f5266196df6890f182161fdeebbc779c07136527
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2016 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72 #include "namespace.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *section;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
1530 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
1533 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1534
1535 static struct die_info *die_specification (struct die_info *die,
1536 struct dwarf2_cu **);
1537
1538 static void free_line_header (struct line_header *lh);
1539
1540 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
1542
1543 static void dwarf_decode_lines (struct line_header *, const char *,
1544 struct dwarf2_cu *, struct partial_symtab *,
1545 CORE_ADDR, int decode_mapping);
1546
1547 static void dwarf2_start_subfile (const char *, const char *);
1548
1549 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
1552
1553 static struct symbol *new_symbol (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
1559 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1560 struct dwarf2_cu *);
1561
1562 static void dwarf2_const_value_attr (const struct attribute *attr,
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
1566 struct dwarf2_cu *cu, LONGEST *value,
1567 const gdb_byte **bytes,
1568 struct dwarf2_locexpr_baton **baton);
1569
1570 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1571
1572 static int need_gnat_info (struct dwarf2_cu *);
1573
1574 static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1584 struct dwarf2_cu *);
1585
1586 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1587
1588 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
1590 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1591
1592 static char *typename_concat (struct obstack *obs, const char *prefix,
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
1595
1596 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1597
1598 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
1600 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1601
1602 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
1606 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
1609 static int dwarf2_get_pc_bounds (struct die_info *,
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
1612
1613 static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1616
1617 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1619
1620 static void dwarf2_add_field (struct field_info *, struct die_info *,
1621 struct dwarf2_cu *);
1622
1623 static void dwarf2_attach_fields_to_type (struct field_info *,
1624 struct type *, struct dwarf2_cu *);
1625
1626 static void dwarf2_add_member_fn (struct field_info *,
1627 struct die_info *, struct type *,
1628 struct dwarf2_cu *);
1629
1630 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1631 struct type *,
1632 struct dwarf2_cu *);
1633
1634 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1635
1636 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1637
1638 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1639
1640 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1641
1642 static struct using_direct **using_directives (enum language);
1643
1644 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1645
1646 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1647
1648 static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
1651 static const char *namespace_name (struct die_info *die,
1652 int *is_anonymous, struct dwarf2_cu *);
1653
1654 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1655
1656 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1657
1658 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1659 struct dwarf2_cu *);
1660
1661 static struct die_info *read_die_and_siblings_1
1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1663 struct die_info *);
1664
1665 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
1668 struct die_info *parent);
1669
1670 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1672 int *, int);
1673
1674 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1676 int *);
1677
1678 static void process_die (struct die_info *, struct dwarf2_cu *);
1679
1680 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1681 struct obstack *);
1682
1683 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1684
1685 static const char *dwarf2_full_name (const char *name,
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
1689 static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1691
1692 static struct die_info *dwarf2_extension (struct die_info *die,
1693 struct dwarf2_cu **);
1694
1695 static const char *dwarf_tag_name (unsigned int);
1696
1697 static const char *dwarf_attr_name (unsigned int);
1698
1699 static const char *dwarf_form_name (unsigned int);
1700
1701 static char *dwarf_bool_name (unsigned int);
1702
1703 static const char *dwarf_type_encoding_name (unsigned int);
1704
1705 static struct die_info *sibling_die (struct die_info *);
1706
1707 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1708
1709 static void dump_die_for_error (struct die_info *);
1710
1711 static void dump_die_1 (struct ui_file *, int level, int max_level,
1712 struct die_info *);
1713
1714 /*static*/ void dump_die (struct die_info *, int max_level);
1715
1716 static void store_in_ref_table (struct die_info *,
1717 struct dwarf2_cu *);
1718
1719 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1720
1721 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1722
1723 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1724 const struct attribute *,
1725 struct dwarf2_cu **);
1726
1727 static struct die_info *follow_die_ref (struct die_info *,
1728 const struct attribute *,
1729 struct dwarf2_cu **);
1730
1731 static struct die_info *follow_die_sig (struct die_info *,
1732 const struct attribute *,
1733 struct dwarf2_cu **);
1734
1735 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1737
1738 static struct type *get_DW_AT_signature_type (struct die_info *,
1739 const struct attribute *,
1740 struct dwarf2_cu *);
1741
1742 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1743
1744 static void read_signatured_type (struct signatured_type *);
1745
1746 static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1749
1750 /* memory allocation interface */
1751
1752 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1753
1754 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1755
1756 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1757
1758 static int attr_form_is_block (const struct attribute *);
1759
1760 static int attr_form_is_section_offset (const struct attribute *);
1761
1762 static int attr_form_is_constant (const struct attribute *);
1763
1764 static int attr_form_is_ref (const struct attribute *);
1765
1766 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
1768 const struct attribute *attr);
1769
1770 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1771 struct symbol *sym,
1772 struct dwarf2_cu *cu,
1773 int is_block);
1774
1775 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
1778
1779 static void free_stack_comp_unit (void *);
1780
1781 static hashval_t partial_die_hash (const void *item);
1782
1783 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1784
1785 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1787
1788 static void init_one_comp_unit (struct dwarf2_cu *cu,
1789 struct dwarf2_per_cu_data *per_cu);
1790
1791 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
1794
1795 static void free_heap_comp_unit (void *);
1796
1797 static void free_cached_comp_units (void *);
1798
1799 static void age_cached_comp_units (void);
1800
1801 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1802
1803 static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1805
1806 static void create_all_comp_units (struct objfile *);
1807
1808 static int create_all_type_units (struct objfile *);
1809
1810 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1811 enum language);
1812
1813 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1814 enum language);
1815
1816 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1817 enum language);
1818
1819 static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1821
1822 static void dwarf2_mark (struct dwarf2_cu *);
1823
1824 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1825
1826 static struct type *get_die_type_at_offset (sect_offset,
1827 struct dwarf2_per_cu_data *);
1828
1829 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1830
1831 static void dwarf2_release_queue (void *dummy);
1832
1833 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1835
1836 static void process_queue (void);
1837
1838 static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
1840 const char **name, const char **comp_dir);
1841
1842 static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1844
1845 static const gdb_byte *read_and_check_comp_unit_head
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1849 int is_debug_types_section);
1850
1851 static void init_cutu_and_read_dies
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
1854 die_reader_func_ftype *die_reader_func, void *data);
1855
1856 static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
1859
1860 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1861
1862 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1863
1864 static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
1867
1868 static struct dwp_file *get_dwp_file (void);
1869
1870 static struct dwo_unit *lookup_dwo_comp_unit
1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1872
1873 static struct dwo_unit *lookup_dwo_type_unit
1874 (struct signatured_type *, const char *, const char *);
1875
1876 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1877
1878 static void free_dwo_file_cleanup (void *);
1879
1880 static void process_cu_includes (void);
1881
1882 static void check_producer (struct dwarf2_cu *cu);
1883
1884 static void free_line_header_voidp (void *arg);
1885 \f
1886 /* Various complaints about symbol reading that don't abort the process. */
1887
1888 static void
1889 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1890 {
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1893 }
1894
1895 static void
1896 dwarf2_debug_line_missing_file_complaint (void)
1897 {
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1900 }
1901
1902 static void
1903 dwarf2_debug_line_missing_end_sequence_complaint (void)
1904 {
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1908 }
1909
1910 static void
1911 dwarf2_complex_location_expr_complaint (void)
1912 {
1913 complaint (&symfile_complaints, _("location expression too complex"));
1914 }
1915
1916 static void
1917 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1918 int arg3)
1919 {
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1922 arg1, arg2, arg3);
1923 }
1924
1925 static void
1926 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1927 {
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1930 " [in module %s]"),
1931 get_section_name (section),
1932 get_section_file_name (section));
1933 }
1934
1935 static void
1936 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1937 {
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1941 arg1);
1942 }
1943
1944 static void
1945 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1946 {
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1949 arg1, arg2);
1950 }
1951
1952 /* Hash function for line_header_hash. */
1953
1954 static hashval_t
1955 line_header_hash (const struct line_header *ofs)
1956 {
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1958 }
1959
1960 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1961
1962 static hashval_t
1963 line_header_hash_voidp (const void *item)
1964 {
1965 const struct line_header *ofs = (const struct line_header *) item;
1966
1967 return line_header_hash (ofs);
1968 }
1969
1970 /* Equality function for line_header_hash. */
1971
1972 static int
1973 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1974 {
1975 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1976 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1977
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1980 }
1981
1982 \f
1983 #if WORDS_BIGENDIAN
1984
1985 /* Convert VALUE between big- and little-endian. */
1986 static offset_type
1987 byte_swap (offset_type value)
1988 {
1989 offset_type result;
1990
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1995 return result;
1996 }
1997
1998 #define MAYBE_SWAP(V) byte_swap (V)
1999
2000 #else
2001 #define MAYBE_SWAP(V) (V)
2002 #endif /* WORDS_BIGENDIAN */
2003
2004 /* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2006
2007 static CORE_ADDR
2008 attr_value_as_address (struct attribute *attr)
2009 {
2010 CORE_ADDR addr;
2011
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2013 {
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2027 }
2028 else
2029 addr = DW_ADDR (attr);
2030
2031 return addr;
2032 }
2033
2034 /* The suffix for an index file. */
2035 #define INDEX_SUFFIX ".gdb-index"
2036
2037 /* Try to locate the sections we need for DWARF 2 debugging
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
2041
2042 int
2043 dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
2045 {
2046 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2047 objfile_data (objfile, dwarf2_objfile_data_key));
2048 if (!dwarf2_per_objfile)
2049 {
2050 /* Initialize per-objfile state. */
2051 struct dwarf2_per_objfile *data
2052 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2053
2054 memset (data, 0, sizeof (*data));
2055 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2056 dwarf2_per_objfile = data;
2057
2058 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2059 (void *) names);
2060 dwarf2_per_objfile->objfile = objfile;
2061 }
2062 return (!dwarf2_per_objfile->info.is_virtual
2063 && dwarf2_per_objfile->info.s.section != NULL
2064 && !dwarf2_per_objfile->abbrev.is_virtual
2065 && dwarf2_per_objfile->abbrev.s.section != NULL);
2066 }
2067
2068 /* Return the containing section of virtual section SECTION. */
2069
2070 static struct dwarf2_section_info *
2071 get_containing_section (const struct dwarf2_section_info *section)
2072 {
2073 gdb_assert (section->is_virtual);
2074 return section->s.containing_section;
2075 }
2076
2077 /* Return the bfd owner of SECTION. */
2078
2079 static struct bfd *
2080 get_section_bfd_owner (const struct dwarf2_section_info *section)
2081 {
2082 if (section->is_virtual)
2083 {
2084 section = get_containing_section (section);
2085 gdb_assert (!section->is_virtual);
2086 }
2087 return section->s.section->owner;
2088 }
2089
2090 /* Return the bfd section of SECTION.
2091 Returns NULL if the section is not present. */
2092
2093 static asection *
2094 get_section_bfd_section (const struct dwarf2_section_info *section)
2095 {
2096 if (section->is_virtual)
2097 {
2098 section = get_containing_section (section);
2099 gdb_assert (!section->is_virtual);
2100 }
2101 return section->s.section;
2102 }
2103
2104 /* Return the name of SECTION. */
2105
2106 static const char *
2107 get_section_name (const struct dwarf2_section_info *section)
2108 {
2109 asection *sectp = get_section_bfd_section (section);
2110
2111 gdb_assert (sectp != NULL);
2112 return bfd_section_name (get_section_bfd_owner (section), sectp);
2113 }
2114
2115 /* Return the name of the file SECTION is in. */
2116
2117 static const char *
2118 get_section_file_name (const struct dwarf2_section_info *section)
2119 {
2120 bfd *abfd = get_section_bfd_owner (section);
2121
2122 return bfd_get_filename (abfd);
2123 }
2124
2125 /* Return the id of SECTION.
2126 Returns 0 if SECTION doesn't exist. */
2127
2128 static int
2129 get_section_id (const struct dwarf2_section_info *section)
2130 {
2131 asection *sectp = get_section_bfd_section (section);
2132
2133 if (sectp == NULL)
2134 return 0;
2135 return sectp->id;
2136 }
2137
2138 /* Return the flags of SECTION.
2139 SECTION (or containing section if this is a virtual section) must exist. */
2140
2141 static int
2142 get_section_flags (const struct dwarf2_section_info *section)
2143 {
2144 asection *sectp = get_section_bfd_section (section);
2145
2146 gdb_assert (sectp != NULL);
2147 return bfd_get_section_flags (sectp->owner, sectp);
2148 }
2149
2150 /* When loading sections, we look either for uncompressed section or for
2151 compressed section names. */
2152
2153 static int
2154 section_is_p (const char *section_name,
2155 const struct dwarf2_section_names *names)
2156 {
2157 if (names->normal != NULL
2158 && strcmp (section_name, names->normal) == 0)
2159 return 1;
2160 if (names->compressed != NULL
2161 && strcmp (section_name, names->compressed) == 0)
2162 return 1;
2163 return 0;
2164 }
2165
2166 /* This function is mapped across the sections and remembers the
2167 offset and size of each of the debugging sections we are interested
2168 in. */
2169
2170 static void
2171 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2172 {
2173 const struct dwarf2_debug_sections *names;
2174 flagword aflag = bfd_get_section_flags (abfd, sectp);
2175
2176 if (vnames == NULL)
2177 names = &dwarf2_elf_names;
2178 else
2179 names = (const struct dwarf2_debug_sections *) vnames;
2180
2181 if ((aflag & SEC_HAS_CONTENTS) == 0)
2182 {
2183 }
2184 else if (section_is_p (sectp->name, &names->info))
2185 {
2186 dwarf2_per_objfile->info.s.section = sectp;
2187 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2188 }
2189 else if (section_is_p (sectp->name, &names->abbrev))
2190 {
2191 dwarf2_per_objfile->abbrev.s.section = sectp;
2192 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2193 }
2194 else if (section_is_p (sectp->name, &names->line))
2195 {
2196 dwarf2_per_objfile->line.s.section = sectp;
2197 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2198 }
2199 else if (section_is_p (sectp->name, &names->loc))
2200 {
2201 dwarf2_per_objfile->loc.s.section = sectp;
2202 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2203 }
2204 else if (section_is_p (sectp->name, &names->macinfo))
2205 {
2206 dwarf2_per_objfile->macinfo.s.section = sectp;
2207 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2208 }
2209 else if (section_is_p (sectp->name, &names->macro))
2210 {
2211 dwarf2_per_objfile->macro.s.section = sectp;
2212 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2213 }
2214 else if (section_is_p (sectp->name, &names->str))
2215 {
2216 dwarf2_per_objfile->str.s.section = sectp;
2217 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2218 }
2219 else if (section_is_p (sectp->name, &names->addr))
2220 {
2221 dwarf2_per_objfile->addr.s.section = sectp;
2222 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2223 }
2224 else if (section_is_p (sectp->name, &names->frame))
2225 {
2226 dwarf2_per_objfile->frame.s.section = sectp;
2227 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2228 }
2229 else if (section_is_p (sectp->name, &names->eh_frame))
2230 {
2231 dwarf2_per_objfile->eh_frame.s.section = sectp;
2232 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2233 }
2234 else if (section_is_p (sectp->name, &names->ranges))
2235 {
2236 dwarf2_per_objfile->ranges.s.section = sectp;
2237 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2238 }
2239 else if (section_is_p (sectp->name, &names->types))
2240 {
2241 struct dwarf2_section_info type_section;
2242
2243 memset (&type_section, 0, sizeof (type_section));
2244 type_section.s.section = sectp;
2245 type_section.size = bfd_get_section_size (sectp);
2246
2247 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2248 &type_section);
2249 }
2250 else if (section_is_p (sectp->name, &names->gdb_index))
2251 {
2252 dwarf2_per_objfile->gdb_index.s.section = sectp;
2253 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2254 }
2255
2256 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2257 && bfd_section_vma (abfd, sectp) == 0)
2258 dwarf2_per_objfile->has_section_at_zero = 1;
2259 }
2260
2261 /* A helper function that decides whether a section is empty,
2262 or not present. */
2263
2264 static int
2265 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2266 {
2267 if (section->is_virtual)
2268 return section->size == 0;
2269 return section->s.section == NULL || section->size == 0;
2270 }
2271
2272 /* Read the contents of the section INFO.
2273 OBJFILE is the main object file, but not necessarily the file where
2274 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2275 of the DWO file.
2276 If the section is compressed, uncompress it before returning. */
2277
2278 static void
2279 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2280 {
2281 asection *sectp;
2282 bfd *abfd;
2283 gdb_byte *buf, *retbuf;
2284
2285 if (info->readin)
2286 return;
2287 info->buffer = NULL;
2288 info->readin = 1;
2289
2290 if (dwarf2_section_empty_p (info))
2291 return;
2292
2293 sectp = get_section_bfd_section (info);
2294
2295 /* If this is a virtual section we need to read in the real one first. */
2296 if (info->is_virtual)
2297 {
2298 struct dwarf2_section_info *containing_section =
2299 get_containing_section (info);
2300
2301 gdb_assert (sectp != NULL);
2302 if ((sectp->flags & SEC_RELOC) != 0)
2303 {
2304 error (_("Dwarf Error: DWP format V2 with relocations is not"
2305 " supported in section %s [in module %s]"),
2306 get_section_name (info), get_section_file_name (info));
2307 }
2308 dwarf2_read_section (objfile, containing_section);
2309 /* Other code should have already caught virtual sections that don't
2310 fit. */
2311 gdb_assert (info->virtual_offset + info->size
2312 <= containing_section->size);
2313 /* If the real section is empty or there was a problem reading the
2314 section we shouldn't get here. */
2315 gdb_assert (containing_section->buffer != NULL);
2316 info->buffer = containing_section->buffer + info->virtual_offset;
2317 return;
2318 }
2319
2320 /* If the section has relocations, we must read it ourselves.
2321 Otherwise we attach it to the BFD. */
2322 if ((sectp->flags & SEC_RELOC) == 0)
2323 {
2324 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2325 return;
2326 }
2327
2328 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2329 info->buffer = buf;
2330
2331 /* When debugging .o files, we may need to apply relocations; see
2332 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2333 We never compress sections in .o files, so we only need to
2334 try this when the section is not compressed. */
2335 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2336 if (retbuf != NULL)
2337 {
2338 info->buffer = retbuf;
2339 return;
2340 }
2341
2342 abfd = get_section_bfd_owner (info);
2343 gdb_assert (abfd != NULL);
2344
2345 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2346 || bfd_bread (buf, info->size, abfd) != info->size)
2347 {
2348 error (_("Dwarf Error: Can't read DWARF data"
2349 " in section %s [in module %s]"),
2350 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2351 }
2352 }
2353
2354 /* A helper function that returns the size of a section in a safe way.
2355 If you are positive that the section has been read before using the
2356 size, then it is safe to refer to the dwarf2_section_info object's
2357 "size" field directly. In other cases, you must call this
2358 function, because for compressed sections the size field is not set
2359 correctly until the section has been read. */
2360
2361 static bfd_size_type
2362 dwarf2_section_size (struct objfile *objfile,
2363 struct dwarf2_section_info *info)
2364 {
2365 if (!info->readin)
2366 dwarf2_read_section (objfile, info);
2367 return info->size;
2368 }
2369
2370 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2371 SECTION_NAME. */
2372
2373 void
2374 dwarf2_get_section_info (struct objfile *objfile,
2375 enum dwarf2_section_enum sect,
2376 asection **sectp, const gdb_byte **bufp,
2377 bfd_size_type *sizep)
2378 {
2379 struct dwarf2_per_objfile *data
2380 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2381 dwarf2_objfile_data_key);
2382 struct dwarf2_section_info *info;
2383
2384 /* We may see an objfile without any DWARF, in which case we just
2385 return nothing. */
2386 if (data == NULL)
2387 {
2388 *sectp = NULL;
2389 *bufp = NULL;
2390 *sizep = 0;
2391 return;
2392 }
2393 switch (sect)
2394 {
2395 case DWARF2_DEBUG_FRAME:
2396 info = &data->frame;
2397 break;
2398 case DWARF2_EH_FRAME:
2399 info = &data->eh_frame;
2400 break;
2401 default:
2402 gdb_assert_not_reached ("unexpected section");
2403 }
2404
2405 dwarf2_read_section (objfile, info);
2406
2407 *sectp = get_section_bfd_section (info);
2408 *bufp = info->buffer;
2409 *sizep = info->size;
2410 }
2411
2412 /* A helper function to find the sections for a .dwz file. */
2413
2414 static void
2415 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2416 {
2417 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2418
2419 /* Note that we only support the standard ELF names, because .dwz
2420 is ELF-only (at the time of writing). */
2421 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2422 {
2423 dwz_file->abbrev.s.section = sectp;
2424 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2427 {
2428 dwz_file->info.s.section = sectp;
2429 dwz_file->info.size = bfd_get_section_size (sectp);
2430 }
2431 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2432 {
2433 dwz_file->str.s.section = sectp;
2434 dwz_file->str.size = bfd_get_section_size (sectp);
2435 }
2436 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2437 {
2438 dwz_file->line.s.section = sectp;
2439 dwz_file->line.size = bfd_get_section_size (sectp);
2440 }
2441 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2442 {
2443 dwz_file->macro.s.section = sectp;
2444 dwz_file->macro.size = bfd_get_section_size (sectp);
2445 }
2446 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2447 {
2448 dwz_file->gdb_index.s.section = sectp;
2449 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2450 }
2451 }
2452
2453 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2454 there is no .gnu_debugaltlink section in the file. Error if there
2455 is such a section but the file cannot be found. */
2456
2457 static struct dwz_file *
2458 dwarf2_get_dwz_file (void)
2459 {
2460 bfd *dwz_bfd;
2461 char *data;
2462 struct cleanup *cleanup;
2463 const char *filename;
2464 struct dwz_file *result;
2465 bfd_size_type buildid_len_arg;
2466 size_t buildid_len;
2467 bfd_byte *buildid;
2468
2469 if (dwarf2_per_objfile->dwz_file != NULL)
2470 return dwarf2_per_objfile->dwz_file;
2471
2472 bfd_set_error (bfd_error_no_error);
2473 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2474 &buildid_len_arg, &buildid);
2475 if (data == NULL)
2476 {
2477 if (bfd_get_error () == bfd_error_no_error)
2478 return NULL;
2479 error (_("could not read '.gnu_debugaltlink' section: %s"),
2480 bfd_errmsg (bfd_get_error ()));
2481 }
2482 cleanup = make_cleanup (xfree, data);
2483 make_cleanup (xfree, buildid);
2484
2485 buildid_len = (size_t) buildid_len_arg;
2486
2487 filename = (const char *) data;
2488 if (!IS_ABSOLUTE_PATH (filename))
2489 {
2490 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2491 char *rel;
2492
2493 make_cleanup (xfree, abs);
2494 abs = ldirname (abs);
2495 make_cleanup (xfree, abs);
2496
2497 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2498 make_cleanup (xfree, rel);
2499 filename = rel;
2500 }
2501
2502 /* First try the file name given in the section. If that doesn't
2503 work, try to use the build-id instead. */
2504 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2505 if (dwz_bfd != NULL)
2506 {
2507 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2508 {
2509 gdb_bfd_unref (dwz_bfd);
2510 dwz_bfd = NULL;
2511 }
2512 }
2513
2514 if (dwz_bfd == NULL)
2515 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2516
2517 if (dwz_bfd == NULL)
2518 error (_("could not find '.gnu_debugaltlink' file for %s"),
2519 objfile_name (dwarf2_per_objfile->objfile));
2520
2521 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2522 struct dwz_file);
2523 result->dwz_bfd = dwz_bfd;
2524
2525 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2526
2527 do_cleanups (cleanup);
2528
2529 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2530 dwarf2_per_objfile->dwz_file = result;
2531 return result;
2532 }
2533 \f
2534 /* DWARF quick_symbols_functions support. */
2535
2536 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2537 unique line tables, so we maintain a separate table of all .debug_line
2538 derived entries to support the sharing.
2539 All the quick functions need is the list of file names. We discard the
2540 line_header when we're done and don't need to record it here. */
2541 struct quick_file_names
2542 {
2543 /* The data used to construct the hash key. */
2544 struct stmt_list_hash hash;
2545
2546 /* The number of entries in file_names, real_names. */
2547 unsigned int num_file_names;
2548
2549 /* The file names from the line table, after being run through
2550 file_full_name. */
2551 const char **file_names;
2552
2553 /* The file names from the line table after being run through
2554 gdb_realpath. These are computed lazily. */
2555 const char **real_names;
2556 };
2557
2558 /* When using the index (and thus not using psymtabs), each CU has an
2559 object of this type. This is used to hold information needed by
2560 the various "quick" methods. */
2561 struct dwarf2_per_cu_quick_data
2562 {
2563 /* The file table. This can be NULL if there was no file table
2564 or it's currently not read in.
2565 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2566 struct quick_file_names *file_names;
2567
2568 /* The corresponding symbol table. This is NULL if symbols for this
2569 CU have not yet been read. */
2570 struct compunit_symtab *compunit_symtab;
2571
2572 /* A temporary mark bit used when iterating over all CUs in
2573 expand_symtabs_matching. */
2574 unsigned int mark : 1;
2575
2576 /* True if we've tried to read the file table and found there isn't one.
2577 There will be no point in trying to read it again next time. */
2578 unsigned int no_file_data : 1;
2579 };
2580
2581 /* Utility hash function for a stmt_list_hash. */
2582
2583 static hashval_t
2584 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2585 {
2586 hashval_t v = 0;
2587
2588 if (stmt_list_hash->dwo_unit != NULL)
2589 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2590 v += stmt_list_hash->line_offset.sect_off;
2591 return v;
2592 }
2593
2594 /* Utility equality function for a stmt_list_hash. */
2595
2596 static int
2597 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2598 const struct stmt_list_hash *rhs)
2599 {
2600 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2601 return 0;
2602 if (lhs->dwo_unit != NULL
2603 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2604 return 0;
2605
2606 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2607 }
2608
2609 /* Hash function for a quick_file_names. */
2610
2611 static hashval_t
2612 hash_file_name_entry (const void *e)
2613 {
2614 const struct quick_file_names *file_data
2615 = (const struct quick_file_names *) e;
2616
2617 return hash_stmt_list_entry (&file_data->hash);
2618 }
2619
2620 /* Equality function for a quick_file_names. */
2621
2622 static int
2623 eq_file_name_entry (const void *a, const void *b)
2624 {
2625 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2626 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2627
2628 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2629 }
2630
2631 /* Delete function for a quick_file_names. */
2632
2633 static void
2634 delete_file_name_entry (void *e)
2635 {
2636 struct quick_file_names *file_data = (struct quick_file_names *) e;
2637 int i;
2638
2639 for (i = 0; i < file_data->num_file_names; ++i)
2640 {
2641 xfree ((void*) file_data->file_names[i]);
2642 if (file_data->real_names)
2643 xfree ((void*) file_data->real_names[i]);
2644 }
2645
2646 /* The space for the struct itself lives on objfile_obstack,
2647 so we don't free it here. */
2648 }
2649
2650 /* Create a quick_file_names hash table. */
2651
2652 static htab_t
2653 create_quick_file_names_table (unsigned int nr_initial_entries)
2654 {
2655 return htab_create_alloc (nr_initial_entries,
2656 hash_file_name_entry, eq_file_name_entry,
2657 delete_file_name_entry, xcalloc, xfree);
2658 }
2659
2660 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2661 have to be created afterwards. You should call age_cached_comp_units after
2662 processing PER_CU->CU. dw2_setup must have been already called. */
2663
2664 static void
2665 load_cu (struct dwarf2_per_cu_data *per_cu)
2666 {
2667 if (per_cu->is_debug_types)
2668 load_full_type_unit (per_cu);
2669 else
2670 load_full_comp_unit (per_cu, language_minimal);
2671
2672 if (per_cu->cu == NULL)
2673 return; /* Dummy CU. */
2674
2675 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2676 }
2677
2678 /* Read in the symbols for PER_CU. */
2679
2680 static void
2681 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2682 {
2683 struct cleanup *back_to;
2684
2685 /* Skip type_unit_groups, reading the type units they contain
2686 is handled elsewhere. */
2687 if (IS_TYPE_UNIT_GROUP (per_cu))
2688 return;
2689
2690 back_to = make_cleanup (dwarf2_release_queue, NULL);
2691
2692 if (dwarf2_per_objfile->using_index
2693 ? per_cu->v.quick->compunit_symtab == NULL
2694 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2695 {
2696 queue_comp_unit (per_cu, language_minimal);
2697 load_cu (per_cu);
2698
2699 /* If we just loaded a CU from a DWO, and we're working with an index
2700 that may badly handle TUs, load all the TUs in that DWO as well.
2701 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2702 if (!per_cu->is_debug_types
2703 && per_cu->cu != NULL
2704 && per_cu->cu->dwo_unit != NULL
2705 && dwarf2_per_objfile->index_table != NULL
2706 && dwarf2_per_objfile->index_table->version <= 7
2707 /* DWP files aren't supported yet. */
2708 && get_dwp_file () == NULL)
2709 queue_and_load_all_dwo_tus (per_cu);
2710 }
2711
2712 process_queue ();
2713
2714 /* Age the cache, releasing compilation units that have not
2715 been used recently. */
2716 age_cached_comp_units ();
2717
2718 do_cleanups (back_to);
2719 }
2720
2721 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2722 the objfile from which this CU came. Returns the resulting symbol
2723 table. */
2724
2725 static struct compunit_symtab *
2726 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2727 {
2728 gdb_assert (dwarf2_per_objfile->using_index);
2729 if (!per_cu->v.quick->compunit_symtab)
2730 {
2731 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2732 increment_reading_symtab ();
2733 dw2_do_instantiate_symtab (per_cu);
2734 process_cu_includes ();
2735 do_cleanups (back_to);
2736 }
2737
2738 return per_cu->v.quick->compunit_symtab;
2739 }
2740
2741 /* Return the CU/TU given its index.
2742
2743 This is intended for loops like:
2744
2745 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2746 + dwarf2_per_objfile->n_type_units); ++i)
2747 {
2748 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2749
2750 ...;
2751 }
2752 */
2753
2754 static struct dwarf2_per_cu_data *
2755 dw2_get_cutu (int index)
2756 {
2757 if (index >= dwarf2_per_objfile->n_comp_units)
2758 {
2759 index -= dwarf2_per_objfile->n_comp_units;
2760 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2761 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2762 }
2763
2764 return dwarf2_per_objfile->all_comp_units[index];
2765 }
2766
2767 /* Return the CU given its index.
2768 This differs from dw2_get_cutu in that it's for when you know INDEX
2769 refers to a CU. */
2770
2771 static struct dwarf2_per_cu_data *
2772 dw2_get_cu (int index)
2773 {
2774 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2775
2776 return dwarf2_per_objfile->all_comp_units[index];
2777 }
2778
2779 /* A helper for create_cus_from_index that handles a given list of
2780 CUs. */
2781
2782 static void
2783 create_cus_from_index_list (struct objfile *objfile,
2784 const gdb_byte *cu_list, offset_type n_elements,
2785 struct dwarf2_section_info *section,
2786 int is_dwz,
2787 int base_offset)
2788 {
2789 offset_type i;
2790
2791 for (i = 0; i < n_elements; i += 2)
2792 {
2793 struct dwarf2_per_cu_data *the_cu;
2794 ULONGEST offset, length;
2795
2796 gdb_static_assert (sizeof (ULONGEST) >= 8);
2797 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2798 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2799 cu_list += 2 * 8;
2800
2801 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2802 struct dwarf2_per_cu_data);
2803 the_cu->offset.sect_off = offset;
2804 the_cu->length = length;
2805 the_cu->objfile = objfile;
2806 the_cu->section = section;
2807 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2808 struct dwarf2_per_cu_quick_data);
2809 the_cu->is_dwz = is_dwz;
2810 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2811 }
2812 }
2813
2814 /* Read the CU list from the mapped index, and use it to create all
2815 the CU objects for this objfile. */
2816
2817 static void
2818 create_cus_from_index (struct objfile *objfile,
2819 const gdb_byte *cu_list, offset_type cu_list_elements,
2820 const gdb_byte *dwz_list, offset_type dwz_elements)
2821 {
2822 struct dwz_file *dwz;
2823
2824 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2825 dwarf2_per_objfile->all_comp_units =
2826 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2827 dwarf2_per_objfile->n_comp_units);
2828
2829 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2830 &dwarf2_per_objfile->info, 0, 0);
2831
2832 if (dwz_elements == 0)
2833 return;
2834
2835 dwz = dwarf2_get_dwz_file ();
2836 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2837 cu_list_elements / 2);
2838 }
2839
2840 /* Create the signatured type hash table from the index. */
2841
2842 static void
2843 create_signatured_type_table_from_index (struct objfile *objfile,
2844 struct dwarf2_section_info *section,
2845 const gdb_byte *bytes,
2846 offset_type elements)
2847 {
2848 offset_type i;
2849 htab_t sig_types_hash;
2850
2851 dwarf2_per_objfile->n_type_units
2852 = dwarf2_per_objfile->n_allocated_type_units
2853 = elements / 3;
2854 dwarf2_per_objfile->all_type_units =
2855 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2856
2857 sig_types_hash = allocate_signatured_type_table (objfile);
2858
2859 for (i = 0; i < elements; i += 3)
2860 {
2861 struct signatured_type *sig_type;
2862 ULONGEST offset, type_offset_in_tu, signature;
2863 void **slot;
2864
2865 gdb_static_assert (sizeof (ULONGEST) >= 8);
2866 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2867 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2868 BFD_ENDIAN_LITTLE);
2869 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2870 bytes += 3 * 8;
2871
2872 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2873 struct signatured_type);
2874 sig_type->signature = signature;
2875 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2876 sig_type->per_cu.is_debug_types = 1;
2877 sig_type->per_cu.section = section;
2878 sig_type->per_cu.offset.sect_off = offset;
2879 sig_type->per_cu.objfile = objfile;
2880 sig_type->per_cu.v.quick
2881 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2882 struct dwarf2_per_cu_quick_data);
2883
2884 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2885 *slot = sig_type;
2886
2887 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2888 }
2889
2890 dwarf2_per_objfile->signatured_types = sig_types_hash;
2891 }
2892
2893 /* Read the address map data from the mapped index, and use it to
2894 populate the objfile's psymtabs_addrmap. */
2895
2896 static void
2897 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2898 {
2899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2900 const gdb_byte *iter, *end;
2901 struct obstack temp_obstack;
2902 struct addrmap *mutable_map;
2903 struct cleanup *cleanup;
2904 CORE_ADDR baseaddr;
2905
2906 obstack_init (&temp_obstack);
2907 cleanup = make_cleanup_obstack_free (&temp_obstack);
2908 mutable_map = addrmap_create_mutable (&temp_obstack);
2909
2910 iter = index->address_table;
2911 end = iter + index->address_table_size;
2912
2913 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2914
2915 while (iter < end)
2916 {
2917 ULONGEST hi, lo, cu_index;
2918 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2919 iter += 8;
2920 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2921 iter += 8;
2922 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2923 iter += 4;
2924
2925 if (lo > hi)
2926 {
2927 complaint (&symfile_complaints,
2928 _(".gdb_index address table has invalid range (%s - %s)"),
2929 hex_string (lo), hex_string (hi));
2930 continue;
2931 }
2932
2933 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2934 {
2935 complaint (&symfile_complaints,
2936 _(".gdb_index address table has invalid CU number %u"),
2937 (unsigned) cu_index);
2938 continue;
2939 }
2940
2941 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2942 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2943 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2944 }
2945
2946 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2947 &objfile->objfile_obstack);
2948 do_cleanups (cleanup);
2949 }
2950
2951 /* The hash function for strings in the mapped index. This is the same as
2952 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2953 implementation. This is necessary because the hash function is tied to the
2954 format of the mapped index file. The hash values do not have to match with
2955 SYMBOL_HASH_NEXT.
2956
2957 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2958
2959 static hashval_t
2960 mapped_index_string_hash (int index_version, const void *p)
2961 {
2962 const unsigned char *str = (const unsigned char *) p;
2963 hashval_t r = 0;
2964 unsigned char c;
2965
2966 while ((c = *str++) != 0)
2967 {
2968 if (index_version >= 5)
2969 c = tolower (c);
2970 r = r * 67 + c - 113;
2971 }
2972
2973 return r;
2974 }
2975
2976 /* Find a slot in the mapped index INDEX for the object named NAME.
2977 If NAME is found, set *VEC_OUT to point to the CU vector in the
2978 constant pool and return 1. If NAME cannot be found, return 0. */
2979
2980 static int
2981 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2982 offset_type **vec_out)
2983 {
2984 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2985 offset_type hash;
2986 offset_type slot, step;
2987 int (*cmp) (const char *, const char *);
2988
2989 if (current_language->la_language == language_cplus
2990 || current_language->la_language == language_java
2991 || current_language->la_language == language_fortran
2992 || current_language->la_language == language_d)
2993 {
2994 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2995 not contain any. */
2996
2997 if (strchr (name, '(') != NULL)
2998 {
2999 char *without_params = cp_remove_params (name);
3000
3001 if (without_params != NULL)
3002 {
3003 make_cleanup (xfree, without_params);
3004 name = without_params;
3005 }
3006 }
3007 }
3008
3009 /* Index version 4 did not support case insensitive searches. But the
3010 indices for case insensitive languages are built in lowercase, therefore
3011 simulate our NAME being searched is also lowercased. */
3012 hash = mapped_index_string_hash ((index->version == 4
3013 && case_sensitivity == case_sensitive_off
3014 ? 5 : index->version),
3015 name);
3016
3017 slot = hash & (index->symbol_table_slots - 1);
3018 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3019 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3020
3021 for (;;)
3022 {
3023 /* Convert a slot number to an offset into the table. */
3024 offset_type i = 2 * slot;
3025 const char *str;
3026 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3027 {
3028 do_cleanups (back_to);
3029 return 0;
3030 }
3031
3032 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3033 if (!cmp (name, str))
3034 {
3035 *vec_out = (offset_type *) (index->constant_pool
3036 + MAYBE_SWAP (index->symbol_table[i + 1]));
3037 do_cleanups (back_to);
3038 return 1;
3039 }
3040
3041 slot = (slot + step) & (index->symbol_table_slots - 1);
3042 }
3043 }
3044
3045 /* A helper function that reads the .gdb_index from SECTION and fills
3046 in MAP. FILENAME is the name of the file containing the section;
3047 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3048 ok to use deprecated sections.
3049
3050 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3051 out parameters that are filled in with information about the CU and
3052 TU lists in the section.
3053
3054 Returns 1 if all went well, 0 otherwise. */
3055
3056 static int
3057 read_index_from_section (struct objfile *objfile,
3058 const char *filename,
3059 int deprecated_ok,
3060 struct dwarf2_section_info *section,
3061 struct mapped_index *map,
3062 const gdb_byte **cu_list,
3063 offset_type *cu_list_elements,
3064 const gdb_byte **types_list,
3065 offset_type *types_list_elements)
3066 {
3067 const gdb_byte *addr;
3068 offset_type version;
3069 offset_type *metadata;
3070 int i;
3071
3072 if (dwarf2_section_empty_p (section))
3073 return 0;
3074
3075 /* Older elfutils strip versions could keep the section in the main
3076 executable while splitting it for the separate debug info file. */
3077 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3078 return 0;
3079
3080 dwarf2_read_section (objfile, section);
3081
3082 addr = section->buffer;
3083 /* Version check. */
3084 version = MAYBE_SWAP (*(offset_type *) addr);
3085 /* Versions earlier than 3 emitted every copy of a psymbol. This
3086 causes the index to behave very poorly for certain requests. Version 3
3087 contained incomplete addrmap. So, it seems better to just ignore such
3088 indices. */
3089 if (version < 4)
3090 {
3091 static int warning_printed = 0;
3092 if (!warning_printed)
3093 {
3094 warning (_("Skipping obsolete .gdb_index section in %s."),
3095 filename);
3096 warning_printed = 1;
3097 }
3098 return 0;
3099 }
3100 /* Index version 4 uses a different hash function than index version
3101 5 and later.
3102
3103 Versions earlier than 6 did not emit psymbols for inlined
3104 functions. Using these files will cause GDB not to be able to
3105 set breakpoints on inlined functions by name, so we ignore these
3106 indices unless the user has done
3107 "set use-deprecated-index-sections on". */
3108 if (version < 6 && !deprecated_ok)
3109 {
3110 static int warning_printed = 0;
3111 if (!warning_printed)
3112 {
3113 warning (_("\
3114 Skipping deprecated .gdb_index section in %s.\n\
3115 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3116 to use the section anyway."),
3117 filename);
3118 warning_printed = 1;
3119 }
3120 return 0;
3121 }
3122 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3123 of the TU (for symbols coming from TUs),
3124 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3125 Plus gold-generated indices can have duplicate entries for global symbols,
3126 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3127 These are just performance bugs, and we can't distinguish gdb-generated
3128 indices from gold-generated ones, so issue no warning here. */
3129
3130 /* Indexes with higher version than the one supported by GDB may be no
3131 longer backward compatible. */
3132 if (version > 8)
3133 return 0;
3134
3135 map->version = version;
3136 map->total_size = section->size;
3137
3138 metadata = (offset_type *) (addr + sizeof (offset_type));
3139
3140 i = 0;
3141 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3142 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3143 / 8);
3144 ++i;
3145
3146 *types_list = addr + MAYBE_SWAP (metadata[i]);
3147 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3148 - MAYBE_SWAP (metadata[i]))
3149 / 8);
3150 ++i;
3151
3152 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3153 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3154 - MAYBE_SWAP (metadata[i]));
3155 ++i;
3156
3157 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3158 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3159 - MAYBE_SWAP (metadata[i]))
3160 / (2 * sizeof (offset_type)));
3161 ++i;
3162
3163 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3164
3165 return 1;
3166 }
3167
3168
3169 /* Read the index file. If everything went ok, initialize the "quick"
3170 elements of all the CUs and return 1. Otherwise, return 0. */
3171
3172 static int
3173 dwarf2_read_index (struct objfile *objfile)
3174 {
3175 struct mapped_index local_map, *map;
3176 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3177 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3178 struct dwz_file *dwz;
3179
3180 if (!read_index_from_section (objfile, objfile_name (objfile),
3181 use_deprecated_index_sections,
3182 &dwarf2_per_objfile->gdb_index, &local_map,
3183 &cu_list, &cu_list_elements,
3184 &types_list, &types_list_elements))
3185 return 0;
3186
3187 /* Don't use the index if it's empty. */
3188 if (local_map.symbol_table_slots == 0)
3189 return 0;
3190
3191 /* If there is a .dwz file, read it so we can get its CU list as
3192 well. */
3193 dwz = dwarf2_get_dwz_file ();
3194 if (dwz != NULL)
3195 {
3196 struct mapped_index dwz_map;
3197 const gdb_byte *dwz_types_ignore;
3198 offset_type dwz_types_elements_ignore;
3199
3200 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3201 1,
3202 &dwz->gdb_index, &dwz_map,
3203 &dwz_list, &dwz_list_elements,
3204 &dwz_types_ignore,
3205 &dwz_types_elements_ignore))
3206 {
3207 warning (_("could not read '.gdb_index' section from %s; skipping"),
3208 bfd_get_filename (dwz->dwz_bfd));
3209 return 0;
3210 }
3211 }
3212
3213 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3214 dwz_list_elements);
3215
3216 if (types_list_elements)
3217 {
3218 struct dwarf2_section_info *section;
3219
3220 /* We can only handle a single .debug_types when we have an
3221 index. */
3222 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3223 return 0;
3224
3225 section = VEC_index (dwarf2_section_info_def,
3226 dwarf2_per_objfile->types, 0);
3227
3228 create_signatured_type_table_from_index (objfile, section, types_list,
3229 types_list_elements);
3230 }
3231
3232 create_addrmap_from_index (objfile, &local_map);
3233
3234 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3235 *map = local_map;
3236
3237 dwarf2_per_objfile->index_table = map;
3238 dwarf2_per_objfile->using_index = 1;
3239 dwarf2_per_objfile->quick_file_names_table =
3240 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3241
3242 return 1;
3243 }
3244
3245 /* A helper for the "quick" functions which sets the global
3246 dwarf2_per_objfile according to OBJFILE. */
3247
3248 static void
3249 dw2_setup (struct objfile *objfile)
3250 {
3251 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3252 objfile_data (objfile, dwarf2_objfile_data_key));
3253 gdb_assert (dwarf2_per_objfile);
3254 }
3255
3256 /* die_reader_func for dw2_get_file_names. */
3257
3258 static void
3259 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3260 const gdb_byte *info_ptr,
3261 struct die_info *comp_unit_die,
3262 int has_children,
3263 void *data)
3264 {
3265 struct dwarf2_cu *cu = reader->cu;
3266 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3267 struct objfile *objfile = dwarf2_per_objfile->objfile;
3268 struct dwarf2_per_cu_data *lh_cu;
3269 struct line_header *lh;
3270 struct attribute *attr;
3271 int i;
3272 const char *name, *comp_dir;
3273 void **slot;
3274 struct quick_file_names *qfn;
3275 unsigned int line_offset;
3276
3277 gdb_assert (! this_cu->is_debug_types);
3278
3279 /* Our callers never want to match partial units -- instead they
3280 will match the enclosing full CU. */
3281 if (comp_unit_die->tag == DW_TAG_partial_unit)
3282 {
3283 this_cu->v.quick->no_file_data = 1;
3284 return;
3285 }
3286
3287 lh_cu = this_cu;
3288 lh = NULL;
3289 slot = NULL;
3290 line_offset = 0;
3291
3292 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3293 if (attr)
3294 {
3295 struct quick_file_names find_entry;
3296
3297 line_offset = DW_UNSND (attr);
3298
3299 /* We may have already read in this line header (TU line header sharing).
3300 If we have we're done. */
3301 find_entry.hash.dwo_unit = cu->dwo_unit;
3302 find_entry.hash.line_offset.sect_off = line_offset;
3303 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3304 &find_entry, INSERT);
3305 if (*slot != NULL)
3306 {
3307 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3308 return;
3309 }
3310
3311 lh = dwarf_decode_line_header (line_offset, cu);
3312 }
3313 if (lh == NULL)
3314 {
3315 lh_cu->v.quick->no_file_data = 1;
3316 return;
3317 }
3318
3319 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3320 qfn->hash.dwo_unit = cu->dwo_unit;
3321 qfn->hash.line_offset.sect_off = line_offset;
3322 gdb_assert (slot != NULL);
3323 *slot = qfn;
3324
3325 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3326
3327 qfn->num_file_names = lh->num_file_names;
3328 qfn->file_names =
3329 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3330 for (i = 0; i < lh->num_file_names; ++i)
3331 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3332 qfn->real_names = NULL;
3333
3334 free_line_header (lh);
3335
3336 lh_cu->v.quick->file_names = qfn;
3337 }
3338
3339 /* A helper for the "quick" functions which attempts to read the line
3340 table for THIS_CU. */
3341
3342 static struct quick_file_names *
3343 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3344 {
3345 /* This should never be called for TUs. */
3346 gdb_assert (! this_cu->is_debug_types);
3347 /* Nor type unit groups. */
3348 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3349
3350 if (this_cu->v.quick->file_names != NULL)
3351 return this_cu->v.quick->file_names;
3352 /* If we know there is no line data, no point in looking again. */
3353 if (this_cu->v.quick->no_file_data)
3354 return NULL;
3355
3356 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3357
3358 if (this_cu->v.quick->no_file_data)
3359 return NULL;
3360 return this_cu->v.quick->file_names;
3361 }
3362
3363 /* A helper for the "quick" functions which computes and caches the
3364 real path for a given file name from the line table. */
3365
3366 static const char *
3367 dw2_get_real_path (struct objfile *objfile,
3368 struct quick_file_names *qfn, int index)
3369 {
3370 if (qfn->real_names == NULL)
3371 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3372 qfn->num_file_names, const char *);
3373
3374 if (qfn->real_names[index] == NULL)
3375 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3376
3377 return qfn->real_names[index];
3378 }
3379
3380 static struct symtab *
3381 dw2_find_last_source_symtab (struct objfile *objfile)
3382 {
3383 struct compunit_symtab *cust;
3384 int index;
3385
3386 dw2_setup (objfile);
3387 index = dwarf2_per_objfile->n_comp_units - 1;
3388 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3389 if (cust == NULL)
3390 return NULL;
3391 return compunit_primary_filetab (cust);
3392 }
3393
3394 /* Traversal function for dw2_forget_cached_source_info. */
3395
3396 static int
3397 dw2_free_cached_file_names (void **slot, void *info)
3398 {
3399 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3400
3401 if (file_data->real_names)
3402 {
3403 int i;
3404
3405 for (i = 0; i < file_data->num_file_names; ++i)
3406 {
3407 xfree ((void*) file_data->real_names[i]);
3408 file_data->real_names[i] = NULL;
3409 }
3410 }
3411
3412 return 1;
3413 }
3414
3415 static void
3416 dw2_forget_cached_source_info (struct objfile *objfile)
3417 {
3418 dw2_setup (objfile);
3419
3420 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3421 dw2_free_cached_file_names, NULL);
3422 }
3423
3424 /* Helper function for dw2_map_symtabs_matching_filename that expands
3425 the symtabs and calls the iterator. */
3426
3427 static int
3428 dw2_map_expand_apply (struct objfile *objfile,
3429 struct dwarf2_per_cu_data *per_cu,
3430 const char *name, const char *real_path,
3431 int (*callback) (struct symtab *, void *),
3432 void *data)
3433 {
3434 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3435
3436 /* Don't visit already-expanded CUs. */
3437 if (per_cu->v.quick->compunit_symtab)
3438 return 0;
3439
3440 /* This may expand more than one symtab, and we want to iterate over
3441 all of them. */
3442 dw2_instantiate_symtab (per_cu);
3443
3444 return iterate_over_some_symtabs (name, real_path, callback, data,
3445 objfile->compunit_symtabs, last_made);
3446 }
3447
3448 /* Implementation of the map_symtabs_matching_filename method. */
3449
3450 static int
3451 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3452 const char *real_path,
3453 int (*callback) (struct symtab *, void *),
3454 void *data)
3455 {
3456 int i;
3457 const char *name_basename = lbasename (name);
3458
3459 dw2_setup (objfile);
3460
3461 /* The rule is CUs specify all the files, including those used by
3462 any TU, so there's no need to scan TUs here. */
3463
3464 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3465 {
3466 int j;
3467 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3468 struct quick_file_names *file_data;
3469
3470 /* We only need to look at symtabs not already expanded. */
3471 if (per_cu->v.quick->compunit_symtab)
3472 continue;
3473
3474 file_data = dw2_get_file_names (per_cu);
3475 if (file_data == NULL)
3476 continue;
3477
3478 for (j = 0; j < file_data->num_file_names; ++j)
3479 {
3480 const char *this_name = file_data->file_names[j];
3481 const char *this_real_name;
3482
3483 if (compare_filenames_for_search (this_name, name))
3484 {
3485 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3486 callback, data))
3487 return 1;
3488 continue;
3489 }
3490
3491 /* Before we invoke realpath, which can get expensive when many
3492 files are involved, do a quick comparison of the basenames. */
3493 if (! basenames_may_differ
3494 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3495 continue;
3496
3497 this_real_name = dw2_get_real_path (objfile, file_data, j);
3498 if (compare_filenames_for_search (this_real_name, name))
3499 {
3500 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3501 callback, data))
3502 return 1;
3503 continue;
3504 }
3505
3506 if (real_path != NULL)
3507 {
3508 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3509 gdb_assert (IS_ABSOLUTE_PATH (name));
3510 if (this_real_name != NULL
3511 && FILENAME_CMP (real_path, this_real_name) == 0)
3512 {
3513 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3514 callback, data))
3515 return 1;
3516 continue;
3517 }
3518 }
3519 }
3520 }
3521
3522 return 0;
3523 }
3524
3525 /* Struct used to manage iterating over all CUs looking for a symbol. */
3526
3527 struct dw2_symtab_iterator
3528 {
3529 /* The internalized form of .gdb_index. */
3530 struct mapped_index *index;
3531 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3532 int want_specific_block;
3533 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3534 Unused if !WANT_SPECIFIC_BLOCK. */
3535 int block_index;
3536 /* The kind of symbol we're looking for. */
3537 domain_enum domain;
3538 /* The list of CUs from the index entry of the symbol,
3539 or NULL if not found. */
3540 offset_type *vec;
3541 /* The next element in VEC to look at. */
3542 int next;
3543 /* The number of elements in VEC, or zero if there is no match. */
3544 int length;
3545 /* Have we seen a global version of the symbol?
3546 If so we can ignore all further global instances.
3547 This is to work around gold/15646, inefficient gold-generated
3548 indices. */
3549 int global_seen;
3550 };
3551
3552 /* Initialize the index symtab iterator ITER.
3553 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3554 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3555
3556 static void
3557 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3558 struct mapped_index *index,
3559 int want_specific_block,
3560 int block_index,
3561 domain_enum domain,
3562 const char *name)
3563 {
3564 iter->index = index;
3565 iter->want_specific_block = want_specific_block;
3566 iter->block_index = block_index;
3567 iter->domain = domain;
3568 iter->next = 0;
3569 iter->global_seen = 0;
3570
3571 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3572 iter->length = MAYBE_SWAP (*iter->vec);
3573 else
3574 {
3575 iter->vec = NULL;
3576 iter->length = 0;
3577 }
3578 }
3579
3580 /* Return the next matching CU or NULL if there are no more. */
3581
3582 static struct dwarf2_per_cu_data *
3583 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3584 {
3585 for ( ; iter->next < iter->length; ++iter->next)
3586 {
3587 offset_type cu_index_and_attrs =
3588 MAYBE_SWAP (iter->vec[iter->next + 1]);
3589 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3590 struct dwarf2_per_cu_data *per_cu;
3591 int want_static = iter->block_index != GLOBAL_BLOCK;
3592 /* This value is only valid for index versions >= 7. */
3593 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3594 gdb_index_symbol_kind symbol_kind =
3595 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3596 /* Only check the symbol attributes if they're present.
3597 Indices prior to version 7 don't record them,
3598 and indices >= 7 may elide them for certain symbols
3599 (gold does this). */
3600 int attrs_valid =
3601 (iter->index->version >= 7
3602 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3603
3604 /* Don't crash on bad data. */
3605 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3606 + dwarf2_per_objfile->n_type_units))
3607 {
3608 complaint (&symfile_complaints,
3609 _(".gdb_index entry has bad CU index"
3610 " [in module %s]"),
3611 objfile_name (dwarf2_per_objfile->objfile));
3612 continue;
3613 }
3614
3615 per_cu = dw2_get_cutu (cu_index);
3616
3617 /* Skip if already read in. */
3618 if (per_cu->v.quick->compunit_symtab)
3619 continue;
3620
3621 /* Check static vs global. */
3622 if (attrs_valid)
3623 {
3624 if (iter->want_specific_block
3625 && want_static != is_static)
3626 continue;
3627 /* Work around gold/15646. */
3628 if (!is_static && iter->global_seen)
3629 continue;
3630 if (!is_static)
3631 iter->global_seen = 1;
3632 }
3633
3634 /* Only check the symbol's kind if it has one. */
3635 if (attrs_valid)
3636 {
3637 switch (iter->domain)
3638 {
3639 case VAR_DOMAIN:
3640 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3641 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3642 /* Some types are also in VAR_DOMAIN. */
3643 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3644 continue;
3645 break;
3646 case STRUCT_DOMAIN:
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3648 continue;
3649 break;
3650 case LABEL_DOMAIN:
3651 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3652 continue;
3653 break;
3654 default:
3655 break;
3656 }
3657 }
3658
3659 ++iter->next;
3660 return per_cu;
3661 }
3662
3663 return NULL;
3664 }
3665
3666 static struct compunit_symtab *
3667 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3668 const char *name, domain_enum domain)
3669 {
3670 struct compunit_symtab *stab_best = NULL;
3671 struct mapped_index *index;
3672
3673 dw2_setup (objfile);
3674
3675 index = dwarf2_per_objfile->index_table;
3676
3677 /* index is NULL if OBJF_READNOW. */
3678 if (index)
3679 {
3680 struct dw2_symtab_iterator iter;
3681 struct dwarf2_per_cu_data *per_cu;
3682
3683 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3684
3685 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3686 {
3687 struct symbol *sym, *with_opaque = NULL;
3688 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3689 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3690 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3691
3692 sym = block_find_symbol (block, name, domain,
3693 block_find_non_opaque_type_preferred,
3694 &with_opaque);
3695
3696 /* Some caution must be observed with overloaded functions
3697 and methods, since the index will not contain any overload
3698 information (but NAME might contain it). */
3699
3700 if (sym != NULL
3701 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3702 return stab;
3703 if (with_opaque != NULL
3704 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3705 stab_best = stab;
3706
3707 /* Keep looking through other CUs. */
3708 }
3709 }
3710
3711 return stab_best;
3712 }
3713
3714 static void
3715 dw2_print_stats (struct objfile *objfile)
3716 {
3717 int i, total, count;
3718
3719 dw2_setup (objfile);
3720 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3721 count = 0;
3722 for (i = 0; i < total; ++i)
3723 {
3724 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3725
3726 if (!per_cu->v.quick->compunit_symtab)
3727 ++count;
3728 }
3729 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3730 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3731 }
3732
3733 /* This dumps minimal information about the index.
3734 It is called via "mt print objfiles".
3735 One use is to verify .gdb_index has been loaded by the
3736 gdb.dwarf2/gdb-index.exp testcase. */
3737
3738 static void
3739 dw2_dump (struct objfile *objfile)
3740 {
3741 dw2_setup (objfile);
3742 gdb_assert (dwarf2_per_objfile->using_index);
3743 printf_filtered (".gdb_index:");
3744 if (dwarf2_per_objfile->index_table != NULL)
3745 {
3746 printf_filtered (" version %d\n",
3747 dwarf2_per_objfile->index_table->version);
3748 }
3749 else
3750 printf_filtered (" faked for \"readnow\"\n");
3751 printf_filtered ("\n");
3752 }
3753
3754 static void
3755 dw2_relocate (struct objfile *objfile,
3756 const struct section_offsets *new_offsets,
3757 const struct section_offsets *delta)
3758 {
3759 /* There's nothing to relocate here. */
3760 }
3761
3762 static void
3763 dw2_expand_symtabs_for_function (struct objfile *objfile,
3764 const char *func_name)
3765 {
3766 struct mapped_index *index;
3767
3768 dw2_setup (objfile);
3769
3770 index = dwarf2_per_objfile->index_table;
3771
3772 /* index is NULL if OBJF_READNOW. */
3773 if (index)
3774 {
3775 struct dw2_symtab_iterator iter;
3776 struct dwarf2_per_cu_data *per_cu;
3777
3778 /* Note: It doesn't matter what we pass for block_index here. */
3779 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3780 func_name);
3781
3782 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3783 dw2_instantiate_symtab (per_cu);
3784 }
3785 }
3786
3787 static void
3788 dw2_expand_all_symtabs (struct objfile *objfile)
3789 {
3790 int i;
3791
3792 dw2_setup (objfile);
3793
3794 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3795 + dwarf2_per_objfile->n_type_units); ++i)
3796 {
3797 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3798
3799 dw2_instantiate_symtab (per_cu);
3800 }
3801 }
3802
3803 static void
3804 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3805 const char *fullname)
3806 {
3807 int i;
3808
3809 dw2_setup (objfile);
3810
3811 /* We don't need to consider type units here.
3812 This is only called for examining code, e.g. expand_line_sal.
3813 There can be an order of magnitude (or more) more type units
3814 than comp units, and we avoid them if we can. */
3815
3816 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3817 {
3818 int j;
3819 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3820 struct quick_file_names *file_data;
3821
3822 /* We only need to look at symtabs not already expanded. */
3823 if (per_cu->v.quick->compunit_symtab)
3824 continue;
3825
3826 file_data = dw2_get_file_names (per_cu);
3827 if (file_data == NULL)
3828 continue;
3829
3830 for (j = 0; j < file_data->num_file_names; ++j)
3831 {
3832 const char *this_fullname = file_data->file_names[j];
3833
3834 if (filename_cmp (this_fullname, fullname) == 0)
3835 {
3836 dw2_instantiate_symtab (per_cu);
3837 break;
3838 }
3839 }
3840 }
3841 }
3842
3843 static void
3844 dw2_map_matching_symbols (struct objfile *objfile,
3845 const char * name, domain_enum domain,
3846 int global,
3847 int (*callback) (struct block *,
3848 struct symbol *, void *),
3849 void *data, symbol_compare_ftype *match,
3850 symbol_compare_ftype *ordered_compare)
3851 {
3852 /* Currently unimplemented; used for Ada. The function can be called if the
3853 current language is Ada for a non-Ada objfile using GNU index. As Ada
3854 does not look for non-Ada symbols this function should just return. */
3855 }
3856
3857 static void
3858 dw2_expand_symtabs_matching
3859 (struct objfile *objfile,
3860 expand_symtabs_file_matcher_ftype *file_matcher,
3861 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3862 expand_symtabs_exp_notify_ftype *expansion_notify,
3863 enum search_domain kind,
3864 void *data)
3865 {
3866 int i;
3867 offset_type iter;
3868 struct mapped_index *index;
3869
3870 dw2_setup (objfile);
3871
3872 /* index_table is NULL if OBJF_READNOW. */
3873 if (!dwarf2_per_objfile->index_table)
3874 return;
3875 index = dwarf2_per_objfile->index_table;
3876
3877 if (file_matcher != NULL)
3878 {
3879 struct cleanup *cleanup;
3880 htab_t visited_found, visited_not_found;
3881
3882 visited_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 cleanup = make_cleanup_htab_delete (visited_found);
3886 visited_not_found = htab_create_alloc (10,
3887 htab_hash_pointer, htab_eq_pointer,
3888 NULL, xcalloc, xfree);
3889 make_cleanup_htab_delete (visited_not_found);
3890
3891 /* The rule is CUs specify all the files, including those used by
3892 any TU, so there's no need to scan TUs here. */
3893
3894 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3895 {
3896 int j;
3897 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3898 struct quick_file_names *file_data;
3899 void **slot;
3900
3901 QUIT;
3902
3903 per_cu->v.quick->mark = 0;
3904
3905 /* We only need to look at symtabs not already expanded. */
3906 if (per_cu->v.quick->compunit_symtab)
3907 continue;
3908
3909 file_data = dw2_get_file_names (per_cu);
3910 if (file_data == NULL)
3911 continue;
3912
3913 if (htab_find (visited_not_found, file_data) != NULL)
3914 continue;
3915 else if (htab_find (visited_found, file_data) != NULL)
3916 {
3917 per_cu->v.quick->mark = 1;
3918 continue;
3919 }
3920
3921 for (j = 0; j < file_data->num_file_names; ++j)
3922 {
3923 const char *this_real_name;
3924
3925 if (file_matcher (file_data->file_names[j], data, 0))
3926 {
3927 per_cu->v.quick->mark = 1;
3928 break;
3929 }
3930
3931 /* Before we invoke realpath, which can get expensive when many
3932 files are involved, do a quick comparison of the basenames. */
3933 if (!basenames_may_differ
3934 && !file_matcher (lbasename (file_data->file_names[j]),
3935 data, 1))
3936 continue;
3937
3938 this_real_name = dw2_get_real_path (objfile, file_data, j);
3939 if (file_matcher (this_real_name, data, 0))
3940 {
3941 per_cu->v.quick->mark = 1;
3942 break;
3943 }
3944 }
3945
3946 slot = htab_find_slot (per_cu->v.quick->mark
3947 ? visited_found
3948 : visited_not_found,
3949 file_data, INSERT);
3950 *slot = file_data;
3951 }
3952
3953 do_cleanups (cleanup);
3954 }
3955
3956 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3957 {
3958 offset_type idx = 2 * iter;
3959 const char *name;
3960 offset_type *vec, vec_len, vec_idx;
3961 int global_seen = 0;
3962
3963 QUIT;
3964
3965 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3966 continue;
3967
3968 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3969
3970 if (! (*symbol_matcher) (name, data))
3971 continue;
3972
3973 /* The name was matched, now expand corresponding CUs that were
3974 marked. */
3975 vec = (offset_type *) (index->constant_pool
3976 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3977 vec_len = MAYBE_SWAP (vec[0]);
3978 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3979 {
3980 struct dwarf2_per_cu_data *per_cu;
3981 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3982 /* This value is only valid for index versions >= 7. */
3983 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3984 gdb_index_symbol_kind symbol_kind =
3985 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3986 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3987 /* Only check the symbol attributes if they're present.
3988 Indices prior to version 7 don't record them,
3989 and indices >= 7 may elide them for certain symbols
3990 (gold does this). */
3991 int attrs_valid =
3992 (index->version >= 7
3993 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3994
3995 /* Work around gold/15646. */
3996 if (attrs_valid)
3997 {
3998 if (!is_static && global_seen)
3999 continue;
4000 if (!is_static)
4001 global_seen = 1;
4002 }
4003
4004 /* Only check the symbol's kind if it has one. */
4005 if (attrs_valid)
4006 {
4007 switch (kind)
4008 {
4009 case VARIABLES_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4011 continue;
4012 break;
4013 case FUNCTIONS_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4015 continue;
4016 break;
4017 case TYPES_DOMAIN:
4018 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4019 continue;
4020 break;
4021 default:
4022 break;
4023 }
4024 }
4025
4026 /* Don't crash on bad data. */
4027 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4028 + dwarf2_per_objfile->n_type_units))
4029 {
4030 complaint (&symfile_complaints,
4031 _(".gdb_index entry has bad CU index"
4032 " [in module %s]"), objfile_name (objfile));
4033 continue;
4034 }
4035
4036 per_cu = dw2_get_cutu (cu_index);
4037 if (file_matcher == NULL || per_cu->v.quick->mark)
4038 {
4039 int symtab_was_null =
4040 (per_cu->v.quick->compunit_symtab == NULL);
4041
4042 dw2_instantiate_symtab (per_cu);
4043
4044 if (expansion_notify != NULL
4045 && symtab_was_null
4046 && per_cu->v.quick->compunit_symtab != NULL)
4047 {
4048 expansion_notify (per_cu->v.quick->compunit_symtab,
4049 data);
4050 }
4051 }
4052 }
4053 }
4054 }
4055
4056 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4057 symtab. */
4058
4059 static struct compunit_symtab *
4060 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4061 CORE_ADDR pc)
4062 {
4063 int i;
4064
4065 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4066 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4067 return cust;
4068
4069 if (cust->includes == NULL)
4070 return NULL;
4071
4072 for (i = 0; cust->includes[i]; ++i)
4073 {
4074 struct compunit_symtab *s = cust->includes[i];
4075
4076 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4077 if (s != NULL)
4078 return s;
4079 }
4080
4081 return NULL;
4082 }
4083
4084 static struct compunit_symtab *
4085 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4086 struct bound_minimal_symbol msymbol,
4087 CORE_ADDR pc,
4088 struct obj_section *section,
4089 int warn_if_readin)
4090 {
4091 struct dwarf2_per_cu_data *data;
4092 struct compunit_symtab *result;
4093
4094 dw2_setup (objfile);
4095
4096 if (!objfile->psymtabs_addrmap)
4097 return NULL;
4098
4099 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4100 pc);
4101 if (!data)
4102 return NULL;
4103
4104 if (warn_if_readin && data->v.quick->compunit_symtab)
4105 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4106 paddress (get_objfile_arch (objfile), pc));
4107
4108 result
4109 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4110 pc);
4111 gdb_assert (result != NULL);
4112 return result;
4113 }
4114
4115 static void
4116 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4117 void *data, int need_fullname)
4118 {
4119 int i;
4120 struct cleanup *cleanup;
4121 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4122 NULL, xcalloc, xfree);
4123
4124 cleanup = make_cleanup_htab_delete (visited);
4125 dw2_setup (objfile);
4126
4127 /* The rule is CUs specify all the files, including those used by
4128 any TU, so there's no need to scan TUs here.
4129 We can ignore file names coming from already-expanded CUs. */
4130
4131 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4132 {
4133 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4134
4135 if (per_cu->v.quick->compunit_symtab)
4136 {
4137 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4138 INSERT);
4139
4140 *slot = per_cu->v.quick->file_names;
4141 }
4142 }
4143
4144 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4145 {
4146 int j;
4147 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4148 struct quick_file_names *file_data;
4149 void **slot;
4150
4151 /* We only need to look at symtabs not already expanded. */
4152 if (per_cu->v.quick->compunit_symtab)
4153 continue;
4154
4155 file_data = dw2_get_file_names (per_cu);
4156 if (file_data == NULL)
4157 continue;
4158
4159 slot = htab_find_slot (visited, file_data, INSERT);
4160 if (*slot)
4161 {
4162 /* Already visited. */
4163 continue;
4164 }
4165 *slot = file_data;
4166
4167 for (j = 0; j < file_data->num_file_names; ++j)
4168 {
4169 const char *this_real_name;
4170
4171 if (need_fullname)
4172 this_real_name = dw2_get_real_path (objfile, file_data, j);
4173 else
4174 this_real_name = NULL;
4175 (*fun) (file_data->file_names[j], this_real_name, data);
4176 }
4177 }
4178
4179 do_cleanups (cleanup);
4180 }
4181
4182 static int
4183 dw2_has_symbols (struct objfile *objfile)
4184 {
4185 return 1;
4186 }
4187
4188 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4189 {
4190 dw2_has_symbols,
4191 dw2_find_last_source_symtab,
4192 dw2_forget_cached_source_info,
4193 dw2_map_symtabs_matching_filename,
4194 dw2_lookup_symbol,
4195 dw2_print_stats,
4196 dw2_dump,
4197 dw2_relocate,
4198 dw2_expand_symtabs_for_function,
4199 dw2_expand_all_symtabs,
4200 dw2_expand_symtabs_with_fullname,
4201 dw2_map_matching_symbols,
4202 dw2_expand_symtabs_matching,
4203 dw2_find_pc_sect_compunit_symtab,
4204 dw2_map_symbol_filenames
4205 };
4206
4207 /* Initialize for reading DWARF for this objfile. Return 0 if this
4208 file will use psymtabs, or 1 if using the GNU index. */
4209
4210 int
4211 dwarf2_initialize_objfile (struct objfile *objfile)
4212 {
4213 /* If we're about to read full symbols, don't bother with the
4214 indices. In this case we also don't care if some other debug
4215 format is making psymtabs, because they are all about to be
4216 expanded anyway. */
4217 if ((objfile->flags & OBJF_READNOW))
4218 {
4219 int i;
4220
4221 dwarf2_per_objfile->using_index = 1;
4222 create_all_comp_units (objfile);
4223 create_all_type_units (objfile);
4224 dwarf2_per_objfile->quick_file_names_table =
4225 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4226
4227 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4228 + dwarf2_per_objfile->n_type_units); ++i)
4229 {
4230 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4231
4232 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4233 struct dwarf2_per_cu_quick_data);
4234 }
4235
4236 /* Return 1 so that gdb sees the "quick" functions. However,
4237 these functions will be no-ops because we will have expanded
4238 all symtabs. */
4239 return 1;
4240 }
4241
4242 if (dwarf2_read_index (objfile))
4243 return 1;
4244
4245 return 0;
4246 }
4247
4248 \f
4249
4250 /* Build a partial symbol table. */
4251
4252 void
4253 dwarf2_build_psymtabs (struct objfile *objfile)
4254 {
4255
4256 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4257 {
4258 init_psymbol_list (objfile, 1024);
4259 }
4260
4261 TRY
4262 {
4263 /* This isn't really ideal: all the data we allocate on the
4264 objfile's obstack is still uselessly kept around. However,
4265 freeing it seems unsafe. */
4266 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4267
4268 dwarf2_build_psymtabs_hard (objfile);
4269 discard_cleanups (cleanups);
4270 }
4271 CATCH (except, RETURN_MASK_ERROR)
4272 {
4273 exception_print (gdb_stderr, except);
4274 }
4275 END_CATCH
4276 }
4277
4278 /* Return the total length of the CU described by HEADER. */
4279
4280 static unsigned int
4281 get_cu_length (const struct comp_unit_head *header)
4282 {
4283 return header->initial_length_size + header->length;
4284 }
4285
4286 /* Return TRUE if OFFSET is within CU_HEADER. */
4287
4288 static inline int
4289 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4290 {
4291 sect_offset bottom = { cu_header->offset.sect_off };
4292 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4293
4294 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4295 }
4296
4297 /* Find the base address of the compilation unit for range lists and
4298 location lists. It will normally be specified by DW_AT_low_pc.
4299 In DWARF-3 draft 4, the base address could be overridden by
4300 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4301 compilation units with discontinuous ranges. */
4302
4303 static void
4304 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4305 {
4306 struct attribute *attr;
4307
4308 cu->base_known = 0;
4309 cu->base_address = 0;
4310
4311 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4312 if (attr)
4313 {
4314 cu->base_address = attr_value_as_address (attr);
4315 cu->base_known = 1;
4316 }
4317 else
4318 {
4319 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4320 if (attr)
4321 {
4322 cu->base_address = attr_value_as_address (attr);
4323 cu->base_known = 1;
4324 }
4325 }
4326 }
4327
4328 /* Read in the comp unit header information from the debug_info at info_ptr.
4329 NOTE: This leaves members offset, first_die_offset to be filled in
4330 by the caller. */
4331
4332 static const gdb_byte *
4333 read_comp_unit_head (struct comp_unit_head *cu_header,
4334 const gdb_byte *info_ptr, bfd *abfd)
4335 {
4336 int signed_addr;
4337 unsigned int bytes_read;
4338
4339 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4340 cu_header->initial_length_size = bytes_read;
4341 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4342 info_ptr += bytes_read;
4343 cu_header->version = read_2_bytes (abfd, info_ptr);
4344 info_ptr += 2;
4345 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4346 &bytes_read);
4347 info_ptr += bytes_read;
4348 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4349 info_ptr += 1;
4350 signed_addr = bfd_get_sign_extend_vma (abfd);
4351 if (signed_addr < 0)
4352 internal_error (__FILE__, __LINE__,
4353 _("read_comp_unit_head: dwarf from non elf file"));
4354 cu_header->signed_addr_p = signed_addr;
4355
4356 return info_ptr;
4357 }
4358
4359 /* Helper function that returns the proper abbrev section for
4360 THIS_CU. */
4361
4362 static struct dwarf2_section_info *
4363 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4364 {
4365 struct dwarf2_section_info *abbrev;
4366
4367 if (this_cu->is_dwz)
4368 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4369 else
4370 abbrev = &dwarf2_per_objfile->abbrev;
4371
4372 return abbrev;
4373 }
4374
4375 /* Subroutine of read_and_check_comp_unit_head and
4376 read_and_check_type_unit_head to simplify them.
4377 Perform various error checking on the header. */
4378
4379 static void
4380 error_check_comp_unit_head (struct comp_unit_head *header,
4381 struct dwarf2_section_info *section,
4382 struct dwarf2_section_info *abbrev_section)
4383 {
4384 const char *filename = get_section_file_name (section);
4385
4386 if (header->version != 2 && header->version != 3 && header->version != 4)
4387 error (_("Dwarf Error: wrong version in compilation unit header "
4388 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4389 filename);
4390
4391 if (header->abbrev_offset.sect_off
4392 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4393 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4394 "(offset 0x%lx + 6) [in module %s]"),
4395 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4396 filename);
4397
4398 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4399 avoid potential 32-bit overflow. */
4400 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4401 > section->size)
4402 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4403 "(offset 0x%lx + 0) [in module %s]"),
4404 (long) header->length, (long) header->offset.sect_off,
4405 filename);
4406 }
4407
4408 /* Read in a CU/TU header and perform some basic error checking.
4409 The contents of the header are stored in HEADER.
4410 The result is a pointer to the start of the first DIE. */
4411
4412 static const gdb_byte *
4413 read_and_check_comp_unit_head (struct comp_unit_head *header,
4414 struct dwarf2_section_info *section,
4415 struct dwarf2_section_info *abbrev_section,
4416 const gdb_byte *info_ptr,
4417 int is_debug_types_section)
4418 {
4419 const gdb_byte *beg_of_comp_unit = info_ptr;
4420 bfd *abfd = get_section_bfd_owner (section);
4421
4422 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4423
4424 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4425
4426 /* If we're reading a type unit, skip over the signature and
4427 type_offset fields. */
4428 if (is_debug_types_section)
4429 info_ptr += 8 /*signature*/ + header->offset_size;
4430
4431 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4432
4433 error_check_comp_unit_head (header, section, abbrev_section);
4434
4435 return info_ptr;
4436 }
4437
4438 /* Read in the types comp unit header information from .debug_types entry at
4439 types_ptr. The result is a pointer to one past the end of the header. */
4440
4441 static const gdb_byte *
4442 read_and_check_type_unit_head (struct comp_unit_head *header,
4443 struct dwarf2_section_info *section,
4444 struct dwarf2_section_info *abbrev_section,
4445 const gdb_byte *info_ptr,
4446 ULONGEST *signature,
4447 cu_offset *type_offset_in_tu)
4448 {
4449 const gdb_byte *beg_of_comp_unit = info_ptr;
4450 bfd *abfd = get_section_bfd_owner (section);
4451
4452 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4453
4454 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4455
4456 /* If we're reading a type unit, skip over the signature and
4457 type_offset fields. */
4458 if (signature != NULL)
4459 *signature = read_8_bytes (abfd, info_ptr);
4460 info_ptr += 8;
4461 if (type_offset_in_tu != NULL)
4462 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4463 header->offset_size);
4464 info_ptr += header->offset_size;
4465
4466 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4467
4468 error_check_comp_unit_head (header, section, abbrev_section);
4469
4470 return info_ptr;
4471 }
4472
4473 /* Fetch the abbreviation table offset from a comp or type unit header. */
4474
4475 static sect_offset
4476 read_abbrev_offset (struct dwarf2_section_info *section,
4477 sect_offset offset)
4478 {
4479 bfd *abfd = get_section_bfd_owner (section);
4480 const gdb_byte *info_ptr;
4481 unsigned int length, initial_length_size, offset_size;
4482 sect_offset abbrev_offset;
4483
4484 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4485 info_ptr = section->buffer + offset.sect_off;
4486 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4487 offset_size = initial_length_size == 4 ? 4 : 8;
4488 info_ptr += initial_length_size + 2 /*version*/;
4489 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4490 return abbrev_offset;
4491 }
4492
4493 /* Allocate a new partial symtab for file named NAME and mark this new
4494 partial symtab as being an include of PST. */
4495
4496 static void
4497 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4498 struct objfile *objfile)
4499 {
4500 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4501
4502 if (!IS_ABSOLUTE_PATH (subpst->filename))
4503 {
4504 /* It shares objfile->objfile_obstack. */
4505 subpst->dirname = pst->dirname;
4506 }
4507
4508 subpst->textlow = 0;
4509 subpst->texthigh = 0;
4510
4511 subpst->dependencies
4512 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4513 subpst->dependencies[0] = pst;
4514 subpst->number_of_dependencies = 1;
4515
4516 subpst->globals_offset = 0;
4517 subpst->n_global_syms = 0;
4518 subpst->statics_offset = 0;
4519 subpst->n_static_syms = 0;
4520 subpst->compunit_symtab = NULL;
4521 subpst->read_symtab = pst->read_symtab;
4522 subpst->readin = 0;
4523
4524 /* No private part is necessary for include psymtabs. This property
4525 can be used to differentiate between such include psymtabs and
4526 the regular ones. */
4527 subpst->read_symtab_private = NULL;
4528 }
4529
4530 /* Read the Line Number Program data and extract the list of files
4531 included by the source file represented by PST. Build an include
4532 partial symtab for each of these included files. */
4533
4534 static void
4535 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4536 struct die_info *die,
4537 struct partial_symtab *pst)
4538 {
4539 struct line_header *lh = NULL;
4540 struct attribute *attr;
4541
4542 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4543 if (attr)
4544 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4545 if (lh == NULL)
4546 return; /* No linetable, so no includes. */
4547
4548 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4549 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4550
4551 free_line_header (lh);
4552 }
4553
4554 static hashval_t
4555 hash_signatured_type (const void *item)
4556 {
4557 const struct signatured_type *sig_type
4558 = (const struct signatured_type *) item;
4559
4560 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4561 return sig_type->signature;
4562 }
4563
4564 static int
4565 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4566 {
4567 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4568 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4569
4570 return lhs->signature == rhs->signature;
4571 }
4572
4573 /* Allocate a hash table for signatured types. */
4574
4575 static htab_t
4576 allocate_signatured_type_table (struct objfile *objfile)
4577 {
4578 return htab_create_alloc_ex (41,
4579 hash_signatured_type,
4580 eq_signatured_type,
4581 NULL,
4582 &objfile->objfile_obstack,
4583 hashtab_obstack_allocate,
4584 dummy_obstack_deallocate);
4585 }
4586
4587 /* A helper function to add a signatured type CU to a table. */
4588
4589 static int
4590 add_signatured_type_cu_to_table (void **slot, void *datum)
4591 {
4592 struct signatured_type *sigt = (struct signatured_type *) *slot;
4593 struct signatured_type ***datap = (struct signatured_type ***) datum;
4594
4595 **datap = sigt;
4596 ++*datap;
4597
4598 return 1;
4599 }
4600
4601 /* Create the hash table of all entries in the .debug_types
4602 (or .debug_types.dwo) section(s).
4603 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4604 otherwise it is NULL.
4605
4606 The result is a pointer to the hash table or NULL if there are no types.
4607
4608 Note: This function processes DWO files only, not DWP files. */
4609
4610 static htab_t
4611 create_debug_types_hash_table (struct dwo_file *dwo_file,
4612 VEC (dwarf2_section_info_def) *types)
4613 {
4614 struct objfile *objfile = dwarf2_per_objfile->objfile;
4615 htab_t types_htab = NULL;
4616 int ix;
4617 struct dwarf2_section_info *section;
4618 struct dwarf2_section_info *abbrev_section;
4619
4620 if (VEC_empty (dwarf2_section_info_def, types))
4621 return NULL;
4622
4623 abbrev_section = (dwo_file != NULL
4624 ? &dwo_file->sections.abbrev
4625 : &dwarf2_per_objfile->abbrev);
4626
4627 if (dwarf_read_debug)
4628 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4629 dwo_file ? ".dwo" : "",
4630 get_section_file_name (abbrev_section));
4631
4632 for (ix = 0;
4633 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4634 ++ix)
4635 {
4636 bfd *abfd;
4637 const gdb_byte *info_ptr, *end_ptr;
4638
4639 dwarf2_read_section (objfile, section);
4640 info_ptr = section->buffer;
4641
4642 if (info_ptr == NULL)
4643 continue;
4644
4645 /* We can't set abfd until now because the section may be empty or
4646 not present, in which case the bfd is unknown. */
4647 abfd = get_section_bfd_owner (section);
4648
4649 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4650 because we don't need to read any dies: the signature is in the
4651 header. */
4652
4653 end_ptr = info_ptr + section->size;
4654 while (info_ptr < end_ptr)
4655 {
4656 sect_offset offset;
4657 cu_offset type_offset_in_tu;
4658 ULONGEST signature;
4659 struct signatured_type *sig_type;
4660 struct dwo_unit *dwo_tu;
4661 void **slot;
4662 const gdb_byte *ptr = info_ptr;
4663 struct comp_unit_head header;
4664 unsigned int length;
4665
4666 offset.sect_off = ptr - section->buffer;
4667
4668 /* We need to read the type's signature in order to build the hash
4669 table, but we don't need anything else just yet. */
4670
4671 ptr = read_and_check_type_unit_head (&header, section,
4672 abbrev_section, ptr,
4673 &signature, &type_offset_in_tu);
4674
4675 length = get_cu_length (&header);
4676
4677 /* Skip dummy type units. */
4678 if (ptr >= info_ptr + length
4679 || peek_abbrev_code (abfd, ptr) == 0)
4680 {
4681 info_ptr += length;
4682 continue;
4683 }
4684
4685 if (types_htab == NULL)
4686 {
4687 if (dwo_file)
4688 types_htab = allocate_dwo_unit_table (objfile);
4689 else
4690 types_htab = allocate_signatured_type_table (objfile);
4691 }
4692
4693 if (dwo_file)
4694 {
4695 sig_type = NULL;
4696 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4697 struct dwo_unit);
4698 dwo_tu->dwo_file = dwo_file;
4699 dwo_tu->signature = signature;
4700 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4701 dwo_tu->section = section;
4702 dwo_tu->offset = offset;
4703 dwo_tu->length = length;
4704 }
4705 else
4706 {
4707 /* N.B.: type_offset is not usable if this type uses a DWO file.
4708 The real type_offset is in the DWO file. */
4709 dwo_tu = NULL;
4710 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4711 struct signatured_type);
4712 sig_type->signature = signature;
4713 sig_type->type_offset_in_tu = type_offset_in_tu;
4714 sig_type->per_cu.objfile = objfile;
4715 sig_type->per_cu.is_debug_types = 1;
4716 sig_type->per_cu.section = section;
4717 sig_type->per_cu.offset = offset;
4718 sig_type->per_cu.length = length;
4719 }
4720
4721 slot = htab_find_slot (types_htab,
4722 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4723 INSERT);
4724 gdb_assert (slot != NULL);
4725 if (*slot != NULL)
4726 {
4727 sect_offset dup_offset;
4728
4729 if (dwo_file)
4730 {
4731 const struct dwo_unit *dup_tu
4732 = (const struct dwo_unit *) *slot;
4733
4734 dup_offset = dup_tu->offset;
4735 }
4736 else
4737 {
4738 const struct signatured_type *dup_tu
4739 = (const struct signatured_type *) *slot;
4740
4741 dup_offset = dup_tu->per_cu.offset;
4742 }
4743
4744 complaint (&symfile_complaints,
4745 _("debug type entry at offset 0x%x is duplicate to"
4746 " the entry at offset 0x%x, signature %s"),
4747 offset.sect_off, dup_offset.sect_off,
4748 hex_string (signature));
4749 }
4750 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4751
4752 if (dwarf_read_debug > 1)
4753 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4754 offset.sect_off,
4755 hex_string (signature));
4756
4757 info_ptr += length;
4758 }
4759 }
4760
4761 return types_htab;
4762 }
4763
4764 /* Create the hash table of all entries in the .debug_types section,
4765 and initialize all_type_units.
4766 The result is zero if there is an error (e.g. missing .debug_types section),
4767 otherwise non-zero. */
4768
4769 static int
4770 create_all_type_units (struct objfile *objfile)
4771 {
4772 htab_t types_htab;
4773 struct signatured_type **iter;
4774
4775 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4776 if (types_htab == NULL)
4777 {
4778 dwarf2_per_objfile->signatured_types = NULL;
4779 return 0;
4780 }
4781
4782 dwarf2_per_objfile->signatured_types = types_htab;
4783
4784 dwarf2_per_objfile->n_type_units
4785 = dwarf2_per_objfile->n_allocated_type_units
4786 = htab_elements (types_htab);
4787 dwarf2_per_objfile->all_type_units =
4788 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4789 iter = &dwarf2_per_objfile->all_type_units[0];
4790 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4791 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4792 == dwarf2_per_objfile->n_type_units);
4793
4794 return 1;
4795 }
4796
4797 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4798 If SLOT is non-NULL, it is the entry to use in the hash table.
4799 Otherwise we find one. */
4800
4801 static struct signatured_type *
4802 add_type_unit (ULONGEST sig, void **slot)
4803 {
4804 struct objfile *objfile = dwarf2_per_objfile->objfile;
4805 int n_type_units = dwarf2_per_objfile->n_type_units;
4806 struct signatured_type *sig_type;
4807
4808 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4809 ++n_type_units;
4810 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4811 {
4812 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4813 dwarf2_per_objfile->n_allocated_type_units = 1;
4814 dwarf2_per_objfile->n_allocated_type_units *= 2;
4815 dwarf2_per_objfile->all_type_units
4816 = XRESIZEVEC (struct signatured_type *,
4817 dwarf2_per_objfile->all_type_units,
4818 dwarf2_per_objfile->n_allocated_type_units);
4819 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4820 }
4821 dwarf2_per_objfile->n_type_units = n_type_units;
4822
4823 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4824 struct signatured_type);
4825 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4826 sig_type->signature = sig;
4827 sig_type->per_cu.is_debug_types = 1;
4828 if (dwarf2_per_objfile->using_index)
4829 {
4830 sig_type->per_cu.v.quick =
4831 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4832 struct dwarf2_per_cu_quick_data);
4833 }
4834
4835 if (slot == NULL)
4836 {
4837 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4838 sig_type, INSERT);
4839 }
4840 gdb_assert (*slot == NULL);
4841 *slot = sig_type;
4842 /* The rest of sig_type must be filled in by the caller. */
4843 return sig_type;
4844 }
4845
4846 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4847 Fill in SIG_ENTRY with DWO_ENTRY. */
4848
4849 static void
4850 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4851 struct signatured_type *sig_entry,
4852 struct dwo_unit *dwo_entry)
4853 {
4854 /* Make sure we're not clobbering something we don't expect to. */
4855 gdb_assert (! sig_entry->per_cu.queued);
4856 gdb_assert (sig_entry->per_cu.cu == NULL);
4857 if (dwarf2_per_objfile->using_index)
4858 {
4859 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4860 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4861 }
4862 else
4863 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4864 gdb_assert (sig_entry->signature == dwo_entry->signature);
4865 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4866 gdb_assert (sig_entry->type_unit_group == NULL);
4867 gdb_assert (sig_entry->dwo_unit == NULL);
4868
4869 sig_entry->per_cu.section = dwo_entry->section;
4870 sig_entry->per_cu.offset = dwo_entry->offset;
4871 sig_entry->per_cu.length = dwo_entry->length;
4872 sig_entry->per_cu.reading_dwo_directly = 1;
4873 sig_entry->per_cu.objfile = objfile;
4874 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4875 sig_entry->dwo_unit = dwo_entry;
4876 }
4877
4878 /* Subroutine of lookup_signatured_type.
4879 If we haven't read the TU yet, create the signatured_type data structure
4880 for a TU to be read in directly from a DWO file, bypassing the stub.
4881 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4882 using .gdb_index, then when reading a CU we want to stay in the DWO file
4883 containing that CU. Otherwise we could end up reading several other DWO
4884 files (due to comdat folding) to process the transitive closure of all the
4885 mentioned TUs, and that can be slow. The current DWO file will have every
4886 type signature that it needs.
4887 We only do this for .gdb_index because in the psymtab case we already have
4888 to read all the DWOs to build the type unit groups. */
4889
4890 static struct signatured_type *
4891 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4892 {
4893 struct objfile *objfile = dwarf2_per_objfile->objfile;
4894 struct dwo_file *dwo_file;
4895 struct dwo_unit find_dwo_entry, *dwo_entry;
4896 struct signatured_type find_sig_entry, *sig_entry;
4897 void **slot;
4898
4899 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4900
4901 /* If TU skeletons have been removed then we may not have read in any
4902 TUs yet. */
4903 if (dwarf2_per_objfile->signatured_types == NULL)
4904 {
4905 dwarf2_per_objfile->signatured_types
4906 = allocate_signatured_type_table (objfile);
4907 }
4908
4909 /* We only ever need to read in one copy of a signatured type.
4910 Use the global signatured_types array to do our own comdat-folding
4911 of types. If this is the first time we're reading this TU, and
4912 the TU has an entry in .gdb_index, replace the recorded data from
4913 .gdb_index with this TU. */
4914
4915 find_sig_entry.signature = sig;
4916 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4917 &find_sig_entry, INSERT);
4918 sig_entry = (struct signatured_type *) *slot;
4919
4920 /* We can get here with the TU already read, *or* in the process of being
4921 read. Don't reassign the global entry to point to this DWO if that's
4922 the case. Also note that if the TU is already being read, it may not
4923 have come from a DWO, the program may be a mix of Fission-compiled
4924 code and non-Fission-compiled code. */
4925
4926 /* Have we already tried to read this TU?
4927 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4928 needn't exist in the global table yet). */
4929 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4930 return sig_entry;
4931
4932 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4933 dwo_unit of the TU itself. */
4934 dwo_file = cu->dwo_unit->dwo_file;
4935
4936 /* Ok, this is the first time we're reading this TU. */
4937 if (dwo_file->tus == NULL)
4938 return NULL;
4939 find_dwo_entry.signature = sig;
4940 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
4941 if (dwo_entry == NULL)
4942 return NULL;
4943
4944 /* If the global table doesn't have an entry for this TU, add one. */
4945 if (sig_entry == NULL)
4946 sig_entry = add_type_unit (sig, slot);
4947
4948 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4949 sig_entry->per_cu.tu_read = 1;
4950 return sig_entry;
4951 }
4952
4953 /* Subroutine of lookup_signatured_type.
4954 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4955 then try the DWP file. If the TU stub (skeleton) has been removed then
4956 it won't be in .gdb_index. */
4957
4958 static struct signatured_type *
4959 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4960 {
4961 struct objfile *objfile = dwarf2_per_objfile->objfile;
4962 struct dwp_file *dwp_file = get_dwp_file ();
4963 struct dwo_unit *dwo_entry;
4964 struct signatured_type find_sig_entry, *sig_entry;
4965 void **slot;
4966
4967 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4968 gdb_assert (dwp_file != NULL);
4969
4970 /* If TU skeletons have been removed then we may not have read in any
4971 TUs yet. */
4972 if (dwarf2_per_objfile->signatured_types == NULL)
4973 {
4974 dwarf2_per_objfile->signatured_types
4975 = allocate_signatured_type_table (objfile);
4976 }
4977
4978 find_sig_entry.signature = sig;
4979 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4980 &find_sig_entry, INSERT);
4981 sig_entry = (struct signatured_type *) *slot;
4982
4983 /* Have we already tried to read this TU?
4984 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4985 needn't exist in the global table yet). */
4986 if (sig_entry != NULL)
4987 return sig_entry;
4988
4989 if (dwp_file->tus == NULL)
4990 return NULL;
4991 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4992 sig, 1 /* is_debug_types */);
4993 if (dwo_entry == NULL)
4994 return NULL;
4995
4996 sig_entry = add_type_unit (sig, slot);
4997 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4998
4999 return sig_entry;
5000 }
5001
5002 /* Lookup a signature based type for DW_FORM_ref_sig8.
5003 Returns NULL if signature SIG is not present in the table.
5004 It is up to the caller to complain about this. */
5005
5006 static struct signatured_type *
5007 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5008 {
5009 if (cu->dwo_unit
5010 && dwarf2_per_objfile->using_index)
5011 {
5012 /* We're in a DWO/DWP file, and we're using .gdb_index.
5013 These cases require special processing. */
5014 if (get_dwp_file () == NULL)
5015 return lookup_dwo_signatured_type (cu, sig);
5016 else
5017 return lookup_dwp_signatured_type (cu, sig);
5018 }
5019 else
5020 {
5021 struct signatured_type find_entry, *entry;
5022
5023 if (dwarf2_per_objfile->signatured_types == NULL)
5024 return NULL;
5025 find_entry.signature = sig;
5026 entry = ((struct signatured_type *)
5027 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5028 return entry;
5029 }
5030 }
5031 \f
5032 /* Low level DIE reading support. */
5033
5034 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5035
5036 static void
5037 init_cu_die_reader (struct die_reader_specs *reader,
5038 struct dwarf2_cu *cu,
5039 struct dwarf2_section_info *section,
5040 struct dwo_file *dwo_file)
5041 {
5042 gdb_assert (section->readin && section->buffer != NULL);
5043 reader->abfd = get_section_bfd_owner (section);
5044 reader->cu = cu;
5045 reader->dwo_file = dwo_file;
5046 reader->die_section = section;
5047 reader->buffer = section->buffer;
5048 reader->buffer_end = section->buffer + section->size;
5049 reader->comp_dir = NULL;
5050 }
5051
5052 /* Subroutine of init_cutu_and_read_dies to simplify it.
5053 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5054 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5055 already.
5056
5057 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5058 from it to the DIE in the DWO. If NULL we are skipping the stub.
5059 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5060 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5061 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5062 STUB_COMP_DIR may be non-NULL.
5063 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5064 are filled in with the info of the DIE from the DWO file.
5065 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5066 provided an abbrev table to use.
5067 The result is non-zero if a valid (non-dummy) DIE was found. */
5068
5069 static int
5070 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5071 struct dwo_unit *dwo_unit,
5072 int abbrev_table_provided,
5073 struct die_info *stub_comp_unit_die,
5074 const char *stub_comp_dir,
5075 struct die_reader_specs *result_reader,
5076 const gdb_byte **result_info_ptr,
5077 struct die_info **result_comp_unit_die,
5078 int *result_has_children)
5079 {
5080 struct objfile *objfile = dwarf2_per_objfile->objfile;
5081 struct dwarf2_cu *cu = this_cu->cu;
5082 struct dwarf2_section_info *section;
5083 bfd *abfd;
5084 const gdb_byte *begin_info_ptr, *info_ptr;
5085 ULONGEST signature; /* Or dwo_id. */
5086 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5087 int i,num_extra_attrs;
5088 struct dwarf2_section_info *dwo_abbrev_section;
5089 struct attribute *attr;
5090 struct die_info *comp_unit_die;
5091
5092 /* At most one of these may be provided. */
5093 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5094
5095 /* These attributes aren't processed until later:
5096 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5097 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5098 referenced later. However, these attributes are found in the stub
5099 which we won't have later. In order to not impose this complication
5100 on the rest of the code, we read them here and copy them to the
5101 DWO CU/TU die. */
5102
5103 stmt_list = NULL;
5104 low_pc = NULL;
5105 high_pc = NULL;
5106 ranges = NULL;
5107 comp_dir = NULL;
5108
5109 if (stub_comp_unit_die != NULL)
5110 {
5111 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5112 DWO file. */
5113 if (! this_cu->is_debug_types)
5114 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5115 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5116 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5117 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5118 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5119
5120 /* There should be a DW_AT_addr_base attribute here (if needed).
5121 We need the value before we can process DW_FORM_GNU_addr_index. */
5122 cu->addr_base = 0;
5123 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5124 if (attr)
5125 cu->addr_base = DW_UNSND (attr);
5126
5127 /* There should be a DW_AT_ranges_base attribute here (if needed).
5128 We need the value before we can process DW_AT_ranges. */
5129 cu->ranges_base = 0;
5130 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5131 if (attr)
5132 cu->ranges_base = DW_UNSND (attr);
5133 }
5134 else if (stub_comp_dir != NULL)
5135 {
5136 /* Reconstruct the comp_dir attribute to simplify the code below. */
5137 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5138 comp_dir->name = DW_AT_comp_dir;
5139 comp_dir->form = DW_FORM_string;
5140 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5141 DW_STRING (comp_dir) = stub_comp_dir;
5142 }
5143
5144 /* Set up for reading the DWO CU/TU. */
5145 cu->dwo_unit = dwo_unit;
5146 section = dwo_unit->section;
5147 dwarf2_read_section (objfile, section);
5148 abfd = get_section_bfd_owner (section);
5149 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5150 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5151 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5152
5153 if (this_cu->is_debug_types)
5154 {
5155 ULONGEST header_signature;
5156 cu_offset type_offset_in_tu;
5157 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5158
5159 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5160 dwo_abbrev_section,
5161 info_ptr,
5162 &header_signature,
5163 &type_offset_in_tu);
5164 /* This is not an assert because it can be caused by bad debug info. */
5165 if (sig_type->signature != header_signature)
5166 {
5167 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5168 " TU at offset 0x%x [in module %s]"),
5169 hex_string (sig_type->signature),
5170 hex_string (header_signature),
5171 dwo_unit->offset.sect_off,
5172 bfd_get_filename (abfd));
5173 }
5174 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5175 /* For DWOs coming from DWP files, we don't know the CU length
5176 nor the type's offset in the TU until now. */
5177 dwo_unit->length = get_cu_length (&cu->header);
5178 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5179
5180 /* Establish the type offset that can be used to lookup the type.
5181 For DWO files, we don't know it until now. */
5182 sig_type->type_offset_in_section.sect_off =
5183 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5184 }
5185 else
5186 {
5187 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5188 dwo_abbrev_section,
5189 info_ptr, 0);
5190 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5191 /* For DWOs coming from DWP files, we don't know the CU length
5192 until now. */
5193 dwo_unit->length = get_cu_length (&cu->header);
5194 }
5195
5196 /* Replace the CU's original abbrev table with the DWO's.
5197 Reminder: We can't read the abbrev table until we've read the header. */
5198 if (abbrev_table_provided)
5199 {
5200 /* Don't free the provided abbrev table, the caller of
5201 init_cutu_and_read_dies owns it. */
5202 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5203 /* Ensure the DWO abbrev table gets freed. */
5204 make_cleanup (dwarf2_free_abbrev_table, cu);
5205 }
5206 else
5207 {
5208 dwarf2_free_abbrev_table (cu);
5209 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5210 /* Leave any existing abbrev table cleanup as is. */
5211 }
5212
5213 /* Read in the die, but leave space to copy over the attributes
5214 from the stub. This has the benefit of simplifying the rest of
5215 the code - all the work to maintain the illusion of a single
5216 DW_TAG_{compile,type}_unit DIE is done here. */
5217 num_extra_attrs = ((stmt_list != NULL)
5218 + (low_pc != NULL)
5219 + (high_pc != NULL)
5220 + (ranges != NULL)
5221 + (comp_dir != NULL));
5222 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5223 result_has_children, num_extra_attrs);
5224
5225 /* Copy over the attributes from the stub to the DIE we just read in. */
5226 comp_unit_die = *result_comp_unit_die;
5227 i = comp_unit_die->num_attrs;
5228 if (stmt_list != NULL)
5229 comp_unit_die->attrs[i++] = *stmt_list;
5230 if (low_pc != NULL)
5231 comp_unit_die->attrs[i++] = *low_pc;
5232 if (high_pc != NULL)
5233 comp_unit_die->attrs[i++] = *high_pc;
5234 if (ranges != NULL)
5235 comp_unit_die->attrs[i++] = *ranges;
5236 if (comp_dir != NULL)
5237 comp_unit_die->attrs[i++] = *comp_dir;
5238 comp_unit_die->num_attrs += num_extra_attrs;
5239
5240 if (dwarf_die_debug)
5241 {
5242 fprintf_unfiltered (gdb_stdlog,
5243 "Read die from %s@0x%x of %s:\n",
5244 get_section_name (section),
5245 (unsigned) (begin_info_ptr - section->buffer),
5246 bfd_get_filename (abfd));
5247 dump_die (comp_unit_die, dwarf_die_debug);
5248 }
5249
5250 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5251 TUs by skipping the stub and going directly to the entry in the DWO file.
5252 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5253 to get it via circuitous means. Blech. */
5254 if (comp_dir != NULL)
5255 result_reader->comp_dir = DW_STRING (comp_dir);
5256
5257 /* Skip dummy compilation units. */
5258 if (info_ptr >= begin_info_ptr + dwo_unit->length
5259 || peek_abbrev_code (abfd, info_ptr) == 0)
5260 return 0;
5261
5262 *result_info_ptr = info_ptr;
5263 return 1;
5264 }
5265
5266 /* Subroutine of init_cutu_and_read_dies to simplify it.
5267 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5268 Returns NULL if the specified DWO unit cannot be found. */
5269
5270 static struct dwo_unit *
5271 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5272 struct die_info *comp_unit_die)
5273 {
5274 struct dwarf2_cu *cu = this_cu->cu;
5275 struct attribute *attr;
5276 ULONGEST signature;
5277 struct dwo_unit *dwo_unit;
5278 const char *comp_dir, *dwo_name;
5279
5280 gdb_assert (cu != NULL);
5281
5282 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5283 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5284 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5285
5286 if (this_cu->is_debug_types)
5287 {
5288 struct signatured_type *sig_type;
5289
5290 /* Since this_cu is the first member of struct signatured_type,
5291 we can go from a pointer to one to a pointer to the other. */
5292 sig_type = (struct signatured_type *) this_cu;
5293 signature = sig_type->signature;
5294 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5295 }
5296 else
5297 {
5298 struct attribute *attr;
5299
5300 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5301 if (! attr)
5302 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5303 " [in module %s]"),
5304 dwo_name, objfile_name (this_cu->objfile));
5305 signature = DW_UNSND (attr);
5306 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5307 signature);
5308 }
5309
5310 return dwo_unit;
5311 }
5312
5313 /* Subroutine of init_cutu_and_read_dies to simplify it.
5314 See it for a description of the parameters.
5315 Read a TU directly from a DWO file, bypassing the stub.
5316
5317 Note: This function could be a little bit simpler if we shared cleanups
5318 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5319 to do, so we keep this function self-contained. Or we could move this
5320 into our caller, but it's complex enough already. */
5321
5322 static void
5323 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5324 int use_existing_cu, int keep,
5325 die_reader_func_ftype *die_reader_func,
5326 void *data)
5327 {
5328 struct dwarf2_cu *cu;
5329 struct signatured_type *sig_type;
5330 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5331 struct die_reader_specs reader;
5332 const gdb_byte *info_ptr;
5333 struct die_info *comp_unit_die;
5334 int has_children;
5335
5336 /* Verify we can do the following downcast, and that we have the
5337 data we need. */
5338 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5339 sig_type = (struct signatured_type *) this_cu;
5340 gdb_assert (sig_type->dwo_unit != NULL);
5341
5342 cleanups = make_cleanup (null_cleanup, NULL);
5343
5344 if (use_existing_cu && this_cu->cu != NULL)
5345 {
5346 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5347 cu = this_cu->cu;
5348 /* There's no need to do the rereading_dwo_cu handling that
5349 init_cutu_and_read_dies does since we don't read the stub. */
5350 }
5351 else
5352 {
5353 /* If !use_existing_cu, this_cu->cu must be NULL. */
5354 gdb_assert (this_cu->cu == NULL);
5355 cu = XNEW (struct dwarf2_cu);
5356 init_one_comp_unit (cu, this_cu);
5357 /* If an error occurs while loading, release our storage. */
5358 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5359 }
5360
5361 /* A future optimization, if needed, would be to use an existing
5362 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5363 could share abbrev tables. */
5364
5365 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5366 0 /* abbrev_table_provided */,
5367 NULL /* stub_comp_unit_die */,
5368 sig_type->dwo_unit->dwo_file->comp_dir,
5369 &reader, &info_ptr,
5370 &comp_unit_die, &has_children) == 0)
5371 {
5372 /* Dummy die. */
5373 do_cleanups (cleanups);
5374 return;
5375 }
5376
5377 /* All the "real" work is done here. */
5378 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5379
5380 /* This duplicates the code in init_cutu_and_read_dies,
5381 but the alternative is making the latter more complex.
5382 This function is only for the special case of using DWO files directly:
5383 no point in overly complicating the general case just to handle this. */
5384 if (free_cu_cleanup != NULL)
5385 {
5386 if (keep)
5387 {
5388 /* We've successfully allocated this compilation unit. Let our
5389 caller clean it up when finished with it. */
5390 discard_cleanups (free_cu_cleanup);
5391
5392 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5393 So we have to manually free the abbrev table. */
5394 dwarf2_free_abbrev_table (cu);
5395
5396 /* Link this CU into read_in_chain. */
5397 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5398 dwarf2_per_objfile->read_in_chain = this_cu;
5399 }
5400 else
5401 do_cleanups (free_cu_cleanup);
5402 }
5403
5404 do_cleanups (cleanups);
5405 }
5406
5407 /* Initialize a CU (or TU) and read its DIEs.
5408 If the CU defers to a DWO file, read the DWO file as well.
5409
5410 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5411 Otherwise the table specified in the comp unit header is read in and used.
5412 This is an optimization for when we already have the abbrev table.
5413
5414 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5415 Otherwise, a new CU is allocated with xmalloc.
5416
5417 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5418 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5419
5420 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5421 linker) then DIE_READER_FUNC will not get called. */
5422
5423 static void
5424 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5425 struct abbrev_table *abbrev_table,
5426 int use_existing_cu, int keep,
5427 die_reader_func_ftype *die_reader_func,
5428 void *data)
5429 {
5430 struct objfile *objfile = dwarf2_per_objfile->objfile;
5431 struct dwarf2_section_info *section = this_cu->section;
5432 bfd *abfd = get_section_bfd_owner (section);
5433 struct dwarf2_cu *cu;
5434 const gdb_byte *begin_info_ptr, *info_ptr;
5435 struct die_reader_specs reader;
5436 struct die_info *comp_unit_die;
5437 int has_children;
5438 struct attribute *attr;
5439 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5440 struct signatured_type *sig_type = NULL;
5441 struct dwarf2_section_info *abbrev_section;
5442 /* Non-zero if CU currently points to a DWO file and we need to
5443 reread it. When this happens we need to reread the skeleton die
5444 before we can reread the DWO file (this only applies to CUs, not TUs). */
5445 int rereading_dwo_cu = 0;
5446
5447 if (dwarf_die_debug)
5448 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5449 this_cu->is_debug_types ? "type" : "comp",
5450 this_cu->offset.sect_off);
5451
5452 if (use_existing_cu)
5453 gdb_assert (keep);
5454
5455 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5456 file (instead of going through the stub), short-circuit all of this. */
5457 if (this_cu->reading_dwo_directly)
5458 {
5459 /* Narrow down the scope of possibilities to have to understand. */
5460 gdb_assert (this_cu->is_debug_types);
5461 gdb_assert (abbrev_table == NULL);
5462 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5463 die_reader_func, data);
5464 return;
5465 }
5466
5467 cleanups = make_cleanup (null_cleanup, NULL);
5468
5469 /* This is cheap if the section is already read in. */
5470 dwarf2_read_section (objfile, section);
5471
5472 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5473
5474 abbrev_section = get_abbrev_section_for_cu (this_cu);
5475
5476 if (use_existing_cu && this_cu->cu != NULL)
5477 {
5478 cu = this_cu->cu;
5479 /* If this CU is from a DWO file we need to start over, we need to
5480 refetch the attributes from the skeleton CU.
5481 This could be optimized by retrieving those attributes from when we
5482 were here the first time: the previous comp_unit_die was stored in
5483 comp_unit_obstack. But there's no data yet that we need this
5484 optimization. */
5485 if (cu->dwo_unit != NULL)
5486 rereading_dwo_cu = 1;
5487 }
5488 else
5489 {
5490 /* If !use_existing_cu, this_cu->cu must be NULL. */
5491 gdb_assert (this_cu->cu == NULL);
5492 cu = XNEW (struct dwarf2_cu);
5493 init_one_comp_unit (cu, this_cu);
5494 /* If an error occurs while loading, release our storage. */
5495 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5496 }
5497
5498 /* Get the header. */
5499 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5500 {
5501 /* We already have the header, there's no need to read it in again. */
5502 info_ptr += cu->header.first_die_offset.cu_off;
5503 }
5504 else
5505 {
5506 if (this_cu->is_debug_types)
5507 {
5508 ULONGEST signature;
5509 cu_offset type_offset_in_tu;
5510
5511 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5512 abbrev_section, info_ptr,
5513 &signature,
5514 &type_offset_in_tu);
5515
5516 /* Since per_cu is the first member of struct signatured_type,
5517 we can go from a pointer to one to a pointer to the other. */
5518 sig_type = (struct signatured_type *) this_cu;
5519 gdb_assert (sig_type->signature == signature);
5520 gdb_assert (sig_type->type_offset_in_tu.cu_off
5521 == type_offset_in_tu.cu_off);
5522 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5523
5524 /* LENGTH has not been set yet for type units if we're
5525 using .gdb_index. */
5526 this_cu->length = get_cu_length (&cu->header);
5527
5528 /* Establish the type offset that can be used to lookup the type. */
5529 sig_type->type_offset_in_section.sect_off =
5530 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5531 }
5532 else
5533 {
5534 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5535 abbrev_section,
5536 info_ptr, 0);
5537
5538 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5539 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5540 }
5541 }
5542
5543 /* Skip dummy compilation units. */
5544 if (info_ptr >= begin_info_ptr + this_cu->length
5545 || peek_abbrev_code (abfd, info_ptr) == 0)
5546 {
5547 do_cleanups (cleanups);
5548 return;
5549 }
5550
5551 /* If we don't have them yet, read the abbrevs for this compilation unit.
5552 And if we need to read them now, make sure they're freed when we're
5553 done. Note that it's important that if the CU had an abbrev table
5554 on entry we don't free it when we're done: Somewhere up the call stack
5555 it may be in use. */
5556 if (abbrev_table != NULL)
5557 {
5558 gdb_assert (cu->abbrev_table == NULL);
5559 gdb_assert (cu->header.abbrev_offset.sect_off
5560 == abbrev_table->offset.sect_off);
5561 cu->abbrev_table = abbrev_table;
5562 }
5563 else if (cu->abbrev_table == NULL)
5564 {
5565 dwarf2_read_abbrevs (cu, abbrev_section);
5566 make_cleanup (dwarf2_free_abbrev_table, cu);
5567 }
5568 else if (rereading_dwo_cu)
5569 {
5570 dwarf2_free_abbrev_table (cu);
5571 dwarf2_read_abbrevs (cu, abbrev_section);
5572 }
5573
5574 /* Read the top level CU/TU die. */
5575 init_cu_die_reader (&reader, cu, section, NULL);
5576 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5577
5578 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5579 from the DWO file.
5580 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5581 DWO CU, that this test will fail (the attribute will not be present). */
5582 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5583 if (attr)
5584 {
5585 struct dwo_unit *dwo_unit;
5586 struct die_info *dwo_comp_unit_die;
5587
5588 if (has_children)
5589 {
5590 complaint (&symfile_complaints,
5591 _("compilation unit with DW_AT_GNU_dwo_name"
5592 " has children (offset 0x%x) [in module %s]"),
5593 this_cu->offset.sect_off, bfd_get_filename (abfd));
5594 }
5595 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5596 if (dwo_unit != NULL)
5597 {
5598 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5599 abbrev_table != NULL,
5600 comp_unit_die, NULL,
5601 &reader, &info_ptr,
5602 &dwo_comp_unit_die, &has_children) == 0)
5603 {
5604 /* Dummy die. */
5605 do_cleanups (cleanups);
5606 return;
5607 }
5608 comp_unit_die = dwo_comp_unit_die;
5609 }
5610 else
5611 {
5612 /* Yikes, we couldn't find the rest of the DIE, we only have
5613 the stub. A complaint has already been logged. There's
5614 not much more we can do except pass on the stub DIE to
5615 die_reader_func. We don't want to throw an error on bad
5616 debug info. */
5617 }
5618 }
5619
5620 /* All of the above is setup for this call. Yikes. */
5621 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5622
5623 /* Done, clean up. */
5624 if (free_cu_cleanup != NULL)
5625 {
5626 if (keep)
5627 {
5628 /* We've successfully allocated this compilation unit. Let our
5629 caller clean it up when finished with it. */
5630 discard_cleanups (free_cu_cleanup);
5631
5632 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5633 So we have to manually free the abbrev table. */
5634 dwarf2_free_abbrev_table (cu);
5635
5636 /* Link this CU into read_in_chain. */
5637 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5638 dwarf2_per_objfile->read_in_chain = this_cu;
5639 }
5640 else
5641 do_cleanups (free_cu_cleanup);
5642 }
5643
5644 do_cleanups (cleanups);
5645 }
5646
5647 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5648 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5649 to have already done the lookup to find the DWO file).
5650
5651 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5652 THIS_CU->is_debug_types, but nothing else.
5653
5654 We fill in THIS_CU->length.
5655
5656 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5657 linker) then DIE_READER_FUNC will not get called.
5658
5659 THIS_CU->cu is always freed when done.
5660 This is done in order to not leave THIS_CU->cu in a state where we have
5661 to care whether it refers to the "main" CU or the DWO CU. */
5662
5663 static void
5664 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5665 struct dwo_file *dwo_file,
5666 die_reader_func_ftype *die_reader_func,
5667 void *data)
5668 {
5669 struct objfile *objfile = dwarf2_per_objfile->objfile;
5670 struct dwarf2_section_info *section = this_cu->section;
5671 bfd *abfd = get_section_bfd_owner (section);
5672 struct dwarf2_section_info *abbrev_section;
5673 struct dwarf2_cu cu;
5674 const gdb_byte *begin_info_ptr, *info_ptr;
5675 struct die_reader_specs reader;
5676 struct cleanup *cleanups;
5677 struct die_info *comp_unit_die;
5678 int has_children;
5679
5680 if (dwarf_die_debug)
5681 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5682 this_cu->is_debug_types ? "type" : "comp",
5683 this_cu->offset.sect_off);
5684
5685 gdb_assert (this_cu->cu == NULL);
5686
5687 abbrev_section = (dwo_file != NULL
5688 ? &dwo_file->sections.abbrev
5689 : get_abbrev_section_for_cu (this_cu));
5690
5691 /* This is cheap if the section is already read in. */
5692 dwarf2_read_section (objfile, section);
5693
5694 init_one_comp_unit (&cu, this_cu);
5695
5696 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5697
5698 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5699 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5700 abbrev_section, info_ptr,
5701 this_cu->is_debug_types);
5702
5703 this_cu->length = get_cu_length (&cu.header);
5704
5705 /* Skip dummy compilation units. */
5706 if (info_ptr >= begin_info_ptr + this_cu->length
5707 || peek_abbrev_code (abfd, info_ptr) == 0)
5708 {
5709 do_cleanups (cleanups);
5710 return;
5711 }
5712
5713 dwarf2_read_abbrevs (&cu, abbrev_section);
5714 make_cleanup (dwarf2_free_abbrev_table, &cu);
5715
5716 init_cu_die_reader (&reader, &cu, section, dwo_file);
5717 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5718
5719 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5720
5721 do_cleanups (cleanups);
5722 }
5723
5724 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5725 does not lookup the specified DWO file.
5726 This cannot be used to read DWO files.
5727
5728 THIS_CU->cu is always freed when done.
5729 This is done in order to not leave THIS_CU->cu in a state where we have
5730 to care whether it refers to the "main" CU or the DWO CU.
5731 We can revisit this if the data shows there's a performance issue. */
5732
5733 static void
5734 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5735 die_reader_func_ftype *die_reader_func,
5736 void *data)
5737 {
5738 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5739 }
5740 \f
5741 /* Type Unit Groups.
5742
5743 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5744 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5745 so that all types coming from the same compilation (.o file) are grouped
5746 together. A future step could be to put the types in the same symtab as
5747 the CU the types ultimately came from. */
5748
5749 static hashval_t
5750 hash_type_unit_group (const void *item)
5751 {
5752 const struct type_unit_group *tu_group
5753 = (const struct type_unit_group *) item;
5754
5755 return hash_stmt_list_entry (&tu_group->hash);
5756 }
5757
5758 static int
5759 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5760 {
5761 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5762 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5763
5764 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5765 }
5766
5767 /* Allocate a hash table for type unit groups. */
5768
5769 static htab_t
5770 allocate_type_unit_groups_table (void)
5771 {
5772 return htab_create_alloc_ex (3,
5773 hash_type_unit_group,
5774 eq_type_unit_group,
5775 NULL,
5776 &dwarf2_per_objfile->objfile->objfile_obstack,
5777 hashtab_obstack_allocate,
5778 dummy_obstack_deallocate);
5779 }
5780
5781 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5782 partial symtabs. We combine several TUs per psymtab to not let the size
5783 of any one psymtab grow too big. */
5784 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5785 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5786
5787 /* Helper routine for get_type_unit_group.
5788 Create the type_unit_group object used to hold one or more TUs. */
5789
5790 static struct type_unit_group *
5791 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5792 {
5793 struct objfile *objfile = dwarf2_per_objfile->objfile;
5794 struct dwarf2_per_cu_data *per_cu;
5795 struct type_unit_group *tu_group;
5796
5797 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5798 struct type_unit_group);
5799 per_cu = &tu_group->per_cu;
5800 per_cu->objfile = objfile;
5801
5802 if (dwarf2_per_objfile->using_index)
5803 {
5804 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5805 struct dwarf2_per_cu_quick_data);
5806 }
5807 else
5808 {
5809 unsigned int line_offset = line_offset_struct.sect_off;
5810 struct partial_symtab *pst;
5811 char *name;
5812
5813 /* Give the symtab a useful name for debug purposes. */
5814 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5815 name = xstrprintf ("<type_units_%d>",
5816 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5817 else
5818 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5819
5820 pst = create_partial_symtab (per_cu, name);
5821 pst->anonymous = 1;
5822
5823 xfree (name);
5824 }
5825
5826 tu_group->hash.dwo_unit = cu->dwo_unit;
5827 tu_group->hash.line_offset = line_offset_struct;
5828
5829 return tu_group;
5830 }
5831
5832 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5833 STMT_LIST is a DW_AT_stmt_list attribute. */
5834
5835 static struct type_unit_group *
5836 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5837 {
5838 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5839 struct type_unit_group *tu_group;
5840 void **slot;
5841 unsigned int line_offset;
5842 struct type_unit_group type_unit_group_for_lookup;
5843
5844 if (dwarf2_per_objfile->type_unit_groups == NULL)
5845 {
5846 dwarf2_per_objfile->type_unit_groups =
5847 allocate_type_unit_groups_table ();
5848 }
5849
5850 /* Do we need to create a new group, or can we use an existing one? */
5851
5852 if (stmt_list)
5853 {
5854 line_offset = DW_UNSND (stmt_list);
5855 ++tu_stats->nr_symtab_sharers;
5856 }
5857 else
5858 {
5859 /* Ugh, no stmt_list. Rare, but we have to handle it.
5860 We can do various things here like create one group per TU or
5861 spread them over multiple groups to split up the expansion work.
5862 To avoid worst case scenarios (too many groups or too large groups)
5863 we, umm, group them in bunches. */
5864 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5865 | (tu_stats->nr_stmt_less_type_units
5866 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5867 ++tu_stats->nr_stmt_less_type_units;
5868 }
5869
5870 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5871 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5872 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5873 &type_unit_group_for_lookup, INSERT);
5874 if (*slot != NULL)
5875 {
5876 tu_group = (struct type_unit_group *) *slot;
5877 gdb_assert (tu_group != NULL);
5878 }
5879 else
5880 {
5881 sect_offset line_offset_struct;
5882
5883 line_offset_struct.sect_off = line_offset;
5884 tu_group = create_type_unit_group (cu, line_offset_struct);
5885 *slot = tu_group;
5886 ++tu_stats->nr_symtabs;
5887 }
5888
5889 return tu_group;
5890 }
5891 \f
5892 /* Partial symbol tables. */
5893
5894 /* Create a psymtab named NAME and assign it to PER_CU.
5895
5896 The caller must fill in the following details:
5897 dirname, textlow, texthigh. */
5898
5899 static struct partial_symtab *
5900 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5901 {
5902 struct objfile *objfile = per_cu->objfile;
5903 struct partial_symtab *pst;
5904
5905 pst = start_psymtab_common (objfile, name, 0,
5906 objfile->global_psymbols.next,
5907 objfile->static_psymbols.next);
5908
5909 pst->psymtabs_addrmap_supported = 1;
5910
5911 /* This is the glue that links PST into GDB's symbol API. */
5912 pst->read_symtab_private = per_cu;
5913 pst->read_symtab = dwarf2_read_symtab;
5914 per_cu->v.psymtab = pst;
5915
5916 return pst;
5917 }
5918
5919 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5920 type. */
5921
5922 struct process_psymtab_comp_unit_data
5923 {
5924 /* True if we are reading a DW_TAG_partial_unit. */
5925
5926 int want_partial_unit;
5927
5928 /* The "pretend" language that is used if the CU doesn't declare a
5929 language. */
5930
5931 enum language pretend_language;
5932 };
5933
5934 /* die_reader_func for process_psymtab_comp_unit. */
5935
5936 static void
5937 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5938 const gdb_byte *info_ptr,
5939 struct die_info *comp_unit_die,
5940 int has_children,
5941 void *data)
5942 {
5943 struct dwarf2_cu *cu = reader->cu;
5944 struct objfile *objfile = cu->objfile;
5945 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5946 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5947 CORE_ADDR baseaddr;
5948 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5949 struct partial_symtab *pst;
5950 int has_pc_info;
5951 const char *filename;
5952 struct process_psymtab_comp_unit_data *info
5953 = (struct process_psymtab_comp_unit_data *) data;
5954
5955 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5956 return;
5957
5958 gdb_assert (! per_cu->is_debug_types);
5959
5960 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5961
5962 cu->list_in_scope = &file_symbols;
5963
5964 /* Allocate a new partial symbol table structure. */
5965 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5966 if (filename == NULL)
5967 filename = "";
5968
5969 pst = create_partial_symtab (per_cu, filename);
5970
5971 /* This must be done before calling dwarf2_build_include_psymtabs. */
5972 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5973
5974 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5975
5976 dwarf2_find_base_address (comp_unit_die, cu);
5977
5978 /* Possibly set the default values of LOWPC and HIGHPC from
5979 `DW_AT_ranges'. */
5980 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5981 &best_highpc, cu, pst);
5982 if (has_pc_info == 1 && best_lowpc < best_highpc)
5983 /* Store the contiguous range if it is not empty; it can be empty for
5984 CUs with no code. */
5985 addrmap_set_empty (objfile->psymtabs_addrmap,
5986 gdbarch_adjust_dwarf2_addr (gdbarch,
5987 best_lowpc + baseaddr),
5988 gdbarch_adjust_dwarf2_addr (gdbarch,
5989 best_highpc + baseaddr) - 1,
5990 pst);
5991
5992 /* Check if comp unit has_children.
5993 If so, read the rest of the partial symbols from this comp unit.
5994 If not, there's no more debug_info for this comp unit. */
5995 if (has_children)
5996 {
5997 struct partial_die_info *first_die;
5998 CORE_ADDR lowpc, highpc;
5999
6000 lowpc = ((CORE_ADDR) -1);
6001 highpc = ((CORE_ADDR) 0);
6002
6003 first_die = load_partial_dies (reader, info_ptr, 1);
6004
6005 scan_partial_symbols (first_die, &lowpc, &highpc,
6006 ! has_pc_info, cu);
6007
6008 /* If we didn't find a lowpc, set it to highpc to avoid
6009 complaints from `maint check'. */
6010 if (lowpc == ((CORE_ADDR) -1))
6011 lowpc = highpc;
6012
6013 /* If the compilation unit didn't have an explicit address range,
6014 then use the information extracted from its child dies. */
6015 if (! has_pc_info)
6016 {
6017 best_lowpc = lowpc;
6018 best_highpc = highpc;
6019 }
6020 }
6021 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6022 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6023
6024 end_psymtab_common (objfile, pst);
6025
6026 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6027 {
6028 int i;
6029 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6030 struct dwarf2_per_cu_data *iter;
6031
6032 /* Fill in 'dependencies' here; we fill in 'users' in a
6033 post-pass. */
6034 pst->number_of_dependencies = len;
6035 pst->dependencies =
6036 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6037 for (i = 0;
6038 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6039 i, iter);
6040 ++i)
6041 pst->dependencies[i] = iter->v.psymtab;
6042
6043 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6044 }
6045
6046 /* Get the list of files included in the current compilation unit,
6047 and build a psymtab for each of them. */
6048 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6049
6050 if (dwarf_read_debug)
6051 {
6052 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6053
6054 fprintf_unfiltered (gdb_stdlog,
6055 "Psymtab for %s unit @0x%x: %s - %s"
6056 ", %d global, %d static syms\n",
6057 per_cu->is_debug_types ? "type" : "comp",
6058 per_cu->offset.sect_off,
6059 paddress (gdbarch, pst->textlow),
6060 paddress (gdbarch, pst->texthigh),
6061 pst->n_global_syms, pst->n_static_syms);
6062 }
6063 }
6064
6065 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6066 Process compilation unit THIS_CU for a psymtab. */
6067
6068 static void
6069 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6070 int want_partial_unit,
6071 enum language pretend_language)
6072 {
6073 struct process_psymtab_comp_unit_data info;
6074
6075 /* If this compilation unit was already read in, free the
6076 cached copy in order to read it in again. This is
6077 necessary because we skipped some symbols when we first
6078 read in the compilation unit (see load_partial_dies).
6079 This problem could be avoided, but the benefit is unclear. */
6080 if (this_cu->cu != NULL)
6081 free_one_cached_comp_unit (this_cu);
6082
6083 gdb_assert (! this_cu->is_debug_types);
6084 info.want_partial_unit = want_partial_unit;
6085 info.pretend_language = pretend_language;
6086 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6087 process_psymtab_comp_unit_reader,
6088 &info);
6089
6090 /* Age out any secondary CUs. */
6091 age_cached_comp_units ();
6092 }
6093
6094 /* Reader function for build_type_psymtabs. */
6095
6096 static void
6097 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6098 const gdb_byte *info_ptr,
6099 struct die_info *type_unit_die,
6100 int has_children,
6101 void *data)
6102 {
6103 struct objfile *objfile = dwarf2_per_objfile->objfile;
6104 struct dwarf2_cu *cu = reader->cu;
6105 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6106 struct signatured_type *sig_type;
6107 struct type_unit_group *tu_group;
6108 struct attribute *attr;
6109 struct partial_die_info *first_die;
6110 CORE_ADDR lowpc, highpc;
6111 struct partial_symtab *pst;
6112
6113 gdb_assert (data == NULL);
6114 gdb_assert (per_cu->is_debug_types);
6115 sig_type = (struct signatured_type *) per_cu;
6116
6117 if (! has_children)
6118 return;
6119
6120 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6121 tu_group = get_type_unit_group (cu, attr);
6122
6123 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6124
6125 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6126 cu->list_in_scope = &file_symbols;
6127 pst = create_partial_symtab (per_cu, "");
6128 pst->anonymous = 1;
6129
6130 first_die = load_partial_dies (reader, info_ptr, 1);
6131
6132 lowpc = (CORE_ADDR) -1;
6133 highpc = (CORE_ADDR) 0;
6134 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6135
6136 end_psymtab_common (objfile, pst);
6137 }
6138
6139 /* Struct used to sort TUs by their abbreviation table offset. */
6140
6141 struct tu_abbrev_offset
6142 {
6143 struct signatured_type *sig_type;
6144 sect_offset abbrev_offset;
6145 };
6146
6147 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6148
6149 static int
6150 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6151 {
6152 const struct tu_abbrev_offset * const *a
6153 = (const struct tu_abbrev_offset * const*) ap;
6154 const struct tu_abbrev_offset * const *b
6155 = (const struct tu_abbrev_offset * const*) bp;
6156 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6157 unsigned int boff = (*b)->abbrev_offset.sect_off;
6158
6159 return (aoff > boff) - (aoff < boff);
6160 }
6161
6162 /* Efficiently read all the type units.
6163 This does the bulk of the work for build_type_psymtabs.
6164
6165 The efficiency is because we sort TUs by the abbrev table they use and
6166 only read each abbrev table once. In one program there are 200K TUs
6167 sharing 8K abbrev tables.
6168
6169 The main purpose of this function is to support building the
6170 dwarf2_per_objfile->type_unit_groups table.
6171 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6172 can collapse the search space by grouping them by stmt_list.
6173 The savings can be significant, in the same program from above the 200K TUs
6174 share 8K stmt_list tables.
6175
6176 FUNC is expected to call get_type_unit_group, which will create the
6177 struct type_unit_group if necessary and add it to
6178 dwarf2_per_objfile->type_unit_groups. */
6179
6180 static void
6181 build_type_psymtabs_1 (void)
6182 {
6183 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6184 struct cleanup *cleanups;
6185 struct abbrev_table *abbrev_table;
6186 sect_offset abbrev_offset;
6187 struct tu_abbrev_offset *sorted_by_abbrev;
6188 int i;
6189
6190 /* It's up to the caller to not call us multiple times. */
6191 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6192
6193 if (dwarf2_per_objfile->n_type_units == 0)
6194 return;
6195
6196 /* TUs typically share abbrev tables, and there can be way more TUs than
6197 abbrev tables. Sort by abbrev table to reduce the number of times we
6198 read each abbrev table in.
6199 Alternatives are to punt or to maintain a cache of abbrev tables.
6200 This is simpler and efficient enough for now.
6201
6202 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6203 symtab to use). Typically TUs with the same abbrev offset have the same
6204 stmt_list value too so in practice this should work well.
6205
6206 The basic algorithm here is:
6207
6208 sort TUs by abbrev table
6209 for each TU with same abbrev table:
6210 read abbrev table if first user
6211 read TU top level DIE
6212 [IWBN if DWO skeletons had DW_AT_stmt_list]
6213 call FUNC */
6214
6215 if (dwarf_read_debug)
6216 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6217
6218 /* Sort in a separate table to maintain the order of all_type_units
6219 for .gdb_index: TU indices directly index all_type_units. */
6220 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6221 dwarf2_per_objfile->n_type_units);
6222 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6223 {
6224 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6225
6226 sorted_by_abbrev[i].sig_type = sig_type;
6227 sorted_by_abbrev[i].abbrev_offset =
6228 read_abbrev_offset (sig_type->per_cu.section,
6229 sig_type->per_cu.offset);
6230 }
6231 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6232 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6233 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6234
6235 abbrev_offset.sect_off = ~(unsigned) 0;
6236 abbrev_table = NULL;
6237 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6238
6239 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6240 {
6241 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6242
6243 /* Switch to the next abbrev table if necessary. */
6244 if (abbrev_table == NULL
6245 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6246 {
6247 if (abbrev_table != NULL)
6248 {
6249 abbrev_table_free (abbrev_table);
6250 /* Reset to NULL in case abbrev_table_read_table throws
6251 an error: abbrev_table_free_cleanup will get called. */
6252 abbrev_table = NULL;
6253 }
6254 abbrev_offset = tu->abbrev_offset;
6255 abbrev_table =
6256 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6257 abbrev_offset);
6258 ++tu_stats->nr_uniq_abbrev_tables;
6259 }
6260
6261 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6262 build_type_psymtabs_reader, NULL);
6263 }
6264
6265 do_cleanups (cleanups);
6266 }
6267
6268 /* Print collected type unit statistics. */
6269
6270 static void
6271 print_tu_stats (void)
6272 {
6273 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6274
6275 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6276 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6277 dwarf2_per_objfile->n_type_units);
6278 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6279 tu_stats->nr_uniq_abbrev_tables);
6280 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6281 tu_stats->nr_symtabs);
6282 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6283 tu_stats->nr_symtab_sharers);
6284 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6285 tu_stats->nr_stmt_less_type_units);
6286 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6287 tu_stats->nr_all_type_units_reallocs);
6288 }
6289
6290 /* Traversal function for build_type_psymtabs. */
6291
6292 static int
6293 build_type_psymtab_dependencies (void **slot, void *info)
6294 {
6295 struct objfile *objfile = dwarf2_per_objfile->objfile;
6296 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6297 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6298 struct partial_symtab *pst = per_cu->v.psymtab;
6299 int len = VEC_length (sig_type_ptr, tu_group->tus);
6300 struct signatured_type *iter;
6301 int i;
6302
6303 gdb_assert (len > 0);
6304 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6305
6306 pst->number_of_dependencies = len;
6307 pst->dependencies =
6308 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6309 for (i = 0;
6310 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6311 ++i)
6312 {
6313 gdb_assert (iter->per_cu.is_debug_types);
6314 pst->dependencies[i] = iter->per_cu.v.psymtab;
6315 iter->type_unit_group = tu_group;
6316 }
6317
6318 VEC_free (sig_type_ptr, tu_group->tus);
6319
6320 return 1;
6321 }
6322
6323 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6324 Build partial symbol tables for the .debug_types comp-units. */
6325
6326 static void
6327 build_type_psymtabs (struct objfile *objfile)
6328 {
6329 if (! create_all_type_units (objfile))
6330 return;
6331
6332 build_type_psymtabs_1 ();
6333 }
6334
6335 /* Traversal function for process_skeletonless_type_unit.
6336 Read a TU in a DWO file and build partial symbols for it. */
6337
6338 static int
6339 process_skeletonless_type_unit (void **slot, void *info)
6340 {
6341 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6342 struct objfile *objfile = (struct objfile *) info;
6343 struct signatured_type find_entry, *entry;
6344
6345 /* If this TU doesn't exist in the global table, add it and read it in. */
6346
6347 if (dwarf2_per_objfile->signatured_types == NULL)
6348 {
6349 dwarf2_per_objfile->signatured_types
6350 = allocate_signatured_type_table (objfile);
6351 }
6352
6353 find_entry.signature = dwo_unit->signature;
6354 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6355 INSERT);
6356 /* If we've already seen this type there's nothing to do. What's happening
6357 is we're doing our own version of comdat-folding here. */
6358 if (*slot != NULL)
6359 return 1;
6360
6361 /* This does the job that create_all_type_units would have done for
6362 this TU. */
6363 entry = add_type_unit (dwo_unit->signature, slot);
6364 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6365 *slot = entry;
6366
6367 /* This does the job that build_type_psymtabs_1 would have done. */
6368 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6369 build_type_psymtabs_reader, NULL);
6370
6371 return 1;
6372 }
6373
6374 /* Traversal function for process_skeletonless_type_units. */
6375
6376 static int
6377 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6378 {
6379 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6380
6381 if (dwo_file->tus != NULL)
6382 {
6383 htab_traverse_noresize (dwo_file->tus,
6384 process_skeletonless_type_unit, info);
6385 }
6386
6387 return 1;
6388 }
6389
6390 /* Scan all TUs of DWO files, verifying we've processed them.
6391 This is needed in case a TU was emitted without its skeleton.
6392 Note: This can't be done until we know what all the DWO files are. */
6393
6394 static void
6395 process_skeletonless_type_units (struct objfile *objfile)
6396 {
6397 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6398 if (get_dwp_file () == NULL
6399 && dwarf2_per_objfile->dwo_files != NULL)
6400 {
6401 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6402 process_dwo_file_for_skeletonless_type_units,
6403 objfile);
6404 }
6405 }
6406
6407 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6408
6409 static void
6410 psymtabs_addrmap_cleanup (void *o)
6411 {
6412 struct objfile *objfile = (struct objfile *) o;
6413
6414 objfile->psymtabs_addrmap = NULL;
6415 }
6416
6417 /* Compute the 'user' field for each psymtab in OBJFILE. */
6418
6419 static void
6420 set_partial_user (struct objfile *objfile)
6421 {
6422 int i;
6423
6424 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6425 {
6426 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6427 struct partial_symtab *pst = per_cu->v.psymtab;
6428 int j;
6429
6430 if (pst == NULL)
6431 continue;
6432
6433 for (j = 0; j < pst->number_of_dependencies; ++j)
6434 {
6435 /* Set the 'user' field only if it is not already set. */
6436 if (pst->dependencies[j]->user == NULL)
6437 pst->dependencies[j]->user = pst;
6438 }
6439 }
6440 }
6441
6442 /* Build the partial symbol table by doing a quick pass through the
6443 .debug_info and .debug_abbrev sections. */
6444
6445 static void
6446 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6447 {
6448 struct cleanup *back_to, *addrmap_cleanup;
6449 struct obstack temp_obstack;
6450 int i;
6451
6452 if (dwarf_read_debug)
6453 {
6454 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6455 objfile_name (objfile));
6456 }
6457
6458 dwarf2_per_objfile->reading_partial_symbols = 1;
6459
6460 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6461
6462 /* Any cached compilation units will be linked by the per-objfile
6463 read_in_chain. Make sure to free them when we're done. */
6464 back_to = make_cleanup (free_cached_comp_units, NULL);
6465
6466 build_type_psymtabs (objfile);
6467
6468 create_all_comp_units (objfile);
6469
6470 /* Create a temporary address map on a temporary obstack. We later
6471 copy this to the final obstack. */
6472 obstack_init (&temp_obstack);
6473 make_cleanup_obstack_free (&temp_obstack);
6474 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6475 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6476
6477 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6478 {
6479 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6480
6481 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6482 }
6483
6484 /* This has to wait until we read the CUs, we need the list of DWOs. */
6485 process_skeletonless_type_units (objfile);
6486
6487 /* Now that all TUs have been processed we can fill in the dependencies. */
6488 if (dwarf2_per_objfile->type_unit_groups != NULL)
6489 {
6490 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6491 build_type_psymtab_dependencies, NULL);
6492 }
6493
6494 if (dwarf_read_debug)
6495 print_tu_stats ();
6496
6497 set_partial_user (objfile);
6498
6499 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6500 &objfile->objfile_obstack);
6501 discard_cleanups (addrmap_cleanup);
6502
6503 do_cleanups (back_to);
6504
6505 if (dwarf_read_debug)
6506 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6507 objfile_name (objfile));
6508 }
6509
6510 /* die_reader_func for load_partial_comp_unit. */
6511
6512 static void
6513 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6514 const gdb_byte *info_ptr,
6515 struct die_info *comp_unit_die,
6516 int has_children,
6517 void *data)
6518 {
6519 struct dwarf2_cu *cu = reader->cu;
6520
6521 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6522
6523 /* Check if comp unit has_children.
6524 If so, read the rest of the partial symbols from this comp unit.
6525 If not, there's no more debug_info for this comp unit. */
6526 if (has_children)
6527 load_partial_dies (reader, info_ptr, 0);
6528 }
6529
6530 /* Load the partial DIEs for a secondary CU into memory.
6531 This is also used when rereading a primary CU with load_all_dies. */
6532
6533 static void
6534 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6535 {
6536 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6537 load_partial_comp_unit_reader, NULL);
6538 }
6539
6540 static void
6541 read_comp_units_from_section (struct objfile *objfile,
6542 struct dwarf2_section_info *section,
6543 unsigned int is_dwz,
6544 int *n_allocated,
6545 int *n_comp_units,
6546 struct dwarf2_per_cu_data ***all_comp_units)
6547 {
6548 const gdb_byte *info_ptr;
6549 bfd *abfd = get_section_bfd_owner (section);
6550
6551 if (dwarf_read_debug)
6552 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6553 get_section_name (section),
6554 get_section_file_name (section));
6555
6556 dwarf2_read_section (objfile, section);
6557
6558 info_ptr = section->buffer;
6559
6560 while (info_ptr < section->buffer + section->size)
6561 {
6562 unsigned int length, initial_length_size;
6563 struct dwarf2_per_cu_data *this_cu;
6564 sect_offset offset;
6565
6566 offset.sect_off = info_ptr - section->buffer;
6567
6568 /* Read just enough information to find out where the next
6569 compilation unit is. */
6570 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6571
6572 /* Save the compilation unit for later lookup. */
6573 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6574 memset (this_cu, 0, sizeof (*this_cu));
6575 this_cu->offset = offset;
6576 this_cu->length = length + initial_length_size;
6577 this_cu->is_dwz = is_dwz;
6578 this_cu->objfile = objfile;
6579 this_cu->section = section;
6580
6581 if (*n_comp_units == *n_allocated)
6582 {
6583 *n_allocated *= 2;
6584 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6585 *all_comp_units, *n_allocated);
6586 }
6587 (*all_comp_units)[*n_comp_units] = this_cu;
6588 ++*n_comp_units;
6589
6590 info_ptr = info_ptr + this_cu->length;
6591 }
6592 }
6593
6594 /* Create a list of all compilation units in OBJFILE.
6595 This is only done for -readnow and building partial symtabs. */
6596
6597 static void
6598 create_all_comp_units (struct objfile *objfile)
6599 {
6600 int n_allocated;
6601 int n_comp_units;
6602 struct dwarf2_per_cu_data **all_comp_units;
6603 struct dwz_file *dwz;
6604
6605 n_comp_units = 0;
6606 n_allocated = 10;
6607 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6608
6609 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6610 &n_allocated, &n_comp_units, &all_comp_units);
6611
6612 dwz = dwarf2_get_dwz_file ();
6613 if (dwz != NULL)
6614 read_comp_units_from_section (objfile, &dwz->info, 1,
6615 &n_allocated, &n_comp_units,
6616 &all_comp_units);
6617
6618 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6619 struct dwarf2_per_cu_data *,
6620 n_comp_units);
6621 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6622 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6623 xfree (all_comp_units);
6624 dwarf2_per_objfile->n_comp_units = n_comp_units;
6625 }
6626
6627 /* Process all loaded DIEs for compilation unit CU, starting at
6628 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6629 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6630 DW_AT_ranges). See the comments of add_partial_subprogram on how
6631 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6632
6633 static void
6634 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6635 CORE_ADDR *highpc, int set_addrmap,
6636 struct dwarf2_cu *cu)
6637 {
6638 struct partial_die_info *pdi;
6639
6640 /* Now, march along the PDI's, descending into ones which have
6641 interesting children but skipping the children of the other ones,
6642 until we reach the end of the compilation unit. */
6643
6644 pdi = first_die;
6645
6646 while (pdi != NULL)
6647 {
6648 fixup_partial_die (pdi, cu);
6649
6650 /* Anonymous namespaces or modules have no name but have interesting
6651 children, so we need to look at them. Ditto for anonymous
6652 enums. */
6653
6654 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6655 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6656 || pdi->tag == DW_TAG_imported_unit)
6657 {
6658 switch (pdi->tag)
6659 {
6660 case DW_TAG_subprogram:
6661 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6662 break;
6663 case DW_TAG_constant:
6664 case DW_TAG_variable:
6665 case DW_TAG_typedef:
6666 case DW_TAG_union_type:
6667 if (!pdi->is_declaration)
6668 {
6669 add_partial_symbol (pdi, cu);
6670 }
6671 break;
6672 case DW_TAG_class_type:
6673 case DW_TAG_interface_type:
6674 case DW_TAG_structure_type:
6675 if (!pdi->is_declaration)
6676 {
6677 add_partial_symbol (pdi, cu);
6678 }
6679 break;
6680 case DW_TAG_enumeration_type:
6681 if (!pdi->is_declaration)
6682 add_partial_enumeration (pdi, cu);
6683 break;
6684 case DW_TAG_base_type:
6685 case DW_TAG_subrange_type:
6686 /* File scope base type definitions are added to the partial
6687 symbol table. */
6688 add_partial_symbol (pdi, cu);
6689 break;
6690 case DW_TAG_namespace:
6691 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6692 break;
6693 case DW_TAG_module:
6694 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6695 break;
6696 case DW_TAG_imported_unit:
6697 {
6698 struct dwarf2_per_cu_data *per_cu;
6699
6700 /* For now we don't handle imported units in type units. */
6701 if (cu->per_cu->is_debug_types)
6702 {
6703 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6704 " supported in type units [in module %s]"),
6705 objfile_name (cu->objfile));
6706 }
6707
6708 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6709 pdi->is_dwz,
6710 cu->objfile);
6711
6712 /* Go read the partial unit, if needed. */
6713 if (per_cu->v.psymtab == NULL)
6714 process_psymtab_comp_unit (per_cu, 1, cu->language);
6715
6716 VEC_safe_push (dwarf2_per_cu_ptr,
6717 cu->per_cu->imported_symtabs, per_cu);
6718 }
6719 break;
6720 case DW_TAG_imported_declaration:
6721 add_partial_symbol (pdi, cu);
6722 break;
6723 default:
6724 break;
6725 }
6726 }
6727
6728 /* If the die has a sibling, skip to the sibling. */
6729
6730 pdi = pdi->die_sibling;
6731 }
6732 }
6733
6734 /* Functions used to compute the fully scoped name of a partial DIE.
6735
6736 Normally, this is simple. For C++, the parent DIE's fully scoped
6737 name is concatenated with "::" and the partial DIE's name. For
6738 Java, the same thing occurs except that "." is used instead of "::".
6739 Enumerators are an exception; they use the scope of their parent
6740 enumeration type, i.e. the name of the enumeration type is not
6741 prepended to the enumerator.
6742
6743 There are two complexities. One is DW_AT_specification; in this
6744 case "parent" means the parent of the target of the specification,
6745 instead of the direct parent of the DIE. The other is compilers
6746 which do not emit DW_TAG_namespace; in this case we try to guess
6747 the fully qualified name of structure types from their members'
6748 linkage names. This must be done using the DIE's children rather
6749 than the children of any DW_AT_specification target. We only need
6750 to do this for structures at the top level, i.e. if the target of
6751 any DW_AT_specification (if any; otherwise the DIE itself) does not
6752 have a parent. */
6753
6754 /* Compute the scope prefix associated with PDI's parent, in
6755 compilation unit CU. The result will be allocated on CU's
6756 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6757 field. NULL is returned if no prefix is necessary. */
6758 static const char *
6759 partial_die_parent_scope (struct partial_die_info *pdi,
6760 struct dwarf2_cu *cu)
6761 {
6762 const char *grandparent_scope;
6763 struct partial_die_info *parent, *real_pdi;
6764
6765 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6766 then this means the parent of the specification DIE. */
6767
6768 real_pdi = pdi;
6769 while (real_pdi->has_specification)
6770 real_pdi = find_partial_die (real_pdi->spec_offset,
6771 real_pdi->spec_is_dwz, cu);
6772
6773 parent = real_pdi->die_parent;
6774 if (parent == NULL)
6775 return NULL;
6776
6777 if (parent->scope_set)
6778 return parent->scope;
6779
6780 fixup_partial_die (parent, cu);
6781
6782 grandparent_scope = partial_die_parent_scope (parent, cu);
6783
6784 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6785 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6786 Work around this problem here. */
6787 if (cu->language == language_cplus
6788 && parent->tag == DW_TAG_namespace
6789 && strcmp (parent->name, "::") == 0
6790 && grandparent_scope == NULL)
6791 {
6792 parent->scope = NULL;
6793 parent->scope_set = 1;
6794 return NULL;
6795 }
6796
6797 if (pdi->tag == DW_TAG_enumerator)
6798 /* Enumerators should not get the name of the enumeration as a prefix. */
6799 parent->scope = grandparent_scope;
6800 else if (parent->tag == DW_TAG_namespace
6801 || parent->tag == DW_TAG_module
6802 || parent->tag == DW_TAG_structure_type
6803 || parent->tag == DW_TAG_class_type
6804 || parent->tag == DW_TAG_interface_type
6805 || parent->tag == DW_TAG_union_type
6806 || parent->tag == DW_TAG_enumeration_type)
6807 {
6808 if (grandparent_scope == NULL)
6809 parent->scope = parent->name;
6810 else
6811 parent->scope = typename_concat (&cu->comp_unit_obstack,
6812 grandparent_scope,
6813 parent->name, 0, cu);
6814 }
6815 else
6816 {
6817 /* FIXME drow/2004-04-01: What should we be doing with
6818 function-local names? For partial symbols, we should probably be
6819 ignoring them. */
6820 complaint (&symfile_complaints,
6821 _("unhandled containing DIE tag %d for DIE at %d"),
6822 parent->tag, pdi->offset.sect_off);
6823 parent->scope = grandparent_scope;
6824 }
6825
6826 parent->scope_set = 1;
6827 return parent->scope;
6828 }
6829
6830 /* Return the fully scoped name associated with PDI, from compilation unit
6831 CU. The result will be allocated with malloc. */
6832
6833 static char *
6834 partial_die_full_name (struct partial_die_info *pdi,
6835 struct dwarf2_cu *cu)
6836 {
6837 const char *parent_scope;
6838
6839 /* If this is a template instantiation, we can not work out the
6840 template arguments from partial DIEs. So, unfortunately, we have
6841 to go through the full DIEs. At least any work we do building
6842 types here will be reused if full symbols are loaded later. */
6843 if (pdi->has_template_arguments)
6844 {
6845 fixup_partial_die (pdi, cu);
6846
6847 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6848 {
6849 struct die_info *die;
6850 struct attribute attr;
6851 struct dwarf2_cu *ref_cu = cu;
6852
6853 /* DW_FORM_ref_addr is using section offset. */
6854 attr.name = (enum dwarf_attribute) 0;
6855 attr.form = DW_FORM_ref_addr;
6856 attr.u.unsnd = pdi->offset.sect_off;
6857 die = follow_die_ref (NULL, &attr, &ref_cu);
6858
6859 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6860 }
6861 }
6862
6863 parent_scope = partial_die_parent_scope (pdi, cu);
6864 if (parent_scope == NULL)
6865 return NULL;
6866 else
6867 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6868 }
6869
6870 static void
6871 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6872 {
6873 struct objfile *objfile = cu->objfile;
6874 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6875 CORE_ADDR addr = 0;
6876 const char *actual_name = NULL;
6877 CORE_ADDR baseaddr;
6878 char *built_actual_name;
6879
6880 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6881
6882 built_actual_name = partial_die_full_name (pdi, cu);
6883 if (built_actual_name != NULL)
6884 actual_name = built_actual_name;
6885
6886 if (actual_name == NULL)
6887 actual_name = pdi->name;
6888
6889 switch (pdi->tag)
6890 {
6891 case DW_TAG_subprogram:
6892 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6893 if (pdi->is_external || cu->language == language_ada)
6894 {
6895 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6896 of the global scope. But in Ada, we want to be able to access
6897 nested procedures globally. So all Ada subprograms are stored
6898 in the global scope. */
6899 add_psymbol_to_list (actual_name, strlen (actual_name),
6900 built_actual_name != NULL,
6901 VAR_DOMAIN, LOC_BLOCK,
6902 &objfile->global_psymbols,
6903 addr, cu->language, objfile);
6904 }
6905 else
6906 {
6907 add_psymbol_to_list (actual_name, strlen (actual_name),
6908 built_actual_name != NULL,
6909 VAR_DOMAIN, LOC_BLOCK,
6910 &objfile->static_psymbols,
6911 addr, cu->language, objfile);
6912 }
6913 break;
6914 case DW_TAG_constant:
6915 {
6916 struct psymbol_allocation_list *list;
6917
6918 if (pdi->is_external)
6919 list = &objfile->global_psymbols;
6920 else
6921 list = &objfile->static_psymbols;
6922 add_psymbol_to_list (actual_name, strlen (actual_name),
6923 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6924 list, 0, cu->language, objfile);
6925 }
6926 break;
6927 case DW_TAG_variable:
6928 if (pdi->d.locdesc)
6929 addr = decode_locdesc (pdi->d.locdesc, cu);
6930
6931 if (pdi->d.locdesc
6932 && addr == 0
6933 && !dwarf2_per_objfile->has_section_at_zero)
6934 {
6935 /* A global or static variable may also have been stripped
6936 out by the linker if unused, in which case its address
6937 will be nullified; do not add such variables into partial
6938 symbol table then. */
6939 }
6940 else if (pdi->is_external)
6941 {
6942 /* Global Variable.
6943 Don't enter into the minimal symbol tables as there is
6944 a minimal symbol table entry from the ELF symbols already.
6945 Enter into partial symbol table if it has a location
6946 descriptor or a type.
6947 If the location descriptor is missing, new_symbol will create
6948 a LOC_UNRESOLVED symbol, the address of the variable will then
6949 be determined from the minimal symbol table whenever the variable
6950 is referenced.
6951 The address for the partial symbol table entry is not
6952 used by GDB, but it comes in handy for debugging partial symbol
6953 table building. */
6954
6955 if (pdi->d.locdesc || pdi->has_type)
6956 add_psymbol_to_list (actual_name, strlen (actual_name),
6957 built_actual_name != NULL,
6958 VAR_DOMAIN, LOC_STATIC,
6959 &objfile->global_psymbols,
6960 addr + baseaddr,
6961 cu->language, objfile);
6962 }
6963 else
6964 {
6965 int has_loc = pdi->d.locdesc != NULL;
6966
6967 /* Static Variable. Skip symbols whose value we cannot know (those
6968 without location descriptors or constant values). */
6969 if (!has_loc && !pdi->has_const_value)
6970 {
6971 xfree (built_actual_name);
6972 return;
6973 }
6974
6975 add_psymbol_to_list (actual_name, strlen (actual_name),
6976 built_actual_name != NULL,
6977 VAR_DOMAIN, LOC_STATIC,
6978 &objfile->static_psymbols,
6979 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6980 cu->language, objfile);
6981 }
6982 break;
6983 case DW_TAG_typedef:
6984 case DW_TAG_base_type:
6985 case DW_TAG_subrange_type:
6986 add_psymbol_to_list (actual_name, strlen (actual_name),
6987 built_actual_name != NULL,
6988 VAR_DOMAIN, LOC_TYPEDEF,
6989 &objfile->static_psymbols,
6990 0, cu->language, objfile);
6991 break;
6992 case DW_TAG_imported_declaration:
6993 case DW_TAG_namespace:
6994 add_psymbol_to_list (actual_name, strlen (actual_name),
6995 built_actual_name != NULL,
6996 VAR_DOMAIN, LOC_TYPEDEF,
6997 &objfile->global_psymbols,
6998 0, cu->language, objfile);
6999 break;
7000 case DW_TAG_module:
7001 add_psymbol_to_list (actual_name, strlen (actual_name),
7002 built_actual_name != NULL,
7003 MODULE_DOMAIN, LOC_TYPEDEF,
7004 &objfile->global_psymbols,
7005 0, cu->language, objfile);
7006 break;
7007 case DW_TAG_class_type:
7008 case DW_TAG_interface_type:
7009 case DW_TAG_structure_type:
7010 case DW_TAG_union_type:
7011 case DW_TAG_enumeration_type:
7012 /* Skip external references. The DWARF standard says in the section
7013 about "Structure, Union, and Class Type Entries": "An incomplete
7014 structure, union or class type is represented by a structure,
7015 union or class entry that does not have a byte size attribute
7016 and that has a DW_AT_declaration attribute." */
7017 if (!pdi->has_byte_size && pdi->is_declaration)
7018 {
7019 xfree (built_actual_name);
7020 return;
7021 }
7022
7023 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7024 static vs. global. */
7025 add_psymbol_to_list (actual_name, strlen (actual_name),
7026 built_actual_name != NULL,
7027 STRUCT_DOMAIN, LOC_TYPEDEF,
7028 (cu->language == language_cplus
7029 || cu->language == language_java)
7030 ? &objfile->global_psymbols
7031 : &objfile->static_psymbols,
7032 0, cu->language, objfile);
7033
7034 break;
7035 case DW_TAG_enumerator:
7036 add_psymbol_to_list (actual_name, strlen (actual_name),
7037 built_actual_name != NULL,
7038 VAR_DOMAIN, LOC_CONST,
7039 (cu->language == language_cplus
7040 || cu->language == language_java)
7041 ? &objfile->global_psymbols
7042 : &objfile->static_psymbols,
7043 0, cu->language, objfile);
7044 break;
7045 default:
7046 break;
7047 }
7048
7049 xfree (built_actual_name);
7050 }
7051
7052 /* Read a partial die corresponding to a namespace; also, add a symbol
7053 corresponding to that namespace to the symbol table. NAMESPACE is
7054 the name of the enclosing namespace. */
7055
7056 static void
7057 add_partial_namespace (struct partial_die_info *pdi,
7058 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7059 int set_addrmap, struct dwarf2_cu *cu)
7060 {
7061 /* Add a symbol for the namespace. */
7062
7063 add_partial_symbol (pdi, cu);
7064
7065 /* Now scan partial symbols in that namespace. */
7066
7067 if (pdi->has_children)
7068 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7069 }
7070
7071 /* Read a partial die corresponding to a Fortran module. */
7072
7073 static void
7074 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7075 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7076 {
7077 /* Add a symbol for the namespace. */
7078
7079 add_partial_symbol (pdi, cu);
7080
7081 /* Now scan partial symbols in that module. */
7082
7083 if (pdi->has_children)
7084 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7085 }
7086
7087 /* Read a partial die corresponding to a subprogram and create a partial
7088 symbol for that subprogram. When the CU language allows it, this
7089 routine also defines a partial symbol for each nested subprogram
7090 that this subprogram contains. If SET_ADDRMAP is true, record the
7091 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7092 and highest PC values found in PDI.
7093
7094 PDI may also be a lexical block, in which case we simply search
7095 recursively for subprograms defined inside that lexical block.
7096 Again, this is only performed when the CU language allows this
7097 type of definitions. */
7098
7099 static void
7100 add_partial_subprogram (struct partial_die_info *pdi,
7101 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7102 int set_addrmap, struct dwarf2_cu *cu)
7103 {
7104 if (pdi->tag == DW_TAG_subprogram)
7105 {
7106 if (pdi->has_pc_info)
7107 {
7108 if (pdi->lowpc < *lowpc)
7109 *lowpc = pdi->lowpc;
7110 if (pdi->highpc > *highpc)
7111 *highpc = pdi->highpc;
7112 if (set_addrmap)
7113 {
7114 struct objfile *objfile = cu->objfile;
7115 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7116 CORE_ADDR baseaddr;
7117 CORE_ADDR highpc;
7118 CORE_ADDR lowpc;
7119
7120 baseaddr = ANOFFSET (objfile->section_offsets,
7121 SECT_OFF_TEXT (objfile));
7122 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7123 pdi->lowpc + baseaddr);
7124 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7125 pdi->highpc + baseaddr);
7126 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7127 cu->per_cu->v.psymtab);
7128 }
7129 }
7130
7131 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7132 {
7133 if (!pdi->is_declaration)
7134 /* Ignore subprogram DIEs that do not have a name, they are
7135 illegal. Do not emit a complaint at this point, we will
7136 do so when we convert this psymtab into a symtab. */
7137 if (pdi->name)
7138 add_partial_symbol (pdi, cu);
7139 }
7140 }
7141
7142 if (! pdi->has_children)
7143 return;
7144
7145 if (cu->language == language_ada)
7146 {
7147 pdi = pdi->die_child;
7148 while (pdi != NULL)
7149 {
7150 fixup_partial_die (pdi, cu);
7151 if (pdi->tag == DW_TAG_subprogram
7152 || pdi->tag == DW_TAG_lexical_block)
7153 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7154 pdi = pdi->die_sibling;
7155 }
7156 }
7157 }
7158
7159 /* Read a partial die corresponding to an enumeration type. */
7160
7161 static void
7162 add_partial_enumeration (struct partial_die_info *enum_pdi,
7163 struct dwarf2_cu *cu)
7164 {
7165 struct partial_die_info *pdi;
7166
7167 if (enum_pdi->name != NULL)
7168 add_partial_symbol (enum_pdi, cu);
7169
7170 pdi = enum_pdi->die_child;
7171 while (pdi)
7172 {
7173 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7174 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7175 else
7176 add_partial_symbol (pdi, cu);
7177 pdi = pdi->die_sibling;
7178 }
7179 }
7180
7181 /* Return the initial uleb128 in the die at INFO_PTR. */
7182
7183 static unsigned int
7184 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7185 {
7186 unsigned int bytes_read;
7187
7188 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7189 }
7190
7191 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7192 Return the corresponding abbrev, or NULL if the number is zero (indicating
7193 an empty DIE). In either case *BYTES_READ will be set to the length of
7194 the initial number. */
7195
7196 static struct abbrev_info *
7197 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7198 struct dwarf2_cu *cu)
7199 {
7200 bfd *abfd = cu->objfile->obfd;
7201 unsigned int abbrev_number;
7202 struct abbrev_info *abbrev;
7203
7204 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7205
7206 if (abbrev_number == 0)
7207 return NULL;
7208
7209 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7210 if (!abbrev)
7211 {
7212 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7213 " at offset 0x%x [in module %s]"),
7214 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7215 cu->header.offset.sect_off, bfd_get_filename (abfd));
7216 }
7217
7218 return abbrev;
7219 }
7220
7221 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7222 Returns a pointer to the end of a series of DIEs, terminated by an empty
7223 DIE. Any children of the skipped DIEs will also be skipped. */
7224
7225 static const gdb_byte *
7226 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7227 {
7228 struct dwarf2_cu *cu = reader->cu;
7229 struct abbrev_info *abbrev;
7230 unsigned int bytes_read;
7231
7232 while (1)
7233 {
7234 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7235 if (abbrev == NULL)
7236 return info_ptr + bytes_read;
7237 else
7238 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7239 }
7240 }
7241
7242 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7243 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7244 abbrev corresponding to that skipped uleb128 should be passed in
7245 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7246 children. */
7247
7248 static const gdb_byte *
7249 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7250 struct abbrev_info *abbrev)
7251 {
7252 unsigned int bytes_read;
7253 struct attribute attr;
7254 bfd *abfd = reader->abfd;
7255 struct dwarf2_cu *cu = reader->cu;
7256 const gdb_byte *buffer = reader->buffer;
7257 const gdb_byte *buffer_end = reader->buffer_end;
7258 unsigned int form, i;
7259
7260 for (i = 0; i < abbrev->num_attrs; i++)
7261 {
7262 /* The only abbrev we care about is DW_AT_sibling. */
7263 if (abbrev->attrs[i].name == DW_AT_sibling)
7264 {
7265 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7266 if (attr.form == DW_FORM_ref_addr)
7267 complaint (&symfile_complaints,
7268 _("ignoring absolute DW_AT_sibling"));
7269 else
7270 {
7271 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7272 const gdb_byte *sibling_ptr = buffer + off;
7273
7274 if (sibling_ptr < info_ptr)
7275 complaint (&symfile_complaints,
7276 _("DW_AT_sibling points backwards"));
7277 else if (sibling_ptr > reader->buffer_end)
7278 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7279 else
7280 return sibling_ptr;
7281 }
7282 }
7283
7284 /* If it isn't DW_AT_sibling, skip this attribute. */
7285 form = abbrev->attrs[i].form;
7286 skip_attribute:
7287 switch (form)
7288 {
7289 case DW_FORM_ref_addr:
7290 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7291 and later it is offset sized. */
7292 if (cu->header.version == 2)
7293 info_ptr += cu->header.addr_size;
7294 else
7295 info_ptr += cu->header.offset_size;
7296 break;
7297 case DW_FORM_GNU_ref_alt:
7298 info_ptr += cu->header.offset_size;
7299 break;
7300 case DW_FORM_addr:
7301 info_ptr += cu->header.addr_size;
7302 break;
7303 case DW_FORM_data1:
7304 case DW_FORM_ref1:
7305 case DW_FORM_flag:
7306 info_ptr += 1;
7307 break;
7308 case DW_FORM_flag_present:
7309 break;
7310 case DW_FORM_data2:
7311 case DW_FORM_ref2:
7312 info_ptr += 2;
7313 break;
7314 case DW_FORM_data4:
7315 case DW_FORM_ref4:
7316 info_ptr += 4;
7317 break;
7318 case DW_FORM_data8:
7319 case DW_FORM_ref8:
7320 case DW_FORM_ref_sig8:
7321 info_ptr += 8;
7322 break;
7323 case DW_FORM_string:
7324 read_direct_string (abfd, info_ptr, &bytes_read);
7325 info_ptr += bytes_read;
7326 break;
7327 case DW_FORM_sec_offset:
7328 case DW_FORM_strp:
7329 case DW_FORM_GNU_strp_alt:
7330 info_ptr += cu->header.offset_size;
7331 break;
7332 case DW_FORM_exprloc:
7333 case DW_FORM_block:
7334 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7335 info_ptr += bytes_read;
7336 break;
7337 case DW_FORM_block1:
7338 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7339 break;
7340 case DW_FORM_block2:
7341 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7342 break;
7343 case DW_FORM_block4:
7344 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7345 break;
7346 case DW_FORM_sdata:
7347 case DW_FORM_udata:
7348 case DW_FORM_ref_udata:
7349 case DW_FORM_GNU_addr_index:
7350 case DW_FORM_GNU_str_index:
7351 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7352 break;
7353 case DW_FORM_indirect:
7354 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7355 info_ptr += bytes_read;
7356 /* We need to continue parsing from here, so just go back to
7357 the top. */
7358 goto skip_attribute;
7359
7360 default:
7361 error (_("Dwarf Error: Cannot handle %s "
7362 "in DWARF reader [in module %s]"),
7363 dwarf_form_name (form),
7364 bfd_get_filename (abfd));
7365 }
7366 }
7367
7368 if (abbrev->has_children)
7369 return skip_children (reader, info_ptr);
7370 else
7371 return info_ptr;
7372 }
7373
7374 /* Locate ORIG_PDI's sibling.
7375 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7376
7377 static const gdb_byte *
7378 locate_pdi_sibling (const struct die_reader_specs *reader,
7379 struct partial_die_info *orig_pdi,
7380 const gdb_byte *info_ptr)
7381 {
7382 /* Do we know the sibling already? */
7383
7384 if (orig_pdi->sibling)
7385 return orig_pdi->sibling;
7386
7387 /* Are there any children to deal with? */
7388
7389 if (!orig_pdi->has_children)
7390 return info_ptr;
7391
7392 /* Skip the children the long way. */
7393
7394 return skip_children (reader, info_ptr);
7395 }
7396
7397 /* Expand this partial symbol table into a full symbol table. SELF is
7398 not NULL. */
7399
7400 static void
7401 dwarf2_read_symtab (struct partial_symtab *self,
7402 struct objfile *objfile)
7403 {
7404 if (self->readin)
7405 {
7406 warning (_("bug: psymtab for %s is already read in."),
7407 self->filename);
7408 }
7409 else
7410 {
7411 if (info_verbose)
7412 {
7413 printf_filtered (_("Reading in symbols for %s..."),
7414 self->filename);
7415 gdb_flush (gdb_stdout);
7416 }
7417
7418 /* Restore our global data. */
7419 dwarf2_per_objfile
7420 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7421 dwarf2_objfile_data_key);
7422
7423 /* If this psymtab is constructed from a debug-only objfile, the
7424 has_section_at_zero flag will not necessarily be correct. We
7425 can get the correct value for this flag by looking at the data
7426 associated with the (presumably stripped) associated objfile. */
7427 if (objfile->separate_debug_objfile_backlink)
7428 {
7429 struct dwarf2_per_objfile *dpo_backlink
7430 = ((struct dwarf2_per_objfile *)
7431 objfile_data (objfile->separate_debug_objfile_backlink,
7432 dwarf2_objfile_data_key));
7433
7434 dwarf2_per_objfile->has_section_at_zero
7435 = dpo_backlink->has_section_at_zero;
7436 }
7437
7438 dwarf2_per_objfile->reading_partial_symbols = 0;
7439
7440 psymtab_to_symtab_1 (self);
7441
7442 /* Finish up the debug error message. */
7443 if (info_verbose)
7444 printf_filtered (_("done.\n"));
7445 }
7446
7447 process_cu_includes ();
7448 }
7449 \f
7450 /* Reading in full CUs. */
7451
7452 /* Add PER_CU to the queue. */
7453
7454 static void
7455 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7456 enum language pretend_language)
7457 {
7458 struct dwarf2_queue_item *item;
7459
7460 per_cu->queued = 1;
7461 item = XNEW (struct dwarf2_queue_item);
7462 item->per_cu = per_cu;
7463 item->pretend_language = pretend_language;
7464 item->next = NULL;
7465
7466 if (dwarf2_queue == NULL)
7467 dwarf2_queue = item;
7468 else
7469 dwarf2_queue_tail->next = item;
7470
7471 dwarf2_queue_tail = item;
7472 }
7473
7474 /* If PER_CU is not yet queued, add it to the queue.
7475 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7476 dependency.
7477 The result is non-zero if PER_CU was queued, otherwise the result is zero
7478 meaning either PER_CU is already queued or it is already loaded.
7479
7480 N.B. There is an invariant here that if a CU is queued then it is loaded.
7481 The caller is required to load PER_CU if we return non-zero. */
7482
7483 static int
7484 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7485 struct dwarf2_per_cu_data *per_cu,
7486 enum language pretend_language)
7487 {
7488 /* We may arrive here during partial symbol reading, if we need full
7489 DIEs to process an unusual case (e.g. template arguments). Do
7490 not queue PER_CU, just tell our caller to load its DIEs. */
7491 if (dwarf2_per_objfile->reading_partial_symbols)
7492 {
7493 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7494 return 1;
7495 return 0;
7496 }
7497
7498 /* Mark the dependence relation so that we don't flush PER_CU
7499 too early. */
7500 if (dependent_cu != NULL)
7501 dwarf2_add_dependence (dependent_cu, per_cu);
7502
7503 /* If it's already on the queue, we have nothing to do. */
7504 if (per_cu->queued)
7505 return 0;
7506
7507 /* If the compilation unit is already loaded, just mark it as
7508 used. */
7509 if (per_cu->cu != NULL)
7510 {
7511 per_cu->cu->last_used = 0;
7512 return 0;
7513 }
7514
7515 /* Add it to the queue. */
7516 queue_comp_unit (per_cu, pretend_language);
7517
7518 return 1;
7519 }
7520
7521 /* Process the queue. */
7522
7523 static void
7524 process_queue (void)
7525 {
7526 struct dwarf2_queue_item *item, *next_item;
7527
7528 if (dwarf_read_debug)
7529 {
7530 fprintf_unfiltered (gdb_stdlog,
7531 "Expanding one or more symtabs of objfile %s ...\n",
7532 objfile_name (dwarf2_per_objfile->objfile));
7533 }
7534
7535 /* The queue starts out with one item, but following a DIE reference
7536 may load a new CU, adding it to the end of the queue. */
7537 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7538 {
7539 if ((dwarf2_per_objfile->using_index
7540 ? !item->per_cu->v.quick->compunit_symtab
7541 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7542 /* Skip dummy CUs. */
7543 && item->per_cu->cu != NULL)
7544 {
7545 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7546 unsigned int debug_print_threshold;
7547 char buf[100];
7548
7549 if (per_cu->is_debug_types)
7550 {
7551 struct signatured_type *sig_type =
7552 (struct signatured_type *) per_cu;
7553
7554 sprintf (buf, "TU %s at offset 0x%x",
7555 hex_string (sig_type->signature),
7556 per_cu->offset.sect_off);
7557 /* There can be 100s of TUs.
7558 Only print them in verbose mode. */
7559 debug_print_threshold = 2;
7560 }
7561 else
7562 {
7563 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7564 debug_print_threshold = 1;
7565 }
7566
7567 if (dwarf_read_debug >= debug_print_threshold)
7568 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7569
7570 if (per_cu->is_debug_types)
7571 process_full_type_unit (per_cu, item->pretend_language);
7572 else
7573 process_full_comp_unit (per_cu, item->pretend_language);
7574
7575 if (dwarf_read_debug >= debug_print_threshold)
7576 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7577 }
7578
7579 item->per_cu->queued = 0;
7580 next_item = item->next;
7581 xfree (item);
7582 }
7583
7584 dwarf2_queue_tail = NULL;
7585
7586 if (dwarf_read_debug)
7587 {
7588 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7589 objfile_name (dwarf2_per_objfile->objfile));
7590 }
7591 }
7592
7593 /* Free all allocated queue entries. This function only releases anything if
7594 an error was thrown; if the queue was processed then it would have been
7595 freed as we went along. */
7596
7597 static void
7598 dwarf2_release_queue (void *dummy)
7599 {
7600 struct dwarf2_queue_item *item, *last;
7601
7602 item = dwarf2_queue;
7603 while (item)
7604 {
7605 /* Anything still marked queued is likely to be in an
7606 inconsistent state, so discard it. */
7607 if (item->per_cu->queued)
7608 {
7609 if (item->per_cu->cu != NULL)
7610 free_one_cached_comp_unit (item->per_cu);
7611 item->per_cu->queued = 0;
7612 }
7613
7614 last = item;
7615 item = item->next;
7616 xfree (last);
7617 }
7618
7619 dwarf2_queue = dwarf2_queue_tail = NULL;
7620 }
7621
7622 /* Read in full symbols for PST, and anything it depends on. */
7623
7624 static void
7625 psymtab_to_symtab_1 (struct partial_symtab *pst)
7626 {
7627 struct dwarf2_per_cu_data *per_cu;
7628 int i;
7629
7630 if (pst->readin)
7631 return;
7632
7633 for (i = 0; i < pst->number_of_dependencies; i++)
7634 if (!pst->dependencies[i]->readin
7635 && pst->dependencies[i]->user == NULL)
7636 {
7637 /* Inform about additional files that need to be read in. */
7638 if (info_verbose)
7639 {
7640 /* FIXME: i18n: Need to make this a single string. */
7641 fputs_filtered (" ", gdb_stdout);
7642 wrap_here ("");
7643 fputs_filtered ("and ", gdb_stdout);
7644 wrap_here ("");
7645 printf_filtered ("%s...", pst->dependencies[i]->filename);
7646 wrap_here (""); /* Flush output. */
7647 gdb_flush (gdb_stdout);
7648 }
7649 psymtab_to_symtab_1 (pst->dependencies[i]);
7650 }
7651
7652 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7653
7654 if (per_cu == NULL)
7655 {
7656 /* It's an include file, no symbols to read for it.
7657 Everything is in the parent symtab. */
7658 pst->readin = 1;
7659 return;
7660 }
7661
7662 dw2_do_instantiate_symtab (per_cu);
7663 }
7664
7665 /* Trivial hash function for die_info: the hash value of a DIE
7666 is its offset in .debug_info for this objfile. */
7667
7668 static hashval_t
7669 die_hash (const void *item)
7670 {
7671 const struct die_info *die = (const struct die_info *) item;
7672
7673 return die->offset.sect_off;
7674 }
7675
7676 /* Trivial comparison function for die_info structures: two DIEs
7677 are equal if they have the same offset. */
7678
7679 static int
7680 die_eq (const void *item_lhs, const void *item_rhs)
7681 {
7682 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7683 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7684
7685 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7686 }
7687
7688 /* die_reader_func for load_full_comp_unit.
7689 This is identical to read_signatured_type_reader,
7690 but is kept separate for now. */
7691
7692 static void
7693 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7694 const gdb_byte *info_ptr,
7695 struct die_info *comp_unit_die,
7696 int has_children,
7697 void *data)
7698 {
7699 struct dwarf2_cu *cu = reader->cu;
7700 enum language *language_ptr = (enum language *) data;
7701
7702 gdb_assert (cu->die_hash == NULL);
7703 cu->die_hash =
7704 htab_create_alloc_ex (cu->header.length / 12,
7705 die_hash,
7706 die_eq,
7707 NULL,
7708 &cu->comp_unit_obstack,
7709 hashtab_obstack_allocate,
7710 dummy_obstack_deallocate);
7711
7712 if (has_children)
7713 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7714 &info_ptr, comp_unit_die);
7715 cu->dies = comp_unit_die;
7716 /* comp_unit_die is not stored in die_hash, no need. */
7717
7718 /* We try not to read any attributes in this function, because not
7719 all CUs needed for references have been loaded yet, and symbol
7720 table processing isn't initialized. But we have to set the CU language,
7721 or we won't be able to build types correctly.
7722 Similarly, if we do not read the producer, we can not apply
7723 producer-specific interpretation. */
7724 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7725 }
7726
7727 /* Load the DIEs associated with PER_CU into memory. */
7728
7729 static void
7730 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7731 enum language pretend_language)
7732 {
7733 gdb_assert (! this_cu->is_debug_types);
7734
7735 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7736 load_full_comp_unit_reader, &pretend_language);
7737 }
7738
7739 /* Add a DIE to the delayed physname list. */
7740
7741 static void
7742 add_to_method_list (struct type *type, int fnfield_index, int index,
7743 const char *name, struct die_info *die,
7744 struct dwarf2_cu *cu)
7745 {
7746 struct delayed_method_info mi;
7747 mi.type = type;
7748 mi.fnfield_index = fnfield_index;
7749 mi.index = index;
7750 mi.name = name;
7751 mi.die = die;
7752 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7753 }
7754
7755 /* A cleanup for freeing the delayed method list. */
7756
7757 static void
7758 free_delayed_list (void *ptr)
7759 {
7760 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7761 if (cu->method_list != NULL)
7762 {
7763 VEC_free (delayed_method_info, cu->method_list);
7764 cu->method_list = NULL;
7765 }
7766 }
7767
7768 /* Compute the physnames of any methods on the CU's method list.
7769
7770 The computation of method physnames is delayed in order to avoid the
7771 (bad) condition that one of the method's formal parameters is of an as yet
7772 incomplete type. */
7773
7774 static void
7775 compute_delayed_physnames (struct dwarf2_cu *cu)
7776 {
7777 int i;
7778 struct delayed_method_info *mi;
7779 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7780 {
7781 const char *physname;
7782 struct fn_fieldlist *fn_flp
7783 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7784 physname = dwarf2_physname (mi->name, mi->die, cu);
7785 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7786 = physname ? physname : "";
7787 }
7788 }
7789
7790 /* Go objects should be embedded in a DW_TAG_module DIE,
7791 and it's not clear if/how imported objects will appear.
7792 To keep Go support simple until that's worked out,
7793 go back through what we've read and create something usable.
7794 We could do this while processing each DIE, and feels kinda cleaner,
7795 but that way is more invasive.
7796 This is to, for example, allow the user to type "p var" or "b main"
7797 without having to specify the package name, and allow lookups
7798 of module.object to work in contexts that use the expression
7799 parser. */
7800
7801 static void
7802 fixup_go_packaging (struct dwarf2_cu *cu)
7803 {
7804 char *package_name = NULL;
7805 struct pending *list;
7806 int i;
7807
7808 for (list = global_symbols; list != NULL; list = list->next)
7809 {
7810 for (i = 0; i < list->nsyms; ++i)
7811 {
7812 struct symbol *sym = list->symbol[i];
7813
7814 if (SYMBOL_LANGUAGE (sym) == language_go
7815 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7816 {
7817 char *this_package_name = go_symbol_package_name (sym);
7818
7819 if (this_package_name == NULL)
7820 continue;
7821 if (package_name == NULL)
7822 package_name = this_package_name;
7823 else
7824 {
7825 if (strcmp (package_name, this_package_name) != 0)
7826 complaint (&symfile_complaints,
7827 _("Symtab %s has objects from two different Go packages: %s and %s"),
7828 (symbol_symtab (sym) != NULL
7829 ? symtab_to_filename_for_display
7830 (symbol_symtab (sym))
7831 : objfile_name (cu->objfile)),
7832 this_package_name, package_name);
7833 xfree (this_package_name);
7834 }
7835 }
7836 }
7837 }
7838
7839 if (package_name != NULL)
7840 {
7841 struct objfile *objfile = cu->objfile;
7842 const char *saved_package_name
7843 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7844 package_name,
7845 strlen (package_name));
7846 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7847 saved_package_name, objfile);
7848 struct symbol *sym;
7849
7850 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7851
7852 sym = allocate_symbol (objfile);
7853 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7854 SYMBOL_SET_NAMES (sym, saved_package_name,
7855 strlen (saved_package_name), 0, objfile);
7856 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7857 e.g., "main" finds the "main" module and not C's main(). */
7858 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7859 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7860 SYMBOL_TYPE (sym) = type;
7861
7862 add_symbol_to_list (sym, &global_symbols);
7863
7864 xfree (package_name);
7865 }
7866 }
7867
7868 /* Return the symtab for PER_CU. This works properly regardless of
7869 whether we're using the index or psymtabs. */
7870
7871 static struct compunit_symtab *
7872 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7873 {
7874 return (dwarf2_per_objfile->using_index
7875 ? per_cu->v.quick->compunit_symtab
7876 : per_cu->v.psymtab->compunit_symtab);
7877 }
7878
7879 /* A helper function for computing the list of all symbol tables
7880 included by PER_CU. */
7881
7882 static void
7883 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7884 htab_t all_children, htab_t all_type_symtabs,
7885 struct dwarf2_per_cu_data *per_cu,
7886 struct compunit_symtab *immediate_parent)
7887 {
7888 void **slot;
7889 int ix;
7890 struct compunit_symtab *cust;
7891 struct dwarf2_per_cu_data *iter;
7892
7893 slot = htab_find_slot (all_children, per_cu, INSERT);
7894 if (*slot != NULL)
7895 {
7896 /* This inclusion and its children have been processed. */
7897 return;
7898 }
7899
7900 *slot = per_cu;
7901 /* Only add a CU if it has a symbol table. */
7902 cust = get_compunit_symtab (per_cu);
7903 if (cust != NULL)
7904 {
7905 /* If this is a type unit only add its symbol table if we haven't
7906 seen it yet (type unit per_cu's can share symtabs). */
7907 if (per_cu->is_debug_types)
7908 {
7909 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7910 if (*slot == NULL)
7911 {
7912 *slot = cust;
7913 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7914 if (cust->user == NULL)
7915 cust->user = immediate_parent;
7916 }
7917 }
7918 else
7919 {
7920 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7921 if (cust->user == NULL)
7922 cust->user = immediate_parent;
7923 }
7924 }
7925
7926 for (ix = 0;
7927 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7928 ++ix)
7929 {
7930 recursively_compute_inclusions (result, all_children,
7931 all_type_symtabs, iter, cust);
7932 }
7933 }
7934
7935 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7936 PER_CU. */
7937
7938 static void
7939 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7940 {
7941 gdb_assert (! per_cu->is_debug_types);
7942
7943 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7944 {
7945 int ix, len;
7946 struct dwarf2_per_cu_data *per_cu_iter;
7947 struct compunit_symtab *compunit_symtab_iter;
7948 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7949 htab_t all_children, all_type_symtabs;
7950 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7951
7952 /* If we don't have a symtab, we can just skip this case. */
7953 if (cust == NULL)
7954 return;
7955
7956 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7957 NULL, xcalloc, xfree);
7958 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7959 NULL, xcalloc, xfree);
7960
7961 for (ix = 0;
7962 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7963 ix, per_cu_iter);
7964 ++ix)
7965 {
7966 recursively_compute_inclusions (&result_symtabs, all_children,
7967 all_type_symtabs, per_cu_iter,
7968 cust);
7969 }
7970
7971 /* Now we have a transitive closure of all the included symtabs. */
7972 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7973 cust->includes
7974 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7975 struct compunit_symtab *, len + 1);
7976 for (ix = 0;
7977 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7978 compunit_symtab_iter);
7979 ++ix)
7980 cust->includes[ix] = compunit_symtab_iter;
7981 cust->includes[len] = NULL;
7982
7983 VEC_free (compunit_symtab_ptr, result_symtabs);
7984 htab_delete (all_children);
7985 htab_delete (all_type_symtabs);
7986 }
7987 }
7988
7989 /* Compute the 'includes' field for the symtabs of all the CUs we just
7990 read. */
7991
7992 static void
7993 process_cu_includes (void)
7994 {
7995 int ix;
7996 struct dwarf2_per_cu_data *iter;
7997
7998 for (ix = 0;
7999 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8000 ix, iter);
8001 ++ix)
8002 {
8003 if (! iter->is_debug_types)
8004 compute_compunit_symtab_includes (iter);
8005 }
8006
8007 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8008 }
8009
8010 /* Generate full symbol information for PER_CU, whose DIEs have
8011 already been loaded into memory. */
8012
8013 static void
8014 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8015 enum language pretend_language)
8016 {
8017 struct dwarf2_cu *cu = per_cu->cu;
8018 struct objfile *objfile = per_cu->objfile;
8019 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8020 CORE_ADDR lowpc, highpc;
8021 struct compunit_symtab *cust;
8022 struct cleanup *back_to, *delayed_list_cleanup;
8023 CORE_ADDR baseaddr;
8024 struct block *static_block;
8025 CORE_ADDR addr;
8026
8027 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8028
8029 buildsym_init ();
8030 back_to = make_cleanup (really_free_pendings, NULL);
8031 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8032
8033 cu->list_in_scope = &file_symbols;
8034
8035 cu->language = pretend_language;
8036 cu->language_defn = language_def (cu->language);
8037
8038 /* Do line number decoding in read_file_scope () */
8039 process_die (cu->dies, cu);
8040
8041 /* For now fudge the Go package. */
8042 if (cu->language == language_go)
8043 fixup_go_packaging (cu);
8044
8045 /* Now that we have processed all the DIEs in the CU, all the types
8046 should be complete, and it should now be safe to compute all of the
8047 physnames. */
8048 compute_delayed_physnames (cu);
8049 do_cleanups (delayed_list_cleanup);
8050
8051 /* Some compilers don't define a DW_AT_high_pc attribute for the
8052 compilation unit. If the DW_AT_high_pc is missing, synthesize
8053 it, by scanning the DIE's below the compilation unit. */
8054 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8055
8056 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8057 static_block = end_symtab_get_static_block (addr, 0, 1);
8058
8059 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8060 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8061 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8062 addrmap to help ensure it has an accurate map of pc values belonging to
8063 this comp unit. */
8064 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8065
8066 cust = end_symtab_from_static_block (static_block,
8067 SECT_OFF_TEXT (objfile), 0);
8068
8069 if (cust != NULL)
8070 {
8071 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8072
8073 /* Set symtab language to language from DW_AT_language. If the
8074 compilation is from a C file generated by language preprocessors, do
8075 not set the language if it was already deduced by start_subfile. */
8076 if (!(cu->language == language_c
8077 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8078 COMPUNIT_FILETABS (cust)->language = cu->language;
8079
8080 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8081 produce DW_AT_location with location lists but it can be possibly
8082 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8083 there were bugs in prologue debug info, fixed later in GCC-4.5
8084 by "unwind info for epilogues" patch (which is not directly related).
8085
8086 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8087 needed, it would be wrong due to missing DW_AT_producer there.
8088
8089 Still one can confuse GDB by using non-standard GCC compilation
8090 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8091 */
8092 if (cu->has_loclist && gcc_4_minor >= 5)
8093 cust->locations_valid = 1;
8094
8095 if (gcc_4_minor >= 5)
8096 cust->epilogue_unwind_valid = 1;
8097
8098 cust->call_site_htab = cu->call_site_htab;
8099 }
8100
8101 if (dwarf2_per_objfile->using_index)
8102 per_cu->v.quick->compunit_symtab = cust;
8103 else
8104 {
8105 struct partial_symtab *pst = per_cu->v.psymtab;
8106 pst->compunit_symtab = cust;
8107 pst->readin = 1;
8108 }
8109
8110 /* Push it for inclusion processing later. */
8111 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8112
8113 do_cleanups (back_to);
8114 }
8115
8116 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8117 already been loaded into memory. */
8118
8119 static void
8120 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8121 enum language pretend_language)
8122 {
8123 struct dwarf2_cu *cu = per_cu->cu;
8124 struct objfile *objfile = per_cu->objfile;
8125 struct compunit_symtab *cust;
8126 struct cleanup *back_to, *delayed_list_cleanup;
8127 struct signatured_type *sig_type;
8128
8129 gdb_assert (per_cu->is_debug_types);
8130 sig_type = (struct signatured_type *) per_cu;
8131
8132 buildsym_init ();
8133 back_to = make_cleanup (really_free_pendings, NULL);
8134 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8135
8136 cu->list_in_scope = &file_symbols;
8137
8138 cu->language = pretend_language;
8139 cu->language_defn = language_def (cu->language);
8140
8141 /* The symbol tables are set up in read_type_unit_scope. */
8142 process_die (cu->dies, cu);
8143
8144 /* For now fudge the Go package. */
8145 if (cu->language == language_go)
8146 fixup_go_packaging (cu);
8147
8148 /* Now that we have processed all the DIEs in the CU, all the types
8149 should be complete, and it should now be safe to compute all of the
8150 physnames. */
8151 compute_delayed_physnames (cu);
8152 do_cleanups (delayed_list_cleanup);
8153
8154 /* TUs share symbol tables.
8155 If this is the first TU to use this symtab, complete the construction
8156 of it with end_expandable_symtab. Otherwise, complete the addition of
8157 this TU's symbols to the existing symtab. */
8158 if (sig_type->type_unit_group->compunit_symtab == NULL)
8159 {
8160 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8161 sig_type->type_unit_group->compunit_symtab = cust;
8162
8163 if (cust != NULL)
8164 {
8165 /* Set symtab language to language from DW_AT_language. If the
8166 compilation is from a C file generated by language preprocessors,
8167 do not set the language if it was already deduced by
8168 start_subfile. */
8169 if (!(cu->language == language_c
8170 && COMPUNIT_FILETABS (cust)->language != language_c))
8171 COMPUNIT_FILETABS (cust)->language = cu->language;
8172 }
8173 }
8174 else
8175 {
8176 augment_type_symtab ();
8177 cust = sig_type->type_unit_group->compunit_symtab;
8178 }
8179
8180 if (dwarf2_per_objfile->using_index)
8181 per_cu->v.quick->compunit_symtab = cust;
8182 else
8183 {
8184 struct partial_symtab *pst = per_cu->v.psymtab;
8185 pst->compunit_symtab = cust;
8186 pst->readin = 1;
8187 }
8188
8189 do_cleanups (back_to);
8190 }
8191
8192 /* Process an imported unit DIE. */
8193
8194 static void
8195 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8196 {
8197 struct attribute *attr;
8198
8199 /* For now we don't handle imported units in type units. */
8200 if (cu->per_cu->is_debug_types)
8201 {
8202 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8203 " supported in type units [in module %s]"),
8204 objfile_name (cu->objfile));
8205 }
8206
8207 attr = dwarf2_attr (die, DW_AT_import, cu);
8208 if (attr != NULL)
8209 {
8210 struct dwarf2_per_cu_data *per_cu;
8211 sect_offset offset;
8212 int is_dwz;
8213
8214 offset = dwarf2_get_ref_die_offset (attr);
8215 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8216 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8217
8218 /* If necessary, add it to the queue and load its DIEs. */
8219 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8220 load_full_comp_unit (per_cu, cu->language);
8221
8222 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8223 per_cu);
8224 }
8225 }
8226
8227 /* Reset the in_process bit of a die. */
8228
8229 static void
8230 reset_die_in_process (void *arg)
8231 {
8232 struct die_info *die = (struct die_info *) arg;
8233
8234 die->in_process = 0;
8235 }
8236
8237 /* Process a die and its children. */
8238
8239 static void
8240 process_die (struct die_info *die, struct dwarf2_cu *cu)
8241 {
8242 struct cleanup *in_process;
8243
8244 /* We should only be processing those not already in process. */
8245 gdb_assert (!die->in_process);
8246
8247 die->in_process = 1;
8248 in_process = make_cleanup (reset_die_in_process,die);
8249
8250 switch (die->tag)
8251 {
8252 case DW_TAG_padding:
8253 break;
8254 case DW_TAG_compile_unit:
8255 case DW_TAG_partial_unit:
8256 read_file_scope (die, cu);
8257 break;
8258 case DW_TAG_type_unit:
8259 read_type_unit_scope (die, cu);
8260 break;
8261 case DW_TAG_subprogram:
8262 case DW_TAG_inlined_subroutine:
8263 read_func_scope (die, cu);
8264 break;
8265 case DW_TAG_lexical_block:
8266 case DW_TAG_try_block:
8267 case DW_TAG_catch_block:
8268 read_lexical_block_scope (die, cu);
8269 break;
8270 case DW_TAG_GNU_call_site:
8271 read_call_site_scope (die, cu);
8272 break;
8273 case DW_TAG_class_type:
8274 case DW_TAG_interface_type:
8275 case DW_TAG_structure_type:
8276 case DW_TAG_union_type:
8277 process_structure_scope (die, cu);
8278 break;
8279 case DW_TAG_enumeration_type:
8280 process_enumeration_scope (die, cu);
8281 break;
8282
8283 /* These dies have a type, but processing them does not create
8284 a symbol or recurse to process the children. Therefore we can
8285 read them on-demand through read_type_die. */
8286 case DW_TAG_subroutine_type:
8287 case DW_TAG_set_type:
8288 case DW_TAG_array_type:
8289 case DW_TAG_pointer_type:
8290 case DW_TAG_ptr_to_member_type:
8291 case DW_TAG_reference_type:
8292 case DW_TAG_string_type:
8293 break;
8294
8295 case DW_TAG_base_type:
8296 case DW_TAG_subrange_type:
8297 case DW_TAG_typedef:
8298 /* Add a typedef symbol for the type definition, if it has a
8299 DW_AT_name. */
8300 new_symbol (die, read_type_die (die, cu), cu);
8301 break;
8302 case DW_TAG_common_block:
8303 read_common_block (die, cu);
8304 break;
8305 case DW_TAG_common_inclusion:
8306 break;
8307 case DW_TAG_namespace:
8308 cu->processing_has_namespace_info = 1;
8309 read_namespace (die, cu);
8310 break;
8311 case DW_TAG_module:
8312 cu->processing_has_namespace_info = 1;
8313 read_module (die, cu);
8314 break;
8315 case DW_TAG_imported_declaration:
8316 cu->processing_has_namespace_info = 1;
8317 if (read_namespace_alias (die, cu))
8318 break;
8319 /* The declaration is not a global namespace alias: fall through. */
8320 case DW_TAG_imported_module:
8321 cu->processing_has_namespace_info = 1;
8322 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8323 || cu->language != language_fortran))
8324 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8325 dwarf_tag_name (die->tag));
8326 read_import_statement (die, cu);
8327 break;
8328
8329 case DW_TAG_imported_unit:
8330 process_imported_unit_die (die, cu);
8331 break;
8332
8333 default:
8334 new_symbol (die, NULL, cu);
8335 break;
8336 }
8337
8338 do_cleanups (in_process);
8339 }
8340 \f
8341 /* DWARF name computation. */
8342
8343 /* A helper function for dwarf2_compute_name which determines whether DIE
8344 needs to have the name of the scope prepended to the name listed in the
8345 die. */
8346
8347 static int
8348 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8349 {
8350 struct attribute *attr;
8351
8352 switch (die->tag)
8353 {
8354 case DW_TAG_namespace:
8355 case DW_TAG_typedef:
8356 case DW_TAG_class_type:
8357 case DW_TAG_interface_type:
8358 case DW_TAG_structure_type:
8359 case DW_TAG_union_type:
8360 case DW_TAG_enumeration_type:
8361 case DW_TAG_enumerator:
8362 case DW_TAG_subprogram:
8363 case DW_TAG_inlined_subroutine:
8364 case DW_TAG_member:
8365 case DW_TAG_imported_declaration:
8366 return 1;
8367
8368 case DW_TAG_variable:
8369 case DW_TAG_constant:
8370 /* We only need to prefix "globally" visible variables. These include
8371 any variable marked with DW_AT_external or any variable that
8372 lives in a namespace. [Variables in anonymous namespaces
8373 require prefixing, but they are not DW_AT_external.] */
8374
8375 if (dwarf2_attr (die, DW_AT_specification, cu))
8376 {
8377 struct dwarf2_cu *spec_cu = cu;
8378
8379 return die_needs_namespace (die_specification (die, &spec_cu),
8380 spec_cu);
8381 }
8382
8383 attr = dwarf2_attr (die, DW_AT_external, cu);
8384 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8385 && die->parent->tag != DW_TAG_module)
8386 return 0;
8387 /* A variable in a lexical block of some kind does not need a
8388 namespace, even though in C++ such variables may be external
8389 and have a mangled name. */
8390 if (die->parent->tag == DW_TAG_lexical_block
8391 || die->parent->tag == DW_TAG_try_block
8392 || die->parent->tag == DW_TAG_catch_block
8393 || die->parent->tag == DW_TAG_subprogram)
8394 return 0;
8395 return 1;
8396
8397 default:
8398 return 0;
8399 }
8400 }
8401
8402 /* Retrieve the last character from a mem_file. */
8403
8404 static void
8405 do_ui_file_peek_last (void *object, const char *buffer, long length)
8406 {
8407 char *last_char_p = (char *) object;
8408
8409 if (length > 0)
8410 *last_char_p = buffer[length - 1];
8411 }
8412
8413 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8414 compute the physname for the object, which include a method's:
8415 - formal parameters (C++/Java),
8416 - receiver type (Go),
8417 - return type (Java).
8418
8419 The term "physname" is a bit confusing.
8420 For C++, for example, it is the demangled name.
8421 For Go, for example, it's the mangled name.
8422
8423 For Ada, return the DIE's linkage name rather than the fully qualified
8424 name. PHYSNAME is ignored..
8425
8426 The result is allocated on the objfile_obstack and canonicalized. */
8427
8428 static const char *
8429 dwarf2_compute_name (const char *name,
8430 struct die_info *die, struct dwarf2_cu *cu,
8431 int physname)
8432 {
8433 struct objfile *objfile = cu->objfile;
8434
8435 if (name == NULL)
8436 name = dwarf2_name (die, cu);
8437
8438 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8439 but otherwise compute it by typename_concat inside GDB.
8440 FIXME: Actually this is not really true, or at least not always true.
8441 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8442 Fortran names because there is no mangling standard. So new_symbol_full
8443 will set the demangled name to the result of dwarf2_full_name, and it is
8444 the demangled name that GDB uses if it exists. */
8445 if (cu->language == language_ada
8446 || (cu->language == language_fortran && physname))
8447 {
8448 /* For Ada unit, we prefer the linkage name over the name, as
8449 the former contains the exported name, which the user expects
8450 to be able to reference. Ideally, we want the user to be able
8451 to reference this entity using either natural or linkage name,
8452 but we haven't started looking at this enhancement yet. */
8453 const char *linkage_name;
8454
8455 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8456 if (linkage_name == NULL)
8457 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8458 if (linkage_name != NULL)
8459 return linkage_name;
8460 }
8461
8462 /* These are the only languages we know how to qualify names in. */
8463 if (name != NULL
8464 && (cu->language == language_cplus || cu->language == language_java
8465 || cu->language == language_fortran || cu->language == language_d))
8466 {
8467 if (die_needs_namespace (die, cu))
8468 {
8469 long length;
8470 const char *prefix;
8471 struct ui_file *buf;
8472 char *intermediate_name;
8473 const char *canonical_name = NULL;
8474
8475 prefix = determine_prefix (die, cu);
8476 buf = mem_fileopen ();
8477 if (*prefix != '\0')
8478 {
8479 char *prefixed_name = typename_concat (NULL, prefix, name,
8480 physname, cu);
8481
8482 fputs_unfiltered (prefixed_name, buf);
8483 xfree (prefixed_name);
8484 }
8485 else
8486 fputs_unfiltered (name, buf);
8487
8488 /* Template parameters may be specified in the DIE's DW_AT_name, or
8489 as children with DW_TAG_template_type_param or
8490 DW_TAG_value_type_param. If the latter, add them to the name
8491 here. If the name already has template parameters, then
8492 skip this step; some versions of GCC emit both, and
8493 it is more efficient to use the pre-computed name.
8494
8495 Something to keep in mind about this process: it is very
8496 unlikely, or in some cases downright impossible, to produce
8497 something that will match the mangled name of a function.
8498 If the definition of the function has the same debug info,
8499 we should be able to match up with it anyway. But fallbacks
8500 using the minimal symbol, for instance to find a method
8501 implemented in a stripped copy of libstdc++, will not work.
8502 If we do not have debug info for the definition, we will have to
8503 match them up some other way.
8504
8505 When we do name matching there is a related problem with function
8506 templates; two instantiated function templates are allowed to
8507 differ only by their return types, which we do not add here. */
8508
8509 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8510 {
8511 struct attribute *attr;
8512 struct die_info *child;
8513 int first = 1;
8514
8515 die->building_fullname = 1;
8516
8517 for (child = die->child; child != NULL; child = child->sibling)
8518 {
8519 struct type *type;
8520 LONGEST value;
8521 const gdb_byte *bytes;
8522 struct dwarf2_locexpr_baton *baton;
8523 struct value *v;
8524
8525 if (child->tag != DW_TAG_template_type_param
8526 && child->tag != DW_TAG_template_value_param)
8527 continue;
8528
8529 if (first)
8530 {
8531 fputs_unfiltered ("<", buf);
8532 first = 0;
8533 }
8534 else
8535 fputs_unfiltered (", ", buf);
8536
8537 attr = dwarf2_attr (child, DW_AT_type, cu);
8538 if (attr == NULL)
8539 {
8540 complaint (&symfile_complaints,
8541 _("template parameter missing DW_AT_type"));
8542 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8543 continue;
8544 }
8545 type = die_type (child, cu);
8546
8547 if (child->tag == DW_TAG_template_type_param)
8548 {
8549 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8550 continue;
8551 }
8552
8553 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8554 if (attr == NULL)
8555 {
8556 complaint (&symfile_complaints,
8557 _("template parameter missing "
8558 "DW_AT_const_value"));
8559 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8560 continue;
8561 }
8562
8563 dwarf2_const_value_attr (attr, type, name,
8564 &cu->comp_unit_obstack, cu,
8565 &value, &bytes, &baton);
8566
8567 if (TYPE_NOSIGN (type))
8568 /* GDB prints characters as NUMBER 'CHAR'. If that's
8569 changed, this can use value_print instead. */
8570 c_printchar (value, type, buf);
8571 else
8572 {
8573 struct value_print_options opts;
8574
8575 if (baton != NULL)
8576 v = dwarf2_evaluate_loc_desc (type, NULL,
8577 baton->data,
8578 baton->size,
8579 baton->per_cu);
8580 else if (bytes != NULL)
8581 {
8582 v = allocate_value (type);
8583 memcpy (value_contents_writeable (v), bytes,
8584 TYPE_LENGTH (type));
8585 }
8586 else
8587 v = value_from_longest (type, value);
8588
8589 /* Specify decimal so that we do not depend on
8590 the radix. */
8591 get_formatted_print_options (&opts, 'd');
8592 opts.raw = 1;
8593 value_print (v, buf, &opts);
8594 release_value (v);
8595 value_free (v);
8596 }
8597 }
8598
8599 die->building_fullname = 0;
8600
8601 if (!first)
8602 {
8603 /* Close the argument list, with a space if necessary
8604 (nested templates). */
8605 char last_char = '\0';
8606 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8607 if (last_char == '>')
8608 fputs_unfiltered (" >", buf);
8609 else
8610 fputs_unfiltered (">", buf);
8611 }
8612 }
8613
8614 /* For Java and C++ methods, append formal parameter type
8615 information, if PHYSNAME. */
8616
8617 if (physname && die->tag == DW_TAG_subprogram
8618 && (cu->language == language_cplus
8619 || cu->language == language_java))
8620 {
8621 struct type *type = read_type_die (die, cu);
8622
8623 c_type_print_args (type, buf, 1, cu->language,
8624 &type_print_raw_options);
8625
8626 if (cu->language == language_java)
8627 {
8628 /* For java, we must append the return type to method
8629 names. */
8630 if (die->tag == DW_TAG_subprogram)
8631 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8632 0, 0, &type_print_raw_options);
8633 }
8634 else if (cu->language == language_cplus)
8635 {
8636 /* Assume that an artificial first parameter is
8637 "this", but do not crash if it is not. RealView
8638 marks unnamed (and thus unused) parameters as
8639 artificial; there is no way to differentiate
8640 the two cases. */
8641 if (TYPE_NFIELDS (type) > 0
8642 && TYPE_FIELD_ARTIFICIAL (type, 0)
8643 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8644 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8645 0))))
8646 fputs_unfiltered (" const", buf);
8647 }
8648 }
8649
8650 intermediate_name = ui_file_xstrdup (buf, &length);
8651 ui_file_delete (buf);
8652
8653 if (cu->language == language_cplus)
8654 canonical_name
8655 = dwarf2_canonicalize_name (intermediate_name, cu,
8656 &objfile->per_bfd->storage_obstack);
8657
8658 /* If we only computed INTERMEDIATE_NAME, or if
8659 INTERMEDIATE_NAME is already canonical, then we need to
8660 copy it to the appropriate obstack. */
8661 if (canonical_name == NULL || canonical_name == intermediate_name)
8662 name = ((const char *)
8663 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8664 intermediate_name,
8665 strlen (intermediate_name)));
8666 else
8667 name = canonical_name;
8668
8669 xfree (intermediate_name);
8670 }
8671 }
8672
8673 return name;
8674 }
8675
8676 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8677 If scope qualifiers are appropriate they will be added. The result
8678 will be allocated on the storage_obstack, or NULL if the DIE does
8679 not have a name. NAME may either be from a previous call to
8680 dwarf2_name or NULL.
8681
8682 The output string will be canonicalized (if C++/Java). */
8683
8684 static const char *
8685 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8686 {
8687 return dwarf2_compute_name (name, die, cu, 0);
8688 }
8689
8690 /* Construct a physname for the given DIE in CU. NAME may either be
8691 from a previous call to dwarf2_name or NULL. The result will be
8692 allocated on the objfile_objstack or NULL if the DIE does not have a
8693 name.
8694
8695 The output string will be canonicalized (if C++/Java). */
8696
8697 static const char *
8698 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8699 {
8700 struct objfile *objfile = cu->objfile;
8701 const char *retval, *mangled = NULL, *canon = NULL;
8702 struct cleanup *back_to;
8703 int need_copy = 1;
8704
8705 /* In this case dwarf2_compute_name is just a shortcut not building anything
8706 on its own. */
8707 if (!die_needs_namespace (die, cu))
8708 return dwarf2_compute_name (name, die, cu, 1);
8709
8710 back_to = make_cleanup (null_cleanup, NULL);
8711
8712 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8713 if (mangled == NULL)
8714 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8715
8716 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8717 has computed. */
8718 if (mangled != NULL)
8719 {
8720 char *demangled;
8721
8722 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8723 type. It is easier for GDB users to search for such functions as
8724 `name(params)' than `long name(params)'. In such case the minimal
8725 symbol names do not match the full symbol names but for template
8726 functions there is never a need to look up their definition from their
8727 declaration so the only disadvantage remains the minimal symbol
8728 variant `long name(params)' does not have the proper inferior type.
8729 */
8730
8731 if (cu->language == language_go)
8732 {
8733 /* This is a lie, but we already lie to the caller new_symbol_full.
8734 new_symbol_full assumes we return the mangled name.
8735 This just undoes that lie until things are cleaned up. */
8736 demangled = NULL;
8737 }
8738 else
8739 {
8740 demangled = gdb_demangle (mangled,
8741 (DMGL_PARAMS | DMGL_ANSI
8742 | (cu->language == language_java
8743 ? DMGL_JAVA | DMGL_RET_POSTFIX
8744 : DMGL_RET_DROP)));
8745 }
8746 if (demangled)
8747 {
8748 make_cleanup (xfree, demangled);
8749 canon = demangled;
8750 }
8751 else
8752 {
8753 canon = mangled;
8754 need_copy = 0;
8755 }
8756 }
8757
8758 if (canon == NULL || check_physname)
8759 {
8760 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8761
8762 if (canon != NULL && strcmp (physname, canon) != 0)
8763 {
8764 /* It may not mean a bug in GDB. The compiler could also
8765 compute DW_AT_linkage_name incorrectly. But in such case
8766 GDB would need to be bug-to-bug compatible. */
8767
8768 complaint (&symfile_complaints,
8769 _("Computed physname <%s> does not match demangled <%s> "
8770 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8771 physname, canon, mangled, die->offset.sect_off,
8772 objfile_name (objfile));
8773
8774 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8775 is available here - over computed PHYSNAME. It is safer
8776 against both buggy GDB and buggy compilers. */
8777
8778 retval = canon;
8779 }
8780 else
8781 {
8782 retval = physname;
8783 need_copy = 0;
8784 }
8785 }
8786 else
8787 retval = canon;
8788
8789 if (need_copy)
8790 retval = ((const char *)
8791 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8792 retval, strlen (retval)));
8793
8794 do_cleanups (back_to);
8795 return retval;
8796 }
8797
8798 /* Inspect DIE in CU for a namespace alias. If one exists, record
8799 a new symbol for it.
8800
8801 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8802
8803 static int
8804 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8805 {
8806 struct attribute *attr;
8807
8808 /* If the die does not have a name, this is not a namespace
8809 alias. */
8810 attr = dwarf2_attr (die, DW_AT_name, cu);
8811 if (attr != NULL)
8812 {
8813 int num;
8814 struct die_info *d = die;
8815 struct dwarf2_cu *imported_cu = cu;
8816
8817 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8818 keep inspecting DIEs until we hit the underlying import. */
8819 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8820 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8821 {
8822 attr = dwarf2_attr (d, DW_AT_import, cu);
8823 if (attr == NULL)
8824 break;
8825
8826 d = follow_die_ref (d, attr, &imported_cu);
8827 if (d->tag != DW_TAG_imported_declaration)
8828 break;
8829 }
8830
8831 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8832 {
8833 complaint (&symfile_complaints,
8834 _("DIE at 0x%x has too many recursively imported "
8835 "declarations"), d->offset.sect_off);
8836 return 0;
8837 }
8838
8839 if (attr != NULL)
8840 {
8841 struct type *type;
8842 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8843
8844 type = get_die_type_at_offset (offset, cu->per_cu);
8845 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8846 {
8847 /* This declaration is a global namespace alias. Add
8848 a symbol for it whose type is the aliased namespace. */
8849 new_symbol (die, type, cu);
8850 return 1;
8851 }
8852 }
8853 }
8854
8855 return 0;
8856 }
8857
8858 /* Return the using directives repository (global or local?) to use in the
8859 current context for LANGUAGE.
8860
8861 For Ada, imported declarations can materialize renamings, which *may* be
8862 global. However it is impossible (for now?) in DWARF to distinguish
8863 "external" imported declarations and "static" ones. As all imported
8864 declarations seem to be static in all other languages, make them all CU-wide
8865 global only in Ada. */
8866
8867 static struct using_direct **
8868 using_directives (enum language language)
8869 {
8870 if (language == language_ada && context_stack_depth == 0)
8871 return &global_using_directives;
8872 else
8873 return &local_using_directives;
8874 }
8875
8876 /* Read the import statement specified by the given die and record it. */
8877
8878 static void
8879 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8880 {
8881 struct objfile *objfile = cu->objfile;
8882 struct attribute *import_attr;
8883 struct die_info *imported_die, *child_die;
8884 struct dwarf2_cu *imported_cu;
8885 const char *imported_name;
8886 const char *imported_name_prefix;
8887 const char *canonical_name;
8888 const char *import_alias;
8889 const char *imported_declaration = NULL;
8890 const char *import_prefix;
8891 VEC (const_char_ptr) *excludes = NULL;
8892 struct cleanup *cleanups;
8893
8894 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8895 if (import_attr == NULL)
8896 {
8897 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8898 dwarf_tag_name (die->tag));
8899 return;
8900 }
8901
8902 imported_cu = cu;
8903 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8904 imported_name = dwarf2_name (imported_die, imported_cu);
8905 if (imported_name == NULL)
8906 {
8907 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8908
8909 The import in the following code:
8910 namespace A
8911 {
8912 typedef int B;
8913 }
8914
8915 int main ()
8916 {
8917 using A::B;
8918 B b;
8919 return b;
8920 }
8921
8922 ...
8923 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8924 <52> DW_AT_decl_file : 1
8925 <53> DW_AT_decl_line : 6
8926 <54> DW_AT_import : <0x75>
8927 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8928 <59> DW_AT_name : B
8929 <5b> DW_AT_decl_file : 1
8930 <5c> DW_AT_decl_line : 2
8931 <5d> DW_AT_type : <0x6e>
8932 ...
8933 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8934 <76> DW_AT_byte_size : 4
8935 <77> DW_AT_encoding : 5 (signed)
8936
8937 imports the wrong die ( 0x75 instead of 0x58 ).
8938 This case will be ignored until the gcc bug is fixed. */
8939 return;
8940 }
8941
8942 /* Figure out the local name after import. */
8943 import_alias = dwarf2_name (die, cu);
8944
8945 /* Figure out where the statement is being imported to. */
8946 import_prefix = determine_prefix (die, cu);
8947
8948 /* Figure out what the scope of the imported die is and prepend it
8949 to the name of the imported die. */
8950 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8951
8952 if (imported_die->tag != DW_TAG_namespace
8953 && imported_die->tag != DW_TAG_module)
8954 {
8955 imported_declaration = imported_name;
8956 canonical_name = imported_name_prefix;
8957 }
8958 else if (strlen (imported_name_prefix) > 0)
8959 canonical_name = obconcat (&objfile->objfile_obstack,
8960 imported_name_prefix,
8961 (cu->language == language_d ? "." : "::"),
8962 imported_name, (char *) NULL);
8963 else
8964 canonical_name = imported_name;
8965
8966 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8967
8968 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8969 for (child_die = die->child; child_die && child_die->tag;
8970 child_die = sibling_die (child_die))
8971 {
8972 /* DWARF-4: A Fortran use statement with a “rename list” may be
8973 represented by an imported module entry with an import attribute
8974 referring to the module and owned entries corresponding to those
8975 entities that are renamed as part of being imported. */
8976
8977 if (child_die->tag != DW_TAG_imported_declaration)
8978 {
8979 complaint (&symfile_complaints,
8980 _("child DW_TAG_imported_declaration expected "
8981 "- DIE at 0x%x [in module %s]"),
8982 child_die->offset.sect_off, objfile_name (objfile));
8983 continue;
8984 }
8985
8986 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8987 if (import_attr == NULL)
8988 {
8989 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8990 dwarf_tag_name (child_die->tag));
8991 continue;
8992 }
8993
8994 imported_cu = cu;
8995 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8996 &imported_cu);
8997 imported_name = dwarf2_name (imported_die, imported_cu);
8998 if (imported_name == NULL)
8999 {
9000 complaint (&symfile_complaints,
9001 _("child DW_TAG_imported_declaration has unknown "
9002 "imported name - DIE at 0x%x [in module %s]"),
9003 child_die->offset.sect_off, objfile_name (objfile));
9004 continue;
9005 }
9006
9007 VEC_safe_push (const_char_ptr, excludes, imported_name);
9008
9009 process_die (child_die, cu);
9010 }
9011
9012 add_using_directive (using_directives (cu->language),
9013 import_prefix,
9014 canonical_name,
9015 import_alias,
9016 imported_declaration,
9017 excludes,
9018 0,
9019 &objfile->objfile_obstack);
9020
9021 do_cleanups (cleanups);
9022 }
9023
9024 /* Cleanup function for handle_DW_AT_stmt_list. */
9025
9026 static void
9027 free_cu_line_header (void *arg)
9028 {
9029 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9030
9031 free_line_header (cu->line_header);
9032 cu->line_header = NULL;
9033 }
9034
9035 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9036 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9037 this, it was first present in GCC release 4.3.0. */
9038
9039 static int
9040 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9041 {
9042 if (!cu->checked_producer)
9043 check_producer (cu);
9044
9045 return cu->producer_is_gcc_lt_4_3;
9046 }
9047
9048 static void
9049 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9050 const char **name, const char **comp_dir)
9051 {
9052 /* Find the filename. Do not use dwarf2_name here, since the filename
9053 is not a source language identifier. */
9054 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9055 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9056
9057 if (*comp_dir == NULL
9058 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9059 && IS_ABSOLUTE_PATH (*name))
9060 {
9061 char *d = ldirname (*name);
9062
9063 *comp_dir = d;
9064 if (d != NULL)
9065 make_cleanup (xfree, d);
9066 }
9067 if (*comp_dir != NULL)
9068 {
9069 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9070 directory, get rid of it. */
9071 const char *cp = strchr (*comp_dir, ':');
9072
9073 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9074 *comp_dir = cp + 1;
9075 }
9076
9077 if (*name == NULL)
9078 *name = "<unknown>";
9079 }
9080
9081 /* Handle DW_AT_stmt_list for a compilation unit.
9082 DIE is the DW_TAG_compile_unit die for CU.
9083 COMP_DIR is the compilation directory. LOWPC is passed to
9084 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9085
9086 static void
9087 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9088 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9089 {
9090 struct objfile *objfile = dwarf2_per_objfile->objfile;
9091 struct attribute *attr;
9092 unsigned int line_offset;
9093 struct line_header line_header_local;
9094 hashval_t line_header_local_hash;
9095 unsigned u;
9096 void **slot;
9097 int decode_mapping;
9098
9099 gdb_assert (! cu->per_cu->is_debug_types);
9100
9101 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9102 if (attr == NULL)
9103 return;
9104
9105 line_offset = DW_UNSND (attr);
9106
9107 /* The line header hash table is only created if needed (it exists to
9108 prevent redundant reading of the line table for partial_units).
9109 If we're given a partial_unit, we'll need it. If we're given a
9110 compile_unit, then use the line header hash table if it's already
9111 created, but don't create one just yet. */
9112
9113 if (dwarf2_per_objfile->line_header_hash == NULL
9114 && die->tag == DW_TAG_partial_unit)
9115 {
9116 dwarf2_per_objfile->line_header_hash
9117 = htab_create_alloc_ex (127, line_header_hash_voidp,
9118 line_header_eq_voidp,
9119 free_line_header_voidp,
9120 &objfile->objfile_obstack,
9121 hashtab_obstack_allocate,
9122 dummy_obstack_deallocate);
9123 }
9124
9125 line_header_local.offset.sect_off = line_offset;
9126 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9127 line_header_local_hash = line_header_hash (&line_header_local);
9128 if (dwarf2_per_objfile->line_header_hash != NULL)
9129 {
9130 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9131 &line_header_local,
9132 line_header_local_hash, NO_INSERT);
9133
9134 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9135 is not present in *SLOT (since if there is something in *SLOT then
9136 it will be for a partial_unit). */
9137 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9138 {
9139 gdb_assert (*slot != NULL);
9140 cu->line_header = (struct line_header *) *slot;
9141 return;
9142 }
9143 }
9144
9145 /* dwarf_decode_line_header does not yet provide sufficient information.
9146 We always have to call also dwarf_decode_lines for it. */
9147 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9148 if (cu->line_header == NULL)
9149 return;
9150
9151 if (dwarf2_per_objfile->line_header_hash == NULL)
9152 slot = NULL;
9153 else
9154 {
9155 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9156 &line_header_local,
9157 line_header_local_hash, INSERT);
9158 gdb_assert (slot != NULL);
9159 }
9160 if (slot != NULL && *slot == NULL)
9161 {
9162 /* This newly decoded line number information unit will be owned
9163 by line_header_hash hash table. */
9164 *slot = cu->line_header;
9165 }
9166 else
9167 {
9168 /* We cannot free any current entry in (*slot) as that struct line_header
9169 may be already used by multiple CUs. Create only temporary decoded
9170 line_header for this CU - it may happen at most once for each line
9171 number information unit. And if we're not using line_header_hash
9172 then this is what we want as well. */
9173 gdb_assert (die->tag != DW_TAG_partial_unit);
9174 make_cleanup (free_cu_line_header, cu);
9175 }
9176 decode_mapping = (die->tag != DW_TAG_partial_unit);
9177 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9178 decode_mapping);
9179 }
9180
9181 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9182
9183 static void
9184 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9185 {
9186 struct objfile *objfile = dwarf2_per_objfile->objfile;
9187 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9188 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9189 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9190 CORE_ADDR highpc = ((CORE_ADDR) 0);
9191 struct attribute *attr;
9192 const char *name = NULL;
9193 const char *comp_dir = NULL;
9194 struct die_info *child_die;
9195 CORE_ADDR baseaddr;
9196
9197 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9198
9199 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9200
9201 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9202 from finish_block. */
9203 if (lowpc == ((CORE_ADDR) -1))
9204 lowpc = highpc;
9205 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9206
9207 find_file_and_directory (die, cu, &name, &comp_dir);
9208
9209 prepare_one_comp_unit (cu, die, cu->language);
9210
9211 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9212 standardised yet. As a workaround for the language detection we fall
9213 back to the DW_AT_producer string. */
9214 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9215 cu->language = language_opencl;
9216
9217 /* Similar hack for Go. */
9218 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9219 set_cu_language (DW_LANG_Go, cu);
9220
9221 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9222
9223 /* Decode line number information if present. We do this before
9224 processing child DIEs, so that the line header table is available
9225 for DW_AT_decl_file. */
9226 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9227
9228 /* Process all dies in compilation unit. */
9229 if (die->child != NULL)
9230 {
9231 child_die = die->child;
9232 while (child_die && child_die->tag)
9233 {
9234 process_die (child_die, cu);
9235 child_die = sibling_die (child_die);
9236 }
9237 }
9238
9239 /* Decode macro information, if present. Dwarf 2 macro information
9240 refers to information in the line number info statement program
9241 header, so we can only read it if we've read the header
9242 successfully. */
9243 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9244 if (attr && cu->line_header)
9245 {
9246 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9247 complaint (&symfile_complaints,
9248 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9249
9250 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9251 }
9252 else
9253 {
9254 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9255 if (attr && cu->line_header)
9256 {
9257 unsigned int macro_offset = DW_UNSND (attr);
9258
9259 dwarf_decode_macros (cu, macro_offset, 0);
9260 }
9261 }
9262
9263 do_cleanups (back_to);
9264 }
9265
9266 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9267 Create the set of symtabs used by this TU, or if this TU is sharing
9268 symtabs with another TU and the symtabs have already been created
9269 then restore those symtabs in the line header.
9270 We don't need the pc/line-number mapping for type units. */
9271
9272 static void
9273 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9274 {
9275 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9276 struct type_unit_group *tu_group;
9277 int first_time;
9278 struct line_header *lh;
9279 struct attribute *attr;
9280 unsigned int i, line_offset;
9281 struct signatured_type *sig_type;
9282
9283 gdb_assert (per_cu->is_debug_types);
9284 sig_type = (struct signatured_type *) per_cu;
9285
9286 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9287
9288 /* If we're using .gdb_index (includes -readnow) then
9289 per_cu->type_unit_group may not have been set up yet. */
9290 if (sig_type->type_unit_group == NULL)
9291 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9292 tu_group = sig_type->type_unit_group;
9293
9294 /* If we've already processed this stmt_list there's no real need to
9295 do it again, we could fake it and just recreate the part we need
9296 (file name,index -> symtab mapping). If data shows this optimization
9297 is useful we can do it then. */
9298 first_time = tu_group->compunit_symtab == NULL;
9299
9300 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9301 debug info. */
9302 lh = NULL;
9303 if (attr != NULL)
9304 {
9305 line_offset = DW_UNSND (attr);
9306 lh = dwarf_decode_line_header (line_offset, cu);
9307 }
9308 if (lh == NULL)
9309 {
9310 if (first_time)
9311 dwarf2_start_symtab (cu, "", NULL, 0);
9312 else
9313 {
9314 gdb_assert (tu_group->symtabs == NULL);
9315 restart_symtab (tu_group->compunit_symtab, "", 0);
9316 }
9317 return;
9318 }
9319
9320 cu->line_header = lh;
9321 make_cleanup (free_cu_line_header, cu);
9322
9323 if (first_time)
9324 {
9325 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9326
9327 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9328 still initializing it, and our caller (a few levels up)
9329 process_full_type_unit still needs to know if this is the first
9330 time. */
9331
9332 tu_group->num_symtabs = lh->num_file_names;
9333 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9334
9335 for (i = 0; i < lh->num_file_names; ++i)
9336 {
9337 const char *dir = NULL;
9338 struct file_entry *fe = &lh->file_names[i];
9339
9340 if (fe->dir_index && lh->include_dirs != NULL)
9341 dir = lh->include_dirs[fe->dir_index - 1];
9342 dwarf2_start_subfile (fe->name, dir);
9343
9344 if (current_subfile->symtab == NULL)
9345 {
9346 /* NOTE: start_subfile will recognize when it's been passed
9347 a file it has already seen. So we can't assume there's a
9348 simple mapping from lh->file_names to subfiles, plus
9349 lh->file_names may contain dups. */
9350 current_subfile->symtab
9351 = allocate_symtab (cust, current_subfile->name);
9352 }
9353
9354 fe->symtab = current_subfile->symtab;
9355 tu_group->symtabs[i] = fe->symtab;
9356 }
9357 }
9358 else
9359 {
9360 restart_symtab (tu_group->compunit_symtab, "", 0);
9361
9362 for (i = 0; i < lh->num_file_names; ++i)
9363 {
9364 struct file_entry *fe = &lh->file_names[i];
9365
9366 fe->symtab = tu_group->symtabs[i];
9367 }
9368 }
9369
9370 /* The main symtab is allocated last. Type units don't have DW_AT_name
9371 so they don't have a "real" (so to speak) symtab anyway.
9372 There is later code that will assign the main symtab to all symbols
9373 that don't have one. We need to handle the case of a symbol with a
9374 missing symtab (DW_AT_decl_file) anyway. */
9375 }
9376
9377 /* Process DW_TAG_type_unit.
9378 For TUs we want to skip the first top level sibling if it's not the
9379 actual type being defined by this TU. In this case the first top
9380 level sibling is there to provide context only. */
9381
9382 static void
9383 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9384 {
9385 struct die_info *child_die;
9386
9387 prepare_one_comp_unit (cu, die, language_minimal);
9388
9389 /* Initialize (or reinitialize) the machinery for building symtabs.
9390 We do this before processing child DIEs, so that the line header table
9391 is available for DW_AT_decl_file. */
9392 setup_type_unit_groups (die, cu);
9393
9394 if (die->child != NULL)
9395 {
9396 child_die = die->child;
9397 while (child_die && child_die->tag)
9398 {
9399 process_die (child_die, cu);
9400 child_die = sibling_die (child_die);
9401 }
9402 }
9403 }
9404 \f
9405 /* DWO/DWP files.
9406
9407 http://gcc.gnu.org/wiki/DebugFission
9408 http://gcc.gnu.org/wiki/DebugFissionDWP
9409
9410 To simplify handling of both DWO files ("object" files with the DWARF info)
9411 and DWP files (a file with the DWOs packaged up into one file), we treat
9412 DWP files as having a collection of virtual DWO files. */
9413
9414 static hashval_t
9415 hash_dwo_file (const void *item)
9416 {
9417 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9418 hashval_t hash;
9419
9420 hash = htab_hash_string (dwo_file->dwo_name);
9421 if (dwo_file->comp_dir != NULL)
9422 hash += htab_hash_string (dwo_file->comp_dir);
9423 return hash;
9424 }
9425
9426 static int
9427 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9428 {
9429 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9430 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9431
9432 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9433 return 0;
9434 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9435 return lhs->comp_dir == rhs->comp_dir;
9436 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9437 }
9438
9439 /* Allocate a hash table for DWO files. */
9440
9441 static htab_t
9442 allocate_dwo_file_hash_table (void)
9443 {
9444 struct objfile *objfile = dwarf2_per_objfile->objfile;
9445
9446 return htab_create_alloc_ex (41,
9447 hash_dwo_file,
9448 eq_dwo_file,
9449 NULL,
9450 &objfile->objfile_obstack,
9451 hashtab_obstack_allocate,
9452 dummy_obstack_deallocate);
9453 }
9454
9455 /* Lookup DWO file DWO_NAME. */
9456
9457 static void **
9458 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9459 {
9460 struct dwo_file find_entry;
9461 void **slot;
9462
9463 if (dwarf2_per_objfile->dwo_files == NULL)
9464 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9465
9466 memset (&find_entry, 0, sizeof (find_entry));
9467 find_entry.dwo_name = dwo_name;
9468 find_entry.comp_dir = comp_dir;
9469 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9470
9471 return slot;
9472 }
9473
9474 static hashval_t
9475 hash_dwo_unit (const void *item)
9476 {
9477 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9478
9479 /* This drops the top 32 bits of the id, but is ok for a hash. */
9480 return dwo_unit->signature;
9481 }
9482
9483 static int
9484 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9485 {
9486 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9487 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9488
9489 /* The signature is assumed to be unique within the DWO file.
9490 So while object file CU dwo_id's always have the value zero,
9491 that's OK, assuming each object file DWO file has only one CU,
9492 and that's the rule for now. */
9493 return lhs->signature == rhs->signature;
9494 }
9495
9496 /* Allocate a hash table for DWO CUs,TUs.
9497 There is one of these tables for each of CUs,TUs for each DWO file. */
9498
9499 static htab_t
9500 allocate_dwo_unit_table (struct objfile *objfile)
9501 {
9502 /* Start out with a pretty small number.
9503 Generally DWO files contain only one CU and maybe some TUs. */
9504 return htab_create_alloc_ex (3,
9505 hash_dwo_unit,
9506 eq_dwo_unit,
9507 NULL,
9508 &objfile->objfile_obstack,
9509 hashtab_obstack_allocate,
9510 dummy_obstack_deallocate);
9511 }
9512
9513 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9514
9515 struct create_dwo_cu_data
9516 {
9517 struct dwo_file *dwo_file;
9518 struct dwo_unit dwo_unit;
9519 };
9520
9521 /* die_reader_func for create_dwo_cu. */
9522
9523 static void
9524 create_dwo_cu_reader (const struct die_reader_specs *reader,
9525 const gdb_byte *info_ptr,
9526 struct die_info *comp_unit_die,
9527 int has_children,
9528 void *datap)
9529 {
9530 struct dwarf2_cu *cu = reader->cu;
9531 sect_offset offset = cu->per_cu->offset;
9532 struct dwarf2_section_info *section = cu->per_cu->section;
9533 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9534 struct dwo_file *dwo_file = data->dwo_file;
9535 struct dwo_unit *dwo_unit = &data->dwo_unit;
9536 struct attribute *attr;
9537
9538 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9539 if (attr == NULL)
9540 {
9541 complaint (&symfile_complaints,
9542 _("Dwarf Error: debug entry at offset 0x%x is missing"
9543 " its dwo_id [in module %s]"),
9544 offset.sect_off, dwo_file->dwo_name);
9545 return;
9546 }
9547
9548 dwo_unit->dwo_file = dwo_file;
9549 dwo_unit->signature = DW_UNSND (attr);
9550 dwo_unit->section = section;
9551 dwo_unit->offset = offset;
9552 dwo_unit->length = cu->per_cu->length;
9553
9554 if (dwarf_read_debug)
9555 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9556 offset.sect_off, hex_string (dwo_unit->signature));
9557 }
9558
9559 /* Create the dwo_unit for the lone CU in DWO_FILE.
9560 Note: This function processes DWO files only, not DWP files. */
9561
9562 static struct dwo_unit *
9563 create_dwo_cu (struct dwo_file *dwo_file)
9564 {
9565 struct objfile *objfile = dwarf2_per_objfile->objfile;
9566 struct dwarf2_section_info *section = &dwo_file->sections.info;
9567 const gdb_byte *info_ptr, *end_ptr;
9568 struct create_dwo_cu_data create_dwo_cu_data;
9569 struct dwo_unit *dwo_unit;
9570
9571 dwarf2_read_section (objfile, section);
9572 info_ptr = section->buffer;
9573
9574 if (info_ptr == NULL)
9575 return NULL;
9576
9577 if (dwarf_read_debug)
9578 {
9579 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9580 get_section_name (section),
9581 get_section_file_name (section));
9582 }
9583
9584 create_dwo_cu_data.dwo_file = dwo_file;
9585 dwo_unit = NULL;
9586
9587 end_ptr = info_ptr + section->size;
9588 while (info_ptr < end_ptr)
9589 {
9590 struct dwarf2_per_cu_data per_cu;
9591
9592 memset (&create_dwo_cu_data.dwo_unit, 0,
9593 sizeof (create_dwo_cu_data.dwo_unit));
9594 memset (&per_cu, 0, sizeof (per_cu));
9595 per_cu.objfile = objfile;
9596 per_cu.is_debug_types = 0;
9597 per_cu.offset.sect_off = info_ptr - section->buffer;
9598 per_cu.section = section;
9599
9600 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9601 create_dwo_cu_reader,
9602 &create_dwo_cu_data);
9603
9604 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9605 {
9606 /* If we've already found one, complain. We only support one
9607 because having more than one requires hacking the dwo_name of
9608 each to match, which is highly unlikely to happen. */
9609 if (dwo_unit != NULL)
9610 {
9611 complaint (&symfile_complaints,
9612 _("Multiple CUs in DWO file %s [in module %s]"),
9613 dwo_file->dwo_name, objfile_name (objfile));
9614 break;
9615 }
9616
9617 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9618 *dwo_unit = create_dwo_cu_data.dwo_unit;
9619 }
9620
9621 info_ptr += per_cu.length;
9622 }
9623
9624 return dwo_unit;
9625 }
9626
9627 /* DWP file .debug_{cu,tu}_index section format:
9628 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9629
9630 DWP Version 1:
9631
9632 Both index sections have the same format, and serve to map a 64-bit
9633 signature to a set of section numbers. Each section begins with a header,
9634 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9635 indexes, and a pool of 32-bit section numbers. The index sections will be
9636 aligned at 8-byte boundaries in the file.
9637
9638 The index section header consists of:
9639
9640 V, 32 bit version number
9641 -, 32 bits unused
9642 N, 32 bit number of compilation units or type units in the index
9643 M, 32 bit number of slots in the hash table
9644
9645 Numbers are recorded using the byte order of the application binary.
9646
9647 The hash table begins at offset 16 in the section, and consists of an array
9648 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9649 order of the application binary). Unused slots in the hash table are 0.
9650 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9651
9652 The parallel table begins immediately after the hash table
9653 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9654 array of 32-bit indexes (using the byte order of the application binary),
9655 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9656 table contains a 32-bit index into the pool of section numbers. For unused
9657 hash table slots, the corresponding entry in the parallel table will be 0.
9658
9659 The pool of section numbers begins immediately following the hash table
9660 (at offset 16 + 12 * M from the beginning of the section). The pool of
9661 section numbers consists of an array of 32-bit words (using the byte order
9662 of the application binary). Each item in the array is indexed starting
9663 from 0. The hash table entry provides the index of the first section
9664 number in the set. Additional section numbers in the set follow, and the
9665 set is terminated by a 0 entry (section number 0 is not used in ELF).
9666
9667 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9668 section must be the first entry in the set, and the .debug_abbrev.dwo must
9669 be the second entry. Other members of the set may follow in any order.
9670
9671 ---
9672
9673 DWP Version 2:
9674
9675 DWP Version 2 combines all the .debug_info, etc. sections into one,
9676 and the entries in the index tables are now offsets into these sections.
9677 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9678 section.
9679
9680 Index Section Contents:
9681 Header
9682 Hash Table of Signatures dwp_hash_table.hash_table
9683 Parallel Table of Indices dwp_hash_table.unit_table
9684 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9685 Table of Section Sizes dwp_hash_table.v2.sizes
9686
9687 The index section header consists of:
9688
9689 V, 32 bit version number
9690 L, 32 bit number of columns in the table of section offsets
9691 N, 32 bit number of compilation units or type units in the index
9692 M, 32 bit number of slots in the hash table
9693
9694 Numbers are recorded using the byte order of the application binary.
9695
9696 The hash table has the same format as version 1.
9697 The parallel table of indices has the same format as version 1,
9698 except that the entries are origin-1 indices into the table of sections
9699 offsets and the table of section sizes.
9700
9701 The table of offsets begins immediately following the parallel table
9702 (at offset 16 + 12 * M from the beginning of the section). The table is
9703 a two-dimensional array of 32-bit words (using the byte order of the
9704 application binary), with L columns and N+1 rows, in row-major order.
9705 Each row in the array is indexed starting from 0. The first row provides
9706 a key to the remaining rows: each column in this row provides an identifier
9707 for a debug section, and the offsets in the same column of subsequent rows
9708 refer to that section. The section identifiers are:
9709
9710 DW_SECT_INFO 1 .debug_info.dwo
9711 DW_SECT_TYPES 2 .debug_types.dwo
9712 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9713 DW_SECT_LINE 4 .debug_line.dwo
9714 DW_SECT_LOC 5 .debug_loc.dwo
9715 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9716 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9717 DW_SECT_MACRO 8 .debug_macro.dwo
9718
9719 The offsets provided by the CU and TU index sections are the base offsets
9720 for the contributions made by each CU or TU to the corresponding section
9721 in the package file. Each CU and TU header contains an abbrev_offset
9722 field, used to find the abbreviations table for that CU or TU within the
9723 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9724 be interpreted as relative to the base offset given in the index section.
9725 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9726 should be interpreted as relative to the base offset for .debug_line.dwo,
9727 and offsets into other debug sections obtained from DWARF attributes should
9728 also be interpreted as relative to the corresponding base offset.
9729
9730 The table of sizes begins immediately following the table of offsets.
9731 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9732 with L columns and N rows, in row-major order. Each row in the array is
9733 indexed starting from 1 (row 0 is shared by the two tables).
9734
9735 ---
9736
9737 Hash table lookup is handled the same in version 1 and 2:
9738
9739 We assume that N and M will not exceed 2^32 - 1.
9740 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9741
9742 Given a 64-bit compilation unit signature or a type signature S, an entry
9743 in the hash table is located as follows:
9744
9745 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9746 the low-order k bits all set to 1.
9747
9748 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9749
9750 3) If the hash table entry at index H matches the signature, use that
9751 entry. If the hash table entry at index H is unused (all zeroes),
9752 terminate the search: the signature is not present in the table.
9753
9754 4) Let H = (H + H') modulo M. Repeat at Step 3.
9755
9756 Because M > N and H' and M are relatively prime, the search is guaranteed
9757 to stop at an unused slot or find the match. */
9758
9759 /* Create a hash table to map DWO IDs to their CU/TU entry in
9760 .debug_{info,types}.dwo in DWP_FILE.
9761 Returns NULL if there isn't one.
9762 Note: This function processes DWP files only, not DWO files. */
9763
9764 static struct dwp_hash_table *
9765 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9766 {
9767 struct objfile *objfile = dwarf2_per_objfile->objfile;
9768 bfd *dbfd = dwp_file->dbfd;
9769 const gdb_byte *index_ptr, *index_end;
9770 struct dwarf2_section_info *index;
9771 uint32_t version, nr_columns, nr_units, nr_slots;
9772 struct dwp_hash_table *htab;
9773
9774 if (is_debug_types)
9775 index = &dwp_file->sections.tu_index;
9776 else
9777 index = &dwp_file->sections.cu_index;
9778
9779 if (dwarf2_section_empty_p (index))
9780 return NULL;
9781 dwarf2_read_section (objfile, index);
9782
9783 index_ptr = index->buffer;
9784 index_end = index_ptr + index->size;
9785
9786 version = read_4_bytes (dbfd, index_ptr);
9787 index_ptr += 4;
9788 if (version == 2)
9789 nr_columns = read_4_bytes (dbfd, index_ptr);
9790 else
9791 nr_columns = 0;
9792 index_ptr += 4;
9793 nr_units = read_4_bytes (dbfd, index_ptr);
9794 index_ptr += 4;
9795 nr_slots = read_4_bytes (dbfd, index_ptr);
9796 index_ptr += 4;
9797
9798 if (version != 1 && version != 2)
9799 {
9800 error (_("Dwarf Error: unsupported DWP file version (%s)"
9801 " [in module %s]"),
9802 pulongest (version), dwp_file->name);
9803 }
9804 if (nr_slots != (nr_slots & -nr_slots))
9805 {
9806 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9807 " is not power of 2 [in module %s]"),
9808 pulongest (nr_slots), dwp_file->name);
9809 }
9810
9811 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9812 htab->version = version;
9813 htab->nr_columns = nr_columns;
9814 htab->nr_units = nr_units;
9815 htab->nr_slots = nr_slots;
9816 htab->hash_table = index_ptr;
9817 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9818
9819 /* Exit early if the table is empty. */
9820 if (nr_slots == 0 || nr_units == 0
9821 || (version == 2 && nr_columns == 0))
9822 {
9823 /* All must be zero. */
9824 if (nr_slots != 0 || nr_units != 0
9825 || (version == 2 && nr_columns != 0))
9826 {
9827 complaint (&symfile_complaints,
9828 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9829 " all zero [in modules %s]"),
9830 dwp_file->name);
9831 }
9832 return htab;
9833 }
9834
9835 if (version == 1)
9836 {
9837 htab->section_pool.v1.indices =
9838 htab->unit_table + sizeof (uint32_t) * nr_slots;
9839 /* It's harder to decide whether the section is too small in v1.
9840 V1 is deprecated anyway so we punt. */
9841 }
9842 else
9843 {
9844 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9845 int *ids = htab->section_pool.v2.section_ids;
9846 /* Reverse map for error checking. */
9847 int ids_seen[DW_SECT_MAX + 1];
9848 int i;
9849
9850 if (nr_columns < 2)
9851 {
9852 error (_("Dwarf Error: bad DWP hash table, too few columns"
9853 " in section table [in module %s]"),
9854 dwp_file->name);
9855 }
9856 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9857 {
9858 error (_("Dwarf Error: bad DWP hash table, too many columns"
9859 " in section table [in module %s]"),
9860 dwp_file->name);
9861 }
9862 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9863 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9864 for (i = 0; i < nr_columns; ++i)
9865 {
9866 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9867
9868 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9869 {
9870 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9871 " in section table [in module %s]"),
9872 id, dwp_file->name);
9873 }
9874 if (ids_seen[id] != -1)
9875 {
9876 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9877 " id %d in section table [in module %s]"),
9878 id, dwp_file->name);
9879 }
9880 ids_seen[id] = i;
9881 ids[i] = id;
9882 }
9883 /* Must have exactly one info or types section. */
9884 if (((ids_seen[DW_SECT_INFO] != -1)
9885 + (ids_seen[DW_SECT_TYPES] != -1))
9886 != 1)
9887 {
9888 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9889 " DWO info/types section [in module %s]"),
9890 dwp_file->name);
9891 }
9892 /* Must have an abbrev section. */
9893 if (ids_seen[DW_SECT_ABBREV] == -1)
9894 {
9895 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9896 " section [in module %s]"),
9897 dwp_file->name);
9898 }
9899 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9900 htab->section_pool.v2.sizes =
9901 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9902 * nr_units * nr_columns);
9903 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9904 * nr_units * nr_columns))
9905 > index_end)
9906 {
9907 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9908 " [in module %s]"),
9909 dwp_file->name);
9910 }
9911 }
9912
9913 return htab;
9914 }
9915
9916 /* Update SECTIONS with the data from SECTP.
9917
9918 This function is like the other "locate" section routines that are
9919 passed to bfd_map_over_sections, but in this context the sections to
9920 read comes from the DWP V1 hash table, not the full ELF section table.
9921
9922 The result is non-zero for success, or zero if an error was found. */
9923
9924 static int
9925 locate_v1_virtual_dwo_sections (asection *sectp,
9926 struct virtual_v1_dwo_sections *sections)
9927 {
9928 const struct dwop_section_names *names = &dwop_section_names;
9929
9930 if (section_is_p (sectp->name, &names->abbrev_dwo))
9931 {
9932 /* There can be only one. */
9933 if (sections->abbrev.s.section != NULL)
9934 return 0;
9935 sections->abbrev.s.section = sectp;
9936 sections->abbrev.size = bfd_get_section_size (sectp);
9937 }
9938 else if (section_is_p (sectp->name, &names->info_dwo)
9939 || section_is_p (sectp->name, &names->types_dwo))
9940 {
9941 /* There can be only one. */
9942 if (sections->info_or_types.s.section != NULL)
9943 return 0;
9944 sections->info_or_types.s.section = sectp;
9945 sections->info_or_types.size = bfd_get_section_size (sectp);
9946 }
9947 else if (section_is_p (sectp->name, &names->line_dwo))
9948 {
9949 /* There can be only one. */
9950 if (sections->line.s.section != NULL)
9951 return 0;
9952 sections->line.s.section = sectp;
9953 sections->line.size = bfd_get_section_size (sectp);
9954 }
9955 else if (section_is_p (sectp->name, &names->loc_dwo))
9956 {
9957 /* There can be only one. */
9958 if (sections->loc.s.section != NULL)
9959 return 0;
9960 sections->loc.s.section = sectp;
9961 sections->loc.size = bfd_get_section_size (sectp);
9962 }
9963 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9964 {
9965 /* There can be only one. */
9966 if (sections->macinfo.s.section != NULL)
9967 return 0;
9968 sections->macinfo.s.section = sectp;
9969 sections->macinfo.size = bfd_get_section_size (sectp);
9970 }
9971 else if (section_is_p (sectp->name, &names->macro_dwo))
9972 {
9973 /* There can be only one. */
9974 if (sections->macro.s.section != NULL)
9975 return 0;
9976 sections->macro.s.section = sectp;
9977 sections->macro.size = bfd_get_section_size (sectp);
9978 }
9979 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9980 {
9981 /* There can be only one. */
9982 if (sections->str_offsets.s.section != NULL)
9983 return 0;
9984 sections->str_offsets.s.section = sectp;
9985 sections->str_offsets.size = bfd_get_section_size (sectp);
9986 }
9987 else
9988 {
9989 /* No other kind of section is valid. */
9990 return 0;
9991 }
9992
9993 return 1;
9994 }
9995
9996 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9997 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9998 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9999 This is for DWP version 1 files. */
10000
10001 static struct dwo_unit *
10002 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10003 uint32_t unit_index,
10004 const char *comp_dir,
10005 ULONGEST signature, int is_debug_types)
10006 {
10007 struct objfile *objfile = dwarf2_per_objfile->objfile;
10008 const struct dwp_hash_table *dwp_htab =
10009 is_debug_types ? dwp_file->tus : dwp_file->cus;
10010 bfd *dbfd = dwp_file->dbfd;
10011 const char *kind = is_debug_types ? "TU" : "CU";
10012 struct dwo_file *dwo_file;
10013 struct dwo_unit *dwo_unit;
10014 struct virtual_v1_dwo_sections sections;
10015 void **dwo_file_slot;
10016 char *virtual_dwo_name;
10017 struct cleanup *cleanups;
10018 int i;
10019
10020 gdb_assert (dwp_file->version == 1);
10021
10022 if (dwarf_read_debug)
10023 {
10024 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10025 kind,
10026 pulongest (unit_index), hex_string (signature),
10027 dwp_file->name);
10028 }
10029
10030 /* Fetch the sections of this DWO unit.
10031 Put a limit on the number of sections we look for so that bad data
10032 doesn't cause us to loop forever. */
10033
10034 #define MAX_NR_V1_DWO_SECTIONS \
10035 (1 /* .debug_info or .debug_types */ \
10036 + 1 /* .debug_abbrev */ \
10037 + 1 /* .debug_line */ \
10038 + 1 /* .debug_loc */ \
10039 + 1 /* .debug_str_offsets */ \
10040 + 1 /* .debug_macro or .debug_macinfo */ \
10041 + 1 /* trailing zero */)
10042
10043 memset (&sections, 0, sizeof (sections));
10044 cleanups = make_cleanup (null_cleanup, 0);
10045
10046 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10047 {
10048 asection *sectp;
10049 uint32_t section_nr =
10050 read_4_bytes (dbfd,
10051 dwp_htab->section_pool.v1.indices
10052 + (unit_index + i) * sizeof (uint32_t));
10053
10054 if (section_nr == 0)
10055 break;
10056 if (section_nr >= dwp_file->num_sections)
10057 {
10058 error (_("Dwarf Error: bad DWP hash table, section number too large"
10059 " [in module %s]"),
10060 dwp_file->name);
10061 }
10062
10063 sectp = dwp_file->elf_sections[section_nr];
10064 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10065 {
10066 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10067 " [in module %s]"),
10068 dwp_file->name);
10069 }
10070 }
10071
10072 if (i < 2
10073 || dwarf2_section_empty_p (&sections.info_or_types)
10074 || dwarf2_section_empty_p (&sections.abbrev))
10075 {
10076 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10077 " [in module %s]"),
10078 dwp_file->name);
10079 }
10080 if (i == MAX_NR_V1_DWO_SECTIONS)
10081 {
10082 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10083 " [in module %s]"),
10084 dwp_file->name);
10085 }
10086
10087 /* It's easier for the rest of the code if we fake a struct dwo_file and
10088 have dwo_unit "live" in that. At least for now.
10089
10090 The DWP file can be made up of a random collection of CUs and TUs.
10091 However, for each CU + set of TUs that came from the same original DWO
10092 file, we can combine them back into a virtual DWO file to save space
10093 (fewer struct dwo_file objects to allocate). Remember that for really
10094 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10095
10096 virtual_dwo_name =
10097 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10098 get_section_id (&sections.abbrev),
10099 get_section_id (&sections.line),
10100 get_section_id (&sections.loc),
10101 get_section_id (&sections.str_offsets));
10102 make_cleanup (xfree, virtual_dwo_name);
10103 /* Can we use an existing virtual DWO file? */
10104 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10105 /* Create one if necessary. */
10106 if (*dwo_file_slot == NULL)
10107 {
10108 if (dwarf_read_debug)
10109 {
10110 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10111 virtual_dwo_name);
10112 }
10113 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10114 dwo_file->dwo_name
10115 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10116 virtual_dwo_name,
10117 strlen (virtual_dwo_name));
10118 dwo_file->comp_dir = comp_dir;
10119 dwo_file->sections.abbrev = sections.abbrev;
10120 dwo_file->sections.line = sections.line;
10121 dwo_file->sections.loc = sections.loc;
10122 dwo_file->sections.macinfo = sections.macinfo;
10123 dwo_file->sections.macro = sections.macro;
10124 dwo_file->sections.str_offsets = sections.str_offsets;
10125 /* The "str" section is global to the entire DWP file. */
10126 dwo_file->sections.str = dwp_file->sections.str;
10127 /* The info or types section is assigned below to dwo_unit,
10128 there's no need to record it in dwo_file.
10129 Also, we can't simply record type sections in dwo_file because
10130 we record a pointer into the vector in dwo_unit. As we collect more
10131 types we'll grow the vector and eventually have to reallocate space
10132 for it, invalidating all copies of pointers into the previous
10133 contents. */
10134 *dwo_file_slot = dwo_file;
10135 }
10136 else
10137 {
10138 if (dwarf_read_debug)
10139 {
10140 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10141 virtual_dwo_name);
10142 }
10143 dwo_file = (struct dwo_file *) *dwo_file_slot;
10144 }
10145 do_cleanups (cleanups);
10146
10147 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10148 dwo_unit->dwo_file = dwo_file;
10149 dwo_unit->signature = signature;
10150 dwo_unit->section =
10151 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10152 *dwo_unit->section = sections.info_or_types;
10153 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10154
10155 return dwo_unit;
10156 }
10157
10158 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10159 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10160 piece within that section used by a TU/CU, return a virtual section
10161 of just that piece. */
10162
10163 static struct dwarf2_section_info
10164 create_dwp_v2_section (struct dwarf2_section_info *section,
10165 bfd_size_type offset, bfd_size_type size)
10166 {
10167 struct dwarf2_section_info result;
10168 asection *sectp;
10169
10170 gdb_assert (section != NULL);
10171 gdb_assert (!section->is_virtual);
10172
10173 memset (&result, 0, sizeof (result));
10174 result.s.containing_section = section;
10175 result.is_virtual = 1;
10176
10177 if (size == 0)
10178 return result;
10179
10180 sectp = get_section_bfd_section (section);
10181
10182 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10183 bounds of the real section. This is a pretty-rare event, so just
10184 flag an error (easier) instead of a warning and trying to cope. */
10185 if (sectp == NULL
10186 || offset + size > bfd_get_section_size (sectp))
10187 {
10188 bfd *abfd = sectp->owner;
10189
10190 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10191 " in section %s [in module %s]"),
10192 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10193 objfile_name (dwarf2_per_objfile->objfile));
10194 }
10195
10196 result.virtual_offset = offset;
10197 result.size = size;
10198 return result;
10199 }
10200
10201 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10202 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10203 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10204 This is for DWP version 2 files. */
10205
10206 static struct dwo_unit *
10207 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10208 uint32_t unit_index,
10209 const char *comp_dir,
10210 ULONGEST signature, int is_debug_types)
10211 {
10212 struct objfile *objfile = dwarf2_per_objfile->objfile;
10213 const struct dwp_hash_table *dwp_htab =
10214 is_debug_types ? dwp_file->tus : dwp_file->cus;
10215 bfd *dbfd = dwp_file->dbfd;
10216 const char *kind = is_debug_types ? "TU" : "CU";
10217 struct dwo_file *dwo_file;
10218 struct dwo_unit *dwo_unit;
10219 struct virtual_v2_dwo_sections sections;
10220 void **dwo_file_slot;
10221 char *virtual_dwo_name;
10222 struct cleanup *cleanups;
10223 int i;
10224
10225 gdb_assert (dwp_file->version == 2);
10226
10227 if (dwarf_read_debug)
10228 {
10229 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10230 kind,
10231 pulongest (unit_index), hex_string (signature),
10232 dwp_file->name);
10233 }
10234
10235 /* Fetch the section offsets of this DWO unit. */
10236
10237 memset (&sections, 0, sizeof (sections));
10238 cleanups = make_cleanup (null_cleanup, 0);
10239
10240 for (i = 0; i < dwp_htab->nr_columns; ++i)
10241 {
10242 uint32_t offset = read_4_bytes (dbfd,
10243 dwp_htab->section_pool.v2.offsets
10244 + (((unit_index - 1) * dwp_htab->nr_columns
10245 + i)
10246 * sizeof (uint32_t)));
10247 uint32_t size = read_4_bytes (dbfd,
10248 dwp_htab->section_pool.v2.sizes
10249 + (((unit_index - 1) * dwp_htab->nr_columns
10250 + i)
10251 * sizeof (uint32_t)));
10252
10253 switch (dwp_htab->section_pool.v2.section_ids[i])
10254 {
10255 case DW_SECT_INFO:
10256 case DW_SECT_TYPES:
10257 sections.info_or_types_offset = offset;
10258 sections.info_or_types_size = size;
10259 break;
10260 case DW_SECT_ABBREV:
10261 sections.abbrev_offset = offset;
10262 sections.abbrev_size = size;
10263 break;
10264 case DW_SECT_LINE:
10265 sections.line_offset = offset;
10266 sections.line_size = size;
10267 break;
10268 case DW_SECT_LOC:
10269 sections.loc_offset = offset;
10270 sections.loc_size = size;
10271 break;
10272 case DW_SECT_STR_OFFSETS:
10273 sections.str_offsets_offset = offset;
10274 sections.str_offsets_size = size;
10275 break;
10276 case DW_SECT_MACINFO:
10277 sections.macinfo_offset = offset;
10278 sections.macinfo_size = size;
10279 break;
10280 case DW_SECT_MACRO:
10281 sections.macro_offset = offset;
10282 sections.macro_size = size;
10283 break;
10284 }
10285 }
10286
10287 /* It's easier for the rest of the code if we fake a struct dwo_file and
10288 have dwo_unit "live" in that. At least for now.
10289
10290 The DWP file can be made up of a random collection of CUs and TUs.
10291 However, for each CU + set of TUs that came from the same original DWO
10292 file, we can combine them back into a virtual DWO file to save space
10293 (fewer struct dwo_file objects to allocate). Remember that for really
10294 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10295
10296 virtual_dwo_name =
10297 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10298 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10299 (long) (sections.line_size ? sections.line_offset : 0),
10300 (long) (sections.loc_size ? sections.loc_offset : 0),
10301 (long) (sections.str_offsets_size
10302 ? sections.str_offsets_offset : 0));
10303 make_cleanup (xfree, virtual_dwo_name);
10304 /* Can we use an existing virtual DWO file? */
10305 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10306 /* Create one if necessary. */
10307 if (*dwo_file_slot == NULL)
10308 {
10309 if (dwarf_read_debug)
10310 {
10311 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10312 virtual_dwo_name);
10313 }
10314 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10315 dwo_file->dwo_name
10316 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10317 virtual_dwo_name,
10318 strlen (virtual_dwo_name));
10319 dwo_file->comp_dir = comp_dir;
10320 dwo_file->sections.abbrev =
10321 create_dwp_v2_section (&dwp_file->sections.abbrev,
10322 sections.abbrev_offset, sections.abbrev_size);
10323 dwo_file->sections.line =
10324 create_dwp_v2_section (&dwp_file->sections.line,
10325 sections.line_offset, sections.line_size);
10326 dwo_file->sections.loc =
10327 create_dwp_v2_section (&dwp_file->sections.loc,
10328 sections.loc_offset, sections.loc_size);
10329 dwo_file->sections.macinfo =
10330 create_dwp_v2_section (&dwp_file->sections.macinfo,
10331 sections.macinfo_offset, sections.macinfo_size);
10332 dwo_file->sections.macro =
10333 create_dwp_v2_section (&dwp_file->sections.macro,
10334 sections.macro_offset, sections.macro_size);
10335 dwo_file->sections.str_offsets =
10336 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10337 sections.str_offsets_offset,
10338 sections.str_offsets_size);
10339 /* The "str" section is global to the entire DWP file. */
10340 dwo_file->sections.str = dwp_file->sections.str;
10341 /* The info or types section is assigned below to dwo_unit,
10342 there's no need to record it in dwo_file.
10343 Also, we can't simply record type sections in dwo_file because
10344 we record a pointer into the vector in dwo_unit. As we collect more
10345 types we'll grow the vector and eventually have to reallocate space
10346 for it, invalidating all copies of pointers into the previous
10347 contents. */
10348 *dwo_file_slot = dwo_file;
10349 }
10350 else
10351 {
10352 if (dwarf_read_debug)
10353 {
10354 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10355 virtual_dwo_name);
10356 }
10357 dwo_file = (struct dwo_file *) *dwo_file_slot;
10358 }
10359 do_cleanups (cleanups);
10360
10361 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10362 dwo_unit->dwo_file = dwo_file;
10363 dwo_unit->signature = signature;
10364 dwo_unit->section =
10365 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10366 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10367 ? &dwp_file->sections.types
10368 : &dwp_file->sections.info,
10369 sections.info_or_types_offset,
10370 sections.info_or_types_size);
10371 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10372
10373 return dwo_unit;
10374 }
10375
10376 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10377 Returns NULL if the signature isn't found. */
10378
10379 static struct dwo_unit *
10380 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10381 ULONGEST signature, int is_debug_types)
10382 {
10383 const struct dwp_hash_table *dwp_htab =
10384 is_debug_types ? dwp_file->tus : dwp_file->cus;
10385 bfd *dbfd = dwp_file->dbfd;
10386 uint32_t mask = dwp_htab->nr_slots - 1;
10387 uint32_t hash = signature & mask;
10388 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10389 unsigned int i;
10390 void **slot;
10391 struct dwo_unit find_dwo_cu;
10392
10393 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10394 find_dwo_cu.signature = signature;
10395 slot = htab_find_slot (is_debug_types
10396 ? dwp_file->loaded_tus
10397 : dwp_file->loaded_cus,
10398 &find_dwo_cu, INSERT);
10399
10400 if (*slot != NULL)
10401 return (struct dwo_unit *) *slot;
10402
10403 /* Use a for loop so that we don't loop forever on bad debug info. */
10404 for (i = 0; i < dwp_htab->nr_slots; ++i)
10405 {
10406 ULONGEST signature_in_table;
10407
10408 signature_in_table =
10409 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10410 if (signature_in_table == signature)
10411 {
10412 uint32_t unit_index =
10413 read_4_bytes (dbfd,
10414 dwp_htab->unit_table + hash * sizeof (uint32_t));
10415
10416 if (dwp_file->version == 1)
10417 {
10418 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10419 comp_dir, signature,
10420 is_debug_types);
10421 }
10422 else
10423 {
10424 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10425 comp_dir, signature,
10426 is_debug_types);
10427 }
10428 return (struct dwo_unit *) *slot;
10429 }
10430 if (signature_in_table == 0)
10431 return NULL;
10432 hash = (hash + hash2) & mask;
10433 }
10434
10435 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10436 " [in module %s]"),
10437 dwp_file->name);
10438 }
10439
10440 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10441 Open the file specified by FILE_NAME and hand it off to BFD for
10442 preliminary analysis. Return a newly initialized bfd *, which
10443 includes a canonicalized copy of FILE_NAME.
10444 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10445 SEARCH_CWD is true if the current directory is to be searched.
10446 It will be searched before debug-file-directory.
10447 If successful, the file is added to the bfd include table of the
10448 objfile's bfd (see gdb_bfd_record_inclusion).
10449 If unable to find/open the file, return NULL.
10450 NOTE: This function is derived from symfile_bfd_open. */
10451
10452 static bfd *
10453 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10454 {
10455 bfd *sym_bfd;
10456 int desc, flags;
10457 char *absolute_name;
10458 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10459 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10460 to debug_file_directory. */
10461 char *search_path;
10462 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10463
10464 if (search_cwd)
10465 {
10466 if (*debug_file_directory != '\0')
10467 search_path = concat (".", dirname_separator_string,
10468 debug_file_directory, (char *) NULL);
10469 else
10470 search_path = xstrdup (".");
10471 }
10472 else
10473 search_path = xstrdup (debug_file_directory);
10474
10475 flags = OPF_RETURN_REALPATH;
10476 if (is_dwp)
10477 flags |= OPF_SEARCH_IN_PATH;
10478 desc = openp (search_path, flags, file_name,
10479 O_RDONLY | O_BINARY, &absolute_name);
10480 xfree (search_path);
10481 if (desc < 0)
10482 return NULL;
10483
10484 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10485 xfree (absolute_name);
10486 if (sym_bfd == NULL)
10487 return NULL;
10488 bfd_set_cacheable (sym_bfd, 1);
10489
10490 if (!bfd_check_format (sym_bfd, bfd_object))
10491 {
10492 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10493 return NULL;
10494 }
10495
10496 /* Success. Record the bfd as having been included by the objfile's bfd.
10497 This is important because things like demangled_names_hash lives in the
10498 objfile's per_bfd space and may have references to things like symbol
10499 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10500 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10501
10502 return sym_bfd;
10503 }
10504
10505 /* Try to open DWO file FILE_NAME.
10506 COMP_DIR is the DW_AT_comp_dir attribute.
10507 The result is the bfd handle of the file.
10508 If there is a problem finding or opening the file, return NULL.
10509 Upon success, the canonicalized path of the file is stored in the bfd,
10510 same as symfile_bfd_open. */
10511
10512 static bfd *
10513 open_dwo_file (const char *file_name, const char *comp_dir)
10514 {
10515 bfd *abfd;
10516
10517 if (IS_ABSOLUTE_PATH (file_name))
10518 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10519
10520 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10521
10522 if (comp_dir != NULL)
10523 {
10524 char *path_to_try = concat (comp_dir, SLASH_STRING,
10525 file_name, (char *) NULL);
10526
10527 /* NOTE: If comp_dir is a relative path, this will also try the
10528 search path, which seems useful. */
10529 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10530 xfree (path_to_try);
10531 if (abfd != NULL)
10532 return abfd;
10533 }
10534
10535 /* That didn't work, try debug-file-directory, which, despite its name,
10536 is a list of paths. */
10537
10538 if (*debug_file_directory == '\0')
10539 return NULL;
10540
10541 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10542 }
10543
10544 /* This function is mapped across the sections and remembers the offset and
10545 size of each of the DWO debugging sections we are interested in. */
10546
10547 static void
10548 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10549 {
10550 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10551 const struct dwop_section_names *names = &dwop_section_names;
10552
10553 if (section_is_p (sectp->name, &names->abbrev_dwo))
10554 {
10555 dwo_sections->abbrev.s.section = sectp;
10556 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10557 }
10558 else if (section_is_p (sectp->name, &names->info_dwo))
10559 {
10560 dwo_sections->info.s.section = sectp;
10561 dwo_sections->info.size = bfd_get_section_size (sectp);
10562 }
10563 else if (section_is_p (sectp->name, &names->line_dwo))
10564 {
10565 dwo_sections->line.s.section = sectp;
10566 dwo_sections->line.size = bfd_get_section_size (sectp);
10567 }
10568 else if (section_is_p (sectp->name, &names->loc_dwo))
10569 {
10570 dwo_sections->loc.s.section = sectp;
10571 dwo_sections->loc.size = bfd_get_section_size (sectp);
10572 }
10573 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10574 {
10575 dwo_sections->macinfo.s.section = sectp;
10576 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10577 }
10578 else if (section_is_p (sectp->name, &names->macro_dwo))
10579 {
10580 dwo_sections->macro.s.section = sectp;
10581 dwo_sections->macro.size = bfd_get_section_size (sectp);
10582 }
10583 else if (section_is_p (sectp->name, &names->str_dwo))
10584 {
10585 dwo_sections->str.s.section = sectp;
10586 dwo_sections->str.size = bfd_get_section_size (sectp);
10587 }
10588 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10589 {
10590 dwo_sections->str_offsets.s.section = sectp;
10591 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10592 }
10593 else if (section_is_p (sectp->name, &names->types_dwo))
10594 {
10595 struct dwarf2_section_info type_section;
10596
10597 memset (&type_section, 0, sizeof (type_section));
10598 type_section.s.section = sectp;
10599 type_section.size = bfd_get_section_size (sectp);
10600 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10601 &type_section);
10602 }
10603 }
10604
10605 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10606 by PER_CU. This is for the non-DWP case.
10607 The result is NULL if DWO_NAME can't be found. */
10608
10609 static struct dwo_file *
10610 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10611 const char *dwo_name, const char *comp_dir)
10612 {
10613 struct objfile *objfile = dwarf2_per_objfile->objfile;
10614 struct dwo_file *dwo_file;
10615 bfd *dbfd;
10616 struct cleanup *cleanups;
10617
10618 dbfd = open_dwo_file (dwo_name, comp_dir);
10619 if (dbfd == NULL)
10620 {
10621 if (dwarf_read_debug)
10622 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10623 return NULL;
10624 }
10625 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10626 dwo_file->dwo_name = dwo_name;
10627 dwo_file->comp_dir = comp_dir;
10628 dwo_file->dbfd = dbfd;
10629
10630 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10631
10632 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10633
10634 dwo_file->cu = create_dwo_cu (dwo_file);
10635
10636 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10637 dwo_file->sections.types);
10638
10639 discard_cleanups (cleanups);
10640
10641 if (dwarf_read_debug)
10642 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10643
10644 return dwo_file;
10645 }
10646
10647 /* This function is mapped across the sections and remembers the offset and
10648 size of each of the DWP debugging sections common to version 1 and 2 that
10649 we are interested in. */
10650
10651 static void
10652 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10653 void *dwp_file_ptr)
10654 {
10655 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10656 const struct dwop_section_names *names = &dwop_section_names;
10657 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10658
10659 /* Record the ELF section number for later lookup: this is what the
10660 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10661 gdb_assert (elf_section_nr < dwp_file->num_sections);
10662 dwp_file->elf_sections[elf_section_nr] = sectp;
10663
10664 /* Look for specific sections that we need. */
10665 if (section_is_p (sectp->name, &names->str_dwo))
10666 {
10667 dwp_file->sections.str.s.section = sectp;
10668 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10669 }
10670 else if (section_is_p (sectp->name, &names->cu_index))
10671 {
10672 dwp_file->sections.cu_index.s.section = sectp;
10673 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10674 }
10675 else if (section_is_p (sectp->name, &names->tu_index))
10676 {
10677 dwp_file->sections.tu_index.s.section = sectp;
10678 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10679 }
10680 }
10681
10682 /* This function is mapped across the sections and remembers the offset and
10683 size of each of the DWP version 2 debugging sections that we are interested
10684 in. This is split into a separate function because we don't know if we
10685 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10686
10687 static void
10688 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10689 {
10690 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10691 const struct dwop_section_names *names = &dwop_section_names;
10692 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10693
10694 /* Record the ELF section number for later lookup: this is what the
10695 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10696 gdb_assert (elf_section_nr < dwp_file->num_sections);
10697 dwp_file->elf_sections[elf_section_nr] = sectp;
10698
10699 /* Look for specific sections that we need. */
10700 if (section_is_p (sectp->name, &names->abbrev_dwo))
10701 {
10702 dwp_file->sections.abbrev.s.section = sectp;
10703 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10704 }
10705 else if (section_is_p (sectp->name, &names->info_dwo))
10706 {
10707 dwp_file->sections.info.s.section = sectp;
10708 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10709 }
10710 else if (section_is_p (sectp->name, &names->line_dwo))
10711 {
10712 dwp_file->sections.line.s.section = sectp;
10713 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10714 }
10715 else if (section_is_p (sectp->name, &names->loc_dwo))
10716 {
10717 dwp_file->sections.loc.s.section = sectp;
10718 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10719 }
10720 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10721 {
10722 dwp_file->sections.macinfo.s.section = sectp;
10723 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10724 }
10725 else if (section_is_p (sectp->name, &names->macro_dwo))
10726 {
10727 dwp_file->sections.macro.s.section = sectp;
10728 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10729 }
10730 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10731 {
10732 dwp_file->sections.str_offsets.s.section = sectp;
10733 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10734 }
10735 else if (section_is_p (sectp->name, &names->types_dwo))
10736 {
10737 dwp_file->sections.types.s.section = sectp;
10738 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10739 }
10740 }
10741
10742 /* Hash function for dwp_file loaded CUs/TUs. */
10743
10744 static hashval_t
10745 hash_dwp_loaded_cutus (const void *item)
10746 {
10747 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10748
10749 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10750 return dwo_unit->signature;
10751 }
10752
10753 /* Equality function for dwp_file loaded CUs/TUs. */
10754
10755 static int
10756 eq_dwp_loaded_cutus (const void *a, const void *b)
10757 {
10758 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10759 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10760
10761 return dua->signature == dub->signature;
10762 }
10763
10764 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10765
10766 static htab_t
10767 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10768 {
10769 return htab_create_alloc_ex (3,
10770 hash_dwp_loaded_cutus,
10771 eq_dwp_loaded_cutus,
10772 NULL,
10773 &objfile->objfile_obstack,
10774 hashtab_obstack_allocate,
10775 dummy_obstack_deallocate);
10776 }
10777
10778 /* Try to open DWP file FILE_NAME.
10779 The result is the bfd handle of the file.
10780 If there is a problem finding or opening the file, return NULL.
10781 Upon success, the canonicalized path of the file is stored in the bfd,
10782 same as symfile_bfd_open. */
10783
10784 static bfd *
10785 open_dwp_file (const char *file_name)
10786 {
10787 bfd *abfd;
10788
10789 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10790 if (abfd != NULL)
10791 return abfd;
10792
10793 /* Work around upstream bug 15652.
10794 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10795 [Whether that's a "bug" is debatable, but it is getting in our way.]
10796 We have no real idea where the dwp file is, because gdb's realpath-ing
10797 of the executable's path may have discarded the needed info.
10798 [IWBN if the dwp file name was recorded in the executable, akin to
10799 .gnu_debuglink, but that doesn't exist yet.]
10800 Strip the directory from FILE_NAME and search again. */
10801 if (*debug_file_directory != '\0')
10802 {
10803 /* Don't implicitly search the current directory here.
10804 If the user wants to search "." to handle this case,
10805 it must be added to debug-file-directory. */
10806 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10807 0 /*search_cwd*/);
10808 }
10809
10810 return NULL;
10811 }
10812
10813 /* Initialize the use of the DWP file for the current objfile.
10814 By convention the name of the DWP file is ${objfile}.dwp.
10815 The result is NULL if it can't be found. */
10816
10817 static struct dwp_file *
10818 open_and_init_dwp_file (void)
10819 {
10820 struct objfile *objfile = dwarf2_per_objfile->objfile;
10821 struct dwp_file *dwp_file;
10822 char *dwp_name;
10823 bfd *dbfd;
10824 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
10825
10826 /* Try to find first .dwp for the binary file before any symbolic links
10827 resolving. */
10828
10829 /* If the objfile is a debug file, find the name of the real binary
10830 file and get the name of dwp file from there. */
10831 if (objfile->separate_debug_objfile_backlink != NULL)
10832 {
10833 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10834 const char *backlink_basename = lbasename (backlink->original_name);
10835 char *debug_dirname = ldirname (objfile->original_name);
10836
10837 make_cleanup (xfree, debug_dirname);
10838 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10839 SLASH_STRING, backlink_basename);
10840 }
10841 else
10842 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10843 make_cleanup (xfree, dwp_name);
10844
10845 dbfd = open_dwp_file (dwp_name);
10846 if (dbfd == NULL
10847 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10848 {
10849 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10850 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10851 make_cleanup (xfree, dwp_name);
10852 dbfd = open_dwp_file (dwp_name);
10853 }
10854
10855 if (dbfd == NULL)
10856 {
10857 if (dwarf_read_debug)
10858 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10859 do_cleanups (cleanups);
10860 return NULL;
10861 }
10862 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10863 dwp_file->name = bfd_get_filename (dbfd);
10864 dwp_file->dbfd = dbfd;
10865 do_cleanups (cleanups);
10866
10867 /* +1: section 0 is unused */
10868 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10869 dwp_file->elf_sections =
10870 OBSTACK_CALLOC (&objfile->objfile_obstack,
10871 dwp_file->num_sections, asection *);
10872
10873 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10874
10875 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10876
10877 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10878
10879 /* The DWP file version is stored in the hash table. Oh well. */
10880 if (dwp_file->cus->version != dwp_file->tus->version)
10881 {
10882 /* Technically speaking, we should try to limp along, but this is
10883 pretty bizarre. We use pulongest here because that's the established
10884 portability solution (e.g, we cannot use %u for uint32_t). */
10885 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10886 " TU version %s [in DWP file %s]"),
10887 pulongest (dwp_file->cus->version),
10888 pulongest (dwp_file->tus->version), dwp_name);
10889 }
10890 dwp_file->version = dwp_file->cus->version;
10891
10892 if (dwp_file->version == 2)
10893 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10894
10895 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10896 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10897
10898 if (dwarf_read_debug)
10899 {
10900 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10901 fprintf_unfiltered (gdb_stdlog,
10902 " %s CUs, %s TUs\n",
10903 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10904 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10905 }
10906
10907 return dwp_file;
10908 }
10909
10910 /* Wrapper around open_and_init_dwp_file, only open it once. */
10911
10912 static struct dwp_file *
10913 get_dwp_file (void)
10914 {
10915 if (! dwarf2_per_objfile->dwp_checked)
10916 {
10917 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10918 dwarf2_per_objfile->dwp_checked = 1;
10919 }
10920 return dwarf2_per_objfile->dwp_file;
10921 }
10922
10923 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10924 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10925 or in the DWP file for the objfile, referenced by THIS_UNIT.
10926 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10927 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10928
10929 This is called, for example, when wanting to read a variable with a
10930 complex location. Therefore we don't want to do file i/o for every call.
10931 Therefore we don't want to look for a DWO file on every call.
10932 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10933 then we check if we've already seen DWO_NAME, and only THEN do we check
10934 for a DWO file.
10935
10936 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10937 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10938
10939 static struct dwo_unit *
10940 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10941 const char *dwo_name, const char *comp_dir,
10942 ULONGEST signature, int is_debug_types)
10943 {
10944 struct objfile *objfile = dwarf2_per_objfile->objfile;
10945 const char *kind = is_debug_types ? "TU" : "CU";
10946 void **dwo_file_slot;
10947 struct dwo_file *dwo_file;
10948 struct dwp_file *dwp_file;
10949
10950 /* First see if there's a DWP file.
10951 If we have a DWP file but didn't find the DWO inside it, don't
10952 look for the original DWO file. It makes gdb behave differently
10953 depending on whether one is debugging in the build tree. */
10954
10955 dwp_file = get_dwp_file ();
10956 if (dwp_file != NULL)
10957 {
10958 const struct dwp_hash_table *dwp_htab =
10959 is_debug_types ? dwp_file->tus : dwp_file->cus;
10960
10961 if (dwp_htab != NULL)
10962 {
10963 struct dwo_unit *dwo_cutu =
10964 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10965 signature, is_debug_types);
10966
10967 if (dwo_cutu != NULL)
10968 {
10969 if (dwarf_read_debug)
10970 {
10971 fprintf_unfiltered (gdb_stdlog,
10972 "Virtual DWO %s %s found: @%s\n",
10973 kind, hex_string (signature),
10974 host_address_to_string (dwo_cutu));
10975 }
10976 return dwo_cutu;
10977 }
10978 }
10979 }
10980 else
10981 {
10982 /* No DWP file, look for the DWO file. */
10983
10984 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10985 if (*dwo_file_slot == NULL)
10986 {
10987 /* Read in the file and build a table of the CUs/TUs it contains. */
10988 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10989 }
10990 /* NOTE: This will be NULL if unable to open the file. */
10991 dwo_file = (struct dwo_file *) *dwo_file_slot;
10992
10993 if (dwo_file != NULL)
10994 {
10995 struct dwo_unit *dwo_cutu = NULL;
10996
10997 if (is_debug_types && dwo_file->tus)
10998 {
10999 struct dwo_unit find_dwo_cutu;
11000
11001 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11002 find_dwo_cutu.signature = signature;
11003 dwo_cutu
11004 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11005 }
11006 else if (!is_debug_types && dwo_file->cu)
11007 {
11008 if (signature == dwo_file->cu->signature)
11009 dwo_cutu = dwo_file->cu;
11010 }
11011
11012 if (dwo_cutu != NULL)
11013 {
11014 if (dwarf_read_debug)
11015 {
11016 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11017 kind, dwo_name, hex_string (signature),
11018 host_address_to_string (dwo_cutu));
11019 }
11020 return dwo_cutu;
11021 }
11022 }
11023 }
11024
11025 /* We didn't find it. This could mean a dwo_id mismatch, or
11026 someone deleted the DWO/DWP file, or the search path isn't set up
11027 correctly to find the file. */
11028
11029 if (dwarf_read_debug)
11030 {
11031 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11032 kind, dwo_name, hex_string (signature));
11033 }
11034
11035 /* This is a warning and not a complaint because it can be caused by
11036 pilot error (e.g., user accidentally deleting the DWO). */
11037 {
11038 /* Print the name of the DWP file if we looked there, helps the user
11039 better diagnose the problem. */
11040 char *dwp_text = NULL;
11041 struct cleanup *cleanups;
11042
11043 if (dwp_file != NULL)
11044 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11045 cleanups = make_cleanup (xfree, dwp_text);
11046
11047 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11048 " [in module %s]"),
11049 kind, dwo_name, hex_string (signature),
11050 dwp_text != NULL ? dwp_text : "",
11051 this_unit->is_debug_types ? "TU" : "CU",
11052 this_unit->offset.sect_off, objfile_name (objfile));
11053
11054 do_cleanups (cleanups);
11055 }
11056 return NULL;
11057 }
11058
11059 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11060 See lookup_dwo_cutu_unit for details. */
11061
11062 static struct dwo_unit *
11063 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11064 const char *dwo_name, const char *comp_dir,
11065 ULONGEST signature)
11066 {
11067 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11068 }
11069
11070 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11071 See lookup_dwo_cutu_unit for details. */
11072
11073 static struct dwo_unit *
11074 lookup_dwo_type_unit (struct signatured_type *this_tu,
11075 const char *dwo_name, const char *comp_dir)
11076 {
11077 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11078 }
11079
11080 /* Traversal function for queue_and_load_all_dwo_tus. */
11081
11082 static int
11083 queue_and_load_dwo_tu (void **slot, void *info)
11084 {
11085 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11086 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11087 ULONGEST signature = dwo_unit->signature;
11088 struct signatured_type *sig_type =
11089 lookup_dwo_signatured_type (per_cu->cu, signature);
11090
11091 if (sig_type != NULL)
11092 {
11093 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11094
11095 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11096 a real dependency of PER_CU on SIG_TYPE. That is detected later
11097 while processing PER_CU. */
11098 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11099 load_full_type_unit (sig_cu);
11100 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11101 }
11102
11103 return 1;
11104 }
11105
11106 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11107 The DWO may have the only definition of the type, though it may not be
11108 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11109 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11110
11111 static void
11112 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11113 {
11114 struct dwo_unit *dwo_unit;
11115 struct dwo_file *dwo_file;
11116
11117 gdb_assert (!per_cu->is_debug_types);
11118 gdb_assert (get_dwp_file () == NULL);
11119 gdb_assert (per_cu->cu != NULL);
11120
11121 dwo_unit = per_cu->cu->dwo_unit;
11122 gdb_assert (dwo_unit != NULL);
11123
11124 dwo_file = dwo_unit->dwo_file;
11125 if (dwo_file->tus != NULL)
11126 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11127 }
11128
11129 /* Free all resources associated with DWO_FILE.
11130 Close the DWO file and munmap the sections.
11131 All memory should be on the objfile obstack. */
11132
11133 static void
11134 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11135 {
11136
11137 /* Note: dbfd is NULL for virtual DWO files. */
11138 gdb_bfd_unref (dwo_file->dbfd);
11139
11140 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11141 }
11142
11143 /* Wrapper for free_dwo_file for use in cleanups. */
11144
11145 static void
11146 free_dwo_file_cleanup (void *arg)
11147 {
11148 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11149 struct objfile *objfile = dwarf2_per_objfile->objfile;
11150
11151 free_dwo_file (dwo_file, objfile);
11152 }
11153
11154 /* Traversal function for free_dwo_files. */
11155
11156 static int
11157 free_dwo_file_from_slot (void **slot, void *info)
11158 {
11159 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11160 struct objfile *objfile = (struct objfile *) info;
11161
11162 free_dwo_file (dwo_file, objfile);
11163
11164 return 1;
11165 }
11166
11167 /* Free all resources associated with DWO_FILES. */
11168
11169 static void
11170 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11171 {
11172 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11173 }
11174 \f
11175 /* Read in various DIEs. */
11176
11177 /* qsort helper for inherit_abstract_dies. */
11178
11179 static int
11180 unsigned_int_compar (const void *ap, const void *bp)
11181 {
11182 unsigned int a = *(unsigned int *) ap;
11183 unsigned int b = *(unsigned int *) bp;
11184
11185 return (a > b) - (b > a);
11186 }
11187
11188 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11189 Inherit only the children of the DW_AT_abstract_origin DIE not being
11190 already referenced by DW_AT_abstract_origin from the children of the
11191 current DIE. */
11192
11193 static void
11194 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11195 {
11196 struct die_info *child_die;
11197 unsigned die_children_count;
11198 /* CU offsets which were referenced by children of the current DIE. */
11199 sect_offset *offsets;
11200 sect_offset *offsets_end, *offsetp;
11201 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11202 struct die_info *origin_die;
11203 /* Iterator of the ORIGIN_DIE children. */
11204 struct die_info *origin_child_die;
11205 struct cleanup *cleanups;
11206 struct attribute *attr;
11207 struct dwarf2_cu *origin_cu;
11208 struct pending **origin_previous_list_in_scope;
11209
11210 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11211 if (!attr)
11212 return;
11213
11214 /* Note that following die references may follow to a die in a
11215 different cu. */
11216
11217 origin_cu = cu;
11218 origin_die = follow_die_ref (die, attr, &origin_cu);
11219
11220 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11221 symbols in. */
11222 origin_previous_list_in_scope = origin_cu->list_in_scope;
11223 origin_cu->list_in_scope = cu->list_in_scope;
11224
11225 if (die->tag != origin_die->tag
11226 && !(die->tag == DW_TAG_inlined_subroutine
11227 && origin_die->tag == DW_TAG_subprogram))
11228 complaint (&symfile_complaints,
11229 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11230 die->offset.sect_off, origin_die->offset.sect_off);
11231
11232 child_die = die->child;
11233 die_children_count = 0;
11234 while (child_die && child_die->tag)
11235 {
11236 child_die = sibling_die (child_die);
11237 die_children_count++;
11238 }
11239 offsets = XNEWVEC (sect_offset, die_children_count);
11240 cleanups = make_cleanup (xfree, offsets);
11241
11242 offsets_end = offsets;
11243 for (child_die = die->child;
11244 child_die && child_die->tag;
11245 child_die = sibling_die (child_die))
11246 {
11247 struct die_info *child_origin_die;
11248 struct dwarf2_cu *child_origin_cu;
11249
11250 /* We are trying to process concrete instance entries:
11251 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11252 it's not relevant to our analysis here. i.e. detecting DIEs that are
11253 present in the abstract instance but not referenced in the concrete
11254 one. */
11255 if (child_die->tag == DW_TAG_GNU_call_site)
11256 continue;
11257
11258 /* For each CHILD_DIE, find the corresponding child of
11259 ORIGIN_DIE. If there is more than one layer of
11260 DW_AT_abstract_origin, follow them all; there shouldn't be,
11261 but GCC versions at least through 4.4 generate this (GCC PR
11262 40573). */
11263 child_origin_die = child_die;
11264 child_origin_cu = cu;
11265 while (1)
11266 {
11267 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11268 child_origin_cu);
11269 if (attr == NULL)
11270 break;
11271 child_origin_die = follow_die_ref (child_origin_die, attr,
11272 &child_origin_cu);
11273 }
11274
11275 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11276 counterpart may exist. */
11277 if (child_origin_die != child_die)
11278 {
11279 if (child_die->tag != child_origin_die->tag
11280 && !(child_die->tag == DW_TAG_inlined_subroutine
11281 && child_origin_die->tag == DW_TAG_subprogram))
11282 complaint (&symfile_complaints,
11283 _("Child DIE 0x%x and its abstract origin 0x%x have "
11284 "different tags"), child_die->offset.sect_off,
11285 child_origin_die->offset.sect_off);
11286 if (child_origin_die->parent != origin_die)
11287 complaint (&symfile_complaints,
11288 _("Child DIE 0x%x and its abstract origin 0x%x have "
11289 "different parents"), child_die->offset.sect_off,
11290 child_origin_die->offset.sect_off);
11291 else
11292 *offsets_end++ = child_origin_die->offset;
11293 }
11294 }
11295 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11296 unsigned_int_compar);
11297 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11298 if (offsetp[-1].sect_off == offsetp->sect_off)
11299 complaint (&symfile_complaints,
11300 _("Multiple children of DIE 0x%x refer "
11301 "to DIE 0x%x as their abstract origin"),
11302 die->offset.sect_off, offsetp->sect_off);
11303
11304 offsetp = offsets;
11305 origin_child_die = origin_die->child;
11306 while (origin_child_die && origin_child_die->tag)
11307 {
11308 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11309 while (offsetp < offsets_end
11310 && offsetp->sect_off < origin_child_die->offset.sect_off)
11311 offsetp++;
11312 if (offsetp >= offsets_end
11313 || offsetp->sect_off > origin_child_die->offset.sect_off)
11314 {
11315 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11316 Check whether we're already processing ORIGIN_CHILD_DIE.
11317 This can happen with mutually referenced abstract_origins.
11318 PR 16581. */
11319 if (!origin_child_die->in_process)
11320 process_die (origin_child_die, origin_cu);
11321 }
11322 origin_child_die = sibling_die (origin_child_die);
11323 }
11324 origin_cu->list_in_scope = origin_previous_list_in_scope;
11325
11326 do_cleanups (cleanups);
11327 }
11328
11329 static void
11330 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11331 {
11332 struct objfile *objfile = cu->objfile;
11333 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11334 struct context_stack *newobj;
11335 CORE_ADDR lowpc;
11336 CORE_ADDR highpc;
11337 struct die_info *child_die;
11338 struct attribute *attr, *call_line, *call_file;
11339 const char *name;
11340 CORE_ADDR baseaddr;
11341 struct block *block;
11342 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11343 VEC (symbolp) *template_args = NULL;
11344 struct template_symbol *templ_func = NULL;
11345
11346 if (inlined_func)
11347 {
11348 /* If we do not have call site information, we can't show the
11349 caller of this inlined function. That's too confusing, so
11350 only use the scope for local variables. */
11351 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11352 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11353 if (call_line == NULL || call_file == NULL)
11354 {
11355 read_lexical_block_scope (die, cu);
11356 return;
11357 }
11358 }
11359
11360 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11361
11362 name = dwarf2_name (die, cu);
11363
11364 /* Ignore functions with missing or empty names. These are actually
11365 illegal according to the DWARF standard. */
11366 if (name == NULL)
11367 {
11368 complaint (&symfile_complaints,
11369 _("missing name for subprogram DIE at %d"),
11370 die->offset.sect_off);
11371 return;
11372 }
11373
11374 /* Ignore functions with missing or invalid low and high pc attributes. */
11375 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11376 {
11377 attr = dwarf2_attr (die, DW_AT_external, cu);
11378 if (!attr || !DW_UNSND (attr))
11379 complaint (&symfile_complaints,
11380 _("cannot get low and high bounds "
11381 "for subprogram DIE at %d"),
11382 die->offset.sect_off);
11383 return;
11384 }
11385
11386 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11387 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11388
11389 /* If we have any template arguments, then we must allocate a
11390 different sort of symbol. */
11391 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11392 {
11393 if (child_die->tag == DW_TAG_template_type_param
11394 || child_die->tag == DW_TAG_template_value_param)
11395 {
11396 templ_func = allocate_template_symbol (objfile);
11397 templ_func->base.is_cplus_template_function = 1;
11398 break;
11399 }
11400 }
11401
11402 newobj = push_context (0, lowpc);
11403 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11404 (struct symbol *) templ_func);
11405
11406 /* If there is a location expression for DW_AT_frame_base, record
11407 it. */
11408 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11409 if (attr)
11410 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11411
11412 /* If there is a location for the static link, record it. */
11413 newobj->static_link = NULL;
11414 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11415 if (attr)
11416 {
11417 newobj->static_link
11418 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11419 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11420 }
11421
11422 cu->list_in_scope = &local_symbols;
11423
11424 if (die->child != NULL)
11425 {
11426 child_die = die->child;
11427 while (child_die && child_die->tag)
11428 {
11429 if (child_die->tag == DW_TAG_template_type_param
11430 || child_die->tag == DW_TAG_template_value_param)
11431 {
11432 struct symbol *arg = new_symbol (child_die, NULL, cu);
11433
11434 if (arg != NULL)
11435 VEC_safe_push (symbolp, template_args, arg);
11436 }
11437 else
11438 process_die (child_die, cu);
11439 child_die = sibling_die (child_die);
11440 }
11441 }
11442
11443 inherit_abstract_dies (die, cu);
11444
11445 /* If we have a DW_AT_specification, we might need to import using
11446 directives from the context of the specification DIE. See the
11447 comment in determine_prefix. */
11448 if (cu->language == language_cplus
11449 && dwarf2_attr (die, DW_AT_specification, cu))
11450 {
11451 struct dwarf2_cu *spec_cu = cu;
11452 struct die_info *spec_die = die_specification (die, &spec_cu);
11453
11454 while (spec_die)
11455 {
11456 child_die = spec_die->child;
11457 while (child_die && child_die->tag)
11458 {
11459 if (child_die->tag == DW_TAG_imported_module)
11460 process_die (child_die, spec_cu);
11461 child_die = sibling_die (child_die);
11462 }
11463
11464 /* In some cases, GCC generates specification DIEs that
11465 themselves contain DW_AT_specification attributes. */
11466 spec_die = die_specification (spec_die, &spec_cu);
11467 }
11468 }
11469
11470 newobj = pop_context ();
11471 /* Make a block for the local symbols within. */
11472 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11473 newobj->static_link, lowpc, highpc);
11474
11475 /* For C++, set the block's scope. */
11476 if ((cu->language == language_cplus
11477 || cu->language == language_fortran
11478 || cu->language == language_d)
11479 && cu->processing_has_namespace_info)
11480 block_set_scope (block, determine_prefix (die, cu),
11481 &objfile->objfile_obstack);
11482
11483 /* If we have address ranges, record them. */
11484 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11485
11486 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11487
11488 /* Attach template arguments to function. */
11489 if (! VEC_empty (symbolp, template_args))
11490 {
11491 gdb_assert (templ_func != NULL);
11492
11493 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11494 templ_func->template_arguments
11495 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11496 templ_func->n_template_arguments);
11497 memcpy (templ_func->template_arguments,
11498 VEC_address (symbolp, template_args),
11499 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11500 VEC_free (symbolp, template_args);
11501 }
11502
11503 /* In C++, we can have functions nested inside functions (e.g., when
11504 a function declares a class that has methods). This means that
11505 when we finish processing a function scope, we may need to go
11506 back to building a containing block's symbol lists. */
11507 local_symbols = newobj->locals;
11508 local_using_directives = newobj->local_using_directives;
11509
11510 /* If we've finished processing a top-level function, subsequent
11511 symbols go in the file symbol list. */
11512 if (outermost_context_p ())
11513 cu->list_in_scope = &file_symbols;
11514 }
11515
11516 /* Process all the DIES contained within a lexical block scope. Start
11517 a new scope, process the dies, and then close the scope. */
11518
11519 static void
11520 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11521 {
11522 struct objfile *objfile = cu->objfile;
11523 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11524 struct context_stack *newobj;
11525 CORE_ADDR lowpc, highpc;
11526 struct die_info *child_die;
11527 CORE_ADDR baseaddr;
11528
11529 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11530
11531 /* Ignore blocks with missing or invalid low and high pc attributes. */
11532 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11533 as multiple lexical blocks? Handling children in a sane way would
11534 be nasty. Might be easier to properly extend generic blocks to
11535 describe ranges. */
11536 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11537 return;
11538 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11539 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11540
11541 push_context (0, lowpc);
11542 if (die->child != NULL)
11543 {
11544 child_die = die->child;
11545 while (child_die && child_die->tag)
11546 {
11547 process_die (child_die, cu);
11548 child_die = sibling_die (child_die);
11549 }
11550 }
11551 inherit_abstract_dies (die, cu);
11552 newobj = pop_context ();
11553
11554 if (local_symbols != NULL || local_using_directives != NULL)
11555 {
11556 struct block *block
11557 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11558 newobj->start_addr, highpc);
11559
11560 /* Note that recording ranges after traversing children, as we
11561 do here, means that recording a parent's ranges entails
11562 walking across all its children's ranges as they appear in
11563 the address map, which is quadratic behavior.
11564
11565 It would be nicer to record the parent's ranges before
11566 traversing its children, simply overriding whatever you find
11567 there. But since we don't even decide whether to create a
11568 block until after we've traversed its children, that's hard
11569 to do. */
11570 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11571 }
11572 local_symbols = newobj->locals;
11573 local_using_directives = newobj->local_using_directives;
11574 }
11575
11576 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11577
11578 static void
11579 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11580 {
11581 struct objfile *objfile = cu->objfile;
11582 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11583 CORE_ADDR pc, baseaddr;
11584 struct attribute *attr;
11585 struct call_site *call_site, call_site_local;
11586 void **slot;
11587 int nparams;
11588 struct die_info *child_die;
11589
11590 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11591
11592 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11593 if (!attr)
11594 {
11595 complaint (&symfile_complaints,
11596 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11597 "DIE 0x%x [in module %s]"),
11598 die->offset.sect_off, objfile_name (objfile));
11599 return;
11600 }
11601 pc = attr_value_as_address (attr) + baseaddr;
11602 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11603
11604 if (cu->call_site_htab == NULL)
11605 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11606 NULL, &objfile->objfile_obstack,
11607 hashtab_obstack_allocate, NULL);
11608 call_site_local.pc = pc;
11609 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11610 if (*slot != NULL)
11611 {
11612 complaint (&symfile_complaints,
11613 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11614 "DIE 0x%x [in module %s]"),
11615 paddress (gdbarch, pc), die->offset.sect_off,
11616 objfile_name (objfile));
11617 return;
11618 }
11619
11620 /* Count parameters at the caller. */
11621
11622 nparams = 0;
11623 for (child_die = die->child; child_die && child_die->tag;
11624 child_die = sibling_die (child_die))
11625 {
11626 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11627 {
11628 complaint (&symfile_complaints,
11629 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11630 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11631 child_die->tag, child_die->offset.sect_off,
11632 objfile_name (objfile));
11633 continue;
11634 }
11635
11636 nparams++;
11637 }
11638
11639 call_site
11640 = ((struct call_site *)
11641 obstack_alloc (&objfile->objfile_obstack,
11642 sizeof (*call_site)
11643 + (sizeof (*call_site->parameter) * (nparams - 1))));
11644 *slot = call_site;
11645 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11646 call_site->pc = pc;
11647
11648 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11649 {
11650 struct die_info *func_die;
11651
11652 /* Skip also over DW_TAG_inlined_subroutine. */
11653 for (func_die = die->parent;
11654 func_die && func_die->tag != DW_TAG_subprogram
11655 && func_die->tag != DW_TAG_subroutine_type;
11656 func_die = func_die->parent);
11657
11658 /* DW_AT_GNU_all_call_sites is a superset
11659 of DW_AT_GNU_all_tail_call_sites. */
11660 if (func_die
11661 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11662 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11663 {
11664 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11665 not complete. But keep CALL_SITE for look ups via call_site_htab,
11666 both the initial caller containing the real return address PC and
11667 the final callee containing the current PC of a chain of tail
11668 calls do not need to have the tail call list complete. But any
11669 function candidate for a virtual tail call frame searched via
11670 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11671 determined unambiguously. */
11672 }
11673 else
11674 {
11675 struct type *func_type = NULL;
11676
11677 if (func_die)
11678 func_type = get_die_type (func_die, cu);
11679 if (func_type != NULL)
11680 {
11681 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11682
11683 /* Enlist this call site to the function. */
11684 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11685 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11686 }
11687 else
11688 complaint (&symfile_complaints,
11689 _("Cannot find function owning DW_TAG_GNU_call_site "
11690 "DIE 0x%x [in module %s]"),
11691 die->offset.sect_off, objfile_name (objfile));
11692 }
11693 }
11694
11695 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11696 if (attr == NULL)
11697 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11698 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11699 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11700 /* Keep NULL DWARF_BLOCK. */;
11701 else if (attr_form_is_block (attr))
11702 {
11703 struct dwarf2_locexpr_baton *dlbaton;
11704
11705 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11706 dlbaton->data = DW_BLOCK (attr)->data;
11707 dlbaton->size = DW_BLOCK (attr)->size;
11708 dlbaton->per_cu = cu->per_cu;
11709
11710 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11711 }
11712 else if (attr_form_is_ref (attr))
11713 {
11714 struct dwarf2_cu *target_cu = cu;
11715 struct die_info *target_die;
11716
11717 target_die = follow_die_ref (die, attr, &target_cu);
11718 gdb_assert (target_cu->objfile == objfile);
11719 if (die_is_declaration (target_die, target_cu))
11720 {
11721 const char *target_physname;
11722
11723 /* Prefer the mangled name; otherwise compute the demangled one. */
11724 target_physname = dwarf2_string_attr (target_die,
11725 DW_AT_linkage_name,
11726 target_cu);
11727 if (target_physname == NULL)
11728 target_physname = dwarf2_string_attr (target_die,
11729 DW_AT_MIPS_linkage_name,
11730 target_cu);
11731 if (target_physname == NULL)
11732 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11733 if (target_physname == NULL)
11734 complaint (&symfile_complaints,
11735 _("DW_AT_GNU_call_site_target target DIE has invalid "
11736 "physname, for referencing DIE 0x%x [in module %s]"),
11737 die->offset.sect_off, objfile_name (objfile));
11738 else
11739 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11740 }
11741 else
11742 {
11743 CORE_ADDR lowpc;
11744
11745 /* DW_AT_entry_pc should be preferred. */
11746 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11747 complaint (&symfile_complaints,
11748 _("DW_AT_GNU_call_site_target target DIE has invalid "
11749 "low pc, for referencing DIE 0x%x [in module %s]"),
11750 die->offset.sect_off, objfile_name (objfile));
11751 else
11752 {
11753 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11754 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11755 }
11756 }
11757 }
11758 else
11759 complaint (&symfile_complaints,
11760 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11761 "block nor reference, for DIE 0x%x [in module %s]"),
11762 die->offset.sect_off, objfile_name (objfile));
11763
11764 call_site->per_cu = cu->per_cu;
11765
11766 for (child_die = die->child;
11767 child_die && child_die->tag;
11768 child_die = sibling_die (child_die))
11769 {
11770 struct call_site_parameter *parameter;
11771 struct attribute *loc, *origin;
11772
11773 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11774 {
11775 /* Already printed the complaint above. */
11776 continue;
11777 }
11778
11779 gdb_assert (call_site->parameter_count < nparams);
11780 parameter = &call_site->parameter[call_site->parameter_count];
11781
11782 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11783 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11784 register is contained in DW_AT_GNU_call_site_value. */
11785
11786 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11787 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11788 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11789 {
11790 sect_offset offset;
11791
11792 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11793 offset = dwarf2_get_ref_die_offset (origin);
11794 if (!offset_in_cu_p (&cu->header, offset))
11795 {
11796 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11797 binding can be done only inside one CU. Such referenced DIE
11798 therefore cannot be even moved to DW_TAG_partial_unit. */
11799 complaint (&symfile_complaints,
11800 _("DW_AT_abstract_origin offset is not in CU for "
11801 "DW_TAG_GNU_call_site child DIE 0x%x "
11802 "[in module %s]"),
11803 child_die->offset.sect_off, objfile_name (objfile));
11804 continue;
11805 }
11806 parameter->u.param_offset.cu_off = (offset.sect_off
11807 - cu->header.offset.sect_off);
11808 }
11809 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11810 {
11811 complaint (&symfile_complaints,
11812 _("No DW_FORM_block* DW_AT_location for "
11813 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11814 child_die->offset.sect_off, objfile_name (objfile));
11815 continue;
11816 }
11817 else
11818 {
11819 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11820 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11821 if (parameter->u.dwarf_reg != -1)
11822 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11823 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11824 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11825 &parameter->u.fb_offset))
11826 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11827 else
11828 {
11829 complaint (&symfile_complaints,
11830 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11831 "for DW_FORM_block* DW_AT_location is supported for "
11832 "DW_TAG_GNU_call_site child DIE 0x%x "
11833 "[in module %s]"),
11834 child_die->offset.sect_off, objfile_name (objfile));
11835 continue;
11836 }
11837 }
11838
11839 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11840 if (!attr_form_is_block (attr))
11841 {
11842 complaint (&symfile_complaints,
11843 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11844 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11845 child_die->offset.sect_off, objfile_name (objfile));
11846 continue;
11847 }
11848 parameter->value = DW_BLOCK (attr)->data;
11849 parameter->value_size = DW_BLOCK (attr)->size;
11850
11851 /* Parameters are not pre-cleared by memset above. */
11852 parameter->data_value = NULL;
11853 parameter->data_value_size = 0;
11854 call_site->parameter_count++;
11855
11856 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11857 if (attr)
11858 {
11859 if (!attr_form_is_block (attr))
11860 complaint (&symfile_complaints,
11861 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11862 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11863 child_die->offset.sect_off, objfile_name (objfile));
11864 else
11865 {
11866 parameter->data_value = DW_BLOCK (attr)->data;
11867 parameter->data_value_size = DW_BLOCK (attr)->size;
11868 }
11869 }
11870 }
11871 }
11872
11873 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11874 Return 1 if the attributes are present and valid, otherwise, return 0.
11875 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11876
11877 static int
11878 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11879 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11880 struct partial_symtab *ranges_pst)
11881 {
11882 struct objfile *objfile = cu->objfile;
11883 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11884 struct comp_unit_head *cu_header = &cu->header;
11885 bfd *obfd = objfile->obfd;
11886 unsigned int addr_size = cu_header->addr_size;
11887 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11888 /* Base address selection entry. */
11889 CORE_ADDR base;
11890 int found_base;
11891 unsigned int dummy;
11892 const gdb_byte *buffer;
11893 int low_set;
11894 CORE_ADDR low = 0;
11895 CORE_ADDR high = 0;
11896 CORE_ADDR baseaddr;
11897
11898 found_base = cu->base_known;
11899 base = cu->base_address;
11900
11901 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11902 if (offset >= dwarf2_per_objfile->ranges.size)
11903 {
11904 complaint (&symfile_complaints,
11905 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11906 offset);
11907 return 0;
11908 }
11909 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11910
11911 low_set = 0;
11912
11913 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11914
11915 while (1)
11916 {
11917 CORE_ADDR range_beginning, range_end;
11918
11919 range_beginning = read_address (obfd, buffer, cu, &dummy);
11920 buffer += addr_size;
11921 range_end = read_address (obfd, buffer, cu, &dummy);
11922 buffer += addr_size;
11923 offset += 2 * addr_size;
11924
11925 /* An end of list marker is a pair of zero addresses. */
11926 if (range_beginning == 0 && range_end == 0)
11927 /* Found the end of list entry. */
11928 break;
11929
11930 /* Each base address selection entry is a pair of 2 values.
11931 The first is the largest possible address, the second is
11932 the base address. Check for a base address here. */
11933 if ((range_beginning & mask) == mask)
11934 {
11935 /* If we found the largest possible address, then we already
11936 have the base address in range_end. */
11937 base = range_end;
11938 found_base = 1;
11939 continue;
11940 }
11941
11942 if (!found_base)
11943 {
11944 /* We have no valid base address for the ranges
11945 data. */
11946 complaint (&symfile_complaints,
11947 _("Invalid .debug_ranges data (no base address)"));
11948 return 0;
11949 }
11950
11951 if (range_beginning > range_end)
11952 {
11953 /* Inverted range entries are invalid. */
11954 complaint (&symfile_complaints,
11955 _("Invalid .debug_ranges data (inverted range)"));
11956 return 0;
11957 }
11958
11959 /* Empty range entries have no effect. */
11960 if (range_beginning == range_end)
11961 continue;
11962
11963 range_beginning += base;
11964 range_end += base;
11965
11966 /* A not-uncommon case of bad debug info.
11967 Don't pollute the addrmap with bad data. */
11968 if (range_beginning + baseaddr == 0
11969 && !dwarf2_per_objfile->has_section_at_zero)
11970 {
11971 complaint (&symfile_complaints,
11972 _(".debug_ranges entry has start address of zero"
11973 " [in module %s]"), objfile_name (objfile));
11974 continue;
11975 }
11976
11977 if (ranges_pst != NULL)
11978 {
11979 CORE_ADDR lowpc;
11980 CORE_ADDR highpc;
11981
11982 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11983 range_beginning + baseaddr);
11984 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11985 range_end + baseaddr);
11986 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11987 ranges_pst);
11988 }
11989
11990 /* FIXME: This is recording everything as a low-high
11991 segment of consecutive addresses. We should have a
11992 data structure for discontiguous block ranges
11993 instead. */
11994 if (! low_set)
11995 {
11996 low = range_beginning;
11997 high = range_end;
11998 low_set = 1;
11999 }
12000 else
12001 {
12002 if (range_beginning < low)
12003 low = range_beginning;
12004 if (range_end > high)
12005 high = range_end;
12006 }
12007 }
12008
12009 if (! low_set)
12010 /* If the first entry is an end-of-list marker, the range
12011 describes an empty scope, i.e. no instructions. */
12012 return 0;
12013
12014 if (low_return)
12015 *low_return = low;
12016 if (high_return)
12017 *high_return = high;
12018 return 1;
12019 }
12020
12021 /* Get low and high pc attributes from a die. Return 1 if the attributes
12022 are present and valid, otherwise, return 0. Return -1 if the range is
12023 discontinuous, i.e. derived from DW_AT_ranges information. */
12024
12025 static int
12026 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12027 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12028 struct partial_symtab *pst)
12029 {
12030 struct attribute *attr;
12031 struct attribute *attr_high;
12032 CORE_ADDR low = 0;
12033 CORE_ADDR high = 0;
12034 int ret = 0;
12035
12036 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12037 if (attr_high)
12038 {
12039 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12040 if (attr)
12041 {
12042 low = attr_value_as_address (attr);
12043 high = attr_value_as_address (attr_high);
12044 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12045 high += low;
12046 }
12047 else
12048 /* Found high w/o low attribute. */
12049 return 0;
12050
12051 /* Found consecutive range of addresses. */
12052 ret = 1;
12053 }
12054 else
12055 {
12056 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12057 if (attr != NULL)
12058 {
12059 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12060 We take advantage of the fact that DW_AT_ranges does not appear
12061 in DW_TAG_compile_unit of DWO files. */
12062 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12063 unsigned int ranges_offset = (DW_UNSND (attr)
12064 + (need_ranges_base
12065 ? cu->ranges_base
12066 : 0));
12067
12068 /* Value of the DW_AT_ranges attribute is the offset in the
12069 .debug_ranges section. */
12070 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12071 return 0;
12072 /* Found discontinuous range of addresses. */
12073 ret = -1;
12074 }
12075 }
12076
12077 /* read_partial_die has also the strict LOW < HIGH requirement. */
12078 if (high <= low)
12079 return 0;
12080
12081 /* When using the GNU linker, .gnu.linkonce. sections are used to
12082 eliminate duplicate copies of functions and vtables and such.
12083 The linker will arbitrarily choose one and discard the others.
12084 The AT_*_pc values for such functions refer to local labels in
12085 these sections. If the section from that file was discarded, the
12086 labels are not in the output, so the relocs get a value of 0.
12087 If this is a discarded function, mark the pc bounds as invalid,
12088 so that GDB will ignore it. */
12089 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12090 return 0;
12091
12092 *lowpc = low;
12093 if (highpc)
12094 *highpc = high;
12095 return ret;
12096 }
12097
12098 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12099 its low and high PC addresses. Do nothing if these addresses could not
12100 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12101 and HIGHPC to the high address if greater than HIGHPC. */
12102
12103 static void
12104 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12105 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12106 struct dwarf2_cu *cu)
12107 {
12108 CORE_ADDR low, high;
12109 struct die_info *child = die->child;
12110
12111 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12112 {
12113 *lowpc = min (*lowpc, low);
12114 *highpc = max (*highpc, high);
12115 }
12116
12117 /* If the language does not allow nested subprograms (either inside
12118 subprograms or lexical blocks), we're done. */
12119 if (cu->language != language_ada)
12120 return;
12121
12122 /* Check all the children of the given DIE. If it contains nested
12123 subprograms, then check their pc bounds. Likewise, we need to
12124 check lexical blocks as well, as they may also contain subprogram
12125 definitions. */
12126 while (child && child->tag)
12127 {
12128 if (child->tag == DW_TAG_subprogram
12129 || child->tag == DW_TAG_lexical_block)
12130 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12131 child = sibling_die (child);
12132 }
12133 }
12134
12135 /* Get the low and high pc's represented by the scope DIE, and store
12136 them in *LOWPC and *HIGHPC. If the correct values can't be
12137 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12138
12139 static void
12140 get_scope_pc_bounds (struct die_info *die,
12141 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12142 struct dwarf2_cu *cu)
12143 {
12144 CORE_ADDR best_low = (CORE_ADDR) -1;
12145 CORE_ADDR best_high = (CORE_ADDR) 0;
12146 CORE_ADDR current_low, current_high;
12147
12148 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12149 {
12150 best_low = current_low;
12151 best_high = current_high;
12152 }
12153 else
12154 {
12155 struct die_info *child = die->child;
12156
12157 while (child && child->tag)
12158 {
12159 switch (child->tag) {
12160 case DW_TAG_subprogram:
12161 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12162 break;
12163 case DW_TAG_namespace:
12164 case DW_TAG_module:
12165 /* FIXME: carlton/2004-01-16: Should we do this for
12166 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12167 that current GCC's always emit the DIEs corresponding
12168 to definitions of methods of classes as children of a
12169 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12170 the DIEs giving the declarations, which could be
12171 anywhere). But I don't see any reason why the
12172 standards says that they have to be there. */
12173 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12174
12175 if (current_low != ((CORE_ADDR) -1))
12176 {
12177 best_low = min (best_low, current_low);
12178 best_high = max (best_high, current_high);
12179 }
12180 break;
12181 default:
12182 /* Ignore. */
12183 break;
12184 }
12185
12186 child = sibling_die (child);
12187 }
12188 }
12189
12190 *lowpc = best_low;
12191 *highpc = best_high;
12192 }
12193
12194 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12195 in DIE. */
12196
12197 static void
12198 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12199 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12200 {
12201 struct objfile *objfile = cu->objfile;
12202 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12203 struct attribute *attr;
12204 struct attribute *attr_high;
12205
12206 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12207 if (attr_high)
12208 {
12209 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12210 if (attr)
12211 {
12212 CORE_ADDR low = attr_value_as_address (attr);
12213 CORE_ADDR high = attr_value_as_address (attr_high);
12214
12215 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12216 high += low;
12217
12218 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12219 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12220 record_block_range (block, low, high - 1);
12221 }
12222 }
12223
12224 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12225 if (attr)
12226 {
12227 bfd *obfd = objfile->obfd;
12228 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12229 We take advantage of the fact that DW_AT_ranges does not appear
12230 in DW_TAG_compile_unit of DWO files. */
12231 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12232
12233 /* The value of the DW_AT_ranges attribute is the offset of the
12234 address range list in the .debug_ranges section. */
12235 unsigned long offset = (DW_UNSND (attr)
12236 + (need_ranges_base ? cu->ranges_base : 0));
12237 const gdb_byte *buffer;
12238
12239 /* For some target architectures, but not others, the
12240 read_address function sign-extends the addresses it returns.
12241 To recognize base address selection entries, we need a
12242 mask. */
12243 unsigned int addr_size = cu->header.addr_size;
12244 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12245
12246 /* The base address, to which the next pair is relative. Note
12247 that this 'base' is a DWARF concept: most entries in a range
12248 list are relative, to reduce the number of relocs against the
12249 debugging information. This is separate from this function's
12250 'baseaddr' argument, which GDB uses to relocate debugging
12251 information from a shared library based on the address at
12252 which the library was loaded. */
12253 CORE_ADDR base = cu->base_address;
12254 int base_known = cu->base_known;
12255
12256 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12257 if (offset >= dwarf2_per_objfile->ranges.size)
12258 {
12259 complaint (&symfile_complaints,
12260 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12261 offset);
12262 return;
12263 }
12264 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12265
12266 for (;;)
12267 {
12268 unsigned int bytes_read;
12269 CORE_ADDR start, end;
12270
12271 start = read_address (obfd, buffer, cu, &bytes_read);
12272 buffer += bytes_read;
12273 end = read_address (obfd, buffer, cu, &bytes_read);
12274 buffer += bytes_read;
12275
12276 /* Did we find the end of the range list? */
12277 if (start == 0 && end == 0)
12278 break;
12279
12280 /* Did we find a base address selection entry? */
12281 else if ((start & base_select_mask) == base_select_mask)
12282 {
12283 base = end;
12284 base_known = 1;
12285 }
12286
12287 /* We found an ordinary address range. */
12288 else
12289 {
12290 if (!base_known)
12291 {
12292 complaint (&symfile_complaints,
12293 _("Invalid .debug_ranges data "
12294 "(no base address)"));
12295 return;
12296 }
12297
12298 if (start > end)
12299 {
12300 /* Inverted range entries are invalid. */
12301 complaint (&symfile_complaints,
12302 _("Invalid .debug_ranges data "
12303 "(inverted range)"));
12304 return;
12305 }
12306
12307 /* Empty range entries have no effect. */
12308 if (start == end)
12309 continue;
12310
12311 start += base + baseaddr;
12312 end += base + baseaddr;
12313
12314 /* A not-uncommon case of bad debug info.
12315 Don't pollute the addrmap with bad data. */
12316 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12317 {
12318 complaint (&symfile_complaints,
12319 _(".debug_ranges entry has start address of zero"
12320 " [in module %s]"), objfile_name (objfile));
12321 continue;
12322 }
12323
12324 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12325 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12326 record_block_range (block, start, end - 1);
12327 }
12328 }
12329 }
12330 }
12331
12332 /* Check whether the producer field indicates either of GCC < 4.6, or the
12333 Intel C/C++ compiler, and cache the result in CU. */
12334
12335 static void
12336 check_producer (struct dwarf2_cu *cu)
12337 {
12338 int major, minor;
12339
12340 if (cu->producer == NULL)
12341 {
12342 /* For unknown compilers expect their behavior is DWARF version
12343 compliant.
12344
12345 GCC started to support .debug_types sections by -gdwarf-4 since
12346 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12347 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12348 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12349 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12350 }
12351 else if (producer_is_gcc (cu->producer, &major, &minor))
12352 {
12353 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12354 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12355 }
12356 else if (startswith (cu->producer, "Intel(R) C"))
12357 cu->producer_is_icc = 1;
12358 else
12359 {
12360 /* For other non-GCC compilers, expect their behavior is DWARF version
12361 compliant. */
12362 }
12363
12364 cu->checked_producer = 1;
12365 }
12366
12367 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12368 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12369 during 4.6.0 experimental. */
12370
12371 static int
12372 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12373 {
12374 if (!cu->checked_producer)
12375 check_producer (cu);
12376
12377 return cu->producer_is_gxx_lt_4_6;
12378 }
12379
12380 /* Return the default accessibility type if it is not overriden by
12381 DW_AT_accessibility. */
12382
12383 static enum dwarf_access_attribute
12384 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12385 {
12386 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12387 {
12388 /* The default DWARF 2 accessibility for members is public, the default
12389 accessibility for inheritance is private. */
12390
12391 if (die->tag != DW_TAG_inheritance)
12392 return DW_ACCESS_public;
12393 else
12394 return DW_ACCESS_private;
12395 }
12396 else
12397 {
12398 /* DWARF 3+ defines the default accessibility a different way. The same
12399 rules apply now for DW_TAG_inheritance as for the members and it only
12400 depends on the container kind. */
12401
12402 if (die->parent->tag == DW_TAG_class_type)
12403 return DW_ACCESS_private;
12404 else
12405 return DW_ACCESS_public;
12406 }
12407 }
12408
12409 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12410 offset. If the attribute was not found return 0, otherwise return
12411 1. If it was found but could not properly be handled, set *OFFSET
12412 to 0. */
12413
12414 static int
12415 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12416 LONGEST *offset)
12417 {
12418 struct attribute *attr;
12419
12420 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12421 if (attr != NULL)
12422 {
12423 *offset = 0;
12424
12425 /* Note that we do not check for a section offset first here.
12426 This is because DW_AT_data_member_location is new in DWARF 4,
12427 so if we see it, we can assume that a constant form is really
12428 a constant and not a section offset. */
12429 if (attr_form_is_constant (attr))
12430 *offset = dwarf2_get_attr_constant_value (attr, 0);
12431 else if (attr_form_is_section_offset (attr))
12432 dwarf2_complex_location_expr_complaint ();
12433 else if (attr_form_is_block (attr))
12434 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12435 else
12436 dwarf2_complex_location_expr_complaint ();
12437
12438 return 1;
12439 }
12440
12441 return 0;
12442 }
12443
12444 /* Add an aggregate field to the field list. */
12445
12446 static void
12447 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12448 struct dwarf2_cu *cu)
12449 {
12450 struct objfile *objfile = cu->objfile;
12451 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12452 struct nextfield *new_field;
12453 struct attribute *attr;
12454 struct field *fp;
12455 const char *fieldname = "";
12456
12457 /* Allocate a new field list entry and link it in. */
12458 new_field = XNEW (struct nextfield);
12459 make_cleanup (xfree, new_field);
12460 memset (new_field, 0, sizeof (struct nextfield));
12461
12462 if (die->tag == DW_TAG_inheritance)
12463 {
12464 new_field->next = fip->baseclasses;
12465 fip->baseclasses = new_field;
12466 }
12467 else
12468 {
12469 new_field->next = fip->fields;
12470 fip->fields = new_field;
12471 }
12472 fip->nfields++;
12473
12474 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12475 if (attr)
12476 new_field->accessibility = DW_UNSND (attr);
12477 else
12478 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12479 if (new_field->accessibility != DW_ACCESS_public)
12480 fip->non_public_fields = 1;
12481
12482 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12483 if (attr)
12484 new_field->virtuality = DW_UNSND (attr);
12485 else
12486 new_field->virtuality = DW_VIRTUALITY_none;
12487
12488 fp = &new_field->field;
12489
12490 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12491 {
12492 LONGEST offset;
12493
12494 /* Data member other than a C++ static data member. */
12495
12496 /* Get type of field. */
12497 fp->type = die_type (die, cu);
12498
12499 SET_FIELD_BITPOS (*fp, 0);
12500
12501 /* Get bit size of field (zero if none). */
12502 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12503 if (attr)
12504 {
12505 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12506 }
12507 else
12508 {
12509 FIELD_BITSIZE (*fp) = 0;
12510 }
12511
12512 /* Get bit offset of field. */
12513 if (handle_data_member_location (die, cu, &offset))
12514 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12515 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12516 if (attr)
12517 {
12518 if (gdbarch_bits_big_endian (gdbarch))
12519 {
12520 /* For big endian bits, the DW_AT_bit_offset gives the
12521 additional bit offset from the MSB of the containing
12522 anonymous object to the MSB of the field. We don't
12523 have to do anything special since we don't need to
12524 know the size of the anonymous object. */
12525 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12526 }
12527 else
12528 {
12529 /* For little endian bits, compute the bit offset to the
12530 MSB of the anonymous object, subtract off the number of
12531 bits from the MSB of the field to the MSB of the
12532 object, and then subtract off the number of bits of
12533 the field itself. The result is the bit offset of
12534 the LSB of the field. */
12535 int anonymous_size;
12536 int bit_offset = DW_UNSND (attr);
12537
12538 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12539 if (attr)
12540 {
12541 /* The size of the anonymous object containing
12542 the bit field is explicit, so use the
12543 indicated size (in bytes). */
12544 anonymous_size = DW_UNSND (attr);
12545 }
12546 else
12547 {
12548 /* The size of the anonymous object containing
12549 the bit field must be inferred from the type
12550 attribute of the data member containing the
12551 bit field. */
12552 anonymous_size = TYPE_LENGTH (fp->type);
12553 }
12554 SET_FIELD_BITPOS (*fp,
12555 (FIELD_BITPOS (*fp)
12556 + anonymous_size * bits_per_byte
12557 - bit_offset - FIELD_BITSIZE (*fp)));
12558 }
12559 }
12560
12561 /* Get name of field. */
12562 fieldname = dwarf2_name (die, cu);
12563 if (fieldname == NULL)
12564 fieldname = "";
12565
12566 /* The name is already allocated along with this objfile, so we don't
12567 need to duplicate it for the type. */
12568 fp->name = fieldname;
12569
12570 /* Change accessibility for artificial fields (e.g. virtual table
12571 pointer or virtual base class pointer) to private. */
12572 if (dwarf2_attr (die, DW_AT_artificial, cu))
12573 {
12574 FIELD_ARTIFICIAL (*fp) = 1;
12575 new_field->accessibility = DW_ACCESS_private;
12576 fip->non_public_fields = 1;
12577 }
12578 }
12579 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12580 {
12581 /* C++ static member. */
12582
12583 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12584 is a declaration, but all versions of G++ as of this writing
12585 (so through at least 3.2.1) incorrectly generate
12586 DW_TAG_variable tags. */
12587
12588 const char *physname;
12589
12590 /* Get name of field. */
12591 fieldname = dwarf2_name (die, cu);
12592 if (fieldname == NULL)
12593 return;
12594
12595 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12596 if (attr
12597 /* Only create a symbol if this is an external value.
12598 new_symbol checks this and puts the value in the global symbol
12599 table, which we want. If it is not external, new_symbol
12600 will try to put the value in cu->list_in_scope which is wrong. */
12601 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12602 {
12603 /* A static const member, not much different than an enum as far as
12604 we're concerned, except that we can support more types. */
12605 new_symbol (die, NULL, cu);
12606 }
12607
12608 /* Get physical name. */
12609 physname = dwarf2_physname (fieldname, die, cu);
12610
12611 /* The name is already allocated along with this objfile, so we don't
12612 need to duplicate it for the type. */
12613 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12614 FIELD_TYPE (*fp) = die_type (die, cu);
12615 FIELD_NAME (*fp) = fieldname;
12616 }
12617 else if (die->tag == DW_TAG_inheritance)
12618 {
12619 LONGEST offset;
12620
12621 /* C++ base class field. */
12622 if (handle_data_member_location (die, cu, &offset))
12623 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12624 FIELD_BITSIZE (*fp) = 0;
12625 FIELD_TYPE (*fp) = die_type (die, cu);
12626 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12627 fip->nbaseclasses++;
12628 }
12629 }
12630
12631 /* Add a typedef defined in the scope of the FIP's class. */
12632
12633 static void
12634 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12635 struct dwarf2_cu *cu)
12636 {
12637 struct typedef_field_list *new_field;
12638 struct typedef_field *fp;
12639
12640 /* Allocate a new field list entry and link it in. */
12641 new_field = XCNEW (struct typedef_field_list);
12642 make_cleanup (xfree, new_field);
12643
12644 gdb_assert (die->tag == DW_TAG_typedef);
12645
12646 fp = &new_field->field;
12647
12648 /* Get name of field. */
12649 fp->name = dwarf2_name (die, cu);
12650 if (fp->name == NULL)
12651 return;
12652
12653 fp->type = read_type_die (die, cu);
12654
12655 new_field->next = fip->typedef_field_list;
12656 fip->typedef_field_list = new_field;
12657 fip->typedef_field_list_count++;
12658 }
12659
12660 /* Create the vector of fields, and attach it to the type. */
12661
12662 static void
12663 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12664 struct dwarf2_cu *cu)
12665 {
12666 int nfields = fip->nfields;
12667
12668 /* Record the field count, allocate space for the array of fields,
12669 and create blank accessibility bitfields if necessary. */
12670 TYPE_NFIELDS (type) = nfields;
12671 TYPE_FIELDS (type) = (struct field *)
12672 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12673 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12674
12675 if (fip->non_public_fields && cu->language != language_ada)
12676 {
12677 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12678
12679 TYPE_FIELD_PRIVATE_BITS (type) =
12680 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12681 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12682
12683 TYPE_FIELD_PROTECTED_BITS (type) =
12684 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12685 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12686
12687 TYPE_FIELD_IGNORE_BITS (type) =
12688 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12689 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12690 }
12691
12692 /* If the type has baseclasses, allocate and clear a bit vector for
12693 TYPE_FIELD_VIRTUAL_BITS. */
12694 if (fip->nbaseclasses && cu->language != language_ada)
12695 {
12696 int num_bytes = B_BYTES (fip->nbaseclasses);
12697 unsigned char *pointer;
12698
12699 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12700 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12701 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12702 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12703 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12704 }
12705
12706 /* Copy the saved-up fields into the field vector. Start from the head of
12707 the list, adding to the tail of the field array, so that they end up in
12708 the same order in the array in which they were added to the list. */
12709 while (nfields-- > 0)
12710 {
12711 struct nextfield *fieldp;
12712
12713 if (fip->fields)
12714 {
12715 fieldp = fip->fields;
12716 fip->fields = fieldp->next;
12717 }
12718 else
12719 {
12720 fieldp = fip->baseclasses;
12721 fip->baseclasses = fieldp->next;
12722 }
12723
12724 TYPE_FIELD (type, nfields) = fieldp->field;
12725 switch (fieldp->accessibility)
12726 {
12727 case DW_ACCESS_private:
12728 if (cu->language != language_ada)
12729 SET_TYPE_FIELD_PRIVATE (type, nfields);
12730 break;
12731
12732 case DW_ACCESS_protected:
12733 if (cu->language != language_ada)
12734 SET_TYPE_FIELD_PROTECTED (type, nfields);
12735 break;
12736
12737 case DW_ACCESS_public:
12738 break;
12739
12740 default:
12741 /* Unknown accessibility. Complain and treat it as public. */
12742 {
12743 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12744 fieldp->accessibility);
12745 }
12746 break;
12747 }
12748 if (nfields < fip->nbaseclasses)
12749 {
12750 switch (fieldp->virtuality)
12751 {
12752 case DW_VIRTUALITY_virtual:
12753 case DW_VIRTUALITY_pure_virtual:
12754 if (cu->language == language_ada)
12755 error (_("unexpected virtuality in component of Ada type"));
12756 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12757 break;
12758 }
12759 }
12760 }
12761 }
12762
12763 /* Return true if this member function is a constructor, false
12764 otherwise. */
12765
12766 static int
12767 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12768 {
12769 const char *fieldname;
12770 const char *type_name;
12771 int len;
12772
12773 if (die->parent == NULL)
12774 return 0;
12775
12776 if (die->parent->tag != DW_TAG_structure_type
12777 && die->parent->tag != DW_TAG_union_type
12778 && die->parent->tag != DW_TAG_class_type)
12779 return 0;
12780
12781 fieldname = dwarf2_name (die, cu);
12782 type_name = dwarf2_name (die->parent, cu);
12783 if (fieldname == NULL || type_name == NULL)
12784 return 0;
12785
12786 len = strlen (fieldname);
12787 return (strncmp (fieldname, type_name, len) == 0
12788 && (type_name[len] == '\0' || type_name[len] == '<'));
12789 }
12790
12791 /* Add a member function to the proper fieldlist. */
12792
12793 static void
12794 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12795 struct type *type, struct dwarf2_cu *cu)
12796 {
12797 struct objfile *objfile = cu->objfile;
12798 struct attribute *attr;
12799 struct fnfieldlist *flp;
12800 int i;
12801 struct fn_field *fnp;
12802 const char *fieldname;
12803 struct nextfnfield *new_fnfield;
12804 struct type *this_type;
12805 enum dwarf_access_attribute accessibility;
12806
12807 if (cu->language == language_ada)
12808 error (_("unexpected member function in Ada type"));
12809
12810 /* Get name of member function. */
12811 fieldname = dwarf2_name (die, cu);
12812 if (fieldname == NULL)
12813 return;
12814
12815 /* Look up member function name in fieldlist. */
12816 for (i = 0; i < fip->nfnfields; i++)
12817 {
12818 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12819 break;
12820 }
12821
12822 /* Create new list element if necessary. */
12823 if (i < fip->nfnfields)
12824 flp = &fip->fnfieldlists[i];
12825 else
12826 {
12827 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12828 {
12829 fip->fnfieldlists = (struct fnfieldlist *)
12830 xrealloc (fip->fnfieldlists,
12831 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12832 * sizeof (struct fnfieldlist));
12833 if (fip->nfnfields == 0)
12834 make_cleanup (free_current_contents, &fip->fnfieldlists);
12835 }
12836 flp = &fip->fnfieldlists[fip->nfnfields];
12837 flp->name = fieldname;
12838 flp->length = 0;
12839 flp->head = NULL;
12840 i = fip->nfnfields++;
12841 }
12842
12843 /* Create a new member function field and chain it to the field list
12844 entry. */
12845 new_fnfield = XNEW (struct nextfnfield);
12846 make_cleanup (xfree, new_fnfield);
12847 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12848 new_fnfield->next = flp->head;
12849 flp->head = new_fnfield;
12850 flp->length++;
12851
12852 /* Fill in the member function field info. */
12853 fnp = &new_fnfield->fnfield;
12854
12855 /* Delay processing of the physname until later. */
12856 if (cu->language == language_cplus || cu->language == language_java)
12857 {
12858 add_to_method_list (type, i, flp->length - 1, fieldname,
12859 die, cu);
12860 }
12861 else
12862 {
12863 const char *physname = dwarf2_physname (fieldname, die, cu);
12864 fnp->physname = physname ? physname : "";
12865 }
12866
12867 fnp->type = alloc_type (objfile);
12868 this_type = read_type_die (die, cu);
12869 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12870 {
12871 int nparams = TYPE_NFIELDS (this_type);
12872
12873 /* TYPE is the domain of this method, and THIS_TYPE is the type
12874 of the method itself (TYPE_CODE_METHOD). */
12875 smash_to_method_type (fnp->type, type,
12876 TYPE_TARGET_TYPE (this_type),
12877 TYPE_FIELDS (this_type),
12878 TYPE_NFIELDS (this_type),
12879 TYPE_VARARGS (this_type));
12880
12881 /* Handle static member functions.
12882 Dwarf2 has no clean way to discern C++ static and non-static
12883 member functions. G++ helps GDB by marking the first
12884 parameter for non-static member functions (which is the this
12885 pointer) as artificial. We obtain this information from
12886 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12887 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12888 fnp->voffset = VOFFSET_STATIC;
12889 }
12890 else
12891 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12892 dwarf2_full_name (fieldname, die, cu));
12893
12894 /* Get fcontext from DW_AT_containing_type if present. */
12895 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12896 fnp->fcontext = die_containing_type (die, cu);
12897
12898 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12899 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12900
12901 /* Get accessibility. */
12902 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12903 if (attr)
12904 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12905 else
12906 accessibility = dwarf2_default_access_attribute (die, cu);
12907 switch (accessibility)
12908 {
12909 case DW_ACCESS_private:
12910 fnp->is_private = 1;
12911 break;
12912 case DW_ACCESS_protected:
12913 fnp->is_protected = 1;
12914 break;
12915 }
12916
12917 /* Check for artificial methods. */
12918 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12919 if (attr && DW_UNSND (attr) != 0)
12920 fnp->is_artificial = 1;
12921
12922 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12923
12924 /* Get index in virtual function table if it is a virtual member
12925 function. For older versions of GCC, this is an offset in the
12926 appropriate virtual table, as specified by DW_AT_containing_type.
12927 For everyone else, it is an expression to be evaluated relative
12928 to the object address. */
12929
12930 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12931 if (attr)
12932 {
12933 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12934 {
12935 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12936 {
12937 /* Old-style GCC. */
12938 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12939 }
12940 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12941 || (DW_BLOCK (attr)->size > 1
12942 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12943 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12944 {
12945 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12946 if ((fnp->voffset % cu->header.addr_size) != 0)
12947 dwarf2_complex_location_expr_complaint ();
12948 else
12949 fnp->voffset /= cu->header.addr_size;
12950 fnp->voffset += 2;
12951 }
12952 else
12953 dwarf2_complex_location_expr_complaint ();
12954
12955 if (!fnp->fcontext)
12956 {
12957 /* If there is no `this' field and no DW_AT_containing_type,
12958 we cannot actually find a base class context for the
12959 vtable! */
12960 if (TYPE_NFIELDS (this_type) == 0
12961 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12962 {
12963 complaint (&symfile_complaints,
12964 _("cannot determine context for virtual member "
12965 "function \"%s\" (offset %d)"),
12966 fieldname, die->offset.sect_off);
12967 }
12968 else
12969 {
12970 fnp->fcontext
12971 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12972 }
12973 }
12974 }
12975 else if (attr_form_is_section_offset (attr))
12976 {
12977 dwarf2_complex_location_expr_complaint ();
12978 }
12979 else
12980 {
12981 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12982 fieldname);
12983 }
12984 }
12985 else
12986 {
12987 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12988 if (attr && DW_UNSND (attr))
12989 {
12990 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12991 complaint (&symfile_complaints,
12992 _("Member function \"%s\" (offset %d) is virtual "
12993 "but the vtable offset is not specified"),
12994 fieldname, die->offset.sect_off);
12995 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12996 TYPE_CPLUS_DYNAMIC (type) = 1;
12997 }
12998 }
12999 }
13000
13001 /* Create the vector of member function fields, and attach it to the type. */
13002
13003 static void
13004 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13005 struct dwarf2_cu *cu)
13006 {
13007 struct fnfieldlist *flp;
13008 int i;
13009
13010 if (cu->language == language_ada)
13011 error (_("unexpected member functions in Ada type"));
13012
13013 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13014 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13015 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13016
13017 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13018 {
13019 struct nextfnfield *nfp = flp->head;
13020 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13021 int k;
13022
13023 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13024 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13025 fn_flp->fn_fields = (struct fn_field *)
13026 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13027 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13028 fn_flp->fn_fields[k] = nfp->fnfield;
13029 }
13030
13031 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13032 }
13033
13034 /* Returns non-zero if NAME is the name of a vtable member in CU's
13035 language, zero otherwise. */
13036 static int
13037 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13038 {
13039 static const char vptr[] = "_vptr";
13040 static const char vtable[] = "vtable";
13041
13042 /* Look for the C++ and Java forms of the vtable. */
13043 if ((cu->language == language_java
13044 && startswith (name, vtable))
13045 || (startswith (name, vptr)
13046 && is_cplus_marker (name[sizeof (vptr) - 1])))
13047 return 1;
13048
13049 return 0;
13050 }
13051
13052 /* GCC outputs unnamed structures that are really pointers to member
13053 functions, with the ABI-specified layout. If TYPE describes
13054 such a structure, smash it into a member function type.
13055
13056 GCC shouldn't do this; it should just output pointer to member DIEs.
13057 This is GCC PR debug/28767. */
13058
13059 static void
13060 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13061 {
13062 struct type *pfn_type, *self_type, *new_type;
13063
13064 /* Check for a structure with no name and two children. */
13065 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13066 return;
13067
13068 /* Check for __pfn and __delta members. */
13069 if (TYPE_FIELD_NAME (type, 0) == NULL
13070 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13071 || TYPE_FIELD_NAME (type, 1) == NULL
13072 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13073 return;
13074
13075 /* Find the type of the method. */
13076 pfn_type = TYPE_FIELD_TYPE (type, 0);
13077 if (pfn_type == NULL
13078 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13079 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13080 return;
13081
13082 /* Look for the "this" argument. */
13083 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13084 if (TYPE_NFIELDS (pfn_type) == 0
13085 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13086 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13087 return;
13088
13089 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13090 new_type = alloc_type (objfile);
13091 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13092 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13093 TYPE_VARARGS (pfn_type));
13094 smash_to_methodptr_type (type, new_type);
13095 }
13096
13097 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13098 (icc). */
13099
13100 static int
13101 producer_is_icc (struct dwarf2_cu *cu)
13102 {
13103 if (!cu->checked_producer)
13104 check_producer (cu);
13105
13106 return cu->producer_is_icc;
13107 }
13108
13109 /* Called when we find the DIE that starts a structure or union scope
13110 (definition) to create a type for the structure or union. Fill in
13111 the type's name and general properties; the members will not be
13112 processed until process_structure_scope. A symbol table entry for
13113 the type will also not be done until process_structure_scope (assuming
13114 the type has a name).
13115
13116 NOTE: we need to call these functions regardless of whether or not the
13117 DIE has a DW_AT_name attribute, since it might be an anonymous
13118 structure or union. This gets the type entered into our set of
13119 user defined types. */
13120
13121 static struct type *
13122 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13123 {
13124 struct objfile *objfile = cu->objfile;
13125 struct type *type;
13126 struct attribute *attr;
13127 const char *name;
13128
13129 /* If the definition of this type lives in .debug_types, read that type.
13130 Don't follow DW_AT_specification though, that will take us back up
13131 the chain and we want to go down. */
13132 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13133 if (attr)
13134 {
13135 type = get_DW_AT_signature_type (die, attr, cu);
13136
13137 /* The type's CU may not be the same as CU.
13138 Ensure TYPE is recorded with CU in die_type_hash. */
13139 return set_die_type (die, type, cu);
13140 }
13141
13142 type = alloc_type (objfile);
13143 INIT_CPLUS_SPECIFIC (type);
13144
13145 name = dwarf2_name (die, cu);
13146 if (name != NULL)
13147 {
13148 if (cu->language == language_cplus
13149 || cu->language == language_java
13150 || cu->language == language_d)
13151 {
13152 const char *full_name = dwarf2_full_name (name, die, cu);
13153
13154 /* dwarf2_full_name might have already finished building the DIE's
13155 type. If so, there is no need to continue. */
13156 if (get_die_type (die, cu) != NULL)
13157 return get_die_type (die, cu);
13158
13159 TYPE_TAG_NAME (type) = full_name;
13160 if (die->tag == DW_TAG_structure_type
13161 || die->tag == DW_TAG_class_type)
13162 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13163 }
13164 else
13165 {
13166 /* The name is already allocated along with this objfile, so
13167 we don't need to duplicate it for the type. */
13168 TYPE_TAG_NAME (type) = name;
13169 if (die->tag == DW_TAG_class_type)
13170 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13171 }
13172 }
13173
13174 if (die->tag == DW_TAG_structure_type)
13175 {
13176 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13177 }
13178 else if (die->tag == DW_TAG_union_type)
13179 {
13180 TYPE_CODE (type) = TYPE_CODE_UNION;
13181 }
13182 else
13183 {
13184 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13185 }
13186
13187 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13188 TYPE_DECLARED_CLASS (type) = 1;
13189
13190 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13191 if (attr)
13192 {
13193 if (attr_form_is_constant (attr))
13194 TYPE_LENGTH (type) = DW_UNSND (attr);
13195 else
13196 {
13197 /* For the moment, dynamic type sizes are not supported
13198 by GDB's struct type. The actual size is determined
13199 on-demand when resolving the type of a given object,
13200 so set the type's length to zero for now. Otherwise,
13201 we record an expression as the length, and that expression
13202 could lead to a very large value, which could eventually
13203 lead to us trying to allocate that much memory when creating
13204 a value of that type. */
13205 TYPE_LENGTH (type) = 0;
13206 }
13207 }
13208 else
13209 {
13210 TYPE_LENGTH (type) = 0;
13211 }
13212
13213 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13214 {
13215 /* ICC does not output the required DW_AT_declaration
13216 on incomplete types, but gives them a size of zero. */
13217 TYPE_STUB (type) = 1;
13218 }
13219 else
13220 TYPE_STUB_SUPPORTED (type) = 1;
13221
13222 if (die_is_declaration (die, cu))
13223 TYPE_STUB (type) = 1;
13224 else if (attr == NULL && die->child == NULL
13225 && producer_is_realview (cu->producer))
13226 /* RealView does not output the required DW_AT_declaration
13227 on incomplete types. */
13228 TYPE_STUB (type) = 1;
13229
13230 /* We need to add the type field to the die immediately so we don't
13231 infinitely recurse when dealing with pointers to the structure
13232 type within the structure itself. */
13233 set_die_type (die, type, cu);
13234
13235 /* set_die_type should be already done. */
13236 set_descriptive_type (type, die, cu);
13237
13238 return type;
13239 }
13240
13241 /* Finish creating a structure or union type, including filling in
13242 its members and creating a symbol for it. */
13243
13244 static void
13245 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13246 {
13247 struct objfile *objfile = cu->objfile;
13248 struct die_info *child_die;
13249 struct type *type;
13250
13251 type = get_die_type (die, cu);
13252 if (type == NULL)
13253 type = read_structure_type (die, cu);
13254
13255 if (die->child != NULL && ! die_is_declaration (die, cu))
13256 {
13257 struct field_info fi;
13258 VEC (symbolp) *template_args = NULL;
13259 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13260
13261 memset (&fi, 0, sizeof (struct field_info));
13262
13263 child_die = die->child;
13264
13265 while (child_die && child_die->tag)
13266 {
13267 if (child_die->tag == DW_TAG_member
13268 || child_die->tag == DW_TAG_variable)
13269 {
13270 /* NOTE: carlton/2002-11-05: A C++ static data member
13271 should be a DW_TAG_member that is a declaration, but
13272 all versions of G++ as of this writing (so through at
13273 least 3.2.1) incorrectly generate DW_TAG_variable
13274 tags for them instead. */
13275 dwarf2_add_field (&fi, child_die, cu);
13276 }
13277 else if (child_die->tag == DW_TAG_subprogram)
13278 {
13279 /* C++ member function. */
13280 dwarf2_add_member_fn (&fi, child_die, type, cu);
13281 }
13282 else if (child_die->tag == DW_TAG_inheritance)
13283 {
13284 /* C++ base class field. */
13285 dwarf2_add_field (&fi, child_die, cu);
13286 }
13287 else if (child_die->tag == DW_TAG_typedef)
13288 dwarf2_add_typedef (&fi, child_die, cu);
13289 else if (child_die->tag == DW_TAG_template_type_param
13290 || child_die->tag == DW_TAG_template_value_param)
13291 {
13292 struct symbol *arg = new_symbol (child_die, NULL, cu);
13293
13294 if (arg != NULL)
13295 VEC_safe_push (symbolp, template_args, arg);
13296 }
13297
13298 child_die = sibling_die (child_die);
13299 }
13300
13301 /* Attach template arguments to type. */
13302 if (! VEC_empty (symbolp, template_args))
13303 {
13304 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13305 TYPE_N_TEMPLATE_ARGUMENTS (type)
13306 = VEC_length (symbolp, template_args);
13307 TYPE_TEMPLATE_ARGUMENTS (type)
13308 = XOBNEWVEC (&objfile->objfile_obstack,
13309 struct symbol *,
13310 TYPE_N_TEMPLATE_ARGUMENTS (type));
13311 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13312 VEC_address (symbolp, template_args),
13313 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13314 * sizeof (struct symbol *)));
13315 VEC_free (symbolp, template_args);
13316 }
13317
13318 /* Attach fields and member functions to the type. */
13319 if (fi.nfields)
13320 dwarf2_attach_fields_to_type (&fi, type, cu);
13321 if (fi.nfnfields)
13322 {
13323 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13324
13325 /* Get the type which refers to the base class (possibly this
13326 class itself) which contains the vtable pointer for the current
13327 class from the DW_AT_containing_type attribute. This use of
13328 DW_AT_containing_type is a GNU extension. */
13329
13330 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13331 {
13332 struct type *t = die_containing_type (die, cu);
13333
13334 set_type_vptr_basetype (type, t);
13335 if (type == t)
13336 {
13337 int i;
13338
13339 /* Our own class provides vtbl ptr. */
13340 for (i = TYPE_NFIELDS (t) - 1;
13341 i >= TYPE_N_BASECLASSES (t);
13342 --i)
13343 {
13344 const char *fieldname = TYPE_FIELD_NAME (t, i);
13345
13346 if (is_vtable_name (fieldname, cu))
13347 {
13348 set_type_vptr_fieldno (type, i);
13349 break;
13350 }
13351 }
13352
13353 /* Complain if virtual function table field not found. */
13354 if (i < TYPE_N_BASECLASSES (t))
13355 complaint (&symfile_complaints,
13356 _("virtual function table pointer "
13357 "not found when defining class '%s'"),
13358 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13359 "");
13360 }
13361 else
13362 {
13363 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13364 }
13365 }
13366 else if (cu->producer
13367 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13368 {
13369 /* The IBM XLC compiler does not provide direct indication
13370 of the containing type, but the vtable pointer is
13371 always named __vfp. */
13372
13373 int i;
13374
13375 for (i = TYPE_NFIELDS (type) - 1;
13376 i >= TYPE_N_BASECLASSES (type);
13377 --i)
13378 {
13379 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13380 {
13381 set_type_vptr_fieldno (type, i);
13382 set_type_vptr_basetype (type, type);
13383 break;
13384 }
13385 }
13386 }
13387 }
13388
13389 /* Copy fi.typedef_field_list linked list elements content into the
13390 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13391 if (fi.typedef_field_list)
13392 {
13393 int i = fi.typedef_field_list_count;
13394
13395 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13396 TYPE_TYPEDEF_FIELD_ARRAY (type)
13397 = ((struct typedef_field *)
13398 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13399 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13400
13401 /* Reverse the list order to keep the debug info elements order. */
13402 while (--i >= 0)
13403 {
13404 struct typedef_field *dest, *src;
13405
13406 dest = &TYPE_TYPEDEF_FIELD (type, i);
13407 src = &fi.typedef_field_list->field;
13408 fi.typedef_field_list = fi.typedef_field_list->next;
13409 *dest = *src;
13410 }
13411 }
13412
13413 do_cleanups (back_to);
13414
13415 if (HAVE_CPLUS_STRUCT (type))
13416 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13417 }
13418
13419 quirk_gcc_member_function_pointer (type, objfile);
13420
13421 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13422 snapshots) has been known to create a die giving a declaration
13423 for a class that has, as a child, a die giving a definition for a
13424 nested class. So we have to process our children even if the
13425 current die is a declaration. Normally, of course, a declaration
13426 won't have any children at all. */
13427
13428 child_die = die->child;
13429
13430 while (child_die != NULL && child_die->tag)
13431 {
13432 if (child_die->tag == DW_TAG_member
13433 || child_die->tag == DW_TAG_variable
13434 || child_die->tag == DW_TAG_inheritance
13435 || child_die->tag == DW_TAG_template_value_param
13436 || child_die->tag == DW_TAG_template_type_param)
13437 {
13438 /* Do nothing. */
13439 }
13440 else
13441 process_die (child_die, cu);
13442
13443 child_die = sibling_die (child_die);
13444 }
13445
13446 /* Do not consider external references. According to the DWARF standard,
13447 these DIEs are identified by the fact that they have no byte_size
13448 attribute, and a declaration attribute. */
13449 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13450 || !die_is_declaration (die, cu))
13451 new_symbol (die, type, cu);
13452 }
13453
13454 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13455 update TYPE using some information only available in DIE's children. */
13456
13457 static void
13458 update_enumeration_type_from_children (struct die_info *die,
13459 struct type *type,
13460 struct dwarf2_cu *cu)
13461 {
13462 struct obstack obstack;
13463 struct die_info *child_die;
13464 int unsigned_enum = 1;
13465 int flag_enum = 1;
13466 ULONGEST mask = 0;
13467 struct cleanup *old_chain;
13468
13469 obstack_init (&obstack);
13470 old_chain = make_cleanup_obstack_free (&obstack);
13471
13472 for (child_die = die->child;
13473 child_die != NULL && child_die->tag;
13474 child_die = sibling_die (child_die))
13475 {
13476 struct attribute *attr;
13477 LONGEST value;
13478 const gdb_byte *bytes;
13479 struct dwarf2_locexpr_baton *baton;
13480 const char *name;
13481
13482 if (child_die->tag != DW_TAG_enumerator)
13483 continue;
13484
13485 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13486 if (attr == NULL)
13487 continue;
13488
13489 name = dwarf2_name (child_die, cu);
13490 if (name == NULL)
13491 name = "<anonymous enumerator>";
13492
13493 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13494 &value, &bytes, &baton);
13495 if (value < 0)
13496 {
13497 unsigned_enum = 0;
13498 flag_enum = 0;
13499 }
13500 else if ((mask & value) != 0)
13501 flag_enum = 0;
13502 else
13503 mask |= value;
13504
13505 /* If we already know that the enum type is neither unsigned, nor
13506 a flag type, no need to look at the rest of the enumerates. */
13507 if (!unsigned_enum && !flag_enum)
13508 break;
13509 }
13510
13511 if (unsigned_enum)
13512 TYPE_UNSIGNED (type) = 1;
13513 if (flag_enum)
13514 TYPE_FLAG_ENUM (type) = 1;
13515
13516 do_cleanups (old_chain);
13517 }
13518
13519 /* Given a DW_AT_enumeration_type die, set its type. We do not
13520 complete the type's fields yet, or create any symbols. */
13521
13522 static struct type *
13523 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13524 {
13525 struct objfile *objfile = cu->objfile;
13526 struct type *type;
13527 struct attribute *attr;
13528 const char *name;
13529
13530 /* If the definition of this type lives in .debug_types, read that type.
13531 Don't follow DW_AT_specification though, that will take us back up
13532 the chain and we want to go down. */
13533 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13534 if (attr)
13535 {
13536 type = get_DW_AT_signature_type (die, attr, cu);
13537
13538 /* The type's CU may not be the same as CU.
13539 Ensure TYPE is recorded with CU in die_type_hash. */
13540 return set_die_type (die, type, cu);
13541 }
13542
13543 type = alloc_type (objfile);
13544
13545 TYPE_CODE (type) = TYPE_CODE_ENUM;
13546 name = dwarf2_full_name (NULL, die, cu);
13547 if (name != NULL)
13548 TYPE_TAG_NAME (type) = name;
13549
13550 attr = dwarf2_attr (die, DW_AT_type, cu);
13551 if (attr != NULL)
13552 {
13553 struct type *underlying_type = die_type (die, cu);
13554
13555 TYPE_TARGET_TYPE (type) = underlying_type;
13556 }
13557
13558 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13559 if (attr)
13560 {
13561 TYPE_LENGTH (type) = DW_UNSND (attr);
13562 }
13563 else
13564 {
13565 TYPE_LENGTH (type) = 0;
13566 }
13567
13568 /* The enumeration DIE can be incomplete. In Ada, any type can be
13569 declared as private in the package spec, and then defined only
13570 inside the package body. Such types are known as Taft Amendment
13571 Types. When another package uses such a type, an incomplete DIE
13572 may be generated by the compiler. */
13573 if (die_is_declaration (die, cu))
13574 TYPE_STUB (type) = 1;
13575
13576 /* Finish the creation of this type by using the enum's children.
13577 We must call this even when the underlying type has been provided
13578 so that we can determine if we're looking at a "flag" enum. */
13579 update_enumeration_type_from_children (die, type, cu);
13580
13581 /* If this type has an underlying type that is not a stub, then we
13582 may use its attributes. We always use the "unsigned" attribute
13583 in this situation, because ordinarily we guess whether the type
13584 is unsigned -- but the guess can be wrong and the underlying type
13585 can tell us the reality. However, we defer to a local size
13586 attribute if one exists, because this lets the compiler override
13587 the underlying type if needed. */
13588 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13589 {
13590 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13591 if (TYPE_LENGTH (type) == 0)
13592 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13593 }
13594
13595 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13596
13597 return set_die_type (die, type, cu);
13598 }
13599
13600 /* Given a pointer to a die which begins an enumeration, process all
13601 the dies that define the members of the enumeration, and create the
13602 symbol for the enumeration type.
13603
13604 NOTE: We reverse the order of the element list. */
13605
13606 static void
13607 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13608 {
13609 struct type *this_type;
13610
13611 this_type = get_die_type (die, cu);
13612 if (this_type == NULL)
13613 this_type = read_enumeration_type (die, cu);
13614
13615 if (die->child != NULL)
13616 {
13617 struct die_info *child_die;
13618 struct symbol *sym;
13619 struct field *fields = NULL;
13620 int num_fields = 0;
13621 const char *name;
13622
13623 child_die = die->child;
13624 while (child_die && child_die->tag)
13625 {
13626 if (child_die->tag != DW_TAG_enumerator)
13627 {
13628 process_die (child_die, cu);
13629 }
13630 else
13631 {
13632 name = dwarf2_name (child_die, cu);
13633 if (name)
13634 {
13635 sym = new_symbol (child_die, this_type, cu);
13636
13637 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13638 {
13639 fields = (struct field *)
13640 xrealloc (fields,
13641 (num_fields + DW_FIELD_ALLOC_CHUNK)
13642 * sizeof (struct field));
13643 }
13644
13645 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13646 FIELD_TYPE (fields[num_fields]) = NULL;
13647 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13648 FIELD_BITSIZE (fields[num_fields]) = 0;
13649
13650 num_fields++;
13651 }
13652 }
13653
13654 child_die = sibling_die (child_die);
13655 }
13656
13657 if (num_fields)
13658 {
13659 TYPE_NFIELDS (this_type) = num_fields;
13660 TYPE_FIELDS (this_type) = (struct field *)
13661 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13662 memcpy (TYPE_FIELDS (this_type), fields,
13663 sizeof (struct field) * num_fields);
13664 xfree (fields);
13665 }
13666 }
13667
13668 /* If we are reading an enum from a .debug_types unit, and the enum
13669 is a declaration, and the enum is not the signatured type in the
13670 unit, then we do not want to add a symbol for it. Adding a
13671 symbol would in some cases obscure the true definition of the
13672 enum, giving users an incomplete type when the definition is
13673 actually available. Note that we do not want to do this for all
13674 enums which are just declarations, because C++0x allows forward
13675 enum declarations. */
13676 if (cu->per_cu->is_debug_types
13677 && die_is_declaration (die, cu))
13678 {
13679 struct signatured_type *sig_type;
13680
13681 sig_type = (struct signatured_type *) cu->per_cu;
13682 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13683 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13684 return;
13685 }
13686
13687 new_symbol (die, this_type, cu);
13688 }
13689
13690 /* Extract all information from a DW_TAG_array_type DIE and put it in
13691 the DIE's type field. For now, this only handles one dimensional
13692 arrays. */
13693
13694 static struct type *
13695 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13696 {
13697 struct objfile *objfile = cu->objfile;
13698 struct die_info *child_die;
13699 struct type *type;
13700 struct type *element_type, *range_type, *index_type;
13701 struct type **range_types = NULL;
13702 struct attribute *attr;
13703 int ndim = 0;
13704 struct cleanup *back_to;
13705 const char *name;
13706 unsigned int bit_stride = 0;
13707
13708 element_type = die_type (die, cu);
13709
13710 /* The die_type call above may have already set the type for this DIE. */
13711 type = get_die_type (die, cu);
13712 if (type)
13713 return type;
13714
13715 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13716 if (attr != NULL)
13717 bit_stride = DW_UNSND (attr) * 8;
13718
13719 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13720 if (attr != NULL)
13721 bit_stride = DW_UNSND (attr);
13722
13723 /* Irix 6.2 native cc creates array types without children for
13724 arrays with unspecified length. */
13725 if (die->child == NULL)
13726 {
13727 index_type = objfile_type (objfile)->builtin_int;
13728 range_type = create_static_range_type (NULL, index_type, 0, -1);
13729 type = create_array_type_with_stride (NULL, element_type, range_type,
13730 bit_stride);
13731 return set_die_type (die, type, cu);
13732 }
13733
13734 back_to = make_cleanup (null_cleanup, NULL);
13735 child_die = die->child;
13736 while (child_die && child_die->tag)
13737 {
13738 if (child_die->tag == DW_TAG_subrange_type)
13739 {
13740 struct type *child_type = read_type_die (child_die, cu);
13741
13742 if (child_type != NULL)
13743 {
13744 /* The range type was succesfully read. Save it for the
13745 array type creation. */
13746 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13747 {
13748 range_types = (struct type **)
13749 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13750 * sizeof (struct type *));
13751 if (ndim == 0)
13752 make_cleanup (free_current_contents, &range_types);
13753 }
13754 range_types[ndim++] = child_type;
13755 }
13756 }
13757 child_die = sibling_die (child_die);
13758 }
13759
13760 /* Dwarf2 dimensions are output from left to right, create the
13761 necessary array types in backwards order. */
13762
13763 type = element_type;
13764
13765 if (read_array_order (die, cu) == DW_ORD_col_major)
13766 {
13767 int i = 0;
13768
13769 while (i < ndim)
13770 type = create_array_type_with_stride (NULL, type, range_types[i++],
13771 bit_stride);
13772 }
13773 else
13774 {
13775 while (ndim-- > 0)
13776 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13777 bit_stride);
13778 }
13779
13780 /* Understand Dwarf2 support for vector types (like they occur on
13781 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13782 array type. This is not part of the Dwarf2/3 standard yet, but a
13783 custom vendor extension. The main difference between a regular
13784 array and the vector variant is that vectors are passed by value
13785 to functions. */
13786 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13787 if (attr)
13788 make_vector_type (type);
13789
13790 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13791 implementation may choose to implement triple vectors using this
13792 attribute. */
13793 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13794 if (attr)
13795 {
13796 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13797 TYPE_LENGTH (type) = DW_UNSND (attr);
13798 else
13799 complaint (&symfile_complaints,
13800 _("DW_AT_byte_size for array type smaller "
13801 "than the total size of elements"));
13802 }
13803
13804 name = dwarf2_name (die, cu);
13805 if (name)
13806 TYPE_NAME (type) = name;
13807
13808 /* Install the type in the die. */
13809 set_die_type (die, type, cu);
13810
13811 /* set_die_type should be already done. */
13812 set_descriptive_type (type, die, cu);
13813
13814 do_cleanups (back_to);
13815
13816 return type;
13817 }
13818
13819 static enum dwarf_array_dim_ordering
13820 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13821 {
13822 struct attribute *attr;
13823
13824 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13825
13826 if (attr)
13827 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13828
13829 /* GNU F77 is a special case, as at 08/2004 array type info is the
13830 opposite order to the dwarf2 specification, but data is still
13831 laid out as per normal fortran.
13832
13833 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13834 version checking. */
13835
13836 if (cu->language == language_fortran
13837 && cu->producer && strstr (cu->producer, "GNU F77"))
13838 {
13839 return DW_ORD_row_major;
13840 }
13841
13842 switch (cu->language_defn->la_array_ordering)
13843 {
13844 case array_column_major:
13845 return DW_ORD_col_major;
13846 case array_row_major:
13847 default:
13848 return DW_ORD_row_major;
13849 };
13850 }
13851
13852 /* Extract all information from a DW_TAG_set_type DIE and put it in
13853 the DIE's type field. */
13854
13855 static struct type *
13856 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13857 {
13858 struct type *domain_type, *set_type;
13859 struct attribute *attr;
13860
13861 domain_type = die_type (die, cu);
13862
13863 /* The die_type call above may have already set the type for this DIE. */
13864 set_type = get_die_type (die, cu);
13865 if (set_type)
13866 return set_type;
13867
13868 set_type = create_set_type (NULL, domain_type);
13869
13870 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13871 if (attr)
13872 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13873
13874 return set_die_type (die, set_type, cu);
13875 }
13876
13877 /* A helper for read_common_block that creates a locexpr baton.
13878 SYM is the symbol which we are marking as computed.
13879 COMMON_DIE is the DIE for the common block.
13880 COMMON_LOC is the location expression attribute for the common
13881 block itself.
13882 MEMBER_LOC is the location expression attribute for the particular
13883 member of the common block that we are processing.
13884 CU is the CU from which the above come. */
13885
13886 static void
13887 mark_common_block_symbol_computed (struct symbol *sym,
13888 struct die_info *common_die,
13889 struct attribute *common_loc,
13890 struct attribute *member_loc,
13891 struct dwarf2_cu *cu)
13892 {
13893 struct objfile *objfile = dwarf2_per_objfile->objfile;
13894 struct dwarf2_locexpr_baton *baton;
13895 gdb_byte *ptr;
13896 unsigned int cu_off;
13897 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13898 LONGEST offset = 0;
13899
13900 gdb_assert (common_loc && member_loc);
13901 gdb_assert (attr_form_is_block (common_loc));
13902 gdb_assert (attr_form_is_block (member_loc)
13903 || attr_form_is_constant (member_loc));
13904
13905 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13906 baton->per_cu = cu->per_cu;
13907 gdb_assert (baton->per_cu);
13908
13909 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13910
13911 if (attr_form_is_constant (member_loc))
13912 {
13913 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13914 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13915 }
13916 else
13917 baton->size += DW_BLOCK (member_loc)->size;
13918
13919 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
13920 baton->data = ptr;
13921
13922 *ptr++ = DW_OP_call4;
13923 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13924 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13925 ptr += 4;
13926
13927 if (attr_form_is_constant (member_loc))
13928 {
13929 *ptr++ = DW_OP_addr;
13930 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13931 ptr += cu->header.addr_size;
13932 }
13933 else
13934 {
13935 /* We have to copy the data here, because DW_OP_call4 will only
13936 use a DW_AT_location attribute. */
13937 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13938 ptr += DW_BLOCK (member_loc)->size;
13939 }
13940
13941 *ptr++ = DW_OP_plus;
13942 gdb_assert (ptr - baton->data == baton->size);
13943
13944 SYMBOL_LOCATION_BATON (sym) = baton;
13945 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13946 }
13947
13948 /* Create appropriate locally-scoped variables for all the
13949 DW_TAG_common_block entries. Also create a struct common_block
13950 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13951 is used to sepate the common blocks name namespace from regular
13952 variable names. */
13953
13954 static void
13955 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13956 {
13957 struct attribute *attr;
13958
13959 attr = dwarf2_attr (die, DW_AT_location, cu);
13960 if (attr)
13961 {
13962 /* Support the .debug_loc offsets. */
13963 if (attr_form_is_block (attr))
13964 {
13965 /* Ok. */
13966 }
13967 else if (attr_form_is_section_offset (attr))
13968 {
13969 dwarf2_complex_location_expr_complaint ();
13970 attr = NULL;
13971 }
13972 else
13973 {
13974 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13975 "common block member");
13976 attr = NULL;
13977 }
13978 }
13979
13980 if (die->child != NULL)
13981 {
13982 struct objfile *objfile = cu->objfile;
13983 struct die_info *child_die;
13984 size_t n_entries = 0, size;
13985 struct common_block *common_block;
13986 struct symbol *sym;
13987
13988 for (child_die = die->child;
13989 child_die && child_die->tag;
13990 child_die = sibling_die (child_die))
13991 ++n_entries;
13992
13993 size = (sizeof (struct common_block)
13994 + (n_entries - 1) * sizeof (struct symbol *));
13995 common_block
13996 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
13997 size);
13998 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13999 common_block->n_entries = 0;
14000
14001 for (child_die = die->child;
14002 child_die && child_die->tag;
14003 child_die = sibling_die (child_die))
14004 {
14005 /* Create the symbol in the DW_TAG_common_block block in the current
14006 symbol scope. */
14007 sym = new_symbol (child_die, NULL, cu);
14008 if (sym != NULL)
14009 {
14010 struct attribute *member_loc;
14011
14012 common_block->contents[common_block->n_entries++] = sym;
14013
14014 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14015 cu);
14016 if (member_loc)
14017 {
14018 /* GDB has handled this for a long time, but it is
14019 not specified by DWARF. It seems to have been
14020 emitted by gfortran at least as recently as:
14021 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14022 complaint (&symfile_complaints,
14023 _("Variable in common block has "
14024 "DW_AT_data_member_location "
14025 "- DIE at 0x%x [in module %s]"),
14026 child_die->offset.sect_off,
14027 objfile_name (cu->objfile));
14028
14029 if (attr_form_is_section_offset (member_loc))
14030 dwarf2_complex_location_expr_complaint ();
14031 else if (attr_form_is_constant (member_loc)
14032 || attr_form_is_block (member_loc))
14033 {
14034 if (attr)
14035 mark_common_block_symbol_computed (sym, die, attr,
14036 member_loc, cu);
14037 }
14038 else
14039 dwarf2_complex_location_expr_complaint ();
14040 }
14041 }
14042 }
14043
14044 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14045 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14046 }
14047 }
14048
14049 /* Create a type for a C++ namespace. */
14050
14051 static struct type *
14052 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14053 {
14054 struct objfile *objfile = cu->objfile;
14055 const char *previous_prefix, *name;
14056 int is_anonymous;
14057 struct type *type;
14058
14059 /* For extensions, reuse the type of the original namespace. */
14060 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14061 {
14062 struct die_info *ext_die;
14063 struct dwarf2_cu *ext_cu = cu;
14064
14065 ext_die = dwarf2_extension (die, &ext_cu);
14066 type = read_type_die (ext_die, ext_cu);
14067
14068 /* EXT_CU may not be the same as CU.
14069 Ensure TYPE is recorded with CU in die_type_hash. */
14070 return set_die_type (die, type, cu);
14071 }
14072
14073 name = namespace_name (die, &is_anonymous, cu);
14074
14075 /* Now build the name of the current namespace. */
14076
14077 previous_prefix = determine_prefix (die, cu);
14078 if (previous_prefix[0] != '\0')
14079 name = typename_concat (&objfile->objfile_obstack,
14080 previous_prefix, name, 0, cu);
14081
14082 /* Create the type. */
14083 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14084 objfile);
14085 TYPE_NAME (type) = name;
14086 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14087
14088 return set_die_type (die, type, cu);
14089 }
14090
14091 /* Read a namespace scope. */
14092
14093 static void
14094 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14095 {
14096 struct objfile *objfile = cu->objfile;
14097 int is_anonymous;
14098
14099 /* Add a symbol associated to this if we haven't seen the namespace
14100 before. Also, add a using directive if it's an anonymous
14101 namespace. */
14102
14103 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14104 {
14105 struct type *type;
14106
14107 type = read_type_die (die, cu);
14108 new_symbol (die, type, cu);
14109
14110 namespace_name (die, &is_anonymous, cu);
14111 if (is_anonymous)
14112 {
14113 const char *previous_prefix = determine_prefix (die, cu);
14114
14115 add_using_directive (using_directives (cu->language),
14116 previous_prefix, TYPE_NAME (type), NULL,
14117 NULL, NULL, 0, &objfile->objfile_obstack);
14118 }
14119 }
14120
14121 if (die->child != NULL)
14122 {
14123 struct die_info *child_die = die->child;
14124
14125 while (child_die && child_die->tag)
14126 {
14127 process_die (child_die, cu);
14128 child_die = sibling_die (child_die);
14129 }
14130 }
14131 }
14132
14133 /* Read a Fortran module as type. This DIE can be only a declaration used for
14134 imported module. Still we need that type as local Fortran "use ... only"
14135 declaration imports depend on the created type in determine_prefix. */
14136
14137 static struct type *
14138 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14139 {
14140 struct objfile *objfile = cu->objfile;
14141 const char *module_name;
14142 struct type *type;
14143
14144 module_name = dwarf2_name (die, cu);
14145 if (!module_name)
14146 complaint (&symfile_complaints,
14147 _("DW_TAG_module has no name, offset 0x%x"),
14148 die->offset.sect_off);
14149 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14150
14151 /* determine_prefix uses TYPE_TAG_NAME. */
14152 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14153
14154 return set_die_type (die, type, cu);
14155 }
14156
14157 /* Read a Fortran module. */
14158
14159 static void
14160 read_module (struct die_info *die, struct dwarf2_cu *cu)
14161 {
14162 struct die_info *child_die = die->child;
14163 struct type *type;
14164
14165 type = read_type_die (die, cu);
14166 new_symbol (die, type, cu);
14167
14168 while (child_die && child_die->tag)
14169 {
14170 process_die (child_die, cu);
14171 child_die = sibling_die (child_die);
14172 }
14173 }
14174
14175 /* Return the name of the namespace represented by DIE. Set
14176 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14177 namespace. */
14178
14179 static const char *
14180 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14181 {
14182 struct die_info *current_die;
14183 const char *name = NULL;
14184
14185 /* Loop through the extensions until we find a name. */
14186
14187 for (current_die = die;
14188 current_die != NULL;
14189 current_die = dwarf2_extension (die, &cu))
14190 {
14191 /* We don't use dwarf2_name here so that we can detect the absence
14192 of a name -> anonymous namespace. */
14193 name = dwarf2_string_attr (die, DW_AT_name, cu);
14194
14195 if (name != NULL)
14196 break;
14197 }
14198
14199 /* Is it an anonymous namespace? */
14200
14201 *is_anonymous = (name == NULL);
14202 if (*is_anonymous)
14203 name = CP_ANONYMOUS_NAMESPACE_STR;
14204
14205 return name;
14206 }
14207
14208 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14209 the user defined type vector. */
14210
14211 static struct type *
14212 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14213 {
14214 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14215 struct comp_unit_head *cu_header = &cu->header;
14216 struct type *type;
14217 struct attribute *attr_byte_size;
14218 struct attribute *attr_address_class;
14219 int byte_size, addr_class;
14220 struct type *target_type;
14221
14222 target_type = die_type (die, cu);
14223
14224 /* The die_type call above may have already set the type for this DIE. */
14225 type = get_die_type (die, cu);
14226 if (type)
14227 return type;
14228
14229 type = lookup_pointer_type (target_type);
14230
14231 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14232 if (attr_byte_size)
14233 byte_size = DW_UNSND (attr_byte_size);
14234 else
14235 byte_size = cu_header->addr_size;
14236
14237 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14238 if (attr_address_class)
14239 addr_class = DW_UNSND (attr_address_class);
14240 else
14241 addr_class = DW_ADDR_none;
14242
14243 /* If the pointer size or address class is different than the
14244 default, create a type variant marked as such and set the
14245 length accordingly. */
14246 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14247 {
14248 if (gdbarch_address_class_type_flags_p (gdbarch))
14249 {
14250 int type_flags;
14251
14252 type_flags = gdbarch_address_class_type_flags
14253 (gdbarch, byte_size, addr_class);
14254 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14255 == 0);
14256 type = make_type_with_address_space (type, type_flags);
14257 }
14258 else if (TYPE_LENGTH (type) != byte_size)
14259 {
14260 complaint (&symfile_complaints,
14261 _("invalid pointer size %d"), byte_size);
14262 }
14263 else
14264 {
14265 /* Should we also complain about unhandled address classes? */
14266 }
14267 }
14268
14269 TYPE_LENGTH (type) = byte_size;
14270 return set_die_type (die, type, cu);
14271 }
14272
14273 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14274 the user defined type vector. */
14275
14276 static struct type *
14277 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14278 {
14279 struct type *type;
14280 struct type *to_type;
14281 struct type *domain;
14282
14283 to_type = die_type (die, cu);
14284 domain = die_containing_type (die, cu);
14285
14286 /* The calls above may have already set the type for this DIE. */
14287 type = get_die_type (die, cu);
14288 if (type)
14289 return type;
14290
14291 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14292 type = lookup_methodptr_type (to_type);
14293 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14294 {
14295 struct type *new_type = alloc_type (cu->objfile);
14296
14297 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14298 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14299 TYPE_VARARGS (to_type));
14300 type = lookup_methodptr_type (new_type);
14301 }
14302 else
14303 type = lookup_memberptr_type (to_type, domain);
14304
14305 return set_die_type (die, type, cu);
14306 }
14307
14308 /* Extract all information from a DW_TAG_reference_type DIE and add to
14309 the user defined type vector. */
14310
14311 static struct type *
14312 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14313 {
14314 struct comp_unit_head *cu_header = &cu->header;
14315 struct type *type, *target_type;
14316 struct attribute *attr;
14317
14318 target_type = die_type (die, cu);
14319
14320 /* The die_type call above may have already set the type for this DIE. */
14321 type = get_die_type (die, cu);
14322 if (type)
14323 return type;
14324
14325 type = lookup_reference_type (target_type);
14326 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14327 if (attr)
14328 {
14329 TYPE_LENGTH (type) = DW_UNSND (attr);
14330 }
14331 else
14332 {
14333 TYPE_LENGTH (type) = cu_header->addr_size;
14334 }
14335 return set_die_type (die, type, cu);
14336 }
14337
14338 /* Add the given cv-qualifiers to the element type of the array. GCC
14339 outputs DWARF type qualifiers that apply to an array, not the
14340 element type. But GDB relies on the array element type to carry
14341 the cv-qualifiers. This mimics section 6.7.3 of the C99
14342 specification. */
14343
14344 static struct type *
14345 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14346 struct type *base_type, int cnst, int voltl)
14347 {
14348 struct type *el_type, *inner_array;
14349
14350 base_type = copy_type (base_type);
14351 inner_array = base_type;
14352
14353 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14354 {
14355 TYPE_TARGET_TYPE (inner_array) =
14356 copy_type (TYPE_TARGET_TYPE (inner_array));
14357 inner_array = TYPE_TARGET_TYPE (inner_array);
14358 }
14359
14360 el_type = TYPE_TARGET_TYPE (inner_array);
14361 cnst |= TYPE_CONST (el_type);
14362 voltl |= TYPE_VOLATILE (el_type);
14363 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14364
14365 return set_die_type (die, base_type, cu);
14366 }
14367
14368 static struct type *
14369 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14370 {
14371 struct type *base_type, *cv_type;
14372
14373 base_type = die_type (die, cu);
14374
14375 /* The die_type call above may have already set the type for this DIE. */
14376 cv_type = get_die_type (die, cu);
14377 if (cv_type)
14378 return cv_type;
14379
14380 /* In case the const qualifier is applied to an array type, the element type
14381 is so qualified, not the array type (section 6.7.3 of C99). */
14382 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14383 return add_array_cv_type (die, cu, base_type, 1, 0);
14384
14385 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14386 return set_die_type (die, cv_type, cu);
14387 }
14388
14389 static struct type *
14390 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14391 {
14392 struct type *base_type, *cv_type;
14393
14394 base_type = die_type (die, cu);
14395
14396 /* The die_type call above may have already set the type for this DIE. */
14397 cv_type = get_die_type (die, cu);
14398 if (cv_type)
14399 return cv_type;
14400
14401 /* In case the volatile qualifier is applied to an array type, the
14402 element type is so qualified, not the array type (section 6.7.3
14403 of C99). */
14404 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14405 return add_array_cv_type (die, cu, base_type, 0, 1);
14406
14407 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14408 return set_die_type (die, cv_type, cu);
14409 }
14410
14411 /* Handle DW_TAG_restrict_type. */
14412
14413 static struct type *
14414 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14415 {
14416 struct type *base_type, *cv_type;
14417
14418 base_type = die_type (die, cu);
14419
14420 /* The die_type call above may have already set the type for this DIE. */
14421 cv_type = get_die_type (die, cu);
14422 if (cv_type)
14423 return cv_type;
14424
14425 cv_type = make_restrict_type (base_type);
14426 return set_die_type (die, cv_type, cu);
14427 }
14428
14429 /* Handle DW_TAG_atomic_type. */
14430
14431 static struct type *
14432 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14433 {
14434 struct type *base_type, *cv_type;
14435
14436 base_type = die_type (die, cu);
14437
14438 /* The die_type call above may have already set the type for this DIE. */
14439 cv_type = get_die_type (die, cu);
14440 if (cv_type)
14441 return cv_type;
14442
14443 cv_type = make_atomic_type (base_type);
14444 return set_die_type (die, cv_type, cu);
14445 }
14446
14447 /* Extract all information from a DW_TAG_string_type DIE and add to
14448 the user defined type vector. It isn't really a user defined type,
14449 but it behaves like one, with other DIE's using an AT_user_def_type
14450 attribute to reference it. */
14451
14452 static struct type *
14453 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14454 {
14455 struct objfile *objfile = cu->objfile;
14456 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14457 struct type *type, *range_type, *index_type, *char_type;
14458 struct attribute *attr;
14459 unsigned int length;
14460
14461 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14462 if (attr)
14463 {
14464 length = DW_UNSND (attr);
14465 }
14466 else
14467 {
14468 /* Check for the DW_AT_byte_size attribute. */
14469 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14470 if (attr)
14471 {
14472 length = DW_UNSND (attr);
14473 }
14474 else
14475 {
14476 length = 1;
14477 }
14478 }
14479
14480 index_type = objfile_type (objfile)->builtin_int;
14481 range_type = create_static_range_type (NULL, index_type, 1, length);
14482 char_type = language_string_char_type (cu->language_defn, gdbarch);
14483 type = create_string_type (NULL, char_type, range_type);
14484
14485 return set_die_type (die, type, cu);
14486 }
14487
14488 /* Assuming that DIE corresponds to a function, returns nonzero
14489 if the function is prototyped. */
14490
14491 static int
14492 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14493 {
14494 struct attribute *attr;
14495
14496 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14497 if (attr && (DW_UNSND (attr) != 0))
14498 return 1;
14499
14500 /* The DWARF standard implies that the DW_AT_prototyped attribute
14501 is only meaninful for C, but the concept also extends to other
14502 languages that allow unprototyped functions (Eg: Objective C).
14503 For all other languages, assume that functions are always
14504 prototyped. */
14505 if (cu->language != language_c
14506 && cu->language != language_objc
14507 && cu->language != language_opencl)
14508 return 1;
14509
14510 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14511 prototyped and unprototyped functions; default to prototyped,
14512 since that is more common in modern code (and RealView warns
14513 about unprototyped functions). */
14514 if (producer_is_realview (cu->producer))
14515 return 1;
14516
14517 return 0;
14518 }
14519
14520 /* Handle DIES due to C code like:
14521
14522 struct foo
14523 {
14524 int (*funcp)(int a, long l);
14525 int b;
14526 };
14527
14528 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14529
14530 static struct type *
14531 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14532 {
14533 struct objfile *objfile = cu->objfile;
14534 struct type *type; /* Type that this function returns. */
14535 struct type *ftype; /* Function that returns above type. */
14536 struct attribute *attr;
14537
14538 type = die_type (die, cu);
14539
14540 /* The die_type call above may have already set the type for this DIE. */
14541 ftype = get_die_type (die, cu);
14542 if (ftype)
14543 return ftype;
14544
14545 ftype = lookup_function_type (type);
14546
14547 if (prototyped_function_p (die, cu))
14548 TYPE_PROTOTYPED (ftype) = 1;
14549
14550 /* Store the calling convention in the type if it's available in
14551 the subroutine die. Otherwise set the calling convention to
14552 the default value DW_CC_normal. */
14553 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14554 if (attr)
14555 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14556 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14557 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14558 else
14559 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14560
14561 /* Record whether the function returns normally to its caller or not
14562 if the DWARF producer set that information. */
14563 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14564 if (attr && (DW_UNSND (attr) != 0))
14565 TYPE_NO_RETURN (ftype) = 1;
14566
14567 /* We need to add the subroutine type to the die immediately so
14568 we don't infinitely recurse when dealing with parameters
14569 declared as the same subroutine type. */
14570 set_die_type (die, ftype, cu);
14571
14572 if (die->child != NULL)
14573 {
14574 struct type *void_type = objfile_type (objfile)->builtin_void;
14575 struct die_info *child_die;
14576 int nparams, iparams;
14577
14578 /* Count the number of parameters.
14579 FIXME: GDB currently ignores vararg functions, but knows about
14580 vararg member functions. */
14581 nparams = 0;
14582 child_die = die->child;
14583 while (child_die && child_die->tag)
14584 {
14585 if (child_die->tag == DW_TAG_formal_parameter)
14586 nparams++;
14587 else if (child_die->tag == DW_TAG_unspecified_parameters)
14588 TYPE_VARARGS (ftype) = 1;
14589 child_die = sibling_die (child_die);
14590 }
14591
14592 /* Allocate storage for parameters and fill them in. */
14593 TYPE_NFIELDS (ftype) = nparams;
14594 TYPE_FIELDS (ftype) = (struct field *)
14595 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14596
14597 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14598 even if we error out during the parameters reading below. */
14599 for (iparams = 0; iparams < nparams; iparams++)
14600 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14601
14602 iparams = 0;
14603 child_die = die->child;
14604 while (child_die && child_die->tag)
14605 {
14606 if (child_die->tag == DW_TAG_formal_parameter)
14607 {
14608 struct type *arg_type;
14609
14610 /* DWARF version 2 has no clean way to discern C++
14611 static and non-static member functions. G++ helps
14612 GDB by marking the first parameter for non-static
14613 member functions (which is the this pointer) as
14614 artificial. We pass this information to
14615 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14616
14617 DWARF version 3 added DW_AT_object_pointer, which GCC
14618 4.5 does not yet generate. */
14619 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14620 if (attr)
14621 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14622 else
14623 {
14624 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14625
14626 /* GCC/43521: In java, the formal parameter
14627 "this" is sometimes not marked with DW_AT_artificial. */
14628 if (cu->language == language_java)
14629 {
14630 const char *name = dwarf2_name (child_die, cu);
14631
14632 if (name && !strcmp (name, "this"))
14633 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14634 }
14635 }
14636 arg_type = die_type (child_die, cu);
14637
14638 /* RealView does not mark THIS as const, which the testsuite
14639 expects. GCC marks THIS as const in method definitions,
14640 but not in the class specifications (GCC PR 43053). */
14641 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14642 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14643 {
14644 int is_this = 0;
14645 struct dwarf2_cu *arg_cu = cu;
14646 const char *name = dwarf2_name (child_die, cu);
14647
14648 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14649 if (attr)
14650 {
14651 /* If the compiler emits this, use it. */
14652 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14653 is_this = 1;
14654 }
14655 else if (name && strcmp (name, "this") == 0)
14656 /* Function definitions will have the argument names. */
14657 is_this = 1;
14658 else if (name == NULL && iparams == 0)
14659 /* Declarations may not have the names, so like
14660 elsewhere in GDB, assume an artificial first
14661 argument is "this". */
14662 is_this = 1;
14663
14664 if (is_this)
14665 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14666 arg_type, 0);
14667 }
14668
14669 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14670 iparams++;
14671 }
14672 child_die = sibling_die (child_die);
14673 }
14674 }
14675
14676 return ftype;
14677 }
14678
14679 static struct type *
14680 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14681 {
14682 struct objfile *objfile = cu->objfile;
14683 const char *name = NULL;
14684 struct type *this_type, *target_type;
14685
14686 name = dwarf2_full_name (NULL, die, cu);
14687 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14688 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14689 TYPE_NAME (this_type) = name;
14690 set_die_type (die, this_type, cu);
14691 target_type = die_type (die, cu);
14692 if (target_type != this_type)
14693 TYPE_TARGET_TYPE (this_type) = target_type;
14694 else
14695 {
14696 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14697 spec and cause infinite loops in GDB. */
14698 complaint (&symfile_complaints,
14699 _("Self-referential DW_TAG_typedef "
14700 "- DIE at 0x%x [in module %s]"),
14701 die->offset.sect_off, objfile_name (objfile));
14702 TYPE_TARGET_TYPE (this_type) = NULL;
14703 }
14704 return this_type;
14705 }
14706
14707 /* Find a representation of a given base type and install
14708 it in the TYPE field of the die. */
14709
14710 static struct type *
14711 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14712 {
14713 struct objfile *objfile = cu->objfile;
14714 struct type *type;
14715 struct attribute *attr;
14716 int encoding = 0, size = 0;
14717 const char *name;
14718 enum type_code code = TYPE_CODE_INT;
14719 int type_flags = 0;
14720 struct type *target_type = NULL;
14721
14722 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14723 if (attr)
14724 {
14725 encoding = DW_UNSND (attr);
14726 }
14727 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14728 if (attr)
14729 {
14730 size = DW_UNSND (attr);
14731 }
14732 name = dwarf2_name (die, cu);
14733 if (!name)
14734 {
14735 complaint (&symfile_complaints,
14736 _("DW_AT_name missing from DW_TAG_base_type"));
14737 }
14738
14739 switch (encoding)
14740 {
14741 case DW_ATE_address:
14742 /* Turn DW_ATE_address into a void * pointer. */
14743 code = TYPE_CODE_PTR;
14744 type_flags |= TYPE_FLAG_UNSIGNED;
14745 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14746 break;
14747 case DW_ATE_boolean:
14748 code = TYPE_CODE_BOOL;
14749 type_flags |= TYPE_FLAG_UNSIGNED;
14750 break;
14751 case DW_ATE_complex_float:
14752 code = TYPE_CODE_COMPLEX;
14753 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14754 break;
14755 case DW_ATE_decimal_float:
14756 code = TYPE_CODE_DECFLOAT;
14757 break;
14758 case DW_ATE_float:
14759 code = TYPE_CODE_FLT;
14760 break;
14761 case DW_ATE_signed:
14762 break;
14763 case DW_ATE_unsigned:
14764 type_flags |= TYPE_FLAG_UNSIGNED;
14765 if (cu->language == language_fortran
14766 && name
14767 && startswith (name, "character("))
14768 code = TYPE_CODE_CHAR;
14769 break;
14770 case DW_ATE_signed_char:
14771 if (cu->language == language_ada || cu->language == language_m2
14772 || cu->language == language_pascal
14773 || cu->language == language_fortran)
14774 code = TYPE_CODE_CHAR;
14775 break;
14776 case DW_ATE_unsigned_char:
14777 if (cu->language == language_ada || cu->language == language_m2
14778 || cu->language == language_pascal
14779 || cu->language == language_fortran)
14780 code = TYPE_CODE_CHAR;
14781 type_flags |= TYPE_FLAG_UNSIGNED;
14782 break;
14783 case DW_ATE_UTF:
14784 /* We just treat this as an integer and then recognize the
14785 type by name elsewhere. */
14786 break;
14787
14788 default:
14789 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14790 dwarf_type_encoding_name (encoding));
14791 break;
14792 }
14793
14794 type = init_type (code, size, type_flags, NULL, objfile);
14795 TYPE_NAME (type) = name;
14796 TYPE_TARGET_TYPE (type) = target_type;
14797
14798 if (name && strcmp (name, "char") == 0)
14799 TYPE_NOSIGN (type) = 1;
14800
14801 return set_die_type (die, type, cu);
14802 }
14803
14804 /* Parse dwarf attribute if it's a block, reference or constant and put the
14805 resulting value of the attribute into struct bound_prop.
14806 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14807
14808 static int
14809 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14810 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14811 {
14812 struct dwarf2_property_baton *baton;
14813 struct obstack *obstack = &cu->objfile->objfile_obstack;
14814
14815 if (attr == NULL || prop == NULL)
14816 return 0;
14817
14818 if (attr_form_is_block (attr))
14819 {
14820 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14821 baton->referenced_type = NULL;
14822 baton->locexpr.per_cu = cu->per_cu;
14823 baton->locexpr.size = DW_BLOCK (attr)->size;
14824 baton->locexpr.data = DW_BLOCK (attr)->data;
14825 prop->data.baton = baton;
14826 prop->kind = PROP_LOCEXPR;
14827 gdb_assert (prop->data.baton != NULL);
14828 }
14829 else if (attr_form_is_ref (attr))
14830 {
14831 struct dwarf2_cu *target_cu = cu;
14832 struct die_info *target_die;
14833 struct attribute *target_attr;
14834
14835 target_die = follow_die_ref (die, attr, &target_cu);
14836 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14837 if (target_attr == NULL)
14838 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14839 target_cu);
14840 if (target_attr == NULL)
14841 return 0;
14842
14843 switch (target_attr->name)
14844 {
14845 case DW_AT_location:
14846 if (attr_form_is_section_offset (target_attr))
14847 {
14848 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14849 baton->referenced_type = die_type (target_die, target_cu);
14850 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14851 prop->data.baton = baton;
14852 prop->kind = PROP_LOCLIST;
14853 gdb_assert (prop->data.baton != NULL);
14854 }
14855 else if (attr_form_is_block (target_attr))
14856 {
14857 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14858 baton->referenced_type = die_type (target_die, target_cu);
14859 baton->locexpr.per_cu = cu->per_cu;
14860 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14861 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14862 prop->data.baton = baton;
14863 prop->kind = PROP_LOCEXPR;
14864 gdb_assert (prop->data.baton != NULL);
14865 }
14866 else
14867 {
14868 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14869 "dynamic property");
14870 return 0;
14871 }
14872 break;
14873 case DW_AT_data_member_location:
14874 {
14875 LONGEST offset;
14876
14877 if (!handle_data_member_location (target_die, target_cu,
14878 &offset))
14879 return 0;
14880
14881 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14882 baton->referenced_type = read_type_die (target_die->parent,
14883 target_cu);
14884 baton->offset_info.offset = offset;
14885 baton->offset_info.type = die_type (target_die, target_cu);
14886 prop->data.baton = baton;
14887 prop->kind = PROP_ADDR_OFFSET;
14888 break;
14889 }
14890 }
14891 }
14892 else if (attr_form_is_constant (attr))
14893 {
14894 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14895 prop->kind = PROP_CONST;
14896 }
14897 else
14898 {
14899 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14900 dwarf2_name (die, cu));
14901 return 0;
14902 }
14903
14904 return 1;
14905 }
14906
14907 /* Read the given DW_AT_subrange DIE. */
14908
14909 static struct type *
14910 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14911 {
14912 struct type *base_type, *orig_base_type;
14913 struct type *range_type;
14914 struct attribute *attr;
14915 struct dynamic_prop low, high;
14916 int low_default_is_valid;
14917 int high_bound_is_count = 0;
14918 const char *name;
14919 LONGEST negative_mask;
14920
14921 orig_base_type = die_type (die, cu);
14922 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14923 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14924 creating the range type, but we use the result of check_typedef
14925 when examining properties of the type. */
14926 base_type = check_typedef (orig_base_type);
14927
14928 /* The die_type call above may have already set the type for this DIE. */
14929 range_type = get_die_type (die, cu);
14930 if (range_type)
14931 return range_type;
14932
14933 low.kind = PROP_CONST;
14934 high.kind = PROP_CONST;
14935 high.data.const_val = 0;
14936
14937 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14938 omitting DW_AT_lower_bound. */
14939 switch (cu->language)
14940 {
14941 case language_c:
14942 case language_cplus:
14943 low.data.const_val = 0;
14944 low_default_is_valid = 1;
14945 break;
14946 case language_fortran:
14947 low.data.const_val = 1;
14948 low_default_is_valid = 1;
14949 break;
14950 case language_d:
14951 case language_java:
14952 case language_objc:
14953 low.data.const_val = 0;
14954 low_default_is_valid = (cu->header.version >= 4);
14955 break;
14956 case language_ada:
14957 case language_m2:
14958 case language_pascal:
14959 low.data.const_val = 1;
14960 low_default_is_valid = (cu->header.version >= 4);
14961 break;
14962 default:
14963 low.data.const_val = 0;
14964 low_default_is_valid = 0;
14965 break;
14966 }
14967
14968 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14969 if (attr)
14970 attr_to_dynamic_prop (attr, die, cu, &low);
14971 else if (!low_default_is_valid)
14972 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14973 "- DIE at 0x%x [in module %s]"),
14974 die->offset.sect_off, objfile_name (cu->objfile));
14975
14976 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14977 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14978 {
14979 attr = dwarf2_attr (die, DW_AT_count, cu);
14980 if (attr_to_dynamic_prop (attr, die, cu, &high))
14981 {
14982 /* If bounds are constant do the final calculation here. */
14983 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14984 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14985 else
14986 high_bound_is_count = 1;
14987 }
14988 }
14989
14990 /* Dwarf-2 specifications explicitly allows to create subrange types
14991 without specifying a base type.
14992 In that case, the base type must be set to the type of
14993 the lower bound, upper bound or count, in that order, if any of these
14994 three attributes references an object that has a type.
14995 If no base type is found, the Dwarf-2 specifications say that
14996 a signed integer type of size equal to the size of an address should
14997 be used.
14998 For the following C code: `extern char gdb_int [];'
14999 GCC produces an empty range DIE.
15000 FIXME: muller/2010-05-28: Possible references to object for low bound,
15001 high bound or count are not yet handled by this code. */
15002 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15003 {
15004 struct objfile *objfile = cu->objfile;
15005 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15006 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15007 struct type *int_type = objfile_type (objfile)->builtin_int;
15008
15009 /* Test "int", "long int", and "long long int" objfile types,
15010 and select the first one having a size above or equal to the
15011 architecture address size. */
15012 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15013 base_type = int_type;
15014 else
15015 {
15016 int_type = objfile_type (objfile)->builtin_long;
15017 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15018 base_type = int_type;
15019 else
15020 {
15021 int_type = objfile_type (objfile)->builtin_long_long;
15022 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15023 base_type = int_type;
15024 }
15025 }
15026 }
15027
15028 /* Normally, the DWARF producers are expected to use a signed
15029 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15030 But this is unfortunately not always the case, as witnessed
15031 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15032 is used instead. To work around that ambiguity, we treat
15033 the bounds as signed, and thus sign-extend their values, when
15034 the base type is signed. */
15035 negative_mask =
15036 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15037 if (low.kind == PROP_CONST
15038 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15039 low.data.const_val |= negative_mask;
15040 if (high.kind == PROP_CONST
15041 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15042 high.data.const_val |= negative_mask;
15043
15044 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15045
15046 if (high_bound_is_count)
15047 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15048
15049 /* Ada expects an empty array on no boundary attributes. */
15050 if (attr == NULL && cu->language != language_ada)
15051 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15052
15053 name = dwarf2_name (die, cu);
15054 if (name)
15055 TYPE_NAME (range_type) = name;
15056
15057 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15058 if (attr)
15059 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15060
15061 set_die_type (die, range_type, cu);
15062
15063 /* set_die_type should be already done. */
15064 set_descriptive_type (range_type, die, cu);
15065
15066 return range_type;
15067 }
15068
15069 static struct type *
15070 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15071 {
15072 struct type *type;
15073
15074 /* For now, we only support the C meaning of an unspecified type: void. */
15075
15076 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15077 TYPE_NAME (type) = dwarf2_name (die, cu);
15078
15079 return set_die_type (die, type, cu);
15080 }
15081
15082 /* Read a single die and all its descendents. Set the die's sibling
15083 field to NULL; set other fields in the die correctly, and set all
15084 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15085 location of the info_ptr after reading all of those dies. PARENT
15086 is the parent of the die in question. */
15087
15088 static struct die_info *
15089 read_die_and_children (const struct die_reader_specs *reader,
15090 const gdb_byte *info_ptr,
15091 const gdb_byte **new_info_ptr,
15092 struct die_info *parent)
15093 {
15094 struct die_info *die;
15095 const gdb_byte *cur_ptr;
15096 int has_children;
15097
15098 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15099 if (die == NULL)
15100 {
15101 *new_info_ptr = cur_ptr;
15102 return NULL;
15103 }
15104 store_in_ref_table (die, reader->cu);
15105
15106 if (has_children)
15107 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15108 else
15109 {
15110 die->child = NULL;
15111 *new_info_ptr = cur_ptr;
15112 }
15113
15114 die->sibling = NULL;
15115 die->parent = parent;
15116 return die;
15117 }
15118
15119 /* Read a die, all of its descendents, and all of its siblings; set
15120 all of the fields of all of the dies correctly. Arguments are as
15121 in read_die_and_children. */
15122
15123 static struct die_info *
15124 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15125 const gdb_byte *info_ptr,
15126 const gdb_byte **new_info_ptr,
15127 struct die_info *parent)
15128 {
15129 struct die_info *first_die, *last_sibling;
15130 const gdb_byte *cur_ptr;
15131
15132 cur_ptr = info_ptr;
15133 first_die = last_sibling = NULL;
15134
15135 while (1)
15136 {
15137 struct die_info *die
15138 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15139
15140 if (die == NULL)
15141 {
15142 *new_info_ptr = cur_ptr;
15143 return first_die;
15144 }
15145
15146 if (!first_die)
15147 first_die = die;
15148 else
15149 last_sibling->sibling = die;
15150
15151 last_sibling = die;
15152 }
15153 }
15154
15155 /* Read a die, all of its descendents, and all of its siblings; set
15156 all of the fields of all of the dies correctly. Arguments are as
15157 in read_die_and_children.
15158 This the main entry point for reading a DIE and all its children. */
15159
15160 static struct die_info *
15161 read_die_and_siblings (const struct die_reader_specs *reader,
15162 const gdb_byte *info_ptr,
15163 const gdb_byte **new_info_ptr,
15164 struct die_info *parent)
15165 {
15166 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15167 new_info_ptr, parent);
15168
15169 if (dwarf_die_debug)
15170 {
15171 fprintf_unfiltered (gdb_stdlog,
15172 "Read die from %s@0x%x of %s:\n",
15173 get_section_name (reader->die_section),
15174 (unsigned) (info_ptr - reader->die_section->buffer),
15175 bfd_get_filename (reader->abfd));
15176 dump_die (die, dwarf_die_debug);
15177 }
15178
15179 return die;
15180 }
15181
15182 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15183 attributes.
15184 The caller is responsible for filling in the extra attributes
15185 and updating (*DIEP)->num_attrs.
15186 Set DIEP to point to a newly allocated die with its information,
15187 except for its child, sibling, and parent fields.
15188 Set HAS_CHILDREN to tell whether the die has children or not. */
15189
15190 static const gdb_byte *
15191 read_full_die_1 (const struct die_reader_specs *reader,
15192 struct die_info **diep, const gdb_byte *info_ptr,
15193 int *has_children, int num_extra_attrs)
15194 {
15195 unsigned int abbrev_number, bytes_read, i;
15196 sect_offset offset;
15197 struct abbrev_info *abbrev;
15198 struct die_info *die;
15199 struct dwarf2_cu *cu = reader->cu;
15200 bfd *abfd = reader->abfd;
15201
15202 offset.sect_off = info_ptr - reader->buffer;
15203 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15204 info_ptr += bytes_read;
15205 if (!abbrev_number)
15206 {
15207 *diep = NULL;
15208 *has_children = 0;
15209 return info_ptr;
15210 }
15211
15212 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15213 if (!abbrev)
15214 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15215 abbrev_number,
15216 bfd_get_filename (abfd));
15217
15218 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15219 die->offset = offset;
15220 die->tag = abbrev->tag;
15221 die->abbrev = abbrev_number;
15222
15223 /* Make the result usable.
15224 The caller needs to update num_attrs after adding the extra
15225 attributes. */
15226 die->num_attrs = abbrev->num_attrs;
15227
15228 for (i = 0; i < abbrev->num_attrs; ++i)
15229 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15230 info_ptr);
15231
15232 *diep = die;
15233 *has_children = abbrev->has_children;
15234 return info_ptr;
15235 }
15236
15237 /* Read a die and all its attributes.
15238 Set DIEP to point to a newly allocated die with its information,
15239 except for its child, sibling, and parent fields.
15240 Set HAS_CHILDREN to tell whether the die has children or not. */
15241
15242 static const gdb_byte *
15243 read_full_die (const struct die_reader_specs *reader,
15244 struct die_info **diep, const gdb_byte *info_ptr,
15245 int *has_children)
15246 {
15247 const gdb_byte *result;
15248
15249 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15250
15251 if (dwarf_die_debug)
15252 {
15253 fprintf_unfiltered (gdb_stdlog,
15254 "Read die from %s@0x%x of %s:\n",
15255 get_section_name (reader->die_section),
15256 (unsigned) (info_ptr - reader->die_section->buffer),
15257 bfd_get_filename (reader->abfd));
15258 dump_die (*diep, dwarf_die_debug);
15259 }
15260
15261 return result;
15262 }
15263 \f
15264 /* Abbreviation tables.
15265
15266 In DWARF version 2, the description of the debugging information is
15267 stored in a separate .debug_abbrev section. Before we read any
15268 dies from a section we read in all abbreviations and install them
15269 in a hash table. */
15270
15271 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15272
15273 static struct abbrev_info *
15274 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15275 {
15276 struct abbrev_info *abbrev;
15277
15278 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15279 memset (abbrev, 0, sizeof (struct abbrev_info));
15280
15281 return abbrev;
15282 }
15283
15284 /* Add an abbreviation to the table. */
15285
15286 static void
15287 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15288 unsigned int abbrev_number,
15289 struct abbrev_info *abbrev)
15290 {
15291 unsigned int hash_number;
15292
15293 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15294 abbrev->next = abbrev_table->abbrevs[hash_number];
15295 abbrev_table->abbrevs[hash_number] = abbrev;
15296 }
15297
15298 /* Look up an abbrev in the table.
15299 Returns NULL if the abbrev is not found. */
15300
15301 static struct abbrev_info *
15302 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15303 unsigned int abbrev_number)
15304 {
15305 unsigned int hash_number;
15306 struct abbrev_info *abbrev;
15307
15308 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15309 abbrev = abbrev_table->abbrevs[hash_number];
15310
15311 while (abbrev)
15312 {
15313 if (abbrev->number == abbrev_number)
15314 return abbrev;
15315 abbrev = abbrev->next;
15316 }
15317 return NULL;
15318 }
15319
15320 /* Read in an abbrev table. */
15321
15322 static struct abbrev_table *
15323 abbrev_table_read_table (struct dwarf2_section_info *section,
15324 sect_offset offset)
15325 {
15326 struct objfile *objfile = dwarf2_per_objfile->objfile;
15327 bfd *abfd = get_section_bfd_owner (section);
15328 struct abbrev_table *abbrev_table;
15329 const gdb_byte *abbrev_ptr;
15330 struct abbrev_info *cur_abbrev;
15331 unsigned int abbrev_number, bytes_read, abbrev_name;
15332 unsigned int abbrev_form;
15333 struct attr_abbrev *cur_attrs;
15334 unsigned int allocated_attrs;
15335
15336 abbrev_table = XNEW (struct abbrev_table);
15337 abbrev_table->offset = offset;
15338 obstack_init (&abbrev_table->abbrev_obstack);
15339 abbrev_table->abbrevs =
15340 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15341 ABBREV_HASH_SIZE);
15342 memset (abbrev_table->abbrevs, 0,
15343 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15344
15345 dwarf2_read_section (objfile, section);
15346 abbrev_ptr = section->buffer + offset.sect_off;
15347 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15348 abbrev_ptr += bytes_read;
15349
15350 allocated_attrs = ATTR_ALLOC_CHUNK;
15351 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15352
15353 /* Loop until we reach an abbrev number of 0. */
15354 while (abbrev_number)
15355 {
15356 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15357
15358 /* read in abbrev header */
15359 cur_abbrev->number = abbrev_number;
15360 cur_abbrev->tag
15361 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15362 abbrev_ptr += bytes_read;
15363 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15364 abbrev_ptr += 1;
15365
15366 /* now read in declarations */
15367 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15368 abbrev_ptr += bytes_read;
15369 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15370 abbrev_ptr += bytes_read;
15371 while (abbrev_name)
15372 {
15373 if (cur_abbrev->num_attrs == allocated_attrs)
15374 {
15375 allocated_attrs += ATTR_ALLOC_CHUNK;
15376 cur_attrs
15377 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15378 }
15379
15380 cur_attrs[cur_abbrev->num_attrs].name
15381 = (enum dwarf_attribute) abbrev_name;
15382 cur_attrs[cur_abbrev->num_attrs++].form
15383 = (enum dwarf_form) abbrev_form;
15384 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15385 abbrev_ptr += bytes_read;
15386 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15387 abbrev_ptr += bytes_read;
15388 }
15389
15390 cur_abbrev->attrs =
15391 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15392 cur_abbrev->num_attrs);
15393 memcpy (cur_abbrev->attrs, cur_attrs,
15394 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15395
15396 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15397
15398 /* Get next abbreviation.
15399 Under Irix6 the abbreviations for a compilation unit are not
15400 always properly terminated with an abbrev number of 0.
15401 Exit loop if we encounter an abbreviation which we have
15402 already read (which means we are about to read the abbreviations
15403 for the next compile unit) or if the end of the abbreviation
15404 table is reached. */
15405 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15406 break;
15407 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15408 abbrev_ptr += bytes_read;
15409 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15410 break;
15411 }
15412
15413 xfree (cur_attrs);
15414 return abbrev_table;
15415 }
15416
15417 /* Free the resources held by ABBREV_TABLE. */
15418
15419 static void
15420 abbrev_table_free (struct abbrev_table *abbrev_table)
15421 {
15422 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15423 xfree (abbrev_table);
15424 }
15425
15426 /* Same as abbrev_table_free but as a cleanup.
15427 We pass in a pointer to the pointer to the table so that we can
15428 set the pointer to NULL when we're done. It also simplifies
15429 build_type_psymtabs_1. */
15430
15431 static void
15432 abbrev_table_free_cleanup (void *table_ptr)
15433 {
15434 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15435
15436 if (*abbrev_table_ptr != NULL)
15437 abbrev_table_free (*abbrev_table_ptr);
15438 *abbrev_table_ptr = NULL;
15439 }
15440
15441 /* Read the abbrev table for CU from ABBREV_SECTION. */
15442
15443 static void
15444 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15445 struct dwarf2_section_info *abbrev_section)
15446 {
15447 cu->abbrev_table =
15448 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15449 }
15450
15451 /* Release the memory used by the abbrev table for a compilation unit. */
15452
15453 static void
15454 dwarf2_free_abbrev_table (void *ptr_to_cu)
15455 {
15456 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15457
15458 if (cu->abbrev_table != NULL)
15459 abbrev_table_free (cu->abbrev_table);
15460 /* Set this to NULL so that we SEGV if we try to read it later,
15461 and also because free_comp_unit verifies this is NULL. */
15462 cu->abbrev_table = NULL;
15463 }
15464 \f
15465 /* Returns nonzero if TAG represents a type that we might generate a partial
15466 symbol for. */
15467
15468 static int
15469 is_type_tag_for_partial (int tag)
15470 {
15471 switch (tag)
15472 {
15473 #if 0
15474 /* Some types that would be reasonable to generate partial symbols for,
15475 that we don't at present. */
15476 case DW_TAG_array_type:
15477 case DW_TAG_file_type:
15478 case DW_TAG_ptr_to_member_type:
15479 case DW_TAG_set_type:
15480 case DW_TAG_string_type:
15481 case DW_TAG_subroutine_type:
15482 #endif
15483 case DW_TAG_base_type:
15484 case DW_TAG_class_type:
15485 case DW_TAG_interface_type:
15486 case DW_TAG_enumeration_type:
15487 case DW_TAG_structure_type:
15488 case DW_TAG_subrange_type:
15489 case DW_TAG_typedef:
15490 case DW_TAG_union_type:
15491 return 1;
15492 default:
15493 return 0;
15494 }
15495 }
15496
15497 /* Load all DIEs that are interesting for partial symbols into memory. */
15498
15499 static struct partial_die_info *
15500 load_partial_dies (const struct die_reader_specs *reader,
15501 const gdb_byte *info_ptr, int building_psymtab)
15502 {
15503 struct dwarf2_cu *cu = reader->cu;
15504 struct objfile *objfile = cu->objfile;
15505 struct partial_die_info *part_die;
15506 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15507 struct abbrev_info *abbrev;
15508 unsigned int bytes_read;
15509 unsigned int load_all = 0;
15510 int nesting_level = 1;
15511
15512 parent_die = NULL;
15513 last_die = NULL;
15514
15515 gdb_assert (cu->per_cu != NULL);
15516 if (cu->per_cu->load_all_dies)
15517 load_all = 1;
15518
15519 cu->partial_dies
15520 = htab_create_alloc_ex (cu->header.length / 12,
15521 partial_die_hash,
15522 partial_die_eq,
15523 NULL,
15524 &cu->comp_unit_obstack,
15525 hashtab_obstack_allocate,
15526 dummy_obstack_deallocate);
15527
15528 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15529
15530 while (1)
15531 {
15532 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15533
15534 /* A NULL abbrev means the end of a series of children. */
15535 if (abbrev == NULL)
15536 {
15537 if (--nesting_level == 0)
15538 {
15539 /* PART_DIE was probably the last thing allocated on the
15540 comp_unit_obstack, so we could call obstack_free
15541 here. We don't do that because the waste is small,
15542 and will be cleaned up when we're done with this
15543 compilation unit. This way, we're also more robust
15544 against other users of the comp_unit_obstack. */
15545 return first_die;
15546 }
15547 info_ptr += bytes_read;
15548 last_die = parent_die;
15549 parent_die = parent_die->die_parent;
15550 continue;
15551 }
15552
15553 /* Check for template arguments. We never save these; if
15554 they're seen, we just mark the parent, and go on our way. */
15555 if (parent_die != NULL
15556 && cu->language == language_cplus
15557 && (abbrev->tag == DW_TAG_template_type_param
15558 || abbrev->tag == DW_TAG_template_value_param))
15559 {
15560 parent_die->has_template_arguments = 1;
15561
15562 if (!load_all)
15563 {
15564 /* We don't need a partial DIE for the template argument. */
15565 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15566 continue;
15567 }
15568 }
15569
15570 /* We only recurse into c++ subprograms looking for template arguments.
15571 Skip their other children. */
15572 if (!load_all
15573 && cu->language == language_cplus
15574 && parent_die != NULL
15575 && parent_die->tag == DW_TAG_subprogram)
15576 {
15577 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15578 continue;
15579 }
15580
15581 /* Check whether this DIE is interesting enough to save. Normally
15582 we would not be interested in members here, but there may be
15583 later variables referencing them via DW_AT_specification (for
15584 static members). */
15585 if (!load_all
15586 && !is_type_tag_for_partial (abbrev->tag)
15587 && abbrev->tag != DW_TAG_constant
15588 && abbrev->tag != DW_TAG_enumerator
15589 && abbrev->tag != DW_TAG_subprogram
15590 && abbrev->tag != DW_TAG_lexical_block
15591 && abbrev->tag != DW_TAG_variable
15592 && abbrev->tag != DW_TAG_namespace
15593 && abbrev->tag != DW_TAG_module
15594 && abbrev->tag != DW_TAG_member
15595 && abbrev->tag != DW_TAG_imported_unit
15596 && abbrev->tag != DW_TAG_imported_declaration)
15597 {
15598 /* Otherwise we skip to the next sibling, if any. */
15599 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15600 continue;
15601 }
15602
15603 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15604 info_ptr);
15605
15606 /* This two-pass algorithm for processing partial symbols has a
15607 high cost in cache pressure. Thus, handle some simple cases
15608 here which cover the majority of C partial symbols. DIEs
15609 which neither have specification tags in them, nor could have
15610 specification tags elsewhere pointing at them, can simply be
15611 processed and discarded.
15612
15613 This segment is also optional; scan_partial_symbols and
15614 add_partial_symbol will handle these DIEs if we chain
15615 them in normally. When compilers which do not emit large
15616 quantities of duplicate debug information are more common,
15617 this code can probably be removed. */
15618
15619 /* Any complete simple types at the top level (pretty much all
15620 of them, for a language without namespaces), can be processed
15621 directly. */
15622 if (parent_die == NULL
15623 && part_die->has_specification == 0
15624 && part_die->is_declaration == 0
15625 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15626 || part_die->tag == DW_TAG_base_type
15627 || part_die->tag == DW_TAG_subrange_type))
15628 {
15629 if (building_psymtab && part_die->name != NULL)
15630 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15631 VAR_DOMAIN, LOC_TYPEDEF,
15632 &objfile->static_psymbols,
15633 0, cu->language, objfile);
15634 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15635 continue;
15636 }
15637
15638 /* The exception for DW_TAG_typedef with has_children above is
15639 a workaround of GCC PR debug/47510. In the case of this complaint
15640 type_name_no_tag_or_error will error on such types later.
15641
15642 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15643 it could not find the child DIEs referenced later, this is checked
15644 above. In correct DWARF DW_TAG_typedef should have no children. */
15645
15646 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15647 complaint (&symfile_complaints,
15648 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15649 "- DIE at 0x%x [in module %s]"),
15650 part_die->offset.sect_off, objfile_name (objfile));
15651
15652 /* If we're at the second level, and we're an enumerator, and
15653 our parent has no specification (meaning possibly lives in a
15654 namespace elsewhere), then we can add the partial symbol now
15655 instead of queueing it. */
15656 if (part_die->tag == DW_TAG_enumerator
15657 && parent_die != NULL
15658 && parent_die->die_parent == NULL
15659 && parent_die->tag == DW_TAG_enumeration_type
15660 && parent_die->has_specification == 0)
15661 {
15662 if (part_die->name == NULL)
15663 complaint (&symfile_complaints,
15664 _("malformed enumerator DIE ignored"));
15665 else if (building_psymtab)
15666 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15667 VAR_DOMAIN, LOC_CONST,
15668 (cu->language == language_cplus
15669 || cu->language == language_java)
15670 ? &objfile->global_psymbols
15671 : &objfile->static_psymbols,
15672 0, cu->language, objfile);
15673
15674 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15675 continue;
15676 }
15677
15678 /* We'll save this DIE so link it in. */
15679 part_die->die_parent = parent_die;
15680 part_die->die_sibling = NULL;
15681 part_die->die_child = NULL;
15682
15683 if (last_die && last_die == parent_die)
15684 last_die->die_child = part_die;
15685 else if (last_die)
15686 last_die->die_sibling = part_die;
15687
15688 last_die = part_die;
15689
15690 if (first_die == NULL)
15691 first_die = part_die;
15692
15693 /* Maybe add the DIE to the hash table. Not all DIEs that we
15694 find interesting need to be in the hash table, because we
15695 also have the parent/sibling/child chains; only those that we
15696 might refer to by offset later during partial symbol reading.
15697
15698 For now this means things that might have be the target of a
15699 DW_AT_specification, DW_AT_abstract_origin, or
15700 DW_AT_extension. DW_AT_extension will refer only to
15701 namespaces; DW_AT_abstract_origin refers to functions (and
15702 many things under the function DIE, but we do not recurse
15703 into function DIEs during partial symbol reading) and
15704 possibly variables as well; DW_AT_specification refers to
15705 declarations. Declarations ought to have the DW_AT_declaration
15706 flag. It happens that GCC forgets to put it in sometimes, but
15707 only for functions, not for types.
15708
15709 Adding more things than necessary to the hash table is harmless
15710 except for the performance cost. Adding too few will result in
15711 wasted time in find_partial_die, when we reread the compilation
15712 unit with load_all_dies set. */
15713
15714 if (load_all
15715 || abbrev->tag == DW_TAG_constant
15716 || abbrev->tag == DW_TAG_subprogram
15717 || abbrev->tag == DW_TAG_variable
15718 || abbrev->tag == DW_TAG_namespace
15719 || part_die->is_declaration)
15720 {
15721 void **slot;
15722
15723 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15724 part_die->offset.sect_off, INSERT);
15725 *slot = part_die;
15726 }
15727
15728 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15729
15730 /* For some DIEs we want to follow their children (if any). For C
15731 we have no reason to follow the children of structures; for other
15732 languages we have to, so that we can get at method physnames
15733 to infer fully qualified class names, for DW_AT_specification,
15734 and for C++ template arguments. For C++, we also look one level
15735 inside functions to find template arguments (if the name of the
15736 function does not already contain the template arguments).
15737
15738 For Ada, we need to scan the children of subprograms and lexical
15739 blocks as well because Ada allows the definition of nested
15740 entities that could be interesting for the debugger, such as
15741 nested subprograms for instance. */
15742 if (last_die->has_children
15743 && (load_all
15744 || last_die->tag == DW_TAG_namespace
15745 || last_die->tag == DW_TAG_module
15746 || last_die->tag == DW_TAG_enumeration_type
15747 || (cu->language == language_cplus
15748 && last_die->tag == DW_TAG_subprogram
15749 && (last_die->name == NULL
15750 || strchr (last_die->name, '<') == NULL))
15751 || (cu->language != language_c
15752 && (last_die->tag == DW_TAG_class_type
15753 || last_die->tag == DW_TAG_interface_type
15754 || last_die->tag == DW_TAG_structure_type
15755 || last_die->tag == DW_TAG_union_type))
15756 || (cu->language == language_ada
15757 && (last_die->tag == DW_TAG_subprogram
15758 || last_die->tag == DW_TAG_lexical_block))))
15759 {
15760 nesting_level++;
15761 parent_die = last_die;
15762 continue;
15763 }
15764
15765 /* Otherwise we skip to the next sibling, if any. */
15766 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15767
15768 /* Back to the top, do it again. */
15769 }
15770 }
15771
15772 /* Read a minimal amount of information into the minimal die structure. */
15773
15774 static const gdb_byte *
15775 read_partial_die (const struct die_reader_specs *reader,
15776 struct partial_die_info *part_die,
15777 struct abbrev_info *abbrev, unsigned int abbrev_len,
15778 const gdb_byte *info_ptr)
15779 {
15780 struct dwarf2_cu *cu = reader->cu;
15781 struct objfile *objfile = cu->objfile;
15782 const gdb_byte *buffer = reader->buffer;
15783 unsigned int i;
15784 struct attribute attr;
15785 int has_low_pc_attr = 0;
15786 int has_high_pc_attr = 0;
15787 int high_pc_relative = 0;
15788
15789 memset (part_die, 0, sizeof (struct partial_die_info));
15790
15791 part_die->offset.sect_off = info_ptr - buffer;
15792
15793 info_ptr += abbrev_len;
15794
15795 if (abbrev == NULL)
15796 return info_ptr;
15797
15798 part_die->tag = abbrev->tag;
15799 part_die->has_children = abbrev->has_children;
15800
15801 for (i = 0; i < abbrev->num_attrs; ++i)
15802 {
15803 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15804
15805 /* Store the data if it is of an attribute we want to keep in a
15806 partial symbol table. */
15807 switch (attr.name)
15808 {
15809 case DW_AT_name:
15810 switch (part_die->tag)
15811 {
15812 case DW_TAG_compile_unit:
15813 case DW_TAG_partial_unit:
15814 case DW_TAG_type_unit:
15815 /* Compilation units have a DW_AT_name that is a filename, not
15816 a source language identifier. */
15817 case DW_TAG_enumeration_type:
15818 case DW_TAG_enumerator:
15819 /* These tags always have simple identifiers already; no need
15820 to canonicalize them. */
15821 part_die->name = DW_STRING (&attr);
15822 break;
15823 default:
15824 part_die->name
15825 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15826 &objfile->per_bfd->storage_obstack);
15827 break;
15828 }
15829 break;
15830 case DW_AT_linkage_name:
15831 case DW_AT_MIPS_linkage_name:
15832 /* Note that both forms of linkage name might appear. We
15833 assume they will be the same, and we only store the last
15834 one we see. */
15835 if (cu->language == language_ada)
15836 part_die->name = DW_STRING (&attr);
15837 part_die->linkage_name = DW_STRING (&attr);
15838 break;
15839 case DW_AT_low_pc:
15840 has_low_pc_attr = 1;
15841 part_die->lowpc = attr_value_as_address (&attr);
15842 break;
15843 case DW_AT_high_pc:
15844 has_high_pc_attr = 1;
15845 part_die->highpc = attr_value_as_address (&attr);
15846 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15847 high_pc_relative = 1;
15848 break;
15849 case DW_AT_location:
15850 /* Support the .debug_loc offsets. */
15851 if (attr_form_is_block (&attr))
15852 {
15853 part_die->d.locdesc = DW_BLOCK (&attr);
15854 }
15855 else if (attr_form_is_section_offset (&attr))
15856 {
15857 dwarf2_complex_location_expr_complaint ();
15858 }
15859 else
15860 {
15861 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15862 "partial symbol information");
15863 }
15864 break;
15865 case DW_AT_external:
15866 part_die->is_external = DW_UNSND (&attr);
15867 break;
15868 case DW_AT_declaration:
15869 part_die->is_declaration = DW_UNSND (&attr);
15870 break;
15871 case DW_AT_type:
15872 part_die->has_type = 1;
15873 break;
15874 case DW_AT_abstract_origin:
15875 case DW_AT_specification:
15876 case DW_AT_extension:
15877 part_die->has_specification = 1;
15878 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15879 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15880 || cu->per_cu->is_dwz);
15881 break;
15882 case DW_AT_sibling:
15883 /* Ignore absolute siblings, they might point outside of
15884 the current compile unit. */
15885 if (attr.form == DW_FORM_ref_addr)
15886 complaint (&symfile_complaints,
15887 _("ignoring absolute DW_AT_sibling"));
15888 else
15889 {
15890 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15891 const gdb_byte *sibling_ptr = buffer + off;
15892
15893 if (sibling_ptr < info_ptr)
15894 complaint (&symfile_complaints,
15895 _("DW_AT_sibling points backwards"));
15896 else if (sibling_ptr > reader->buffer_end)
15897 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15898 else
15899 part_die->sibling = sibling_ptr;
15900 }
15901 break;
15902 case DW_AT_byte_size:
15903 part_die->has_byte_size = 1;
15904 break;
15905 case DW_AT_const_value:
15906 part_die->has_const_value = 1;
15907 break;
15908 case DW_AT_calling_convention:
15909 /* DWARF doesn't provide a way to identify a program's source-level
15910 entry point. DW_AT_calling_convention attributes are only meant
15911 to describe functions' calling conventions.
15912
15913 However, because it's a necessary piece of information in
15914 Fortran, and because DW_CC_program is the only piece of debugging
15915 information whose definition refers to a 'main program' at all,
15916 several compilers have begun marking Fortran main programs with
15917 DW_CC_program --- even when those functions use the standard
15918 calling conventions.
15919
15920 So until DWARF specifies a way to provide this information and
15921 compilers pick up the new representation, we'll support this
15922 practice. */
15923 if (DW_UNSND (&attr) == DW_CC_program
15924 && cu->language == language_fortran
15925 && part_die->name != NULL)
15926 set_objfile_main_name (objfile, part_die->name, language_fortran);
15927 break;
15928 case DW_AT_inline:
15929 if (DW_UNSND (&attr) == DW_INL_inlined
15930 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15931 part_die->may_be_inlined = 1;
15932 break;
15933
15934 case DW_AT_import:
15935 if (part_die->tag == DW_TAG_imported_unit)
15936 {
15937 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15938 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15939 || cu->per_cu->is_dwz);
15940 }
15941 break;
15942
15943 default:
15944 break;
15945 }
15946 }
15947
15948 if (high_pc_relative)
15949 part_die->highpc += part_die->lowpc;
15950
15951 if (has_low_pc_attr && has_high_pc_attr)
15952 {
15953 /* When using the GNU linker, .gnu.linkonce. sections are used to
15954 eliminate duplicate copies of functions and vtables and such.
15955 The linker will arbitrarily choose one and discard the others.
15956 The AT_*_pc values for such functions refer to local labels in
15957 these sections. If the section from that file was discarded, the
15958 labels are not in the output, so the relocs get a value of 0.
15959 If this is a discarded function, mark the pc bounds as invalid,
15960 so that GDB will ignore it. */
15961 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15962 {
15963 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15964
15965 complaint (&symfile_complaints,
15966 _("DW_AT_low_pc %s is zero "
15967 "for DIE at 0x%x [in module %s]"),
15968 paddress (gdbarch, part_die->lowpc),
15969 part_die->offset.sect_off, objfile_name (objfile));
15970 }
15971 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15972 else if (part_die->lowpc >= part_die->highpc)
15973 {
15974 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15975
15976 complaint (&symfile_complaints,
15977 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15978 "for DIE at 0x%x [in module %s]"),
15979 paddress (gdbarch, part_die->lowpc),
15980 paddress (gdbarch, part_die->highpc),
15981 part_die->offset.sect_off, objfile_name (objfile));
15982 }
15983 else
15984 part_die->has_pc_info = 1;
15985 }
15986
15987 return info_ptr;
15988 }
15989
15990 /* Find a cached partial DIE at OFFSET in CU. */
15991
15992 static struct partial_die_info *
15993 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15994 {
15995 struct partial_die_info *lookup_die = NULL;
15996 struct partial_die_info part_die;
15997
15998 part_die.offset = offset;
15999 lookup_die = ((struct partial_die_info *)
16000 htab_find_with_hash (cu->partial_dies, &part_die,
16001 offset.sect_off));
16002
16003 return lookup_die;
16004 }
16005
16006 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16007 except in the case of .debug_types DIEs which do not reference
16008 outside their CU (they do however referencing other types via
16009 DW_FORM_ref_sig8). */
16010
16011 static struct partial_die_info *
16012 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16013 {
16014 struct objfile *objfile = cu->objfile;
16015 struct dwarf2_per_cu_data *per_cu = NULL;
16016 struct partial_die_info *pd = NULL;
16017
16018 if (offset_in_dwz == cu->per_cu->is_dwz
16019 && offset_in_cu_p (&cu->header, offset))
16020 {
16021 pd = find_partial_die_in_comp_unit (offset, cu);
16022 if (pd != NULL)
16023 return pd;
16024 /* We missed recording what we needed.
16025 Load all dies and try again. */
16026 per_cu = cu->per_cu;
16027 }
16028 else
16029 {
16030 /* TUs don't reference other CUs/TUs (except via type signatures). */
16031 if (cu->per_cu->is_debug_types)
16032 {
16033 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16034 " external reference to offset 0x%lx [in module %s].\n"),
16035 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16036 bfd_get_filename (objfile->obfd));
16037 }
16038 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16039 objfile);
16040
16041 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16042 load_partial_comp_unit (per_cu);
16043
16044 per_cu->cu->last_used = 0;
16045 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16046 }
16047
16048 /* If we didn't find it, and not all dies have been loaded,
16049 load them all and try again. */
16050
16051 if (pd == NULL && per_cu->load_all_dies == 0)
16052 {
16053 per_cu->load_all_dies = 1;
16054
16055 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16056 THIS_CU->cu may already be in use. So we can't just free it and
16057 replace its DIEs with the ones we read in. Instead, we leave those
16058 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16059 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16060 set. */
16061 load_partial_comp_unit (per_cu);
16062
16063 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16064 }
16065
16066 if (pd == NULL)
16067 internal_error (__FILE__, __LINE__,
16068 _("could not find partial DIE 0x%x "
16069 "in cache [from module %s]\n"),
16070 offset.sect_off, bfd_get_filename (objfile->obfd));
16071 return pd;
16072 }
16073
16074 /* See if we can figure out if the class lives in a namespace. We do
16075 this by looking for a member function; its demangled name will
16076 contain namespace info, if there is any. */
16077
16078 static void
16079 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16080 struct dwarf2_cu *cu)
16081 {
16082 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16083 what template types look like, because the demangler
16084 frequently doesn't give the same name as the debug info. We
16085 could fix this by only using the demangled name to get the
16086 prefix (but see comment in read_structure_type). */
16087
16088 struct partial_die_info *real_pdi;
16089 struct partial_die_info *child_pdi;
16090
16091 /* If this DIE (this DIE's specification, if any) has a parent, then
16092 we should not do this. We'll prepend the parent's fully qualified
16093 name when we create the partial symbol. */
16094
16095 real_pdi = struct_pdi;
16096 while (real_pdi->has_specification)
16097 real_pdi = find_partial_die (real_pdi->spec_offset,
16098 real_pdi->spec_is_dwz, cu);
16099
16100 if (real_pdi->die_parent != NULL)
16101 return;
16102
16103 for (child_pdi = struct_pdi->die_child;
16104 child_pdi != NULL;
16105 child_pdi = child_pdi->die_sibling)
16106 {
16107 if (child_pdi->tag == DW_TAG_subprogram
16108 && child_pdi->linkage_name != NULL)
16109 {
16110 char *actual_class_name
16111 = language_class_name_from_physname (cu->language_defn,
16112 child_pdi->linkage_name);
16113 if (actual_class_name != NULL)
16114 {
16115 struct_pdi->name
16116 = ((const char *)
16117 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16118 actual_class_name,
16119 strlen (actual_class_name)));
16120 xfree (actual_class_name);
16121 }
16122 break;
16123 }
16124 }
16125 }
16126
16127 /* Adjust PART_DIE before generating a symbol for it. This function
16128 may set the is_external flag or change the DIE's name. */
16129
16130 static void
16131 fixup_partial_die (struct partial_die_info *part_die,
16132 struct dwarf2_cu *cu)
16133 {
16134 /* Once we've fixed up a die, there's no point in doing so again.
16135 This also avoids a memory leak if we were to call
16136 guess_partial_die_structure_name multiple times. */
16137 if (part_die->fixup_called)
16138 return;
16139
16140 /* If we found a reference attribute and the DIE has no name, try
16141 to find a name in the referred to DIE. */
16142
16143 if (part_die->name == NULL && part_die->has_specification)
16144 {
16145 struct partial_die_info *spec_die;
16146
16147 spec_die = find_partial_die (part_die->spec_offset,
16148 part_die->spec_is_dwz, cu);
16149
16150 fixup_partial_die (spec_die, cu);
16151
16152 if (spec_die->name)
16153 {
16154 part_die->name = spec_die->name;
16155
16156 /* Copy DW_AT_external attribute if it is set. */
16157 if (spec_die->is_external)
16158 part_die->is_external = spec_die->is_external;
16159 }
16160 }
16161
16162 /* Set default names for some unnamed DIEs. */
16163
16164 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16165 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16166
16167 /* If there is no parent die to provide a namespace, and there are
16168 children, see if we can determine the namespace from their linkage
16169 name. */
16170 if (cu->language == language_cplus
16171 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16172 && part_die->die_parent == NULL
16173 && part_die->has_children
16174 && (part_die->tag == DW_TAG_class_type
16175 || part_die->tag == DW_TAG_structure_type
16176 || part_die->tag == DW_TAG_union_type))
16177 guess_partial_die_structure_name (part_die, cu);
16178
16179 /* GCC might emit a nameless struct or union that has a linkage
16180 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16181 if (part_die->name == NULL
16182 && (part_die->tag == DW_TAG_class_type
16183 || part_die->tag == DW_TAG_interface_type
16184 || part_die->tag == DW_TAG_structure_type
16185 || part_die->tag == DW_TAG_union_type)
16186 && part_die->linkage_name != NULL)
16187 {
16188 char *demangled;
16189
16190 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16191 if (demangled)
16192 {
16193 const char *base;
16194
16195 /* Strip any leading namespaces/classes, keep only the base name.
16196 DW_AT_name for named DIEs does not contain the prefixes. */
16197 base = strrchr (demangled, ':');
16198 if (base && base > demangled && base[-1] == ':')
16199 base++;
16200 else
16201 base = demangled;
16202
16203 part_die->name
16204 = ((const char *)
16205 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16206 base, strlen (base)));
16207 xfree (demangled);
16208 }
16209 }
16210
16211 part_die->fixup_called = 1;
16212 }
16213
16214 /* Read an attribute value described by an attribute form. */
16215
16216 static const gdb_byte *
16217 read_attribute_value (const struct die_reader_specs *reader,
16218 struct attribute *attr, unsigned form,
16219 const gdb_byte *info_ptr)
16220 {
16221 struct dwarf2_cu *cu = reader->cu;
16222 struct objfile *objfile = cu->objfile;
16223 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16224 bfd *abfd = reader->abfd;
16225 struct comp_unit_head *cu_header = &cu->header;
16226 unsigned int bytes_read;
16227 struct dwarf_block *blk;
16228
16229 attr->form = (enum dwarf_form) form;
16230 switch (form)
16231 {
16232 case DW_FORM_ref_addr:
16233 if (cu->header.version == 2)
16234 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16235 else
16236 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16237 &cu->header, &bytes_read);
16238 info_ptr += bytes_read;
16239 break;
16240 case DW_FORM_GNU_ref_alt:
16241 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16242 info_ptr += bytes_read;
16243 break;
16244 case DW_FORM_addr:
16245 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16246 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16247 info_ptr += bytes_read;
16248 break;
16249 case DW_FORM_block2:
16250 blk = dwarf_alloc_block (cu);
16251 blk->size = read_2_bytes (abfd, info_ptr);
16252 info_ptr += 2;
16253 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16254 info_ptr += blk->size;
16255 DW_BLOCK (attr) = blk;
16256 break;
16257 case DW_FORM_block4:
16258 blk = dwarf_alloc_block (cu);
16259 blk->size = read_4_bytes (abfd, info_ptr);
16260 info_ptr += 4;
16261 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16262 info_ptr += blk->size;
16263 DW_BLOCK (attr) = blk;
16264 break;
16265 case DW_FORM_data2:
16266 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16267 info_ptr += 2;
16268 break;
16269 case DW_FORM_data4:
16270 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16271 info_ptr += 4;
16272 break;
16273 case DW_FORM_data8:
16274 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16275 info_ptr += 8;
16276 break;
16277 case DW_FORM_sec_offset:
16278 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16279 info_ptr += bytes_read;
16280 break;
16281 case DW_FORM_string:
16282 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16283 DW_STRING_IS_CANONICAL (attr) = 0;
16284 info_ptr += bytes_read;
16285 break;
16286 case DW_FORM_strp:
16287 if (!cu->per_cu->is_dwz)
16288 {
16289 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16290 &bytes_read);
16291 DW_STRING_IS_CANONICAL (attr) = 0;
16292 info_ptr += bytes_read;
16293 break;
16294 }
16295 /* FALLTHROUGH */
16296 case DW_FORM_GNU_strp_alt:
16297 {
16298 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16299 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16300 &bytes_read);
16301
16302 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16303 DW_STRING_IS_CANONICAL (attr) = 0;
16304 info_ptr += bytes_read;
16305 }
16306 break;
16307 case DW_FORM_exprloc:
16308 case DW_FORM_block:
16309 blk = dwarf_alloc_block (cu);
16310 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16311 info_ptr += bytes_read;
16312 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16313 info_ptr += blk->size;
16314 DW_BLOCK (attr) = blk;
16315 break;
16316 case DW_FORM_block1:
16317 blk = dwarf_alloc_block (cu);
16318 blk->size = read_1_byte (abfd, info_ptr);
16319 info_ptr += 1;
16320 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16321 info_ptr += blk->size;
16322 DW_BLOCK (attr) = blk;
16323 break;
16324 case DW_FORM_data1:
16325 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16326 info_ptr += 1;
16327 break;
16328 case DW_FORM_flag:
16329 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16330 info_ptr += 1;
16331 break;
16332 case DW_FORM_flag_present:
16333 DW_UNSND (attr) = 1;
16334 break;
16335 case DW_FORM_sdata:
16336 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16337 info_ptr += bytes_read;
16338 break;
16339 case DW_FORM_udata:
16340 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16341 info_ptr += bytes_read;
16342 break;
16343 case DW_FORM_ref1:
16344 DW_UNSND (attr) = (cu->header.offset.sect_off
16345 + read_1_byte (abfd, info_ptr));
16346 info_ptr += 1;
16347 break;
16348 case DW_FORM_ref2:
16349 DW_UNSND (attr) = (cu->header.offset.sect_off
16350 + read_2_bytes (abfd, info_ptr));
16351 info_ptr += 2;
16352 break;
16353 case DW_FORM_ref4:
16354 DW_UNSND (attr) = (cu->header.offset.sect_off
16355 + read_4_bytes (abfd, info_ptr));
16356 info_ptr += 4;
16357 break;
16358 case DW_FORM_ref8:
16359 DW_UNSND (attr) = (cu->header.offset.sect_off
16360 + read_8_bytes (abfd, info_ptr));
16361 info_ptr += 8;
16362 break;
16363 case DW_FORM_ref_sig8:
16364 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16365 info_ptr += 8;
16366 break;
16367 case DW_FORM_ref_udata:
16368 DW_UNSND (attr) = (cu->header.offset.sect_off
16369 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16370 info_ptr += bytes_read;
16371 break;
16372 case DW_FORM_indirect:
16373 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16374 info_ptr += bytes_read;
16375 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16376 break;
16377 case DW_FORM_GNU_addr_index:
16378 if (reader->dwo_file == NULL)
16379 {
16380 /* For now flag a hard error.
16381 Later we can turn this into a complaint. */
16382 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16383 dwarf_form_name (form),
16384 bfd_get_filename (abfd));
16385 }
16386 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16387 info_ptr += bytes_read;
16388 break;
16389 case DW_FORM_GNU_str_index:
16390 if (reader->dwo_file == NULL)
16391 {
16392 /* For now flag a hard error.
16393 Later we can turn this into a complaint if warranted. */
16394 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16395 dwarf_form_name (form),
16396 bfd_get_filename (abfd));
16397 }
16398 {
16399 ULONGEST str_index =
16400 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16401
16402 DW_STRING (attr) = read_str_index (reader, str_index);
16403 DW_STRING_IS_CANONICAL (attr) = 0;
16404 info_ptr += bytes_read;
16405 }
16406 break;
16407 default:
16408 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16409 dwarf_form_name (form),
16410 bfd_get_filename (abfd));
16411 }
16412
16413 /* Super hack. */
16414 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16415 attr->form = DW_FORM_GNU_ref_alt;
16416
16417 /* We have seen instances where the compiler tried to emit a byte
16418 size attribute of -1 which ended up being encoded as an unsigned
16419 0xffffffff. Although 0xffffffff is technically a valid size value,
16420 an object of this size seems pretty unlikely so we can relatively
16421 safely treat these cases as if the size attribute was invalid and
16422 treat them as zero by default. */
16423 if (attr->name == DW_AT_byte_size
16424 && form == DW_FORM_data4
16425 && DW_UNSND (attr) >= 0xffffffff)
16426 {
16427 complaint
16428 (&symfile_complaints,
16429 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16430 hex_string (DW_UNSND (attr)));
16431 DW_UNSND (attr) = 0;
16432 }
16433
16434 return info_ptr;
16435 }
16436
16437 /* Read an attribute described by an abbreviated attribute. */
16438
16439 static const gdb_byte *
16440 read_attribute (const struct die_reader_specs *reader,
16441 struct attribute *attr, struct attr_abbrev *abbrev,
16442 const gdb_byte *info_ptr)
16443 {
16444 attr->name = abbrev->name;
16445 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16446 }
16447
16448 /* Read dwarf information from a buffer. */
16449
16450 static unsigned int
16451 read_1_byte (bfd *abfd, const gdb_byte *buf)
16452 {
16453 return bfd_get_8 (abfd, buf);
16454 }
16455
16456 static int
16457 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16458 {
16459 return bfd_get_signed_8 (abfd, buf);
16460 }
16461
16462 static unsigned int
16463 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16464 {
16465 return bfd_get_16 (abfd, buf);
16466 }
16467
16468 static int
16469 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16470 {
16471 return bfd_get_signed_16 (abfd, buf);
16472 }
16473
16474 static unsigned int
16475 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16476 {
16477 return bfd_get_32 (abfd, buf);
16478 }
16479
16480 static int
16481 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16482 {
16483 return bfd_get_signed_32 (abfd, buf);
16484 }
16485
16486 static ULONGEST
16487 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16488 {
16489 return bfd_get_64 (abfd, buf);
16490 }
16491
16492 static CORE_ADDR
16493 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16494 unsigned int *bytes_read)
16495 {
16496 struct comp_unit_head *cu_header = &cu->header;
16497 CORE_ADDR retval = 0;
16498
16499 if (cu_header->signed_addr_p)
16500 {
16501 switch (cu_header->addr_size)
16502 {
16503 case 2:
16504 retval = bfd_get_signed_16 (abfd, buf);
16505 break;
16506 case 4:
16507 retval = bfd_get_signed_32 (abfd, buf);
16508 break;
16509 case 8:
16510 retval = bfd_get_signed_64 (abfd, buf);
16511 break;
16512 default:
16513 internal_error (__FILE__, __LINE__,
16514 _("read_address: bad switch, signed [in module %s]"),
16515 bfd_get_filename (abfd));
16516 }
16517 }
16518 else
16519 {
16520 switch (cu_header->addr_size)
16521 {
16522 case 2:
16523 retval = bfd_get_16 (abfd, buf);
16524 break;
16525 case 4:
16526 retval = bfd_get_32 (abfd, buf);
16527 break;
16528 case 8:
16529 retval = bfd_get_64 (abfd, buf);
16530 break;
16531 default:
16532 internal_error (__FILE__, __LINE__,
16533 _("read_address: bad switch, "
16534 "unsigned [in module %s]"),
16535 bfd_get_filename (abfd));
16536 }
16537 }
16538
16539 *bytes_read = cu_header->addr_size;
16540 return retval;
16541 }
16542
16543 /* Read the initial length from a section. The (draft) DWARF 3
16544 specification allows the initial length to take up either 4 bytes
16545 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16546 bytes describe the length and all offsets will be 8 bytes in length
16547 instead of 4.
16548
16549 An older, non-standard 64-bit format is also handled by this
16550 function. The older format in question stores the initial length
16551 as an 8-byte quantity without an escape value. Lengths greater
16552 than 2^32 aren't very common which means that the initial 4 bytes
16553 is almost always zero. Since a length value of zero doesn't make
16554 sense for the 32-bit format, this initial zero can be considered to
16555 be an escape value which indicates the presence of the older 64-bit
16556 format. As written, the code can't detect (old format) lengths
16557 greater than 4GB. If it becomes necessary to handle lengths
16558 somewhat larger than 4GB, we could allow other small values (such
16559 as the non-sensical values of 1, 2, and 3) to also be used as
16560 escape values indicating the presence of the old format.
16561
16562 The value returned via bytes_read should be used to increment the
16563 relevant pointer after calling read_initial_length().
16564
16565 [ Note: read_initial_length() and read_offset() are based on the
16566 document entitled "DWARF Debugging Information Format", revision
16567 3, draft 8, dated November 19, 2001. This document was obtained
16568 from:
16569
16570 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16571
16572 This document is only a draft and is subject to change. (So beware.)
16573
16574 Details regarding the older, non-standard 64-bit format were
16575 determined empirically by examining 64-bit ELF files produced by
16576 the SGI toolchain on an IRIX 6.5 machine.
16577
16578 - Kevin, July 16, 2002
16579 ] */
16580
16581 static LONGEST
16582 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16583 {
16584 LONGEST length = bfd_get_32 (abfd, buf);
16585
16586 if (length == 0xffffffff)
16587 {
16588 length = bfd_get_64 (abfd, buf + 4);
16589 *bytes_read = 12;
16590 }
16591 else if (length == 0)
16592 {
16593 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16594 length = bfd_get_64 (abfd, buf);
16595 *bytes_read = 8;
16596 }
16597 else
16598 {
16599 *bytes_read = 4;
16600 }
16601
16602 return length;
16603 }
16604
16605 /* Cover function for read_initial_length.
16606 Returns the length of the object at BUF, and stores the size of the
16607 initial length in *BYTES_READ and stores the size that offsets will be in
16608 *OFFSET_SIZE.
16609 If the initial length size is not equivalent to that specified in
16610 CU_HEADER then issue a complaint.
16611 This is useful when reading non-comp-unit headers. */
16612
16613 static LONGEST
16614 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16615 const struct comp_unit_head *cu_header,
16616 unsigned int *bytes_read,
16617 unsigned int *offset_size)
16618 {
16619 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16620
16621 gdb_assert (cu_header->initial_length_size == 4
16622 || cu_header->initial_length_size == 8
16623 || cu_header->initial_length_size == 12);
16624
16625 if (cu_header->initial_length_size != *bytes_read)
16626 complaint (&symfile_complaints,
16627 _("intermixed 32-bit and 64-bit DWARF sections"));
16628
16629 *offset_size = (*bytes_read == 4) ? 4 : 8;
16630 return length;
16631 }
16632
16633 /* Read an offset from the data stream. The size of the offset is
16634 given by cu_header->offset_size. */
16635
16636 static LONGEST
16637 read_offset (bfd *abfd, const gdb_byte *buf,
16638 const struct comp_unit_head *cu_header,
16639 unsigned int *bytes_read)
16640 {
16641 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16642
16643 *bytes_read = cu_header->offset_size;
16644 return offset;
16645 }
16646
16647 /* Read an offset from the data stream. */
16648
16649 static LONGEST
16650 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16651 {
16652 LONGEST retval = 0;
16653
16654 switch (offset_size)
16655 {
16656 case 4:
16657 retval = bfd_get_32 (abfd, buf);
16658 break;
16659 case 8:
16660 retval = bfd_get_64 (abfd, buf);
16661 break;
16662 default:
16663 internal_error (__FILE__, __LINE__,
16664 _("read_offset_1: bad switch [in module %s]"),
16665 bfd_get_filename (abfd));
16666 }
16667
16668 return retval;
16669 }
16670
16671 static const gdb_byte *
16672 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16673 {
16674 /* If the size of a host char is 8 bits, we can return a pointer
16675 to the buffer, otherwise we have to copy the data to a buffer
16676 allocated on the temporary obstack. */
16677 gdb_assert (HOST_CHAR_BIT == 8);
16678 return buf;
16679 }
16680
16681 static const char *
16682 read_direct_string (bfd *abfd, const gdb_byte *buf,
16683 unsigned int *bytes_read_ptr)
16684 {
16685 /* If the size of a host char is 8 bits, we can return a pointer
16686 to the string, otherwise we have to copy the string to a buffer
16687 allocated on the temporary obstack. */
16688 gdb_assert (HOST_CHAR_BIT == 8);
16689 if (*buf == '\0')
16690 {
16691 *bytes_read_ptr = 1;
16692 return NULL;
16693 }
16694 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16695 return (const char *) buf;
16696 }
16697
16698 static const char *
16699 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16700 {
16701 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16702 if (dwarf2_per_objfile->str.buffer == NULL)
16703 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16704 bfd_get_filename (abfd));
16705 if (str_offset >= dwarf2_per_objfile->str.size)
16706 error (_("DW_FORM_strp pointing outside of "
16707 ".debug_str section [in module %s]"),
16708 bfd_get_filename (abfd));
16709 gdb_assert (HOST_CHAR_BIT == 8);
16710 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16711 return NULL;
16712 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16713 }
16714
16715 /* Read a string at offset STR_OFFSET in the .debug_str section from
16716 the .dwz file DWZ. Throw an error if the offset is too large. If
16717 the string consists of a single NUL byte, return NULL; otherwise
16718 return a pointer to the string. */
16719
16720 static const char *
16721 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16722 {
16723 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16724
16725 if (dwz->str.buffer == NULL)
16726 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16727 "section [in module %s]"),
16728 bfd_get_filename (dwz->dwz_bfd));
16729 if (str_offset >= dwz->str.size)
16730 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16731 ".debug_str section [in module %s]"),
16732 bfd_get_filename (dwz->dwz_bfd));
16733 gdb_assert (HOST_CHAR_BIT == 8);
16734 if (dwz->str.buffer[str_offset] == '\0')
16735 return NULL;
16736 return (const char *) (dwz->str.buffer + str_offset);
16737 }
16738
16739 static const char *
16740 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16741 const struct comp_unit_head *cu_header,
16742 unsigned int *bytes_read_ptr)
16743 {
16744 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16745
16746 return read_indirect_string_at_offset (abfd, str_offset);
16747 }
16748
16749 static ULONGEST
16750 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16751 unsigned int *bytes_read_ptr)
16752 {
16753 ULONGEST result;
16754 unsigned int num_read;
16755 int shift;
16756 unsigned char byte;
16757
16758 result = 0;
16759 shift = 0;
16760 num_read = 0;
16761 while (1)
16762 {
16763 byte = bfd_get_8 (abfd, buf);
16764 buf++;
16765 num_read++;
16766 result |= ((ULONGEST) (byte & 127) << shift);
16767 if ((byte & 128) == 0)
16768 {
16769 break;
16770 }
16771 shift += 7;
16772 }
16773 *bytes_read_ptr = num_read;
16774 return result;
16775 }
16776
16777 static LONGEST
16778 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16779 unsigned int *bytes_read_ptr)
16780 {
16781 LONGEST result;
16782 int shift, num_read;
16783 unsigned char byte;
16784
16785 result = 0;
16786 shift = 0;
16787 num_read = 0;
16788 while (1)
16789 {
16790 byte = bfd_get_8 (abfd, buf);
16791 buf++;
16792 num_read++;
16793 result |= ((LONGEST) (byte & 127) << shift);
16794 shift += 7;
16795 if ((byte & 128) == 0)
16796 {
16797 break;
16798 }
16799 }
16800 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16801 result |= -(((LONGEST) 1) << shift);
16802 *bytes_read_ptr = num_read;
16803 return result;
16804 }
16805
16806 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16807 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16808 ADDR_SIZE is the size of addresses from the CU header. */
16809
16810 static CORE_ADDR
16811 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16812 {
16813 struct objfile *objfile = dwarf2_per_objfile->objfile;
16814 bfd *abfd = objfile->obfd;
16815 const gdb_byte *info_ptr;
16816
16817 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16818 if (dwarf2_per_objfile->addr.buffer == NULL)
16819 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16820 objfile_name (objfile));
16821 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16822 error (_("DW_FORM_addr_index pointing outside of "
16823 ".debug_addr section [in module %s]"),
16824 objfile_name (objfile));
16825 info_ptr = (dwarf2_per_objfile->addr.buffer
16826 + addr_base + addr_index * addr_size);
16827 if (addr_size == 4)
16828 return bfd_get_32 (abfd, info_ptr);
16829 else
16830 return bfd_get_64 (abfd, info_ptr);
16831 }
16832
16833 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16834
16835 static CORE_ADDR
16836 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16837 {
16838 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16839 }
16840
16841 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16842
16843 static CORE_ADDR
16844 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16845 unsigned int *bytes_read)
16846 {
16847 bfd *abfd = cu->objfile->obfd;
16848 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16849
16850 return read_addr_index (cu, addr_index);
16851 }
16852
16853 /* Data structure to pass results from dwarf2_read_addr_index_reader
16854 back to dwarf2_read_addr_index. */
16855
16856 struct dwarf2_read_addr_index_data
16857 {
16858 ULONGEST addr_base;
16859 int addr_size;
16860 };
16861
16862 /* die_reader_func for dwarf2_read_addr_index. */
16863
16864 static void
16865 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16866 const gdb_byte *info_ptr,
16867 struct die_info *comp_unit_die,
16868 int has_children,
16869 void *data)
16870 {
16871 struct dwarf2_cu *cu = reader->cu;
16872 struct dwarf2_read_addr_index_data *aidata =
16873 (struct dwarf2_read_addr_index_data *) data;
16874
16875 aidata->addr_base = cu->addr_base;
16876 aidata->addr_size = cu->header.addr_size;
16877 }
16878
16879 /* Given an index in .debug_addr, fetch the value.
16880 NOTE: This can be called during dwarf expression evaluation,
16881 long after the debug information has been read, and thus per_cu->cu
16882 may no longer exist. */
16883
16884 CORE_ADDR
16885 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16886 unsigned int addr_index)
16887 {
16888 struct objfile *objfile = per_cu->objfile;
16889 struct dwarf2_cu *cu = per_cu->cu;
16890 ULONGEST addr_base;
16891 int addr_size;
16892
16893 /* This is intended to be called from outside this file. */
16894 dw2_setup (objfile);
16895
16896 /* We need addr_base and addr_size.
16897 If we don't have PER_CU->cu, we have to get it.
16898 Nasty, but the alternative is storing the needed info in PER_CU,
16899 which at this point doesn't seem justified: it's not clear how frequently
16900 it would get used and it would increase the size of every PER_CU.
16901 Entry points like dwarf2_per_cu_addr_size do a similar thing
16902 so we're not in uncharted territory here.
16903 Alas we need to be a bit more complicated as addr_base is contained
16904 in the DIE.
16905
16906 We don't need to read the entire CU(/TU).
16907 We just need the header and top level die.
16908
16909 IWBN to use the aging mechanism to let us lazily later discard the CU.
16910 For now we skip this optimization. */
16911
16912 if (cu != NULL)
16913 {
16914 addr_base = cu->addr_base;
16915 addr_size = cu->header.addr_size;
16916 }
16917 else
16918 {
16919 struct dwarf2_read_addr_index_data aidata;
16920
16921 /* Note: We can't use init_cutu_and_read_dies_simple here,
16922 we need addr_base. */
16923 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16924 dwarf2_read_addr_index_reader, &aidata);
16925 addr_base = aidata.addr_base;
16926 addr_size = aidata.addr_size;
16927 }
16928
16929 return read_addr_index_1 (addr_index, addr_base, addr_size);
16930 }
16931
16932 /* Given a DW_FORM_GNU_str_index, fetch the string.
16933 This is only used by the Fission support. */
16934
16935 static const char *
16936 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16937 {
16938 struct objfile *objfile = dwarf2_per_objfile->objfile;
16939 const char *objf_name = objfile_name (objfile);
16940 bfd *abfd = objfile->obfd;
16941 struct dwarf2_cu *cu = reader->cu;
16942 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16943 struct dwarf2_section_info *str_offsets_section =
16944 &reader->dwo_file->sections.str_offsets;
16945 const gdb_byte *info_ptr;
16946 ULONGEST str_offset;
16947 static const char form_name[] = "DW_FORM_GNU_str_index";
16948
16949 dwarf2_read_section (objfile, str_section);
16950 dwarf2_read_section (objfile, str_offsets_section);
16951 if (str_section->buffer == NULL)
16952 error (_("%s used without .debug_str.dwo section"
16953 " in CU at offset 0x%lx [in module %s]"),
16954 form_name, (long) cu->header.offset.sect_off, objf_name);
16955 if (str_offsets_section->buffer == NULL)
16956 error (_("%s used without .debug_str_offsets.dwo section"
16957 " in CU at offset 0x%lx [in module %s]"),
16958 form_name, (long) cu->header.offset.sect_off, objf_name);
16959 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16960 error (_("%s pointing outside of .debug_str_offsets.dwo"
16961 " section in CU at offset 0x%lx [in module %s]"),
16962 form_name, (long) cu->header.offset.sect_off, objf_name);
16963 info_ptr = (str_offsets_section->buffer
16964 + str_index * cu->header.offset_size);
16965 if (cu->header.offset_size == 4)
16966 str_offset = bfd_get_32 (abfd, info_ptr);
16967 else
16968 str_offset = bfd_get_64 (abfd, info_ptr);
16969 if (str_offset >= str_section->size)
16970 error (_("Offset from %s pointing outside of"
16971 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16972 form_name, (long) cu->header.offset.sect_off, objf_name);
16973 return (const char *) (str_section->buffer + str_offset);
16974 }
16975
16976 /* Return the length of an LEB128 number in BUF. */
16977
16978 static int
16979 leb128_size (const gdb_byte *buf)
16980 {
16981 const gdb_byte *begin = buf;
16982 gdb_byte byte;
16983
16984 while (1)
16985 {
16986 byte = *buf++;
16987 if ((byte & 128) == 0)
16988 return buf - begin;
16989 }
16990 }
16991
16992 static void
16993 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16994 {
16995 switch (lang)
16996 {
16997 case DW_LANG_C89:
16998 case DW_LANG_C99:
16999 case DW_LANG_C11:
17000 case DW_LANG_C:
17001 case DW_LANG_UPC:
17002 cu->language = language_c;
17003 break;
17004 case DW_LANG_C_plus_plus:
17005 case DW_LANG_C_plus_plus_11:
17006 case DW_LANG_C_plus_plus_14:
17007 cu->language = language_cplus;
17008 break;
17009 case DW_LANG_D:
17010 cu->language = language_d;
17011 break;
17012 case DW_LANG_Fortran77:
17013 case DW_LANG_Fortran90:
17014 case DW_LANG_Fortran95:
17015 case DW_LANG_Fortran03:
17016 case DW_LANG_Fortran08:
17017 cu->language = language_fortran;
17018 break;
17019 case DW_LANG_Go:
17020 cu->language = language_go;
17021 break;
17022 case DW_LANG_Mips_Assembler:
17023 cu->language = language_asm;
17024 break;
17025 case DW_LANG_Java:
17026 cu->language = language_java;
17027 break;
17028 case DW_LANG_Ada83:
17029 case DW_LANG_Ada95:
17030 cu->language = language_ada;
17031 break;
17032 case DW_LANG_Modula2:
17033 cu->language = language_m2;
17034 break;
17035 case DW_LANG_Pascal83:
17036 cu->language = language_pascal;
17037 break;
17038 case DW_LANG_ObjC:
17039 cu->language = language_objc;
17040 break;
17041 case DW_LANG_Cobol74:
17042 case DW_LANG_Cobol85:
17043 default:
17044 cu->language = language_minimal;
17045 break;
17046 }
17047 cu->language_defn = language_def (cu->language);
17048 }
17049
17050 /* Return the named attribute or NULL if not there. */
17051
17052 static struct attribute *
17053 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17054 {
17055 for (;;)
17056 {
17057 unsigned int i;
17058 struct attribute *spec = NULL;
17059
17060 for (i = 0; i < die->num_attrs; ++i)
17061 {
17062 if (die->attrs[i].name == name)
17063 return &die->attrs[i];
17064 if (die->attrs[i].name == DW_AT_specification
17065 || die->attrs[i].name == DW_AT_abstract_origin)
17066 spec = &die->attrs[i];
17067 }
17068
17069 if (!spec)
17070 break;
17071
17072 die = follow_die_ref (die, spec, &cu);
17073 }
17074
17075 return NULL;
17076 }
17077
17078 /* Return the named attribute or NULL if not there,
17079 but do not follow DW_AT_specification, etc.
17080 This is for use in contexts where we're reading .debug_types dies.
17081 Following DW_AT_specification, DW_AT_abstract_origin will take us
17082 back up the chain, and we want to go down. */
17083
17084 static struct attribute *
17085 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17086 {
17087 unsigned int i;
17088
17089 for (i = 0; i < die->num_attrs; ++i)
17090 if (die->attrs[i].name == name)
17091 return &die->attrs[i];
17092
17093 return NULL;
17094 }
17095
17096 /* Return the string associated with a string-typed attribute, or NULL if it
17097 is either not found or is of an incorrect type. */
17098
17099 static const char *
17100 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17101 {
17102 struct attribute *attr;
17103 const char *str = NULL;
17104
17105 attr = dwarf2_attr (die, name, cu);
17106
17107 if (attr != NULL)
17108 {
17109 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17110 || attr->form == DW_FORM_GNU_strp_alt)
17111 str = DW_STRING (attr);
17112 else
17113 complaint (&symfile_complaints,
17114 _("string type expected for attribute %s for "
17115 "DIE at 0x%x in module %s"),
17116 dwarf_attr_name (name), die->offset.sect_off,
17117 objfile_name (cu->objfile));
17118 }
17119
17120 return str;
17121 }
17122
17123 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17124 and holds a non-zero value. This function should only be used for
17125 DW_FORM_flag or DW_FORM_flag_present attributes. */
17126
17127 static int
17128 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17129 {
17130 struct attribute *attr = dwarf2_attr (die, name, cu);
17131
17132 return (attr && DW_UNSND (attr));
17133 }
17134
17135 static int
17136 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17137 {
17138 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17139 which value is non-zero. However, we have to be careful with
17140 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17141 (via dwarf2_flag_true_p) follows this attribute. So we may
17142 end up accidently finding a declaration attribute that belongs
17143 to a different DIE referenced by the specification attribute,
17144 even though the given DIE does not have a declaration attribute. */
17145 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17146 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17147 }
17148
17149 /* Return the die giving the specification for DIE, if there is
17150 one. *SPEC_CU is the CU containing DIE on input, and the CU
17151 containing the return value on output. If there is no
17152 specification, but there is an abstract origin, that is
17153 returned. */
17154
17155 static struct die_info *
17156 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17157 {
17158 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17159 *spec_cu);
17160
17161 if (spec_attr == NULL)
17162 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17163
17164 if (spec_attr == NULL)
17165 return NULL;
17166 else
17167 return follow_die_ref (die, spec_attr, spec_cu);
17168 }
17169
17170 /* Free the line_header structure *LH, and any arrays and strings it
17171 refers to.
17172 NOTE: This is also used as a "cleanup" function. */
17173
17174 static void
17175 free_line_header (struct line_header *lh)
17176 {
17177 if (lh->standard_opcode_lengths)
17178 xfree (lh->standard_opcode_lengths);
17179
17180 /* Remember that all the lh->file_names[i].name pointers are
17181 pointers into debug_line_buffer, and don't need to be freed. */
17182 if (lh->file_names)
17183 xfree (lh->file_names);
17184
17185 /* Similarly for the include directory names. */
17186 if (lh->include_dirs)
17187 xfree (lh->include_dirs);
17188
17189 xfree (lh);
17190 }
17191
17192 /* Stub for free_line_header to match void * callback types. */
17193
17194 static void
17195 free_line_header_voidp (void *arg)
17196 {
17197 struct line_header *lh = (struct line_header *) arg;
17198
17199 free_line_header (lh);
17200 }
17201
17202 /* Add an entry to LH's include directory table. */
17203
17204 static void
17205 add_include_dir (struct line_header *lh, const char *include_dir)
17206 {
17207 if (dwarf_line_debug >= 2)
17208 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17209 lh->num_include_dirs + 1, include_dir);
17210
17211 /* Grow the array if necessary. */
17212 if (lh->include_dirs_size == 0)
17213 {
17214 lh->include_dirs_size = 1; /* for testing */
17215 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17216 }
17217 else if (lh->num_include_dirs >= lh->include_dirs_size)
17218 {
17219 lh->include_dirs_size *= 2;
17220 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17221 lh->include_dirs_size);
17222 }
17223
17224 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17225 }
17226
17227 /* Add an entry to LH's file name table. */
17228
17229 static void
17230 add_file_name (struct line_header *lh,
17231 const char *name,
17232 unsigned int dir_index,
17233 unsigned int mod_time,
17234 unsigned int length)
17235 {
17236 struct file_entry *fe;
17237
17238 if (dwarf_line_debug >= 2)
17239 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17240 lh->num_file_names + 1, name);
17241
17242 /* Grow the array if necessary. */
17243 if (lh->file_names_size == 0)
17244 {
17245 lh->file_names_size = 1; /* for testing */
17246 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17247 }
17248 else if (lh->num_file_names >= lh->file_names_size)
17249 {
17250 lh->file_names_size *= 2;
17251 lh->file_names
17252 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17253 }
17254
17255 fe = &lh->file_names[lh->num_file_names++];
17256 fe->name = name;
17257 fe->dir_index = dir_index;
17258 fe->mod_time = mod_time;
17259 fe->length = length;
17260 fe->included_p = 0;
17261 fe->symtab = NULL;
17262 }
17263
17264 /* A convenience function to find the proper .debug_line section for a CU. */
17265
17266 static struct dwarf2_section_info *
17267 get_debug_line_section (struct dwarf2_cu *cu)
17268 {
17269 struct dwarf2_section_info *section;
17270
17271 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17272 DWO file. */
17273 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17274 section = &cu->dwo_unit->dwo_file->sections.line;
17275 else if (cu->per_cu->is_dwz)
17276 {
17277 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17278
17279 section = &dwz->line;
17280 }
17281 else
17282 section = &dwarf2_per_objfile->line;
17283
17284 return section;
17285 }
17286
17287 /* Read the statement program header starting at OFFSET in
17288 .debug_line, or .debug_line.dwo. Return a pointer
17289 to a struct line_header, allocated using xmalloc.
17290 Returns NULL if there is a problem reading the header, e.g., if it
17291 has a version we don't understand.
17292
17293 NOTE: the strings in the include directory and file name tables of
17294 the returned object point into the dwarf line section buffer,
17295 and must not be freed. */
17296
17297 static struct line_header *
17298 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17299 {
17300 struct cleanup *back_to;
17301 struct line_header *lh;
17302 const gdb_byte *line_ptr;
17303 unsigned int bytes_read, offset_size;
17304 int i;
17305 const char *cur_dir, *cur_file;
17306 struct dwarf2_section_info *section;
17307 bfd *abfd;
17308
17309 section = get_debug_line_section (cu);
17310 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17311 if (section->buffer == NULL)
17312 {
17313 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17314 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17315 else
17316 complaint (&symfile_complaints, _("missing .debug_line section"));
17317 return 0;
17318 }
17319
17320 /* We can't do this until we know the section is non-empty.
17321 Only then do we know we have such a section. */
17322 abfd = get_section_bfd_owner (section);
17323
17324 /* Make sure that at least there's room for the total_length field.
17325 That could be 12 bytes long, but we're just going to fudge that. */
17326 if (offset + 4 >= section->size)
17327 {
17328 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17329 return 0;
17330 }
17331
17332 lh = XNEW (struct line_header);
17333 memset (lh, 0, sizeof (*lh));
17334 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17335 (void *) lh);
17336
17337 lh->offset.sect_off = offset;
17338 lh->offset_in_dwz = cu->per_cu->is_dwz;
17339
17340 line_ptr = section->buffer + offset;
17341
17342 /* Read in the header. */
17343 lh->total_length =
17344 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17345 &bytes_read, &offset_size);
17346 line_ptr += bytes_read;
17347 if (line_ptr + lh->total_length > (section->buffer + section->size))
17348 {
17349 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17350 do_cleanups (back_to);
17351 return 0;
17352 }
17353 lh->statement_program_end = line_ptr + lh->total_length;
17354 lh->version = read_2_bytes (abfd, line_ptr);
17355 line_ptr += 2;
17356 if (lh->version > 4)
17357 {
17358 /* This is a version we don't understand. The format could have
17359 changed in ways we don't handle properly so just punt. */
17360 complaint (&symfile_complaints,
17361 _("unsupported version in .debug_line section"));
17362 return NULL;
17363 }
17364 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17365 line_ptr += offset_size;
17366 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17367 line_ptr += 1;
17368 if (lh->version >= 4)
17369 {
17370 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17371 line_ptr += 1;
17372 }
17373 else
17374 lh->maximum_ops_per_instruction = 1;
17375
17376 if (lh->maximum_ops_per_instruction == 0)
17377 {
17378 lh->maximum_ops_per_instruction = 1;
17379 complaint (&symfile_complaints,
17380 _("invalid maximum_ops_per_instruction "
17381 "in `.debug_line' section"));
17382 }
17383
17384 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17385 line_ptr += 1;
17386 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17387 line_ptr += 1;
17388 lh->line_range = read_1_byte (abfd, line_ptr);
17389 line_ptr += 1;
17390 lh->opcode_base = read_1_byte (abfd, line_ptr);
17391 line_ptr += 1;
17392 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17393
17394 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17395 for (i = 1; i < lh->opcode_base; ++i)
17396 {
17397 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17398 line_ptr += 1;
17399 }
17400
17401 /* Read directory table. */
17402 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17403 {
17404 line_ptr += bytes_read;
17405 add_include_dir (lh, cur_dir);
17406 }
17407 line_ptr += bytes_read;
17408
17409 /* Read file name table. */
17410 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17411 {
17412 unsigned int dir_index, mod_time, length;
17413
17414 line_ptr += bytes_read;
17415 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17416 line_ptr += bytes_read;
17417 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17418 line_ptr += bytes_read;
17419 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17420 line_ptr += bytes_read;
17421
17422 add_file_name (lh, cur_file, dir_index, mod_time, length);
17423 }
17424 line_ptr += bytes_read;
17425 lh->statement_program_start = line_ptr;
17426
17427 if (line_ptr > (section->buffer + section->size))
17428 complaint (&symfile_complaints,
17429 _("line number info header doesn't "
17430 "fit in `.debug_line' section"));
17431
17432 discard_cleanups (back_to);
17433 return lh;
17434 }
17435
17436 /* Subroutine of dwarf_decode_lines to simplify it.
17437 Return the file name of the psymtab for included file FILE_INDEX
17438 in line header LH of PST.
17439 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17440 If space for the result is malloc'd, it will be freed by a cleanup.
17441 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17442
17443 The function creates dangling cleanup registration. */
17444
17445 static const char *
17446 psymtab_include_file_name (const struct line_header *lh, int file_index,
17447 const struct partial_symtab *pst,
17448 const char *comp_dir)
17449 {
17450 const struct file_entry fe = lh->file_names [file_index];
17451 const char *include_name = fe.name;
17452 const char *include_name_to_compare = include_name;
17453 const char *dir_name = NULL;
17454 const char *pst_filename;
17455 char *copied_name = NULL;
17456 int file_is_pst;
17457
17458 if (fe.dir_index && lh->include_dirs != NULL)
17459 dir_name = lh->include_dirs[fe.dir_index - 1];
17460
17461 if (!IS_ABSOLUTE_PATH (include_name)
17462 && (dir_name != NULL || comp_dir != NULL))
17463 {
17464 /* Avoid creating a duplicate psymtab for PST.
17465 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17466 Before we do the comparison, however, we need to account
17467 for DIR_NAME and COMP_DIR.
17468 First prepend dir_name (if non-NULL). If we still don't
17469 have an absolute path prepend comp_dir (if non-NULL).
17470 However, the directory we record in the include-file's
17471 psymtab does not contain COMP_DIR (to match the
17472 corresponding symtab(s)).
17473
17474 Example:
17475
17476 bash$ cd /tmp
17477 bash$ gcc -g ./hello.c
17478 include_name = "hello.c"
17479 dir_name = "."
17480 DW_AT_comp_dir = comp_dir = "/tmp"
17481 DW_AT_name = "./hello.c"
17482
17483 */
17484
17485 if (dir_name != NULL)
17486 {
17487 char *tem = concat (dir_name, SLASH_STRING,
17488 include_name, (char *)NULL);
17489
17490 make_cleanup (xfree, tem);
17491 include_name = tem;
17492 include_name_to_compare = include_name;
17493 }
17494 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17495 {
17496 char *tem = concat (comp_dir, SLASH_STRING,
17497 include_name, (char *)NULL);
17498
17499 make_cleanup (xfree, tem);
17500 include_name_to_compare = tem;
17501 }
17502 }
17503
17504 pst_filename = pst->filename;
17505 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17506 {
17507 copied_name = concat (pst->dirname, SLASH_STRING,
17508 pst_filename, (char *)NULL);
17509 pst_filename = copied_name;
17510 }
17511
17512 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17513
17514 if (copied_name != NULL)
17515 xfree (copied_name);
17516
17517 if (file_is_pst)
17518 return NULL;
17519 return include_name;
17520 }
17521
17522 /* State machine to track the state of the line number program. */
17523
17524 typedef struct
17525 {
17526 /* These are part of the standard DWARF line number state machine. */
17527
17528 unsigned char op_index;
17529 unsigned int file;
17530 unsigned int line;
17531 CORE_ADDR address;
17532 int is_stmt;
17533 unsigned int discriminator;
17534
17535 /* Additional bits of state we need to track. */
17536
17537 /* The last file that we called dwarf2_start_subfile for.
17538 This is only used for TLLs. */
17539 unsigned int last_file;
17540 /* The last file a line number was recorded for. */
17541 struct subfile *last_subfile;
17542
17543 /* The function to call to record a line. */
17544 record_line_ftype *record_line;
17545
17546 /* The last line number that was recorded, used to coalesce
17547 consecutive entries for the same line. This can happen, for
17548 example, when discriminators are present. PR 17276. */
17549 unsigned int last_line;
17550 int line_has_non_zero_discriminator;
17551 } lnp_state_machine;
17552
17553 /* There's a lot of static state to pass to dwarf_record_line.
17554 This keeps it all together. */
17555
17556 typedef struct
17557 {
17558 /* The gdbarch. */
17559 struct gdbarch *gdbarch;
17560
17561 /* The line number header. */
17562 struct line_header *line_header;
17563
17564 /* Non-zero if we're recording lines.
17565 Otherwise we're building partial symtabs and are just interested in
17566 finding include files mentioned by the line number program. */
17567 int record_lines_p;
17568 } lnp_reader_state;
17569
17570 /* Ignore this record_line request. */
17571
17572 static void
17573 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17574 {
17575 return;
17576 }
17577
17578 /* Return non-zero if we should add LINE to the line number table.
17579 LINE is the line to add, LAST_LINE is the last line that was added,
17580 LAST_SUBFILE is the subfile for LAST_LINE.
17581 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17582 had a non-zero discriminator.
17583
17584 We have to be careful in the presence of discriminators.
17585 E.g., for this line:
17586
17587 for (i = 0; i < 100000; i++);
17588
17589 clang can emit four line number entries for that one line,
17590 each with a different discriminator.
17591 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17592
17593 However, we want gdb to coalesce all four entries into one.
17594 Otherwise the user could stepi into the middle of the line and
17595 gdb would get confused about whether the pc really was in the
17596 middle of the line.
17597
17598 Things are further complicated by the fact that two consecutive
17599 line number entries for the same line is a heuristic used by gcc
17600 to denote the end of the prologue. So we can't just discard duplicate
17601 entries, we have to be selective about it. The heuristic we use is
17602 that we only collapse consecutive entries for the same line if at least
17603 one of those entries has a non-zero discriminator. PR 17276.
17604
17605 Note: Addresses in the line number state machine can never go backwards
17606 within one sequence, thus this coalescing is ok. */
17607
17608 static int
17609 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17610 int line_has_non_zero_discriminator,
17611 struct subfile *last_subfile)
17612 {
17613 if (current_subfile != last_subfile)
17614 return 1;
17615 if (line != last_line)
17616 return 1;
17617 /* Same line for the same file that we've seen already.
17618 As a last check, for pr 17276, only record the line if the line
17619 has never had a non-zero discriminator. */
17620 if (!line_has_non_zero_discriminator)
17621 return 1;
17622 return 0;
17623 }
17624
17625 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17626 in the line table of subfile SUBFILE. */
17627
17628 static void
17629 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17630 unsigned int line, CORE_ADDR address,
17631 record_line_ftype p_record_line)
17632 {
17633 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17634
17635 if (dwarf_line_debug)
17636 {
17637 fprintf_unfiltered (gdb_stdlog,
17638 "Recording line %u, file %s, address %s\n",
17639 line, lbasename (subfile->name),
17640 paddress (gdbarch, address));
17641 }
17642
17643 (*p_record_line) (subfile, line, addr);
17644 }
17645
17646 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17647 Mark the end of a set of line number records.
17648 The arguments are the same as for dwarf_record_line_1.
17649 If SUBFILE is NULL the request is ignored. */
17650
17651 static void
17652 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17653 CORE_ADDR address, record_line_ftype p_record_line)
17654 {
17655 if (subfile == NULL)
17656 return;
17657
17658 if (dwarf_line_debug)
17659 {
17660 fprintf_unfiltered (gdb_stdlog,
17661 "Finishing current line, file %s, address %s\n",
17662 lbasename (subfile->name),
17663 paddress (gdbarch, address));
17664 }
17665
17666 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17667 }
17668
17669 /* Record the line in STATE.
17670 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17671
17672 static void
17673 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17674 int end_sequence)
17675 {
17676 const struct line_header *lh = reader->line_header;
17677 unsigned int file, line, discriminator;
17678 int is_stmt;
17679
17680 file = state->file;
17681 line = state->line;
17682 is_stmt = state->is_stmt;
17683 discriminator = state->discriminator;
17684
17685 if (dwarf_line_debug)
17686 {
17687 fprintf_unfiltered (gdb_stdlog,
17688 "Processing actual line %u: file %u,"
17689 " address %s, is_stmt %u, discrim %u\n",
17690 line, file,
17691 paddress (reader->gdbarch, state->address),
17692 is_stmt, discriminator);
17693 }
17694
17695 if (file == 0 || file - 1 >= lh->num_file_names)
17696 dwarf2_debug_line_missing_file_complaint ();
17697 /* For now we ignore lines not starting on an instruction boundary.
17698 But not when processing end_sequence for compatibility with the
17699 previous version of the code. */
17700 else if (state->op_index == 0 || end_sequence)
17701 {
17702 lh->file_names[file - 1].included_p = 1;
17703 if (reader->record_lines_p && is_stmt)
17704 {
17705 if (state->last_subfile != current_subfile || end_sequence)
17706 {
17707 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17708 state->address, state->record_line);
17709 }
17710
17711 if (!end_sequence)
17712 {
17713 if (dwarf_record_line_p (line, state->last_line,
17714 state->line_has_non_zero_discriminator,
17715 state->last_subfile))
17716 {
17717 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17718 line, state->address,
17719 state->record_line);
17720 }
17721 state->last_subfile = current_subfile;
17722 state->last_line = line;
17723 }
17724 }
17725 }
17726 }
17727
17728 /* Initialize STATE for the start of a line number program. */
17729
17730 static void
17731 init_lnp_state_machine (lnp_state_machine *state,
17732 const lnp_reader_state *reader)
17733 {
17734 memset (state, 0, sizeof (*state));
17735
17736 /* Just starting, there is no "last file". */
17737 state->last_file = 0;
17738 state->last_subfile = NULL;
17739
17740 state->record_line = record_line;
17741
17742 state->last_line = 0;
17743 state->line_has_non_zero_discriminator = 0;
17744
17745 /* Initialize these according to the DWARF spec. */
17746 state->op_index = 0;
17747 state->file = 1;
17748 state->line = 1;
17749 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17750 was a line entry for it so that the backend has a chance to adjust it
17751 and also record it in case it needs it. This is currently used by MIPS
17752 code, cf. `mips_adjust_dwarf2_line'. */
17753 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17754 state->is_stmt = reader->line_header->default_is_stmt;
17755 state->discriminator = 0;
17756 }
17757
17758 /* Check address and if invalid nop-out the rest of the lines in this
17759 sequence. */
17760
17761 static void
17762 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17763 const gdb_byte *line_ptr,
17764 CORE_ADDR lowpc, CORE_ADDR address)
17765 {
17766 /* If address < lowpc then it's not a usable value, it's outside the
17767 pc range of the CU. However, we restrict the test to only address
17768 values of zero to preserve GDB's previous behaviour which is to
17769 handle the specific case of a function being GC'd by the linker. */
17770
17771 if (address == 0 && address < lowpc)
17772 {
17773 /* This line table is for a function which has been
17774 GCd by the linker. Ignore it. PR gdb/12528 */
17775
17776 struct objfile *objfile = cu->objfile;
17777 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17778
17779 complaint (&symfile_complaints,
17780 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17781 line_offset, objfile_name (objfile));
17782 state->record_line = noop_record_line;
17783 /* Note: sm.record_line is left as noop_record_line
17784 until we see DW_LNE_end_sequence. */
17785 }
17786 }
17787
17788 /* Subroutine of dwarf_decode_lines to simplify it.
17789 Process the line number information in LH.
17790 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17791 program in order to set included_p for every referenced header. */
17792
17793 static void
17794 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17795 const int decode_for_pst_p, CORE_ADDR lowpc)
17796 {
17797 const gdb_byte *line_ptr, *extended_end;
17798 const gdb_byte *line_end;
17799 unsigned int bytes_read, extended_len;
17800 unsigned char op_code, extended_op;
17801 CORE_ADDR baseaddr;
17802 struct objfile *objfile = cu->objfile;
17803 bfd *abfd = objfile->obfd;
17804 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17805 /* Non-zero if we're recording line info (as opposed to building partial
17806 symtabs). */
17807 int record_lines_p = !decode_for_pst_p;
17808 /* A collection of things we need to pass to dwarf_record_line. */
17809 lnp_reader_state reader_state;
17810
17811 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17812
17813 line_ptr = lh->statement_program_start;
17814 line_end = lh->statement_program_end;
17815
17816 reader_state.gdbarch = gdbarch;
17817 reader_state.line_header = lh;
17818 reader_state.record_lines_p = record_lines_p;
17819
17820 /* Read the statement sequences until there's nothing left. */
17821 while (line_ptr < line_end)
17822 {
17823 /* The DWARF line number program state machine. */
17824 lnp_state_machine state_machine;
17825 int end_sequence = 0;
17826
17827 /* Reset the state machine at the start of each sequence. */
17828 init_lnp_state_machine (&state_machine, &reader_state);
17829
17830 if (record_lines_p && lh->num_file_names >= state_machine.file)
17831 {
17832 /* Start a subfile for the current file of the state machine. */
17833 /* lh->include_dirs and lh->file_names are 0-based, but the
17834 directory and file name numbers in the statement program
17835 are 1-based. */
17836 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17837 const char *dir = NULL;
17838
17839 if (fe->dir_index && lh->include_dirs != NULL)
17840 dir = lh->include_dirs[fe->dir_index - 1];
17841
17842 dwarf2_start_subfile (fe->name, dir);
17843 }
17844
17845 /* Decode the table. */
17846 while (line_ptr < line_end && !end_sequence)
17847 {
17848 op_code = read_1_byte (abfd, line_ptr);
17849 line_ptr += 1;
17850
17851 if (op_code >= lh->opcode_base)
17852 {
17853 /* Special opcode. */
17854 unsigned char adj_opcode;
17855 CORE_ADDR addr_adj;
17856 int line_delta;
17857
17858 adj_opcode = op_code - lh->opcode_base;
17859 addr_adj = (((state_machine.op_index
17860 + (adj_opcode / lh->line_range))
17861 / lh->maximum_ops_per_instruction)
17862 * lh->minimum_instruction_length);
17863 state_machine.address
17864 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17865 state_machine.op_index = ((state_machine.op_index
17866 + (adj_opcode / lh->line_range))
17867 % lh->maximum_ops_per_instruction);
17868 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17869 state_machine.line += line_delta;
17870 if (line_delta != 0)
17871 state_machine.line_has_non_zero_discriminator
17872 = state_machine.discriminator != 0;
17873
17874 dwarf_record_line (&reader_state, &state_machine, 0);
17875 state_machine.discriminator = 0;
17876 }
17877 else switch (op_code)
17878 {
17879 case DW_LNS_extended_op:
17880 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17881 &bytes_read);
17882 line_ptr += bytes_read;
17883 extended_end = line_ptr + extended_len;
17884 extended_op = read_1_byte (abfd, line_ptr);
17885 line_ptr += 1;
17886 switch (extended_op)
17887 {
17888 case DW_LNE_end_sequence:
17889 state_machine.record_line = record_line;
17890 end_sequence = 1;
17891 break;
17892 case DW_LNE_set_address:
17893 {
17894 CORE_ADDR address
17895 = read_address (abfd, line_ptr, cu, &bytes_read);
17896
17897 line_ptr += bytes_read;
17898 check_line_address (cu, &state_machine, line_ptr,
17899 lowpc, address);
17900 state_machine.op_index = 0;
17901 address += baseaddr;
17902 state_machine.address
17903 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17904 }
17905 break;
17906 case DW_LNE_define_file:
17907 {
17908 const char *cur_file;
17909 unsigned int dir_index, mod_time, length;
17910
17911 cur_file = read_direct_string (abfd, line_ptr,
17912 &bytes_read);
17913 line_ptr += bytes_read;
17914 dir_index =
17915 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17916 line_ptr += bytes_read;
17917 mod_time =
17918 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17919 line_ptr += bytes_read;
17920 length =
17921 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17922 line_ptr += bytes_read;
17923 add_file_name (lh, cur_file, dir_index, mod_time, length);
17924 }
17925 break;
17926 case DW_LNE_set_discriminator:
17927 /* The discriminator is not interesting to the debugger;
17928 just ignore it. We still need to check its value though:
17929 if there are consecutive entries for the same
17930 (non-prologue) line we want to coalesce them.
17931 PR 17276. */
17932 state_machine.discriminator
17933 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17934 state_machine.line_has_non_zero_discriminator
17935 |= state_machine.discriminator != 0;
17936 line_ptr += bytes_read;
17937 break;
17938 default:
17939 complaint (&symfile_complaints,
17940 _("mangled .debug_line section"));
17941 return;
17942 }
17943 /* Make sure that we parsed the extended op correctly. If e.g.
17944 we expected a different address size than the producer used,
17945 we may have read the wrong number of bytes. */
17946 if (line_ptr != extended_end)
17947 {
17948 complaint (&symfile_complaints,
17949 _("mangled .debug_line section"));
17950 return;
17951 }
17952 break;
17953 case DW_LNS_copy:
17954 dwarf_record_line (&reader_state, &state_machine, 0);
17955 state_machine.discriminator = 0;
17956 break;
17957 case DW_LNS_advance_pc:
17958 {
17959 CORE_ADDR adjust
17960 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17961 CORE_ADDR addr_adj;
17962
17963 addr_adj = (((state_machine.op_index + adjust)
17964 / lh->maximum_ops_per_instruction)
17965 * lh->minimum_instruction_length);
17966 state_machine.address
17967 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17968 state_machine.op_index = ((state_machine.op_index + adjust)
17969 % lh->maximum_ops_per_instruction);
17970 line_ptr += bytes_read;
17971 }
17972 break;
17973 case DW_LNS_advance_line:
17974 {
17975 int line_delta
17976 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17977
17978 state_machine.line += line_delta;
17979 if (line_delta != 0)
17980 state_machine.line_has_non_zero_discriminator
17981 = state_machine.discriminator != 0;
17982 line_ptr += bytes_read;
17983 }
17984 break;
17985 case DW_LNS_set_file:
17986 {
17987 /* The arrays lh->include_dirs and lh->file_names are
17988 0-based, but the directory and file name numbers in
17989 the statement program are 1-based. */
17990 struct file_entry *fe;
17991 const char *dir = NULL;
17992
17993 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
17994 &bytes_read);
17995 line_ptr += bytes_read;
17996 if (state_machine.file == 0
17997 || state_machine.file - 1 >= lh->num_file_names)
17998 dwarf2_debug_line_missing_file_complaint ();
17999 else
18000 {
18001 fe = &lh->file_names[state_machine.file - 1];
18002 if (fe->dir_index && lh->include_dirs != NULL)
18003 dir = lh->include_dirs[fe->dir_index - 1];
18004 if (record_lines_p)
18005 {
18006 state_machine.last_subfile = current_subfile;
18007 state_machine.line_has_non_zero_discriminator
18008 = state_machine.discriminator != 0;
18009 dwarf2_start_subfile (fe->name, dir);
18010 }
18011 }
18012 }
18013 break;
18014 case DW_LNS_set_column:
18015 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18016 line_ptr += bytes_read;
18017 break;
18018 case DW_LNS_negate_stmt:
18019 state_machine.is_stmt = (!state_machine.is_stmt);
18020 break;
18021 case DW_LNS_set_basic_block:
18022 break;
18023 /* Add to the address register of the state machine the
18024 address increment value corresponding to special opcode
18025 255. I.e., this value is scaled by the minimum
18026 instruction length since special opcode 255 would have
18027 scaled the increment. */
18028 case DW_LNS_const_add_pc:
18029 {
18030 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18031 CORE_ADDR addr_adj;
18032
18033 addr_adj = (((state_machine.op_index + adjust)
18034 / lh->maximum_ops_per_instruction)
18035 * lh->minimum_instruction_length);
18036 state_machine.address
18037 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18038 state_machine.op_index = ((state_machine.op_index + adjust)
18039 % lh->maximum_ops_per_instruction);
18040 }
18041 break;
18042 case DW_LNS_fixed_advance_pc:
18043 {
18044 CORE_ADDR addr_adj;
18045
18046 addr_adj = read_2_bytes (abfd, line_ptr);
18047 state_machine.address
18048 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18049 state_machine.op_index = 0;
18050 line_ptr += 2;
18051 }
18052 break;
18053 default:
18054 {
18055 /* Unknown standard opcode, ignore it. */
18056 int i;
18057
18058 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18059 {
18060 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18061 line_ptr += bytes_read;
18062 }
18063 }
18064 }
18065 }
18066
18067 if (!end_sequence)
18068 dwarf2_debug_line_missing_end_sequence_complaint ();
18069
18070 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18071 in which case we still finish recording the last line). */
18072 dwarf_record_line (&reader_state, &state_machine, 1);
18073 }
18074 }
18075
18076 /* Decode the Line Number Program (LNP) for the given line_header
18077 structure and CU. The actual information extracted and the type
18078 of structures created from the LNP depends on the value of PST.
18079
18080 1. If PST is NULL, then this procedure uses the data from the program
18081 to create all necessary symbol tables, and their linetables.
18082
18083 2. If PST is not NULL, this procedure reads the program to determine
18084 the list of files included by the unit represented by PST, and
18085 builds all the associated partial symbol tables.
18086
18087 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18088 It is used for relative paths in the line table.
18089 NOTE: When processing partial symtabs (pst != NULL),
18090 comp_dir == pst->dirname.
18091
18092 NOTE: It is important that psymtabs have the same file name (via strcmp)
18093 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18094 symtab we don't use it in the name of the psymtabs we create.
18095 E.g. expand_line_sal requires this when finding psymtabs to expand.
18096 A good testcase for this is mb-inline.exp.
18097
18098 LOWPC is the lowest address in CU (or 0 if not known).
18099
18100 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18101 for its PC<->lines mapping information. Otherwise only the filename
18102 table is read in. */
18103
18104 static void
18105 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18106 struct dwarf2_cu *cu, struct partial_symtab *pst,
18107 CORE_ADDR lowpc, int decode_mapping)
18108 {
18109 struct objfile *objfile = cu->objfile;
18110 const int decode_for_pst_p = (pst != NULL);
18111
18112 if (decode_mapping)
18113 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18114
18115 if (decode_for_pst_p)
18116 {
18117 int file_index;
18118
18119 /* Now that we're done scanning the Line Header Program, we can
18120 create the psymtab of each included file. */
18121 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18122 if (lh->file_names[file_index].included_p == 1)
18123 {
18124 const char *include_name =
18125 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18126 if (include_name != NULL)
18127 dwarf2_create_include_psymtab (include_name, pst, objfile);
18128 }
18129 }
18130 else
18131 {
18132 /* Make sure a symtab is created for every file, even files
18133 which contain only variables (i.e. no code with associated
18134 line numbers). */
18135 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18136 int i;
18137
18138 for (i = 0; i < lh->num_file_names; i++)
18139 {
18140 const char *dir = NULL;
18141 struct file_entry *fe;
18142
18143 fe = &lh->file_names[i];
18144 if (fe->dir_index && lh->include_dirs != NULL)
18145 dir = lh->include_dirs[fe->dir_index - 1];
18146 dwarf2_start_subfile (fe->name, dir);
18147
18148 if (current_subfile->symtab == NULL)
18149 {
18150 current_subfile->symtab
18151 = allocate_symtab (cust, current_subfile->name);
18152 }
18153 fe->symtab = current_subfile->symtab;
18154 }
18155 }
18156 }
18157
18158 /* Start a subfile for DWARF. FILENAME is the name of the file and
18159 DIRNAME the name of the source directory which contains FILENAME
18160 or NULL if not known.
18161 This routine tries to keep line numbers from identical absolute and
18162 relative file names in a common subfile.
18163
18164 Using the `list' example from the GDB testsuite, which resides in
18165 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18166 of /srcdir/list0.c yields the following debugging information for list0.c:
18167
18168 DW_AT_name: /srcdir/list0.c
18169 DW_AT_comp_dir: /compdir
18170 files.files[0].name: list0.h
18171 files.files[0].dir: /srcdir
18172 files.files[1].name: list0.c
18173 files.files[1].dir: /srcdir
18174
18175 The line number information for list0.c has to end up in a single
18176 subfile, so that `break /srcdir/list0.c:1' works as expected.
18177 start_subfile will ensure that this happens provided that we pass the
18178 concatenation of files.files[1].dir and files.files[1].name as the
18179 subfile's name. */
18180
18181 static void
18182 dwarf2_start_subfile (const char *filename, const char *dirname)
18183 {
18184 char *copy = NULL;
18185
18186 /* In order not to lose the line information directory,
18187 we concatenate it to the filename when it makes sense.
18188 Note that the Dwarf3 standard says (speaking of filenames in line
18189 information): ``The directory index is ignored for file names
18190 that represent full path names''. Thus ignoring dirname in the
18191 `else' branch below isn't an issue. */
18192
18193 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18194 {
18195 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18196 filename = copy;
18197 }
18198
18199 start_subfile (filename);
18200
18201 if (copy != NULL)
18202 xfree (copy);
18203 }
18204
18205 /* Start a symtab for DWARF.
18206 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18207
18208 static struct compunit_symtab *
18209 dwarf2_start_symtab (struct dwarf2_cu *cu,
18210 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18211 {
18212 struct compunit_symtab *cust
18213 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18214
18215 record_debugformat ("DWARF 2");
18216 record_producer (cu->producer);
18217
18218 /* We assume that we're processing GCC output. */
18219 processing_gcc_compilation = 2;
18220
18221 cu->processing_has_namespace_info = 0;
18222
18223 return cust;
18224 }
18225
18226 static void
18227 var_decode_location (struct attribute *attr, struct symbol *sym,
18228 struct dwarf2_cu *cu)
18229 {
18230 struct objfile *objfile = cu->objfile;
18231 struct comp_unit_head *cu_header = &cu->header;
18232
18233 /* NOTE drow/2003-01-30: There used to be a comment and some special
18234 code here to turn a symbol with DW_AT_external and a
18235 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18236 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18237 with some versions of binutils) where shared libraries could have
18238 relocations against symbols in their debug information - the
18239 minimal symbol would have the right address, but the debug info
18240 would not. It's no longer necessary, because we will explicitly
18241 apply relocations when we read in the debug information now. */
18242
18243 /* A DW_AT_location attribute with no contents indicates that a
18244 variable has been optimized away. */
18245 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18246 {
18247 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18248 return;
18249 }
18250
18251 /* Handle one degenerate form of location expression specially, to
18252 preserve GDB's previous behavior when section offsets are
18253 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18254 then mark this symbol as LOC_STATIC. */
18255
18256 if (attr_form_is_block (attr)
18257 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18258 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18259 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18260 && (DW_BLOCK (attr)->size
18261 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18262 {
18263 unsigned int dummy;
18264
18265 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18266 SYMBOL_VALUE_ADDRESS (sym) =
18267 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18268 else
18269 SYMBOL_VALUE_ADDRESS (sym) =
18270 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18271 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18272 fixup_symbol_section (sym, objfile);
18273 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18274 SYMBOL_SECTION (sym));
18275 return;
18276 }
18277
18278 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18279 expression evaluator, and use LOC_COMPUTED only when necessary
18280 (i.e. when the value of a register or memory location is
18281 referenced, or a thread-local block, etc.). Then again, it might
18282 not be worthwhile. I'm assuming that it isn't unless performance
18283 or memory numbers show me otherwise. */
18284
18285 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18286
18287 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18288 cu->has_loclist = 1;
18289 }
18290
18291 /* Given a pointer to a DWARF information entry, figure out if we need
18292 to make a symbol table entry for it, and if so, create a new entry
18293 and return a pointer to it.
18294 If TYPE is NULL, determine symbol type from the die, otherwise
18295 used the passed type.
18296 If SPACE is not NULL, use it to hold the new symbol. If it is
18297 NULL, allocate a new symbol on the objfile's obstack. */
18298
18299 static struct symbol *
18300 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18301 struct symbol *space)
18302 {
18303 struct objfile *objfile = cu->objfile;
18304 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18305 struct symbol *sym = NULL;
18306 const char *name;
18307 struct attribute *attr = NULL;
18308 struct attribute *attr2 = NULL;
18309 CORE_ADDR baseaddr;
18310 struct pending **list_to_add = NULL;
18311
18312 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18313
18314 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18315
18316 name = dwarf2_name (die, cu);
18317 if (name)
18318 {
18319 const char *linkagename;
18320 int suppress_add = 0;
18321
18322 if (space)
18323 sym = space;
18324 else
18325 sym = allocate_symbol (objfile);
18326 OBJSTAT (objfile, n_syms++);
18327
18328 /* Cache this symbol's name and the name's demangled form (if any). */
18329 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18330 linkagename = dwarf2_physname (name, die, cu);
18331 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18332
18333 /* Fortran does not have mangling standard and the mangling does differ
18334 between gfortran, iFort etc. */
18335 if (cu->language == language_fortran
18336 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18337 symbol_set_demangled_name (&(sym->ginfo),
18338 dwarf2_full_name (name, die, cu),
18339 NULL);
18340
18341 /* Default assumptions.
18342 Use the passed type or decode it from the die. */
18343 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18344 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18345 if (type != NULL)
18346 SYMBOL_TYPE (sym) = type;
18347 else
18348 SYMBOL_TYPE (sym) = die_type (die, cu);
18349 attr = dwarf2_attr (die,
18350 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18351 cu);
18352 if (attr)
18353 {
18354 SYMBOL_LINE (sym) = DW_UNSND (attr);
18355 }
18356
18357 attr = dwarf2_attr (die,
18358 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18359 cu);
18360 if (attr)
18361 {
18362 int file_index = DW_UNSND (attr);
18363
18364 if (cu->line_header == NULL
18365 || file_index > cu->line_header->num_file_names)
18366 complaint (&symfile_complaints,
18367 _("file index out of range"));
18368 else if (file_index > 0)
18369 {
18370 struct file_entry *fe;
18371
18372 fe = &cu->line_header->file_names[file_index - 1];
18373 symbol_set_symtab (sym, fe->symtab);
18374 }
18375 }
18376
18377 switch (die->tag)
18378 {
18379 case DW_TAG_label:
18380 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18381 if (attr)
18382 {
18383 CORE_ADDR addr;
18384
18385 addr = attr_value_as_address (attr);
18386 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18387 SYMBOL_VALUE_ADDRESS (sym) = addr;
18388 }
18389 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18390 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18391 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18392 add_symbol_to_list (sym, cu->list_in_scope);
18393 break;
18394 case DW_TAG_subprogram:
18395 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18396 finish_block. */
18397 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18398 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18399 if ((attr2 && (DW_UNSND (attr2) != 0))
18400 || cu->language == language_ada)
18401 {
18402 /* Subprograms marked external are stored as a global symbol.
18403 Ada subprograms, whether marked external or not, are always
18404 stored as a global symbol, because we want to be able to
18405 access them globally. For instance, we want to be able
18406 to break on a nested subprogram without having to
18407 specify the context. */
18408 list_to_add = &global_symbols;
18409 }
18410 else
18411 {
18412 list_to_add = cu->list_in_scope;
18413 }
18414 break;
18415 case DW_TAG_inlined_subroutine:
18416 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18417 finish_block. */
18418 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18419 SYMBOL_INLINED (sym) = 1;
18420 list_to_add = cu->list_in_scope;
18421 break;
18422 case DW_TAG_template_value_param:
18423 suppress_add = 1;
18424 /* Fall through. */
18425 case DW_TAG_constant:
18426 case DW_TAG_variable:
18427 case DW_TAG_member:
18428 /* Compilation with minimal debug info may result in
18429 variables with missing type entries. Change the
18430 misleading `void' type to something sensible. */
18431 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18432 SYMBOL_TYPE (sym)
18433 = objfile_type (objfile)->nodebug_data_symbol;
18434
18435 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18436 /* In the case of DW_TAG_member, we should only be called for
18437 static const members. */
18438 if (die->tag == DW_TAG_member)
18439 {
18440 /* dwarf2_add_field uses die_is_declaration,
18441 so we do the same. */
18442 gdb_assert (die_is_declaration (die, cu));
18443 gdb_assert (attr);
18444 }
18445 if (attr)
18446 {
18447 dwarf2_const_value (attr, sym, cu);
18448 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18449 if (!suppress_add)
18450 {
18451 if (attr2 && (DW_UNSND (attr2) != 0))
18452 list_to_add = &global_symbols;
18453 else
18454 list_to_add = cu->list_in_scope;
18455 }
18456 break;
18457 }
18458 attr = dwarf2_attr (die, DW_AT_location, cu);
18459 if (attr)
18460 {
18461 var_decode_location (attr, sym, cu);
18462 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18463
18464 /* Fortran explicitly imports any global symbols to the local
18465 scope by DW_TAG_common_block. */
18466 if (cu->language == language_fortran && die->parent
18467 && die->parent->tag == DW_TAG_common_block)
18468 attr2 = NULL;
18469
18470 if (SYMBOL_CLASS (sym) == LOC_STATIC
18471 && SYMBOL_VALUE_ADDRESS (sym) == 0
18472 && !dwarf2_per_objfile->has_section_at_zero)
18473 {
18474 /* When a static variable is eliminated by the linker,
18475 the corresponding debug information is not stripped
18476 out, but the variable address is set to null;
18477 do not add such variables into symbol table. */
18478 }
18479 else if (attr2 && (DW_UNSND (attr2) != 0))
18480 {
18481 /* Workaround gfortran PR debug/40040 - it uses
18482 DW_AT_location for variables in -fPIC libraries which may
18483 get overriden by other libraries/executable and get
18484 a different address. Resolve it by the minimal symbol
18485 which may come from inferior's executable using copy
18486 relocation. Make this workaround only for gfortran as for
18487 other compilers GDB cannot guess the minimal symbol
18488 Fortran mangling kind. */
18489 if (cu->language == language_fortran && die->parent
18490 && die->parent->tag == DW_TAG_module
18491 && cu->producer
18492 && startswith (cu->producer, "GNU Fortran"))
18493 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18494
18495 /* A variable with DW_AT_external is never static,
18496 but it may be block-scoped. */
18497 list_to_add = (cu->list_in_scope == &file_symbols
18498 ? &global_symbols : cu->list_in_scope);
18499 }
18500 else
18501 list_to_add = cu->list_in_scope;
18502 }
18503 else
18504 {
18505 /* We do not know the address of this symbol.
18506 If it is an external symbol and we have type information
18507 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18508 The address of the variable will then be determined from
18509 the minimal symbol table whenever the variable is
18510 referenced. */
18511 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18512
18513 /* Fortran explicitly imports any global symbols to the local
18514 scope by DW_TAG_common_block. */
18515 if (cu->language == language_fortran && die->parent
18516 && die->parent->tag == DW_TAG_common_block)
18517 {
18518 /* SYMBOL_CLASS doesn't matter here because
18519 read_common_block is going to reset it. */
18520 if (!suppress_add)
18521 list_to_add = cu->list_in_scope;
18522 }
18523 else if (attr2 && (DW_UNSND (attr2) != 0)
18524 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18525 {
18526 /* A variable with DW_AT_external is never static, but it
18527 may be block-scoped. */
18528 list_to_add = (cu->list_in_scope == &file_symbols
18529 ? &global_symbols : cu->list_in_scope);
18530
18531 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18532 }
18533 else if (!die_is_declaration (die, cu))
18534 {
18535 /* Use the default LOC_OPTIMIZED_OUT class. */
18536 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18537 if (!suppress_add)
18538 list_to_add = cu->list_in_scope;
18539 }
18540 }
18541 break;
18542 case DW_TAG_formal_parameter:
18543 /* If we are inside a function, mark this as an argument. If
18544 not, we might be looking at an argument to an inlined function
18545 when we do not have enough information to show inlined frames;
18546 pretend it's a local variable in that case so that the user can
18547 still see it. */
18548 if (context_stack_depth > 0
18549 && context_stack[context_stack_depth - 1].name != NULL)
18550 SYMBOL_IS_ARGUMENT (sym) = 1;
18551 attr = dwarf2_attr (die, DW_AT_location, cu);
18552 if (attr)
18553 {
18554 var_decode_location (attr, sym, cu);
18555 }
18556 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18557 if (attr)
18558 {
18559 dwarf2_const_value (attr, sym, cu);
18560 }
18561
18562 list_to_add = cu->list_in_scope;
18563 break;
18564 case DW_TAG_unspecified_parameters:
18565 /* From varargs functions; gdb doesn't seem to have any
18566 interest in this information, so just ignore it for now.
18567 (FIXME?) */
18568 break;
18569 case DW_TAG_template_type_param:
18570 suppress_add = 1;
18571 /* Fall through. */
18572 case DW_TAG_class_type:
18573 case DW_TAG_interface_type:
18574 case DW_TAG_structure_type:
18575 case DW_TAG_union_type:
18576 case DW_TAG_set_type:
18577 case DW_TAG_enumeration_type:
18578 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18579 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18580
18581 {
18582 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18583 really ever be static objects: otherwise, if you try
18584 to, say, break of a class's method and you're in a file
18585 which doesn't mention that class, it won't work unless
18586 the check for all static symbols in lookup_symbol_aux
18587 saves you. See the OtherFileClass tests in
18588 gdb.c++/namespace.exp. */
18589
18590 if (!suppress_add)
18591 {
18592 list_to_add = (cu->list_in_scope == &file_symbols
18593 && (cu->language == language_cplus
18594 || cu->language == language_java)
18595 ? &global_symbols : cu->list_in_scope);
18596
18597 /* The semantics of C++ state that "struct foo {
18598 ... }" also defines a typedef for "foo". A Java
18599 class declaration also defines a typedef for the
18600 class. */
18601 if (cu->language == language_cplus
18602 || cu->language == language_java
18603 || cu->language == language_ada
18604 || cu->language == language_d)
18605 {
18606 /* The symbol's name is already allocated along
18607 with this objfile, so we don't need to
18608 duplicate it for the type. */
18609 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18610 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18611 }
18612 }
18613 }
18614 break;
18615 case DW_TAG_typedef:
18616 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18617 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18618 list_to_add = cu->list_in_scope;
18619 break;
18620 case DW_TAG_base_type:
18621 case DW_TAG_subrange_type:
18622 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18623 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18624 list_to_add = cu->list_in_scope;
18625 break;
18626 case DW_TAG_enumerator:
18627 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18628 if (attr)
18629 {
18630 dwarf2_const_value (attr, sym, cu);
18631 }
18632 {
18633 /* NOTE: carlton/2003-11-10: See comment above in the
18634 DW_TAG_class_type, etc. block. */
18635
18636 list_to_add = (cu->list_in_scope == &file_symbols
18637 && (cu->language == language_cplus
18638 || cu->language == language_java)
18639 ? &global_symbols : cu->list_in_scope);
18640 }
18641 break;
18642 case DW_TAG_imported_declaration:
18643 case DW_TAG_namespace:
18644 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18645 list_to_add = &global_symbols;
18646 break;
18647 case DW_TAG_module:
18648 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18649 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18650 list_to_add = &global_symbols;
18651 break;
18652 case DW_TAG_common_block:
18653 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18654 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18655 add_symbol_to_list (sym, cu->list_in_scope);
18656 break;
18657 default:
18658 /* Not a tag we recognize. Hopefully we aren't processing
18659 trash data, but since we must specifically ignore things
18660 we don't recognize, there is nothing else we should do at
18661 this point. */
18662 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18663 dwarf_tag_name (die->tag));
18664 break;
18665 }
18666
18667 if (suppress_add)
18668 {
18669 sym->hash_next = objfile->template_symbols;
18670 objfile->template_symbols = sym;
18671 list_to_add = NULL;
18672 }
18673
18674 if (list_to_add != NULL)
18675 add_symbol_to_list (sym, list_to_add);
18676
18677 /* For the benefit of old versions of GCC, check for anonymous
18678 namespaces based on the demangled name. */
18679 if (!cu->processing_has_namespace_info
18680 && cu->language == language_cplus)
18681 cp_scan_for_anonymous_namespaces (sym, objfile);
18682 }
18683 return (sym);
18684 }
18685
18686 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18687
18688 static struct symbol *
18689 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18690 {
18691 return new_symbol_full (die, type, cu, NULL);
18692 }
18693
18694 /* Given an attr with a DW_FORM_dataN value in host byte order,
18695 zero-extend it as appropriate for the symbol's type. The DWARF
18696 standard (v4) is not entirely clear about the meaning of using
18697 DW_FORM_dataN for a constant with a signed type, where the type is
18698 wider than the data. The conclusion of a discussion on the DWARF
18699 list was that this is unspecified. We choose to always zero-extend
18700 because that is the interpretation long in use by GCC. */
18701
18702 static gdb_byte *
18703 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18704 struct dwarf2_cu *cu, LONGEST *value, int bits)
18705 {
18706 struct objfile *objfile = cu->objfile;
18707 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18708 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18709 LONGEST l = DW_UNSND (attr);
18710
18711 if (bits < sizeof (*value) * 8)
18712 {
18713 l &= ((LONGEST) 1 << bits) - 1;
18714 *value = l;
18715 }
18716 else if (bits == sizeof (*value) * 8)
18717 *value = l;
18718 else
18719 {
18720 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
18721 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18722 return bytes;
18723 }
18724
18725 return NULL;
18726 }
18727
18728 /* Read a constant value from an attribute. Either set *VALUE, or if
18729 the value does not fit in *VALUE, set *BYTES - either already
18730 allocated on the objfile obstack, or newly allocated on OBSTACK,
18731 or, set *BATON, if we translated the constant to a location
18732 expression. */
18733
18734 static void
18735 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18736 const char *name, struct obstack *obstack,
18737 struct dwarf2_cu *cu,
18738 LONGEST *value, const gdb_byte **bytes,
18739 struct dwarf2_locexpr_baton **baton)
18740 {
18741 struct objfile *objfile = cu->objfile;
18742 struct comp_unit_head *cu_header = &cu->header;
18743 struct dwarf_block *blk;
18744 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18745 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18746
18747 *value = 0;
18748 *bytes = NULL;
18749 *baton = NULL;
18750
18751 switch (attr->form)
18752 {
18753 case DW_FORM_addr:
18754 case DW_FORM_GNU_addr_index:
18755 {
18756 gdb_byte *data;
18757
18758 if (TYPE_LENGTH (type) != cu_header->addr_size)
18759 dwarf2_const_value_length_mismatch_complaint (name,
18760 cu_header->addr_size,
18761 TYPE_LENGTH (type));
18762 /* Symbols of this form are reasonably rare, so we just
18763 piggyback on the existing location code rather than writing
18764 a new implementation of symbol_computed_ops. */
18765 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18766 (*baton)->per_cu = cu->per_cu;
18767 gdb_assert ((*baton)->per_cu);
18768
18769 (*baton)->size = 2 + cu_header->addr_size;
18770 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
18771 (*baton)->data = data;
18772
18773 data[0] = DW_OP_addr;
18774 store_unsigned_integer (&data[1], cu_header->addr_size,
18775 byte_order, DW_ADDR (attr));
18776 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18777 }
18778 break;
18779 case DW_FORM_string:
18780 case DW_FORM_strp:
18781 case DW_FORM_GNU_str_index:
18782 case DW_FORM_GNU_strp_alt:
18783 /* DW_STRING is already allocated on the objfile obstack, point
18784 directly to it. */
18785 *bytes = (const gdb_byte *) DW_STRING (attr);
18786 break;
18787 case DW_FORM_block1:
18788 case DW_FORM_block2:
18789 case DW_FORM_block4:
18790 case DW_FORM_block:
18791 case DW_FORM_exprloc:
18792 blk = DW_BLOCK (attr);
18793 if (TYPE_LENGTH (type) != blk->size)
18794 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18795 TYPE_LENGTH (type));
18796 *bytes = blk->data;
18797 break;
18798
18799 /* The DW_AT_const_value attributes are supposed to carry the
18800 symbol's value "represented as it would be on the target
18801 architecture." By the time we get here, it's already been
18802 converted to host endianness, so we just need to sign- or
18803 zero-extend it as appropriate. */
18804 case DW_FORM_data1:
18805 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18806 break;
18807 case DW_FORM_data2:
18808 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18809 break;
18810 case DW_FORM_data4:
18811 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18812 break;
18813 case DW_FORM_data8:
18814 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18815 break;
18816
18817 case DW_FORM_sdata:
18818 *value = DW_SND (attr);
18819 break;
18820
18821 case DW_FORM_udata:
18822 *value = DW_UNSND (attr);
18823 break;
18824
18825 default:
18826 complaint (&symfile_complaints,
18827 _("unsupported const value attribute form: '%s'"),
18828 dwarf_form_name (attr->form));
18829 *value = 0;
18830 break;
18831 }
18832 }
18833
18834
18835 /* Copy constant value from an attribute to a symbol. */
18836
18837 static void
18838 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18839 struct dwarf2_cu *cu)
18840 {
18841 struct objfile *objfile = cu->objfile;
18842 LONGEST value;
18843 const gdb_byte *bytes;
18844 struct dwarf2_locexpr_baton *baton;
18845
18846 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18847 SYMBOL_PRINT_NAME (sym),
18848 &objfile->objfile_obstack, cu,
18849 &value, &bytes, &baton);
18850
18851 if (baton != NULL)
18852 {
18853 SYMBOL_LOCATION_BATON (sym) = baton;
18854 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18855 }
18856 else if (bytes != NULL)
18857 {
18858 SYMBOL_VALUE_BYTES (sym) = bytes;
18859 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18860 }
18861 else
18862 {
18863 SYMBOL_VALUE (sym) = value;
18864 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18865 }
18866 }
18867
18868 /* Return the type of the die in question using its DW_AT_type attribute. */
18869
18870 static struct type *
18871 die_type (struct die_info *die, struct dwarf2_cu *cu)
18872 {
18873 struct attribute *type_attr;
18874
18875 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18876 if (!type_attr)
18877 {
18878 /* A missing DW_AT_type represents a void type. */
18879 return objfile_type (cu->objfile)->builtin_void;
18880 }
18881
18882 return lookup_die_type (die, type_attr, cu);
18883 }
18884
18885 /* True iff CU's producer generates GNAT Ada auxiliary information
18886 that allows to find parallel types through that information instead
18887 of having to do expensive parallel lookups by type name. */
18888
18889 static int
18890 need_gnat_info (struct dwarf2_cu *cu)
18891 {
18892 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18893 of GNAT produces this auxiliary information, without any indication
18894 that it is produced. Part of enhancing the FSF version of GNAT
18895 to produce that information will be to put in place an indicator
18896 that we can use in order to determine whether the descriptive type
18897 info is available or not. One suggestion that has been made is
18898 to use a new attribute, attached to the CU die. For now, assume
18899 that the descriptive type info is not available. */
18900 return 0;
18901 }
18902
18903 /* Return the auxiliary type of the die in question using its
18904 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18905 attribute is not present. */
18906
18907 static struct type *
18908 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18909 {
18910 struct attribute *type_attr;
18911
18912 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18913 if (!type_attr)
18914 return NULL;
18915
18916 return lookup_die_type (die, type_attr, cu);
18917 }
18918
18919 /* If DIE has a descriptive_type attribute, then set the TYPE's
18920 descriptive type accordingly. */
18921
18922 static void
18923 set_descriptive_type (struct type *type, struct die_info *die,
18924 struct dwarf2_cu *cu)
18925 {
18926 struct type *descriptive_type = die_descriptive_type (die, cu);
18927
18928 if (descriptive_type)
18929 {
18930 ALLOCATE_GNAT_AUX_TYPE (type);
18931 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18932 }
18933 }
18934
18935 /* Return the containing type of the die in question using its
18936 DW_AT_containing_type attribute. */
18937
18938 static struct type *
18939 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18940 {
18941 struct attribute *type_attr;
18942
18943 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18944 if (!type_attr)
18945 error (_("Dwarf Error: Problem turning containing type into gdb type "
18946 "[in module %s]"), objfile_name (cu->objfile));
18947
18948 return lookup_die_type (die, type_attr, cu);
18949 }
18950
18951 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18952
18953 static struct type *
18954 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18955 {
18956 struct objfile *objfile = dwarf2_per_objfile->objfile;
18957 char *message, *saved;
18958
18959 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18960 objfile_name (objfile),
18961 cu->header.offset.sect_off,
18962 die->offset.sect_off);
18963 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18964 message, strlen (message));
18965 xfree (message);
18966
18967 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18968 }
18969
18970 /* Look up the type of DIE in CU using its type attribute ATTR.
18971 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18972 DW_AT_containing_type.
18973 If there is no type substitute an error marker. */
18974
18975 static struct type *
18976 lookup_die_type (struct die_info *die, const struct attribute *attr,
18977 struct dwarf2_cu *cu)
18978 {
18979 struct objfile *objfile = cu->objfile;
18980 struct type *this_type;
18981
18982 gdb_assert (attr->name == DW_AT_type
18983 || attr->name == DW_AT_GNAT_descriptive_type
18984 || attr->name == DW_AT_containing_type);
18985
18986 /* First see if we have it cached. */
18987
18988 if (attr->form == DW_FORM_GNU_ref_alt)
18989 {
18990 struct dwarf2_per_cu_data *per_cu;
18991 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18992
18993 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18994 this_type = get_die_type_at_offset (offset, per_cu);
18995 }
18996 else if (attr_form_is_ref (attr))
18997 {
18998 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18999
19000 this_type = get_die_type_at_offset (offset, cu->per_cu);
19001 }
19002 else if (attr->form == DW_FORM_ref_sig8)
19003 {
19004 ULONGEST signature = DW_SIGNATURE (attr);
19005
19006 return get_signatured_type (die, signature, cu);
19007 }
19008 else
19009 {
19010 complaint (&symfile_complaints,
19011 _("Dwarf Error: Bad type attribute %s in DIE"
19012 " at 0x%x [in module %s]"),
19013 dwarf_attr_name (attr->name), die->offset.sect_off,
19014 objfile_name (objfile));
19015 return build_error_marker_type (cu, die);
19016 }
19017
19018 /* If not cached we need to read it in. */
19019
19020 if (this_type == NULL)
19021 {
19022 struct die_info *type_die = NULL;
19023 struct dwarf2_cu *type_cu = cu;
19024
19025 if (attr_form_is_ref (attr))
19026 type_die = follow_die_ref (die, attr, &type_cu);
19027 if (type_die == NULL)
19028 return build_error_marker_type (cu, die);
19029 /* If we find the type now, it's probably because the type came
19030 from an inter-CU reference and the type's CU got expanded before
19031 ours. */
19032 this_type = read_type_die (type_die, type_cu);
19033 }
19034
19035 /* If we still don't have a type use an error marker. */
19036
19037 if (this_type == NULL)
19038 return build_error_marker_type (cu, die);
19039
19040 return this_type;
19041 }
19042
19043 /* Return the type in DIE, CU.
19044 Returns NULL for invalid types.
19045
19046 This first does a lookup in die_type_hash,
19047 and only reads the die in if necessary.
19048
19049 NOTE: This can be called when reading in partial or full symbols. */
19050
19051 static struct type *
19052 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19053 {
19054 struct type *this_type;
19055
19056 this_type = get_die_type (die, cu);
19057 if (this_type)
19058 return this_type;
19059
19060 return read_type_die_1 (die, cu);
19061 }
19062
19063 /* Read the type in DIE, CU.
19064 Returns NULL for invalid types. */
19065
19066 static struct type *
19067 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19068 {
19069 struct type *this_type = NULL;
19070
19071 switch (die->tag)
19072 {
19073 case DW_TAG_class_type:
19074 case DW_TAG_interface_type:
19075 case DW_TAG_structure_type:
19076 case DW_TAG_union_type:
19077 this_type = read_structure_type (die, cu);
19078 break;
19079 case DW_TAG_enumeration_type:
19080 this_type = read_enumeration_type (die, cu);
19081 break;
19082 case DW_TAG_subprogram:
19083 case DW_TAG_subroutine_type:
19084 case DW_TAG_inlined_subroutine:
19085 this_type = read_subroutine_type (die, cu);
19086 break;
19087 case DW_TAG_array_type:
19088 this_type = read_array_type (die, cu);
19089 break;
19090 case DW_TAG_set_type:
19091 this_type = read_set_type (die, cu);
19092 break;
19093 case DW_TAG_pointer_type:
19094 this_type = read_tag_pointer_type (die, cu);
19095 break;
19096 case DW_TAG_ptr_to_member_type:
19097 this_type = read_tag_ptr_to_member_type (die, cu);
19098 break;
19099 case DW_TAG_reference_type:
19100 this_type = read_tag_reference_type (die, cu);
19101 break;
19102 case DW_TAG_const_type:
19103 this_type = read_tag_const_type (die, cu);
19104 break;
19105 case DW_TAG_volatile_type:
19106 this_type = read_tag_volatile_type (die, cu);
19107 break;
19108 case DW_TAG_restrict_type:
19109 this_type = read_tag_restrict_type (die, cu);
19110 break;
19111 case DW_TAG_string_type:
19112 this_type = read_tag_string_type (die, cu);
19113 break;
19114 case DW_TAG_typedef:
19115 this_type = read_typedef (die, cu);
19116 break;
19117 case DW_TAG_subrange_type:
19118 this_type = read_subrange_type (die, cu);
19119 break;
19120 case DW_TAG_base_type:
19121 this_type = read_base_type (die, cu);
19122 break;
19123 case DW_TAG_unspecified_type:
19124 this_type = read_unspecified_type (die, cu);
19125 break;
19126 case DW_TAG_namespace:
19127 this_type = read_namespace_type (die, cu);
19128 break;
19129 case DW_TAG_module:
19130 this_type = read_module_type (die, cu);
19131 break;
19132 case DW_TAG_atomic_type:
19133 this_type = read_tag_atomic_type (die, cu);
19134 break;
19135 default:
19136 complaint (&symfile_complaints,
19137 _("unexpected tag in read_type_die: '%s'"),
19138 dwarf_tag_name (die->tag));
19139 break;
19140 }
19141
19142 return this_type;
19143 }
19144
19145 /* See if we can figure out if the class lives in a namespace. We do
19146 this by looking for a member function; its demangled name will
19147 contain namespace info, if there is any.
19148 Return the computed name or NULL.
19149 Space for the result is allocated on the objfile's obstack.
19150 This is the full-die version of guess_partial_die_structure_name.
19151 In this case we know DIE has no useful parent. */
19152
19153 static char *
19154 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19155 {
19156 struct die_info *spec_die;
19157 struct dwarf2_cu *spec_cu;
19158 struct die_info *child;
19159
19160 spec_cu = cu;
19161 spec_die = die_specification (die, &spec_cu);
19162 if (spec_die != NULL)
19163 {
19164 die = spec_die;
19165 cu = spec_cu;
19166 }
19167
19168 for (child = die->child;
19169 child != NULL;
19170 child = child->sibling)
19171 {
19172 if (child->tag == DW_TAG_subprogram)
19173 {
19174 const char *linkage_name;
19175
19176 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19177 if (linkage_name == NULL)
19178 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19179 cu);
19180 if (linkage_name != NULL)
19181 {
19182 char *actual_name
19183 = language_class_name_from_physname (cu->language_defn,
19184 linkage_name);
19185 char *name = NULL;
19186
19187 if (actual_name != NULL)
19188 {
19189 const char *die_name = dwarf2_name (die, cu);
19190
19191 if (die_name != NULL
19192 && strcmp (die_name, actual_name) != 0)
19193 {
19194 /* Strip off the class name from the full name.
19195 We want the prefix. */
19196 int die_name_len = strlen (die_name);
19197 int actual_name_len = strlen (actual_name);
19198
19199 /* Test for '::' as a sanity check. */
19200 if (actual_name_len > die_name_len + 2
19201 && actual_name[actual_name_len
19202 - die_name_len - 1] == ':')
19203 name = (char *) obstack_copy0 (
19204 &cu->objfile->per_bfd->storage_obstack,
19205 actual_name, actual_name_len - die_name_len - 2);
19206 }
19207 }
19208 xfree (actual_name);
19209 return name;
19210 }
19211 }
19212 }
19213
19214 return NULL;
19215 }
19216
19217 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19218 prefix part in such case. See
19219 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19220
19221 static char *
19222 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19223 {
19224 struct attribute *attr;
19225 const char *base;
19226
19227 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19228 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19229 return NULL;
19230
19231 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19232 return NULL;
19233
19234 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19235 if (attr == NULL)
19236 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19237 if (attr == NULL || DW_STRING (attr) == NULL)
19238 return NULL;
19239
19240 /* dwarf2_name had to be already called. */
19241 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19242
19243 /* Strip the base name, keep any leading namespaces/classes. */
19244 base = strrchr (DW_STRING (attr), ':');
19245 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19246 return "";
19247
19248 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19249 DW_STRING (attr),
19250 &base[-1] - DW_STRING (attr));
19251 }
19252
19253 /* Return the name of the namespace/class that DIE is defined within,
19254 or "" if we can't tell. The caller should not xfree the result.
19255
19256 For example, if we're within the method foo() in the following
19257 code:
19258
19259 namespace N {
19260 class C {
19261 void foo () {
19262 }
19263 };
19264 }
19265
19266 then determine_prefix on foo's die will return "N::C". */
19267
19268 static const char *
19269 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19270 {
19271 struct die_info *parent, *spec_die;
19272 struct dwarf2_cu *spec_cu;
19273 struct type *parent_type;
19274 char *retval;
19275
19276 if (cu->language != language_cplus && cu->language != language_java
19277 && cu->language != language_fortran && cu->language != language_d)
19278 return "";
19279
19280 retval = anonymous_struct_prefix (die, cu);
19281 if (retval)
19282 return retval;
19283
19284 /* We have to be careful in the presence of DW_AT_specification.
19285 For example, with GCC 3.4, given the code
19286
19287 namespace N {
19288 void foo() {
19289 // Definition of N::foo.
19290 }
19291 }
19292
19293 then we'll have a tree of DIEs like this:
19294
19295 1: DW_TAG_compile_unit
19296 2: DW_TAG_namespace // N
19297 3: DW_TAG_subprogram // declaration of N::foo
19298 4: DW_TAG_subprogram // definition of N::foo
19299 DW_AT_specification // refers to die #3
19300
19301 Thus, when processing die #4, we have to pretend that we're in
19302 the context of its DW_AT_specification, namely the contex of die
19303 #3. */
19304 spec_cu = cu;
19305 spec_die = die_specification (die, &spec_cu);
19306 if (spec_die == NULL)
19307 parent = die->parent;
19308 else
19309 {
19310 parent = spec_die->parent;
19311 cu = spec_cu;
19312 }
19313
19314 if (parent == NULL)
19315 return "";
19316 else if (parent->building_fullname)
19317 {
19318 const char *name;
19319 const char *parent_name;
19320
19321 /* It has been seen on RealView 2.2 built binaries,
19322 DW_TAG_template_type_param types actually _defined_ as
19323 children of the parent class:
19324
19325 enum E {};
19326 template class <class Enum> Class{};
19327 Class<enum E> class_e;
19328
19329 1: DW_TAG_class_type (Class)
19330 2: DW_TAG_enumeration_type (E)
19331 3: DW_TAG_enumerator (enum1:0)
19332 3: DW_TAG_enumerator (enum2:1)
19333 ...
19334 2: DW_TAG_template_type_param
19335 DW_AT_type DW_FORM_ref_udata (E)
19336
19337 Besides being broken debug info, it can put GDB into an
19338 infinite loop. Consider:
19339
19340 When we're building the full name for Class<E>, we'll start
19341 at Class, and go look over its template type parameters,
19342 finding E. We'll then try to build the full name of E, and
19343 reach here. We're now trying to build the full name of E,
19344 and look over the parent DIE for containing scope. In the
19345 broken case, if we followed the parent DIE of E, we'd again
19346 find Class, and once again go look at its template type
19347 arguments, etc., etc. Simply don't consider such parent die
19348 as source-level parent of this die (it can't be, the language
19349 doesn't allow it), and break the loop here. */
19350 name = dwarf2_name (die, cu);
19351 parent_name = dwarf2_name (parent, cu);
19352 complaint (&symfile_complaints,
19353 _("template param type '%s' defined within parent '%s'"),
19354 name ? name : "<unknown>",
19355 parent_name ? parent_name : "<unknown>");
19356 return "";
19357 }
19358 else
19359 switch (parent->tag)
19360 {
19361 case DW_TAG_namespace:
19362 parent_type = read_type_die (parent, cu);
19363 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19364 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19365 Work around this problem here. */
19366 if (cu->language == language_cplus
19367 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19368 return "";
19369 /* We give a name to even anonymous namespaces. */
19370 return TYPE_TAG_NAME (parent_type);
19371 case DW_TAG_class_type:
19372 case DW_TAG_interface_type:
19373 case DW_TAG_structure_type:
19374 case DW_TAG_union_type:
19375 case DW_TAG_module:
19376 parent_type = read_type_die (parent, cu);
19377 if (TYPE_TAG_NAME (parent_type) != NULL)
19378 return TYPE_TAG_NAME (parent_type);
19379 else
19380 /* An anonymous structure is only allowed non-static data
19381 members; no typedefs, no member functions, et cetera.
19382 So it does not need a prefix. */
19383 return "";
19384 case DW_TAG_compile_unit:
19385 case DW_TAG_partial_unit:
19386 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19387 if (cu->language == language_cplus
19388 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19389 && die->child != NULL
19390 && (die->tag == DW_TAG_class_type
19391 || die->tag == DW_TAG_structure_type
19392 || die->tag == DW_TAG_union_type))
19393 {
19394 char *name = guess_full_die_structure_name (die, cu);
19395 if (name != NULL)
19396 return name;
19397 }
19398 return "";
19399 case DW_TAG_enumeration_type:
19400 parent_type = read_type_die (parent, cu);
19401 if (TYPE_DECLARED_CLASS (parent_type))
19402 {
19403 if (TYPE_TAG_NAME (parent_type) != NULL)
19404 return TYPE_TAG_NAME (parent_type);
19405 return "";
19406 }
19407 /* Fall through. */
19408 default:
19409 return determine_prefix (parent, cu);
19410 }
19411 }
19412
19413 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19414 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19415 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19416 an obconcat, otherwise allocate storage for the result. The CU argument is
19417 used to determine the language and hence, the appropriate separator. */
19418
19419 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19420
19421 static char *
19422 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19423 int physname, struct dwarf2_cu *cu)
19424 {
19425 const char *lead = "";
19426 const char *sep;
19427
19428 if (suffix == NULL || suffix[0] == '\0'
19429 || prefix == NULL || prefix[0] == '\0')
19430 sep = "";
19431 else if (cu->language == language_java)
19432 sep = ".";
19433 else if (cu->language == language_d)
19434 {
19435 /* For D, the 'main' function could be defined in any module, but it
19436 should never be prefixed. */
19437 if (strcmp (suffix, "D main") == 0)
19438 {
19439 prefix = "";
19440 sep = "";
19441 }
19442 else
19443 sep = ".";
19444 }
19445 else if (cu->language == language_fortran && physname)
19446 {
19447 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19448 DW_AT_MIPS_linkage_name is preferred and used instead. */
19449
19450 lead = "__";
19451 sep = "_MOD_";
19452 }
19453 else
19454 sep = "::";
19455
19456 if (prefix == NULL)
19457 prefix = "";
19458 if (suffix == NULL)
19459 suffix = "";
19460
19461 if (obs == NULL)
19462 {
19463 char *retval
19464 = ((char *)
19465 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19466
19467 strcpy (retval, lead);
19468 strcat (retval, prefix);
19469 strcat (retval, sep);
19470 strcat (retval, suffix);
19471 return retval;
19472 }
19473 else
19474 {
19475 /* We have an obstack. */
19476 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19477 }
19478 }
19479
19480 /* Return sibling of die, NULL if no sibling. */
19481
19482 static struct die_info *
19483 sibling_die (struct die_info *die)
19484 {
19485 return die->sibling;
19486 }
19487
19488 /* Get name of a die, return NULL if not found. */
19489
19490 static const char *
19491 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19492 struct obstack *obstack)
19493 {
19494 if (name && cu->language == language_cplus)
19495 {
19496 char *canon_name = cp_canonicalize_string (name);
19497
19498 if (canon_name != NULL)
19499 {
19500 if (strcmp (canon_name, name) != 0)
19501 name = (const char *) obstack_copy0 (obstack, canon_name,
19502 strlen (canon_name));
19503 xfree (canon_name);
19504 }
19505 }
19506
19507 return name;
19508 }
19509
19510 /* Get name of a die, return NULL if not found.
19511 Anonymous namespaces are converted to their magic string. */
19512
19513 static const char *
19514 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19515 {
19516 struct attribute *attr;
19517
19518 attr = dwarf2_attr (die, DW_AT_name, cu);
19519 if ((!attr || !DW_STRING (attr))
19520 && die->tag != DW_TAG_namespace
19521 && die->tag != DW_TAG_class_type
19522 && die->tag != DW_TAG_interface_type
19523 && die->tag != DW_TAG_structure_type
19524 && die->tag != DW_TAG_union_type)
19525 return NULL;
19526
19527 switch (die->tag)
19528 {
19529 case DW_TAG_compile_unit:
19530 case DW_TAG_partial_unit:
19531 /* Compilation units have a DW_AT_name that is a filename, not
19532 a source language identifier. */
19533 case DW_TAG_enumeration_type:
19534 case DW_TAG_enumerator:
19535 /* These tags always have simple identifiers already; no need
19536 to canonicalize them. */
19537 return DW_STRING (attr);
19538
19539 case DW_TAG_namespace:
19540 if (attr != NULL && DW_STRING (attr) != NULL)
19541 return DW_STRING (attr);
19542 return CP_ANONYMOUS_NAMESPACE_STR;
19543
19544 case DW_TAG_subprogram:
19545 /* Java constructors will all be named "<init>", so return
19546 the class name when we see this special case. */
19547 if (cu->language == language_java
19548 && DW_STRING (attr) != NULL
19549 && strcmp (DW_STRING (attr), "<init>") == 0)
19550 {
19551 struct dwarf2_cu *spec_cu = cu;
19552 struct die_info *spec_die;
19553
19554 /* GCJ will output '<init>' for Java constructor names.
19555 For this special case, return the name of the parent class. */
19556
19557 /* GCJ may output subprogram DIEs with AT_specification set.
19558 If so, use the name of the specified DIE. */
19559 spec_die = die_specification (die, &spec_cu);
19560 if (spec_die != NULL)
19561 return dwarf2_name (spec_die, spec_cu);
19562
19563 do
19564 {
19565 die = die->parent;
19566 if (die->tag == DW_TAG_class_type)
19567 return dwarf2_name (die, cu);
19568 }
19569 while (die->tag != DW_TAG_compile_unit
19570 && die->tag != DW_TAG_partial_unit);
19571 }
19572 break;
19573
19574 case DW_TAG_class_type:
19575 case DW_TAG_interface_type:
19576 case DW_TAG_structure_type:
19577 case DW_TAG_union_type:
19578 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19579 structures or unions. These were of the form "._%d" in GCC 4.1,
19580 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19581 and GCC 4.4. We work around this problem by ignoring these. */
19582 if (attr && DW_STRING (attr)
19583 && (startswith (DW_STRING (attr), "._")
19584 || startswith (DW_STRING (attr), "<anonymous")))
19585 return NULL;
19586
19587 /* GCC might emit a nameless typedef that has a linkage name. See
19588 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19589 if (!attr || DW_STRING (attr) == NULL)
19590 {
19591 char *demangled = NULL;
19592
19593 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19594 if (attr == NULL)
19595 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19596
19597 if (attr == NULL || DW_STRING (attr) == NULL)
19598 return NULL;
19599
19600 /* Avoid demangling DW_STRING (attr) the second time on a second
19601 call for the same DIE. */
19602 if (!DW_STRING_IS_CANONICAL (attr))
19603 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19604
19605 if (demangled)
19606 {
19607 const char *base;
19608
19609 /* FIXME: we already did this for the partial symbol... */
19610 DW_STRING (attr)
19611 = ((const char *)
19612 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19613 demangled, strlen (demangled)));
19614 DW_STRING_IS_CANONICAL (attr) = 1;
19615 xfree (demangled);
19616
19617 /* Strip any leading namespaces/classes, keep only the base name.
19618 DW_AT_name for named DIEs does not contain the prefixes. */
19619 base = strrchr (DW_STRING (attr), ':');
19620 if (base && base > DW_STRING (attr) && base[-1] == ':')
19621 return &base[1];
19622 else
19623 return DW_STRING (attr);
19624 }
19625 }
19626 break;
19627
19628 default:
19629 break;
19630 }
19631
19632 if (!DW_STRING_IS_CANONICAL (attr))
19633 {
19634 DW_STRING (attr)
19635 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19636 &cu->objfile->per_bfd->storage_obstack);
19637 DW_STRING_IS_CANONICAL (attr) = 1;
19638 }
19639 return DW_STRING (attr);
19640 }
19641
19642 /* Return the die that this die in an extension of, or NULL if there
19643 is none. *EXT_CU is the CU containing DIE on input, and the CU
19644 containing the return value on output. */
19645
19646 static struct die_info *
19647 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19648 {
19649 struct attribute *attr;
19650
19651 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19652 if (attr == NULL)
19653 return NULL;
19654
19655 return follow_die_ref (die, attr, ext_cu);
19656 }
19657
19658 /* Convert a DIE tag into its string name. */
19659
19660 static const char *
19661 dwarf_tag_name (unsigned tag)
19662 {
19663 const char *name = get_DW_TAG_name (tag);
19664
19665 if (name == NULL)
19666 return "DW_TAG_<unknown>";
19667
19668 return name;
19669 }
19670
19671 /* Convert a DWARF attribute code into its string name. */
19672
19673 static const char *
19674 dwarf_attr_name (unsigned attr)
19675 {
19676 const char *name;
19677
19678 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19679 if (attr == DW_AT_MIPS_fde)
19680 return "DW_AT_MIPS_fde";
19681 #else
19682 if (attr == DW_AT_HP_block_index)
19683 return "DW_AT_HP_block_index";
19684 #endif
19685
19686 name = get_DW_AT_name (attr);
19687
19688 if (name == NULL)
19689 return "DW_AT_<unknown>";
19690
19691 return name;
19692 }
19693
19694 /* Convert a DWARF value form code into its string name. */
19695
19696 static const char *
19697 dwarf_form_name (unsigned form)
19698 {
19699 const char *name = get_DW_FORM_name (form);
19700
19701 if (name == NULL)
19702 return "DW_FORM_<unknown>";
19703
19704 return name;
19705 }
19706
19707 static char *
19708 dwarf_bool_name (unsigned mybool)
19709 {
19710 if (mybool)
19711 return "TRUE";
19712 else
19713 return "FALSE";
19714 }
19715
19716 /* Convert a DWARF type code into its string name. */
19717
19718 static const char *
19719 dwarf_type_encoding_name (unsigned enc)
19720 {
19721 const char *name = get_DW_ATE_name (enc);
19722
19723 if (name == NULL)
19724 return "DW_ATE_<unknown>";
19725
19726 return name;
19727 }
19728
19729 static void
19730 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19731 {
19732 unsigned int i;
19733
19734 print_spaces (indent, f);
19735 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19736 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19737
19738 if (die->parent != NULL)
19739 {
19740 print_spaces (indent, f);
19741 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19742 die->parent->offset.sect_off);
19743 }
19744
19745 print_spaces (indent, f);
19746 fprintf_unfiltered (f, " has children: %s\n",
19747 dwarf_bool_name (die->child != NULL));
19748
19749 print_spaces (indent, f);
19750 fprintf_unfiltered (f, " attributes:\n");
19751
19752 for (i = 0; i < die->num_attrs; ++i)
19753 {
19754 print_spaces (indent, f);
19755 fprintf_unfiltered (f, " %s (%s) ",
19756 dwarf_attr_name (die->attrs[i].name),
19757 dwarf_form_name (die->attrs[i].form));
19758
19759 switch (die->attrs[i].form)
19760 {
19761 case DW_FORM_addr:
19762 case DW_FORM_GNU_addr_index:
19763 fprintf_unfiltered (f, "address: ");
19764 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19765 break;
19766 case DW_FORM_block2:
19767 case DW_FORM_block4:
19768 case DW_FORM_block:
19769 case DW_FORM_block1:
19770 fprintf_unfiltered (f, "block: size %s",
19771 pulongest (DW_BLOCK (&die->attrs[i])->size));
19772 break;
19773 case DW_FORM_exprloc:
19774 fprintf_unfiltered (f, "expression: size %s",
19775 pulongest (DW_BLOCK (&die->attrs[i])->size));
19776 break;
19777 case DW_FORM_ref_addr:
19778 fprintf_unfiltered (f, "ref address: ");
19779 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19780 break;
19781 case DW_FORM_GNU_ref_alt:
19782 fprintf_unfiltered (f, "alt ref address: ");
19783 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19784 break;
19785 case DW_FORM_ref1:
19786 case DW_FORM_ref2:
19787 case DW_FORM_ref4:
19788 case DW_FORM_ref8:
19789 case DW_FORM_ref_udata:
19790 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19791 (long) (DW_UNSND (&die->attrs[i])));
19792 break;
19793 case DW_FORM_data1:
19794 case DW_FORM_data2:
19795 case DW_FORM_data4:
19796 case DW_FORM_data8:
19797 case DW_FORM_udata:
19798 case DW_FORM_sdata:
19799 fprintf_unfiltered (f, "constant: %s",
19800 pulongest (DW_UNSND (&die->attrs[i])));
19801 break;
19802 case DW_FORM_sec_offset:
19803 fprintf_unfiltered (f, "section offset: %s",
19804 pulongest (DW_UNSND (&die->attrs[i])));
19805 break;
19806 case DW_FORM_ref_sig8:
19807 fprintf_unfiltered (f, "signature: %s",
19808 hex_string (DW_SIGNATURE (&die->attrs[i])));
19809 break;
19810 case DW_FORM_string:
19811 case DW_FORM_strp:
19812 case DW_FORM_GNU_str_index:
19813 case DW_FORM_GNU_strp_alt:
19814 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19815 DW_STRING (&die->attrs[i])
19816 ? DW_STRING (&die->attrs[i]) : "",
19817 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19818 break;
19819 case DW_FORM_flag:
19820 if (DW_UNSND (&die->attrs[i]))
19821 fprintf_unfiltered (f, "flag: TRUE");
19822 else
19823 fprintf_unfiltered (f, "flag: FALSE");
19824 break;
19825 case DW_FORM_flag_present:
19826 fprintf_unfiltered (f, "flag: TRUE");
19827 break;
19828 case DW_FORM_indirect:
19829 /* The reader will have reduced the indirect form to
19830 the "base form" so this form should not occur. */
19831 fprintf_unfiltered (f,
19832 "unexpected attribute form: DW_FORM_indirect");
19833 break;
19834 default:
19835 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19836 die->attrs[i].form);
19837 break;
19838 }
19839 fprintf_unfiltered (f, "\n");
19840 }
19841 }
19842
19843 static void
19844 dump_die_for_error (struct die_info *die)
19845 {
19846 dump_die_shallow (gdb_stderr, 0, die);
19847 }
19848
19849 static void
19850 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19851 {
19852 int indent = level * 4;
19853
19854 gdb_assert (die != NULL);
19855
19856 if (level >= max_level)
19857 return;
19858
19859 dump_die_shallow (f, indent, die);
19860
19861 if (die->child != NULL)
19862 {
19863 print_spaces (indent, f);
19864 fprintf_unfiltered (f, " Children:");
19865 if (level + 1 < max_level)
19866 {
19867 fprintf_unfiltered (f, "\n");
19868 dump_die_1 (f, level + 1, max_level, die->child);
19869 }
19870 else
19871 {
19872 fprintf_unfiltered (f,
19873 " [not printed, max nesting level reached]\n");
19874 }
19875 }
19876
19877 if (die->sibling != NULL && level > 0)
19878 {
19879 dump_die_1 (f, level, max_level, die->sibling);
19880 }
19881 }
19882
19883 /* This is called from the pdie macro in gdbinit.in.
19884 It's not static so gcc will keep a copy callable from gdb. */
19885
19886 void
19887 dump_die (struct die_info *die, int max_level)
19888 {
19889 dump_die_1 (gdb_stdlog, 0, max_level, die);
19890 }
19891
19892 static void
19893 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19894 {
19895 void **slot;
19896
19897 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19898 INSERT);
19899
19900 *slot = die;
19901 }
19902
19903 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19904 required kind. */
19905
19906 static sect_offset
19907 dwarf2_get_ref_die_offset (const struct attribute *attr)
19908 {
19909 sect_offset retval = { DW_UNSND (attr) };
19910
19911 if (attr_form_is_ref (attr))
19912 return retval;
19913
19914 retval.sect_off = 0;
19915 complaint (&symfile_complaints,
19916 _("unsupported die ref attribute form: '%s'"),
19917 dwarf_form_name (attr->form));
19918 return retval;
19919 }
19920
19921 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19922 * the value held by the attribute is not constant. */
19923
19924 static LONGEST
19925 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19926 {
19927 if (attr->form == DW_FORM_sdata)
19928 return DW_SND (attr);
19929 else if (attr->form == DW_FORM_udata
19930 || attr->form == DW_FORM_data1
19931 || attr->form == DW_FORM_data2
19932 || attr->form == DW_FORM_data4
19933 || attr->form == DW_FORM_data8)
19934 return DW_UNSND (attr);
19935 else
19936 {
19937 complaint (&symfile_complaints,
19938 _("Attribute value is not a constant (%s)"),
19939 dwarf_form_name (attr->form));
19940 return default_value;
19941 }
19942 }
19943
19944 /* Follow reference or signature attribute ATTR of SRC_DIE.
19945 On entry *REF_CU is the CU of SRC_DIE.
19946 On exit *REF_CU is the CU of the result. */
19947
19948 static struct die_info *
19949 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19950 struct dwarf2_cu **ref_cu)
19951 {
19952 struct die_info *die;
19953
19954 if (attr_form_is_ref (attr))
19955 die = follow_die_ref (src_die, attr, ref_cu);
19956 else if (attr->form == DW_FORM_ref_sig8)
19957 die = follow_die_sig (src_die, attr, ref_cu);
19958 else
19959 {
19960 dump_die_for_error (src_die);
19961 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19962 objfile_name ((*ref_cu)->objfile));
19963 }
19964
19965 return die;
19966 }
19967
19968 /* Follow reference OFFSET.
19969 On entry *REF_CU is the CU of the source die referencing OFFSET.
19970 On exit *REF_CU is the CU of the result.
19971 Returns NULL if OFFSET is invalid. */
19972
19973 static struct die_info *
19974 follow_die_offset (sect_offset offset, int offset_in_dwz,
19975 struct dwarf2_cu **ref_cu)
19976 {
19977 struct die_info temp_die;
19978 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19979
19980 gdb_assert (cu->per_cu != NULL);
19981
19982 target_cu = cu;
19983
19984 if (cu->per_cu->is_debug_types)
19985 {
19986 /* .debug_types CUs cannot reference anything outside their CU.
19987 If they need to, they have to reference a signatured type via
19988 DW_FORM_ref_sig8. */
19989 if (! offset_in_cu_p (&cu->header, offset))
19990 return NULL;
19991 }
19992 else if (offset_in_dwz != cu->per_cu->is_dwz
19993 || ! offset_in_cu_p (&cu->header, offset))
19994 {
19995 struct dwarf2_per_cu_data *per_cu;
19996
19997 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19998 cu->objfile);
19999
20000 /* If necessary, add it to the queue and load its DIEs. */
20001 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20002 load_full_comp_unit (per_cu, cu->language);
20003
20004 target_cu = per_cu->cu;
20005 }
20006 else if (cu->dies == NULL)
20007 {
20008 /* We're loading full DIEs during partial symbol reading. */
20009 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20010 load_full_comp_unit (cu->per_cu, language_minimal);
20011 }
20012
20013 *ref_cu = target_cu;
20014 temp_die.offset = offset;
20015 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20016 &temp_die, offset.sect_off);
20017 }
20018
20019 /* Follow reference attribute ATTR of SRC_DIE.
20020 On entry *REF_CU is the CU of SRC_DIE.
20021 On exit *REF_CU is the CU of the result. */
20022
20023 static struct die_info *
20024 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20025 struct dwarf2_cu **ref_cu)
20026 {
20027 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20028 struct dwarf2_cu *cu = *ref_cu;
20029 struct die_info *die;
20030
20031 die = follow_die_offset (offset,
20032 (attr->form == DW_FORM_GNU_ref_alt
20033 || cu->per_cu->is_dwz),
20034 ref_cu);
20035 if (!die)
20036 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20037 "at 0x%x [in module %s]"),
20038 offset.sect_off, src_die->offset.sect_off,
20039 objfile_name (cu->objfile));
20040
20041 return die;
20042 }
20043
20044 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20045 Returned value is intended for DW_OP_call*. Returned
20046 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20047
20048 struct dwarf2_locexpr_baton
20049 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20050 struct dwarf2_per_cu_data *per_cu,
20051 CORE_ADDR (*get_frame_pc) (void *baton),
20052 void *baton)
20053 {
20054 struct dwarf2_cu *cu;
20055 struct die_info *die;
20056 struct attribute *attr;
20057 struct dwarf2_locexpr_baton retval;
20058
20059 dw2_setup (per_cu->objfile);
20060
20061 if (per_cu->cu == NULL)
20062 load_cu (per_cu);
20063 cu = per_cu->cu;
20064 if (cu == NULL)
20065 {
20066 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20067 Instead just throw an error, not much else we can do. */
20068 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20069 offset.sect_off, objfile_name (per_cu->objfile));
20070 }
20071
20072 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20073 if (!die)
20074 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20075 offset.sect_off, objfile_name (per_cu->objfile));
20076
20077 attr = dwarf2_attr (die, DW_AT_location, cu);
20078 if (!attr)
20079 {
20080 /* DWARF: "If there is no such attribute, then there is no effect.".
20081 DATA is ignored if SIZE is 0. */
20082
20083 retval.data = NULL;
20084 retval.size = 0;
20085 }
20086 else if (attr_form_is_section_offset (attr))
20087 {
20088 struct dwarf2_loclist_baton loclist_baton;
20089 CORE_ADDR pc = (*get_frame_pc) (baton);
20090 size_t size;
20091
20092 fill_in_loclist_baton (cu, &loclist_baton, attr);
20093
20094 retval.data = dwarf2_find_location_expression (&loclist_baton,
20095 &size, pc);
20096 retval.size = size;
20097 }
20098 else
20099 {
20100 if (!attr_form_is_block (attr))
20101 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20102 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20103 offset.sect_off, objfile_name (per_cu->objfile));
20104
20105 retval.data = DW_BLOCK (attr)->data;
20106 retval.size = DW_BLOCK (attr)->size;
20107 }
20108 retval.per_cu = cu->per_cu;
20109
20110 age_cached_comp_units ();
20111
20112 return retval;
20113 }
20114
20115 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20116 offset. */
20117
20118 struct dwarf2_locexpr_baton
20119 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20120 struct dwarf2_per_cu_data *per_cu,
20121 CORE_ADDR (*get_frame_pc) (void *baton),
20122 void *baton)
20123 {
20124 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20125
20126 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20127 }
20128
20129 /* Write a constant of a given type as target-ordered bytes into
20130 OBSTACK. */
20131
20132 static const gdb_byte *
20133 write_constant_as_bytes (struct obstack *obstack,
20134 enum bfd_endian byte_order,
20135 struct type *type,
20136 ULONGEST value,
20137 LONGEST *len)
20138 {
20139 gdb_byte *result;
20140
20141 *len = TYPE_LENGTH (type);
20142 result = (gdb_byte *) obstack_alloc (obstack, *len);
20143 store_unsigned_integer (result, *len, byte_order, value);
20144
20145 return result;
20146 }
20147
20148 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20149 pointer to the constant bytes and set LEN to the length of the
20150 data. If memory is needed, allocate it on OBSTACK. If the DIE
20151 does not have a DW_AT_const_value, return NULL. */
20152
20153 const gdb_byte *
20154 dwarf2_fetch_constant_bytes (sect_offset offset,
20155 struct dwarf2_per_cu_data *per_cu,
20156 struct obstack *obstack,
20157 LONGEST *len)
20158 {
20159 struct dwarf2_cu *cu;
20160 struct die_info *die;
20161 struct attribute *attr;
20162 const gdb_byte *result = NULL;
20163 struct type *type;
20164 LONGEST value;
20165 enum bfd_endian byte_order;
20166
20167 dw2_setup (per_cu->objfile);
20168
20169 if (per_cu->cu == NULL)
20170 load_cu (per_cu);
20171 cu = per_cu->cu;
20172 if (cu == NULL)
20173 {
20174 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20175 Instead just throw an error, not much else we can do. */
20176 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20177 offset.sect_off, objfile_name (per_cu->objfile));
20178 }
20179
20180 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20181 if (!die)
20182 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20183 offset.sect_off, objfile_name (per_cu->objfile));
20184
20185
20186 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20187 if (attr == NULL)
20188 return NULL;
20189
20190 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20191 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20192
20193 switch (attr->form)
20194 {
20195 case DW_FORM_addr:
20196 case DW_FORM_GNU_addr_index:
20197 {
20198 gdb_byte *tem;
20199
20200 *len = cu->header.addr_size;
20201 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20202 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20203 result = tem;
20204 }
20205 break;
20206 case DW_FORM_string:
20207 case DW_FORM_strp:
20208 case DW_FORM_GNU_str_index:
20209 case DW_FORM_GNU_strp_alt:
20210 /* DW_STRING is already allocated on the objfile obstack, point
20211 directly to it. */
20212 result = (const gdb_byte *) DW_STRING (attr);
20213 *len = strlen (DW_STRING (attr));
20214 break;
20215 case DW_FORM_block1:
20216 case DW_FORM_block2:
20217 case DW_FORM_block4:
20218 case DW_FORM_block:
20219 case DW_FORM_exprloc:
20220 result = DW_BLOCK (attr)->data;
20221 *len = DW_BLOCK (attr)->size;
20222 break;
20223
20224 /* The DW_AT_const_value attributes are supposed to carry the
20225 symbol's value "represented as it would be on the target
20226 architecture." By the time we get here, it's already been
20227 converted to host endianness, so we just need to sign- or
20228 zero-extend it as appropriate. */
20229 case DW_FORM_data1:
20230 type = die_type (die, cu);
20231 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20232 if (result == NULL)
20233 result = write_constant_as_bytes (obstack, byte_order,
20234 type, value, len);
20235 break;
20236 case DW_FORM_data2:
20237 type = die_type (die, cu);
20238 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20239 if (result == NULL)
20240 result = write_constant_as_bytes (obstack, byte_order,
20241 type, value, len);
20242 break;
20243 case DW_FORM_data4:
20244 type = die_type (die, cu);
20245 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20246 if (result == NULL)
20247 result = write_constant_as_bytes (obstack, byte_order,
20248 type, value, len);
20249 break;
20250 case DW_FORM_data8:
20251 type = die_type (die, cu);
20252 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20253 if (result == NULL)
20254 result = write_constant_as_bytes (obstack, byte_order,
20255 type, value, len);
20256 break;
20257
20258 case DW_FORM_sdata:
20259 type = die_type (die, cu);
20260 result = write_constant_as_bytes (obstack, byte_order,
20261 type, DW_SND (attr), len);
20262 break;
20263
20264 case DW_FORM_udata:
20265 type = die_type (die, cu);
20266 result = write_constant_as_bytes (obstack, byte_order,
20267 type, DW_UNSND (attr), len);
20268 break;
20269
20270 default:
20271 complaint (&symfile_complaints,
20272 _("unsupported const value attribute form: '%s'"),
20273 dwarf_form_name (attr->form));
20274 break;
20275 }
20276
20277 return result;
20278 }
20279
20280 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20281 PER_CU. */
20282
20283 struct type *
20284 dwarf2_get_die_type (cu_offset die_offset,
20285 struct dwarf2_per_cu_data *per_cu)
20286 {
20287 sect_offset die_offset_sect;
20288
20289 dw2_setup (per_cu->objfile);
20290
20291 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20292 return get_die_type_at_offset (die_offset_sect, per_cu);
20293 }
20294
20295 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20296 On entry *REF_CU is the CU of SRC_DIE.
20297 On exit *REF_CU is the CU of the result.
20298 Returns NULL if the referenced DIE isn't found. */
20299
20300 static struct die_info *
20301 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20302 struct dwarf2_cu **ref_cu)
20303 {
20304 struct die_info temp_die;
20305 struct dwarf2_cu *sig_cu;
20306 struct die_info *die;
20307
20308 /* While it might be nice to assert sig_type->type == NULL here,
20309 we can get here for DW_AT_imported_declaration where we need
20310 the DIE not the type. */
20311
20312 /* If necessary, add it to the queue and load its DIEs. */
20313
20314 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20315 read_signatured_type (sig_type);
20316
20317 sig_cu = sig_type->per_cu.cu;
20318 gdb_assert (sig_cu != NULL);
20319 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20320 temp_die.offset = sig_type->type_offset_in_section;
20321 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20322 temp_die.offset.sect_off);
20323 if (die)
20324 {
20325 /* For .gdb_index version 7 keep track of included TUs.
20326 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20327 if (dwarf2_per_objfile->index_table != NULL
20328 && dwarf2_per_objfile->index_table->version <= 7)
20329 {
20330 VEC_safe_push (dwarf2_per_cu_ptr,
20331 (*ref_cu)->per_cu->imported_symtabs,
20332 sig_cu->per_cu);
20333 }
20334
20335 *ref_cu = sig_cu;
20336 return die;
20337 }
20338
20339 return NULL;
20340 }
20341
20342 /* Follow signatured type referenced by ATTR in SRC_DIE.
20343 On entry *REF_CU is the CU of SRC_DIE.
20344 On exit *REF_CU is the CU of the result.
20345 The result is the DIE of the type.
20346 If the referenced type cannot be found an error is thrown. */
20347
20348 static struct die_info *
20349 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20350 struct dwarf2_cu **ref_cu)
20351 {
20352 ULONGEST signature = DW_SIGNATURE (attr);
20353 struct signatured_type *sig_type;
20354 struct die_info *die;
20355
20356 gdb_assert (attr->form == DW_FORM_ref_sig8);
20357
20358 sig_type = lookup_signatured_type (*ref_cu, signature);
20359 /* sig_type will be NULL if the signatured type is missing from
20360 the debug info. */
20361 if (sig_type == NULL)
20362 {
20363 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20364 " from DIE at 0x%x [in module %s]"),
20365 hex_string (signature), src_die->offset.sect_off,
20366 objfile_name ((*ref_cu)->objfile));
20367 }
20368
20369 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20370 if (die == NULL)
20371 {
20372 dump_die_for_error (src_die);
20373 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20374 " from DIE at 0x%x [in module %s]"),
20375 hex_string (signature), src_die->offset.sect_off,
20376 objfile_name ((*ref_cu)->objfile));
20377 }
20378
20379 return die;
20380 }
20381
20382 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20383 reading in and processing the type unit if necessary. */
20384
20385 static struct type *
20386 get_signatured_type (struct die_info *die, ULONGEST signature,
20387 struct dwarf2_cu *cu)
20388 {
20389 struct signatured_type *sig_type;
20390 struct dwarf2_cu *type_cu;
20391 struct die_info *type_die;
20392 struct type *type;
20393
20394 sig_type = lookup_signatured_type (cu, signature);
20395 /* sig_type will be NULL if the signatured type is missing from
20396 the debug info. */
20397 if (sig_type == NULL)
20398 {
20399 complaint (&symfile_complaints,
20400 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20401 " from DIE at 0x%x [in module %s]"),
20402 hex_string (signature), die->offset.sect_off,
20403 objfile_name (dwarf2_per_objfile->objfile));
20404 return build_error_marker_type (cu, die);
20405 }
20406
20407 /* If we already know the type we're done. */
20408 if (sig_type->type != NULL)
20409 return sig_type->type;
20410
20411 type_cu = cu;
20412 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20413 if (type_die != NULL)
20414 {
20415 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20416 is created. This is important, for example, because for c++ classes
20417 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20418 type = read_type_die (type_die, type_cu);
20419 if (type == NULL)
20420 {
20421 complaint (&symfile_complaints,
20422 _("Dwarf Error: Cannot build signatured type %s"
20423 " referenced from DIE at 0x%x [in module %s]"),
20424 hex_string (signature), die->offset.sect_off,
20425 objfile_name (dwarf2_per_objfile->objfile));
20426 type = build_error_marker_type (cu, die);
20427 }
20428 }
20429 else
20430 {
20431 complaint (&symfile_complaints,
20432 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20433 " from DIE at 0x%x [in module %s]"),
20434 hex_string (signature), die->offset.sect_off,
20435 objfile_name (dwarf2_per_objfile->objfile));
20436 type = build_error_marker_type (cu, die);
20437 }
20438 sig_type->type = type;
20439
20440 return type;
20441 }
20442
20443 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20444 reading in and processing the type unit if necessary. */
20445
20446 static struct type *
20447 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20448 struct dwarf2_cu *cu) /* ARI: editCase function */
20449 {
20450 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20451 if (attr_form_is_ref (attr))
20452 {
20453 struct dwarf2_cu *type_cu = cu;
20454 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20455
20456 return read_type_die (type_die, type_cu);
20457 }
20458 else if (attr->form == DW_FORM_ref_sig8)
20459 {
20460 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20461 }
20462 else
20463 {
20464 complaint (&symfile_complaints,
20465 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20466 " at 0x%x [in module %s]"),
20467 dwarf_form_name (attr->form), die->offset.sect_off,
20468 objfile_name (dwarf2_per_objfile->objfile));
20469 return build_error_marker_type (cu, die);
20470 }
20471 }
20472
20473 /* Load the DIEs associated with type unit PER_CU into memory. */
20474
20475 static void
20476 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20477 {
20478 struct signatured_type *sig_type;
20479
20480 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20481 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20482
20483 /* We have the per_cu, but we need the signatured_type.
20484 Fortunately this is an easy translation. */
20485 gdb_assert (per_cu->is_debug_types);
20486 sig_type = (struct signatured_type *) per_cu;
20487
20488 gdb_assert (per_cu->cu == NULL);
20489
20490 read_signatured_type (sig_type);
20491
20492 gdb_assert (per_cu->cu != NULL);
20493 }
20494
20495 /* die_reader_func for read_signatured_type.
20496 This is identical to load_full_comp_unit_reader,
20497 but is kept separate for now. */
20498
20499 static void
20500 read_signatured_type_reader (const struct die_reader_specs *reader,
20501 const gdb_byte *info_ptr,
20502 struct die_info *comp_unit_die,
20503 int has_children,
20504 void *data)
20505 {
20506 struct dwarf2_cu *cu = reader->cu;
20507
20508 gdb_assert (cu->die_hash == NULL);
20509 cu->die_hash =
20510 htab_create_alloc_ex (cu->header.length / 12,
20511 die_hash,
20512 die_eq,
20513 NULL,
20514 &cu->comp_unit_obstack,
20515 hashtab_obstack_allocate,
20516 dummy_obstack_deallocate);
20517
20518 if (has_children)
20519 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20520 &info_ptr, comp_unit_die);
20521 cu->dies = comp_unit_die;
20522 /* comp_unit_die is not stored in die_hash, no need. */
20523
20524 /* We try not to read any attributes in this function, because not
20525 all CUs needed for references have been loaded yet, and symbol
20526 table processing isn't initialized. But we have to set the CU language,
20527 or we won't be able to build types correctly.
20528 Similarly, if we do not read the producer, we can not apply
20529 producer-specific interpretation. */
20530 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20531 }
20532
20533 /* Read in a signatured type and build its CU and DIEs.
20534 If the type is a stub for the real type in a DWO file,
20535 read in the real type from the DWO file as well. */
20536
20537 static void
20538 read_signatured_type (struct signatured_type *sig_type)
20539 {
20540 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20541
20542 gdb_assert (per_cu->is_debug_types);
20543 gdb_assert (per_cu->cu == NULL);
20544
20545 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20546 read_signatured_type_reader, NULL);
20547 sig_type->per_cu.tu_read = 1;
20548 }
20549
20550 /* Decode simple location descriptions.
20551 Given a pointer to a dwarf block that defines a location, compute
20552 the location and return the value.
20553
20554 NOTE drow/2003-11-18: This function is called in two situations
20555 now: for the address of static or global variables (partial symbols
20556 only) and for offsets into structures which are expected to be
20557 (more or less) constant. The partial symbol case should go away,
20558 and only the constant case should remain. That will let this
20559 function complain more accurately. A few special modes are allowed
20560 without complaint for global variables (for instance, global
20561 register values and thread-local values).
20562
20563 A location description containing no operations indicates that the
20564 object is optimized out. The return value is 0 for that case.
20565 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20566 callers will only want a very basic result and this can become a
20567 complaint.
20568
20569 Note that stack[0] is unused except as a default error return. */
20570
20571 static CORE_ADDR
20572 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20573 {
20574 struct objfile *objfile = cu->objfile;
20575 size_t i;
20576 size_t size = blk->size;
20577 const gdb_byte *data = blk->data;
20578 CORE_ADDR stack[64];
20579 int stacki;
20580 unsigned int bytes_read, unsnd;
20581 gdb_byte op;
20582
20583 i = 0;
20584 stacki = 0;
20585 stack[stacki] = 0;
20586 stack[++stacki] = 0;
20587
20588 while (i < size)
20589 {
20590 op = data[i++];
20591 switch (op)
20592 {
20593 case DW_OP_lit0:
20594 case DW_OP_lit1:
20595 case DW_OP_lit2:
20596 case DW_OP_lit3:
20597 case DW_OP_lit4:
20598 case DW_OP_lit5:
20599 case DW_OP_lit6:
20600 case DW_OP_lit7:
20601 case DW_OP_lit8:
20602 case DW_OP_lit9:
20603 case DW_OP_lit10:
20604 case DW_OP_lit11:
20605 case DW_OP_lit12:
20606 case DW_OP_lit13:
20607 case DW_OP_lit14:
20608 case DW_OP_lit15:
20609 case DW_OP_lit16:
20610 case DW_OP_lit17:
20611 case DW_OP_lit18:
20612 case DW_OP_lit19:
20613 case DW_OP_lit20:
20614 case DW_OP_lit21:
20615 case DW_OP_lit22:
20616 case DW_OP_lit23:
20617 case DW_OP_lit24:
20618 case DW_OP_lit25:
20619 case DW_OP_lit26:
20620 case DW_OP_lit27:
20621 case DW_OP_lit28:
20622 case DW_OP_lit29:
20623 case DW_OP_lit30:
20624 case DW_OP_lit31:
20625 stack[++stacki] = op - DW_OP_lit0;
20626 break;
20627
20628 case DW_OP_reg0:
20629 case DW_OP_reg1:
20630 case DW_OP_reg2:
20631 case DW_OP_reg3:
20632 case DW_OP_reg4:
20633 case DW_OP_reg5:
20634 case DW_OP_reg6:
20635 case DW_OP_reg7:
20636 case DW_OP_reg8:
20637 case DW_OP_reg9:
20638 case DW_OP_reg10:
20639 case DW_OP_reg11:
20640 case DW_OP_reg12:
20641 case DW_OP_reg13:
20642 case DW_OP_reg14:
20643 case DW_OP_reg15:
20644 case DW_OP_reg16:
20645 case DW_OP_reg17:
20646 case DW_OP_reg18:
20647 case DW_OP_reg19:
20648 case DW_OP_reg20:
20649 case DW_OP_reg21:
20650 case DW_OP_reg22:
20651 case DW_OP_reg23:
20652 case DW_OP_reg24:
20653 case DW_OP_reg25:
20654 case DW_OP_reg26:
20655 case DW_OP_reg27:
20656 case DW_OP_reg28:
20657 case DW_OP_reg29:
20658 case DW_OP_reg30:
20659 case DW_OP_reg31:
20660 stack[++stacki] = op - DW_OP_reg0;
20661 if (i < size)
20662 dwarf2_complex_location_expr_complaint ();
20663 break;
20664
20665 case DW_OP_regx:
20666 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20667 i += bytes_read;
20668 stack[++stacki] = unsnd;
20669 if (i < size)
20670 dwarf2_complex_location_expr_complaint ();
20671 break;
20672
20673 case DW_OP_addr:
20674 stack[++stacki] = read_address (objfile->obfd, &data[i],
20675 cu, &bytes_read);
20676 i += bytes_read;
20677 break;
20678
20679 case DW_OP_const1u:
20680 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20681 i += 1;
20682 break;
20683
20684 case DW_OP_const1s:
20685 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20686 i += 1;
20687 break;
20688
20689 case DW_OP_const2u:
20690 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20691 i += 2;
20692 break;
20693
20694 case DW_OP_const2s:
20695 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20696 i += 2;
20697 break;
20698
20699 case DW_OP_const4u:
20700 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20701 i += 4;
20702 break;
20703
20704 case DW_OP_const4s:
20705 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20706 i += 4;
20707 break;
20708
20709 case DW_OP_const8u:
20710 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20711 i += 8;
20712 break;
20713
20714 case DW_OP_constu:
20715 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20716 &bytes_read);
20717 i += bytes_read;
20718 break;
20719
20720 case DW_OP_consts:
20721 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20722 i += bytes_read;
20723 break;
20724
20725 case DW_OP_dup:
20726 stack[stacki + 1] = stack[stacki];
20727 stacki++;
20728 break;
20729
20730 case DW_OP_plus:
20731 stack[stacki - 1] += stack[stacki];
20732 stacki--;
20733 break;
20734
20735 case DW_OP_plus_uconst:
20736 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20737 &bytes_read);
20738 i += bytes_read;
20739 break;
20740
20741 case DW_OP_minus:
20742 stack[stacki - 1] -= stack[stacki];
20743 stacki--;
20744 break;
20745
20746 case DW_OP_deref:
20747 /* If we're not the last op, then we definitely can't encode
20748 this using GDB's address_class enum. This is valid for partial
20749 global symbols, although the variable's address will be bogus
20750 in the psymtab. */
20751 if (i < size)
20752 dwarf2_complex_location_expr_complaint ();
20753 break;
20754
20755 case DW_OP_GNU_push_tls_address:
20756 /* The top of the stack has the offset from the beginning
20757 of the thread control block at which the variable is located. */
20758 /* Nothing should follow this operator, so the top of stack would
20759 be returned. */
20760 /* This is valid for partial global symbols, but the variable's
20761 address will be bogus in the psymtab. Make it always at least
20762 non-zero to not look as a variable garbage collected by linker
20763 which have DW_OP_addr 0. */
20764 if (i < size)
20765 dwarf2_complex_location_expr_complaint ();
20766 stack[stacki]++;
20767 break;
20768
20769 case DW_OP_GNU_uninit:
20770 break;
20771
20772 case DW_OP_GNU_addr_index:
20773 case DW_OP_GNU_const_index:
20774 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20775 &bytes_read);
20776 i += bytes_read;
20777 break;
20778
20779 default:
20780 {
20781 const char *name = get_DW_OP_name (op);
20782
20783 if (name)
20784 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20785 name);
20786 else
20787 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20788 op);
20789 }
20790
20791 return (stack[stacki]);
20792 }
20793
20794 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20795 outside of the allocated space. Also enforce minimum>0. */
20796 if (stacki >= ARRAY_SIZE (stack) - 1)
20797 {
20798 complaint (&symfile_complaints,
20799 _("location description stack overflow"));
20800 return 0;
20801 }
20802
20803 if (stacki <= 0)
20804 {
20805 complaint (&symfile_complaints,
20806 _("location description stack underflow"));
20807 return 0;
20808 }
20809 }
20810 return (stack[stacki]);
20811 }
20812
20813 /* memory allocation interface */
20814
20815 static struct dwarf_block *
20816 dwarf_alloc_block (struct dwarf2_cu *cu)
20817 {
20818 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20819 }
20820
20821 static struct die_info *
20822 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20823 {
20824 struct die_info *die;
20825 size_t size = sizeof (struct die_info);
20826
20827 if (num_attrs > 1)
20828 size += (num_attrs - 1) * sizeof (struct attribute);
20829
20830 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20831 memset (die, 0, sizeof (struct die_info));
20832 return (die);
20833 }
20834
20835 \f
20836 /* Macro support. */
20837
20838 /* Return file name relative to the compilation directory of file number I in
20839 *LH's file name table. The result is allocated using xmalloc; the caller is
20840 responsible for freeing it. */
20841
20842 static char *
20843 file_file_name (int file, struct line_header *lh)
20844 {
20845 /* Is the file number a valid index into the line header's file name
20846 table? Remember that file numbers start with one, not zero. */
20847 if (1 <= file && file <= lh->num_file_names)
20848 {
20849 struct file_entry *fe = &lh->file_names[file - 1];
20850
20851 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20852 || lh->include_dirs == NULL)
20853 return xstrdup (fe->name);
20854 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20855 fe->name, (char *) NULL);
20856 }
20857 else
20858 {
20859 /* The compiler produced a bogus file number. We can at least
20860 record the macro definitions made in the file, even if we
20861 won't be able to find the file by name. */
20862 char fake_name[80];
20863
20864 xsnprintf (fake_name, sizeof (fake_name),
20865 "<bad macro file number %d>", file);
20866
20867 complaint (&symfile_complaints,
20868 _("bad file number in macro information (%d)"),
20869 file);
20870
20871 return xstrdup (fake_name);
20872 }
20873 }
20874
20875 /* Return the full name of file number I in *LH's file name table.
20876 Use COMP_DIR as the name of the current directory of the
20877 compilation. The result is allocated using xmalloc; the caller is
20878 responsible for freeing it. */
20879 static char *
20880 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20881 {
20882 /* Is the file number a valid index into the line header's file name
20883 table? Remember that file numbers start with one, not zero. */
20884 if (1 <= file && file <= lh->num_file_names)
20885 {
20886 char *relative = file_file_name (file, lh);
20887
20888 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20889 return relative;
20890 return reconcat (relative, comp_dir, SLASH_STRING,
20891 relative, (char *) NULL);
20892 }
20893 else
20894 return file_file_name (file, lh);
20895 }
20896
20897
20898 static struct macro_source_file *
20899 macro_start_file (int file, int line,
20900 struct macro_source_file *current_file,
20901 struct line_header *lh)
20902 {
20903 /* File name relative to the compilation directory of this source file. */
20904 char *file_name = file_file_name (file, lh);
20905
20906 if (! current_file)
20907 {
20908 /* Note: We don't create a macro table for this compilation unit
20909 at all until we actually get a filename. */
20910 struct macro_table *macro_table = get_macro_table ();
20911
20912 /* If we have no current file, then this must be the start_file
20913 directive for the compilation unit's main source file. */
20914 current_file = macro_set_main (macro_table, file_name);
20915 macro_define_special (macro_table);
20916 }
20917 else
20918 current_file = macro_include (current_file, line, file_name);
20919
20920 xfree (file_name);
20921
20922 return current_file;
20923 }
20924
20925
20926 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20927 followed by a null byte. */
20928 static char *
20929 copy_string (const char *buf, int len)
20930 {
20931 char *s = (char *) xmalloc (len + 1);
20932
20933 memcpy (s, buf, len);
20934 s[len] = '\0';
20935 return s;
20936 }
20937
20938
20939 static const char *
20940 consume_improper_spaces (const char *p, const char *body)
20941 {
20942 if (*p == ' ')
20943 {
20944 complaint (&symfile_complaints,
20945 _("macro definition contains spaces "
20946 "in formal argument list:\n`%s'"),
20947 body);
20948
20949 while (*p == ' ')
20950 p++;
20951 }
20952
20953 return p;
20954 }
20955
20956
20957 static void
20958 parse_macro_definition (struct macro_source_file *file, int line,
20959 const char *body)
20960 {
20961 const char *p;
20962
20963 /* The body string takes one of two forms. For object-like macro
20964 definitions, it should be:
20965
20966 <macro name> " " <definition>
20967
20968 For function-like macro definitions, it should be:
20969
20970 <macro name> "() " <definition>
20971 or
20972 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20973
20974 Spaces may appear only where explicitly indicated, and in the
20975 <definition>.
20976
20977 The Dwarf 2 spec says that an object-like macro's name is always
20978 followed by a space, but versions of GCC around March 2002 omit
20979 the space when the macro's definition is the empty string.
20980
20981 The Dwarf 2 spec says that there should be no spaces between the
20982 formal arguments in a function-like macro's formal argument list,
20983 but versions of GCC around March 2002 include spaces after the
20984 commas. */
20985
20986
20987 /* Find the extent of the macro name. The macro name is terminated
20988 by either a space or null character (for an object-like macro) or
20989 an opening paren (for a function-like macro). */
20990 for (p = body; *p; p++)
20991 if (*p == ' ' || *p == '(')
20992 break;
20993
20994 if (*p == ' ' || *p == '\0')
20995 {
20996 /* It's an object-like macro. */
20997 int name_len = p - body;
20998 char *name = copy_string (body, name_len);
20999 const char *replacement;
21000
21001 if (*p == ' ')
21002 replacement = body + name_len + 1;
21003 else
21004 {
21005 dwarf2_macro_malformed_definition_complaint (body);
21006 replacement = body + name_len;
21007 }
21008
21009 macro_define_object (file, line, name, replacement);
21010
21011 xfree (name);
21012 }
21013 else if (*p == '(')
21014 {
21015 /* It's a function-like macro. */
21016 char *name = copy_string (body, p - body);
21017 int argc = 0;
21018 int argv_size = 1;
21019 char **argv = XNEWVEC (char *, argv_size);
21020
21021 p++;
21022
21023 p = consume_improper_spaces (p, body);
21024
21025 /* Parse the formal argument list. */
21026 while (*p && *p != ')')
21027 {
21028 /* Find the extent of the current argument name. */
21029 const char *arg_start = p;
21030
21031 while (*p && *p != ',' && *p != ')' && *p != ' ')
21032 p++;
21033
21034 if (! *p || p == arg_start)
21035 dwarf2_macro_malformed_definition_complaint (body);
21036 else
21037 {
21038 /* Make sure argv has room for the new argument. */
21039 if (argc >= argv_size)
21040 {
21041 argv_size *= 2;
21042 argv = XRESIZEVEC (char *, argv, argv_size);
21043 }
21044
21045 argv[argc++] = copy_string (arg_start, p - arg_start);
21046 }
21047
21048 p = consume_improper_spaces (p, body);
21049
21050 /* Consume the comma, if present. */
21051 if (*p == ',')
21052 {
21053 p++;
21054
21055 p = consume_improper_spaces (p, body);
21056 }
21057 }
21058
21059 if (*p == ')')
21060 {
21061 p++;
21062
21063 if (*p == ' ')
21064 /* Perfectly formed definition, no complaints. */
21065 macro_define_function (file, line, name,
21066 argc, (const char **) argv,
21067 p + 1);
21068 else if (*p == '\0')
21069 {
21070 /* Complain, but do define it. */
21071 dwarf2_macro_malformed_definition_complaint (body);
21072 macro_define_function (file, line, name,
21073 argc, (const char **) argv,
21074 p);
21075 }
21076 else
21077 /* Just complain. */
21078 dwarf2_macro_malformed_definition_complaint (body);
21079 }
21080 else
21081 /* Just complain. */
21082 dwarf2_macro_malformed_definition_complaint (body);
21083
21084 xfree (name);
21085 {
21086 int i;
21087
21088 for (i = 0; i < argc; i++)
21089 xfree (argv[i]);
21090 }
21091 xfree (argv);
21092 }
21093 else
21094 dwarf2_macro_malformed_definition_complaint (body);
21095 }
21096
21097 /* Skip some bytes from BYTES according to the form given in FORM.
21098 Returns the new pointer. */
21099
21100 static const gdb_byte *
21101 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21102 enum dwarf_form form,
21103 unsigned int offset_size,
21104 struct dwarf2_section_info *section)
21105 {
21106 unsigned int bytes_read;
21107
21108 switch (form)
21109 {
21110 case DW_FORM_data1:
21111 case DW_FORM_flag:
21112 ++bytes;
21113 break;
21114
21115 case DW_FORM_data2:
21116 bytes += 2;
21117 break;
21118
21119 case DW_FORM_data4:
21120 bytes += 4;
21121 break;
21122
21123 case DW_FORM_data8:
21124 bytes += 8;
21125 break;
21126
21127 case DW_FORM_string:
21128 read_direct_string (abfd, bytes, &bytes_read);
21129 bytes += bytes_read;
21130 break;
21131
21132 case DW_FORM_sec_offset:
21133 case DW_FORM_strp:
21134 case DW_FORM_GNU_strp_alt:
21135 bytes += offset_size;
21136 break;
21137
21138 case DW_FORM_block:
21139 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21140 bytes += bytes_read;
21141 break;
21142
21143 case DW_FORM_block1:
21144 bytes += 1 + read_1_byte (abfd, bytes);
21145 break;
21146 case DW_FORM_block2:
21147 bytes += 2 + read_2_bytes (abfd, bytes);
21148 break;
21149 case DW_FORM_block4:
21150 bytes += 4 + read_4_bytes (abfd, bytes);
21151 break;
21152
21153 case DW_FORM_sdata:
21154 case DW_FORM_udata:
21155 case DW_FORM_GNU_addr_index:
21156 case DW_FORM_GNU_str_index:
21157 bytes = gdb_skip_leb128 (bytes, buffer_end);
21158 if (bytes == NULL)
21159 {
21160 dwarf2_section_buffer_overflow_complaint (section);
21161 return NULL;
21162 }
21163 break;
21164
21165 default:
21166 {
21167 complain:
21168 complaint (&symfile_complaints,
21169 _("invalid form 0x%x in `%s'"),
21170 form, get_section_name (section));
21171 return NULL;
21172 }
21173 }
21174
21175 return bytes;
21176 }
21177
21178 /* A helper for dwarf_decode_macros that handles skipping an unknown
21179 opcode. Returns an updated pointer to the macro data buffer; or,
21180 on error, issues a complaint and returns NULL. */
21181
21182 static const gdb_byte *
21183 skip_unknown_opcode (unsigned int opcode,
21184 const gdb_byte **opcode_definitions,
21185 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21186 bfd *abfd,
21187 unsigned int offset_size,
21188 struct dwarf2_section_info *section)
21189 {
21190 unsigned int bytes_read, i;
21191 unsigned long arg;
21192 const gdb_byte *defn;
21193
21194 if (opcode_definitions[opcode] == NULL)
21195 {
21196 complaint (&symfile_complaints,
21197 _("unrecognized DW_MACFINO opcode 0x%x"),
21198 opcode);
21199 return NULL;
21200 }
21201
21202 defn = opcode_definitions[opcode];
21203 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21204 defn += bytes_read;
21205
21206 for (i = 0; i < arg; ++i)
21207 {
21208 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21209 (enum dwarf_form) defn[i], offset_size,
21210 section);
21211 if (mac_ptr == NULL)
21212 {
21213 /* skip_form_bytes already issued the complaint. */
21214 return NULL;
21215 }
21216 }
21217
21218 return mac_ptr;
21219 }
21220
21221 /* A helper function which parses the header of a macro section.
21222 If the macro section is the extended (for now called "GNU") type,
21223 then this updates *OFFSET_SIZE. Returns a pointer to just after
21224 the header, or issues a complaint and returns NULL on error. */
21225
21226 static const gdb_byte *
21227 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21228 bfd *abfd,
21229 const gdb_byte *mac_ptr,
21230 unsigned int *offset_size,
21231 int section_is_gnu)
21232 {
21233 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21234
21235 if (section_is_gnu)
21236 {
21237 unsigned int version, flags;
21238
21239 version = read_2_bytes (abfd, mac_ptr);
21240 if (version != 4)
21241 {
21242 complaint (&symfile_complaints,
21243 _("unrecognized version `%d' in .debug_macro section"),
21244 version);
21245 return NULL;
21246 }
21247 mac_ptr += 2;
21248
21249 flags = read_1_byte (abfd, mac_ptr);
21250 ++mac_ptr;
21251 *offset_size = (flags & 1) ? 8 : 4;
21252
21253 if ((flags & 2) != 0)
21254 /* We don't need the line table offset. */
21255 mac_ptr += *offset_size;
21256
21257 /* Vendor opcode descriptions. */
21258 if ((flags & 4) != 0)
21259 {
21260 unsigned int i, count;
21261
21262 count = read_1_byte (abfd, mac_ptr);
21263 ++mac_ptr;
21264 for (i = 0; i < count; ++i)
21265 {
21266 unsigned int opcode, bytes_read;
21267 unsigned long arg;
21268
21269 opcode = read_1_byte (abfd, mac_ptr);
21270 ++mac_ptr;
21271 opcode_definitions[opcode] = mac_ptr;
21272 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21273 mac_ptr += bytes_read;
21274 mac_ptr += arg;
21275 }
21276 }
21277 }
21278
21279 return mac_ptr;
21280 }
21281
21282 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21283 including DW_MACRO_GNU_transparent_include. */
21284
21285 static void
21286 dwarf_decode_macro_bytes (bfd *abfd,
21287 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21288 struct macro_source_file *current_file,
21289 struct line_header *lh,
21290 struct dwarf2_section_info *section,
21291 int section_is_gnu, int section_is_dwz,
21292 unsigned int offset_size,
21293 htab_t include_hash)
21294 {
21295 struct objfile *objfile = dwarf2_per_objfile->objfile;
21296 enum dwarf_macro_record_type macinfo_type;
21297 int at_commandline;
21298 const gdb_byte *opcode_definitions[256];
21299
21300 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21301 &offset_size, section_is_gnu);
21302 if (mac_ptr == NULL)
21303 {
21304 /* We already issued a complaint. */
21305 return;
21306 }
21307
21308 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21309 GDB is still reading the definitions from command line. First
21310 DW_MACINFO_start_file will need to be ignored as it was already executed
21311 to create CURRENT_FILE for the main source holding also the command line
21312 definitions. On first met DW_MACINFO_start_file this flag is reset to
21313 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21314
21315 at_commandline = 1;
21316
21317 do
21318 {
21319 /* Do we at least have room for a macinfo type byte? */
21320 if (mac_ptr >= mac_end)
21321 {
21322 dwarf2_section_buffer_overflow_complaint (section);
21323 break;
21324 }
21325
21326 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21327 mac_ptr++;
21328
21329 /* Note that we rely on the fact that the corresponding GNU and
21330 DWARF constants are the same. */
21331 switch (macinfo_type)
21332 {
21333 /* A zero macinfo type indicates the end of the macro
21334 information. */
21335 case 0:
21336 break;
21337
21338 case DW_MACRO_GNU_define:
21339 case DW_MACRO_GNU_undef:
21340 case DW_MACRO_GNU_define_indirect:
21341 case DW_MACRO_GNU_undef_indirect:
21342 case DW_MACRO_GNU_define_indirect_alt:
21343 case DW_MACRO_GNU_undef_indirect_alt:
21344 {
21345 unsigned int bytes_read;
21346 int line;
21347 const char *body;
21348 int is_define;
21349
21350 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21351 mac_ptr += bytes_read;
21352
21353 if (macinfo_type == DW_MACRO_GNU_define
21354 || macinfo_type == DW_MACRO_GNU_undef)
21355 {
21356 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21357 mac_ptr += bytes_read;
21358 }
21359 else
21360 {
21361 LONGEST str_offset;
21362
21363 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21364 mac_ptr += offset_size;
21365
21366 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21367 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21368 || section_is_dwz)
21369 {
21370 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21371
21372 body = read_indirect_string_from_dwz (dwz, str_offset);
21373 }
21374 else
21375 body = read_indirect_string_at_offset (abfd, str_offset);
21376 }
21377
21378 is_define = (macinfo_type == DW_MACRO_GNU_define
21379 || macinfo_type == DW_MACRO_GNU_define_indirect
21380 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21381 if (! current_file)
21382 {
21383 /* DWARF violation as no main source is present. */
21384 complaint (&symfile_complaints,
21385 _("debug info with no main source gives macro %s "
21386 "on line %d: %s"),
21387 is_define ? _("definition") : _("undefinition"),
21388 line, body);
21389 break;
21390 }
21391 if ((line == 0 && !at_commandline)
21392 || (line != 0 && at_commandline))
21393 complaint (&symfile_complaints,
21394 _("debug info gives %s macro %s with %s line %d: %s"),
21395 at_commandline ? _("command-line") : _("in-file"),
21396 is_define ? _("definition") : _("undefinition"),
21397 line == 0 ? _("zero") : _("non-zero"), line, body);
21398
21399 if (is_define)
21400 parse_macro_definition (current_file, line, body);
21401 else
21402 {
21403 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21404 || macinfo_type == DW_MACRO_GNU_undef_indirect
21405 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21406 macro_undef (current_file, line, body);
21407 }
21408 }
21409 break;
21410
21411 case DW_MACRO_GNU_start_file:
21412 {
21413 unsigned int bytes_read;
21414 int line, file;
21415
21416 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21417 mac_ptr += bytes_read;
21418 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21419 mac_ptr += bytes_read;
21420
21421 if ((line == 0 && !at_commandline)
21422 || (line != 0 && at_commandline))
21423 complaint (&symfile_complaints,
21424 _("debug info gives source %d included "
21425 "from %s at %s line %d"),
21426 file, at_commandline ? _("command-line") : _("file"),
21427 line == 0 ? _("zero") : _("non-zero"), line);
21428
21429 if (at_commandline)
21430 {
21431 /* This DW_MACRO_GNU_start_file was executed in the
21432 pass one. */
21433 at_commandline = 0;
21434 }
21435 else
21436 current_file = macro_start_file (file, line, current_file, lh);
21437 }
21438 break;
21439
21440 case DW_MACRO_GNU_end_file:
21441 if (! current_file)
21442 complaint (&symfile_complaints,
21443 _("macro debug info has an unmatched "
21444 "`close_file' directive"));
21445 else
21446 {
21447 current_file = current_file->included_by;
21448 if (! current_file)
21449 {
21450 enum dwarf_macro_record_type next_type;
21451
21452 /* GCC circa March 2002 doesn't produce the zero
21453 type byte marking the end of the compilation
21454 unit. Complain if it's not there, but exit no
21455 matter what. */
21456
21457 /* Do we at least have room for a macinfo type byte? */
21458 if (mac_ptr >= mac_end)
21459 {
21460 dwarf2_section_buffer_overflow_complaint (section);
21461 return;
21462 }
21463
21464 /* We don't increment mac_ptr here, so this is just
21465 a look-ahead. */
21466 next_type
21467 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21468 mac_ptr);
21469 if (next_type != 0)
21470 complaint (&symfile_complaints,
21471 _("no terminating 0-type entry for "
21472 "macros in `.debug_macinfo' section"));
21473
21474 return;
21475 }
21476 }
21477 break;
21478
21479 case DW_MACRO_GNU_transparent_include:
21480 case DW_MACRO_GNU_transparent_include_alt:
21481 {
21482 LONGEST offset;
21483 void **slot;
21484 bfd *include_bfd = abfd;
21485 struct dwarf2_section_info *include_section = section;
21486 const gdb_byte *include_mac_end = mac_end;
21487 int is_dwz = section_is_dwz;
21488 const gdb_byte *new_mac_ptr;
21489
21490 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21491 mac_ptr += offset_size;
21492
21493 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21494 {
21495 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21496
21497 dwarf2_read_section (objfile, &dwz->macro);
21498
21499 include_section = &dwz->macro;
21500 include_bfd = get_section_bfd_owner (include_section);
21501 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21502 is_dwz = 1;
21503 }
21504
21505 new_mac_ptr = include_section->buffer + offset;
21506 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21507
21508 if (*slot != NULL)
21509 {
21510 /* This has actually happened; see
21511 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21512 complaint (&symfile_complaints,
21513 _("recursive DW_MACRO_GNU_transparent_include in "
21514 ".debug_macro section"));
21515 }
21516 else
21517 {
21518 *slot = (void *) new_mac_ptr;
21519
21520 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21521 include_mac_end, current_file, lh,
21522 section, section_is_gnu, is_dwz,
21523 offset_size, include_hash);
21524
21525 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21526 }
21527 }
21528 break;
21529
21530 case DW_MACINFO_vendor_ext:
21531 if (!section_is_gnu)
21532 {
21533 unsigned int bytes_read;
21534 int constant;
21535
21536 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21537 mac_ptr += bytes_read;
21538 read_direct_string (abfd, mac_ptr, &bytes_read);
21539 mac_ptr += bytes_read;
21540
21541 /* We don't recognize any vendor extensions. */
21542 break;
21543 }
21544 /* FALLTHROUGH */
21545
21546 default:
21547 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21548 mac_ptr, mac_end, abfd, offset_size,
21549 section);
21550 if (mac_ptr == NULL)
21551 return;
21552 break;
21553 }
21554 } while (macinfo_type != 0);
21555 }
21556
21557 static void
21558 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21559 int section_is_gnu)
21560 {
21561 struct objfile *objfile = dwarf2_per_objfile->objfile;
21562 struct line_header *lh = cu->line_header;
21563 bfd *abfd;
21564 const gdb_byte *mac_ptr, *mac_end;
21565 struct macro_source_file *current_file = 0;
21566 enum dwarf_macro_record_type macinfo_type;
21567 unsigned int offset_size = cu->header.offset_size;
21568 const gdb_byte *opcode_definitions[256];
21569 struct cleanup *cleanup;
21570 htab_t include_hash;
21571 void **slot;
21572 struct dwarf2_section_info *section;
21573 const char *section_name;
21574
21575 if (cu->dwo_unit != NULL)
21576 {
21577 if (section_is_gnu)
21578 {
21579 section = &cu->dwo_unit->dwo_file->sections.macro;
21580 section_name = ".debug_macro.dwo";
21581 }
21582 else
21583 {
21584 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21585 section_name = ".debug_macinfo.dwo";
21586 }
21587 }
21588 else
21589 {
21590 if (section_is_gnu)
21591 {
21592 section = &dwarf2_per_objfile->macro;
21593 section_name = ".debug_macro";
21594 }
21595 else
21596 {
21597 section = &dwarf2_per_objfile->macinfo;
21598 section_name = ".debug_macinfo";
21599 }
21600 }
21601
21602 dwarf2_read_section (objfile, section);
21603 if (section->buffer == NULL)
21604 {
21605 complaint (&symfile_complaints, _("missing %s section"), section_name);
21606 return;
21607 }
21608 abfd = get_section_bfd_owner (section);
21609
21610 /* First pass: Find the name of the base filename.
21611 This filename is needed in order to process all macros whose definition
21612 (or undefinition) comes from the command line. These macros are defined
21613 before the first DW_MACINFO_start_file entry, and yet still need to be
21614 associated to the base file.
21615
21616 To determine the base file name, we scan the macro definitions until we
21617 reach the first DW_MACINFO_start_file entry. We then initialize
21618 CURRENT_FILE accordingly so that any macro definition found before the
21619 first DW_MACINFO_start_file can still be associated to the base file. */
21620
21621 mac_ptr = section->buffer + offset;
21622 mac_end = section->buffer + section->size;
21623
21624 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21625 &offset_size, section_is_gnu);
21626 if (mac_ptr == NULL)
21627 {
21628 /* We already issued a complaint. */
21629 return;
21630 }
21631
21632 do
21633 {
21634 /* Do we at least have room for a macinfo type byte? */
21635 if (mac_ptr >= mac_end)
21636 {
21637 /* Complaint is printed during the second pass as GDB will probably
21638 stop the first pass earlier upon finding
21639 DW_MACINFO_start_file. */
21640 break;
21641 }
21642
21643 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21644 mac_ptr++;
21645
21646 /* Note that we rely on the fact that the corresponding GNU and
21647 DWARF constants are the same. */
21648 switch (macinfo_type)
21649 {
21650 /* A zero macinfo type indicates the end of the macro
21651 information. */
21652 case 0:
21653 break;
21654
21655 case DW_MACRO_GNU_define:
21656 case DW_MACRO_GNU_undef:
21657 /* Only skip the data by MAC_PTR. */
21658 {
21659 unsigned int bytes_read;
21660
21661 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21662 mac_ptr += bytes_read;
21663 read_direct_string (abfd, mac_ptr, &bytes_read);
21664 mac_ptr += bytes_read;
21665 }
21666 break;
21667
21668 case DW_MACRO_GNU_start_file:
21669 {
21670 unsigned int bytes_read;
21671 int line, file;
21672
21673 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21674 mac_ptr += bytes_read;
21675 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21676 mac_ptr += bytes_read;
21677
21678 current_file = macro_start_file (file, line, current_file, lh);
21679 }
21680 break;
21681
21682 case DW_MACRO_GNU_end_file:
21683 /* No data to skip by MAC_PTR. */
21684 break;
21685
21686 case DW_MACRO_GNU_define_indirect:
21687 case DW_MACRO_GNU_undef_indirect:
21688 case DW_MACRO_GNU_define_indirect_alt:
21689 case DW_MACRO_GNU_undef_indirect_alt:
21690 {
21691 unsigned int bytes_read;
21692
21693 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21694 mac_ptr += bytes_read;
21695 mac_ptr += offset_size;
21696 }
21697 break;
21698
21699 case DW_MACRO_GNU_transparent_include:
21700 case DW_MACRO_GNU_transparent_include_alt:
21701 /* Note that, according to the spec, a transparent include
21702 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21703 skip this opcode. */
21704 mac_ptr += offset_size;
21705 break;
21706
21707 case DW_MACINFO_vendor_ext:
21708 /* Only skip the data by MAC_PTR. */
21709 if (!section_is_gnu)
21710 {
21711 unsigned int bytes_read;
21712
21713 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21714 mac_ptr += bytes_read;
21715 read_direct_string (abfd, mac_ptr, &bytes_read);
21716 mac_ptr += bytes_read;
21717 }
21718 /* FALLTHROUGH */
21719
21720 default:
21721 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21722 mac_ptr, mac_end, abfd, offset_size,
21723 section);
21724 if (mac_ptr == NULL)
21725 return;
21726 break;
21727 }
21728 } while (macinfo_type != 0 && current_file == NULL);
21729
21730 /* Second pass: Process all entries.
21731
21732 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21733 command-line macro definitions/undefinitions. This flag is unset when we
21734 reach the first DW_MACINFO_start_file entry. */
21735
21736 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21737 NULL, xcalloc, xfree);
21738 cleanup = make_cleanup_htab_delete (include_hash);
21739 mac_ptr = section->buffer + offset;
21740 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21741 *slot = (void *) mac_ptr;
21742 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21743 current_file, lh, section,
21744 section_is_gnu, 0, offset_size, include_hash);
21745 do_cleanups (cleanup);
21746 }
21747
21748 /* Check if the attribute's form is a DW_FORM_block*
21749 if so return true else false. */
21750
21751 static int
21752 attr_form_is_block (const struct attribute *attr)
21753 {
21754 return (attr == NULL ? 0 :
21755 attr->form == DW_FORM_block1
21756 || attr->form == DW_FORM_block2
21757 || attr->form == DW_FORM_block4
21758 || attr->form == DW_FORM_block
21759 || attr->form == DW_FORM_exprloc);
21760 }
21761
21762 /* Return non-zero if ATTR's value is a section offset --- classes
21763 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21764 You may use DW_UNSND (attr) to retrieve such offsets.
21765
21766 Section 7.5.4, "Attribute Encodings", explains that no attribute
21767 may have a value that belongs to more than one of these classes; it
21768 would be ambiguous if we did, because we use the same forms for all
21769 of them. */
21770
21771 static int
21772 attr_form_is_section_offset (const struct attribute *attr)
21773 {
21774 return (attr->form == DW_FORM_data4
21775 || attr->form == DW_FORM_data8
21776 || attr->form == DW_FORM_sec_offset);
21777 }
21778
21779 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21780 zero otherwise. When this function returns true, you can apply
21781 dwarf2_get_attr_constant_value to it.
21782
21783 However, note that for some attributes you must check
21784 attr_form_is_section_offset before using this test. DW_FORM_data4
21785 and DW_FORM_data8 are members of both the constant class, and of
21786 the classes that contain offsets into other debug sections
21787 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21788 that, if an attribute's can be either a constant or one of the
21789 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21790 taken as section offsets, not constants. */
21791
21792 static int
21793 attr_form_is_constant (const struct attribute *attr)
21794 {
21795 switch (attr->form)
21796 {
21797 case DW_FORM_sdata:
21798 case DW_FORM_udata:
21799 case DW_FORM_data1:
21800 case DW_FORM_data2:
21801 case DW_FORM_data4:
21802 case DW_FORM_data8:
21803 return 1;
21804 default:
21805 return 0;
21806 }
21807 }
21808
21809
21810 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21811 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21812
21813 static int
21814 attr_form_is_ref (const struct attribute *attr)
21815 {
21816 switch (attr->form)
21817 {
21818 case DW_FORM_ref_addr:
21819 case DW_FORM_ref1:
21820 case DW_FORM_ref2:
21821 case DW_FORM_ref4:
21822 case DW_FORM_ref8:
21823 case DW_FORM_ref_udata:
21824 case DW_FORM_GNU_ref_alt:
21825 return 1;
21826 default:
21827 return 0;
21828 }
21829 }
21830
21831 /* Return the .debug_loc section to use for CU.
21832 For DWO files use .debug_loc.dwo. */
21833
21834 static struct dwarf2_section_info *
21835 cu_debug_loc_section (struct dwarf2_cu *cu)
21836 {
21837 if (cu->dwo_unit)
21838 return &cu->dwo_unit->dwo_file->sections.loc;
21839 return &dwarf2_per_objfile->loc;
21840 }
21841
21842 /* A helper function that fills in a dwarf2_loclist_baton. */
21843
21844 static void
21845 fill_in_loclist_baton (struct dwarf2_cu *cu,
21846 struct dwarf2_loclist_baton *baton,
21847 const struct attribute *attr)
21848 {
21849 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21850
21851 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21852
21853 baton->per_cu = cu->per_cu;
21854 gdb_assert (baton->per_cu);
21855 /* We don't know how long the location list is, but make sure we
21856 don't run off the edge of the section. */
21857 baton->size = section->size - DW_UNSND (attr);
21858 baton->data = section->buffer + DW_UNSND (attr);
21859 baton->base_address = cu->base_address;
21860 baton->from_dwo = cu->dwo_unit != NULL;
21861 }
21862
21863 static void
21864 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21865 struct dwarf2_cu *cu, int is_block)
21866 {
21867 struct objfile *objfile = dwarf2_per_objfile->objfile;
21868 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21869
21870 if (attr_form_is_section_offset (attr)
21871 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21872 the section. If so, fall through to the complaint in the
21873 other branch. */
21874 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21875 {
21876 struct dwarf2_loclist_baton *baton;
21877
21878 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21879
21880 fill_in_loclist_baton (cu, baton, attr);
21881
21882 if (cu->base_known == 0)
21883 complaint (&symfile_complaints,
21884 _("Location list used without "
21885 "specifying the CU base address."));
21886
21887 SYMBOL_ACLASS_INDEX (sym) = (is_block
21888 ? dwarf2_loclist_block_index
21889 : dwarf2_loclist_index);
21890 SYMBOL_LOCATION_BATON (sym) = baton;
21891 }
21892 else
21893 {
21894 struct dwarf2_locexpr_baton *baton;
21895
21896 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21897 baton->per_cu = cu->per_cu;
21898 gdb_assert (baton->per_cu);
21899
21900 if (attr_form_is_block (attr))
21901 {
21902 /* Note that we're just copying the block's data pointer
21903 here, not the actual data. We're still pointing into the
21904 info_buffer for SYM's objfile; right now we never release
21905 that buffer, but when we do clean up properly this may
21906 need to change. */
21907 baton->size = DW_BLOCK (attr)->size;
21908 baton->data = DW_BLOCK (attr)->data;
21909 }
21910 else
21911 {
21912 dwarf2_invalid_attrib_class_complaint ("location description",
21913 SYMBOL_NATURAL_NAME (sym));
21914 baton->size = 0;
21915 }
21916
21917 SYMBOL_ACLASS_INDEX (sym) = (is_block
21918 ? dwarf2_locexpr_block_index
21919 : dwarf2_locexpr_index);
21920 SYMBOL_LOCATION_BATON (sym) = baton;
21921 }
21922 }
21923
21924 /* Return the OBJFILE associated with the compilation unit CU. If CU
21925 came from a separate debuginfo file, then the master objfile is
21926 returned. */
21927
21928 struct objfile *
21929 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21930 {
21931 struct objfile *objfile = per_cu->objfile;
21932
21933 /* Return the master objfile, so that we can report and look up the
21934 correct file containing this variable. */
21935 if (objfile->separate_debug_objfile_backlink)
21936 objfile = objfile->separate_debug_objfile_backlink;
21937
21938 return objfile;
21939 }
21940
21941 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21942 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21943 CU_HEADERP first. */
21944
21945 static const struct comp_unit_head *
21946 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21947 struct dwarf2_per_cu_data *per_cu)
21948 {
21949 const gdb_byte *info_ptr;
21950
21951 if (per_cu->cu)
21952 return &per_cu->cu->header;
21953
21954 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21955
21956 memset (cu_headerp, 0, sizeof (*cu_headerp));
21957 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21958
21959 return cu_headerp;
21960 }
21961
21962 /* Return the address size given in the compilation unit header for CU. */
21963
21964 int
21965 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21966 {
21967 struct comp_unit_head cu_header_local;
21968 const struct comp_unit_head *cu_headerp;
21969
21970 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21971
21972 return cu_headerp->addr_size;
21973 }
21974
21975 /* Return the offset size given in the compilation unit header for CU. */
21976
21977 int
21978 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21979 {
21980 struct comp_unit_head cu_header_local;
21981 const struct comp_unit_head *cu_headerp;
21982
21983 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21984
21985 return cu_headerp->offset_size;
21986 }
21987
21988 /* See its dwarf2loc.h declaration. */
21989
21990 int
21991 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21992 {
21993 struct comp_unit_head cu_header_local;
21994 const struct comp_unit_head *cu_headerp;
21995
21996 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21997
21998 if (cu_headerp->version == 2)
21999 return cu_headerp->addr_size;
22000 else
22001 return cu_headerp->offset_size;
22002 }
22003
22004 /* Return the text offset of the CU. The returned offset comes from
22005 this CU's objfile. If this objfile came from a separate debuginfo
22006 file, then the offset may be different from the corresponding
22007 offset in the parent objfile. */
22008
22009 CORE_ADDR
22010 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22011 {
22012 struct objfile *objfile = per_cu->objfile;
22013
22014 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22015 }
22016
22017 /* Locate the .debug_info compilation unit from CU's objfile which contains
22018 the DIE at OFFSET. Raises an error on failure. */
22019
22020 static struct dwarf2_per_cu_data *
22021 dwarf2_find_containing_comp_unit (sect_offset offset,
22022 unsigned int offset_in_dwz,
22023 struct objfile *objfile)
22024 {
22025 struct dwarf2_per_cu_data *this_cu;
22026 int low, high;
22027 const sect_offset *cu_off;
22028
22029 low = 0;
22030 high = dwarf2_per_objfile->n_comp_units - 1;
22031 while (high > low)
22032 {
22033 struct dwarf2_per_cu_data *mid_cu;
22034 int mid = low + (high - low) / 2;
22035
22036 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22037 cu_off = &mid_cu->offset;
22038 if (mid_cu->is_dwz > offset_in_dwz
22039 || (mid_cu->is_dwz == offset_in_dwz
22040 && cu_off->sect_off >= offset.sect_off))
22041 high = mid;
22042 else
22043 low = mid + 1;
22044 }
22045 gdb_assert (low == high);
22046 this_cu = dwarf2_per_objfile->all_comp_units[low];
22047 cu_off = &this_cu->offset;
22048 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22049 {
22050 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22051 error (_("Dwarf Error: could not find partial DIE containing "
22052 "offset 0x%lx [in module %s]"),
22053 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22054
22055 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22056 <= offset.sect_off);
22057 return dwarf2_per_objfile->all_comp_units[low-1];
22058 }
22059 else
22060 {
22061 this_cu = dwarf2_per_objfile->all_comp_units[low];
22062 if (low == dwarf2_per_objfile->n_comp_units - 1
22063 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22064 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22065 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22066 return this_cu;
22067 }
22068 }
22069
22070 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22071
22072 static void
22073 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22074 {
22075 memset (cu, 0, sizeof (*cu));
22076 per_cu->cu = cu;
22077 cu->per_cu = per_cu;
22078 cu->objfile = per_cu->objfile;
22079 obstack_init (&cu->comp_unit_obstack);
22080 }
22081
22082 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22083
22084 static void
22085 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22086 enum language pretend_language)
22087 {
22088 struct attribute *attr;
22089
22090 /* Set the language we're debugging. */
22091 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22092 if (attr)
22093 set_cu_language (DW_UNSND (attr), cu);
22094 else
22095 {
22096 cu->language = pretend_language;
22097 cu->language_defn = language_def (cu->language);
22098 }
22099
22100 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22101 }
22102
22103 /* Release one cached compilation unit, CU. We unlink it from the tree
22104 of compilation units, but we don't remove it from the read_in_chain;
22105 the caller is responsible for that.
22106 NOTE: DATA is a void * because this function is also used as a
22107 cleanup routine. */
22108
22109 static void
22110 free_heap_comp_unit (void *data)
22111 {
22112 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22113
22114 gdb_assert (cu->per_cu != NULL);
22115 cu->per_cu->cu = NULL;
22116 cu->per_cu = NULL;
22117
22118 obstack_free (&cu->comp_unit_obstack, NULL);
22119
22120 xfree (cu);
22121 }
22122
22123 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22124 when we're finished with it. We can't free the pointer itself, but be
22125 sure to unlink it from the cache. Also release any associated storage. */
22126
22127 static void
22128 free_stack_comp_unit (void *data)
22129 {
22130 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22131
22132 gdb_assert (cu->per_cu != NULL);
22133 cu->per_cu->cu = NULL;
22134 cu->per_cu = NULL;
22135
22136 obstack_free (&cu->comp_unit_obstack, NULL);
22137 cu->partial_dies = NULL;
22138 }
22139
22140 /* Free all cached compilation units. */
22141
22142 static void
22143 free_cached_comp_units (void *data)
22144 {
22145 struct dwarf2_per_cu_data *per_cu, **last_chain;
22146
22147 per_cu = dwarf2_per_objfile->read_in_chain;
22148 last_chain = &dwarf2_per_objfile->read_in_chain;
22149 while (per_cu != NULL)
22150 {
22151 struct dwarf2_per_cu_data *next_cu;
22152
22153 next_cu = per_cu->cu->read_in_chain;
22154
22155 free_heap_comp_unit (per_cu->cu);
22156 *last_chain = next_cu;
22157
22158 per_cu = next_cu;
22159 }
22160 }
22161
22162 /* Increase the age counter on each cached compilation unit, and free
22163 any that are too old. */
22164
22165 static void
22166 age_cached_comp_units (void)
22167 {
22168 struct dwarf2_per_cu_data *per_cu, **last_chain;
22169
22170 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22171 per_cu = dwarf2_per_objfile->read_in_chain;
22172 while (per_cu != NULL)
22173 {
22174 per_cu->cu->last_used ++;
22175 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22176 dwarf2_mark (per_cu->cu);
22177 per_cu = per_cu->cu->read_in_chain;
22178 }
22179
22180 per_cu = dwarf2_per_objfile->read_in_chain;
22181 last_chain = &dwarf2_per_objfile->read_in_chain;
22182 while (per_cu != NULL)
22183 {
22184 struct dwarf2_per_cu_data *next_cu;
22185
22186 next_cu = per_cu->cu->read_in_chain;
22187
22188 if (!per_cu->cu->mark)
22189 {
22190 free_heap_comp_unit (per_cu->cu);
22191 *last_chain = next_cu;
22192 }
22193 else
22194 last_chain = &per_cu->cu->read_in_chain;
22195
22196 per_cu = next_cu;
22197 }
22198 }
22199
22200 /* Remove a single compilation unit from the cache. */
22201
22202 static void
22203 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22204 {
22205 struct dwarf2_per_cu_data *per_cu, **last_chain;
22206
22207 per_cu = dwarf2_per_objfile->read_in_chain;
22208 last_chain = &dwarf2_per_objfile->read_in_chain;
22209 while (per_cu != NULL)
22210 {
22211 struct dwarf2_per_cu_data *next_cu;
22212
22213 next_cu = per_cu->cu->read_in_chain;
22214
22215 if (per_cu == target_per_cu)
22216 {
22217 free_heap_comp_unit (per_cu->cu);
22218 per_cu->cu = NULL;
22219 *last_chain = next_cu;
22220 break;
22221 }
22222 else
22223 last_chain = &per_cu->cu->read_in_chain;
22224
22225 per_cu = next_cu;
22226 }
22227 }
22228
22229 /* Release all extra memory associated with OBJFILE. */
22230
22231 void
22232 dwarf2_free_objfile (struct objfile *objfile)
22233 {
22234 dwarf2_per_objfile
22235 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22236 dwarf2_objfile_data_key);
22237
22238 if (dwarf2_per_objfile == NULL)
22239 return;
22240
22241 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22242 free_cached_comp_units (NULL);
22243
22244 if (dwarf2_per_objfile->quick_file_names_table)
22245 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22246
22247 if (dwarf2_per_objfile->line_header_hash)
22248 htab_delete (dwarf2_per_objfile->line_header_hash);
22249
22250 /* Everything else should be on the objfile obstack. */
22251 }
22252
22253 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22254 We store these in a hash table separate from the DIEs, and preserve them
22255 when the DIEs are flushed out of cache.
22256
22257 The CU "per_cu" pointer is needed because offset alone is not enough to
22258 uniquely identify the type. A file may have multiple .debug_types sections,
22259 or the type may come from a DWO file. Furthermore, while it's more logical
22260 to use per_cu->section+offset, with Fission the section with the data is in
22261 the DWO file but we don't know that section at the point we need it.
22262 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22263 because we can enter the lookup routine, get_die_type_at_offset, from
22264 outside this file, and thus won't necessarily have PER_CU->cu.
22265 Fortunately, PER_CU is stable for the life of the objfile. */
22266
22267 struct dwarf2_per_cu_offset_and_type
22268 {
22269 const struct dwarf2_per_cu_data *per_cu;
22270 sect_offset offset;
22271 struct type *type;
22272 };
22273
22274 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22275
22276 static hashval_t
22277 per_cu_offset_and_type_hash (const void *item)
22278 {
22279 const struct dwarf2_per_cu_offset_and_type *ofs
22280 = (const struct dwarf2_per_cu_offset_and_type *) item;
22281
22282 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22283 }
22284
22285 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22286
22287 static int
22288 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22289 {
22290 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22291 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22292 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22293 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22294
22295 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22296 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22297 }
22298
22299 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22300 table if necessary. For convenience, return TYPE.
22301
22302 The DIEs reading must have careful ordering to:
22303 * Not cause infite loops trying to read in DIEs as a prerequisite for
22304 reading current DIE.
22305 * Not trying to dereference contents of still incompletely read in types
22306 while reading in other DIEs.
22307 * Enable referencing still incompletely read in types just by a pointer to
22308 the type without accessing its fields.
22309
22310 Therefore caller should follow these rules:
22311 * Try to fetch any prerequisite types we may need to build this DIE type
22312 before building the type and calling set_die_type.
22313 * After building type call set_die_type for current DIE as soon as
22314 possible before fetching more types to complete the current type.
22315 * Make the type as complete as possible before fetching more types. */
22316
22317 static struct type *
22318 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22319 {
22320 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22321 struct objfile *objfile = cu->objfile;
22322 struct attribute *attr;
22323 struct dynamic_prop prop;
22324
22325 /* For Ada types, make sure that the gnat-specific data is always
22326 initialized (if not already set). There are a few types where
22327 we should not be doing so, because the type-specific area is
22328 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22329 where the type-specific area is used to store the floatformat).
22330 But this is not a problem, because the gnat-specific information
22331 is actually not needed for these types. */
22332 if (need_gnat_info (cu)
22333 && TYPE_CODE (type) != TYPE_CODE_FUNC
22334 && TYPE_CODE (type) != TYPE_CODE_FLT
22335 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22336 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22337 && TYPE_CODE (type) != TYPE_CODE_METHOD
22338 && !HAVE_GNAT_AUX_INFO (type))
22339 INIT_GNAT_SPECIFIC (type);
22340
22341 /* Read DW_AT_allocated and set in type. */
22342 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22343 if (attr_form_is_block (attr))
22344 {
22345 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22346 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22347 }
22348 else if (attr != NULL)
22349 {
22350 complaint (&symfile_complaints,
22351 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22352 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22353 die->offset.sect_off);
22354 }
22355
22356 /* Read DW_AT_associated and set in type. */
22357 attr = dwarf2_attr (die, DW_AT_associated, cu);
22358 if (attr_form_is_block (attr))
22359 {
22360 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22361 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22362 }
22363 else if (attr != NULL)
22364 {
22365 complaint (&symfile_complaints,
22366 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22367 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22368 die->offset.sect_off);
22369 }
22370
22371 /* Read DW_AT_data_location and set in type. */
22372 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22373 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22374 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22375
22376 if (dwarf2_per_objfile->die_type_hash == NULL)
22377 {
22378 dwarf2_per_objfile->die_type_hash =
22379 htab_create_alloc_ex (127,
22380 per_cu_offset_and_type_hash,
22381 per_cu_offset_and_type_eq,
22382 NULL,
22383 &objfile->objfile_obstack,
22384 hashtab_obstack_allocate,
22385 dummy_obstack_deallocate);
22386 }
22387
22388 ofs.per_cu = cu->per_cu;
22389 ofs.offset = die->offset;
22390 ofs.type = type;
22391 slot = (struct dwarf2_per_cu_offset_and_type **)
22392 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22393 if (*slot)
22394 complaint (&symfile_complaints,
22395 _("A problem internal to GDB: DIE 0x%x has type already set"),
22396 die->offset.sect_off);
22397 *slot = XOBNEW (&objfile->objfile_obstack,
22398 struct dwarf2_per_cu_offset_and_type);
22399 **slot = ofs;
22400 return type;
22401 }
22402
22403 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22404 or return NULL if the die does not have a saved type. */
22405
22406 static struct type *
22407 get_die_type_at_offset (sect_offset offset,
22408 struct dwarf2_per_cu_data *per_cu)
22409 {
22410 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22411
22412 if (dwarf2_per_objfile->die_type_hash == NULL)
22413 return NULL;
22414
22415 ofs.per_cu = per_cu;
22416 ofs.offset = offset;
22417 slot = ((struct dwarf2_per_cu_offset_and_type *)
22418 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22419 if (slot)
22420 return slot->type;
22421 else
22422 return NULL;
22423 }
22424
22425 /* Look up the type for DIE in CU in die_type_hash,
22426 or return NULL if DIE does not have a saved type. */
22427
22428 static struct type *
22429 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22430 {
22431 return get_die_type_at_offset (die->offset, cu->per_cu);
22432 }
22433
22434 /* Add a dependence relationship from CU to REF_PER_CU. */
22435
22436 static void
22437 dwarf2_add_dependence (struct dwarf2_cu *cu,
22438 struct dwarf2_per_cu_data *ref_per_cu)
22439 {
22440 void **slot;
22441
22442 if (cu->dependencies == NULL)
22443 cu->dependencies
22444 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22445 NULL, &cu->comp_unit_obstack,
22446 hashtab_obstack_allocate,
22447 dummy_obstack_deallocate);
22448
22449 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22450 if (*slot == NULL)
22451 *slot = ref_per_cu;
22452 }
22453
22454 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22455 Set the mark field in every compilation unit in the
22456 cache that we must keep because we are keeping CU. */
22457
22458 static int
22459 dwarf2_mark_helper (void **slot, void *data)
22460 {
22461 struct dwarf2_per_cu_data *per_cu;
22462
22463 per_cu = (struct dwarf2_per_cu_data *) *slot;
22464
22465 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22466 reading of the chain. As such dependencies remain valid it is not much
22467 useful to track and undo them during QUIT cleanups. */
22468 if (per_cu->cu == NULL)
22469 return 1;
22470
22471 if (per_cu->cu->mark)
22472 return 1;
22473 per_cu->cu->mark = 1;
22474
22475 if (per_cu->cu->dependencies != NULL)
22476 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22477
22478 return 1;
22479 }
22480
22481 /* Set the mark field in CU and in every other compilation unit in the
22482 cache that we must keep because we are keeping CU. */
22483
22484 static void
22485 dwarf2_mark (struct dwarf2_cu *cu)
22486 {
22487 if (cu->mark)
22488 return;
22489 cu->mark = 1;
22490 if (cu->dependencies != NULL)
22491 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22492 }
22493
22494 static void
22495 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22496 {
22497 while (per_cu)
22498 {
22499 per_cu->cu->mark = 0;
22500 per_cu = per_cu->cu->read_in_chain;
22501 }
22502 }
22503
22504 /* Trivial hash function for partial_die_info: the hash value of a DIE
22505 is its offset in .debug_info for this objfile. */
22506
22507 static hashval_t
22508 partial_die_hash (const void *item)
22509 {
22510 const struct partial_die_info *part_die
22511 = (const struct partial_die_info *) item;
22512
22513 return part_die->offset.sect_off;
22514 }
22515
22516 /* Trivial comparison function for partial_die_info structures: two DIEs
22517 are equal if they have the same offset. */
22518
22519 static int
22520 partial_die_eq (const void *item_lhs, const void *item_rhs)
22521 {
22522 const struct partial_die_info *part_die_lhs
22523 = (const struct partial_die_info *) item_lhs;
22524 const struct partial_die_info *part_die_rhs
22525 = (const struct partial_die_info *) item_rhs;
22526
22527 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22528 }
22529
22530 static struct cmd_list_element *set_dwarf_cmdlist;
22531 static struct cmd_list_element *show_dwarf_cmdlist;
22532
22533 static void
22534 set_dwarf_cmd (char *args, int from_tty)
22535 {
22536 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22537 gdb_stdout);
22538 }
22539
22540 static void
22541 show_dwarf_cmd (char *args, int from_tty)
22542 {
22543 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22544 }
22545
22546 /* Free data associated with OBJFILE, if necessary. */
22547
22548 static void
22549 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22550 {
22551 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
22552 int ix;
22553
22554 /* Make sure we don't accidentally use dwarf2_per_objfile while
22555 cleaning up. */
22556 dwarf2_per_objfile = NULL;
22557
22558 for (ix = 0; ix < data->n_comp_units; ++ix)
22559 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22560
22561 for (ix = 0; ix < data->n_type_units; ++ix)
22562 VEC_free (dwarf2_per_cu_ptr,
22563 data->all_type_units[ix]->per_cu.imported_symtabs);
22564 xfree (data->all_type_units);
22565
22566 VEC_free (dwarf2_section_info_def, data->types);
22567
22568 if (data->dwo_files)
22569 free_dwo_files (data->dwo_files, objfile);
22570 if (data->dwp_file)
22571 gdb_bfd_unref (data->dwp_file->dbfd);
22572
22573 if (data->dwz_file && data->dwz_file->dwz_bfd)
22574 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22575 }
22576
22577 \f
22578 /* The "save gdb-index" command. */
22579
22580 /* The contents of the hash table we create when building the string
22581 table. */
22582 struct strtab_entry
22583 {
22584 offset_type offset;
22585 const char *str;
22586 };
22587
22588 /* Hash function for a strtab_entry.
22589
22590 Function is used only during write_hash_table so no index format backward
22591 compatibility is needed. */
22592
22593 static hashval_t
22594 hash_strtab_entry (const void *e)
22595 {
22596 const struct strtab_entry *entry = (const struct strtab_entry *) e;
22597 return mapped_index_string_hash (INT_MAX, entry->str);
22598 }
22599
22600 /* Equality function for a strtab_entry. */
22601
22602 static int
22603 eq_strtab_entry (const void *a, const void *b)
22604 {
22605 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22606 const struct strtab_entry *eb = (const struct strtab_entry *) b;
22607 return !strcmp (ea->str, eb->str);
22608 }
22609
22610 /* Create a strtab_entry hash table. */
22611
22612 static htab_t
22613 create_strtab (void)
22614 {
22615 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22616 xfree, xcalloc, xfree);
22617 }
22618
22619 /* Add a string to the constant pool. Return the string's offset in
22620 host order. */
22621
22622 static offset_type
22623 add_string (htab_t table, struct obstack *cpool, const char *str)
22624 {
22625 void **slot;
22626 struct strtab_entry entry;
22627 struct strtab_entry *result;
22628
22629 entry.str = str;
22630 slot = htab_find_slot (table, &entry, INSERT);
22631 if (*slot)
22632 result = (struct strtab_entry *) *slot;
22633 else
22634 {
22635 result = XNEW (struct strtab_entry);
22636 result->offset = obstack_object_size (cpool);
22637 result->str = str;
22638 obstack_grow_str0 (cpool, str);
22639 *slot = result;
22640 }
22641 return result->offset;
22642 }
22643
22644 /* An entry in the symbol table. */
22645 struct symtab_index_entry
22646 {
22647 /* The name of the symbol. */
22648 const char *name;
22649 /* The offset of the name in the constant pool. */
22650 offset_type index_offset;
22651 /* A sorted vector of the indices of all the CUs that hold an object
22652 of this name. */
22653 VEC (offset_type) *cu_indices;
22654 };
22655
22656 /* The symbol table. This is a power-of-2-sized hash table. */
22657 struct mapped_symtab
22658 {
22659 offset_type n_elements;
22660 offset_type size;
22661 struct symtab_index_entry **data;
22662 };
22663
22664 /* Hash function for a symtab_index_entry. */
22665
22666 static hashval_t
22667 hash_symtab_entry (const void *e)
22668 {
22669 const struct symtab_index_entry *entry
22670 = (const struct symtab_index_entry *) e;
22671 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22672 sizeof (offset_type) * VEC_length (offset_type,
22673 entry->cu_indices),
22674 0);
22675 }
22676
22677 /* Equality function for a symtab_index_entry. */
22678
22679 static int
22680 eq_symtab_entry (const void *a, const void *b)
22681 {
22682 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22683 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
22684 int len = VEC_length (offset_type, ea->cu_indices);
22685 if (len != VEC_length (offset_type, eb->cu_indices))
22686 return 0;
22687 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22688 VEC_address (offset_type, eb->cu_indices),
22689 sizeof (offset_type) * len);
22690 }
22691
22692 /* Destroy a symtab_index_entry. */
22693
22694 static void
22695 delete_symtab_entry (void *p)
22696 {
22697 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
22698 VEC_free (offset_type, entry->cu_indices);
22699 xfree (entry);
22700 }
22701
22702 /* Create a hash table holding symtab_index_entry objects. */
22703
22704 static htab_t
22705 create_symbol_hash_table (void)
22706 {
22707 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22708 delete_symtab_entry, xcalloc, xfree);
22709 }
22710
22711 /* Create a new mapped symtab object. */
22712
22713 static struct mapped_symtab *
22714 create_mapped_symtab (void)
22715 {
22716 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22717 symtab->n_elements = 0;
22718 symtab->size = 1024;
22719 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22720 return symtab;
22721 }
22722
22723 /* Destroy a mapped_symtab. */
22724
22725 static void
22726 cleanup_mapped_symtab (void *p)
22727 {
22728 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
22729 /* The contents of the array are freed when the other hash table is
22730 destroyed. */
22731 xfree (symtab->data);
22732 xfree (symtab);
22733 }
22734
22735 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22736 the slot.
22737
22738 Function is used only during write_hash_table so no index format backward
22739 compatibility is needed. */
22740
22741 static struct symtab_index_entry **
22742 find_slot (struct mapped_symtab *symtab, const char *name)
22743 {
22744 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22745
22746 index = hash & (symtab->size - 1);
22747 step = ((hash * 17) & (symtab->size - 1)) | 1;
22748
22749 for (;;)
22750 {
22751 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22752 return &symtab->data[index];
22753 index = (index + step) & (symtab->size - 1);
22754 }
22755 }
22756
22757 /* Expand SYMTAB's hash table. */
22758
22759 static void
22760 hash_expand (struct mapped_symtab *symtab)
22761 {
22762 offset_type old_size = symtab->size;
22763 offset_type i;
22764 struct symtab_index_entry **old_entries = symtab->data;
22765
22766 symtab->size *= 2;
22767 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22768
22769 for (i = 0; i < old_size; ++i)
22770 {
22771 if (old_entries[i])
22772 {
22773 struct symtab_index_entry **slot = find_slot (symtab,
22774 old_entries[i]->name);
22775 *slot = old_entries[i];
22776 }
22777 }
22778
22779 xfree (old_entries);
22780 }
22781
22782 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22783 CU_INDEX is the index of the CU in which the symbol appears.
22784 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22785
22786 static void
22787 add_index_entry (struct mapped_symtab *symtab, const char *name,
22788 int is_static, gdb_index_symbol_kind kind,
22789 offset_type cu_index)
22790 {
22791 struct symtab_index_entry **slot;
22792 offset_type cu_index_and_attrs;
22793
22794 ++symtab->n_elements;
22795 if (4 * symtab->n_elements / 3 >= symtab->size)
22796 hash_expand (symtab);
22797
22798 slot = find_slot (symtab, name);
22799 if (!*slot)
22800 {
22801 *slot = XNEW (struct symtab_index_entry);
22802 (*slot)->name = name;
22803 /* index_offset is set later. */
22804 (*slot)->cu_indices = NULL;
22805 }
22806
22807 cu_index_and_attrs = 0;
22808 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22809 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22810 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22811
22812 /* We don't want to record an index value twice as we want to avoid the
22813 duplication.
22814 We process all global symbols and then all static symbols
22815 (which would allow us to avoid the duplication by only having to check
22816 the last entry pushed), but a symbol could have multiple kinds in one CU.
22817 To keep things simple we don't worry about the duplication here and
22818 sort and uniqufy the list after we've processed all symbols. */
22819 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22820 }
22821
22822 /* qsort helper routine for uniquify_cu_indices. */
22823
22824 static int
22825 offset_type_compare (const void *ap, const void *bp)
22826 {
22827 offset_type a = *(offset_type *) ap;
22828 offset_type b = *(offset_type *) bp;
22829
22830 return (a > b) - (b > a);
22831 }
22832
22833 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22834
22835 static void
22836 uniquify_cu_indices (struct mapped_symtab *symtab)
22837 {
22838 int i;
22839
22840 for (i = 0; i < symtab->size; ++i)
22841 {
22842 struct symtab_index_entry *entry = symtab->data[i];
22843
22844 if (entry
22845 && entry->cu_indices != NULL)
22846 {
22847 unsigned int next_to_insert, next_to_check;
22848 offset_type last_value;
22849
22850 qsort (VEC_address (offset_type, entry->cu_indices),
22851 VEC_length (offset_type, entry->cu_indices),
22852 sizeof (offset_type), offset_type_compare);
22853
22854 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22855 next_to_insert = 1;
22856 for (next_to_check = 1;
22857 next_to_check < VEC_length (offset_type, entry->cu_indices);
22858 ++next_to_check)
22859 {
22860 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22861 != last_value)
22862 {
22863 last_value = VEC_index (offset_type, entry->cu_indices,
22864 next_to_check);
22865 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22866 last_value);
22867 ++next_to_insert;
22868 }
22869 }
22870 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22871 }
22872 }
22873 }
22874
22875 /* Add a vector of indices to the constant pool. */
22876
22877 static offset_type
22878 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22879 struct symtab_index_entry *entry)
22880 {
22881 void **slot;
22882
22883 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22884 if (!*slot)
22885 {
22886 offset_type len = VEC_length (offset_type, entry->cu_indices);
22887 offset_type val = MAYBE_SWAP (len);
22888 offset_type iter;
22889 int i;
22890
22891 *slot = entry;
22892 entry->index_offset = obstack_object_size (cpool);
22893
22894 obstack_grow (cpool, &val, sizeof (val));
22895 for (i = 0;
22896 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22897 ++i)
22898 {
22899 val = MAYBE_SWAP (iter);
22900 obstack_grow (cpool, &val, sizeof (val));
22901 }
22902 }
22903 else
22904 {
22905 struct symtab_index_entry *old_entry
22906 = (struct symtab_index_entry *) *slot;
22907 entry->index_offset = old_entry->index_offset;
22908 entry = old_entry;
22909 }
22910 return entry->index_offset;
22911 }
22912
22913 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22914 constant pool entries going into the obstack CPOOL. */
22915
22916 static void
22917 write_hash_table (struct mapped_symtab *symtab,
22918 struct obstack *output, struct obstack *cpool)
22919 {
22920 offset_type i;
22921 htab_t symbol_hash_table;
22922 htab_t str_table;
22923
22924 symbol_hash_table = create_symbol_hash_table ();
22925 str_table = create_strtab ();
22926
22927 /* We add all the index vectors to the constant pool first, to
22928 ensure alignment is ok. */
22929 for (i = 0; i < symtab->size; ++i)
22930 {
22931 if (symtab->data[i])
22932 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22933 }
22934
22935 /* Now write out the hash table. */
22936 for (i = 0; i < symtab->size; ++i)
22937 {
22938 offset_type str_off, vec_off;
22939
22940 if (symtab->data[i])
22941 {
22942 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22943 vec_off = symtab->data[i]->index_offset;
22944 }
22945 else
22946 {
22947 /* While 0 is a valid constant pool index, it is not valid
22948 to have 0 for both offsets. */
22949 str_off = 0;
22950 vec_off = 0;
22951 }
22952
22953 str_off = MAYBE_SWAP (str_off);
22954 vec_off = MAYBE_SWAP (vec_off);
22955
22956 obstack_grow (output, &str_off, sizeof (str_off));
22957 obstack_grow (output, &vec_off, sizeof (vec_off));
22958 }
22959
22960 htab_delete (str_table);
22961 htab_delete (symbol_hash_table);
22962 }
22963
22964 /* Struct to map psymtab to CU index in the index file. */
22965 struct psymtab_cu_index_map
22966 {
22967 struct partial_symtab *psymtab;
22968 unsigned int cu_index;
22969 };
22970
22971 static hashval_t
22972 hash_psymtab_cu_index (const void *item)
22973 {
22974 const struct psymtab_cu_index_map *map
22975 = (const struct psymtab_cu_index_map *) item;
22976
22977 return htab_hash_pointer (map->psymtab);
22978 }
22979
22980 static int
22981 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22982 {
22983 const struct psymtab_cu_index_map *lhs
22984 = (const struct psymtab_cu_index_map *) item_lhs;
22985 const struct psymtab_cu_index_map *rhs
22986 = (const struct psymtab_cu_index_map *) item_rhs;
22987
22988 return lhs->psymtab == rhs->psymtab;
22989 }
22990
22991 /* Helper struct for building the address table. */
22992 struct addrmap_index_data
22993 {
22994 struct objfile *objfile;
22995 struct obstack *addr_obstack;
22996 htab_t cu_index_htab;
22997
22998 /* Non-zero if the previous_* fields are valid.
22999 We can't write an entry until we see the next entry (since it is only then
23000 that we know the end of the entry). */
23001 int previous_valid;
23002 /* Index of the CU in the table of all CUs in the index file. */
23003 unsigned int previous_cu_index;
23004 /* Start address of the CU. */
23005 CORE_ADDR previous_cu_start;
23006 };
23007
23008 /* Write an address entry to OBSTACK. */
23009
23010 static void
23011 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23012 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23013 {
23014 offset_type cu_index_to_write;
23015 gdb_byte addr[8];
23016 CORE_ADDR baseaddr;
23017
23018 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23019
23020 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23021 obstack_grow (obstack, addr, 8);
23022 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23023 obstack_grow (obstack, addr, 8);
23024 cu_index_to_write = MAYBE_SWAP (cu_index);
23025 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23026 }
23027
23028 /* Worker function for traversing an addrmap to build the address table. */
23029
23030 static int
23031 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23032 {
23033 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23034 struct partial_symtab *pst = (struct partial_symtab *) obj;
23035
23036 if (data->previous_valid)
23037 add_address_entry (data->objfile, data->addr_obstack,
23038 data->previous_cu_start, start_addr,
23039 data->previous_cu_index);
23040
23041 data->previous_cu_start = start_addr;
23042 if (pst != NULL)
23043 {
23044 struct psymtab_cu_index_map find_map, *map;
23045 find_map.psymtab = pst;
23046 map = ((struct psymtab_cu_index_map *)
23047 htab_find (data->cu_index_htab, &find_map));
23048 gdb_assert (map != NULL);
23049 data->previous_cu_index = map->cu_index;
23050 data->previous_valid = 1;
23051 }
23052 else
23053 data->previous_valid = 0;
23054
23055 return 0;
23056 }
23057
23058 /* Write OBJFILE's address map to OBSTACK.
23059 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23060 in the index file. */
23061
23062 static void
23063 write_address_map (struct objfile *objfile, struct obstack *obstack,
23064 htab_t cu_index_htab)
23065 {
23066 struct addrmap_index_data addrmap_index_data;
23067
23068 /* When writing the address table, we have to cope with the fact that
23069 the addrmap iterator only provides the start of a region; we have to
23070 wait until the next invocation to get the start of the next region. */
23071
23072 addrmap_index_data.objfile = objfile;
23073 addrmap_index_data.addr_obstack = obstack;
23074 addrmap_index_data.cu_index_htab = cu_index_htab;
23075 addrmap_index_data.previous_valid = 0;
23076
23077 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23078 &addrmap_index_data);
23079
23080 /* It's highly unlikely the last entry (end address = 0xff...ff)
23081 is valid, but we should still handle it.
23082 The end address is recorded as the start of the next region, but that
23083 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23084 anyway. */
23085 if (addrmap_index_data.previous_valid)
23086 add_address_entry (objfile, obstack,
23087 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23088 addrmap_index_data.previous_cu_index);
23089 }
23090
23091 /* Return the symbol kind of PSYM. */
23092
23093 static gdb_index_symbol_kind
23094 symbol_kind (struct partial_symbol *psym)
23095 {
23096 domain_enum domain = PSYMBOL_DOMAIN (psym);
23097 enum address_class aclass = PSYMBOL_CLASS (psym);
23098
23099 switch (domain)
23100 {
23101 case VAR_DOMAIN:
23102 switch (aclass)
23103 {
23104 case LOC_BLOCK:
23105 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23106 case LOC_TYPEDEF:
23107 return GDB_INDEX_SYMBOL_KIND_TYPE;
23108 case LOC_COMPUTED:
23109 case LOC_CONST_BYTES:
23110 case LOC_OPTIMIZED_OUT:
23111 case LOC_STATIC:
23112 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23113 case LOC_CONST:
23114 /* Note: It's currently impossible to recognize psyms as enum values
23115 short of reading the type info. For now punt. */
23116 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23117 default:
23118 /* There are other LOC_FOO values that one might want to classify
23119 as variables, but dwarf2read.c doesn't currently use them. */
23120 return GDB_INDEX_SYMBOL_KIND_OTHER;
23121 }
23122 case STRUCT_DOMAIN:
23123 return GDB_INDEX_SYMBOL_KIND_TYPE;
23124 default:
23125 return GDB_INDEX_SYMBOL_KIND_OTHER;
23126 }
23127 }
23128
23129 /* Add a list of partial symbols to SYMTAB. */
23130
23131 static void
23132 write_psymbols (struct mapped_symtab *symtab,
23133 htab_t psyms_seen,
23134 struct partial_symbol **psymp,
23135 int count,
23136 offset_type cu_index,
23137 int is_static)
23138 {
23139 for (; count-- > 0; ++psymp)
23140 {
23141 struct partial_symbol *psym = *psymp;
23142 void **slot;
23143
23144 if (SYMBOL_LANGUAGE (psym) == language_ada)
23145 error (_("Ada is not currently supported by the index"));
23146
23147 /* Only add a given psymbol once. */
23148 slot = htab_find_slot (psyms_seen, psym, INSERT);
23149 if (!*slot)
23150 {
23151 gdb_index_symbol_kind kind = symbol_kind (psym);
23152
23153 *slot = psym;
23154 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23155 is_static, kind, cu_index);
23156 }
23157 }
23158 }
23159
23160 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23161 exception if there is an error. */
23162
23163 static void
23164 write_obstack (FILE *file, struct obstack *obstack)
23165 {
23166 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23167 file)
23168 != obstack_object_size (obstack))
23169 error (_("couldn't data write to file"));
23170 }
23171
23172 /* Unlink a file if the argument is not NULL. */
23173
23174 static void
23175 unlink_if_set (void *p)
23176 {
23177 char **filename = (char **) p;
23178 if (*filename)
23179 unlink (*filename);
23180 }
23181
23182 /* A helper struct used when iterating over debug_types. */
23183 struct signatured_type_index_data
23184 {
23185 struct objfile *objfile;
23186 struct mapped_symtab *symtab;
23187 struct obstack *types_list;
23188 htab_t psyms_seen;
23189 int cu_index;
23190 };
23191
23192 /* A helper function that writes a single signatured_type to an
23193 obstack. */
23194
23195 static int
23196 write_one_signatured_type (void **slot, void *d)
23197 {
23198 struct signatured_type_index_data *info
23199 = (struct signatured_type_index_data *) d;
23200 struct signatured_type *entry = (struct signatured_type *) *slot;
23201 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23202 gdb_byte val[8];
23203
23204 write_psymbols (info->symtab,
23205 info->psyms_seen,
23206 info->objfile->global_psymbols.list
23207 + psymtab->globals_offset,
23208 psymtab->n_global_syms, info->cu_index,
23209 0);
23210 write_psymbols (info->symtab,
23211 info->psyms_seen,
23212 info->objfile->static_psymbols.list
23213 + psymtab->statics_offset,
23214 psymtab->n_static_syms, info->cu_index,
23215 1);
23216
23217 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23218 entry->per_cu.offset.sect_off);
23219 obstack_grow (info->types_list, val, 8);
23220 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23221 entry->type_offset_in_tu.cu_off);
23222 obstack_grow (info->types_list, val, 8);
23223 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23224 obstack_grow (info->types_list, val, 8);
23225
23226 ++info->cu_index;
23227
23228 return 1;
23229 }
23230
23231 /* Recurse into all "included" dependencies and write their symbols as
23232 if they appeared in this psymtab. */
23233
23234 static void
23235 recursively_write_psymbols (struct objfile *objfile,
23236 struct partial_symtab *psymtab,
23237 struct mapped_symtab *symtab,
23238 htab_t psyms_seen,
23239 offset_type cu_index)
23240 {
23241 int i;
23242
23243 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23244 if (psymtab->dependencies[i]->user != NULL)
23245 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23246 symtab, psyms_seen, cu_index);
23247
23248 write_psymbols (symtab,
23249 psyms_seen,
23250 objfile->global_psymbols.list + psymtab->globals_offset,
23251 psymtab->n_global_syms, cu_index,
23252 0);
23253 write_psymbols (symtab,
23254 psyms_seen,
23255 objfile->static_psymbols.list + psymtab->statics_offset,
23256 psymtab->n_static_syms, cu_index,
23257 1);
23258 }
23259
23260 /* Create an index file for OBJFILE in the directory DIR. */
23261
23262 static void
23263 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23264 {
23265 struct cleanup *cleanup;
23266 char *filename, *cleanup_filename;
23267 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23268 struct obstack cu_list, types_cu_list;
23269 int i;
23270 FILE *out_file;
23271 struct mapped_symtab *symtab;
23272 offset_type val, size_of_contents, total_len;
23273 struct stat st;
23274 htab_t psyms_seen;
23275 htab_t cu_index_htab;
23276 struct psymtab_cu_index_map *psymtab_cu_index_map;
23277
23278 if (dwarf2_per_objfile->using_index)
23279 error (_("Cannot use an index to create the index"));
23280
23281 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23282 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23283
23284 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23285 return;
23286
23287 if (stat (objfile_name (objfile), &st) < 0)
23288 perror_with_name (objfile_name (objfile));
23289
23290 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23291 INDEX_SUFFIX, (char *) NULL);
23292 cleanup = make_cleanup (xfree, filename);
23293
23294 out_file = gdb_fopen_cloexec (filename, "wb");
23295 if (!out_file)
23296 error (_("Can't open `%s' for writing"), filename);
23297
23298 cleanup_filename = filename;
23299 make_cleanup (unlink_if_set, &cleanup_filename);
23300
23301 symtab = create_mapped_symtab ();
23302 make_cleanup (cleanup_mapped_symtab, symtab);
23303
23304 obstack_init (&addr_obstack);
23305 make_cleanup_obstack_free (&addr_obstack);
23306
23307 obstack_init (&cu_list);
23308 make_cleanup_obstack_free (&cu_list);
23309
23310 obstack_init (&types_cu_list);
23311 make_cleanup_obstack_free (&types_cu_list);
23312
23313 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23314 NULL, xcalloc, xfree);
23315 make_cleanup_htab_delete (psyms_seen);
23316
23317 /* While we're scanning CU's create a table that maps a psymtab pointer
23318 (which is what addrmap records) to its index (which is what is recorded
23319 in the index file). This will later be needed to write the address
23320 table. */
23321 cu_index_htab = htab_create_alloc (100,
23322 hash_psymtab_cu_index,
23323 eq_psymtab_cu_index,
23324 NULL, xcalloc, xfree);
23325 make_cleanup_htab_delete (cu_index_htab);
23326 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23327 dwarf2_per_objfile->n_comp_units);
23328 make_cleanup (xfree, psymtab_cu_index_map);
23329
23330 /* The CU list is already sorted, so we don't need to do additional
23331 work here. Also, the debug_types entries do not appear in
23332 all_comp_units, but only in their own hash table. */
23333 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23334 {
23335 struct dwarf2_per_cu_data *per_cu
23336 = dwarf2_per_objfile->all_comp_units[i];
23337 struct partial_symtab *psymtab = per_cu->v.psymtab;
23338 gdb_byte val[8];
23339 struct psymtab_cu_index_map *map;
23340 void **slot;
23341
23342 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23343 It may be referenced from a local scope but in such case it does not
23344 need to be present in .gdb_index. */
23345 if (psymtab == NULL)
23346 continue;
23347
23348 if (psymtab->user == NULL)
23349 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23350
23351 map = &psymtab_cu_index_map[i];
23352 map->psymtab = psymtab;
23353 map->cu_index = i;
23354 slot = htab_find_slot (cu_index_htab, map, INSERT);
23355 gdb_assert (slot != NULL);
23356 gdb_assert (*slot == NULL);
23357 *slot = map;
23358
23359 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23360 per_cu->offset.sect_off);
23361 obstack_grow (&cu_list, val, 8);
23362 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23363 obstack_grow (&cu_list, val, 8);
23364 }
23365
23366 /* Dump the address map. */
23367 write_address_map (objfile, &addr_obstack, cu_index_htab);
23368
23369 /* Write out the .debug_type entries, if any. */
23370 if (dwarf2_per_objfile->signatured_types)
23371 {
23372 struct signatured_type_index_data sig_data;
23373
23374 sig_data.objfile = objfile;
23375 sig_data.symtab = symtab;
23376 sig_data.types_list = &types_cu_list;
23377 sig_data.psyms_seen = psyms_seen;
23378 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23379 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23380 write_one_signatured_type, &sig_data);
23381 }
23382
23383 /* Now that we've processed all symbols we can shrink their cu_indices
23384 lists. */
23385 uniquify_cu_indices (symtab);
23386
23387 obstack_init (&constant_pool);
23388 make_cleanup_obstack_free (&constant_pool);
23389 obstack_init (&symtab_obstack);
23390 make_cleanup_obstack_free (&symtab_obstack);
23391 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23392
23393 obstack_init (&contents);
23394 make_cleanup_obstack_free (&contents);
23395 size_of_contents = 6 * sizeof (offset_type);
23396 total_len = size_of_contents;
23397
23398 /* The version number. */
23399 val = MAYBE_SWAP (8);
23400 obstack_grow (&contents, &val, sizeof (val));
23401
23402 /* The offset of the CU list from the start of the file. */
23403 val = MAYBE_SWAP (total_len);
23404 obstack_grow (&contents, &val, sizeof (val));
23405 total_len += obstack_object_size (&cu_list);
23406
23407 /* The offset of the types CU list from the start of the file. */
23408 val = MAYBE_SWAP (total_len);
23409 obstack_grow (&contents, &val, sizeof (val));
23410 total_len += obstack_object_size (&types_cu_list);
23411
23412 /* The offset of the address table from the start of the file. */
23413 val = MAYBE_SWAP (total_len);
23414 obstack_grow (&contents, &val, sizeof (val));
23415 total_len += obstack_object_size (&addr_obstack);
23416
23417 /* The offset of the symbol table from the start of the file. */
23418 val = MAYBE_SWAP (total_len);
23419 obstack_grow (&contents, &val, sizeof (val));
23420 total_len += obstack_object_size (&symtab_obstack);
23421
23422 /* The offset of the constant pool from the start of the file. */
23423 val = MAYBE_SWAP (total_len);
23424 obstack_grow (&contents, &val, sizeof (val));
23425 total_len += obstack_object_size (&constant_pool);
23426
23427 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23428
23429 write_obstack (out_file, &contents);
23430 write_obstack (out_file, &cu_list);
23431 write_obstack (out_file, &types_cu_list);
23432 write_obstack (out_file, &addr_obstack);
23433 write_obstack (out_file, &symtab_obstack);
23434 write_obstack (out_file, &constant_pool);
23435
23436 fclose (out_file);
23437
23438 /* We want to keep the file, so we set cleanup_filename to NULL
23439 here. See unlink_if_set. */
23440 cleanup_filename = NULL;
23441
23442 do_cleanups (cleanup);
23443 }
23444
23445 /* Implementation of the `save gdb-index' command.
23446
23447 Note that the file format used by this command is documented in the
23448 GDB manual. Any changes here must be documented there. */
23449
23450 static void
23451 save_gdb_index_command (char *arg, int from_tty)
23452 {
23453 struct objfile *objfile;
23454
23455 if (!arg || !*arg)
23456 error (_("usage: save gdb-index DIRECTORY"));
23457
23458 ALL_OBJFILES (objfile)
23459 {
23460 struct stat st;
23461
23462 /* If the objfile does not correspond to an actual file, skip it. */
23463 if (stat (objfile_name (objfile), &st) < 0)
23464 continue;
23465
23466 dwarf2_per_objfile
23467 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23468 dwarf2_objfile_data_key);
23469 if (dwarf2_per_objfile)
23470 {
23471
23472 TRY
23473 {
23474 write_psymtabs_to_index (objfile, arg);
23475 }
23476 CATCH (except, RETURN_MASK_ERROR)
23477 {
23478 exception_fprintf (gdb_stderr, except,
23479 _("Error while writing index for `%s': "),
23480 objfile_name (objfile));
23481 }
23482 END_CATCH
23483 }
23484 }
23485 }
23486
23487 \f
23488
23489 int dwarf_always_disassemble;
23490
23491 static void
23492 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23493 struct cmd_list_element *c, const char *value)
23494 {
23495 fprintf_filtered (file,
23496 _("Whether to always disassemble "
23497 "DWARF expressions is %s.\n"),
23498 value);
23499 }
23500
23501 static void
23502 show_check_physname (struct ui_file *file, int from_tty,
23503 struct cmd_list_element *c, const char *value)
23504 {
23505 fprintf_filtered (file,
23506 _("Whether to check \"physname\" is %s.\n"),
23507 value);
23508 }
23509
23510 void _initialize_dwarf2_read (void);
23511
23512 void
23513 _initialize_dwarf2_read (void)
23514 {
23515 struct cmd_list_element *c;
23516
23517 dwarf2_objfile_data_key
23518 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23519
23520 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23521 Set DWARF specific variables.\n\
23522 Configure DWARF variables such as the cache size"),
23523 &set_dwarf_cmdlist, "maintenance set dwarf ",
23524 0/*allow-unknown*/, &maintenance_set_cmdlist);
23525
23526 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23527 Show DWARF specific variables\n\
23528 Show DWARF variables such as the cache size"),
23529 &show_dwarf_cmdlist, "maintenance show dwarf ",
23530 0/*allow-unknown*/, &maintenance_show_cmdlist);
23531
23532 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23533 &dwarf_max_cache_age, _("\
23534 Set the upper bound on the age of cached DWARF compilation units."), _("\
23535 Show the upper bound on the age of cached DWARF compilation units."), _("\
23536 A higher limit means that cached compilation units will be stored\n\
23537 in memory longer, and more total memory will be used. Zero disables\n\
23538 caching, which can slow down startup."),
23539 NULL,
23540 show_dwarf_max_cache_age,
23541 &set_dwarf_cmdlist,
23542 &show_dwarf_cmdlist);
23543
23544 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23545 &dwarf_always_disassemble, _("\
23546 Set whether `info address' always disassembles DWARF expressions."), _("\
23547 Show whether `info address' always disassembles DWARF expressions."), _("\
23548 When enabled, DWARF expressions are always printed in an assembly-like\n\
23549 syntax. When disabled, expressions will be printed in a more\n\
23550 conversational style, when possible."),
23551 NULL,
23552 show_dwarf_always_disassemble,
23553 &set_dwarf_cmdlist,
23554 &show_dwarf_cmdlist);
23555
23556 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23557 Set debugging of the DWARF reader."), _("\
23558 Show debugging of the DWARF reader."), _("\
23559 When enabled (non-zero), debugging messages are printed during DWARF\n\
23560 reading and symtab expansion. A value of 1 (one) provides basic\n\
23561 information. A value greater than 1 provides more verbose information."),
23562 NULL,
23563 NULL,
23564 &setdebuglist, &showdebuglist);
23565
23566 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23567 Set debugging of the DWARF DIE reader."), _("\
23568 Show debugging of the DWARF DIE reader."), _("\
23569 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23570 The value is the maximum depth to print."),
23571 NULL,
23572 NULL,
23573 &setdebuglist, &showdebuglist);
23574
23575 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23576 Set debugging of the dwarf line reader."), _("\
23577 Show debugging of the dwarf line reader."), _("\
23578 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23579 A value of 1 (one) provides basic information.\n\
23580 A value greater than 1 provides more verbose information."),
23581 NULL,
23582 NULL,
23583 &setdebuglist, &showdebuglist);
23584
23585 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23586 Set cross-checking of \"physname\" code against demangler."), _("\
23587 Show cross-checking of \"physname\" code against demangler."), _("\
23588 When enabled, GDB's internal \"physname\" code is checked against\n\
23589 the demangler."),
23590 NULL, show_check_physname,
23591 &setdebuglist, &showdebuglist);
23592
23593 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23594 no_class, &use_deprecated_index_sections, _("\
23595 Set whether to use deprecated gdb_index sections."), _("\
23596 Show whether to use deprecated gdb_index sections."), _("\
23597 When enabled, deprecated .gdb_index sections are used anyway.\n\
23598 Normally they are ignored either because of a missing feature or\n\
23599 performance issue.\n\
23600 Warning: This option must be enabled before gdb reads the file."),
23601 NULL,
23602 NULL,
23603 &setlist, &showlist);
23604
23605 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23606 _("\
23607 Save a gdb-index file.\n\
23608 Usage: save gdb-index DIRECTORY"),
23609 &save_cmdlist);
23610 set_cmd_completer (c, filename_completer);
23611
23612 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23613 &dwarf2_locexpr_funcs);
23614 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23615 &dwarf2_loclist_funcs);
23616
23617 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23618 &dwarf2_block_frame_base_locexpr_funcs);
23619 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23620 &dwarf2_block_frame_base_loclist_funcs);
23621 }
This page took 0.958162 seconds and 3 git commands to generate.