointer to one to a pointer to the other. */
7386 sig_type = (struct signatured_type *) this_cu;
7387 signature = sig_type->signature;
7388 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7389 }
7390 else
7391 {
7392 struct attribute *attr;
7393
7394 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7395 if (! attr)
7396 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7397 " [in module %s]"),
7398 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7399 signature = DW_UNSND (attr);
7400 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7401 signature);
7402 }
7403
7404 return dwo_unit;
7405 }
7406
7407 /* Subroutine of init_cutu_and_read_dies to simplify it.
7408 See it for a description of the parameters.
7409 Read a TU directly from a DWO file, bypassing the stub. */
7410
7411 static void
7412 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7413 int use_existing_cu, int keep,
7414 die_reader_func_ftype *die_reader_func,
7415 void *data)
7416 {
7417 std::unique_ptr<dwarf2_cu> new_cu;
7418 struct signatured_type *sig_type;
7419 struct die_reader_specs reader;
7420 const gdb_byte *info_ptr;
7421 struct die_info *comp_unit_die;
7422 int has_children;
7423 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7424
7425 /* Verify we can do the following downcast, and that we have the
7426 data we need. */
7427 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7428 sig_type = (struct signatured_type *) this_cu;
7429 gdb_assert (sig_type->dwo_unit != NULL);
7430
7431 if (use_existing_cu && this_cu->cu != NULL)
7432 {
7433 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7434 /* There's no need to do the rereading_dwo_cu handling that
7435 init_cutu_and_read_dies does since we don't read the stub. */
7436 }
7437 else
7438 {
7439 /* If !use_existing_cu, this_cu->cu must be NULL. */
7440 gdb_assert (this_cu->cu == NULL);
7441 new_cu.reset (new dwarf2_cu (this_cu));
7442 }
7443
7444 /* A future optimization, if needed, would be to use an existing
7445 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7446 could share abbrev tables. */
7447
7448 /* The abbreviation table used by READER, this must live at least as long as
7449 READER. */
7450 abbrev_table_up dwo_abbrev_table;
7451
7452 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7453 NULL /* stub_comp_unit_die */,
7454 sig_type->dwo_unit->dwo_file->comp_dir,
7455 &reader, &info_ptr,
7456 &comp_unit_die, &has_children,
7457 &dwo_abbrev_table) == 0)
7458 {
7459 /* Dummy die. */
7460 return;
7461 }
7462
7463 /* All the "real" work is done here. */
7464 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7465
7466 /* This duplicates the code in init_cutu_and_read_dies,
7467 but the alternative is making the latter more complex.
7468 This function is only for the special case of using DWO files directly:
7469 no point in overly complicating the general case just to handle this. */
7470 if (new_cu != NULL && keep)
7471 {
7472 /* Link this CU into read_in_chain. */
7473 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7474 dwarf2_per_objfile->read_in_chain = this_cu;
7475 /* The chain owns it now. */
7476 new_cu.release ();
7477 }
7478 }
7479
7480 /* Initialize a CU (or TU) and read its DIEs.
7481 If the CU defers to a DWO file, read the DWO file as well.
7482
7483 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7484 Otherwise the table specified in the comp unit header is read in and used.
7485 This is an optimization for when we already have the abbrev table.
7486
7487 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7488 Otherwise, a new CU is allocated with xmalloc.
7489
7490 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7491 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7492
7493 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7494 linker) then DIE_READER_FUNC will not get called. */
7495
7496 static void
7497 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7498 struct abbrev_table *abbrev_table,
7499 int use_existing_cu, int keep,
7500 bool skip_partial,
7501 die_reader_func_ftype *die_reader_func,
7502 void *data)
7503 {
7504 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7505 struct objfile *objfile = dwarf2_per_objfile->objfile;
7506 struct dwarf2_section_info *section = this_cu->section;
7507 bfd *abfd = get_section_bfd_owner (section);
7508 struct dwarf2_cu *cu;
7509 const gdb_byte *begin_info_ptr, *info_ptr;
7510 struct die_reader_specs reader;
7511 struct die_info *comp_unit_die;
7512 int has_children;
7513 struct attribute *attr;
7514 struct signatured_type *sig_type = NULL;
7515 struct dwarf2_section_info *abbrev_section;
7516 /* Non-zero if CU currently points to a DWO file and we need to
7517 reread it. When this happens we need to reread the skeleton die
7518 before we can reread the DWO file (this only applies to CUs, not TUs). */
7519 int rereading_dwo_cu = 0;
7520
7521 if (dwarf_die_debug)
7522 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7523 this_cu->is_debug_types ? "type" : "comp",
7524 sect_offset_str (this_cu->sect_off));
7525
7526 if (use_existing_cu)
7527 gdb_assert (keep);
7528
7529 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7530 file (instead of going through the stub), short-circuit all of this. */
7531 if (this_cu->reading_dwo_directly)
7532 {
7533 /* Narrow down the scope of possibilities to have to understand. */
7534 gdb_assert (this_cu->is_debug_types);
7535 gdb_assert (abbrev_table == NULL);
7536 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7537 die_reader_func, data);
7538 return;
7539 }
7540
7541 /* This is cheap if the section is already read in. */
7542 dwarf2_read_section (objfile, section);
7543
7544 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7545
7546 abbrev_section = get_abbrev_section_for_cu (this_cu);
7547
7548 std::unique_ptr<dwarf2_cu> new_cu;
7549 if (use_existing_cu && this_cu->cu != NULL)
7550 {
7551 cu = this_cu->cu;
7552 /* If this CU is from a DWO file we need to start over, we need to
7553 refetch the attributes from the skeleton CU.
7554 This could be optimized by retrieving those attributes from when we
7555 were here the first time: the previous comp_unit_die was stored in
7556 comp_unit_obstack. But there's no data yet that we need this
7557 optimization. */
7558 if (cu->dwo_unit != NULL)
7559 rereading_dwo_cu = 1;
7560 }
7561 else
7562 {
7563 /* If !use_existing_cu, this_cu->cu must be NULL. */
7564 gdb_assert (this_cu->cu == NULL);
7565 new_cu.reset (new dwarf2_cu (this_cu));
7566 cu = new_cu.get ();
7567 }
7568
7569 /* Get the header. */
7570 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7571 {
7572 /* We already have the header, there's no need to read it in again. */
7573 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7574 }
7575 else
7576 {
7577 if (this_cu->is_debug_types)
7578 {
7579 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7580 &cu->header, section,
7581 abbrev_section, info_ptr,
7582 rcuh_kind::TYPE);
7583
7584 /* Since per_cu is the first member of struct signatured_type,
7585 we can go from a pointer to one to a pointer to the other. */
7586 sig_type = (struct signatured_type *) this_cu;
7587 gdb_assert (sig_type->signature == cu->header.signature);
7588 gdb_assert (sig_type->type_offset_in_tu
7589 == cu->header.type_cu_offset_in_tu);
7590 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7591
7592 /* LENGTH has not been set yet for type units if we're
7593 using .gdb_index. */
7594 this_cu->length = get_cu_length (&cu->header);
7595
7596 /* Establish the type offset that can be used to lookup the type. */
7597 sig_type->type_offset_in_section =
7598 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7599
7600 this_cu->dwarf_version = cu->header.version;
7601 }
7602 else
7603 {
7604 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7605 &cu->header, section,
7606 abbrev_section,
7607 info_ptr,
7608 rcuh_kind::COMPILE);
7609
7610 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7611 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7612 this_cu->dwarf_version = cu->header.version;
7613 }
7614 }
7615
7616 /* Skip dummy compilation units. */
7617 if (info_ptr >= begin_info_ptr + this_cu->length
7618 || peek_abbrev_code (abfd, info_ptr) == 0)
7619 return;
7620
7621 /* If we don't have them yet, read the abbrevs for this compilation unit.
7622 And if we need to read them now, make sure they're freed when we're
7623 done (own the table through ABBREV_TABLE_HOLDER). */
7624 abbrev_table_up abbrev_table_holder;
7625 if (abbrev_table != NULL)
7626 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7627 else
7628 {
7629 abbrev_table_holder
7630 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7631 cu->header.abbrev_sect_off);
7632 abbrev_table = abbrev_table_holder.get ();
7633 }
7634
7635 /* Read the top level CU/TU die. */
7636 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7637 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7638
7639 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7640 return;
7641
7642 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7643 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7644 table from the DWO file and pass the ownership over to us. It will be
7645 referenced from READER, so we must make sure to free it after we're done
7646 with READER.
7647
7648 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7649 DWO CU, that this test will fail (the attribute will not be present). */
7650 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7651 abbrev_table_up dwo_abbrev_table;
7652 if (attr)
7653 {
7654 struct dwo_unit *dwo_unit;
7655 struct die_info *dwo_comp_unit_die;
7656
7657 if (has_children)
7658 {
7659 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7660 " has children (offset %s) [in module %s]"),
7661 sect_offset_str (this_cu->sect_off),
7662 bfd_get_filename (abfd));
7663 }
7664 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7665 if (dwo_unit != NULL)
7666 {
7667 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7668 comp_unit_die, NULL,
7669 &reader, &info_ptr,
7670 &dwo_comp_unit_die, &has_children,
7671 &dwo_abbrev_table) == 0)
7672 {
7673 /* Dummy die. */
7674 return;
7675 }
7676 comp_unit_die = dwo_comp_unit_die;
7677 }
7678 else
7679 {
7680 /* Yikes, we couldn't find the rest of the DIE, we only have
7681 the stub. A complaint has already been logged. There's
7682 not much more we can do except pass on the stub DIE to
7683 die_reader_func. We don't want to throw an error on bad
7684 debug info. */
7685 }
7686 }
7687
7688 /* All of the above is setup for this call. Yikes. */
7689 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7690
7691 /* Done, clean up. */
7692 if (new_cu != NULL && keep)
7693 {
7694 /* Link this CU into read_in_chain. */
7695 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7696 dwarf2_per_objfile->read_in_chain = this_cu;
7697 /* The chain owns it now. */
7698 new_cu.release ();
7699 }
7700 }
7701
7702 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7703 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7704 to have already done the lookup to find the DWO file).
7705
7706 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7707 THIS_CU->is_debug_types, but nothing else.
7708
7709 We fill in THIS_CU->length.
7710
7711 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7712 linker) then DIE_READER_FUNC will not get called.
7713
7714 THIS_CU->cu is always freed when done.
7715 This is done in order to not leave THIS_CU->cu in a state where we have
7716 to care whether it refers to the "main" CU or the DWO CU. */
7717
7718 static void
7719 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7720 struct dwo_file *dwo_file,
7721 die_reader_func_ftype *die_reader_func,
7722 void *data)
7723 {
7724 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7725 struct objfile *objfile = dwarf2_per_objfile->objfile;
7726 struct dwarf2_section_info *section = this_cu->section;
7727 bfd *abfd = get_section_bfd_owner (section);
7728 struct dwarf2_section_info *abbrev_section;
7729 const gdb_byte *begin_info_ptr, *info_ptr;
7730 struct die_reader_specs reader;
7731 struct die_info *comp_unit_die;
7732 int has_children;
7733
7734 if (dwarf_die_debug)
7735 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7736 this_cu->is_debug_types ? "type" : "comp",
7737 sect_offset_str (this_cu->sect_off));
7738
7739 gdb_assert (this_cu->cu == NULL);
7740
7741 abbrev_section = (dwo_file != NULL
7742 ? &dwo_file->sections.abbrev
7743 : get_abbrev_section_for_cu (this_cu));
7744
7745 /* This is cheap if the section is already read in. */
7746 dwarf2_read_section (objfile, section);
7747
7748 struct dwarf2_cu cu (this_cu);
7749
7750 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7751 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7752 &cu.header, section,
7753 abbrev_section, info_ptr,
7754 (this_cu->is_debug_types
7755 ? rcuh_kind::TYPE
7756 : rcuh_kind::COMPILE));
7757
7758 this_cu->length = get_cu_length (&cu.header);
7759
7760 /* Skip dummy compilation units. */
7761 if (info_ptr >= begin_info_ptr + this_cu->length
7762 || peek_abbrev_code (abfd, info_ptr) == 0)
7763 return;
7764
7765 abbrev_table_up abbrev_table
7766 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7767 cu.header.abbrev_sect_off);
7768
7769 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7770 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7771
7772 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7773 }
7774
7775 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7776 does not lookup the specified DWO file.
7777 This cannot be used to read DWO files.
7778
7779 THIS_CU->cu is always freed when done.
7780 This is done in order to not leave THIS_CU->cu in a state where we have
7781 to care whether it refers to the "main" CU or the DWO CU.
7782 We can revisit this if the data shows there's a performance issue. */
7783
7784 static void
7785 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7786 die_reader_func_ftype *die_reader_func,
7787 void *data)
7788 {
7789 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7790 }
7791 \f
7792 /* Type Unit Groups.
7793
7794 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7795 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7796 so that all types coming from the same compilation (.o file) are grouped
7797 together. A future step could be to put the types in the same symtab as
7798 the CU the types ultimately came from. */
7799
7800 static hashval_t
7801 hash_type_unit_group (const void *item)
7802 {
7803 const struct type_unit_group *tu_group
7804 = (const struct type_unit_group *) item;
7805
7806 return hash_stmt_list_entry (&tu_group->hash);
7807 }
7808
7809 static int
7810 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7811 {
7812 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7813 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7814
7815 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7816 }
7817
7818 /* Allocate a hash table for type unit groups. */
7819
7820 static htab_t
7821 allocate_type_unit_groups_table (struct objfile *objfile)
7822 {
7823 return htab_create_alloc_ex (3,
7824 hash_type_unit_group,
7825 eq_type_unit_group,
7826 NULL,
7827 &objfile->objfile_obstack,
7828 hashtab_obstack_allocate,
7829 dummy_obstack_deallocate);
7830 }
7831
7832 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7833 partial symtabs. We combine several TUs per psymtab to not let the size
7834 of any one psymtab grow too big. */
7835 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7836 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7837
7838 /* Helper routine for get_type_unit_group.
7839 Create the type_unit_group object used to hold one or more TUs. */
7840
7841 static struct type_unit_group *
7842 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7843 {
7844 struct dwarf2_per_objfile *dwarf2_per_objfile
7845 = cu->per_cu->dwarf2_per_objfile;
7846 struct objfile *objfile = dwarf2_per_objfile->objfile;
7847 struct dwarf2_per_cu_data *per_cu;
7848 struct type_unit_group *tu_group;
7849
7850 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7851 struct type_unit_group);
7852 per_cu = &tu_group->per_cu;
7853 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7854
7855 if (dwarf2_per_objfile->using_index)
7856 {
7857 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7858 struct dwarf2_per_cu_quick_data);
7859 }
7860 else
7861 {
7862 unsigned int line_offset = to_underlying (line_offset_struct);
7863 struct partial_symtab *pst;
7864 std::string name;
7865
7866 /* Give the symtab a useful name for debug purposes. */
7867 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7868 name = string_printf ("<type_units_%d>",
7869 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7870 else
7871 name = string_printf ("<type_units_at_0x%x>", line_offset);
7872
7873 pst = create_partial_symtab (per_cu, name.c_str ());
7874 pst->anonymous = 1;
7875 }
7876
7877 tu_group->hash.dwo_unit = cu->dwo_unit;
7878 tu_group->hash.line_sect_off = line_offset_struct;
7879
7880 return tu_group;
7881 }
7882
7883 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7884 STMT_LIST is a DW_AT_stmt_list attribute. */
7885
7886 static struct type_unit_group *
7887 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7888 {
7889 struct dwarf2_per_objfile *dwarf2_per_objfile
7890 = cu->per_cu->dwarf2_per_objfile;
7891 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7892 struct type_unit_group *tu_group;
7893 void **slot;
7894 unsigned int line_offset;
7895 struct type_unit_group type_unit_group_for_lookup;
7896
7897 if (dwarf2_per_objfile->type_unit_groups == NULL)
7898 {
7899 dwarf2_per_objfile->type_unit_groups =
7900 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7901 }
7902
7903 /* Do we need to create a new group, or can we use an existing one? */
7904
7905 if (stmt_list)
7906 {
7907 line_offset = DW_UNSND (stmt_list);
7908 ++tu_stats->nr_symtab_sharers;
7909 }
7910 else
7911 {
7912 /* Ugh, no stmt_list. Rare, but we have to handle it.
7913 We can do various things here like create one group per TU or
7914 spread them over multiple groups to split up the expansion work.
7915 To avoid worst case scenarios (too many groups or too large groups)
7916 we, umm, group them in bunches. */
7917 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7918 | (tu_stats->nr_stmt_less_type_units
7919 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7920 ++tu_stats->nr_stmt_less_type_units;
7921 }
7922
7923 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7924 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7925 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7926 &type_unit_group_for_lookup, INSERT);
7927 if (*slot != NULL)
7928 {
7929 tu_group = (struct type_unit_group *) *slot;
7930 gdb_assert (tu_group != NULL);
7931 }
7932 else
7933 {
7934 sect_offset line_offset_struct = (sect_offset) line_offset;
7935 tu_group = create_type_unit_group (cu, line_offset_struct);
7936 *slot = tu_group;
7937 ++tu_stats->nr_symtabs;
7938 }
7939
7940 return tu_group;
7941 }
7942 \f
7943 /* Partial symbol tables. */
7944
7945 /* Create a psymtab named NAME and assign it to PER_CU.
7946
7947 The caller must fill in the following details:
7948 dirname, textlow, texthigh. */
7949
7950 static struct partial_symtab *
7951 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7952 {
7953 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7954 struct partial_symtab *pst;
7955
7956 pst = start_psymtab_common (objfile, name, 0);
7957
7958 pst->psymtabs_addrmap_supported = 1;
7959
7960 /* This is the glue that links PST into GDB's symbol API. */
7961 pst->read_symtab_private = per_cu;
7962 pst->read_symtab = dwarf2_read_symtab;
7963 per_cu->v.psymtab = pst;
7964
7965 return pst;
7966 }
7967
7968 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7969 type. */
7970
7971 struct process_psymtab_comp_unit_data
7972 {
7973 /* True if we are reading a DW_TAG_partial_unit. */
7974
7975 int want_partial_unit;
7976
7977 /* The "pretend" language that is used if the CU doesn't declare a
7978 language. */
7979
7980 enum language pretend_language;
7981 };
7982
7983 /* die_reader_func for process_psymtab_comp_unit. */
7984
7985 static void
7986 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7987 const gdb_byte *info_ptr,
7988 struct die_info *comp_unit_die,
7989 int has_children,
7990 void *data)
7991 {
7992 struct dwarf2_cu *cu = reader->cu;
7993 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7994 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7995 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7996 CORE_ADDR baseaddr;
7997 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7998 struct partial_symtab *pst;
7999 enum pc_bounds_kind cu_bounds_kind;
8000 const char *filename;
8001 struct process_psymtab_comp_unit_data *info
8002 = (struct process_psymtab_comp_unit_data *) data;
8003
8004 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8005 return;
8006
8007 gdb_assert (! per_cu->is_debug_types);
8008
8009 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8010
8011 /* Allocate a new partial symbol table structure. */
8012 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8013 if (filename == NULL)
8014 filename = "";
8015
8016 pst = create_partial_symtab (per_cu, filename);
8017
8018 /* This must be done before calling dwarf2_build_include_psymtabs. */
8019 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8020
8021 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8022
8023 dwarf2_find_base_address (comp_unit_die, cu);
8024
8025 /* Possibly set the default values of LOWPC and HIGHPC from
8026 `DW_AT_ranges'. */
8027 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8028 &best_highpc, cu, pst);
8029 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8030 {
8031 CORE_ADDR low
8032 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8033 - baseaddr);
8034 CORE_ADDR high
8035 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8036 - baseaddr - 1);
8037 /* Store the contiguous range if it is not empty; it can be
8038 empty for CUs with no code. */
8039 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8040 low, high, pst);
8041 }
8042
8043 /* Check if comp unit has_children.
8044 If so, read the rest of the partial symbols from this comp unit.
8045 If not, there's no more debug_info for this comp unit. */
8046 if (has_children)
8047 {
8048 struct partial_die_info *first_die;
8049 CORE_ADDR lowpc, highpc;
8050
8051 lowpc = ((CORE_ADDR) -1);
8052 highpc = ((CORE_ADDR) 0);
8053
8054 first_die = load_partial_dies (reader, info_ptr, 1);
8055
8056 scan_partial_symbols (first_die, &lowpc, &highpc,
8057 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8058
8059 /* If we didn't find a lowpc, set it to highpc to avoid
8060 complaints from `maint check'. */
8061 if (lowpc == ((CORE_ADDR) -1))
8062 lowpc = highpc;
8063
8064 /* If the compilation unit didn't have an explicit address range,
8065 then use the information extracted from its child dies. */
8066 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8067 {
8068 best_lowpc = lowpc;
8069 best_highpc = highpc;
8070 }
8071 }
8072 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8073 best_lowpc + baseaddr)
8074 - baseaddr);
8075 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8076 best_highpc + baseaddr)
8077 - baseaddr);
8078
8079 end_psymtab_common (objfile, pst);
8080
8081 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8082 {
8083 int i;
8084 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8085 struct dwarf2_per_cu_data *iter;
8086
8087 /* Fill in 'dependencies' here; we fill in 'users' in a
8088 post-pass. */
8089 pst->number_of_dependencies = len;
8090 pst->dependencies
8091 = objfile->partial_symtabs->allocate_dependencies (len);
8092 for (i = 0;
8093 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8094 i, iter);
8095 ++i)
8096 pst->dependencies[i] = iter->v.psymtab;
8097
8098 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8099 }
8100
8101 /* Get the list of files included in the current compilation unit,
8102 and build a psymtab for each of them. */
8103 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8104
8105 if (dwarf_read_debug)
8106 fprintf_unfiltered (gdb_stdlog,
8107 "Psymtab for %s unit @%s: %s - %s"
8108 ", %d global, %d static syms\n",
8109 per_cu->is_debug_types ? "type" : "comp",
8110 sect_offset_str (per_cu->sect_off),
8111 paddress (gdbarch, pst->text_low (objfile)),
8112 paddress (gdbarch, pst->text_high (objfile)),
8113 pst->n_global_syms, pst->n_static_syms);
8114 }
8115
8116 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8117 Process compilation unit THIS_CU for a psymtab. */
8118
8119 static void
8120 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8121 int want_partial_unit,
8122 enum language pretend_language)
8123 {
8124 /* If this compilation unit was already read in, free the
8125 cached copy in order to read it in again. This is
8126 necessary because we skipped some symbols when we first
8127 read in the compilation unit (see load_partial_dies).
8128 This problem could be avoided, but the benefit is unclear. */
8129 if (this_cu->cu != NULL)
8130 free_one_cached_comp_unit (this_cu);
8131
8132 if (this_cu->is_debug_types)
8133 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8134 build_type_psymtabs_reader, NULL);
8135 else
8136 {
8137 process_psymtab_comp_unit_data info;
8138 info.want_partial_unit = want_partial_unit;
8139 info.pretend_language = pretend_language;
8140 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8141 process_psymtab_comp_unit_reader, &info);
8142 }
8143
8144 /* Age out any secondary CUs. */
8145 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8146 }
8147
8148 /* Reader function for build_type_psymtabs. */
8149
8150 static void
8151 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8152 const gdb_byte *info_ptr,
8153 struct die_info *type_unit_die,
8154 int has_children,
8155 void *data)
8156 {
8157 struct dwarf2_per_objfile *dwarf2_per_objfile
8158 = reader->cu->per_cu->dwarf2_per_objfile;
8159 struct objfile *objfile = dwarf2_per_objfile->objfile;
8160 struct dwarf2_cu *cu = reader->cu;
8161 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8162 struct signatured_type *sig_type;
8163 struct type_unit_group *tu_group;
8164 struct attribute *attr;
8165 struct partial_die_info *first_die;
8166 CORE_ADDR lowpc, highpc;
8167 struct partial_symtab *pst;
8168
8169 gdb_assert (data == NULL);
8170 gdb_assert (per_cu->is_debug_types);
8171 sig_type = (struct signatured_type *) per_cu;
8172
8173 if (! has_children)
8174 return;
8175
8176 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8177 tu_group = get_type_unit_group (cu, attr);
8178
8179 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8180
8181 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8182 pst = create_partial_symtab (per_cu, "");
8183 pst->anonymous = 1;
8184
8185 first_die = load_partial_dies (reader, info_ptr, 1);
8186
8187 lowpc = (CORE_ADDR) -1;
8188 highpc = (CORE_ADDR) 0;
8189 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8190
8191 end_psymtab_common (objfile, pst);
8192 }
8193
8194 /* Struct used to sort TUs by their abbreviation table offset. */
8195
8196 struct tu_abbrev_offset
8197 {
8198 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8199 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8200 {}
8201
8202 signatured_type *sig_type;
8203 sect_offset abbrev_offset;
8204 };
8205
8206 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8207
8208 static bool
8209 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8210 const struct tu_abbrev_offset &b)
8211 {
8212 return a.abbrev_offset < b.abbrev_offset;
8213 }
8214
8215 /* Efficiently read all the type units.
8216 This does the bulk of the work for build_type_psymtabs.
8217
8218 The efficiency is because we sort TUs by the abbrev table they use and
8219 only read each abbrev table once. In one program there are 200K TUs
8220 sharing 8K abbrev tables.
8221
8222 The main purpose of this function is to support building the
8223 dwarf2_per_objfile->type_unit_groups table.
8224 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8225 can collapse the search space by grouping them by stmt_list.
8226 The savings can be significant, in the same program from above the 200K TUs
8227 share 8K stmt_list tables.
8228
8229 FUNC is expected to call get_type_unit_group, which will create the
8230 struct type_unit_group if necessary and add it to
8231 dwarf2_per_objfile->type_unit_groups. */
8232
8233 static void
8234 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8235 {
8236 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8237 abbrev_table_up abbrev_table;
8238 sect_offset abbrev_offset;
8239
8240 /* It's up to the caller to not call us multiple times. */
8241 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8242
8243 if (dwarf2_per_objfile->all_type_units.empty ())
8244 return;
8245
8246 /* TUs typically share abbrev tables, and there can be way more TUs than
8247 abbrev tables. Sort by abbrev table to reduce the number of times we
8248 read each abbrev table in.
8249 Alternatives are to punt or to maintain a cache of abbrev tables.
8250 This is simpler and efficient enough for now.
8251
8252 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8253 symtab to use). Typically TUs with the same abbrev offset have the same
8254 stmt_list value too so in practice this should work well.
8255
8256 The basic algorithm here is:
8257
8258 sort TUs by abbrev table
8259 for each TU with same abbrev table:
8260 read abbrev table if first user
8261 read TU top level DIE
8262 [IWBN if DWO skeletons had DW_AT_stmt_list]
8263 call FUNC */
8264
8265 if (dwarf_read_debug)
8266 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8267
8268 /* Sort in a separate table to maintain the order of all_type_units
8269 for .gdb_index: TU indices directly index all_type_units. */
8270 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8271 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8272
8273 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8274 sorted_by_abbrev.emplace_back
8275 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8276 sig_type->per_cu.section,
8277 sig_type->per_cu.sect_off));
8278
8279 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8280 sort_tu_by_abbrev_offset);
8281
8282 abbrev_offset = (sect_offset) ~(unsigned) 0;
8283
8284 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8285 {
8286 /* Switch to the next abbrev table if necessary. */
8287 if (abbrev_table == NULL
8288 || tu.abbrev_offset != abbrev_offset)
8289 {
8290 abbrev_offset = tu.abbrev_offset;
8291 abbrev_table =
8292 abbrev_table_read_table (dwarf2_per_objfile,
8293 &dwarf2_per_objfile->abbrev,
8294 abbrev_offset);
8295 ++tu_stats->nr_uniq_abbrev_tables;
8296 }
8297
8298 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8299 0, 0, false, build_type_psymtabs_reader, NULL);
8300 }
8301 }
8302
8303 /* Print collected type unit statistics. */
8304
8305 static void
8306 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8307 {
8308 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8309
8310 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8311 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8312 dwarf2_per_objfile->all_type_units.size ());
8313 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8314 tu_stats->nr_uniq_abbrev_tables);
8315 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8316 tu_stats->nr_symtabs);
8317 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8318 tu_stats->nr_symtab_sharers);
8319 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8320 tu_stats->nr_stmt_less_type_units);
8321 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8322 tu_stats->nr_all_type_units_reallocs);
8323 }
8324
8325 /* Traversal function for build_type_psymtabs. */
8326
8327 static int
8328 build_type_psymtab_dependencies (void **slot, void *info)
8329 {
8330 struct dwarf2_per_objfile *dwarf2_per_objfile
8331 = (struct dwarf2_per_objfile *) info;
8332 struct objfile *objfile = dwarf2_per_objfile->objfile;
8333 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8334 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8335 struct partial_symtab *pst = per_cu->v.psymtab;
8336 int len = VEC_length (sig_type_ptr, tu_group->tus);
8337 struct signatured_type *iter;
8338 int i;
8339
8340 gdb_assert (len > 0);
8341 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8342
8343 pst->number_of_dependencies = len;
8344 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8345 for (i = 0;
8346 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8347 ++i)
8348 {
8349 gdb_assert (iter->per_cu.is_debug_types);
8350 pst->dependencies[i] = iter->per_cu.v.psymtab;
8351 iter->type_unit_group = tu_group;
8352 }
8353
8354 VEC_free (sig_type_ptr, tu_group->tus);
8355
8356 return 1;
8357 }
8358
8359 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8360 Build partial symbol tables for the .debug_types comp-units. */
8361
8362 static void
8363 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8364 {
8365 if (! create_all_type_units (dwarf2_per_objfile))
8366 return;
8367
8368 build_type_psymtabs_1 (dwarf2_per_objfile);
8369 }
8370
8371 /* Traversal function for process_skeletonless_type_unit.
8372 Read a TU in a DWO file and build partial symbols for it. */
8373
8374 static int
8375 process_skeletonless_type_unit (void **slot, void *info)
8376 {
8377 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8378 struct dwarf2_per_objfile *dwarf2_per_objfile
8379 = (struct dwarf2_per_objfile *) info;
8380 struct signatured_type find_entry, *entry;
8381
8382 /* If this TU doesn't exist in the global table, add it and read it in. */
8383
8384 if (dwarf2_per_objfile->signatured_types == NULL)
8385 {
8386 dwarf2_per_objfile->signatured_types
8387 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8388 }
8389
8390 find_entry.signature = dwo_unit->signature;
8391 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8392 INSERT);
8393 /* If we've already seen this type there's nothing to do. What's happening
8394 is we're doing our own version of comdat-folding here. */
8395 if (*slot != NULL)
8396 return 1;
8397
8398 /* This does the job that create_all_type_units would have done for
8399 this TU. */
8400 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8401 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8402 *slot = entry;
8403
8404 /* This does the job that build_type_psymtabs_1 would have done. */
8405 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8406 build_type_psymtabs_reader, NULL);
8407
8408 return 1;
8409 }
8410
8411 /* Traversal function for process_skeletonless_type_units. */
8412
8413 static int
8414 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8415 {
8416 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8417
8418 if (dwo_file->tus != NULL)
8419 {
8420 htab_traverse_noresize (dwo_file->tus,
8421 process_skeletonless_type_unit, info);
8422 }
8423
8424 return 1;
8425 }
8426
8427 /* Scan all TUs of DWO files, verifying we've processed them.
8428 This is needed in case a TU was emitted without its skeleton.
8429 Note: This can't be done until we know what all the DWO files are. */
8430
8431 static void
8432 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8433 {
8434 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8435 if (get_dwp_file (dwarf2_per_objfile) == NULL
8436 && dwarf2_per_objfile->dwo_files != NULL)
8437 {
8438 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8439 process_dwo_file_for_skeletonless_type_units,
8440 dwarf2_per_objfile);
8441 }
8442 }
8443
8444 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8445
8446 static void
8447 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8448 {
8449 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8450 {
8451 struct partial_symtab *pst = per_cu->v.psymtab;
8452
8453 if (pst == NULL)
8454 continue;
8455
8456 for (int j = 0; j < pst->number_of_dependencies; ++j)
8457 {
8458 /* Set the 'user' field only if it is not already set. */
8459 if (pst->dependencies[j]->user == NULL)
8460 pst->dependencies[j]->user = pst;
8461 }
8462 }
8463 }
8464
8465 /* Build the partial symbol table by doing a quick pass through the
8466 .debug_info and .debug_abbrev sections. */
8467
8468 static void
8469 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8470 {
8471 struct objfile *objfile = dwarf2_per_objfile->objfile;
8472
8473 if (dwarf_read_debug)
8474 {
8475 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8476 objfile_name (objfile));
8477 }
8478
8479 dwarf2_per_objfile->reading_partial_symbols = 1;
8480
8481 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8482
8483 /* Any cached compilation units will be linked by the per-objfile
8484 read_in_chain. Make sure to free them when we're done. */
8485 free_cached_comp_units freer (dwarf2_per_objfile);
8486
8487 build_type_psymtabs (dwarf2_per_objfile);
8488
8489 create_all_comp_units (dwarf2_per_objfile);
8490
8491 /* Create a temporary address map on a temporary obstack. We later
8492 copy this to the final obstack. */
8493 auto_obstack temp_obstack;
8494
8495 scoped_restore save_psymtabs_addrmap
8496 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8497 addrmap_create_mutable (&temp_obstack));
8498
8499 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8500 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8501
8502 /* This has to wait until we read the CUs, we need the list of DWOs. */
8503 process_skeletonless_type_units (dwarf2_per_objfile);
8504
8505 /* Now that all TUs have been processed we can fill in the dependencies. */
8506 if (dwarf2_per_objfile->type_unit_groups != NULL)
8507 {
8508 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8509 build_type_psymtab_dependencies, dwarf2_per_objfile);
8510 }
8511
8512 if (dwarf_read_debug)
8513 print_tu_stats (dwarf2_per_objfile);
8514
8515 set_partial_user (dwarf2_per_objfile);
8516
8517 objfile->partial_symtabs->psymtabs_addrmap
8518 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8519 objfile->partial_symtabs->obstack ());
8520 /* At this point we want to keep the address map. */
8521 save_psymtabs_addrmap.release ();
8522
8523 if (dwarf_read_debug)
8524 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8525 objfile_name (objfile));
8526 }
8527
8528 /* die_reader_func for load_partial_comp_unit. */
8529
8530 static void
8531 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8532 const gdb_byte *info_ptr,
8533 struct die_info *comp_unit_die,
8534 int has_children,
8535 void *data)
8536 {
8537 struct dwarf2_cu *cu = reader->cu;
8538
8539 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8540
8541 /* Check if comp unit has_children.
8542 If so, read the rest of the partial symbols from this comp unit.
8543 If not, there's no more debug_info for this comp unit. */
8544 if (has_children)
8545 load_partial_dies (reader, info_ptr, 0);
8546 }
8547
8548 /* Load the partial DIEs for a secondary CU into memory.
8549 This is also used when rereading a primary CU with load_all_dies. */
8550
8551 static void
8552 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8553 {
8554 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8555 load_partial_comp_unit_reader, NULL);
8556 }
8557
8558 static void
8559 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8560 struct dwarf2_section_info *section,
8561 struct dwarf2_section_info *abbrev_section,
8562 unsigned int is_dwz)
8563 {
8564 const gdb_byte *info_ptr;
8565 struct objfile *objfile = dwarf2_per_objfile->objfile;
8566
8567 if (dwarf_read_debug)
8568 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8569 get_section_name (section),
8570 get_section_file_name (section));
8571
8572 dwarf2_read_section (objfile, section);
8573
8574 info_ptr = section->buffer;
8575
8576 while (info_ptr < section->buffer + section->size)
8577 {
8578 struct dwarf2_per_cu_data *this_cu;
8579
8580 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8581
8582 comp_unit_head cu_header;
8583 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8584 abbrev_section, info_ptr,
8585 rcuh_kind::COMPILE);
8586
8587 /* Save the compilation unit for later lookup. */
8588 if (cu_header.unit_type != DW_UT_type)
8589 {
8590 this_cu = XOBNEW (&objfile->objfile_obstack,
8591 struct dwarf2_per_cu_data);
8592 memset (this_cu, 0, sizeof (*this_cu));
8593 }
8594 else
8595 {
8596 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8597 struct signatured_type);
8598 memset (sig_type, 0, sizeof (*sig_type));
8599 sig_type->signature = cu_header.signature;
8600 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8601 this_cu = &sig_type->per_cu;
8602 }
8603 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8604 this_cu->sect_off = sect_off;
8605 this_cu->length = cu_header.length + cu_header.initial_length_size;
8606 this_cu->is_dwz = is_dwz;
8607 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8608 this_cu->section = section;
8609
8610 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8611
8612 info_ptr = info_ptr + this_cu->length;
8613 }
8614 }
8615
8616 /* Create a list of all compilation units in OBJFILE.
8617 This is only done for -readnow and building partial symtabs. */
8618
8619 static void
8620 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8621 {
8622 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8623 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8624 &dwarf2_per_objfile->abbrev, 0);
8625
8626 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8627 if (dwz != NULL)
8628 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8629 1);
8630 }
8631
8632 /* Process all loaded DIEs for compilation unit CU, starting at
8633 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8634 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8635 DW_AT_ranges). See the comments of add_partial_subprogram on how
8636 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8637
8638 static void
8639 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8640 CORE_ADDR *highpc, int set_addrmap,
8641 struct dwarf2_cu *cu)
8642 {
8643 struct partial_die_info *pdi;
8644
8645 /* Now, march along the PDI's, descending into ones which have
8646 interesting children but skipping the children of the other ones,
8647 until we reach the end of the compilation unit. */
8648
8649 pdi = first_die;
8650
8651 while (pdi != NULL)
8652 {
8653 pdi->fixup (cu);
8654
8655 /* Anonymous namespaces or modules have no name but have interesting
8656 children, so we need to look at them. Ditto for anonymous
8657 enums. */
8658
8659 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8660 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8661 || pdi->tag == DW_TAG_imported_unit
8662 || pdi->tag == DW_TAG_inlined_subroutine)
8663 {
8664 switch (pdi->tag)
8665 {
8666 case DW_TAG_subprogram:
8667 case DW_TAG_inlined_subroutine:
8668 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8669 break;
8670 case DW_TAG_constant:
8671 case DW_TAG_variable:
8672 case DW_TAG_typedef:
8673 case DW_TAG_union_type:
8674 if (!pdi->is_declaration)
8675 {
8676 add_partial_symbol (pdi, cu);
8677 }
8678 break;
8679 case DW_TAG_class_type:
8680 case DW_TAG_interface_type:
8681 case DW_TAG_structure_type:
8682 if (!pdi->is_declaration)
8683 {
8684 add_partial_symbol (pdi, cu);
8685 }
8686 if ((cu->language == language_rust
8687 || cu->language == language_cplus) && pdi->has_children)
8688 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8689 set_addrmap, cu);
8690 break;
8691 case DW_TAG_enumeration_type:
8692 if (!pdi->is_declaration)
8693 add_partial_enumeration (pdi, cu);
8694 break;
8695 case DW_TAG_base_type:
8696 case DW_TAG_subrange_type:
8697 /* File scope base type definitions are added to the partial
8698 symbol table. */
8699 add_partial_symbol (pdi, cu);
8700 break;
8701 case DW_TAG_namespace:
8702 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8703 break;
8704 case DW_TAG_module:
8705 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8706 break;
8707 case DW_TAG_imported_unit:
8708 {
8709 struct dwarf2_per_cu_data *per_cu;
8710
8711 /* For now we don't handle imported units in type units. */
8712 if (cu->per_cu->is_debug_types)
8713 {
8714 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8715 " supported in type units [in module %s]"),
8716 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8717 }
8718
8719 per_cu = dwarf2_find_containing_comp_unit
8720 (pdi->d.sect_off, pdi->is_dwz,
8721 cu->per_cu->dwarf2_per_objfile);
8722
8723 /* Go read the partial unit, if needed. */
8724 if (per_cu->v.psymtab == NULL)
8725 process_psymtab_comp_unit (per_cu, 1, cu->language);
8726
8727 VEC_safe_push (dwarf2_per_cu_ptr,
8728 cu->per_cu->imported_symtabs, per_cu);
8729 }
8730 break;
8731 case DW_TAG_imported_declaration:
8732 add_partial_symbol (pdi, cu);
8733 break;
8734 default:
8735 break;
8736 }
8737 }
8738
8739 /* If the die has a sibling, skip to the sibling. */
8740
8741 pdi = pdi->die_sibling;
8742 }
8743 }
8744
8745 /* Functions used to compute the fully scoped name of a partial DIE.
8746
8747 Normally, this is simple. For C++, the parent DIE's fully scoped
8748 name is concatenated with "::" and the partial DIE's name.
8749 Enumerators are an exception; they use the scope of their parent
8750 enumeration type, i.e. the name of the enumeration type is not
8751 prepended to the enumerator.
8752
8753 There are two complexities. One is DW_AT_specification; in this
8754 case "parent" means the parent of the target of the specification,
8755 instead of the direct parent of the DIE. The other is compilers
8756 which do not emit DW_TAG_namespace; in this case we try to guess
8757 the fully qualified name of structure types from their members'
8758 linkage names. This must be done using the DIE's children rather
8759 than the children of any DW_AT_specification target. We only need
8760 to do this for structures at the top level, i.e. if the target of
8761 any DW_AT_specification (if any; otherwise the DIE itself) does not
8762 have a parent. */
8763
8764 /* Compute the scope prefix associated with PDI's parent, in
8765 compilation unit CU. The result will be allocated on CU's
8766 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8767 field. NULL is returned if no prefix is necessary. */
8768 static const char *
8769 partial_die_parent_scope (struct partial_die_info *pdi,
8770 struct dwarf2_cu *cu)
8771 {
8772 const char *grandparent_scope;
8773 struct partial_die_info *parent, *real_pdi;
8774
8775 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8776 then this means the parent of the specification DIE. */
8777
8778 real_pdi = pdi;
8779 while (real_pdi->has_specification)
8780 {
8781 auto res = find_partial_die (real_pdi->spec_offset,
8782 real_pdi->spec_is_dwz, cu);
8783 real_pdi = res.pdi;
8784 cu = res.cu;
8785 }
8786
8787 parent = real_pdi->die_parent;
8788 if (parent == NULL)
8789 return NULL;
8790
8791 if (parent->scope_set)
8792 return parent->scope;
8793
8794 parent->fixup (cu);
8795
8796 grandparent_scope = partial_die_parent_scope (parent, cu);
8797
8798 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8799 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8800 Work around this problem here. */
8801 if (cu->language == language_cplus
8802 && parent->tag == DW_TAG_namespace
8803 && strcmp (parent->name, "::") == 0
8804 && grandparent_scope == NULL)
8805 {
8806 parent->scope = NULL;
8807 parent->scope_set = 1;
8808 return NULL;
8809 }
8810
8811 if (pdi->tag == DW_TAG_enumerator)
8812 /* Enumerators should not get the name of the enumeration as a prefix. */
8813 parent->scope = grandparent_scope;
8814 else if (parent->tag == DW_TAG_namespace
8815 || parent->tag == DW_TAG_module
8816 || parent->tag == DW_TAG_structure_type
8817 || parent->tag == DW_TAG_class_type
8818 || parent->tag == DW_TAG_interface_type
8819 || parent->tag == DW_TAG_union_type
8820 || parent->tag == DW_TAG_enumeration_type)
8821 {
8822 if (grandparent_scope == NULL)
8823 parent->scope = parent->name;
8824 else
8825 parent->scope = typename_concat (&cu->comp_unit_obstack,
8826 grandparent_scope,
8827 parent->name, 0, cu);
8828 }
8829 else
8830 {
8831 /* FIXME drow/2004-04-01: What should we be doing with
8832 function-local names? For partial symbols, we should probably be
8833 ignoring them. */
8834 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8835 parent->tag, sect_offset_str (pdi->sect_off));
8836 parent->scope = grandparent_scope;
8837 }
8838
8839 parent->scope_set = 1;
8840 return parent->scope;
8841 }
8842
8843 /* Return the fully scoped name associated with PDI, from compilation unit
8844 CU. The result will be allocated with malloc. */
8845
8846 static char *
8847 partial_die_full_name (struct partial_die_info *pdi,
8848 struct dwarf2_cu *cu)
8849 {
8850 const char *parent_scope;
8851
8852 /* If this is a template instantiation, we can not work out the
8853 template arguments from partial DIEs. So, unfortunately, we have
8854 to go through the full DIEs. At least any work we do building
8855 types here will be reused if full symbols are loaded later. */
8856 if (pdi->has_template_arguments)
8857 {
8858 pdi->fixup (cu);
8859
8860 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8861 {
8862 struct die_info *die;
8863 struct attribute attr;
8864 struct dwarf2_cu *ref_cu = cu;
8865
8866 /* DW_FORM_ref_addr is using section offset. */
8867 attr.name = (enum dwarf_attribute) 0;
8868 attr.form = DW_FORM_ref_addr;
8869 attr.u.unsnd = to_underlying (pdi->sect_off);
8870 die = follow_die_ref (NULL, &attr, &ref_cu);
8871
8872 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8873 }
8874 }
8875
8876 parent_scope = partial_die_parent_scope (pdi, cu);
8877 if (parent_scope == NULL)
8878 return NULL;
8879 else
8880 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8881 }
8882
8883 static void
8884 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8885 {
8886 struct dwarf2_per_objfile *dwarf2_per_objfile
8887 = cu->per_cu->dwarf2_per_objfile;
8888 struct objfile *objfile = dwarf2_per_objfile->objfile;
8889 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8890 CORE_ADDR addr = 0;
8891 const char *actual_name = NULL;
8892 CORE_ADDR baseaddr;
8893 char *built_actual_name;
8894
8895 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8896
8897 built_actual_name = partial_die_full_name (pdi, cu);
8898 if (built_actual_name != NULL)
8899 actual_name = built_actual_name;
8900
8901 if (actual_name == NULL)
8902 actual_name = pdi->name;
8903
8904 switch (pdi->tag)
8905 {
8906 case DW_TAG_inlined_subroutine:
8907 case DW_TAG_subprogram:
8908 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8909 - baseaddr);
8910 if (pdi->is_external || cu->language == language_ada)
8911 {
8912 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8913 of the global scope. But in Ada, we want to be able to access
8914 nested procedures globally. So all Ada subprograms are stored
8915 in the global scope. */
8916 add_psymbol_to_list (actual_name, strlen (actual_name),
8917 built_actual_name != NULL,
8918 VAR_DOMAIN, LOC_BLOCK,
8919 SECT_OFF_TEXT (objfile),
8920 psymbol_placement::GLOBAL,
8921 addr,
8922 cu->language, objfile);
8923 }
8924 else
8925 {
8926 add_psymbol_to_list (actual_name, strlen (actual_name),
8927 built_actual_name != NULL,
8928 VAR_DOMAIN, LOC_BLOCK,
8929 SECT_OFF_TEXT (objfile),
8930 psymbol_placement::STATIC,
8931 addr, cu->language, objfile);
8932 }
8933
8934 if (pdi->main_subprogram && actual_name != NULL)
8935 set_objfile_main_name (objfile, actual_name, cu->language);
8936 break;
8937 case DW_TAG_constant:
8938 add_psymbol_to_list (actual_name, strlen (actual_name),
8939 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8940 -1, (pdi->is_external
8941 ? psymbol_placement::GLOBAL
8942 : psymbol_placement::STATIC),
8943 0, cu->language, objfile);
8944 break;
8945 case DW_TAG_variable:
8946 if (pdi->d.locdesc)
8947 addr = decode_locdesc (pdi->d.locdesc, cu);
8948
8949 if (pdi->d.locdesc
8950 && addr == 0
8951 && !dwarf2_per_objfile->has_section_at_zero)
8952 {
8953 /* A global or static variable may also have been stripped
8954 out by the linker if unused, in which case its address
8955 will be nullified; do not add such variables into partial
8956 symbol table then. */
8957 }
8958 else if (pdi->is_external)
8959 {
8960 /* Global Variable.
8961 Don't enter into the minimal symbol tables as there is
8962 a minimal symbol table entry from the ELF symbols already.
8963 Enter into partial symbol table if it has a location
8964 descriptor or a type.
8965 If the location descriptor is missing, new_symbol will create
8966 a LOC_UNRESOLVED symbol, the address of the variable will then
8967 be determined from the minimal symbol table whenever the variable
8968 is referenced.
8969 The address for the partial symbol table entry is not
8970 used by GDB, but it comes in handy for debugging partial symbol
8971 table building. */
8972
8973 if (pdi->d.locdesc || pdi->has_type)
8974 add_psymbol_to_list (actual_name, strlen (actual_name),
8975 built_actual_name != NULL,
8976 VAR_DOMAIN, LOC_STATIC,
8977 SECT_OFF_TEXT (objfile),
8978 psymbol_placement::GLOBAL,
8979 addr, cu->language, objfile);
8980 }
8981 else
8982 {
8983 int has_loc = pdi->d.locdesc != NULL;
8984
8985 /* Static Variable. Skip symbols whose value we cannot know (those
8986 without location descriptors or constant values). */
8987 if (!has_loc && !pdi->has_const_value)
8988 {
8989 xfree (built_actual_name);
8990 return;
8991 }
8992
8993 add_psymbol_to_list (actual_name, strlen (actual_name),
8994 built_actual_name != NULL,
8995 VAR_DOMAIN, LOC_STATIC,
8996 SECT_OFF_TEXT (objfile),
8997 psymbol_placement::STATIC,
8998 has_loc ? addr : 0,
8999 cu->language, objfile);
9000 }
9001 break;
9002 case DW_TAG_typedef:
9003 case DW_TAG_base_type:
9004 case DW_TAG_subrange_type:
9005 add_psymbol_to_list (actual_name, strlen (actual_name),
9006 built_actual_name != NULL,
9007 VAR_DOMAIN, LOC_TYPEDEF, -1,
9008 psymbol_placement::STATIC,
9009 0, cu->language, objfile);
9010 break;
9011 case DW_TAG_imported_declaration:
9012 case DW_TAG_namespace:
9013 add_psymbol_to_list (actual_name, strlen (actual_name),
9014 built_actual_name != NULL,
9015 VAR_DOMAIN, LOC_TYPEDEF, -1,
9016 psymbol_placement::GLOBAL,
9017 0, cu->language, objfile);
9018 break;
9019 case DW_TAG_module:
9020 add_psymbol_to_list (actual_name, strlen (actual_name),
9021 built_actual_name != NULL,
9022 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9023 psymbol_placement::GLOBAL,
9024 0, cu->language, objfile);
9025 break;
9026 case DW_TAG_class_type:
9027 case DW_TAG_interface_type:
9028 case DW_TAG_structure_type:
9029 case DW_TAG_union_type:
9030 case DW_TAG_enumeration_type:
9031 /* Skip external references. The DWARF standard says in the section
9032 about "Structure, Union, and Class Type Entries": "An incomplete
9033 structure, union or class type is represented by a structure,
9034 union or class entry that does not have a byte size attribute
9035 and that has a DW_AT_declaration attribute." */
9036 if (!pdi->has_byte_size && pdi->is_declaration)
9037 {
9038 xfree (built_actual_name);
9039 return;
9040 }
9041
9042 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9043 static vs. global. */
9044 add_psymbol_to_list (actual_name, strlen (actual_name),
9045 built_actual_name != NULL,
9046 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9047 cu->language == language_cplus
9048 ? psymbol_placement::GLOBAL
9049 : psymbol_placement::STATIC,
9050 0, cu->language, objfile);
9051
9052 break;
9053 case DW_TAG_enumerator:
9054 add_psymbol_to_list (actual_name, strlen (actual_name),
9055 built_actual_name != NULL,
9056 VAR_DOMAIN, LOC_CONST, -1,
9057 cu->language == language_cplus
9058 ? psymbol_placement::GLOBAL
9059 : psymbol_placement::STATIC,
9060 0, cu->language, objfile);
9061 break;
9062 default:
9063 break;
9064 }
9065
9066 xfree (built_actual_name);
9067 }
9068
9069 /* Read a partial die corresponding to a namespace; also, add a symbol
9070 corresponding to that namespace to the symbol table. NAMESPACE is
9071 the name of the enclosing namespace. */
9072
9073 static void
9074 add_partial_namespace (struct partial_die_info *pdi,
9075 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9076 int set_addrmap, struct dwarf2_cu *cu)
9077 {
9078 /* Add a symbol for the namespace. */
9079
9080 add_partial_symbol (pdi, cu);
9081
9082 /* Now scan partial symbols in that namespace. */
9083
9084 if (pdi->has_children)
9085 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9086 }
9087
9088 /* Read a partial die corresponding to a Fortran module. */
9089
9090 static void
9091 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9092 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9093 {
9094 /* Add a symbol for the namespace. */
9095
9096 add_partial_symbol (pdi, cu);
9097
9098 /* Now scan partial symbols in that module. */
9099
9100 if (pdi->has_children)
9101 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9102 }
9103
9104 /* Read a partial die corresponding to a subprogram or an inlined
9105 subprogram and create a partial symbol for that subprogram.
9106 When the CU language allows it, this routine also defines a partial
9107 symbol for each nested subprogram that this subprogram contains.
9108 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9109 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9110
9111 PDI may also be a lexical block, in which case we simply search
9112 recursively for subprograms defined inside that lexical block.
9113 Again, this is only performed when the CU language allows this
9114 type of definitions. */
9115
9116 static void
9117 add_partial_subprogram (struct partial_die_info *pdi,
9118 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9119 int set_addrmap, struct dwarf2_cu *cu)
9120 {
9121 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9122 {
9123 if (pdi->has_pc_info)
9124 {
9125 if (pdi->lowpc < *lowpc)
9126 *lowpc = pdi->lowpc;
9127 if (pdi->highpc > *highpc)
9128 *highpc = pdi->highpc;
9129 if (set_addrmap)
9130 {
9131 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9132 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9133 CORE_ADDR baseaddr;
9134 CORE_ADDR this_highpc;
9135 CORE_ADDR this_lowpc;
9136
9137 baseaddr = ANOFFSET (objfile->section_offsets,
9138 SECT_OFF_TEXT (objfile));
9139 this_lowpc
9140 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9141 pdi->lowpc + baseaddr)
9142 - baseaddr);
9143 this_highpc
9144 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9145 pdi->highpc + baseaddr)
9146 - baseaddr);
9147 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9148 this_lowpc, this_highpc - 1,
9149 cu->per_cu->v.psymtab);
9150 }
9151 }
9152
9153 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9154 {
9155 if (!pdi->is_declaration)
9156 /* Ignore subprogram DIEs that do not have a name, they are
9157 illegal. Do not emit a complaint at this point, we will
9158 do so when we convert this psymtab into a symtab. */
9159 if (pdi->name)
9160 add_partial_symbol (pdi, cu);
9161 }
9162 }
9163
9164 if (! pdi->has_children)
9165 return;
9166
9167 if (cu->language == language_ada)
9168 {
9169 pdi = pdi->die_child;
9170 while (pdi != NULL)
9171 {
9172 pdi->fixup (cu);
9173 if (pdi->tag == DW_TAG_subprogram
9174 || pdi->tag == DW_TAG_inlined_subroutine
9175 || pdi->tag == DW_TAG_lexical_block)
9176 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9177 pdi = pdi->die_sibling;
9178 }
9179 }
9180 }
9181
9182 /* Read a partial die corresponding to an enumeration type. */
9183
9184 static void
9185 add_partial_enumeration (struct partial_die_info *enum_pdi,
9186 struct dwarf2_cu *cu)
9187 {
9188 struct partial_die_info *pdi;
9189
9190 if (enum_pdi->name != NULL)
9191 add_partial_symbol (enum_pdi, cu);
9192
9193 pdi = enum_pdi->die_child;
9194 while (pdi)
9195 {
9196 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9197 complaint (_("malformed enumerator DIE ignored"));
9198 else
9199 add_partial_symbol (pdi, cu);
9200 pdi = pdi->die_sibling;
9201 }
9202 }
9203
9204 /* Return the initial uleb128 in the die at INFO_PTR. */
9205
9206 static unsigned int
9207 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9208 {
9209 unsigned int bytes_read;
9210
9211 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9212 }
9213
9214 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9215 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9216
9217 Return the corresponding abbrev, or NULL if the number is zero (indicating
9218 an empty DIE). In either case *BYTES_READ will be set to the length of
9219 the initial number. */
9220
9221 static struct abbrev_info *
9222 peek_die_abbrev (const die_reader_specs &reader,
9223 const gdb_byte *info_ptr, unsigned int *bytes_read)
9224 {
9225 dwarf2_cu *cu = reader.cu;
9226 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9227 unsigned int abbrev_number
9228 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9229
9230 if (abbrev_number == 0)
9231 return NULL;
9232
9233 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9234 if (!abbrev)
9235 {
9236 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9237 " at offset %s [in module %s]"),
9238 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9239 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9240 }
9241
9242 return abbrev;
9243 }
9244
9245 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9246 Returns a pointer to the end of a series of DIEs, terminated by an empty
9247 DIE. Any children of the skipped DIEs will also be skipped. */
9248
9249 static const gdb_byte *
9250 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9251 {
9252 while (1)
9253 {
9254 unsigned int bytes_read;
9255 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9256
9257 if (abbrev == NULL)
9258 return info_ptr + bytes_read;
9259 else
9260 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9261 }
9262 }
9263
9264 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9265 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9266 abbrev corresponding to that skipped uleb128 should be passed in
9267 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9268 children. */
9269
9270 static const gdb_byte *
9271 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9272 struct abbrev_info *abbrev)
9273 {
9274 unsigned int bytes_read;
9275 struct attribute attr;
9276 bfd *abfd = reader->abfd;
9277 struct dwarf2_cu *cu = reader->cu;
9278 const gdb_byte *buffer = reader->buffer;
9279 const gdb_byte *buffer_end = reader->buffer_end;
9280 unsigned int form, i;
9281
9282 for (i = 0; i < abbrev->num_attrs; i++)
9283 {
9284 /* The only abbrev we care about is DW_AT_sibling. */
9285 if (abbrev->attrs[i].name == DW_AT_sibling)
9286 {
9287 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9288 if (attr.form == DW_FORM_ref_addr)
9289 complaint (_("ignoring absolute DW_AT_sibling"));
9290 else
9291 {
9292 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9293 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9294
9295 if (sibling_ptr < info_ptr)
9296 complaint (_("DW_AT_sibling points backwards"));
9297 else if (sibling_ptr > reader->buffer_end)
9298 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9299 else
9300 return sibling_ptr;
9301 }
9302 }
9303
9304 /* If it isn't DW_AT_sibling, skip this attribute. */
9305 form = abbrev->attrs[i].form;
9306 skip_attribute:
9307 switch (form)
9308 {
9309 case DW_FORM_ref_addr:
9310 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9311 and later it is offset sized. */
9312 if (cu->header.version == 2)
9313 info_ptr += cu->header.addr_size;
9314 else
9315 info_ptr += cu->header.offset_size;
9316 break;
9317 case DW_FORM_GNU_ref_alt:
9318 info_ptr += cu->header.offset_size;
9319 break;
9320 case DW_FORM_addr:
9321 info_ptr += cu->header.addr_size;
9322 break;
9323 case DW_FORM_data1:
9324 case DW_FORM_ref1:
9325 case DW_FORM_flag:
9326 info_ptr += 1;
9327 break;
9328 case DW_FORM_flag_present:
9329 case DW_FORM_implicit_const:
9330 break;
9331 case DW_FORM_data2:
9332 case DW_FORM_ref2:
9333 info_ptr += 2;
9334 break;
9335 case DW_FORM_data4:
9336 case DW_FORM_ref4:
9337 info_ptr += 4;
9338 break;
9339 case DW_FORM_data8:
9340 case DW_FORM_ref8:
9341 case DW_FORM_ref_sig8:
9342 info_ptr += 8;
9343 break;
9344 case DW_FORM_data16:
9345 info_ptr += 16;
9346 break;
9347 case DW_FORM_string:
9348 read_direct_string (abfd, info_ptr, &bytes_read);
9349 info_ptr += bytes_read;
9350 break;
9351 case DW_FORM_sec_offset:
9352 case DW_FORM_strp:
9353 case DW_FORM_GNU_strp_alt:
9354 info_ptr += cu->header.offset_size;
9355 break;
9356 case DW_FORM_exprloc:
9357 case DW_FORM_block:
9358 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9359 info_ptr += bytes_read;
9360 break;
9361 case DW_FORM_block1:
9362 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9363 break;
9364 case DW_FORM_block2:
9365 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9366 break;
9367 case DW_FORM_block4:
9368 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9369 break;
9370 case DW_FORM_addrx:
9371 case DW_FORM_strx:
9372 case DW_FORM_sdata:
9373 case DW_FORM_udata:
9374 case DW_FORM_ref_udata:
9375 case DW_FORM_GNU_addr_index:
9376 case DW_FORM_GNU_str_index:
9377 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9378 break;
9379 case DW_FORM_indirect:
9380 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9381 info_ptr += bytes_read;
9382 /* We need to continue parsing from here, so just go back to
9383 the top. */
9384 goto skip_attribute;
9385
9386 default:
9387 error (_("Dwarf Error: Cannot handle %s "
9388 "in DWARF reader [in module %s]"),
9389 dwarf_form_name (form),
9390 bfd_get_filename (abfd));
9391 }
9392 }
9393
9394 if (abbrev->has_children)
9395 return skip_children (reader, info_ptr);
9396 else
9397 return info_ptr;
9398 }
9399
9400 /* Locate ORIG_PDI's sibling.
9401 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9402
9403 static const gdb_byte *
9404 locate_pdi_sibling (const struct die_reader_specs *reader,
9405 struct partial_die_info *orig_pdi,
9406 const gdb_byte *info_ptr)
9407 {
9408 /* Do we know the sibling already? */
9409
9410 if (orig_pdi->sibling)
9411 return orig_pdi->sibling;
9412
9413 /* Are there any children to deal with? */
9414
9415 if (!orig_pdi->has_children)
9416 return info_ptr;
9417
9418 /* Skip the children the long way. */
9419
9420 return skip_children (reader, info_ptr);
9421 }
9422
9423 /* Expand this partial symbol table into a full symbol table. SELF is
9424 not NULL. */
9425
9426 static void
9427 dwarf2_read_symtab (struct partial_symtab *self,
9428 struct objfile *objfile)
9429 {
9430 struct dwarf2_per_objfile *dwarf2_per_objfile
9431 = get_dwarf2_per_objfile (objfile);
9432
9433 if (self->readin)
9434 {
9435 warning (_("bug: psymtab for %s is already read in."),
9436 self->filename);
9437 }
9438 else
9439 {
9440 if (info_verbose)
9441 {
9442 printf_filtered (_("Reading in symbols for %s..."),
9443 self->filename);
9444 gdb_flush (gdb_stdout);
9445 }
9446
9447 /* If this psymtab is constructed from a debug-only objfile, the
9448 has_section_at_zero flag will not necessarily be correct. We
9449 can get the correct value for this flag by looking at the data
9450 associated with the (presumably stripped) associated objfile. */
9451 if (objfile->separate_debug_objfile_backlink)
9452 {
9453 struct dwarf2_per_objfile *dpo_backlink
9454 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9455
9456 dwarf2_per_objfile->has_section_at_zero
9457 = dpo_backlink->has_section_at_zero;
9458 }
9459
9460 dwarf2_per_objfile->reading_partial_symbols = 0;
9461
9462 psymtab_to_symtab_1 (self);
9463
9464 /* Finish up the debug error message. */
9465 if (info_verbose)
9466 printf_filtered (_("done.\n"));
9467 }
9468
9469 process_cu_includes (dwarf2_per_objfile);
9470 }
9471 \f
9472 /* Reading in full CUs. */
9473
9474 /* Add PER_CU to the queue. */
9475
9476 static void
9477 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9478 enum language pretend_language)
9479 {
9480 struct dwarf2_queue_item *item;
9481
9482 per_cu->queued = 1;
9483 item = XNEW (struct dwarf2_queue_item);
9484 item->per_cu = per_cu;
9485 item->pretend_language = pretend_language;
9486 item->next = NULL;
9487
9488 if (dwarf2_queue == NULL)
9489 dwarf2_queue = item;
9490 else
9491 dwarf2_queue_tail->next = item;
9492
9493 dwarf2_queue_tail = item;
9494 }
9495
9496 /* If PER_CU is not yet queued, add it to the queue.
9497 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9498 dependency.
9499 The result is non-zero if PER_CU was queued, otherwise the result is zero
9500 meaning either PER_CU is already queued or it is already loaded.
9501
9502 N.B. There is an invariant here that if a CU is queued then it is loaded.
9503 The caller is required to load PER_CU if we return non-zero. */
9504
9505 static int
9506 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9507 struct dwarf2_per_cu_data *per_cu,
9508 enum language pretend_language)
9509 {
9510 /* We may arrive here during partial symbol reading, if we need full
9511 DIEs to process an unusual case (e.g. template arguments). Do
9512 not queue PER_CU, just tell our caller to load its DIEs. */
9513 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9514 {
9515 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9516 return 1;
9517 return 0;
9518 }
9519
9520 /* Mark the dependence relation so that we don't flush PER_CU
9521 too early. */
9522 if (dependent_cu != NULL)
9523 dwarf2_add_dependence (dependent_cu, per_cu);
9524
9525 /* If it's already on the queue, we have nothing to do. */
9526 if (per_cu->queued)
9527 return 0;
9528
9529 /* If the compilation unit is already loaded, just mark it as
9530 used. */
9531 if (per_cu->cu != NULL)
9532 {
9533 per_cu->cu->last_used = 0;
9534 return 0;
9535 }
9536
9537 /* Add it to the queue. */
9538 queue_comp_unit (per_cu, pretend_language);
9539
9540 return 1;
9541 }
9542
9543 /* Process the queue. */
9544
9545 static void
9546 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9547 {
9548 struct dwarf2_queue_item *item, *next_item;
9549
9550 if (dwarf_read_debug)
9551 {
9552 fprintf_unfiltered (gdb_stdlog,
9553 "Expanding one or more symtabs of objfile %s ...\n",
9554 objfile_name (dwarf2_per_objfile->objfile));
9555 }
9556
9557 /* The queue starts out with one item, but following a DIE reference
9558 may load a new CU, adding it to the end of the queue. */
9559 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9560 {
9561 if ((dwarf2_per_objfile->using_index
9562 ? !item->per_cu->v.quick->compunit_symtab
9563 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9564 /* Skip dummy CUs. */
9565 && item->per_cu->cu != NULL)
9566 {
9567 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9568 unsigned int debug_print_threshold;
9569 char buf[100];
9570
9571 if (per_cu->is_debug_types)
9572 {
9573 struct signatured_type *sig_type =
9574 (struct signatured_type *) per_cu;
9575
9576 sprintf (buf, "TU %s at offset %s",
9577 hex_string (sig_type->signature),
9578 sect_offset_str (per_cu->sect_off));
9579 /* There can be 100s of TUs.
9580 Only print them in verbose mode. */
9581 debug_print_threshold = 2;
9582 }
9583 else
9584 {
9585 sprintf (buf, "CU at offset %s",
9586 sect_offset_str (per_cu->sect_off));
9587 debug_print_threshold = 1;
9588 }
9589
9590 if (dwarf_read_debug >= debug_print_threshold)
9591 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9592
9593 if (per_cu->is_debug_types)
9594 process_full_type_unit (per_cu, item->pretend_language);
9595 else
9596 process_full_comp_unit (per_cu, item->pretend_language);
9597
9598 if (dwarf_read_debug >= debug_print_threshold)
9599 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9600 }
9601
9602 item->per_cu->queued = 0;
9603 next_item = item->next;
9604 xfree (item);
9605 }
9606
9607 dwarf2_queue_tail = NULL;
9608
9609 if (dwarf_read_debug)
9610 {
9611 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9612 objfile_name (dwarf2_per_objfile->objfile));
9613 }
9614 }
9615
9616 /* Read in full symbols for PST, and anything it depends on. */
9617
9618 static void
9619 psymtab_to_symtab_1 (struct partial_symtab *pst)
9620 {
9621 struct dwarf2_per_cu_data *per_cu;
9622 int i;
9623
9624 if (pst->readin)
9625 return;
9626
9627 for (i = 0; i < pst->number_of_dependencies; i++)
9628 if (!pst->dependencies[i]->readin
9629 && pst->dependencies[i]->user == NULL)
9630 {
9631 /* Inform about additional files that need to be read in. */
9632 if (info_verbose)
9633 {
9634 /* FIXME: i18n: Need to make this a single string. */
9635 fputs_filtered (" ", gdb_stdout);
9636 wrap_here ("");
9637 fputs_filtered ("and ", gdb_stdout);
9638 wrap_here ("");
9639 printf_filtered ("%s...", pst->dependencies[i]->filename);
9640 wrap_here (""); /* Flush output. */
9641 gdb_flush (gdb_stdout);
9642 }
9643 psymtab_to_symtab_1 (pst->dependencies[i]);
9644 }
9645
9646 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9647
9648 if (per_cu == NULL)
9649 {
9650 /* It's an include file, no symbols to read for it.
9651 Everything is in the parent symtab. */
9652 pst->readin = 1;
9653 return;
9654 }
9655
9656 dw2_do_instantiate_symtab (per_cu, false);
9657 }
9658
9659 /* Trivial hash function for die_info: the hash value of a DIE
9660 is its offset in .debug_info for this objfile. */
9661
9662 static hashval_t
9663 die_hash (const void *item)
9664 {
9665 const struct die_info *die = (const struct die_info *) item;
9666
9667 return to_underlying (die->sect_off);
9668 }
9669
9670 /* Trivial comparison function for die_info structures: two DIEs
9671 are equal if they have the same offset. */
9672
9673 static int
9674 die_eq (const void *item_lhs, const void *item_rhs)
9675 {
9676 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9677 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9678
9679 return die_lhs->sect_off == die_rhs->sect_off;
9680 }
9681
9682 /* die_reader_func for load_full_comp_unit.
9683 This is identical to read_signatured_type_reader,
9684 but is kept separate for now. */
9685
9686 static void
9687 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9688 const gdb_byte *info_ptr,
9689 struct die_info *comp_unit_die,
9690 int has_children,
9691 void *data)
9692 {
9693 struct dwarf2_cu *cu = reader->cu;
9694 enum language *language_ptr = (enum language *) data;
9695
9696 gdb_assert (cu->die_hash == NULL);
9697 cu->die_hash =
9698 htab_create_alloc_ex (cu->header.length / 12,
9699 die_hash,
9700 die_eq,
9701 NULL,
9702 &cu->comp_unit_obstack,
9703 hashtab_obstack_allocate,
9704 dummy_obstack_deallocate);
9705
9706 if (has_children)
9707 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9708 &info_ptr, comp_unit_die);
9709 cu->dies = comp_unit_die;
9710 /* comp_unit_die is not stored in die_hash, no need. */
9711
9712 /* We try not to read any attributes in this function, because not
9713 all CUs needed for references have been loaded yet, and symbol
9714 table processing isn't initialized. But we have to set the CU language,
9715 or we won't be able to build types correctly.
9716 Similarly, if we do not read the producer, we can not apply
9717 producer-specific interpretation. */
9718 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9719 }
9720
9721 /* Load the DIEs associated with PER_CU into memory. */
9722
9723 static void
9724 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9725 bool skip_partial,
9726 enum language pretend_language)
9727 {
9728 gdb_assert (! this_cu->is_debug_types);
9729
9730 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9731 load_full_comp_unit_reader, &pretend_language);
9732 }
9733
9734 /* Add a DIE to the delayed physname list. */
9735
9736 static void
9737 add_to_method_list (struct type *type, int fnfield_index, int index,
9738 const char *name, struct die_info *die,
9739 struct dwarf2_cu *cu)
9740 {
9741 struct delayed_method_info mi;
9742 mi.type = type;
9743 mi.fnfield_index = fnfield_index;
9744 mi.index = index;
9745 mi.name = name;
9746 mi.die = die;
9747 cu->method_list.push_back (mi);
9748 }
9749
9750 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9751 "const" / "volatile". If so, decrements LEN by the length of the
9752 modifier and return true. Otherwise return false. */
9753
9754 template<size_t N>
9755 static bool
9756 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9757 {
9758 size_t mod_len = sizeof (mod) - 1;
9759 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9760 {
9761 len -= mod_len;
9762 return true;
9763 }
9764 return false;
9765 }
9766
9767 /* Compute the physnames of any methods on the CU's method list.
9768
9769 The computation of method physnames is delayed in order to avoid the
9770 (bad) condition that one of the method's formal parameters is of an as yet
9771 incomplete type. */
9772
9773 static void
9774 compute_delayed_physnames (struct dwarf2_cu *cu)
9775 {
9776 /* Only C++ delays computing physnames. */
9777 if (cu->method_list.empty ())
9778 return;
9779 gdb_assert (cu->language == language_cplus);
9780
9781 for (const delayed_method_info &mi : cu->method_list)
9782 {
9783 const char *physname;
9784 struct fn_fieldlist *fn_flp
9785 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9786 physname = dwarf2_physname (mi.name, mi.die, cu);
9787 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9788 = physname ? physname : "";
9789
9790 /* Since there's no tag to indicate whether a method is a
9791 const/volatile overload, extract that information out of the
9792 demangled name. */
9793 if (physname != NULL)
9794 {
9795 size_t len = strlen (physname);
9796
9797 while (1)
9798 {
9799 if (physname[len] == ')') /* shortcut */
9800 break;
9801 else if (check_modifier (physname, len, " const"))
9802 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9803 else if (check_modifier (physname, len, " volatile"))
9804 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9805 else
9806 break;
9807 }
9808 }
9809 }
9810
9811 /* The list is no longer needed. */
9812 cu->method_list.clear ();
9813 }
9814
9815 /* Go objects should be embedded in a DW_TAG_module DIE,
9816 and it's not clear if/how imported objects will appear.
9817 To keep Go support simple until that's worked out,
9818 go back through what we've read and create something usable.
9819 We could do this while processing each DIE, and feels kinda cleaner,
9820 but that way is more invasive.
9821 This is to, for example, allow the user to type "p var" or "b main"
9822 without having to specify the package name, and allow lookups
9823 of module.object to work in contexts that use the expression
9824 parser. */
9825
9826 static void
9827 fixup_go_packaging (struct dwarf2_cu *cu)
9828 {
9829 char *package_name = NULL;
9830 struct pending *list;
9831 int i;
9832
9833 for (list = *cu->get_builder ()->get_global_symbols ();
9834 list != NULL;
9835 list = list->next)
9836 {
9837 for (i = 0; i < list->nsyms; ++i)
9838 {
9839 struct symbol *sym = list->symbol[i];
9840
9841 if (SYMBOL_LANGUAGE (sym) == language_go
9842 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9843 {
9844 char *this_package_name = go_symbol_package_name (sym);
9845
9846 if (this_package_name == NULL)
9847 continue;
9848 if (package_name == NULL)
9849 package_name = this_package_name;
9850 else
9851 {
9852 struct objfile *objfile
9853 = cu->per_cu->dwarf2_per_objfile->objfile;
9854 if (strcmp (package_name, this_package_name) != 0)
9855 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9856 (symbol_symtab (sym) != NULL
9857 ? symtab_to_filename_for_display
9858 (symbol_symtab (sym))
9859 : objfile_name (objfile)),
9860 this_package_name, package_name);
9861 xfree (this_package_name);
9862 }
9863 }
9864 }
9865 }
9866
9867 if (package_name != NULL)
9868 {
9869 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9870 const char *saved_package_name
9871 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9872 package_name,
9873 strlen (package_name));
9874 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9875 saved_package_name);
9876 struct symbol *sym;
9877
9878 sym = allocate_symbol (objfile);
9879 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9880 SYMBOL_SET_NAMES (sym, saved_package_name,
9881 strlen (saved_package_name), 0, objfile);
9882 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9883 e.g., "main" finds the "main" module and not C's main(). */
9884 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9885 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9886 SYMBOL_TYPE (sym) = type;
9887
9888 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9889
9890 xfree (package_name);
9891 }
9892 }
9893
9894 /* Allocate a fully-qualified name consisting of the two parts on the
9895 obstack. */
9896
9897 static const char *
9898 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9899 {
9900 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9901 }
9902
9903 /* A helper that allocates a struct discriminant_info to attach to a
9904 union type. */
9905
9906 static struct discriminant_info *
9907 alloc_discriminant_info (struct type *type, int discriminant_index,
9908 int default_index)
9909 {
9910 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9911 gdb_assert (discriminant_index == -1
9912 || (discriminant_index >= 0
9913 && discriminant_index < TYPE_NFIELDS (type)));
9914 gdb_assert (default_index == -1
9915 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9916
9917 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9918
9919 struct discriminant_info *disc
9920 = ((struct discriminant_info *)
9921 TYPE_ZALLOC (type,
9922 offsetof (struct discriminant_info, discriminants)
9923 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9924 disc->default_index = default_index;
9925 disc->discriminant_index = discriminant_index;
9926
9927 struct dynamic_prop prop;
9928 prop.kind = PROP_UNDEFINED;
9929 prop.data.baton = disc;
9930
9931 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9932
9933 return disc;
9934 }
9935
9936 /* Some versions of rustc emitted enums in an unusual way.
9937
9938 Ordinary enums were emitted as unions. The first element of each
9939 structure in the union was named "RUST$ENUM$DISR". This element
9940 held the discriminant.
9941
9942 These versions of Rust also implemented the "non-zero"
9943 optimization. When the enum had two values, and one is empty and
9944 the other holds a pointer that cannot be zero, the pointer is used
9945 as the discriminant, with a zero value meaning the empty variant.
9946 Here, the union's first member is of the form
9947 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9948 where the fieldnos are the indices of the fields that should be
9949 traversed in order to find the field (which may be several fields deep)
9950 and the variantname is the name of the variant of the case when the
9951 field is zero.
9952
9953 This function recognizes whether TYPE is of one of these forms,
9954 and, if so, smashes it to be a variant type. */
9955
9956 static void
9957 quirk_rust_enum (struct type *type, struct objfile *objfile)
9958 {
9959 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9960
9961 /* We don't need to deal with empty enums. */
9962 if (TYPE_NFIELDS (type) == 0)
9963 return;
9964
9965 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9966 if (TYPE_NFIELDS (type) == 1
9967 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9968 {
9969 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9970
9971 /* Decode the field name to find the offset of the
9972 discriminant. */
9973 ULONGEST bit_offset = 0;
9974 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9975 while (name[0] >= '0' && name[0] <= '9')
9976 {
9977 char *tail;
9978 unsigned long index = strtoul (name, &tail, 10);
9979 name = tail;
9980 if (*name != '$'
9981 || index >= TYPE_NFIELDS (field_type)
9982 || (TYPE_FIELD_LOC_KIND (field_type, index)
9983 != FIELD_LOC_KIND_BITPOS))
9984 {
9985 complaint (_("Could not parse Rust enum encoding string \"%s\""
9986 "[in module %s]"),
9987 TYPE_FIELD_NAME (type, 0),
9988 objfile_name (objfile));
9989 return;
9990 }
9991 ++name;
9992
9993 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9994 field_type = TYPE_FIELD_TYPE (field_type, index);
9995 }
9996
9997 /* Make a union to hold the variants. */
9998 struct type *union_type = alloc_type (objfile);
9999 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10000 TYPE_NFIELDS (union_type) = 3;
10001 TYPE_FIELDS (union_type)
10002 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10003 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10004 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10005
10006 /* Put the discriminant must at index 0. */
10007 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10008 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10009 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10010 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10011
10012 /* The order of fields doesn't really matter, so put the real
10013 field at index 1 and the data-less field at index 2. */
10014 struct discriminant_info *disc
10015 = alloc_discriminant_info (union_type, 0, 1);
10016 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10017 TYPE_FIELD_NAME (union_type, 1)
10018 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10019 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10020 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10021 TYPE_FIELD_NAME (union_type, 1));
10022
10023 const char *dataless_name
10024 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10025 name);
10026 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10027 dataless_name);
10028 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10029 /* NAME points into the original discriminant name, which
10030 already has the correct lifetime. */
10031 TYPE_FIELD_NAME (union_type, 2) = name;
10032 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10033 disc->discriminants[2] = 0;
10034
10035 /* Smash this type to be a structure type. We have to do this
10036 because the type has already been recorded. */
10037 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10038 TYPE_NFIELDS (type) = 1;
10039 TYPE_FIELDS (type)
10040 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10041
10042 /* Install the variant part. */
10043 TYPE_FIELD_TYPE (type, 0) = union_type;
10044 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10045 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10046 }
10047 else if (TYPE_NFIELDS (type) == 1)
10048 {
10049 /* We assume that a union with a single field is a univariant
10050 enum. */
10051 /* Smash this type to be a structure type. We have to do this
10052 because the type has already been recorded. */
10053 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10054
10055 /* Make a union to hold the variants. */
10056 struct type *union_type = alloc_type (objfile);
10057 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10058 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10059 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10060 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10061 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10062
10063 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10064 const char *variant_name
10065 = rust_last_path_segment (TYPE_NAME (field_type));
10066 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10067 TYPE_NAME (field_type)
10068 = rust_fully_qualify (&objfile->objfile_obstack,
10069 TYPE_NAME (type), variant_name);
10070
10071 /* Install the union in the outer struct type. */
10072 TYPE_NFIELDS (type) = 1;
10073 TYPE_FIELDS (type)
10074 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10075 TYPE_FIELD_TYPE (type, 0) = union_type;
10076 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10077 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10078
10079 alloc_discriminant_info (union_type, -1, 0);
10080 }
10081 else
10082 {
10083 struct type *disr_type = nullptr;
10084 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10085 {
10086 disr_type = TYPE_FIELD_TYPE (type, i);
10087
10088 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10089 {
10090 /* All fields of a true enum will be structs. */
10091 return;
10092 }
10093 else if (TYPE_NFIELDS (disr_type) == 0)
10094 {
10095 /* Could be data-less variant, so keep going. */
10096 disr_type = nullptr;
10097 }
10098 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10099 "RUST$ENUM$DISR") != 0)
10100 {
10101 /* Not a Rust enum. */
10102 return;
10103 }
10104 else
10105 {
10106 /* Found one. */
10107 break;
10108 }
10109 }
10110
10111 /* If we got here without a discriminant, then it's probably
10112 just a union. */
10113 if (disr_type == nullptr)
10114 return;
10115
10116 /* Smash this type to be a structure type. We have to do this
10117 because the type has already been recorded. */
10118 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10119
10120 /* Make a union to hold the variants. */
10121 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10122 struct type *union_type = alloc_type (objfile);
10123 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10124 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10125 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10126 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10127 TYPE_FIELDS (union_type)
10128 = (struct field *) TYPE_ZALLOC (union_type,
10129 (TYPE_NFIELDS (union_type)
10130 * sizeof (struct field)));
10131
10132 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10133 TYPE_NFIELDS (type) * sizeof (struct field));
10134
10135 /* Install the discriminant at index 0 in the union. */
10136 TYPE_FIELD (union_type, 0) = *disr_field;
10137 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10138 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10139
10140 /* Install the union in the outer struct type. */
10141 TYPE_FIELD_TYPE (type, 0) = union_type;
10142 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10143 TYPE_NFIELDS (type) = 1;
10144
10145 /* Set the size and offset of the union type. */
10146 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10147
10148 /* We need a way to find the correct discriminant given a
10149 variant name. For convenience we build a map here. */
10150 struct type *enum_type = FIELD_TYPE (*disr_field);
10151 std::unordered_map<std::string, ULONGEST> discriminant_map;
10152 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10153 {
10154 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10155 {
10156 const char *name
10157 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10158 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10159 }
10160 }
10161
10162 int n_fields = TYPE_NFIELDS (union_type);
10163 struct discriminant_info *disc
10164 = alloc_discriminant_info (union_type, 0, -1);
10165 /* Skip the discriminant here. */
10166 for (int i = 1; i < n_fields; ++i)
10167 {
10168 /* Find the final word in the name of this variant's type.
10169 That name can be used to look up the correct
10170 discriminant. */
10171 const char *variant_name
10172 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10173 i)));
10174
10175 auto iter = discriminant_map.find (variant_name);
10176 if (iter != discriminant_map.end ())
10177 disc->discriminants[i] = iter->second;
10178
10179 /* Remove the discriminant field, if it exists. */
10180 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10181 if (TYPE_NFIELDS (sub_type) > 0)
10182 {
10183 --TYPE_NFIELDS (sub_type);
10184 ++TYPE_FIELDS (sub_type);
10185 }
10186 TYPE_FIELD_NAME (union_type, i) = variant_name;
10187 TYPE_NAME (sub_type)
10188 = rust_fully_qualify (&objfile->objfile_obstack,
10189 TYPE_NAME (type), variant_name);
10190 }
10191 }
10192 }
10193
10194 /* Rewrite some Rust unions to be structures with variants parts. */
10195
10196 static void
10197 rust_union_quirks (struct dwarf2_cu *cu)
10198 {
10199 gdb_assert (cu->language == language_rust);
10200 for (type *type_ : cu->rust_unions)
10201 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10202 /* We don't need this any more. */
10203 cu->rust_unions.clear ();
10204 }
10205
10206 /* Return the symtab for PER_CU. This works properly regardless of
10207 whether we're using the index or psymtabs. */
10208
10209 static struct compunit_symtab *
10210 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10211 {
10212 return (per_cu->dwarf2_per_objfile->using_index
10213 ? per_cu->v.quick->compunit_symtab
10214 : per_cu->v.psymtab->compunit_symtab);
10215 }
10216
10217 /* A helper function for computing the list of all symbol tables
10218 included by PER_CU. */
10219
10220 static void
10221 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10222 htab_t all_children, htab_t all_type_symtabs,
10223 struct dwarf2_per_cu_data *per_cu,
10224 struct compunit_symtab *immediate_parent)
10225 {
10226 void **slot;
10227 int ix;
10228 struct compunit_symtab *cust;
10229 struct dwarf2_per_cu_data *iter;
10230
10231 slot = htab_find_slot (all_children, per_cu, INSERT);
10232 if (*slot != NULL)
10233 {
10234 /* This inclusion and its children have been processed. */
10235 return;
10236 }
10237
10238 *slot = per_cu;
10239 /* Only add a CU if it has a symbol table. */
10240 cust = get_compunit_symtab (per_cu);
10241 if (cust != NULL)
10242 {
10243 /* If this is a type unit only add its symbol table if we haven't
10244 seen it yet (type unit per_cu's can share symtabs). */
10245 if (per_cu->is_debug_types)
10246 {
10247 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10248 if (*slot == NULL)
10249 {
10250 *slot = cust;
10251 result->push_back (cust);
10252 if (cust->user == NULL)
10253 cust->user = immediate_parent;
10254 }
10255 }
10256 else
10257 {
10258 result->push_back (cust);
10259 if (cust->user == NULL)
10260 cust->user = immediate_parent;
10261 }
10262 }
10263
10264 for (ix = 0;
10265 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10266 ++ix)
10267 {
10268 recursively_compute_inclusions (result, all_children,
10269 all_type_symtabs, iter, cust);
10270 }
10271 }
10272
10273 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10274 PER_CU. */
10275
10276 static void
10277 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10278 {
10279 gdb_assert (! per_cu->is_debug_types);
10280
10281 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10282 {
10283 int ix, len;
10284 struct dwarf2_per_cu_data *per_cu_iter;
10285 std::vector<compunit_symtab *> result_symtabs;
10286 htab_t all_children, all_type_symtabs;
10287 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10288
10289 /* If we don't have a symtab, we can just skip this case. */
10290 if (cust == NULL)
10291 return;
10292
10293 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10294 NULL, xcalloc, xfree);
10295 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10296 NULL, xcalloc, xfree);
10297
10298 for (ix = 0;
10299 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10300 ix, per_cu_iter);
10301 ++ix)
10302 {
10303 recursively_compute_inclusions (&result_symtabs, all_children,
10304 all_type_symtabs, per_cu_iter,
10305 cust);
10306 }
10307
10308 /* Now we have a transitive closure of all the included symtabs. */
10309 len = result_symtabs.size ();
10310 cust->includes
10311 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10312 struct compunit_symtab *, len + 1);
10313 memcpy (cust->includes, result_symtabs.data (),
10314 len * sizeof (compunit_symtab *));
10315 cust->includes[len] = NULL;
10316
10317 htab_delete (all_children);
10318 htab_delete (all_type_symtabs);
10319 }
10320 }
10321
10322 /* Compute the 'includes' field for the symtabs of all the CUs we just
10323 read. */
10324
10325 static void
10326 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10327 {
10328 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10329 {
10330 if (! iter->is_debug_types)
10331 compute_compunit_symtab_includes (iter);
10332 }
10333
10334 dwarf2_per_objfile->just_read_cus.clear ();
10335 }
10336
10337 /* Generate full symbol information for PER_CU, whose DIEs have
10338 already been loaded into memory. */
10339
10340 static void
10341 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10342 enum language pretend_language)
10343 {
10344 struct dwarf2_cu *cu = per_cu->cu;
10345 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10346 struct objfile *objfile = dwarf2_per_objfile->objfile;
10347 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10348 CORE_ADDR lowpc, highpc;
10349 struct compunit_symtab *cust;
10350 CORE_ADDR baseaddr;
10351 struct block *static_block;
10352 CORE_ADDR addr;
10353
10354 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10355
10356 /* Clear the list here in case something was left over. */
10357 cu->method_list.clear ();
10358
10359 cu->language = pretend_language;
10360 cu->language_defn = language_def (cu->language);
10361
10362 /* Do line number decoding in read_file_scope () */
10363 process_die (cu->dies, cu);
10364
10365 /* For now fudge the Go package. */
10366 if (cu->language == language_go)
10367 fixup_go_packaging (cu);
10368
10369 /* Now that we have processed all the DIEs in the CU, all the types
10370 should be complete, and it should now be safe to compute all of the
10371 physnames. */
10372 compute_delayed_physnames (cu);
10373
10374 if (cu->language == language_rust)
10375 rust_union_quirks (cu);
10376
10377 /* Some compilers don't define a DW_AT_high_pc attribute for the
10378 compilation unit. If the DW_AT_high_pc is missing, synthesize
10379 it, by scanning the DIE's below the compilation unit. */
10380 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10381
10382 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10383 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10384
10385 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10386 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10387 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10388 addrmap to help ensure it has an accurate map of pc values belonging to
10389 this comp unit. */
10390 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10391
10392 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10393 SECT_OFF_TEXT (objfile),
10394 0);
10395
10396 if (cust != NULL)
10397 {
10398 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10399
10400 /* Set symtab language to language from DW_AT_language. If the
10401 compilation is from a C file generated by language preprocessors, do
10402 not set the language if it was already deduced by start_subfile. */
10403 if (!(cu->language == language_c
10404 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10405 COMPUNIT_FILETABS (cust)->language = cu->language;
10406
10407 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10408 produce DW_AT_location with location lists but it can be possibly
10409 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10410 there were bugs in prologue debug info, fixed later in GCC-4.5
10411 by "unwind info for epilogues" patch (which is not directly related).
10412
10413 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10414 needed, it would be wrong due to missing DW_AT_producer there.
10415
10416 Still one can confuse GDB by using non-standard GCC compilation
10417 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10418 */
10419 if (cu->has_loclist && gcc_4_minor >= 5)
10420 cust->locations_valid = 1;
10421
10422 if (gcc_4_minor >= 5)
10423 cust->epilogue_unwind_valid = 1;
10424
10425 cust->call_site_htab = cu->call_site_htab;
10426 }
10427
10428 if (dwarf2_per_objfile->using_index)
10429 per_cu->v.quick->compunit_symtab = cust;
10430 else
10431 {
10432 struct partial_symtab *pst = per_cu->v.psymtab;
10433 pst->compunit_symtab = cust;
10434 pst->readin = 1;
10435 }
10436
10437 /* Push it for inclusion processing later. */
10438 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10439
10440 /* Not needed any more. */
10441 cu->reset_builder ();
10442 }
10443
10444 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10445 already been loaded into memory. */
10446
10447 static void
10448 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10449 enum language pretend_language)
10450 {
10451 struct dwarf2_cu *cu = per_cu->cu;
10452 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10453 struct objfile *objfile = dwarf2_per_objfile->objfile;
10454 struct compunit_symtab *cust;
10455 struct signatured_type *sig_type;
10456
10457 gdb_assert (per_cu->is_debug_types);
10458 sig_type = (struct signatured_type *) per_cu;
10459
10460 /* Clear the list here in case something was left over. */
10461 cu->method_list.clear ();
10462
10463 cu->language = pretend_language;
10464 cu->language_defn = language_def (cu->language);
10465
10466 /* The symbol tables are set up in read_type_unit_scope. */
10467 process_die (cu->dies, cu);
10468
10469 /* For now fudge the Go package. */
10470 if (cu->language == language_go)
10471 fixup_go_packaging (cu);
10472
10473 /* Now that we have processed all the DIEs in the CU, all the types
10474 should be complete, and it should now be safe to compute all of the
10475 physnames. */
10476 compute_delayed_physnames (cu);
10477
10478 if (cu->language == language_rust)
10479 rust_union_quirks (cu);
10480
10481 /* TUs share symbol tables.
10482 If this is the first TU to use this symtab, complete the construction
10483 of it with end_expandable_symtab. Otherwise, complete the addition of
10484 this TU's symbols to the existing symtab. */
10485 if (sig_type->type_unit_group->compunit_symtab == NULL)
10486 {
10487 buildsym_compunit *builder = cu->get_builder ();
10488 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10489 sig_type->type_unit_group->compunit_symtab = cust;
10490
10491 if (cust != NULL)
10492 {
10493 /* Set symtab language to language from DW_AT_language. If the
10494 compilation is from a C file generated by language preprocessors,
10495 do not set the language if it was already deduced by
10496 start_subfile. */
10497 if (!(cu->language == language_c
10498 && COMPUNIT_FILETABS (cust)->language != language_c))
10499 COMPUNIT_FILETABS (cust)->language = cu->language;
10500 }
10501 }
10502 else
10503 {
10504 cu->get_builder ()->augment_type_symtab ();
10505 cust = sig_type->type_unit_group->compunit_symtab;
10506 }
10507
10508 if (dwarf2_per_objfile->using_index)
10509 per_cu->v.quick->compunit_symtab = cust;
10510 else
10511 {
10512 struct partial_symtab *pst = per_cu->v.psymtab;
10513 pst->compunit_symtab = cust;
10514 pst->readin = 1;
10515 }
10516
10517 /* Not needed any more. */
10518 cu->reset_builder ();
10519 }
10520
10521 /* Process an imported unit DIE. */
10522
10523 static void
10524 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10525 {
10526 struct attribute *attr;
10527
10528 /* For now we don't handle imported units in type units. */
10529 if (cu->per_cu->is_debug_types)
10530 {
10531 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10532 " supported in type units [in module %s]"),
10533 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10534 }
10535
10536 attr = dwarf2_attr (die, DW_AT_import, cu);
10537 if (attr != NULL)
10538 {
10539 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10540 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10541 dwarf2_per_cu_data *per_cu
10542 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10543 cu->per_cu->dwarf2_per_objfile);
10544
10545 /* If necessary, add it to the queue and load its DIEs. */
10546 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10547 load_full_comp_unit (per_cu, false, cu->language);
10548
10549 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10550 per_cu);
10551 }
10552 }
10553
10554 /* RAII object that represents a process_die scope: i.e.,
10555 starts/finishes processing a DIE. */
10556 class process_die_scope
10557 {
10558 public:
10559 process_die_scope (die_info *die, dwarf2_cu *cu)
10560 : m_die (die), m_cu (cu)
10561 {
10562 /* We should only be processing DIEs not already in process. */
10563 gdb_assert (!m_die->in_process);
10564 m_die->in_process = true;
10565 }
10566
10567 ~process_die_scope ()
10568 {
10569 m_die->in_process = false;
10570
10571 /* If we're done processing the DIE for the CU that owns the line
10572 header, we don't need the line header anymore. */
10573 if (m_cu->line_header_die_owner == m_die)
10574 {
10575 delete m_cu->line_header;
10576 m_cu->line_header = NULL;
10577 m_cu->line_header_die_owner = NULL;
10578 }
10579 }
10580
10581 private:
10582 die_info *m_die;
10583 dwarf2_cu *m_cu;
10584 };
10585
10586 /* Process a die and its children. */
10587
10588 static void
10589 process_die (struct die_info *die, struct dwarf2_cu *cu)
10590 {
10591 process_die_scope scope (die, cu);
10592
10593 switch (die->tag)
10594 {
10595 case DW_TAG_padding:
10596 break;
10597 case DW_TAG_compile_unit:
10598 case DW_TAG_partial_unit:
10599 read_file_scope (die, cu);
10600 break;
10601 case DW_TAG_type_unit:
10602 read_type_unit_scope (die, cu);
10603 break;
10604 case DW_TAG_subprogram:
10605 case DW_TAG_inlined_subroutine:
10606 read_func_scope (die, cu);
10607 break;
10608 case DW_TAG_lexical_block:
10609 case DW_TAG_try_block:
10610 case DW_TAG_catch_block:
10611 read_lexical_block_scope (die, cu);
10612 break;
10613 case DW_TAG_call_site:
10614 case DW_TAG_GNU_call_site:
10615 read_call_site_scope (die, cu);
10616 break;
10617 case DW_TAG_class_type:
10618 case DW_TAG_interface_type:
10619 case DW_TAG_structure_type:
10620 case DW_TAG_union_type:
10621 process_structure_scope (die, cu);
10622 break;
10623 case DW_TAG_enumeration_type:
10624 process_enumeration_scope (die, cu);
10625 break;
10626
10627 /* These dies have a type, but processing them does not create
10628 a symbol or recurse to process the children. Therefore we can
10629 read them on-demand through read_type_die. */
10630 case DW_TAG_subroutine_type:
10631 case DW_TAG_set_type:
10632 case DW_TAG_array_type:
10633 case DW_TAG_pointer_type:
10634 case DW_TAG_ptr_to_member_type:
10635 case DW_TAG_reference_type:
10636 case DW_TAG_rvalue_reference_type:
10637 case DW_TAG_string_type:
10638 break;
10639
10640 case DW_TAG_base_type:
10641 case DW_TAG_subrange_type:
10642 case DW_TAG_typedef:
10643 /* Add a typedef symbol for the type definition, if it has a
10644 DW_AT_name. */
10645 new_symbol (die, read_type_die (die, cu), cu);
10646 break;
10647 case DW_TAG_common_block:
10648 read_common_block (die, cu);
10649 break;
10650 case DW_TAG_common_inclusion:
10651 break;
10652 case DW_TAG_namespace:
10653 cu->processing_has_namespace_info = true;
10654 read_namespace (die, cu);
10655 break;
10656 case DW_TAG_module:
10657 cu->processing_has_namespace_info = true;
10658 read_module (die, cu);
10659 break;
10660 case DW_TAG_imported_declaration:
10661 cu->processing_has_namespace_info = true;
10662 if (read_namespace_alias (die, cu))
10663 break;
10664 /* The declaration is not a global namespace alias. */
10665 /* Fall through. */
10666 case DW_TAG_imported_module:
10667 cu->processing_has_namespace_info = true;
10668 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10669 || cu->language != language_fortran))
10670 complaint (_("Tag '%s' has unexpected children"),
10671 dwarf_tag_name (die->tag));
10672 read_import_statement (die, cu);
10673 break;
10674
10675 case DW_TAG_imported_unit:
10676 process_imported_unit_die (die, cu);
10677 break;
10678
10679 case DW_TAG_variable:
10680 read_variable (die, cu);
10681 break;
10682
10683 default:
10684 new_symbol (die, NULL, cu);
10685 break;
10686 }
10687 }
10688 \f
10689 /* DWARF name computation. */
10690
10691 /* A helper function for dwarf2_compute_name which determines whether DIE
10692 needs to have the name of the scope prepended to the name listed in the
10693 die. */
10694
10695 static int
10696 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10697 {
10698 struct attribute *attr;
10699
10700 switch (die->tag)
10701 {
10702 case DW_TAG_namespace:
10703 case DW_TAG_typedef:
10704 case DW_TAG_class_type:
10705 case DW_TAG_interface_type:
10706 case DW_TAG_structure_type:
10707 case DW_TAG_union_type:
10708 case DW_TAG_enumeration_type:
10709 case DW_TAG_enumerator:
10710 case DW_TAG_subprogram:
10711 case DW_TAG_inlined_subroutine:
10712 case DW_TAG_member:
10713 case DW_TAG_imported_declaration:
10714 return 1;
10715
10716 case DW_TAG_variable:
10717 case DW_TAG_constant:
10718 /* We only need to prefix "globally" visible variables. These include
10719 any variable marked with DW_AT_external or any variable that
10720 lives in a namespace. [Variables in anonymous namespaces
10721 require prefixing, but they are not DW_AT_external.] */
10722
10723 if (dwarf2_attr (die, DW_AT_specification, cu))
10724 {
10725 struct dwarf2_cu *spec_cu = cu;
10726
10727 return die_needs_namespace (die_specification (die, &spec_cu),
10728 spec_cu);
10729 }
10730
10731 attr = dwarf2_attr (die, DW_AT_external, cu);
10732 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10733 && die->parent->tag != DW_TAG_module)
10734 return 0;
10735 /* A variable in a lexical block of some kind does not need a
10736 namespace, even though in C++ such variables may be external
10737 and have a mangled name. */
10738 if (die->parent->tag == DW_TAG_lexical_block
10739 || die->parent->tag == DW_TAG_try_block
10740 || die->parent->tag == DW_TAG_catch_block
10741 || die->parent->tag == DW_TAG_subprogram)
10742 return 0;
10743 return 1;
10744
10745 default:
10746 return 0;
10747 }
10748 }
10749
10750 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10751 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10752 defined for the given DIE. */
10753
10754 static struct attribute *
10755 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10756 {
10757 struct attribute *attr;
10758
10759 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10760 if (attr == NULL)
10761 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10762
10763 return attr;
10764 }
10765
10766 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10767 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10768 defined for the given DIE. */
10769
10770 static const char *
10771 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10772 {
10773 const char *linkage_name;
10774
10775 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10776 if (linkage_name == NULL)
10777 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10778
10779 return linkage_name;
10780 }
10781
10782 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10783 compute the physname for the object, which include a method's:
10784 - formal parameters (C++),
10785 - receiver type (Go),
10786
10787 The term "physname" is a bit confusing.
10788 For C++, for example, it is the demangled name.
10789 For Go, for example, it's the mangled name.
10790
10791 For Ada, return the DIE's linkage name rather than the fully qualified
10792 name. PHYSNAME is ignored..
10793
10794 The result is allocated on the objfile_obstack and canonicalized. */
10795
10796 static const char *
10797 dwarf2_compute_name (const char *name,
10798 struct die_info *die, struct dwarf2_cu *cu,
10799 int physname)
10800 {
10801 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10802
10803 if (name == NULL)
10804 name = dwarf2_name (die, cu);
10805
10806 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10807 but otherwise compute it by typename_concat inside GDB.
10808 FIXME: Actually this is not really true, or at least not always true.
10809 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10810 Fortran names because there is no mangling standard. So new_symbol
10811 will set the demangled name to the result of dwarf2_full_name, and it is
10812 the demangled name that GDB uses if it exists. */
10813 if (cu->language == language_ada
10814 || (cu->language == language_fortran && physname))
10815 {
10816 /* For Ada unit, we prefer the linkage name over the name, as
10817 the former contains the exported name, which the user expects
10818 to be able to reference. Ideally, we want the user to be able
10819 to reference this entity using either natural or linkage name,
10820 but we haven't started looking at this enhancement yet. */
10821 const char *linkage_name = dw2_linkage_name (die, cu);
10822
10823 if (linkage_name != NULL)
10824 return linkage_name;
10825 }
10826
10827 /* These are the only languages we know how to qualify names in. */
10828 if (name != NULL
10829 && (cu->language == language_cplus
10830 || cu->language == language_fortran || cu->language == language_d
10831 || cu->language == language_rust))
10832 {
10833 if (die_needs_namespace (die, cu))
10834 {
10835 const char *prefix;
10836 const char *canonical_name = NULL;
10837
10838 string_file buf;
10839
10840 prefix = determine_prefix (die, cu);
10841 if (*prefix != '\0')
10842 {
10843 char *prefixed_name = typename_concat (NULL, prefix, name,
10844 physname, cu);
10845
10846 buf.puts (prefixed_name);
10847 xfree (prefixed_name);
10848 }
10849 else
10850 buf.puts (name);
10851
10852 /* Template parameters may be specified in the DIE's DW_AT_name, or
10853 as children with DW_TAG_template_type_param or
10854 DW_TAG_value_type_param. If the latter, add them to the name
10855 here. If the name already has template parameters, then
10856 skip this step; some versions of GCC emit both, and
10857 it is more efficient to use the pre-computed name.
10858
10859 Something to keep in mind about this process: it is very
10860 unlikely, or in some cases downright impossible, to produce
10861 something that will match the mangled name of a function.
10862 If the definition of the function has the same debug info,
10863 we should be able to match up with it anyway. But fallbacks
10864 using the minimal symbol, for instance to find a method
10865 implemented in a stripped copy of libstdc++, will not work.
10866 If we do not have debug info for the definition, we will have to
10867 match them up some other way.
10868
10869 When we do name matching there is a related problem with function
10870 templates; two instantiated function templates are allowed to
10871 differ only by their return types, which we do not add here. */
10872
10873 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10874 {
10875 struct attribute *attr;
10876 struct die_info *child;
10877 int first = 1;
10878
10879 die->building_fullname = 1;
10880
10881 for (child = die->child; child != NULL; child = child->sibling)
10882 {
10883 struct type *type;
10884 LONGEST value;
10885 const gdb_byte *bytes;
10886 struct dwarf2_locexpr_baton *baton;
10887 struct value *v;
10888
10889 if (child->tag != DW_TAG_template_type_param
10890 && child->tag != DW_TAG_template_value_param)
10891 continue;
10892
10893 if (first)
10894 {
10895 buf.puts ("<");
10896 first = 0;
10897 }
10898 else
10899 buf.puts (", ");
10900
10901 attr = dwarf2_attr (child, DW_AT_type, cu);
10902 if (attr == NULL)
10903 {
10904 complaint (_("template parameter missing DW_AT_type"));
10905 buf.puts ("UNKNOWN_TYPE");
10906 continue;
10907 }
10908 type = die_type (child, cu);
10909
10910 if (child->tag == DW_TAG_template_type_param)
10911 {
10912 c_print_type (type, "", &buf, -1, 0, cu->language,
10913 &type_print_raw_options);
10914 continue;
10915 }
10916
10917 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10918 if (attr == NULL)
10919 {
10920 complaint (_("template parameter missing "
10921 "DW_AT_const_value"));
10922 buf.puts ("UNKNOWN_VALUE");
10923 continue;
10924 }
10925
10926 dwarf2_const_value_attr (attr, type, name,
10927 &cu->comp_unit_obstack, cu,
10928 &value, &bytes, &baton);
10929
10930 if (TYPE_NOSIGN (type))
10931 /* GDB prints characters as NUMBER 'CHAR'. If that's
10932 changed, this can use value_print instead. */
10933 c_printchar (value, type, &buf);
10934 else
10935 {
10936 struct value_print_options opts;
10937
10938 if (baton != NULL)
10939 v = dwarf2_evaluate_loc_desc (type, NULL,
10940 baton->data,
10941 baton->size,
10942 baton->per_cu);
10943 else if (bytes != NULL)
10944 {
10945 v = allocate_value (type);
10946 memcpy (value_contents_writeable (v), bytes,
10947 TYPE_LENGTH (type));
10948 }
10949 else
10950 v = value_from_longest (type, value);
10951
10952 /* Specify decimal so that we do not depend on
10953 the radix. */
10954 get_formatted_print_options (&opts, 'd');
10955 opts.raw = 1;
10956 value_print (v, &buf, &opts);
10957 release_value (v);
10958 }
10959 }
10960
10961 die->building_fullname = 0;
10962
10963 if (!first)
10964 {
10965 /* Close the argument list, with a space if necessary
10966 (nested templates). */
10967 if (!buf.empty () && buf.string ().back () == '>')
10968 buf.puts (" >");
10969 else
10970 buf.puts (">");
10971 }
10972 }
10973
10974 /* For C++ methods, append formal parameter type
10975 information, if PHYSNAME. */
10976
10977 if (physname && die->tag == DW_TAG_subprogram
10978 && cu->language == language_cplus)
10979 {
10980 struct type *type = read_type_die (die, cu);
10981
10982 c_type_print_args (type, &buf, 1, cu->language,
10983 &type_print_raw_options);
10984
10985 if (cu->language == language_cplus)
10986 {
10987 /* Assume that an artificial first parameter is
10988 "this", but do not crash if it is not. RealView
10989 marks unnamed (and thus unused) parameters as
10990 artificial; there is no way to differentiate
10991 the two cases. */
10992 if (TYPE_NFIELDS (type) > 0
10993 && TYPE_FIELD_ARTIFICIAL (type, 0)
10994 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10995 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10996 0))))
10997 buf.puts (" const");
10998 }
10999 }
11000
11001 const std::string &intermediate_name = buf.string ();
11002
11003 if (cu->language == language_cplus)
11004 canonical_name
11005 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11006 &objfile->per_bfd->storage_obstack);
11007
11008 /* If we only computed INTERMEDIATE_NAME, or if
11009 INTERMEDIATE_NAME is already canonical, then we need to
11010 copy it to the appropriate obstack. */
11011 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11012 name = ((const char *)
11013 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11014 intermediate_name.c_str (),
11015 intermediate_name.length ()));
11016 else
11017 name = canonical_name;
11018 }
11019 }
11020
11021 return name;
11022 }
11023
11024 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11025 If scope qualifiers are appropriate they will be added. The result
11026 will be allocated on the storage_obstack, or NULL if the DIE does
11027 not have a name. NAME may either be from a previous call to
11028 dwarf2_name or NULL.
11029
11030 The output string will be canonicalized (if C++). */
11031
11032 static const char *
11033 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11034 {
11035 return dwarf2_compute_name (name, die, cu, 0);
11036 }
11037
11038 /* Construct a physname for the given DIE in CU. NAME may either be
11039 from a previous call to dwarf2_name or NULL. The result will be
11040 allocated on the objfile_objstack or NULL if the DIE does not have a
11041 name.
11042
11043 The output string will be canonicalized (if C++). */
11044
11045 static const char *
11046 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11047 {
11048 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11049 const char *retval, *mangled = NULL, *canon = NULL;
11050 int need_copy = 1;
11051
11052 /* In this case dwarf2_compute_name is just a shortcut not building anything
11053 on its own. */
11054 if (!die_needs_namespace (die, cu))
11055 return dwarf2_compute_name (name, die, cu, 1);
11056
11057 mangled = dw2_linkage_name (die, cu);
11058
11059 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11060 See https://github.com/rust-lang/rust/issues/32925. */
11061 if (cu->language == language_rust && mangled != NULL
11062 && strchr (mangled, '{') != NULL)
11063 mangled = NULL;
11064
11065 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11066 has computed. */
11067 gdb::unique_xmalloc_ptr<char> demangled;
11068 if (mangled != NULL)
11069 {
11070
11071 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11072 {
11073 /* Do nothing (do not demangle the symbol name). */
11074 }
11075 else if (cu->language == language_go)
11076 {
11077 /* This is a lie, but we already lie to the caller new_symbol.
11078 new_symbol assumes we return the mangled name.
11079 This just undoes that lie until things are cleaned up. */
11080 }
11081 else
11082 {
11083 /* Use DMGL_RET_DROP for C++ template functions to suppress
11084 their return type. It is easier for GDB users to search
11085 for such functions as `name(params)' than `long name(params)'.
11086 In such case the minimal symbol names do not match the full
11087 symbol names but for template functions there is never a need
11088 to look up their definition from their declaration so
11089 the only disadvantage remains the minimal symbol variant
11090 `long name(params)' does not have the proper inferior type. */
11091 demangled.reset (gdb_demangle (mangled,
11092 (DMGL_PARAMS | DMGL_ANSI
11093 | DMGL_RET_DROP)));
11094 }
11095 if (demangled)
11096 canon = demangled.get ();
11097 else
11098 {
11099 canon = mangled;
11100 need_copy = 0;
11101 }
11102 }
11103
11104 if (canon == NULL || check_physname)
11105 {
11106 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11107
11108 if (canon != NULL && strcmp (physname, canon) != 0)
11109 {
11110 /* It may not mean a bug in GDB. The compiler could also
11111 compute DW_AT_linkage_name incorrectly. But in such case
11112 GDB would need to be bug-to-bug compatible. */
11113
11114 complaint (_("Computed physname <%s> does not match demangled <%s> "
11115 "(from linkage <%s>) - DIE at %s [in module %s]"),
11116 physname, canon, mangled, sect_offset_str (die->sect_off),
11117 objfile_name (objfile));
11118
11119 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11120 is available here - over computed PHYSNAME. It is safer
11121 against both buggy GDB and buggy compilers. */
11122
11123 retval = canon;
11124 }
11125 else
11126 {
11127 retval = physname;
11128 need_copy = 0;
11129 }
11130 }
11131 else
11132 retval = canon;
11133
11134 if (need_copy)
11135 retval = ((const char *)
11136 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11137 retval, strlen (retval)));
11138
11139 return retval;
11140 }
11141
11142 /* Inspect DIE in CU for a namespace alias. If one exists, record
11143 a new symbol for it.
11144
11145 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11146
11147 static int
11148 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11149 {
11150 struct attribute *attr;
11151
11152 /* If the die does not have a name, this is not a namespace
11153 alias. */
11154 attr = dwarf2_attr (die, DW_AT_name, cu);
11155 if (attr != NULL)
11156 {
11157 int num;
11158 struct die_info *d = die;
11159 struct dwarf2_cu *imported_cu = cu;
11160
11161 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11162 keep inspecting DIEs until we hit the underlying import. */
11163 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11164 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11165 {
11166 attr = dwarf2_attr (d, DW_AT_import, cu);
11167 if (attr == NULL)
11168 break;
11169
11170 d = follow_die_ref (d, attr, &imported_cu);
11171 if (d->tag != DW_TAG_imported_declaration)
11172 break;
11173 }
11174
11175 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11176 {
11177 complaint (_("DIE at %s has too many recursively imported "
11178 "declarations"), sect_offset_str (d->sect_off));
11179 return 0;
11180 }
11181
11182 if (attr != NULL)
11183 {
11184 struct type *type;
11185 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11186
11187 type = get_die_type_at_offset (sect_off, cu->per_cu);
11188 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11189 {
11190 /* This declaration is a global namespace alias. Add
11191 a symbol for it whose type is the aliased namespace. */
11192 new_symbol (die, type, cu);
11193 return 1;
11194 }
11195 }
11196 }
11197
11198 return 0;
11199 }
11200
11201 /* Return the using directives repository (global or local?) to use in the
11202 current context for CU.
11203
11204 For Ada, imported declarations can materialize renamings, which *may* be
11205 global. However it is impossible (for now?) in DWARF to distinguish
11206 "external" imported declarations and "static" ones. As all imported
11207 declarations seem to be static in all other languages, make them all CU-wide
11208 global only in Ada. */
11209
11210 static struct using_direct **
11211 using_directives (struct dwarf2_cu *cu)
11212 {
11213 if (cu->language == language_ada
11214 && cu->get_builder ()->outermost_context_p ())
11215 return cu->get_builder ()->get_global_using_directives ();
11216 else
11217 return cu->get_builder ()->get_local_using_directives ();
11218 }
11219
11220 /* Read the import statement specified by the given die and record it. */
11221
11222 static void
11223 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11224 {
11225 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11226 struct attribute *import_attr;
11227 struct die_info *imported_die, *child_die;
11228 struct dwarf2_cu *imported_cu;
11229 const char *imported_name;
11230 const char *imported_name_prefix;
11231 const char *canonical_name;
11232 const char *import_alias;
11233 const char *imported_declaration = NULL;
11234 const char *import_prefix;
11235 std::vector<const char *> excludes;
11236
11237 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11238 if (import_attr == NULL)
11239 {
11240 complaint (_("Tag '%s' has no DW_AT_import"),
11241 dwarf_tag_name (die->tag));
11242 return;
11243 }
11244
11245 imported_cu = cu;
11246 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11247 imported_name = dwarf2_name (imported_die, imported_cu);
11248 if (imported_name == NULL)
11249 {
11250 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11251
11252 The import in the following code:
11253 namespace A
11254 {
11255 typedef int B;
11256 }
11257
11258 int main ()
11259 {
11260 using A::B;
11261 B b;
11262 return b;
11263 }
11264
11265 ...
11266 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11267 <52> DW_AT_decl_file : 1
11268 <53> DW_AT_decl_line : 6
11269 <54> DW_AT_import : <0x75>
11270 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11271 <59> DW_AT_name : B
11272 <5b> DW_AT_decl_file : 1
11273 <5c> DW_AT_decl_line : 2
11274 <5d> DW_AT_type : <0x6e>
11275 ...
11276 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11277 <76> DW_AT_byte_size : 4
11278 <77> DW_AT_encoding : 5 (signed)
11279
11280 imports the wrong die ( 0x75 instead of 0x58 ).
11281 This case will be ignored until the gcc bug is fixed. */
11282 return;
11283 }
11284
11285 /* Figure out the local name after import. */
11286 import_alias = dwarf2_name (die, cu);
11287
11288 /* Figure out where the statement is being imported to. */
11289 import_prefix = determine_prefix (die, cu);
11290
11291 /* Figure out what the scope of the imported die is and prepend it
11292 to the name of the imported die. */
11293 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11294
11295 if (imported_die->tag != DW_TAG_namespace
11296 && imported_die->tag != DW_TAG_module)
11297 {
11298 imported_declaration = imported_name;
11299 canonical_name = imported_name_prefix;
11300 }
11301 else if (strlen (imported_name_prefix) > 0)
11302 canonical_name = obconcat (&objfile->objfile_obstack,
11303 imported_name_prefix,
11304 (cu->language == language_d ? "." : "::"),
11305 imported_name, (char *) NULL);
11306 else
11307 canonical_name = imported_name;
11308
11309 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11310 for (child_die = die->child; child_die && child_die->tag;
11311 child_die = sibling_die (child_die))
11312 {
11313 /* DWARF-4: A Fortran use statement with a “rename list” may be
11314 represented by an imported module entry with an import attribute
11315 referring to the module and owned entries corresponding to those
11316 entities that are renamed as part of being imported. */
11317
11318 if (child_die->tag != DW_TAG_imported_declaration)
11319 {
11320 complaint (_("child DW_TAG_imported_declaration expected "
11321 "- DIE at %s [in module %s]"),
11322 sect_offset_str (child_die->sect_off),
11323 objfile_name (objfile));
11324 continue;
11325 }
11326
11327 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11328 if (import_attr == NULL)
11329 {
11330 complaint (_("Tag '%s' has no DW_AT_import"),
11331 dwarf_tag_name (child_die->tag));
11332 continue;
11333 }
11334
11335 imported_cu = cu;
11336 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11337 &imported_cu);
11338 imported_name = dwarf2_name (imported_die, imported_cu);
11339 if (imported_name == NULL)
11340 {
11341 complaint (_("child DW_TAG_imported_declaration has unknown "
11342 "imported name - DIE at %s [in module %s]"),
11343 sect_offset_str (child_die->sect_off),
11344 objfile_name (objfile));
11345 continue;
11346 }
11347
11348 excludes.push_back (imported_name);
11349
11350 process_die (child_die, cu);
11351 }
11352
11353 add_using_directive (using_directives (cu),
11354 import_prefix,
11355 canonical_name,
11356 import_alias,
11357 imported_declaration,
11358 excludes,
11359 0,
11360 &objfile->objfile_obstack);
11361 }
11362
11363 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11364 types, but gives them a size of zero. Starting with version 14,
11365 ICC is compatible with GCC. */
11366
11367 static bool
11368 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11369 {
11370 if (!cu->checked_producer)
11371 check_producer (cu);
11372
11373 return cu->producer_is_icc_lt_14;
11374 }
11375
11376 /* ICC generates a DW_AT_type for C void functions. This was observed on
11377 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11378 which says that void functions should not have a DW_AT_type. */
11379
11380 static bool
11381 producer_is_icc (struct dwarf2_cu *cu)
11382 {
11383 if (!cu->checked_producer)
11384 check_producer (cu);
11385
11386 return cu->producer_is_icc;
11387 }
11388
11389 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11390 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11391 this, it was first present in GCC release 4.3.0. */
11392
11393 static bool
11394 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11395 {
11396 if (!cu->checked_producer)
11397 check_producer (cu);
11398
11399 return cu->producer_is_gcc_lt_4_3;
11400 }
11401
11402 static file_and_directory
11403 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11404 {
11405 file_and_directory res;
11406
11407 /* Find the filename. Do not use dwarf2_name here, since the filename
11408 is not a source language identifier. */
11409 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11410 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11411
11412 if (res.comp_dir == NULL
11413 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11414 && IS_ABSOLUTE_PATH (res.name))
11415 {
11416 res.comp_dir_storage = ldirname (res.name);
11417 if (!res.comp_dir_storage.empty ())
11418 res.comp_dir = res.comp_dir_storage.c_str ();
11419 }
11420 if (res.comp_dir != NULL)
11421 {
11422 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11423 directory, get rid of it. */
11424 const char *cp = strchr (res.comp_dir, ':');
11425
11426 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11427 res.comp_dir = cp + 1;
11428 }
11429
11430 if (res.name == NULL)
11431 res.name = "<unknown>";
11432
11433 return res;
11434 }
11435
11436 /* Handle DW_AT_stmt_list for a compilation unit.
11437 DIE is the DW_TAG_compile_unit die for CU.
11438 COMP_DIR is the compilation directory. LOWPC is passed to
11439 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11440
11441 static void
11442 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11443 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11444 {
11445 struct dwarf2_per_objfile *dwarf2_per_objfile
11446 = cu->per_cu->dwarf2_per_objfile;
11447 struct objfile *objfile = dwarf2_per_objfile->objfile;
11448 struct attribute *attr;
11449 struct line_header line_header_local;
11450 hashval_t line_header_local_hash;
11451 void **slot;
11452 int decode_mapping;
11453
11454 gdb_assert (! cu->per_cu->is_debug_types);
11455
11456 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11457 if (attr == NULL)
11458 return;
11459
11460 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11461
11462 /* The line header hash table is only created if needed (it exists to
11463 prevent redundant reading of the line table for partial_units).
11464 If we're given a partial_unit, we'll need it. If we're given a
11465 compile_unit, then use the line header hash table if it's already
11466 created, but don't create one just yet. */
11467
11468 if (dwarf2_per_objfile->line_header_hash == NULL
11469 && die->tag == DW_TAG_partial_unit)
11470 {
11471 dwarf2_per_objfile->line_header_hash
11472 = htab_create_alloc_ex (127, line_header_hash_voidp,
11473 line_header_eq_voidp,
11474 free_line_header_voidp,
11475 &objfile->objfile_obstack,
11476 hashtab_obstack_allocate,
11477 dummy_obstack_deallocate);
11478 }
11479
11480 line_header_local.sect_off = line_offset;
11481 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11482 line_header_local_hash = line_header_hash (&line_header_local);
11483 if (dwarf2_per_objfile->line_header_hash != NULL)
11484 {
11485 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11486 &line_header_local,
11487 line_header_local_hash, NO_INSERT);
11488
11489 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11490 is not present in *SLOT (since if there is something in *SLOT then
11491 it will be for a partial_unit). */
11492 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11493 {
11494 gdb_assert (*slot != NULL);
11495 cu->line_header = (struct line_header *) *slot;
11496 return;
11497 }
11498 }
11499
11500 /* dwarf_decode_line_header does not yet provide sufficient information.
11501 We always have to call also dwarf_decode_lines for it. */
11502 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11503 if (lh == NULL)
11504 return;
11505
11506 cu->line_header = lh.release ();
11507 cu->line_header_die_owner = die;
11508
11509 if (dwarf2_per_objfile->line_header_hash == NULL)
11510 slot = NULL;
11511 else
11512 {
11513 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11514 &line_header_local,
11515 line_header_local_hash, INSERT);
11516 gdb_assert (slot != NULL);
11517 }
11518 if (slot != NULL && *slot == NULL)
11519 {
11520 /* This newly decoded line number information unit will be owned
11521 by line_header_hash hash table. */
11522 *slot = cu->line_header;
11523 cu->line_header_die_owner = NULL;
11524 }
11525 else
11526 {
11527 /* We cannot free any current entry in (*slot) as that struct line_header
11528 may be already used by multiple CUs. Create only temporary decoded
11529 line_header for this CU - it may happen at most once for each line
11530 number information unit. And if we're not using line_header_hash
11531 then this is what we want as well. */
11532 gdb_assert (die->tag != DW_TAG_partial_unit);
11533 }
11534 decode_mapping = (die->tag != DW_TAG_partial_unit);
11535 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11536 decode_mapping);
11537
11538 }
11539
11540 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11541
11542 static void
11543 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11544 {
11545 struct dwarf2_per_objfile *dwarf2_per_objfile
11546 = cu->per_cu->dwarf2_per_objfile;
11547 struct objfile *objfile = dwarf2_per_objfile->objfile;
11548 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11549 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11550 CORE_ADDR highpc = ((CORE_ADDR) 0);
11551 struct attribute *attr;
11552 struct die_info *child_die;
11553 CORE_ADDR baseaddr;
11554
11555 prepare_one_comp_unit (cu, die, cu->language);
11556 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11557
11558 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11559
11560 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11561 from finish_block. */
11562 if (lowpc == ((CORE_ADDR) -1))
11563 lowpc = highpc;
11564 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11565
11566 file_and_directory fnd = find_file_and_directory (die, cu);
11567
11568 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11569 standardised yet. As a workaround for the language detection we fall
11570 back to the DW_AT_producer string. */
11571 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11572 cu->language = language_opencl;
11573
11574 /* Similar hack for Go. */
11575 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11576 set_cu_language (DW_LANG_Go, cu);
11577
11578 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11579
11580 /* Decode line number information if present. We do this before
11581 processing child DIEs, so that the line header table is available
11582 for DW_AT_decl_file. */
11583 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11584
11585 /* Process all dies in compilation unit. */
11586 if (die->child != NULL)
11587 {
11588 child_die = die->child;
11589 while (child_die && child_die->tag)
11590 {
11591 process_die (child_die, cu);
11592 child_die = sibling_die (child_die);
11593 }
11594 }
11595
11596 /* Decode macro information, if present. Dwarf 2 macro information
11597 refers to information in the line number info statement program
11598 header, so we can only read it if we've read the header
11599 successfully. */
11600 attr = dwarf2_attr (die, DW_AT_macros, cu);
11601 if (attr == NULL)
11602 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11603 if (attr && cu->line_header)
11604 {
11605 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11606 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11607
11608 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11609 }
11610 else
11611 {
11612 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11613 if (attr && cu->line_header)
11614 {
11615 unsigned int macro_offset = DW_UNSND (attr);
11616
11617 dwarf_decode_macros (cu, macro_offset, 0);
11618 }
11619 }
11620 }
11621
11622 void
11623 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11624 {
11625 struct type_unit_group *tu_group;
11626 int first_time;
11627 struct attribute *attr;
11628 unsigned int i;
11629 struct signatured_type *sig_type;
11630
11631 gdb_assert (per_cu->is_debug_types);
11632 sig_type = (struct signatured_type *) per_cu;
11633
11634 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11635
11636 /* If we're using .gdb_index (includes -readnow) then
11637 per_cu->type_unit_group may not have been set up yet. */
11638 if (sig_type->type_unit_group == NULL)
11639 sig_type->type_unit_group = get_type_unit_group (this, attr);
11640 tu_group = sig_type->type_unit_group;
11641
11642 /* If we've already processed this stmt_list there's no real need to
11643 do it again, we could fake it and just recreate the part we need
11644 (file name,index -> symtab mapping). If data shows this optimization
11645 is useful we can do it then. */
11646 first_time = tu_group->compunit_symtab == NULL;
11647
11648 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11649 debug info. */
11650 line_header_up lh;
11651 if (attr != NULL)
11652 {
11653 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11654 lh = dwarf_decode_line_header (line_offset, this);
11655 }
11656 if (lh == NULL)
11657 {
11658 if (first_time)
11659 start_symtab ("", NULL, 0);
11660 else
11661 {
11662 gdb_assert (tu_group->symtabs == NULL);
11663 gdb_assert (m_builder == nullptr);
11664 struct compunit_symtab *cust = tu_group->compunit_symtab;
11665 m_builder.reset (new struct buildsym_compunit
11666 (COMPUNIT_OBJFILE (cust), "",
11667 COMPUNIT_DIRNAME (cust),
11668 compunit_language (cust),
11669 0, cust));
11670 }
11671 return;
11672 }
11673
11674 line_header = lh.release ();
11675 line_header_die_owner = die;
11676
11677 if (first_time)
11678 {
11679 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11680
11681 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11682 still initializing it, and our caller (a few levels up)
11683 process_full_type_unit still needs to know if this is the first
11684 time. */
11685
11686 tu_group->num_symtabs = line_header->file_names.size ();
11687 tu_group->symtabs = XNEWVEC (struct symtab *,
11688 line_header->file_names.size ());
11689
11690 for (i = 0; i < line_header->file_names.size (); ++i)
11691 {
11692 file_entry &fe = line_header->file_names[i];
11693
11694 dwarf2_start_subfile (this, fe.name,
11695 fe.include_dir (line_header));
11696 buildsym_compunit *b = get_builder ();
11697 if (b->get_current_subfile ()->symtab == NULL)
11698 {
11699 /* NOTE: start_subfile will recognize when it's been
11700 passed a file it has already seen. So we can't
11701 assume there's a simple mapping from
11702 cu->line_header->file_names to subfiles, plus
11703 cu->line_header->file_names may contain dups. */
11704 b->get_current_subfile ()->symtab
11705 = allocate_symtab (cust, b->get_current_subfile ()->name);
11706 }
11707
11708 fe.symtab = b->get_current_subfile ()->symtab;
11709 tu_group->symtabs[i] = fe.symtab;
11710 }
11711 }
11712 else
11713 {
11714 gdb_assert (m_builder == nullptr);
11715 struct compunit_symtab *cust = tu_group->compunit_symtab;
11716 m_builder.reset (new struct buildsym_compunit
11717 (COMPUNIT_OBJFILE (cust), "",
11718 COMPUNIT_DIRNAME (cust),
11719 compunit_language (cust),
11720 0, cust));
11721
11722 for (i = 0; i < line_header->file_names.size (); ++i)
11723 {
11724 file_entry &fe = line_header->file_names[i];
11725
11726 fe.symtab = tu_group->symtabs[i];
11727 }
11728 }
11729
11730 /* The main symtab is allocated last. Type units don't have DW_AT_name
11731 so they don't have a "real" (so to speak) symtab anyway.
11732 There is later code that will assign the main symtab to all symbols
11733 that don't have one. We need to handle the case of a symbol with a
11734 missing symtab (DW_AT_decl_file) anyway. */
11735 }
11736
11737 /* Process DW_TAG_type_unit.
11738 For TUs we want to skip the first top level sibling if it's not the
11739 actual type being defined by this TU. In this case the first top
11740 level sibling is there to provide context only. */
11741
11742 static void
11743 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11744 {
11745 struct die_info *child_die;
11746
11747 prepare_one_comp_unit (cu, die, language_minimal);
11748
11749 /* Initialize (or reinitialize) the machinery for building symtabs.
11750 We do this before processing child DIEs, so that the line header table
11751 is available for DW_AT_decl_file. */
11752 cu->setup_type_unit_groups (die);
11753
11754 if (die->child != NULL)
11755 {
11756 child_die = die->child;
11757 while (child_die && child_die->tag)
11758 {
11759 process_die (child_die, cu);
11760 child_die = sibling_die (child_die);
11761 }
11762 }
11763 }
11764 \f
11765 /* DWO/DWP files.
11766
11767 http://gcc.gnu.org/wiki/DebugFission
11768 http://gcc.gnu.org/wiki/DebugFissionDWP
11769
11770 To simplify handling of both DWO files ("object" files with the DWARF info)
11771 and DWP files (a file with the DWOs packaged up into one file), we treat
11772 DWP files as having a collection of virtual DWO files. */
11773
11774 static hashval_t
11775 hash_dwo_file (const void *item)
11776 {
11777 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11778 hashval_t hash;
11779
11780 hash = htab_hash_string (dwo_file->dwo_name);
11781 if (dwo_file->comp_dir != NULL)
11782 hash += htab_hash_string (dwo_file->comp_dir);
11783 return hash;
11784 }
11785
11786 static int
11787 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11788 {
11789 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11790 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11791
11792 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11793 return 0;
11794 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11795 return lhs->comp_dir == rhs->comp_dir;
11796 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11797 }
11798
11799 /* Allocate a hash table for DWO files. */
11800
11801 static htab_t
11802 allocate_dwo_file_hash_table (struct objfile *objfile)
11803 {
11804 return htab_create_alloc_ex (41,
11805 hash_dwo_file,
11806 eq_dwo_file,
11807 NULL,
11808 &objfile->objfile_obstack,
11809 hashtab_obstack_allocate,
11810 dummy_obstack_deallocate);
11811 }
11812
11813 /* Lookup DWO file DWO_NAME. */
11814
11815 static void **
11816 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11817 const char *dwo_name,
11818 const char *comp_dir)
11819 {
11820 struct dwo_file find_entry;
11821 void **slot;
11822
11823 if (dwarf2_per_objfile->dwo_files == NULL)
11824 dwarf2_per_objfile->dwo_files
11825 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11826
11827 memset (&find_entry, 0, sizeof (find_entry));
11828 find_entry.dwo_name = dwo_name;
11829 find_entry.comp_dir = comp_dir;
11830 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11831
11832 return slot;
11833 }
11834
11835 static hashval_t
11836 hash_dwo_unit (const void *item)
11837 {
11838 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11839
11840 /* This drops the top 32 bits of the id, but is ok for a hash. */
11841 return dwo_unit->signature;
11842 }
11843
11844 static int
11845 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11846 {
11847 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11848 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11849
11850 /* The signature is assumed to be unique within the DWO file.
11851 So while object file CU dwo_id's always have the value zero,
11852 that's OK, assuming each object file DWO file has only one CU,
11853 and that's the rule for now. */
11854 return lhs->signature == rhs->signature;
11855 }
11856
11857 /* Allocate a hash table for DWO CUs,TUs.
11858 There is one of these tables for each of CUs,TUs for each DWO file. */
11859
11860 static htab_t
11861 allocate_dwo_unit_table (struct objfile *objfile)
11862 {
11863 /* Start out with a pretty small number.
11864 Generally DWO files contain only one CU and maybe some TUs. */
11865 return htab_create_alloc_ex (3,
11866 hash_dwo_unit,
11867 eq_dwo_unit,
11868 NULL,
11869 &objfile->objfile_obstack,
11870 hashtab_obstack_allocate,
11871 dummy_obstack_deallocate);
11872 }
11873
11874 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11875
11876 struct create_dwo_cu_data
11877 {
11878 struct dwo_file *dwo_file;
11879 struct dwo_unit dwo_unit;
11880 };
11881
11882 /* die_reader_func for create_dwo_cu. */
11883
11884 static void
11885 create_dwo_cu_reader (const struct die_reader_specs *reader,
11886 const gdb_byte *info_ptr,
11887 struct die_info *comp_unit_die,
11888 int has_children,
11889 void *datap)
11890 {
11891 struct dwarf2_cu *cu = reader->cu;
11892 sect_offset sect_off = cu->per_cu->sect_off;
11893 struct dwarf2_section_info *section = cu->per_cu->section;
11894 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11895 struct dwo_file *dwo_file = data->dwo_file;
11896 struct dwo_unit *dwo_unit = &data->dwo_unit;
11897 struct attribute *attr;
11898
11899 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11900 if (attr == NULL)
11901 {
11902 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11903 " its dwo_id [in module %s]"),
11904 sect_offset_str (sect_off), dwo_file->dwo_name);
11905 return;
11906 }
11907
11908 dwo_unit->dwo_file = dwo_file;
11909 dwo_unit->signature = DW_UNSND (attr);
11910 dwo_unit->section = section;
11911 dwo_unit->sect_off = sect_off;
11912 dwo_unit->length = cu->per_cu->length;
11913
11914 if (dwarf_read_debug)
11915 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11916 sect_offset_str (sect_off),
11917 hex_string (dwo_unit->signature));
11918 }
11919
11920 /* Create the dwo_units for the CUs in a DWO_FILE.
11921 Note: This function processes DWO files only, not DWP files. */
11922
11923 static void
11924 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11925 struct dwo_file &dwo_file, dwarf2_section_info &section,
11926 htab_t &cus_htab)
11927 {
11928 struct objfile *objfile = dwarf2_per_objfile->objfile;
11929 const gdb_byte *info_ptr, *end_ptr;
11930
11931 dwarf2_read_section (objfile, &section);
11932 info_ptr = section.buffer;
11933
11934 if (info_ptr == NULL)
11935 return;
11936
11937 if (dwarf_read_debug)
11938 {
11939 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11940 get_section_name (&section),
11941 get_section_file_name (&section));
11942 }
11943
11944 end_ptr = info_ptr + section.size;
11945 while (info_ptr < end_ptr)
11946 {
11947 struct dwarf2_per_cu_data per_cu;
11948 struct create_dwo_cu_data create_dwo_cu_data;
11949 struct dwo_unit *dwo_unit;
11950 void **slot;
11951 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11952
11953 memset (&create_dwo_cu_data.dwo_unit, 0,
11954 sizeof (create_dwo_cu_data.dwo_unit));
11955 memset (&per_cu, 0, sizeof (per_cu));
11956 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11957 per_cu.is_debug_types = 0;
11958 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11959 per_cu.section = &section;
11960 create_dwo_cu_data.dwo_file = &dwo_file;
11961
11962 init_cutu_and_read_dies_no_follow (
11963 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11964 info_ptr += per_cu.length;
11965
11966 // If the unit could not be parsed, skip it.
11967 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11968 continue;
11969
11970 if (cus_htab == NULL)
11971 cus_htab = allocate_dwo_unit_table (objfile);
11972
11973 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11974 *dwo_unit = create_dwo_cu_data.dwo_unit;
11975 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11976 gdb_assert (slot != NULL);
11977 if (*slot != NULL)
11978 {
11979 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11980 sect_offset dup_sect_off = dup_cu->sect_off;
11981
11982 complaint (_("debug cu entry at offset %s is duplicate to"
11983 " the entry at offset %s, signature %s"),
11984 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11985 hex_string (dwo_unit->signature));
11986 }
11987 *slot = (void *)dwo_unit;
11988 }
11989 }
11990
11991 /* DWP file .debug_{cu,tu}_index section format:
11992 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11993
11994 DWP Version 1:
11995
11996 Both index sections have the same format, and serve to map a 64-bit
11997 signature to a set of section numbers. Each section begins with a header,
11998 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11999 indexes, and a pool of 32-bit section numbers. The index sections will be
12000 aligned at 8-byte boundaries in the file.
12001
12002 The index section header consists of:
12003
12004 V, 32 bit version number
12005 -, 32 bits unused
12006 N, 32 bit number of compilation units or type units in the index
12007 M, 32 bit number of slots in the hash table
12008
12009 Numbers are recorded using the byte order of the application binary.
12010
12011 The hash table begins at offset 16 in the section, and consists of an array
12012 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12013 order of the application binary). Unused slots in the hash table are 0.
12014 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12015
12016 The parallel table begins immediately after the hash table
12017 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12018 array of 32-bit indexes (using the byte order of the application binary),
12019 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12020 table contains a 32-bit index into the pool of section numbers. For unused
12021 hash table slots, the corresponding entry in the parallel table will be 0.
12022
12023 The pool of section numbers begins immediately following the hash table
12024 (at offset 16 + 12 * M from the beginning of the section). The pool of
12025 section numbers consists of an array of 32-bit words (using the byte order
12026 of the application binary). Each item in the array is indexed starting
12027 from 0. The hash table entry provides the index of the first section
12028 number in the set. Additional section numbers in the set follow, and the
12029 set is terminated by a 0 entry (section number 0 is not used in ELF).
12030
12031 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12032 section must be the first entry in the set, and the .debug_abbrev.dwo must
12033 be the second entry. Other members of the set may follow in any order.
12034
12035 ---
12036
12037 DWP Version 2:
12038
12039 DWP Version 2 combines all the .debug_info, etc. sections into one,
12040 and the entries in the index tables are now offsets into these sections.
12041 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12042 section.
12043
12044 Index Section Contents:
12045 Header
12046 Hash Table of Signatures dwp_hash_table.hash_table
12047 Parallel Table of Indices dwp_hash_table.unit_table
12048 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12049 Table of Section Sizes dwp_hash_table.v2.sizes
12050
12051 The index section header consists of:
12052
12053 V, 32 bit version number
12054 L, 32 bit number of columns in the table of section offsets
12055 N, 32 bit number of compilation units or type units in the index
12056 M, 32 bit number of slots in the hash table
12057
12058 Numbers are recorded using the byte order of the application binary.
12059
12060 The hash table has the same format as version 1.
12061 The parallel table of indices has the same format as version 1,
12062 except that the entries are origin-1 indices into the table of sections
12063 offsets and the table of section sizes.
12064
12065 The table of offsets begins immediately following the parallel table
12066 (at offset 16 + 12 * M from the beginning of the section). The table is
12067 a two-dimensional array of 32-bit words (using the byte order of the
12068 application binary), with L columns and N+1 rows, in row-major order.
12069 Each row in the array is indexed starting from 0. The first row provides
12070 a key to the remaining rows: each column in this row provides an identifier
12071 for a debug section, and the offsets in the same column of subsequent rows
12072 refer to that section. The section identifiers are:
12073
12074 DW_SECT_INFO 1 .debug_info.dwo
12075 DW_SECT_TYPES 2 .debug_types.dwo
12076 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12077 DW_SECT_LINE 4 .debug_line.dwo
12078 DW_SECT_LOC 5 .debug_loc.dwo
12079 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12080 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12081 DW_SECT_MACRO 8 .debug_macro.dwo
12082
12083 The offsets provided by the CU and TU index sections are the base offsets
12084 for the contributions made by each CU or TU to the corresponding section
12085 in the package file. Each CU and TU header contains an abbrev_offset
12086 field, used to find the abbreviations table for that CU or TU within the
12087 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12088 be interpreted as relative to the base offset given in the index section.
12089 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12090 should be interpreted as relative to the base offset for .debug_line.dwo,
12091 and offsets into other debug sections obtained from DWARF attributes should
12092 also be interpreted as relative to the corresponding base offset.
12093
12094 The table of sizes begins immediately following the table of offsets.
12095 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12096 with L columns and N rows, in row-major order. Each row in the array is
12097 indexed starting from 1 (row 0 is shared by the two tables).
12098
12099 ---
12100
12101 Hash table lookup is handled the same in version 1 and 2:
12102
12103 We assume that N and M will not exceed 2^32 - 1.
12104 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12105
12106 Given a 64-bit compilation unit signature or a type signature S, an entry
12107 in the hash table is located as follows:
12108
12109 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12110 the low-order k bits all set to 1.
12111
12112 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12113
12114 3) If the hash table entry at index H matches the signature, use that
12115 entry. If the hash table entry at index H is unused (all zeroes),
12116 terminate the search: the signature is not present in the table.
12117
12118 4) Let H = (H + H') modulo M. Repeat at Step 3.
12119
12120 Because M > N and H' and M are relatively prime, the search is guaranteed
12121 to stop at an unused slot or find the match. */
12122
12123 /* Create a hash table to map DWO IDs to their CU/TU entry in
12124 .debug_{info,types}.dwo in DWP_FILE.
12125 Returns NULL if there isn't one.
12126 Note: This function processes DWP files only, not DWO files. */
12127
12128 static struct dwp_hash_table *
12129 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12130 struct dwp_file *dwp_file, int is_debug_types)
12131 {
12132 struct objfile *objfile = dwarf2_per_objfile->objfile;
12133 bfd *dbfd = dwp_file->dbfd.get ();
12134 const gdb_byte *index_ptr, *index_end;
12135 struct dwarf2_section_info *index;
12136 uint32_t version, nr_columns, nr_units, nr_slots;
12137 struct dwp_hash_table *htab;
12138
12139 if (is_debug_types)
12140 index = &dwp_file->sections.tu_index;
12141 else
12142 index = &dwp_file->sections.cu_index;
12143
12144 if (dwarf2_section_empty_p (index))
12145 return NULL;
12146 dwarf2_read_section (objfile, index);
12147
12148 index_ptr = index->buffer;
12149 index_end = index_ptr + index->size;
12150
12151 version = read_4_bytes (dbfd, index_ptr);
12152 index_ptr += 4;
12153 if (version == 2)
12154 nr_columns = read_4_bytes (dbfd, index_ptr);
12155 else
12156 nr_columns = 0;
12157 index_ptr += 4;
12158 nr_units = read_4_bytes (dbfd, index_ptr);
12159 index_ptr += 4;
12160 nr_slots = read_4_bytes (dbfd, index_ptr);
12161 index_ptr += 4;
12162
12163 if (version != 1 && version != 2)
12164 {
12165 error (_("Dwarf Error: unsupported DWP file version (%s)"
12166 " [in module %s]"),
12167 pulongest (version), dwp_file->name);
12168 }
12169 if (nr_slots != (nr_slots & -nr_slots))
12170 {
12171 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12172 " is not power of 2 [in module %s]"),
12173 pulongest (nr_slots), dwp_file->name);
12174 }
12175
12176 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12177 htab->version = version;
12178 htab->nr_columns = nr_columns;
12179 htab->nr_units = nr_units;
12180 htab->nr_slots = nr_slots;
12181 htab->hash_table = index_ptr;
12182 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12183
12184 /* Exit early if the table is empty. */
12185 if (nr_slots == 0 || nr_units == 0
12186 || (version == 2 && nr_columns == 0))
12187 {
12188 /* All must be zero. */
12189 if (nr_slots != 0 || nr_units != 0
12190 || (version == 2 && nr_columns != 0))
12191 {
12192 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12193 " all zero [in modules %s]"),
12194 dwp_file->name);
12195 }
12196 return htab;
12197 }
12198
12199 if (version == 1)
12200 {
12201 htab->section_pool.v1.indices =
12202 htab->unit_table + sizeof (uint32_t) * nr_slots;
12203 /* It's harder to decide whether the section is too small in v1.
12204 V1 is deprecated anyway so we punt. */
12205 }
12206 else
12207 {
12208 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12209 int *ids = htab->section_pool.v2.section_ids;
12210 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12211 /* Reverse map for error checking. */
12212 int ids_seen[DW_SECT_MAX + 1];
12213 int i;
12214
12215 if (nr_columns < 2)
12216 {
12217 error (_("Dwarf Error: bad DWP hash table, too few columns"
12218 " in section table [in module %s]"),
12219 dwp_file->name);
12220 }
12221 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12222 {
12223 error (_("Dwarf Error: bad DWP hash table, too many columns"
12224 " in section table [in module %s]"),
12225 dwp_file->name);
12226 }
12227 memset (ids, 255, sizeof_ids);
12228 memset (ids_seen, 255, sizeof (ids_seen));
12229 for (i = 0; i < nr_columns; ++i)
12230 {
12231 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12232
12233 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12234 {
12235 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12236 " in section table [in module %s]"),
12237 id, dwp_file->name);
12238 }
12239 if (ids_seen[id] != -1)
12240 {
12241 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12242 " id %d in section table [in module %s]"),
12243 id, dwp_file->name);
12244 }
12245 ids_seen[id] = i;
12246 ids[i] = id;
12247 }
12248 /* Must have exactly one info or types section. */
12249 if (((ids_seen[DW_SECT_INFO] != -1)
12250 + (ids_seen[DW_SECT_TYPES] != -1))
12251 != 1)
12252 {
12253 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12254 " DWO info/types section [in module %s]"),
12255 dwp_file->name);
12256 }
12257 /* Must have an abbrev section. */
12258 if (ids_seen[DW_SECT_ABBREV] == -1)
12259 {
12260 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12261 " section [in module %s]"),
12262 dwp_file->name);
12263 }
12264 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12265 htab->section_pool.v2.sizes =
12266 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12267 * nr_units * nr_columns);
12268 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12269 * nr_units * nr_columns))
12270 > index_end)
12271 {
12272 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12273 " [in module %s]"),
12274 dwp_file->name);
12275 }
12276 }
12277
12278 return htab;
12279 }
12280
12281 /* Update SECTIONS with the data from SECTP.
12282
12283 This function is like the other "locate" section routines that are
12284 passed to bfd_map_over_sections, but in this context the sections to
12285 read comes from the DWP V1 hash table, not the full ELF section table.
12286
12287 The result is non-zero for success, or zero if an error was found. */
12288
12289 static int
12290 locate_v1_virtual_dwo_sections (asection *sectp,
12291 struct virtual_v1_dwo_sections *sections)
12292 {
12293 const struct dwop_section_names *names = &dwop_section_names;
12294
12295 if (section_is_p (sectp->name, &names->abbrev_dwo))
12296 {
12297 /* There can be only one. */
12298 if (sections->abbrev.s.section != NULL)
12299 return 0;
12300 sections->abbrev.s.section = sectp;
12301 sections->abbrev.size = bfd_get_section_size (sectp);
12302 }
12303 else if (section_is_p (sectp->name, &names->info_dwo)
12304 || section_is_p (sectp->name, &names->types_dwo))
12305 {
12306 /* There can be only one. */
12307 if (sections->info_or_types.s.section != NULL)
12308 return 0;
12309 sections->info_or_types.s.section = sectp;
12310 sections->info_or_types.size = bfd_get_section_size (sectp);
12311 }
12312 else if (section_is_p (sectp->name, &names->line_dwo))
12313 {
12314 /* There can be only one. */
12315 if (sections->line.s.section != NULL)
12316 return 0;
12317 sections->line.s.section = sectp;
12318 sections->line.size = bfd_get_section_size (sectp);
12319 }
12320 else if (section_is_p (sectp->name, &names->loc_dwo))
12321 {
12322 /* There can be only one. */
12323 if (sections->loc.s.section != NULL)
12324 return 0;
12325 sections->loc.s.section = sectp;
12326 sections->loc.size = bfd_get_section_size (sectp);
12327 }
12328 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12329 {
12330 /* There can be only one. */
12331 if (sections->macinfo.s.section != NULL)
12332 return 0;
12333 sections->macinfo.s.section = sectp;
12334 sections->macinfo.size = bfd_get_section_size (sectp);
12335 }
12336 else if (section_is_p (sectp->name, &names->macro_dwo))
12337 {
12338 /* There can be only one. */
12339 if (sections->macro.s.section != NULL)
12340 return 0;
12341 sections->macro.s.section = sectp;
12342 sections->macro.size = bfd_get_section_size (sectp);
12343 }
12344 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12345 {
12346 /* There can be only one. */
12347 if (sections->str_offsets.s.section != NULL)
12348 return 0;
12349 sections->str_offsets.s.section = sectp;
12350 sections->str_offsets.size = bfd_get_section_size (sectp);
12351 }
12352 else
12353 {
12354 /* No other kind of section is valid. */
12355 return 0;
12356 }
12357
12358 return 1;
12359 }
12360
12361 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12362 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12363 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12364 This is for DWP version 1 files. */
12365
12366 static struct dwo_unit *
12367 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12368 struct dwp_file *dwp_file,
12369 uint32_t unit_index,
12370 const char *comp_dir,
12371 ULONGEST signature, int is_debug_types)
12372 {
12373 struct objfile *objfile = dwarf2_per_objfile->objfile;
12374 const struct dwp_hash_table *dwp_htab =
12375 is_debug_types ? dwp_file->tus : dwp_file->cus;
12376 bfd *dbfd = dwp_file->dbfd.get ();
12377 const char *kind = is_debug_types ? "TU" : "CU";
12378 struct dwo_file *dwo_file;
12379 struct dwo_unit *dwo_unit;
12380 struct virtual_v1_dwo_sections sections;
12381 void **dwo_file_slot;
12382 int i;
12383
12384 gdb_assert (dwp_file->version == 1);
12385
12386 if (dwarf_read_debug)
12387 {
12388 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12389 kind,
12390 pulongest (unit_index), hex_string (signature),
12391 dwp_file->name);
12392 }
12393
12394 /* Fetch the sections of this DWO unit.
12395 Put a limit on the number of sections we look for so that bad data
12396 doesn't cause us to loop forever. */
12397
12398 #define MAX_NR_V1_DWO_SECTIONS \
12399 (1 /* .debug_info or .debug_types */ \
12400 + 1 /* .debug_abbrev */ \
12401 + 1 /* .debug_line */ \
12402 + 1 /* .debug_loc */ \
12403 + 1 /* .debug_str_offsets */ \
12404 + 1 /* .debug_macro or .debug_macinfo */ \
12405 + 1 /* trailing zero */)
12406
12407 memset (&sections, 0, sizeof (sections));
12408
12409 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12410 {
12411 asection *sectp;
12412 uint32_t section_nr =
12413 read_4_bytes (dbfd,
12414 dwp_htab->section_pool.v1.indices
12415 + (unit_index + i) * sizeof (uint32_t));
12416
12417 if (section_nr == 0)
12418 break;
12419 if (section_nr >= dwp_file->num_sections)
12420 {
12421 error (_("Dwarf Error: bad DWP hash table, section number too large"
12422 " [in module %s]"),
12423 dwp_file->name);
12424 }
12425
12426 sectp = dwp_file->elf_sections[section_nr];
12427 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12428 {
12429 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12430 " [in module %s]"),
12431 dwp_file->name);
12432 }
12433 }
12434
12435 if (i < 2
12436 || dwarf2_section_empty_p (&sections.info_or_types)
12437 || dwarf2_section_empty_p (&sections.abbrev))
12438 {
12439 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12440 " [in module %s]"),
12441 dwp_file->name);
12442 }
12443 if (i == MAX_NR_V1_DWO_SECTIONS)
12444 {
12445 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12446 " [in module %s]"),
12447 dwp_file->name);
12448 }
12449
12450 /* It's easier for the rest of the code if we fake a struct dwo_file and
12451 have dwo_unit "live" in that. At least for now.
12452
12453 The DWP file can be made up of a random collection of CUs and TUs.
12454 However, for each CU + set of TUs that came from the same original DWO
12455 file, we can combine them back into a virtual DWO file to save space
12456 (fewer struct dwo_file objects to allocate). Remember that for really
12457 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12458
12459 std::string virtual_dwo_name =
12460 string_printf ("virtual-dwo/%d-%d-%d-%d",
12461 get_section_id (&sections.abbrev),
12462 get_section_id (&sections.line),
12463 get_section_id (&sections.loc),
12464 get_section_id (&sections.str_offsets));
12465 /* Can we use an existing virtual DWO file? */
12466 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12467 virtual_dwo_name.c_str (),
12468 comp_dir);
12469 /* Create one if necessary. */
12470 if (*dwo_file_slot == NULL)
12471 {
12472 if (dwarf_read_debug)
12473 {
12474 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12475 virtual_dwo_name.c_str ());
12476 }
12477 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12478 dwo_file->dwo_name
12479 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12480 virtual_dwo_name.c_str (),
12481 virtual_dwo_name.size ());
12482 dwo_file->comp_dir = comp_dir;
12483 dwo_file->sections.abbrev = sections.abbrev;
12484 dwo_file->sections.line = sections.line;
12485 dwo_file->sections.loc = sections.loc;
12486 dwo_file->sections.macinfo = sections.macinfo;
12487 dwo_file->sections.macro = sections.macro;
12488 dwo_file->sections.str_offsets = sections.str_offsets;
12489 /* The "str" section is global to the entire DWP file. */
12490 dwo_file->sections.str = dwp_file->sections.str;
12491 /* The info or types section is assigned below to dwo_unit,
12492 there's no need to record it in dwo_file.
12493 Also, we can't simply record type sections in dwo_file because
12494 we record a pointer into the vector in dwo_unit. As we collect more
12495 types we'll grow the vector and eventually have to reallocate space
12496 for it, invalidating all copies of pointers into the previous
12497 contents. */
12498 *dwo_file_slot = dwo_file;
12499 }
12500 else
12501 {
12502 if (dwarf_read_debug)
12503 {
12504 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12505 virtual_dwo_name.c_str ());
12506 }
12507 dwo_file = (struct dwo_file *) *dwo_file_slot;
12508 }
12509
12510 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12511 dwo_unit->dwo_file = dwo_file;
12512 dwo_unit->signature = signature;
12513 dwo_unit->section =
12514 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12515 *dwo_unit->section = sections.info_or_types;
12516 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12517
12518 return dwo_unit;
12519 }
12520
12521 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12522 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12523 piece within that section used by a TU/CU, return a virtual section
12524 of just that piece. */
12525
12526 static struct dwarf2_section_info
12527 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12528 struct dwarf2_section_info *section,
12529 bfd_size_type offset, bfd_size_type size)
12530 {
12531 struct dwarf2_section_info result;
12532 asection *sectp;
12533
12534 gdb_assert (section != NULL);
12535 gdb_assert (!section->is_virtual);
12536
12537 memset (&result, 0, sizeof (result));
12538 result.s.containing_section = section;
12539 result.is_virtual = 1;
12540
12541 if (size == 0)
12542 return result;
12543
12544 sectp = get_section_bfd_section (section);
12545
12546 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12547 bounds of the real section. This is a pretty-rare event, so just
12548 flag an error (easier) instead of a warning and trying to cope. */
12549 if (sectp == NULL
12550 || offset + size > bfd_get_section_size (sectp))
12551 {
12552 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12553 " in section %s [in module %s]"),
12554 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12555 objfile_name (dwarf2_per_objfile->objfile));
12556 }
12557
12558 result.virtual_offset = offset;
12559 result.size = size;
12560 return result;
12561 }
12562
12563 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12564 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12565 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12566 This is for DWP version 2 files. */
12567
12568 static struct dwo_unit *
12569 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12570 struct dwp_file *dwp_file,
12571 uint32_t unit_index,
12572 const char *comp_dir,
12573 ULONGEST signature, int is_debug_types)
12574 {
12575 struct objfile *objfile = dwarf2_per_objfile->objfile;
12576 const struct dwp_hash_table *dwp_htab =
12577 is_debug_types ? dwp_file->tus : dwp_file->cus;
12578 bfd *dbfd = dwp_file->dbfd.get ();
12579 const char *kind = is_debug_types ? "TU" : "CU";
12580 struct dwo_file *dwo_file;
12581 struct dwo_unit *dwo_unit;
12582 struct virtual_v2_dwo_sections sections;
12583 void **dwo_file_slot;
12584 int i;
12585
12586 gdb_assert (dwp_file->version == 2);
12587
12588 if (dwarf_read_debug)
12589 {
12590 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12591 kind,
12592 pulongest (unit_index), hex_string (signature),
12593 dwp_file->name);
12594 }
12595
12596 /* Fetch the section offsets of this DWO unit. */
12597
12598 memset (&sections, 0, sizeof (sections));
12599
12600 for (i = 0; i < dwp_htab->nr_columns; ++i)
12601 {
12602 uint32_t offset = read_4_bytes (dbfd,
12603 dwp_htab->section_pool.v2.offsets
12604 + (((unit_index - 1) * dwp_htab->nr_columns
12605 + i)
12606 * sizeof (uint32_t)));
12607 uint32_t size = read_4_bytes (dbfd,
12608 dwp_htab->section_pool.v2.sizes
12609 + (((unit_index - 1) * dwp_htab->nr_columns
12610 + i)
12611 * sizeof (uint32_t)));
12612
12613 switch (dwp_htab->section_pool.v2.section_ids[i])
12614 {
12615 case DW_SECT_INFO:
12616 case DW_SECT_TYPES:
12617 sections.info_or_types_offset = offset;
12618 sections.info_or_types_size = size;
12619 break;
12620 case DW_SECT_ABBREV:
12621 sections.abbrev_offset = offset;
12622 sections.abbrev_size = size;
12623 break;
12624 case DW_SECT_LINE:
12625 sections.line_offset = offset;
12626 sections.line_size = size;
12627 break;
12628 case DW_SECT_LOC:
12629 sections.loc_offset = offset;
12630 sections.loc_size = size;
12631 break;
12632 case DW_SECT_STR_OFFSETS:
12633 sections.str_offsets_offset = offset;
12634 sections.str_offsets_size = size;
12635 break;
12636 case DW_SECT_MACINFO:
12637 sections.macinfo_offset = offset;
12638 sections.macinfo_size = size;
12639 break;
12640 case DW_SECT_MACRO:
12641 sections.macro_offset = offset;
12642 sections.macro_size = size;
12643 break;
12644 }
12645 }
12646
12647 /* It's easier for the rest of the code if we fake a struct dwo_file and
12648 have dwo_unit "live" in that. At least for now.
12649
12650 The DWP file can be made up of a random collection of CUs and TUs.
12651 However, for each CU + set of TUs that came from the same original DWO
12652 file, we can combine them back into a virtual DWO file to save space
12653 (fewer struct dwo_file objects to allocate). Remember that for really
12654 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12655
12656 std::string virtual_dwo_name =
12657 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12658 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12659 (long) (sections.line_size ? sections.line_offset : 0),
12660 (long) (sections.loc_size ? sections.loc_offset : 0),
12661 (long) (sections.str_offsets_size
12662 ? sections.str_offsets_offset : 0));
12663 /* Can we use an existing virtual DWO file? */
12664 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12665 virtual_dwo_name.c_str (),
12666 comp_dir);
12667 /* Create one if necessary. */
12668 if (*dwo_file_slot == NULL)
12669 {
12670 if (dwarf_read_debug)
12671 {
12672 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12673 virtual_dwo_name.c_str ());
12674 }
12675 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12676 dwo_file->dwo_name
12677 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12678 virtual_dwo_name.c_str (),
12679 virtual_dwo_name.size ());
12680 dwo_file->comp_dir = comp_dir;
12681 dwo_file->sections.abbrev =
12682 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12683 sections.abbrev_offset, sections.abbrev_size);
12684 dwo_file->sections.line =
12685 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12686 sections.line_offset, sections.line_size);
12687 dwo_file->sections.loc =
12688 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12689 sections.loc_offset, sections.loc_size);
12690 dwo_file->sections.macinfo =
12691 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12692 sections.macinfo_offset, sections.macinfo_size);
12693 dwo_file->sections.macro =
12694 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12695 sections.macro_offset, sections.macro_size);
12696 dwo_file->sections.str_offsets =
12697 create_dwp_v2_section (dwarf2_per_objfile,
12698 &dwp_file->sections.str_offsets,
12699 sections.str_offsets_offset,
12700 sections.str_offsets_size);
12701 /* The "str" section is global to the entire DWP file. */
12702 dwo_file->sections.str = dwp_file->sections.str;
12703 /* The info or types section is assigned below to dwo_unit,
12704 there's no need to record it in dwo_file.
12705 Also, we can't simply record type sections in dwo_file because
12706 we record a pointer into the vector in dwo_unit. As we collect more
12707 types we'll grow the vector and eventually have to reallocate space
12708 for it, invalidating all copies of pointers into the previous
12709 contents. */
12710 *dwo_file_slot = dwo_file;
12711 }
12712 else
12713 {
12714 if (dwarf_read_debug)
12715 {
12716 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12717 virtual_dwo_name.c_str ());
12718 }
12719 dwo_file = (struct dwo_file *) *dwo_file_slot;
12720 }
12721
12722 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12723 dwo_unit->dwo_file = dwo_file;
12724 dwo_unit->signature = signature;
12725 dwo_unit->section =
12726 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12727 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12728 is_debug_types
12729 ? &dwp_file->sections.types
12730 : &dwp_file->sections.info,
12731 sections.info_or_types_offset,
12732 sections.info_or_types_size);
12733 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12734
12735 return dwo_unit;
12736 }
12737
12738 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12739 Returns NULL if the signature isn't found. */
12740
12741 static struct dwo_unit *
12742 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12743 struct dwp_file *dwp_file, const char *comp_dir,
12744 ULONGEST signature, int is_debug_types)
12745 {
12746 const struct dwp_hash_table *dwp_htab =
12747 is_debug_types ? dwp_file->tus : dwp_file->cus;
12748 bfd *dbfd = dwp_file->dbfd.get ();
12749 uint32_t mask = dwp_htab->nr_slots - 1;
12750 uint32_t hash = signature & mask;
12751 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12752 unsigned int i;
12753 void **slot;
12754 struct dwo_unit find_dwo_cu;
12755
12756 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12757 find_dwo_cu.signature = signature;
12758 slot = htab_find_slot (is_debug_types
12759 ? dwp_file->loaded_tus
12760 : dwp_file->loaded_cus,
12761 &find_dwo_cu, INSERT);
12762
12763 if (*slot != NULL)
12764 return (struct dwo_unit *) *slot;
12765
12766 /* Use a for loop so that we don't loop forever on bad debug info. */
12767 for (i = 0; i < dwp_htab->nr_slots; ++i)
12768 {
12769 ULONGEST signature_in_table;
12770
12771 signature_in_table =
12772 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12773 if (signature_in_table == signature)
12774 {
12775 uint32_t unit_index =
12776 read_4_bytes (dbfd,
12777 dwp_htab->unit_table + hash * sizeof (uint32_t));
12778
12779 if (dwp_file->version == 1)
12780 {
12781 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12782 dwp_file, unit_index,
12783 comp_dir, signature,
12784 is_debug_types);
12785 }
12786 else
12787 {
12788 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12789 dwp_file, unit_index,
12790 comp_dir, signature,
12791 is_debug_types);
12792 }
12793 return (struct dwo_unit *) *slot;
12794 }
12795 if (signature_in_table == 0)
12796 return NULL;
12797 hash = (hash + hash2) & mask;
12798 }
12799
12800 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12801 " [in module %s]"),
12802 dwp_file->name);
12803 }
12804
12805 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12806 Open the file specified by FILE_NAME and hand it off to BFD for
12807 preliminary analysis. Return a newly initialized bfd *, which
12808 includes a canonicalized copy of FILE_NAME.
12809 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12810 SEARCH_CWD is true if the current directory is to be searched.
12811 It will be searched before debug-file-directory.
12812 If successful, the file is added to the bfd include table of the
12813 objfile's bfd (see gdb_bfd_record_inclusion).
12814 If unable to find/open the file, return NULL.
12815 NOTE: This function is derived from symfile_bfd_open. */
12816
12817 static gdb_bfd_ref_ptr
12818 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12819 const char *file_name, int is_dwp, int search_cwd)
12820 {
12821 int desc;
12822 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12823 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12824 to debug_file_directory. */
12825 const char *search_path;
12826 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12827
12828 gdb::unique_xmalloc_ptr<char> search_path_holder;
12829 if (search_cwd)
12830 {
12831 if (*debug_file_directory != '\0')
12832 {
12833 search_path_holder.reset (concat (".", dirname_separator_string,
12834 debug_file_directory,
12835 (char *) NULL));
12836 search_path = search_path_holder.get ();
12837 }
12838 else
12839 search_path = ".";
12840 }
12841 else
12842 search_path = debug_file_directory;
12843
12844 openp_flags flags = OPF_RETURN_REALPATH;
12845 if (is_dwp)
12846 flags |= OPF_SEARCH_IN_PATH;
12847
12848 gdb::unique_xmalloc_ptr<char> absolute_name;
12849 desc = openp (search_path, flags, file_name,
12850 O_RDONLY | O_BINARY, &absolute_name);
12851 if (desc < 0)
12852 return NULL;
12853
12854 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12855 gnutarget, desc));
12856 if (sym_bfd == NULL)
12857 return NULL;
12858 bfd_set_cacheable (sym_bfd.get (), 1);
12859
12860 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12861 return NULL;
12862
12863 /* Success. Record the bfd as having been included by the objfile's bfd.
12864 This is important because things like demangled_names_hash lives in the
12865 objfile's per_bfd space and may have references to things like symbol
12866 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12867 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12868
12869 return sym_bfd;
12870 }
12871
12872 /* Try to open DWO file FILE_NAME.
12873 COMP_DIR is the DW_AT_comp_dir attribute.
12874 The result is the bfd handle of the file.
12875 If there is a problem finding or opening the file, return NULL.
12876 Upon success, the canonicalized path of the file is stored in the bfd,
12877 same as symfile_bfd_open. */
12878
12879 static gdb_bfd_ref_ptr
12880 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12881 const char *file_name, const char *comp_dir)
12882 {
12883 if (IS_ABSOLUTE_PATH (file_name))
12884 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12885 0 /*is_dwp*/, 0 /*search_cwd*/);
12886
12887 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12888
12889 if (comp_dir != NULL)
12890 {
12891 char *path_to_try = concat (comp_dir, SLASH_STRING,
12892 file_name, (char *) NULL);
12893
12894 /* NOTE: If comp_dir is a relative path, this will also try the
12895 search path, which seems useful. */
12896 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12897 path_to_try,
12898 0 /*is_dwp*/,
12899 1 /*search_cwd*/));
12900 xfree (path_to_try);
12901 if (abfd != NULL)
12902 return abfd;
12903 }
12904
12905 /* That didn't work, try debug-file-directory, which, despite its name,
12906 is a list of paths. */
12907
12908 if (*debug_file_directory == '\0')
12909 return NULL;
12910
12911 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12912 0 /*is_dwp*/, 1 /*search_cwd*/);
12913 }
12914
12915 /* This function is mapped across the sections and remembers the offset and
12916 size of each of the DWO debugging sections we are interested in. */
12917
12918 static void
12919 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12920 {
12921 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12922 const struct dwop_section_names *names = &dwop_section_names;
12923
12924 if (section_is_p (sectp->name, &names->abbrev_dwo))
12925 {
12926 dwo_sections->abbrev.s.section = sectp;
12927 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12928 }
12929 else if (section_is_p (sectp->name, &names->info_dwo))
12930 {
12931 dwo_sections->info.s.section = sectp;
12932 dwo_sections->info.size = bfd_get_section_size (sectp);
12933 }
12934 else if (section_is_p (sectp->name, &names->line_dwo))
12935 {
12936 dwo_sections->line.s.section = sectp;
12937 dwo_sections->line.size = bfd_get_section_size (sectp);
12938 }
12939 else if (section_is_p (sectp->name, &names->loc_dwo))
12940 {
12941 dwo_sections->loc.s.section = sectp;
12942 dwo_sections->loc.size = bfd_get_section_size (sectp);
12943 }
12944 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12945 {
12946 dwo_sections->macinfo.s.section = sectp;
12947 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12948 }
12949 else if (section_is_p (sectp->name, &names->macro_dwo))
12950 {
12951 dwo_sections->macro.s.section = sectp;
12952 dwo_sections->macro.size = bfd_get_section_size (sectp);
12953 }
12954 else if (section_is_p (sectp->name, &names->str_dwo))
12955 {
12956 dwo_sections->str.s.section = sectp;
12957 dwo_sections->str.size = bfd_get_section_size (sectp);
12958 }
12959 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12960 {
12961 dwo_sections->str_offsets.s.section = sectp;
12962 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12963 }
12964 else if (section_is_p (sectp->name, &names->types_dwo))
12965 {
12966 struct dwarf2_section_info type_section;
12967
12968 memset (&type_section, 0, sizeof (type_section));
12969 type_section.s.section = sectp;
12970 type_section.size = bfd_get_section_size (sectp);
12971 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12972 &type_section);
12973 }
12974 }
12975
12976 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12977 by PER_CU. This is for the non-DWP case.
12978 The result is NULL if DWO_NAME can't be found. */
12979
12980 static struct dwo_file *
12981 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12982 const char *dwo_name, const char *comp_dir)
12983 {
12984 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12985 struct objfile *objfile = dwarf2_per_objfile->objfile;
12986
12987 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12988 if (dbfd == NULL)
12989 {
12990 if (dwarf_read_debug)
12991 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12992 return NULL;
12993 }
12994
12995 /* We use a unique pointer here, despite the obstack allocation,
12996 because a dwo_file needs some cleanup if it is abandoned. */
12997 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12998 struct dwo_file));
12999 dwo_file->dwo_name = dwo_name;
13000 dwo_file->comp_dir = comp_dir;
13001 dwo_file->dbfd = dbfd.release ();
13002
13003 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13004 &dwo_file->sections);
13005
13006 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13007 dwo_file->cus);
13008
13009 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13010 dwo_file->sections.types, dwo_file->tus);
13011
13012 if (dwarf_read_debug)
13013 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13014
13015 return dwo_file.release ();
13016 }
13017
13018 /* This function is mapped across the sections and remembers the offset and
13019 size of each of the DWP debugging sections common to version 1 and 2 that
13020 we are interested in. */
13021
13022 static void
13023 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13024 void *dwp_file_ptr)
13025 {
13026 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13027 const struct dwop_section_names *names = &dwop_section_names;
13028 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13029
13030 /* Record the ELF section number for later lookup: this is what the
13031 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13032 gdb_assert (elf_section_nr < dwp_file->num_sections);
13033 dwp_file->elf_sections[elf_section_nr] = sectp;
13034
13035 /* Look for specific sections that we need. */
13036 if (section_is_p (sectp->name, &names->str_dwo))
13037 {
13038 dwp_file->sections.str.s.section = sectp;
13039 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13040 }
13041 else if (section_is_p (sectp->name, &names->cu_index))
13042 {
13043 dwp_file->sections.cu_index.s.section = sectp;
13044 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13045 }
13046 else if (section_is_p (sectp->name, &names->tu_index))
13047 {
13048 dwp_file->sections.tu_index.s.section = sectp;
13049 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13050 }
13051 }
13052
13053 /* This function is mapped across the sections and remembers the offset and
13054 size of each of the DWP version 2 debugging sections that we are interested
13055 in. This is split into a separate function because we don't know if we
13056 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13057
13058 static void
13059 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13060 {
13061 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13062 const struct dwop_section_names *names = &dwop_section_names;
13063 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13064
13065 /* Record the ELF section number for later lookup: this is what the
13066 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13067 gdb_assert (elf_section_nr < dwp_file->num_sections);
13068 dwp_file->elf_sections[elf_section_nr] = sectp;
13069
13070 /* Look for specific sections that we need. */
13071 if (section_is_p (sectp->name, &names->abbrev_dwo))
13072 {
13073 dwp_file->sections.abbrev.s.section = sectp;
13074 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13075 }
13076 else if (section_is_p (sectp->name, &names->info_dwo))
13077 {
13078 dwp_file->sections.info.s.section = sectp;
13079 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13080 }
13081 else if (section_is_p (sectp->name, &names->line_dwo))
13082 {
13083 dwp_file->sections.line.s.section = sectp;
13084 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13085 }
13086 else if (section_is_p (sectp->name, &names->loc_dwo))
13087 {
13088 dwp_file->sections.loc.s.section = sectp;
13089 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13090 }
13091 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13092 {
13093 dwp_file->sections.macinfo.s.section = sectp;
13094 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13095 }
13096 else if (section_is_p (sectp->name, &names->macro_dwo))
13097 {
13098 dwp_file->sections.macro.s.section = sectp;
13099 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13100 }
13101 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13102 {
13103 dwp_file->sections.str_offsets.s.section = sectp;
13104 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13105 }
13106 else if (section_is_p (sectp->name, &names->types_dwo))
13107 {
13108 dwp_file->sections.types.s.section = sectp;
13109 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13110 }
13111 }
13112
13113 /* Hash function for dwp_file loaded CUs/TUs. */
13114
13115 static hashval_t
13116 hash_dwp_loaded_cutus (const void *item)
13117 {
13118 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13119
13120 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13121 return dwo_unit->signature;
13122 }
13123
13124 /* Equality function for dwp_file loaded CUs/TUs. */
13125
13126 static int
13127 eq_dwp_loaded_cutus (const void *a, const void *b)
13128 {
13129 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13130 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13131
13132 return dua->signature == dub->signature;
13133 }
13134
13135 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13136
13137 static htab_t
13138 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13139 {
13140 return htab_create_alloc_ex (3,
13141 hash_dwp_loaded_cutus,
13142 eq_dwp_loaded_cutus,
13143 NULL,
13144 &objfile->objfile_obstack,
13145 hashtab_obstack_allocate,
13146 dummy_obstack_deallocate);
13147 }
13148
13149 /* Try to open DWP file FILE_NAME.
13150 The result is the bfd handle of the file.
13151 If there is a problem finding or opening the file, return NULL.
13152 Upon success, the canonicalized path of the file is stored in the bfd,
13153 same as symfile_bfd_open. */
13154
13155 static gdb_bfd_ref_ptr
13156 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13157 const char *file_name)
13158 {
13159 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13160 1 /*is_dwp*/,
13161 1 /*search_cwd*/));
13162 if (abfd != NULL)
13163 return abfd;
13164
13165 /* Work around upstream bug 15652.
13166 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13167 [Whether that's a "bug" is debatable, but it is getting in our way.]
13168 We have no real idea where the dwp file is, because gdb's realpath-ing
13169 of the executable's path may have discarded the needed info.
13170 [IWBN if the dwp file name was recorded in the executable, akin to
13171 .gnu_debuglink, but that doesn't exist yet.]
13172 Strip the directory from FILE_NAME and search again. */
13173 if (*debug_file_directory != '\0')
13174 {
13175 /* Don't implicitly search the current directory here.
13176 If the user wants to search "." to handle this case,
13177 it must be added to debug-file-directory. */
13178 return try_open_dwop_file (dwarf2_per_objfile,
13179 lbasename (file_name), 1 /*is_dwp*/,
13180 0 /*search_cwd*/);
13181 }
13182
13183 return NULL;
13184 }
13185
13186 /* Initialize the use of the DWP file for the current objfile.
13187 By convention the name of the DWP file is ${objfile}.dwp.
13188 The result is NULL if it can't be found. */
13189
13190 static std::unique_ptr<struct dwp_file>
13191 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13192 {
13193 struct objfile *objfile = dwarf2_per_objfile->objfile;
13194
13195 /* Try to find first .dwp for the binary file before any symbolic links
13196 resolving. */
13197
13198 /* If the objfile is a debug file, find the name of the real binary
13199 file and get the name of dwp file from there. */
13200 std::string dwp_name;
13201 if (objfile->separate_debug_objfile_backlink != NULL)
13202 {
13203 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13204 const char *backlink_basename = lbasename (backlink->original_name);
13205
13206 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13207 }
13208 else
13209 dwp_name = objfile->original_name;
13210
13211 dwp_name += ".dwp";
13212
13213 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13214 if (dbfd == NULL
13215 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13216 {
13217 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13218 dwp_name = objfile_name (objfile);
13219 dwp_name += ".dwp";
13220 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13221 }
13222
13223 if (dbfd == NULL)
13224 {
13225 if (dwarf_read_debug)
13226 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13227 return std::unique_ptr<dwp_file> ();
13228 }
13229
13230 const char *name = bfd_get_filename (dbfd.get ());
13231 std::unique_ptr<struct dwp_file> dwp_file
13232 (new struct dwp_file (name, std::move (dbfd)));
13233
13234 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13235 dwp_file->elf_sections =
13236 OBSTACK_CALLOC (&objfile->objfile_obstack,
13237 dwp_file->num_sections, asection *);
13238
13239 bfd_map_over_sections (dwp_file->dbfd.get (),
13240 dwarf2_locate_common_dwp_sections,
13241 dwp_file.get ());
13242
13243 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13244 0);
13245
13246 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13247 1);
13248
13249 /* The DWP file version is stored in the hash table. Oh well. */
13250 if (dwp_file->cus && dwp_file->tus
13251 && dwp_file->cus->version != dwp_file->tus->version)
13252 {
13253 /* Technically speaking, we should try to limp along, but this is
13254 pretty bizarre. We use pulongest here because that's the established
13255 portability solution (e.g, we cannot use %u for uint32_t). */
13256 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13257 " TU version %s [in DWP file %s]"),
13258 pulongest (dwp_file->cus->version),
13259 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13260 }
13261
13262 if (dwp_file->cus)
13263 dwp_file->version = dwp_file->cus->version;
13264 else if (dwp_file->tus)
13265 dwp_file->version = dwp_file->tus->version;
13266 else
13267 dwp_file->version = 2;
13268
13269 if (dwp_file->version == 2)
13270 bfd_map_over_sections (dwp_file->dbfd.get (),
13271 dwarf2_locate_v2_dwp_sections,
13272 dwp_file.get ());
13273
13274 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13275 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13276
13277 if (dwarf_read_debug)
13278 {
13279 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13280 fprintf_unfiltered (gdb_stdlog,
13281 " %s CUs, %s TUs\n",
13282 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13283 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13284 }
13285
13286 return dwp_file;
13287 }
13288
13289 /* Wrapper around open_and_init_dwp_file, only open it once. */
13290
13291 static struct dwp_file *
13292 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13293 {
13294 if (! dwarf2_per_objfile->dwp_checked)
13295 {
13296 dwarf2_per_objfile->dwp_file
13297 = open_and_init_dwp_file (dwarf2_per_objfile);
13298 dwarf2_per_objfile->dwp_checked = 1;
13299 }
13300 return dwarf2_per_objfile->dwp_file.get ();
13301 }
13302
13303 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13304 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13305 or in the DWP file for the objfile, referenced by THIS_UNIT.
13306 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13307 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13308
13309 This is called, for example, when wanting to read a variable with a
13310 complex location. Therefore we don't want to do file i/o for every call.
13311 Therefore we don't want to look for a DWO file on every call.
13312 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13313 then we check if we've already seen DWO_NAME, and only THEN do we check
13314 for a DWO file.
13315
13316 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13317 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13318
13319 static struct dwo_unit *
13320 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13321 const char *dwo_name, const char *comp_dir,
13322 ULONGEST signature, int is_debug_types)
13323 {
13324 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13325 struct objfile *objfile = dwarf2_per_objfile->objfile;
13326 const char *kind = is_debug_types ? "TU" : "CU";
13327 void **dwo_file_slot;
13328 struct dwo_file *dwo_file;
13329 struct dwp_file *dwp_file;
13330
13331 /* First see if there's a DWP file.
13332 If we have a DWP file but didn't find the DWO inside it, don't
13333 look for the original DWO file. It makes gdb behave differently
13334 depending on whether one is debugging in the build tree. */
13335
13336 dwp_file = get_dwp_file (dwarf2_per_objfile);
13337 if (dwp_file != NULL)
13338 {
13339 const struct dwp_hash_table *dwp_htab =
13340 is_debug_types ? dwp_file->tus : dwp_file->cus;
13341
13342 if (dwp_htab != NULL)
13343 {
13344 struct dwo_unit *dwo_cutu =
13345 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13346 signature, is_debug_types);
13347
13348 if (dwo_cutu != NULL)
13349 {
13350 if (dwarf_read_debug)
13351 {
13352 fprintf_unfiltered (gdb_stdlog,
13353 "Virtual DWO %s %s found: @%s\n",
13354 kind, hex_string (signature),
13355 host_address_to_string (dwo_cutu));
13356 }
13357 return dwo_cutu;
13358 }
13359 }
13360 }
13361 else
13362 {
13363 /* No DWP file, look for the DWO file. */
13364
13365 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13366 dwo_name, comp_dir);
13367 if (*dwo_file_slot == NULL)
13368 {
13369 /* Read in the file and build a table of the CUs/TUs it contains. */
13370 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13371 }
13372 /* NOTE: This will be NULL if unable to open the file. */
13373 dwo_file = (struct dwo_file *) *dwo_file_slot;
13374
13375 if (dwo_file != NULL)
13376 {
13377 struct dwo_unit *dwo_cutu = NULL;
13378
13379 if (is_debug_types && dwo_file->tus)
13380 {
13381 struct dwo_unit find_dwo_cutu;
13382
13383 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13384 find_dwo_cutu.signature = signature;
13385 dwo_cutu
13386 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13387 }
13388 else if (!is_debug_types && dwo_file->cus)
13389 {
13390 struct dwo_unit find_dwo_cutu;
13391
13392 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13393 find_dwo_cutu.signature = signature;
13394 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13395 &find_dwo_cutu);
13396 }
13397
13398 if (dwo_cutu != NULL)
13399 {
13400 if (dwarf_read_debug)
13401 {
13402 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13403 kind, dwo_name, hex_string (signature),
13404 host_address_to_string (dwo_cutu));
13405 }
13406 return dwo_cutu;
13407 }
13408 }
13409 }
13410
13411 /* We didn't find it. This could mean a dwo_id mismatch, or
13412 someone deleted the DWO/DWP file, or the search path isn't set up
13413 correctly to find the file. */
13414
13415 if (dwarf_read_debug)
13416 {
13417 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13418 kind, dwo_name, hex_string (signature));
13419 }
13420
13421 /* This is a warning and not a complaint because it can be caused by
13422 pilot error (e.g., user accidentally deleting the DWO). */
13423 {
13424 /* Print the name of the DWP file if we looked there, helps the user
13425 better diagnose the problem. */
13426 std::string dwp_text;
13427
13428 if (dwp_file != NULL)
13429 dwp_text = string_printf (" [in DWP file %s]",
13430 lbasename (dwp_file->name));
13431
13432 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13433 " [in module %s]"),
13434 kind, dwo_name, hex_string (signature),
13435 dwp_text.c_str (),
13436 this_unit->is_debug_types ? "TU" : "CU",
13437 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13438 }
13439 return NULL;
13440 }
13441
13442 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13443 See lookup_dwo_cutu_unit for details. */
13444
13445 static struct dwo_unit *
13446 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13447 const char *dwo_name, const char *comp_dir,
13448 ULONGEST signature)
13449 {
13450 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13451 }
13452
13453 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13454 See lookup_dwo_cutu_unit for details. */
13455
13456 static struct dwo_unit *
13457 lookup_dwo_type_unit (struct signatured_type *this_tu,
13458 const char *dwo_name, const char *comp_dir)
13459 {
13460 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13461 }
13462
13463 /* Traversal function for queue_and_load_all_dwo_tus. */
13464
13465 static int
13466 queue_and_load_dwo_tu (void **slot, void *info)
13467 {
13468 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13469 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13470 ULONGEST signature = dwo_unit->signature;
13471 struct signatured_type *sig_type =
13472 lookup_dwo_signatured_type (per_cu->cu, signature);
13473
13474 if (sig_type != NULL)
13475 {
13476 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13477
13478 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13479 a real dependency of PER_CU on SIG_TYPE. That is detected later
13480 while processing PER_CU. */
13481 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13482 load_full_type_unit (sig_cu);
13483 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13484 }
13485
13486 return 1;
13487 }
13488
13489 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13490 The DWO may have the only definition of the type, though it may not be
13491 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13492 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13493
13494 static void
13495 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13496 {
13497 struct dwo_unit *dwo_unit;
13498 struct dwo_file *dwo_file;
13499
13500 gdb_assert (!per_cu->is_debug_types);
13501 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13502 gdb_assert (per_cu->cu != NULL);
13503
13504 dwo_unit = per_cu->cu->dwo_unit;
13505 gdb_assert (dwo_unit != NULL);
13506
13507 dwo_file = dwo_unit->dwo_file;
13508 if (dwo_file->tus != NULL)
13509 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13510 }
13511
13512 /* Free all resources associated with DWO_FILE.
13513 Close the DWO file and munmap the sections. */
13514
13515 static void
13516 free_dwo_file (struct dwo_file *dwo_file)
13517 {
13518 /* Note: dbfd is NULL for virtual DWO files. */
13519 gdb_bfd_unref (dwo_file->dbfd);
13520
13521 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13522 }
13523
13524 /* Traversal function for free_dwo_files. */
13525
13526 static int
13527 free_dwo_file_from_slot (void **slot, void *info)
13528 {
13529 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13530
13531 free_dwo_file (dwo_file);
13532
13533 return 1;
13534 }
13535
13536 /* Free all resources associated with DWO_FILES. */
13537
13538 static void
13539 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13540 {
13541 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13542 }
13543 \f
13544 /* Read in various DIEs. */
13545
13546 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13547 Inherit only the children of the DW_AT_abstract_origin DIE not being
13548 already referenced by DW_AT_abstract_origin from the children of the
13549 current DIE. */
13550
13551 static void
13552 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13553 {
13554 struct die_info *child_die;
13555 sect_offset *offsetp;
13556 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13557 struct die_info *origin_die;
13558 /* Iterator of the ORIGIN_DIE children. */
13559 struct die_info *origin_child_die;
13560 struct attribute *attr;
13561 struct dwarf2_cu *origin_cu;
13562 struct pending **origin_previous_list_in_scope;
13563
13564 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13565 if (!attr)
13566 return;
13567
13568 /* Note that following die references may follow to a die in a
13569 different cu. */
13570
13571 origin_cu = cu;
13572 origin_die = follow_die_ref (die, attr, &origin_cu);
13573
13574 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13575 symbols in. */
13576 origin_previous_list_in_scope = origin_cu->list_in_scope;
13577 origin_cu->list_in_scope = cu->list_in_scope;
13578
13579 if (die->tag != origin_die->tag
13580 && !(die->tag == DW_TAG_inlined_subroutine
13581 && origin_die->tag == DW_TAG_subprogram))
13582 complaint (_("DIE %s and its abstract origin %s have different tags"),
13583 sect_offset_str (die->sect_off),
13584 sect_offset_str (origin_die->sect_off));
13585
13586 std::vector<sect_offset> offsets;
13587
13588 for (child_die = die->child;
13589 child_die && child_die->tag;
13590 child_die = sibling_die (child_die))
13591 {
13592 struct die_info *child_origin_die;
13593 struct dwarf2_cu *child_origin_cu;
13594
13595 /* We are trying to process concrete instance entries:
13596 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13597 it's not relevant to our analysis here. i.e. detecting DIEs that are
13598 present in the abstract instance but not referenced in the concrete
13599 one. */
13600 if (child_die->tag == DW_TAG_call_site
13601 || child_die->tag == DW_TAG_GNU_call_site)
13602 continue;
13603
13604 /* For each CHILD_DIE, find the corresponding child of
13605 ORIGIN_DIE. If there is more than one layer of
13606 DW_AT_abstract_origin, follow them all; there shouldn't be,
13607 but GCC versions at least through 4.4 generate this (GCC PR
13608 40573). */
13609 child_origin_die = child_die;
13610 child_origin_cu = cu;
13611 while (1)
13612 {
13613 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13614 child_origin_cu);
13615 if (attr == NULL)
13616 break;
13617 child_origin_die = follow_die_ref (child_origin_die, attr,
13618 &child_origin_cu);
13619 }
13620
13621 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13622 counterpart may exist. */
13623 if (child_origin_die != child_die)
13624 {
13625 if (child_die->tag != child_origin_die->tag
13626 && !(child_die->tag == DW_TAG_inlined_subroutine
13627 && child_origin_die->tag == DW_TAG_subprogram))
13628 complaint (_("Child DIE %s and its abstract origin %s have "
13629 "different tags"),
13630 sect_offset_str (child_die->sect_off),
13631 sect_offset_str (child_origin_die->sect_off));
13632 if (child_origin_die->parent != origin_die)
13633 complaint (_("Child DIE %s and its abstract origin %s have "
13634 "different parents"),
13635 sect_offset_str (child_die->sect_off),
13636 sect_offset_str (child_origin_die->sect_off));
13637 else
13638 offsets.push_back (child_origin_die->sect_off);
13639 }
13640 }
13641 std::sort (offsets.begin (), offsets.end ());
13642 sect_offset *offsets_end = offsets.data () + offsets.size ();
13643 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13644 if (offsetp[-1] == *offsetp)
13645 complaint (_("Multiple children of DIE %s refer "
13646 "to DIE %s as their abstract origin"),
13647 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13648
13649 offsetp = offsets.data ();
13650 origin_child_die = origin_die->child;
13651 while (origin_child_die && origin_child_die->tag)
13652 {
13653 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13654 while (offsetp < offsets_end
13655 && *offsetp < origin_child_die->sect_off)
13656 offsetp++;
13657 if (offsetp >= offsets_end
13658 || *offsetp > origin_child_die->sect_off)
13659 {
13660 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13661 Check whether we're already processing ORIGIN_CHILD_DIE.
13662 This can happen with mutually referenced abstract_origins.
13663 PR 16581. */
13664 if (!origin_child_die->in_process)
13665 process_die (origin_child_die, origin_cu);
13666 }
13667 origin_child_die = sibling_die (origin_child_die);
13668 }
13669 origin_cu->list_in_scope = origin_previous_list_in_scope;
13670 }
13671
13672 static void
13673 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13674 {
13675 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13676 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13677 struct context_stack *newobj;
13678 CORE_ADDR lowpc;
13679 CORE_ADDR highpc;
13680 struct die_info *child_die;
13681 struct attribute *attr, *call_line, *call_file;
13682 const char *name;
13683 CORE_ADDR baseaddr;
13684 struct block *block;
13685 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13686 std::vector<struct symbol *> template_args;
13687 struct template_symbol *templ_func = NULL;
13688
13689 if (inlined_func)
13690 {
13691 /* If we do not have call site information, we can't show the
13692 caller of this inlined function. That's too confusing, so
13693 only use the scope for local variables. */
13694 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13695 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13696 if (call_line == NULL || call_file == NULL)
13697 {
13698 read_lexical_block_scope (die, cu);
13699 return;
13700 }
13701 }
13702
13703 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13704
13705 name = dwarf2_name (die, cu);
13706
13707 /* Ignore functions with missing or empty names. These are actually
13708 illegal according to the DWARF standard. */
13709 if (name == NULL)
13710 {
13711 complaint (_("missing name for subprogram DIE at %s"),
13712 sect_offset_str (die->sect_off));
13713 return;
13714 }
13715
13716 /* Ignore functions with missing or invalid low and high pc attributes. */
13717 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13718 <= PC_BOUNDS_INVALID)
13719 {
13720 attr = dwarf2_attr (die, DW_AT_external, cu);
13721 if (!attr || !DW_UNSND (attr))
13722 complaint (_("cannot get low and high bounds "
13723 "for subprogram DIE at %s"),
13724 sect_offset_str (die->sect_off));
13725 return;
13726 }
13727
13728 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13729 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13730
13731 /* If we have any template arguments, then we must allocate a
13732 different sort of symbol. */
13733 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13734 {
13735 if (child_die->tag == DW_TAG_template_type_param
13736 || child_die->tag == DW_TAG_template_value_param)
13737 {
13738 templ_func = allocate_template_symbol (objfile);
13739 templ_func->subclass = SYMBOL_TEMPLATE;
13740 break;
13741 }
13742 }
13743
13744 newobj = cu->get_builder ()->push_context (0, lowpc);
13745 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13746 (struct symbol *) templ_func);
13747
13748 /* If there is a location expression for DW_AT_frame_base, record
13749 it. */
13750 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13751 if (attr)
13752 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13753
13754 /* If there is a location for the static link, record it. */
13755 newobj->static_link = NULL;
13756 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13757 if (attr)
13758 {
13759 newobj->static_link
13760 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13761 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13762 }
13763
13764 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13765
13766 if (die->child != NULL)
13767 {
13768 child_die = die->child;
13769 while (child_die && child_die->tag)
13770 {
13771 if (child_die->tag == DW_TAG_template_type_param
13772 || child_die->tag == DW_TAG_template_value_param)
13773 {
13774 struct symbol *arg = new_symbol (child_die, NULL, cu);
13775
13776 if (arg != NULL)
13777 template_args.push_back (arg);
13778 }
13779 else
13780 process_die (child_die, cu);
13781 child_die = sibling_die (child_die);
13782 }
13783 }
13784
13785 inherit_abstract_dies (die, cu);
13786
13787 /* If we have a DW_AT_specification, we might need to import using
13788 directives from the context of the specification DIE. See the
13789 comment in determine_prefix. */
13790 if (cu->language == language_cplus
13791 && dwarf2_attr (die, DW_AT_specification, cu))
13792 {
13793 struct dwarf2_cu *spec_cu = cu;
13794 struct die_info *spec_die = die_specification (die, &spec_cu);
13795
13796 while (spec_die)
13797 {
13798 child_die = spec_die->child;
13799 while (child_die && child_die->tag)
13800 {
13801 if (child_die->tag == DW_TAG_imported_module)
13802 process_die (child_die, spec_cu);
13803 child_die = sibling_die (child_die);
13804 }
13805
13806 /* In some cases, GCC generates specification DIEs that
13807 themselves contain DW_AT_specification attributes. */
13808 spec_die = die_specification (spec_die, &spec_cu);
13809 }
13810 }
13811
13812 struct context_stack cstk = cu->get_builder ()->pop_context ();
13813 /* Make a block for the local symbols within. */
13814 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13815 cstk.static_link, lowpc, highpc);
13816
13817 /* For C++, set the block's scope. */
13818 if ((cu->language == language_cplus
13819 || cu->language == language_fortran
13820 || cu->language == language_d
13821 || cu->language == language_rust)
13822 && cu->processing_has_namespace_info)
13823 block_set_scope (block, determine_prefix (die, cu),
13824 &objfile->objfile_obstack);
13825
13826 /* If we have address ranges, record them. */
13827 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13828
13829 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13830
13831 /* Attach template arguments to function. */
13832 if (!template_args.empty ())
13833 {
13834 gdb_assert (templ_func != NULL);
13835
13836 templ_func->n_template_arguments = template_args.size ();
13837 templ_func->template_arguments
13838 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13839 templ_func->n_template_arguments);
13840 memcpy (templ_func->template_arguments,
13841 template_args.data (),
13842 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13843
13844 /* Make sure that the symtab is set on the new symbols. Even
13845 though they don't appear in this symtab directly, other parts
13846 of gdb assume that symbols do, and this is reasonably
13847 true. */
13848 for (symbol *sym : template_args)
13849 symbol_set_symtab (sym, symbol_symtab (templ_func));
13850 }
13851
13852 /* In C++, we can have functions nested inside functions (e.g., when
13853 a function declares a class that has methods). This means that
13854 when we finish processing a function scope, we may need to go
13855 back to building a containing block's symbol lists. */
13856 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13857 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13858
13859 /* If we've finished processing a top-level function, subsequent
13860 symbols go in the file symbol list. */
13861 if (cu->get_builder ()->outermost_context_p ())
13862 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13863 }
13864
13865 /* Process all the DIES contained within a lexical block scope. Start
13866 a new scope, process the dies, and then close the scope. */
13867
13868 static void
13869 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13870 {
13871 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13872 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13873 CORE_ADDR lowpc, highpc;
13874 struct die_info *child_die;
13875 CORE_ADDR baseaddr;
13876
13877 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13878
13879 /* Ignore blocks with missing or invalid low and high pc attributes. */
13880 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13881 as multiple lexical blocks? Handling children in a sane way would
13882 be nasty. Might be easier to properly extend generic blocks to
13883 describe ranges. */
13884 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13885 {
13886 case PC_BOUNDS_NOT_PRESENT:
13887 /* DW_TAG_lexical_block has no attributes, process its children as if
13888 there was no wrapping by that DW_TAG_lexical_block.
13889 GCC does no longer produces such DWARF since GCC r224161. */
13890 for (child_die = die->child;
13891 child_die != NULL && child_die->tag;
13892 child_die = sibling_die (child_die))
13893 process_die (child_die, cu);
13894 return;
13895 case PC_BOUNDS_INVALID:
13896 return;
13897 }
13898 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13899 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13900
13901 cu->get_builder ()->push_context (0, lowpc);
13902 if (die->child != NULL)
13903 {
13904 child_die = die->child;
13905 while (child_die && child_die->tag)
13906 {
13907 process_die (child_die, cu);
13908 child_die = sibling_die (child_die);
13909 }
13910 }
13911 inherit_abstract_dies (die, cu);
13912 struct context_stack cstk = cu->get_builder ()->pop_context ();
13913
13914 if (*cu->get_builder ()->get_local_symbols () != NULL
13915 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13916 {
13917 struct block *block
13918 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13919 cstk.start_addr, highpc);
13920
13921 /* Note that recording ranges after traversing children, as we
13922 do here, means that recording a parent's ranges entails
13923 walking across all its children's ranges as they appear in
13924 the address map, which is quadratic behavior.
13925
13926 It would be nicer to record the parent's ranges before
13927 traversing its children, simply overriding whatever you find
13928 there. But since we don't even decide whether to create a
13929 block until after we've traversed its children, that's hard
13930 to do. */
13931 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13932 }
13933 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13934 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13935 }
13936
13937 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13938
13939 static void
13940 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13941 {
13942 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13943 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13944 CORE_ADDR pc, baseaddr;
13945 struct attribute *attr;
13946 struct call_site *call_site, call_site_local;
13947 void **slot;
13948 int nparams;
13949 struct die_info *child_die;
13950
13951 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13952
13953 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13954 if (attr == NULL)
13955 {
13956 /* This was a pre-DWARF-5 GNU extension alias
13957 for DW_AT_call_return_pc. */
13958 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13959 }
13960 if (!attr)
13961 {
13962 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13963 "DIE %s [in module %s]"),
13964 sect_offset_str (die->sect_off), objfile_name (objfile));
13965 return;
13966 }
13967 pc = attr_value_as_address (attr) + baseaddr;
13968 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13969
13970 if (cu->call_site_htab == NULL)
13971 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13972 NULL, &objfile->objfile_obstack,
13973 hashtab_obstack_allocate, NULL);
13974 call_site_local.pc = pc;
13975 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13976 if (*slot != NULL)
13977 {
13978 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13979 "DIE %s [in module %s]"),
13980 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13981 objfile_name (objfile));
13982 return;
13983 }
13984
13985 /* Count parameters at the caller. */
13986
13987 nparams = 0;
13988 for (child_die = die->child; child_die && child_die->tag;
13989 child_die = sibling_die (child_die))
13990 {
13991 if (child_die->tag != DW_TAG_call_site_parameter
13992 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13993 {
13994 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13995 "DW_TAG_call_site child DIE %s [in module %s]"),
13996 child_die->tag, sect_offset_str (child_die->sect_off),
13997 objfile_name (objfile));
13998 continue;
13999 }
14000
14001 nparams++;
14002 }
14003
14004 call_site
14005 = ((struct call_site *)
14006 obstack_alloc (&objfile->objfile_obstack,
14007 sizeof (*call_site)
14008 + (sizeof (*call_site->parameter) * (nparams - 1))));
14009 *slot = call_site;
14010 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14011 call_site->pc = pc;
14012
14013 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14014 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14015 {
14016 struct die_info *func_die;
14017
14018 /* Skip also over DW_TAG_inlined_subroutine. */
14019 for (func_die = die->parent;
14020 func_die && func_die->tag != DW_TAG_subprogram
14021 && func_die->tag != DW_TAG_subroutine_type;
14022 func_die = func_die->parent);
14023
14024 /* DW_AT_call_all_calls is a superset
14025 of DW_AT_call_all_tail_calls. */
14026 if (func_die
14027 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14028 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14029 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14030 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14031 {
14032 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14033 not complete. But keep CALL_SITE for look ups via call_site_htab,
14034 both the initial caller containing the real return address PC and
14035 the final callee containing the current PC of a chain of tail
14036 calls do not need to have the tail call list complete. But any
14037 function candidate for a virtual tail call frame searched via
14038 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14039 determined unambiguously. */
14040 }
14041 else
14042 {
14043 struct type *func_type = NULL;
14044
14045 if (func_die)
14046 func_type = get_die_type (func_die, cu);
14047 if (func_type != NULL)
14048 {
14049 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14050
14051 /* Enlist this call site to the function. */
14052 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14053 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14054 }
14055 else
14056 complaint (_("Cannot find function owning DW_TAG_call_site "
14057 "DIE %s [in module %s]"),
14058 sect_offset_str (die->sect_off), objfile_name (objfile));
14059 }
14060 }
14061
14062 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14063 if (attr == NULL)
14064 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14065 if (attr == NULL)
14066 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14067 if (attr == NULL)
14068 {
14069 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14070 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14071 }
14072 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14073 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14074 /* Keep NULL DWARF_BLOCK. */;
14075 else if (attr_form_is_block (attr))
14076 {
14077 struct dwarf2_locexpr_baton *dlbaton;
14078
14079 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14080 dlbaton->data = DW_BLOCK (attr)->data;
14081 dlbaton->size = DW_BLOCK (attr)->size;
14082 dlbaton->per_cu = cu->per_cu;
14083
14084 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14085 }
14086 else if (attr_form_is_ref (attr))
14087 {
14088 struct dwarf2_cu *target_cu = cu;
14089 struct die_info *target_die;
14090
14091 target_die = follow_die_ref (die, attr, &target_cu);
14092 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14093 if (die_is_declaration (target_die, target_cu))
14094 {
14095 const char *target_physname;
14096
14097 /* Prefer the mangled name; otherwise compute the demangled one. */
14098 target_physname = dw2_linkage_name (target_die, target_cu);
14099 if (target_physname == NULL)
14100 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14101 if (target_physname == NULL)
14102 complaint (_("DW_AT_call_target target DIE has invalid "
14103 "physname, for referencing DIE %s [in module %s]"),
14104 sect_offset_str (die->sect_off), objfile_name (objfile));
14105 else
14106 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14107 }
14108 else
14109 {
14110 CORE_ADDR lowpc;
14111
14112 /* DW_AT_entry_pc should be preferred. */
14113 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14114 <= PC_BOUNDS_INVALID)
14115 complaint (_("DW_AT_call_target target DIE has invalid "
14116 "low pc, for referencing DIE %s [in module %s]"),
14117 sect_offset_str (die->sect_off), objfile_name (objfile));
14118 else
14119 {
14120 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14121 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14122 }
14123 }
14124 }
14125 else
14126 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14127 "block nor reference, for DIE %s [in module %s]"),
14128 sect_offset_str (die->sect_off), objfile_name (objfile));
14129
14130 call_site->per_cu = cu->per_cu;
14131
14132 for (child_die = die->child;
14133 child_die && child_die->tag;
14134 child_die = sibling_die (child_die))
14135 {
14136 struct call_site_parameter *parameter;
14137 struct attribute *loc, *origin;
14138
14139 if (child_die->tag != DW_TAG_call_site_parameter
14140 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14141 {
14142 /* Already printed the complaint above. */
14143 continue;
14144 }
14145
14146 gdb_assert (call_site->parameter_count < nparams);
14147 parameter = &call_site->parameter[call_site->parameter_count];
14148
14149 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14150 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14151 register is contained in DW_AT_call_value. */
14152
14153 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14154 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14155 if (origin == NULL)
14156 {
14157 /* This was a pre-DWARF-5 GNU extension alias
14158 for DW_AT_call_parameter. */
14159 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14160 }
14161 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14162 {
14163 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14164
14165 sect_offset sect_off
14166 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14167 if (!offset_in_cu_p (&cu->header, sect_off))
14168 {
14169 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14170 binding can be done only inside one CU. Such referenced DIE
14171 therefore cannot be even moved to DW_TAG_partial_unit. */
14172 complaint (_("DW_AT_call_parameter offset is not in CU for "
14173 "DW_TAG_call_site child DIE %s [in module %s]"),
14174 sect_offset_str (child_die->sect_off),
14175 objfile_name (objfile));
14176 continue;
14177 }
14178 parameter->u.param_cu_off
14179 = (cu_offset) (sect_off - cu->header.sect_off);
14180 }
14181 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14182 {
14183 complaint (_("No DW_FORM_block* DW_AT_location for "
14184 "DW_TAG_call_site child DIE %s [in module %s]"),
14185 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14186 continue;
14187 }
14188 else
14189 {
14190 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14191 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14192 if (parameter->u.dwarf_reg != -1)
14193 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14194 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14195 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14196 &parameter->u.fb_offset))
14197 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14198 else
14199 {
14200 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14201 "for DW_FORM_block* DW_AT_location is supported for "
14202 "DW_TAG_call_site child DIE %s "
14203 "[in module %s]"),
14204 sect_offset_str (child_die->sect_off),
14205 objfile_name (objfile));
14206 continue;
14207 }
14208 }
14209
14210 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14211 if (attr == NULL)
14212 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14213 if (!attr_form_is_block (attr))
14214 {
14215 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14216 "DW_TAG_call_site child DIE %s [in module %s]"),
14217 sect_offset_str (child_die->sect_off),
14218 objfile_name (objfile));
14219 continue;
14220 }
14221 parameter->value = DW_BLOCK (attr)->data;
14222 parameter->value_size = DW_BLOCK (attr)->size;
14223
14224 /* Parameters are not pre-cleared by memset above. */
14225 parameter->data_value = NULL;
14226 parameter->data_value_size = 0;
14227 call_site->parameter_count++;
14228
14229 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14230 if (attr == NULL)
14231 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14232 if (attr)
14233 {
14234 if (!attr_form_is_block (attr))
14235 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14236 "DW_TAG_call_site child DIE %s [in module %s]"),
14237 sect_offset_str (child_die->sect_off),
14238 objfile_name (objfile));
14239 else
14240 {
14241 parameter->data_value = DW_BLOCK (attr)->data;
14242 parameter->data_value_size = DW_BLOCK (attr)->size;
14243 }
14244 }
14245 }
14246 }
14247
14248 /* Helper function for read_variable. If DIE represents a virtual
14249 table, then return the type of the concrete object that is
14250 associated with the virtual table. Otherwise, return NULL. */
14251
14252 static struct type *
14253 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14254 {
14255 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14256 if (attr == NULL)
14257 return NULL;
14258
14259 /* Find the type DIE. */
14260 struct die_info *type_die = NULL;
14261 struct dwarf2_cu *type_cu = cu;
14262
14263 if (attr_form_is_ref (attr))
14264 type_die = follow_die_ref (die, attr, &type_cu);
14265 if (type_die == NULL)
14266 return NULL;
14267
14268 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14269 return NULL;
14270 return die_containing_type (type_die, type_cu);
14271 }
14272
14273 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14274
14275 static void
14276 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14277 {
14278 struct rust_vtable_symbol *storage = NULL;
14279
14280 if (cu->language == language_rust)
14281 {
14282 struct type *containing_type = rust_containing_type (die, cu);
14283
14284 if (containing_type != NULL)
14285 {
14286 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14287
14288 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14289 struct rust_vtable_symbol);
14290 initialize_objfile_symbol (storage);
14291 storage->concrete_type = containing_type;
14292 storage->subclass = SYMBOL_RUST_VTABLE;
14293 }
14294 }
14295
14296 struct symbol *res = new_symbol (die, NULL, cu, storage);
14297 struct attribute *abstract_origin
14298 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14299 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14300 if (res == NULL && loc && abstract_origin)
14301 {
14302 /* We have a variable without a name, but with a location and an abstract
14303 origin. This may be a concrete instance of an abstract variable
14304 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14305 later. */
14306 struct dwarf2_cu *origin_cu = cu;
14307 struct die_info *origin_die
14308 = follow_die_ref (die, abstract_origin, &origin_cu);
14309 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14310 dpo->abstract_to_concrete[origin_die].push_back (die);
14311 }
14312 }
14313
14314 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14315 reading .debug_rnglists.
14316 Callback's type should be:
14317 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14318 Return true if the attributes are present and valid, otherwise,
14319 return false. */
14320
14321 template <typename Callback>
14322 static bool
14323 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14324 Callback &&callback)
14325 {
14326 struct dwarf2_per_objfile *dwarf2_per_objfile
14327 = cu->per_cu->dwarf2_per_objfile;
14328 struct objfile *objfile = dwarf2_per_objfile->objfile;
14329 bfd *obfd = objfile->obfd;
14330 /* Base address selection entry. */
14331 CORE_ADDR base;
14332 int found_base;
14333 const gdb_byte *buffer;
14334 CORE_ADDR baseaddr;
14335 bool overflow = false;
14336
14337 found_base = cu->base_known;
14338 base = cu->base_address;
14339
14340 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14341 if (offset >= dwarf2_per_objfile->rnglists.size)
14342 {
14343 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14344 offset);
14345 return false;
14346 }
14347 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14348
14349 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14350
14351 while (1)
14352 {
14353 /* Initialize it due to a false compiler warning. */
14354 CORE_ADDR range_beginning = 0, range_end = 0;
14355 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14356 + dwarf2_per_objfile->rnglists.size);
14357 unsigned int bytes_read;
14358
14359 if (buffer == buf_end)
14360 {
14361 overflow = true;
14362 break;
14363 }
14364 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14365 switch (rlet)
14366 {
14367 case DW_RLE_end_of_list:
14368 break;
14369 case DW_RLE_base_address:
14370 if (buffer + cu->header.addr_size > buf_end)
14371 {
14372 overflow = true;
14373 break;
14374 }
14375 base = read_address (obfd, buffer, cu, &bytes_read);
14376 found_base = 1;
14377 buffer += bytes_read;
14378 break;
14379 case DW_RLE_start_length:
14380 if (buffer + cu->header.addr_size > buf_end)
14381 {
14382 overflow = true;
14383 break;
14384 }
14385 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14386 buffer += bytes_read;
14387 range_end = (range_beginning
14388 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14389 buffer += bytes_read;
14390 if (buffer > buf_end)
14391 {
14392 overflow = true;
14393 break;
14394 }
14395 break;
14396 case DW_RLE_offset_pair:
14397 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14398 buffer += bytes_read;
14399 if (buffer > buf_end)
14400 {
14401 overflow = true;
14402 break;
14403 }
14404 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14405 buffer += bytes_read;
14406 if (buffer > buf_end)
14407 {
14408 overflow = true;
14409 break;
14410 }
14411 break;
14412 case DW_RLE_start_end:
14413 if (buffer + 2 * cu->header.addr_size > buf_end)
14414 {
14415 overflow = true;
14416 break;
14417 }
14418 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14419 buffer += bytes_read;
14420 range_end = read_address (obfd, buffer, cu, &bytes_read);
14421 buffer += bytes_read;
14422 break;
14423 default:
14424 complaint (_("Invalid .debug_rnglists data (no base address)"));
14425 return false;
14426 }
14427 if (rlet == DW_RLE_end_of_list || overflow)
14428 break;
14429 if (rlet == DW_RLE_base_address)
14430 continue;
14431
14432 if (!found_base)
14433 {
14434 /* We have no valid base address for the ranges
14435 data. */
14436 complaint (_("Invalid .debug_rnglists data (no base address)"));
14437 return false;
14438 }
14439
14440 if (range_beginning > range_end)
14441 {
14442 /* Inverted range entries are invalid. */
14443 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14444 return false;
14445 }
14446
14447 /* Empty range entries have no effect. */
14448 if (range_beginning == range_end)
14449 continue;
14450
14451 range_beginning += base;
14452 range_end += base;
14453
14454 /* A not-uncommon case of bad debug info.
14455 Don't pollute the addrmap with bad data. */
14456 if (range_beginning + baseaddr == 0
14457 && !dwarf2_per_objfile->has_section_at_zero)
14458 {
14459 complaint (_(".debug_rnglists entry has start address of zero"
14460 " [in module %s]"), objfile_name (objfile));
14461 continue;
14462 }
14463
14464 callback (range_beginning, range_end);
14465 }
14466
14467 if (overflow)
14468 {
14469 complaint (_("Offset %d is not terminated "
14470 "for DW_AT_ranges attribute"),
14471 offset);
14472 return false;
14473 }
14474
14475 return true;
14476 }
14477
14478 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14479 Callback's type should be:
14480 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14481 Return 1 if the attributes are present and valid, otherwise, return 0. */
14482
14483 template <typename Callback>
14484 static int
14485 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14486 Callback &&callback)
14487 {
14488 struct dwarf2_per_objfile *dwarf2_per_objfile
14489 = cu->per_cu->dwarf2_per_objfile;
14490 struct objfile *objfile = dwarf2_per_objfile->objfile;
14491 struct comp_unit_head *cu_header = &cu->header;
14492 bfd *obfd = objfile->obfd;
14493 unsigned int addr_size = cu_header->addr_size;
14494 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14495 /* Base address selection entry. */
14496 CORE_ADDR base;
14497 int found_base;
14498 unsigned int dummy;
14499 const gdb_byte *buffer;
14500 CORE_ADDR baseaddr;
14501
14502 if (cu_header->version >= 5)
14503 return dwarf2_rnglists_process (offset, cu, callback);
14504
14505 found_base = cu->base_known;
14506 base = cu->base_address;
14507
14508 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14509 if (offset >= dwarf2_per_objfile->ranges.size)
14510 {
14511 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14512 offset);
14513 return 0;
14514 }
14515 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14516
14517 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14518
14519 while (1)
14520 {
14521 CORE_ADDR range_beginning, range_end;
14522
14523 range_beginning = read_address (obfd, buffer, cu, &dummy);
14524 buffer += addr_size;
14525 range_end = read_address (obfd, buffer, cu, &dummy);
14526 buffer += addr_size;
14527 offset += 2 * addr_size;
14528
14529 /* An end of list marker is a pair of zero addresses. */
14530 if (range_beginning == 0 && range_end == 0)
14531 /* Found the end of list entry. */
14532 break;
14533
14534 /* Each base address selection entry is a pair of 2 values.
14535 The first is the largest possible address, the second is
14536 the base address. Check for a base address here. */
14537 if ((range_beginning & mask) == mask)
14538 {
14539 /* If we found the largest possible address, then we already
14540 have the base address in range_end. */
14541 base = range_end;
14542 found_base = 1;
14543 continue;
14544 }
14545
14546 if (!found_base)
14547 {
14548 /* We have no valid base address for the ranges
14549 data. */
14550 complaint (_("Invalid .debug_ranges data (no base address)"));
14551 return 0;
14552 }
14553
14554 if (range_beginning > range_end)
14555 {
14556 /* Inverted range entries are invalid. */
14557 complaint (_("Invalid .debug_ranges data (inverted range)"));
14558 return 0;
14559 }
14560
14561 /* Empty range entries have no effect. */
14562 if (range_beginning == range_end)
14563 continue;
14564
14565 range_beginning += base;
14566 range_end += base;
14567
14568 /* A not-uncommon case of bad debug info.
14569 Don't pollute the addrmap with bad data. */
14570 if (range_beginning + baseaddr == 0
14571 && !dwarf2_per_objfile->has_section_at_zero)
14572 {
14573 complaint (_(".debug_ranges entry has start address of zero"
14574 " [in module %s]"), objfile_name (objfile));
14575 continue;
14576 }
14577
14578 callback (range_beginning, range_end);
14579 }
14580
14581 return 1;
14582 }
14583
14584 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14585 Return 1 if the attributes are present and valid, otherwise, return 0.
14586 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14587
14588 static int
14589 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14590 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14591 struct partial_symtab *ranges_pst)
14592 {
14593 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14594 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14595 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14596 SECT_OFF_TEXT (objfile));
14597 int low_set = 0;
14598 CORE_ADDR low = 0;
14599 CORE_ADDR high = 0;
14600 int retval;
14601
14602 retval = dwarf2_ranges_process (offset, cu,
14603 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14604 {
14605 if (ranges_pst != NULL)
14606 {
14607 CORE_ADDR lowpc;
14608 CORE_ADDR highpc;
14609
14610 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14611 range_beginning + baseaddr)
14612 - baseaddr);
14613 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14614 range_end + baseaddr)
14615 - baseaddr);
14616 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14617 lowpc, highpc - 1, ranges_pst);
14618 }
14619
14620 /* FIXME: This is recording everything as a low-high
14621 segment of consecutive addresses. We should have a
14622 data structure for discontiguous block ranges
14623 instead. */
14624 if (! low_set)
14625 {
14626 low = range_beginning;
14627 high = range_end;
14628 low_set = 1;
14629 }
14630 else
14631 {
14632 if (range_beginning < low)
14633 low = range_beginning;
14634 if (range_end > high)
14635 high = range_end;
14636 }
14637 });
14638 if (!retval)
14639 return 0;
14640
14641 if (! low_set)
14642 /* If the first entry is an end-of-list marker, the range
14643 describes an empty scope, i.e. no instructions. */
14644 return 0;
14645
14646 if (low_return)
14647 *low_return = low;
14648 if (high_return)
14649 *high_return = high;
14650 return 1;
14651 }
14652
14653 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14654 definition for the return value. *LOWPC and *HIGHPC are set iff
14655 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14656
14657 static enum pc_bounds_kind
14658 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14659 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14660 struct partial_symtab *pst)
14661 {
14662 struct dwarf2_per_objfile *dwarf2_per_objfile
14663 = cu->per_cu->dwarf2_per_objfile;
14664 struct attribute *attr;
14665 struct attribute *attr_high;
14666 CORE_ADDR low = 0;
14667 CORE_ADDR high = 0;
14668 enum pc_bounds_kind ret;
14669
14670 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14671 if (attr_high)
14672 {
14673 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14674 if (attr)
14675 {
14676 low = attr_value_as_address (attr);
14677 high = attr_value_as_address (attr_high);
14678 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14679 high += low;
14680 }
14681 else
14682 /* Found high w/o low attribute. */
14683 return PC_BOUNDS_INVALID;
14684
14685 /* Found consecutive range of addresses. */
14686 ret = PC_BOUNDS_HIGH_LOW;
14687 }
14688 else
14689 {
14690 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14691 if (attr != NULL)
14692 {
14693 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14694 We take advantage of the fact that DW_AT_ranges does not appear
14695 in DW_TAG_compile_unit of DWO files. */
14696 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14697 unsigned int ranges_offset = (DW_UNSND (attr)
14698 + (need_ranges_base
14699 ? cu->ranges_base
14700 : 0));
14701
14702 /* Value of the DW_AT_ranges attribute is the offset in the
14703 .debug_ranges section. */
14704 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14705 return PC_BOUNDS_INVALID;
14706 /* Found discontinuous range of addresses. */
14707 ret = PC_BOUNDS_RANGES;
14708 }
14709 else
14710 return PC_BOUNDS_NOT_PRESENT;
14711 }
14712
14713 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14714 if (high <= low)
14715 return PC_BOUNDS_INVALID;
14716
14717 /* When using the GNU linker, .gnu.linkonce. sections are used to
14718 eliminate duplicate copies of functions and vtables and such.
14719 The linker will arbitrarily choose one and discard the others.
14720 The AT_*_pc values for such functions refer to local labels in
14721 these sections. If the section from that file was discarded, the
14722 labels are not in the output, so the relocs get a value of 0.
14723 If this is a discarded function, mark the pc bounds as invalid,
14724 so that GDB will ignore it. */
14725 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14726 return PC_BOUNDS_INVALID;
14727
14728 *lowpc = low;
14729 if (highpc)
14730 *highpc = high;
14731 return ret;
14732 }
14733
14734 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14735 its low and high PC addresses. Do nothing if these addresses could not
14736 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14737 and HIGHPC to the high address if greater than HIGHPC. */
14738
14739 static void
14740 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14741 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14742 struct dwarf2_cu *cu)
14743 {
14744 CORE_ADDR low, high;
14745 struct die_info *child = die->child;
14746
14747 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14748 {
14749 *lowpc = std::min (*lowpc, low);
14750 *highpc = std::max (*highpc, high);
14751 }
14752
14753 /* If the language does not allow nested subprograms (either inside
14754 subprograms or lexical blocks), we're done. */
14755 if (cu->language != language_ada)
14756 return;
14757
14758 /* Check all the children of the given DIE. If it contains nested
14759 subprograms, then check their pc bounds. Likewise, we need to
14760 check lexical blocks as well, as they may also contain subprogram
14761 definitions. */
14762 while (child && child->tag)
14763 {
14764 if (child->tag == DW_TAG_subprogram
14765 || child->tag == DW_TAG_lexical_block)
14766 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14767 child = sibling_die (child);
14768 }
14769 }
14770
14771 /* Get the low and high pc's represented by the scope DIE, and store
14772 them in *LOWPC and *HIGHPC. If the correct values can't be
14773 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14774
14775 static void
14776 get_scope_pc_bounds (struct die_info *die,
14777 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14778 struct dwarf2_cu *cu)
14779 {
14780 CORE_ADDR best_low = (CORE_ADDR) -1;
14781 CORE_ADDR best_high = (CORE_ADDR) 0;
14782 CORE_ADDR current_low, current_high;
14783
14784 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14785 >= PC_BOUNDS_RANGES)
14786 {
14787 best_low = current_low;
14788 best_high = current_high;
14789 }
14790 else
14791 {
14792 struct die_info *child = die->child;
14793
14794 while (child && child->tag)
14795 {
14796 switch (child->tag) {
14797 case DW_TAG_subprogram:
14798 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14799 break;
14800 case DW_TAG_namespace:
14801 case DW_TAG_module:
14802 /* FIXME: carlton/2004-01-16: Should we do this for
14803 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14804 that current GCC's always emit the DIEs corresponding
14805 to definitions of methods of classes as children of a
14806 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14807 the DIEs giving the declarations, which could be
14808 anywhere). But I don't see any reason why the
14809 standards says that they have to be there. */
14810 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14811
14812 if (current_low != ((CORE_ADDR) -1))
14813 {
14814 best_low = std::min (best_low, current_low);
14815 best_high = std::max (best_high, current_high);
14816 }
14817 break;
14818 default:
14819 /* Ignore. */
14820 break;
14821 }
14822
14823 child = sibling_die (child);
14824 }
14825 }
14826
14827 *lowpc = best_low;
14828 *highpc = best_high;
14829 }
14830
14831 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14832 in DIE. */
14833
14834 static void
14835 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14836 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14837 {
14838 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14839 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14840 struct attribute *attr;
14841 struct attribute *attr_high;
14842
14843 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14844 if (attr_high)
14845 {
14846 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14847 if (attr)
14848 {
14849 CORE_ADDR low = attr_value_as_address (attr);
14850 CORE_ADDR high = attr_value_as_address (attr_high);
14851
14852 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14853 high += low;
14854
14855 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14856 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14857 cu->get_builder ()->record_block_range (block, low, high - 1);
14858 }
14859 }
14860
14861 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14862 if (attr)
14863 {
14864 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14865 We take advantage of the fact that DW_AT_ranges does not appear
14866 in DW_TAG_compile_unit of DWO files. */
14867 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14868
14869 /* The value of the DW_AT_ranges attribute is the offset of the
14870 address range list in the .debug_ranges section. */
14871 unsigned long offset = (DW_UNSND (attr)
14872 + (need_ranges_base ? cu->ranges_base : 0));
14873
14874 std::vector<blockrange> blockvec;
14875 dwarf2_ranges_process (offset, cu,
14876 [&] (CORE_ADDR start, CORE_ADDR end)
14877 {
14878 start += baseaddr;
14879 end += baseaddr;
14880 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14881 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14882 cu->get_builder ()->record_block_range (block, start, end - 1);
14883 blockvec.emplace_back (start, end);
14884 });
14885
14886 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14887 }
14888 }
14889
14890 /* Check whether the producer field indicates either of GCC < 4.6, or the
14891 Intel C/C++ compiler, and cache the result in CU. */
14892
14893 static void
14894 check_producer (struct dwarf2_cu *cu)
14895 {
14896 int major, minor;
14897
14898 if (cu->producer == NULL)
14899 {
14900 /* For unknown compilers expect their behavior is DWARF version
14901 compliant.
14902
14903 GCC started to support .debug_types sections by -gdwarf-4 since
14904 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14905 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14906 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14907 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14908 }
14909 else if (producer_is_gcc (cu->producer, &major, &minor))
14910 {
14911 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14912 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14913 }
14914 else if (producer_is_icc (cu->producer, &major, &minor))
14915 {
14916 cu->producer_is_icc = true;
14917 cu->producer_is_icc_lt_14 = major < 14;
14918 }
14919 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14920 cu->producer_is_codewarrior = true;
14921 else
14922 {
14923 /* For other non-GCC compilers, expect their behavior is DWARF version
14924 compliant. */
14925 }
14926
14927 cu->checked_producer = true;
14928 }
14929
14930 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14931 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14932 during 4.6.0 experimental. */
14933
14934 static bool
14935 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14936 {
14937 if (!cu->checked_producer)
14938 check_producer (cu);
14939
14940 return cu->producer_is_gxx_lt_4_6;
14941 }
14942
14943
14944 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14945 with incorrect is_stmt attributes. */
14946
14947 static bool
14948 producer_is_codewarrior (struct dwarf2_cu *cu)
14949 {
14950 if (!cu->checked_producer)
14951 check_producer (cu);
14952
14953 return cu->producer_is_codewarrior;
14954 }
14955
14956 /* Return the default accessibility type if it is not overriden by
14957 DW_AT_accessibility. */
14958
14959 static enum dwarf_access_attribute
14960 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14961 {
14962 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14963 {
14964 /* The default DWARF 2 accessibility for members is public, the default
14965 accessibility for inheritance is private. */
14966
14967 if (die->tag != DW_TAG_inheritance)
14968 return DW_ACCESS_public;
14969 else
14970 return DW_ACCESS_private;
14971 }
14972 else
14973 {
14974 /* DWARF 3+ defines the default accessibility a different way. The same
14975 rules apply now for DW_TAG_inheritance as for the members and it only
14976 depends on the container kind. */
14977
14978 if (die->parent->tag == DW_TAG_class_type)
14979 return DW_ACCESS_private;
14980 else
14981 return DW_ACCESS_public;
14982 }
14983 }
14984
14985 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14986 offset. If the attribute was not found return 0, otherwise return
14987 1. If it was found but could not properly be handled, set *OFFSET
14988 to 0. */
14989
14990 static int
14991 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14992 LONGEST *offset)
14993 {
14994 struct attribute *attr;
14995
14996 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14997 if (attr != NULL)
14998 {
14999 *offset = 0;
15000
15001 /* Note that we do not check for a section offset first here.
15002 This is because DW_AT_data_member_location is new in DWARF 4,
15003 so if we see it, we can assume that a constant form is really
15004 a constant and not a section offset. */
15005 if (attr_form_is_constant (attr))
15006 *offset = dwarf2_get_attr_constant_value (attr, 0);
15007 else if (attr_form_is_section_offset (attr))
15008 dwarf2_complex_location_expr_complaint ();
15009 else if (attr_form_is_block (attr))
15010 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15011 else
15012 dwarf2_complex_location_expr_complaint ();
15013
15014 return 1;
15015 }
15016
15017 return 0;
15018 }
15019
15020 /* Add an aggregate field to the field list. */
15021
15022 static void
15023 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15024 struct dwarf2_cu *cu)
15025 {
15026 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15027 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15028 struct nextfield *new_field;
15029 struct attribute *attr;
15030 struct field *fp;
15031 const char *fieldname = "";
15032
15033 if (die->tag == DW_TAG_inheritance)
15034 {
15035 fip->baseclasses.emplace_back ();
15036 new_field = &fip->baseclasses.back ();
15037 }
15038 else
15039 {
15040 fip->fields.emplace_back ();
15041 new_field = &fip->fields.back ();
15042 }
15043
15044 fip->nfields++;
15045
15046 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15047 if (attr)
15048 new_field->accessibility = DW_UNSND (attr);
15049 else
15050 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15051 if (new_field->accessibility != DW_ACCESS_public)
15052 fip->non_public_fields = 1;
15053
15054 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15055 if (attr)
15056 new_field->virtuality = DW_UNSND (attr);
15057 else
15058 new_field->virtuality = DW_VIRTUALITY_none;
15059
15060 fp = &new_field->field;
15061
15062 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15063 {
15064 LONGEST offset;
15065
15066 /* Data member other than a C++ static data member. */
15067
15068 /* Get type of field. */
15069 fp->type = die_type (die, cu);
15070
15071 SET_FIELD_BITPOS (*fp, 0);
15072
15073 /* Get bit size of field (zero if none). */
15074 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15075 if (attr)
15076 {
15077 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15078 }
15079 else
15080 {
15081 FIELD_BITSIZE (*fp) = 0;
15082 }
15083
15084 /* Get bit offset of field. */
15085 if (handle_data_member_location (die, cu, &offset))
15086 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15087 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15088 if (attr)
15089 {
15090 if (gdbarch_bits_big_endian (gdbarch))
15091 {
15092 /* For big endian bits, the DW_AT_bit_offset gives the
15093 additional bit offset from the MSB of the containing
15094 anonymous object to the MSB of the field. We don't
15095 have to do anything special since we don't need to
15096 know the size of the anonymous object. */
15097 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15098 }
15099 else
15100 {
15101 /* For little endian bits, compute the bit offset to the
15102 MSB of the anonymous object, subtract off the number of
15103 bits from the MSB of the field to the MSB of the
15104 object, and then subtract off the number of bits of
15105 the field itself. The result is the bit offset of
15106 the LSB of the field. */
15107 int anonymous_size;
15108 int bit_offset = DW_UNSND (attr);
15109
15110 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15111 if (attr)
15112 {
15113 /* The size of the anonymous object containing
15114 the bit field is explicit, so use the
15115 indicated size (in bytes). */
15116 anonymous_size = DW_UNSND (attr);
15117 }
15118 else
15119 {
15120 /* The size of the anonymous object containing
15121 the bit field must be inferred from the type
15122 attribute of the data member containing the
15123 bit field. */
15124 anonymous_size = TYPE_LENGTH (fp->type);
15125 }
15126 SET_FIELD_BITPOS (*fp,
15127 (FIELD_BITPOS (*fp)
15128 + anonymous_size * bits_per_byte
15129 - bit_offset - FIELD_BITSIZE (*fp)));
15130 }
15131 }
15132 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15133 if (attr != NULL)
15134 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15135 + dwarf2_get_attr_constant_value (attr, 0)));
15136
15137 /* Get name of field. */
15138 fieldname = dwarf2_name (die, cu);
15139 if (fieldname == NULL)
15140 fieldname = "";
15141
15142 /* The name is already allocated along with this objfile, so we don't
15143 need to duplicate it for the type. */
15144 fp->name = fieldname;
15145
15146 /* Change accessibility for artificial fields (e.g. virtual table
15147 pointer or virtual base class pointer) to private. */
15148 if (dwarf2_attr (die, DW_AT_artificial, cu))
15149 {
15150 FIELD_ARTIFICIAL (*fp) = 1;
15151 new_field->accessibility = DW_ACCESS_private;
15152 fip->non_public_fields = 1;
15153 }
15154 }
15155 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15156 {
15157 /* C++ static member. */
15158
15159 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15160 is a declaration, but all versions of G++ as of this writing
15161 (so through at least 3.2.1) incorrectly generate
15162 DW_TAG_variable tags. */
15163
15164 const char *physname;
15165
15166 /* Get name of field. */
15167 fieldname = dwarf2_name (die, cu);
15168 if (fieldname == NULL)
15169 return;
15170
15171 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15172 if (attr
15173 /* Only create a symbol if this is an external value.
15174 new_symbol checks this and puts the value in the global symbol
15175 table, which we want. If it is not external, new_symbol
15176 will try to put the value in cu->list_in_scope which is wrong. */
15177 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15178 {
15179 /* A static const member, not much different than an enum as far as
15180 we're concerned, except that we can support more types. */
15181 new_symbol (die, NULL, cu);
15182 }
15183
15184 /* Get physical name. */
15185 physname = dwarf2_physname (fieldname, die, cu);
15186
15187 /* The name is already allocated along with this objfile, so we don't
15188 need to duplicate it for the type. */
15189 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15190 FIELD_TYPE (*fp) = die_type (die, cu);
15191 FIELD_NAME (*fp) = fieldname;
15192 }
15193 else if (die->tag == DW_TAG_inheritance)
15194 {
15195 LONGEST offset;
15196
15197 /* C++ base class field. */
15198 if (handle_data_member_location (die, cu, &offset))
15199 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15200 FIELD_BITSIZE (*fp) = 0;
15201 FIELD_TYPE (*fp) = die_type (die, cu);
15202 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15203 }
15204 else if (die->tag == DW_TAG_variant_part)
15205 {
15206 /* process_structure_scope will treat this DIE as a union. */
15207 process_structure_scope (die, cu);
15208
15209 /* The variant part is relative to the start of the enclosing
15210 structure. */
15211 SET_FIELD_BITPOS (*fp, 0);
15212 fp->type = get_die_type (die, cu);
15213 fp->artificial = 1;
15214 fp->name = "<<variant>>";
15215
15216 /* Normally a DW_TAG_variant_part won't have a size, but our
15217 representation requires one, so set it to the maximum of the
15218 child sizes. */
15219 if (TYPE_LENGTH (fp->type) == 0)
15220 {
15221 unsigned max = 0;
15222 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15223 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15224 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15225 TYPE_LENGTH (fp->type) = max;
15226 }
15227 }
15228 else
15229 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15230 }
15231
15232 /* Can the type given by DIE define another type? */
15233
15234 static bool
15235 type_can_define_types (const struct die_info *die)
15236 {
15237 switch (die->tag)
15238 {
15239 case DW_TAG_typedef:
15240 case DW_TAG_class_type:
15241 case DW_TAG_structure_type:
15242 case DW_TAG_union_type:
15243 case DW_TAG_enumeration_type:
15244 return true;
15245
15246 default:
15247 return false;
15248 }
15249 }
15250
15251 /* Add a type definition defined in the scope of the FIP's class. */
15252
15253 static void
15254 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15255 struct dwarf2_cu *cu)
15256 {
15257 struct decl_field fp;
15258 memset (&fp, 0, sizeof (fp));
15259
15260 gdb_assert (type_can_define_types (die));
15261
15262 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15263 fp.name = dwarf2_name (die, cu);
15264 fp.type = read_type_die (die, cu);
15265
15266 /* Save accessibility. */
15267 enum dwarf_access_attribute accessibility;
15268 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15269 if (attr != NULL)
15270 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15271 else
15272 accessibility = dwarf2_default_access_attribute (die, cu);
15273 switch (accessibility)
15274 {
15275 case DW_ACCESS_public:
15276 /* The assumed value if neither private nor protected. */
15277 break;
15278 case DW_ACCESS_private:
15279 fp.is_private = 1;
15280 break;
15281 case DW_ACCESS_protected:
15282 fp.is_protected = 1;
15283 break;
15284 default:
15285 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15286 }
15287
15288 if (die->tag == DW_TAG_typedef)
15289 fip->typedef_field_list.push_back (fp);
15290 else
15291 fip->nested_types_list.push_back (fp);
15292 }
15293
15294 /* Create the vector of fields, and attach it to the type. */
15295
15296 static void
15297 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15298 struct dwarf2_cu *cu)
15299 {
15300 int nfields = fip->nfields;
15301
15302 /* Record the field count, allocate space for the array of fields,
15303 and create blank accessibility bitfields if necessary. */
15304 TYPE_NFIELDS (type) = nfields;
15305 TYPE_FIELDS (type) = (struct field *)
15306 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15307
15308 if (fip->non_public_fields && cu->language != language_ada)
15309 {
15310 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15311
15312 TYPE_FIELD_PRIVATE_BITS (type) =
15313 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15314 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15315
15316 TYPE_FIELD_PROTECTED_BITS (type) =
15317 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15318 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15319
15320 TYPE_FIELD_IGNORE_BITS (type) =
15321 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15322 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15323 }
15324
15325 /* If the type has baseclasses, allocate and clear a bit vector for
15326 TYPE_FIELD_VIRTUAL_BITS. */
15327 if (!fip->baseclasses.empty () && cu->language != language_ada)
15328 {
15329 int num_bytes = B_BYTES (fip->baseclasses.size ());
15330 unsigned char *pointer;
15331
15332 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15333 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15334 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15335 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15336 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15337 }
15338
15339 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15340 {
15341 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15342
15343 for (int index = 0; index < nfields; ++index)
15344 {
15345 struct nextfield &field = fip->fields[index];
15346
15347 if (field.variant.is_discriminant)
15348 di->discriminant_index = index;
15349 else if (field.variant.default_branch)
15350 di->default_index = index;
15351 else
15352 di->discriminants[index] = field.variant.discriminant_value;
15353 }
15354 }
15355
15356 /* Copy the saved-up fields into the field vector. */
15357 for (int i = 0; i < nfields; ++i)
15358 {
15359 struct nextfield &field
15360 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15361 : fip->fields[i - fip->baseclasses.size ()]);
15362
15363 TYPE_FIELD (type, i) = field.field;
15364 switch (field.accessibility)
15365 {
15366 case DW_ACCESS_private:
15367 if (cu->language != language_ada)
15368 SET_TYPE_FIELD_PRIVATE (type, i);
15369 break;
15370
15371 case DW_ACCESS_protected:
15372 if (cu->language != language_ada)
15373 SET_TYPE_FIELD_PROTECTED (type, i);
15374 break;
15375
15376 case DW_ACCESS_public:
15377 break;
15378
15379 default:
15380 /* Unknown accessibility. Complain and treat it as public. */
15381 {
15382 complaint (_("unsupported accessibility %d"),
15383 field.accessibility);
15384 }
15385 break;
15386 }
15387 if (i < fip->baseclasses.size ())
15388 {
15389 switch (field.virtuality)
15390 {
15391 case DW_VIRTUALITY_virtual:
15392 case DW_VIRTUALITY_pure_virtual:
15393 if (cu->language == language_ada)
15394 error (_("unexpected virtuality in component of Ada type"));
15395 SET_TYPE_FIELD_VIRTUAL (type, i);
15396 break;
15397 }
15398 }
15399 }
15400 }
15401
15402 /* Return true if this member function is a constructor, false
15403 otherwise. */
15404
15405 static int
15406 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15407 {
15408 const char *fieldname;
15409 const char *type_name;
15410 int len;
15411
15412 if (die->parent == NULL)
15413 return 0;
15414
15415 if (die->parent->tag != DW_TAG_structure_type
15416 && die->parent->tag != DW_TAG_union_type
15417 && die->parent->tag != DW_TAG_class_type)
15418 return 0;
15419
15420 fieldname = dwarf2_name (die, cu);
15421 type_name = dwarf2_name (die->parent, cu);
15422 if (fieldname == NULL || type_name == NULL)
15423 return 0;
15424
15425 len = strlen (fieldname);
15426 return (strncmp (fieldname, type_name, len) == 0
15427 && (type_name[len] == '\0' || type_name[len] == '<'));
15428 }
15429
15430 /* Add a member function to the proper fieldlist. */
15431
15432 static void
15433 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15434 struct type *type, struct dwarf2_cu *cu)
15435 {
15436 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15437 struct attribute *attr;
15438 int i;
15439 struct fnfieldlist *flp = nullptr;
15440 struct fn_field *fnp;
15441 const char *fieldname;
15442 struct type *this_type;
15443 enum dwarf_access_attribute accessibility;
15444
15445 if (cu->language == language_ada)
15446 error (_("unexpected member function in Ada type"));
15447
15448 /* Get name of member function. */
15449 fieldname = dwarf2_name (die, cu);
15450 if (fieldname == NULL)
15451 return;
15452
15453 /* Look up member function name in fieldlist. */
15454 for (i = 0; i < fip->fnfieldlists.size (); i++)
15455 {
15456 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15457 {
15458 flp = &fip->fnfieldlists[i];
15459 break;
15460 }
15461 }
15462
15463 /* Create a new fnfieldlist if necessary. */
15464 if (flp == nullptr)
15465 {
15466 fip->fnfieldlists.emplace_back ();
15467 flp = &fip->fnfieldlists.back ();
15468 flp->name = fieldname;
15469 i = fip->fnfieldlists.size () - 1;
15470 }
15471
15472 /* Create a new member function field and add it to the vector of
15473 fnfieldlists. */
15474 flp->fnfields.emplace_back ();
15475 fnp = &flp->fnfields.back ();
15476
15477 /* Delay processing of the physname until later. */
15478 if (cu->language == language_cplus)
15479 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15480 die, cu);
15481 else
15482 {
15483 const char *physname = dwarf2_physname (fieldname, die, cu);
15484 fnp->physname = physname ? physname : "";
15485 }
15486
15487 fnp->type = alloc_type (objfile);
15488 this_type = read_type_die (die, cu);
15489 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15490 {
15491 int nparams = TYPE_NFIELDS (this_type);
15492
15493 /* TYPE is the domain of this method, and THIS_TYPE is the type
15494 of the method itself (TYPE_CODE_METHOD). */
15495 smash_to_method_type (fnp->type, type,
15496 TYPE_TARGET_TYPE (this_type),
15497 TYPE_FIELDS (this_type),
15498 TYPE_NFIELDS (this_type),
15499 TYPE_VARARGS (this_type));
15500
15501 /* Handle static member functions.
15502 Dwarf2 has no clean way to discern C++ static and non-static
15503 member functions. G++ helps GDB by marking the first
15504 parameter for non-static member functions (which is the this
15505 pointer) as artificial. We obtain this information from
15506 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15507 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15508 fnp->voffset = VOFFSET_STATIC;
15509 }
15510 else
15511 complaint (_("member function type missing for '%s'"),
15512 dwarf2_full_name (fieldname, die, cu));
15513
15514 /* Get fcontext from DW_AT_containing_type if present. */
15515 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15516 fnp->fcontext = die_containing_type (die, cu);
15517
15518 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15519 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15520
15521 /* Get accessibility. */
15522 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15523 if (attr)
15524 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15525 else
15526 accessibility = dwarf2_default_access_attribute (die, cu);
15527 switch (accessibility)
15528 {
15529 case DW_ACCESS_private:
15530 fnp->is_private = 1;
15531 break;
15532 case DW_ACCESS_protected:
15533 fnp->is_protected = 1;
15534 break;
15535 }
15536
15537 /* Check for artificial methods. */
15538 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15539 if (attr && DW_UNSND (attr) != 0)
15540 fnp->is_artificial = 1;
15541
15542 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15543
15544 /* Get index in virtual function table if it is a virtual member
15545 function. For older versions of GCC, this is an offset in the
15546 appropriate virtual table, as specified by DW_AT_containing_type.
15547 For everyone else, it is an expression to be evaluated relative
15548 to the object address. */
15549
15550 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15551 if (attr)
15552 {
15553 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15554 {
15555 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15556 {
15557 /* Old-style GCC. */
15558 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15559 }
15560 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15561 || (DW_BLOCK (attr)->size > 1
15562 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15563 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15564 {
15565 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15566 if ((fnp->voffset % cu->header.addr_size) != 0)
15567 dwarf2_complex_location_expr_complaint ();
15568 else
15569 fnp->voffset /= cu->header.addr_size;
15570 fnp->voffset += 2;
15571 }
15572 else
15573 dwarf2_complex_location_expr_complaint ();
15574
15575 if (!fnp->fcontext)
15576 {
15577 /* If there is no `this' field and no DW_AT_containing_type,
15578 we cannot actually find a base class context for the
15579 vtable! */
15580 if (TYPE_NFIELDS (this_type) == 0
15581 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15582 {
15583 complaint (_("cannot determine context for virtual member "
15584 "function \"%s\" (offset %s)"),
15585 fieldname, sect_offset_str (die->sect_off));
15586 }
15587 else
15588 {
15589 fnp->fcontext
15590 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15591 }
15592 }
15593 }
15594 else if (attr_form_is_section_offset (attr))
15595 {
15596 dwarf2_complex_location_expr_complaint ();
15597 }
15598 else
15599 {
15600 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15601 fieldname);
15602 }
15603 }
15604 else
15605 {
15606 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15607 if (attr && DW_UNSND (attr))
15608 {
15609 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15610 complaint (_("Member function \"%s\" (offset %s) is virtual "
15611 "but the vtable offset is not specified"),
15612 fieldname, sect_offset_str (die->sect_off));
15613 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15614 TYPE_CPLUS_DYNAMIC (type) = 1;
15615 }
15616 }
15617 }
15618
15619 /* Create the vector of member function fields, and attach it to the type. */
15620
15621 static void
15622 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15623 struct dwarf2_cu *cu)
15624 {
15625 if (cu->language == language_ada)
15626 error (_("unexpected member functions in Ada type"));
15627
15628 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15629 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15630 TYPE_ALLOC (type,
15631 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15632
15633 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15634 {
15635 struct fnfieldlist &nf = fip->fnfieldlists[i];
15636 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15637
15638 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15639 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15640 fn_flp->fn_fields = (struct fn_field *)
15641 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15642
15643 for (int k = 0; k < nf.fnfields.size (); ++k)
15644 fn_flp->fn_fields[k] = nf.fnfields[k];
15645 }
15646
15647 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15648 }
15649
15650 /* Returns non-zero if NAME is the name of a vtable member in CU's
15651 language, zero otherwise. */
15652 static int
15653 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15654 {
15655 static const char vptr[] = "_vptr";
15656
15657 /* Look for the C++ form of the vtable. */
15658 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15659 return 1;
15660
15661 return 0;
15662 }
15663
15664 /* GCC outputs unnamed structures that are really pointers to member
15665 functions, with the ABI-specified layout. If TYPE describes
15666 such a structure, smash it into a member function type.
15667
15668 GCC shouldn't do this; it should just output pointer to member DIEs.
15669 This is GCC PR debug/28767. */
15670
15671 static void
15672 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15673 {
15674 struct type *pfn_type, *self_type, *new_type;
15675
15676 /* Check for a structure with no name and two children. */
15677 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15678 return;
15679
15680 /* Check for __pfn and __delta members. */
15681 if (TYPE_FIELD_NAME (type, 0) == NULL
15682 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15683 || TYPE_FIELD_NAME (type, 1) == NULL
15684 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15685 return;
15686
15687 /* Find the type of the method. */
15688 pfn_type = TYPE_FIELD_TYPE (type, 0);
15689 if (pfn_type == NULL
15690 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15691 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15692 return;
15693
15694 /* Look for the "this" argument. */
15695 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15696 if (TYPE_NFIELDS (pfn_type) == 0
15697 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15698 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15699 return;
15700
15701 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15702 new_type = alloc_type (objfile);
15703 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15704 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15705 TYPE_VARARGS (pfn_type));
15706 smash_to_methodptr_type (type, new_type);
15707 }
15708
15709 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15710 appropriate error checking and issuing complaints if there is a
15711 problem. */
15712
15713 static ULONGEST
15714 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15715 {
15716 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15717
15718 if (attr == nullptr)
15719 return 0;
15720
15721 if (!attr_form_is_constant (attr))
15722 {
15723 complaint (_("DW_AT_alignment must have constant form"
15724 " - DIE at %s [in module %s]"),
15725 sect_offset_str (die->sect_off),
15726 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15727 return 0;
15728 }
15729
15730 ULONGEST align;
15731 if (attr->form == DW_FORM_sdata)
15732 {
15733 LONGEST val = DW_SND (attr);
15734 if (val < 0)
15735 {
15736 complaint (_("DW_AT_alignment value must not be negative"
15737 " - DIE at %s [in module %s]"),
15738 sect_offset_str (die->sect_off),
15739 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15740 return 0;
15741 }
15742 align = val;
15743 }
15744 else
15745 align = DW_UNSND (attr);
15746
15747 if (align == 0)
15748 {
15749 complaint (_("DW_AT_alignment value must not be zero"
15750 " - DIE at %s [in module %s]"),
15751 sect_offset_str (die->sect_off),
15752 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15753 return 0;
15754 }
15755 if ((align & (align - 1)) != 0)
15756 {
15757 complaint (_("DW_AT_alignment value must be a power of 2"
15758 " - DIE at %s [in module %s]"),
15759 sect_offset_str (die->sect_off),
15760 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15761 return 0;
15762 }
15763
15764 return align;
15765 }
15766
15767 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15768 the alignment for TYPE. */
15769
15770 static void
15771 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15772 struct type *type)
15773 {
15774 if (!set_type_align (type, get_alignment (cu, die)))
15775 complaint (_("DW_AT_alignment value too large"
15776 " - DIE at %s [in module %s]"),
15777 sect_offset_str (die->sect_off),
15778 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15779 }
15780
15781 /* Called when we find the DIE that starts a structure or union scope
15782 (definition) to create a type for the structure or union. Fill in
15783 the type's name and general properties; the members will not be
15784 processed until process_structure_scope. A symbol table entry for
15785 the type will also not be done until process_structure_scope (assuming
15786 the type has a name).
15787
15788 NOTE: we need to call these functions regardless of whether or not the
15789 DIE has a DW_AT_name attribute, since it might be an anonymous
15790 structure or union. This gets the type entered into our set of
15791 user defined types. */
15792
15793 static struct type *
15794 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15795 {
15796 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15797 struct type *type;
15798 struct attribute *attr;
15799 const char *name;
15800
15801 /* If the definition of this type lives in .debug_types, read that type.
15802 Don't follow DW_AT_specification though, that will take us back up
15803 the chain and we want to go down. */
15804 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15805 if (attr)
15806 {
15807 type = get_DW_AT_signature_type (die, attr, cu);
15808
15809 /* The type's CU may not be the same as CU.
15810 Ensure TYPE is recorded with CU in die_type_hash. */
15811 return set_die_type (die, type, cu);
15812 }
15813
15814 type = alloc_type (objfile);
15815 INIT_CPLUS_SPECIFIC (type);
15816
15817 name = dwarf2_name (die, cu);
15818 if (name != NULL)
15819 {
15820 if (cu->language == language_cplus
15821 || cu->language == language_d
15822 || cu->language == language_rust)
15823 {
15824 const char *full_name = dwarf2_full_name (name, die, cu);
15825
15826 /* dwarf2_full_name might have already finished building the DIE's
15827 type. If so, there is no need to continue. */
15828 if (get_die_type (die, cu) != NULL)
15829 return get_die_type (die, cu);
15830
15831 TYPE_NAME (type) = full_name;
15832 }
15833 else
15834 {
15835 /* The name is already allocated along with this objfile, so
15836 we don't need to duplicate it for the type. */
15837 TYPE_NAME (type) = name;
15838 }
15839 }
15840
15841 if (die->tag == DW_TAG_structure_type)
15842 {
15843 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15844 }
15845 else if (die->tag == DW_TAG_union_type)
15846 {
15847 TYPE_CODE (type) = TYPE_CODE_UNION;
15848 }
15849 else if (die->tag == DW_TAG_variant_part)
15850 {
15851 TYPE_CODE (type) = TYPE_CODE_UNION;
15852 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15853 }
15854 else
15855 {
15856 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15857 }
15858
15859 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15860 TYPE_DECLARED_CLASS (type) = 1;
15861
15862 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15863 if (attr)
15864 {
15865 if (attr_form_is_constant (attr))
15866 TYPE_LENGTH (type) = DW_UNSND (attr);
15867 else
15868 {
15869 /* For the moment, dynamic type sizes are not supported
15870 by GDB's struct type. The actual size is determined
15871 on-demand when resolving the type of a given object,
15872 so set the type's length to zero for now. Otherwise,
15873 we record an expression as the length, and that expression
15874 could lead to a very large value, which could eventually
15875 lead to us trying to allocate that much memory when creating
15876 a value of that type. */
15877 TYPE_LENGTH (type) = 0;
15878 }
15879 }
15880 else
15881 {
15882 TYPE_LENGTH (type) = 0;
15883 }
15884
15885 maybe_set_alignment (cu, die, type);
15886
15887 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15888 {
15889 /* ICC<14 does not output the required DW_AT_declaration on
15890 incomplete types, but gives them a size of zero. */
15891 TYPE_STUB (type) = 1;
15892 }
15893 else
15894 TYPE_STUB_SUPPORTED (type) = 1;
15895
15896 if (die_is_declaration (die, cu))
15897 TYPE_STUB (type) = 1;
15898 else if (attr == NULL && die->child == NULL
15899 && producer_is_realview (cu->producer))
15900 /* RealView does not output the required DW_AT_declaration
15901 on incomplete types. */
15902 TYPE_STUB (type) = 1;
15903
15904 /* We need to add the type field to the die immediately so we don't
15905 infinitely recurse when dealing with pointers to the structure
15906 type within the structure itself. */
15907 set_die_type (die, type, cu);
15908
15909 /* set_die_type should be already done. */
15910 set_descriptive_type (type, die, cu);
15911
15912 return type;
15913 }
15914
15915 /* A helper for process_structure_scope that handles a single member
15916 DIE. */
15917
15918 static void
15919 handle_struct_member_die (struct die_info *child_die, struct type *type,
15920 struct field_info *fi,
15921 std::vector<struct symbol *> *template_args,
15922 struct dwarf2_cu *cu)
15923 {
15924 if (child_die->tag == DW_TAG_member
15925 || child_die->tag == DW_TAG_variable
15926 || child_die->tag == DW_TAG_variant_part)
15927 {
15928 /* NOTE: carlton/2002-11-05: A C++ static data member
15929 should be a DW_TAG_member that is a declaration, but
15930 all versions of G++ as of this writing (so through at
15931 least 3.2.1) incorrectly generate DW_TAG_variable
15932 tags for them instead. */
15933 dwarf2_add_field (fi, child_die, cu);
15934 }
15935 else if (child_die->tag == DW_TAG_subprogram)
15936 {
15937 /* Rust doesn't have member functions in the C++ sense.
15938 However, it does emit ordinary functions as children
15939 of a struct DIE. */
15940 if (cu->language == language_rust)
15941 read_func_scope (child_die, cu);
15942 else
15943 {
15944 /* C++ member function. */
15945 dwarf2_add_member_fn (fi, child_die, type, cu);
15946 }
15947 }
15948 else if (child_die->tag == DW_TAG_inheritance)
15949 {
15950 /* C++ base class field. */
15951 dwarf2_add_field (fi, child_die, cu);
15952 }
15953 else if (type_can_define_types (child_die))
15954 dwarf2_add_type_defn (fi, child_die, cu);
15955 else if (child_die->tag == DW_TAG_template_type_param
15956 || child_die->tag == DW_TAG_template_value_param)
15957 {
15958 struct symbol *arg = new_symbol (child_die, NULL, cu);
15959
15960 if (arg != NULL)
15961 template_args->push_back (arg);
15962 }
15963 else if (child_die->tag == DW_TAG_variant)
15964 {
15965 /* In a variant we want to get the discriminant and also add a
15966 field for our sole member child. */
15967 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15968
15969 for (die_info *variant_child = child_die->child;
15970 variant_child != NULL;
15971 variant_child = sibling_die (variant_child))
15972 {
15973 if (variant_child->tag == DW_TAG_member)
15974 {
15975 handle_struct_member_die (variant_child, type, fi,
15976 template_args, cu);
15977 /* Only handle the one. */
15978 break;
15979 }
15980 }
15981
15982 /* We don't handle this but we might as well report it if we see
15983 it. */
15984 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15985 complaint (_("DW_AT_discr_list is not supported yet"
15986 " - DIE at %s [in module %s]"),
15987 sect_offset_str (child_die->sect_off),
15988 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15989
15990 /* The first field was just added, so we can stash the
15991 discriminant there. */
15992 gdb_assert (!fi->fields.empty ());
15993 if (discr == NULL)
15994 fi->fields.back ().variant.default_branch = true;
15995 else
15996 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15997 }
15998 }
15999
16000 /* Finish creating a structure or union type, including filling in
16001 its members and creating a symbol for it. */
16002
16003 static void
16004 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16005 {
16006 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16007 struct die_info *child_die;
16008 struct type *type;
16009
16010 type = get_die_type (die, cu);
16011 if (type == NULL)
16012 type = read_structure_type (die, cu);
16013
16014 /* When reading a DW_TAG_variant_part, we need to notice when we
16015 read the discriminant member, so we can record it later in the
16016 discriminant_info. */
16017 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16018 sect_offset discr_offset;
16019 bool has_template_parameters = false;
16020
16021 if (is_variant_part)
16022 {
16023 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16024 if (discr == NULL)
16025 {
16026 /* Maybe it's a univariant form, an extension we support.
16027 In this case arrange not to check the offset. */
16028 is_variant_part = false;
16029 }
16030 else if (attr_form_is_ref (discr))
16031 {
16032 struct dwarf2_cu *target_cu = cu;
16033 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16034
16035 discr_offset = target_die->sect_off;
16036 }
16037 else
16038 {
16039 complaint (_("DW_AT_discr does not have DIE reference form"
16040 " - DIE at %s [in module %s]"),
16041 sect_offset_str (die->sect_off),
16042 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16043 is_variant_part = false;
16044 }
16045 }
16046
16047 if (die->child != NULL && ! die_is_declaration (die, cu))
16048 {
16049 struct field_info fi;
16050 std::vector<struct symbol *> template_args;
16051
16052 child_die = die->child;
16053
16054 while (child_die && child_die->tag)
16055 {
16056 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16057
16058 if (is_variant_part && discr_offset == child_die->sect_off)
16059 fi.fields.back ().variant.is_discriminant = true;
16060
16061 child_die = sibling_die (child_die);
16062 }
16063
16064 /* Attach template arguments to type. */
16065 if (!template_args.empty ())
16066 {
16067 has_template_parameters = true;
16068 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16069 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16070 TYPE_TEMPLATE_ARGUMENTS (type)
16071 = XOBNEWVEC (&objfile->objfile_obstack,
16072 struct symbol *,
16073 TYPE_N_TEMPLATE_ARGUMENTS (type));
16074 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16075 template_args.data (),
16076 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16077 * sizeof (struct symbol *)));
16078 }
16079
16080 /* Attach fields and member functions to the type. */
16081 if (fi.nfields)
16082 dwarf2_attach_fields_to_type (&fi, type, cu);
16083 if (!fi.fnfieldlists.empty ())
16084 {
16085 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16086
16087 /* Get the type which refers to the base class (possibly this
16088 class itself) which contains the vtable pointer for the current
16089 class from the DW_AT_containing_type attribute. This use of
16090 DW_AT_containing_type is a GNU extension. */
16091
16092 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16093 {
16094 struct type *t = die_containing_type (die, cu);
16095
16096 set_type_vptr_basetype (type, t);
16097 if (type == t)
16098 {
16099 int i;
16100
16101 /* Our own class provides vtbl ptr. */
16102 for (i = TYPE_NFIELDS (t) - 1;
16103 i >= TYPE_N_BASECLASSES (t);
16104 --i)
16105 {
16106 const char *fieldname = TYPE_FIELD_NAME (t, i);
16107
16108 if (is_vtable_name (fieldname, cu))
16109 {
16110 set_type_vptr_fieldno (type, i);
16111 break;
16112 }
16113 }
16114
16115 /* Complain if virtual function table field not found. */
16116 if (i < TYPE_N_BASECLASSES (t))
16117 complaint (_("virtual function table pointer "
16118 "not found when defining class '%s'"),
16119 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16120 }
16121 else
16122 {
16123 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16124 }
16125 }
16126 else if (cu->producer
16127 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16128 {
16129 /* The IBM XLC compiler does not provide direct indication
16130 of the containing type, but the vtable pointer is
16131 always named __vfp. */
16132
16133 int i;
16134
16135 for (i = TYPE_NFIELDS (type) - 1;
16136 i >= TYPE_N_BASECLASSES (type);
16137 --i)
16138 {
16139 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16140 {
16141 set_type_vptr_fieldno (type, i);
16142 set_type_vptr_basetype (type, type);
16143 break;
16144 }
16145 }
16146 }
16147 }
16148
16149 /* Copy fi.typedef_field_list linked list elements content into the
16150 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16151 if (!fi.typedef_field_list.empty ())
16152 {
16153 int count = fi.typedef_field_list.size ();
16154
16155 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16156 TYPE_TYPEDEF_FIELD_ARRAY (type)
16157 = ((struct decl_field *)
16158 TYPE_ALLOC (type,
16159 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16160 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16161
16162 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16163 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16164 }
16165
16166 /* Copy fi.nested_types_list linked list elements content into the
16167 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16168 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16169 {
16170 int count = fi.nested_types_list.size ();
16171
16172 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16173 TYPE_NESTED_TYPES_ARRAY (type)
16174 = ((struct decl_field *)
16175 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16176 TYPE_NESTED_TYPES_COUNT (type) = count;
16177
16178 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16179 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16180 }
16181 }
16182
16183 quirk_gcc_member_function_pointer (type, objfile);
16184 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16185 cu->rust_unions.push_back (type);
16186
16187 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16188 snapshots) has been known to create a die giving a declaration
16189 for a class that has, as a child, a die giving a definition for a
16190 nested class. So we have to process our children even if the
16191 current die is a declaration. Normally, of course, a declaration
16192 won't have any children at all. */
16193
16194 child_die = die->child;
16195
16196 while (child_die != NULL && child_die->tag)
16197 {
16198 if (child_die->tag == DW_TAG_member
16199 || child_die->tag == DW_TAG_variable
16200 || child_die->tag == DW_TAG_inheritance
16201 || child_die->tag == DW_TAG_template_value_param
16202 || child_die->tag == DW_TAG_template_type_param)
16203 {
16204 /* Do nothing. */
16205 }
16206 else
16207 process_die (child_die, cu);
16208
16209 child_die = sibling_die (child_die);
16210 }
16211
16212 /* Do not consider external references. According to the DWARF standard,
16213 these DIEs are identified by the fact that they have no byte_size
16214 attribute, and a declaration attribute. */
16215 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16216 || !die_is_declaration (die, cu))
16217 {
16218 struct symbol *sym = new_symbol (die, type, cu);
16219
16220 if (has_template_parameters)
16221 {
16222 struct symtab *symtab;
16223 if (sym != nullptr)
16224 symtab = symbol_symtab (sym);
16225 else if (cu->line_header != nullptr)
16226 {
16227 /* Any related symtab will do. */
16228 symtab
16229 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16230 }
16231 else
16232 {
16233 symtab = nullptr;
16234 complaint (_("could not find suitable "
16235 "symtab for template parameter"
16236 " - DIE at %s [in module %s]"),
16237 sect_offset_str (die->sect_off),
16238 objfile_name (objfile));
16239 }
16240
16241 if (symtab != nullptr)
16242 {
16243 /* Make sure that the symtab is set on the new symbols.
16244 Even though they don't appear in this symtab directly,
16245 other parts of gdb assume that symbols do, and this is
16246 reasonably true. */
16247 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16248 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16249 }
16250 }
16251 }
16252 }
16253
16254 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16255 update TYPE using some information only available in DIE's children. */
16256
16257 static void
16258 update_enumeration_type_from_children (struct die_info *die,
16259 struct type *type,
16260 struct dwarf2_cu *cu)
16261 {
16262 struct die_info *child_die;
16263 int unsigned_enum = 1;
16264 int flag_enum = 1;
16265 ULONGEST mask = 0;
16266
16267 auto_obstack obstack;
16268
16269 for (child_die = die->child;
16270 child_die != NULL && child_die->tag;
16271 child_die = sibling_die (child_die))
16272 {
16273 struct attribute *attr;
16274 LONGEST value;
16275 const gdb_byte *bytes;
16276 struct dwarf2_locexpr_baton *baton;
16277 const char *name;
16278
16279 if (child_die->tag != DW_TAG_enumerator)
16280 continue;
16281
16282 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16283 if (attr == NULL)
16284 continue;
16285
16286 name = dwarf2_name (child_die, cu);
16287 if (name == NULL)
16288 name = "<anonymous enumerator>";
16289
16290 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16291 &value, &bytes, &baton);
16292 if (value < 0)
16293 {
16294 unsigned_enum = 0;
16295 flag_enum = 0;
16296 }
16297 else if ((mask & value) != 0)
16298 flag_enum = 0;
16299 else
16300 mask |= value;
16301
16302 /* If we already know that the enum type is neither unsigned, nor
16303 a flag type, no need to look at the rest of the enumerates. */
16304 if (!unsigned_enum && !flag_enum)
16305 break;
16306 }
16307
16308 if (unsigned_enum)
16309 TYPE_UNSIGNED (type) = 1;
16310 if (flag_enum)
16311 TYPE_FLAG_ENUM (type) = 1;
16312 }
16313
16314 /* Given a DW_AT_enumeration_type die, set its type. We do not
16315 complete the type's fields yet, or create any symbols. */
16316
16317 static struct type *
16318 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16319 {
16320 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16321 struct type *type;
16322 struct attribute *attr;
16323 const char *name;
16324
16325 /* If the definition of this type lives in .debug_types, read that type.
16326 Don't follow DW_AT_specification though, that will take us back up
16327 the chain and we want to go down. */
16328 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16329 if (attr)
16330 {
16331 type = get_DW_AT_signature_type (die, attr, cu);
16332
16333 /* The type's CU may not be the same as CU.
16334 Ensure TYPE is recorded with CU in die_type_hash. */
16335 return set_die_type (die, type, cu);
16336 }
16337
16338 type = alloc_type (objfile);
16339
16340 TYPE_CODE (type) = TYPE_CODE_ENUM;
16341 name = dwarf2_full_name (NULL, die, cu);
16342 if (name != NULL)
16343 TYPE_NAME (type) = name;
16344
16345 attr = dwarf2_attr (die, DW_AT_type, cu);
16346 if (attr != NULL)
16347 {
16348 struct type *underlying_type = die_type (die, cu);
16349
16350 TYPE_TARGET_TYPE (type) = underlying_type;
16351 }
16352
16353 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16354 if (attr)
16355 {
16356 TYPE_LENGTH (type) = DW_UNSND (attr);
16357 }
16358 else
16359 {
16360 TYPE_LENGTH (type) = 0;
16361 }
16362
16363 maybe_set_alignment (cu, die, type);
16364
16365 /* The enumeration DIE can be incomplete. In Ada, any type can be
16366 declared as private in the package spec, and then defined only
16367 inside the package body. Such types are known as Taft Amendment
16368 Types. When another package uses such a type, an incomplete DIE
16369 may be generated by the compiler. */
16370 if (die_is_declaration (die, cu))
16371 TYPE_STUB (type) = 1;
16372
16373 /* Finish the creation of this type by using the enum's children.
16374 We must call this even when the underlying type has been provided
16375 so that we can determine if we're looking at a "flag" enum. */
16376 update_enumeration_type_from_children (die, type, cu);
16377
16378 /* If this type has an underlying type that is not a stub, then we
16379 may use its attributes. We always use the "unsigned" attribute
16380 in this situation, because ordinarily we guess whether the type
16381 is unsigned -- but the guess can be wrong and the underlying type
16382 can tell us the reality. However, we defer to a local size
16383 attribute if one exists, because this lets the compiler override
16384 the underlying type if needed. */
16385 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16386 {
16387 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16388 if (TYPE_LENGTH (type) == 0)
16389 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16390 if (TYPE_RAW_ALIGN (type) == 0
16391 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16392 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16393 }
16394
16395 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16396
16397 return set_die_type (die, type, cu);
16398 }
16399
16400 /* Given a pointer to a die which begins an enumeration, process all
16401 the dies that define the members of the enumeration, and create the
16402 symbol for the enumeration type.
16403
16404 NOTE: We reverse the order of the element list. */
16405
16406 static void
16407 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16408 {
16409 struct type *this_type;
16410
16411 this_type = get_die_type (die, cu);
16412 if (this_type == NULL)
16413 this_type = read_enumeration_type (die, cu);
16414
16415 if (die->child != NULL)
16416 {
16417 struct die_info *child_die;
16418 struct symbol *sym;
16419 struct field *fields = NULL;
16420 int num_fields = 0;
16421 const char *name;
16422
16423 child_die = die->child;
16424 while (child_die && child_die->tag)
16425 {
16426 if (child_die->tag != DW_TAG_enumerator)
16427 {
16428 process_die (child_die, cu);
16429 }
16430 else
16431 {
16432 name = dwarf2_name (child_die, cu);
16433 if (name)
16434 {
16435 sym = new_symbol (child_die, this_type, cu);
16436
16437 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16438 {
16439 fields = (struct field *)
16440 xrealloc (fields,
16441 (num_fields + DW_FIELD_ALLOC_CHUNK)
16442 * sizeof (struct field));
16443 }
16444
16445 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16446 FIELD_TYPE (fields[num_fields]) = NULL;
16447 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16448 FIELD_BITSIZE (fields[num_fields]) = 0;
16449
16450 num_fields++;
16451 }
16452 }
16453
16454 child_die = sibling_die (child_die);
16455 }
16456
16457 if (num_fields)
16458 {
16459 TYPE_NFIELDS (this_type) = num_fields;
16460 TYPE_FIELDS (this_type) = (struct field *)
16461 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16462 memcpy (TYPE_FIELDS (this_type), fields,
16463 sizeof (struct field) * num_fields);
16464 xfree (fields);
16465 }
16466 }
16467
16468 /* If we are reading an enum from a .debug_types unit, and the enum
16469 is a declaration, and the enum is not the signatured type in the
16470 unit, then we do not want to add a symbol for it. Adding a
16471 symbol would in some cases obscure the true definition of the
16472 enum, giving users an incomplete type when the definition is
16473 actually available. Note that we do not want to do this for all
16474 enums which are just declarations, because C++0x allows forward
16475 enum declarations. */
16476 if (cu->per_cu->is_debug_types
16477 && die_is_declaration (die, cu))
16478 {
16479 struct signatured_type *sig_type;
16480
16481 sig_type = (struct signatured_type *) cu->per_cu;
16482 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16483 if (sig_type->type_offset_in_section != die->sect_off)
16484 return;
16485 }
16486
16487 new_symbol (die, this_type, cu);
16488 }
16489
16490 /* Extract all information from a DW_TAG_array_type DIE and put it in
16491 the DIE's type field. For now, this only handles one dimensional
16492 arrays. */
16493
16494 static struct type *
16495 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16496 {
16497 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16498 struct die_info *child_die;
16499 struct type *type;
16500 struct type *element_type, *range_type, *index_type;
16501 struct attribute *attr;
16502 const char *name;
16503 struct dynamic_prop *byte_stride_prop = NULL;
16504 unsigned int bit_stride = 0;
16505
16506 element_type = die_type (die, cu);
16507
16508 /* The die_type call above may have already set the type for this DIE. */
16509 type = get_die_type (die, cu);
16510 if (type)
16511 return type;
16512
16513 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16514 if (attr != NULL)
16515 {
16516 int stride_ok;
16517
16518 byte_stride_prop
16519 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16520 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16521 if (!stride_ok)
16522 {
16523 complaint (_("unable to read array DW_AT_byte_stride "
16524 " - DIE at %s [in module %s]"),
16525 sect_offset_str (die->sect_off),
16526 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16527 /* Ignore this attribute. We will likely not be able to print
16528 arrays of this type correctly, but there is little we can do
16529 to help if we cannot read the attribute's value. */
16530 byte_stride_prop = NULL;
16531 }
16532 }
16533
16534 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16535 if (attr != NULL)
16536 bit_stride = DW_UNSND (attr);
16537
16538 /* Irix 6.2 native cc creates array types without children for
16539 arrays with unspecified length. */
16540 if (die->child == NULL)
16541 {
16542 index_type = objfile_type (objfile)->builtin_int;
16543 range_type = create_static_range_type (NULL, index_type, 0, -1);
16544 type = create_array_type_with_stride (NULL, element_type, range_type,
16545 byte_stride_prop, bit_stride);
16546 return set_die_type (die, type, cu);
16547 }
16548
16549 std::vector<struct type *> range_types;
16550 child_die = die->child;
16551 while (child_die && child_die->tag)
16552 {
16553 if (child_die->tag == DW_TAG_subrange_type)
16554 {
16555 struct type *child_type = read_type_die (child_die, cu);
16556
16557 if (child_type != NULL)
16558 {
16559 /* The range type was succesfully read. Save it for the
16560 array type creation. */
16561 range_types.push_back (child_type);
16562 }
16563 }
16564 child_die = sibling_die (child_die);
16565 }
16566
16567 /* Dwarf2 dimensions are output from left to right, create the
16568 necessary array types in backwards order. */
16569
16570 type = element_type;
16571
16572 if (read_array_order (die, cu) == DW_ORD_col_major)
16573 {
16574 int i = 0;
16575
16576 while (i < range_types.size ())
16577 type = create_array_type_with_stride (NULL, type, range_types[i++],
16578 byte_stride_prop, bit_stride);
16579 }
16580 else
16581 {
16582 size_t ndim = range_types.size ();
16583 while (ndim-- > 0)
16584 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16585 byte_stride_prop, bit_stride);
16586 }
16587
16588 /* Understand Dwarf2 support for vector types (like they occur on
16589 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16590 array type. This is not part of the Dwarf2/3 standard yet, but a
16591 custom vendor extension. The main difference between a regular
16592 array and the vector variant is that vectors are passed by value
16593 to functions. */
16594 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16595 if (attr)
16596 make_vector_type (type);
16597
16598 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16599 implementation may choose to implement triple vectors using this
16600 attribute. */
16601 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16602 if (attr)
16603 {
16604 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16605 TYPE_LENGTH (type) = DW_UNSND (attr);
16606 else
16607 complaint (_("DW_AT_byte_size for array type smaller "
16608 "than the total size of elements"));
16609 }
16610
16611 name = dwarf2_name (die, cu);
16612 if (name)
16613 TYPE_NAME (type) = name;
16614
16615 maybe_set_alignment (cu, die, type);
16616
16617 /* Install the type in the die. */
16618 set_die_type (die, type, cu);
16619
16620 /* set_die_type should be already done. */
16621 set_descriptive_type (type, die, cu);
16622
16623 return type;
16624 }
16625
16626 static enum dwarf_array_dim_ordering
16627 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16628 {
16629 struct attribute *attr;
16630
16631 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16632
16633 if (attr)
16634 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16635
16636 /* GNU F77 is a special case, as at 08/2004 array type info is the
16637 opposite order to the dwarf2 specification, but data is still
16638 laid out as per normal fortran.
16639
16640 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16641 version checking. */
16642
16643 if (cu->language == language_fortran
16644 && cu->producer && strstr (cu->producer, "GNU F77"))
16645 {
16646 return DW_ORD_row_major;
16647 }
16648
16649 switch (cu->language_defn->la_array_ordering)
16650 {
16651 case array_column_major:
16652 return DW_ORD_col_major;
16653 case array_row_major:
16654 default:
16655 return DW_ORD_row_major;
16656 };
16657 }
16658
16659 /* Extract all information from a DW_TAG_set_type DIE and put it in
16660 the DIE's type field. */
16661
16662 static struct type *
16663 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16664 {
16665 struct type *domain_type, *set_type;
16666 struct attribute *attr;
16667
16668 domain_type = die_type (die, cu);
16669
16670 /* The die_type call above may have already set the type for this DIE. */
16671 set_type = get_die_type (die, cu);
16672 if (set_type)
16673 return set_type;
16674
16675 set_type = create_set_type (NULL, domain_type);
16676
16677 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16678 if (attr)
16679 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16680
16681 maybe_set_alignment (cu, die, set_type);
16682
16683 return set_die_type (die, set_type, cu);
16684 }
16685
16686 /* A helper for read_common_block that creates a locexpr baton.
16687 SYM is the symbol which we are marking as computed.
16688 COMMON_DIE is the DIE for the common block.
16689 COMMON_LOC is the location expression attribute for the common
16690 block itself.
16691 MEMBER_LOC is the location expression attribute for the particular
16692 member of the common block that we are processing.
16693 CU is the CU from which the above come. */
16694
16695 static void
16696 mark_common_block_symbol_computed (struct symbol *sym,
16697 struct die_info *common_die,
16698 struct attribute *common_loc,
16699 struct attribute *member_loc,
16700 struct dwarf2_cu *cu)
16701 {
16702 struct dwarf2_per_objfile *dwarf2_per_objfile
16703 = cu->per_cu->dwarf2_per_objfile;
16704 struct objfile *objfile = dwarf2_per_objfile->objfile;
16705 struct dwarf2_locexpr_baton *baton;
16706 gdb_byte *ptr;
16707 unsigned int cu_off;
16708 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16709 LONGEST offset = 0;
16710
16711 gdb_assert (common_loc && member_loc);
16712 gdb_assert (attr_form_is_block (common_loc));
16713 gdb_assert (attr_form_is_block (member_loc)
16714 || attr_form_is_constant (member_loc));
16715
16716 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16717 baton->per_cu = cu->per_cu;
16718 gdb_assert (baton->per_cu);
16719
16720 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16721
16722 if (attr_form_is_constant (member_loc))
16723 {
16724 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16725 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16726 }
16727 else
16728 baton->size += DW_BLOCK (member_loc)->size;
16729
16730 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16731 baton->data = ptr;
16732
16733 *ptr++ = DW_OP_call4;
16734 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16735 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16736 ptr += 4;
16737
16738 if (attr_form_is_constant (member_loc))
16739 {
16740 *ptr++ = DW_OP_addr;
16741 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16742 ptr += cu->header.addr_size;
16743 }
16744 else
16745 {
16746 /* We have to copy the data here, because DW_OP_call4 will only
16747 use a DW_AT_location attribute. */
16748 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16749 ptr += DW_BLOCK (member_loc)->size;
16750 }
16751
16752 *ptr++ = DW_OP_plus;
16753 gdb_assert (ptr - baton->data == baton->size);
16754
16755 SYMBOL_LOCATION_BATON (sym) = baton;
16756 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16757 }
16758
16759 /* Create appropriate locally-scoped variables for all the
16760 DW_TAG_common_block entries. Also create a struct common_block
16761 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16762 is used to sepate the common blocks name namespace from regular
16763 variable names. */
16764
16765 static void
16766 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16767 {
16768 struct attribute *attr;
16769
16770 attr = dwarf2_attr (die, DW_AT_location, cu);
16771 if (attr)
16772 {
16773 /* Support the .debug_loc offsets. */
16774 if (attr_form_is_block (attr))
16775 {
16776 /* Ok. */
16777 }
16778 else if (attr_form_is_section_offset (attr))
16779 {
16780 dwarf2_complex_location_expr_complaint ();
16781 attr = NULL;
16782 }
16783 else
16784 {
16785 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16786 "common block member");
16787 attr = NULL;
16788 }
16789 }
16790
16791 if (die->child != NULL)
16792 {
16793 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16794 struct die_info *child_die;
16795 size_t n_entries = 0, size;
16796 struct common_block *common_block;
16797 struct symbol *sym;
16798
16799 for (child_die = die->child;
16800 child_die && child_die->tag;
16801 child_die = sibling_die (child_die))
16802 ++n_entries;
16803
16804 size = (sizeof (struct common_block)
16805 + (n_entries - 1) * sizeof (struct symbol *));
16806 common_block
16807 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16808 size);
16809 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16810 common_block->n_entries = 0;
16811
16812 for (child_die = die->child;
16813 child_die && child_die->tag;
16814 child_die = sibling_die (child_die))
16815 {
16816 /* Create the symbol in the DW_TAG_common_block block in the current
16817 symbol scope. */
16818 sym = new_symbol (child_die, NULL, cu);
16819 if (sym != NULL)
16820 {
16821 struct attribute *member_loc;
16822
16823 common_block->contents[common_block->n_entries++] = sym;
16824
16825 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16826 cu);
16827 if (member_loc)
16828 {
16829 /* GDB has handled this for a long time, but it is
16830 not specified by DWARF. It seems to have been
16831 emitted by gfortran at least as recently as:
16832 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16833 complaint (_("Variable in common block has "
16834 "DW_AT_data_member_location "
16835 "- DIE at %s [in module %s]"),
16836 sect_offset_str (child_die->sect_off),
16837 objfile_name (objfile));
16838
16839 if (attr_form_is_section_offset (member_loc))
16840 dwarf2_complex_location_expr_complaint ();
16841 else if (attr_form_is_constant (member_loc)
16842 || attr_form_is_block (member_loc))
16843 {
16844 if (attr)
16845 mark_common_block_symbol_computed (sym, die, attr,
16846 member_loc, cu);
16847 }
16848 else
16849 dwarf2_complex_location_expr_complaint ();
16850 }
16851 }
16852 }
16853
16854 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16855 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16856 }
16857 }
16858
16859 /* Create a type for a C++ namespace. */
16860
16861 static struct type *
16862 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16863 {
16864 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16865 const char *previous_prefix, *name;
16866 int is_anonymous;
16867 struct type *type;
16868
16869 /* For extensions, reuse the type of the original namespace. */
16870 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16871 {
16872 struct die_info *ext_die;
16873 struct dwarf2_cu *ext_cu = cu;
16874
16875 ext_die = dwarf2_extension (die, &ext_cu);
16876 type = read_type_die (ext_die, ext_cu);
16877
16878 /* EXT_CU may not be the same as CU.
16879 Ensure TYPE is recorded with CU in die_type_hash. */
16880 return set_die_type (die, type, cu);
16881 }
16882
16883 name = namespace_name (die, &is_anonymous, cu);
16884
16885 /* Now build the name of the current namespace. */
16886
16887 previous_prefix = determine_prefix (die, cu);
16888 if (previous_prefix[0] != '\0')
16889 name = typename_concat (&objfile->objfile_obstack,
16890 previous_prefix, name, 0, cu);
16891
16892 /* Create the type. */
16893 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16894
16895 return set_die_type (die, type, cu);
16896 }
16897
16898 /* Read a namespace scope. */
16899
16900 static void
16901 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16902 {
16903 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16904 int is_anonymous;
16905
16906 /* Add a symbol associated to this if we haven't seen the namespace
16907 before. Also, add a using directive if it's an anonymous
16908 namespace. */
16909
16910 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16911 {
16912 struct type *type;
16913
16914 type = read_type_die (die, cu);
16915 new_symbol (die, type, cu);
16916
16917 namespace_name (die, &is_anonymous, cu);
16918 if (is_anonymous)
16919 {
16920 const char *previous_prefix = determine_prefix (die, cu);
16921
16922 std::vector<const char *> excludes;
16923 add_using_directive (using_directives (cu),
16924 previous_prefix, TYPE_NAME (type), NULL,
16925 NULL, excludes, 0, &objfile->objfile_obstack);
16926 }
16927 }
16928
16929 if (die->child != NULL)
16930 {
16931 struct die_info *child_die = die->child;
16932
16933 while (child_die && child_die->tag)
16934 {
16935 process_die (child_die, cu);
16936 child_die = sibling_die (child_die);
16937 }
16938 }
16939 }
16940
16941 /* Read a Fortran module as type. This DIE can be only a declaration used for
16942 imported module. Still we need that type as local Fortran "use ... only"
16943 declaration imports depend on the created type in determine_prefix. */
16944
16945 static struct type *
16946 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16947 {
16948 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16949 const char *module_name;
16950 struct type *type;
16951
16952 module_name = dwarf2_name (die, cu);
16953 if (!module_name)
16954 complaint (_("DW_TAG_module has no name, offset %s"),
16955 sect_offset_str (die->sect_off));
16956 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16957
16958 return set_die_type (die, type, cu);
16959 }
16960
16961 /* Read a Fortran module. */
16962
16963 static void
16964 read_module (struct die_info *die, struct dwarf2_cu *cu)
16965 {
16966 struct die_info *child_die = die->child;
16967 struct type *type;
16968
16969 type = read_type_die (die, cu);
16970 new_symbol (die, type, cu);
16971
16972 while (child_die && child_die->tag)
16973 {
16974 process_die (child_die, cu);
16975 child_die = sibling_die (child_die);
16976 }
16977 }
16978
16979 /* Return the name of the namespace represented by DIE. Set
16980 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16981 namespace. */
16982
16983 static const char *
16984 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16985 {
16986 struct die_info *current_die;
16987 const char *name = NULL;
16988
16989 /* Loop through the extensions until we find a name. */
16990
16991 for (current_die = die;
16992 current_die != NULL;
16993 current_die = dwarf2_extension (die, &cu))
16994 {
16995 /* We don't use dwarf2_name here so that we can detect the absence
16996 of a name -> anonymous namespace. */
16997 name = dwarf2_string_attr (die, DW_AT_name, cu);
16998
16999 if (name != NULL)
17000 break;
17001 }
17002
17003 /* Is it an anonymous namespace? */
17004
17005 *is_anonymous = (name == NULL);
17006 if (*is_anonymous)
17007 name = CP_ANONYMOUS_NAMESPACE_STR;
17008
17009 return name;
17010 }
17011
17012 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17013 the user defined type vector. */
17014
17015 static struct type *
17016 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17017 {
17018 struct gdbarch *gdbarch
17019 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17020 struct comp_unit_head *cu_header = &cu->header;
17021 struct type *type;
17022 struct attribute *attr_byte_size;
17023 struct attribute *attr_address_class;
17024 int byte_size, addr_class;
17025 struct type *target_type;
17026
17027 target_type = die_type (die, cu);
17028
17029 /* The die_type call above may have already set the type for this DIE. */
17030 type = get_die_type (die, cu);
17031 if (type)
17032 return type;
17033
17034 type = lookup_pointer_type (target_type);
17035
17036 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17037 if (attr_byte_size)
17038 byte_size = DW_UNSND (attr_byte_size);
17039 else
17040 byte_size = cu_header->addr_size;
17041
17042 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17043 if (attr_address_class)
17044 addr_class = DW_UNSND (attr_address_class);
17045 else
17046 addr_class = DW_ADDR_none;
17047
17048 ULONGEST alignment = get_alignment (cu, die);
17049
17050 /* If the pointer size, alignment, or address class is different
17051 than the default, create a type variant marked as such and set
17052 the length accordingly. */
17053 if (TYPE_LENGTH (type) != byte_size
17054 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17055 && alignment != TYPE_RAW_ALIGN (type))
17056 || addr_class != DW_ADDR_none)
17057 {
17058 if (gdbarch_address_class_type_flags_p (gdbarch))
17059 {
17060 int type_flags;
17061
17062 type_flags = gdbarch_address_class_type_flags
17063 (gdbarch, byte_size, addr_class);
17064 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17065 == 0);
17066 type = make_type_with_address_space (type, type_flags);
17067 }
17068 else if (TYPE_LENGTH (type) != byte_size)
17069 {
17070 complaint (_("invalid pointer size %d"), byte_size);
17071 }
17072 else if (TYPE_RAW_ALIGN (type) != alignment)
17073 {
17074 complaint (_("Invalid DW_AT_alignment"
17075 " - DIE at %s [in module %s]"),
17076 sect_offset_str (die->sect_off),
17077 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17078 }
17079 else
17080 {
17081 /* Should we also complain about unhandled address classes? */
17082 }
17083 }
17084
17085 TYPE_LENGTH (type) = byte_size;
17086 set_type_align (type, alignment);
17087 return set_die_type (die, type, cu);
17088 }
17089
17090 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17091 the user defined type vector. */
17092
17093 static struct type *
17094 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17095 {
17096 struct type *type;
17097 struct type *to_type;
17098 struct type *domain;
17099
17100 to_type = die_type (die, cu);
17101 domain = die_containing_type (die, cu);
17102
17103 /* The calls above may have already set the type for this DIE. */
17104 type = get_die_type (die, cu);
17105 if (type)
17106 return type;
17107
17108 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17109 type = lookup_methodptr_type (to_type);
17110 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17111 {
17112 struct type *new_type
17113 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17114
17115 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17116 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17117 TYPE_VARARGS (to_type));
17118 type = lookup_methodptr_type (new_type);
17119 }
17120 else
17121 type = lookup_memberptr_type (to_type, domain);
17122
17123 return set_die_type (die, type, cu);
17124 }
17125
17126 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17127 the user defined type vector. */
17128
17129 static struct type *
17130 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17131 enum type_code refcode)
17132 {
17133 struct comp_unit_head *cu_header = &cu->header;
17134 struct type *type, *target_type;
17135 struct attribute *attr;
17136
17137 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17138
17139 target_type = die_type (die, cu);
17140
17141 /* The die_type call above may have already set the type for this DIE. */
17142 type = get_die_type (die, cu);
17143 if (type)
17144 return type;
17145
17146 type = lookup_reference_type (target_type, refcode);
17147 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17148 if (attr)
17149 {
17150 TYPE_LENGTH (type) = DW_UNSND (attr);
17151 }
17152 else
17153 {
17154 TYPE_LENGTH (type) = cu_header->addr_size;
17155 }
17156 maybe_set_alignment (cu, die, type);
17157 return set_die_type (die, type, cu);
17158 }
17159
17160 /* Add the given cv-qualifiers to the element type of the array. GCC
17161 outputs DWARF type qualifiers that apply to an array, not the
17162 element type. But GDB relies on the array element type to carry
17163 the cv-qualifiers. This mimics section 6.7.3 of the C99
17164 specification. */
17165
17166 static struct type *
17167 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17168 struct type *base_type, int cnst, int voltl)
17169 {
17170 struct type *el_type, *inner_array;
17171
17172 base_type = copy_type (base_type);
17173 inner_array = base_type;
17174
17175 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17176 {
17177 TYPE_TARGET_TYPE (inner_array) =
17178 copy_type (TYPE_TARGET_TYPE (inner_array));
17179 inner_array = TYPE_TARGET_TYPE (inner_array);
17180 }
17181
17182 el_type = TYPE_TARGET_TYPE (inner_array);
17183 cnst |= TYPE_CONST (el_type);
17184 voltl |= TYPE_VOLATILE (el_type);
17185 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17186
17187 return set_die_type (die, base_type, cu);
17188 }
17189
17190 static struct type *
17191 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17192 {
17193 struct type *base_type, *cv_type;
17194
17195 base_type = die_type (die, cu);
17196
17197 /* The die_type call above may have already set the type for this DIE. */
17198 cv_type = get_die_type (die, cu);
17199 if (cv_type)
17200 return cv_type;
17201
17202 /* In case the const qualifier is applied to an array type, the element type
17203 is so qualified, not the array type (section 6.7.3 of C99). */
17204 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17205 return add_array_cv_type (die, cu, base_type, 1, 0);
17206
17207 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17208 return set_die_type (die, cv_type, cu);
17209 }
17210
17211 static struct type *
17212 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17213 {
17214 struct type *base_type, *cv_type;
17215
17216 base_type = die_type (die, cu);
17217
17218 /* The die_type call above may have already set the type for this DIE. */
17219 cv_type = get_die_type (die, cu);
17220 if (cv_type)
17221 return cv_type;
17222
17223 /* In case the volatile qualifier is applied to an array type, the
17224 element type is so qualified, not the array type (section 6.7.3
17225 of C99). */
17226 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17227 return add_array_cv_type (die, cu, base_type, 0, 1);
17228
17229 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17230 return set_die_type (die, cv_type, cu);
17231 }
17232
17233 /* Handle DW_TAG_restrict_type. */
17234
17235 static struct type *
17236 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17237 {
17238 struct type *base_type, *cv_type;
17239
17240 base_type = die_type (die, cu);
17241
17242 /* The die_type call above may have already set the type for this DIE. */
17243 cv_type = get_die_type (die, cu);
17244 if (cv_type)
17245 return cv_type;
17246
17247 cv_type = make_restrict_type (base_type);
17248 return set_die_type (die, cv_type, cu);
17249 }
17250
17251 /* Handle DW_TAG_atomic_type. */
17252
17253 static struct type *
17254 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17255 {
17256 struct type *base_type, *cv_type;
17257
17258 base_type = die_type (die, cu);
17259
17260 /* The die_type call above may have already set the type for this DIE. */
17261 cv_type = get_die_type (die, cu);
17262 if (cv_type)
17263 return cv_type;
17264
17265 cv_type = make_atomic_type (base_type);
17266 return set_die_type (die, cv_type, cu);
17267 }
17268
17269 /* Extract all information from a DW_TAG_string_type DIE and add to
17270 the user defined type vector. It isn't really a user defined type,
17271 but it behaves like one, with other DIE's using an AT_user_def_type
17272 attribute to reference it. */
17273
17274 static struct type *
17275 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17276 {
17277 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17278 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17279 struct type *type, *range_type, *index_type, *char_type;
17280 struct attribute *attr;
17281 unsigned int length;
17282
17283 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17284 if (attr)
17285 {
17286 length = DW_UNSND (attr);
17287 }
17288 else
17289 {
17290 /* Check for the DW_AT_byte_size attribute. */
17291 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17292 if (attr)
17293 {
17294 length = DW_UNSND (attr);
17295 }
17296 else
17297 {
17298 length = 1;
17299 }
17300 }
17301
17302 index_type = objfile_type (objfile)->builtin_int;
17303 range_type = create_static_range_type (NULL, index_type, 1, length);
17304 char_type = language_string_char_type (cu->language_defn, gdbarch);
17305 type = create_string_type (NULL, char_type, range_type);
17306
17307 return set_die_type (die, type, cu);
17308 }
17309
17310 /* Assuming that DIE corresponds to a function, returns nonzero
17311 if the function is prototyped. */
17312
17313 static int
17314 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17315 {
17316 struct attribute *attr;
17317
17318 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17319 if (attr && (DW_UNSND (attr) != 0))
17320 return 1;
17321
17322 /* The DWARF standard implies that the DW_AT_prototyped attribute
17323 is only meaninful for C, but the concept also extends to other
17324 languages that allow unprototyped functions (Eg: Objective C).
17325 For all other languages, assume that functions are always
17326 prototyped. */
17327 if (cu->language != language_c
17328 && cu->language != language_objc
17329 && cu->language != language_opencl)
17330 return 1;
17331
17332 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17333 prototyped and unprototyped functions; default to prototyped,
17334 since that is more common in modern code (and RealView warns
17335 about unprototyped functions). */
17336 if (producer_is_realview (cu->producer))
17337 return 1;
17338
17339 return 0;
17340 }
17341
17342 /* Handle DIES due to C code like:
17343
17344 struct foo
17345 {
17346 int (*funcp)(int a, long l);
17347 int b;
17348 };
17349
17350 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17351
17352 static struct type *
17353 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17354 {
17355 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17356 struct type *type; /* Type that this function returns. */
17357 struct type *ftype; /* Function that returns above type. */
17358 struct attribute *attr;
17359
17360 type = die_type (die, cu);
17361
17362 /* The die_type call above may have already set the type for this DIE. */
17363 ftype = get_die_type (die, cu);
17364 if (ftype)
17365 return ftype;
17366
17367 ftype = lookup_function_type (type);
17368
17369 if (prototyped_function_p (die, cu))
17370 TYPE_PROTOTYPED (ftype) = 1;
17371
17372 /* Store the calling convention in the type if it's available in
17373 the subroutine die. Otherwise set the calling convention to
17374 the default value DW_CC_normal. */
17375 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17376 if (attr)
17377 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17378 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17379 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17380 else
17381 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17382
17383 /* Record whether the function returns normally to its caller or not
17384 if the DWARF producer set that information. */
17385 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17386 if (attr && (DW_UNSND (attr) != 0))
17387 TYPE_NO_RETURN (ftype) = 1;
17388
17389 /* We need to add the subroutine type to the die immediately so
17390 we don't infinitely recurse when dealing with parameters
17391 declared as the same subroutine type. */
17392 set_die_type (die, ftype, cu);
17393
17394 if (die->child != NULL)
17395 {
17396 struct type *void_type = objfile_type (objfile)->builtin_void;
17397 struct die_info *child_die;
17398 int nparams, iparams;
17399
17400 /* Count the number of parameters.
17401 FIXME: GDB currently ignores vararg functions, but knows about
17402 vararg member functions. */
17403 nparams = 0;
17404 child_die = die->child;
17405 while (child_die && child_die->tag)
17406 {
17407 if (child_die->tag == DW_TAG_formal_parameter)
17408 nparams++;
17409 else if (child_die->tag == DW_TAG_unspecified_parameters)
17410 TYPE_VARARGS (ftype) = 1;
17411 child_die = sibling_die (child_die);
17412 }
17413
17414 /* Allocate storage for parameters and fill them in. */
17415 TYPE_NFIELDS (ftype) = nparams;
17416 TYPE_FIELDS (ftype) = (struct field *)
17417 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17418
17419 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17420 even if we error out during the parameters reading below. */
17421 for (iparams = 0; iparams < nparams; iparams++)
17422 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17423
17424 iparams = 0;
17425 child_die = die->child;
17426 while (child_die && child_die->tag)
17427 {
17428 if (child_die->tag == DW_TAG_formal_parameter)
17429 {
17430 struct type *arg_type;
17431
17432 /* DWARF version 2 has no clean way to discern C++
17433 static and non-static member functions. G++ helps
17434 GDB by marking the first parameter for non-static
17435 member functions (which is the this pointer) as
17436 artificial. We pass this information to
17437 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17438
17439 DWARF version 3 added DW_AT_object_pointer, which GCC
17440 4.5 does not yet generate. */
17441 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17442 if (attr)
17443 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17444 else
17445 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17446 arg_type = die_type (child_die, cu);
17447
17448 /* RealView does not mark THIS as const, which the testsuite
17449 expects. GCC marks THIS as const in method definitions,
17450 but not in the class specifications (GCC PR 43053). */
17451 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17452 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17453 {
17454 int is_this = 0;
17455 struct dwarf2_cu *arg_cu = cu;
17456 const char *name = dwarf2_name (child_die, cu);
17457
17458 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17459 if (attr)
17460 {
17461 /* If the compiler emits this, use it. */
17462 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17463 is_this = 1;
17464 }
17465 else if (name && strcmp (name, "this") == 0)
17466 /* Function definitions will have the argument names. */
17467 is_this = 1;
17468 else if (name == NULL && iparams == 0)
17469 /* Declarations may not have the names, so like
17470 elsewhere in GDB, assume an artificial first
17471 argument is "this". */
17472 is_this = 1;
17473
17474 if (is_this)
17475 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17476 arg_type, 0);
17477 }
17478
17479 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17480 iparams++;
17481 }
17482 child_die = sibling_die (child_die);
17483 }
17484 }
17485
17486 return ftype;
17487 }
17488
17489 static struct type *
17490 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17491 {
17492 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17493 const char *name = NULL;
17494 struct type *this_type, *target_type;
17495
17496 name = dwarf2_full_name (NULL, die, cu);
17497 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17498 TYPE_TARGET_STUB (this_type) = 1;
17499 set_die_type (die, this_type, cu);
17500 target_type = die_type (die, cu);
17501 if (target_type != this_type)
17502 TYPE_TARGET_TYPE (this_type) = target_type;
17503 else
17504 {
17505 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17506 spec and cause infinite loops in GDB. */
17507 complaint (_("Self-referential DW_TAG_typedef "
17508 "- DIE at %s [in module %s]"),
17509 sect_offset_str (die->sect_off), objfile_name (objfile));
17510 TYPE_TARGET_TYPE (this_type) = NULL;
17511 }
17512 return this_type;
17513 }
17514
17515 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17516 (which may be different from NAME) to the architecture back-end to allow
17517 it to guess the correct format if necessary. */
17518
17519 static struct type *
17520 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17521 const char *name_hint)
17522 {
17523 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17524 const struct floatformat **format;
17525 struct type *type;
17526
17527 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17528 if (format)
17529 type = init_float_type (objfile, bits, name, format);
17530 else
17531 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17532
17533 return type;
17534 }
17535
17536 /* Allocate an integer type of size BITS and name NAME. */
17537
17538 static struct type *
17539 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17540 int bits, int unsigned_p, const char *name)
17541 {
17542 struct type *type;
17543
17544 /* Versions of Intel's C Compiler generate an integer type called "void"
17545 instead of using DW_TAG_unspecified_type. This has been seen on
17546 at least versions 14, 17, and 18. */
17547 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17548 && strcmp (name, "void") == 0)
17549 type = objfile_type (objfile)->builtin_void;
17550 else
17551 type = init_integer_type (objfile, bits, unsigned_p, name);
17552
17553 return type;
17554 }
17555
17556 /* Initialise and return a floating point type of size BITS suitable for
17557 use as a component of a complex number. The NAME_HINT is passed through
17558 when initialising the floating point type and is the name of the complex
17559 type.
17560
17561 As DWARF doesn't currently provide an explicit name for the components
17562 of a complex number, but it can be helpful to have these components
17563 named, we try to select a suitable name based on the size of the
17564 component. */
17565 static struct type *
17566 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17567 struct objfile *objfile,
17568 int bits, const char *name_hint)
17569 {
17570 gdbarch *gdbarch = get_objfile_arch (objfile);
17571 struct type *tt = nullptr;
17572
17573 /* Try to find a suitable floating point builtin type of size BITS.
17574 We're going to use the name of this type as the name for the complex
17575 target type that we are about to create. */
17576 switch (cu->language)
17577 {
17578 case language_fortran:
17579 switch (bits)
17580 {
17581 case 32:
17582 tt = builtin_f_type (gdbarch)->builtin_real;
17583 break;
17584 case 64:
17585 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17586 break;
17587 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17588 case 128:
17589 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17590 break;
17591 }
17592 break;
17593 default:
17594 switch (bits)
17595 {
17596 case 32:
17597 tt = builtin_type (gdbarch)->builtin_float;
17598 break;
17599 case 64:
17600 tt = builtin_type (gdbarch)->builtin_double;
17601 break;
17602 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17603 case 128:
17604 tt = builtin_type (gdbarch)->builtin_long_double;
17605 break;
17606 }
17607 break;
17608 }
17609
17610 /* If the type we found doesn't match the size we were looking for, then
17611 pretend we didn't find a type at all, the complex target type we
17612 create will then be nameless. */
17613 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17614 tt = nullptr;
17615
17616 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17617 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17618 }
17619
17620 /* Find a representation of a given base type and install
17621 it in the TYPE field of the die. */
17622
17623 static struct type *
17624 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17625 {
17626 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17627 struct type *type;
17628 struct attribute *attr;
17629 int encoding = 0, bits = 0;
17630 const char *name;
17631
17632 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17633 if (attr)
17634 {
17635 encoding = DW_UNSND (attr);
17636 }
17637 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17638 if (attr)
17639 {
17640 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17641 }
17642 name = dwarf2_name (die, cu);
17643 if (!name)
17644 {
17645 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17646 }
17647
17648 switch (encoding)
17649 {
17650 case DW_ATE_address:
17651 /* Turn DW_ATE_address into a void * pointer. */
17652 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17653 type = init_pointer_type (objfile, bits, name, type);
17654 break;
17655 case DW_ATE_boolean:
17656 type = init_boolean_type (objfile, bits, 1, name);
17657 break;
17658 case DW_ATE_complex_float:
17659 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17660 type = init_complex_type (objfile, name, type);
17661 break;
17662 case DW_ATE_decimal_float:
17663 type = init_decfloat_type (objfile, bits, name);
17664 break;
17665 case DW_ATE_float:
17666 type = dwarf2_init_float_type (objfile, bits, name, name);
17667 break;
17668 case DW_ATE_signed:
17669 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17670 break;
17671 case DW_ATE_unsigned:
17672 if (cu->language == language_fortran
17673 && name
17674 && startswith (name, "character("))
17675 type = init_character_type (objfile, bits, 1, name);
17676 else
17677 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17678 break;
17679 case DW_ATE_signed_char:
17680 if (cu->language == language_ada || cu->language == language_m2
17681 || cu->language == language_pascal
17682 || cu->language == language_fortran)
17683 type = init_character_type (objfile, bits, 0, name);
17684 else
17685 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17686 break;
17687 case DW_ATE_unsigned_char:
17688 if (cu->language == language_ada || cu->language == language_m2
17689 || cu->language == language_pascal
17690 || cu->language == language_fortran
17691 || cu->language == language_rust)
17692 type = init_character_type (objfile, bits, 1, name);
17693 else
17694 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17695 break;
17696 case DW_ATE_UTF:
17697 {
17698 gdbarch *arch = get_objfile_arch (objfile);
17699
17700 if (bits == 16)
17701 type = builtin_type (arch)->builtin_char16;
17702 else if (bits == 32)
17703 type = builtin_type (arch)->builtin_char32;
17704 else
17705 {
17706 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17707 bits);
17708 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17709 }
17710 return set_die_type (die, type, cu);
17711 }
17712 break;
17713
17714 default:
17715 complaint (_("unsupported DW_AT_encoding: '%s'"),
17716 dwarf_type_encoding_name (encoding));
17717 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17718 break;
17719 }
17720
17721 if (name && strcmp (name, "char") == 0)
17722 TYPE_NOSIGN (type) = 1;
17723
17724 maybe_set_alignment (cu, die, type);
17725
17726 return set_die_type (die, type, cu);
17727 }
17728
17729 /* Parse dwarf attribute if it's a block, reference or constant and put the
17730 resulting value of the attribute into struct bound_prop.
17731 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17732
17733 static int
17734 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17735 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17736 {
17737 struct dwarf2_property_baton *baton;
17738 struct obstack *obstack
17739 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17740
17741 if (attr == NULL || prop == NULL)
17742 return 0;
17743
17744 if (attr_form_is_block (attr))
17745 {
17746 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17747 baton->referenced_type = NULL;
17748 baton->locexpr.per_cu = cu->per_cu;
17749 baton->locexpr.size = DW_BLOCK (attr)->size;
17750 baton->locexpr.data = DW_BLOCK (attr)->data;
17751 prop->data.baton = baton;
17752 prop->kind = PROP_LOCEXPR;
17753 gdb_assert (prop->data.baton != NULL);
17754 }
17755 else if (attr_form_is_ref (attr))
17756 {
17757 struct dwarf2_cu *target_cu = cu;
17758 struct die_info *target_die;
17759 struct attribute *target_attr;
17760
17761 target_die = follow_die_ref (die, attr, &target_cu);
17762 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17763 if (target_attr == NULL)
17764 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17765 target_cu);
17766 if (target_attr == NULL)
17767 return 0;
17768
17769 switch (target_attr->name)
17770 {
17771 case DW_AT_location:
17772 if (attr_form_is_section_offset (target_attr))
17773 {
17774 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17775 baton->referenced_type = die_type (target_die, target_cu);
17776 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17777 prop->data.baton = baton;
17778 prop->kind = PROP_LOCLIST;
17779 gdb_assert (prop->data.baton != NULL);
17780 }
17781 else if (attr_form_is_block (target_attr))
17782 {
17783 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17784 baton->referenced_type = die_type (target_die, target_cu);
17785 baton->locexpr.per_cu = cu->per_cu;
17786 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17787 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17788 prop->data.baton = baton;
17789 prop->kind = PROP_LOCEXPR;
17790 gdb_assert (prop->data.baton != NULL);
17791 }
17792 else
17793 {
17794 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17795 "dynamic property");
17796 return 0;
17797 }
17798 break;
17799 case DW_AT_data_member_location:
17800 {
17801 LONGEST offset;
17802
17803 if (!handle_data_member_location (target_die, target_cu,
17804 &offset))
17805 return 0;
17806
17807 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17808 baton->referenced_type = read_type_die (target_die->parent,
17809 target_cu);
17810 baton->offset_info.offset = offset;
17811 baton->offset_info.type = die_type (target_die, target_cu);
17812 prop->data.baton = baton;
17813 prop->kind = PROP_ADDR_OFFSET;
17814 break;
17815 }
17816 }
17817 }
17818 else if (attr_form_is_constant (attr))
17819 {
17820 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17821 prop->kind = PROP_CONST;
17822 }
17823 else
17824 {
17825 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17826 dwarf2_name (die, cu));
17827 return 0;
17828 }
17829
17830 return 1;
17831 }
17832
17833 /* Read the given DW_AT_subrange DIE. */
17834
17835 static struct type *
17836 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17837 {
17838 struct type *base_type, *orig_base_type;
17839 struct type *range_type;
17840 struct attribute *attr;
17841 struct dynamic_prop low, high;
17842 int low_default_is_valid;
17843 int high_bound_is_count = 0;
17844 const char *name;
17845 ULONGEST negative_mask;
17846
17847 orig_base_type = die_type (die, cu);
17848 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17849 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17850 creating the range type, but we use the result of check_typedef
17851 when examining properties of the type. */
17852 base_type = check_typedef (orig_base_type);
17853
17854 /* The die_type call above may have already set the type for this DIE. */
17855 range_type = get_die_type (die, cu);
17856 if (range_type)
17857 return range_type;
17858
17859 low.kind = PROP_CONST;
17860 high.kind = PROP_CONST;
17861 high.data.const_val = 0;
17862
17863 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17864 omitting DW_AT_lower_bound. */
17865 switch (cu->language)
17866 {
17867 case language_c:
17868 case language_cplus:
17869 low.data.const_val = 0;
17870 low_default_is_valid = 1;
17871 break;
17872 case language_fortran:
17873 low.data.const_val = 1;
17874 low_default_is_valid = 1;
17875 break;
17876 case language_d:
17877 case language_objc:
17878 case language_rust:
17879 low.data.const_val = 0;
17880 low_default_is_valid = (cu->header.version >= 4);
17881 break;
17882 case language_ada:
17883 case language_m2:
17884 case language_pascal:
17885 low.data.const_val = 1;
17886 low_default_is_valid = (cu->header.version >= 4);
17887 break;
17888 default:
17889 low.data.const_val = 0;
17890 low_default_is_valid = 0;
17891 break;
17892 }
17893
17894 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17895 if (attr)
17896 attr_to_dynamic_prop (attr, die, cu, &low);
17897 else if (!low_default_is_valid)
17898 complaint (_("Missing DW_AT_lower_bound "
17899 "- DIE at %s [in module %s]"),
17900 sect_offset_str (die->sect_off),
17901 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17902
17903 struct attribute *attr_ub, *attr_count;
17904 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17905 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17906 {
17907 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17908 if (attr_to_dynamic_prop (attr, die, cu, &high))
17909 {
17910 /* If bounds are constant do the final calculation here. */
17911 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17912 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17913 else
17914 high_bound_is_count = 1;
17915 }
17916 else
17917 {
17918 if (attr_ub != NULL)
17919 complaint (_("Unresolved DW_AT_upper_bound "
17920 "- DIE at %s [in module %s]"),
17921 sect_offset_str (die->sect_off),
17922 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17923 if (attr_count != NULL)
17924 complaint (_("Unresolved DW_AT_count "
17925 "- DIE at %s [in module %s]"),
17926 sect_offset_str (die->sect_off),
17927 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17928 }
17929
17930 }
17931
17932 /* Dwarf-2 specifications explicitly allows to create subrange types
17933 without specifying a base type.
17934 In that case, the base type must be set to the type of
17935 the lower bound, upper bound or count, in that order, if any of these
17936 three attributes references an object that has a type.
17937 If no base type is found, the Dwarf-2 specifications say that
17938 a signed integer type of size equal to the size of an address should
17939 be used.
17940 For the following C code: `extern char gdb_int [];'
17941 GCC produces an empty range DIE.
17942 FIXME: muller/2010-05-28: Possible references to object for low bound,
17943 high bound or count are not yet handled by this code. */
17944 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17945 {
17946 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17947 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17948 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17949 struct type *int_type = objfile_type (objfile)->builtin_int;
17950
17951 /* Test "int", "long int", and "long long int" objfile types,
17952 and select the first one having a size above or equal to the
17953 architecture address size. */
17954 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17955 base_type = int_type;
17956 else
17957 {
17958 int_type = objfile_type (objfile)->builtin_long;
17959 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17960 base_type = int_type;
17961 else
17962 {
17963 int_type = objfile_type (objfile)->builtin_long_long;
17964 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17965 base_type = int_type;
17966 }
17967 }
17968 }
17969
17970 /* Normally, the DWARF producers are expected to use a signed
17971 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17972 But this is unfortunately not always the case, as witnessed
17973 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17974 is used instead. To work around that ambiguity, we treat
17975 the bounds as signed, and thus sign-extend their values, when
17976 the base type is signed. */
17977 negative_mask =
17978 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17979 if (low.kind == PROP_CONST
17980 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17981 low.data.const_val |= negative_mask;
17982 if (high.kind == PROP_CONST
17983 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17984 high.data.const_val |= negative_mask;
17985
17986 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17987
17988 if (high_bound_is_count)
17989 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17990
17991 /* Ada expects an empty array on no boundary attributes. */
17992 if (attr == NULL && cu->language != language_ada)
17993 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17994
17995 name = dwarf2_name (die, cu);
17996 if (name)
17997 TYPE_NAME (range_type) = name;
17998
17999 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18000 if (attr)
18001 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18002
18003 maybe_set_alignment (cu, die, range_type);
18004
18005 set_die_type (die, range_type, cu);
18006
18007 /* set_die_type should be already done. */
18008 set_descriptive_type (range_type, die, cu);
18009
18010 return range_type;
18011 }
18012
18013 static struct type *
18014 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18015 {
18016 struct type *type;
18017
18018 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18019 NULL);
18020 TYPE_NAME (type) = dwarf2_name (die, cu);
18021
18022 /* In Ada, an unspecified type is typically used when the description
18023 of the type is defered to a different unit. When encountering
18024 such a type, we treat it as a stub, and try to resolve it later on,
18025 when needed. */
18026 if (cu->language == language_ada)
18027 TYPE_STUB (type) = 1;
18028
18029 return set_die_type (die, type, cu);
18030 }
18031
18032 /* Read a single die and all its descendents. Set the die's sibling
18033 field to NULL; set other fields in the die correctly, and set all
18034 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18035 location of the info_ptr after reading all of those dies. PARENT
18036 is the parent of the die in question. */
18037
18038 static struct die_info *
18039 read_die_and_children (const struct die_reader_specs *reader,
18040 const gdb_byte *info_ptr,
18041 const gdb_byte **new_info_ptr,
18042 struct die_info *parent)
18043 {
18044 struct die_info *die;
18045 const gdb_byte *cur_ptr;
18046 int has_children;
18047
18048 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18049 if (die == NULL)
18050 {
18051 *new_info_ptr = cur_ptr;
18052 return NULL;
18053 }
18054 store_in_ref_table (die, reader->cu);
18055
18056 if (has_children)
18057 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18058 else
18059 {
18060 die->child = NULL;
18061 *new_info_ptr = cur_ptr;
18062 }
18063
18064 die->sibling = NULL;
18065 die->parent = parent;
18066 return die;
18067 }
18068
18069 /* Read a die, all of its descendents, and all of its siblings; set
18070 all of the fields of all of the dies correctly. Arguments are as
18071 in read_die_and_children. */
18072
18073 static struct die_info *
18074 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18075 const gdb_byte *info_ptr,
18076 const gdb_byte **new_info_ptr,
18077 struct die_info *parent)
18078 {
18079 struct die_info *first_die, *last_sibling;
18080 const gdb_byte *cur_ptr;
18081
18082 cur_ptr = info_ptr;
18083 first_die = last_sibling = NULL;
18084
18085 while (1)
18086 {
18087 struct die_info *die
18088 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18089
18090 if (die == NULL)
18091 {
18092 *new_info_ptr = cur_ptr;
18093 return first_die;
18094 }
18095
18096 if (!first_die)
18097 first_die = die;
18098 else
18099 last_sibling->sibling = die;
18100
18101 last_sibling = die;
18102 }
18103 }
18104
18105 /* Read a die, all of its descendents, and all of its siblings; set
18106 all of the fields of all of the dies correctly. Arguments are as
18107 in read_die_and_children.
18108 This the main entry point for reading a DIE and all its children. */
18109
18110 static struct die_info *
18111 read_die_and_siblings (const struct die_reader_specs *reader,
18112 const gdb_byte *info_ptr,
18113 const gdb_byte **new_info_ptr,
18114 struct die_info *parent)
18115 {
18116 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18117 new_info_ptr, parent);
18118
18119 if (dwarf_die_debug)
18120 {
18121 fprintf_unfiltered (gdb_stdlog,
18122 "Read die from %s@0x%x of %s:\n",
18123 get_section_name (reader->die_section),
18124 (unsigned) (info_ptr - reader->die_section->buffer),
18125 bfd_get_filename (reader->abfd));
18126 dump_die (die, dwarf_die_debug);
18127 }
18128
18129 return die;
18130 }
18131
18132 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18133 attributes.
18134 The caller is responsible for filling in the extra attributes
18135 and updating (*DIEP)->num_attrs.
18136 Set DIEP to point to a newly allocated die with its information,
18137 except for its child, sibling, and parent fields.
18138 Set HAS_CHILDREN to tell whether the die has children or not. */
18139
18140 static const gdb_byte *
18141 read_full_die_1 (const struct die_reader_specs *reader,
18142 struct die_info **diep, const gdb_byte *info_ptr,
18143 int *has_children, int num_extra_attrs)
18144 {
18145 unsigned int abbrev_number, bytes_read, i;
18146 struct abbrev_info *abbrev;
18147 struct die_info *die;
18148 struct dwarf2_cu *cu = reader->cu;
18149 bfd *abfd = reader->abfd;
18150
18151 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18152 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18153 info_ptr += bytes_read;
18154 if (!abbrev_number)
18155 {
18156 *diep = NULL;
18157 *has_children = 0;
18158 return info_ptr;
18159 }
18160
18161 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18162 if (!abbrev)
18163 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18164 abbrev_number,
18165 bfd_get_filename (abfd));
18166
18167 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18168 die->sect_off = sect_off;
18169 die->tag = abbrev->tag;
18170 die->abbrev = abbrev_number;
18171
18172 /* Make the result usable.
18173 The caller needs to update num_attrs after adding the extra
18174 attributes. */
18175 die->num_attrs = abbrev->num_attrs;
18176
18177 for (i = 0; i < abbrev->num_attrs; ++i)
18178 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18179 info_ptr);
18180
18181 *diep = die;
18182 *has_children = abbrev->has_children;
18183 return info_ptr;
18184 }
18185
18186 /* Read a die and all its attributes.
18187 Set DIEP to point to a newly allocated die with its information,
18188 except for its child, sibling, and parent fields.
18189 Set HAS_CHILDREN to tell whether the die has children or not. */
18190
18191 static const gdb_byte *
18192 read_full_die (const struct die_reader_specs *reader,
18193 struct die_info **diep, const gdb_byte *info_ptr,
18194 int *has_children)
18195 {
18196 const gdb_byte *result;
18197
18198 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18199
18200 if (dwarf_die_debug)
18201 {
18202 fprintf_unfiltered (gdb_stdlog,
18203 "Read die from %s@0x%x of %s:\n",
18204 get_section_name (reader->die_section),
18205 (unsigned) (info_ptr - reader->die_section->buffer),
18206 bfd_get_filename (reader->abfd));
18207 dump_die (*diep, dwarf_die_debug);
18208 }
18209
18210 return result;
18211 }
18212 \f
18213 /* Abbreviation tables.
18214
18215 In DWARF version 2, the description of the debugging information is
18216 stored in a separate .debug_abbrev section. Before we read any
18217 dies from a section we read in all abbreviations and install them
18218 in a hash table. */
18219
18220 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18221
18222 struct abbrev_info *
18223 abbrev_table::alloc_abbrev ()
18224 {
18225 struct abbrev_info *abbrev;
18226
18227 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18228 memset (abbrev, 0, sizeof (struct abbrev_info));
18229
18230 return abbrev;
18231 }
18232
18233 /* Add an abbreviation to the table. */
18234
18235 void
18236 abbrev_table::add_abbrev (unsigned int abbrev_number,
18237 struct abbrev_info *abbrev)
18238 {
18239 unsigned int hash_number;
18240
18241 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18242 abbrev->next = m_abbrevs[hash_number];
18243 m_abbrevs[hash_number] = abbrev;
18244 }
18245
18246 /* Look up an abbrev in the table.
18247 Returns NULL if the abbrev is not found. */
18248
18249 struct abbrev_info *
18250 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18251 {
18252 unsigned int hash_number;
18253 struct abbrev_info *abbrev;
18254
18255 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18256 abbrev = m_abbrevs[hash_number];
18257
18258 while (abbrev)
18259 {
18260 if (abbrev->number == abbrev_number)
18261 return abbrev;
18262 abbrev = abbrev->next;
18263 }
18264 return NULL;
18265 }
18266
18267 /* Read in an abbrev table. */
18268
18269 static abbrev_table_up
18270 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18271 struct dwarf2_section_info *section,
18272 sect_offset sect_off)
18273 {
18274 struct objfile *objfile = dwarf2_per_objfile->objfile;
18275 bfd *abfd = get_section_bfd_owner (section);
18276 const gdb_byte *abbrev_ptr;
18277 struct abbrev_info *cur_abbrev;
18278 unsigned int abbrev_number, bytes_read, abbrev_name;
18279 unsigned int abbrev_form;
18280 struct attr_abbrev *cur_attrs;
18281 unsigned int allocated_attrs;
18282
18283 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18284
18285 dwarf2_read_section (objfile, section);
18286 abbrev_ptr = section->buffer + to_underlying (sect_off);
18287 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18288 abbrev_ptr += bytes_read;
18289
18290 allocated_attrs = ATTR_ALLOC_CHUNK;
18291 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18292
18293 /* Loop until we reach an abbrev number of 0. */
18294 while (abbrev_number)
18295 {
18296 cur_abbrev = abbrev_table->alloc_abbrev ();
18297
18298 /* read in abbrev header */
18299 cur_abbrev->number = abbrev_number;
18300 cur_abbrev->tag
18301 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18302 abbrev_ptr += bytes_read;
18303 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18304 abbrev_ptr += 1;
18305
18306 /* now read in declarations */
18307 for (;;)
18308 {
18309 LONGEST implicit_const;
18310
18311 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18312 abbrev_ptr += bytes_read;
18313 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18314 abbrev_ptr += bytes_read;
18315 if (abbrev_form == DW_FORM_implicit_const)
18316 {
18317 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18318 &bytes_read);
18319 abbrev_ptr += bytes_read;
18320 }
18321 else
18322 {
18323 /* Initialize it due to a false compiler warning. */
18324 implicit_const = -1;
18325 }
18326
18327 if (abbrev_name == 0)
18328 break;
18329
18330 if (cur_abbrev->num_attrs == allocated_attrs)
18331 {
18332 allocated_attrs += ATTR_ALLOC_CHUNK;
18333 cur_attrs
18334 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18335 }
18336
18337 cur_attrs[cur_abbrev->num_attrs].name
18338 = (enum dwarf_attribute) abbrev_name;
18339 cur_attrs[cur_abbrev->num_attrs].form
18340 = (enum dwarf_form) abbrev_form;
18341 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18342 ++cur_abbrev->num_attrs;
18343 }
18344
18345 cur_abbrev->attrs =
18346 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18347 cur_abbrev->num_attrs);
18348 memcpy (cur_abbrev->attrs, cur_attrs,
18349 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18350
18351 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18352
18353 /* Get next abbreviation.
18354 Under Irix6 the abbreviations for a compilation unit are not
18355 always properly terminated with an abbrev number of 0.
18356 Exit loop if we encounter an abbreviation which we have
18357 already read (which means we are about to read the abbreviations
18358 for the next compile unit) or if the end of the abbreviation
18359 table is reached. */
18360 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18361 break;
18362 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18363 abbrev_ptr += bytes_read;
18364 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18365 break;
18366 }
18367
18368 xfree (cur_attrs);
18369 return abbrev_table;
18370 }
18371
18372 /* Returns nonzero if TAG represents a type that we might generate a partial
18373 symbol for. */
18374
18375 static int
18376 is_type_tag_for_partial (int tag)
18377 {
18378 switch (tag)
18379 {
18380 #if 0
18381 /* Some types that would be reasonable to generate partial symbols for,
18382 that we don't at present. */
18383 case DW_TAG_array_type:
18384 case DW_TAG_file_type:
18385 case DW_TAG_ptr_to_member_type:
18386 case DW_TAG_set_type:
18387 case DW_TAG_string_type:
18388 case DW_TAG_subroutine_type:
18389 #endif
18390 case DW_TAG_base_type:
18391 case DW_TAG_class_type:
18392 case DW_TAG_interface_type:
18393 case DW_TAG_enumeration_type:
18394 case DW_TAG_structure_type:
18395 case DW_TAG_subrange_type:
18396 case DW_TAG_typedef:
18397 case DW_TAG_union_type:
18398 return 1;
18399 default:
18400 return 0;
18401 }
18402 }
18403
18404 /* Load all DIEs that are interesting for partial symbols into memory. */
18405
18406 static struct partial_die_info *
18407 load_partial_dies (const struct die_reader_specs *reader,
18408 const gdb_byte *info_ptr, int building_psymtab)
18409 {
18410 struct dwarf2_cu *cu = reader->cu;
18411 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18412 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18413 unsigned int bytes_read;
18414 unsigned int load_all = 0;
18415 int nesting_level = 1;
18416
18417 parent_die = NULL;
18418 last_die = NULL;
18419
18420 gdb_assert (cu->per_cu != NULL);
18421 if (cu->per_cu->load_all_dies)
18422 load_all = 1;
18423
18424 cu->partial_dies
18425 = htab_create_alloc_ex (cu->header.length / 12,
18426 partial_die_hash,
18427 partial_die_eq,
18428 NULL,
18429 &cu->comp_unit_obstack,
18430 hashtab_obstack_allocate,
18431 dummy_obstack_deallocate);
18432
18433 while (1)
18434 {
18435 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18436
18437 /* A NULL abbrev means the end of a series of children. */
18438 if (abbrev == NULL)
18439 {
18440 if (--nesting_level == 0)
18441 return first_die;
18442
18443 info_ptr += bytes_read;
18444 last_die = parent_die;
18445 parent_die = parent_die->die_parent;
18446 continue;
18447 }
18448
18449 /* Check for template arguments. We never save these; if
18450 they're seen, we just mark the parent, and go on our way. */
18451 if (parent_die != NULL
18452 && cu->language == language_cplus
18453 && (abbrev->tag == DW_TAG_template_type_param
18454 || abbrev->tag == DW_TAG_template_value_param))
18455 {
18456 parent_die->has_template_arguments = 1;
18457
18458 if (!load_all)
18459 {
18460 /* We don't need a partial DIE for the template argument. */
18461 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18462 continue;
18463 }
18464 }
18465
18466 /* We only recurse into c++ subprograms looking for template arguments.
18467 Skip their other children. */
18468 if (!load_all
18469 && cu->language == language_cplus
18470 && parent_die != NULL
18471 && parent_die->tag == DW_TAG_subprogram)
18472 {
18473 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18474 continue;
18475 }
18476
18477 /* Check whether this DIE is interesting enough to save. Normally
18478 we would not be interested in members here, but there may be
18479 later variables referencing them via DW_AT_specification (for
18480 static members). */
18481 if (!load_all
18482 && !is_type_tag_for_partial (abbrev->tag)
18483 && abbrev->tag != DW_TAG_constant
18484 && abbrev->tag != DW_TAG_enumerator
18485 && abbrev->tag != DW_TAG_subprogram
18486 && abbrev->tag != DW_TAG_inlined_subroutine
18487 && abbrev->tag != DW_TAG_lexical_block
18488 && abbrev->tag != DW_TAG_variable
18489 && abbrev->tag != DW_TAG_namespace
18490 && abbrev->tag != DW_TAG_module
18491 && abbrev->tag != DW_TAG_member
18492 && abbrev->tag != DW_TAG_imported_unit
18493 && abbrev->tag != DW_TAG_imported_declaration)
18494 {
18495 /* Otherwise we skip to the next sibling, if any. */
18496 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18497 continue;
18498 }
18499
18500 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18501 abbrev);
18502
18503 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18504
18505 /* This two-pass algorithm for processing partial symbols has a
18506 high cost in cache pressure. Thus, handle some simple cases
18507 here which cover the majority of C partial symbols. DIEs
18508 which neither have specification tags in them, nor could have
18509 specification tags elsewhere pointing at them, can simply be
18510 processed and discarded.
18511
18512 This segment is also optional; scan_partial_symbols and
18513 add_partial_symbol will handle these DIEs if we chain
18514 them in normally. When compilers which do not emit large
18515 quantities of duplicate debug information are more common,
18516 this code can probably be removed. */
18517
18518 /* Any complete simple types at the top level (pretty much all
18519 of them, for a language without namespaces), can be processed
18520 directly. */
18521 if (parent_die == NULL
18522 && pdi.has_specification == 0
18523 && pdi.is_declaration == 0
18524 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18525 || pdi.tag == DW_TAG_base_type
18526 || pdi.tag == DW_TAG_subrange_type))
18527 {
18528 if (building_psymtab && pdi.name != NULL)
18529 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18530 VAR_DOMAIN, LOC_TYPEDEF, -1,
18531 psymbol_placement::STATIC,
18532 0, cu->language, objfile);
18533 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18534 continue;
18535 }
18536
18537 /* The exception for DW_TAG_typedef with has_children above is
18538 a workaround of GCC PR debug/47510. In the case of this complaint
18539 type_name_or_error will error on such types later.
18540
18541 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18542 it could not find the child DIEs referenced later, this is checked
18543 above. In correct DWARF DW_TAG_typedef should have no children. */
18544
18545 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18546 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18547 "- DIE at %s [in module %s]"),
18548 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18549
18550 /* If we're at the second level, and we're an enumerator, and
18551 our parent has no specification (meaning possibly lives in a
18552 namespace elsewhere), then we can add the partial symbol now
18553 instead of queueing it. */
18554 if (pdi.tag == DW_TAG_enumerator
18555 && parent_die != NULL
18556 && parent_die->die_parent == NULL
18557 && parent_die->tag == DW_TAG_enumeration_type
18558 && parent_die->has_specification == 0)
18559 {
18560 if (pdi.name == NULL)
18561 complaint (_("malformed enumerator DIE ignored"));
18562 else if (building_psymtab)
18563 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18564 VAR_DOMAIN, LOC_CONST, -1,
18565 cu->language == language_cplus
18566 ? psymbol_placement::GLOBAL
18567 : psymbol_placement::STATIC,
18568 0, cu->language, objfile);
18569
18570 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18571 continue;
18572 }
18573
18574 struct partial_die_info *part_die
18575 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18576
18577 /* We'll save this DIE so link it in. */
18578 part_die->die_parent = parent_die;
18579 part_die->die_sibling = NULL;
18580 part_die->die_child = NULL;
18581
18582 if (last_die && last_die == parent_die)
18583 last_die->die_child = part_die;
18584 else if (last_die)
18585 last_die->die_sibling = part_die;
18586
18587 last_die = part_die;
18588
18589 if (first_die == NULL)
18590 first_die = part_die;
18591
18592 /* Maybe add the DIE to the hash table. Not all DIEs that we
18593 find interesting need to be in the hash table, because we
18594 also have the parent/sibling/child chains; only those that we
18595 might refer to by offset later during partial symbol reading.
18596
18597 For now this means things that might have be the target of a
18598 DW_AT_specification, DW_AT_abstract_origin, or
18599 DW_AT_extension. DW_AT_extension will refer only to
18600 namespaces; DW_AT_abstract_origin refers to functions (and
18601 many things under the function DIE, but we do not recurse
18602 into function DIEs during partial symbol reading) and
18603 possibly variables as well; DW_AT_specification refers to
18604 declarations. Declarations ought to have the DW_AT_declaration
18605 flag. It happens that GCC forgets to put it in sometimes, but
18606 only for functions, not for types.
18607
18608 Adding more things than necessary to the hash table is harmless
18609 except for the performance cost. Adding too few will result in
18610 wasted time in find_partial_die, when we reread the compilation
18611 unit with load_all_dies set. */
18612
18613 if (load_all
18614 || abbrev->tag == DW_TAG_constant
18615 || abbrev->tag == DW_TAG_subprogram
18616 || abbrev->tag == DW_TAG_variable
18617 || abbrev->tag == DW_TAG_namespace
18618 || part_die->is_declaration)
18619 {
18620 void **slot;
18621
18622 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18623 to_underlying (part_die->sect_off),
18624 INSERT);
18625 *slot = part_die;
18626 }
18627
18628 /* For some DIEs we want to follow their children (if any). For C
18629 we have no reason to follow the children of structures; for other
18630 languages we have to, so that we can get at method physnames
18631 to infer fully qualified class names, for DW_AT_specification,
18632 and for C++ template arguments. For C++, we also look one level
18633 inside functions to find template arguments (if the name of the
18634 function does not already contain the template arguments).
18635
18636 For Ada, we need to scan the children of subprograms and lexical
18637 blocks as well because Ada allows the definition of nested
18638 entities that could be interesting for the debugger, such as
18639 nested subprograms for instance. */
18640 if (last_die->has_children
18641 && (load_all
18642 || last_die->tag == DW_TAG_namespace
18643 || last_die->tag == DW_TAG_module
18644 || last_die->tag == DW_TAG_enumeration_type
18645 || (cu->language == language_cplus
18646 && last_die->tag == DW_TAG_subprogram
18647 && (last_die->name == NULL
18648 || strchr (last_die->name, '<') == NULL))
18649 || (cu->language != language_c
18650 && (last_die->tag == DW_TAG_class_type
18651 || last_die->tag == DW_TAG_interface_type
18652 || last_die->tag == DW_TAG_structure_type
18653 || last_die->tag == DW_TAG_union_type))
18654 || (cu->language == language_ada
18655 && (last_die->tag == DW_TAG_subprogram
18656 || last_die->tag == DW_TAG_lexical_block))))
18657 {
18658 nesting_level++;
18659 parent_die = last_die;
18660 continue;
18661 }
18662
18663 /* Otherwise we skip to the next sibling, if any. */
18664 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18665
18666 /* Back to the top, do it again. */
18667 }
18668 }
18669
18670 partial_die_info::partial_die_info (sect_offset sect_off_,
18671 struct abbrev_info *abbrev)
18672 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18673 {
18674 }
18675
18676 /* Read a minimal amount of information into the minimal die structure.
18677 INFO_PTR should point just after the initial uleb128 of a DIE. */
18678
18679 const gdb_byte *
18680 partial_die_info::read (const struct die_reader_specs *reader,
18681 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18682 {
18683 struct dwarf2_cu *cu = reader->cu;
18684 struct dwarf2_per_objfile *dwarf2_per_objfile
18685 = cu->per_cu->dwarf2_per_objfile;
18686 unsigned int i;
18687 int has_low_pc_attr = 0;
18688 int has_high_pc_attr = 0;
18689 int high_pc_relative = 0;
18690
18691 for (i = 0; i < abbrev.num_attrs; ++i)
18692 {
18693 struct attribute attr;
18694
18695 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18696
18697 /* Store the data if it is of an attribute we want to keep in a
18698 partial symbol table. */
18699 switch (attr.name)
18700 {
18701 case DW_AT_name:
18702 switch (tag)
18703 {
18704 case DW_TAG_compile_unit:
18705 case DW_TAG_partial_unit:
18706 case DW_TAG_type_unit:
18707 /* Compilation units have a DW_AT_name that is a filename, not
18708 a source language identifier. */
18709 case DW_TAG_enumeration_type:
18710 case DW_TAG_enumerator:
18711 /* These tags always have simple identifiers already; no need
18712 to canonicalize them. */
18713 name = DW_STRING (&attr);
18714 break;
18715 default:
18716 {
18717 struct objfile *objfile = dwarf2_per_objfile->objfile;
18718
18719 name
18720 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18721 &objfile->per_bfd->storage_obstack);
18722 }
18723 break;
18724 }
18725 break;
18726 case DW_AT_linkage_name:
18727 case DW_AT_MIPS_linkage_name:
18728 /* Note that both forms of linkage name might appear. We
18729 assume they will be the same, and we only store the last
18730 one we see. */
18731 if (cu->language == language_ada)
18732 name = DW_STRING (&attr);
18733 linkage_name = DW_STRING (&attr);
18734 break;
18735 case DW_AT_low_pc:
18736 has_low_pc_attr = 1;
18737 lowpc = attr_value_as_address (&attr);
18738 break;
18739 case DW_AT_high_pc:
18740 has_high_pc_attr = 1;
18741 highpc = attr_value_as_address (&attr);
18742 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18743 high_pc_relative = 1;
18744 break;
18745 case DW_AT_location:
18746 /* Support the .debug_loc offsets. */
18747 if (attr_form_is_block (&attr))
18748 {
18749 d.locdesc = DW_BLOCK (&attr);
18750 }
18751 else if (attr_form_is_section_offset (&attr))
18752 {
18753 dwarf2_complex_location_expr_complaint ();
18754 }
18755 else
18756 {
18757 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18758 "partial symbol information");
18759 }
18760 break;
18761 case DW_AT_external:
18762 is_external = DW_UNSND (&attr);
18763 break;
18764 case DW_AT_declaration:
18765 is_declaration = DW_UNSND (&attr);
18766 break;
18767 case DW_AT_type:
18768 has_type = 1;
18769 break;
18770 case DW_AT_abstract_origin:
18771 case DW_AT_specification:
18772 case DW_AT_extension:
18773 has_specification = 1;
18774 spec_offset = dwarf2_get_ref_die_offset (&attr);
18775 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18776 || cu->per_cu->is_dwz);
18777 break;
18778 case DW_AT_sibling:
18779 /* Ignore absolute siblings, they might point outside of
18780 the current compile unit. */
18781 if (attr.form == DW_FORM_ref_addr)
18782 complaint (_("ignoring absolute DW_AT_sibling"));
18783 else
18784 {
18785 const gdb_byte *buffer = reader->buffer;
18786 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18787 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18788
18789 if (sibling_ptr < info_ptr)
18790 complaint (_("DW_AT_sibling points backwards"));
18791 else if (sibling_ptr > reader->buffer_end)
18792 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18793 else
18794 sibling = sibling_ptr;
18795 }
18796 break;
18797 case DW_AT_byte_size:
18798 has_byte_size = 1;
18799 break;
18800 case DW_AT_const_value:
18801 has_const_value = 1;
18802 break;
18803 case DW_AT_calling_convention:
18804 /* DWARF doesn't provide a way to identify a program's source-level
18805 entry point. DW_AT_calling_convention attributes are only meant
18806 to describe functions' calling conventions.
18807
18808 However, because it's a necessary piece of information in
18809 Fortran, and before DWARF 4 DW_CC_program was the only
18810 piece of debugging information whose definition refers to
18811 a 'main program' at all, several compilers marked Fortran
18812 main programs with DW_CC_program --- even when those
18813 functions use the standard calling conventions.
18814
18815 Although DWARF now specifies a way to provide this
18816 information, we support this practice for backward
18817 compatibility. */
18818 if (DW_UNSND (&attr) == DW_CC_program
18819 && cu->language == language_fortran)
18820 main_subprogram = 1;
18821 break;
18822 case DW_AT_inline:
18823 if (DW_UNSND (&attr) == DW_INL_inlined
18824 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18825 may_be_inlined = 1;
18826 break;
18827
18828 case DW_AT_import:
18829 if (tag == DW_TAG_imported_unit)
18830 {
18831 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18832 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18833 || cu->per_cu->is_dwz);
18834 }
18835 break;
18836
18837 case DW_AT_main_subprogram:
18838 main_subprogram = DW_UNSND (&attr);
18839 break;
18840
18841 case DW_AT_ranges:
18842 {
18843 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18844 but that requires a full DIE, so instead we just
18845 reimplement it. */
18846 int need_ranges_base = tag != DW_TAG_compile_unit;
18847 unsigned int ranges_offset = (DW_UNSND (&attr)
18848 + (need_ranges_base
18849 ? cu->ranges_base
18850 : 0));
18851
18852 /* Value of the DW_AT_ranges attribute is the offset in the
18853 .debug_ranges section. */
18854 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18855 nullptr))
18856 has_pc_info = 1;
18857 }
18858 break;
18859
18860 default:
18861 break;
18862 }
18863 }
18864
18865 if (high_pc_relative)
18866 highpc += lowpc;
18867
18868 if (has_low_pc_attr && has_high_pc_attr)
18869 {
18870 /* When using the GNU linker, .gnu.linkonce. sections are used to
18871 eliminate duplicate copies of functions and vtables and such.
18872 The linker will arbitrarily choose one and discard the others.
18873 The AT_*_pc values for such functions refer to local labels in
18874 these sections. If the section from that file was discarded, the
18875 labels are not in the output, so the relocs get a value of 0.
18876 If this is a discarded function, mark the pc bounds as invalid,
18877 so that GDB will ignore it. */
18878 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18879 {
18880 struct objfile *objfile = dwarf2_per_objfile->objfile;
18881 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18882
18883 complaint (_("DW_AT_low_pc %s is zero "
18884 "for DIE at %s [in module %s]"),
18885 paddress (gdbarch, lowpc),
18886 sect_offset_str (sect_off),
18887 objfile_name (objfile));
18888 }
18889 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18890 else if (lowpc >= highpc)
18891 {
18892 struct objfile *objfile = dwarf2_per_objfile->objfile;
18893 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18894
18895 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18896 "for DIE at %s [in module %s]"),
18897 paddress (gdbarch, lowpc),
18898 paddress (gdbarch, highpc),
18899 sect_offset_str (sect_off),
18900 objfile_name (objfile));
18901 }
18902 else
18903 has_pc_info = 1;
18904 }
18905
18906 return info_ptr;
18907 }
18908
18909 /* Find a cached partial DIE at OFFSET in CU. */
18910
18911 struct partial_die_info *
18912 dwarf2_cu::find_partial_die (sect_offset sect_off)
18913 {
18914 struct partial_die_info *lookup_die = NULL;
18915 struct partial_die_info part_die (sect_off);
18916
18917 lookup_die = ((struct partial_die_info *)
18918 htab_find_with_hash (partial_dies, &part_die,
18919 to_underlying (sect_off)));
18920
18921 return lookup_die;
18922 }
18923
18924 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18925 except in the case of .debug_types DIEs which do not reference
18926 outside their CU (they do however referencing other types via
18927 DW_FORM_ref_sig8). */
18928
18929 static const struct cu_partial_die_info
18930 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18931 {
18932 struct dwarf2_per_objfile *dwarf2_per_objfile
18933 = cu->per_cu->dwarf2_per_objfile;
18934 struct objfile *objfile = dwarf2_per_objfile->objfile;
18935 struct dwarf2_per_cu_data *per_cu = NULL;
18936 struct partial_die_info *pd = NULL;
18937
18938 if (offset_in_dwz == cu->per_cu->is_dwz
18939 && offset_in_cu_p (&cu->header, sect_off))
18940 {
18941 pd = cu->find_partial_die (sect_off);
18942 if (pd != NULL)
18943 return { cu, pd };
18944 /* We missed recording what we needed.
18945 Load all dies and try again. */
18946 per_cu = cu->per_cu;
18947 }
18948 else
18949 {
18950 /* TUs don't reference other CUs/TUs (except via type signatures). */
18951 if (cu->per_cu->is_debug_types)
18952 {
18953 error (_("Dwarf Error: Type Unit at offset %s contains"
18954 " external reference to offset %s [in module %s].\n"),
18955 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18956 bfd_get_filename (objfile->obfd));
18957 }
18958 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18959 dwarf2_per_objfile);
18960
18961 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18962 load_partial_comp_unit (per_cu);
18963
18964 per_cu->cu->last_used = 0;
18965 pd = per_cu->cu->find_partial_die (sect_off);
18966 }
18967
18968 /* If we didn't find it, and not all dies have been loaded,
18969 load them all and try again. */
18970
18971 if (pd == NULL && per_cu->load_all_dies == 0)
18972 {
18973 per_cu->load_all_dies = 1;
18974
18975 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18976 THIS_CU->cu may already be in use. So we can't just free it and
18977 replace its DIEs with the ones we read in. Instead, we leave those
18978 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18979 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18980 set. */
18981 load_partial_comp_unit (per_cu);
18982
18983 pd = per_cu->cu->find_partial_die (sect_off);
18984 }
18985
18986 if (pd == NULL)
18987 internal_error (__FILE__, __LINE__,
18988 _("could not find partial DIE %s "
18989 "in cache [from module %s]\n"),
18990 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18991 return { per_cu->cu, pd };
18992 }
18993
18994 /* See if we can figure out if the class lives in a namespace. We do
18995 this by looking for a member function; its demangled name will
18996 contain namespace info, if there is any. */
18997
18998 static void
18999 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19000 struct dwarf2_cu *cu)
19001 {
19002 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19003 what template types look like, because the demangler
19004 frequently doesn't give the same name as the debug info. We
19005 could fix this by only using the demangled name to get the
19006 prefix (but see comment in read_structure_type). */
19007
19008 struct partial_die_info *real_pdi;
19009 struct partial_die_info *child_pdi;
19010
19011 /* If this DIE (this DIE's specification, if any) has a parent, then
19012 we should not do this. We'll prepend the parent's fully qualified
19013 name when we create the partial symbol. */
19014
19015 real_pdi = struct_pdi;
19016 while (real_pdi->has_specification)
19017 {
19018 auto res = find_partial_die (real_pdi->spec_offset,
19019 real_pdi->spec_is_dwz, cu);
19020 real_pdi = res.pdi;
19021 cu = res.cu;
19022 }
19023
19024 if (real_pdi->die_parent != NULL)
19025 return;
19026
19027 for (child_pdi = struct_pdi->die_child;
19028 child_pdi != NULL;
19029 child_pdi = child_pdi->die_sibling)
19030 {
19031 if (child_pdi->tag == DW_TAG_subprogram
19032 && child_pdi->linkage_name != NULL)
19033 {
19034 char *actual_class_name
19035 = language_class_name_from_physname (cu->language_defn,
19036 child_pdi->linkage_name);
19037 if (actual_class_name != NULL)
19038 {
19039 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19040 struct_pdi->name
19041 = ((const char *)
19042 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19043 actual_class_name,
19044 strlen (actual_class_name)));
19045 xfree (actual_class_name);
19046 }
19047 break;
19048 }
19049 }
19050 }
19051
19052 void
19053 partial_die_info::fixup (struct dwarf2_cu *cu)
19054 {
19055 /* Once we've fixed up a die, there's no point in doing so again.
19056 This also avoids a memory leak if we were to call
19057 guess_partial_die_structure_name multiple times. */
19058 if (fixup_called)
19059 return;
19060
19061 /* If we found a reference attribute and the DIE has no name, try
19062 to find a name in the referred to DIE. */
19063
19064 if (name == NULL && has_specification)
19065 {
19066 struct partial_die_info *spec_die;
19067
19068 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19069 spec_die = res.pdi;
19070 cu = res.cu;
19071
19072 spec_die->fixup (cu);
19073
19074 if (spec_die->name)
19075 {
19076 name = spec_die->name;
19077
19078 /* Copy DW_AT_external attribute if it is set. */
19079 if (spec_die->is_external)
19080 is_external = spec_die->is_external;
19081 }
19082 }
19083
19084 /* Set default names for some unnamed DIEs. */
19085
19086 if (name == NULL && tag == DW_TAG_namespace)
19087 name = CP_ANONYMOUS_NAMESPACE_STR;
19088
19089 /* If there is no parent die to provide a namespace, and there are
19090 children, see if we can determine the namespace from their linkage
19091 name. */
19092 if (cu->language == language_cplus
19093 && !VEC_empty (dwarf2_section_info_def,
19094 cu->per_cu->dwarf2_per_objfile->types)
19095 && die_parent == NULL
19096 && has_children
19097 && (tag == DW_TAG_class_type
19098 || tag == DW_TAG_structure_type
19099 || tag == DW_TAG_union_type))
19100 guess_partial_die_structure_name (this, cu);
19101
19102 /* GCC might emit a nameless struct or union that has a linkage
19103 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19104 if (name == NULL
19105 && (tag == DW_TAG_class_type
19106 || tag == DW_TAG_interface_type
19107 || tag == DW_TAG_structure_type
19108 || tag == DW_TAG_union_type)
19109 && linkage_name != NULL)
19110 {
19111 char *demangled;
19112
19113 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19114 if (demangled)
19115 {
19116 const char *base;
19117
19118 /* Strip any leading namespaces/classes, keep only the base name.
19119 DW_AT_name for named DIEs does not contain the prefixes. */
19120 base = strrchr (demangled, ':');
19121 if (base && base > demangled && base[-1] == ':')
19122 base++;
19123 else
19124 base = demangled;
19125
19126 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19127 name
19128 = ((const char *)
19129 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19130 base, strlen (base)));
19131 xfree (demangled);
19132 }
19133 }
19134
19135 fixup_called = 1;
19136 }
19137
19138 /* Read an attribute value described by an attribute form. */
19139
19140 static const gdb_byte *
19141 read_attribute_value (const struct die_reader_specs *reader,
19142 struct attribute *attr, unsigned form,
19143 LONGEST implicit_const, const gdb_byte *info_ptr)
19144 {
19145 struct dwarf2_cu *cu = reader->cu;
19146 struct dwarf2_per_objfile *dwarf2_per_objfile
19147 = cu->per_cu->dwarf2_per_objfile;
19148 struct objfile *objfile = dwarf2_per_objfile->objfile;
19149 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19150 bfd *abfd = reader->abfd;
19151 struct comp_unit_head *cu_header = &cu->header;
19152 unsigned int bytes_read;
19153 struct dwarf_block *blk;
19154
19155 attr->form = (enum dwarf_form) form;
19156 switch (form)
19157 {
19158 case DW_FORM_ref_addr:
19159 if (cu->header.version == 2)
19160 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19161 else
19162 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19163 &cu->header, &bytes_read);
19164 info_ptr += bytes_read;
19165 break;
19166 case DW_FORM_GNU_ref_alt:
19167 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19168 info_ptr += bytes_read;
19169 break;
19170 case DW_FORM_addr:
19171 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19172 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19173 info_ptr += bytes_read;
19174 break;
19175 case DW_FORM_block2:
19176 blk = dwarf_alloc_block (cu);
19177 blk->size = read_2_bytes (abfd, info_ptr);
19178 info_ptr += 2;
19179 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19180 info_ptr += blk->size;
19181 DW_BLOCK (attr) = blk;
19182 break;
19183 case DW_FORM_block4:
19184 blk = dwarf_alloc_block (cu);
19185 blk->size = read_4_bytes (abfd, info_ptr);
19186 info_ptr += 4;
19187 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19188 info_ptr += blk->size;
19189 DW_BLOCK (attr) = blk;
19190 break;
19191 case DW_FORM_data2:
19192 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19193 info_ptr += 2;
19194 break;
19195 case DW_FORM_data4:
19196 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19197 info_ptr += 4;
19198 break;
19199 case DW_FORM_data8:
19200 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19201 info_ptr += 8;
19202 break;
19203 case DW_FORM_data16:
19204 blk = dwarf_alloc_block (cu);
19205 blk->size = 16;
19206 blk->data = read_n_bytes (abfd, info_ptr, 16);
19207 info_ptr += 16;
19208 DW_BLOCK (attr) = blk;
19209 break;
19210 case DW_FORM_sec_offset:
19211 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19212 info_ptr += bytes_read;
19213 break;
19214 case DW_FORM_string:
19215 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19216 DW_STRING_IS_CANONICAL (attr) = 0;
19217 info_ptr += bytes_read;
19218 break;
19219 case DW_FORM_strp:
19220 if (!cu->per_cu->is_dwz)
19221 {
19222 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19223 abfd, info_ptr, cu_header,
19224 &bytes_read);
19225 DW_STRING_IS_CANONICAL (attr) = 0;
19226 info_ptr += bytes_read;
19227 break;
19228 }
19229 /* FALLTHROUGH */
19230 case DW_FORM_line_strp:
19231 if (!cu->per_cu->is_dwz)
19232 {
19233 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19234 abfd, info_ptr,
19235 cu_header, &bytes_read);
19236 DW_STRING_IS_CANONICAL (attr) = 0;
19237 info_ptr += bytes_read;
19238 break;
19239 }
19240 /* FALLTHROUGH */
19241 case DW_FORM_GNU_strp_alt:
19242 {
19243 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19244 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19245 &bytes_read);
19246
19247 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19248 dwz, str_offset);
19249 DW_STRING_IS_CANONICAL (attr) = 0;
19250 info_ptr += bytes_read;
19251 }
19252 break;
19253 case DW_FORM_exprloc:
19254 case DW_FORM_block:
19255 blk = dwarf_alloc_block (cu);
19256 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19257 info_ptr += bytes_read;
19258 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19259 info_ptr += blk->size;
19260 DW_BLOCK (attr) = blk;
19261 break;
19262 case DW_FORM_block1:
19263 blk = dwarf_alloc_block (cu);
19264 blk->size = read_1_byte (abfd, info_ptr);
19265 info_ptr += 1;
19266 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19267 info_ptr += blk->size;
19268 DW_BLOCK (attr) = blk;
19269 break;
19270 case DW_FORM_data1:
19271 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19272 info_ptr += 1;
19273 break;
19274 case DW_FORM_flag:
19275 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19276 info_ptr += 1;
19277 break;
19278 case DW_FORM_flag_present:
19279 DW_UNSND (attr) = 1;
19280 break;
19281 case DW_FORM_sdata:
19282 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19283 info_ptr += bytes_read;
19284 break;
19285 case DW_FORM_udata:
19286 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19287 info_ptr += bytes_read;
19288 break;
19289 case DW_FORM_ref1:
19290 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19291 + read_1_byte (abfd, info_ptr));
19292 info_ptr += 1;
19293 break;
19294 case DW_FORM_ref2:
19295 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19296 + read_2_bytes (abfd, info_ptr));
19297 info_ptr += 2;
19298 break;
19299 case DW_FORM_ref4:
19300 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19301 + read_4_bytes (abfd, info_ptr));
19302 info_ptr += 4;
19303 break;
19304 case DW_FORM_ref8:
19305 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19306 + read_8_bytes (abfd, info_ptr));
19307 info_ptr += 8;
19308 break;
19309 case DW_FORM_ref_sig8:
19310 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19311 info_ptr += 8;
19312 break;
19313 case DW_FORM_ref_udata:
19314 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19315 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19316 info_ptr += bytes_read;
19317 break;
19318 case DW_FORM_indirect:
19319 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19320 info_ptr += bytes_read;
19321 if (form == DW_FORM_implicit_const)
19322 {
19323 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19324 info_ptr += bytes_read;
19325 }
19326 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19327 info_ptr);
19328 break;
19329 case DW_FORM_implicit_const:
19330 DW_SND (attr) = implicit_const;
19331 break;
19332 case DW_FORM_addrx:
19333 case DW_FORM_GNU_addr_index:
19334 if (reader->dwo_file == NULL)
19335 {
19336 /* For now flag a hard error.
19337 Later we can turn this into a complaint. */
19338 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19339 dwarf_form_name (form),
19340 bfd_get_filename (abfd));
19341 }
19342 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19343 info_ptr += bytes_read;
19344 break;
19345 case DW_FORM_strx:
19346 case DW_FORM_strx1:
19347 case DW_FORM_strx2:
19348 case DW_FORM_strx3:
19349 case DW_FORM_strx4:
19350 case DW_FORM_GNU_str_index:
19351 if (reader->dwo_file == NULL)
19352 {
19353 /* For now flag a hard error.
19354 Later we can turn this into a complaint if warranted. */
19355 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19356 dwarf_form_name (form),
19357 bfd_get_filename (abfd));
19358 }
19359 {
19360 ULONGEST str_index;
19361 if (form == DW_FORM_strx1)
19362 {
19363 str_index = read_1_byte (abfd, info_ptr);
19364 info_ptr += 1;
19365 }
19366 else if (form == DW_FORM_strx2)
19367 {
19368 str_index = read_2_bytes (abfd, info_ptr);
19369 info_ptr += 2;
19370 }
19371 else if (form == DW_FORM_strx3)
19372 {
19373 str_index = read_3_bytes (abfd, info_ptr);
19374 info_ptr += 3;
19375 }
19376 else if (form == DW_FORM_strx4)
19377 {
19378 str_index = read_4_bytes (abfd, info_ptr);
19379 info_ptr += 4;
19380 }
19381 else
19382 {
19383 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19384 info_ptr += bytes_read;
19385 }
19386 DW_STRING (attr) = read_str_index (reader, str_index);
19387 DW_STRING_IS_CANONICAL (attr) = 0;
19388 }
19389 break;
19390 default:
19391 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19392 dwarf_form_name (form),
19393 bfd_get_filename (abfd));
19394 }
19395
19396 /* Super hack. */
19397 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19398 attr->form = DW_FORM_GNU_ref_alt;
19399
19400 /* We have seen instances where the compiler tried to emit a byte
19401 size attribute of -1 which ended up being encoded as an unsigned
19402 0xffffffff. Although 0xffffffff is technically a valid size value,
19403 an object of this size seems pretty unlikely so we can relatively
19404 safely treat these cases as if the size attribute was invalid and
19405 treat them as zero by default. */
19406 if (attr->name == DW_AT_byte_size
19407 && form == DW_FORM_data4
19408 && DW_UNSND (attr) >= 0xffffffff)
19409 {
19410 complaint
19411 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19412 hex_string (DW_UNSND (attr)));
19413 DW_UNSND (attr) = 0;
19414 }
19415
19416 return info_ptr;
19417 }
19418
19419 /* Read an attribute described by an abbreviated attribute. */
19420
19421 static const gdb_byte *
19422 read_attribute (const struct die_reader_specs *reader,
19423 struct attribute *attr, struct attr_abbrev *abbrev,
19424 const gdb_byte *info_ptr)
19425 {
19426 attr->name = abbrev->name;
19427 return read_attribute_value (reader, attr, abbrev->form,
19428 abbrev->implicit_const, info_ptr);
19429 }
19430
19431 /* Read dwarf information from a buffer. */
19432
19433 static unsigned int
19434 read_1_byte (bfd *abfd, const gdb_byte *buf)
19435 {
19436 return bfd_get_8 (abfd, buf);
19437 }
19438
19439 static int
19440 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19441 {
19442 return bfd_get_signed_8 (abfd, buf);
19443 }
19444
19445 static unsigned int
19446 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19447 {
19448 return bfd_get_16 (abfd, buf);
19449 }
19450
19451 static int
19452 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19453 {
19454 return bfd_get_signed_16 (abfd, buf);
19455 }
19456
19457 static unsigned int
19458 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19459 {
19460 unsigned int result = 0;
19461 for (int i = 0; i < 3; ++i)
19462 {
19463 unsigned char byte = bfd_get_8 (abfd, buf);
19464 buf++;
19465 result |= ((unsigned int) byte << (i * 8));
19466 }
19467 return result;
19468 }
19469
19470 static unsigned int
19471 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19472 {
19473 return bfd_get_32 (abfd, buf);
19474 }
19475
19476 static int
19477 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19478 {
19479 return bfd_get_signed_32 (abfd, buf);
19480 }
19481
19482 static ULONGEST
19483 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19484 {
19485 return bfd_get_64 (abfd, buf);
19486 }
19487
19488 static CORE_ADDR
19489 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19490 unsigned int *bytes_read)
19491 {
19492 struct comp_unit_head *cu_header = &cu->header;
19493 CORE_ADDR retval = 0;
19494
19495 if (cu_header->signed_addr_p)
19496 {
19497 switch (cu_header->addr_size)
19498 {
19499 case 2:
19500 retval = bfd_get_signed_16 (abfd, buf);
19501 break;
19502 case 4:
19503 retval = bfd_get_signed_32 (abfd, buf);
19504 break;
19505 case 8:
19506 retval = bfd_get_signed_64 (abfd, buf);
19507 break;
19508 default:
19509 internal_error (__FILE__, __LINE__,
19510 _("read_address: bad switch, signed [in module %s]"),
19511 bfd_get_filename (abfd));
19512 }
19513 }
19514 else
19515 {
19516 switch (cu_header->addr_size)
19517 {
19518 case 2:
19519 retval = bfd_get_16 (abfd, buf);
19520 break;
19521 case 4:
19522 retval = bfd_get_32 (abfd, buf);
19523 break;
19524 case 8:
19525 retval = bfd_get_64 (abfd, buf);
19526 break;
19527 default:
19528 internal_error (__FILE__, __LINE__,
19529 _("read_address: bad switch, "
19530 "unsigned [in module %s]"),
19531 bfd_get_filename (abfd));
19532 }
19533 }
19534
19535 *bytes_read = cu_header->addr_size;
19536 return retval;
19537 }
19538
19539 /* Read the initial length from a section. The (draft) DWARF 3
19540 specification allows the initial length to take up either 4 bytes
19541 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19542 bytes describe the length and all offsets will be 8 bytes in length
19543 instead of 4.
19544
19545 An older, non-standard 64-bit format is also handled by this
19546 function. The older format in question stores the initial length
19547 as an 8-byte quantity without an escape value. Lengths greater
19548 than 2^32 aren't very common which means that the initial 4 bytes
19549 is almost always zero. Since a length value of zero doesn't make
19550 sense for the 32-bit format, this initial zero can be considered to
19551 be an escape value which indicates the presence of the older 64-bit
19552 format. As written, the code can't detect (old format) lengths
19553 greater than 4GB. If it becomes necessary to handle lengths
19554 somewhat larger than 4GB, we could allow other small values (such
19555 as the non-sensical values of 1, 2, and 3) to also be used as
19556 escape values indicating the presence of the old format.
19557
19558 The value returned via bytes_read should be used to increment the
19559 relevant pointer after calling read_initial_length().
19560
19561 [ Note: read_initial_length() and read_offset() are based on the
19562 document entitled "DWARF Debugging Information Format", revision
19563 3, draft 8, dated November 19, 2001. This document was obtained
19564 from:
19565
19566 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19567
19568 This document is only a draft and is subject to change. (So beware.)
19569
19570 Details regarding the older, non-standard 64-bit format were
19571 determined empirically by examining 64-bit ELF files produced by
19572 the SGI toolchain on an IRIX 6.5 machine.
19573
19574 - Kevin, July 16, 2002
19575 ] */
19576
19577 static LONGEST
19578 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19579 {
19580 LONGEST length = bfd_get_32 (abfd, buf);
19581
19582 if (length == 0xffffffff)
19583 {
19584 length = bfd_get_64 (abfd, buf + 4);
19585 *bytes_read = 12;
19586 }
19587 else if (length == 0)
19588 {
19589 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19590 length = bfd_get_64 (abfd, buf);
19591 *bytes_read = 8;
19592 }
19593 else
19594 {
19595 *bytes_read = 4;
19596 }
19597
19598 return length;
19599 }
19600
19601 /* Cover function for read_initial_length.
19602 Returns the length of the object at BUF, and stores the size of the
19603 initial length in *BYTES_READ and stores the size that offsets will be in
19604 *OFFSET_SIZE.
19605 If the initial length size is not equivalent to that specified in
19606 CU_HEADER then issue a complaint.
19607 This is useful when reading non-comp-unit headers. */
19608
19609 static LONGEST
19610 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19611 const struct comp_unit_head *cu_header,
19612 unsigned int *bytes_read,
19613 unsigned int *offset_size)
19614 {
19615 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19616
19617 gdb_assert (cu_header->initial_length_size == 4
19618 || cu_header->initial_length_size == 8
19619 || cu_header->initial_length_size == 12);
19620
19621 if (cu_header->initial_length_size != *bytes_read)
19622 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19623
19624 *offset_size = (*bytes_read == 4) ? 4 : 8;
19625 return length;
19626 }
19627
19628 /* Read an offset from the data stream. The size of the offset is
19629 given by cu_header->offset_size. */
19630
19631 static LONGEST
19632 read_offset (bfd *abfd, const gdb_byte *buf,
19633 const struct comp_unit_head *cu_header,
19634 unsigned int *bytes_read)
19635 {
19636 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19637
19638 *bytes_read = cu_header->offset_size;
19639 return offset;
19640 }
19641
19642 /* Read an offset from the data stream. */
19643
19644 static LONGEST
19645 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19646 {
19647 LONGEST retval = 0;
19648
19649 switch (offset_size)
19650 {
19651 case 4:
19652 retval = bfd_get_32 (abfd, buf);
19653 break;
19654 case 8:
19655 retval = bfd_get_64 (abfd, buf);
19656 break;
19657 default:
19658 internal_error (__FILE__, __LINE__,
19659 _("read_offset_1: bad switch [in module %s]"),
19660 bfd_get_filename (abfd));
19661 }
19662
19663 return retval;
19664 }
19665
19666 static const gdb_byte *
19667 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19668 {
19669 /* If the size of a host char is 8 bits, we can return a pointer
19670 to the buffer, otherwise we have to copy the data to a buffer
19671 allocated on the temporary obstack. */
19672 gdb_assert (HOST_CHAR_BIT == 8);
19673 return buf;
19674 }
19675
19676 static const char *
19677 read_direct_string (bfd *abfd, const gdb_byte *buf,
19678 unsigned int *bytes_read_ptr)
19679 {
19680 /* If the size of a host char is 8 bits, we can return a pointer
19681 to the string, otherwise we have to copy the string to a buffer
19682 allocated on the temporary obstack. */
19683 gdb_assert (HOST_CHAR_BIT == 8);
19684 if (*buf == '\0')
19685 {
19686 *bytes_read_ptr = 1;
19687 return NULL;
19688 }
19689 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19690 return (const char *) buf;
19691 }
19692
19693 /* Return pointer to string at section SECT offset STR_OFFSET with error
19694 reporting strings FORM_NAME and SECT_NAME. */
19695
19696 static const char *
19697 read_indirect_string_at_offset_from (struct objfile *objfile,
19698 bfd *abfd, LONGEST str_offset,
19699 struct dwarf2_section_info *sect,
19700 const char *form_name,
19701 const char *sect_name)
19702 {
19703 dwarf2_read_section (objfile, sect);
19704 if (sect->buffer == NULL)
19705 error (_("%s used without %s section [in module %s]"),
19706 form_name, sect_name, bfd_get_filename (abfd));
19707 if (str_offset >= sect->size)
19708 error (_("%s pointing outside of %s section [in module %s]"),
19709 form_name, sect_name, bfd_get_filename (abfd));
19710 gdb_assert (HOST_CHAR_BIT == 8);
19711 if (sect->buffer[str_offset] == '\0')
19712 return NULL;
19713 return (const char *) (sect->buffer + str_offset);
19714 }
19715
19716 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19717
19718 static const char *
19719 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19720 bfd *abfd, LONGEST str_offset)
19721 {
19722 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19723 abfd, str_offset,
19724 &dwarf2_per_objfile->str,
19725 "DW_FORM_strp", ".debug_str");
19726 }
19727
19728 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19729
19730 static const char *
19731 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19732 bfd *abfd, LONGEST str_offset)
19733 {
19734 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19735 abfd, str_offset,
19736 &dwarf2_per_objfile->line_str,
19737 "DW_FORM_line_strp",
19738 ".debug_line_str");
19739 }
19740
19741 /* Read a string at offset STR_OFFSET in the .debug_str section from
19742 the .dwz file DWZ. Throw an error if the offset is too large. If
19743 the string consists of a single NUL byte, return NULL; otherwise
19744 return a pointer to the string. */
19745
19746 static const char *
19747 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19748 LONGEST str_offset)
19749 {
19750 dwarf2_read_section (objfile, &dwz->str);
19751
19752 if (dwz->str.buffer == NULL)
19753 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19754 "section [in module %s]"),
19755 bfd_get_filename (dwz->dwz_bfd));
19756 if (str_offset >= dwz->str.size)
19757 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19758 ".debug_str section [in module %s]"),
19759 bfd_get_filename (dwz->dwz_bfd));
19760 gdb_assert (HOST_CHAR_BIT == 8);
19761 if (dwz->str.buffer[str_offset] == '\0')
19762 return NULL;
19763 return (const char *) (dwz->str.buffer + str_offset);
19764 }
19765
19766 /* Return pointer to string at .debug_str offset as read from BUF.
19767 BUF is assumed to be in a compilation unit described by CU_HEADER.
19768 Return *BYTES_READ_PTR count of bytes read from BUF. */
19769
19770 static const char *
19771 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19772 const gdb_byte *buf,
19773 const struct comp_unit_head *cu_header,
19774 unsigned int *bytes_read_ptr)
19775 {
19776 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19777
19778 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19779 }
19780
19781 /* Return pointer to string at .debug_line_str offset as read from BUF.
19782 BUF is assumed to be in a compilation unit described by CU_HEADER.
19783 Return *BYTES_READ_PTR count of bytes read from BUF. */
19784
19785 static const char *
19786 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19787 bfd *abfd, const gdb_byte *buf,
19788 const struct comp_unit_head *cu_header,
19789 unsigned int *bytes_read_ptr)
19790 {
19791 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19792
19793 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19794 str_offset);
19795 }
19796
19797 ULONGEST
19798 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19799 unsigned int *bytes_read_ptr)
19800 {
19801 ULONGEST result;
19802 unsigned int num_read;
19803 int shift;
19804 unsigned char byte;
19805
19806 result = 0;
19807 shift = 0;
19808 num_read = 0;
19809 while (1)
19810 {
19811 byte = bfd_get_8 (abfd, buf);
19812 buf++;
19813 num_read++;
19814 result |= ((ULONGEST) (byte & 127) << shift);
19815 if ((byte & 128) == 0)
19816 {
19817 break;
19818 }
19819 shift += 7;
19820 }
19821 *bytes_read_ptr = num_read;
19822 return result;
19823 }
19824
19825 static LONGEST
19826 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19827 unsigned int *bytes_read_ptr)
19828 {
19829 ULONGEST result;
19830 int shift, num_read;
19831 unsigned char byte;
19832
19833 result = 0;
19834 shift = 0;
19835 num_read = 0;
19836 while (1)
19837 {
19838 byte = bfd_get_8 (abfd, buf);
19839 buf++;
19840 num_read++;
19841 result |= ((ULONGEST) (byte & 127) << shift);
19842 shift += 7;
19843 if ((byte & 128) == 0)
19844 {
19845 break;
19846 }
19847 }
19848 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19849 result |= -(((ULONGEST) 1) << shift);
19850 *bytes_read_ptr = num_read;
19851 return result;
19852 }
19853
19854 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19855 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19856 ADDR_SIZE is the size of addresses from the CU header. */
19857
19858 static CORE_ADDR
19859 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19860 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19861 {
19862 struct objfile *objfile = dwarf2_per_objfile->objfile;
19863 bfd *abfd = objfile->obfd;
19864 const gdb_byte *info_ptr;
19865
19866 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19867 if (dwarf2_per_objfile->addr.buffer == NULL)
19868 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19869 objfile_name (objfile));
19870 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19871 error (_("DW_FORM_addr_index pointing outside of "
19872 ".debug_addr section [in module %s]"),
19873 objfile_name (objfile));
19874 info_ptr = (dwarf2_per_objfile->addr.buffer
19875 + addr_base + addr_index * addr_size);
19876 if (addr_size == 4)
19877 return bfd_get_32 (abfd, info_ptr);
19878 else
19879 return bfd_get_64 (abfd, info_ptr);
19880 }
19881
19882 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19883
19884 static CORE_ADDR
19885 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19886 {
19887 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19888 cu->addr_base, cu->header.addr_size);
19889 }
19890
19891 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19892
19893 static CORE_ADDR
19894 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19895 unsigned int *bytes_read)
19896 {
19897 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19898 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19899
19900 return read_addr_index (cu, addr_index);
19901 }
19902
19903 /* Data structure to pass results from dwarf2_read_addr_index_reader
19904 back to dwarf2_read_addr_index. */
19905
19906 struct dwarf2_read_addr_index_data
19907 {
19908 ULONGEST addr_base;
19909 int addr_size;
19910 };
19911
19912 /* die_reader_func for dwarf2_read_addr_index. */
19913
19914 static void
19915 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19916 const gdb_byte *info_ptr,
19917 struct die_info *comp_unit_die,
19918 int has_children,
19919 void *data)
19920 {
19921 struct dwarf2_cu *cu = reader->cu;
19922 struct dwarf2_read_addr_index_data *aidata =
19923 (struct dwarf2_read_addr_index_data *) data;
19924
19925 aidata->addr_base = cu->addr_base;
19926 aidata->addr_size = cu->header.addr_size;
19927 }
19928
19929 /* Given an index in .debug_addr, fetch the value.
19930 NOTE: This can be called during dwarf expression evaluation,
19931 long after the debug information has been read, and thus per_cu->cu
19932 may no longer exist. */
19933
19934 CORE_ADDR
19935 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19936 unsigned int addr_index)
19937 {
19938 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19939 struct dwarf2_cu *cu = per_cu->cu;
19940 ULONGEST addr_base;
19941 int addr_size;
19942
19943 /* We need addr_base and addr_size.
19944 If we don't have PER_CU->cu, we have to get it.
19945 Nasty, but the alternative is storing the needed info in PER_CU,
19946 which at this point doesn't seem justified: it's not clear how frequently
19947 it would get used and it would increase the size of every PER_CU.
19948 Entry points like dwarf2_per_cu_addr_size do a similar thing
19949 so we're not in uncharted territory here.
19950 Alas we need to be a bit more complicated as addr_base is contained
19951 in the DIE.
19952
19953 We don't need to read the entire CU(/TU).
19954 We just need the header and top level die.
19955
19956 IWBN to use the aging mechanism to let us lazily later discard the CU.
19957 For now we skip this optimization. */
19958
19959 if (cu != NULL)
19960 {
19961 addr_base = cu->addr_base;
19962 addr_size = cu->header.addr_size;
19963 }
19964 else
19965 {
19966 struct dwarf2_read_addr_index_data aidata;
19967
19968 /* Note: We can't use init_cutu_and_read_dies_simple here,
19969 we need addr_base. */
19970 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19971 dwarf2_read_addr_index_reader, &aidata);
19972 addr_base = aidata.addr_base;
19973 addr_size = aidata.addr_size;
19974 }
19975
19976 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19977 addr_size);
19978 }
19979
19980 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19981 This is only used by the Fission support. */
19982
19983 static const char *
19984 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19985 {
19986 struct dwarf2_cu *cu = reader->cu;
19987 struct dwarf2_per_objfile *dwarf2_per_objfile
19988 = cu->per_cu->dwarf2_per_objfile;
19989 struct objfile *objfile = dwarf2_per_objfile->objfile;
19990 const char *objf_name = objfile_name (objfile);
19991 bfd *abfd = objfile->obfd;
19992 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19993 struct dwarf2_section_info *str_offsets_section =
19994 &reader->dwo_file->sections.str_offsets;
19995 const gdb_byte *info_ptr;
19996 ULONGEST str_offset;
19997 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19998
19999 dwarf2_read_section (objfile, str_section);
20000 dwarf2_read_section (objfile, str_offsets_section);
20001 if (str_section->buffer == NULL)
20002 error (_("%s used without .debug_str.dwo section"
20003 " in CU at offset %s [in module %s]"),
20004 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20005 if (str_offsets_section->buffer == NULL)
20006 error (_("%s used without .debug_str_offsets.dwo section"
20007 " in CU at offset %s [in module %s]"),
20008 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20009 if (str_index * cu->header.offset_size >= str_offsets_section->size)
20010 error (_("%s pointing outside of .debug_str_offsets.dwo"
20011 " section in CU at offset %s [in module %s]"),
20012 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20013 info_ptr = (str_offsets_section->buffer
20014 + str_index * cu->header.offset_size);
20015 if (cu->header.offset_size == 4)
20016 str_offset = bfd_get_32 (abfd, info_ptr);
20017 else
20018 str_offset = bfd_get_64 (abfd, info_ptr);
20019 if (str_offset >= str_section->size)
20020 error (_("Offset from %s pointing outside of"
20021 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20022 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20023 return (const char *) (str_section->buffer + str_offset);
20024 }
20025
20026 /* Return the length of an LEB128 number in BUF. */
20027
20028 static int
20029 leb128_size (const gdb_byte *buf)
20030 {
20031 const gdb_byte *begin = buf;
20032 gdb_byte byte;
20033
20034 while (1)
20035 {
20036 byte = *buf++;
20037 if ((byte & 128) == 0)
20038 return buf - begin;
20039 }
20040 }
20041
20042 static void
20043 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20044 {
20045 switch (lang)
20046 {
20047 case DW_LANG_C89:
20048 case DW_LANG_C99:
20049 case DW_LANG_C11:
20050 case DW_LANG_C:
20051 case DW_LANG_UPC:
20052 cu->language = language_c;
20053 break;
20054 case DW_LANG_Java:
20055 case DW_LANG_C_plus_plus:
20056 case DW_LANG_C_plus_plus_11:
20057 case DW_LANG_C_plus_plus_14:
20058 cu->language = language_cplus;
20059 break;
20060 case DW_LANG_D:
20061 cu->language = language_d;
20062 break;
20063 case DW_LANG_Fortran77:
20064 case DW_LANG_Fortran90:
20065 case DW_LANG_Fortran95:
20066 case DW_LANG_Fortran03:
20067 case DW_LANG_Fortran08:
20068 cu->language = language_fortran;
20069 break;
20070 case DW_LANG_Go:
20071 cu->language = language_go;
20072 break;
20073 case DW_LANG_Mips_Assembler:
20074 cu->language = language_asm;
20075 break;
20076 case DW_LANG_Ada83:
20077 case DW_LANG_Ada95:
20078 cu->language = language_ada;
20079 break;
20080 case DW_LANG_Modula2:
20081 cu->language = language_m2;
20082 break;
20083 case DW_LANG_Pascal83:
20084 cu->language = language_pascal;
20085 break;
20086 case DW_LANG_ObjC:
20087 cu->language = language_objc;
20088 break;
20089 case DW_LANG_Rust:
20090 case DW_LANG_Rust_old:
20091 cu->language = language_rust;
20092 break;
20093 case DW_LANG_Cobol74:
20094 case DW_LANG_Cobol85:
20095 default:
20096 cu->language = language_minimal;
20097 break;
20098 }
20099 cu->language_defn = language_def (cu->language);
20100 }
20101
20102 /* Return the named attribute or NULL if not there. */
20103
20104 static struct attribute *
20105 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20106 {
20107 for (;;)
20108 {
20109 unsigned int i;
20110 struct attribute *spec = NULL;
20111
20112 for (i = 0; i < die->num_attrs; ++i)
20113 {
20114 if (die->attrs[i].name == name)
20115 return &die->attrs[i];
20116 if (die->attrs[i].name == DW_AT_specification
20117 || die->attrs[i].name == DW_AT_abstract_origin)
20118 spec = &die->attrs[i];
20119 }
20120
20121 if (!spec)
20122 break;
20123
20124 die = follow_die_ref (die, spec, &cu);
20125 }
20126
20127 return NULL;
20128 }
20129
20130 /* Return the named attribute or NULL if not there,
20131 but do not follow DW_AT_specification, etc.
20132 This is for use in contexts where we're reading .debug_types dies.
20133 Following DW_AT_specification, DW_AT_abstract_origin will take us
20134 back up the chain, and we want to go down. */
20135
20136 static struct attribute *
20137 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20138 {
20139 unsigned int i;
20140
20141 for (i = 0; i < die->num_attrs; ++i)
20142 if (die->attrs[i].name == name)
20143 return &die->attrs[i];
20144
20145 return NULL;
20146 }
20147
20148 /* Return the string associated with a string-typed attribute, or NULL if it
20149 is either not found or is of an incorrect type. */
20150
20151 static const char *
20152 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20153 {
20154 struct attribute *attr;
20155 const char *str = NULL;
20156
20157 attr = dwarf2_attr (die, name, cu);
20158
20159 if (attr != NULL)
20160 {
20161 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20162 || attr->form == DW_FORM_string
20163 || attr->form == DW_FORM_strx
20164 || attr->form == DW_FORM_GNU_str_index
20165 || attr->form == DW_FORM_GNU_strp_alt)
20166 str = DW_STRING (attr);
20167 else
20168 complaint (_("string type expected for attribute %s for "
20169 "DIE at %s in module %s"),
20170 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20171 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20172 }
20173
20174 return str;
20175 }
20176
20177 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20178 and holds a non-zero value. This function should only be used for
20179 DW_FORM_flag or DW_FORM_flag_present attributes. */
20180
20181 static int
20182 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20183 {
20184 struct attribute *attr = dwarf2_attr (die, name, cu);
20185
20186 return (attr && DW_UNSND (attr));
20187 }
20188
20189 static int
20190 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20191 {
20192 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20193 which value is non-zero. However, we have to be careful with
20194 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20195 (via dwarf2_flag_true_p) follows this attribute. So we may
20196 end up accidently finding a declaration attribute that belongs
20197 to a different DIE referenced by the specification attribute,
20198 even though the given DIE does not have a declaration attribute. */
20199 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20200 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20201 }
20202
20203 /* Return the die giving the specification for DIE, if there is
20204 one. *SPEC_CU is the CU containing DIE on input, and the CU
20205 containing the return value on output. If there is no
20206 specification, but there is an abstract origin, that is
20207 returned. */
20208
20209 static struct die_info *
20210 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20211 {
20212 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20213 *spec_cu);
20214
20215 if (spec_attr == NULL)
20216 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20217
20218 if (spec_attr == NULL)
20219 return NULL;
20220 else
20221 return follow_die_ref (die, spec_attr, spec_cu);
20222 }
20223
20224 /* Stub for free_line_header to match void * callback types. */
20225
20226 static void
20227 free_line_header_voidp (void *arg)
20228 {
20229 struct line_header *lh = (struct line_header *) arg;
20230
20231 delete lh;
20232 }
20233
20234 void
20235 line_header::add_include_dir (const char *include_dir)
20236 {
20237 if (dwarf_line_debug >= 2)
20238 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20239 include_dirs.size () + 1, include_dir);
20240
20241 include_dirs.push_back (include_dir);
20242 }
20243
20244 void
20245 line_header::add_file_name (const char *name,
20246 dir_index d_index,
20247 unsigned int mod_time,
20248 unsigned int length)
20249 {
20250 if (dwarf_line_debug >= 2)
20251 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20252 (unsigned) file_names.size () + 1, name);
20253
20254 file_names.emplace_back (name, d_index, mod_time, length);
20255 }
20256
20257 /* A convenience function to find the proper .debug_line section for a CU. */
20258
20259 static struct dwarf2_section_info *
20260 get_debug_line_section (struct dwarf2_cu *cu)
20261 {
20262 struct dwarf2_section_info *section;
20263 struct dwarf2_per_objfile *dwarf2_per_objfile
20264 = cu->per_cu->dwarf2_per_objfile;
20265
20266 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20267 DWO file. */
20268 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20269 section = &cu->dwo_unit->dwo_file->sections.line;
20270 else if (cu->per_cu->is_dwz)
20271 {
20272 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20273
20274 section = &dwz->line;
20275 }
20276 else
20277 section = &dwarf2_per_objfile->line;
20278
20279 return section;
20280 }
20281
20282 /* Read directory or file name entry format, starting with byte of
20283 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20284 entries count and the entries themselves in the described entry
20285 format. */
20286
20287 static void
20288 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20289 bfd *abfd, const gdb_byte **bufp,
20290 struct line_header *lh,
20291 const struct comp_unit_head *cu_header,
20292 void (*callback) (struct line_header *lh,
20293 const char *name,
20294 dir_index d_index,
20295 unsigned int mod_time,
20296 unsigned int length))
20297 {
20298 gdb_byte format_count, formati;
20299 ULONGEST data_count, datai;
20300 const gdb_byte *buf = *bufp;
20301 const gdb_byte *format_header_data;
20302 unsigned int bytes_read;
20303
20304 format_count = read_1_byte (abfd, buf);
20305 buf += 1;
20306 format_header_data = buf;
20307 for (formati = 0; formati < format_count; formati++)
20308 {
20309 read_unsigned_leb128 (abfd, buf, &bytes_read);
20310 buf += bytes_read;
20311 read_unsigned_leb128 (abfd, buf, &bytes_read);
20312 buf += bytes_read;
20313 }
20314
20315 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20316 buf += bytes_read;
20317 for (datai = 0; datai < data_count; datai++)
20318 {
20319 const gdb_byte *format = format_header_data;
20320 struct file_entry fe;
20321
20322 for (formati = 0; formati < format_count; formati++)
20323 {
20324 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20325 format += bytes_read;
20326
20327 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20328 format += bytes_read;
20329
20330 gdb::optional<const char *> string;
20331 gdb::optional<unsigned int> uint;
20332
20333 switch (form)
20334 {
20335 case DW_FORM_string:
20336 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20337 buf += bytes_read;
20338 break;
20339
20340 case DW_FORM_line_strp:
20341 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20342 abfd, buf,
20343 cu_header,
20344 &bytes_read));
20345 buf += bytes_read;
20346 break;
20347
20348 case DW_FORM_data1:
20349 uint.emplace (read_1_byte (abfd, buf));
20350 buf += 1;
20351 break;
20352
20353 case DW_FORM_data2:
20354 uint.emplace (read_2_bytes (abfd, buf));
20355 buf += 2;
20356 break;
20357
20358 case DW_FORM_data4:
20359 uint.emplace (read_4_bytes (abfd, buf));
20360 buf += 4;
20361 break;
20362
20363 case DW_FORM_data8:
20364 uint.emplace (read_8_bytes (abfd, buf));
20365 buf += 8;
20366 break;
20367
20368 case DW_FORM_udata:
20369 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20370 buf += bytes_read;
20371 break;
20372
20373 case DW_FORM_block:
20374 /* It is valid only for DW_LNCT_timestamp which is ignored by
20375 current GDB. */
20376 break;
20377 }
20378
20379 switch (content_type)
20380 {
20381 case DW_LNCT_path:
20382 if (string.has_value ())
20383 fe.name = *string;
20384 break;
20385 case DW_LNCT_directory_index:
20386 if (uint.has_value ())
20387 fe.d_index = (dir_index) *uint;
20388 break;
20389 case DW_LNCT_timestamp:
20390 if (uint.has_value ())
20391 fe.mod_time = *uint;
20392 break;
20393 case DW_LNCT_size:
20394 if (uint.has_value ())
20395 fe.length = *uint;
20396 break;
20397 case DW_LNCT_MD5:
20398 break;
20399 default:
20400 complaint (_("Unknown format content type %s"),
20401 pulongest (content_type));
20402 }
20403 }
20404
20405 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20406 }
20407
20408 *bufp = buf;
20409 }
20410
20411 /* Read the statement program header starting at OFFSET in
20412 .debug_line, or .debug_line.dwo. Return a pointer
20413 to a struct line_header, allocated using xmalloc.
20414 Returns NULL if there is a problem reading the header, e.g., if it
20415 has a version we don't understand.
20416
20417 NOTE: the strings in the include directory and file name tables of
20418 the returned object point into the dwarf line section buffer,
20419 and must not be freed. */
20420
20421 static line_header_up
20422 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20423 {
20424 const gdb_byte *line_ptr;
20425 unsigned int bytes_read, offset_size;
20426 int i;
20427 const char *cur_dir, *cur_file;
20428 struct dwarf2_section_info *section;
20429 bfd *abfd;
20430 struct dwarf2_per_objfile *dwarf2_per_objfile
20431 = cu->per_cu->dwarf2_per_objfile;
20432
20433 section = get_debug_line_section (cu);
20434 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20435 if (section->buffer == NULL)
20436 {
20437 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20438 complaint (_("missing .debug_line.dwo section"));
20439 else
20440 complaint (_("missing .debug_line section"));
20441 return 0;
20442 }
20443
20444 /* We can't do this until we know the section is non-empty.
20445 Only then do we know we have such a section. */
20446 abfd = get_section_bfd_owner (section);
20447
20448 /* Make sure that at least there's room for the total_length field.
20449 That could be 12 bytes long, but we're just going to fudge that. */
20450 if (to_underlying (sect_off) + 4 >= section->size)
20451 {
20452 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20453 return 0;
20454 }
20455
20456 line_header_up lh (new line_header ());
20457
20458 lh->sect_off = sect_off;
20459 lh->offset_in_dwz = cu->per_cu->is_dwz;
20460
20461 line_ptr = section->buffer + to_underlying (sect_off);
20462
20463 /* Read in the header. */
20464 lh->total_length =
20465 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20466 &bytes_read, &offset_size);
20467 line_ptr += bytes_read;
20468 if (line_ptr + lh->total_length > (section->buffer + section->size))
20469 {
20470 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20471 return 0;
20472 }
20473 lh->statement_program_end = line_ptr + lh->total_length;
20474 lh->version = read_2_bytes (abfd, line_ptr);
20475 line_ptr += 2;
20476 if (lh->version > 5)
20477 {
20478 /* This is a version we don't understand. The format could have
20479 changed in ways we don't handle properly so just punt. */
20480 complaint (_("unsupported version in .debug_line section"));
20481 return NULL;
20482 }
20483 if (lh->version >= 5)
20484 {
20485 gdb_byte segment_selector_size;
20486
20487 /* Skip address size. */
20488 read_1_byte (abfd, line_ptr);
20489 line_ptr += 1;
20490
20491 segment_selector_size = read_1_byte (abfd, line_ptr);
20492 line_ptr += 1;
20493 if (segment_selector_size != 0)
20494 {
20495 complaint (_("unsupported segment selector size %u "
20496 "in .debug_line section"),
20497 segment_selector_size);
20498 return NULL;
20499 }
20500 }
20501 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20502 line_ptr += offset_size;
20503 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20504 line_ptr += 1;
20505 if (lh->version >= 4)
20506 {
20507 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20508 line_ptr += 1;
20509 }
20510 else
20511 lh->maximum_ops_per_instruction = 1;
20512
20513 if (lh->maximum_ops_per_instruction == 0)
20514 {
20515 lh->maximum_ops_per_instruction = 1;
20516 complaint (_("invalid maximum_ops_per_instruction "
20517 "in `.debug_line' section"));
20518 }
20519
20520 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20521 line_ptr += 1;
20522 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20523 line_ptr += 1;
20524 lh->line_range = read_1_byte (abfd, line_ptr);
20525 line_ptr += 1;
20526 lh->opcode_base = read_1_byte (abfd, line_ptr);
20527 line_ptr += 1;
20528 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20529
20530 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20531 for (i = 1; i < lh->opcode_base; ++i)
20532 {
20533 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20534 line_ptr += 1;
20535 }
20536
20537 if (lh->version >= 5)
20538 {
20539 /* Read directory table. */
20540 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20541 &cu->header,
20542 [] (struct line_header *header, const char *name,
20543 dir_index d_index, unsigned int mod_time,
20544 unsigned int length)
20545 {
20546 header->add_include_dir (name);
20547 });
20548
20549 /* Read file name table. */
20550 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20551 &cu->header,
20552 [] (struct line_header *header, const char *name,
20553 dir_index d_index, unsigned int mod_time,
20554 unsigned int length)
20555 {
20556 header->add_file_name (name, d_index, mod_time, length);
20557 });
20558 }
20559 else
20560 {
20561 /* Read directory table. */
20562 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20563 {
20564 line_ptr += bytes_read;
20565 lh->add_include_dir (cur_dir);
20566 }
20567 line_ptr += bytes_read;
20568
20569 /* Read file name table. */
20570 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20571 {
20572 unsigned int mod_time, length;
20573 dir_index d_index;
20574
20575 line_ptr += bytes_read;
20576 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20577 line_ptr += bytes_read;
20578 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20579 line_ptr += bytes_read;
20580 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20581 line_ptr += bytes_read;
20582
20583 lh->add_file_name (cur_file, d_index, mod_time, length);
20584 }
20585 line_ptr += bytes_read;
20586 }
20587 lh->statement_program_start = line_ptr;
20588
20589 if (line_ptr > (section->buffer + section->size))
20590 complaint (_("line number info header doesn't "
20591 "fit in `.debug_line' section"));
20592
20593 return lh;
20594 }
20595
20596 /* Subroutine of dwarf_decode_lines to simplify it.
20597 Return the file name of the psymtab for included file FILE_INDEX
20598 in line header LH of PST.
20599 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20600 If space for the result is malloc'd, *NAME_HOLDER will be set.
20601 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20602
20603 static const char *
20604 psymtab_include_file_name (const struct line_header *lh, int file_index,
20605 const struct partial_symtab *pst,
20606 const char *comp_dir,
20607 gdb::unique_xmalloc_ptr<char> *name_holder)
20608 {
20609 const file_entry &fe = lh->file_names[file_index];
20610 const char *include_name = fe.name;
20611 const char *include_name_to_compare = include_name;
20612 const char *pst_filename;
20613 int file_is_pst;
20614
20615 const char *dir_name = fe.include_dir (lh);
20616
20617 gdb::unique_xmalloc_ptr<char> hold_compare;
20618 if (!IS_ABSOLUTE_PATH (include_name)
20619 && (dir_name != NULL || comp_dir != NULL))
20620 {
20621 /* Avoid creating a duplicate psymtab for PST.
20622 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20623 Before we do the comparison, however, we need to account
20624 for DIR_NAME and COMP_DIR.
20625 First prepend dir_name (if non-NULL). If we still don't
20626 have an absolute path prepend comp_dir (if non-NULL).
20627 However, the directory we record in the include-file's
20628 psymtab does not contain COMP_DIR (to match the
20629 corresponding symtab(s)).
20630
20631 Example:
20632
20633 bash$ cd /tmp
20634 bash$ gcc -g ./hello.c
20635 include_name = "hello.c"
20636 dir_name = "."
20637 DW_AT_comp_dir = comp_dir = "/tmp"
20638 DW_AT_name = "./hello.c"
20639
20640 */
20641
20642 if (dir_name != NULL)
20643 {
20644 name_holder->reset (concat (dir_name, SLASH_STRING,
20645 include_name, (char *) NULL));
20646 include_name = name_holder->get ();
20647 include_name_to_compare = include_name;
20648 }
20649 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20650 {
20651 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20652 include_name, (char *) NULL));
20653 include_name_to_compare = hold_compare.get ();
20654 }
20655 }
20656
20657 pst_filename = pst->filename;
20658 gdb::unique_xmalloc_ptr<char> copied_name;
20659 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20660 {
20661 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20662 pst_filename, (char *) NULL));
20663 pst_filename = copied_name.get ();
20664 }
20665
20666 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20667
20668 if (file_is_pst)
20669 return NULL;
20670 return include_name;
20671 }
20672
20673 /* State machine to track the state of the line number program. */
20674
20675 class lnp_state_machine
20676 {
20677 public:
20678 /* Initialize a machine state for the start of a line number
20679 program. */
20680 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20681 bool record_lines_p);
20682
20683 file_entry *current_file ()
20684 {
20685 /* lh->file_names is 0-based, but the file name numbers in the
20686 statement program are 1-based. */
20687 return m_line_header->file_name_at (m_file);
20688 }
20689
20690 /* Record the line in the state machine. END_SEQUENCE is true if
20691 we're processing the end of a sequence. */
20692 void record_line (bool end_sequence);
20693
20694 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20695 nop-out rest of the lines in this sequence. */
20696 void check_line_address (struct dwarf2_cu *cu,
20697 const gdb_byte *line_ptr,
20698 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20699
20700 void handle_set_discriminator (unsigned int discriminator)
20701 {
20702 m_discriminator = discriminator;
20703 m_line_has_non_zero_discriminator |= discriminator != 0;
20704 }
20705
20706 /* Handle DW_LNE_set_address. */
20707 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20708 {
20709 m_op_index = 0;
20710 address += baseaddr;
20711 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20712 }
20713
20714 /* Handle DW_LNS_advance_pc. */
20715 void handle_advance_pc (CORE_ADDR adjust);
20716
20717 /* Handle a special opcode. */
20718 void handle_special_opcode (unsigned char op_code);
20719
20720 /* Handle DW_LNS_advance_line. */
20721 void handle_advance_line (int line_delta)
20722 {
20723 advance_line (line_delta);
20724 }
20725
20726 /* Handle DW_LNS_set_file. */
20727 void handle_set_file (file_name_index file);
20728
20729 /* Handle DW_LNS_negate_stmt. */
20730 void handle_negate_stmt ()
20731 {
20732 m_is_stmt = !m_is_stmt;
20733 }
20734
20735 /* Handle DW_LNS_const_add_pc. */
20736 void handle_const_add_pc ();
20737
20738 /* Handle DW_LNS_fixed_advance_pc. */
20739 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20740 {
20741 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20742 m_op_index = 0;
20743 }
20744
20745 /* Handle DW_LNS_copy. */
20746 void handle_copy ()
20747 {
20748 record_line (false);
20749 m_discriminator = 0;
20750 }
20751
20752 /* Handle DW_LNE_end_sequence. */
20753 void handle_end_sequence ()
20754 {
20755 m_currently_recording_lines = true;
20756 }
20757
20758 private:
20759 /* Advance the line by LINE_DELTA. */
20760 void advance_line (int line_delta)
20761 {
20762 m_line += line_delta;
20763
20764 if (line_delta != 0)
20765 m_line_has_non_zero_discriminator = m_discriminator != 0;
20766 }
20767
20768 struct dwarf2_cu *m_cu;
20769
20770 gdbarch *m_gdbarch;
20771
20772 /* True if we're recording lines.
20773 Otherwise we're building partial symtabs and are just interested in
20774 finding include files mentioned by the line number program. */
20775 bool m_record_lines_p;
20776
20777 /* The line number header. */
20778 line_header *m_line_header;
20779
20780 /* These are part of the standard DWARF line number state machine,
20781 and initialized according to the DWARF spec. */
20782
20783 unsigned char m_op_index = 0;
20784 /* The line table index (1-based) of the current file. */
20785 file_name_index m_file = (file_name_index) 1;
20786 unsigned int m_line = 1;
20787
20788 /* These are initialized in the constructor. */
20789
20790 CORE_ADDR m_address;
20791 bool m_is_stmt;
20792 unsigned int m_discriminator;
20793
20794 /* Additional bits of state we need to track. */
20795
20796 /* The last file that we called dwarf2_start_subfile for.
20797 This is only used for TLLs. */
20798 unsigned int m_last_file = 0;
20799 /* The last file a line number was recorded for. */
20800 struct subfile *m_last_subfile = NULL;
20801
20802 /* When true, record the lines we decode. */
20803 bool m_currently_recording_lines = false;
20804
20805 /* The last line number that was recorded, used to coalesce
20806 consecutive entries for the same line. This can happen, for
20807 example, when discriminators are present. PR 17276. */
20808 unsigned int m_last_line = 0;
20809 bool m_line_has_non_zero_discriminator = false;
20810 };
20811
20812 void
20813 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20814 {
20815 CORE_ADDR addr_adj = (((m_op_index + adjust)
20816 / m_line_header->maximum_ops_per_instruction)
20817 * m_line_header->minimum_instruction_length);
20818 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20819 m_op_index = ((m_op_index + adjust)
20820 % m_line_header->maximum_ops_per_instruction);
20821 }
20822
20823 void
20824 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20825 {
20826 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20827 CORE_ADDR addr_adj = (((m_op_index
20828 + (adj_opcode / m_line_header->line_range))
20829 / m_line_header->maximum_ops_per_instruction)
20830 * m_line_header->minimum_instruction_length);
20831 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20832 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20833 % m_line_header->maximum_ops_per_instruction);
20834
20835 int line_delta = (m_line_header->line_base
20836 + (adj_opcode % m_line_header->line_range));
20837 advance_line (line_delta);
20838 record_line (false);
20839 m_discriminator = 0;
20840 }
20841
20842 void
20843 lnp_state_machine::handle_set_file (file_name_index file)
20844 {
20845 m_file = file;
20846
20847 const file_entry *fe = current_file ();
20848 if (fe == NULL)
20849 dwarf2_debug_line_missing_file_complaint ();
20850 else if (m_record_lines_p)
20851 {
20852 const char *dir = fe->include_dir (m_line_header);
20853
20854 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20855 m_line_has_non_zero_discriminator = m_discriminator != 0;
20856 dwarf2_start_subfile (m_cu, fe->name, dir);
20857 }
20858 }
20859
20860 void
20861 lnp_state_machine::handle_const_add_pc ()
20862 {
20863 CORE_ADDR adjust
20864 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20865
20866 CORE_ADDR addr_adj
20867 = (((m_op_index + adjust)
20868 / m_line_header->maximum_ops_per_instruction)
20869 * m_line_header->minimum_instruction_length);
20870
20871 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20872 m_op_index = ((m_op_index + adjust)
20873 % m_line_header->maximum_ops_per_instruction);
20874 }
20875
20876 /* Return non-zero if we should add LINE to the line number table.
20877 LINE is the line to add, LAST_LINE is the last line that was added,
20878 LAST_SUBFILE is the subfile for LAST_LINE.
20879 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20880 had a non-zero discriminator.
20881
20882 We have to be careful in the presence of discriminators.
20883 E.g., for this line:
20884
20885 for (i = 0; i < 100000; i++);
20886
20887 clang can emit four line number entries for that one line,
20888 each with a different discriminator.
20889 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20890
20891 However, we want gdb to coalesce all four entries into one.
20892 Otherwise the user could stepi into the middle of the line and
20893 gdb would get confused about whether the pc really was in the
20894 middle of the line.
20895
20896 Things are further complicated by the fact that two consecutive
20897 line number entries for the same line is a heuristic used by gcc
20898 to denote the end of the prologue. So we can't just discard duplicate
20899 entries, we have to be selective about it. The heuristic we use is
20900 that we only collapse consecutive entries for the same line if at least
20901 one of those entries has a non-zero discriminator. PR 17276.
20902
20903 Note: Addresses in the line number state machine can never go backwards
20904 within one sequence, thus this coalescing is ok. */
20905
20906 static int
20907 dwarf_record_line_p (struct dwarf2_cu *cu,
20908 unsigned int line, unsigned int last_line,
20909 int line_has_non_zero_discriminator,
20910 struct subfile *last_subfile)
20911 {
20912 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20913 return 1;
20914 if (line != last_line)
20915 return 1;
20916 /* Same line for the same file that we've seen already.
20917 As a last check, for pr 17276, only record the line if the line
20918 has never had a non-zero discriminator. */
20919 if (!line_has_non_zero_discriminator)
20920 return 1;
20921 return 0;
20922 }
20923
20924 /* Use the CU's builder to record line number LINE beginning at
20925 address ADDRESS in the line table of subfile SUBFILE. */
20926
20927 static void
20928 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20929 unsigned int line, CORE_ADDR address,
20930 struct dwarf2_cu *cu)
20931 {
20932 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20933
20934 if (dwarf_line_debug)
20935 {
20936 fprintf_unfiltered (gdb_stdlog,
20937 "Recording line %u, file %s, address %s\n",
20938 line, lbasename (subfile->name),
20939 paddress (gdbarch, address));
20940 }
20941
20942 if (cu != nullptr)
20943 cu->get_builder ()->record_line (subfile, line, addr);
20944 }
20945
20946 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20947 Mark the end of a set of line number records.
20948 The arguments are the same as for dwarf_record_line_1.
20949 If SUBFILE is NULL the request is ignored. */
20950
20951 static void
20952 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20953 CORE_ADDR address, struct dwarf2_cu *cu)
20954 {
20955 if (subfile == NULL)
20956 return;
20957
20958 if (dwarf_line_debug)
20959 {
20960 fprintf_unfiltered (gdb_stdlog,
20961 "Finishing current line, file %s, address %s\n",
20962 lbasename (subfile->name),
20963 paddress (gdbarch, address));
20964 }
20965
20966 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20967 }
20968
20969 void
20970 lnp_state_machine::record_line (bool end_sequence)
20971 {
20972 if (dwarf_line_debug)
20973 {
20974 fprintf_unfiltered (gdb_stdlog,
20975 "Processing actual line %u: file %u,"
20976 " address %s, is_stmt %u, discrim %u\n",
20977 m_line, to_underlying (m_file),
20978 paddress (m_gdbarch, m_address),
20979 m_is_stmt, m_discriminator);
20980 }
20981
20982 file_entry *fe = current_file ();
20983
20984 if (fe == NULL)
20985 dwarf2_debug_line_missing_file_complaint ();
20986 /* For now we ignore lines not starting on an instruction boundary.
20987 But not when processing end_sequence for compatibility with the
20988 previous version of the code. */
20989 else if (m_op_index == 0 || end_sequence)
20990 {
20991 fe->included_p = 1;
20992 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20993 {
20994 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20995 || end_sequence)
20996 {
20997 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20998 m_currently_recording_lines ? m_cu : nullptr);
20999 }
21000
21001 if (!end_sequence)
21002 {
21003 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
21004 m_line_has_non_zero_discriminator,
21005 m_last_subfile))
21006 {
21007 buildsym_compunit *builder = m_cu->get_builder ();
21008 dwarf_record_line_1 (m_gdbarch,
21009 builder->get_current_subfile (),
21010 m_line, m_address,
21011 m_currently_recording_lines ? m_cu : nullptr);
21012 }
21013 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21014 m_last_line = m_line;
21015 }
21016 }
21017 }
21018 }
21019
21020 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21021 line_header *lh, bool record_lines_p)
21022 {
21023 m_cu = cu;
21024 m_gdbarch = arch;
21025 m_record_lines_p = record_lines_p;
21026 m_line_header = lh;
21027
21028 m_currently_recording_lines = true;
21029
21030 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21031 was a line entry for it so that the backend has a chance to adjust it
21032 and also record it in case it needs it. This is currently used by MIPS
21033 code, cf. `mips_adjust_dwarf2_line'. */
21034 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21035 m_is_stmt = lh->default_is_stmt;
21036 m_discriminator = 0;
21037 }
21038
21039 void
21040 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21041 const gdb_byte *line_ptr,
21042 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21043 {
21044 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21045 the pc range of the CU. However, we restrict the test to only ADDRESS
21046 values of zero to preserve GDB's previous behaviour which is to handle
21047 the specific case of a function being GC'd by the linker. */
21048
21049 if (address == 0 && address < unrelocated_lowpc)
21050 {
21051 /* This line table is for a function which has been
21052 GCd by the linker. Ignore it. PR gdb/12528 */
21053
21054 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21055 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21056
21057 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21058 line_offset, objfile_name (objfile));
21059 m_currently_recording_lines = false;
21060 /* Note: m_currently_recording_lines is left as false until we see
21061 DW_LNE_end_sequence. */
21062 }
21063 }
21064
21065 /* Subroutine of dwarf_decode_lines to simplify it.
21066 Process the line number information in LH.
21067 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21068 program in order to set included_p for every referenced header. */
21069
21070 static void
21071 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21072 const int decode_for_pst_p, CORE_ADDR lowpc)
21073 {
21074 const gdb_byte *line_ptr, *extended_end;
21075 const gdb_byte *line_end;
21076 unsigned int bytes_read, extended_len;
21077 unsigned char op_code, extended_op;
21078 CORE_ADDR baseaddr;
21079 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21080 bfd *abfd = objfile->obfd;
21081 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21082 /* True if we're recording line info (as opposed to building partial
21083 symtabs and just interested in finding include files mentioned by
21084 the line number program). */
21085 bool record_lines_p = !decode_for_pst_p;
21086
21087 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21088
21089 line_ptr = lh->statement_program_start;
21090 line_end = lh->statement_program_end;
21091
21092 /* Read the statement sequences until there's nothing left. */
21093 while (line_ptr < line_end)
21094 {
21095 /* The DWARF line number program state machine. Reset the state
21096 machine at the start of each sequence. */
21097 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21098 bool end_sequence = false;
21099
21100 if (record_lines_p)
21101 {
21102 /* Start a subfile for the current file of the state
21103 machine. */
21104 const file_entry *fe = state_machine.current_file ();
21105
21106 if (fe != NULL)
21107 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21108 }
21109
21110 /* Decode the table. */
21111 while (line_ptr < line_end && !end_sequence)
21112 {
21113 op_code = read_1_byte (abfd, line_ptr);
21114 line_ptr += 1;
21115
21116 if (op_code >= lh->opcode_base)
21117 {
21118 /* Special opcode. */
21119 state_machine.handle_special_opcode (op_code);
21120 }
21121 else switch (op_code)
21122 {
21123 case DW_LNS_extended_op:
21124 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21125 &bytes_read);
21126 line_ptr += bytes_read;
21127 extended_end = line_ptr + extended_len;
21128 extended_op = read_1_byte (abfd, line_ptr);
21129 line_ptr += 1;
21130 switch (extended_op)
21131 {
21132 case DW_LNE_end_sequence:
21133 state_machine.handle_end_sequence ();
21134 end_sequence = true;
21135 break;
21136 case DW_LNE_set_address:
21137 {
21138 CORE_ADDR address
21139 = read_address (abfd, line_ptr, cu, &bytes_read);
21140 line_ptr += bytes_read;
21141
21142 state_machine.check_line_address (cu, line_ptr,
21143 lowpc - baseaddr, address);
21144 state_machine.handle_set_address (baseaddr, address);
21145 }
21146 break;
21147 case DW_LNE_define_file:
21148 {
21149 const char *cur_file;
21150 unsigned int mod_time, length;
21151 dir_index dindex;
21152
21153 cur_file = read_direct_string (abfd, line_ptr,
21154 &bytes_read);
21155 line_ptr += bytes_read;
21156 dindex = (dir_index)
21157 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21158 line_ptr += bytes_read;
21159 mod_time =
21160 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21161 line_ptr += bytes_read;
21162 length =
21163 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21164 line_ptr += bytes_read;
21165 lh->add_file_name (cur_file, dindex, mod_time, length);
21166 }
21167 break;
21168 case DW_LNE_set_discriminator:
21169 {
21170 /* The discriminator is not interesting to the
21171 debugger; just ignore it. We still need to
21172 check its value though:
21173 if there are consecutive entries for the same
21174 (non-prologue) line we want to coalesce them.
21175 PR 17276. */
21176 unsigned int discr
21177 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21178 line_ptr += bytes_read;
21179
21180 state_machine.handle_set_discriminator (discr);
21181 }
21182 break;
21183 default:
21184 complaint (_("mangled .debug_line section"));
21185 return;
21186 }
21187 /* Make sure that we parsed the extended op correctly. If e.g.
21188 we expected a different address size than the producer used,
21189 we may have read the wrong number of bytes. */
21190 if (line_ptr != extended_end)
21191 {
21192 complaint (_("mangled .debug_line section"));
21193 return;
21194 }
21195 break;
21196 case DW_LNS_copy:
21197 state_machine.handle_copy ();
21198 break;
21199 case DW_LNS_advance_pc:
21200 {
21201 CORE_ADDR adjust
21202 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21203 line_ptr += bytes_read;
21204
21205 state_machine.handle_advance_pc (adjust);
21206 }
21207 break;
21208 case DW_LNS_advance_line:
21209 {
21210 int line_delta
21211 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21212 line_ptr += bytes_read;
21213
21214 state_machine.handle_advance_line (line_delta);
21215 }
21216 break;
21217 case DW_LNS_set_file:
21218 {
21219 file_name_index file
21220 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21221 &bytes_read);
21222 line_ptr += bytes_read;
21223
21224 state_machine.handle_set_file (file);
21225 }
21226 break;
21227 case DW_LNS_set_column:
21228 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21229 line_ptr += bytes_read;
21230 break;
21231 case DW_LNS_negate_stmt:
21232 state_machine.handle_negate_stmt ();
21233 break;
21234 case DW_LNS_set_basic_block:
21235 break;
21236 /* Add to the address register of the state machine the
21237 address increment value corresponding to special opcode
21238 255. I.e., this value is scaled by the minimum
21239 instruction length since special opcode 255 would have
21240 scaled the increment. */
21241 case DW_LNS_const_add_pc:
21242 state_machine.handle_const_add_pc ();
21243 break;
21244 case DW_LNS_fixed_advance_pc:
21245 {
21246 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21247 line_ptr += 2;
21248
21249 state_machine.handle_fixed_advance_pc (addr_adj);
21250 }
21251 break;
21252 default:
21253 {
21254 /* Unknown standard opcode, ignore it. */
21255 int i;
21256
21257 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21258 {
21259 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21260 line_ptr += bytes_read;
21261 }
21262 }
21263 }
21264 }
21265
21266 if (!end_sequence)
21267 dwarf2_debug_line_missing_end_sequence_complaint ();
21268
21269 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21270 in which case we still finish recording the last line). */
21271 state_machine.record_line (true);
21272 }
21273 }
21274
21275 /* Decode the Line Number Program (LNP) for the given line_header
21276 structure and CU. The actual information extracted and the type
21277 of structures created from the LNP depends on the value of PST.
21278
21279 1. If PST is NULL, then this procedure uses the data from the program
21280 to create all necessary symbol tables, and their linetables.
21281
21282 2. If PST is not NULL, this procedure reads the program to determine
21283 the list of files included by the unit represented by PST, and
21284 builds all the associated partial symbol tables.
21285
21286 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21287 It is used for relative paths in the line table.
21288 NOTE: When processing partial symtabs (pst != NULL),
21289 comp_dir == pst->dirname.
21290
21291 NOTE: It is important that psymtabs have the same file name (via strcmp)
21292 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21293 symtab we don't use it in the name of the psymtabs we create.
21294 E.g. expand_line_sal requires this when finding psymtabs to expand.
21295 A good testcase for this is mb-inline.exp.
21296
21297 LOWPC is the lowest address in CU (or 0 if not known).
21298
21299 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21300 for its PC<->lines mapping information. Otherwise only the filename
21301 table is read in. */
21302
21303 static void
21304 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21305 struct dwarf2_cu *cu, struct partial_symtab *pst,
21306 CORE_ADDR lowpc, int decode_mapping)
21307 {
21308 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21309 const int decode_for_pst_p = (pst != NULL);
21310
21311 if (decode_mapping)
21312 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21313
21314 if (decode_for_pst_p)
21315 {
21316 int file_index;
21317
21318 /* Now that we're done scanning the Line Header Program, we can
21319 create the psymtab of each included file. */
21320 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21321 if (lh->file_names[file_index].included_p == 1)
21322 {
21323 gdb::unique_xmalloc_ptr<char> name_holder;
21324 const char *include_name =
21325 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21326 &name_holder);
21327 if (include_name != NULL)
21328 dwarf2_create_include_psymtab (include_name, pst, objfile);
21329 }
21330 }
21331 else
21332 {
21333 /* Make sure a symtab is created for every file, even files
21334 which contain only variables (i.e. no code with associated
21335 line numbers). */
21336 buildsym_compunit *builder = cu->get_builder ();
21337 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21338 int i;
21339
21340 for (i = 0; i < lh->file_names.size (); i++)
21341 {
21342 file_entry &fe = lh->file_names[i];
21343
21344 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21345
21346 if (builder->get_current_subfile ()->symtab == NULL)
21347 {
21348 builder->get_current_subfile ()->symtab
21349 = allocate_symtab (cust,
21350 builder->get_current_subfile ()->name);
21351 }
21352 fe.symtab = builder->get_current_subfile ()->symtab;
21353 }
21354 }
21355 }
21356
21357 /* Start a subfile for DWARF. FILENAME is the name of the file and
21358 DIRNAME the name of the source directory which contains FILENAME
21359 or NULL if not known.
21360 This routine tries to keep line numbers from identical absolute and
21361 relative file names in a common subfile.
21362
21363 Using the `list' example from the GDB testsuite, which resides in
21364 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21365 of /srcdir/list0.c yields the following debugging information for list0.c:
21366
21367 DW_AT_name: /srcdir/list0.c
21368 DW_AT_comp_dir: /compdir
21369 files.files[0].name: list0.h
21370 files.files[0].dir: /srcdir
21371 files.files[1].name: list0.c
21372 files.files[1].dir: /srcdir
21373
21374 The line number information for list0.c has to end up in a single
21375 subfile, so that `break /srcdir/list0.c:1' works as expected.
21376 start_subfile will ensure that this happens provided that we pass the
21377 concatenation of files.files[1].dir and files.files[1].name as the
21378 subfile's name. */
21379
21380 static void
21381 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21382 const char *dirname)
21383 {
21384 char *copy = NULL;
21385
21386 /* In order not to lose the line information directory,
21387 we concatenate it to the filename when it makes sense.
21388 Note that the Dwarf3 standard says (speaking of filenames in line
21389 information): ``The directory index is ignored for file names
21390 that represent full path names''. Thus ignoring dirname in the
21391 `else' branch below isn't an issue. */
21392
21393 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21394 {
21395 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21396 filename = copy;
21397 }
21398
21399 cu->get_builder ()->start_subfile (filename);
21400
21401 if (copy != NULL)
21402 xfree (copy);
21403 }
21404
21405 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21406 buildsym_compunit constructor. */
21407
21408 struct compunit_symtab *
21409 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21410 CORE_ADDR low_pc)
21411 {
21412 gdb_assert (m_builder == nullptr);
21413
21414 m_builder.reset (new struct buildsym_compunit
21415 (per_cu->dwarf2_per_objfile->objfile,
21416 name, comp_dir, language, low_pc));
21417
21418 list_in_scope = get_builder ()->get_file_symbols ();
21419
21420 get_builder ()->record_debugformat ("DWARF 2");
21421 get_builder ()->record_producer (producer);
21422
21423 processing_has_namespace_info = false;
21424
21425 return get_builder ()->get_compunit_symtab ();
21426 }
21427
21428 static void
21429 var_decode_location (struct attribute *attr, struct symbol *sym,
21430 struct dwarf2_cu *cu)
21431 {
21432 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21433 struct comp_unit_head *cu_header = &cu->header;
21434
21435 /* NOTE drow/2003-01-30: There used to be a comment and some special
21436 code here to turn a symbol with DW_AT_external and a
21437 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21438 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21439 with some versions of binutils) where shared libraries could have
21440 relocations against symbols in their debug information - the
21441 minimal symbol would have the right address, but the debug info
21442 would not. It's no longer necessary, because we will explicitly
21443 apply relocations when we read in the debug information now. */
21444
21445 /* A DW_AT_location attribute with no contents indicates that a
21446 variable has been optimized away. */
21447 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21448 {
21449 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21450 return;
21451 }
21452
21453 /* Handle one degenerate form of location expression specially, to
21454 preserve GDB's previous behavior when section offsets are
21455 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21456 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21457
21458 if (attr_form_is_block (attr)
21459 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21460 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21461 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21462 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21463 && (DW_BLOCK (attr)->size
21464 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21465 {
21466 unsigned int dummy;
21467
21468 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21469 SYMBOL_VALUE_ADDRESS (sym) =
21470 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21471 else
21472 SYMBOL_VALUE_ADDRESS (sym) =
21473 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21474 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21475 fixup_symbol_section (sym, objfile);
21476 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21477 SYMBOL_SECTION (sym));
21478 return;
21479 }
21480
21481 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21482 expression evaluator, and use LOC_COMPUTED only when necessary
21483 (i.e. when the value of a register or memory location is
21484 referenced, or a thread-local block, etc.). Then again, it might
21485 not be worthwhile. I'm assuming that it isn't unless performance
21486 or memory numbers show me otherwise. */
21487
21488 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21489
21490 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21491 cu->has_loclist = true;
21492 }
21493
21494 /* Given a pointer to a DWARF information entry, figure out if we need
21495 to make a symbol table entry for it, and if so, create a new entry
21496 and return a pointer to it.
21497 If TYPE is NULL, determine symbol type from the die, otherwise
21498 used the passed type.
21499 If SPACE is not NULL, use it to hold the new symbol. If it is
21500 NULL, allocate a new symbol on the objfile's obstack. */
21501
21502 static struct symbol *
21503 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21504 struct symbol *space)
21505 {
21506 struct dwarf2_per_objfile *dwarf2_per_objfile
21507 = cu->per_cu->dwarf2_per_objfile;
21508 struct objfile *objfile = dwarf2_per_objfile->objfile;
21509 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21510 struct symbol *sym = NULL;
21511 const char *name;
21512 struct attribute *attr = NULL;
21513 struct attribute *attr2 = NULL;
21514 CORE_ADDR baseaddr;
21515 struct pending **list_to_add = NULL;
21516
21517 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21518
21519 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21520
21521 name = dwarf2_name (die, cu);
21522 if (name)
21523 {
21524 const char *linkagename;
21525 int suppress_add = 0;
21526
21527 if (space)
21528 sym = space;
21529 else
21530 sym = allocate_symbol (objfile);
21531 OBJSTAT (objfile, n_syms++);
21532
21533 /* Cache this symbol's name and the name's demangled form (if any). */
21534 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21535 linkagename = dwarf2_physname (name, die, cu);
21536 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21537
21538 /* Fortran does not have mangling standard and the mangling does differ
21539 between gfortran, iFort etc. */
21540 if (cu->language == language_fortran
21541 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21542 symbol_set_demangled_name (&(sym->ginfo),
21543 dwarf2_full_name (name, die, cu),
21544 NULL);
21545
21546 /* Default assumptions.
21547 Use the passed type or decode it from the die. */
21548 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21549 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21550 if (type != NULL)
21551 SYMBOL_TYPE (sym) = type;
21552 else
21553 SYMBOL_TYPE (sym) = die_type (die, cu);
21554 attr = dwarf2_attr (die,
21555 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21556 cu);
21557 if (attr)
21558 {
21559 SYMBOL_LINE (sym) = DW_UNSND (attr);
21560 }
21561
21562 attr = dwarf2_attr (die,
21563 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21564 cu);
21565 if (attr)
21566 {
21567 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21568 struct file_entry *fe;
21569
21570 if (cu->line_header != NULL)
21571 fe = cu->line_header->file_name_at (file_index);
21572 else
21573 fe = NULL;
21574
21575 if (fe == NULL)
21576 complaint (_("file index out of range"));
21577 else
21578 symbol_set_symtab (sym, fe->symtab);
21579 }
21580
21581 switch (die->tag)
21582 {
21583 case DW_TAG_label:
21584 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21585 if (attr)
21586 {
21587 CORE_ADDR addr;
21588
21589 addr = attr_value_as_address (attr);
21590 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21591 SYMBOL_VALUE_ADDRESS (sym) = addr;
21592 }
21593 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21594 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21595 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21596 add_symbol_to_list (sym, cu->list_in_scope);
21597 break;
21598 case DW_TAG_subprogram:
21599 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21600 finish_block. */
21601 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21602 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21603 if ((attr2 && (DW_UNSND (attr2) != 0))
21604 || cu->language == language_ada)
21605 {
21606 /* Subprograms marked external are stored as a global symbol.
21607 Ada subprograms, whether marked external or not, are always
21608 stored as a global symbol, because we want to be able to
21609 access them globally. For instance, we want to be able
21610 to break on a nested subprogram without having to
21611 specify the context. */
21612 list_to_add = cu->get_builder ()->get_global_symbols ();
21613 }
21614 else
21615 {
21616 list_to_add = cu->list_in_scope;
21617 }
21618 break;
21619 case DW_TAG_inlined_subroutine:
21620 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21621 finish_block. */
21622 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21623 SYMBOL_INLINED (sym) = 1;
21624 list_to_add = cu->list_in_scope;
21625 break;
21626 case DW_TAG_template_value_param:
21627 suppress_add = 1;
21628 /* Fall through. */
21629 case DW_TAG_constant:
21630 case DW_TAG_variable:
21631 case DW_TAG_member:
21632 /* Compilation with minimal debug info may result in
21633 variables with missing type entries. Change the
21634 misleading `void' type to something sensible. */
21635 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21636 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21637
21638 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21639 /* In the case of DW_TAG_member, we should only be called for
21640 static const members. */
21641 if (die->tag == DW_TAG_member)
21642 {
21643 /* dwarf2_add_field uses die_is_declaration,
21644 so we do the same. */
21645 gdb_assert (die_is_declaration (die, cu));
21646 gdb_assert (attr);
21647 }
21648 if (attr)
21649 {
21650 dwarf2_const_value (attr, sym, cu);
21651 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21652 if (!suppress_add)
21653 {
21654 if (attr2 && (DW_UNSND (attr2) != 0))
21655 list_to_add = cu->get_builder ()->get_global_symbols ();
21656 else
21657 list_to_add = cu->list_in_scope;
21658 }
21659 break;
21660 }
21661 attr = dwarf2_attr (die, DW_AT_location, cu);
21662 if (attr)
21663 {
21664 var_decode_location (attr, sym, cu);
21665 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21666
21667 /* Fortran explicitly imports any global symbols to the local
21668 scope by DW_TAG_common_block. */
21669 if (cu->language == language_fortran && die->parent
21670 && die->parent->tag == DW_TAG_common_block)
21671 attr2 = NULL;
21672
21673 if (SYMBOL_CLASS (sym) == LOC_STATIC
21674 && SYMBOL_VALUE_ADDRESS (sym) == 0
21675 && !dwarf2_per_objfile->has_section_at_zero)
21676 {
21677 /* When a static variable is eliminated by the linker,
21678 the corresponding debug information is not stripped
21679 out, but the variable address is set to null;
21680 do not add such variables into symbol table. */
21681 }
21682 else if (attr2 && (DW_UNSND (attr2) != 0))
21683 {
21684 /* Workaround gfortran PR debug/40040 - it uses
21685 DW_AT_location for variables in -fPIC libraries which may
21686 get overriden by other libraries/executable and get
21687 a different address. Resolve it by the minimal symbol
21688 which may come from inferior's executable using copy
21689 relocation. Make this workaround only for gfortran as for
21690 other compilers GDB cannot guess the minimal symbol
21691 Fortran mangling kind. */
21692 if (cu->language == language_fortran && die->parent
21693 && die->parent->tag == DW_TAG_module
21694 && cu->producer
21695 && startswith (cu->producer, "GNU Fortran"))
21696 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21697
21698 /* A variable with DW_AT_external is never static,
21699 but it may be block-scoped. */
21700 list_to_add
21701 = ((cu->list_in_scope
21702 == cu->get_builder ()->get_file_symbols ())
21703 ? cu->get_builder ()->get_global_symbols ()
21704 : cu->list_in_scope);
21705 }
21706 else
21707 list_to_add = cu->list_in_scope;
21708 }
21709 else
21710 {
21711 /* We do not know the address of this symbol.
21712 If it is an external symbol and we have type information
21713 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21714 The address of the variable will then be determined from
21715 the minimal symbol table whenever the variable is
21716 referenced. */
21717 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21718
21719 /* Fortran explicitly imports any global symbols to the local
21720 scope by DW_TAG_common_block. */
21721 if (cu->language == language_fortran && die->parent
21722 && die->parent->tag == DW_TAG_common_block)
21723 {
21724 /* SYMBOL_CLASS doesn't matter here because
21725 read_common_block is going to reset it. */
21726 if (!suppress_add)
21727 list_to_add = cu->list_in_scope;
21728 }
21729 else if (attr2 && (DW_UNSND (attr2) != 0)
21730 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21731 {
21732 /* A variable with DW_AT_external is never static, but it
21733 may be block-scoped. */
21734 list_to_add
21735 = ((cu->list_in_scope
21736 == cu->get_builder ()->get_file_symbols ())
21737 ? cu->get_builder ()->get_global_symbols ()
21738 : cu->list_in_scope);
21739
21740 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21741 }
21742 else if (!die_is_declaration (die, cu))
21743 {
21744 /* Use the default LOC_OPTIMIZED_OUT class. */
21745 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21746 if (!suppress_add)
21747 list_to_add = cu->list_in_scope;
21748 }
21749 }
21750 break;
21751 case DW_TAG_formal_parameter:
21752 {
21753 /* If we are inside a function, mark this as an argument. If
21754 not, we might be looking at an argument to an inlined function
21755 when we do not have enough information to show inlined frames;
21756 pretend it's a local variable in that case so that the user can
21757 still see it. */
21758 struct context_stack *curr
21759 = cu->get_builder ()->get_current_context_stack ();
21760 if (curr != nullptr && curr->name != nullptr)
21761 SYMBOL_IS_ARGUMENT (sym) = 1;
21762 attr = dwarf2_attr (die, DW_AT_location, cu);
21763 if (attr)
21764 {
21765 var_decode_location (attr, sym, cu);
21766 }
21767 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21768 if (attr)
21769 {
21770 dwarf2_const_value (attr, sym, cu);
21771 }
21772
21773 list_to_add = cu->list_in_scope;
21774 }
21775 break;
21776 case DW_TAG_unspecified_parameters:
21777 /* From varargs functions; gdb doesn't seem to have any
21778 interest in this information, so just ignore it for now.
21779 (FIXME?) */
21780 break;
21781 case DW_TAG_template_type_param:
21782 suppress_add = 1;
21783 /* Fall through. */
21784 case DW_TAG_class_type:
21785 case DW_TAG_interface_type:
21786 case DW_TAG_structure_type:
21787 case DW_TAG_union_type:
21788 case DW_TAG_set_type:
21789 case DW_TAG_enumeration_type:
21790 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21791 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21792
21793 {
21794 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21795 really ever be static objects: otherwise, if you try
21796 to, say, break of a class's method and you're in a file
21797 which doesn't mention that class, it won't work unless
21798 the check for all static symbols in lookup_symbol_aux
21799 saves you. See the OtherFileClass tests in
21800 gdb.c++/namespace.exp. */
21801
21802 if (!suppress_add)
21803 {
21804 buildsym_compunit *builder = cu->get_builder ();
21805 list_to_add
21806 = (cu->list_in_scope == builder->get_file_symbols ()
21807 && cu->language == language_cplus
21808 ? builder->get_global_symbols ()
21809 : cu->list_in_scope);
21810
21811 /* The semantics of C++ state that "struct foo {
21812 ... }" also defines a typedef for "foo". */
21813 if (cu->language == language_cplus
21814 || cu->language == language_ada
21815 || cu->language == language_d
21816 || cu->language == language_rust)
21817 {
21818 /* The symbol's name is already allocated along
21819 with this objfile, so we don't need to
21820 duplicate it for the type. */
21821 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21822 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21823 }
21824 }
21825 }
21826 break;
21827 case DW_TAG_typedef:
21828 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21829 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21830 list_to_add = cu->list_in_scope;
21831 break;
21832 case DW_TAG_base_type:
21833 case DW_TAG_subrange_type:
21834 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21835 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21836 list_to_add = cu->list_in_scope;
21837 break;
21838 case DW_TAG_enumerator:
21839 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21840 if (attr)
21841 {
21842 dwarf2_const_value (attr, sym, cu);
21843 }
21844 {
21845 /* NOTE: carlton/2003-11-10: See comment above in the
21846 DW_TAG_class_type, etc. block. */
21847
21848 list_to_add
21849 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21850 && cu->language == language_cplus
21851 ? cu->get_builder ()->get_global_symbols ()
21852 : cu->list_in_scope);
21853 }
21854 break;
21855 case DW_TAG_imported_declaration:
21856 case DW_TAG_namespace:
21857 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21858 list_to_add = cu->get_builder ()->get_global_symbols ();
21859 break;
21860 case DW_TAG_module:
21861 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21862 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21863 list_to_add = cu->get_builder ()->get_global_symbols ();
21864 break;
21865 case DW_TAG_common_block:
21866 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21867 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21868 add_symbol_to_list (sym, cu->list_in_scope);
21869 break;
21870 default:
21871 /* Not a tag we recognize. Hopefully we aren't processing
21872 trash data, but since we must specifically ignore things
21873 we don't recognize, there is nothing else we should do at
21874 this point. */
21875 complaint (_("unsupported tag: '%s'"),
21876 dwarf_tag_name (die->tag));
21877 break;
21878 }
21879
21880 if (suppress_add)
21881 {
21882 sym->hash_next = objfile->template_symbols;
21883 objfile->template_symbols = sym;
21884 list_to_add = NULL;
21885 }
21886
21887 if (list_to_add != NULL)
21888 add_symbol_to_list (sym, list_to_add);
21889
21890 /* For the benefit of old versions of GCC, check for anonymous
21891 namespaces based on the demangled name. */
21892 if (!cu->processing_has_namespace_info
21893 && cu->language == language_cplus)
21894 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21895 }
21896 return (sym);
21897 }
21898
21899 /* Given an attr with a DW_FORM_dataN value in host byte order,
21900 zero-extend it as appropriate for the symbol's type. The DWARF
21901 standard (v4) is not entirely clear about the meaning of using
21902 DW_FORM_dataN for a constant with a signed type, where the type is
21903 wider than the data. The conclusion of a discussion on the DWARF
21904 list was that this is unspecified. We choose to always zero-extend
21905 because that is the interpretation long in use by GCC. */
21906
21907 static gdb_byte *
21908 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21909 struct dwarf2_cu *cu, LONGEST *value, int bits)
21910 {
21911 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21912 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21913 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21914 LONGEST l = DW_UNSND (attr);
21915
21916 if (bits < sizeof (*value) * 8)
21917 {
21918 l &= ((LONGEST) 1 << bits) - 1;
21919 *value = l;
21920 }
21921 else if (bits == sizeof (*value) * 8)
21922 *value = l;
21923 else
21924 {
21925 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21926 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21927 return bytes;
21928 }
21929
21930 return NULL;
21931 }
21932
21933 /* Read a constant value from an attribute. Either set *VALUE, or if
21934 the value does not fit in *VALUE, set *BYTES - either already
21935 allocated on the objfile obstack, or newly allocated on OBSTACK,
21936 or, set *BATON, if we translated the constant to a location
21937 expression. */
21938
21939 static void
21940 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21941 const char *name, struct obstack *obstack,
21942 struct dwarf2_cu *cu,
21943 LONGEST *value, const gdb_byte **bytes,
21944 struct dwarf2_locexpr_baton **baton)
21945 {
21946 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21947 struct comp_unit_head *cu_header = &cu->header;
21948 struct dwarf_block *blk;
21949 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21950 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21951
21952 *value = 0;
21953 *bytes = NULL;
21954 *baton = NULL;
21955
21956 switch (attr->form)
21957 {
21958 case DW_FORM_addr:
21959 case DW_FORM_addrx:
21960 case DW_FORM_GNU_addr_index:
21961 {
21962 gdb_byte *data;
21963
21964 if (TYPE_LENGTH (type) != cu_header->addr_size)
21965 dwarf2_const_value_length_mismatch_complaint (name,
21966 cu_header->addr_size,
21967 TYPE_LENGTH (type));
21968 /* Symbols of this form are reasonably rare, so we just
21969 piggyback on the existing location code rather than writing
21970 a new implementation of symbol_computed_ops. */
21971 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21972 (*baton)->per_cu = cu->per_cu;
21973 gdb_assert ((*baton)->per_cu);
21974
21975 (*baton)->size = 2 + cu_header->addr_size;
21976 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21977 (*baton)->data = data;
21978
21979 data[0] = DW_OP_addr;
21980 store_unsigned_integer (&data[1], cu_header->addr_size,
21981 byte_order, DW_ADDR (attr));
21982 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21983 }
21984 break;
21985 case DW_FORM_string:
21986 case DW_FORM_strp:
21987 case DW_FORM_strx:
21988 case DW_FORM_GNU_str_index:
21989 case DW_FORM_GNU_strp_alt:
21990 /* DW_STRING is already allocated on the objfile obstack, point
21991 directly to it. */
21992 *bytes = (const gdb_byte *) DW_STRING (attr);
21993 break;
21994 case DW_FORM_block1:
21995 case DW_FORM_block2:
21996 case DW_FORM_block4:
21997 case DW_FORM_block:
21998 case DW_FORM_exprloc:
21999 case DW_FORM_data16:
22000 blk = DW_BLOCK (attr);
22001 if (TYPE_LENGTH (type) != blk->size)
22002 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22003 TYPE_LENGTH (type));
22004 *bytes = blk->data;
22005 break;
22006
22007 /* The DW_AT_const_value attributes are supposed to carry the
22008 symbol's value "represented as it would be on the target
22009 architecture." By the time we get here, it's already been
22010 converted to host endianness, so we just need to sign- or
22011 zero-extend it as appropriate. */
22012 case DW_FORM_data1:
22013 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22014 break;
22015 case DW_FORM_data2:
22016 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22017 break;
22018 case DW_FORM_data4:
22019 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22020 break;
22021 case DW_FORM_data8:
22022 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22023 break;
22024
22025 case DW_FORM_sdata:
22026 case DW_FORM_implicit_const:
22027 *value = DW_SND (attr);
22028 break;
22029
22030 case DW_FORM_udata:
22031 *value = DW_UNSND (attr);
22032 break;
22033
22034 default:
22035 complaint (_("unsupported const value attribute form: '%s'"),
22036 dwarf_form_name (attr->form));
22037 *value = 0;
22038 break;
22039 }
22040 }
22041
22042
22043 /* Copy constant value from an attribute to a symbol. */
22044
22045 static void
22046 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22047 struct dwarf2_cu *cu)
22048 {
22049 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22050 LONGEST value;
22051 const gdb_byte *bytes;
22052 struct dwarf2_locexpr_baton *baton;
22053
22054 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22055 SYMBOL_PRINT_NAME (sym),
22056 &objfile->objfile_obstack, cu,
22057 &value, &bytes, &baton);
22058
22059 if (baton != NULL)
22060 {
22061 SYMBOL_LOCATION_BATON (sym) = baton;
22062 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22063 }
22064 else if (bytes != NULL)
22065 {
22066 SYMBOL_VALUE_BYTES (sym) = bytes;
22067 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22068 }
22069 else
22070 {
22071 SYMBOL_VALUE (sym) = value;
22072 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22073 }
22074 }
22075
22076 /* Return the type of the die in question using its DW_AT_type attribute. */
22077
22078 static struct type *
22079 die_type (struct die_info *die, struct dwarf2_cu *cu)
22080 {
22081 struct attribute *type_attr;
22082
22083 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22084 if (!type_attr)
22085 {
22086 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22087 /* A missing DW_AT_type represents a void type. */
22088 return objfile_type (objfile)->builtin_void;
22089 }
22090
22091 return lookup_die_type (die, type_attr, cu);
22092 }
22093
22094 /* True iff CU's producer generates GNAT Ada auxiliary information
22095 that allows to find parallel types through that information instead
22096 of having to do expensive parallel lookups by type name. */
22097
22098 static int
22099 need_gnat_info (struct dwarf2_cu *cu)
22100 {
22101 /* Assume that the Ada compiler was GNAT, which always produces
22102 the auxiliary information. */
22103 return (cu->language == language_ada);
22104 }
22105
22106 /* Return the auxiliary type of the die in question using its
22107 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22108 attribute is not present. */
22109
22110 static struct type *
22111 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22112 {
22113 struct attribute *type_attr;
22114
22115 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22116 if (!type_attr)
22117 return NULL;
22118
22119 return lookup_die_type (die, type_attr, cu);
22120 }
22121
22122 /* If DIE has a descriptive_type attribute, then set the TYPE's
22123 descriptive type accordingly. */
22124
22125 static void
22126 set_descriptive_type (struct type *type, struct die_info *die,
22127 struct dwarf2_cu *cu)
22128 {
22129 struct type *descriptive_type = die_descriptive_type (die, cu);
22130
22131 if (descriptive_type)
22132 {
22133 ALLOCATE_GNAT_AUX_TYPE (type);
22134 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22135 }
22136 }
22137
22138 /* Return the containing type of the die in question using its
22139 DW_AT_containing_type attribute. */
22140
22141 static struct type *
22142 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22143 {
22144 struct attribute *type_attr;
22145 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22146
22147 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22148 if (!type_attr)
22149 error (_("Dwarf Error: Problem turning containing type into gdb type "
22150 "[in module %s]"), objfile_name (objfile));
22151
22152 return lookup_die_type (die, type_attr, cu);
22153 }
22154
22155 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22156
22157 static struct type *
22158 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22159 {
22160 struct dwarf2_per_objfile *dwarf2_per_objfile
22161 = cu->per_cu->dwarf2_per_objfile;
22162 struct objfile *objfile = dwarf2_per_objfile->objfile;
22163 char *saved;
22164
22165 std::string message
22166 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22167 objfile_name (objfile),
22168 sect_offset_str (cu->header.sect_off),
22169 sect_offset_str (die->sect_off));
22170 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22171 message.c_str (), message.length ());
22172
22173 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22174 }
22175
22176 /* Look up the type of DIE in CU using its type attribute ATTR.
22177 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22178 DW_AT_containing_type.
22179 If there is no type substitute an error marker. */
22180
22181 static struct type *
22182 lookup_die_type (struct die_info *die, const struct attribute *attr,
22183 struct dwarf2_cu *cu)
22184 {
22185 struct dwarf2_per_objfile *dwarf2_per_objfile
22186 = cu->per_cu->dwarf2_per_objfile;
22187 struct objfile *objfile = dwarf2_per_objfile->objfile;
22188 struct type *this_type;
22189
22190 gdb_assert (attr->name == DW_AT_type
22191 || attr->name == DW_AT_GNAT_descriptive_type
22192 || attr->name == DW_AT_containing_type);
22193
22194 /* First see if we have it cached. */
22195
22196 if (attr->form == DW_FORM_GNU_ref_alt)
22197 {
22198 struct dwarf2_per_cu_data *per_cu;
22199 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22200
22201 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22202 dwarf2_per_objfile);
22203 this_type = get_die_type_at_offset (sect_off, per_cu);
22204 }
22205 else if (attr_form_is_ref (attr))
22206 {
22207 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22208
22209 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22210 }
22211 else if (attr->form == DW_FORM_ref_sig8)
22212 {
22213 ULONGEST signature = DW_SIGNATURE (attr);
22214
22215 return get_signatured_type (die, signature, cu);
22216 }
22217 else
22218 {
22219 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22220 " at %s [in module %s]"),
22221 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22222 objfile_name (objfile));
22223 return build_error_marker_type (cu, die);
22224 }
22225
22226 /* If not cached we need to read it in. */
22227
22228 if (this_type == NULL)
22229 {
22230 struct die_info *type_die = NULL;
22231 struct dwarf2_cu *type_cu = cu;
22232
22233 if (attr_form_is_ref (attr))
22234 type_die = follow_die_ref (die, attr, &type_cu);
22235 if (type_die == NULL)
22236 return build_error_marker_type (cu, die);
22237 /* If we find the type now, it's probably because the type came
22238 from an inter-CU reference and the type's CU got expanded before
22239 ours. */
22240 this_type = read_type_die (type_die, type_cu);
22241 }
22242
22243 /* If we still don't have a type use an error marker. */
22244
22245 if (this_type == NULL)
22246 return build_error_marker_type (cu, die);
22247
22248 return this_type;
22249 }
22250
22251 /* Return the type in DIE, CU.
22252 Returns NULL for invalid types.
22253
22254 This first does a lookup in die_type_hash,
22255 and only reads the die in if necessary.
22256
22257 NOTE: This can be called when reading in partial or full symbols. */
22258
22259 static struct type *
22260 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22261 {
22262 struct type *this_type;
22263
22264 this_type = get_die_type (die, cu);
22265 if (this_type)
22266 return this_type;
22267
22268 return read_type_die_1 (die, cu);
22269 }
22270
22271 /* Read the type in DIE, CU.
22272 Returns NULL for invalid types. */
22273
22274 static struct type *
22275 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22276 {
22277 struct type *this_type = NULL;
22278
22279 switch (die->tag)
22280 {
22281 case DW_TAG_class_type:
22282 case DW_TAG_interface_type:
22283 case DW_TAG_structure_type:
22284 case DW_TAG_union_type:
22285 this_type = read_structure_type (die, cu);
22286 break;
22287 case DW_TAG_enumeration_type:
22288 this_type = read_enumeration_type (die, cu);
22289 break;
22290 case DW_TAG_subprogram:
22291 case DW_TAG_subroutine_type:
22292 case DW_TAG_inlined_subroutine:
22293 this_type = read_subroutine_type (die, cu);
22294 break;
22295 case DW_TAG_array_type:
22296 this_type = read_array_type (die, cu);
22297 break;
22298 case DW_TAG_set_type:
22299 this_type = read_set_type (die, cu);
22300 break;
22301 case DW_TAG_pointer_type:
22302 this_type = read_tag_pointer_type (die, cu);
22303 break;
22304 case DW_TAG_ptr_to_member_type:
22305 this_type = read_tag_ptr_to_member_type (die, cu);
22306 break;
22307 case DW_TAG_reference_type:
22308 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22309 break;
22310 case DW_TAG_rvalue_reference_type:
22311 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22312 break;
22313 case DW_TAG_const_type:
22314 this_type = read_tag_const_type (die, cu);
22315 break;
22316 case DW_TAG_volatile_type:
22317 this_type = read_tag_volatile_type (die, cu);
22318 break;
22319 case DW_TAG_restrict_type:
22320 this_type = read_tag_restrict_type (die, cu);
22321 break;
22322 case DW_TAG_string_type:
22323 this_type = read_tag_string_type (die, cu);
22324 break;
22325 case DW_TAG_typedef:
22326 this_type = read_typedef (die, cu);
22327 break;
22328 case DW_TAG_subrange_type:
22329 this_type = read_subrange_type (die, cu);
22330 break;
22331 case DW_TAG_base_type:
22332 this_type = read_base_type (die, cu);
22333 break;
22334 case DW_TAG_unspecified_type:
22335 this_type = read_unspecified_type (die, cu);
22336 break;
22337 case DW_TAG_namespace:
22338 this_type = read_namespace_type (die, cu);
22339 break;
22340 case DW_TAG_module:
22341 this_type = read_module_type (die, cu);
22342 break;
22343 case DW_TAG_atomic_type:
22344 this_type = read_tag_atomic_type (die, cu);
22345 break;
22346 default:
22347 complaint (_("unexpected tag in read_type_die: '%s'"),
22348 dwarf_tag_name (die->tag));
22349 break;
22350 }
22351
22352 return this_type;
22353 }
22354
22355 /* See if we can figure out if the class lives in a namespace. We do
22356 this by looking for a member function; its demangled name will
22357 contain namespace info, if there is any.
22358 Return the computed name or NULL.
22359 Space for the result is allocated on the objfile's obstack.
22360 This is the full-die version of guess_partial_die_structure_name.
22361 In this case we know DIE has no useful parent. */
22362
22363 static char *
22364 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22365 {
22366 struct die_info *spec_die;
22367 struct dwarf2_cu *spec_cu;
22368 struct die_info *child;
22369 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22370
22371 spec_cu = cu;
22372 spec_die = die_specification (die, &spec_cu);
22373 if (spec_die != NULL)
22374 {
22375 die = spec_die;
22376 cu = spec_cu;
22377 }
22378
22379 for (child = die->child;
22380 child != NULL;
22381 child = child->sibling)
22382 {
22383 if (child->tag == DW_TAG_subprogram)
22384 {
22385 const char *linkage_name = dw2_linkage_name (child, cu);
22386
22387 if (linkage_name != NULL)
22388 {
22389 char *actual_name
22390 = language_class_name_from_physname (cu->language_defn,
22391 linkage_name);
22392 char *name = NULL;
22393
22394 if (actual_name != NULL)
22395 {
22396 const char *die_name = dwarf2_name (die, cu);
22397
22398 if (die_name != NULL
22399 && strcmp (die_name, actual_name) != 0)
22400 {
22401 /* Strip off the class name from the full name.
22402 We want the prefix. */
22403 int die_name_len = strlen (die_name);
22404 int actual_name_len = strlen (actual_name);
22405
22406 /* Test for '::' as a sanity check. */
22407 if (actual_name_len > die_name_len + 2
22408 && actual_name[actual_name_len
22409 - die_name_len - 1] == ':')
22410 name = (char *) obstack_copy0 (
22411 &objfile->per_bfd->storage_obstack,
22412 actual_name, actual_name_len - die_name_len - 2);
22413 }
22414 }
22415 xfree (actual_name);
22416 return name;
22417 }
22418 }
22419 }
22420
22421 return NULL;
22422 }
22423
22424 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22425 prefix part in such case. See
22426 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22427
22428 static const char *
22429 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22430 {
22431 struct attribute *attr;
22432 const char *base;
22433
22434 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22435 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22436 return NULL;
22437
22438 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22439 return NULL;
22440
22441 attr = dw2_linkage_name_attr (die, cu);
22442 if (attr == NULL || DW_STRING (attr) == NULL)
22443 return NULL;
22444
22445 /* dwarf2_name had to be already called. */
22446 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22447
22448 /* Strip the base name, keep any leading namespaces/classes. */
22449 base = strrchr (DW_STRING (attr), ':');
22450 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22451 return "";
22452
22453 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22454 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22455 DW_STRING (attr),
22456 &base[-1] - DW_STRING (attr));
22457 }
22458
22459 /* Return the name of the namespace/class that DIE is defined within,
22460 or "" if we can't tell. The caller should not xfree the result.
22461
22462 For example, if we're within the method foo() in the following
22463 code:
22464
22465 namespace N {
22466 class C {
22467 void foo () {
22468 }
22469 };
22470 }
22471
22472 then determine_prefix on foo's die will return "N::C". */
22473
22474 static const char *
22475 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22476 {
22477 struct dwarf2_per_objfile *dwarf2_per_objfile
22478 = cu->per_cu->dwarf2_per_objfile;
22479 struct die_info *parent, *spec_die;
22480 struct dwarf2_cu *spec_cu;
22481 struct type *parent_type;
22482 const char *retval;
22483
22484 if (cu->language != language_cplus
22485 && cu->language != language_fortran && cu->language != language_d
22486 && cu->language != language_rust)
22487 return "";
22488
22489 retval = anonymous_struct_prefix (die, cu);
22490 if (retval)
22491 return retval;
22492
22493 /* We have to be careful in the presence of DW_AT_specification.
22494 For example, with GCC 3.4, given the code
22495
22496 namespace N {
22497 void foo() {
22498 // Definition of N::foo.
22499 }
22500 }
22501
22502 then we'll have a tree of DIEs like this:
22503
22504 1: DW_TAG_compile_unit
22505 2: DW_TAG_namespace // N
22506 3: DW_TAG_subprogram // declaration of N::foo
22507 4: DW_TAG_subprogram // definition of N::foo
22508 DW_AT_specification // refers to die #3
22509
22510 Thus, when processing die #4, we have to pretend that we're in
22511 the context of its DW_AT_specification, namely the contex of die
22512 #3. */
22513 spec_cu = cu;
22514 spec_die = die_specification (die, &spec_cu);
22515 if (spec_die == NULL)
22516 parent = die->parent;
22517 else
22518 {
22519 parent = spec_die->parent;
22520 cu = spec_cu;
22521 }
22522
22523 if (parent == NULL)
22524 return "";
22525 else if (parent->building_fullname)
22526 {
22527 const char *name;
22528 const char *parent_name;
22529
22530 /* It has been seen on RealView 2.2 built binaries,
22531 DW_TAG_template_type_param types actually _defined_ as
22532 children of the parent class:
22533
22534 enum E {};
22535 template class <class Enum> Class{};
22536 Class<enum E> class_e;
22537
22538 1: DW_TAG_class_type (Class)
22539 2: DW_TAG_enumeration_type (E)
22540 3: DW_TAG_enumerator (enum1:0)
22541 3: DW_TAG_enumerator (enum2:1)
22542 ...
22543 2: DW_TAG_template_type_param
22544 DW_AT_type DW_FORM_ref_udata (E)
22545
22546 Besides being broken debug info, it can put GDB into an
22547 infinite loop. Consider:
22548
22549 When we're building the full name for Class<E>, we'll start
22550 at Class, and go look over its template type parameters,
22551 finding E. We'll then try to build the full name of E, and
22552 reach here. We're now trying to build the full name of E,
22553 and look over the parent DIE for containing scope. In the
22554 broken case, if we followed the parent DIE of E, we'd again
22555 find Class, and once again go look at its template type
22556 arguments, etc., etc. Simply don't consider such parent die
22557 as source-level parent of this die (it can't be, the language
22558 doesn't allow it), and break the loop here. */
22559 name = dwarf2_name (die, cu);
22560 parent_name = dwarf2_name (parent, cu);
22561 complaint (_("template param type '%s' defined within parent '%s'"),
22562 name ? name : "<unknown>",
22563 parent_name ? parent_name : "<unknown>");
22564 return "";
22565 }
22566 else
22567 switch (parent->tag)
22568 {
22569 case DW_TAG_namespace:
22570 parent_type = read_type_die (parent, cu);
22571 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22572 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22573 Work around this problem here. */
22574 if (cu->language == language_cplus
22575 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22576 return "";
22577 /* We give a name to even anonymous namespaces. */
22578 return TYPE_NAME (parent_type);
22579 case DW_TAG_class_type:
22580 case DW_TAG_interface_type:
22581 case DW_TAG_structure_type:
22582 case DW_TAG_union_type:
22583 case DW_TAG_module:
22584 parent_type = read_type_die (parent, cu);
22585 if (TYPE_NAME (parent_type) != NULL)
22586 return TYPE_NAME (parent_type);
22587 else
22588 /* An anonymous structure is only allowed non-static data
22589 members; no typedefs, no member functions, et cetera.
22590 So it does not need a prefix. */
22591 return "";
22592 case DW_TAG_compile_unit:
22593 case DW_TAG_partial_unit:
22594 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22595 if (cu->language == language_cplus
22596 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22597 && die->child != NULL
22598 && (die->tag == DW_TAG_class_type
22599 || die->tag == DW_TAG_structure_type
22600 || die->tag == DW_TAG_union_type))
22601 {
22602 char *name = guess_full_die_structure_name (die, cu);
22603 if (name != NULL)
22604 return name;
22605 }
22606 return "";
22607 case DW_TAG_enumeration_type:
22608 parent_type = read_type_die (parent, cu);
22609 if (TYPE_DECLARED_CLASS (parent_type))
22610 {
22611 if (TYPE_NAME (parent_type) != NULL)
22612 return TYPE_NAME (parent_type);
22613 return "";
22614 }
22615 /* Fall through. */
22616 default:
22617 return determine_prefix (parent, cu);
22618 }
22619 }
22620
22621 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22622 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22623 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22624 an obconcat, otherwise allocate storage for the result. The CU argument is
22625 used to determine the language and hence, the appropriate separator. */
22626
22627 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22628
22629 static char *
22630 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22631 int physname, struct dwarf2_cu *cu)
22632 {
22633 const char *lead = "";
22634 const char *sep;
22635
22636 if (suffix == NULL || suffix[0] == '\0'
22637 || prefix == NULL || prefix[0] == '\0')
22638 sep = "";
22639 else if (cu->language == language_d)
22640 {
22641 /* For D, the 'main' function could be defined in any module, but it
22642 should never be prefixed. */
22643 if (strcmp (suffix, "D main") == 0)
22644 {
22645 prefix = "";
22646 sep = "";
22647 }
22648 else
22649 sep = ".";
22650 }
22651 else if (cu->language == language_fortran && physname)
22652 {
22653 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22654 DW_AT_MIPS_linkage_name is preferred and used instead. */
22655
22656 lead = "__";
22657 sep = "_MOD_";
22658 }
22659 else
22660 sep = "::";
22661
22662 if (prefix == NULL)
22663 prefix = "";
22664 if (suffix == NULL)
22665 suffix = "";
22666
22667 if (obs == NULL)
22668 {
22669 char *retval
22670 = ((char *)
22671 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22672
22673 strcpy (retval, lead);
22674 strcat (retval, prefix);
22675 strcat (retval, sep);
22676 strcat (retval, suffix);
22677 return retval;
22678 }
22679 else
22680 {
22681 /* We have an obstack. */
22682 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22683 }
22684 }
22685
22686 /* Return sibling of die, NULL if no sibling. */
22687
22688 static struct die_info *
22689 sibling_die (struct die_info *die)
22690 {
22691 return die->sibling;
22692 }
22693
22694 /* Get name of a die, return NULL if not found. */
22695
22696 static const char *
22697 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22698 struct obstack *obstack)
22699 {
22700 if (name && cu->language == language_cplus)
22701 {
22702 std::string canon_name = cp_canonicalize_string (name);
22703
22704 if (!canon_name.empty ())
22705 {
22706 if (canon_name != name)
22707 name = (const char *) obstack_copy0 (obstack,
22708 canon_name.c_str (),
22709 canon_name.length ());
22710 }
22711 }
22712
22713 return name;
22714 }
22715
22716 /* Get name of a die, return NULL if not found.
22717 Anonymous namespaces are converted to their magic string. */
22718
22719 static const char *
22720 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22721 {
22722 struct attribute *attr;
22723 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22724
22725 attr = dwarf2_attr (die, DW_AT_name, cu);
22726 if ((!attr || !DW_STRING (attr))
22727 && die->tag != DW_TAG_namespace
22728 && die->tag != DW_TAG_class_type
22729 && die->tag != DW_TAG_interface_type
22730 && die->tag != DW_TAG_structure_type
22731 && die->tag != DW_TAG_union_type)
22732 return NULL;
22733
22734 switch (die->tag)
22735 {
22736 case DW_TAG_compile_unit:
22737 case DW_TAG_partial_unit:
22738 /* Compilation units have a DW_AT_name that is a filename, not
22739 a source language identifier. */
22740 case DW_TAG_enumeration_type:
22741 case DW_TAG_enumerator:
22742 /* These tags always have simple identifiers already; no need
22743 to canonicalize them. */
22744 return DW_STRING (attr);
22745
22746 case DW_TAG_namespace:
22747 if (attr != NULL && DW_STRING (attr) != NULL)
22748 return DW_STRING (attr);
22749 return CP_ANONYMOUS_NAMESPACE_STR;
22750
22751 case DW_TAG_class_type:
22752 case DW_TAG_interface_type:
22753 case DW_TAG_structure_type:
22754 case DW_TAG_union_type:
22755 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22756 structures or unions. These were of the form "._%d" in GCC 4.1,
22757 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22758 and GCC 4.4. We work around this problem by ignoring these. */
22759 if (attr && DW_STRING (attr)
22760 && (startswith (DW_STRING (attr), "._")
22761 || startswith (DW_STRING (attr), "<anonymous")))
22762 return NULL;
22763
22764 /* GCC might emit a nameless typedef that has a linkage name. See
22765 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22766 if (!attr || DW_STRING (attr) == NULL)
22767 {
22768 char *demangled = NULL;
22769
22770 attr = dw2_linkage_name_attr (die, cu);
22771 if (attr == NULL || DW_STRING (attr) == NULL)
22772 return NULL;
22773
22774 /* Avoid demangling DW_STRING (attr) the second time on a second
22775 call for the same DIE. */
22776 if (!DW_STRING_IS_CANONICAL (attr))
22777 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22778
22779 if (demangled)
22780 {
22781 const char *base;
22782
22783 /* FIXME: we already did this for the partial symbol... */
22784 DW_STRING (attr)
22785 = ((const char *)
22786 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22787 demangled, strlen (demangled)));
22788 DW_STRING_IS_CANONICAL (attr) = 1;
22789 xfree (demangled);
22790
22791 /* Strip any leading namespaces/classes, keep only the base name.
22792 DW_AT_name for named DIEs does not contain the prefixes. */
22793 base = strrchr (DW_STRING (attr), ':');
22794 if (base && base > DW_STRING (attr) && base[-1] == ':')
22795 return &base[1];
22796 else
22797 return DW_STRING (attr);
22798 }
22799 }
22800 break;
22801
22802 default:
22803 break;
22804 }
22805
22806 if (!DW_STRING_IS_CANONICAL (attr))
22807 {
22808 DW_STRING (attr)
22809 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22810 &objfile->per_bfd->storage_obstack);
22811 DW_STRING_IS_CANONICAL (attr) = 1;
22812 }
22813 return DW_STRING (attr);
22814 }
22815
22816 /* Return the die that this die in an extension of, or NULL if there
22817 is none. *EXT_CU is the CU containing DIE on input, and the CU
22818 containing the return value on output. */
22819
22820 static struct die_info *
22821 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22822 {
22823 struct attribute *attr;
22824
22825 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22826 if (attr == NULL)
22827 return NULL;
22828
22829 return follow_die_ref (die, attr, ext_cu);
22830 }
22831
22832 /* Convert a DIE tag into its string name. */
22833
22834 static const char *
22835 dwarf_tag_name (unsigned tag)
22836 {
22837 const char *name = get_DW_TAG_name (tag);
22838
22839 if (name == NULL)
22840 return "DW_TAG_<unknown>";
22841
22842 return name;
22843 }
22844
22845 /* Convert a DWARF attribute code into its string name. */
22846
22847 static const char *
22848 dwarf_attr_name (unsigned attr)
22849 {
22850 const char *name;
22851
22852 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22853 if (attr == DW_AT_MIPS_fde)
22854 return "DW_AT_MIPS_fde";
22855 #else
22856 if (attr == DW_AT_HP_block_index)
22857 return "DW_AT_HP_block_index";
22858 #endif
22859
22860 name = get_DW_AT_name (attr);
22861
22862 if (name == NULL)
22863 return "DW_AT_<unknown>";
22864
22865 return name;
22866 }
22867
22868 /* Convert a DWARF value form code into its string name. */
22869
22870 static const char *
22871 dwarf_form_name (unsigned form)
22872 {
22873 const char *name = get_DW_FORM_name (form);
22874
22875 if (name == NULL)
22876 return "DW_FORM_<unknown>";
22877
22878 return name;
22879 }
22880
22881 static const char *
22882 dwarf_bool_name (unsigned mybool)
22883 {
22884 if (mybool)
22885 return "TRUE";
22886 else
22887 return "FALSE";
22888 }
22889
22890 /* Convert a DWARF type code into its string name. */
22891
22892 static const char *
22893 dwarf_type_encoding_name (unsigned enc)
22894 {
22895 const char *name = get_DW_ATE_name (enc);
22896
22897 if (name == NULL)
22898 return "DW_ATE_<unknown>";
22899
22900 return name;
22901 }
22902
22903 static void
22904 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22905 {
22906 unsigned int i;
22907
22908 print_spaces (indent, f);
22909 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22910 dwarf_tag_name (die->tag), die->abbrev,
22911 sect_offset_str (die->sect_off));
22912
22913 if (die->parent != NULL)
22914 {
22915 print_spaces (indent, f);
22916 fprintf_unfiltered (f, " parent at offset: %s\n",
22917 sect_offset_str (die->parent->sect_off));
22918 }
22919
22920 print_spaces (indent, f);
22921 fprintf_unfiltered (f, " has children: %s\n",
22922 dwarf_bool_name (die->child != NULL));
22923
22924 print_spaces (indent, f);
22925 fprintf_unfiltered (f, " attributes:\n");
22926
22927 for (i = 0; i < die->num_attrs; ++i)
22928 {
22929 print_spaces (indent, f);
22930 fprintf_unfiltered (f, " %s (%s) ",
22931 dwarf_attr_name (die->attrs[i].name),
22932 dwarf_form_name (die->attrs[i].form));
22933
22934 switch (die->attrs[i].form)
22935 {
22936 case DW_FORM_addr:
22937 case DW_FORM_addrx:
22938 case DW_FORM_GNU_addr_index:
22939 fprintf_unfiltered (f, "address: ");
22940 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22941 break;
22942 case DW_FORM_block2:
22943 case DW_FORM_block4:
22944 case DW_FORM_block:
22945 case DW_FORM_block1:
22946 fprintf_unfiltered (f, "block: size %s",
22947 pulongest (DW_BLOCK (&die->attrs[i])->size));
22948 break;
22949 case DW_FORM_exprloc:
22950 fprintf_unfiltered (f, "expression: size %s",
22951 pulongest (DW_BLOCK (&die->attrs[i])->size));
22952 break;
22953 case DW_FORM_data16:
22954 fprintf_unfiltered (f, "constant of 16 bytes");
22955 break;
22956 case DW_FORM_ref_addr:
22957 fprintf_unfiltered (f, "ref address: ");
22958 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22959 break;
22960 case DW_FORM_GNU_ref_alt:
22961 fprintf_unfiltered (f, "alt ref address: ");
22962 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22963 break;
22964 case DW_FORM_ref1:
22965 case DW_FORM_ref2:
22966 case DW_FORM_ref4:
22967 case DW_FORM_ref8:
22968 case DW_FORM_ref_udata:
22969 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22970 (long) (DW_UNSND (&die->attrs[i])));
22971 break;
22972 case DW_FORM_data1:
22973 case DW_FORM_data2:
22974 case DW_FORM_data4:
22975 case DW_FORM_data8:
22976 case DW_FORM_udata:
22977 case DW_FORM_sdata:
22978 fprintf_unfiltered (f, "constant: %s",
22979 pulongest (DW_UNSND (&die->attrs[i])));
22980 break;
22981 case DW_FORM_sec_offset:
22982 fprintf_unfiltered (f, "section offset: %s",
22983 pulongest (DW_UNSND (&die->attrs[i])));
22984 break;
22985 case DW_FORM_ref_sig8:
22986 fprintf_unfiltered (f, "signature: %s",
22987 hex_string (DW_SIGNATURE (&die->attrs[i])));
22988 break;
22989 case DW_FORM_string:
22990 case DW_FORM_strp:
22991 case DW_FORM_line_strp:
22992 case DW_FORM_strx:
22993 case DW_FORM_GNU_str_index:
22994 case DW_FORM_GNU_strp_alt:
22995 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22996 DW_STRING (&die->attrs[i])
22997 ? DW_STRING (&die->attrs[i]) : "",
22998 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22999 break;
23000 case DW_FORM_flag:
23001 if (DW_UNSND (&die->attrs[i]))
23002 fprintf_unfiltered (f, "flag: TRUE");
23003 else
23004 fprintf_unfiltered (f, "flag: FALSE");
23005 break;
23006 case DW_FORM_flag_present:
23007 fprintf_unfiltered (f, "flag: TRUE");
23008 break;
23009 case DW_FORM_indirect:
23010 /* The reader will have reduced the indirect form to
23011 the "base form" so this form should not occur. */
23012 fprintf_unfiltered (f,
23013 "unexpected attribute form: DW_FORM_indirect");
23014 break;
23015 case DW_FORM_implicit_const:
23016 fprintf_unfiltered (f, "constant: %s",
23017 plongest (DW_SND (&die->attrs[i])));
23018 break;
23019 default:
23020 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23021 die->attrs[i].form);
23022 break;
23023 }
23024 fprintf_unfiltered (f, "\n");
23025 }
23026 }
23027
23028 static void
23029 dump_die_for_error (struct die_info *die)
23030 {
23031 dump_die_shallow (gdb_stderr, 0, die);
23032 }
23033
23034 static void
23035 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23036 {
23037 int indent = level * 4;
23038
23039 gdb_assert (die != NULL);
23040
23041 if (level >= max_level)
23042 return;
23043
23044 dump_die_shallow (f, indent, die);
23045
23046 if (die->child != NULL)
23047 {
23048 print_spaces (indent, f);
23049 fprintf_unfiltered (f, " Children:");
23050 if (level + 1 < max_level)
23051 {
23052 fprintf_unfiltered (f, "\n");
23053 dump_die_1 (f, level + 1, max_level, die->child);
23054 }
23055 else
23056 {
23057 fprintf_unfiltered (f,
23058 " [not printed, max nesting level reached]\n");
23059 }
23060 }
23061
23062 if (die->sibling != NULL && level > 0)
23063 {
23064 dump_die_1 (f, level, max_level, die->sibling);
23065 }
23066 }
23067
23068 /* This is called from the pdie macro in gdbinit.in.
23069 It's not static so gcc will keep a copy callable from gdb. */
23070
23071 void
23072 dump_die (struct die_info *die, int max_level)
23073 {
23074 dump_die_1 (gdb_stdlog, 0, max_level, die);
23075 }
23076
23077 static void
23078 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23079 {
23080 void **slot;
23081
23082 slot = htab_find_slot_with_hash (cu->die_hash, die,
23083 to_underlying (die->sect_off),
23084 INSERT);
23085
23086 *slot = die;
23087 }
23088
23089 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23090 required kind. */
23091
23092 static sect_offset
23093 dwarf2_get_ref_die_offset (const struct attribute *attr)
23094 {
23095 if (attr_form_is_ref (attr))
23096 return (sect_offset) DW_UNSND (attr);
23097
23098 complaint (_("unsupported die ref attribute form: '%s'"),
23099 dwarf_form_name (attr->form));
23100 return {};
23101 }
23102
23103 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23104 * the value held by the attribute is not constant. */
23105
23106 static LONGEST
23107 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23108 {
23109 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23110 return DW_SND (attr);
23111 else if (attr->form == DW_FORM_udata
23112 || attr->form == DW_FORM_data1
23113 || attr->form == DW_FORM_data2
23114 || attr->form == DW_FORM_data4
23115 || attr->form == DW_FORM_data8)
23116 return DW_UNSND (attr);
23117 else
23118 {
23119 /* For DW_FORM_data16 see attr_form_is_constant. */
23120 complaint (_("Attribute value is not a constant (%s)"),
23121 dwarf_form_name (attr->form));
23122 return default_value;
23123 }
23124 }
23125
23126 /* Follow reference or signature attribute ATTR of SRC_DIE.
23127 On entry *REF_CU is the CU of SRC_DIE.
23128 On exit *REF_CU is the CU of the result. */
23129
23130 static struct die_info *
23131 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23132 struct dwarf2_cu **ref_cu)
23133 {
23134 struct die_info *die;
23135
23136 if (attr_form_is_ref (attr))
23137 die = follow_die_ref (src_die, attr, ref_cu);
23138 else if (attr->form == DW_FORM_ref_sig8)
23139 die = follow_die_sig (src_die, attr, ref_cu);
23140 else
23141 {
23142 dump_die_for_error (src_die);
23143 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23144 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23145 }
23146
23147 return die;
23148 }
23149
23150 /* Follow reference OFFSET.
23151 On entry *REF_CU is the CU of the source die referencing OFFSET.
23152 On exit *REF_CU is the CU of the result.
23153 Returns NULL if OFFSET is invalid. */
23154
23155 static struct die_info *
23156 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23157 struct dwarf2_cu **ref_cu)
23158 {
23159 struct die_info temp_die;
23160 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23161 struct dwarf2_per_objfile *dwarf2_per_objfile
23162 = cu->per_cu->dwarf2_per_objfile;
23163
23164 gdb_assert (cu->per_cu != NULL);
23165
23166 target_cu = cu;
23167
23168 if (cu->per_cu->is_debug_types)
23169 {
23170 /* .debug_types CUs cannot reference anything outside their CU.
23171 If they need to, they have to reference a signatured type via
23172 DW_FORM_ref_sig8. */
23173 if (!offset_in_cu_p (&cu->header, sect_off))
23174 return NULL;
23175 }
23176 else if (offset_in_dwz != cu->per_cu->is_dwz
23177 || !offset_in_cu_p (&cu->header, sect_off))
23178 {
23179 struct dwarf2_per_cu_data *per_cu;
23180
23181 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23182 dwarf2_per_objfile);
23183
23184 /* If necessary, add it to the queue and load its DIEs. */
23185 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23186 load_full_comp_unit (per_cu, false, cu->language);
23187
23188 target_cu = per_cu->cu;
23189 }
23190 else if (cu->dies == NULL)
23191 {
23192 /* We're loading full DIEs during partial symbol reading. */
23193 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23194 load_full_comp_unit (cu->per_cu, false, language_minimal);
23195 }
23196
23197 *ref_cu = target_cu;
23198 temp_die.sect_off = sect_off;
23199
23200 if (target_cu != cu)
23201 target_cu->ancestor = cu;
23202
23203 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23204 &temp_die,
23205 to_underlying (sect_off));
23206 }
23207
23208 /* Follow reference attribute ATTR of SRC_DIE.
23209 On entry *REF_CU is the CU of SRC_DIE.
23210 On exit *REF_CU is the CU of the result. */
23211
23212 static struct die_info *
23213 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23214 struct dwarf2_cu **ref_cu)
23215 {
23216 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23217 struct dwarf2_cu *cu = *ref_cu;
23218 struct die_info *die;
23219
23220 die = follow_die_offset (sect_off,
23221 (attr->form == DW_FORM_GNU_ref_alt
23222 || cu->per_cu->is_dwz),
23223 ref_cu);
23224 if (!die)
23225 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23226 "at %s [in module %s]"),
23227 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23228 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23229
23230 return die;
23231 }
23232
23233 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23234 Returned value is intended for DW_OP_call*. Returned
23235 dwarf2_locexpr_baton->data has lifetime of
23236 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23237
23238 struct dwarf2_locexpr_baton
23239 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23240 struct dwarf2_per_cu_data *per_cu,
23241 CORE_ADDR (*get_frame_pc) (void *baton),
23242 void *baton, bool resolve_abstract_p)
23243 {
23244 struct dwarf2_cu *cu;
23245 struct die_info *die;
23246 struct attribute *attr;
23247 struct dwarf2_locexpr_baton retval;
23248 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23249 struct objfile *objfile = dwarf2_per_objfile->objfile;
23250
23251 if (per_cu->cu == NULL)
23252 load_cu (per_cu, false);
23253 cu = per_cu->cu;
23254 if (cu == NULL)
23255 {
23256 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23257 Instead just throw an error, not much else we can do. */
23258 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23259 sect_offset_str (sect_off), objfile_name (objfile));
23260 }
23261
23262 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23263 if (!die)
23264 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23265 sect_offset_str (sect_off), objfile_name (objfile));
23266
23267 attr = dwarf2_attr (die, DW_AT_location, cu);
23268 if (!attr && resolve_abstract_p
23269 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23270 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23271 {
23272 CORE_ADDR pc = (*get_frame_pc) (baton);
23273
23274 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23275 {
23276 if (!cand->parent
23277 || cand->parent->tag != DW_TAG_subprogram)
23278 continue;
23279
23280 CORE_ADDR pc_low, pc_high;
23281 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23282 if (pc_low == ((CORE_ADDR) -1)
23283 || !(pc_low <= pc && pc < pc_high))
23284 continue;
23285
23286 die = cand;
23287 attr = dwarf2_attr (die, DW_AT_location, cu);
23288 break;
23289 }
23290 }
23291
23292 if (!attr)
23293 {
23294 /* DWARF: "If there is no such attribute, then there is no effect.".
23295 DATA is ignored if SIZE is 0. */
23296
23297 retval.data = NULL;
23298 retval.size = 0;
23299 }
23300 else if (attr_form_is_section_offset (attr))
23301 {
23302 struct dwarf2_loclist_baton loclist_baton;
23303 CORE_ADDR pc = (*get_frame_pc) (baton);
23304 size_t size;
23305
23306 fill_in_loclist_baton (cu, &loclist_baton, attr);
23307
23308 retval.data = dwarf2_find_location_expression (&loclist_baton,
23309 &size, pc);
23310 retval.size = size;
23311 }
23312 else
23313 {
23314 if (!attr_form_is_block (attr))
23315 error (_("Dwarf Error: DIE at %s referenced in module %s "
23316 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23317 sect_offset_str (sect_off), objfile_name (objfile));
23318
23319 retval.data = DW_BLOCK (attr)->data;
23320 retval.size = DW_BLOCK (attr)->size;
23321 }
23322 retval.per_cu = cu->per_cu;
23323
23324 age_cached_comp_units (dwarf2_per_objfile);
23325
23326 return retval;
23327 }
23328
23329 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23330 offset. */
23331
23332 struct dwarf2_locexpr_baton
23333 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23334 struct dwarf2_per_cu_data *per_cu,
23335 CORE_ADDR (*get_frame_pc) (void *baton),
23336 void *baton)
23337 {
23338 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23339
23340 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23341 }
23342
23343 /* Write a constant of a given type as target-ordered bytes into
23344 OBSTACK. */
23345
23346 static const gdb_byte *
23347 write_constant_as_bytes (struct obstack *obstack,
23348 enum bfd_endian byte_order,
23349 struct type *type,
23350 ULONGEST value,
23351 LONGEST *len)
23352 {
23353 gdb_byte *result;
23354
23355 *len = TYPE_LENGTH (type);
23356 result = (gdb_byte *) obstack_alloc (obstack, *len);
23357 store_unsigned_integer (result, *len, byte_order, value);
23358
23359 return result;
23360 }
23361
23362 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23363 pointer to the constant bytes and set LEN to the length of the
23364 data. If memory is needed, allocate it on OBSTACK. If the DIE
23365 does not have a DW_AT_const_value, return NULL. */
23366
23367 const gdb_byte *
23368 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23369 struct dwarf2_per_cu_data *per_cu,
23370 struct obstack *obstack,
23371 LONGEST *len)
23372 {
23373 struct dwarf2_cu *cu;
23374 struct die_info *die;
23375 struct attribute *attr;
23376 const gdb_byte *result = NULL;
23377 struct type *type;
23378 LONGEST value;
23379 enum bfd_endian byte_order;
23380 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23381
23382 if (per_cu->cu == NULL)
23383 load_cu (per_cu, false);
23384 cu = per_cu->cu;
23385 if (cu == NULL)
23386 {
23387 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23388 Instead just throw an error, not much else we can do. */
23389 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23390 sect_offset_str (sect_off), objfile_name (objfile));
23391 }
23392
23393 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23394 if (!die)
23395 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23396 sect_offset_str (sect_off), objfile_name (objfile));
23397
23398 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23399 if (attr == NULL)
23400 return NULL;
23401
23402 byte_order = (bfd_big_endian (objfile->obfd)
23403 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23404
23405 switch (attr->form)
23406 {
23407 case DW_FORM_addr:
23408 case DW_FORM_addrx:
23409 case DW_FORM_GNU_addr_index:
23410 {
23411 gdb_byte *tem;
23412
23413 *len = cu->header.addr_size;
23414 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23415 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23416 result = tem;
23417 }
23418 break;
23419 case DW_FORM_string:
23420 case DW_FORM_strp:
23421 case DW_FORM_strx:
23422 case DW_FORM_GNU_str_index:
23423 case DW_FORM_GNU_strp_alt:
23424 /* DW_STRING is already allocated on the objfile obstack, point
23425 directly to it. */
23426 result = (const gdb_byte *) DW_STRING (attr);
23427 *len = strlen (DW_STRING (attr));
23428 break;
23429 case DW_FORM_block1:
23430 case DW_FORM_block2:
23431 case DW_FORM_block4:
23432 case DW_FORM_block:
23433 case DW_FORM_exprloc:
23434 case DW_FORM_data16:
23435 result = DW_BLOCK (attr)->data;
23436 *len = DW_BLOCK (attr)->size;
23437 break;
23438
23439 /* The DW_AT_const_value attributes are supposed to carry the
23440 symbol's value "represented as it would be on the target
23441 architecture." By the time we get here, it's already been
23442 converted to host endianness, so we just need to sign- or
23443 zero-extend it as appropriate. */
23444 case DW_FORM_data1:
23445 type = die_type (die, cu);
23446 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23447 if (result == NULL)
23448 result = write_constant_as_bytes (obstack, byte_order,
23449 type, value, len);
23450 break;
23451 case DW_FORM_data2:
23452 type = die_type (die, cu);
23453 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23454 if (result == NULL)
23455 result = write_constant_as_bytes (obstack, byte_order,
23456 type, value, len);
23457 break;
23458 case DW_FORM_data4:
23459 type = die_type (die, cu);
23460 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23461 if (result == NULL)
23462 result = write_constant_as_bytes (obstack, byte_order,
23463 type, value, len);
23464 break;
23465 case DW_FORM_data8:
23466 type = die_type (die, cu);
23467 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23468 if (result == NULL)
23469 result = write_constant_as_bytes (obstack, byte_order,
23470 type, value, len);
23471 break;
23472
23473 case DW_FORM_sdata:
23474 case DW_FORM_implicit_const:
23475 type = die_type (die, cu);
23476 result = write_constant_as_bytes (obstack, byte_order,
23477 type, DW_SND (attr), len);
23478 break;
23479
23480 case DW_FORM_udata:
23481 type = die_type (die, cu);
23482 result = write_constant_as_bytes (obstack, byte_order,
23483 type, DW_UNSND (attr), len);
23484 break;
23485
23486 default:
23487 complaint (_("unsupported const value attribute form: '%s'"),
23488 dwarf_form_name (attr->form));
23489 break;
23490 }
23491
23492 return result;
23493 }
23494
23495 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23496 valid type for this die is found. */
23497
23498 struct type *
23499 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23500 struct dwarf2_per_cu_data *per_cu)
23501 {
23502 struct dwarf2_cu *cu;
23503 struct die_info *die;
23504
23505 if (per_cu->cu == NULL)
23506 load_cu (per_cu, false);
23507 cu = per_cu->cu;
23508 if (!cu)
23509 return NULL;
23510
23511 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23512 if (!die)
23513 return NULL;
23514
23515 return die_type (die, cu);
23516 }
23517
23518 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23519 PER_CU. */
23520
23521 struct type *
23522 dwarf2_get_die_type (cu_offset die_offset,
23523 struct dwarf2_per_cu_data *per_cu)
23524 {
23525 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23526 return get_die_type_at_offset (die_offset_sect, per_cu);
23527 }
23528
23529 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23530 On entry *REF_CU is the CU of SRC_DIE.
23531 On exit *REF_CU is the CU of the result.
23532 Returns NULL if the referenced DIE isn't found. */
23533
23534 static struct die_info *
23535 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23536 struct dwarf2_cu **ref_cu)
23537 {
23538 struct die_info temp_die;
23539 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23540 struct die_info *die;
23541
23542 /* While it might be nice to assert sig_type->type == NULL here,
23543 we can get here for DW_AT_imported_declaration where we need
23544 the DIE not the type. */
23545
23546 /* If necessary, add it to the queue and load its DIEs. */
23547
23548 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23549 read_signatured_type (sig_type);
23550
23551 sig_cu = sig_type->per_cu.cu;
23552 gdb_assert (sig_cu != NULL);
23553 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23554 temp_die.sect_off = sig_type->type_offset_in_section;
23555 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23556 to_underlying (temp_die.sect_off));
23557 if (die)
23558 {
23559 struct dwarf2_per_objfile *dwarf2_per_objfile
23560 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23561
23562 /* For .gdb_index version 7 keep track of included TUs.
23563 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23564 if (dwarf2_per_objfile->index_table != NULL
23565 && dwarf2_per_objfile->index_table->version <= 7)
23566 {
23567 VEC_safe_push (dwarf2_per_cu_ptr,
23568 (*ref_cu)->per_cu->imported_symtabs,
23569 sig_cu->per_cu);
23570 }
23571
23572 *ref_cu = sig_cu;
23573 if (sig_cu != cu)
23574 sig_cu->ancestor = cu;
23575
23576 return die;
23577 }
23578
23579 return NULL;
23580 }
23581
23582 /* Follow signatured type referenced by ATTR in SRC_DIE.
23583 On entry *REF_CU is the CU of SRC_DIE.
23584 On exit *REF_CU is the CU of the result.
23585 The result is the DIE of the type.
23586 If the referenced type cannot be found an error is thrown. */
23587
23588 static struct die_info *
23589 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23590 struct dwarf2_cu **ref_cu)
23591 {
23592 ULONGEST signature = DW_SIGNATURE (attr);
23593 struct signatured_type *sig_type;
23594 struct die_info *die;
23595
23596 gdb_assert (attr->form == DW_FORM_ref_sig8);
23597
23598 sig_type = lookup_signatured_type (*ref_cu, signature);
23599 /* sig_type will be NULL if the signatured type is missing from
23600 the debug info. */
23601 if (sig_type == NULL)
23602 {
23603 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23604 " from DIE at %s [in module %s]"),
23605 hex_string (signature), sect_offset_str (src_die->sect_off),
23606 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23607 }
23608
23609 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23610 if (die == NULL)
23611 {
23612 dump_die_for_error (src_die);
23613 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23614 " from DIE at %s [in module %s]"),
23615 hex_string (signature), sect_offset_str (src_die->sect_off),
23616 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23617 }
23618
23619 return die;
23620 }
23621
23622 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23623 reading in and processing the type unit if necessary. */
23624
23625 static struct type *
23626 get_signatured_type (struct die_info *die, ULONGEST signature,
23627 struct dwarf2_cu *cu)
23628 {
23629 struct dwarf2_per_objfile *dwarf2_per_objfile
23630 = cu->per_cu->dwarf2_per_objfile;
23631 struct signatured_type *sig_type;
23632 struct dwarf2_cu *type_cu;
23633 struct die_info *type_die;
23634 struct type *type;
23635
23636 sig_type = lookup_signatured_type (cu, signature);
23637 /* sig_type will be NULL if the signatured type is missing from
23638 the debug info. */
23639 if (sig_type == NULL)
23640 {
23641 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23642 " from DIE at %s [in module %s]"),
23643 hex_string (signature), sect_offset_str (die->sect_off),
23644 objfile_name (dwarf2_per_objfile->objfile));
23645 return build_error_marker_type (cu, die);
23646 }
23647
23648 /* If we already know the type we're done. */
23649 if (sig_type->type != NULL)
23650 return sig_type->type;
23651
23652 type_cu = cu;
23653 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23654 if (type_die != NULL)
23655 {
23656 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23657 is created. This is important, for example, because for c++ classes
23658 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23659 type = read_type_die (type_die, type_cu);
23660 if (type == NULL)
23661 {
23662 complaint (_("Dwarf Error: Cannot build signatured type %s"
23663 " referenced from DIE at %s [in module %s]"),
23664 hex_string (signature), sect_offset_str (die->sect_off),
23665 objfile_name (dwarf2_per_objfile->objfile));
23666 type = build_error_marker_type (cu, die);
23667 }
23668 }
23669 else
23670 {
23671 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23672 " from DIE at %s [in module %s]"),
23673 hex_string (signature), sect_offset_str (die->sect_off),
23674 objfile_name (dwarf2_per_objfile->objfile));
23675 type = build_error_marker_type (cu, die);
23676 }
23677 sig_type->type = type;
23678
23679 return type;
23680 }
23681
23682 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23683 reading in and processing the type unit if necessary. */
23684
23685 static struct type *
23686 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23687 struct dwarf2_cu *cu) /* ARI: editCase function */
23688 {
23689 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23690 if (attr_form_is_ref (attr))
23691 {
23692 struct dwarf2_cu *type_cu = cu;
23693 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23694
23695 return read_type_die (type_die, type_cu);
23696 }
23697 else if (attr->form == DW_FORM_ref_sig8)
23698 {
23699 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23700 }
23701 else
23702 {
23703 struct dwarf2_per_objfile *dwarf2_per_objfile
23704 = cu->per_cu->dwarf2_per_objfile;
23705
23706 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23707 " at %s [in module %s]"),
23708 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23709 objfile_name (dwarf2_per_objfile->objfile));
23710 return build_error_marker_type (cu, die);
23711 }
23712 }
23713
23714 /* Load the DIEs associated with type unit PER_CU into memory. */
23715
23716 static void
23717 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23718 {
23719 struct signatured_type *sig_type;
23720
23721 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23722 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23723
23724 /* We have the per_cu, but we need the signatured_type.
23725 Fortunately this is an easy translation. */
23726 gdb_assert (per_cu->is_debug_types);
23727 sig_type = (struct signatured_type *) per_cu;
23728
23729 gdb_assert (per_cu->cu == NULL);
23730
23731 read_signatured_type (sig_type);
23732
23733 gdb_assert (per_cu->cu != NULL);
23734 }
23735
23736 /* die_reader_func for read_signatured_type.
23737 This is identical to load_full_comp_unit_reader,
23738 but is kept separate for now. */
23739
23740 static void
23741 read_signatured_type_reader (const struct die_reader_specs *reader,
23742 const gdb_byte *info_ptr,
23743 struct die_info *comp_unit_die,
23744 int has_children,
23745 void *data)
23746 {
23747 struct dwarf2_cu *cu = reader->cu;
23748
23749 gdb_assert (cu->die_hash == NULL);
23750 cu->die_hash =
23751 htab_create_alloc_ex (cu->header.length / 12,
23752 die_hash,
23753 die_eq,
23754 NULL,
23755 &cu->comp_unit_obstack,
23756 hashtab_obstack_allocate,
23757 dummy_obstack_deallocate);
23758
23759 if (has_children)
23760 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23761 &info_ptr, comp_unit_die);
23762 cu->dies = comp_unit_die;
23763 /* comp_unit_die is not stored in die_hash, no need. */
23764
23765 /* We try not to read any attributes in this function, because not
23766 all CUs needed for references have been loaded yet, and symbol
23767 table processing isn't initialized. But we have to set the CU language,
23768 or we won't be able to build types correctly.
23769 Similarly, if we do not read the producer, we can not apply
23770 producer-specific interpretation. */
23771 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23772 }
23773
23774 /* Read in a signatured type and build its CU and DIEs.
23775 If the type is a stub for the real type in a DWO file,
23776 read in the real type from the DWO file as well. */
23777
23778 static void
23779 read_signatured_type (struct signatured_type *sig_type)
23780 {
23781 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23782
23783 gdb_assert (per_cu->is_debug_types);
23784 gdb_assert (per_cu->cu == NULL);
23785
23786 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23787 read_signatured_type_reader, NULL);
23788 sig_type->per_cu.tu_read = 1;
23789 }
23790
23791 /* Decode simple location descriptions.
23792 Given a pointer to a dwarf block that defines a location, compute
23793 the location and return the value.
23794
23795 NOTE drow/2003-11-18: This function is called in two situations
23796 now: for the address of static or global variables (partial symbols
23797 only) and for offsets into structures which are expected to be
23798 (more or less) constant. The partial symbol case should go away,
23799 and only the constant case should remain. That will let this
23800 function complain more accurately. A few special modes are allowed
23801 without complaint for global variables (for instance, global
23802 register values and thread-local values).
23803
23804 A location description containing no operations indicates that the
23805 object is optimized out. The return value is 0 for that case.
23806 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23807 callers will only want a very basic result and this can become a
23808 complaint.
23809
23810 Note that stack[0] is unused except as a default error return. */
23811
23812 static CORE_ADDR
23813 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23814 {
23815 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23816 size_t i;
23817 size_t size = blk->size;
23818 const gdb_byte *data = blk->data;
23819 CORE_ADDR stack[64];
23820 int stacki;
23821 unsigned int bytes_read, unsnd;
23822 gdb_byte op;
23823
23824 i = 0;
23825 stacki = 0;
23826 stack[stacki] = 0;
23827 stack[++stacki] = 0;
23828
23829 while (i < size)
23830 {
23831 op = data[i++];
23832 switch (op)
23833 {
23834 case DW_OP_lit0:
23835 case DW_OP_lit1:
23836 case DW_OP_lit2:
23837 case DW_OP_lit3:
23838 case DW_OP_lit4:
23839 case DW_OP_lit5:
23840 case DW_OP_lit6:
23841 case DW_OP_lit7:
23842 case DW_OP_lit8:
23843 case DW_OP_lit9:
23844 case DW_OP_lit10:
23845 case DW_OP_lit11:
23846 case DW_OP_lit12:
23847 case DW_OP_lit13:
23848 case DW_OP_lit14:
23849 case DW_OP_lit15:
23850 case DW_OP_lit16:
23851 case DW_OP_lit17:
23852 case DW_OP_lit18:
23853 case DW_OP_lit19:
23854 case DW_OP_lit20:
23855 case DW_OP_lit21:
23856 case DW_OP_lit22:
23857 case DW_OP_lit23:
23858 case DW_OP_lit24:
23859 case DW_OP_lit25:
23860 case DW_OP_lit26:
23861 case DW_OP_lit27:
23862 case DW_OP_lit28:
23863 case DW_OP_lit29:
23864 case DW_OP_lit30:
23865 case DW_OP_lit31:
23866 stack[++stacki] = op - DW_OP_lit0;
23867 break;
23868
23869 case DW_OP_reg0:
23870 case DW_OP_reg1:
23871 case DW_OP_reg2:
23872 case DW_OP_reg3:
23873 case DW_OP_reg4:
23874 case DW_OP_reg5:
23875 case DW_OP_reg6:
23876 case DW_OP_reg7:
23877 case DW_OP_reg8:
23878 case DW_OP_reg9:
23879 case DW_OP_reg10:
23880 case DW_OP_reg11:
23881 case DW_OP_reg12:
23882 case DW_OP_reg13:
23883 case DW_OP_reg14:
23884 case DW_OP_reg15:
23885 case DW_OP_reg16:
23886 case DW_OP_reg17:
23887 case DW_OP_reg18:
23888 case DW_OP_reg19:
23889 case DW_OP_reg20:
23890 case DW_OP_reg21:
23891 case DW_OP_reg22:
23892 case DW_OP_reg23:
23893 case DW_OP_reg24:
23894 case DW_OP_reg25:
23895 case DW_OP_reg26:
23896 case DW_OP_reg27:
23897 case DW_OP_reg28:
23898 case DW_OP_reg29:
23899 case DW_OP_reg30:
23900 case DW_OP_reg31:
23901 stack[++stacki] = op - DW_OP_reg0;
23902 if (i < size)
23903 dwarf2_complex_location_expr_complaint ();
23904 break;
23905
23906 case DW_OP_regx:
23907 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23908 i += bytes_read;
23909 stack[++stacki] = unsnd;
23910 if (i < size)
23911 dwarf2_complex_location_expr_complaint ();
23912 break;
23913
23914 case DW_OP_addr:
23915 stack[++stacki] = read_address (objfile->obfd, &data[i],
23916 cu, &bytes_read);
23917 i += bytes_read;
23918 break;
23919
23920 case DW_OP_const1u:
23921 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23922 i += 1;
23923 break;
23924
23925 case DW_OP_const1s:
23926 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23927 i += 1;
23928 break;
23929
23930 case DW_OP_const2u:
23931 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23932 i += 2;
23933 break;
23934
23935 case DW_OP_const2s:
23936 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23937 i += 2;
23938 break;
23939
23940 case DW_OP_const4u:
23941 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23942 i += 4;
23943 break;
23944
23945 case DW_OP_const4s:
23946 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23947 i += 4;
23948 break;
23949
23950 case DW_OP_const8u:
23951 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23952 i += 8;
23953 break;
23954
23955 case DW_OP_constu:
23956 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23957 &bytes_read);
23958 i += bytes_read;
23959 break;
23960
23961 case DW_OP_consts:
23962 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23963 i += bytes_read;
23964 break;
23965
23966 case DW_OP_dup:
23967 stack[stacki + 1] = stack[stacki];
23968 stacki++;
23969 break;
23970
23971 case DW_OP_plus:
23972 stack[stacki - 1] += stack[stacki];
23973 stacki--;
23974 break;
23975
23976 case DW_OP_plus_uconst:
23977 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23978 &bytes_read);
23979 i += bytes_read;
23980 break;
23981
23982 case DW_OP_minus:
23983 stack[stacki - 1] -= stack[stacki];
23984 stacki--;
23985 break;
23986
23987 case DW_OP_deref:
23988 /* If we're not the last op, then we definitely can't encode
23989 this using GDB's address_class enum. This is valid for partial
23990 global symbols, although the variable's address will be bogus
23991 in the psymtab. */
23992 if (i < size)
23993 dwarf2_complex_location_expr_complaint ();
23994 break;
23995
23996 case DW_OP_GNU_push_tls_address:
23997 case DW_OP_form_tls_address:
23998 /* The top of the stack has the offset from the beginning
23999 of the thread control block at which the variable is located. */
24000 /* Nothing should follow this operator, so the top of stack would
24001 be returned. */
24002 /* This is valid for partial global symbols, but the variable's
24003 address will be bogus in the psymtab. Make it always at least
24004 non-zero to not look as a variable garbage collected by linker
24005 which have DW_OP_addr 0. */
24006 if (i < size)
24007 dwarf2_complex_location_expr_complaint ();
24008 stack[stacki]++;
24009 break;
24010
24011 case DW_OP_GNU_uninit:
24012 break;
24013
24014 case DW_OP_addrx:
24015 case DW_OP_GNU_addr_index:
24016 case DW_OP_GNU_const_index:
24017 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24018 &bytes_read);
24019 i += bytes_read;
24020 break;
24021
24022 default:
24023 {
24024 const char *name = get_DW_OP_name (op);
24025
24026 if (name)
24027 complaint (_("unsupported stack op: '%s'"),
24028 name);
24029 else
24030 complaint (_("unsupported stack op: '%02x'"),
24031 op);
24032 }
24033
24034 return (stack[stacki]);
24035 }
24036
24037 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24038 outside of the allocated space. Also enforce minimum>0. */
24039 if (stacki >= ARRAY_SIZE (stack) - 1)
24040 {
24041 complaint (_("location description stack overflow"));
24042 return 0;
24043 }
24044
24045 if (stacki <= 0)
24046 {
24047 complaint (_("location description stack underflow"));
24048 return 0;
24049 }
24050 }
24051 return (stack[stacki]);
24052 }
24053
24054 /* memory allocation interface */
24055
24056 static struct dwarf_block *
24057 dwarf_alloc_block (struct dwarf2_cu *cu)
24058 {
24059 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24060 }
24061
24062 static struct die_info *
24063 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24064 {
24065 struct die_info *die;
24066 size_t size = sizeof (struct die_info);
24067
24068 if (num_attrs > 1)
24069 size += (num_attrs - 1) * sizeof (struct attribute);
24070
24071 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24072 memset (die, 0, sizeof (struct die_info));
24073 return (die);
24074 }
24075
24076 \f
24077 /* Macro support. */
24078
24079 /* Return file name relative to the compilation directory of file number I in
24080 *LH's file name table. The result is allocated using xmalloc; the caller is
24081 responsible for freeing it. */
24082
24083 static char *
24084 file_file_name (int file, struct line_header *lh)
24085 {
24086 /* Is the file number a valid index into the line header's file name
24087 table? Remember that file numbers start with one, not zero. */
24088 if (1 <= file && file <= lh->file_names.size ())
24089 {
24090 const file_entry &fe = lh->file_names[file - 1];
24091
24092 if (!IS_ABSOLUTE_PATH (fe.name))
24093 {
24094 const char *dir = fe.include_dir (lh);
24095 if (dir != NULL)
24096 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24097 }
24098 return xstrdup (fe.name);
24099 }
24100 else
24101 {
24102 /* The compiler produced a bogus file number. We can at least
24103 record the macro definitions made in the file, even if we
24104 won't be able to find the file by name. */
24105 char fake_name[80];
24106
24107 xsnprintf (fake_name, sizeof (fake_name),
24108 "<bad macro file number %d>", file);
24109
24110 complaint (_("bad file number in macro information (%d)"),
24111 file);
24112
24113 return xstrdup (fake_name);
24114 }
24115 }
24116
24117 /* Return the full name of file number I in *LH's file name table.
24118 Use COMP_DIR as the name of the current directory of the
24119 compilation. The result is allocated using xmalloc; the caller is
24120 responsible for freeing it. */
24121 static char *
24122 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24123 {
24124 /* Is the file number a valid index into the line header's file name
24125 table? Remember that file numbers start with one, not zero. */
24126 if (1 <= file && file <= lh->file_names.size ())
24127 {
24128 char *relative = file_file_name (file, lh);
24129
24130 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24131 return relative;
24132 return reconcat (relative, comp_dir, SLASH_STRING,
24133 relative, (char *) NULL);
24134 }
24135 else
24136 return file_file_name (file, lh);
24137 }
24138
24139
24140 static struct macro_source_file *
24141 macro_start_file (struct dwarf2_cu *cu,
24142 int file, int line,
24143 struct macro_source_file *current_file,
24144 struct line_header *lh)
24145 {
24146 /* File name relative to the compilation directory of this source file. */
24147 char *file_name = file_file_name (file, lh);
24148
24149 if (! current_file)
24150 {
24151 /* Note: We don't create a macro table for this compilation unit
24152 at all until we actually get a filename. */
24153 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24154
24155 /* If we have no current file, then this must be the start_file
24156 directive for the compilation unit's main source file. */
24157 current_file = macro_set_main (macro_table, file_name);
24158 macro_define_special (macro_table);
24159 }
24160 else
24161 current_file = macro_include (current_file, line, file_name);
24162
24163 xfree (file_name);
24164
24165 return current_file;
24166 }
24167
24168 static const char *
24169 consume_improper_spaces (const char *p, const char *body)
24170 {
24171 if (*p == ' ')
24172 {
24173 complaint (_("macro definition contains spaces "
24174 "in formal argument list:\n`%s'"),
24175 body);
24176
24177 while (*p == ' ')
24178 p++;
24179 }
24180
24181 return p;
24182 }
24183
24184
24185 static void
24186 parse_macro_definition (struct macro_source_file *file, int line,
24187 const char *body)
24188 {
24189 const char *p;
24190
24191 /* The body string takes one of two forms. For object-like macro
24192 definitions, it should be:
24193
24194 <macro name> " " <definition>
24195
24196 For function-like macro definitions, it should be:
24197
24198 <macro name> "() " <definition>
24199 or
24200 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24201
24202 Spaces may appear only where explicitly indicated, and in the
24203 <definition>.
24204
24205 The Dwarf 2 spec says that an object-like macro's name is always
24206 followed by a space, but versions of GCC around March 2002 omit
24207 the space when the macro's definition is the empty string.
24208
24209 The Dwarf 2 spec says that there should be no spaces between the
24210 formal arguments in a function-like macro's formal argument list,
24211 but versions of GCC around March 2002 include spaces after the
24212 commas. */
24213
24214
24215 /* Find the extent of the macro name. The macro name is terminated
24216 by either a space or null character (for an object-like macro) or
24217 an opening paren (for a function-like macro). */
24218 for (p = body; *p; p++)
24219 if (*p == ' ' || *p == '(')
24220 break;
24221
24222 if (*p == ' ' || *p == '\0')
24223 {
24224 /* It's an object-like macro. */
24225 int name_len = p - body;
24226 char *name = savestring (body, name_len);
24227 const char *replacement;
24228
24229 if (*p == ' ')
24230 replacement = body + name_len + 1;
24231 else
24232 {
24233 dwarf2_macro_malformed_definition_complaint (body);
24234 replacement = body + name_len;
24235 }
24236
24237 macro_define_object (file, line, name, replacement);
24238
24239 xfree (name);
24240 }
24241 else if (*p == '(')
24242 {
24243 /* It's a function-like macro. */
24244 char *name = savestring (body, p - body);
24245 int argc = 0;
24246 int argv_size = 1;
24247 char **argv = XNEWVEC (char *, argv_size);
24248
24249 p++;
24250
24251 p = consume_improper_spaces (p, body);
24252
24253 /* Parse the formal argument list. */
24254 while (*p && *p != ')')
24255 {
24256 /* Find the extent of the current argument name. */
24257 const char *arg_start = p;
24258
24259 while (*p && *p != ',' && *p != ')' && *p != ' ')
24260 p++;
24261
24262 if (! *p || p == arg_start)
24263 dwarf2_macro_malformed_definition_complaint (body);
24264 else
24265 {
24266 /* Make sure argv has room for the new argument. */
24267 if (argc >= argv_size)
24268 {
24269 argv_size *= 2;
24270 argv = XRESIZEVEC (char *, argv, argv_size);
24271 }
24272
24273 argv[argc++] = savestring (arg_start, p - arg_start);
24274 }
24275
24276 p = consume_improper_spaces (p, body);
24277
24278 /* Consume the comma, if present. */
24279 if (*p == ',')
24280 {
24281 p++;
24282
24283 p = consume_improper_spaces (p, body);
24284 }
24285 }
24286
24287 if (*p == ')')
24288 {
24289 p++;
24290
24291 if (*p == ' ')
24292 /* Perfectly formed definition, no complaints. */
24293 macro_define_function (file, line, name,
24294 argc, (const char **) argv,
24295 p + 1);
24296 else if (*p == '\0')
24297 {
24298 /* Complain, but do define it. */
24299 dwarf2_macro_malformed_definition_complaint (body);
24300 macro_define_function (file, line, name,
24301 argc, (const char **) argv,
24302 p);
24303 }
24304 else
24305 /* Just complain. */
24306 dwarf2_macro_malformed_definition_complaint (body);
24307 }
24308 else
24309 /* Just complain. */
24310 dwarf2_macro_malformed_definition_complaint (body);
24311
24312 xfree (name);
24313 {
24314 int i;
24315
24316 for (i = 0; i < argc; i++)
24317 xfree (argv[i]);
24318 }
24319 xfree (argv);
24320 }
24321 else
24322 dwarf2_macro_malformed_definition_complaint (body);
24323 }
24324
24325 /* Skip some bytes from BYTES according to the form given in FORM.
24326 Returns the new pointer. */
24327
24328 static const gdb_byte *
24329 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24330 enum dwarf_form form,
24331 unsigned int offset_size,
24332 struct dwarf2_section_info *section)
24333 {
24334 unsigned int bytes_read;
24335
24336 switch (form)
24337 {
24338 case DW_FORM_data1:
24339 case DW_FORM_flag:
24340 ++bytes;
24341 break;
24342
24343 case DW_FORM_data2:
24344 bytes += 2;
24345 break;
24346
24347 case DW_FORM_data4:
24348 bytes += 4;
24349 break;
24350
24351 case DW_FORM_data8:
24352 bytes += 8;
24353 break;
24354
24355 case DW_FORM_data16:
24356 bytes += 16;
24357 break;
24358
24359 case DW_FORM_string:
24360 read_direct_string (abfd, bytes, &bytes_read);
24361 bytes += bytes_read;
24362 break;
24363
24364 case DW_FORM_sec_offset:
24365 case DW_FORM_strp:
24366 case DW_FORM_GNU_strp_alt:
24367 bytes += offset_size;
24368 break;
24369
24370 case DW_FORM_block:
24371 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24372 bytes += bytes_read;
24373 break;
24374
24375 case DW_FORM_block1:
24376 bytes += 1 + read_1_byte (abfd, bytes);
24377 break;
24378 case DW_FORM_block2:
24379 bytes += 2 + read_2_bytes (abfd, bytes);
24380 break;
24381 case DW_FORM_block4:
24382 bytes += 4 + read_4_bytes (abfd, bytes);
24383 break;
24384
24385 case DW_FORM_addrx:
24386 case DW_FORM_sdata:
24387 case DW_FORM_strx:
24388 case DW_FORM_udata:
24389 case DW_FORM_GNU_addr_index:
24390 case DW_FORM_GNU_str_index:
24391 bytes = gdb_skip_leb128 (bytes, buffer_end);
24392 if (bytes == NULL)
24393 {
24394 dwarf2_section_buffer_overflow_complaint (section);
24395 return NULL;
24396 }
24397 break;
24398
24399 case DW_FORM_implicit_const:
24400 break;
24401
24402 default:
24403 {
24404 complaint (_("invalid form 0x%x in `%s'"),
24405 form, get_section_name (section));
24406 return NULL;
24407 }
24408 }
24409
24410 return bytes;
24411 }
24412
24413 /* A helper for dwarf_decode_macros that handles skipping an unknown
24414 opcode. Returns an updated pointer to the macro data buffer; or,
24415 on error, issues a complaint and returns NULL. */
24416
24417 static const gdb_byte *
24418 skip_unknown_opcode (unsigned int opcode,
24419 const gdb_byte **opcode_definitions,
24420 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24421 bfd *abfd,
24422 unsigned int offset_size,
24423 struct dwarf2_section_info *section)
24424 {
24425 unsigned int bytes_read, i;
24426 unsigned long arg;
24427 const gdb_byte *defn;
24428
24429 if (opcode_definitions[opcode] == NULL)
24430 {
24431 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24432 opcode);
24433 return NULL;
24434 }
24435
24436 defn = opcode_definitions[opcode];
24437 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24438 defn += bytes_read;
24439
24440 for (i = 0; i < arg; ++i)
24441 {
24442 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24443 (enum dwarf_form) defn[i], offset_size,
24444 section);
24445 if (mac_ptr == NULL)
24446 {
24447 /* skip_form_bytes already issued the complaint. */
24448 return NULL;
24449 }
24450 }
24451
24452 return mac_ptr;
24453 }
24454
24455 /* A helper function which parses the header of a macro section.
24456 If the macro section is the extended (for now called "GNU") type,
24457 then this updates *OFFSET_SIZE. Returns a pointer to just after
24458 the header, or issues a complaint and returns NULL on error. */
24459
24460 static const gdb_byte *
24461 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24462 bfd *abfd,
24463 const gdb_byte *mac_ptr,
24464 unsigned int *offset_size,
24465 int section_is_gnu)
24466 {
24467 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24468
24469 if (section_is_gnu)
24470 {
24471 unsigned int version, flags;
24472
24473 version = read_2_bytes (abfd, mac_ptr);
24474 if (version != 4 && version != 5)
24475 {
24476 complaint (_("unrecognized version `%d' in .debug_macro section"),
24477 version);
24478 return NULL;
24479 }
24480 mac_ptr += 2;
24481
24482 flags = read_1_byte (abfd, mac_ptr);
24483 ++mac_ptr;
24484 *offset_size = (flags & 1) ? 8 : 4;
24485
24486 if ((flags & 2) != 0)
24487 /* We don't need the line table offset. */
24488 mac_ptr += *offset_size;
24489
24490 /* Vendor opcode descriptions. */
24491 if ((flags & 4) != 0)
24492 {
24493 unsigned int i, count;
24494
24495 count = read_1_byte (abfd, mac_ptr);
24496 ++mac_ptr;
24497 for (i = 0; i < count; ++i)
24498 {
24499 unsigned int opcode, bytes_read;
24500 unsigned long arg;
24501
24502 opcode = read_1_byte (abfd, mac_ptr);
24503 ++mac_ptr;
24504 opcode_definitions[opcode] = mac_ptr;
24505 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24506 mac_ptr += bytes_read;
24507 mac_ptr += arg;
24508 }
24509 }
24510 }
24511
24512 return mac_ptr;
24513 }
24514
24515 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24516 including DW_MACRO_import. */
24517
24518 static void
24519 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24520 bfd *abfd,
24521 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24522 struct macro_source_file *current_file,
24523 struct line_header *lh,
24524 struct dwarf2_section_info *section,
24525 int section_is_gnu, int section_is_dwz,
24526 unsigned int offset_size,
24527 htab_t include_hash)
24528 {
24529 struct dwarf2_per_objfile *dwarf2_per_objfile
24530 = cu->per_cu->dwarf2_per_objfile;
24531 struct objfile *objfile = dwarf2_per_objfile->objfile;
24532 enum dwarf_macro_record_type macinfo_type;
24533 int at_commandline;
24534 const gdb_byte *opcode_definitions[256];
24535
24536 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24537 &offset_size, section_is_gnu);
24538 if (mac_ptr == NULL)
24539 {
24540 /* We already issued a complaint. */
24541 return;
24542 }
24543
24544 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24545 GDB is still reading the definitions from command line. First
24546 DW_MACINFO_start_file will need to be ignored as it was already executed
24547 to create CURRENT_FILE for the main source holding also the command line
24548 definitions. On first met DW_MACINFO_start_file this flag is reset to
24549 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24550
24551 at_commandline = 1;
24552
24553 do
24554 {
24555 /* Do we at least have room for a macinfo type byte? */
24556 if (mac_ptr >= mac_end)
24557 {
24558 dwarf2_section_buffer_overflow_complaint (section);
24559 break;
24560 }
24561
24562 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24563 mac_ptr++;
24564
24565 /* Note that we rely on the fact that the corresponding GNU and
24566 DWARF constants are the same. */
24567 DIAGNOSTIC_PUSH
24568 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24569 switch (macinfo_type)
24570 {
24571 /* A zero macinfo type indicates the end of the macro
24572 information. */
24573 case 0:
24574 break;
24575
24576 case DW_MACRO_define:
24577 case DW_MACRO_undef:
24578 case DW_MACRO_define_strp:
24579 case DW_MACRO_undef_strp:
24580 case DW_MACRO_define_sup:
24581 case DW_MACRO_undef_sup:
24582 {
24583 unsigned int bytes_read;
24584 int line;
24585 const char *body;
24586 int is_define;
24587
24588 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24589 mac_ptr += bytes_read;
24590
24591 if (macinfo_type == DW_MACRO_define
24592 || macinfo_type == DW_MACRO_undef)
24593 {
24594 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24595 mac_ptr += bytes_read;
24596 }
24597 else
24598 {
24599 LONGEST str_offset;
24600
24601 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24602 mac_ptr += offset_size;
24603
24604 if (macinfo_type == DW_MACRO_define_sup
24605 || macinfo_type == DW_MACRO_undef_sup
24606 || section_is_dwz)
24607 {
24608 struct dwz_file *dwz
24609 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24610
24611 body = read_indirect_string_from_dwz (objfile,
24612 dwz, str_offset);
24613 }
24614 else
24615 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24616 abfd, str_offset);
24617 }
24618
24619 is_define = (macinfo_type == DW_MACRO_define
24620 || macinfo_type == DW_MACRO_define_strp
24621 || macinfo_type == DW_MACRO_define_sup);
24622 if (! current_file)
24623 {
24624 /* DWARF violation as no main source is present. */
24625 complaint (_("debug info with no main source gives macro %s "
24626 "on line %d: %s"),
24627 is_define ? _("definition") : _("undefinition"),
24628 line, body);
24629 break;
24630 }
24631 if ((line == 0 && !at_commandline)
24632 || (line != 0 && at_commandline))
24633 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24634 at_commandline ? _("command-line") : _("in-file"),
24635 is_define ? _("definition") : _("undefinition"),
24636 line == 0 ? _("zero") : _("non-zero"), line, body);
24637
24638 if (is_define)
24639 {
24640 if (body != NULL)
24641 parse_macro_definition (current_file, line, body);
24642 else
24643 {
24644 /* Fedora's rpm-build's "debugedit" binary
24645 corrupted .debug_macro sections.
24646
24647 For more info, see
24648 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24649 complaint (_("debug info gives %s invalid macro definition "
24650 "without body (corrupted?) at line %d"
24651 "on file %s"),
24652 at_commandline ? _("command-line")
24653 : _("in-file"),
24654 line, current_file->filename);
24655 }
24656 }
24657 else
24658 {
24659 gdb_assert (macinfo_type == DW_MACRO_undef
24660 || macinfo_type == DW_MACRO_undef_strp
24661 || macinfo_type == DW_MACRO_undef_sup);
24662 macro_undef (current_file, line, body);
24663 }
24664 }
24665 break;
24666
24667 case DW_MACRO_start_file:
24668 {
24669 unsigned int bytes_read;
24670 int line, file;
24671
24672 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24673 mac_ptr += bytes_read;
24674 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24675 mac_ptr += bytes_read;
24676
24677 if ((line == 0 && !at_commandline)
24678 || (line != 0 && at_commandline))
24679 complaint (_("debug info gives source %d included "
24680 "from %s at %s line %d"),
24681 file, at_commandline ? _("command-line") : _("file"),
24682 line == 0 ? _("zero") : _("non-zero"), line);
24683
24684 if (at_commandline)
24685 {
24686 /* This DW_MACRO_start_file was executed in the
24687 pass one. */
24688 at_commandline = 0;
24689 }
24690 else
24691 current_file = macro_start_file (cu, file, line, current_file,
24692 lh);
24693 }
24694 break;
24695
24696 case DW_MACRO_end_file:
24697 if (! current_file)
24698 complaint (_("macro debug info has an unmatched "
24699 "`close_file' directive"));
24700 else
24701 {
24702 current_file = current_file->included_by;
24703 if (! current_file)
24704 {
24705 enum dwarf_macro_record_type next_type;
24706
24707 /* GCC circa March 2002 doesn't produce the zero
24708 type byte marking the end of the compilation
24709 unit. Complain if it's not there, but exit no
24710 matter what. */
24711
24712 /* Do we at least have room for a macinfo type byte? */
24713 if (mac_ptr >= mac_end)
24714 {
24715 dwarf2_section_buffer_overflow_complaint (section);
24716 return;
24717 }
24718
24719 /* We don't increment mac_ptr here, so this is just
24720 a look-ahead. */
24721 next_type
24722 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24723 mac_ptr);
24724 if (next_type != 0)
24725 complaint (_("no terminating 0-type entry for "
24726 "macros in `.debug_macinfo' section"));
24727
24728 return;
24729 }
24730 }
24731 break;
24732
24733 case DW_MACRO_import:
24734 case DW_MACRO_import_sup:
24735 {
24736 LONGEST offset;
24737 void **slot;
24738 bfd *include_bfd = abfd;
24739 struct dwarf2_section_info *include_section = section;
24740 const gdb_byte *include_mac_end = mac_end;
24741 int is_dwz = section_is_dwz;
24742 const gdb_byte *new_mac_ptr;
24743
24744 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24745 mac_ptr += offset_size;
24746
24747 if (macinfo_type == DW_MACRO_import_sup)
24748 {
24749 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24750
24751 dwarf2_read_section (objfile, &dwz->macro);
24752
24753 include_section = &dwz->macro;
24754 include_bfd = get_section_bfd_owner (include_section);
24755 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24756 is_dwz = 1;
24757 }
24758
24759 new_mac_ptr = include_section->buffer + offset;
24760 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24761
24762 if (*slot != NULL)
24763 {
24764 /* This has actually happened; see
24765 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24766 complaint (_("recursive DW_MACRO_import in "
24767 ".debug_macro section"));
24768 }
24769 else
24770 {
24771 *slot = (void *) new_mac_ptr;
24772
24773 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24774 include_mac_end, current_file, lh,
24775 section, section_is_gnu, is_dwz,
24776 offset_size, include_hash);
24777
24778 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24779 }
24780 }
24781 break;
24782
24783 case DW_MACINFO_vendor_ext:
24784 if (!section_is_gnu)
24785 {
24786 unsigned int bytes_read;
24787
24788 /* This reads the constant, but since we don't recognize
24789 any vendor extensions, we ignore it. */
24790 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24791 mac_ptr += bytes_read;
24792 read_direct_string (abfd, mac_ptr, &bytes_read);
24793 mac_ptr += bytes_read;
24794
24795 /* We don't recognize any vendor extensions. */
24796 break;
24797 }
24798 /* FALLTHROUGH */
24799
24800 default:
24801 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24802 mac_ptr, mac_end, abfd, offset_size,
24803 section);
24804 if (mac_ptr == NULL)
24805 return;
24806 break;
24807 }
24808 DIAGNOSTIC_POP
24809 } while (macinfo_type != 0);
24810 }
24811
24812 static void
24813 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24814 int section_is_gnu)
24815 {
24816 struct dwarf2_per_objfile *dwarf2_per_objfile
24817 = cu->per_cu->dwarf2_per_objfile;
24818 struct objfile *objfile = dwarf2_per_objfile->objfile;
24819 struct line_header *lh = cu->line_header;
24820 bfd *abfd;
24821 const gdb_byte *mac_ptr, *mac_end;
24822 struct macro_source_file *current_file = 0;
24823 enum dwarf_macro_record_type macinfo_type;
24824 unsigned int offset_size = cu->header.offset_size;
24825 const gdb_byte *opcode_definitions[256];
24826 void **slot;
24827 struct dwarf2_section_info *section;
24828 const char *section_name;
24829
24830 if (cu->dwo_unit != NULL)
24831 {
24832 if (section_is_gnu)
24833 {
24834 section = &cu->dwo_unit->dwo_file->sections.macro;
24835 section_name = ".debug_macro.dwo";
24836 }
24837 else
24838 {
24839 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24840 section_name = ".debug_macinfo.dwo";
24841 }
24842 }
24843 else
24844 {
24845 if (section_is_gnu)
24846 {
24847 section = &dwarf2_per_objfile->macro;
24848 section_name = ".debug_macro";
24849 }
24850 else
24851 {
24852 section = &dwarf2_per_objfile->macinfo;
24853 section_name = ".debug_macinfo";
24854 }
24855 }
24856
24857 dwarf2_read_section (objfile, section);
24858 if (section->buffer == NULL)
24859 {
24860 complaint (_("missing %s section"), section_name);
24861 return;
24862 }
24863 abfd = get_section_bfd_owner (section);
24864
24865 /* First pass: Find the name of the base filename.
24866 This filename is needed in order to process all macros whose definition
24867 (or undefinition) comes from the command line. These macros are defined
24868 before the first DW_MACINFO_start_file entry, and yet still need to be
24869 associated to the base file.
24870
24871 To determine the base file name, we scan the macro definitions until we
24872 reach the first DW_MACINFO_start_file entry. We then initialize
24873 CURRENT_FILE accordingly so that any macro definition found before the
24874 first DW_MACINFO_start_file can still be associated to the base file. */
24875
24876 mac_ptr = section->buffer + offset;
24877 mac_end = section->buffer + section->size;
24878
24879 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24880 &offset_size, section_is_gnu);
24881 if (mac_ptr == NULL)
24882 {
24883 /* We already issued a complaint. */
24884 return;
24885 }
24886
24887 do
24888 {
24889 /* Do we at least have room for a macinfo type byte? */
24890 if (mac_ptr >= mac_end)
24891 {
24892 /* Complaint is printed during the second pass as GDB will probably
24893 stop the first pass earlier upon finding
24894 DW_MACINFO_start_file. */
24895 break;
24896 }
24897
24898 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24899 mac_ptr++;
24900
24901 /* Note that we rely on the fact that the corresponding GNU and
24902 DWARF constants are the same. */
24903 DIAGNOSTIC_PUSH
24904 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24905 switch (macinfo_type)
24906 {
24907 /* A zero macinfo type indicates the end of the macro
24908 information. */
24909 case 0:
24910 break;
24911
24912 case DW_MACRO_define:
24913 case DW_MACRO_undef:
24914 /* Only skip the data by MAC_PTR. */
24915 {
24916 unsigned int bytes_read;
24917
24918 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24919 mac_ptr += bytes_read;
24920 read_direct_string (abfd, mac_ptr, &bytes_read);
24921 mac_ptr += bytes_read;
24922 }
24923 break;
24924
24925 case DW_MACRO_start_file:
24926 {
24927 unsigned int bytes_read;
24928 int line, file;
24929
24930 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24931 mac_ptr += bytes_read;
24932 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24933 mac_ptr += bytes_read;
24934
24935 current_file = macro_start_file (cu, file, line, current_file, lh);
24936 }
24937 break;
24938
24939 case DW_MACRO_end_file:
24940 /* No data to skip by MAC_PTR. */
24941 break;
24942
24943 case DW_MACRO_define_strp:
24944 case DW_MACRO_undef_strp:
24945 case DW_MACRO_define_sup:
24946 case DW_MACRO_undef_sup:
24947 {
24948 unsigned int bytes_read;
24949
24950 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24951 mac_ptr += bytes_read;
24952 mac_ptr += offset_size;
24953 }
24954 break;
24955
24956 case DW_MACRO_import:
24957 case DW_MACRO_import_sup:
24958 /* Note that, according to the spec, a transparent include
24959 chain cannot call DW_MACRO_start_file. So, we can just
24960 skip this opcode. */
24961 mac_ptr += offset_size;
24962 break;
24963
24964 case DW_MACINFO_vendor_ext:
24965 /* Only skip the data by MAC_PTR. */
24966 if (!section_is_gnu)
24967 {
24968 unsigned int bytes_read;
24969
24970 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24971 mac_ptr += bytes_read;
24972 read_direct_string (abfd, mac_ptr, &bytes_read);
24973 mac_ptr += bytes_read;
24974 }
24975 /* FALLTHROUGH */
24976
24977 default:
24978 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24979 mac_ptr, mac_end, abfd, offset_size,
24980 section);
24981 if (mac_ptr == NULL)
24982 return;
24983 break;
24984 }
24985 DIAGNOSTIC_POP
24986 } while (macinfo_type != 0 && current_file == NULL);
24987
24988 /* Second pass: Process all entries.
24989
24990 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24991 command-line macro definitions/undefinitions. This flag is unset when we
24992 reach the first DW_MACINFO_start_file entry. */
24993
24994 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24995 htab_eq_pointer,
24996 NULL, xcalloc, xfree));
24997 mac_ptr = section->buffer + offset;
24998 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24999 *slot = (void *) mac_ptr;
25000 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
25001 current_file, lh, section,
25002 section_is_gnu, 0, offset_size,
25003 include_hash.get ());
25004 }
25005
25006 /* Check if the attribute's form is a DW_FORM_block*
25007 if so return true else false. */
25008
25009 static int
25010 attr_form_is_block (const struct attribute *attr)
25011 {
25012 return (attr == NULL ? 0 :
25013 attr->form == DW_FORM_block1
25014 || attr->form == DW_FORM_block2
25015 || attr->form == DW_FORM_block4
25016 || attr->form == DW_FORM_block
25017 || attr->form == DW_FORM_exprloc);
25018 }
25019
25020 /* Return non-zero if ATTR's value is a section offset --- classes
25021 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25022 You may use DW_UNSND (attr) to retrieve such offsets.
25023
25024 Section 7.5.4, "Attribute Encodings", explains that no attribute
25025 may have a value that belongs to more than one of these classes; it
25026 would be ambiguous if we did, because we use the same forms for all
25027 of them. */
25028
25029 static int
25030 attr_form_is_section_offset (const struct attribute *attr)
25031 {
25032 return (attr->form == DW_FORM_data4
25033 || attr->form == DW_FORM_data8
25034 || attr->form == DW_FORM_sec_offset);
25035 }
25036
25037 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25038 zero otherwise. When this function returns true, you can apply
25039 dwarf2_get_attr_constant_value to it.
25040
25041 However, note that for some attributes you must check
25042 attr_form_is_section_offset before using this test. DW_FORM_data4
25043 and DW_FORM_data8 are members of both the constant class, and of
25044 the classes that contain offsets into other debug sections
25045 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25046 that, if an attribute's can be either a constant or one of the
25047 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25048 taken as section offsets, not constants.
25049
25050 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25051 cannot handle that. */
25052
25053 static int
25054 attr_form_is_constant (const struct attribute *attr)
25055 {
25056 switch (attr->form)
25057 {
25058 case DW_FORM_sdata:
25059 case DW_FORM_udata:
25060 case DW_FORM_data1:
25061 case DW_FORM_data2:
25062 case DW_FORM_data4:
25063 case DW_FORM_data8:
25064 case DW_FORM_implicit_const:
25065 return 1;
25066 default:
25067 return 0;
25068 }
25069 }
25070
25071
25072 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25073 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25074
25075 static int
25076 attr_form_is_ref (const struct attribute *attr)
25077 {
25078 switch (attr->form)
25079 {
25080 case DW_FORM_ref_addr:
25081 case DW_FORM_ref1:
25082 case DW_FORM_ref2:
25083 case DW_FORM_ref4:
25084 case DW_FORM_ref8:
25085 case DW_FORM_ref_udata:
25086 case DW_FORM_GNU_ref_alt:
25087 return 1;
25088 default:
25089 return 0;
25090 }
25091 }
25092
25093 /* Return the .debug_loc section to use for CU.
25094 For DWO files use .debug_loc.dwo. */
25095
25096 static struct dwarf2_section_info *
25097 cu_debug_loc_section (struct dwarf2_cu *cu)
25098 {
25099 struct dwarf2_per_objfile *dwarf2_per_objfile
25100 = cu->per_cu->dwarf2_per_objfile;
25101
25102 if (cu->dwo_unit)
25103 {
25104 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25105
25106 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25107 }
25108 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25109 : &dwarf2_per_objfile->loc);
25110 }
25111
25112 /* A helper function that fills in a dwarf2_loclist_baton. */
25113
25114 static void
25115 fill_in_loclist_baton (struct dwarf2_cu *cu,
25116 struct dwarf2_loclist_baton *baton,
25117 const struct attribute *attr)
25118 {
25119 struct dwarf2_per_objfile *dwarf2_per_objfile
25120 = cu->per_cu->dwarf2_per_objfile;
25121 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25122
25123 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25124
25125 baton->per_cu = cu->per_cu;
25126 gdb_assert (baton->per_cu);
25127 /* We don't know how long the location list is, but make sure we
25128 don't run off the edge of the section. */
25129 baton->size = section->size - DW_UNSND (attr);
25130 baton->data = section->buffer + DW_UNSND (attr);
25131 baton->base_address = cu->base_address;
25132 baton->from_dwo = cu->dwo_unit != NULL;
25133 }
25134
25135 static void
25136 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25137 struct dwarf2_cu *cu, int is_block)
25138 {
25139 struct dwarf2_per_objfile *dwarf2_per_objfile
25140 = cu->per_cu->dwarf2_per_objfile;
25141 struct objfile *objfile = dwarf2_per_objfile->objfile;
25142 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25143
25144 if (attr_form_is_section_offset (attr)
25145 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25146 the section. If so, fall through to the complaint in the
25147 other branch. */
25148 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25149 {
25150 struct dwarf2_loclist_baton *baton;
25151
25152 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25153
25154 fill_in_loclist_baton (cu, baton, attr);
25155
25156 if (cu->base_known == 0)
25157 complaint (_("Location list used without "
25158 "specifying the CU base address."));
25159
25160 SYMBOL_ACLASS_INDEX (sym) = (is_block
25161 ? dwarf2_loclist_block_index
25162 : dwarf2_loclist_index);
25163 SYMBOL_LOCATION_BATON (sym) = baton;
25164 }
25165 else
25166 {
25167 struct dwarf2_locexpr_baton *baton;
25168
25169 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25170 baton->per_cu = cu->per_cu;
25171 gdb_assert (baton->per_cu);
25172
25173 if (attr_form_is_block (attr))
25174 {
25175 /* Note that we're just copying the block's data pointer
25176 here, not the actual data. We're still pointing into the
25177 info_buffer for SYM's objfile; right now we never release
25178 that buffer, but when we do clean up properly this may
25179 need to change. */
25180 baton->size = DW_BLOCK (attr)->size;
25181 baton->data = DW_BLOCK (attr)->data;
25182 }
25183 else
25184 {
25185 dwarf2_invalid_attrib_class_complaint ("location description",
25186 SYMBOL_NATURAL_NAME (sym));
25187 baton->size = 0;
25188 }
25189
25190 SYMBOL_ACLASS_INDEX (sym) = (is_block
25191 ? dwarf2_locexpr_block_index
25192 : dwarf2_locexpr_index);
25193 SYMBOL_LOCATION_BATON (sym) = baton;
25194 }
25195 }
25196
25197 /* Return the OBJFILE associated with the compilation unit CU. If CU
25198 came from a separate debuginfo file, then the master objfile is
25199 returned. */
25200
25201 struct objfile *
25202 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25203 {
25204 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25205
25206 /* Return the master objfile, so that we can report and look up the
25207 correct file containing this variable. */
25208 if (objfile->separate_debug_objfile_backlink)
25209 objfile = objfile->separate_debug_objfile_backlink;
25210
25211 return objfile;
25212 }
25213
25214 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25215 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25216 CU_HEADERP first. */
25217
25218 static const struct comp_unit_head *
25219 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25220 struct dwarf2_per_cu_data *per_cu)
25221 {
25222 const gdb_byte *info_ptr;
25223
25224 if (per_cu->cu)
25225 return &per_cu->cu->header;
25226
25227 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25228
25229 memset (cu_headerp, 0, sizeof (*cu_headerp));
25230 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25231 rcuh_kind::COMPILE);
25232
25233 return cu_headerp;
25234 }
25235
25236 /* Return the address size given in the compilation unit header for CU. */
25237
25238 int
25239 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25240 {
25241 struct comp_unit_head cu_header_local;
25242 const struct comp_unit_head *cu_headerp;
25243
25244 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25245
25246 return cu_headerp->addr_size;
25247 }
25248
25249 /* Return the offset size given in the compilation unit header for CU. */
25250
25251 int
25252 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25253 {
25254 struct comp_unit_head cu_header_local;
25255 const struct comp_unit_head *cu_headerp;
25256
25257 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25258
25259 return cu_headerp->offset_size;
25260 }
25261
25262 /* See its dwarf2loc.h declaration. */
25263
25264 int
25265 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25266 {
25267 struct comp_unit_head cu_header_local;
25268 const struct comp_unit_head *cu_headerp;
25269
25270 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25271
25272 if (cu_headerp->version == 2)
25273 return cu_headerp->addr_size;
25274 else
25275 return cu_headerp->offset_size;
25276 }
25277
25278 /* Return the text offset of the CU. The returned offset comes from
25279 this CU's objfile. If this objfile came from a separate debuginfo
25280 file, then the offset may be different from the corresponding
25281 offset in the parent objfile. */
25282
25283 CORE_ADDR
25284 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25285 {
25286 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25287
25288 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25289 }
25290
25291 /* Return DWARF version number of PER_CU. */
25292
25293 short
25294 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25295 {
25296 return per_cu->dwarf_version;
25297 }
25298
25299 /* Locate the .debug_info compilation unit from CU's objfile which contains
25300 the DIE at OFFSET. Raises an error on failure. */
25301
25302 static struct dwarf2_per_cu_data *
25303 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25304 unsigned int offset_in_dwz,
25305 struct dwarf2_per_objfile *dwarf2_per_objfile)
25306 {
25307 struct dwarf2_per_cu_data *this_cu;
25308 int low, high;
25309
25310 low = 0;
25311 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25312 while (high > low)
25313 {
25314 struct dwarf2_per_cu_data *mid_cu;
25315 int mid = low + (high - low) / 2;
25316
25317 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25318 if (mid_cu->is_dwz > offset_in_dwz
25319 || (mid_cu->is_dwz == offset_in_dwz
25320 && mid_cu->sect_off + mid_cu->length >= sect_off))
25321 high = mid;
25322 else
25323 low = mid + 1;
25324 }
25325 gdb_assert (low == high);
25326 this_cu = dwarf2_per_objfile->all_comp_units[low];
25327 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25328 {
25329 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25330 error (_("Dwarf Error: could not find partial DIE containing "
25331 "offset %s [in module %s]"),
25332 sect_offset_str (sect_off),
25333 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25334
25335 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25336 <= sect_off);
25337 return dwarf2_per_objfile->all_comp_units[low-1];
25338 }
25339 else
25340 {
25341 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25342 && sect_off >= this_cu->sect_off + this_cu->length)
25343 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25344 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25345 return this_cu;
25346 }
25347 }
25348
25349 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25350
25351 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25352 : per_cu (per_cu_),
25353 mark (false),
25354 has_loclist (false),
25355 checked_producer (false),
25356 producer_is_gxx_lt_4_6 (false),
25357 producer_is_gcc_lt_4_3 (false),
25358 producer_is_icc (false),
25359 producer_is_icc_lt_14 (false),
25360 producer_is_codewarrior (false),
25361 processing_has_namespace_info (false)
25362 {
25363 per_cu->cu = this;
25364 }
25365
25366 /* Destroy a dwarf2_cu. */
25367
25368 dwarf2_cu::~dwarf2_cu ()
25369 {
25370 per_cu->cu = NULL;
25371 }
25372
25373 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25374
25375 static void
25376 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25377 enum language pretend_language)
25378 {
25379 struct attribute *attr;
25380
25381 /* Set the language we're debugging. */
25382 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25383 if (attr)
25384 set_cu_language (DW_UNSND (attr), cu);
25385 else
25386 {
25387 cu->language = pretend_language;
25388 cu->language_defn = language_def (cu->language);
25389 }
25390
25391 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25392 }
25393
25394 /* Increase the age counter on each cached compilation unit, and free
25395 any that are too old. */
25396
25397 static void
25398 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25399 {
25400 struct dwarf2_per_cu_data *per_cu, **last_chain;
25401
25402 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25403 per_cu = dwarf2_per_objfile->read_in_chain;
25404 while (per_cu != NULL)
25405 {
25406 per_cu->cu->last_used ++;
25407 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25408 dwarf2_mark (per_cu->cu);
25409 per_cu = per_cu->cu->read_in_chain;
25410 }
25411
25412 per_cu = dwarf2_per_objfile->read_in_chain;
25413 last_chain = &dwarf2_per_objfile->read_in_chain;
25414 while (per_cu != NULL)
25415 {
25416 struct dwarf2_per_cu_data *next_cu;
25417
25418 next_cu = per_cu->cu->read_in_chain;
25419
25420 if (!per_cu->cu->mark)
25421 {
25422 delete per_cu->cu;
25423 *last_chain = next_cu;
25424 }
25425 else
25426 last_chain = &per_cu->cu->read_in_chain;
25427
25428 per_cu = next_cu;
25429 }
25430 }
25431
25432 /* Remove a single compilation unit from the cache. */
25433
25434 static void
25435 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25436 {
25437 struct dwarf2_per_cu_data *per_cu, **last_chain;
25438 struct dwarf2_per_objfile *dwarf2_per_objfile
25439 = target_per_cu->dwarf2_per_objfile;
25440
25441 per_cu = dwarf2_per_objfile->read_in_chain;
25442 last_chain = &dwarf2_per_objfile->read_in_chain;
25443 while (per_cu != NULL)
25444 {
25445 struct dwarf2_per_cu_data *next_cu;
25446
25447 next_cu = per_cu->cu->read_in_chain;
25448
25449 if (per_cu == target_per_cu)
25450 {
25451 delete per_cu->cu;
25452 per_cu->cu = NULL;
25453 *last_chain = next_cu;
25454 break;
25455 }
25456 else
25457 last_chain = &per_cu->cu->read_in_chain;
25458
25459 per_cu = next_cu;
25460 }
25461 }
25462
25463 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25464 We store these in a hash table separate from the DIEs, and preserve them
25465 when the DIEs are flushed out of cache.
25466
25467 The CU "per_cu" pointer is needed because offset alone is not enough to
25468 uniquely identify the type. A file may have multiple .debug_types sections,
25469 or the type may come from a DWO file. Furthermore, while it's more logical
25470 to use per_cu->section+offset, with Fission the section with the data is in
25471 the DWO file but we don't know that section at the point we need it.
25472 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25473 because we can enter the lookup routine, get_die_type_at_offset, from
25474 outside this file, and thus won't necessarily have PER_CU->cu.
25475 Fortunately, PER_CU is stable for the life of the objfile. */
25476
25477 struct dwarf2_per_cu_offset_and_type
25478 {
25479 const struct dwarf2_per_cu_data *per_cu;
25480 sect_offset sect_off;
25481 struct type *type;
25482 };
25483
25484 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25485
25486 static hashval_t
25487 per_cu_offset_and_type_hash (const void *item)
25488 {
25489 const struct dwarf2_per_cu_offset_and_type *ofs
25490 = (const struct dwarf2_per_cu_offset_and_type *) item;
25491
25492 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25493 }
25494
25495 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25496
25497 static int
25498 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25499 {
25500 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25501 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25502 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25503 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25504
25505 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25506 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25507 }
25508
25509 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25510 table if necessary. For convenience, return TYPE.
25511
25512 The DIEs reading must have careful ordering to:
25513 * Not cause infite loops trying to read in DIEs as a prerequisite for
25514 reading current DIE.
25515 * Not trying to dereference contents of still incompletely read in types
25516 while reading in other DIEs.
25517 * Enable referencing still incompletely read in types just by a pointer to
25518 the type without accessing its fields.
25519
25520 Therefore caller should follow these rules:
25521 * Try to fetch any prerequisite types we may need to build this DIE type
25522 before building the type and calling set_die_type.
25523 * After building type call set_die_type for current DIE as soon as
25524 possible before fetching more types to complete the current type.
25525 * Make the type as complete as possible before fetching more types. */
25526
25527 static struct type *
25528 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25529 {
25530 struct dwarf2_per_objfile *dwarf2_per_objfile
25531 = cu->per_cu->dwarf2_per_objfile;
25532 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25533 struct objfile *objfile = dwarf2_per_objfile->objfile;
25534 struct attribute *attr;
25535 struct dynamic_prop prop;
25536
25537 /* For Ada types, make sure that the gnat-specific data is always
25538 initialized (if not already set). There are a few types where
25539 we should not be doing so, because the type-specific area is
25540 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25541 where the type-specific area is used to store the floatformat).
25542 But this is not a problem, because the gnat-specific information
25543 is actually not needed for these types. */
25544 if (need_gnat_info (cu)
25545 && TYPE_CODE (type) != TYPE_CODE_FUNC
25546 && TYPE_CODE (type) != TYPE_CODE_FLT
25547 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25548 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25549 && TYPE_CODE (type) != TYPE_CODE_METHOD
25550 && !HAVE_GNAT_AUX_INFO (type))
25551 INIT_GNAT_SPECIFIC (type);
25552
25553 /* Read DW_AT_allocated and set in type. */
25554 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25555 if (attr_form_is_block (attr))
25556 {
25557 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25558 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25559 }
25560 else if (attr != NULL)
25561 {
25562 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25563 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25564 sect_offset_str (die->sect_off));
25565 }
25566
25567 /* Read DW_AT_associated and set in type. */
25568 attr = dwarf2_attr (die, DW_AT_associated, cu);
25569 if (attr_form_is_block (attr))
25570 {
25571 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25572 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25573 }
25574 else if (attr != NULL)
25575 {
25576 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25577 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25578 sect_offset_str (die->sect_off));
25579 }
25580
25581 /* Read DW_AT_data_location and set in type. */
25582 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25583 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25584 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25585
25586 if (dwarf2_per_objfile->die_type_hash == NULL)
25587 {
25588 dwarf2_per_objfile->die_type_hash =
25589 htab_create_alloc_ex (127,
25590 per_cu_offset_and_type_hash,
25591 per_cu_offset_and_type_eq,
25592 NULL,
25593 &objfile->objfile_obstack,
25594 hashtab_obstack_allocate,
25595 dummy_obstack_deallocate);
25596 }
25597
25598 ofs.per_cu = cu->per_cu;
25599 ofs.sect_off = die->sect_off;
25600 ofs.type = type;
25601 slot = (struct dwarf2_per_cu_offset_and_type **)
25602 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25603 if (*slot)
25604 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25605 sect_offset_str (die->sect_off));
25606 *slot = XOBNEW (&objfile->objfile_obstack,
25607 struct dwarf2_per_cu_offset_and_type);
25608 **slot = ofs;
25609 return type;
25610 }
25611
25612 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25613 or return NULL if the die does not have a saved type. */
25614
25615 static struct type *
25616 get_die_type_at_offset (sect_offset sect_off,
25617 struct dwarf2_per_cu_data *per_cu)
25618 {
25619 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25620 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25621
25622 if (dwarf2_per_objfile->die_type_hash == NULL)
25623 return NULL;
25624
25625 ofs.per_cu = per_cu;
25626 ofs.sect_off = sect_off;
25627 slot = ((struct dwarf2_per_cu_offset_and_type *)
25628 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25629 if (slot)
25630 return slot->type;
25631 else
25632 return NULL;
25633 }
25634
25635 /* Look up the type for DIE in CU in die_type_hash,
25636 or return NULL if DIE does not have a saved type. */
25637
25638 static struct type *
25639 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25640 {
25641 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25642 }
25643
25644 /* Add a dependence relationship from CU to REF_PER_CU. */
25645
25646 static void
25647 dwarf2_add_dependence (struct dwarf2_cu *cu,
25648 struct dwarf2_per_cu_data *ref_per_cu)
25649 {
25650 void **slot;
25651
25652 if (cu->dependencies == NULL)
25653 cu->dependencies
25654 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25655 NULL, &cu->comp_unit_obstack,
25656 hashtab_obstack_allocate,
25657 dummy_obstack_deallocate);
25658
25659 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25660 if (*slot == NULL)
25661 *slot = ref_per_cu;
25662 }
25663
25664 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25665 Set the mark field in every compilation unit in the
25666 cache that we must keep because we are keeping CU. */
25667
25668 static int
25669 dwarf2_mark_helper (void **slot, void *data)
25670 {
25671 struct dwarf2_per_cu_data *per_cu;
25672
25673 per_cu = (struct dwarf2_per_cu_data *) *slot;
25674
25675 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25676 reading of the chain. As such dependencies remain valid it is not much
25677 useful to track and undo them during QUIT cleanups. */
25678 if (per_cu->cu == NULL)
25679 return 1;
25680
25681 if (per_cu->cu->mark)
25682 return 1;
25683 per_cu->cu->mark = true;
25684
25685 if (per_cu->cu->dependencies != NULL)
25686 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25687
25688 return 1;
25689 }
25690
25691 /* Set the mark field in CU and in every other compilation unit in the
25692 cache that we must keep because we are keeping CU. */
25693
25694 static void
25695 dwarf2_mark (struct dwarf2_cu *cu)
25696 {
25697 if (cu->mark)
25698 return;
25699 cu->mark = true;
25700 if (cu->dependencies != NULL)
25701 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25702 }
25703
25704 static void
25705 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25706 {
25707 while (per_cu)
25708 {
25709 per_cu->cu->mark = false;
25710 per_cu = per_cu->cu->read_in_chain;
25711 }
25712 }
25713
25714 /* Trivial hash function for partial_die_info: the hash value of a DIE
25715 is its offset in .debug_info for this objfile. */
25716
25717 static hashval_t
25718 partial_die_hash (const void *item)
25719 {
25720 const struct partial_die_info *part_die
25721 = (const struct partial_die_info *) item;
25722
25723 return to_underlying (part_die->sect_off);
25724 }
25725
25726 /* Trivial comparison function for partial_die_info structures: two DIEs
25727 are equal if they have the same offset. */
25728
25729 static int
25730 partial_die_eq (const void *item_lhs, const void *item_rhs)
25731 {
25732 const struct partial_die_info *part_die_lhs
25733 = (const struct partial_die_info *) item_lhs;
25734 const struct partial_die_info *part_die_rhs
25735 = (const struct partial_die_info *) item_rhs;
25736
25737 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25738 }
25739
25740 struct cmd_list_element *set_dwarf_cmdlist;
25741 struct cmd_list_element *show_dwarf_cmdlist;
25742
25743 static void
25744 set_dwarf_cmd (const char *args, int from_tty)
25745 {
25746 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25747 gdb_stdout);
25748 }
25749
25750 static void
25751 show_dwarf_cmd (const char *args, int from_tty)
25752 {
25753 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25754 }
25755
25756 int dwarf_always_disassemble;
25757
25758 static void
25759 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25760 struct cmd_list_element *c, const char *value)
25761 {
25762 fprintf_filtered (file,
25763 _("Whether to always disassemble "
25764 "DWARF expressions is %s.\n"),
25765 value);
25766 }
25767
25768 static void
25769 show_check_physname (struct ui_file *file, int from_tty,
25770 struct cmd_list_element *c, const char *value)
25771 {
25772 fprintf_filtered (file,
25773 _("Whether to check \"physname\" is %s.\n"),
25774 value);
25775 }
25776
25777 void
25778 _initialize_dwarf2_read (void)
25779 {
25780 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25781 Set DWARF specific variables.\n\
25782 Configure DWARF variables such as the cache size"),
25783 &set_dwarf_cmdlist, "maintenance set dwarf ",
25784 0/*allow-unknown*/, &maintenance_set_cmdlist);
25785
25786 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25787 Show DWARF specific variables\n\
25788 Show DWARF variables such as the cache size"),
25789 &show_dwarf_cmdlist, "maintenance show dwarf ",
25790 0/*allow-unknown*/, &maintenance_show_cmdlist);
25791
25792 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25793 &dwarf_max_cache_age, _("\
25794 Set the upper bound on the age of cached DWARF compilation units."), _("\
25795 Show the upper bound on the age of cached DWARF compilation units."), _("\
25796 A higher limit means that cached compilation units will be stored\n\
25797 in memory longer, and more total memory will be used. Zero disables\n\
25798 caching, which can slow down startup."),
25799 NULL,
25800 show_dwarf_max_cache_age,
25801 &set_dwarf_cmdlist,
25802 &show_dwarf_cmdlist);
25803
25804 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25805 &dwarf_always_disassemble, _("\
25806 Set whether `info address' always disassembles DWARF expressions."), _("\
25807 Show whether `info address' always disassembles DWARF expressions."), _("\
25808 When enabled, DWARF expressions are always printed in an assembly-like\n\
25809 syntax. When disabled, expressions will be printed in a more\n\
25810 conversational style, when possible."),
25811 NULL,
25812 show_dwarf_always_disassemble,
25813 &set_dwarf_cmdlist,
25814 &show_dwarf_cmdlist);
25815
25816 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25817 Set debugging of the DWARF reader."), _("\
25818 Show debugging of the DWARF reader."), _("\
25819 When enabled (non-zero), debugging messages are printed during DWARF\n\
25820 reading and symtab expansion. A value of 1 (one) provides basic\n\
25821 information. A value greater than 1 provides more verbose information."),
25822 NULL,
25823 NULL,
25824 &setdebuglist, &showdebuglist);
25825
25826 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25827 Set debugging of the DWARF DIE reader."), _("\
25828 Show debugging of the DWARF DIE reader."), _("\
25829 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25830 The value is the maximum depth to print."),
25831 NULL,
25832 NULL,
25833 &setdebuglist, &showdebuglist);
25834
25835 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25836 Set debugging of the dwarf line reader."), _("\
25837 Show debugging of the dwarf line reader."), _("\
25838 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25839 A value of 1 (one) provides basic information.\n\
25840 A value greater than 1 provides more verbose information."),
25841 NULL,
25842 NULL,
25843 &setdebuglist, &showdebuglist);
25844
25845 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25846 Set cross-checking of \"physname\" code against demangler."), _("\
25847 Show cross-checking of \"physname\" code against demangler."), _("\
25848 When enabled, GDB's internal \"physname\" code is checked against\n\
25849 the demangler."),
25850 NULL, show_check_physname,
25851 &setdebuglist, &showdebuglist);
25852
25853 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25854 no_class, &use_deprecated_index_sections, _("\
25855 Set whether to use deprecated gdb_index sections."), _("\
25856 Show whether to use deprecated gdb_index sections."), _("\
25857 When enabled, deprecated .gdb_index sections are used anyway.\n\
25858 Normally they are ignored either because of a missing feature or\n\
25859 performance issue.\n\
25860 Warning: This option must be enabled before gdb reads the file."),
25861 NULL,
25862 NULL,
25863 &setlist, &showlist);
25864
25865 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25866 &dwarf2_locexpr_funcs);
25867 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25868 &dwarf2_loclist_funcs);
25869
25870 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25871 &dwarf2_block_frame_base_locexpr_funcs);
25872 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25873 &dwarf2_block_frame_base_loclist_funcs);
25874
25875 #if GDB_SELF_TEST
25876 selftests::register_test ("dw2_expand_symtabs_matching",
25877 selftests::dw2_expand_symtabs_matching::run_test);
25878 #endif
25879 }
This page took 0.58486 seconds and 3 git commands to generate.