Use forward_scope_exit for scoped_finish_thread_state
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "bcache.h"
50 #include "dwarf2expr.h"
51 #include "dwarf2loc.h"
52 #include "cp-support.h"
53 #include "hashtab.h"
54 #include "command.h"
55 #include "gdbcmd.h"
56 #include "block.h"
57 #include "addrmap.h"
58 #include "typeprint.h"
59 #include "psympriv.h"
60 #include <sys/stat.h>
61 #include "completer.h"
62 #include "vec.h"
63 #include "c-lang.h"
64 #include "go-lang.h"
65 #include "valprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
68 #include <ctype.h>
69 #include "gdb_bfd.h"
70 #include "f-lang.h"
71 #include "source.h"
72 #include "filestuff.h"
73 #include "build-id.h"
74 #include "namespace.h"
75 #include "common/gdb_unlinker.h"
76 #include "common/function-view.h"
77 #include "common/gdb_optional.h"
78 #include "common/underlying.h"
79 #include "common/byte-vector.h"
80 #include "common/hash_enum.h"
81 #include "filename-seen-cache.h"
82 #include "producer.h"
83 #include <fcntl.h>
84 #include <sys/types.h>
85 #include <algorithm>
86 #include <unordered_set>
87 #include <unordered_map>
88 #include "selftest.h"
89 #include <cmath>
90 #include <set>
91 #include <forward_list>
92 #include "rust-lang.h"
93 #include "common/pathstuff.h"
94
95 /* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98 static unsigned int dwarf_read_debug = 0;
99
100 /* When non-zero, dump DIEs after they are read in. */
101 static unsigned int dwarf_die_debug = 0;
102
103 /* When non-zero, dump line number entries as they are read in. */
104 static unsigned int dwarf_line_debug = 0;
105
106 /* When non-zero, cross-check physname against demangler. */
107 static int check_physname = 0;
108
109 /* When non-zero, do not reject deprecated .gdb_index sections. */
110 static int use_deprecated_index_sections = 0;
111
112 static const struct objfile_data *dwarf2_objfile_data_key;
113
114 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115
116 static int dwarf2_locexpr_index;
117 static int dwarf2_loclist_index;
118 static int dwarf2_locexpr_block_index;
119 static int dwarf2_loclist_block_index;
120
121 /* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
133
134 struct name_component
135 {
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
140
141 /* The symbol's index in the symbol and constant pool tables of a
142 mapped_index. */
143 offset_type idx;
144 };
145
146 /* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
148
149 struct mapped_index_base
150 {
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
157
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
160
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
163
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
166
167 /* Return whether the name at IDX in the symbol table should be
168 ignored. */
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
170 {
171 return false;
172 }
173
174 /* Build the symbol name component sorted vector, if we haven't
175 yet. */
176 void build_name_components ();
177
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
180 vector. */
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184
185 /* Prevent deleting/destroying via a base class pointer. */
186 protected:
187 ~mapped_index_base() = default;
188 };
189
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
193 {
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
201 /* Index data format version. */
202 int version = 0;
203
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
206
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
209
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
212
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
217 }
218
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
226 };
227
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
231 {
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
278 };
279
280 /* See dwarf2read.h. */
281
282 dwarf2_per_objfile *
283 get_dwarf2_per_objfile (struct objfile *objfile)
284 {
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
287 }
288
289 /* Set the dwarf2_per_objfile associated to OBJFILE. */
290
291 void
292 set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
294 {
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
297 }
298
299 /* Default names of the debugging sections. */
300
301 /* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
303
304 static const struct dwarf2_debug_sections dwarf2_elf_names =
305 {
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
310 { ".debug_loclists", ".zdebug_loclists" },
311 { ".debug_macinfo", ".zdebug_macinfo" },
312 { ".debug_macro", ".zdebug_macro" },
313 { ".debug_str", ".zdebug_str" },
314 { ".debug_line_str", ".zdebug_line_str" },
315 { ".debug_ranges", ".zdebug_ranges" },
316 { ".debug_rnglists", ".zdebug_rnglists" },
317 { ".debug_types", ".zdebug_types" },
318 { ".debug_addr", ".zdebug_addr" },
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
321 { ".gdb_index", ".zgdb_index" },
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
324 23
325 };
326
327 /* List of DWO/DWP sections. */
328
329 static const struct dwop_section_names
330 {
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
335 struct dwarf2_section_names loclists_dwo;
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
343 }
344 dwop_section_names =
345 {
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
358 };
359
360 /* local data types */
361
362 /* The data in a compilation unit header, after target2host
363 translation, looks like this. */
364 struct comp_unit_head
365 {
366 unsigned int length;
367 short version;
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
370 sect_offset abbrev_sect_off;
371
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
374
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
377
378 enum dwarf_unit_type unit_type;
379
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
382 sect_offset sect_off;
383
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
386 cu_offset first_die_cu_offset;
387
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
390 ULONGEST signature;
391
392 /* For types, offset in the type's DIE of the type defined by this TU. */
393 cu_offset type_cu_offset_in_tu;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 /* Internal state when decoding a particular compilation unit. */
417 struct dwarf2_cu
418 {
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
420 ~dwarf2_cu ();
421
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423
424 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
425 Create the set of symtabs used by this TU, or if this TU is sharing
426 symtabs with another TU and the symtabs have already been created
427 then restore those symtabs in the line header.
428 We don't need the pc/line-number mapping for type units. */
429 void setup_type_unit_groups (struct die_info *die);
430
431 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
432 buildsym_compunit constructor. */
433 struct compunit_symtab *start_symtab (const char *name,
434 const char *comp_dir,
435 CORE_ADDR low_pc);
436
437 /* Reset the builder. */
438 void reset_builder () { m_builder.reset (); }
439
440 /* The header of the compilation unit. */
441 struct comp_unit_head header {};
442
443 /* Base address of this compilation unit. */
444 CORE_ADDR base_address = 0;
445
446 /* Non-zero if base_address has been set. */
447 int base_known = 0;
448
449 /* The language we are debugging. */
450 enum language language = language_unknown;
451 const struct language_defn *language_defn = nullptr;
452
453 const char *producer = nullptr;
454
455 private:
456 /* The symtab builder for this CU. This is only non-NULL when full
457 symbols are being read. */
458 std::unique_ptr<buildsym_compunit> m_builder;
459
460 public:
461 /* The generic symbol table building routines have separate lists for
462 file scope symbols and all all other scopes (local scopes). So
463 we need to select the right one to pass to add_symbol_to_list().
464 We do it by keeping a pointer to the correct list in list_in_scope.
465
466 FIXME: The original dwarf code just treated the file scope as the
467 first local scope, and all other local scopes as nested local
468 scopes, and worked fine. Check to see if we really need to
469 distinguish these in buildsym.c. */
470 struct pending **list_in_scope = nullptr;
471
472 /* Hash table holding all the loaded partial DIEs
473 with partial_die->offset.SECT_OFF as hash. */
474 htab_t partial_dies = nullptr;
475
476 /* Storage for things with the same lifetime as this read-in compilation
477 unit, including partial DIEs. */
478 auto_obstack comp_unit_obstack;
479
480 /* When multiple dwarf2_cu structures are living in memory, this field
481 chains them all together, so that they can be released efficiently.
482 We will probably also want a generation counter so that most-recently-used
483 compilation units are cached... */
484 struct dwarf2_per_cu_data *read_in_chain = nullptr;
485
486 /* Backlink to our per_cu entry. */
487 struct dwarf2_per_cu_data *per_cu;
488
489 /* How many compilation units ago was this CU last referenced? */
490 int last_used = 0;
491
492 /* A hash table of DIE cu_offset for following references with
493 die_info->offset.sect_off as hash. */
494 htab_t die_hash = nullptr;
495
496 /* Full DIEs if read in. */
497 struct die_info *dies = nullptr;
498
499 /* A set of pointers to dwarf2_per_cu_data objects for compilation
500 units referenced by this one. Only set during full symbol processing;
501 partial symbol tables do not have dependencies. */
502 htab_t dependencies = nullptr;
503
504 /* Header data from the line table, during full symbol processing. */
505 struct line_header *line_header = nullptr;
506 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
507 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
508 this is the DW_TAG_compile_unit die for this CU. We'll hold on
509 to the line header as long as this DIE is being processed. See
510 process_die_scope. */
511 die_info *line_header_die_owner = nullptr;
512
513 /* A list of methods which need to have physnames computed
514 after all type information has been read. */
515 std::vector<delayed_method_info> method_list;
516
517 /* To be copied to symtab->call_site_htab. */
518 htab_t call_site_htab = nullptr;
519
520 /* Non-NULL if this CU came from a DWO file.
521 There is an invariant here that is important to remember:
522 Except for attributes copied from the top level DIE in the "main"
523 (or "stub") file in preparation for reading the DWO file
524 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
525 Either there isn't a DWO file (in which case this is NULL and the point
526 is moot), or there is and either we're not going to read it (in which
527 case this is NULL) or there is and we are reading it (in which case this
528 is non-NULL). */
529 struct dwo_unit *dwo_unit = nullptr;
530
531 /* The DW_AT_addr_base attribute if present, zero otherwise
532 (zero is a valid value though).
533 Note this value comes from the Fission stub CU/TU's DIE. */
534 ULONGEST addr_base = 0;
535
536 /* The DW_AT_ranges_base attribute if present, zero otherwise
537 (zero is a valid value though).
538 Note this value comes from the Fission stub CU/TU's DIE.
539 Also note that the value is zero in the non-DWO case so this value can
540 be used without needing to know whether DWO files are in use or not.
541 N.B. This does not apply to DW_AT_ranges appearing in
542 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
543 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
544 DW_AT_ranges_base *would* have to be applied, and we'd have to care
545 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
546 ULONGEST ranges_base = 0;
547
548 /* When reading debug info generated by older versions of rustc, we
549 have to rewrite some union types to be struct types with a
550 variant part. This rewriting must be done after the CU is fully
551 read in, because otherwise at the point of rewriting some struct
552 type might not have been fully processed. So, we keep a list of
553 all such types here and process them after expansion. */
554 std::vector<struct type *> rust_unions;
555
556 /* Mark used when releasing cached dies. */
557 bool mark : 1;
558
559 /* This CU references .debug_loc. See the symtab->locations_valid field.
560 This test is imperfect as there may exist optimized debug code not using
561 any location list and still facing inlining issues if handled as
562 unoptimized code. For a future better test see GCC PR other/32998. */
563 bool has_loclist : 1;
564
565 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
566 if all the producer_is_* fields are valid. This information is cached
567 because profiling CU expansion showed excessive time spent in
568 producer_is_gxx_lt_4_6. */
569 bool checked_producer : 1;
570 bool producer_is_gxx_lt_4_6 : 1;
571 bool producer_is_gcc_lt_4_3 : 1;
572 bool producer_is_icc : 1;
573 bool producer_is_icc_lt_14 : 1;
574 bool producer_is_codewarrior : 1;
575
576 /* When true, the file that we're processing is known to have
577 debugging info for C++ namespaces. GCC 3.3.x did not produce
578 this information, but later versions do. */
579
580 bool processing_has_namespace_info : 1;
581
582 struct partial_die_info *find_partial_die (sect_offset sect_off);
583
584 /* If this CU was inherited by another CU (via specification,
585 abstract_origin, etc), this is the ancestor CU. */
586 dwarf2_cu *ancestor;
587
588 /* Get the buildsym_compunit for this CU. */
589 buildsym_compunit *get_builder ()
590 {
591 /* If this CU has a builder associated with it, use that. */
592 if (m_builder != nullptr)
593 return m_builder.get ();
594
595 /* Otherwise, search ancestors for a valid builder. */
596 if (ancestor != nullptr)
597 return ancestor->get_builder ();
598
599 return nullptr;
600 }
601 };
602
603 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
604 This includes type_unit_group and quick_file_names. */
605
606 struct stmt_list_hash
607 {
608 /* The DWO unit this table is from or NULL if there is none. */
609 struct dwo_unit *dwo_unit;
610
611 /* Offset in .debug_line or .debug_line.dwo. */
612 sect_offset line_sect_off;
613 };
614
615 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
616 an object of this type. */
617
618 struct type_unit_group
619 {
620 /* dwarf2read.c's main "handle" on a TU symtab.
621 To simplify things we create an artificial CU that "includes" all the
622 type units using this stmt_list so that the rest of the code still has
623 a "per_cu" handle on the symtab.
624 This PER_CU is recognized by having no section. */
625 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
626 struct dwarf2_per_cu_data per_cu;
627
628 /* The TUs that share this DW_AT_stmt_list entry.
629 This is added to while parsing type units to build partial symtabs,
630 and is deleted afterwards and not used again. */
631 VEC (sig_type_ptr) *tus;
632
633 /* The compunit symtab.
634 Type units in a group needn't all be defined in the same source file,
635 so we create an essentially anonymous symtab as the compunit symtab. */
636 struct compunit_symtab *compunit_symtab;
637
638 /* The data used to construct the hash key. */
639 struct stmt_list_hash hash;
640
641 /* The number of symtabs from the line header.
642 The value here must match line_header.num_file_names. */
643 unsigned int num_symtabs;
644
645 /* The symbol tables for this TU (obtained from the files listed in
646 DW_AT_stmt_list).
647 WARNING: The order of entries here must match the order of entries
648 in the line header. After the first TU using this type_unit_group, the
649 line header for the subsequent TUs is recreated from this. This is done
650 because we need to use the same symtabs for each TU using the same
651 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
652 there's no guarantee the line header doesn't have duplicate entries. */
653 struct symtab **symtabs;
654 };
655
656 /* These sections are what may appear in a (real or virtual) DWO file. */
657
658 struct dwo_sections
659 {
660 struct dwarf2_section_info abbrev;
661 struct dwarf2_section_info line;
662 struct dwarf2_section_info loc;
663 struct dwarf2_section_info loclists;
664 struct dwarf2_section_info macinfo;
665 struct dwarf2_section_info macro;
666 struct dwarf2_section_info str;
667 struct dwarf2_section_info str_offsets;
668 /* In the case of a virtual DWO file, these two are unused. */
669 struct dwarf2_section_info info;
670 VEC (dwarf2_section_info_def) *types;
671 };
672
673 /* CUs/TUs in DWP/DWO files. */
674
675 struct dwo_unit
676 {
677 /* Backlink to the containing struct dwo_file. */
678 struct dwo_file *dwo_file;
679
680 /* The "id" that distinguishes this CU/TU.
681 .debug_info calls this "dwo_id", .debug_types calls this "signature".
682 Since signatures came first, we stick with it for consistency. */
683 ULONGEST signature;
684
685 /* The section this CU/TU lives in, in the DWO file. */
686 struct dwarf2_section_info *section;
687
688 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
689 sect_offset sect_off;
690 unsigned int length;
691
692 /* For types, offset in the type's DIE of the type defined by this TU. */
693 cu_offset type_offset_in_tu;
694 };
695
696 /* include/dwarf2.h defines the DWP section codes.
697 It defines a max value but it doesn't define a min value, which we
698 use for error checking, so provide one. */
699
700 enum dwp_v2_section_ids
701 {
702 DW_SECT_MIN = 1
703 };
704
705 /* Data for one DWO file.
706
707 This includes virtual DWO files (a virtual DWO file is a DWO file as it
708 appears in a DWP file). DWP files don't really have DWO files per se -
709 comdat folding of types "loses" the DWO file they came from, and from
710 a high level view DWP files appear to contain a mass of random types.
711 However, to maintain consistency with the non-DWP case we pretend DWP
712 files contain virtual DWO files, and we assign each TU with one virtual
713 DWO file (generally based on the line and abbrev section offsets -
714 a heuristic that seems to work in practice). */
715
716 struct dwo_file
717 {
718 /* The DW_AT_GNU_dwo_name attribute.
719 For virtual DWO files the name is constructed from the section offsets
720 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
721 from related CU+TUs. */
722 const char *dwo_name;
723
724 /* The DW_AT_comp_dir attribute. */
725 const char *comp_dir;
726
727 /* The bfd, when the file is open. Otherwise this is NULL.
728 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
729 bfd *dbfd;
730
731 /* The sections that make up this DWO file.
732 Remember that for virtual DWO files in DWP V2, these are virtual
733 sections (for lack of a better name). */
734 struct dwo_sections sections;
735
736 /* The CUs in the file.
737 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
738 an extension to handle LLVM's Link Time Optimization output (where
739 multiple source files may be compiled into a single object/dwo pair). */
740 htab_t cus;
741
742 /* Table of TUs in the file.
743 Each element is a struct dwo_unit. */
744 htab_t tus;
745 };
746
747 /* These sections are what may appear in a DWP file. */
748
749 struct dwp_sections
750 {
751 /* These are used by both DWP version 1 and 2. */
752 struct dwarf2_section_info str;
753 struct dwarf2_section_info cu_index;
754 struct dwarf2_section_info tu_index;
755
756 /* These are only used by DWP version 2 files.
757 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
758 sections are referenced by section number, and are not recorded here.
759 In DWP version 2 there is at most one copy of all these sections, each
760 section being (effectively) comprised of the concatenation of all of the
761 individual sections that exist in the version 1 format.
762 To keep the code simple we treat each of these concatenated pieces as a
763 section itself (a virtual section?). */
764 struct dwarf2_section_info abbrev;
765 struct dwarf2_section_info info;
766 struct dwarf2_section_info line;
767 struct dwarf2_section_info loc;
768 struct dwarf2_section_info macinfo;
769 struct dwarf2_section_info macro;
770 struct dwarf2_section_info str_offsets;
771 struct dwarf2_section_info types;
772 };
773
774 /* These sections are what may appear in a virtual DWO file in DWP version 1.
775 A virtual DWO file is a DWO file as it appears in a DWP file. */
776
777 struct virtual_v1_dwo_sections
778 {
779 struct dwarf2_section_info abbrev;
780 struct dwarf2_section_info line;
781 struct dwarf2_section_info loc;
782 struct dwarf2_section_info macinfo;
783 struct dwarf2_section_info macro;
784 struct dwarf2_section_info str_offsets;
785 /* Each DWP hash table entry records one CU or one TU.
786 That is recorded here, and copied to dwo_unit.section. */
787 struct dwarf2_section_info info_or_types;
788 };
789
790 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
791 In version 2, the sections of the DWO files are concatenated together
792 and stored in one section of that name. Thus each ELF section contains
793 several "virtual" sections. */
794
795 struct virtual_v2_dwo_sections
796 {
797 bfd_size_type abbrev_offset;
798 bfd_size_type abbrev_size;
799
800 bfd_size_type line_offset;
801 bfd_size_type line_size;
802
803 bfd_size_type loc_offset;
804 bfd_size_type loc_size;
805
806 bfd_size_type macinfo_offset;
807 bfd_size_type macinfo_size;
808
809 bfd_size_type macro_offset;
810 bfd_size_type macro_size;
811
812 bfd_size_type str_offsets_offset;
813 bfd_size_type str_offsets_size;
814
815 /* Each DWP hash table entry records one CU or one TU.
816 That is recorded here, and copied to dwo_unit.section. */
817 bfd_size_type info_or_types_offset;
818 bfd_size_type info_or_types_size;
819 };
820
821 /* Contents of DWP hash tables. */
822
823 struct dwp_hash_table
824 {
825 uint32_t version, nr_columns;
826 uint32_t nr_units, nr_slots;
827 const gdb_byte *hash_table, *unit_table;
828 union
829 {
830 struct
831 {
832 const gdb_byte *indices;
833 } v1;
834 struct
835 {
836 /* This is indexed by column number and gives the id of the section
837 in that column. */
838 #define MAX_NR_V2_DWO_SECTIONS \
839 (1 /* .debug_info or .debug_types */ \
840 + 1 /* .debug_abbrev */ \
841 + 1 /* .debug_line */ \
842 + 1 /* .debug_loc */ \
843 + 1 /* .debug_str_offsets */ \
844 + 1 /* .debug_macro or .debug_macinfo */)
845 int section_ids[MAX_NR_V2_DWO_SECTIONS];
846 const gdb_byte *offsets;
847 const gdb_byte *sizes;
848 } v2;
849 } section_pool;
850 };
851
852 /* Data for one DWP file. */
853
854 struct dwp_file
855 {
856 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
857 : name (name_),
858 dbfd (std::move (abfd))
859 {
860 }
861
862 /* Name of the file. */
863 const char *name;
864
865 /* File format version. */
866 int version = 0;
867
868 /* The bfd. */
869 gdb_bfd_ref_ptr dbfd;
870
871 /* Section info for this file. */
872 struct dwp_sections sections {};
873
874 /* Table of CUs in the file. */
875 const struct dwp_hash_table *cus = nullptr;
876
877 /* Table of TUs in the file. */
878 const struct dwp_hash_table *tus = nullptr;
879
880 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
881 htab_t loaded_cus {};
882 htab_t loaded_tus {};
883
884 /* Table to map ELF section numbers to their sections.
885 This is only needed for the DWP V1 file format. */
886 unsigned int num_sections = 0;
887 asection **elf_sections = nullptr;
888 };
889
890 /* This represents a '.dwz' file. */
891
892 struct dwz_file
893 {
894 dwz_file (gdb_bfd_ref_ptr &&bfd)
895 : dwz_bfd (std::move (bfd))
896 {
897 }
898
899 /* A dwz file can only contain a few sections. */
900 struct dwarf2_section_info abbrev {};
901 struct dwarf2_section_info info {};
902 struct dwarf2_section_info str {};
903 struct dwarf2_section_info line {};
904 struct dwarf2_section_info macro {};
905 struct dwarf2_section_info gdb_index {};
906 struct dwarf2_section_info debug_names {};
907
908 /* The dwz's BFD. */
909 gdb_bfd_ref_ptr dwz_bfd;
910
911 /* If we loaded the index from an external file, this contains the
912 resources associated to the open file, memory mapping, etc. */
913 std::unique_ptr<index_cache_resource> index_cache_res;
914 };
915
916 /* Struct used to pass misc. parameters to read_die_and_children, et
917 al. which are used for both .debug_info and .debug_types dies.
918 All parameters here are unchanging for the life of the call. This
919 struct exists to abstract away the constant parameters of die reading. */
920
921 struct die_reader_specs
922 {
923 /* The bfd of die_section. */
924 bfd* abfd;
925
926 /* The CU of the DIE we are parsing. */
927 struct dwarf2_cu *cu;
928
929 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
930 struct dwo_file *dwo_file;
931
932 /* The section the die comes from.
933 This is either .debug_info or .debug_types, or the .dwo variants. */
934 struct dwarf2_section_info *die_section;
935
936 /* die_section->buffer. */
937 const gdb_byte *buffer;
938
939 /* The end of the buffer. */
940 const gdb_byte *buffer_end;
941
942 /* The value of the DW_AT_comp_dir attribute. */
943 const char *comp_dir;
944
945 /* The abbreviation table to use when reading the DIEs. */
946 struct abbrev_table *abbrev_table;
947 };
948
949 /* Type of function passed to init_cutu_and_read_dies, et.al. */
950 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
951 const gdb_byte *info_ptr,
952 struct die_info *comp_unit_die,
953 int has_children,
954 void *data);
955
956 /* A 1-based directory index. This is a strong typedef to prevent
957 accidentally using a directory index as a 0-based index into an
958 array/vector. */
959 enum class dir_index : unsigned int {};
960
961 /* Likewise, a 1-based file name index. */
962 enum class file_name_index : unsigned int {};
963
964 struct file_entry
965 {
966 file_entry () = default;
967
968 file_entry (const char *name_, dir_index d_index_,
969 unsigned int mod_time_, unsigned int length_)
970 : name (name_),
971 d_index (d_index_),
972 mod_time (mod_time_),
973 length (length_)
974 {}
975
976 /* Return the include directory at D_INDEX stored in LH. Returns
977 NULL if D_INDEX is out of bounds. */
978 const char *include_dir (const line_header *lh) const;
979
980 /* The file name. Note this is an observing pointer. The memory is
981 owned by debug_line_buffer. */
982 const char *name {};
983
984 /* The directory index (1-based). */
985 dir_index d_index {};
986
987 unsigned int mod_time {};
988
989 unsigned int length {};
990
991 /* True if referenced by the Line Number Program. */
992 bool included_p {};
993
994 /* The associated symbol table, if any. */
995 struct symtab *symtab {};
996 };
997
998 /* The line number information for a compilation unit (found in the
999 .debug_line section) begins with a "statement program header",
1000 which contains the following information. */
1001 struct line_header
1002 {
1003 line_header ()
1004 : offset_in_dwz {}
1005 {}
1006
1007 /* Add an entry to the include directory table. */
1008 void add_include_dir (const char *include_dir);
1009
1010 /* Add an entry to the file name table. */
1011 void add_file_name (const char *name, dir_index d_index,
1012 unsigned int mod_time, unsigned int length);
1013
1014 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1015 is out of bounds. */
1016 const char *include_dir_at (dir_index index) const
1017 {
1018 /* Convert directory index number (1-based) to vector index
1019 (0-based). */
1020 size_t vec_index = to_underlying (index) - 1;
1021
1022 if (vec_index >= include_dirs.size ())
1023 return NULL;
1024 return include_dirs[vec_index];
1025 }
1026
1027 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1028 is out of bounds. */
1029 file_entry *file_name_at (file_name_index index)
1030 {
1031 /* Convert file name index number (1-based) to vector index
1032 (0-based). */
1033 size_t vec_index = to_underlying (index) - 1;
1034
1035 if (vec_index >= file_names.size ())
1036 return NULL;
1037 return &file_names[vec_index];
1038 }
1039
1040 /* Const version of the above. */
1041 const file_entry *file_name_at (unsigned int index) const
1042 {
1043 if (index >= file_names.size ())
1044 return NULL;
1045 return &file_names[index];
1046 }
1047
1048 /* Offset of line number information in .debug_line section. */
1049 sect_offset sect_off {};
1050
1051 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1052 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1053
1054 unsigned int total_length {};
1055 unsigned short version {};
1056 unsigned int header_length {};
1057 unsigned char minimum_instruction_length {};
1058 unsigned char maximum_ops_per_instruction {};
1059 unsigned char default_is_stmt {};
1060 int line_base {};
1061 unsigned char line_range {};
1062 unsigned char opcode_base {};
1063
1064 /* standard_opcode_lengths[i] is the number of operands for the
1065 standard opcode whose value is i. This means that
1066 standard_opcode_lengths[0] is unused, and the last meaningful
1067 element is standard_opcode_lengths[opcode_base - 1]. */
1068 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1069
1070 /* The include_directories table. Note these are observing
1071 pointers. The memory is owned by debug_line_buffer. */
1072 std::vector<const char *> include_dirs;
1073
1074 /* The file_names table. */
1075 std::vector<file_entry> file_names;
1076
1077 /* The start and end of the statement program following this
1078 header. These point into dwarf2_per_objfile->line_buffer. */
1079 const gdb_byte *statement_program_start {}, *statement_program_end {};
1080 };
1081
1082 typedef std::unique_ptr<line_header> line_header_up;
1083
1084 const char *
1085 file_entry::include_dir (const line_header *lh) const
1086 {
1087 return lh->include_dir_at (d_index);
1088 }
1089
1090 /* When we construct a partial symbol table entry we only
1091 need this much information. */
1092 struct partial_die_info : public allocate_on_obstack
1093 {
1094 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1095
1096 /* Disable assign but still keep copy ctor, which is needed
1097 load_partial_dies. */
1098 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1099
1100 /* Adjust the partial die before generating a symbol for it. This
1101 function may set the is_external flag or change the DIE's
1102 name. */
1103 void fixup (struct dwarf2_cu *cu);
1104
1105 /* Read a minimal amount of information into the minimal die
1106 structure. */
1107 const gdb_byte *read (const struct die_reader_specs *reader,
1108 const struct abbrev_info &abbrev,
1109 const gdb_byte *info_ptr);
1110
1111 /* Offset of this DIE. */
1112 const sect_offset sect_off;
1113
1114 /* DWARF-2 tag for this DIE. */
1115 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1116
1117 /* Assorted flags describing the data found in this DIE. */
1118 const unsigned int has_children : 1;
1119
1120 unsigned int is_external : 1;
1121 unsigned int is_declaration : 1;
1122 unsigned int has_type : 1;
1123 unsigned int has_specification : 1;
1124 unsigned int has_pc_info : 1;
1125 unsigned int may_be_inlined : 1;
1126
1127 /* This DIE has been marked DW_AT_main_subprogram. */
1128 unsigned int main_subprogram : 1;
1129
1130 /* Flag set if the SCOPE field of this structure has been
1131 computed. */
1132 unsigned int scope_set : 1;
1133
1134 /* Flag set if the DIE has a byte_size attribute. */
1135 unsigned int has_byte_size : 1;
1136
1137 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1138 unsigned int has_const_value : 1;
1139
1140 /* Flag set if any of the DIE's children are template arguments. */
1141 unsigned int has_template_arguments : 1;
1142
1143 /* Flag set if fixup has been called on this die. */
1144 unsigned int fixup_called : 1;
1145
1146 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1147 unsigned int is_dwz : 1;
1148
1149 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1150 unsigned int spec_is_dwz : 1;
1151
1152 /* The name of this DIE. Normally the value of DW_AT_name, but
1153 sometimes a default name for unnamed DIEs. */
1154 const char *name = nullptr;
1155
1156 /* The linkage name, if present. */
1157 const char *linkage_name = nullptr;
1158
1159 /* The scope to prepend to our children. This is generally
1160 allocated on the comp_unit_obstack, so will disappear
1161 when this compilation unit leaves the cache. */
1162 const char *scope = nullptr;
1163
1164 /* Some data associated with the partial DIE. The tag determines
1165 which field is live. */
1166 union
1167 {
1168 /* The location description associated with this DIE, if any. */
1169 struct dwarf_block *locdesc;
1170 /* The offset of an import, for DW_TAG_imported_unit. */
1171 sect_offset sect_off;
1172 } d {};
1173
1174 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1175 CORE_ADDR lowpc = 0;
1176 CORE_ADDR highpc = 0;
1177
1178 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1179 DW_AT_sibling, if any. */
1180 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1181 could return DW_AT_sibling values to its caller load_partial_dies. */
1182 const gdb_byte *sibling = nullptr;
1183
1184 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1185 DW_AT_specification (or DW_AT_abstract_origin or
1186 DW_AT_extension). */
1187 sect_offset spec_offset {};
1188
1189 /* Pointers to this DIE's parent, first child, and next sibling,
1190 if any. */
1191 struct partial_die_info *die_parent = nullptr;
1192 struct partial_die_info *die_child = nullptr;
1193 struct partial_die_info *die_sibling = nullptr;
1194
1195 friend struct partial_die_info *
1196 dwarf2_cu::find_partial_die (sect_offset sect_off);
1197
1198 private:
1199 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1200 partial_die_info (sect_offset sect_off)
1201 : partial_die_info (sect_off, DW_TAG_padding, 0)
1202 {
1203 }
1204
1205 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1206 int has_children_)
1207 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1208 {
1209 is_external = 0;
1210 is_declaration = 0;
1211 has_type = 0;
1212 has_specification = 0;
1213 has_pc_info = 0;
1214 may_be_inlined = 0;
1215 main_subprogram = 0;
1216 scope_set = 0;
1217 has_byte_size = 0;
1218 has_const_value = 0;
1219 has_template_arguments = 0;
1220 fixup_called = 0;
1221 is_dwz = 0;
1222 spec_is_dwz = 0;
1223 }
1224 };
1225
1226 /* This data structure holds the information of an abbrev. */
1227 struct abbrev_info
1228 {
1229 unsigned int number; /* number identifying abbrev */
1230 enum dwarf_tag tag; /* dwarf tag */
1231 unsigned short has_children; /* boolean */
1232 unsigned short num_attrs; /* number of attributes */
1233 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1234 struct abbrev_info *next; /* next in chain */
1235 };
1236
1237 struct attr_abbrev
1238 {
1239 ENUM_BITFIELD(dwarf_attribute) name : 16;
1240 ENUM_BITFIELD(dwarf_form) form : 16;
1241
1242 /* It is valid only if FORM is DW_FORM_implicit_const. */
1243 LONGEST implicit_const;
1244 };
1245
1246 /* Size of abbrev_table.abbrev_hash_table. */
1247 #define ABBREV_HASH_SIZE 121
1248
1249 /* Top level data structure to contain an abbreviation table. */
1250
1251 struct abbrev_table
1252 {
1253 explicit abbrev_table (sect_offset off)
1254 : sect_off (off)
1255 {
1256 m_abbrevs =
1257 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1258 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1259 }
1260
1261 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1262
1263 /* Allocate space for a struct abbrev_info object in
1264 ABBREV_TABLE. */
1265 struct abbrev_info *alloc_abbrev ();
1266
1267 /* Add an abbreviation to the table. */
1268 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1269
1270 /* Look up an abbrev in the table.
1271 Returns NULL if the abbrev is not found. */
1272
1273 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1274
1275
1276 /* Where the abbrev table came from.
1277 This is used as a sanity check when the table is used. */
1278 const sect_offset sect_off;
1279
1280 /* Storage for the abbrev table. */
1281 auto_obstack abbrev_obstack;
1282
1283 private:
1284
1285 /* Hash table of abbrevs.
1286 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1287 It could be statically allocated, but the previous code didn't so we
1288 don't either. */
1289 struct abbrev_info **m_abbrevs;
1290 };
1291
1292 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1293
1294 /* Attributes have a name and a value. */
1295 struct attribute
1296 {
1297 ENUM_BITFIELD(dwarf_attribute) name : 16;
1298 ENUM_BITFIELD(dwarf_form) form : 15;
1299
1300 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1301 field should be in u.str (existing only for DW_STRING) but it is kept
1302 here for better struct attribute alignment. */
1303 unsigned int string_is_canonical : 1;
1304
1305 union
1306 {
1307 const char *str;
1308 struct dwarf_block *blk;
1309 ULONGEST unsnd;
1310 LONGEST snd;
1311 CORE_ADDR addr;
1312 ULONGEST signature;
1313 }
1314 u;
1315 };
1316
1317 /* This data structure holds a complete die structure. */
1318 struct die_info
1319 {
1320 /* DWARF-2 tag for this DIE. */
1321 ENUM_BITFIELD(dwarf_tag) tag : 16;
1322
1323 /* Number of attributes */
1324 unsigned char num_attrs;
1325
1326 /* True if we're presently building the full type name for the
1327 type derived from this DIE. */
1328 unsigned char building_fullname : 1;
1329
1330 /* True if this die is in process. PR 16581. */
1331 unsigned char in_process : 1;
1332
1333 /* Abbrev number */
1334 unsigned int abbrev;
1335
1336 /* Offset in .debug_info or .debug_types section. */
1337 sect_offset sect_off;
1338
1339 /* The dies in a compilation unit form an n-ary tree. PARENT
1340 points to this die's parent; CHILD points to the first child of
1341 this node; and all the children of a given node are chained
1342 together via their SIBLING fields. */
1343 struct die_info *child; /* Its first child, if any. */
1344 struct die_info *sibling; /* Its next sibling, if any. */
1345 struct die_info *parent; /* Its parent, if any. */
1346
1347 /* An array of attributes, with NUM_ATTRS elements. There may be
1348 zero, but it's not common and zero-sized arrays are not
1349 sufficiently portable C. */
1350 struct attribute attrs[1];
1351 };
1352
1353 /* Get at parts of an attribute structure. */
1354
1355 #define DW_STRING(attr) ((attr)->u.str)
1356 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1357 #define DW_UNSND(attr) ((attr)->u.unsnd)
1358 #define DW_BLOCK(attr) ((attr)->u.blk)
1359 #define DW_SND(attr) ((attr)->u.snd)
1360 #define DW_ADDR(attr) ((attr)->u.addr)
1361 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1362
1363 /* Blocks are a bunch of untyped bytes. */
1364 struct dwarf_block
1365 {
1366 size_t size;
1367
1368 /* Valid only if SIZE is not zero. */
1369 const gdb_byte *data;
1370 };
1371
1372 #ifndef ATTR_ALLOC_CHUNK
1373 #define ATTR_ALLOC_CHUNK 4
1374 #endif
1375
1376 /* Allocate fields for structs, unions and enums in this size. */
1377 #ifndef DW_FIELD_ALLOC_CHUNK
1378 #define DW_FIELD_ALLOC_CHUNK 4
1379 #endif
1380
1381 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1382 but this would require a corresponding change in unpack_field_as_long
1383 and friends. */
1384 static int bits_per_byte = 8;
1385
1386 /* When reading a variant or variant part, we track a bit more
1387 information about the field, and store it in an object of this
1388 type. */
1389
1390 struct variant_field
1391 {
1392 /* If we see a DW_TAG_variant, then this will be the discriminant
1393 value. */
1394 ULONGEST discriminant_value;
1395 /* If we see a DW_TAG_variant, then this will be set if this is the
1396 default branch. */
1397 bool default_branch;
1398 /* While reading a DW_TAG_variant_part, this will be set if this
1399 field is the discriminant. */
1400 bool is_discriminant;
1401 };
1402
1403 struct nextfield
1404 {
1405 int accessibility = 0;
1406 int virtuality = 0;
1407 /* Extra information to describe a variant or variant part. */
1408 struct variant_field variant {};
1409 struct field field {};
1410 };
1411
1412 struct fnfieldlist
1413 {
1414 const char *name = nullptr;
1415 std::vector<struct fn_field> fnfields;
1416 };
1417
1418 /* The routines that read and process dies for a C struct or C++ class
1419 pass lists of data member fields and lists of member function fields
1420 in an instance of a field_info structure, as defined below. */
1421 struct field_info
1422 {
1423 /* List of data member and baseclasses fields. */
1424 std::vector<struct nextfield> fields;
1425 std::vector<struct nextfield> baseclasses;
1426
1427 /* Number of fields (including baseclasses). */
1428 int nfields = 0;
1429
1430 /* Set if the accesibility of one of the fields is not public. */
1431 int non_public_fields = 0;
1432
1433 /* Member function fieldlist array, contains name of possibly overloaded
1434 member function, number of overloaded member functions and a pointer
1435 to the head of the member function field chain. */
1436 std::vector<struct fnfieldlist> fnfieldlists;
1437
1438 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1439 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1440 std::vector<struct decl_field> typedef_field_list;
1441
1442 /* Nested types defined by this class and the number of elements in this
1443 list. */
1444 std::vector<struct decl_field> nested_types_list;
1445 };
1446
1447 /* One item on the queue of compilation units to read in full symbols
1448 for. */
1449 struct dwarf2_queue_item
1450 {
1451 struct dwarf2_per_cu_data *per_cu;
1452 enum language pretend_language;
1453 struct dwarf2_queue_item *next;
1454 };
1455
1456 /* The current queue. */
1457 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1458
1459 /* Loaded secondary compilation units are kept in memory until they
1460 have not been referenced for the processing of this many
1461 compilation units. Set this to zero to disable caching. Cache
1462 sizes of up to at least twenty will improve startup time for
1463 typical inter-CU-reference binaries, at an obvious memory cost. */
1464 static int dwarf_max_cache_age = 5;
1465 static void
1466 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1467 struct cmd_list_element *c, const char *value)
1468 {
1469 fprintf_filtered (file, _("The upper bound on the age of cached "
1470 "DWARF compilation units is %s.\n"),
1471 value);
1472 }
1473 \f
1474 /* local function prototypes */
1475
1476 static const char *get_section_name (const struct dwarf2_section_info *);
1477
1478 static const char *get_section_file_name (const struct dwarf2_section_info *);
1479
1480 static void dwarf2_find_base_address (struct die_info *die,
1481 struct dwarf2_cu *cu);
1482
1483 static struct partial_symtab *create_partial_symtab
1484 (struct dwarf2_per_cu_data *per_cu, const char *name);
1485
1486 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1487 const gdb_byte *info_ptr,
1488 struct die_info *type_unit_die,
1489 int has_children, void *data);
1490
1491 static void dwarf2_build_psymtabs_hard
1492 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1493
1494 static void scan_partial_symbols (struct partial_die_info *,
1495 CORE_ADDR *, CORE_ADDR *,
1496 int, struct dwarf2_cu *);
1497
1498 static void add_partial_symbol (struct partial_die_info *,
1499 struct dwarf2_cu *);
1500
1501 static void add_partial_namespace (struct partial_die_info *pdi,
1502 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1503 int set_addrmap, struct dwarf2_cu *cu);
1504
1505 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1506 CORE_ADDR *highpc, int set_addrmap,
1507 struct dwarf2_cu *cu);
1508
1509 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1510 struct dwarf2_cu *cu);
1511
1512 static void add_partial_subprogram (struct partial_die_info *pdi,
1513 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1514 int need_pc, struct dwarf2_cu *cu);
1515
1516 static void dwarf2_read_symtab (struct partial_symtab *,
1517 struct objfile *);
1518
1519 static void psymtab_to_symtab_1 (struct partial_symtab *);
1520
1521 static abbrev_table_up abbrev_table_read_table
1522 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1523 sect_offset);
1524
1525 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1526
1527 static struct partial_die_info *load_partial_dies
1528 (const struct die_reader_specs *, const gdb_byte *, int);
1529
1530 static struct partial_die_info *find_partial_die (sect_offset, int,
1531 struct dwarf2_cu *);
1532
1533 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1534 struct attribute *, struct attr_abbrev *,
1535 const gdb_byte *);
1536
1537 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1538
1539 static int read_1_signed_byte (bfd *, const gdb_byte *);
1540
1541 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1542
1543 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1544
1545 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1546
1547 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1548 unsigned int *);
1549
1550 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1551
1552 static LONGEST read_checked_initial_length_and_offset
1553 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1554 unsigned int *, unsigned int *);
1555
1556 static LONGEST read_offset (bfd *, const gdb_byte *,
1557 const struct comp_unit_head *,
1558 unsigned int *);
1559
1560 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1561
1562 static sect_offset read_abbrev_offset
1563 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1564 struct dwarf2_section_info *, sect_offset);
1565
1566 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1567
1568 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1569
1570 static const char *read_indirect_string
1571 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1572 const struct comp_unit_head *, unsigned int *);
1573
1574 static const char *read_indirect_line_string
1575 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1576 const struct comp_unit_head *, unsigned int *);
1577
1578 static const char *read_indirect_string_at_offset
1579 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1580 LONGEST str_offset);
1581
1582 static const char *read_indirect_string_from_dwz
1583 (struct objfile *objfile, struct dwz_file *, LONGEST);
1584
1585 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1586
1587 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1588 const gdb_byte *,
1589 unsigned int *);
1590
1591 static const char *read_str_index (const struct die_reader_specs *reader,
1592 ULONGEST str_index);
1593
1594 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1595
1596 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1597 struct dwarf2_cu *);
1598
1599 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1600 unsigned int);
1601
1602 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1603 struct dwarf2_cu *cu);
1604
1605 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1606 struct dwarf2_cu *cu);
1607
1608 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1609
1610 static struct die_info *die_specification (struct die_info *die,
1611 struct dwarf2_cu **);
1612
1613 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1614 struct dwarf2_cu *cu);
1615
1616 static void dwarf_decode_lines (struct line_header *, const char *,
1617 struct dwarf2_cu *, struct partial_symtab *,
1618 CORE_ADDR, int decode_mapping);
1619
1620 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1621 const char *);
1622
1623 static struct symbol *new_symbol (struct die_info *, struct type *,
1624 struct dwarf2_cu *, struct symbol * = NULL);
1625
1626 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1627 struct dwarf2_cu *);
1628
1629 static void dwarf2_const_value_attr (const struct attribute *attr,
1630 struct type *type,
1631 const char *name,
1632 struct obstack *obstack,
1633 struct dwarf2_cu *cu, LONGEST *value,
1634 const gdb_byte **bytes,
1635 struct dwarf2_locexpr_baton **baton);
1636
1637 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1638
1639 static int need_gnat_info (struct dwarf2_cu *);
1640
1641 static struct type *die_descriptive_type (struct die_info *,
1642 struct dwarf2_cu *);
1643
1644 static void set_descriptive_type (struct type *, struct die_info *,
1645 struct dwarf2_cu *);
1646
1647 static struct type *die_containing_type (struct die_info *,
1648 struct dwarf2_cu *);
1649
1650 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1651 struct dwarf2_cu *);
1652
1653 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1654
1655 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1656
1657 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1658
1659 static char *typename_concat (struct obstack *obs, const char *prefix,
1660 const char *suffix, int physname,
1661 struct dwarf2_cu *cu);
1662
1663 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1664
1665 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1666
1667 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1668
1669 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1670
1671 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1672
1673 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1674
1675 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1676 struct dwarf2_cu *, struct partial_symtab *);
1677
1678 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1679 values. Keep the items ordered with increasing constraints compliance. */
1680 enum pc_bounds_kind
1681 {
1682 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1683 PC_BOUNDS_NOT_PRESENT,
1684
1685 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1686 were present but they do not form a valid range of PC addresses. */
1687 PC_BOUNDS_INVALID,
1688
1689 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1690 PC_BOUNDS_RANGES,
1691
1692 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1693 PC_BOUNDS_HIGH_LOW,
1694 };
1695
1696 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1697 CORE_ADDR *, CORE_ADDR *,
1698 struct dwarf2_cu *,
1699 struct partial_symtab *);
1700
1701 static void get_scope_pc_bounds (struct die_info *,
1702 CORE_ADDR *, CORE_ADDR *,
1703 struct dwarf2_cu *);
1704
1705 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1706 CORE_ADDR, struct dwarf2_cu *);
1707
1708 static void dwarf2_add_field (struct field_info *, struct die_info *,
1709 struct dwarf2_cu *);
1710
1711 static void dwarf2_attach_fields_to_type (struct field_info *,
1712 struct type *, struct dwarf2_cu *);
1713
1714 static void dwarf2_add_member_fn (struct field_info *,
1715 struct die_info *, struct type *,
1716 struct dwarf2_cu *);
1717
1718 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1719 struct type *,
1720 struct dwarf2_cu *);
1721
1722 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1723
1724 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1725
1726 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1727
1728 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1729
1730 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1731
1732 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1733
1734 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1735
1736 static struct type *read_module_type (struct die_info *die,
1737 struct dwarf2_cu *cu);
1738
1739 static const char *namespace_name (struct die_info *die,
1740 int *is_anonymous, struct dwarf2_cu *);
1741
1742 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1743
1744 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1745
1746 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1747 struct dwarf2_cu *);
1748
1749 static struct die_info *read_die_and_siblings_1
1750 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1751 struct die_info *);
1752
1753 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1754 const gdb_byte *info_ptr,
1755 const gdb_byte **new_info_ptr,
1756 struct die_info *parent);
1757
1758 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1759 struct die_info **, const gdb_byte *,
1760 int *, int);
1761
1762 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1763 struct die_info **, const gdb_byte *,
1764 int *);
1765
1766 static void process_die (struct die_info *, struct dwarf2_cu *);
1767
1768 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1769 struct obstack *);
1770
1771 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1772
1773 static const char *dwarf2_full_name (const char *name,
1774 struct die_info *die,
1775 struct dwarf2_cu *cu);
1776
1777 static const char *dwarf2_physname (const char *name, struct die_info *die,
1778 struct dwarf2_cu *cu);
1779
1780 static struct die_info *dwarf2_extension (struct die_info *die,
1781 struct dwarf2_cu **);
1782
1783 static const char *dwarf_tag_name (unsigned int);
1784
1785 static const char *dwarf_attr_name (unsigned int);
1786
1787 static const char *dwarf_form_name (unsigned int);
1788
1789 static const char *dwarf_bool_name (unsigned int);
1790
1791 static const char *dwarf_type_encoding_name (unsigned int);
1792
1793 static struct die_info *sibling_die (struct die_info *);
1794
1795 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1796
1797 static void dump_die_for_error (struct die_info *);
1798
1799 static void dump_die_1 (struct ui_file *, int level, int max_level,
1800 struct die_info *);
1801
1802 /*static*/ void dump_die (struct die_info *, int max_level);
1803
1804 static void store_in_ref_table (struct die_info *,
1805 struct dwarf2_cu *);
1806
1807 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1808
1809 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1810
1811 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1812 const struct attribute *,
1813 struct dwarf2_cu **);
1814
1815 static struct die_info *follow_die_ref (struct die_info *,
1816 const struct attribute *,
1817 struct dwarf2_cu **);
1818
1819 static struct die_info *follow_die_sig (struct die_info *,
1820 const struct attribute *,
1821 struct dwarf2_cu **);
1822
1823 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1824 struct dwarf2_cu *);
1825
1826 static struct type *get_DW_AT_signature_type (struct die_info *,
1827 const struct attribute *,
1828 struct dwarf2_cu *);
1829
1830 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1831
1832 static void read_signatured_type (struct signatured_type *);
1833
1834 static int attr_to_dynamic_prop (const struct attribute *attr,
1835 struct die_info *die, struct dwarf2_cu *cu,
1836 struct dynamic_prop *prop);
1837
1838 /* memory allocation interface */
1839
1840 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1841
1842 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1843
1844 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1845
1846 static int attr_form_is_block (const struct attribute *);
1847
1848 static int attr_form_is_section_offset (const struct attribute *);
1849
1850 static int attr_form_is_constant (const struct attribute *);
1851
1852 static int attr_form_is_ref (const struct attribute *);
1853
1854 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1855 struct dwarf2_loclist_baton *baton,
1856 const struct attribute *attr);
1857
1858 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1859 struct symbol *sym,
1860 struct dwarf2_cu *cu,
1861 int is_block);
1862
1863 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1864 const gdb_byte *info_ptr,
1865 struct abbrev_info *abbrev);
1866
1867 static hashval_t partial_die_hash (const void *item);
1868
1869 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1870
1871 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1872 (sect_offset sect_off, unsigned int offset_in_dwz,
1873 struct dwarf2_per_objfile *dwarf2_per_objfile);
1874
1875 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1876 struct die_info *comp_unit_die,
1877 enum language pretend_language);
1878
1879 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1880
1881 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1882
1883 static struct type *set_die_type (struct die_info *, struct type *,
1884 struct dwarf2_cu *);
1885
1886 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1887
1888 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1889
1890 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1891 enum language);
1892
1893 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1894 enum language);
1895
1896 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1897 enum language);
1898
1899 static void dwarf2_add_dependence (struct dwarf2_cu *,
1900 struct dwarf2_per_cu_data *);
1901
1902 static void dwarf2_mark (struct dwarf2_cu *);
1903
1904 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1905
1906 static struct type *get_die_type_at_offset (sect_offset,
1907 struct dwarf2_per_cu_data *);
1908
1909 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1910
1911 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1912 enum language pretend_language);
1913
1914 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1915
1916 /* Class, the destructor of which frees all allocated queue entries. This
1917 will only have work to do if an error was thrown while processing the
1918 dwarf. If no error was thrown then the queue entries should have all
1919 been processed, and freed, as we went along. */
1920
1921 class dwarf2_queue_guard
1922 {
1923 public:
1924 dwarf2_queue_guard () = default;
1925
1926 /* Free any entries remaining on the queue. There should only be
1927 entries left if we hit an error while processing the dwarf. */
1928 ~dwarf2_queue_guard ()
1929 {
1930 struct dwarf2_queue_item *item, *last;
1931
1932 item = dwarf2_queue;
1933 while (item)
1934 {
1935 /* Anything still marked queued is likely to be in an
1936 inconsistent state, so discard it. */
1937 if (item->per_cu->queued)
1938 {
1939 if (item->per_cu->cu != NULL)
1940 free_one_cached_comp_unit (item->per_cu);
1941 item->per_cu->queued = 0;
1942 }
1943
1944 last = item;
1945 item = item->next;
1946 xfree (last);
1947 }
1948
1949 dwarf2_queue = dwarf2_queue_tail = NULL;
1950 }
1951 };
1952
1953 /* The return type of find_file_and_directory. Note, the enclosed
1954 string pointers are only valid while this object is valid. */
1955
1956 struct file_and_directory
1957 {
1958 /* The filename. This is never NULL. */
1959 const char *name;
1960
1961 /* The compilation directory. NULL if not known. If we needed to
1962 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1963 points directly to the DW_AT_comp_dir string attribute owned by
1964 the obstack that owns the DIE. */
1965 const char *comp_dir;
1966
1967 /* If we needed to build a new string for comp_dir, this is what
1968 owns the storage. */
1969 std::string comp_dir_storage;
1970 };
1971
1972 static file_and_directory find_file_and_directory (struct die_info *die,
1973 struct dwarf2_cu *cu);
1974
1975 static char *file_full_name (int file, struct line_header *lh,
1976 const char *comp_dir);
1977
1978 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1979 enum class rcuh_kind { COMPILE, TYPE };
1980
1981 static const gdb_byte *read_and_check_comp_unit_head
1982 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1983 struct comp_unit_head *header,
1984 struct dwarf2_section_info *section,
1985 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1986 rcuh_kind section_kind);
1987
1988 static void init_cutu_and_read_dies
1989 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1990 int use_existing_cu, int keep, bool skip_partial,
1991 die_reader_func_ftype *die_reader_func, void *data);
1992
1993 static void init_cutu_and_read_dies_simple
1994 (struct dwarf2_per_cu_data *this_cu,
1995 die_reader_func_ftype *die_reader_func, void *data);
1996
1997 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1998
1999 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2000
2001 static struct dwo_unit *lookup_dwo_unit_in_dwp
2002 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2003 struct dwp_file *dwp_file, const char *comp_dir,
2004 ULONGEST signature, int is_debug_types);
2005
2006 static struct dwp_file *get_dwp_file
2007 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2008
2009 static struct dwo_unit *lookup_dwo_comp_unit
2010 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2011
2012 static struct dwo_unit *lookup_dwo_type_unit
2013 (struct signatured_type *, const char *, const char *);
2014
2015 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2016
2017 static void free_dwo_file (struct dwo_file *);
2018
2019 /* A unique_ptr helper to free a dwo_file. */
2020
2021 struct dwo_file_deleter
2022 {
2023 void operator() (struct dwo_file *df) const
2024 {
2025 free_dwo_file (df);
2026 }
2027 };
2028
2029 /* A unique pointer to a dwo_file. */
2030
2031 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2032
2033 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2034
2035 static void check_producer (struct dwarf2_cu *cu);
2036
2037 static void free_line_header_voidp (void *arg);
2038 \f
2039 /* Various complaints about symbol reading that don't abort the process. */
2040
2041 static void
2042 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2043 {
2044 complaint (_("statement list doesn't fit in .debug_line section"));
2045 }
2046
2047 static void
2048 dwarf2_debug_line_missing_file_complaint (void)
2049 {
2050 complaint (_(".debug_line section has line data without a file"));
2051 }
2052
2053 static void
2054 dwarf2_debug_line_missing_end_sequence_complaint (void)
2055 {
2056 complaint (_(".debug_line section has line "
2057 "program sequence without an end"));
2058 }
2059
2060 static void
2061 dwarf2_complex_location_expr_complaint (void)
2062 {
2063 complaint (_("location expression too complex"));
2064 }
2065
2066 static void
2067 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2068 int arg3)
2069 {
2070 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2071 arg1, arg2, arg3);
2072 }
2073
2074 static void
2075 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2076 {
2077 complaint (_("debug info runs off end of %s section"
2078 " [in module %s]"),
2079 get_section_name (section),
2080 get_section_file_name (section));
2081 }
2082
2083 static void
2084 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2085 {
2086 complaint (_("macro debug info contains a "
2087 "malformed macro definition:\n`%s'"),
2088 arg1);
2089 }
2090
2091 static void
2092 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2093 {
2094 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2095 arg1, arg2);
2096 }
2097
2098 /* Hash function for line_header_hash. */
2099
2100 static hashval_t
2101 line_header_hash (const struct line_header *ofs)
2102 {
2103 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2104 }
2105
2106 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2107
2108 static hashval_t
2109 line_header_hash_voidp (const void *item)
2110 {
2111 const struct line_header *ofs = (const struct line_header *) item;
2112
2113 return line_header_hash (ofs);
2114 }
2115
2116 /* Equality function for line_header_hash. */
2117
2118 static int
2119 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2120 {
2121 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2122 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2123
2124 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2125 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2126 }
2127
2128 \f
2129
2130 /* Read the given attribute value as an address, taking the attribute's
2131 form into account. */
2132
2133 static CORE_ADDR
2134 attr_value_as_address (struct attribute *attr)
2135 {
2136 CORE_ADDR addr;
2137
2138 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2139 {
2140 /* Aside from a few clearly defined exceptions, attributes that
2141 contain an address must always be in DW_FORM_addr form.
2142 Unfortunately, some compilers happen to be violating this
2143 requirement by encoding addresses using other forms, such
2144 as DW_FORM_data4 for example. For those broken compilers,
2145 we try to do our best, without any guarantee of success,
2146 to interpret the address correctly. It would also be nice
2147 to generate a complaint, but that would require us to maintain
2148 a list of legitimate cases where a non-address form is allowed,
2149 as well as update callers to pass in at least the CU's DWARF
2150 version. This is more overhead than what we're willing to
2151 expand for a pretty rare case. */
2152 addr = DW_UNSND (attr);
2153 }
2154 else
2155 addr = DW_ADDR (attr);
2156
2157 return addr;
2158 }
2159
2160 /* See declaration. */
2161
2162 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2163 const dwarf2_debug_sections *names)
2164 : objfile (objfile_)
2165 {
2166 if (names == NULL)
2167 names = &dwarf2_elf_names;
2168
2169 bfd *obfd = objfile->obfd;
2170
2171 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2172 locate_sections (obfd, sec, *names);
2173 }
2174
2175 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2176
2177 dwarf2_per_objfile::~dwarf2_per_objfile ()
2178 {
2179 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2180 free_cached_comp_units ();
2181
2182 if (quick_file_names_table)
2183 htab_delete (quick_file_names_table);
2184
2185 if (line_header_hash)
2186 htab_delete (line_header_hash);
2187
2188 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2189 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2190
2191 for (signatured_type *sig_type : all_type_units)
2192 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2193
2194 VEC_free (dwarf2_section_info_def, types);
2195
2196 if (dwo_files != NULL)
2197 free_dwo_files (dwo_files, objfile);
2198
2199 /* Everything else should be on the objfile obstack. */
2200 }
2201
2202 /* See declaration. */
2203
2204 void
2205 dwarf2_per_objfile::free_cached_comp_units ()
2206 {
2207 dwarf2_per_cu_data *per_cu = read_in_chain;
2208 dwarf2_per_cu_data **last_chain = &read_in_chain;
2209 while (per_cu != NULL)
2210 {
2211 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2212
2213 delete per_cu->cu;
2214 *last_chain = next_cu;
2215 per_cu = next_cu;
2216 }
2217 }
2218
2219 /* A helper class that calls free_cached_comp_units on
2220 destruction. */
2221
2222 class free_cached_comp_units
2223 {
2224 public:
2225
2226 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2227 : m_per_objfile (per_objfile)
2228 {
2229 }
2230
2231 ~free_cached_comp_units ()
2232 {
2233 m_per_objfile->free_cached_comp_units ();
2234 }
2235
2236 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2237
2238 private:
2239
2240 dwarf2_per_objfile *m_per_objfile;
2241 };
2242
2243 /* Try to locate the sections we need for DWARF 2 debugging
2244 information and return true if we have enough to do something.
2245 NAMES points to the dwarf2 section names, or is NULL if the standard
2246 ELF names are used. */
2247
2248 int
2249 dwarf2_has_info (struct objfile *objfile,
2250 const struct dwarf2_debug_sections *names)
2251 {
2252 if (objfile->flags & OBJF_READNEVER)
2253 return 0;
2254
2255 struct dwarf2_per_objfile *dwarf2_per_objfile
2256 = get_dwarf2_per_objfile (objfile);
2257
2258 if (dwarf2_per_objfile == NULL)
2259 {
2260 /* Initialize per-objfile state. */
2261 dwarf2_per_objfile
2262 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2263 names);
2264 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2265 }
2266 return (!dwarf2_per_objfile->info.is_virtual
2267 && dwarf2_per_objfile->info.s.section != NULL
2268 && !dwarf2_per_objfile->abbrev.is_virtual
2269 && dwarf2_per_objfile->abbrev.s.section != NULL);
2270 }
2271
2272 /* Return the containing section of virtual section SECTION. */
2273
2274 static struct dwarf2_section_info *
2275 get_containing_section (const struct dwarf2_section_info *section)
2276 {
2277 gdb_assert (section->is_virtual);
2278 return section->s.containing_section;
2279 }
2280
2281 /* Return the bfd owner of SECTION. */
2282
2283 static struct bfd *
2284 get_section_bfd_owner (const struct dwarf2_section_info *section)
2285 {
2286 if (section->is_virtual)
2287 {
2288 section = get_containing_section (section);
2289 gdb_assert (!section->is_virtual);
2290 }
2291 return section->s.section->owner;
2292 }
2293
2294 /* Return the bfd section of SECTION.
2295 Returns NULL if the section is not present. */
2296
2297 static asection *
2298 get_section_bfd_section (const struct dwarf2_section_info *section)
2299 {
2300 if (section->is_virtual)
2301 {
2302 section = get_containing_section (section);
2303 gdb_assert (!section->is_virtual);
2304 }
2305 return section->s.section;
2306 }
2307
2308 /* Return the name of SECTION. */
2309
2310 static const char *
2311 get_section_name (const struct dwarf2_section_info *section)
2312 {
2313 asection *sectp = get_section_bfd_section (section);
2314
2315 gdb_assert (sectp != NULL);
2316 return bfd_section_name (get_section_bfd_owner (section), sectp);
2317 }
2318
2319 /* Return the name of the file SECTION is in. */
2320
2321 static const char *
2322 get_section_file_name (const struct dwarf2_section_info *section)
2323 {
2324 bfd *abfd = get_section_bfd_owner (section);
2325
2326 return bfd_get_filename (abfd);
2327 }
2328
2329 /* Return the id of SECTION.
2330 Returns 0 if SECTION doesn't exist. */
2331
2332 static int
2333 get_section_id (const struct dwarf2_section_info *section)
2334 {
2335 asection *sectp = get_section_bfd_section (section);
2336
2337 if (sectp == NULL)
2338 return 0;
2339 return sectp->id;
2340 }
2341
2342 /* Return the flags of SECTION.
2343 SECTION (or containing section if this is a virtual section) must exist. */
2344
2345 static int
2346 get_section_flags (const struct dwarf2_section_info *section)
2347 {
2348 asection *sectp = get_section_bfd_section (section);
2349
2350 gdb_assert (sectp != NULL);
2351 return bfd_get_section_flags (sectp->owner, sectp);
2352 }
2353
2354 /* When loading sections, we look either for uncompressed section or for
2355 compressed section names. */
2356
2357 static int
2358 section_is_p (const char *section_name,
2359 const struct dwarf2_section_names *names)
2360 {
2361 if (names->normal != NULL
2362 && strcmp (section_name, names->normal) == 0)
2363 return 1;
2364 if (names->compressed != NULL
2365 && strcmp (section_name, names->compressed) == 0)
2366 return 1;
2367 return 0;
2368 }
2369
2370 /* See declaration. */
2371
2372 void
2373 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2374 const dwarf2_debug_sections &names)
2375 {
2376 flagword aflag = bfd_get_section_flags (abfd, sectp);
2377
2378 if ((aflag & SEC_HAS_CONTENTS) == 0)
2379 {
2380 }
2381 else if (section_is_p (sectp->name, &names.info))
2382 {
2383 this->info.s.section = sectp;
2384 this->info.size = bfd_get_section_size (sectp);
2385 }
2386 else if (section_is_p (sectp->name, &names.abbrev))
2387 {
2388 this->abbrev.s.section = sectp;
2389 this->abbrev.size = bfd_get_section_size (sectp);
2390 }
2391 else if (section_is_p (sectp->name, &names.line))
2392 {
2393 this->line.s.section = sectp;
2394 this->line.size = bfd_get_section_size (sectp);
2395 }
2396 else if (section_is_p (sectp->name, &names.loc))
2397 {
2398 this->loc.s.section = sectp;
2399 this->loc.size = bfd_get_section_size (sectp);
2400 }
2401 else if (section_is_p (sectp->name, &names.loclists))
2402 {
2403 this->loclists.s.section = sectp;
2404 this->loclists.size = bfd_get_section_size (sectp);
2405 }
2406 else if (section_is_p (sectp->name, &names.macinfo))
2407 {
2408 this->macinfo.s.section = sectp;
2409 this->macinfo.size = bfd_get_section_size (sectp);
2410 }
2411 else if (section_is_p (sectp->name, &names.macro))
2412 {
2413 this->macro.s.section = sectp;
2414 this->macro.size = bfd_get_section_size (sectp);
2415 }
2416 else if (section_is_p (sectp->name, &names.str))
2417 {
2418 this->str.s.section = sectp;
2419 this->str.size = bfd_get_section_size (sectp);
2420 }
2421 else if (section_is_p (sectp->name, &names.line_str))
2422 {
2423 this->line_str.s.section = sectp;
2424 this->line_str.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &names.addr))
2427 {
2428 this->addr.s.section = sectp;
2429 this->addr.size = bfd_get_section_size (sectp);
2430 }
2431 else if (section_is_p (sectp->name, &names.frame))
2432 {
2433 this->frame.s.section = sectp;
2434 this->frame.size = bfd_get_section_size (sectp);
2435 }
2436 else if (section_is_p (sectp->name, &names.eh_frame))
2437 {
2438 this->eh_frame.s.section = sectp;
2439 this->eh_frame.size = bfd_get_section_size (sectp);
2440 }
2441 else if (section_is_p (sectp->name, &names.ranges))
2442 {
2443 this->ranges.s.section = sectp;
2444 this->ranges.size = bfd_get_section_size (sectp);
2445 }
2446 else if (section_is_p (sectp->name, &names.rnglists))
2447 {
2448 this->rnglists.s.section = sectp;
2449 this->rnglists.size = bfd_get_section_size (sectp);
2450 }
2451 else if (section_is_p (sectp->name, &names.types))
2452 {
2453 struct dwarf2_section_info type_section;
2454
2455 memset (&type_section, 0, sizeof (type_section));
2456 type_section.s.section = sectp;
2457 type_section.size = bfd_get_section_size (sectp);
2458
2459 VEC_safe_push (dwarf2_section_info_def, this->types,
2460 &type_section);
2461 }
2462 else if (section_is_p (sectp->name, &names.gdb_index))
2463 {
2464 this->gdb_index.s.section = sectp;
2465 this->gdb_index.size = bfd_get_section_size (sectp);
2466 }
2467 else if (section_is_p (sectp->name, &names.debug_names))
2468 {
2469 this->debug_names.s.section = sectp;
2470 this->debug_names.size = bfd_get_section_size (sectp);
2471 }
2472 else if (section_is_p (sectp->name, &names.debug_aranges))
2473 {
2474 this->debug_aranges.s.section = sectp;
2475 this->debug_aranges.size = bfd_get_section_size (sectp);
2476 }
2477
2478 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2479 && bfd_section_vma (abfd, sectp) == 0)
2480 this->has_section_at_zero = true;
2481 }
2482
2483 /* A helper function that decides whether a section is empty,
2484 or not present. */
2485
2486 static int
2487 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2488 {
2489 if (section->is_virtual)
2490 return section->size == 0;
2491 return section->s.section == NULL || section->size == 0;
2492 }
2493
2494 /* See dwarf2read.h. */
2495
2496 void
2497 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2498 {
2499 asection *sectp;
2500 bfd *abfd;
2501 gdb_byte *buf, *retbuf;
2502
2503 if (info->readin)
2504 return;
2505 info->buffer = NULL;
2506 info->readin = 1;
2507
2508 if (dwarf2_section_empty_p (info))
2509 return;
2510
2511 sectp = get_section_bfd_section (info);
2512
2513 /* If this is a virtual section we need to read in the real one first. */
2514 if (info->is_virtual)
2515 {
2516 struct dwarf2_section_info *containing_section =
2517 get_containing_section (info);
2518
2519 gdb_assert (sectp != NULL);
2520 if ((sectp->flags & SEC_RELOC) != 0)
2521 {
2522 error (_("Dwarf Error: DWP format V2 with relocations is not"
2523 " supported in section %s [in module %s]"),
2524 get_section_name (info), get_section_file_name (info));
2525 }
2526 dwarf2_read_section (objfile, containing_section);
2527 /* Other code should have already caught virtual sections that don't
2528 fit. */
2529 gdb_assert (info->virtual_offset + info->size
2530 <= containing_section->size);
2531 /* If the real section is empty or there was a problem reading the
2532 section we shouldn't get here. */
2533 gdb_assert (containing_section->buffer != NULL);
2534 info->buffer = containing_section->buffer + info->virtual_offset;
2535 return;
2536 }
2537
2538 /* If the section has relocations, we must read it ourselves.
2539 Otherwise we attach it to the BFD. */
2540 if ((sectp->flags & SEC_RELOC) == 0)
2541 {
2542 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2543 return;
2544 }
2545
2546 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2547 info->buffer = buf;
2548
2549 /* When debugging .o files, we may need to apply relocations; see
2550 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2551 We never compress sections in .o files, so we only need to
2552 try this when the section is not compressed. */
2553 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2554 if (retbuf != NULL)
2555 {
2556 info->buffer = retbuf;
2557 return;
2558 }
2559
2560 abfd = get_section_bfd_owner (info);
2561 gdb_assert (abfd != NULL);
2562
2563 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2564 || bfd_bread (buf, info->size, abfd) != info->size)
2565 {
2566 error (_("Dwarf Error: Can't read DWARF data"
2567 " in section %s [in module %s]"),
2568 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2569 }
2570 }
2571
2572 /* A helper function that returns the size of a section in a safe way.
2573 If you are positive that the section has been read before using the
2574 size, then it is safe to refer to the dwarf2_section_info object's
2575 "size" field directly. In other cases, you must call this
2576 function, because for compressed sections the size field is not set
2577 correctly until the section has been read. */
2578
2579 static bfd_size_type
2580 dwarf2_section_size (struct objfile *objfile,
2581 struct dwarf2_section_info *info)
2582 {
2583 if (!info->readin)
2584 dwarf2_read_section (objfile, info);
2585 return info->size;
2586 }
2587
2588 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2589 SECTION_NAME. */
2590
2591 void
2592 dwarf2_get_section_info (struct objfile *objfile,
2593 enum dwarf2_section_enum sect,
2594 asection **sectp, const gdb_byte **bufp,
2595 bfd_size_type *sizep)
2596 {
2597 struct dwarf2_per_objfile *data
2598 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2599 dwarf2_objfile_data_key);
2600 struct dwarf2_section_info *info;
2601
2602 /* We may see an objfile without any DWARF, in which case we just
2603 return nothing. */
2604 if (data == NULL)
2605 {
2606 *sectp = NULL;
2607 *bufp = NULL;
2608 *sizep = 0;
2609 return;
2610 }
2611 switch (sect)
2612 {
2613 case DWARF2_DEBUG_FRAME:
2614 info = &data->frame;
2615 break;
2616 case DWARF2_EH_FRAME:
2617 info = &data->eh_frame;
2618 break;
2619 default:
2620 gdb_assert_not_reached ("unexpected section");
2621 }
2622
2623 dwarf2_read_section (objfile, info);
2624
2625 *sectp = get_section_bfd_section (info);
2626 *bufp = info->buffer;
2627 *sizep = info->size;
2628 }
2629
2630 /* A helper function to find the sections for a .dwz file. */
2631
2632 static void
2633 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2634 {
2635 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2636
2637 /* Note that we only support the standard ELF names, because .dwz
2638 is ELF-only (at the time of writing). */
2639 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2640 {
2641 dwz_file->abbrev.s.section = sectp;
2642 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2643 }
2644 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2645 {
2646 dwz_file->info.s.section = sectp;
2647 dwz_file->info.size = bfd_get_section_size (sectp);
2648 }
2649 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2650 {
2651 dwz_file->str.s.section = sectp;
2652 dwz_file->str.size = bfd_get_section_size (sectp);
2653 }
2654 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2655 {
2656 dwz_file->line.s.section = sectp;
2657 dwz_file->line.size = bfd_get_section_size (sectp);
2658 }
2659 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2660 {
2661 dwz_file->macro.s.section = sectp;
2662 dwz_file->macro.size = bfd_get_section_size (sectp);
2663 }
2664 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2665 {
2666 dwz_file->gdb_index.s.section = sectp;
2667 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2668 }
2669 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2670 {
2671 dwz_file->debug_names.s.section = sectp;
2672 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2673 }
2674 }
2675
2676 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2677 there is no .gnu_debugaltlink section in the file. Error if there
2678 is such a section but the file cannot be found. */
2679
2680 static struct dwz_file *
2681 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2682 {
2683 const char *filename;
2684 bfd_size_type buildid_len_arg;
2685 size_t buildid_len;
2686 bfd_byte *buildid;
2687
2688 if (dwarf2_per_objfile->dwz_file != NULL)
2689 return dwarf2_per_objfile->dwz_file.get ();
2690
2691 bfd_set_error (bfd_error_no_error);
2692 gdb::unique_xmalloc_ptr<char> data
2693 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2694 &buildid_len_arg, &buildid));
2695 if (data == NULL)
2696 {
2697 if (bfd_get_error () == bfd_error_no_error)
2698 return NULL;
2699 error (_("could not read '.gnu_debugaltlink' section: %s"),
2700 bfd_errmsg (bfd_get_error ()));
2701 }
2702
2703 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2704
2705 buildid_len = (size_t) buildid_len_arg;
2706
2707 filename = data.get ();
2708
2709 std::string abs_storage;
2710 if (!IS_ABSOLUTE_PATH (filename))
2711 {
2712 gdb::unique_xmalloc_ptr<char> abs
2713 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2714
2715 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2716 filename = abs_storage.c_str ();
2717 }
2718
2719 /* First try the file name given in the section. If that doesn't
2720 work, try to use the build-id instead. */
2721 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2722 if (dwz_bfd != NULL)
2723 {
2724 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2725 dwz_bfd.release ();
2726 }
2727
2728 if (dwz_bfd == NULL)
2729 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2730
2731 if (dwz_bfd == NULL)
2732 error (_("could not find '.gnu_debugaltlink' file for %s"),
2733 objfile_name (dwarf2_per_objfile->objfile));
2734
2735 std::unique_ptr<struct dwz_file> result
2736 (new struct dwz_file (std::move (dwz_bfd)));
2737
2738 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2739 result.get ());
2740
2741 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2742 result->dwz_bfd.get ());
2743 dwarf2_per_objfile->dwz_file = std::move (result);
2744 return dwarf2_per_objfile->dwz_file.get ();
2745 }
2746 \f
2747 /* DWARF quick_symbols_functions support. */
2748
2749 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2750 unique line tables, so we maintain a separate table of all .debug_line
2751 derived entries to support the sharing.
2752 All the quick functions need is the list of file names. We discard the
2753 line_header when we're done and don't need to record it here. */
2754 struct quick_file_names
2755 {
2756 /* The data used to construct the hash key. */
2757 struct stmt_list_hash hash;
2758
2759 /* The number of entries in file_names, real_names. */
2760 unsigned int num_file_names;
2761
2762 /* The file names from the line table, after being run through
2763 file_full_name. */
2764 const char **file_names;
2765
2766 /* The file names from the line table after being run through
2767 gdb_realpath. These are computed lazily. */
2768 const char **real_names;
2769 };
2770
2771 /* When using the index (and thus not using psymtabs), each CU has an
2772 object of this type. This is used to hold information needed by
2773 the various "quick" methods. */
2774 struct dwarf2_per_cu_quick_data
2775 {
2776 /* The file table. This can be NULL if there was no file table
2777 or it's currently not read in.
2778 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2779 struct quick_file_names *file_names;
2780
2781 /* The corresponding symbol table. This is NULL if symbols for this
2782 CU have not yet been read. */
2783 struct compunit_symtab *compunit_symtab;
2784
2785 /* A temporary mark bit used when iterating over all CUs in
2786 expand_symtabs_matching. */
2787 unsigned int mark : 1;
2788
2789 /* True if we've tried to read the file table and found there isn't one.
2790 There will be no point in trying to read it again next time. */
2791 unsigned int no_file_data : 1;
2792 };
2793
2794 /* Utility hash function for a stmt_list_hash. */
2795
2796 static hashval_t
2797 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2798 {
2799 hashval_t v = 0;
2800
2801 if (stmt_list_hash->dwo_unit != NULL)
2802 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2803 v += to_underlying (stmt_list_hash->line_sect_off);
2804 return v;
2805 }
2806
2807 /* Utility equality function for a stmt_list_hash. */
2808
2809 static int
2810 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2811 const struct stmt_list_hash *rhs)
2812 {
2813 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2814 return 0;
2815 if (lhs->dwo_unit != NULL
2816 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2817 return 0;
2818
2819 return lhs->line_sect_off == rhs->line_sect_off;
2820 }
2821
2822 /* Hash function for a quick_file_names. */
2823
2824 static hashval_t
2825 hash_file_name_entry (const void *e)
2826 {
2827 const struct quick_file_names *file_data
2828 = (const struct quick_file_names *) e;
2829
2830 return hash_stmt_list_entry (&file_data->hash);
2831 }
2832
2833 /* Equality function for a quick_file_names. */
2834
2835 static int
2836 eq_file_name_entry (const void *a, const void *b)
2837 {
2838 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2839 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2840
2841 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2842 }
2843
2844 /* Delete function for a quick_file_names. */
2845
2846 static void
2847 delete_file_name_entry (void *e)
2848 {
2849 struct quick_file_names *file_data = (struct quick_file_names *) e;
2850 int i;
2851
2852 for (i = 0; i < file_data->num_file_names; ++i)
2853 {
2854 xfree ((void*) file_data->file_names[i]);
2855 if (file_data->real_names)
2856 xfree ((void*) file_data->real_names[i]);
2857 }
2858
2859 /* The space for the struct itself lives on objfile_obstack,
2860 so we don't free it here. */
2861 }
2862
2863 /* Create a quick_file_names hash table. */
2864
2865 static htab_t
2866 create_quick_file_names_table (unsigned int nr_initial_entries)
2867 {
2868 return htab_create_alloc (nr_initial_entries,
2869 hash_file_name_entry, eq_file_name_entry,
2870 delete_file_name_entry, xcalloc, xfree);
2871 }
2872
2873 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2874 have to be created afterwards. You should call age_cached_comp_units after
2875 processing PER_CU->CU. dw2_setup must have been already called. */
2876
2877 static void
2878 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2879 {
2880 if (per_cu->is_debug_types)
2881 load_full_type_unit (per_cu);
2882 else
2883 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2884
2885 if (per_cu->cu == NULL)
2886 return; /* Dummy CU. */
2887
2888 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2889 }
2890
2891 /* Read in the symbols for PER_CU. */
2892
2893 static void
2894 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2895 {
2896 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2897
2898 /* Skip type_unit_groups, reading the type units they contain
2899 is handled elsewhere. */
2900 if (IS_TYPE_UNIT_GROUP (per_cu))
2901 return;
2902
2903 /* The destructor of dwarf2_queue_guard frees any entries left on
2904 the queue. After this point we're guaranteed to leave this function
2905 with the dwarf queue empty. */
2906 dwarf2_queue_guard q_guard;
2907
2908 if (dwarf2_per_objfile->using_index
2909 ? per_cu->v.quick->compunit_symtab == NULL
2910 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2911 {
2912 queue_comp_unit (per_cu, language_minimal);
2913 load_cu (per_cu, skip_partial);
2914
2915 /* If we just loaded a CU from a DWO, and we're working with an index
2916 that may badly handle TUs, load all the TUs in that DWO as well.
2917 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2918 if (!per_cu->is_debug_types
2919 && per_cu->cu != NULL
2920 && per_cu->cu->dwo_unit != NULL
2921 && dwarf2_per_objfile->index_table != NULL
2922 && dwarf2_per_objfile->index_table->version <= 7
2923 /* DWP files aren't supported yet. */
2924 && get_dwp_file (dwarf2_per_objfile) == NULL)
2925 queue_and_load_all_dwo_tus (per_cu);
2926 }
2927
2928 process_queue (dwarf2_per_objfile);
2929
2930 /* Age the cache, releasing compilation units that have not
2931 been used recently. */
2932 age_cached_comp_units (dwarf2_per_objfile);
2933 }
2934
2935 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2936 the objfile from which this CU came. Returns the resulting symbol
2937 table. */
2938
2939 static struct compunit_symtab *
2940 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2941 {
2942 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2943
2944 gdb_assert (dwarf2_per_objfile->using_index);
2945 if (!per_cu->v.quick->compunit_symtab)
2946 {
2947 free_cached_comp_units freer (dwarf2_per_objfile);
2948 scoped_restore decrementer = increment_reading_symtab ();
2949 dw2_do_instantiate_symtab (per_cu, skip_partial);
2950 process_cu_includes (dwarf2_per_objfile);
2951 }
2952
2953 return per_cu->v.quick->compunit_symtab;
2954 }
2955
2956 /* See declaration. */
2957
2958 dwarf2_per_cu_data *
2959 dwarf2_per_objfile::get_cutu (int index)
2960 {
2961 if (index >= this->all_comp_units.size ())
2962 {
2963 index -= this->all_comp_units.size ();
2964 gdb_assert (index < this->all_type_units.size ());
2965 return &this->all_type_units[index]->per_cu;
2966 }
2967
2968 return this->all_comp_units[index];
2969 }
2970
2971 /* See declaration. */
2972
2973 dwarf2_per_cu_data *
2974 dwarf2_per_objfile::get_cu (int index)
2975 {
2976 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2977
2978 return this->all_comp_units[index];
2979 }
2980
2981 /* See declaration. */
2982
2983 signatured_type *
2984 dwarf2_per_objfile::get_tu (int index)
2985 {
2986 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2987
2988 return this->all_type_units[index];
2989 }
2990
2991 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2992 objfile_obstack, and constructed with the specified field
2993 values. */
2994
2995 static dwarf2_per_cu_data *
2996 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2997 struct dwarf2_section_info *section,
2998 int is_dwz,
2999 sect_offset sect_off, ULONGEST length)
3000 {
3001 struct objfile *objfile = dwarf2_per_objfile->objfile;
3002 dwarf2_per_cu_data *the_cu
3003 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3004 struct dwarf2_per_cu_data);
3005 the_cu->sect_off = sect_off;
3006 the_cu->length = length;
3007 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3008 the_cu->section = section;
3009 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3010 struct dwarf2_per_cu_quick_data);
3011 the_cu->is_dwz = is_dwz;
3012 return the_cu;
3013 }
3014
3015 /* A helper for create_cus_from_index that handles a given list of
3016 CUs. */
3017
3018 static void
3019 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3020 const gdb_byte *cu_list, offset_type n_elements,
3021 struct dwarf2_section_info *section,
3022 int is_dwz)
3023 {
3024 for (offset_type i = 0; i < n_elements; i += 2)
3025 {
3026 gdb_static_assert (sizeof (ULONGEST) >= 8);
3027
3028 sect_offset sect_off
3029 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3030 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3031 cu_list += 2 * 8;
3032
3033 dwarf2_per_cu_data *per_cu
3034 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3035 sect_off, length);
3036 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3037 }
3038 }
3039
3040 /* Read the CU list from the mapped index, and use it to create all
3041 the CU objects for this objfile. */
3042
3043 static void
3044 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3045 const gdb_byte *cu_list, offset_type cu_list_elements,
3046 const gdb_byte *dwz_list, offset_type dwz_elements)
3047 {
3048 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3049 dwarf2_per_objfile->all_comp_units.reserve
3050 ((cu_list_elements + dwz_elements) / 2);
3051
3052 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3053 &dwarf2_per_objfile->info, 0);
3054
3055 if (dwz_elements == 0)
3056 return;
3057
3058 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3059 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3060 &dwz->info, 1);
3061 }
3062
3063 /* Create the signatured type hash table from the index. */
3064
3065 static void
3066 create_signatured_type_table_from_index
3067 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3068 struct dwarf2_section_info *section,
3069 const gdb_byte *bytes,
3070 offset_type elements)
3071 {
3072 struct objfile *objfile = dwarf2_per_objfile->objfile;
3073
3074 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3075 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3076
3077 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3078
3079 for (offset_type i = 0; i < elements; i += 3)
3080 {
3081 struct signatured_type *sig_type;
3082 ULONGEST signature;
3083 void **slot;
3084 cu_offset type_offset_in_tu;
3085
3086 gdb_static_assert (sizeof (ULONGEST) >= 8);
3087 sect_offset sect_off
3088 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3089 type_offset_in_tu
3090 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3091 BFD_ENDIAN_LITTLE);
3092 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3093 bytes += 3 * 8;
3094
3095 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3096 struct signatured_type);
3097 sig_type->signature = signature;
3098 sig_type->type_offset_in_tu = type_offset_in_tu;
3099 sig_type->per_cu.is_debug_types = 1;
3100 sig_type->per_cu.section = section;
3101 sig_type->per_cu.sect_off = sect_off;
3102 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3103 sig_type->per_cu.v.quick
3104 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3105 struct dwarf2_per_cu_quick_data);
3106
3107 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3108 *slot = sig_type;
3109
3110 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3111 }
3112
3113 dwarf2_per_objfile->signatured_types = sig_types_hash;
3114 }
3115
3116 /* Create the signatured type hash table from .debug_names. */
3117
3118 static void
3119 create_signatured_type_table_from_debug_names
3120 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3121 const mapped_debug_names &map,
3122 struct dwarf2_section_info *section,
3123 struct dwarf2_section_info *abbrev_section)
3124 {
3125 struct objfile *objfile = dwarf2_per_objfile->objfile;
3126
3127 dwarf2_read_section (objfile, section);
3128 dwarf2_read_section (objfile, abbrev_section);
3129
3130 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3131 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3132
3133 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3134
3135 for (uint32_t i = 0; i < map.tu_count; ++i)
3136 {
3137 struct signatured_type *sig_type;
3138 void **slot;
3139
3140 sect_offset sect_off
3141 = (sect_offset) (extract_unsigned_integer
3142 (map.tu_table_reordered + i * map.offset_size,
3143 map.offset_size,
3144 map.dwarf5_byte_order));
3145
3146 comp_unit_head cu_header;
3147 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3148 abbrev_section,
3149 section->buffer + to_underlying (sect_off),
3150 rcuh_kind::TYPE);
3151
3152 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3153 struct signatured_type);
3154 sig_type->signature = cu_header.signature;
3155 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3156 sig_type->per_cu.is_debug_types = 1;
3157 sig_type->per_cu.section = section;
3158 sig_type->per_cu.sect_off = sect_off;
3159 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3160 sig_type->per_cu.v.quick
3161 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3162 struct dwarf2_per_cu_quick_data);
3163
3164 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3165 *slot = sig_type;
3166
3167 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3168 }
3169
3170 dwarf2_per_objfile->signatured_types = sig_types_hash;
3171 }
3172
3173 /* Read the address map data from the mapped index, and use it to
3174 populate the objfile's psymtabs_addrmap. */
3175
3176 static void
3177 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3178 struct mapped_index *index)
3179 {
3180 struct objfile *objfile = dwarf2_per_objfile->objfile;
3181 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3182 const gdb_byte *iter, *end;
3183 struct addrmap *mutable_map;
3184 CORE_ADDR baseaddr;
3185
3186 auto_obstack temp_obstack;
3187
3188 mutable_map = addrmap_create_mutable (&temp_obstack);
3189
3190 iter = index->address_table.data ();
3191 end = iter + index->address_table.size ();
3192
3193 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3194
3195 while (iter < end)
3196 {
3197 ULONGEST hi, lo, cu_index;
3198 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3199 iter += 8;
3200 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3201 iter += 8;
3202 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3203 iter += 4;
3204
3205 if (lo > hi)
3206 {
3207 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3208 hex_string (lo), hex_string (hi));
3209 continue;
3210 }
3211
3212 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3213 {
3214 complaint (_(".gdb_index address table has invalid CU number %u"),
3215 (unsigned) cu_index);
3216 continue;
3217 }
3218
3219 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3220 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3221 addrmap_set_empty (mutable_map, lo, hi - 1,
3222 dwarf2_per_objfile->get_cu (cu_index));
3223 }
3224
3225 objfile->partial_symtabs->psymtabs_addrmap
3226 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3227 }
3228
3229 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3230 populate the objfile's psymtabs_addrmap. */
3231
3232 static void
3233 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3234 struct dwarf2_section_info *section)
3235 {
3236 struct objfile *objfile = dwarf2_per_objfile->objfile;
3237 bfd *abfd = objfile->obfd;
3238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3239 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3240 SECT_OFF_TEXT (objfile));
3241
3242 auto_obstack temp_obstack;
3243 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3244
3245 std::unordered_map<sect_offset,
3246 dwarf2_per_cu_data *,
3247 gdb::hash_enum<sect_offset>>
3248 debug_info_offset_to_per_cu;
3249 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3250 {
3251 const auto insertpair
3252 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3253 if (!insertpair.second)
3254 {
3255 warning (_("Section .debug_aranges in %s has duplicate "
3256 "debug_info_offset %s, ignoring .debug_aranges."),
3257 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3258 return;
3259 }
3260 }
3261
3262 dwarf2_read_section (objfile, section);
3263
3264 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3265
3266 const gdb_byte *addr = section->buffer;
3267
3268 while (addr < section->buffer + section->size)
3269 {
3270 const gdb_byte *const entry_addr = addr;
3271 unsigned int bytes_read;
3272
3273 const LONGEST entry_length = read_initial_length (abfd, addr,
3274 &bytes_read);
3275 addr += bytes_read;
3276
3277 const gdb_byte *const entry_end = addr + entry_length;
3278 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3279 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3280 if (addr + entry_length > section->buffer + section->size)
3281 {
3282 warning (_("Section .debug_aranges in %s entry at offset %zu "
3283 "length %s exceeds section length %s, "
3284 "ignoring .debug_aranges."),
3285 objfile_name (objfile), entry_addr - section->buffer,
3286 plongest (bytes_read + entry_length),
3287 pulongest (section->size));
3288 return;
3289 }
3290
3291 /* The version number. */
3292 const uint16_t version = read_2_bytes (abfd, addr);
3293 addr += 2;
3294 if (version != 2)
3295 {
3296 warning (_("Section .debug_aranges in %s entry at offset %zu "
3297 "has unsupported version %d, ignoring .debug_aranges."),
3298 objfile_name (objfile), entry_addr - section->buffer,
3299 version);
3300 return;
3301 }
3302
3303 const uint64_t debug_info_offset
3304 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3305 addr += offset_size;
3306 const auto per_cu_it
3307 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3308 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3309 {
3310 warning (_("Section .debug_aranges in %s entry at offset %zu "
3311 "debug_info_offset %s does not exists, "
3312 "ignoring .debug_aranges."),
3313 objfile_name (objfile), entry_addr - section->buffer,
3314 pulongest (debug_info_offset));
3315 return;
3316 }
3317 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3318
3319 const uint8_t address_size = *addr++;
3320 if (address_size < 1 || address_size > 8)
3321 {
3322 warning (_("Section .debug_aranges in %s entry at offset %zu "
3323 "address_size %u is invalid, ignoring .debug_aranges."),
3324 objfile_name (objfile), entry_addr - section->buffer,
3325 address_size);
3326 return;
3327 }
3328
3329 const uint8_t segment_selector_size = *addr++;
3330 if (segment_selector_size != 0)
3331 {
3332 warning (_("Section .debug_aranges in %s entry at offset %zu "
3333 "segment_selector_size %u is not supported, "
3334 "ignoring .debug_aranges."),
3335 objfile_name (objfile), entry_addr - section->buffer,
3336 segment_selector_size);
3337 return;
3338 }
3339
3340 /* Must pad to an alignment boundary that is twice the address
3341 size. It is undocumented by the DWARF standard but GCC does
3342 use it. */
3343 for (size_t padding = ((-(addr - section->buffer))
3344 & (2 * address_size - 1));
3345 padding > 0; padding--)
3346 if (*addr++ != 0)
3347 {
3348 warning (_("Section .debug_aranges in %s entry at offset %zu "
3349 "padding is not zero, ignoring .debug_aranges."),
3350 objfile_name (objfile), entry_addr - section->buffer);
3351 return;
3352 }
3353
3354 for (;;)
3355 {
3356 if (addr + 2 * address_size > entry_end)
3357 {
3358 warning (_("Section .debug_aranges in %s entry at offset %zu "
3359 "address list is not properly terminated, "
3360 "ignoring .debug_aranges."),
3361 objfile_name (objfile), entry_addr - section->buffer);
3362 return;
3363 }
3364 ULONGEST start = extract_unsigned_integer (addr, address_size,
3365 dwarf5_byte_order);
3366 addr += address_size;
3367 ULONGEST length = extract_unsigned_integer (addr, address_size,
3368 dwarf5_byte_order);
3369 addr += address_size;
3370 if (start == 0 && length == 0)
3371 break;
3372 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3373 {
3374 /* Symbol was eliminated due to a COMDAT group. */
3375 continue;
3376 }
3377 ULONGEST end = start + length;
3378 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3379 - baseaddr);
3380 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3381 - baseaddr);
3382 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3383 }
3384 }
3385
3386 objfile->partial_symtabs->psymtabs_addrmap
3387 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3388 }
3389
3390 /* Find a slot in the mapped index INDEX for the object named NAME.
3391 If NAME is found, set *VEC_OUT to point to the CU vector in the
3392 constant pool and return true. If NAME cannot be found, return
3393 false. */
3394
3395 static bool
3396 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3397 offset_type **vec_out)
3398 {
3399 offset_type hash;
3400 offset_type slot, step;
3401 int (*cmp) (const char *, const char *);
3402
3403 gdb::unique_xmalloc_ptr<char> without_params;
3404 if (current_language->la_language == language_cplus
3405 || current_language->la_language == language_fortran
3406 || current_language->la_language == language_d)
3407 {
3408 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3409 not contain any. */
3410
3411 if (strchr (name, '(') != NULL)
3412 {
3413 without_params = cp_remove_params (name);
3414
3415 if (without_params != NULL)
3416 name = without_params.get ();
3417 }
3418 }
3419
3420 /* Index version 4 did not support case insensitive searches. But the
3421 indices for case insensitive languages are built in lowercase, therefore
3422 simulate our NAME being searched is also lowercased. */
3423 hash = mapped_index_string_hash ((index->version == 4
3424 && case_sensitivity == case_sensitive_off
3425 ? 5 : index->version),
3426 name);
3427
3428 slot = hash & (index->symbol_table.size () - 1);
3429 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3430 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3431
3432 for (;;)
3433 {
3434 const char *str;
3435
3436 const auto &bucket = index->symbol_table[slot];
3437 if (bucket.name == 0 && bucket.vec == 0)
3438 return false;
3439
3440 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3441 if (!cmp (name, str))
3442 {
3443 *vec_out = (offset_type *) (index->constant_pool
3444 + MAYBE_SWAP (bucket.vec));
3445 return true;
3446 }
3447
3448 slot = (slot + step) & (index->symbol_table.size () - 1);
3449 }
3450 }
3451
3452 /* A helper function that reads the .gdb_index from BUFFER and fills
3453 in MAP. FILENAME is the name of the file containing the data;
3454 it is used for error reporting. DEPRECATED_OK is true if it is
3455 ok to use deprecated sections.
3456
3457 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3458 out parameters that are filled in with information about the CU and
3459 TU lists in the section.
3460
3461 Returns true if all went well, false otherwise. */
3462
3463 static bool
3464 read_gdb_index_from_buffer (struct objfile *objfile,
3465 const char *filename,
3466 bool deprecated_ok,
3467 gdb::array_view<const gdb_byte> buffer,
3468 struct mapped_index *map,
3469 const gdb_byte **cu_list,
3470 offset_type *cu_list_elements,
3471 const gdb_byte **types_list,
3472 offset_type *types_list_elements)
3473 {
3474 const gdb_byte *addr = &buffer[0];
3475
3476 /* Version check. */
3477 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3478 /* Versions earlier than 3 emitted every copy of a psymbol. This
3479 causes the index to behave very poorly for certain requests. Version 3
3480 contained incomplete addrmap. So, it seems better to just ignore such
3481 indices. */
3482 if (version < 4)
3483 {
3484 static int warning_printed = 0;
3485 if (!warning_printed)
3486 {
3487 warning (_("Skipping obsolete .gdb_index section in %s."),
3488 filename);
3489 warning_printed = 1;
3490 }
3491 return 0;
3492 }
3493 /* Index version 4 uses a different hash function than index version
3494 5 and later.
3495
3496 Versions earlier than 6 did not emit psymbols for inlined
3497 functions. Using these files will cause GDB not to be able to
3498 set breakpoints on inlined functions by name, so we ignore these
3499 indices unless the user has done
3500 "set use-deprecated-index-sections on". */
3501 if (version < 6 && !deprecated_ok)
3502 {
3503 static int warning_printed = 0;
3504 if (!warning_printed)
3505 {
3506 warning (_("\
3507 Skipping deprecated .gdb_index section in %s.\n\
3508 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3509 to use the section anyway."),
3510 filename);
3511 warning_printed = 1;
3512 }
3513 return 0;
3514 }
3515 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3516 of the TU (for symbols coming from TUs),
3517 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3518 Plus gold-generated indices can have duplicate entries for global symbols,
3519 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3520 These are just performance bugs, and we can't distinguish gdb-generated
3521 indices from gold-generated ones, so issue no warning here. */
3522
3523 /* Indexes with higher version than the one supported by GDB may be no
3524 longer backward compatible. */
3525 if (version > 8)
3526 return 0;
3527
3528 map->version = version;
3529
3530 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3531
3532 int i = 0;
3533 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3534 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3535 / 8);
3536 ++i;
3537
3538 *types_list = addr + MAYBE_SWAP (metadata[i]);
3539 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3540 - MAYBE_SWAP (metadata[i]))
3541 / 8);
3542 ++i;
3543
3544 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3545 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3546 map->address_table
3547 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3548 ++i;
3549
3550 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3551 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3552 map->symbol_table
3553 = gdb::array_view<mapped_index::symbol_table_slot>
3554 ((mapped_index::symbol_table_slot *) symbol_table,
3555 (mapped_index::symbol_table_slot *) symbol_table_end);
3556
3557 ++i;
3558 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3559
3560 return 1;
3561 }
3562
3563 /* Callback types for dwarf2_read_gdb_index. */
3564
3565 typedef gdb::function_view
3566 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3567 get_gdb_index_contents_ftype;
3568 typedef gdb::function_view
3569 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3570 get_gdb_index_contents_dwz_ftype;
3571
3572 /* Read .gdb_index. If everything went ok, initialize the "quick"
3573 elements of all the CUs and return 1. Otherwise, return 0. */
3574
3575 static int
3576 dwarf2_read_gdb_index
3577 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3578 get_gdb_index_contents_ftype get_gdb_index_contents,
3579 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3580 {
3581 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3582 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3583 struct dwz_file *dwz;
3584 struct objfile *objfile = dwarf2_per_objfile->objfile;
3585
3586 gdb::array_view<const gdb_byte> main_index_contents
3587 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3588
3589 if (main_index_contents.empty ())
3590 return 0;
3591
3592 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3593 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3594 use_deprecated_index_sections,
3595 main_index_contents, map.get (), &cu_list,
3596 &cu_list_elements, &types_list,
3597 &types_list_elements))
3598 return 0;
3599
3600 /* Don't use the index if it's empty. */
3601 if (map->symbol_table.empty ())
3602 return 0;
3603
3604 /* If there is a .dwz file, read it so we can get its CU list as
3605 well. */
3606 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3607 if (dwz != NULL)
3608 {
3609 struct mapped_index dwz_map;
3610 const gdb_byte *dwz_types_ignore;
3611 offset_type dwz_types_elements_ignore;
3612
3613 gdb::array_view<const gdb_byte> dwz_index_content
3614 = get_gdb_index_contents_dwz (objfile, dwz);
3615
3616 if (dwz_index_content.empty ())
3617 return 0;
3618
3619 if (!read_gdb_index_from_buffer (objfile,
3620 bfd_get_filename (dwz->dwz_bfd), 1,
3621 dwz_index_content, &dwz_map,
3622 &dwz_list, &dwz_list_elements,
3623 &dwz_types_ignore,
3624 &dwz_types_elements_ignore))
3625 {
3626 warning (_("could not read '.gdb_index' section from %s; skipping"),
3627 bfd_get_filename (dwz->dwz_bfd));
3628 return 0;
3629 }
3630 }
3631
3632 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3633 dwz_list, dwz_list_elements);
3634
3635 if (types_list_elements)
3636 {
3637 struct dwarf2_section_info *section;
3638
3639 /* We can only handle a single .debug_types when we have an
3640 index. */
3641 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3642 return 0;
3643
3644 section = VEC_index (dwarf2_section_info_def,
3645 dwarf2_per_objfile->types, 0);
3646
3647 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3648 types_list, types_list_elements);
3649 }
3650
3651 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3652
3653 dwarf2_per_objfile->index_table = std::move (map);
3654 dwarf2_per_objfile->using_index = 1;
3655 dwarf2_per_objfile->quick_file_names_table =
3656 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3657
3658 return 1;
3659 }
3660
3661 /* die_reader_func for dw2_get_file_names. */
3662
3663 static void
3664 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3665 const gdb_byte *info_ptr,
3666 struct die_info *comp_unit_die,
3667 int has_children,
3668 void *data)
3669 {
3670 struct dwarf2_cu *cu = reader->cu;
3671 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3672 struct dwarf2_per_objfile *dwarf2_per_objfile
3673 = cu->per_cu->dwarf2_per_objfile;
3674 struct objfile *objfile = dwarf2_per_objfile->objfile;
3675 struct dwarf2_per_cu_data *lh_cu;
3676 struct attribute *attr;
3677 int i;
3678 void **slot;
3679 struct quick_file_names *qfn;
3680
3681 gdb_assert (! this_cu->is_debug_types);
3682
3683 /* Our callers never want to match partial units -- instead they
3684 will match the enclosing full CU. */
3685 if (comp_unit_die->tag == DW_TAG_partial_unit)
3686 {
3687 this_cu->v.quick->no_file_data = 1;
3688 return;
3689 }
3690
3691 lh_cu = this_cu;
3692 slot = NULL;
3693
3694 line_header_up lh;
3695 sect_offset line_offset {};
3696
3697 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3698 if (attr)
3699 {
3700 struct quick_file_names find_entry;
3701
3702 line_offset = (sect_offset) DW_UNSND (attr);
3703
3704 /* We may have already read in this line header (TU line header sharing).
3705 If we have we're done. */
3706 find_entry.hash.dwo_unit = cu->dwo_unit;
3707 find_entry.hash.line_sect_off = line_offset;
3708 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3709 &find_entry, INSERT);
3710 if (*slot != NULL)
3711 {
3712 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3713 return;
3714 }
3715
3716 lh = dwarf_decode_line_header (line_offset, cu);
3717 }
3718 if (lh == NULL)
3719 {
3720 lh_cu->v.quick->no_file_data = 1;
3721 return;
3722 }
3723
3724 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3725 qfn->hash.dwo_unit = cu->dwo_unit;
3726 qfn->hash.line_sect_off = line_offset;
3727 gdb_assert (slot != NULL);
3728 *slot = qfn;
3729
3730 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3731
3732 qfn->num_file_names = lh->file_names.size ();
3733 qfn->file_names =
3734 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3735 for (i = 0; i < lh->file_names.size (); ++i)
3736 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3737 qfn->real_names = NULL;
3738
3739 lh_cu->v.quick->file_names = qfn;
3740 }
3741
3742 /* A helper for the "quick" functions which attempts to read the line
3743 table for THIS_CU. */
3744
3745 static struct quick_file_names *
3746 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3747 {
3748 /* This should never be called for TUs. */
3749 gdb_assert (! this_cu->is_debug_types);
3750 /* Nor type unit groups. */
3751 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3752
3753 if (this_cu->v.quick->file_names != NULL)
3754 return this_cu->v.quick->file_names;
3755 /* If we know there is no line data, no point in looking again. */
3756 if (this_cu->v.quick->no_file_data)
3757 return NULL;
3758
3759 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3760
3761 if (this_cu->v.quick->no_file_data)
3762 return NULL;
3763 return this_cu->v.quick->file_names;
3764 }
3765
3766 /* A helper for the "quick" functions which computes and caches the
3767 real path for a given file name from the line table. */
3768
3769 static const char *
3770 dw2_get_real_path (struct objfile *objfile,
3771 struct quick_file_names *qfn, int index)
3772 {
3773 if (qfn->real_names == NULL)
3774 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3775 qfn->num_file_names, const char *);
3776
3777 if (qfn->real_names[index] == NULL)
3778 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3779
3780 return qfn->real_names[index];
3781 }
3782
3783 static struct symtab *
3784 dw2_find_last_source_symtab (struct objfile *objfile)
3785 {
3786 struct dwarf2_per_objfile *dwarf2_per_objfile
3787 = get_dwarf2_per_objfile (objfile);
3788 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3789 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3790
3791 if (cust == NULL)
3792 return NULL;
3793
3794 return compunit_primary_filetab (cust);
3795 }
3796
3797 /* Traversal function for dw2_forget_cached_source_info. */
3798
3799 static int
3800 dw2_free_cached_file_names (void **slot, void *info)
3801 {
3802 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3803
3804 if (file_data->real_names)
3805 {
3806 int i;
3807
3808 for (i = 0; i < file_data->num_file_names; ++i)
3809 {
3810 xfree ((void*) file_data->real_names[i]);
3811 file_data->real_names[i] = NULL;
3812 }
3813 }
3814
3815 return 1;
3816 }
3817
3818 static void
3819 dw2_forget_cached_source_info (struct objfile *objfile)
3820 {
3821 struct dwarf2_per_objfile *dwarf2_per_objfile
3822 = get_dwarf2_per_objfile (objfile);
3823
3824 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3825 dw2_free_cached_file_names, NULL);
3826 }
3827
3828 /* Helper function for dw2_map_symtabs_matching_filename that expands
3829 the symtabs and calls the iterator. */
3830
3831 static int
3832 dw2_map_expand_apply (struct objfile *objfile,
3833 struct dwarf2_per_cu_data *per_cu,
3834 const char *name, const char *real_path,
3835 gdb::function_view<bool (symtab *)> callback)
3836 {
3837 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3838
3839 /* Don't visit already-expanded CUs. */
3840 if (per_cu->v.quick->compunit_symtab)
3841 return 0;
3842
3843 /* This may expand more than one symtab, and we want to iterate over
3844 all of them. */
3845 dw2_instantiate_symtab (per_cu, false);
3846
3847 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3848 last_made, callback);
3849 }
3850
3851 /* Implementation of the map_symtabs_matching_filename method. */
3852
3853 static bool
3854 dw2_map_symtabs_matching_filename
3855 (struct objfile *objfile, const char *name, const char *real_path,
3856 gdb::function_view<bool (symtab *)> callback)
3857 {
3858 const char *name_basename = lbasename (name);
3859 struct dwarf2_per_objfile *dwarf2_per_objfile
3860 = get_dwarf2_per_objfile (objfile);
3861
3862 /* The rule is CUs specify all the files, including those used by
3863 any TU, so there's no need to scan TUs here. */
3864
3865 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3866 {
3867 /* We only need to look at symtabs not already expanded. */
3868 if (per_cu->v.quick->compunit_symtab)
3869 continue;
3870
3871 quick_file_names *file_data = dw2_get_file_names (per_cu);
3872 if (file_data == NULL)
3873 continue;
3874
3875 for (int j = 0; j < file_data->num_file_names; ++j)
3876 {
3877 const char *this_name = file_data->file_names[j];
3878 const char *this_real_name;
3879
3880 if (compare_filenames_for_search (this_name, name))
3881 {
3882 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3883 callback))
3884 return true;
3885 continue;
3886 }
3887
3888 /* Before we invoke realpath, which can get expensive when many
3889 files are involved, do a quick comparison of the basenames. */
3890 if (! basenames_may_differ
3891 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3892 continue;
3893
3894 this_real_name = dw2_get_real_path (objfile, file_data, j);
3895 if (compare_filenames_for_search (this_real_name, name))
3896 {
3897 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3898 callback))
3899 return true;
3900 continue;
3901 }
3902
3903 if (real_path != NULL)
3904 {
3905 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3906 gdb_assert (IS_ABSOLUTE_PATH (name));
3907 if (this_real_name != NULL
3908 && FILENAME_CMP (real_path, this_real_name) == 0)
3909 {
3910 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3911 callback))
3912 return true;
3913 continue;
3914 }
3915 }
3916 }
3917 }
3918
3919 return false;
3920 }
3921
3922 /* Struct used to manage iterating over all CUs looking for a symbol. */
3923
3924 struct dw2_symtab_iterator
3925 {
3926 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3927 struct dwarf2_per_objfile *dwarf2_per_objfile;
3928 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3929 int want_specific_block;
3930 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3931 Unused if !WANT_SPECIFIC_BLOCK. */
3932 int block_index;
3933 /* The kind of symbol we're looking for. */
3934 domain_enum domain;
3935 /* The list of CUs from the index entry of the symbol,
3936 or NULL if not found. */
3937 offset_type *vec;
3938 /* The next element in VEC to look at. */
3939 int next;
3940 /* The number of elements in VEC, or zero if there is no match. */
3941 int length;
3942 /* Have we seen a global version of the symbol?
3943 If so we can ignore all further global instances.
3944 This is to work around gold/15646, inefficient gold-generated
3945 indices. */
3946 int global_seen;
3947 };
3948
3949 /* Initialize the index symtab iterator ITER.
3950 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3951 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3952
3953 static void
3954 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3955 struct dwarf2_per_objfile *dwarf2_per_objfile,
3956 int want_specific_block,
3957 int block_index,
3958 domain_enum domain,
3959 const char *name)
3960 {
3961 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3962 iter->want_specific_block = want_specific_block;
3963 iter->block_index = block_index;
3964 iter->domain = domain;
3965 iter->next = 0;
3966 iter->global_seen = 0;
3967
3968 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3969
3970 /* index is NULL if OBJF_READNOW. */
3971 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3972 iter->length = MAYBE_SWAP (*iter->vec);
3973 else
3974 {
3975 iter->vec = NULL;
3976 iter->length = 0;
3977 }
3978 }
3979
3980 /* Return the next matching CU or NULL if there are no more. */
3981
3982 static struct dwarf2_per_cu_data *
3983 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3984 {
3985 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3986
3987 for ( ; iter->next < iter->length; ++iter->next)
3988 {
3989 offset_type cu_index_and_attrs =
3990 MAYBE_SWAP (iter->vec[iter->next + 1]);
3991 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3992 int want_static = iter->block_index != GLOBAL_BLOCK;
3993 /* This value is only valid for index versions >= 7. */
3994 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3995 gdb_index_symbol_kind symbol_kind =
3996 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3997 /* Only check the symbol attributes if they're present.
3998 Indices prior to version 7 don't record them,
3999 and indices >= 7 may elide them for certain symbols
4000 (gold does this). */
4001 int attrs_valid =
4002 (dwarf2_per_objfile->index_table->version >= 7
4003 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4004
4005 /* Don't crash on bad data. */
4006 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4007 + dwarf2_per_objfile->all_type_units.size ()))
4008 {
4009 complaint (_(".gdb_index entry has bad CU index"
4010 " [in module %s]"),
4011 objfile_name (dwarf2_per_objfile->objfile));
4012 continue;
4013 }
4014
4015 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4016
4017 /* Skip if already read in. */
4018 if (per_cu->v.quick->compunit_symtab)
4019 continue;
4020
4021 /* Check static vs global. */
4022 if (attrs_valid)
4023 {
4024 if (iter->want_specific_block
4025 && want_static != is_static)
4026 continue;
4027 /* Work around gold/15646. */
4028 if (!is_static && iter->global_seen)
4029 continue;
4030 if (!is_static)
4031 iter->global_seen = 1;
4032 }
4033
4034 /* Only check the symbol's kind if it has one. */
4035 if (attrs_valid)
4036 {
4037 switch (iter->domain)
4038 {
4039 case VAR_DOMAIN:
4040 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4041 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4042 /* Some types are also in VAR_DOMAIN. */
4043 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4044 continue;
4045 break;
4046 case STRUCT_DOMAIN:
4047 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4048 continue;
4049 break;
4050 case LABEL_DOMAIN:
4051 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4052 continue;
4053 break;
4054 default:
4055 break;
4056 }
4057 }
4058
4059 ++iter->next;
4060 return per_cu;
4061 }
4062
4063 return NULL;
4064 }
4065
4066 static struct compunit_symtab *
4067 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4068 const char *name, domain_enum domain)
4069 {
4070 struct compunit_symtab *stab_best = NULL;
4071 struct dwarf2_per_objfile *dwarf2_per_objfile
4072 = get_dwarf2_per_objfile (objfile);
4073
4074 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4075
4076 struct dw2_symtab_iterator iter;
4077 struct dwarf2_per_cu_data *per_cu;
4078
4079 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4080
4081 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4082 {
4083 struct symbol *sym, *with_opaque = NULL;
4084 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4085 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4086 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4087
4088 sym = block_find_symbol (block, name, domain,
4089 block_find_non_opaque_type_preferred,
4090 &with_opaque);
4091
4092 /* Some caution must be observed with overloaded functions
4093 and methods, since the index will not contain any overload
4094 information (but NAME might contain it). */
4095
4096 if (sym != NULL
4097 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4098 return stab;
4099 if (with_opaque != NULL
4100 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4101 stab_best = stab;
4102
4103 /* Keep looking through other CUs. */
4104 }
4105
4106 return stab_best;
4107 }
4108
4109 static void
4110 dw2_print_stats (struct objfile *objfile)
4111 {
4112 struct dwarf2_per_objfile *dwarf2_per_objfile
4113 = get_dwarf2_per_objfile (objfile);
4114 int total = (dwarf2_per_objfile->all_comp_units.size ()
4115 + dwarf2_per_objfile->all_type_units.size ());
4116 int count = 0;
4117
4118 for (int i = 0; i < total; ++i)
4119 {
4120 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4121
4122 if (!per_cu->v.quick->compunit_symtab)
4123 ++count;
4124 }
4125 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4126 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4127 }
4128
4129 /* This dumps minimal information about the index.
4130 It is called via "mt print objfiles".
4131 One use is to verify .gdb_index has been loaded by the
4132 gdb.dwarf2/gdb-index.exp testcase. */
4133
4134 static void
4135 dw2_dump (struct objfile *objfile)
4136 {
4137 struct dwarf2_per_objfile *dwarf2_per_objfile
4138 = get_dwarf2_per_objfile (objfile);
4139
4140 gdb_assert (dwarf2_per_objfile->using_index);
4141 printf_filtered (".gdb_index:");
4142 if (dwarf2_per_objfile->index_table != NULL)
4143 {
4144 printf_filtered (" version %d\n",
4145 dwarf2_per_objfile->index_table->version);
4146 }
4147 else
4148 printf_filtered (" faked for \"readnow\"\n");
4149 printf_filtered ("\n");
4150 }
4151
4152 static void
4153 dw2_expand_symtabs_for_function (struct objfile *objfile,
4154 const char *func_name)
4155 {
4156 struct dwarf2_per_objfile *dwarf2_per_objfile
4157 = get_dwarf2_per_objfile (objfile);
4158
4159 struct dw2_symtab_iterator iter;
4160 struct dwarf2_per_cu_data *per_cu;
4161
4162 /* Note: It doesn't matter what we pass for block_index here. */
4163 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4164 func_name);
4165
4166 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4167 dw2_instantiate_symtab (per_cu, false);
4168
4169 }
4170
4171 static void
4172 dw2_expand_all_symtabs (struct objfile *objfile)
4173 {
4174 struct dwarf2_per_objfile *dwarf2_per_objfile
4175 = get_dwarf2_per_objfile (objfile);
4176 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4177 + dwarf2_per_objfile->all_type_units.size ());
4178
4179 for (int i = 0; i < total_units; ++i)
4180 {
4181 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4182
4183 /* We don't want to directly expand a partial CU, because if we
4184 read it with the wrong language, then assertion failures can
4185 be triggered later on. See PR symtab/23010. So, tell
4186 dw2_instantiate_symtab to skip partial CUs -- any important
4187 partial CU will be read via DW_TAG_imported_unit anyway. */
4188 dw2_instantiate_symtab (per_cu, true);
4189 }
4190 }
4191
4192 static void
4193 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4194 const char *fullname)
4195 {
4196 struct dwarf2_per_objfile *dwarf2_per_objfile
4197 = get_dwarf2_per_objfile (objfile);
4198
4199 /* We don't need to consider type units here.
4200 This is only called for examining code, e.g. expand_line_sal.
4201 There can be an order of magnitude (or more) more type units
4202 than comp units, and we avoid them if we can. */
4203
4204 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4205 {
4206 /* We only need to look at symtabs not already expanded. */
4207 if (per_cu->v.quick->compunit_symtab)
4208 continue;
4209
4210 quick_file_names *file_data = dw2_get_file_names (per_cu);
4211 if (file_data == NULL)
4212 continue;
4213
4214 for (int j = 0; j < file_data->num_file_names; ++j)
4215 {
4216 const char *this_fullname = file_data->file_names[j];
4217
4218 if (filename_cmp (this_fullname, fullname) == 0)
4219 {
4220 dw2_instantiate_symtab (per_cu, false);
4221 break;
4222 }
4223 }
4224 }
4225 }
4226
4227 static void
4228 dw2_map_matching_symbols (struct objfile *objfile,
4229 const char * name, domain_enum domain,
4230 int global,
4231 int (*callback) (struct block *,
4232 struct symbol *, void *),
4233 void *data, symbol_name_match_type match,
4234 symbol_compare_ftype *ordered_compare)
4235 {
4236 /* Currently unimplemented; used for Ada. The function can be called if the
4237 current language is Ada for a non-Ada objfile using GNU index. As Ada
4238 does not look for non-Ada symbols this function should just return. */
4239 }
4240
4241 /* Symbol name matcher for .gdb_index names.
4242
4243 Symbol names in .gdb_index have a few particularities:
4244
4245 - There's no indication of which is the language of each symbol.
4246
4247 Since each language has its own symbol name matching algorithm,
4248 and we don't know which language is the right one, we must match
4249 each symbol against all languages. This would be a potential
4250 performance problem if it were not mitigated by the
4251 mapped_index::name_components lookup table, which significantly
4252 reduces the number of times we need to call into this matcher,
4253 making it a non-issue.
4254
4255 - Symbol names in the index have no overload (parameter)
4256 information. I.e., in C++, "foo(int)" and "foo(long)" both
4257 appear as "foo" in the index, for example.
4258
4259 This means that the lookup names passed to the symbol name
4260 matcher functions must have no parameter information either
4261 because (e.g.) symbol search name "foo" does not match
4262 lookup-name "foo(int)" [while swapping search name for lookup
4263 name would match].
4264 */
4265 class gdb_index_symbol_name_matcher
4266 {
4267 public:
4268 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4269 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4270
4271 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4272 Returns true if any matcher matches. */
4273 bool matches (const char *symbol_name);
4274
4275 private:
4276 /* A reference to the lookup name we're matching against. */
4277 const lookup_name_info &m_lookup_name;
4278
4279 /* A vector holding all the different symbol name matchers, for all
4280 languages. */
4281 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4282 };
4283
4284 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4285 (const lookup_name_info &lookup_name)
4286 : m_lookup_name (lookup_name)
4287 {
4288 /* Prepare the vector of comparison functions upfront, to avoid
4289 doing the same work for each symbol. Care is taken to avoid
4290 matching with the same matcher more than once if/when multiple
4291 languages use the same matcher function. */
4292 auto &matchers = m_symbol_name_matcher_funcs;
4293 matchers.reserve (nr_languages);
4294
4295 matchers.push_back (default_symbol_name_matcher);
4296
4297 for (int i = 0; i < nr_languages; i++)
4298 {
4299 const language_defn *lang = language_def ((enum language) i);
4300 symbol_name_matcher_ftype *name_matcher
4301 = get_symbol_name_matcher (lang, m_lookup_name);
4302
4303 /* Don't insert the same comparison routine more than once.
4304 Note that we do this linear walk instead of a seemingly
4305 cheaper sorted insert, or use a std::set or something like
4306 that, because relative order of function addresses is not
4307 stable. This is not a problem in practice because the number
4308 of supported languages is low, and the cost here is tiny
4309 compared to the number of searches we'll do afterwards using
4310 this object. */
4311 if (name_matcher != default_symbol_name_matcher
4312 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4313 == matchers.end ()))
4314 matchers.push_back (name_matcher);
4315 }
4316 }
4317
4318 bool
4319 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4320 {
4321 for (auto matches_name : m_symbol_name_matcher_funcs)
4322 if (matches_name (symbol_name, m_lookup_name, NULL))
4323 return true;
4324
4325 return false;
4326 }
4327
4328 /* Starting from a search name, return the string that finds the upper
4329 bound of all strings that start with SEARCH_NAME in a sorted name
4330 list. Returns the empty string to indicate that the upper bound is
4331 the end of the list. */
4332
4333 static std::string
4334 make_sort_after_prefix_name (const char *search_name)
4335 {
4336 /* When looking to complete "func", we find the upper bound of all
4337 symbols that start with "func" by looking for where we'd insert
4338 the closest string that would follow "func" in lexicographical
4339 order. Usually, that's "func"-with-last-character-incremented,
4340 i.e. "fund". Mind non-ASCII characters, though. Usually those
4341 will be UTF-8 multi-byte sequences, but we can't be certain.
4342 Especially mind the 0xff character, which is a valid character in
4343 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4344 rule out compilers allowing it in identifiers. Note that
4345 conveniently, strcmp/strcasecmp are specified to compare
4346 characters interpreted as unsigned char. So what we do is treat
4347 the whole string as a base 256 number composed of a sequence of
4348 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4349 to 0, and carries 1 to the following more-significant position.
4350 If the very first character in SEARCH_NAME ends up incremented
4351 and carries/overflows, then the upper bound is the end of the
4352 list. The string after the empty string is also the empty
4353 string.
4354
4355 Some examples of this operation:
4356
4357 SEARCH_NAME => "+1" RESULT
4358
4359 "abc" => "abd"
4360 "ab\xff" => "ac"
4361 "\xff" "a" "\xff" => "\xff" "b"
4362 "\xff" => ""
4363 "\xff\xff" => ""
4364 "" => ""
4365
4366 Then, with these symbols for example:
4367
4368 func
4369 func1
4370 fund
4371
4372 completing "func" looks for symbols between "func" and
4373 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4374 which finds "func" and "func1", but not "fund".
4375
4376 And with:
4377
4378 funcÿ (Latin1 'ÿ' [0xff])
4379 funcÿ1
4380 fund
4381
4382 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4383 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4384
4385 And with:
4386
4387 ÿÿ (Latin1 'ÿ' [0xff])
4388 ÿÿ1
4389
4390 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4391 the end of the list.
4392 */
4393 std::string after = search_name;
4394 while (!after.empty () && (unsigned char) after.back () == 0xff)
4395 after.pop_back ();
4396 if (!after.empty ())
4397 after.back () = (unsigned char) after.back () + 1;
4398 return after;
4399 }
4400
4401 /* See declaration. */
4402
4403 std::pair<std::vector<name_component>::const_iterator,
4404 std::vector<name_component>::const_iterator>
4405 mapped_index_base::find_name_components_bounds
4406 (const lookup_name_info &lookup_name_without_params) const
4407 {
4408 auto *name_cmp
4409 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4410
4411 const char *cplus
4412 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4413
4414 /* Comparison function object for lower_bound that matches against a
4415 given symbol name. */
4416 auto lookup_compare_lower = [&] (const name_component &elem,
4417 const char *name)
4418 {
4419 const char *elem_qualified = this->symbol_name_at (elem.idx);
4420 const char *elem_name = elem_qualified + elem.name_offset;
4421 return name_cmp (elem_name, name) < 0;
4422 };
4423
4424 /* Comparison function object for upper_bound that matches against a
4425 given symbol name. */
4426 auto lookup_compare_upper = [&] (const char *name,
4427 const name_component &elem)
4428 {
4429 const char *elem_qualified = this->symbol_name_at (elem.idx);
4430 const char *elem_name = elem_qualified + elem.name_offset;
4431 return name_cmp (name, elem_name) < 0;
4432 };
4433
4434 auto begin = this->name_components.begin ();
4435 auto end = this->name_components.end ();
4436
4437 /* Find the lower bound. */
4438 auto lower = [&] ()
4439 {
4440 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4441 return begin;
4442 else
4443 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4444 } ();
4445
4446 /* Find the upper bound. */
4447 auto upper = [&] ()
4448 {
4449 if (lookup_name_without_params.completion_mode ())
4450 {
4451 /* In completion mode, we want UPPER to point past all
4452 symbols names that have the same prefix. I.e., with
4453 these symbols, and completing "func":
4454
4455 function << lower bound
4456 function1
4457 other_function << upper bound
4458
4459 We find the upper bound by looking for the insertion
4460 point of "func"-with-last-character-incremented,
4461 i.e. "fund". */
4462 std::string after = make_sort_after_prefix_name (cplus);
4463 if (after.empty ())
4464 return end;
4465 return std::lower_bound (lower, end, after.c_str (),
4466 lookup_compare_lower);
4467 }
4468 else
4469 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4470 } ();
4471
4472 return {lower, upper};
4473 }
4474
4475 /* See declaration. */
4476
4477 void
4478 mapped_index_base::build_name_components ()
4479 {
4480 if (!this->name_components.empty ())
4481 return;
4482
4483 this->name_components_casing = case_sensitivity;
4484 auto *name_cmp
4485 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4486
4487 /* The code below only knows how to break apart components of C++
4488 symbol names (and other languages that use '::' as
4489 namespace/module separator). If we add support for wild matching
4490 to some language that uses some other operator (E.g., Ada, Go and
4491 D use '.'), then we'll need to try splitting the symbol name
4492 according to that language too. Note that Ada does support wild
4493 matching, but doesn't currently support .gdb_index. */
4494 auto count = this->symbol_name_count ();
4495 for (offset_type idx = 0; idx < count; idx++)
4496 {
4497 if (this->symbol_name_slot_invalid (idx))
4498 continue;
4499
4500 const char *name = this->symbol_name_at (idx);
4501
4502 /* Add each name component to the name component table. */
4503 unsigned int previous_len = 0;
4504 for (unsigned int current_len = cp_find_first_component (name);
4505 name[current_len] != '\0';
4506 current_len += cp_find_first_component (name + current_len))
4507 {
4508 gdb_assert (name[current_len] == ':');
4509 this->name_components.push_back ({previous_len, idx});
4510 /* Skip the '::'. */
4511 current_len += 2;
4512 previous_len = current_len;
4513 }
4514 this->name_components.push_back ({previous_len, idx});
4515 }
4516
4517 /* Sort name_components elements by name. */
4518 auto name_comp_compare = [&] (const name_component &left,
4519 const name_component &right)
4520 {
4521 const char *left_qualified = this->symbol_name_at (left.idx);
4522 const char *right_qualified = this->symbol_name_at (right.idx);
4523
4524 const char *left_name = left_qualified + left.name_offset;
4525 const char *right_name = right_qualified + right.name_offset;
4526
4527 return name_cmp (left_name, right_name) < 0;
4528 };
4529
4530 std::sort (this->name_components.begin (),
4531 this->name_components.end (),
4532 name_comp_compare);
4533 }
4534
4535 /* Helper for dw2_expand_symtabs_matching that works with a
4536 mapped_index_base instead of the containing objfile. This is split
4537 to a separate function in order to be able to unit test the
4538 name_components matching using a mock mapped_index_base. For each
4539 symbol name that matches, calls MATCH_CALLBACK, passing it the
4540 symbol's index in the mapped_index_base symbol table. */
4541
4542 static void
4543 dw2_expand_symtabs_matching_symbol
4544 (mapped_index_base &index,
4545 const lookup_name_info &lookup_name_in,
4546 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4547 enum search_domain kind,
4548 gdb::function_view<void (offset_type)> match_callback)
4549 {
4550 lookup_name_info lookup_name_without_params
4551 = lookup_name_in.make_ignore_params ();
4552 gdb_index_symbol_name_matcher lookup_name_matcher
4553 (lookup_name_without_params);
4554
4555 /* Build the symbol name component sorted vector, if we haven't
4556 yet. */
4557 index.build_name_components ();
4558
4559 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4560
4561 /* Now for each symbol name in range, check to see if we have a name
4562 match, and if so, call the MATCH_CALLBACK callback. */
4563
4564 /* The same symbol may appear more than once in the range though.
4565 E.g., if we're looking for symbols that complete "w", and we have
4566 a symbol named "w1::w2", we'll find the two name components for
4567 that same symbol in the range. To be sure we only call the
4568 callback once per symbol, we first collect the symbol name
4569 indexes that matched in a temporary vector and ignore
4570 duplicates. */
4571 std::vector<offset_type> matches;
4572 matches.reserve (std::distance (bounds.first, bounds.second));
4573
4574 for (; bounds.first != bounds.second; ++bounds.first)
4575 {
4576 const char *qualified = index.symbol_name_at (bounds.first->idx);
4577
4578 if (!lookup_name_matcher.matches (qualified)
4579 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4580 continue;
4581
4582 matches.push_back (bounds.first->idx);
4583 }
4584
4585 std::sort (matches.begin (), matches.end ());
4586
4587 /* Finally call the callback, once per match. */
4588 ULONGEST prev = -1;
4589 for (offset_type idx : matches)
4590 {
4591 if (prev != idx)
4592 {
4593 match_callback (idx);
4594 prev = idx;
4595 }
4596 }
4597
4598 /* Above we use a type wider than idx's for 'prev', since 0 and
4599 (offset_type)-1 are both possible values. */
4600 static_assert (sizeof (prev) > sizeof (offset_type), "");
4601 }
4602
4603 #if GDB_SELF_TEST
4604
4605 namespace selftests { namespace dw2_expand_symtabs_matching {
4606
4607 /* A mock .gdb_index/.debug_names-like name index table, enough to
4608 exercise dw2_expand_symtabs_matching_symbol, which works with the
4609 mapped_index_base interface. Builds an index from the symbol list
4610 passed as parameter to the constructor. */
4611 class mock_mapped_index : public mapped_index_base
4612 {
4613 public:
4614 mock_mapped_index (gdb::array_view<const char *> symbols)
4615 : m_symbol_table (symbols)
4616 {}
4617
4618 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4619
4620 /* Return the number of names in the symbol table. */
4621 size_t symbol_name_count () const override
4622 {
4623 return m_symbol_table.size ();
4624 }
4625
4626 /* Get the name of the symbol at IDX in the symbol table. */
4627 const char *symbol_name_at (offset_type idx) const override
4628 {
4629 return m_symbol_table[idx];
4630 }
4631
4632 private:
4633 gdb::array_view<const char *> m_symbol_table;
4634 };
4635
4636 /* Convenience function that converts a NULL pointer to a "<null>"
4637 string, to pass to print routines. */
4638
4639 static const char *
4640 string_or_null (const char *str)
4641 {
4642 return str != NULL ? str : "<null>";
4643 }
4644
4645 /* Check if a lookup_name_info built from
4646 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4647 index. EXPECTED_LIST is the list of expected matches, in expected
4648 matching order. If no match expected, then an empty list is
4649 specified. Returns true on success. On failure prints a warning
4650 indicating the file:line that failed, and returns false. */
4651
4652 static bool
4653 check_match (const char *file, int line,
4654 mock_mapped_index &mock_index,
4655 const char *name, symbol_name_match_type match_type,
4656 bool completion_mode,
4657 std::initializer_list<const char *> expected_list)
4658 {
4659 lookup_name_info lookup_name (name, match_type, completion_mode);
4660
4661 bool matched = true;
4662
4663 auto mismatch = [&] (const char *expected_str,
4664 const char *got)
4665 {
4666 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4667 "expected=\"%s\", got=\"%s\"\n"),
4668 file, line,
4669 (match_type == symbol_name_match_type::FULL
4670 ? "FULL" : "WILD"),
4671 name, string_or_null (expected_str), string_or_null (got));
4672 matched = false;
4673 };
4674
4675 auto expected_it = expected_list.begin ();
4676 auto expected_end = expected_list.end ();
4677
4678 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4679 NULL, ALL_DOMAIN,
4680 [&] (offset_type idx)
4681 {
4682 const char *matched_name = mock_index.symbol_name_at (idx);
4683 const char *expected_str
4684 = expected_it == expected_end ? NULL : *expected_it++;
4685
4686 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4687 mismatch (expected_str, matched_name);
4688 });
4689
4690 const char *expected_str
4691 = expected_it == expected_end ? NULL : *expected_it++;
4692 if (expected_str != NULL)
4693 mismatch (expected_str, NULL);
4694
4695 return matched;
4696 }
4697
4698 /* The symbols added to the mock mapped_index for testing (in
4699 canonical form). */
4700 static const char *test_symbols[] = {
4701 "function",
4702 "std::bar",
4703 "std::zfunction",
4704 "std::zfunction2",
4705 "w1::w2",
4706 "ns::foo<char*>",
4707 "ns::foo<int>",
4708 "ns::foo<long>",
4709 "ns2::tmpl<int>::foo2",
4710 "(anonymous namespace)::A::B::C",
4711
4712 /* These are used to check that the increment-last-char in the
4713 matching algorithm for completion doesn't match "t1_fund" when
4714 completing "t1_func". */
4715 "t1_func",
4716 "t1_func1",
4717 "t1_fund",
4718 "t1_fund1",
4719
4720 /* A UTF-8 name with multi-byte sequences to make sure that
4721 cp-name-parser understands this as a single identifier ("função"
4722 is "function" in PT). */
4723 u8"u8função",
4724
4725 /* \377 (0xff) is Latin1 'ÿ'. */
4726 "yfunc\377",
4727
4728 /* \377 (0xff) is Latin1 'ÿ'. */
4729 "\377",
4730 "\377\377123",
4731
4732 /* A name with all sorts of complications. Starts with "z" to make
4733 it easier for the completion tests below. */
4734 #define Z_SYM_NAME \
4735 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4736 "::tuple<(anonymous namespace)::ui*, " \
4737 "std::default_delete<(anonymous namespace)::ui>, void>"
4738
4739 Z_SYM_NAME
4740 };
4741
4742 /* Returns true if the mapped_index_base::find_name_component_bounds
4743 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4744 in completion mode. */
4745
4746 static bool
4747 check_find_bounds_finds (mapped_index_base &index,
4748 const char *search_name,
4749 gdb::array_view<const char *> expected_syms)
4750 {
4751 lookup_name_info lookup_name (search_name,
4752 symbol_name_match_type::FULL, true);
4753
4754 auto bounds = index.find_name_components_bounds (lookup_name);
4755
4756 size_t distance = std::distance (bounds.first, bounds.second);
4757 if (distance != expected_syms.size ())
4758 return false;
4759
4760 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4761 {
4762 auto nc_elem = bounds.first + exp_elem;
4763 const char *qualified = index.symbol_name_at (nc_elem->idx);
4764 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4765 return false;
4766 }
4767
4768 return true;
4769 }
4770
4771 /* Test the lower-level mapped_index::find_name_component_bounds
4772 method. */
4773
4774 static void
4775 test_mapped_index_find_name_component_bounds ()
4776 {
4777 mock_mapped_index mock_index (test_symbols);
4778
4779 mock_index.build_name_components ();
4780
4781 /* Test the lower-level mapped_index::find_name_component_bounds
4782 method in completion mode. */
4783 {
4784 static const char *expected_syms[] = {
4785 "t1_func",
4786 "t1_func1",
4787 };
4788
4789 SELF_CHECK (check_find_bounds_finds (mock_index,
4790 "t1_func", expected_syms));
4791 }
4792
4793 /* Check that the increment-last-char in the name matching algorithm
4794 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4795 {
4796 static const char *expected_syms1[] = {
4797 "\377",
4798 "\377\377123",
4799 };
4800 SELF_CHECK (check_find_bounds_finds (mock_index,
4801 "\377", expected_syms1));
4802
4803 static const char *expected_syms2[] = {
4804 "\377\377123",
4805 };
4806 SELF_CHECK (check_find_bounds_finds (mock_index,
4807 "\377\377", expected_syms2));
4808 }
4809 }
4810
4811 /* Test dw2_expand_symtabs_matching_symbol. */
4812
4813 static void
4814 test_dw2_expand_symtabs_matching_symbol ()
4815 {
4816 mock_mapped_index mock_index (test_symbols);
4817
4818 /* We let all tests run until the end even if some fails, for debug
4819 convenience. */
4820 bool any_mismatch = false;
4821
4822 /* Create the expected symbols list (an initializer_list). Needed
4823 because lists have commas, and we need to pass them to CHECK,
4824 which is a macro. */
4825 #define EXPECT(...) { __VA_ARGS__ }
4826
4827 /* Wrapper for check_match that passes down the current
4828 __FILE__/__LINE__. */
4829 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4830 any_mismatch |= !check_match (__FILE__, __LINE__, \
4831 mock_index, \
4832 NAME, MATCH_TYPE, COMPLETION_MODE, \
4833 EXPECTED_LIST)
4834
4835 /* Identity checks. */
4836 for (const char *sym : test_symbols)
4837 {
4838 /* Should be able to match all existing symbols. */
4839 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4840 EXPECT (sym));
4841
4842 /* Should be able to match all existing symbols with
4843 parameters. */
4844 std::string with_params = std::string (sym) + "(int)";
4845 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4846 EXPECT (sym));
4847
4848 /* Should be able to match all existing symbols with
4849 parameters and qualifiers. */
4850 with_params = std::string (sym) + " ( int ) const";
4851 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4852 EXPECT (sym));
4853
4854 /* This should really find sym, but cp-name-parser.y doesn't
4855 know about lvalue/rvalue qualifiers yet. */
4856 with_params = std::string (sym) + " ( int ) &&";
4857 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4858 {});
4859 }
4860
4861 /* Check that the name matching algorithm for completion doesn't get
4862 confused with Latin1 'ÿ' / 0xff. */
4863 {
4864 static const char str[] = "\377";
4865 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4866 EXPECT ("\377", "\377\377123"));
4867 }
4868
4869 /* Check that the increment-last-char in the matching algorithm for
4870 completion doesn't match "t1_fund" when completing "t1_func". */
4871 {
4872 static const char str[] = "t1_func";
4873 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4874 EXPECT ("t1_func", "t1_func1"));
4875 }
4876
4877 /* Check that completion mode works at each prefix of the expected
4878 symbol name. */
4879 {
4880 static const char str[] = "function(int)";
4881 size_t len = strlen (str);
4882 std::string lookup;
4883
4884 for (size_t i = 1; i < len; i++)
4885 {
4886 lookup.assign (str, i);
4887 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4888 EXPECT ("function"));
4889 }
4890 }
4891
4892 /* While "w" is a prefix of both components, the match function
4893 should still only be called once. */
4894 {
4895 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4896 EXPECT ("w1::w2"));
4897 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4898 EXPECT ("w1::w2"));
4899 }
4900
4901 /* Same, with a "complicated" symbol. */
4902 {
4903 static const char str[] = Z_SYM_NAME;
4904 size_t len = strlen (str);
4905 std::string lookup;
4906
4907 for (size_t i = 1; i < len; i++)
4908 {
4909 lookup.assign (str, i);
4910 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4911 EXPECT (Z_SYM_NAME));
4912 }
4913 }
4914
4915 /* In FULL mode, an incomplete symbol doesn't match. */
4916 {
4917 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4918 {});
4919 }
4920
4921 /* A complete symbol with parameters matches any overload, since the
4922 index has no overload info. */
4923 {
4924 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4925 EXPECT ("std::zfunction", "std::zfunction2"));
4926 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4927 EXPECT ("std::zfunction", "std::zfunction2"));
4928 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4929 EXPECT ("std::zfunction", "std::zfunction2"));
4930 }
4931
4932 /* Check that whitespace is ignored appropriately. A symbol with a
4933 template argument list. */
4934 {
4935 static const char expected[] = "ns::foo<int>";
4936 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4937 EXPECT (expected));
4938 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4939 EXPECT (expected));
4940 }
4941
4942 /* Check that whitespace is ignored appropriately. A symbol with a
4943 template argument list that includes a pointer. */
4944 {
4945 static const char expected[] = "ns::foo<char*>";
4946 /* Try both completion and non-completion modes. */
4947 static const bool completion_mode[2] = {false, true};
4948 for (size_t i = 0; i < 2; i++)
4949 {
4950 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4951 completion_mode[i], EXPECT (expected));
4952 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4953 completion_mode[i], EXPECT (expected));
4954
4955 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4956 completion_mode[i], EXPECT (expected));
4957 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4958 completion_mode[i], EXPECT (expected));
4959 }
4960 }
4961
4962 {
4963 /* Check method qualifiers are ignored. */
4964 static const char expected[] = "ns::foo<char*>";
4965 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4966 symbol_name_match_type::FULL, true, EXPECT (expected));
4967 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4968 symbol_name_match_type::FULL, true, EXPECT (expected));
4969 CHECK_MATCH ("foo < char * > ( int ) const",
4970 symbol_name_match_type::WILD, true, EXPECT (expected));
4971 CHECK_MATCH ("foo < char * > ( int ) &&",
4972 symbol_name_match_type::WILD, true, EXPECT (expected));
4973 }
4974
4975 /* Test lookup names that don't match anything. */
4976 {
4977 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4978 {});
4979
4980 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4981 {});
4982 }
4983
4984 /* Some wild matching tests, exercising "(anonymous namespace)",
4985 which should not be confused with a parameter list. */
4986 {
4987 static const char *syms[] = {
4988 "A::B::C",
4989 "B::C",
4990 "C",
4991 "A :: B :: C ( int )",
4992 "B :: C ( int )",
4993 "C ( int )",
4994 };
4995
4996 for (const char *s : syms)
4997 {
4998 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4999 EXPECT ("(anonymous namespace)::A::B::C"));
5000 }
5001 }
5002
5003 {
5004 static const char expected[] = "ns2::tmpl<int>::foo2";
5005 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5006 EXPECT (expected));
5007 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5008 EXPECT (expected));
5009 }
5010
5011 SELF_CHECK (!any_mismatch);
5012
5013 #undef EXPECT
5014 #undef CHECK_MATCH
5015 }
5016
5017 static void
5018 run_test ()
5019 {
5020 test_mapped_index_find_name_component_bounds ();
5021 test_dw2_expand_symtabs_matching_symbol ();
5022 }
5023
5024 }} // namespace selftests::dw2_expand_symtabs_matching
5025
5026 #endif /* GDB_SELF_TEST */
5027
5028 /* If FILE_MATCHER is NULL or if PER_CU has
5029 dwarf2_per_cu_quick_data::MARK set (see
5030 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5031 EXPANSION_NOTIFY on it. */
5032
5033 static void
5034 dw2_expand_symtabs_matching_one
5035 (struct dwarf2_per_cu_data *per_cu,
5036 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5037 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5038 {
5039 if (file_matcher == NULL || per_cu->v.quick->mark)
5040 {
5041 bool symtab_was_null
5042 = (per_cu->v.quick->compunit_symtab == NULL);
5043
5044 dw2_instantiate_symtab (per_cu, false);
5045
5046 if (expansion_notify != NULL
5047 && symtab_was_null
5048 && per_cu->v.quick->compunit_symtab != NULL)
5049 expansion_notify (per_cu->v.quick->compunit_symtab);
5050 }
5051 }
5052
5053 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5054 matched, to expand corresponding CUs that were marked. IDX is the
5055 index of the symbol name that matched. */
5056
5057 static void
5058 dw2_expand_marked_cus
5059 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5060 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5061 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5062 search_domain kind)
5063 {
5064 offset_type *vec, vec_len, vec_idx;
5065 bool global_seen = false;
5066 mapped_index &index = *dwarf2_per_objfile->index_table;
5067
5068 vec = (offset_type *) (index.constant_pool
5069 + MAYBE_SWAP (index.symbol_table[idx].vec));
5070 vec_len = MAYBE_SWAP (vec[0]);
5071 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5072 {
5073 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5074 /* This value is only valid for index versions >= 7. */
5075 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5076 gdb_index_symbol_kind symbol_kind =
5077 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5078 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5079 /* Only check the symbol attributes if they're present.
5080 Indices prior to version 7 don't record them,
5081 and indices >= 7 may elide them for certain symbols
5082 (gold does this). */
5083 int attrs_valid =
5084 (index.version >= 7
5085 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5086
5087 /* Work around gold/15646. */
5088 if (attrs_valid)
5089 {
5090 if (!is_static && global_seen)
5091 continue;
5092 if (!is_static)
5093 global_seen = true;
5094 }
5095
5096 /* Only check the symbol's kind if it has one. */
5097 if (attrs_valid)
5098 {
5099 switch (kind)
5100 {
5101 case VARIABLES_DOMAIN:
5102 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5103 continue;
5104 break;
5105 case FUNCTIONS_DOMAIN:
5106 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5107 continue;
5108 break;
5109 case TYPES_DOMAIN:
5110 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5111 continue;
5112 break;
5113 default:
5114 break;
5115 }
5116 }
5117
5118 /* Don't crash on bad data. */
5119 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5120 + dwarf2_per_objfile->all_type_units.size ()))
5121 {
5122 complaint (_(".gdb_index entry has bad CU index"
5123 " [in module %s]"),
5124 objfile_name (dwarf2_per_objfile->objfile));
5125 continue;
5126 }
5127
5128 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5129 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5130 expansion_notify);
5131 }
5132 }
5133
5134 /* If FILE_MATCHER is non-NULL, set all the
5135 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5136 that match FILE_MATCHER. */
5137
5138 static void
5139 dw_expand_symtabs_matching_file_matcher
5140 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5141 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5142 {
5143 if (file_matcher == NULL)
5144 return;
5145
5146 objfile *const objfile = dwarf2_per_objfile->objfile;
5147
5148 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5149 htab_eq_pointer,
5150 NULL, xcalloc, xfree));
5151 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5152 htab_eq_pointer,
5153 NULL, xcalloc, xfree));
5154
5155 /* The rule is CUs specify all the files, including those used by
5156 any TU, so there's no need to scan TUs here. */
5157
5158 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5159 {
5160 QUIT;
5161
5162 per_cu->v.quick->mark = 0;
5163
5164 /* We only need to look at symtabs not already expanded. */
5165 if (per_cu->v.quick->compunit_symtab)
5166 continue;
5167
5168 quick_file_names *file_data = dw2_get_file_names (per_cu);
5169 if (file_data == NULL)
5170 continue;
5171
5172 if (htab_find (visited_not_found.get (), file_data) != NULL)
5173 continue;
5174 else if (htab_find (visited_found.get (), file_data) != NULL)
5175 {
5176 per_cu->v.quick->mark = 1;
5177 continue;
5178 }
5179
5180 for (int j = 0; j < file_data->num_file_names; ++j)
5181 {
5182 const char *this_real_name;
5183
5184 if (file_matcher (file_data->file_names[j], false))
5185 {
5186 per_cu->v.quick->mark = 1;
5187 break;
5188 }
5189
5190 /* Before we invoke realpath, which can get expensive when many
5191 files are involved, do a quick comparison of the basenames. */
5192 if (!basenames_may_differ
5193 && !file_matcher (lbasename (file_data->file_names[j]),
5194 true))
5195 continue;
5196
5197 this_real_name = dw2_get_real_path (objfile, file_data, j);
5198 if (file_matcher (this_real_name, false))
5199 {
5200 per_cu->v.quick->mark = 1;
5201 break;
5202 }
5203 }
5204
5205 void **slot = htab_find_slot (per_cu->v.quick->mark
5206 ? visited_found.get ()
5207 : visited_not_found.get (),
5208 file_data, INSERT);
5209 *slot = file_data;
5210 }
5211 }
5212
5213 static void
5214 dw2_expand_symtabs_matching
5215 (struct objfile *objfile,
5216 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5217 const lookup_name_info &lookup_name,
5218 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5219 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5220 enum search_domain kind)
5221 {
5222 struct dwarf2_per_objfile *dwarf2_per_objfile
5223 = get_dwarf2_per_objfile (objfile);
5224
5225 /* index_table is NULL if OBJF_READNOW. */
5226 if (!dwarf2_per_objfile->index_table)
5227 return;
5228
5229 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5230
5231 mapped_index &index = *dwarf2_per_objfile->index_table;
5232
5233 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5234 symbol_matcher,
5235 kind, [&] (offset_type idx)
5236 {
5237 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5238 expansion_notify, kind);
5239 });
5240 }
5241
5242 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5243 symtab. */
5244
5245 static struct compunit_symtab *
5246 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5247 CORE_ADDR pc)
5248 {
5249 int i;
5250
5251 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5252 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5253 return cust;
5254
5255 if (cust->includes == NULL)
5256 return NULL;
5257
5258 for (i = 0; cust->includes[i]; ++i)
5259 {
5260 struct compunit_symtab *s = cust->includes[i];
5261
5262 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5263 if (s != NULL)
5264 return s;
5265 }
5266
5267 return NULL;
5268 }
5269
5270 static struct compunit_symtab *
5271 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5272 struct bound_minimal_symbol msymbol,
5273 CORE_ADDR pc,
5274 struct obj_section *section,
5275 int warn_if_readin)
5276 {
5277 struct dwarf2_per_cu_data *data;
5278 struct compunit_symtab *result;
5279
5280 if (!objfile->partial_symtabs->psymtabs_addrmap)
5281 return NULL;
5282
5283 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5284 SECT_OFF_TEXT (objfile));
5285 data = (struct dwarf2_per_cu_data *) addrmap_find
5286 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5287 if (!data)
5288 return NULL;
5289
5290 if (warn_if_readin && data->v.quick->compunit_symtab)
5291 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5292 paddress (get_objfile_arch (objfile), pc));
5293
5294 result
5295 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5296 false),
5297 pc);
5298 gdb_assert (result != NULL);
5299 return result;
5300 }
5301
5302 static void
5303 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5304 void *data, int need_fullname)
5305 {
5306 struct dwarf2_per_objfile *dwarf2_per_objfile
5307 = get_dwarf2_per_objfile (objfile);
5308
5309 if (!dwarf2_per_objfile->filenames_cache)
5310 {
5311 dwarf2_per_objfile->filenames_cache.emplace ();
5312
5313 htab_up visited (htab_create_alloc (10,
5314 htab_hash_pointer, htab_eq_pointer,
5315 NULL, xcalloc, xfree));
5316
5317 /* The rule is CUs specify all the files, including those used
5318 by any TU, so there's no need to scan TUs here. We can
5319 ignore file names coming from already-expanded CUs. */
5320
5321 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5322 {
5323 if (per_cu->v.quick->compunit_symtab)
5324 {
5325 void **slot = htab_find_slot (visited.get (),
5326 per_cu->v.quick->file_names,
5327 INSERT);
5328
5329 *slot = per_cu->v.quick->file_names;
5330 }
5331 }
5332
5333 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5334 {
5335 /* We only need to look at symtabs not already expanded. */
5336 if (per_cu->v.quick->compunit_symtab)
5337 continue;
5338
5339 quick_file_names *file_data = dw2_get_file_names (per_cu);
5340 if (file_data == NULL)
5341 continue;
5342
5343 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5344 if (*slot)
5345 {
5346 /* Already visited. */
5347 continue;
5348 }
5349 *slot = file_data;
5350
5351 for (int j = 0; j < file_data->num_file_names; ++j)
5352 {
5353 const char *filename = file_data->file_names[j];
5354 dwarf2_per_objfile->filenames_cache->seen (filename);
5355 }
5356 }
5357 }
5358
5359 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5360 {
5361 gdb::unique_xmalloc_ptr<char> this_real_name;
5362
5363 if (need_fullname)
5364 this_real_name = gdb_realpath (filename);
5365 (*fun) (filename, this_real_name.get (), data);
5366 });
5367 }
5368
5369 static int
5370 dw2_has_symbols (struct objfile *objfile)
5371 {
5372 return 1;
5373 }
5374
5375 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5376 {
5377 dw2_has_symbols,
5378 dw2_find_last_source_symtab,
5379 dw2_forget_cached_source_info,
5380 dw2_map_symtabs_matching_filename,
5381 dw2_lookup_symbol,
5382 dw2_print_stats,
5383 dw2_dump,
5384 dw2_expand_symtabs_for_function,
5385 dw2_expand_all_symtabs,
5386 dw2_expand_symtabs_with_fullname,
5387 dw2_map_matching_symbols,
5388 dw2_expand_symtabs_matching,
5389 dw2_find_pc_sect_compunit_symtab,
5390 NULL,
5391 dw2_map_symbol_filenames
5392 };
5393
5394 /* DWARF-5 debug_names reader. */
5395
5396 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5397 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5398
5399 /* A helper function that reads the .debug_names section in SECTION
5400 and fills in MAP. FILENAME is the name of the file containing the
5401 section; it is used for error reporting.
5402
5403 Returns true if all went well, false otherwise. */
5404
5405 static bool
5406 read_debug_names_from_section (struct objfile *objfile,
5407 const char *filename,
5408 struct dwarf2_section_info *section,
5409 mapped_debug_names &map)
5410 {
5411 if (dwarf2_section_empty_p (section))
5412 return false;
5413
5414 /* Older elfutils strip versions could keep the section in the main
5415 executable while splitting it for the separate debug info file. */
5416 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5417 return false;
5418
5419 dwarf2_read_section (objfile, section);
5420
5421 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5422
5423 const gdb_byte *addr = section->buffer;
5424
5425 bfd *const abfd = get_section_bfd_owner (section);
5426
5427 unsigned int bytes_read;
5428 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5429 addr += bytes_read;
5430
5431 map.dwarf5_is_dwarf64 = bytes_read != 4;
5432 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5433 if (bytes_read + length != section->size)
5434 {
5435 /* There may be multiple per-CU indices. */
5436 warning (_("Section .debug_names in %s length %s does not match "
5437 "section length %s, ignoring .debug_names."),
5438 filename, plongest (bytes_read + length),
5439 pulongest (section->size));
5440 return false;
5441 }
5442
5443 /* The version number. */
5444 uint16_t version = read_2_bytes (abfd, addr);
5445 addr += 2;
5446 if (version != 5)
5447 {
5448 warning (_("Section .debug_names in %s has unsupported version %d, "
5449 "ignoring .debug_names."),
5450 filename, version);
5451 return false;
5452 }
5453
5454 /* Padding. */
5455 uint16_t padding = read_2_bytes (abfd, addr);
5456 addr += 2;
5457 if (padding != 0)
5458 {
5459 warning (_("Section .debug_names in %s has unsupported padding %d, "
5460 "ignoring .debug_names."),
5461 filename, padding);
5462 return false;
5463 }
5464
5465 /* comp_unit_count - The number of CUs in the CU list. */
5466 map.cu_count = read_4_bytes (abfd, addr);
5467 addr += 4;
5468
5469 /* local_type_unit_count - The number of TUs in the local TU
5470 list. */
5471 map.tu_count = read_4_bytes (abfd, addr);
5472 addr += 4;
5473
5474 /* foreign_type_unit_count - The number of TUs in the foreign TU
5475 list. */
5476 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5477 addr += 4;
5478 if (foreign_tu_count != 0)
5479 {
5480 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5481 "ignoring .debug_names."),
5482 filename, static_cast<unsigned long> (foreign_tu_count));
5483 return false;
5484 }
5485
5486 /* bucket_count - The number of hash buckets in the hash lookup
5487 table. */
5488 map.bucket_count = read_4_bytes (abfd, addr);
5489 addr += 4;
5490
5491 /* name_count - The number of unique names in the index. */
5492 map.name_count = read_4_bytes (abfd, addr);
5493 addr += 4;
5494
5495 /* abbrev_table_size - The size in bytes of the abbreviations
5496 table. */
5497 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5498 addr += 4;
5499
5500 /* augmentation_string_size - The size in bytes of the augmentation
5501 string. This value is rounded up to a multiple of 4. */
5502 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5503 addr += 4;
5504 map.augmentation_is_gdb = ((augmentation_string_size
5505 == sizeof (dwarf5_augmentation))
5506 && memcmp (addr, dwarf5_augmentation,
5507 sizeof (dwarf5_augmentation)) == 0);
5508 augmentation_string_size += (-augmentation_string_size) & 3;
5509 addr += augmentation_string_size;
5510
5511 /* List of CUs */
5512 map.cu_table_reordered = addr;
5513 addr += map.cu_count * map.offset_size;
5514
5515 /* List of Local TUs */
5516 map.tu_table_reordered = addr;
5517 addr += map.tu_count * map.offset_size;
5518
5519 /* Hash Lookup Table */
5520 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5521 addr += map.bucket_count * 4;
5522 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5523 addr += map.name_count * 4;
5524
5525 /* Name Table */
5526 map.name_table_string_offs_reordered = addr;
5527 addr += map.name_count * map.offset_size;
5528 map.name_table_entry_offs_reordered = addr;
5529 addr += map.name_count * map.offset_size;
5530
5531 const gdb_byte *abbrev_table_start = addr;
5532 for (;;)
5533 {
5534 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5535 addr += bytes_read;
5536 if (index_num == 0)
5537 break;
5538
5539 const auto insertpair
5540 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5541 if (!insertpair.second)
5542 {
5543 warning (_("Section .debug_names in %s has duplicate index %s, "
5544 "ignoring .debug_names."),
5545 filename, pulongest (index_num));
5546 return false;
5547 }
5548 mapped_debug_names::index_val &indexval = insertpair.first->second;
5549 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5550 addr += bytes_read;
5551
5552 for (;;)
5553 {
5554 mapped_debug_names::index_val::attr attr;
5555 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5556 addr += bytes_read;
5557 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5558 addr += bytes_read;
5559 if (attr.form == DW_FORM_implicit_const)
5560 {
5561 attr.implicit_const = read_signed_leb128 (abfd, addr,
5562 &bytes_read);
5563 addr += bytes_read;
5564 }
5565 if (attr.dw_idx == 0 && attr.form == 0)
5566 break;
5567 indexval.attr_vec.push_back (std::move (attr));
5568 }
5569 }
5570 if (addr != abbrev_table_start + abbrev_table_size)
5571 {
5572 warning (_("Section .debug_names in %s has abbreviation_table "
5573 "of size %zu vs. written as %u, ignoring .debug_names."),
5574 filename, addr - abbrev_table_start, abbrev_table_size);
5575 return false;
5576 }
5577 map.entry_pool = addr;
5578
5579 return true;
5580 }
5581
5582 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5583 list. */
5584
5585 static void
5586 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5587 const mapped_debug_names &map,
5588 dwarf2_section_info &section,
5589 bool is_dwz)
5590 {
5591 sect_offset sect_off_prev;
5592 for (uint32_t i = 0; i <= map.cu_count; ++i)
5593 {
5594 sect_offset sect_off_next;
5595 if (i < map.cu_count)
5596 {
5597 sect_off_next
5598 = (sect_offset) (extract_unsigned_integer
5599 (map.cu_table_reordered + i * map.offset_size,
5600 map.offset_size,
5601 map.dwarf5_byte_order));
5602 }
5603 else
5604 sect_off_next = (sect_offset) section.size;
5605 if (i >= 1)
5606 {
5607 const ULONGEST length = sect_off_next - sect_off_prev;
5608 dwarf2_per_cu_data *per_cu
5609 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5610 sect_off_prev, length);
5611 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5612 }
5613 sect_off_prev = sect_off_next;
5614 }
5615 }
5616
5617 /* Read the CU list from the mapped index, and use it to create all
5618 the CU objects for this dwarf2_per_objfile. */
5619
5620 static void
5621 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5622 const mapped_debug_names &map,
5623 const mapped_debug_names &dwz_map)
5624 {
5625 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5626 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5627
5628 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5629 dwarf2_per_objfile->info,
5630 false /* is_dwz */);
5631
5632 if (dwz_map.cu_count == 0)
5633 return;
5634
5635 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5636 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5637 true /* is_dwz */);
5638 }
5639
5640 /* Read .debug_names. If everything went ok, initialize the "quick"
5641 elements of all the CUs and return true. Otherwise, return false. */
5642
5643 static bool
5644 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5645 {
5646 std::unique_ptr<mapped_debug_names> map
5647 (new mapped_debug_names (dwarf2_per_objfile));
5648 mapped_debug_names dwz_map (dwarf2_per_objfile);
5649 struct objfile *objfile = dwarf2_per_objfile->objfile;
5650
5651 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5652 &dwarf2_per_objfile->debug_names,
5653 *map))
5654 return false;
5655
5656 /* Don't use the index if it's empty. */
5657 if (map->name_count == 0)
5658 return false;
5659
5660 /* If there is a .dwz file, read it so we can get its CU list as
5661 well. */
5662 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5663 if (dwz != NULL)
5664 {
5665 if (!read_debug_names_from_section (objfile,
5666 bfd_get_filename (dwz->dwz_bfd),
5667 &dwz->debug_names, dwz_map))
5668 {
5669 warning (_("could not read '.debug_names' section from %s; skipping"),
5670 bfd_get_filename (dwz->dwz_bfd));
5671 return false;
5672 }
5673 }
5674
5675 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5676
5677 if (map->tu_count != 0)
5678 {
5679 /* We can only handle a single .debug_types when we have an
5680 index. */
5681 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5682 return false;
5683
5684 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5685 dwarf2_per_objfile->types, 0);
5686
5687 create_signatured_type_table_from_debug_names
5688 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5689 }
5690
5691 create_addrmap_from_aranges (dwarf2_per_objfile,
5692 &dwarf2_per_objfile->debug_aranges);
5693
5694 dwarf2_per_objfile->debug_names_table = std::move (map);
5695 dwarf2_per_objfile->using_index = 1;
5696 dwarf2_per_objfile->quick_file_names_table =
5697 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5698
5699 return true;
5700 }
5701
5702 /* Type used to manage iterating over all CUs looking for a symbol for
5703 .debug_names. */
5704
5705 class dw2_debug_names_iterator
5706 {
5707 public:
5708 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5709 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5710 dw2_debug_names_iterator (const mapped_debug_names &map,
5711 bool want_specific_block,
5712 block_enum block_index, domain_enum domain,
5713 const char *name)
5714 : m_map (map), m_want_specific_block (want_specific_block),
5715 m_block_index (block_index), m_domain (domain),
5716 m_addr (find_vec_in_debug_names (map, name))
5717 {}
5718
5719 dw2_debug_names_iterator (const mapped_debug_names &map,
5720 search_domain search, uint32_t namei)
5721 : m_map (map),
5722 m_search (search),
5723 m_addr (find_vec_in_debug_names (map, namei))
5724 {}
5725
5726 /* Return the next matching CU or NULL if there are no more. */
5727 dwarf2_per_cu_data *next ();
5728
5729 private:
5730 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5731 const char *name);
5732 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5733 uint32_t namei);
5734
5735 /* The internalized form of .debug_names. */
5736 const mapped_debug_names &m_map;
5737
5738 /* If true, only look for symbols that match BLOCK_INDEX. */
5739 const bool m_want_specific_block = false;
5740
5741 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5742 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5743 value. */
5744 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5745
5746 /* The kind of symbol we're looking for. */
5747 const domain_enum m_domain = UNDEF_DOMAIN;
5748 const search_domain m_search = ALL_DOMAIN;
5749
5750 /* The list of CUs from the index entry of the symbol, or NULL if
5751 not found. */
5752 const gdb_byte *m_addr;
5753 };
5754
5755 const char *
5756 mapped_debug_names::namei_to_name (uint32_t namei) const
5757 {
5758 const ULONGEST namei_string_offs
5759 = extract_unsigned_integer ((name_table_string_offs_reordered
5760 + namei * offset_size),
5761 offset_size,
5762 dwarf5_byte_order);
5763 return read_indirect_string_at_offset
5764 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5765 }
5766
5767 /* Find a slot in .debug_names for the object named NAME. If NAME is
5768 found, return pointer to its pool data. If NAME cannot be found,
5769 return NULL. */
5770
5771 const gdb_byte *
5772 dw2_debug_names_iterator::find_vec_in_debug_names
5773 (const mapped_debug_names &map, const char *name)
5774 {
5775 int (*cmp) (const char *, const char *);
5776
5777 if (current_language->la_language == language_cplus
5778 || current_language->la_language == language_fortran
5779 || current_language->la_language == language_d)
5780 {
5781 /* NAME is already canonical. Drop any qualifiers as
5782 .debug_names does not contain any. */
5783
5784 if (strchr (name, '(') != NULL)
5785 {
5786 gdb::unique_xmalloc_ptr<char> without_params
5787 = cp_remove_params (name);
5788
5789 if (without_params != NULL)
5790 {
5791 name = without_params.get();
5792 }
5793 }
5794 }
5795
5796 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5797
5798 const uint32_t full_hash = dwarf5_djb_hash (name);
5799 uint32_t namei
5800 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5801 (map.bucket_table_reordered
5802 + (full_hash % map.bucket_count)), 4,
5803 map.dwarf5_byte_order);
5804 if (namei == 0)
5805 return NULL;
5806 --namei;
5807 if (namei >= map.name_count)
5808 {
5809 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5810 "[in module %s]"),
5811 namei, map.name_count,
5812 objfile_name (map.dwarf2_per_objfile->objfile));
5813 return NULL;
5814 }
5815
5816 for (;;)
5817 {
5818 const uint32_t namei_full_hash
5819 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5820 (map.hash_table_reordered + namei), 4,
5821 map.dwarf5_byte_order);
5822 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5823 return NULL;
5824
5825 if (full_hash == namei_full_hash)
5826 {
5827 const char *const namei_string = map.namei_to_name (namei);
5828
5829 #if 0 /* An expensive sanity check. */
5830 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5831 {
5832 complaint (_("Wrong .debug_names hash for string at index %u "
5833 "[in module %s]"),
5834 namei, objfile_name (dwarf2_per_objfile->objfile));
5835 return NULL;
5836 }
5837 #endif
5838
5839 if (cmp (namei_string, name) == 0)
5840 {
5841 const ULONGEST namei_entry_offs
5842 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5843 + namei * map.offset_size),
5844 map.offset_size, map.dwarf5_byte_order);
5845 return map.entry_pool + namei_entry_offs;
5846 }
5847 }
5848
5849 ++namei;
5850 if (namei >= map.name_count)
5851 return NULL;
5852 }
5853 }
5854
5855 const gdb_byte *
5856 dw2_debug_names_iterator::find_vec_in_debug_names
5857 (const mapped_debug_names &map, uint32_t namei)
5858 {
5859 if (namei >= map.name_count)
5860 {
5861 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5862 "[in module %s]"),
5863 namei, map.name_count,
5864 objfile_name (map.dwarf2_per_objfile->objfile));
5865 return NULL;
5866 }
5867
5868 const ULONGEST namei_entry_offs
5869 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5870 + namei * map.offset_size),
5871 map.offset_size, map.dwarf5_byte_order);
5872 return map.entry_pool + namei_entry_offs;
5873 }
5874
5875 /* See dw2_debug_names_iterator. */
5876
5877 dwarf2_per_cu_data *
5878 dw2_debug_names_iterator::next ()
5879 {
5880 if (m_addr == NULL)
5881 return NULL;
5882
5883 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5884 struct objfile *objfile = dwarf2_per_objfile->objfile;
5885 bfd *const abfd = objfile->obfd;
5886
5887 again:
5888
5889 unsigned int bytes_read;
5890 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5891 m_addr += bytes_read;
5892 if (abbrev == 0)
5893 return NULL;
5894
5895 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5896 if (indexval_it == m_map.abbrev_map.cend ())
5897 {
5898 complaint (_("Wrong .debug_names undefined abbrev code %s "
5899 "[in module %s]"),
5900 pulongest (abbrev), objfile_name (objfile));
5901 return NULL;
5902 }
5903 const mapped_debug_names::index_val &indexval = indexval_it->second;
5904 bool have_is_static = false;
5905 bool is_static;
5906 dwarf2_per_cu_data *per_cu = NULL;
5907 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5908 {
5909 ULONGEST ull;
5910 switch (attr.form)
5911 {
5912 case DW_FORM_implicit_const:
5913 ull = attr.implicit_const;
5914 break;
5915 case DW_FORM_flag_present:
5916 ull = 1;
5917 break;
5918 case DW_FORM_udata:
5919 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5920 m_addr += bytes_read;
5921 break;
5922 default:
5923 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5924 dwarf_form_name (attr.form),
5925 objfile_name (objfile));
5926 return NULL;
5927 }
5928 switch (attr.dw_idx)
5929 {
5930 case DW_IDX_compile_unit:
5931 /* Don't crash on bad data. */
5932 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5933 {
5934 complaint (_(".debug_names entry has bad CU index %s"
5935 " [in module %s]"),
5936 pulongest (ull),
5937 objfile_name (dwarf2_per_objfile->objfile));
5938 continue;
5939 }
5940 per_cu = dwarf2_per_objfile->get_cutu (ull);
5941 break;
5942 case DW_IDX_type_unit:
5943 /* Don't crash on bad data. */
5944 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5945 {
5946 complaint (_(".debug_names entry has bad TU index %s"
5947 " [in module %s]"),
5948 pulongest (ull),
5949 objfile_name (dwarf2_per_objfile->objfile));
5950 continue;
5951 }
5952 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5953 break;
5954 case DW_IDX_GNU_internal:
5955 if (!m_map.augmentation_is_gdb)
5956 break;
5957 have_is_static = true;
5958 is_static = true;
5959 break;
5960 case DW_IDX_GNU_external:
5961 if (!m_map.augmentation_is_gdb)
5962 break;
5963 have_is_static = true;
5964 is_static = false;
5965 break;
5966 }
5967 }
5968
5969 /* Skip if already read in. */
5970 if (per_cu->v.quick->compunit_symtab)
5971 goto again;
5972
5973 /* Check static vs global. */
5974 if (have_is_static)
5975 {
5976 const bool want_static = m_block_index != GLOBAL_BLOCK;
5977 if (m_want_specific_block && want_static != is_static)
5978 goto again;
5979 }
5980
5981 /* Match dw2_symtab_iter_next, symbol_kind
5982 and debug_names::psymbol_tag. */
5983 switch (m_domain)
5984 {
5985 case VAR_DOMAIN:
5986 switch (indexval.dwarf_tag)
5987 {
5988 case DW_TAG_variable:
5989 case DW_TAG_subprogram:
5990 /* Some types are also in VAR_DOMAIN. */
5991 case DW_TAG_typedef:
5992 case DW_TAG_structure_type:
5993 break;
5994 default:
5995 goto again;
5996 }
5997 break;
5998 case STRUCT_DOMAIN:
5999 switch (indexval.dwarf_tag)
6000 {
6001 case DW_TAG_typedef:
6002 case DW_TAG_structure_type:
6003 break;
6004 default:
6005 goto again;
6006 }
6007 break;
6008 case LABEL_DOMAIN:
6009 switch (indexval.dwarf_tag)
6010 {
6011 case 0:
6012 case DW_TAG_variable:
6013 break;
6014 default:
6015 goto again;
6016 }
6017 break;
6018 default:
6019 break;
6020 }
6021
6022 /* Match dw2_expand_symtabs_matching, symbol_kind and
6023 debug_names::psymbol_tag. */
6024 switch (m_search)
6025 {
6026 case VARIABLES_DOMAIN:
6027 switch (indexval.dwarf_tag)
6028 {
6029 case DW_TAG_variable:
6030 break;
6031 default:
6032 goto again;
6033 }
6034 break;
6035 case FUNCTIONS_DOMAIN:
6036 switch (indexval.dwarf_tag)
6037 {
6038 case DW_TAG_subprogram:
6039 break;
6040 default:
6041 goto again;
6042 }
6043 break;
6044 case TYPES_DOMAIN:
6045 switch (indexval.dwarf_tag)
6046 {
6047 case DW_TAG_typedef:
6048 case DW_TAG_structure_type:
6049 break;
6050 default:
6051 goto again;
6052 }
6053 break;
6054 default:
6055 break;
6056 }
6057
6058 return per_cu;
6059 }
6060
6061 static struct compunit_symtab *
6062 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6063 const char *name, domain_enum domain)
6064 {
6065 const block_enum block_index = static_cast<block_enum> (block_index_int);
6066 struct dwarf2_per_objfile *dwarf2_per_objfile
6067 = get_dwarf2_per_objfile (objfile);
6068
6069 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6070 if (!mapp)
6071 {
6072 /* index is NULL if OBJF_READNOW. */
6073 return NULL;
6074 }
6075 const auto &map = *mapp;
6076
6077 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6078 block_index, domain, name);
6079
6080 struct compunit_symtab *stab_best = NULL;
6081 struct dwarf2_per_cu_data *per_cu;
6082 while ((per_cu = iter.next ()) != NULL)
6083 {
6084 struct symbol *sym, *with_opaque = NULL;
6085 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6086 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6087 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6088
6089 sym = block_find_symbol (block, name, domain,
6090 block_find_non_opaque_type_preferred,
6091 &with_opaque);
6092
6093 /* Some caution must be observed with overloaded functions and
6094 methods, since the index will not contain any overload
6095 information (but NAME might contain it). */
6096
6097 if (sym != NULL
6098 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6099 return stab;
6100 if (with_opaque != NULL
6101 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6102 stab_best = stab;
6103
6104 /* Keep looking through other CUs. */
6105 }
6106
6107 return stab_best;
6108 }
6109
6110 /* This dumps minimal information about .debug_names. It is called
6111 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6112 uses this to verify that .debug_names has been loaded. */
6113
6114 static void
6115 dw2_debug_names_dump (struct objfile *objfile)
6116 {
6117 struct dwarf2_per_objfile *dwarf2_per_objfile
6118 = get_dwarf2_per_objfile (objfile);
6119
6120 gdb_assert (dwarf2_per_objfile->using_index);
6121 printf_filtered (".debug_names:");
6122 if (dwarf2_per_objfile->debug_names_table)
6123 printf_filtered (" exists\n");
6124 else
6125 printf_filtered (" faked for \"readnow\"\n");
6126 printf_filtered ("\n");
6127 }
6128
6129 static void
6130 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6131 const char *func_name)
6132 {
6133 struct dwarf2_per_objfile *dwarf2_per_objfile
6134 = get_dwarf2_per_objfile (objfile);
6135
6136 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6137 if (dwarf2_per_objfile->debug_names_table)
6138 {
6139 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6140
6141 /* Note: It doesn't matter what we pass for block_index here. */
6142 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6143 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6144
6145 struct dwarf2_per_cu_data *per_cu;
6146 while ((per_cu = iter.next ()) != NULL)
6147 dw2_instantiate_symtab (per_cu, false);
6148 }
6149 }
6150
6151 static void
6152 dw2_debug_names_expand_symtabs_matching
6153 (struct objfile *objfile,
6154 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6155 const lookup_name_info &lookup_name,
6156 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6157 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6158 enum search_domain kind)
6159 {
6160 struct dwarf2_per_objfile *dwarf2_per_objfile
6161 = get_dwarf2_per_objfile (objfile);
6162
6163 /* debug_names_table is NULL if OBJF_READNOW. */
6164 if (!dwarf2_per_objfile->debug_names_table)
6165 return;
6166
6167 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6168
6169 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6170
6171 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6172 symbol_matcher,
6173 kind, [&] (offset_type namei)
6174 {
6175 /* The name was matched, now expand corresponding CUs that were
6176 marked. */
6177 dw2_debug_names_iterator iter (map, kind, namei);
6178
6179 struct dwarf2_per_cu_data *per_cu;
6180 while ((per_cu = iter.next ()) != NULL)
6181 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6182 expansion_notify);
6183 });
6184 }
6185
6186 const struct quick_symbol_functions dwarf2_debug_names_functions =
6187 {
6188 dw2_has_symbols,
6189 dw2_find_last_source_symtab,
6190 dw2_forget_cached_source_info,
6191 dw2_map_symtabs_matching_filename,
6192 dw2_debug_names_lookup_symbol,
6193 dw2_print_stats,
6194 dw2_debug_names_dump,
6195 dw2_debug_names_expand_symtabs_for_function,
6196 dw2_expand_all_symtabs,
6197 dw2_expand_symtabs_with_fullname,
6198 dw2_map_matching_symbols,
6199 dw2_debug_names_expand_symtabs_matching,
6200 dw2_find_pc_sect_compunit_symtab,
6201 NULL,
6202 dw2_map_symbol_filenames
6203 };
6204
6205 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6206 to either a dwarf2_per_objfile or dwz_file object. */
6207
6208 template <typename T>
6209 static gdb::array_view<const gdb_byte>
6210 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6211 {
6212 dwarf2_section_info *section = &section_owner->gdb_index;
6213
6214 if (dwarf2_section_empty_p (section))
6215 return {};
6216
6217 /* Older elfutils strip versions could keep the section in the main
6218 executable while splitting it for the separate debug info file. */
6219 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6220 return {};
6221
6222 dwarf2_read_section (obj, section);
6223
6224 /* dwarf2_section_info::size is a bfd_size_type, while
6225 gdb::array_view works with size_t. On 32-bit hosts, with
6226 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6227 is 32-bit. So we need an explicit narrowing conversion here.
6228 This is fine, because it's impossible to allocate or mmap an
6229 array/buffer larger than what size_t can represent. */
6230 return gdb::make_array_view (section->buffer, section->size);
6231 }
6232
6233 /* Lookup the index cache for the contents of the index associated to
6234 DWARF2_OBJ. */
6235
6236 static gdb::array_view<const gdb_byte>
6237 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6238 {
6239 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6240 if (build_id == nullptr)
6241 return {};
6242
6243 return global_index_cache.lookup_gdb_index (build_id,
6244 &dwarf2_obj->index_cache_res);
6245 }
6246
6247 /* Same as the above, but for DWZ. */
6248
6249 static gdb::array_view<const gdb_byte>
6250 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6251 {
6252 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6253 if (build_id == nullptr)
6254 return {};
6255
6256 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6257 }
6258
6259 /* See symfile.h. */
6260
6261 bool
6262 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6263 {
6264 struct dwarf2_per_objfile *dwarf2_per_objfile
6265 = get_dwarf2_per_objfile (objfile);
6266
6267 /* If we're about to read full symbols, don't bother with the
6268 indices. In this case we also don't care if some other debug
6269 format is making psymtabs, because they are all about to be
6270 expanded anyway. */
6271 if ((objfile->flags & OBJF_READNOW))
6272 {
6273 dwarf2_per_objfile->using_index = 1;
6274 create_all_comp_units (dwarf2_per_objfile);
6275 create_all_type_units (dwarf2_per_objfile);
6276 dwarf2_per_objfile->quick_file_names_table
6277 = create_quick_file_names_table
6278 (dwarf2_per_objfile->all_comp_units.size ());
6279
6280 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6281 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6282 {
6283 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6284
6285 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6286 struct dwarf2_per_cu_quick_data);
6287 }
6288
6289 /* Return 1 so that gdb sees the "quick" functions. However,
6290 these functions will be no-ops because we will have expanded
6291 all symtabs. */
6292 *index_kind = dw_index_kind::GDB_INDEX;
6293 return true;
6294 }
6295
6296 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6297 {
6298 *index_kind = dw_index_kind::DEBUG_NAMES;
6299 return true;
6300 }
6301
6302 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6303 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6304 get_gdb_index_contents_from_section<dwz_file>))
6305 {
6306 *index_kind = dw_index_kind::GDB_INDEX;
6307 return true;
6308 }
6309
6310 /* ... otherwise, try to find the index in the index cache. */
6311 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6312 get_gdb_index_contents_from_cache,
6313 get_gdb_index_contents_from_cache_dwz))
6314 {
6315 global_index_cache.hit ();
6316 *index_kind = dw_index_kind::GDB_INDEX;
6317 return true;
6318 }
6319
6320 global_index_cache.miss ();
6321 return false;
6322 }
6323
6324 \f
6325
6326 /* Build a partial symbol table. */
6327
6328 void
6329 dwarf2_build_psymtabs (struct objfile *objfile)
6330 {
6331 struct dwarf2_per_objfile *dwarf2_per_objfile
6332 = get_dwarf2_per_objfile (objfile);
6333
6334 init_psymbol_list (objfile, 1024);
6335
6336 TRY
6337 {
6338 /* This isn't really ideal: all the data we allocate on the
6339 objfile's obstack is still uselessly kept around. However,
6340 freeing it seems unsafe. */
6341 psymtab_discarder psymtabs (objfile);
6342 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6343 psymtabs.keep ();
6344
6345 /* (maybe) store an index in the cache. */
6346 global_index_cache.store (dwarf2_per_objfile);
6347 }
6348 CATCH (except, RETURN_MASK_ERROR)
6349 {
6350 exception_print (gdb_stderr, except);
6351 }
6352 END_CATCH
6353 }
6354
6355 /* Return the total length of the CU described by HEADER. */
6356
6357 static unsigned int
6358 get_cu_length (const struct comp_unit_head *header)
6359 {
6360 return header->initial_length_size + header->length;
6361 }
6362
6363 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6364
6365 static inline bool
6366 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6367 {
6368 sect_offset bottom = cu_header->sect_off;
6369 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6370
6371 return sect_off >= bottom && sect_off < top;
6372 }
6373
6374 /* Find the base address of the compilation unit for range lists and
6375 location lists. It will normally be specified by DW_AT_low_pc.
6376 In DWARF-3 draft 4, the base address could be overridden by
6377 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6378 compilation units with discontinuous ranges. */
6379
6380 static void
6381 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6382 {
6383 struct attribute *attr;
6384
6385 cu->base_known = 0;
6386 cu->base_address = 0;
6387
6388 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6389 if (attr)
6390 {
6391 cu->base_address = attr_value_as_address (attr);
6392 cu->base_known = 1;
6393 }
6394 else
6395 {
6396 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6397 if (attr)
6398 {
6399 cu->base_address = attr_value_as_address (attr);
6400 cu->base_known = 1;
6401 }
6402 }
6403 }
6404
6405 /* Read in the comp unit header information from the debug_info at info_ptr.
6406 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6407 NOTE: This leaves members offset, first_die_offset to be filled in
6408 by the caller. */
6409
6410 static const gdb_byte *
6411 read_comp_unit_head (struct comp_unit_head *cu_header,
6412 const gdb_byte *info_ptr,
6413 struct dwarf2_section_info *section,
6414 rcuh_kind section_kind)
6415 {
6416 int signed_addr;
6417 unsigned int bytes_read;
6418 const char *filename = get_section_file_name (section);
6419 bfd *abfd = get_section_bfd_owner (section);
6420
6421 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6422 cu_header->initial_length_size = bytes_read;
6423 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6424 info_ptr += bytes_read;
6425 cu_header->version = read_2_bytes (abfd, info_ptr);
6426 if (cu_header->version < 2 || cu_header->version > 5)
6427 error (_("Dwarf Error: wrong version in compilation unit header "
6428 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6429 cu_header->version, filename);
6430 info_ptr += 2;
6431 if (cu_header->version < 5)
6432 switch (section_kind)
6433 {
6434 case rcuh_kind::COMPILE:
6435 cu_header->unit_type = DW_UT_compile;
6436 break;
6437 case rcuh_kind::TYPE:
6438 cu_header->unit_type = DW_UT_type;
6439 break;
6440 default:
6441 internal_error (__FILE__, __LINE__,
6442 _("read_comp_unit_head: invalid section_kind"));
6443 }
6444 else
6445 {
6446 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6447 (read_1_byte (abfd, info_ptr));
6448 info_ptr += 1;
6449 switch (cu_header->unit_type)
6450 {
6451 case DW_UT_compile:
6452 if (section_kind != rcuh_kind::COMPILE)
6453 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6454 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6455 filename);
6456 break;
6457 case DW_UT_type:
6458 section_kind = rcuh_kind::TYPE;
6459 break;
6460 default:
6461 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6462 "(is %d, should be %d or %d) [in module %s]"),
6463 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6464 }
6465
6466 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6467 info_ptr += 1;
6468 }
6469 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6470 cu_header,
6471 &bytes_read);
6472 info_ptr += bytes_read;
6473 if (cu_header->version < 5)
6474 {
6475 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6476 info_ptr += 1;
6477 }
6478 signed_addr = bfd_get_sign_extend_vma (abfd);
6479 if (signed_addr < 0)
6480 internal_error (__FILE__, __LINE__,
6481 _("read_comp_unit_head: dwarf from non elf file"));
6482 cu_header->signed_addr_p = signed_addr;
6483
6484 if (section_kind == rcuh_kind::TYPE)
6485 {
6486 LONGEST type_offset;
6487
6488 cu_header->signature = read_8_bytes (abfd, info_ptr);
6489 info_ptr += 8;
6490
6491 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6492 info_ptr += bytes_read;
6493 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6494 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6495 error (_("Dwarf Error: Too big type_offset in compilation unit "
6496 "header (is %s) [in module %s]"), plongest (type_offset),
6497 filename);
6498 }
6499
6500 return info_ptr;
6501 }
6502
6503 /* Helper function that returns the proper abbrev section for
6504 THIS_CU. */
6505
6506 static struct dwarf2_section_info *
6507 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6508 {
6509 struct dwarf2_section_info *abbrev;
6510 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6511
6512 if (this_cu->is_dwz)
6513 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6514 else
6515 abbrev = &dwarf2_per_objfile->abbrev;
6516
6517 return abbrev;
6518 }
6519
6520 /* Subroutine of read_and_check_comp_unit_head and
6521 read_and_check_type_unit_head to simplify them.
6522 Perform various error checking on the header. */
6523
6524 static void
6525 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6526 struct comp_unit_head *header,
6527 struct dwarf2_section_info *section,
6528 struct dwarf2_section_info *abbrev_section)
6529 {
6530 const char *filename = get_section_file_name (section);
6531
6532 if (to_underlying (header->abbrev_sect_off)
6533 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6534 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6535 "(offset %s + 6) [in module %s]"),
6536 sect_offset_str (header->abbrev_sect_off),
6537 sect_offset_str (header->sect_off),
6538 filename);
6539
6540 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6541 avoid potential 32-bit overflow. */
6542 if (((ULONGEST) header->sect_off + get_cu_length (header))
6543 > section->size)
6544 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6545 "(offset %s + 0) [in module %s]"),
6546 header->length, sect_offset_str (header->sect_off),
6547 filename);
6548 }
6549
6550 /* Read in a CU/TU header and perform some basic error checking.
6551 The contents of the header are stored in HEADER.
6552 The result is a pointer to the start of the first DIE. */
6553
6554 static const gdb_byte *
6555 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6556 struct comp_unit_head *header,
6557 struct dwarf2_section_info *section,
6558 struct dwarf2_section_info *abbrev_section,
6559 const gdb_byte *info_ptr,
6560 rcuh_kind section_kind)
6561 {
6562 const gdb_byte *beg_of_comp_unit = info_ptr;
6563
6564 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6565
6566 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6567
6568 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6569
6570 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6571 abbrev_section);
6572
6573 return info_ptr;
6574 }
6575
6576 /* Fetch the abbreviation table offset from a comp or type unit header. */
6577
6578 static sect_offset
6579 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6580 struct dwarf2_section_info *section,
6581 sect_offset sect_off)
6582 {
6583 bfd *abfd = get_section_bfd_owner (section);
6584 const gdb_byte *info_ptr;
6585 unsigned int initial_length_size, offset_size;
6586 uint16_t version;
6587
6588 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6589 info_ptr = section->buffer + to_underlying (sect_off);
6590 read_initial_length (abfd, info_ptr, &initial_length_size);
6591 offset_size = initial_length_size == 4 ? 4 : 8;
6592 info_ptr += initial_length_size;
6593
6594 version = read_2_bytes (abfd, info_ptr);
6595 info_ptr += 2;
6596 if (version >= 5)
6597 {
6598 /* Skip unit type and address size. */
6599 info_ptr += 2;
6600 }
6601
6602 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6603 }
6604
6605 /* Allocate a new partial symtab for file named NAME and mark this new
6606 partial symtab as being an include of PST. */
6607
6608 static void
6609 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6610 struct objfile *objfile)
6611 {
6612 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6613
6614 if (!IS_ABSOLUTE_PATH (subpst->filename))
6615 {
6616 /* It shares objfile->objfile_obstack. */
6617 subpst->dirname = pst->dirname;
6618 }
6619
6620 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6621 subpst->dependencies[0] = pst;
6622 subpst->number_of_dependencies = 1;
6623
6624 subpst->read_symtab = pst->read_symtab;
6625
6626 /* No private part is necessary for include psymtabs. This property
6627 can be used to differentiate between such include psymtabs and
6628 the regular ones. */
6629 subpst->read_symtab_private = NULL;
6630 }
6631
6632 /* Read the Line Number Program data and extract the list of files
6633 included by the source file represented by PST. Build an include
6634 partial symtab for each of these included files. */
6635
6636 static void
6637 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6638 struct die_info *die,
6639 struct partial_symtab *pst)
6640 {
6641 line_header_up lh;
6642 struct attribute *attr;
6643
6644 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6645 if (attr)
6646 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6647 if (lh == NULL)
6648 return; /* No linetable, so no includes. */
6649
6650 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6651 that we pass in the raw text_low here; that is ok because we're
6652 only decoding the line table to make include partial symtabs, and
6653 so the addresses aren't really used. */
6654 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6655 pst->raw_text_low (), 1);
6656 }
6657
6658 static hashval_t
6659 hash_signatured_type (const void *item)
6660 {
6661 const struct signatured_type *sig_type
6662 = (const struct signatured_type *) item;
6663
6664 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6665 return sig_type->signature;
6666 }
6667
6668 static int
6669 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6670 {
6671 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6672 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6673
6674 return lhs->signature == rhs->signature;
6675 }
6676
6677 /* Allocate a hash table for signatured types. */
6678
6679 static htab_t
6680 allocate_signatured_type_table (struct objfile *objfile)
6681 {
6682 return htab_create_alloc_ex (41,
6683 hash_signatured_type,
6684 eq_signatured_type,
6685 NULL,
6686 &objfile->objfile_obstack,
6687 hashtab_obstack_allocate,
6688 dummy_obstack_deallocate);
6689 }
6690
6691 /* A helper function to add a signatured type CU to a table. */
6692
6693 static int
6694 add_signatured_type_cu_to_table (void **slot, void *datum)
6695 {
6696 struct signatured_type *sigt = (struct signatured_type *) *slot;
6697 std::vector<signatured_type *> *all_type_units
6698 = (std::vector<signatured_type *> *) datum;
6699
6700 all_type_units->push_back (sigt);
6701
6702 return 1;
6703 }
6704
6705 /* A helper for create_debug_types_hash_table. Read types from SECTION
6706 and fill them into TYPES_HTAB. It will process only type units,
6707 therefore DW_UT_type. */
6708
6709 static void
6710 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6711 struct dwo_file *dwo_file,
6712 dwarf2_section_info *section, htab_t &types_htab,
6713 rcuh_kind section_kind)
6714 {
6715 struct objfile *objfile = dwarf2_per_objfile->objfile;
6716 struct dwarf2_section_info *abbrev_section;
6717 bfd *abfd;
6718 const gdb_byte *info_ptr, *end_ptr;
6719
6720 abbrev_section = (dwo_file != NULL
6721 ? &dwo_file->sections.abbrev
6722 : &dwarf2_per_objfile->abbrev);
6723
6724 if (dwarf_read_debug)
6725 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6726 get_section_name (section),
6727 get_section_file_name (abbrev_section));
6728
6729 dwarf2_read_section (objfile, section);
6730 info_ptr = section->buffer;
6731
6732 if (info_ptr == NULL)
6733 return;
6734
6735 /* We can't set abfd until now because the section may be empty or
6736 not present, in which case the bfd is unknown. */
6737 abfd = get_section_bfd_owner (section);
6738
6739 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6740 because we don't need to read any dies: the signature is in the
6741 header. */
6742
6743 end_ptr = info_ptr + section->size;
6744 while (info_ptr < end_ptr)
6745 {
6746 struct signatured_type *sig_type;
6747 struct dwo_unit *dwo_tu;
6748 void **slot;
6749 const gdb_byte *ptr = info_ptr;
6750 struct comp_unit_head header;
6751 unsigned int length;
6752
6753 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6754
6755 /* Initialize it due to a false compiler warning. */
6756 header.signature = -1;
6757 header.type_cu_offset_in_tu = (cu_offset) -1;
6758
6759 /* We need to read the type's signature in order to build the hash
6760 table, but we don't need anything else just yet. */
6761
6762 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6763 abbrev_section, ptr, section_kind);
6764
6765 length = get_cu_length (&header);
6766
6767 /* Skip dummy type units. */
6768 if (ptr >= info_ptr + length
6769 || peek_abbrev_code (abfd, ptr) == 0
6770 || header.unit_type != DW_UT_type)
6771 {
6772 info_ptr += length;
6773 continue;
6774 }
6775
6776 if (types_htab == NULL)
6777 {
6778 if (dwo_file)
6779 types_htab = allocate_dwo_unit_table (objfile);
6780 else
6781 types_htab = allocate_signatured_type_table (objfile);
6782 }
6783
6784 if (dwo_file)
6785 {
6786 sig_type = NULL;
6787 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6788 struct dwo_unit);
6789 dwo_tu->dwo_file = dwo_file;
6790 dwo_tu->signature = header.signature;
6791 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6792 dwo_tu->section = section;
6793 dwo_tu->sect_off = sect_off;
6794 dwo_tu->length = length;
6795 }
6796 else
6797 {
6798 /* N.B.: type_offset is not usable if this type uses a DWO file.
6799 The real type_offset is in the DWO file. */
6800 dwo_tu = NULL;
6801 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6802 struct signatured_type);
6803 sig_type->signature = header.signature;
6804 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6805 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6806 sig_type->per_cu.is_debug_types = 1;
6807 sig_type->per_cu.section = section;
6808 sig_type->per_cu.sect_off = sect_off;
6809 sig_type->per_cu.length = length;
6810 }
6811
6812 slot = htab_find_slot (types_htab,
6813 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6814 INSERT);
6815 gdb_assert (slot != NULL);
6816 if (*slot != NULL)
6817 {
6818 sect_offset dup_sect_off;
6819
6820 if (dwo_file)
6821 {
6822 const struct dwo_unit *dup_tu
6823 = (const struct dwo_unit *) *slot;
6824
6825 dup_sect_off = dup_tu->sect_off;
6826 }
6827 else
6828 {
6829 const struct signatured_type *dup_tu
6830 = (const struct signatured_type *) *slot;
6831
6832 dup_sect_off = dup_tu->per_cu.sect_off;
6833 }
6834
6835 complaint (_("debug type entry at offset %s is duplicate to"
6836 " the entry at offset %s, signature %s"),
6837 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6838 hex_string (header.signature));
6839 }
6840 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6841
6842 if (dwarf_read_debug > 1)
6843 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6844 sect_offset_str (sect_off),
6845 hex_string (header.signature));
6846
6847 info_ptr += length;
6848 }
6849 }
6850
6851 /* Create the hash table of all entries in the .debug_types
6852 (or .debug_types.dwo) section(s).
6853 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6854 otherwise it is NULL.
6855
6856 The result is a pointer to the hash table or NULL if there are no types.
6857
6858 Note: This function processes DWO files only, not DWP files. */
6859
6860 static void
6861 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6862 struct dwo_file *dwo_file,
6863 VEC (dwarf2_section_info_def) *types,
6864 htab_t &types_htab)
6865 {
6866 int ix;
6867 struct dwarf2_section_info *section;
6868
6869 if (VEC_empty (dwarf2_section_info_def, types))
6870 return;
6871
6872 for (ix = 0;
6873 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6874 ++ix)
6875 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6876 types_htab, rcuh_kind::TYPE);
6877 }
6878
6879 /* Create the hash table of all entries in the .debug_types section,
6880 and initialize all_type_units.
6881 The result is zero if there is an error (e.g. missing .debug_types section),
6882 otherwise non-zero. */
6883
6884 static int
6885 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6886 {
6887 htab_t types_htab = NULL;
6888
6889 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6890 &dwarf2_per_objfile->info, types_htab,
6891 rcuh_kind::COMPILE);
6892 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6893 dwarf2_per_objfile->types, types_htab);
6894 if (types_htab == NULL)
6895 {
6896 dwarf2_per_objfile->signatured_types = NULL;
6897 return 0;
6898 }
6899
6900 dwarf2_per_objfile->signatured_types = types_htab;
6901
6902 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6903 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6904
6905 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6906 &dwarf2_per_objfile->all_type_units);
6907
6908 return 1;
6909 }
6910
6911 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6912 If SLOT is non-NULL, it is the entry to use in the hash table.
6913 Otherwise we find one. */
6914
6915 static struct signatured_type *
6916 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6917 void **slot)
6918 {
6919 struct objfile *objfile = dwarf2_per_objfile->objfile;
6920
6921 if (dwarf2_per_objfile->all_type_units.size ()
6922 == dwarf2_per_objfile->all_type_units.capacity ())
6923 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6924
6925 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6926 struct signatured_type);
6927
6928 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6929 sig_type->signature = sig;
6930 sig_type->per_cu.is_debug_types = 1;
6931 if (dwarf2_per_objfile->using_index)
6932 {
6933 sig_type->per_cu.v.quick =
6934 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6935 struct dwarf2_per_cu_quick_data);
6936 }
6937
6938 if (slot == NULL)
6939 {
6940 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6941 sig_type, INSERT);
6942 }
6943 gdb_assert (*slot == NULL);
6944 *slot = sig_type;
6945 /* The rest of sig_type must be filled in by the caller. */
6946 return sig_type;
6947 }
6948
6949 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6950 Fill in SIG_ENTRY with DWO_ENTRY. */
6951
6952 static void
6953 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6954 struct signatured_type *sig_entry,
6955 struct dwo_unit *dwo_entry)
6956 {
6957 /* Make sure we're not clobbering something we don't expect to. */
6958 gdb_assert (! sig_entry->per_cu.queued);
6959 gdb_assert (sig_entry->per_cu.cu == NULL);
6960 if (dwarf2_per_objfile->using_index)
6961 {
6962 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6963 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6964 }
6965 else
6966 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6967 gdb_assert (sig_entry->signature == dwo_entry->signature);
6968 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6969 gdb_assert (sig_entry->type_unit_group == NULL);
6970 gdb_assert (sig_entry->dwo_unit == NULL);
6971
6972 sig_entry->per_cu.section = dwo_entry->section;
6973 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6974 sig_entry->per_cu.length = dwo_entry->length;
6975 sig_entry->per_cu.reading_dwo_directly = 1;
6976 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6977 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6978 sig_entry->dwo_unit = dwo_entry;
6979 }
6980
6981 /* Subroutine of lookup_signatured_type.
6982 If we haven't read the TU yet, create the signatured_type data structure
6983 for a TU to be read in directly from a DWO file, bypassing the stub.
6984 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6985 using .gdb_index, then when reading a CU we want to stay in the DWO file
6986 containing that CU. Otherwise we could end up reading several other DWO
6987 files (due to comdat folding) to process the transitive closure of all the
6988 mentioned TUs, and that can be slow. The current DWO file will have every
6989 type signature that it needs.
6990 We only do this for .gdb_index because in the psymtab case we already have
6991 to read all the DWOs to build the type unit groups. */
6992
6993 static struct signatured_type *
6994 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6995 {
6996 struct dwarf2_per_objfile *dwarf2_per_objfile
6997 = cu->per_cu->dwarf2_per_objfile;
6998 struct objfile *objfile = dwarf2_per_objfile->objfile;
6999 struct dwo_file *dwo_file;
7000 struct dwo_unit find_dwo_entry, *dwo_entry;
7001 struct signatured_type find_sig_entry, *sig_entry;
7002 void **slot;
7003
7004 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7005
7006 /* If TU skeletons have been removed then we may not have read in any
7007 TUs yet. */
7008 if (dwarf2_per_objfile->signatured_types == NULL)
7009 {
7010 dwarf2_per_objfile->signatured_types
7011 = allocate_signatured_type_table (objfile);
7012 }
7013
7014 /* We only ever need to read in one copy of a signatured type.
7015 Use the global signatured_types array to do our own comdat-folding
7016 of types. If this is the first time we're reading this TU, and
7017 the TU has an entry in .gdb_index, replace the recorded data from
7018 .gdb_index with this TU. */
7019
7020 find_sig_entry.signature = sig;
7021 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7022 &find_sig_entry, INSERT);
7023 sig_entry = (struct signatured_type *) *slot;
7024
7025 /* We can get here with the TU already read, *or* in the process of being
7026 read. Don't reassign the global entry to point to this DWO if that's
7027 the case. Also note that if the TU is already being read, it may not
7028 have come from a DWO, the program may be a mix of Fission-compiled
7029 code and non-Fission-compiled code. */
7030
7031 /* Have we already tried to read this TU?
7032 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7033 needn't exist in the global table yet). */
7034 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7035 return sig_entry;
7036
7037 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7038 dwo_unit of the TU itself. */
7039 dwo_file = cu->dwo_unit->dwo_file;
7040
7041 /* Ok, this is the first time we're reading this TU. */
7042 if (dwo_file->tus == NULL)
7043 return NULL;
7044 find_dwo_entry.signature = sig;
7045 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7046 if (dwo_entry == NULL)
7047 return NULL;
7048
7049 /* If the global table doesn't have an entry for this TU, add one. */
7050 if (sig_entry == NULL)
7051 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7052
7053 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7054 sig_entry->per_cu.tu_read = 1;
7055 return sig_entry;
7056 }
7057
7058 /* Subroutine of lookup_signatured_type.
7059 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7060 then try the DWP file. If the TU stub (skeleton) has been removed then
7061 it won't be in .gdb_index. */
7062
7063 static struct signatured_type *
7064 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7065 {
7066 struct dwarf2_per_objfile *dwarf2_per_objfile
7067 = cu->per_cu->dwarf2_per_objfile;
7068 struct objfile *objfile = dwarf2_per_objfile->objfile;
7069 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7070 struct dwo_unit *dwo_entry;
7071 struct signatured_type find_sig_entry, *sig_entry;
7072 void **slot;
7073
7074 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7075 gdb_assert (dwp_file != NULL);
7076
7077 /* If TU skeletons have been removed then we may not have read in any
7078 TUs yet. */
7079 if (dwarf2_per_objfile->signatured_types == NULL)
7080 {
7081 dwarf2_per_objfile->signatured_types
7082 = allocate_signatured_type_table (objfile);
7083 }
7084
7085 find_sig_entry.signature = sig;
7086 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7087 &find_sig_entry, INSERT);
7088 sig_entry = (struct signatured_type *) *slot;
7089
7090 /* Have we already tried to read this TU?
7091 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7092 needn't exist in the global table yet). */
7093 if (sig_entry != NULL)
7094 return sig_entry;
7095
7096 if (dwp_file->tus == NULL)
7097 return NULL;
7098 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7099 sig, 1 /* is_debug_types */);
7100 if (dwo_entry == NULL)
7101 return NULL;
7102
7103 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7104 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7105
7106 return sig_entry;
7107 }
7108
7109 /* Lookup a signature based type for DW_FORM_ref_sig8.
7110 Returns NULL if signature SIG is not present in the table.
7111 It is up to the caller to complain about this. */
7112
7113 static struct signatured_type *
7114 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7115 {
7116 struct dwarf2_per_objfile *dwarf2_per_objfile
7117 = cu->per_cu->dwarf2_per_objfile;
7118
7119 if (cu->dwo_unit
7120 && dwarf2_per_objfile->using_index)
7121 {
7122 /* We're in a DWO/DWP file, and we're using .gdb_index.
7123 These cases require special processing. */
7124 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7125 return lookup_dwo_signatured_type (cu, sig);
7126 else
7127 return lookup_dwp_signatured_type (cu, sig);
7128 }
7129 else
7130 {
7131 struct signatured_type find_entry, *entry;
7132
7133 if (dwarf2_per_objfile->signatured_types == NULL)
7134 return NULL;
7135 find_entry.signature = sig;
7136 entry = ((struct signatured_type *)
7137 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7138 return entry;
7139 }
7140 }
7141 \f
7142 /* Low level DIE reading support. */
7143
7144 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7145
7146 static void
7147 init_cu_die_reader (struct die_reader_specs *reader,
7148 struct dwarf2_cu *cu,
7149 struct dwarf2_section_info *section,
7150 struct dwo_file *dwo_file,
7151 struct abbrev_table *abbrev_table)
7152 {
7153 gdb_assert (section->readin && section->buffer != NULL);
7154 reader->abfd = get_section_bfd_owner (section);
7155 reader->cu = cu;
7156 reader->dwo_file = dwo_file;
7157 reader->die_section = section;
7158 reader->buffer = section->buffer;
7159 reader->buffer_end = section->buffer + section->size;
7160 reader->comp_dir = NULL;
7161 reader->abbrev_table = abbrev_table;
7162 }
7163
7164 /* Subroutine of init_cutu_and_read_dies to simplify it.
7165 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7166 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7167 already.
7168
7169 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7170 from it to the DIE in the DWO. If NULL we are skipping the stub.
7171 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7172 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7173 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7174 STUB_COMP_DIR may be non-NULL.
7175 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7176 are filled in with the info of the DIE from the DWO file.
7177 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7178 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7179 kept around for at least as long as *RESULT_READER.
7180
7181 The result is non-zero if a valid (non-dummy) DIE was found. */
7182
7183 static int
7184 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7185 struct dwo_unit *dwo_unit,
7186 struct die_info *stub_comp_unit_die,
7187 const char *stub_comp_dir,
7188 struct die_reader_specs *result_reader,
7189 const gdb_byte **result_info_ptr,
7190 struct die_info **result_comp_unit_die,
7191 int *result_has_children,
7192 abbrev_table_up *result_dwo_abbrev_table)
7193 {
7194 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7195 struct objfile *objfile = dwarf2_per_objfile->objfile;
7196 struct dwarf2_cu *cu = this_cu->cu;
7197 bfd *abfd;
7198 const gdb_byte *begin_info_ptr, *info_ptr;
7199 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7200 int i,num_extra_attrs;
7201 struct dwarf2_section_info *dwo_abbrev_section;
7202 struct attribute *attr;
7203 struct die_info *comp_unit_die;
7204
7205 /* At most one of these may be provided. */
7206 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7207
7208 /* These attributes aren't processed until later:
7209 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7210 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7211 referenced later. However, these attributes are found in the stub
7212 which we won't have later. In order to not impose this complication
7213 on the rest of the code, we read them here and copy them to the
7214 DWO CU/TU die. */
7215
7216 stmt_list = NULL;
7217 low_pc = NULL;
7218 high_pc = NULL;
7219 ranges = NULL;
7220 comp_dir = NULL;
7221
7222 if (stub_comp_unit_die != NULL)
7223 {
7224 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7225 DWO file. */
7226 if (! this_cu->is_debug_types)
7227 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7228 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7229 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7230 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7231 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7232
7233 /* There should be a DW_AT_addr_base attribute here (if needed).
7234 We need the value before we can process DW_FORM_GNU_addr_index. */
7235 cu->addr_base = 0;
7236 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7237 if (attr)
7238 cu->addr_base = DW_UNSND (attr);
7239
7240 /* There should be a DW_AT_ranges_base attribute here (if needed).
7241 We need the value before we can process DW_AT_ranges. */
7242 cu->ranges_base = 0;
7243 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7244 if (attr)
7245 cu->ranges_base = DW_UNSND (attr);
7246 }
7247 else if (stub_comp_dir != NULL)
7248 {
7249 /* Reconstruct the comp_dir attribute to simplify the code below. */
7250 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7251 comp_dir->name = DW_AT_comp_dir;
7252 comp_dir->form = DW_FORM_string;
7253 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7254 DW_STRING (comp_dir) = stub_comp_dir;
7255 }
7256
7257 /* Set up for reading the DWO CU/TU. */
7258 cu->dwo_unit = dwo_unit;
7259 dwarf2_section_info *section = dwo_unit->section;
7260 dwarf2_read_section (objfile, section);
7261 abfd = get_section_bfd_owner (section);
7262 begin_info_ptr = info_ptr = (section->buffer
7263 + to_underlying (dwo_unit->sect_off));
7264 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7265
7266 if (this_cu->is_debug_types)
7267 {
7268 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7269
7270 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7271 &cu->header, section,
7272 dwo_abbrev_section,
7273 info_ptr, rcuh_kind::TYPE);
7274 /* This is not an assert because it can be caused by bad debug info. */
7275 if (sig_type->signature != cu->header.signature)
7276 {
7277 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7278 " TU at offset %s [in module %s]"),
7279 hex_string (sig_type->signature),
7280 hex_string (cu->header.signature),
7281 sect_offset_str (dwo_unit->sect_off),
7282 bfd_get_filename (abfd));
7283 }
7284 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7285 /* For DWOs coming from DWP files, we don't know the CU length
7286 nor the type's offset in the TU until now. */
7287 dwo_unit->length = get_cu_length (&cu->header);
7288 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7289
7290 /* Establish the type offset that can be used to lookup the type.
7291 For DWO files, we don't know it until now. */
7292 sig_type->type_offset_in_section
7293 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7294 }
7295 else
7296 {
7297 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7298 &cu->header, section,
7299 dwo_abbrev_section,
7300 info_ptr, rcuh_kind::COMPILE);
7301 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7302 /* For DWOs coming from DWP files, we don't know the CU length
7303 until now. */
7304 dwo_unit->length = get_cu_length (&cu->header);
7305 }
7306
7307 *result_dwo_abbrev_table
7308 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7309 cu->header.abbrev_sect_off);
7310 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7311 result_dwo_abbrev_table->get ());
7312
7313 /* Read in the die, but leave space to copy over the attributes
7314 from the stub. This has the benefit of simplifying the rest of
7315 the code - all the work to maintain the illusion of a single
7316 DW_TAG_{compile,type}_unit DIE is done here. */
7317 num_extra_attrs = ((stmt_list != NULL)
7318 + (low_pc != NULL)
7319 + (high_pc != NULL)
7320 + (ranges != NULL)
7321 + (comp_dir != NULL));
7322 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7323 result_has_children, num_extra_attrs);
7324
7325 /* Copy over the attributes from the stub to the DIE we just read in. */
7326 comp_unit_die = *result_comp_unit_die;
7327 i = comp_unit_die->num_attrs;
7328 if (stmt_list != NULL)
7329 comp_unit_die->attrs[i++] = *stmt_list;
7330 if (low_pc != NULL)
7331 comp_unit_die->attrs[i++] = *low_pc;
7332 if (high_pc != NULL)
7333 comp_unit_die->attrs[i++] = *high_pc;
7334 if (ranges != NULL)
7335 comp_unit_die->attrs[i++] = *ranges;
7336 if (comp_dir != NULL)
7337 comp_unit_die->attrs[i++] = *comp_dir;
7338 comp_unit_die->num_attrs += num_extra_attrs;
7339
7340 if (dwarf_die_debug)
7341 {
7342 fprintf_unfiltered (gdb_stdlog,
7343 "Read die from %s@0x%x of %s:\n",
7344 get_section_name (section),
7345 (unsigned) (begin_info_ptr - section->buffer),
7346 bfd_get_filename (abfd));
7347 dump_die (comp_unit_die, dwarf_die_debug);
7348 }
7349
7350 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7351 TUs by skipping the stub and going directly to the entry in the DWO file.
7352 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7353 to get it via circuitous means. Blech. */
7354 if (comp_dir != NULL)
7355 result_reader->comp_dir = DW_STRING (comp_dir);
7356
7357 /* Skip dummy compilation units. */
7358 if (info_ptr >= begin_info_ptr + dwo_unit->length
7359 || peek_abbrev_code (abfd, info_ptr) == 0)
7360 return 0;
7361
7362 *result_info_ptr = info_ptr;
7363 return 1;
7364 }
7365
7366 /* Subroutine of init_cutu_and_read_dies to simplify it.
7367 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7368 Returns NULL if the specified DWO unit cannot be found. */
7369
7370 static struct dwo_unit *
7371 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7372 struct die_info *comp_unit_die)
7373 {
7374 struct dwarf2_cu *cu = this_cu->cu;
7375 ULONGEST signature;
7376 struct dwo_unit *dwo_unit;
7377 const char *comp_dir, *dwo_name;
7378
7379 gdb_assert (cu != NULL);
7380
7381 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7382 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7383 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7384
7385 if (this_cu->is_debug_types)
7386 {
7387 struct signatured_type *sig_type;
7388
7389 /* Since this_cu is the first member of struct signatured_type,
7390 we can go from a pointer to one to a pointer to the other. */
7391 sig_type = (struct signatured_type *) this_cu;
7392 signature = sig_type->signature;
7393 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7394 }
7395 else
7396 {
7397 struct attribute *attr;
7398
7399 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7400 if (! attr)
7401 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7402 " [in module %s]"),
7403 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7404 signature = DW_UNSND (attr);
7405 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7406 signature);
7407 }
7408
7409 return dwo_unit;
7410 }
7411
7412 /* Subroutine of init_cutu_and_read_dies to simplify it.
7413 See it for a description of the parameters.
7414 Read a TU directly from a DWO file, bypassing the stub. */
7415
7416 static void
7417 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7418 int use_existing_cu, int keep,
7419 die_reader_func_ftype *die_reader_func,
7420 void *data)
7421 {
7422 std::unique_ptr<dwarf2_cu> new_cu;
7423 struct signatured_type *sig_type;
7424 struct die_reader_specs reader;
7425 const gdb_byte *info_ptr;
7426 struct die_info *comp_unit_die;
7427 int has_children;
7428 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7429
7430 /* Verify we can do the following downcast, and that we have the
7431 data we need. */
7432 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7433 sig_type = (struct signatured_type *) this_cu;
7434 gdb_assert (sig_type->dwo_unit != NULL);
7435
7436 if (use_existing_cu && this_cu->cu != NULL)
7437 {
7438 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7439 /* There's no need to do the rereading_dwo_cu handling that
7440 init_cutu_and_read_dies does since we don't read the stub. */
7441 }
7442 else
7443 {
7444 /* If !use_existing_cu, this_cu->cu must be NULL. */
7445 gdb_assert (this_cu->cu == NULL);
7446 new_cu.reset (new dwarf2_cu (this_cu));
7447 }
7448
7449 /* A future optimization, if needed, would be to use an existing
7450 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7451 could share abbrev tables. */
7452
7453 /* The abbreviation table used by READER, this must live at least as long as
7454 READER. */
7455 abbrev_table_up dwo_abbrev_table;
7456
7457 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7458 NULL /* stub_comp_unit_die */,
7459 sig_type->dwo_unit->dwo_file->comp_dir,
7460 &reader, &info_ptr,
7461 &comp_unit_die, &has_children,
7462 &dwo_abbrev_table) == 0)
7463 {
7464 /* Dummy die. */
7465 return;
7466 }
7467
7468 /* All the "real" work is done here. */
7469 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7470
7471 /* This duplicates the code in init_cutu_and_read_dies,
7472 but the alternative is making the latter more complex.
7473 This function is only for the special case of using DWO files directly:
7474 no point in overly complicating the general case just to handle this. */
7475 if (new_cu != NULL && keep)
7476 {
7477 /* Link this CU into read_in_chain. */
7478 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7479 dwarf2_per_objfile->read_in_chain = this_cu;
7480 /* The chain owns it now. */
7481 new_cu.release ();
7482 }
7483 }
7484
7485 /* Initialize a CU (or TU) and read its DIEs.
7486 If the CU defers to a DWO file, read the DWO file as well.
7487
7488 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7489 Otherwise the table specified in the comp unit header is read in and used.
7490 This is an optimization for when we already have the abbrev table.
7491
7492 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7493 Otherwise, a new CU is allocated with xmalloc.
7494
7495 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7496 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7497
7498 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7499 linker) then DIE_READER_FUNC will not get called. */
7500
7501 static void
7502 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7503 struct abbrev_table *abbrev_table,
7504 int use_existing_cu, int keep,
7505 bool skip_partial,
7506 die_reader_func_ftype *die_reader_func,
7507 void *data)
7508 {
7509 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7510 struct objfile *objfile = dwarf2_per_objfile->objfile;
7511 struct dwarf2_section_info *section = this_cu->section;
7512 bfd *abfd = get_section_bfd_owner (section);
7513 struct dwarf2_cu *cu;
7514 const gdb_byte *begin_info_ptr, *info_ptr;
7515 struct die_reader_specs reader;
7516 struct die_info *comp_unit_die;
7517 int has_children;
7518 struct attribute *attr;
7519 struct signatured_type *sig_type = NULL;
7520 struct dwarf2_section_info *abbrev_section;
7521 /* Non-zero if CU currently points to a DWO file and we need to
7522 reread it. When this happens we need to reread the skeleton die
7523 before we can reread the DWO file (this only applies to CUs, not TUs). */
7524 int rereading_dwo_cu = 0;
7525
7526 if (dwarf_die_debug)
7527 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7528 this_cu->is_debug_types ? "type" : "comp",
7529 sect_offset_str (this_cu->sect_off));
7530
7531 if (use_existing_cu)
7532 gdb_assert (keep);
7533
7534 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7535 file (instead of going through the stub), short-circuit all of this. */
7536 if (this_cu->reading_dwo_directly)
7537 {
7538 /* Narrow down the scope of possibilities to have to understand. */
7539 gdb_assert (this_cu->is_debug_types);
7540 gdb_assert (abbrev_table == NULL);
7541 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7542 die_reader_func, data);
7543 return;
7544 }
7545
7546 /* This is cheap if the section is already read in. */
7547 dwarf2_read_section (objfile, section);
7548
7549 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7550
7551 abbrev_section = get_abbrev_section_for_cu (this_cu);
7552
7553 std::unique_ptr<dwarf2_cu> new_cu;
7554 if (use_existing_cu && this_cu->cu != NULL)
7555 {
7556 cu = this_cu->cu;
7557 /* If this CU is from a DWO file we need to start over, we need to
7558 refetch the attributes from the skeleton CU.
7559 This could be optimized by retrieving those attributes from when we
7560 were here the first time: the previous comp_unit_die was stored in
7561 comp_unit_obstack. But there's no data yet that we need this
7562 optimization. */
7563 if (cu->dwo_unit != NULL)
7564 rereading_dwo_cu = 1;
7565 }
7566 else
7567 {
7568 /* If !use_existing_cu, this_cu->cu must be NULL. */
7569 gdb_assert (this_cu->cu == NULL);
7570 new_cu.reset (new dwarf2_cu (this_cu));
7571 cu = new_cu.get ();
7572 }
7573
7574 /* Get the header. */
7575 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7576 {
7577 /* We already have the header, there's no need to read it in again. */
7578 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7579 }
7580 else
7581 {
7582 if (this_cu->is_debug_types)
7583 {
7584 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7585 &cu->header, section,
7586 abbrev_section, info_ptr,
7587 rcuh_kind::TYPE);
7588
7589 /* Since per_cu is the first member of struct signatured_type,
7590 we can go from a pointer to one to a pointer to the other. */
7591 sig_type = (struct signatured_type *) this_cu;
7592 gdb_assert (sig_type->signature == cu->header.signature);
7593 gdb_assert (sig_type->type_offset_in_tu
7594 == cu->header.type_cu_offset_in_tu);
7595 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7596
7597 /* LENGTH has not been set yet for type units if we're
7598 using .gdb_index. */
7599 this_cu->length = get_cu_length (&cu->header);
7600
7601 /* Establish the type offset that can be used to lookup the type. */
7602 sig_type->type_offset_in_section =
7603 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7604
7605 this_cu->dwarf_version = cu->header.version;
7606 }
7607 else
7608 {
7609 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7610 &cu->header, section,
7611 abbrev_section,
7612 info_ptr,
7613 rcuh_kind::COMPILE);
7614
7615 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7616 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7617 this_cu->dwarf_version = cu->header.version;
7618 }
7619 }
7620
7621 /* Skip dummy compilation units. */
7622 if (info_ptr >= begin_info_ptr + this_cu->length
7623 || peek_abbrev_code (abfd, info_ptr) == 0)
7624 return;
7625
7626 /* If we don't have them yet, read the abbrevs for this compilation unit.
7627 And if we need to read them now, make sure they're freed when we're
7628 done (own the table through ABBREV_TABLE_HOLDER). */
7629 abbrev_table_up abbrev_table_holder;
7630 if (abbrev_table != NULL)
7631 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7632 else
7633 {
7634 abbrev_table_holder
7635 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7636 cu->header.abbrev_sect_off);
7637 abbrev_table = abbrev_table_holder.get ();
7638 }
7639
7640 /* Read the top level CU/TU die. */
7641 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7642 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7643
7644 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7645 return;
7646
7647 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7648 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7649 table from the DWO file and pass the ownership over to us. It will be
7650 referenced from READER, so we must make sure to free it after we're done
7651 with READER.
7652
7653 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7654 DWO CU, that this test will fail (the attribute will not be present). */
7655 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7656 abbrev_table_up dwo_abbrev_table;
7657 if (attr)
7658 {
7659 struct dwo_unit *dwo_unit;
7660 struct die_info *dwo_comp_unit_die;
7661
7662 if (has_children)
7663 {
7664 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7665 " has children (offset %s) [in module %s]"),
7666 sect_offset_str (this_cu->sect_off),
7667 bfd_get_filename (abfd));
7668 }
7669 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7670 if (dwo_unit != NULL)
7671 {
7672 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7673 comp_unit_die, NULL,
7674 &reader, &info_ptr,
7675 &dwo_comp_unit_die, &has_children,
7676 &dwo_abbrev_table) == 0)
7677 {
7678 /* Dummy die. */
7679 return;
7680 }
7681 comp_unit_die = dwo_comp_unit_die;
7682 }
7683 else
7684 {
7685 /* Yikes, we couldn't find the rest of the DIE, we only have
7686 the stub. A complaint has already been logged. There's
7687 not much more we can do except pass on the stub DIE to
7688 die_reader_func. We don't want to throw an error on bad
7689 debug info. */
7690 }
7691 }
7692
7693 /* All of the above is setup for this call. Yikes. */
7694 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7695
7696 /* Done, clean up. */
7697 if (new_cu != NULL && keep)
7698 {
7699 /* Link this CU into read_in_chain. */
7700 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7701 dwarf2_per_objfile->read_in_chain = this_cu;
7702 /* The chain owns it now. */
7703 new_cu.release ();
7704 }
7705 }
7706
7707 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7708 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7709 to have already done the lookup to find the DWO file).
7710
7711 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7712 THIS_CU->is_debug_types, but nothing else.
7713
7714 We fill in THIS_CU->length.
7715
7716 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7717 linker) then DIE_READER_FUNC will not get called.
7718
7719 THIS_CU->cu is always freed when done.
7720 This is done in order to not leave THIS_CU->cu in a state where we have
7721 to care whether it refers to the "main" CU or the DWO CU. */
7722
7723 static void
7724 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7725 struct dwo_file *dwo_file,
7726 die_reader_func_ftype *die_reader_func,
7727 void *data)
7728 {
7729 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7730 struct objfile *objfile = dwarf2_per_objfile->objfile;
7731 struct dwarf2_section_info *section = this_cu->section;
7732 bfd *abfd = get_section_bfd_owner (section);
7733 struct dwarf2_section_info *abbrev_section;
7734 const gdb_byte *begin_info_ptr, *info_ptr;
7735 struct die_reader_specs reader;
7736 struct die_info *comp_unit_die;
7737 int has_children;
7738
7739 if (dwarf_die_debug)
7740 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7741 this_cu->is_debug_types ? "type" : "comp",
7742 sect_offset_str (this_cu->sect_off));
7743
7744 gdb_assert (this_cu->cu == NULL);
7745
7746 abbrev_section = (dwo_file != NULL
7747 ? &dwo_file->sections.abbrev
7748 : get_abbrev_section_for_cu (this_cu));
7749
7750 /* This is cheap if the section is already read in. */
7751 dwarf2_read_section (objfile, section);
7752
7753 struct dwarf2_cu cu (this_cu);
7754
7755 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7756 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7757 &cu.header, section,
7758 abbrev_section, info_ptr,
7759 (this_cu->is_debug_types
7760 ? rcuh_kind::TYPE
7761 : rcuh_kind::COMPILE));
7762
7763 this_cu->length = get_cu_length (&cu.header);
7764
7765 /* Skip dummy compilation units. */
7766 if (info_ptr >= begin_info_ptr + this_cu->length
7767 || peek_abbrev_code (abfd, info_ptr) == 0)
7768 return;
7769
7770 abbrev_table_up abbrev_table
7771 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7772 cu.header.abbrev_sect_off);
7773
7774 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7775 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7776
7777 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7778 }
7779
7780 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7781 does not lookup the specified DWO file.
7782 This cannot be used to read DWO files.
7783
7784 THIS_CU->cu is always freed when done.
7785 This is done in order to not leave THIS_CU->cu in a state where we have
7786 to care whether it refers to the "main" CU or the DWO CU.
7787 We can revisit this if the data shows there's a performance issue. */
7788
7789 static void
7790 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7791 die_reader_func_ftype *die_reader_func,
7792 void *data)
7793 {
7794 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7795 }
7796 \f
7797 /* Type Unit Groups.
7798
7799 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7800 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7801 so that all types coming from the same compilation (.o file) are grouped
7802 together. A future step could be to put the types in the same symtab as
7803 the CU the types ultimately came from. */
7804
7805 static hashval_t
7806 hash_type_unit_group (const void *item)
7807 {
7808 const struct type_unit_group *tu_group
7809 = (const struct type_unit_group *) item;
7810
7811 return hash_stmt_list_entry (&tu_group->hash);
7812 }
7813
7814 static int
7815 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7816 {
7817 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7818 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7819
7820 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7821 }
7822
7823 /* Allocate a hash table for type unit groups. */
7824
7825 static htab_t
7826 allocate_type_unit_groups_table (struct objfile *objfile)
7827 {
7828 return htab_create_alloc_ex (3,
7829 hash_type_unit_group,
7830 eq_type_unit_group,
7831 NULL,
7832 &objfile->objfile_obstack,
7833 hashtab_obstack_allocate,
7834 dummy_obstack_deallocate);
7835 }
7836
7837 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7838 partial symtabs. We combine several TUs per psymtab to not let the size
7839 of any one psymtab grow too big. */
7840 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7841 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7842
7843 /* Helper routine for get_type_unit_group.
7844 Create the type_unit_group object used to hold one or more TUs. */
7845
7846 static struct type_unit_group *
7847 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7848 {
7849 struct dwarf2_per_objfile *dwarf2_per_objfile
7850 = cu->per_cu->dwarf2_per_objfile;
7851 struct objfile *objfile = dwarf2_per_objfile->objfile;
7852 struct dwarf2_per_cu_data *per_cu;
7853 struct type_unit_group *tu_group;
7854
7855 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7856 struct type_unit_group);
7857 per_cu = &tu_group->per_cu;
7858 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7859
7860 if (dwarf2_per_objfile->using_index)
7861 {
7862 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7863 struct dwarf2_per_cu_quick_data);
7864 }
7865 else
7866 {
7867 unsigned int line_offset = to_underlying (line_offset_struct);
7868 struct partial_symtab *pst;
7869 std::string name;
7870
7871 /* Give the symtab a useful name for debug purposes. */
7872 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7873 name = string_printf ("<type_units_%d>",
7874 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7875 else
7876 name = string_printf ("<type_units_at_0x%x>", line_offset);
7877
7878 pst = create_partial_symtab (per_cu, name.c_str ());
7879 pst->anonymous = 1;
7880 }
7881
7882 tu_group->hash.dwo_unit = cu->dwo_unit;
7883 tu_group->hash.line_sect_off = line_offset_struct;
7884
7885 return tu_group;
7886 }
7887
7888 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7889 STMT_LIST is a DW_AT_stmt_list attribute. */
7890
7891 static struct type_unit_group *
7892 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7893 {
7894 struct dwarf2_per_objfile *dwarf2_per_objfile
7895 = cu->per_cu->dwarf2_per_objfile;
7896 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7897 struct type_unit_group *tu_group;
7898 void **slot;
7899 unsigned int line_offset;
7900 struct type_unit_group type_unit_group_for_lookup;
7901
7902 if (dwarf2_per_objfile->type_unit_groups == NULL)
7903 {
7904 dwarf2_per_objfile->type_unit_groups =
7905 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7906 }
7907
7908 /* Do we need to create a new group, or can we use an existing one? */
7909
7910 if (stmt_list)
7911 {
7912 line_offset = DW_UNSND (stmt_list);
7913 ++tu_stats->nr_symtab_sharers;
7914 }
7915 else
7916 {
7917 /* Ugh, no stmt_list. Rare, but we have to handle it.
7918 We can do various things here like create one group per TU or
7919 spread them over multiple groups to split up the expansion work.
7920 To avoid worst case scenarios (too many groups or too large groups)
7921 we, umm, group them in bunches. */
7922 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7923 | (tu_stats->nr_stmt_less_type_units
7924 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7925 ++tu_stats->nr_stmt_less_type_units;
7926 }
7927
7928 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7929 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7930 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7931 &type_unit_group_for_lookup, INSERT);
7932 if (*slot != NULL)
7933 {
7934 tu_group = (struct type_unit_group *) *slot;
7935 gdb_assert (tu_group != NULL);
7936 }
7937 else
7938 {
7939 sect_offset line_offset_struct = (sect_offset) line_offset;
7940 tu_group = create_type_unit_group (cu, line_offset_struct);
7941 *slot = tu_group;
7942 ++tu_stats->nr_symtabs;
7943 }
7944
7945 return tu_group;
7946 }
7947 \f
7948 /* Partial symbol tables. */
7949
7950 /* Create a psymtab named NAME and assign it to PER_CU.
7951
7952 The caller must fill in the following details:
7953 dirname, textlow, texthigh. */
7954
7955 static struct partial_symtab *
7956 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7957 {
7958 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7959 struct partial_symtab *pst;
7960
7961 pst = start_psymtab_common (objfile, name, 0);
7962
7963 pst->psymtabs_addrmap_supported = 1;
7964
7965 /* This is the glue that links PST into GDB's symbol API. */
7966 pst->read_symtab_private = per_cu;
7967 pst->read_symtab = dwarf2_read_symtab;
7968 per_cu->v.psymtab = pst;
7969
7970 return pst;
7971 }
7972
7973 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7974 type. */
7975
7976 struct process_psymtab_comp_unit_data
7977 {
7978 /* True if we are reading a DW_TAG_partial_unit. */
7979
7980 int want_partial_unit;
7981
7982 /* The "pretend" language that is used if the CU doesn't declare a
7983 language. */
7984
7985 enum language pretend_language;
7986 };
7987
7988 /* die_reader_func for process_psymtab_comp_unit. */
7989
7990 static void
7991 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7992 const gdb_byte *info_ptr,
7993 struct die_info *comp_unit_die,
7994 int has_children,
7995 void *data)
7996 {
7997 struct dwarf2_cu *cu = reader->cu;
7998 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7999 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8000 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8001 CORE_ADDR baseaddr;
8002 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8003 struct partial_symtab *pst;
8004 enum pc_bounds_kind cu_bounds_kind;
8005 const char *filename;
8006 struct process_psymtab_comp_unit_data *info
8007 = (struct process_psymtab_comp_unit_data *) data;
8008
8009 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8010 return;
8011
8012 gdb_assert (! per_cu->is_debug_types);
8013
8014 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8015
8016 /* Allocate a new partial symbol table structure. */
8017 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8018 if (filename == NULL)
8019 filename = "";
8020
8021 pst = create_partial_symtab (per_cu, filename);
8022
8023 /* This must be done before calling dwarf2_build_include_psymtabs. */
8024 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8025
8026 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8027
8028 dwarf2_find_base_address (comp_unit_die, cu);
8029
8030 /* Possibly set the default values of LOWPC and HIGHPC from
8031 `DW_AT_ranges'. */
8032 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8033 &best_highpc, cu, pst);
8034 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8035 {
8036 CORE_ADDR low
8037 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8038 - baseaddr);
8039 CORE_ADDR high
8040 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8041 - baseaddr - 1);
8042 /* Store the contiguous range if it is not empty; it can be
8043 empty for CUs with no code. */
8044 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8045 low, high, pst);
8046 }
8047
8048 /* Check if comp unit has_children.
8049 If so, read the rest of the partial symbols from this comp unit.
8050 If not, there's no more debug_info for this comp unit. */
8051 if (has_children)
8052 {
8053 struct partial_die_info *first_die;
8054 CORE_ADDR lowpc, highpc;
8055
8056 lowpc = ((CORE_ADDR) -1);
8057 highpc = ((CORE_ADDR) 0);
8058
8059 first_die = load_partial_dies (reader, info_ptr, 1);
8060
8061 scan_partial_symbols (first_die, &lowpc, &highpc,
8062 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8063
8064 /* If we didn't find a lowpc, set it to highpc to avoid
8065 complaints from `maint check'. */
8066 if (lowpc == ((CORE_ADDR) -1))
8067 lowpc = highpc;
8068
8069 /* If the compilation unit didn't have an explicit address range,
8070 then use the information extracted from its child dies. */
8071 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8072 {
8073 best_lowpc = lowpc;
8074 best_highpc = highpc;
8075 }
8076 }
8077 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8078 best_lowpc + baseaddr)
8079 - baseaddr);
8080 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8081 best_highpc + baseaddr)
8082 - baseaddr);
8083
8084 end_psymtab_common (objfile, pst);
8085
8086 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8087 {
8088 int i;
8089 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8090 struct dwarf2_per_cu_data *iter;
8091
8092 /* Fill in 'dependencies' here; we fill in 'users' in a
8093 post-pass. */
8094 pst->number_of_dependencies = len;
8095 pst->dependencies
8096 = objfile->partial_symtabs->allocate_dependencies (len);
8097 for (i = 0;
8098 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8099 i, iter);
8100 ++i)
8101 pst->dependencies[i] = iter->v.psymtab;
8102
8103 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8104 }
8105
8106 /* Get the list of files included in the current compilation unit,
8107 and build a psymtab for each of them. */
8108 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8109
8110 if (dwarf_read_debug)
8111 fprintf_unfiltered (gdb_stdlog,
8112 "Psymtab for %s unit @%s: %s - %s"
8113 ", %d global, %d static syms\n",
8114 per_cu->is_debug_types ? "type" : "comp",
8115 sect_offset_str (per_cu->sect_off),
8116 paddress (gdbarch, pst->text_low (objfile)),
8117 paddress (gdbarch, pst->text_high (objfile)),
8118 pst->n_global_syms, pst->n_static_syms);
8119 }
8120
8121 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8122 Process compilation unit THIS_CU for a psymtab. */
8123
8124 static void
8125 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8126 int want_partial_unit,
8127 enum language pretend_language)
8128 {
8129 /* If this compilation unit was already read in, free the
8130 cached copy in order to read it in again. This is
8131 necessary because we skipped some symbols when we first
8132 read in the compilation unit (see load_partial_dies).
8133 This problem could be avoided, but the benefit is unclear. */
8134 if (this_cu->cu != NULL)
8135 free_one_cached_comp_unit (this_cu);
8136
8137 if (this_cu->is_debug_types)
8138 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8139 build_type_psymtabs_reader, NULL);
8140 else
8141 {
8142 process_psymtab_comp_unit_data info;
8143 info.want_partial_unit = want_partial_unit;
8144 info.pretend_language = pretend_language;
8145 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8146 process_psymtab_comp_unit_reader, &info);
8147 }
8148
8149 /* Age out any secondary CUs. */
8150 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8151 }
8152
8153 /* Reader function for build_type_psymtabs. */
8154
8155 static void
8156 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8157 const gdb_byte *info_ptr,
8158 struct die_info *type_unit_die,
8159 int has_children,
8160 void *data)
8161 {
8162 struct dwarf2_per_objfile *dwarf2_per_objfile
8163 = reader->cu->per_cu->dwarf2_per_objfile;
8164 struct objfile *objfile = dwarf2_per_objfile->objfile;
8165 struct dwarf2_cu *cu = reader->cu;
8166 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8167 struct signatured_type *sig_type;
8168 struct type_unit_group *tu_group;
8169 struct attribute *attr;
8170 struct partial_die_info *first_die;
8171 CORE_ADDR lowpc, highpc;
8172 struct partial_symtab *pst;
8173
8174 gdb_assert (data == NULL);
8175 gdb_assert (per_cu->is_debug_types);
8176 sig_type = (struct signatured_type *) per_cu;
8177
8178 if (! has_children)
8179 return;
8180
8181 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8182 tu_group = get_type_unit_group (cu, attr);
8183
8184 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8185
8186 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8187 pst = create_partial_symtab (per_cu, "");
8188 pst->anonymous = 1;
8189
8190 first_die = load_partial_dies (reader, info_ptr, 1);
8191
8192 lowpc = (CORE_ADDR) -1;
8193 highpc = (CORE_ADDR) 0;
8194 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8195
8196 end_psymtab_common (objfile, pst);
8197 }
8198
8199 /* Struct used to sort TUs by their abbreviation table offset. */
8200
8201 struct tu_abbrev_offset
8202 {
8203 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8204 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8205 {}
8206
8207 signatured_type *sig_type;
8208 sect_offset abbrev_offset;
8209 };
8210
8211 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8212
8213 static bool
8214 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8215 const struct tu_abbrev_offset &b)
8216 {
8217 return a.abbrev_offset < b.abbrev_offset;
8218 }
8219
8220 /* Efficiently read all the type units.
8221 This does the bulk of the work for build_type_psymtabs.
8222
8223 The efficiency is because we sort TUs by the abbrev table they use and
8224 only read each abbrev table once. In one program there are 200K TUs
8225 sharing 8K abbrev tables.
8226
8227 The main purpose of this function is to support building the
8228 dwarf2_per_objfile->type_unit_groups table.
8229 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8230 can collapse the search space by grouping them by stmt_list.
8231 The savings can be significant, in the same program from above the 200K TUs
8232 share 8K stmt_list tables.
8233
8234 FUNC is expected to call get_type_unit_group, which will create the
8235 struct type_unit_group if necessary and add it to
8236 dwarf2_per_objfile->type_unit_groups. */
8237
8238 static void
8239 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8240 {
8241 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8242 abbrev_table_up abbrev_table;
8243 sect_offset abbrev_offset;
8244
8245 /* It's up to the caller to not call us multiple times. */
8246 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8247
8248 if (dwarf2_per_objfile->all_type_units.empty ())
8249 return;
8250
8251 /* TUs typically share abbrev tables, and there can be way more TUs than
8252 abbrev tables. Sort by abbrev table to reduce the number of times we
8253 read each abbrev table in.
8254 Alternatives are to punt or to maintain a cache of abbrev tables.
8255 This is simpler and efficient enough for now.
8256
8257 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8258 symtab to use). Typically TUs with the same abbrev offset have the same
8259 stmt_list value too so in practice this should work well.
8260
8261 The basic algorithm here is:
8262
8263 sort TUs by abbrev table
8264 for each TU with same abbrev table:
8265 read abbrev table if first user
8266 read TU top level DIE
8267 [IWBN if DWO skeletons had DW_AT_stmt_list]
8268 call FUNC */
8269
8270 if (dwarf_read_debug)
8271 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8272
8273 /* Sort in a separate table to maintain the order of all_type_units
8274 for .gdb_index: TU indices directly index all_type_units. */
8275 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8276 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8277
8278 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8279 sorted_by_abbrev.emplace_back
8280 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8281 sig_type->per_cu.section,
8282 sig_type->per_cu.sect_off));
8283
8284 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8285 sort_tu_by_abbrev_offset);
8286
8287 abbrev_offset = (sect_offset) ~(unsigned) 0;
8288
8289 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8290 {
8291 /* Switch to the next abbrev table if necessary. */
8292 if (abbrev_table == NULL
8293 || tu.abbrev_offset != abbrev_offset)
8294 {
8295 abbrev_offset = tu.abbrev_offset;
8296 abbrev_table =
8297 abbrev_table_read_table (dwarf2_per_objfile,
8298 &dwarf2_per_objfile->abbrev,
8299 abbrev_offset);
8300 ++tu_stats->nr_uniq_abbrev_tables;
8301 }
8302
8303 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8304 0, 0, false, build_type_psymtabs_reader, NULL);
8305 }
8306 }
8307
8308 /* Print collected type unit statistics. */
8309
8310 static void
8311 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8312 {
8313 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8314
8315 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8316 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8317 dwarf2_per_objfile->all_type_units.size ());
8318 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8319 tu_stats->nr_uniq_abbrev_tables);
8320 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8321 tu_stats->nr_symtabs);
8322 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8323 tu_stats->nr_symtab_sharers);
8324 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8325 tu_stats->nr_stmt_less_type_units);
8326 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8327 tu_stats->nr_all_type_units_reallocs);
8328 }
8329
8330 /* Traversal function for build_type_psymtabs. */
8331
8332 static int
8333 build_type_psymtab_dependencies (void **slot, void *info)
8334 {
8335 struct dwarf2_per_objfile *dwarf2_per_objfile
8336 = (struct dwarf2_per_objfile *) info;
8337 struct objfile *objfile = dwarf2_per_objfile->objfile;
8338 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8339 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8340 struct partial_symtab *pst = per_cu->v.psymtab;
8341 int len = VEC_length (sig_type_ptr, tu_group->tus);
8342 struct signatured_type *iter;
8343 int i;
8344
8345 gdb_assert (len > 0);
8346 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8347
8348 pst->number_of_dependencies = len;
8349 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8350 for (i = 0;
8351 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8352 ++i)
8353 {
8354 gdb_assert (iter->per_cu.is_debug_types);
8355 pst->dependencies[i] = iter->per_cu.v.psymtab;
8356 iter->type_unit_group = tu_group;
8357 }
8358
8359 VEC_free (sig_type_ptr, tu_group->tus);
8360
8361 return 1;
8362 }
8363
8364 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8365 Build partial symbol tables for the .debug_types comp-units. */
8366
8367 static void
8368 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8369 {
8370 if (! create_all_type_units (dwarf2_per_objfile))
8371 return;
8372
8373 build_type_psymtabs_1 (dwarf2_per_objfile);
8374 }
8375
8376 /* Traversal function for process_skeletonless_type_unit.
8377 Read a TU in a DWO file and build partial symbols for it. */
8378
8379 static int
8380 process_skeletonless_type_unit (void **slot, void *info)
8381 {
8382 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8383 struct dwarf2_per_objfile *dwarf2_per_objfile
8384 = (struct dwarf2_per_objfile *) info;
8385 struct signatured_type find_entry, *entry;
8386
8387 /* If this TU doesn't exist in the global table, add it and read it in. */
8388
8389 if (dwarf2_per_objfile->signatured_types == NULL)
8390 {
8391 dwarf2_per_objfile->signatured_types
8392 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8393 }
8394
8395 find_entry.signature = dwo_unit->signature;
8396 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8397 INSERT);
8398 /* If we've already seen this type there's nothing to do. What's happening
8399 is we're doing our own version of comdat-folding here. */
8400 if (*slot != NULL)
8401 return 1;
8402
8403 /* This does the job that create_all_type_units would have done for
8404 this TU. */
8405 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8406 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8407 *slot = entry;
8408
8409 /* This does the job that build_type_psymtabs_1 would have done. */
8410 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8411 build_type_psymtabs_reader, NULL);
8412
8413 return 1;
8414 }
8415
8416 /* Traversal function for process_skeletonless_type_units. */
8417
8418 static int
8419 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8420 {
8421 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8422
8423 if (dwo_file->tus != NULL)
8424 {
8425 htab_traverse_noresize (dwo_file->tus,
8426 process_skeletonless_type_unit, info);
8427 }
8428
8429 return 1;
8430 }
8431
8432 /* Scan all TUs of DWO files, verifying we've processed them.
8433 This is needed in case a TU was emitted without its skeleton.
8434 Note: This can't be done until we know what all the DWO files are. */
8435
8436 static void
8437 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8438 {
8439 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8440 if (get_dwp_file (dwarf2_per_objfile) == NULL
8441 && dwarf2_per_objfile->dwo_files != NULL)
8442 {
8443 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8444 process_dwo_file_for_skeletonless_type_units,
8445 dwarf2_per_objfile);
8446 }
8447 }
8448
8449 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8450
8451 static void
8452 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8453 {
8454 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8455 {
8456 struct partial_symtab *pst = per_cu->v.psymtab;
8457
8458 if (pst == NULL)
8459 continue;
8460
8461 for (int j = 0; j < pst->number_of_dependencies; ++j)
8462 {
8463 /* Set the 'user' field only if it is not already set. */
8464 if (pst->dependencies[j]->user == NULL)
8465 pst->dependencies[j]->user = pst;
8466 }
8467 }
8468 }
8469
8470 /* Build the partial symbol table by doing a quick pass through the
8471 .debug_info and .debug_abbrev sections. */
8472
8473 static void
8474 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8475 {
8476 struct objfile *objfile = dwarf2_per_objfile->objfile;
8477
8478 if (dwarf_read_debug)
8479 {
8480 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8481 objfile_name (objfile));
8482 }
8483
8484 dwarf2_per_objfile->reading_partial_symbols = 1;
8485
8486 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8487
8488 /* Any cached compilation units will be linked by the per-objfile
8489 read_in_chain. Make sure to free them when we're done. */
8490 free_cached_comp_units freer (dwarf2_per_objfile);
8491
8492 build_type_psymtabs (dwarf2_per_objfile);
8493
8494 create_all_comp_units (dwarf2_per_objfile);
8495
8496 /* Create a temporary address map on a temporary obstack. We later
8497 copy this to the final obstack. */
8498 auto_obstack temp_obstack;
8499
8500 scoped_restore save_psymtabs_addrmap
8501 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8502 addrmap_create_mutable (&temp_obstack));
8503
8504 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8505 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8506
8507 /* This has to wait until we read the CUs, we need the list of DWOs. */
8508 process_skeletonless_type_units (dwarf2_per_objfile);
8509
8510 /* Now that all TUs have been processed we can fill in the dependencies. */
8511 if (dwarf2_per_objfile->type_unit_groups != NULL)
8512 {
8513 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8514 build_type_psymtab_dependencies, dwarf2_per_objfile);
8515 }
8516
8517 if (dwarf_read_debug)
8518 print_tu_stats (dwarf2_per_objfile);
8519
8520 set_partial_user (dwarf2_per_objfile);
8521
8522 objfile->partial_symtabs->psymtabs_addrmap
8523 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8524 objfile->partial_symtabs->obstack ());
8525 /* At this point we want to keep the address map. */
8526 save_psymtabs_addrmap.release ();
8527
8528 if (dwarf_read_debug)
8529 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8530 objfile_name (objfile));
8531 }
8532
8533 /* die_reader_func for load_partial_comp_unit. */
8534
8535 static void
8536 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8537 const gdb_byte *info_ptr,
8538 struct die_info *comp_unit_die,
8539 int has_children,
8540 void *data)
8541 {
8542 struct dwarf2_cu *cu = reader->cu;
8543
8544 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8545
8546 /* Check if comp unit has_children.
8547 If so, read the rest of the partial symbols from this comp unit.
8548 If not, there's no more debug_info for this comp unit. */
8549 if (has_children)
8550 load_partial_dies (reader, info_ptr, 0);
8551 }
8552
8553 /* Load the partial DIEs for a secondary CU into memory.
8554 This is also used when rereading a primary CU with load_all_dies. */
8555
8556 static void
8557 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8558 {
8559 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8560 load_partial_comp_unit_reader, NULL);
8561 }
8562
8563 static void
8564 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8565 struct dwarf2_section_info *section,
8566 struct dwarf2_section_info *abbrev_section,
8567 unsigned int is_dwz)
8568 {
8569 const gdb_byte *info_ptr;
8570 struct objfile *objfile = dwarf2_per_objfile->objfile;
8571
8572 if (dwarf_read_debug)
8573 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8574 get_section_name (section),
8575 get_section_file_name (section));
8576
8577 dwarf2_read_section (objfile, section);
8578
8579 info_ptr = section->buffer;
8580
8581 while (info_ptr < section->buffer + section->size)
8582 {
8583 struct dwarf2_per_cu_data *this_cu;
8584
8585 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8586
8587 comp_unit_head cu_header;
8588 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8589 abbrev_section, info_ptr,
8590 rcuh_kind::COMPILE);
8591
8592 /* Save the compilation unit for later lookup. */
8593 if (cu_header.unit_type != DW_UT_type)
8594 {
8595 this_cu = XOBNEW (&objfile->objfile_obstack,
8596 struct dwarf2_per_cu_data);
8597 memset (this_cu, 0, sizeof (*this_cu));
8598 }
8599 else
8600 {
8601 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8602 struct signatured_type);
8603 memset (sig_type, 0, sizeof (*sig_type));
8604 sig_type->signature = cu_header.signature;
8605 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8606 this_cu = &sig_type->per_cu;
8607 }
8608 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8609 this_cu->sect_off = sect_off;
8610 this_cu->length = cu_header.length + cu_header.initial_length_size;
8611 this_cu->is_dwz = is_dwz;
8612 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8613 this_cu->section = section;
8614
8615 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8616
8617 info_ptr = info_ptr + this_cu->length;
8618 }
8619 }
8620
8621 /* Create a list of all compilation units in OBJFILE.
8622 This is only done for -readnow and building partial symtabs. */
8623
8624 static void
8625 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8626 {
8627 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8628 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8629 &dwarf2_per_objfile->abbrev, 0);
8630
8631 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8632 if (dwz != NULL)
8633 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8634 1);
8635 }
8636
8637 /* Process all loaded DIEs for compilation unit CU, starting at
8638 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8639 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8640 DW_AT_ranges). See the comments of add_partial_subprogram on how
8641 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8642
8643 static void
8644 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8645 CORE_ADDR *highpc, int set_addrmap,
8646 struct dwarf2_cu *cu)
8647 {
8648 struct partial_die_info *pdi;
8649
8650 /* Now, march along the PDI's, descending into ones which have
8651 interesting children but skipping the children of the other ones,
8652 until we reach the end of the compilation unit. */
8653
8654 pdi = first_die;
8655
8656 while (pdi != NULL)
8657 {
8658 pdi->fixup (cu);
8659
8660 /* Anonymous namespaces or modules have no name but have interesting
8661 children, so we need to look at them. Ditto for anonymous
8662 enums. */
8663
8664 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8665 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8666 || pdi->tag == DW_TAG_imported_unit
8667 || pdi->tag == DW_TAG_inlined_subroutine)
8668 {
8669 switch (pdi->tag)
8670 {
8671 case DW_TAG_subprogram:
8672 case DW_TAG_inlined_subroutine:
8673 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8674 break;
8675 case DW_TAG_constant:
8676 case DW_TAG_variable:
8677 case DW_TAG_typedef:
8678 case DW_TAG_union_type:
8679 if (!pdi->is_declaration)
8680 {
8681 add_partial_symbol (pdi, cu);
8682 }
8683 break;
8684 case DW_TAG_class_type:
8685 case DW_TAG_interface_type:
8686 case DW_TAG_structure_type:
8687 if (!pdi->is_declaration)
8688 {
8689 add_partial_symbol (pdi, cu);
8690 }
8691 if ((cu->language == language_rust
8692 || cu->language == language_cplus) && pdi->has_children)
8693 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8694 set_addrmap, cu);
8695 break;
8696 case DW_TAG_enumeration_type:
8697 if (!pdi->is_declaration)
8698 add_partial_enumeration (pdi, cu);
8699 break;
8700 case DW_TAG_base_type:
8701 case DW_TAG_subrange_type:
8702 /* File scope base type definitions are added to the partial
8703 symbol table. */
8704 add_partial_symbol (pdi, cu);
8705 break;
8706 case DW_TAG_namespace:
8707 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8708 break;
8709 case DW_TAG_module:
8710 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8711 break;
8712 case DW_TAG_imported_unit:
8713 {
8714 struct dwarf2_per_cu_data *per_cu;
8715
8716 /* For now we don't handle imported units in type units. */
8717 if (cu->per_cu->is_debug_types)
8718 {
8719 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8720 " supported in type units [in module %s]"),
8721 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8722 }
8723
8724 per_cu = dwarf2_find_containing_comp_unit
8725 (pdi->d.sect_off, pdi->is_dwz,
8726 cu->per_cu->dwarf2_per_objfile);
8727
8728 /* Go read the partial unit, if needed. */
8729 if (per_cu->v.psymtab == NULL)
8730 process_psymtab_comp_unit (per_cu, 1, cu->language);
8731
8732 VEC_safe_push (dwarf2_per_cu_ptr,
8733 cu->per_cu->imported_symtabs, per_cu);
8734 }
8735 break;
8736 case DW_TAG_imported_declaration:
8737 add_partial_symbol (pdi, cu);
8738 break;
8739 default:
8740 break;
8741 }
8742 }
8743
8744 /* If the die has a sibling, skip to the sibling. */
8745
8746 pdi = pdi->die_sibling;
8747 }
8748 }
8749
8750 /* Functions used to compute the fully scoped name of a partial DIE.
8751
8752 Normally, this is simple. For C++, the parent DIE's fully scoped
8753 name is concatenated with "::" and the partial DIE's name.
8754 Enumerators are an exception; they use the scope of their parent
8755 enumeration type, i.e. the name of the enumeration type is not
8756 prepended to the enumerator.
8757
8758 There are two complexities. One is DW_AT_specification; in this
8759 case "parent" means the parent of the target of the specification,
8760 instead of the direct parent of the DIE. The other is compilers
8761 which do not emit DW_TAG_namespace; in this case we try to guess
8762 the fully qualified name of structure types from their members'
8763 linkage names. This must be done using the DIE's children rather
8764 than the children of any DW_AT_specification target. We only need
8765 to do this for structures at the top level, i.e. if the target of
8766 any DW_AT_specification (if any; otherwise the DIE itself) does not
8767 have a parent. */
8768
8769 /* Compute the scope prefix associated with PDI's parent, in
8770 compilation unit CU. The result will be allocated on CU's
8771 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8772 field. NULL is returned if no prefix is necessary. */
8773 static const char *
8774 partial_die_parent_scope (struct partial_die_info *pdi,
8775 struct dwarf2_cu *cu)
8776 {
8777 const char *grandparent_scope;
8778 struct partial_die_info *parent, *real_pdi;
8779
8780 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8781 then this means the parent of the specification DIE. */
8782
8783 real_pdi = pdi;
8784 while (real_pdi->has_specification)
8785 real_pdi = find_partial_die (real_pdi->spec_offset,
8786 real_pdi->spec_is_dwz, cu);
8787
8788 parent = real_pdi->die_parent;
8789 if (parent == NULL)
8790 return NULL;
8791
8792 if (parent->scope_set)
8793 return parent->scope;
8794
8795 parent->fixup (cu);
8796
8797 grandparent_scope = partial_die_parent_scope (parent, cu);
8798
8799 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8800 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8801 Work around this problem here. */
8802 if (cu->language == language_cplus
8803 && parent->tag == DW_TAG_namespace
8804 && strcmp (parent->name, "::") == 0
8805 && grandparent_scope == NULL)
8806 {
8807 parent->scope = NULL;
8808 parent->scope_set = 1;
8809 return NULL;
8810 }
8811
8812 if (pdi->tag == DW_TAG_enumerator)
8813 /* Enumerators should not get the name of the enumeration as a prefix. */
8814 parent->scope = grandparent_scope;
8815 else if (parent->tag == DW_TAG_namespace
8816 || parent->tag == DW_TAG_module
8817 || parent->tag == DW_TAG_structure_type
8818 || parent->tag == DW_TAG_class_type
8819 || parent->tag == DW_TAG_interface_type
8820 || parent->tag == DW_TAG_union_type
8821 || parent->tag == DW_TAG_enumeration_type)
8822 {
8823 if (grandparent_scope == NULL)
8824 parent->scope = parent->name;
8825 else
8826 parent->scope = typename_concat (&cu->comp_unit_obstack,
8827 grandparent_scope,
8828 parent->name, 0, cu);
8829 }
8830 else
8831 {
8832 /* FIXME drow/2004-04-01: What should we be doing with
8833 function-local names? For partial symbols, we should probably be
8834 ignoring them. */
8835 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8836 parent->tag, sect_offset_str (pdi->sect_off));
8837 parent->scope = grandparent_scope;
8838 }
8839
8840 parent->scope_set = 1;
8841 return parent->scope;
8842 }
8843
8844 /* Return the fully scoped name associated with PDI, from compilation unit
8845 CU. The result will be allocated with malloc. */
8846
8847 static char *
8848 partial_die_full_name (struct partial_die_info *pdi,
8849 struct dwarf2_cu *cu)
8850 {
8851 const char *parent_scope;
8852
8853 /* If this is a template instantiation, we can not work out the
8854 template arguments from partial DIEs. So, unfortunately, we have
8855 to go through the full DIEs. At least any work we do building
8856 types here will be reused if full symbols are loaded later. */
8857 if (pdi->has_template_arguments)
8858 {
8859 pdi->fixup (cu);
8860
8861 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8862 {
8863 struct die_info *die;
8864 struct attribute attr;
8865 struct dwarf2_cu *ref_cu = cu;
8866
8867 /* DW_FORM_ref_addr is using section offset. */
8868 attr.name = (enum dwarf_attribute) 0;
8869 attr.form = DW_FORM_ref_addr;
8870 attr.u.unsnd = to_underlying (pdi->sect_off);
8871 die = follow_die_ref (NULL, &attr, &ref_cu);
8872
8873 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8874 }
8875 }
8876
8877 parent_scope = partial_die_parent_scope (pdi, cu);
8878 if (parent_scope == NULL)
8879 return NULL;
8880 else
8881 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8882 }
8883
8884 static void
8885 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8886 {
8887 struct dwarf2_per_objfile *dwarf2_per_objfile
8888 = cu->per_cu->dwarf2_per_objfile;
8889 struct objfile *objfile = dwarf2_per_objfile->objfile;
8890 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8891 CORE_ADDR addr = 0;
8892 const char *actual_name = NULL;
8893 CORE_ADDR baseaddr;
8894 char *built_actual_name;
8895
8896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8897
8898 built_actual_name = partial_die_full_name (pdi, cu);
8899 if (built_actual_name != NULL)
8900 actual_name = built_actual_name;
8901
8902 if (actual_name == NULL)
8903 actual_name = pdi->name;
8904
8905 switch (pdi->tag)
8906 {
8907 case DW_TAG_inlined_subroutine:
8908 case DW_TAG_subprogram:
8909 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8910 - baseaddr);
8911 if (pdi->is_external || cu->language == language_ada)
8912 {
8913 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8914 of the global scope. But in Ada, we want to be able to access
8915 nested procedures globally. So all Ada subprograms are stored
8916 in the global scope. */
8917 add_psymbol_to_list (actual_name, strlen (actual_name),
8918 built_actual_name != NULL,
8919 VAR_DOMAIN, LOC_BLOCK,
8920 SECT_OFF_TEXT (objfile),
8921 psymbol_placement::GLOBAL,
8922 addr,
8923 cu->language, objfile);
8924 }
8925 else
8926 {
8927 add_psymbol_to_list (actual_name, strlen (actual_name),
8928 built_actual_name != NULL,
8929 VAR_DOMAIN, LOC_BLOCK,
8930 SECT_OFF_TEXT (objfile),
8931 psymbol_placement::STATIC,
8932 addr, cu->language, objfile);
8933 }
8934
8935 if (pdi->main_subprogram && actual_name != NULL)
8936 set_objfile_main_name (objfile, actual_name, cu->language);
8937 break;
8938 case DW_TAG_constant:
8939 add_psymbol_to_list (actual_name, strlen (actual_name),
8940 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8941 -1, (pdi->is_external
8942 ? psymbol_placement::GLOBAL
8943 : psymbol_placement::STATIC),
8944 0, cu->language, objfile);
8945 break;
8946 case DW_TAG_variable:
8947 if (pdi->d.locdesc)
8948 addr = decode_locdesc (pdi->d.locdesc, cu);
8949
8950 if (pdi->d.locdesc
8951 && addr == 0
8952 && !dwarf2_per_objfile->has_section_at_zero)
8953 {
8954 /* A global or static variable may also have been stripped
8955 out by the linker if unused, in which case its address
8956 will be nullified; do not add such variables into partial
8957 symbol table then. */
8958 }
8959 else if (pdi->is_external)
8960 {
8961 /* Global Variable.
8962 Don't enter into the minimal symbol tables as there is
8963 a minimal symbol table entry from the ELF symbols already.
8964 Enter into partial symbol table if it has a location
8965 descriptor or a type.
8966 If the location descriptor is missing, new_symbol will create
8967 a LOC_UNRESOLVED symbol, the address of the variable will then
8968 be determined from the minimal symbol table whenever the variable
8969 is referenced.
8970 The address for the partial symbol table entry is not
8971 used by GDB, but it comes in handy for debugging partial symbol
8972 table building. */
8973
8974 if (pdi->d.locdesc || pdi->has_type)
8975 add_psymbol_to_list (actual_name, strlen (actual_name),
8976 built_actual_name != NULL,
8977 VAR_DOMAIN, LOC_STATIC,
8978 SECT_OFF_TEXT (objfile),
8979 psymbol_placement::GLOBAL,
8980 addr, cu->language, objfile);
8981 }
8982 else
8983 {
8984 int has_loc = pdi->d.locdesc != NULL;
8985
8986 /* Static Variable. Skip symbols whose value we cannot know (those
8987 without location descriptors or constant values). */
8988 if (!has_loc && !pdi->has_const_value)
8989 {
8990 xfree (built_actual_name);
8991 return;
8992 }
8993
8994 add_psymbol_to_list (actual_name, strlen (actual_name),
8995 built_actual_name != NULL,
8996 VAR_DOMAIN, LOC_STATIC,
8997 SECT_OFF_TEXT (objfile),
8998 psymbol_placement::STATIC,
8999 has_loc ? addr : 0,
9000 cu->language, objfile);
9001 }
9002 break;
9003 case DW_TAG_typedef:
9004 case DW_TAG_base_type:
9005 case DW_TAG_subrange_type:
9006 add_psymbol_to_list (actual_name, strlen (actual_name),
9007 built_actual_name != NULL,
9008 VAR_DOMAIN, LOC_TYPEDEF, -1,
9009 psymbol_placement::STATIC,
9010 0, cu->language, objfile);
9011 break;
9012 case DW_TAG_imported_declaration:
9013 case DW_TAG_namespace:
9014 add_psymbol_to_list (actual_name, strlen (actual_name),
9015 built_actual_name != NULL,
9016 VAR_DOMAIN, LOC_TYPEDEF, -1,
9017 psymbol_placement::GLOBAL,
9018 0, cu->language, objfile);
9019 break;
9020 case DW_TAG_module:
9021 add_psymbol_to_list (actual_name, strlen (actual_name),
9022 built_actual_name != NULL,
9023 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9024 psymbol_placement::GLOBAL,
9025 0, cu->language, objfile);
9026 break;
9027 case DW_TAG_class_type:
9028 case DW_TAG_interface_type:
9029 case DW_TAG_structure_type:
9030 case DW_TAG_union_type:
9031 case DW_TAG_enumeration_type:
9032 /* Skip external references. The DWARF standard says in the section
9033 about "Structure, Union, and Class Type Entries": "An incomplete
9034 structure, union or class type is represented by a structure,
9035 union or class entry that does not have a byte size attribute
9036 and that has a DW_AT_declaration attribute." */
9037 if (!pdi->has_byte_size && pdi->is_declaration)
9038 {
9039 xfree (built_actual_name);
9040 return;
9041 }
9042
9043 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9044 static vs. global. */
9045 add_psymbol_to_list (actual_name, strlen (actual_name),
9046 built_actual_name != NULL,
9047 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9048 cu->language == language_cplus
9049 ? psymbol_placement::GLOBAL
9050 : psymbol_placement::STATIC,
9051 0, cu->language, objfile);
9052
9053 break;
9054 case DW_TAG_enumerator:
9055 add_psymbol_to_list (actual_name, strlen (actual_name),
9056 built_actual_name != NULL,
9057 VAR_DOMAIN, LOC_CONST, -1,
9058 cu->language == language_cplus
9059 ? psymbol_placement::GLOBAL
9060 : psymbol_placement::STATIC,
9061 0, cu->language, objfile);
9062 break;
9063 default:
9064 break;
9065 }
9066
9067 xfree (built_actual_name);
9068 }
9069
9070 /* Read a partial die corresponding to a namespace; also, add a symbol
9071 corresponding to that namespace to the symbol table. NAMESPACE is
9072 the name of the enclosing namespace. */
9073
9074 static void
9075 add_partial_namespace (struct partial_die_info *pdi,
9076 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9077 int set_addrmap, struct dwarf2_cu *cu)
9078 {
9079 /* Add a symbol for the namespace. */
9080
9081 add_partial_symbol (pdi, cu);
9082
9083 /* Now scan partial symbols in that namespace. */
9084
9085 if (pdi->has_children)
9086 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9087 }
9088
9089 /* Read a partial die corresponding to a Fortran module. */
9090
9091 static void
9092 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9093 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9094 {
9095 /* Add a symbol for the namespace. */
9096
9097 add_partial_symbol (pdi, cu);
9098
9099 /* Now scan partial symbols in that module. */
9100
9101 if (pdi->has_children)
9102 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9103 }
9104
9105 /* Read a partial die corresponding to a subprogram or an inlined
9106 subprogram and create a partial symbol for that subprogram.
9107 When the CU language allows it, this routine also defines a partial
9108 symbol for each nested subprogram that this subprogram contains.
9109 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9110 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9111
9112 PDI may also be a lexical block, in which case we simply search
9113 recursively for subprograms defined inside that lexical block.
9114 Again, this is only performed when the CU language allows this
9115 type of definitions. */
9116
9117 static void
9118 add_partial_subprogram (struct partial_die_info *pdi,
9119 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9120 int set_addrmap, struct dwarf2_cu *cu)
9121 {
9122 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9123 {
9124 if (pdi->has_pc_info)
9125 {
9126 if (pdi->lowpc < *lowpc)
9127 *lowpc = pdi->lowpc;
9128 if (pdi->highpc > *highpc)
9129 *highpc = pdi->highpc;
9130 if (set_addrmap)
9131 {
9132 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9133 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9134 CORE_ADDR baseaddr;
9135 CORE_ADDR this_highpc;
9136 CORE_ADDR this_lowpc;
9137
9138 baseaddr = ANOFFSET (objfile->section_offsets,
9139 SECT_OFF_TEXT (objfile));
9140 this_lowpc
9141 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9142 pdi->lowpc + baseaddr)
9143 - baseaddr);
9144 this_highpc
9145 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9146 pdi->highpc + baseaddr)
9147 - baseaddr);
9148 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9149 this_lowpc, this_highpc - 1,
9150 cu->per_cu->v.psymtab);
9151 }
9152 }
9153
9154 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9155 {
9156 if (!pdi->is_declaration)
9157 /* Ignore subprogram DIEs that do not have a name, they are
9158 illegal. Do not emit a complaint at this point, we will
9159 do so when we convert this psymtab into a symtab. */
9160 if (pdi->name)
9161 add_partial_symbol (pdi, cu);
9162 }
9163 }
9164
9165 if (! pdi->has_children)
9166 return;
9167
9168 if (cu->language == language_ada)
9169 {
9170 pdi = pdi->die_child;
9171 while (pdi != NULL)
9172 {
9173 pdi->fixup (cu);
9174 if (pdi->tag == DW_TAG_subprogram
9175 || pdi->tag == DW_TAG_inlined_subroutine
9176 || pdi->tag == DW_TAG_lexical_block)
9177 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9178 pdi = pdi->die_sibling;
9179 }
9180 }
9181 }
9182
9183 /* Read a partial die corresponding to an enumeration type. */
9184
9185 static void
9186 add_partial_enumeration (struct partial_die_info *enum_pdi,
9187 struct dwarf2_cu *cu)
9188 {
9189 struct partial_die_info *pdi;
9190
9191 if (enum_pdi->name != NULL)
9192 add_partial_symbol (enum_pdi, cu);
9193
9194 pdi = enum_pdi->die_child;
9195 while (pdi)
9196 {
9197 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9198 complaint (_("malformed enumerator DIE ignored"));
9199 else
9200 add_partial_symbol (pdi, cu);
9201 pdi = pdi->die_sibling;
9202 }
9203 }
9204
9205 /* Return the initial uleb128 in the die at INFO_PTR. */
9206
9207 static unsigned int
9208 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9209 {
9210 unsigned int bytes_read;
9211
9212 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9213 }
9214
9215 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9216 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9217
9218 Return the corresponding abbrev, or NULL if the number is zero (indicating
9219 an empty DIE). In either case *BYTES_READ will be set to the length of
9220 the initial number. */
9221
9222 static struct abbrev_info *
9223 peek_die_abbrev (const die_reader_specs &reader,
9224 const gdb_byte *info_ptr, unsigned int *bytes_read)
9225 {
9226 dwarf2_cu *cu = reader.cu;
9227 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9228 unsigned int abbrev_number
9229 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9230
9231 if (abbrev_number == 0)
9232 return NULL;
9233
9234 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9235 if (!abbrev)
9236 {
9237 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9238 " at offset %s [in module %s]"),
9239 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9240 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9241 }
9242
9243 return abbrev;
9244 }
9245
9246 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9247 Returns a pointer to the end of a series of DIEs, terminated by an empty
9248 DIE. Any children of the skipped DIEs will also be skipped. */
9249
9250 static const gdb_byte *
9251 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9252 {
9253 while (1)
9254 {
9255 unsigned int bytes_read;
9256 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9257
9258 if (abbrev == NULL)
9259 return info_ptr + bytes_read;
9260 else
9261 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9262 }
9263 }
9264
9265 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9266 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9267 abbrev corresponding to that skipped uleb128 should be passed in
9268 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9269 children. */
9270
9271 static const gdb_byte *
9272 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9273 struct abbrev_info *abbrev)
9274 {
9275 unsigned int bytes_read;
9276 struct attribute attr;
9277 bfd *abfd = reader->abfd;
9278 struct dwarf2_cu *cu = reader->cu;
9279 const gdb_byte *buffer = reader->buffer;
9280 const gdb_byte *buffer_end = reader->buffer_end;
9281 unsigned int form, i;
9282
9283 for (i = 0; i < abbrev->num_attrs; i++)
9284 {
9285 /* The only abbrev we care about is DW_AT_sibling. */
9286 if (abbrev->attrs[i].name == DW_AT_sibling)
9287 {
9288 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9289 if (attr.form == DW_FORM_ref_addr)
9290 complaint (_("ignoring absolute DW_AT_sibling"));
9291 else
9292 {
9293 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9294 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9295
9296 if (sibling_ptr < info_ptr)
9297 complaint (_("DW_AT_sibling points backwards"));
9298 else if (sibling_ptr > reader->buffer_end)
9299 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9300 else
9301 return sibling_ptr;
9302 }
9303 }
9304
9305 /* If it isn't DW_AT_sibling, skip this attribute. */
9306 form = abbrev->attrs[i].form;
9307 skip_attribute:
9308 switch (form)
9309 {
9310 case DW_FORM_ref_addr:
9311 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9312 and later it is offset sized. */
9313 if (cu->header.version == 2)
9314 info_ptr += cu->header.addr_size;
9315 else
9316 info_ptr += cu->header.offset_size;
9317 break;
9318 case DW_FORM_GNU_ref_alt:
9319 info_ptr += cu->header.offset_size;
9320 break;
9321 case DW_FORM_addr:
9322 info_ptr += cu->header.addr_size;
9323 break;
9324 case DW_FORM_data1:
9325 case DW_FORM_ref1:
9326 case DW_FORM_flag:
9327 info_ptr += 1;
9328 break;
9329 case DW_FORM_flag_present:
9330 case DW_FORM_implicit_const:
9331 break;
9332 case DW_FORM_data2:
9333 case DW_FORM_ref2:
9334 info_ptr += 2;
9335 break;
9336 case DW_FORM_data4:
9337 case DW_FORM_ref4:
9338 info_ptr += 4;
9339 break;
9340 case DW_FORM_data8:
9341 case DW_FORM_ref8:
9342 case DW_FORM_ref_sig8:
9343 info_ptr += 8;
9344 break;
9345 case DW_FORM_data16:
9346 info_ptr += 16;
9347 break;
9348 case DW_FORM_string:
9349 read_direct_string (abfd, info_ptr, &bytes_read);
9350 info_ptr += bytes_read;
9351 break;
9352 case DW_FORM_sec_offset:
9353 case DW_FORM_strp:
9354 case DW_FORM_GNU_strp_alt:
9355 info_ptr += cu->header.offset_size;
9356 break;
9357 case DW_FORM_exprloc:
9358 case DW_FORM_block:
9359 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9360 info_ptr += bytes_read;
9361 break;
9362 case DW_FORM_block1:
9363 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9364 break;
9365 case DW_FORM_block2:
9366 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9367 break;
9368 case DW_FORM_block4:
9369 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9370 break;
9371 case DW_FORM_sdata:
9372 case DW_FORM_udata:
9373 case DW_FORM_ref_udata:
9374 case DW_FORM_GNU_addr_index:
9375 case DW_FORM_GNU_str_index:
9376 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9377 break;
9378 case DW_FORM_indirect:
9379 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9380 info_ptr += bytes_read;
9381 /* We need to continue parsing from here, so just go back to
9382 the top. */
9383 goto skip_attribute;
9384
9385 default:
9386 error (_("Dwarf Error: Cannot handle %s "
9387 "in DWARF reader [in module %s]"),
9388 dwarf_form_name (form),
9389 bfd_get_filename (abfd));
9390 }
9391 }
9392
9393 if (abbrev->has_children)
9394 return skip_children (reader, info_ptr);
9395 else
9396 return info_ptr;
9397 }
9398
9399 /* Locate ORIG_PDI's sibling.
9400 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9401
9402 static const gdb_byte *
9403 locate_pdi_sibling (const struct die_reader_specs *reader,
9404 struct partial_die_info *orig_pdi,
9405 const gdb_byte *info_ptr)
9406 {
9407 /* Do we know the sibling already? */
9408
9409 if (orig_pdi->sibling)
9410 return orig_pdi->sibling;
9411
9412 /* Are there any children to deal with? */
9413
9414 if (!orig_pdi->has_children)
9415 return info_ptr;
9416
9417 /* Skip the children the long way. */
9418
9419 return skip_children (reader, info_ptr);
9420 }
9421
9422 /* Expand this partial symbol table into a full symbol table. SELF is
9423 not NULL. */
9424
9425 static void
9426 dwarf2_read_symtab (struct partial_symtab *self,
9427 struct objfile *objfile)
9428 {
9429 struct dwarf2_per_objfile *dwarf2_per_objfile
9430 = get_dwarf2_per_objfile (objfile);
9431
9432 if (self->readin)
9433 {
9434 warning (_("bug: psymtab for %s is already read in."),
9435 self->filename);
9436 }
9437 else
9438 {
9439 if (info_verbose)
9440 {
9441 printf_filtered (_("Reading in symbols for %s..."),
9442 self->filename);
9443 gdb_flush (gdb_stdout);
9444 }
9445
9446 /* If this psymtab is constructed from a debug-only objfile, the
9447 has_section_at_zero flag will not necessarily be correct. We
9448 can get the correct value for this flag by looking at the data
9449 associated with the (presumably stripped) associated objfile. */
9450 if (objfile->separate_debug_objfile_backlink)
9451 {
9452 struct dwarf2_per_objfile *dpo_backlink
9453 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9454
9455 dwarf2_per_objfile->has_section_at_zero
9456 = dpo_backlink->has_section_at_zero;
9457 }
9458
9459 dwarf2_per_objfile->reading_partial_symbols = 0;
9460
9461 psymtab_to_symtab_1 (self);
9462
9463 /* Finish up the debug error message. */
9464 if (info_verbose)
9465 printf_filtered (_("done.\n"));
9466 }
9467
9468 process_cu_includes (dwarf2_per_objfile);
9469 }
9470 \f
9471 /* Reading in full CUs. */
9472
9473 /* Add PER_CU to the queue. */
9474
9475 static void
9476 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9477 enum language pretend_language)
9478 {
9479 struct dwarf2_queue_item *item;
9480
9481 per_cu->queued = 1;
9482 item = XNEW (struct dwarf2_queue_item);
9483 item->per_cu = per_cu;
9484 item->pretend_language = pretend_language;
9485 item->next = NULL;
9486
9487 if (dwarf2_queue == NULL)
9488 dwarf2_queue = item;
9489 else
9490 dwarf2_queue_tail->next = item;
9491
9492 dwarf2_queue_tail = item;
9493 }
9494
9495 /* If PER_CU is not yet queued, add it to the queue.
9496 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9497 dependency.
9498 The result is non-zero if PER_CU was queued, otherwise the result is zero
9499 meaning either PER_CU is already queued or it is already loaded.
9500
9501 N.B. There is an invariant here that if a CU is queued then it is loaded.
9502 The caller is required to load PER_CU if we return non-zero. */
9503
9504 static int
9505 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9506 struct dwarf2_per_cu_data *per_cu,
9507 enum language pretend_language)
9508 {
9509 /* We may arrive here during partial symbol reading, if we need full
9510 DIEs to process an unusual case (e.g. template arguments). Do
9511 not queue PER_CU, just tell our caller to load its DIEs. */
9512 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9513 {
9514 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9515 return 1;
9516 return 0;
9517 }
9518
9519 /* Mark the dependence relation so that we don't flush PER_CU
9520 too early. */
9521 if (dependent_cu != NULL)
9522 dwarf2_add_dependence (dependent_cu, per_cu);
9523
9524 /* If it's already on the queue, we have nothing to do. */
9525 if (per_cu->queued)
9526 return 0;
9527
9528 /* If the compilation unit is already loaded, just mark it as
9529 used. */
9530 if (per_cu->cu != NULL)
9531 {
9532 per_cu->cu->last_used = 0;
9533 return 0;
9534 }
9535
9536 /* Add it to the queue. */
9537 queue_comp_unit (per_cu, pretend_language);
9538
9539 return 1;
9540 }
9541
9542 /* Process the queue. */
9543
9544 static void
9545 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9546 {
9547 struct dwarf2_queue_item *item, *next_item;
9548
9549 if (dwarf_read_debug)
9550 {
9551 fprintf_unfiltered (gdb_stdlog,
9552 "Expanding one or more symtabs of objfile %s ...\n",
9553 objfile_name (dwarf2_per_objfile->objfile));
9554 }
9555
9556 /* The queue starts out with one item, but following a DIE reference
9557 may load a new CU, adding it to the end of the queue. */
9558 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9559 {
9560 if ((dwarf2_per_objfile->using_index
9561 ? !item->per_cu->v.quick->compunit_symtab
9562 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9563 /* Skip dummy CUs. */
9564 && item->per_cu->cu != NULL)
9565 {
9566 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9567 unsigned int debug_print_threshold;
9568 char buf[100];
9569
9570 if (per_cu->is_debug_types)
9571 {
9572 struct signatured_type *sig_type =
9573 (struct signatured_type *) per_cu;
9574
9575 sprintf (buf, "TU %s at offset %s",
9576 hex_string (sig_type->signature),
9577 sect_offset_str (per_cu->sect_off));
9578 /* There can be 100s of TUs.
9579 Only print them in verbose mode. */
9580 debug_print_threshold = 2;
9581 }
9582 else
9583 {
9584 sprintf (buf, "CU at offset %s",
9585 sect_offset_str (per_cu->sect_off));
9586 debug_print_threshold = 1;
9587 }
9588
9589 if (dwarf_read_debug >= debug_print_threshold)
9590 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9591
9592 if (per_cu->is_debug_types)
9593 process_full_type_unit (per_cu, item->pretend_language);
9594 else
9595 process_full_comp_unit (per_cu, item->pretend_language);
9596
9597 if (dwarf_read_debug >= debug_print_threshold)
9598 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9599 }
9600
9601 item->per_cu->queued = 0;
9602 next_item = item->next;
9603 xfree (item);
9604 }
9605
9606 dwarf2_queue_tail = NULL;
9607
9608 if (dwarf_read_debug)
9609 {
9610 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9611 objfile_name (dwarf2_per_objfile->objfile));
9612 }
9613 }
9614
9615 /* Read in full symbols for PST, and anything it depends on. */
9616
9617 static void
9618 psymtab_to_symtab_1 (struct partial_symtab *pst)
9619 {
9620 struct dwarf2_per_cu_data *per_cu;
9621 int i;
9622
9623 if (pst->readin)
9624 return;
9625
9626 for (i = 0; i < pst->number_of_dependencies; i++)
9627 if (!pst->dependencies[i]->readin
9628 && pst->dependencies[i]->user == NULL)
9629 {
9630 /* Inform about additional files that need to be read in. */
9631 if (info_verbose)
9632 {
9633 /* FIXME: i18n: Need to make this a single string. */
9634 fputs_filtered (" ", gdb_stdout);
9635 wrap_here ("");
9636 fputs_filtered ("and ", gdb_stdout);
9637 wrap_here ("");
9638 printf_filtered ("%s...", pst->dependencies[i]->filename);
9639 wrap_here (""); /* Flush output. */
9640 gdb_flush (gdb_stdout);
9641 }
9642 psymtab_to_symtab_1 (pst->dependencies[i]);
9643 }
9644
9645 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9646
9647 if (per_cu == NULL)
9648 {
9649 /* It's an include file, no symbols to read for it.
9650 Everything is in the parent symtab. */
9651 pst->readin = 1;
9652 return;
9653 }
9654
9655 dw2_do_instantiate_symtab (per_cu, false);
9656 }
9657
9658 /* Trivial hash function for die_info: the hash value of a DIE
9659 is its offset in .debug_info for this objfile. */
9660
9661 static hashval_t
9662 die_hash (const void *item)
9663 {
9664 const struct die_info *die = (const struct die_info *) item;
9665
9666 return to_underlying (die->sect_off);
9667 }
9668
9669 /* Trivial comparison function for die_info structures: two DIEs
9670 are equal if they have the same offset. */
9671
9672 static int
9673 die_eq (const void *item_lhs, const void *item_rhs)
9674 {
9675 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9676 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9677
9678 return die_lhs->sect_off == die_rhs->sect_off;
9679 }
9680
9681 /* die_reader_func for load_full_comp_unit.
9682 This is identical to read_signatured_type_reader,
9683 but is kept separate for now. */
9684
9685 static void
9686 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9687 const gdb_byte *info_ptr,
9688 struct die_info *comp_unit_die,
9689 int has_children,
9690 void *data)
9691 {
9692 struct dwarf2_cu *cu = reader->cu;
9693 enum language *language_ptr = (enum language *) data;
9694
9695 gdb_assert (cu->die_hash == NULL);
9696 cu->die_hash =
9697 htab_create_alloc_ex (cu->header.length / 12,
9698 die_hash,
9699 die_eq,
9700 NULL,
9701 &cu->comp_unit_obstack,
9702 hashtab_obstack_allocate,
9703 dummy_obstack_deallocate);
9704
9705 if (has_children)
9706 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9707 &info_ptr, comp_unit_die);
9708 cu->dies = comp_unit_die;
9709 /* comp_unit_die is not stored in die_hash, no need. */
9710
9711 /* We try not to read any attributes in this function, because not
9712 all CUs needed for references have been loaded yet, and symbol
9713 table processing isn't initialized. But we have to set the CU language,
9714 or we won't be able to build types correctly.
9715 Similarly, if we do not read the producer, we can not apply
9716 producer-specific interpretation. */
9717 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9718 }
9719
9720 /* Load the DIEs associated with PER_CU into memory. */
9721
9722 static void
9723 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9724 bool skip_partial,
9725 enum language pretend_language)
9726 {
9727 gdb_assert (! this_cu->is_debug_types);
9728
9729 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9730 load_full_comp_unit_reader, &pretend_language);
9731 }
9732
9733 /* Add a DIE to the delayed physname list. */
9734
9735 static void
9736 add_to_method_list (struct type *type, int fnfield_index, int index,
9737 const char *name, struct die_info *die,
9738 struct dwarf2_cu *cu)
9739 {
9740 struct delayed_method_info mi;
9741 mi.type = type;
9742 mi.fnfield_index = fnfield_index;
9743 mi.index = index;
9744 mi.name = name;
9745 mi.die = die;
9746 cu->method_list.push_back (mi);
9747 }
9748
9749 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9750 "const" / "volatile". If so, decrements LEN by the length of the
9751 modifier and return true. Otherwise return false. */
9752
9753 template<size_t N>
9754 static bool
9755 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9756 {
9757 size_t mod_len = sizeof (mod) - 1;
9758 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9759 {
9760 len -= mod_len;
9761 return true;
9762 }
9763 return false;
9764 }
9765
9766 /* Compute the physnames of any methods on the CU's method list.
9767
9768 The computation of method physnames is delayed in order to avoid the
9769 (bad) condition that one of the method's formal parameters is of an as yet
9770 incomplete type. */
9771
9772 static void
9773 compute_delayed_physnames (struct dwarf2_cu *cu)
9774 {
9775 /* Only C++ delays computing physnames. */
9776 if (cu->method_list.empty ())
9777 return;
9778 gdb_assert (cu->language == language_cplus);
9779
9780 for (const delayed_method_info &mi : cu->method_list)
9781 {
9782 const char *physname;
9783 struct fn_fieldlist *fn_flp
9784 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9785 physname = dwarf2_physname (mi.name, mi.die, cu);
9786 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9787 = physname ? physname : "";
9788
9789 /* Since there's no tag to indicate whether a method is a
9790 const/volatile overload, extract that information out of the
9791 demangled name. */
9792 if (physname != NULL)
9793 {
9794 size_t len = strlen (physname);
9795
9796 while (1)
9797 {
9798 if (physname[len] == ')') /* shortcut */
9799 break;
9800 else if (check_modifier (physname, len, " const"))
9801 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9802 else if (check_modifier (physname, len, " volatile"))
9803 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9804 else
9805 break;
9806 }
9807 }
9808 }
9809
9810 /* The list is no longer needed. */
9811 cu->method_list.clear ();
9812 }
9813
9814 /* Go objects should be embedded in a DW_TAG_module DIE,
9815 and it's not clear if/how imported objects will appear.
9816 To keep Go support simple until that's worked out,
9817 go back through what we've read and create something usable.
9818 We could do this while processing each DIE, and feels kinda cleaner,
9819 but that way is more invasive.
9820 This is to, for example, allow the user to type "p var" or "b main"
9821 without having to specify the package name, and allow lookups
9822 of module.object to work in contexts that use the expression
9823 parser. */
9824
9825 static void
9826 fixup_go_packaging (struct dwarf2_cu *cu)
9827 {
9828 char *package_name = NULL;
9829 struct pending *list;
9830 int i;
9831
9832 for (list = *cu->get_builder ()->get_global_symbols ();
9833 list != NULL;
9834 list = list->next)
9835 {
9836 for (i = 0; i < list->nsyms; ++i)
9837 {
9838 struct symbol *sym = list->symbol[i];
9839
9840 if (SYMBOL_LANGUAGE (sym) == language_go
9841 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9842 {
9843 char *this_package_name = go_symbol_package_name (sym);
9844
9845 if (this_package_name == NULL)
9846 continue;
9847 if (package_name == NULL)
9848 package_name = this_package_name;
9849 else
9850 {
9851 struct objfile *objfile
9852 = cu->per_cu->dwarf2_per_objfile->objfile;
9853 if (strcmp (package_name, this_package_name) != 0)
9854 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9855 (symbol_symtab (sym) != NULL
9856 ? symtab_to_filename_for_display
9857 (symbol_symtab (sym))
9858 : objfile_name (objfile)),
9859 this_package_name, package_name);
9860 xfree (this_package_name);
9861 }
9862 }
9863 }
9864 }
9865
9866 if (package_name != NULL)
9867 {
9868 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9869 const char *saved_package_name
9870 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9871 package_name,
9872 strlen (package_name));
9873 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9874 saved_package_name);
9875 struct symbol *sym;
9876
9877 sym = allocate_symbol (objfile);
9878 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9879 SYMBOL_SET_NAMES (sym, saved_package_name,
9880 strlen (saved_package_name), 0, objfile);
9881 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9882 e.g., "main" finds the "main" module and not C's main(). */
9883 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9884 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9885 SYMBOL_TYPE (sym) = type;
9886
9887 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9888
9889 xfree (package_name);
9890 }
9891 }
9892
9893 /* Allocate a fully-qualified name consisting of the two parts on the
9894 obstack. */
9895
9896 static const char *
9897 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9898 {
9899 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9900 }
9901
9902 /* A helper that allocates a struct discriminant_info to attach to a
9903 union type. */
9904
9905 static struct discriminant_info *
9906 alloc_discriminant_info (struct type *type, int discriminant_index,
9907 int default_index)
9908 {
9909 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9910 gdb_assert (discriminant_index == -1
9911 || (discriminant_index >= 0
9912 && discriminant_index < TYPE_NFIELDS (type)));
9913 gdb_assert (default_index == -1
9914 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9915
9916 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9917
9918 struct discriminant_info *disc
9919 = ((struct discriminant_info *)
9920 TYPE_ZALLOC (type,
9921 offsetof (struct discriminant_info, discriminants)
9922 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9923 disc->default_index = default_index;
9924 disc->discriminant_index = discriminant_index;
9925
9926 struct dynamic_prop prop;
9927 prop.kind = PROP_UNDEFINED;
9928 prop.data.baton = disc;
9929
9930 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9931
9932 return disc;
9933 }
9934
9935 /* Some versions of rustc emitted enums in an unusual way.
9936
9937 Ordinary enums were emitted as unions. The first element of each
9938 structure in the union was named "RUST$ENUM$DISR". This element
9939 held the discriminant.
9940
9941 These versions of Rust also implemented the "non-zero"
9942 optimization. When the enum had two values, and one is empty and
9943 the other holds a pointer that cannot be zero, the pointer is used
9944 as the discriminant, with a zero value meaning the empty variant.
9945 Here, the union's first member is of the form
9946 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9947 where the fieldnos are the indices of the fields that should be
9948 traversed in order to find the field (which may be several fields deep)
9949 and the variantname is the name of the variant of the case when the
9950 field is zero.
9951
9952 This function recognizes whether TYPE is of one of these forms,
9953 and, if so, smashes it to be a variant type. */
9954
9955 static void
9956 quirk_rust_enum (struct type *type, struct objfile *objfile)
9957 {
9958 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9959
9960 /* We don't need to deal with empty enums. */
9961 if (TYPE_NFIELDS (type) == 0)
9962 return;
9963
9964 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9965 if (TYPE_NFIELDS (type) == 1
9966 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9967 {
9968 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9969
9970 /* Decode the field name to find the offset of the
9971 discriminant. */
9972 ULONGEST bit_offset = 0;
9973 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9974 while (name[0] >= '0' && name[0] <= '9')
9975 {
9976 char *tail;
9977 unsigned long index = strtoul (name, &tail, 10);
9978 name = tail;
9979 if (*name != '$'
9980 || index >= TYPE_NFIELDS (field_type)
9981 || (TYPE_FIELD_LOC_KIND (field_type, index)
9982 != FIELD_LOC_KIND_BITPOS))
9983 {
9984 complaint (_("Could not parse Rust enum encoding string \"%s\""
9985 "[in module %s]"),
9986 TYPE_FIELD_NAME (type, 0),
9987 objfile_name (objfile));
9988 return;
9989 }
9990 ++name;
9991
9992 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9993 field_type = TYPE_FIELD_TYPE (field_type, index);
9994 }
9995
9996 /* Make a union to hold the variants. */
9997 struct type *union_type = alloc_type (objfile);
9998 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9999 TYPE_NFIELDS (union_type) = 3;
10000 TYPE_FIELDS (union_type)
10001 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10002 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10003 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10004
10005 /* Put the discriminant must at index 0. */
10006 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10007 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10008 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10009 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10010
10011 /* The order of fields doesn't really matter, so put the real
10012 field at index 1 and the data-less field at index 2. */
10013 struct discriminant_info *disc
10014 = alloc_discriminant_info (union_type, 0, 1);
10015 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10016 TYPE_FIELD_NAME (union_type, 1)
10017 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10018 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10019 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10020 TYPE_FIELD_NAME (union_type, 1));
10021
10022 const char *dataless_name
10023 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10024 name);
10025 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10026 dataless_name);
10027 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10028 /* NAME points into the original discriminant name, which
10029 already has the correct lifetime. */
10030 TYPE_FIELD_NAME (union_type, 2) = name;
10031 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10032 disc->discriminants[2] = 0;
10033
10034 /* Smash this type to be a structure type. We have to do this
10035 because the type has already been recorded. */
10036 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10037 TYPE_NFIELDS (type) = 1;
10038 TYPE_FIELDS (type)
10039 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10040
10041 /* Install the variant part. */
10042 TYPE_FIELD_TYPE (type, 0) = union_type;
10043 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10044 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10045 }
10046 else if (TYPE_NFIELDS (type) == 1)
10047 {
10048 /* We assume that a union with a single field is a univariant
10049 enum. */
10050 /* Smash this type to be a structure type. We have to do this
10051 because the type has already been recorded. */
10052 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10053
10054 /* Make a union to hold the variants. */
10055 struct type *union_type = alloc_type (objfile);
10056 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10057 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10058 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10059 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10060 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10061
10062 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10063 const char *variant_name
10064 = rust_last_path_segment (TYPE_NAME (field_type));
10065 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10066 TYPE_NAME (field_type)
10067 = rust_fully_qualify (&objfile->objfile_obstack,
10068 TYPE_NAME (type), variant_name);
10069
10070 /* Install the union in the outer struct type. */
10071 TYPE_NFIELDS (type) = 1;
10072 TYPE_FIELDS (type)
10073 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10074 TYPE_FIELD_TYPE (type, 0) = union_type;
10075 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10076 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10077
10078 alloc_discriminant_info (union_type, -1, 0);
10079 }
10080 else
10081 {
10082 struct type *disr_type = nullptr;
10083 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10084 {
10085 disr_type = TYPE_FIELD_TYPE (type, i);
10086
10087 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10088 {
10089 /* All fields of a true enum will be structs. */
10090 return;
10091 }
10092 else if (TYPE_NFIELDS (disr_type) == 0)
10093 {
10094 /* Could be data-less variant, so keep going. */
10095 disr_type = nullptr;
10096 }
10097 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10098 "RUST$ENUM$DISR") != 0)
10099 {
10100 /* Not a Rust enum. */
10101 return;
10102 }
10103 else
10104 {
10105 /* Found one. */
10106 break;
10107 }
10108 }
10109
10110 /* If we got here without a discriminant, then it's probably
10111 just a union. */
10112 if (disr_type == nullptr)
10113 return;
10114
10115 /* Smash this type to be a structure type. We have to do this
10116 because the type has already been recorded. */
10117 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10118
10119 /* Make a union to hold the variants. */
10120 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10121 struct type *union_type = alloc_type (objfile);
10122 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10123 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10124 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10125 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10126 TYPE_FIELDS (union_type)
10127 = (struct field *) TYPE_ZALLOC (union_type,
10128 (TYPE_NFIELDS (union_type)
10129 * sizeof (struct field)));
10130
10131 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10132 TYPE_NFIELDS (type) * sizeof (struct field));
10133
10134 /* Install the discriminant at index 0 in the union. */
10135 TYPE_FIELD (union_type, 0) = *disr_field;
10136 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10137 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10138
10139 /* Install the union in the outer struct type. */
10140 TYPE_FIELD_TYPE (type, 0) = union_type;
10141 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10142 TYPE_NFIELDS (type) = 1;
10143
10144 /* Set the size and offset of the union type. */
10145 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10146
10147 /* We need a way to find the correct discriminant given a
10148 variant name. For convenience we build a map here. */
10149 struct type *enum_type = FIELD_TYPE (*disr_field);
10150 std::unordered_map<std::string, ULONGEST> discriminant_map;
10151 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10152 {
10153 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10154 {
10155 const char *name
10156 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10157 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10158 }
10159 }
10160
10161 int n_fields = TYPE_NFIELDS (union_type);
10162 struct discriminant_info *disc
10163 = alloc_discriminant_info (union_type, 0, -1);
10164 /* Skip the discriminant here. */
10165 for (int i = 1; i < n_fields; ++i)
10166 {
10167 /* Find the final word in the name of this variant's type.
10168 That name can be used to look up the correct
10169 discriminant. */
10170 const char *variant_name
10171 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10172 i)));
10173
10174 auto iter = discriminant_map.find (variant_name);
10175 if (iter != discriminant_map.end ())
10176 disc->discriminants[i] = iter->second;
10177
10178 /* Remove the discriminant field, if it exists. */
10179 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10180 if (TYPE_NFIELDS (sub_type) > 0)
10181 {
10182 --TYPE_NFIELDS (sub_type);
10183 ++TYPE_FIELDS (sub_type);
10184 }
10185 TYPE_FIELD_NAME (union_type, i) = variant_name;
10186 TYPE_NAME (sub_type)
10187 = rust_fully_qualify (&objfile->objfile_obstack,
10188 TYPE_NAME (type), variant_name);
10189 }
10190 }
10191 }
10192
10193 /* Rewrite some Rust unions to be structures with variants parts. */
10194
10195 static void
10196 rust_union_quirks (struct dwarf2_cu *cu)
10197 {
10198 gdb_assert (cu->language == language_rust);
10199 for (type *type_ : cu->rust_unions)
10200 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10201 /* We don't need this any more. */
10202 cu->rust_unions.clear ();
10203 }
10204
10205 /* Return the symtab for PER_CU. This works properly regardless of
10206 whether we're using the index or psymtabs. */
10207
10208 static struct compunit_symtab *
10209 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10210 {
10211 return (per_cu->dwarf2_per_objfile->using_index
10212 ? per_cu->v.quick->compunit_symtab
10213 : per_cu->v.psymtab->compunit_symtab);
10214 }
10215
10216 /* A helper function for computing the list of all symbol tables
10217 included by PER_CU. */
10218
10219 static void
10220 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10221 htab_t all_children, htab_t all_type_symtabs,
10222 struct dwarf2_per_cu_data *per_cu,
10223 struct compunit_symtab *immediate_parent)
10224 {
10225 void **slot;
10226 int ix;
10227 struct compunit_symtab *cust;
10228 struct dwarf2_per_cu_data *iter;
10229
10230 slot = htab_find_slot (all_children, per_cu, INSERT);
10231 if (*slot != NULL)
10232 {
10233 /* This inclusion and its children have been processed. */
10234 return;
10235 }
10236
10237 *slot = per_cu;
10238 /* Only add a CU if it has a symbol table. */
10239 cust = get_compunit_symtab (per_cu);
10240 if (cust != NULL)
10241 {
10242 /* If this is a type unit only add its symbol table if we haven't
10243 seen it yet (type unit per_cu's can share symtabs). */
10244 if (per_cu->is_debug_types)
10245 {
10246 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10247 if (*slot == NULL)
10248 {
10249 *slot = cust;
10250 result->push_back (cust);
10251 if (cust->user == NULL)
10252 cust->user = immediate_parent;
10253 }
10254 }
10255 else
10256 {
10257 result->push_back (cust);
10258 if (cust->user == NULL)
10259 cust->user = immediate_parent;
10260 }
10261 }
10262
10263 for (ix = 0;
10264 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10265 ++ix)
10266 {
10267 recursively_compute_inclusions (result, all_children,
10268 all_type_symtabs, iter, cust);
10269 }
10270 }
10271
10272 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10273 PER_CU. */
10274
10275 static void
10276 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10277 {
10278 gdb_assert (! per_cu->is_debug_types);
10279
10280 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10281 {
10282 int ix, len;
10283 struct dwarf2_per_cu_data *per_cu_iter;
10284 std::vector<compunit_symtab *> result_symtabs;
10285 htab_t all_children, all_type_symtabs;
10286 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10287
10288 /* If we don't have a symtab, we can just skip this case. */
10289 if (cust == NULL)
10290 return;
10291
10292 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10293 NULL, xcalloc, xfree);
10294 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10295 NULL, xcalloc, xfree);
10296
10297 for (ix = 0;
10298 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10299 ix, per_cu_iter);
10300 ++ix)
10301 {
10302 recursively_compute_inclusions (&result_symtabs, all_children,
10303 all_type_symtabs, per_cu_iter,
10304 cust);
10305 }
10306
10307 /* Now we have a transitive closure of all the included symtabs. */
10308 len = result_symtabs.size ();
10309 cust->includes
10310 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10311 struct compunit_symtab *, len + 1);
10312 memcpy (cust->includes, result_symtabs.data (),
10313 len * sizeof (compunit_symtab *));
10314 cust->includes[len] = NULL;
10315
10316 htab_delete (all_children);
10317 htab_delete (all_type_symtabs);
10318 }
10319 }
10320
10321 /* Compute the 'includes' field for the symtabs of all the CUs we just
10322 read. */
10323
10324 static void
10325 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10326 {
10327 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10328 {
10329 if (! iter->is_debug_types)
10330 compute_compunit_symtab_includes (iter);
10331 }
10332
10333 dwarf2_per_objfile->just_read_cus.clear ();
10334 }
10335
10336 /* Generate full symbol information for PER_CU, whose DIEs have
10337 already been loaded into memory. */
10338
10339 static void
10340 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10341 enum language pretend_language)
10342 {
10343 struct dwarf2_cu *cu = per_cu->cu;
10344 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10345 struct objfile *objfile = dwarf2_per_objfile->objfile;
10346 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10347 CORE_ADDR lowpc, highpc;
10348 struct compunit_symtab *cust;
10349 CORE_ADDR baseaddr;
10350 struct block *static_block;
10351 CORE_ADDR addr;
10352
10353 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10354
10355 /* Clear the list here in case something was left over. */
10356 cu->method_list.clear ();
10357
10358 cu->language = pretend_language;
10359 cu->language_defn = language_def (cu->language);
10360
10361 /* Do line number decoding in read_file_scope () */
10362 process_die (cu->dies, cu);
10363
10364 /* For now fudge the Go package. */
10365 if (cu->language == language_go)
10366 fixup_go_packaging (cu);
10367
10368 /* Now that we have processed all the DIEs in the CU, all the types
10369 should be complete, and it should now be safe to compute all of the
10370 physnames. */
10371 compute_delayed_physnames (cu);
10372
10373 if (cu->language == language_rust)
10374 rust_union_quirks (cu);
10375
10376 /* Some compilers don't define a DW_AT_high_pc attribute for the
10377 compilation unit. If the DW_AT_high_pc is missing, synthesize
10378 it, by scanning the DIE's below the compilation unit. */
10379 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10380
10381 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10382 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10383
10384 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10385 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10386 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10387 addrmap to help ensure it has an accurate map of pc values belonging to
10388 this comp unit. */
10389 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10390
10391 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10392 SECT_OFF_TEXT (objfile),
10393 0);
10394
10395 if (cust != NULL)
10396 {
10397 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10398
10399 /* Set symtab language to language from DW_AT_language. If the
10400 compilation is from a C file generated by language preprocessors, do
10401 not set the language if it was already deduced by start_subfile. */
10402 if (!(cu->language == language_c
10403 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10404 COMPUNIT_FILETABS (cust)->language = cu->language;
10405
10406 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10407 produce DW_AT_location with location lists but it can be possibly
10408 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10409 there were bugs in prologue debug info, fixed later in GCC-4.5
10410 by "unwind info for epilogues" patch (which is not directly related).
10411
10412 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10413 needed, it would be wrong due to missing DW_AT_producer there.
10414
10415 Still one can confuse GDB by using non-standard GCC compilation
10416 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10417 */
10418 if (cu->has_loclist && gcc_4_minor >= 5)
10419 cust->locations_valid = 1;
10420
10421 if (gcc_4_minor >= 5)
10422 cust->epilogue_unwind_valid = 1;
10423
10424 cust->call_site_htab = cu->call_site_htab;
10425 }
10426
10427 if (dwarf2_per_objfile->using_index)
10428 per_cu->v.quick->compunit_symtab = cust;
10429 else
10430 {
10431 struct partial_symtab *pst = per_cu->v.psymtab;
10432 pst->compunit_symtab = cust;
10433 pst->readin = 1;
10434 }
10435
10436 /* Push it for inclusion processing later. */
10437 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10438
10439 /* Not needed any more. */
10440 cu->reset_builder ();
10441 }
10442
10443 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10444 already been loaded into memory. */
10445
10446 static void
10447 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10448 enum language pretend_language)
10449 {
10450 struct dwarf2_cu *cu = per_cu->cu;
10451 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10452 struct objfile *objfile = dwarf2_per_objfile->objfile;
10453 struct compunit_symtab *cust;
10454 struct signatured_type *sig_type;
10455
10456 gdb_assert (per_cu->is_debug_types);
10457 sig_type = (struct signatured_type *) per_cu;
10458
10459 /* Clear the list here in case something was left over. */
10460 cu->method_list.clear ();
10461
10462 cu->language = pretend_language;
10463 cu->language_defn = language_def (cu->language);
10464
10465 /* The symbol tables are set up in read_type_unit_scope. */
10466 process_die (cu->dies, cu);
10467
10468 /* For now fudge the Go package. */
10469 if (cu->language == language_go)
10470 fixup_go_packaging (cu);
10471
10472 /* Now that we have processed all the DIEs in the CU, all the types
10473 should be complete, and it should now be safe to compute all of the
10474 physnames. */
10475 compute_delayed_physnames (cu);
10476
10477 if (cu->language == language_rust)
10478 rust_union_quirks (cu);
10479
10480 /* TUs share symbol tables.
10481 If this is the first TU to use this symtab, complete the construction
10482 of it with end_expandable_symtab. Otherwise, complete the addition of
10483 this TU's symbols to the existing symtab. */
10484 if (sig_type->type_unit_group->compunit_symtab == NULL)
10485 {
10486 buildsym_compunit *builder = cu->get_builder ();
10487 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10488 sig_type->type_unit_group->compunit_symtab = cust;
10489
10490 if (cust != NULL)
10491 {
10492 /* Set symtab language to language from DW_AT_language. If the
10493 compilation is from a C file generated by language preprocessors,
10494 do not set the language if it was already deduced by
10495 start_subfile. */
10496 if (!(cu->language == language_c
10497 && COMPUNIT_FILETABS (cust)->language != language_c))
10498 COMPUNIT_FILETABS (cust)->language = cu->language;
10499 }
10500 }
10501 else
10502 {
10503 cu->get_builder ()->augment_type_symtab ();
10504 cust = sig_type->type_unit_group->compunit_symtab;
10505 }
10506
10507 if (dwarf2_per_objfile->using_index)
10508 per_cu->v.quick->compunit_symtab = cust;
10509 else
10510 {
10511 struct partial_symtab *pst = per_cu->v.psymtab;
10512 pst->compunit_symtab = cust;
10513 pst->readin = 1;
10514 }
10515
10516 /* Not needed any more. */
10517 cu->reset_builder ();
10518 }
10519
10520 /* Process an imported unit DIE. */
10521
10522 static void
10523 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10524 {
10525 struct attribute *attr;
10526
10527 /* For now we don't handle imported units in type units. */
10528 if (cu->per_cu->is_debug_types)
10529 {
10530 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10531 " supported in type units [in module %s]"),
10532 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10533 }
10534
10535 attr = dwarf2_attr (die, DW_AT_import, cu);
10536 if (attr != NULL)
10537 {
10538 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10539 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10540 dwarf2_per_cu_data *per_cu
10541 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10542 cu->per_cu->dwarf2_per_objfile);
10543
10544 /* If necessary, add it to the queue and load its DIEs. */
10545 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10546 load_full_comp_unit (per_cu, false, cu->language);
10547
10548 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10549 per_cu);
10550 }
10551 }
10552
10553 /* RAII object that represents a process_die scope: i.e.,
10554 starts/finishes processing a DIE. */
10555 class process_die_scope
10556 {
10557 public:
10558 process_die_scope (die_info *die, dwarf2_cu *cu)
10559 : m_die (die), m_cu (cu)
10560 {
10561 /* We should only be processing DIEs not already in process. */
10562 gdb_assert (!m_die->in_process);
10563 m_die->in_process = true;
10564 }
10565
10566 ~process_die_scope ()
10567 {
10568 m_die->in_process = false;
10569
10570 /* If we're done processing the DIE for the CU that owns the line
10571 header, we don't need the line header anymore. */
10572 if (m_cu->line_header_die_owner == m_die)
10573 {
10574 delete m_cu->line_header;
10575 m_cu->line_header = NULL;
10576 m_cu->line_header_die_owner = NULL;
10577 }
10578 }
10579
10580 private:
10581 die_info *m_die;
10582 dwarf2_cu *m_cu;
10583 };
10584
10585 /* Process a die and its children. */
10586
10587 static void
10588 process_die (struct die_info *die, struct dwarf2_cu *cu)
10589 {
10590 process_die_scope scope (die, cu);
10591
10592 switch (die->tag)
10593 {
10594 case DW_TAG_padding:
10595 break;
10596 case DW_TAG_compile_unit:
10597 case DW_TAG_partial_unit:
10598 read_file_scope (die, cu);
10599 break;
10600 case DW_TAG_type_unit:
10601 read_type_unit_scope (die, cu);
10602 break;
10603 case DW_TAG_subprogram:
10604 case DW_TAG_inlined_subroutine:
10605 read_func_scope (die, cu);
10606 break;
10607 case DW_TAG_lexical_block:
10608 case DW_TAG_try_block:
10609 case DW_TAG_catch_block:
10610 read_lexical_block_scope (die, cu);
10611 break;
10612 case DW_TAG_call_site:
10613 case DW_TAG_GNU_call_site:
10614 read_call_site_scope (die, cu);
10615 break;
10616 case DW_TAG_class_type:
10617 case DW_TAG_interface_type:
10618 case DW_TAG_structure_type:
10619 case DW_TAG_union_type:
10620 process_structure_scope (die, cu);
10621 break;
10622 case DW_TAG_enumeration_type:
10623 process_enumeration_scope (die, cu);
10624 break;
10625
10626 /* These dies have a type, but processing them does not create
10627 a symbol or recurse to process the children. Therefore we can
10628 read them on-demand through read_type_die. */
10629 case DW_TAG_subroutine_type:
10630 case DW_TAG_set_type:
10631 case DW_TAG_array_type:
10632 case DW_TAG_pointer_type:
10633 case DW_TAG_ptr_to_member_type:
10634 case DW_TAG_reference_type:
10635 case DW_TAG_rvalue_reference_type:
10636 case DW_TAG_string_type:
10637 break;
10638
10639 case DW_TAG_base_type:
10640 case DW_TAG_subrange_type:
10641 case DW_TAG_typedef:
10642 /* Add a typedef symbol for the type definition, if it has a
10643 DW_AT_name. */
10644 new_symbol (die, read_type_die (die, cu), cu);
10645 break;
10646 case DW_TAG_common_block:
10647 read_common_block (die, cu);
10648 break;
10649 case DW_TAG_common_inclusion:
10650 break;
10651 case DW_TAG_namespace:
10652 cu->processing_has_namespace_info = true;
10653 read_namespace (die, cu);
10654 break;
10655 case DW_TAG_module:
10656 cu->processing_has_namespace_info = true;
10657 read_module (die, cu);
10658 break;
10659 case DW_TAG_imported_declaration:
10660 cu->processing_has_namespace_info = true;
10661 if (read_namespace_alias (die, cu))
10662 break;
10663 /* The declaration is not a global namespace alias. */
10664 /* Fall through. */
10665 case DW_TAG_imported_module:
10666 cu->processing_has_namespace_info = true;
10667 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10668 || cu->language != language_fortran))
10669 complaint (_("Tag '%s' has unexpected children"),
10670 dwarf_tag_name (die->tag));
10671 read_import_statement (die, cu);
10672 break;
10673
10674 case DW_TAG_imported_unit:
10675 process_imported_unit_die (die, cu);
10676 break;
10677
10678 case DW_TAG_variable:
10679 read_variable (die, cu);
10680 break;
10681
10682 default:
10683 new_symbol (die, NULL, cu);
10684 break;
10685 }
10686 }
10687 \f
10688 /* DWARF name computation. */
10689
10690 /* A helper function for dwarf2_compute_name which determines whether DIE
10691 needs to have the name of the scope prepended to the name listed in the
10692 die. */
10693
10694 static int
10695 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10696 {
10697 struct attribute *attr;
10698
10699 switch (die->tag)
10700 {
10701 case DW_TAG_namespace:
10702 case DW_TAG_typedef:
10703 case DW_TAG_class_type:
10704 case DW_TAG_interface_type:
10705 case DW_TAG_structure_type:
10706 case DW_TAG_union_type:
10707 case DW_TAG_enumeration_type:
10708 case DW_TAG_enumerator:
10709 case DW_TAG_subprogram:
10710 case DW_TAG_inlined_subroutine:
10711 case DW_TAG_member:
10712 case DW_TAG_imported_declaration:
10713 return 1;
10714
10715 case DW_TAG_variable:
10716 case DW_TAG_constant:
10717 /* We only need to prefix "globally" visible variables. These include
10718 any variable marked with DW_AT_external or any variable that
10719 lives in a namespace. [Variables in anonymous namespaces
10720 require prefixing, but they are not DW_AT_external.] */
10721
10722 if (dwarf2_attr (die, DW_AT_specification, cu))
10723 {
10724 struct dwarf2_cu *spec_cu = cu;
10725
10726 return die_needs_namespace (die_specification (die, &spec_cu),
10727 spec_cu);
10728 }
10729
10730 attr = dwarf2_attr (die, DW_AT_external, cu);
10731 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10732 && die->parent->tag != DW_TAG_module)
10733 return 0;
10734 /* A variable in a lexical block of some kind does not need a
10735 namespace, even though in C++ such variables may be external
10736 and have a mangled name. */
10737 if (die->parent->tag == DW_TAG_lexical_block
10738 || die->parent->tag == DW_TAG_try_block
10739 || die->parent->tag == DW_TAG_catch_block
10740 || die->parent->tag == DW_TAG_subprogram)
10741 return 0;
10742 return 1;
10743
10744 default:
10745 return 0;
10746 }
10747 }
10748
10749 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10750 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10751 defined for the given DIE. */
10752
10753 static struct attribute *
10754 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10755 {
10756 struct attribute *attr;
10757
10758 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10759 if (attr == NULL)
10760 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10761
10762 return attr;
10763 }
10764
10765 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10766 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10767 defined for the given DIE. */
10768
10769 static const char *
10770 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10771 {
10772 const char *linkage_name;
10773
10774 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10775 if (linkage_name == NULL)
10776 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10777
10778 return linkage_name;
10779 }
10780
10781 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10782 compute the physname for the object, which include a method's:
10783 - formal parameters (C++),
10784 - receiver type (Go),
10785
10786 The term "physname" is a bit confusing.
10787 For C++, for example, it is the demangled name.
10788 For Go, for example, it's the mangled name.
10789
10790 For Ada, return the DIE's linkage name rather than the fully qualified
10791 name. PHYSNAME is ignored..
10792
10793 The result is allocated on the objfile_obstack and canonicalized. */
10794
10795 static const char *
10796 dwarf2_compute_name (const char *name,
10797 struct die_info *die, struct dwarf2_cu *cu,
10798 int physname)
10799 {
10800 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10801
10802 if (name == NULL)
10803 name = dwarf2_name (die, cu);
10804
10805 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10806 but otherwise compute it by typename_concat inside GDB.
10807 FIXME: Actually this is not really true, or at least not always true.
10808 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10809 Fortran names because there is no mangling standard. So new_symbol
10810 will set the demangled name to the result of dwarf2_full_name, and it is
10811 the demangled name that GDB uses if it exists. */
10812 if (cu->language == language_ada
10813 || (cu->language == language_fortran && physname))
10814 {
10815 /* For Ada unit, we prefer the linkage name over the name, as
10816 the former contains the exported name, which the user expects
10817 to be able to reference. Ideally, we want the user to be able
10818 to reference this entity using either natural or linkage name,
10819 but we haven't started looking at this enhancement yet. */
10820 const char *linkage_name = dw2_linkage_name (die, cu);
10821
10822 if (linkage_name != NULL)
10823 return linkage_name;
10824 }
10825
10826 /* These are the only languages we know how to qualify names in. */
10827 if (name != NULL
10828 && (cu->language == language_cplus
10829 || cu->language == language_fortran || cu->language == language_d
10830 || cu->language == language_rust))
10831 {
10832 if (die_needs_namespace (die, cu))
10833 {
10834 const char *prefix;
10835 const char *canonical_name = NULL;
10836
10837 string_file buf;
10838
10839 prefix = determine_prefix (die, cu);
10840 if (*prefix != '\0')
10841 {
10842 char *prefixed_name = typename_concat (NULL, prefix, name,
10843 physname, cu);
10844
10845 buf.puts (prefixed_name);
10846 xfree (prefixed_name);
10847 }
10848 else
10849 buf.puts (name);
10850
10851 /* Template parameters may be specified in the DIE's DW_AT_name, or
10852 as children with DW_TAG_template_type_param or
10853 DW_TAG_value_type_param. If the latter, add them to the name
10854 here. If the name already has template parameters, then
10855 skip this step; some versions of GCC emit both, and
10856 it is more efficient to use the pre-computed name.
10857
10858 Something to keep in mind about this process: it is very
10859 unlikely, or in some cases downright impossible, to produce
10860 something that will match the mangled name of a function.
10861 If the definition of the function has the same debug info,
10862 we should be able to match up with it anyway. But fallbacks
10863 using the minimal symbol, for instance to find a method
10864 implemented in a stripped copy of libstdc++, will not work.
10865 If we do not have debug info for the definition, we will have to
10866 match them up some other way.
10867
10868 When we do name matching there is a related problem with function
10869 templates; two instantiated function templates are allowed to
10870 differ only by their return types, which we do not add here. */
10871
10872 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10873 {
10874 struct attribute *attr;
10875 struct die_info *child;
10876 int first = 1;
10877
10878 die->building_fullname = 1;
10879
10880 for (child = die->child; child != NULL; child = child->sibling)
10881 {
10882 struct type *type;
10883 LONGEST value;
10884 const gdb_byte *bytes;
10885 struct dwarf2_locexpr_baton *baton;
10886 struct value *v;
10887
10888 if (child->tag != DW_TAG_template_type_param
10889 && child->tag != DW_TAG_template_value_param)
10890 continue;
10891
10892 if (first)
10893 {
10894 buf.puts ("<");
10895 first = 0;
10896 }
10897 else
10898 buf.puts (", ");
10899
10900 attr = dwarf2_attr (child, DW_AT_type, cu);
10901 if (attr == NULL)
10902 {
10903 complaint (_("template parameter missing DW_AT_type"));
10904 buf.puts ("UNKNOWN_TYPE");
10905 continue;
10906 }
10907 type = die_type (child, cu);
10908
10909 if (child->tag == DW_TAG_template_type_param)
10910 {
10911 c_print_type (type, "", &buf, -1, 0, cu->language,
10912 &type_print_raw_options);
10913 continue;
10914 }
10915
10916 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10917 if (attr == NULL)
10918 {
10919 complaint (_("template parameter missing "
10920 "DW_AT_const_value"));
10921 buf.puts ("UNKNOWN_VALUE");
10922 continue;
10923 }
10924
10925 dwarf2_const_value_attr (attr, type, name,
10926 &cu->comp_unit_obstack, cu,
10927 &value, &bytes, &baton);
10928
10929 if (TYPE_NOSIGN (type))
10930 /* GDB prints characters as NUMBER 'CHAR'. If that's
10931 changed, this can use value_print instead. */
10932 c_printchar (value, type, &buf);
10933 else
10934 {
10935 struct value_print_options opts;
10936
10937 if (baton != NULL)
10938 v = dwarf2_evaluate_loc_desc (type, NULL,
10939 baton->data,
10940 baton->size,
10941 baton->per_cu);
10942 else if (bytes != NULL)
10943 {
10944 v = allocate_value (type);
10945 memcpy (value_contents_writeable (v), bytes,
10946 TYPE_LENGTH (type));
10947 }
10948 else
10949 v = value_from_longest (type, value);
10950
10951 /* Specify decimal so that we do not depend on
10952 the radix. */
10953 get_formatted_print_options (&opts, 'd');
10954 opts.raw = 1;
10955 value_print (v, &buf, &opts);
10956 release_value (v);
10957 }
10958 }
10959
10960 die->building_fullname = 0;
10961
10962 if (!first)
10963 {
10964 /* Close the argument list, with a space if necessary
10965 (nested templates). */
10966 if (!buf.empty () && buf.string ().back () == '>')
10967 buf.puts (" >");
10968 else
10969 buf.puts (">");
10970 }
10971 }
10972
10973 /* For C++ methods, append formal parameter type
10974 information, if PHYSNAME. */
10975
10976 if (physname && die->tag == DW_TAG_subprogram
10977 && cu->language == language_cplus)
10978 {
10979 struct type *type = read_type_die (die, cu);
10980
10981 c_type_print_args (type, &buf, 1, cu->language,
10982 &type_print_raw_options);
10983
10984 if (cu->language == language_cplus)
10985 {
10986 /* Assume that an artificial first parameter is
10987 "this", but do not crash if it is not. RealView
10988 marks unnamed (and thus unused) parameters as
10989 artificial; there is no way to differentiate
10990 the two cases. */
10991 if (TYPE_NFIELDS (type) > 0
10992 && TYPE_FIELD_ARTIFICIAL (type, 0)
10993 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10994 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10995 0))))
10996 buf.puts (" const");
10997 }
10998 }
10999
11000 const std::string &intermediate_name = buf.string ();
11001
11002 if (cu->language == language_cplus)
11003 canonical_name
11004 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11005 &objfile->per_bfd->storage_obstack);
11006
11007 /* If we only computed INTERMEDIATE_NAME, or if
11008 INTERMEDIATE_NAME is already canonical, then we need to
11009 copy it to the appropriate obstack. */
11010 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11011 name = ((const char *)
11012 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11013 intermediate_name.c_str (),
11014 intermediate_name.length ()));
11015 else
11016 name = canonical_name;
11017 }
11018 }
11019
11020 return name;
11021 }
11022
11023 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11024 If scope qualifiers are appropriate they will be added. The result
11025 will be allocated on the storage_obstack, or NULL if the DIE does
11026 not have a name. NAME may either be from a previous call to
11027 dwarf2_name or NULL.
11028
11029 The output string will be canonicalized (if C++). */
11030
11031 static const char *
11032 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11033 {
11034 return dwarf2_compute_name (name, die, cu, 0);
11035 }
11036
11037 /* Construct a physname for the given DIE in CU. NAME may either be
11038 from a previous call to dwarf2_name or NULL. The result will be
11039 allocated on the objfile_objstack or NULL if the DIE does not have a
11040 name.
11041
11042 The output string will be canonicalized (if C++). */
11043
11044 static const char *
11045 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11046 {
11047 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11048 const char *retval, *mangled = NULL, *canon = NULL;
11049 int need_copy = 1;
11050
11051 /* In this case dwarf2_compute_name is just a shortcut not building anything
11052 on its own. */
11053 if (!die_needs_namespace (die, cu))
11054 return dwarf2_compute_name (name, die, cu, 1);
11055
11056 mangled = dw2_linkage_name (die, cu);
11057
11058 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11059 See https://github.com/rust-lang/rust/issues/32925. */
11060 if (cu->language == language_rust && mangled != NULL
11061 && strchr (mangled, '{') != NULL)
11062 mangled = NULL;
11063
11064 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11065 has computed. */
11066 gdb::unique_xmalloc_ptr<char> demangled;
11067 if (mangled != NULL)
11068 {
11069
11070 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11071 {
11072 /* Do nothing (do not demangle the symbol name). */
11073 }
11074 else if (cu->language == language_go)
11075 {
11076 /* This is a lie, but we already lie to the caller new_symbol.
11077 new_symbol assumes we return the mangled name.
11078 This just undoes that lie until things are cleaned up. */
11079 }
11080 else
11081 {
11082 /* Use DMGL_RET_DROP for C++ template functions to suppress
11083 their return type. It is easier for GDB users to search
11084 for such functions as `name(params)' than `long name(params)'.
11085 In such case the minimal symbol names do not match the full
11086 symbol names but for template functions there is never a need
11087 to look up their definition from their declaration so
11088 the only disadvantage remains the minimal symbol variant
11089 `long name(params)' does not have the proper inferior type. */
11090 demangled.reset (gdb_demangle (mangled,
11091 (DMGL_PARAMS | DMGL_ANSI
11092 | DMGL_RET_DROP)));
11093 }
11094 if (demangled)
11095 canon = demangled.get ();
11096 else
11097 {
11098 canon = mangled;
11099 need_copy = 0;
11100 }
11101 }
11102
11103 if (canon == NULL || check_physname)
11104 {
11105 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11106
11107 if (canon != NULL && strcmp (physname, canon) != 0)
11108 {
11109 /* It may not mean a bug in GDB. The compiler could also
11110 compute DW_AT_linkage_name incorrectly. But in such case
11111 GDB would need to be bug-to-bug compatible. */
11112
11113 complaint (_("Computed physname <%s> does not match demangled <%s> "
11114 "(from linkage <%s>) - DIE at %s [in module %s]"),
11115 physname, canon, mangled, sect_offset_str (die->sect_off),
11116 objfile_name (objfile));
11117
11118 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11119 is available here - over computed PHYSNAME. It is safer
11120 against both buggy GDB and buggy compilers. */
11121
11122 retval = canon;
11123 }
11124 else
11125 {
11126 retval = physname;
11127 need_copy = 0;
11128 }
11129 }
11130 else
11131 retval = canon;
11132
11133 if (need_copy)
11134 retval = ((const char *)
11135 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11136 retval, strlen (retval)));
11137
11138 return retval;
11139 }
11140
11141 /* Inspect DIE in CU for a namespace alias. If one exists, record
11142 a new symbol for it.
11143
11144 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11145
11146 static int
11147 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11148 {
11149 struct attribute *attr;
11150
11151 /* If the die does not have a name, this is not a namespace
11152 alias. */
11153 attr = dwarf2_attr (die, DW_AT_name, cu);
11154 if (attr != NULL)
11155 {
11156 int num;
11157 struct die_info *d = die;
11158 struct dwarf2_cu *imported_cu = cu;
11159
11160 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11161 keep inspecting DIEs until we hit the underlying import. */
11162 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11163 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11164 {
11165 attr = dwarf2_attr (d, DW_AT_import, cu);
11166 if (attr == NULL)
11167 break;
11168
11169 d = follow_die_ref (d, attr, &imported_cu);
11170 if (d->tag != DW_TAG_imported_declaration)
11171 break;
11172 }
11173
11174 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11175 {
11176 complaint (_("DIE at %s has too many recursively imported "
11177 "declarations"), sect_offset_str (d->sect_off));
11178 return 0;
11179 }
11180
11181 if (attr != NULL)
11182 {
11183 struct type *type;
11184 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11185
11186 type = get_die_type_at_offset (sect_off, cu->per_cu);
11187 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11188 {
11189 /* This declaration is a global namespace alias. Add
11190 a symbol for it whose type is the aliased namespace. */
11191 new_symbol (die, type, cu);
11192 return 1;
11193 }
11194 }
11195 }
11196
11197 return 0;
11198 }
11199
11200 /* Return the using directives repository (global or local?) to use in the
11201 current context for CU.
11202
11203 For Ada, imported declarations can materialize renamings, which *may* be
11204 global. However it is impossible (for now?) in DWARF to distinguish
11205 "external" imported declarations and "static" ones. As all imported
11206 declarations seem to be static in all other languages, make them all CU-wide
11207 global only in Ada. */
11208
11209 static struct using_direct **
11210 using_directives (struct dwarf2_cu *cu)
11211 {
11212 if (cu->language == language_ada
11213 && cu->get_builder ()->outermost_context_p ())
11214 return cu->get_builder ()->get_global_using_directives ();
11215 else
11216 return cu->get_builder ()->get_local_using_directives ();
11217 }
11218
11219 /* Read the import statement specified by the given die and record it. */
11220
11221 static void
11222 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11223 {
11224 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11225 struct attribute *import_attr;
11226 struct die_info *imported_die, *child_die;
11227 struct dwarf2_cu *imported_cu;
11228 const char *imported_name;
11229 const char *imported_name_prefix;
11230 const char *canonical_name;
11231 const char *import_alias;
11232 const char *imported_declaration = NULL;
11233 const char *import_prefix;
11234 std::vector<const char *> excludes;
11235
11236 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11237 if (import_attr == NULL)
11238 {
11239 complaint (_("Tag '%s' has no DW_AT_import"),
11240 dwarf_tag_name (die->tag));
11241 return;
11242 }
11243
11244 imported_cu = cu;
11245 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11246 imported_name = dwarf2_name (imported_die, imported_cu);
11247 if (imported_name == NULL)
11248 {
11249 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11250
11251 The import in the following code:
11252 namespace A
11253 {
11254 typedef int B;
11255 }
11256
11257 int main ()
11258 {
11259 using A::B;
11260 B b;
11261 return b;
11262 }
11263
11264 ...
11265 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11266 <52> DW_AT_decl_file : 1
11267 <53> DW_AT_decl_line : 6
11268 <54> DW_AT_import : <0x75>
11269 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11270 <59> DW_AT_name : B
11271 <5b> DW_AT_decl_file : 1
11272 <5c> DW_AT_decl_line : 2
11273 <5d> DW_AT_type : <0x6e>
11274 ...
11275 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11276 <76> DW_AT_byte_size : 4
11277 <77> DW_AT_encoding : 5 (signed)
11278
11279 imports the wrong die ( 0x75 instead of 0x58 ).
11280 This case will be ignored until the gcc bug is fixed. */
11281 return;
11282 }
11283
11284 /* Figure out the local name after import. */
11285 import_alias = dwarf2_name (die, cu);
11286
11287 /* Figure out where the statement is being imported to. */
11288 import_prefix = determine_prefix (die, cu);
11289
11290 /* Figure out what the scope of the imported die is and prepend it
11291 to the name of the imported die. */
11292 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11293
11294 if (imported_die->tag != DW_TAG_namespace
11295 && imported_die->tag != DW_TAG_module)
11296 {
11297 imported_declaration = imported_name;
11298 canonical_name = imported_name_prefix;
11299 }
11300 else if (strlen (imported_name_prefix) > 0)
11301 canonical_name = obconcat (&objfile->objfile_obstack,
11302 imported_name_prefix,
11303 (cu->language == language_d ? "." : "::"),
11304 imported_name, (char *) NULL);
11305 else
11306 canonical_name = imported_name;
11307
11308 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11309 for (child_die = die->child; child_die && child_die->tag;
11310 child_die = sibling_die (child_die))
11311 {
11312 /* DWARF-4: A Fortran use statement with a “rename list” may be
11313 represented by an imported module entry with an import attribute
11314 referring to the module and owned entries corresponding to those
11315 entities that are renamed as part of being imported. */
11316
11317 if (child_die->tag != DW_TAG_imported_declaration)
11318 {
11319 complaint (_("child DW_TAG_imported_declaration expected "
11320 "- DIE at %s [in module %s]"),
11321 sect_offset_str (child_die->sect_off),
11322 objfile_name (objfile));
11323 continue;
11324 }
11325
11326 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11327 if (import_attr == NULL)
11328 {
11329 complaint (_("Tag '%s' has no DW_AT_import"),
11330 dwarf_tag_name (child_die->tag));
11331 continue;
11332 }
11333
11334 imported_cu = cu;
11335 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11336 &imported_cu);
11337 imported_name = dwarf2_name (imported_die, imported_cu);
11338 if (imported_name == NULL)
11339 {
11340 complaint (_("child DW_TAG_imported_declaration has unknown "
11341 "imported name - DIE at %s [in module %s]"),
11342 sect_offset_str (child_die->sect_off),
11343 objfile_name (objfile));
11344 continue;
11345 }
11346
11347 excludes.push_back (imported_name);
11348
11349 process_die (child_die, cu);
11350 }
11351
11352 add_using_directive (using_directives (cu),
11353 import_prefix,
11354 canonical_name,
11355 import_alias,
11356 imported_declaration,
11357 excludes,
11358 0,
11359 &objfile->objfile_obstack);
11360 }
11361
11362 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11363 types, but gives them a size of zero. Starting with version 14,
11364 ICC is compatible with GCC. */
11365
11366 static bool
11367 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11368 {
11369 if (!cu->checked_producer)
11370 check_producer (cu);
11371
11372 return cu->producer_is_icc_lt_14;
11373 }
11374
11375 /* ICC generates a DW_AT_type for C void functions. This was observed on
11376 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11377 which says that void functions should not have a DW_AT_type. */
11378
11379 static bool
11380 producer_is_icc (struct dwarf2_cu *cu)
11381 {
11382 if (!cu->checked_producer)
11383 check_producer (cu);
11384
11385 return cu->producer_is_icc;
11386 }
11387
11388 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11389 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11390 this, it was first present in GCC release 4.3.0. */
11391
11392 static bool
11393 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11394 {
11395 if (!cu->checked_producer)
11396 check_producer (cu);
11397
11398 return cu->producer_is_gcc_lt_4_3;
11399 }
11400
11401 static file_and_directory
11402 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11403 {
11404 file_and_directory res;
11405
11406 /* Find the filename. Do not use dwarf2_name here, since the filename
11407 is not a source language identifier. */
11408 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11409 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11410
11411 if (res.comp_dir == NULL
11412 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11413 && IS_ABSOLUTE_PATH (res.name))
11414 {
11415 res.comp_dir_storage = ldirname (res.name);
11416 if (!res.comp_dir_storage.empty ())
11417 res.comp_dir = res.comp_dir_storage.c_str ();
11418 }
11419 if (res.comp_dir != NULL)
11420 {
11421 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11422 directory, get rid of it. */
11423 const char *cp = strchr (res.comp_dir, ':');
11424
11425 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11426 res.comp_dir = cp + 1;
11427 }
11428
11429 if (res.name == NULL)
11430 res.name = "<unknown>";
11431
11432 return res;
11433 }
11434
11435 /* Handle DW_AT_stmt_list for a compilation unit.
11436 DIE is the DW_TAG_compile_unit die for CU.
11437 COMP_DIR is the compilation directory. LOWPC is passed to
11438 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11439
11440 static void
11441 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11442 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11443 {
11444 struct dwarf2_per_objfile *dwarf2_per_objfile
11445 = cu->per_cu->dwarf2_per_objfile;
11446 struct objfile *objfile = dwarf2_per_objfile->objfile;
11447 struct attribute *attr;
11448 struct line_header line_header_local;
11449 hashval_t line_header_local_hash;
11450 void **slot;
11451 int decode_mapping;
11452
11453 gdb_assert (! cu->per_cu->is_debug_types);
11454
11455 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11456 if (attr == NULL)
11457 return;
11458
11459 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11460
11461 /* The line header hash table is only created if needed (it exists to
11462 prevent redundant reading of the line table for partial_units).
11463 If we're given a partial_unit, we'll need it. If we're given a
11464 compile_unit, then use the line header hash table if it's already
11465 created, but don't create one just yet. */
11466
11467 if (dwarf2_per_objfile->line_header_hash == NULL
11468 && die->tag == DW_TAG_partial_unit)
11469 {
11470 dwarf2_per_objfile->line_header_hash
11471 = htab_create_alloc_ex (127, line_header_hash_voidp,
11472 line_header_eq_voidp,
11473 free_line_header_voidp,
11474 &objfile->objfile_obstack,
11475 hashtab_obstack_allocate,
11476 dummy_obstack_deallocate);
11477 }
11478
11479 line_header_local.sect_off = line_offset;
11480 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11481 line_header_local_hash = line_header_hash (&line_header_local);
11482 if (dwarf2_per_objfile->line_header_hash != NULL)
11483 {
11484 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11485 &line_header_local,
11486 line_header_local_hash, NO_INSERT);
11487
11488 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11489 is not present in *SLOT (since if there is something in *SLOT then
11490 it will be for a partial_unit). */
11491 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11492 {
11493 gdb_assert (*slot != NULL);
11494 cu->line_header = (struct line_header *) *slot;
11495 return;
11496 }
11497 }
11498
11499 /* dwarf_decode_line_header does not yet provide sufficient information.
11500 We always have to call also dwarf_decode_lines for it. */
11501 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11502 if (lh == NULL)
11503 return;
11504
11505 cu->line_header = lh.release ();
11506 cu->line_header_die_owner = die;
11507
11508 if (dwarf2_per_objfile->line_header_hash == NULL)
11509 slot = NULL;
11510 else
11511 {
11512 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11513 &line_header_local,
11514 line_header_local_hash, INSERT);
11515 gdb_assert (slot != NULL);
11516 }
11517 if (slot != NULL && *slot == NULL)
11518 {
11519 /* This newly decoded line number information unit will be owned
11520 by line_header_hash hash table. */
11521 *slot = cu->line_header;
11522 cu->line_header_die_owner = NULL;
11523 }
11524 else
11525 {
11526 /* We cannot free any current entry in (*slot) as that struct line_header
11527 may be already used by multiple CUs. Create only temporary decoded
11528 line_header for this CU - it may happen at most once for each line
11529 number information unit. And if we're not using line_header_hash
11530 then this is what we want as well. */
11531 gdb_assert (die->tag != DW_TAG_partial_unit);
11532 }
11533 decode_mapping = (die->tag != DW_TAG_partial_unit);
11534 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11535 decode_mapping);
11536
11537 }
11538
11539 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11540
11541 static void
11542 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11543 {
11544 struct dwarf2_per_objfile *dwarf2_per_objfile
11545 = cu->per_cu->dwarf2_per_objfile;
11546 struct objfile *objfile = dwarf2_per_objfile->objfile;
11547 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11548 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11549 CORE_ADDR highpc = ((CORE_ADDR) 0);
11550 struct attribute *attr;
11551 struct die_info *child_die;
11552 CORE_ADDR baseaddr;
11553
11554 prepare_one_comp_unit (cu, die, cu->language);
11555 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11556
11557 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11558
11559 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11560 from finish_block. */
11561 if (lowpc == ((CORE_ADDR) -1))
11562 lowpc = highpc;
11563 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11564
11565 file_and_directory fnd = find_file_and_directory (die, cu);
11566
11567 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11568 standardised yet. As a workaround for the language detection we fall
11569 back to the DW_AT_producer string. */
11570 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11571 cu->language = language_opencl;
11572
11573 /* Similar hack for Go. */
11574 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11575 set_cu_language (DW_LANG_Go, cu);
11576
11577 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11578
11579 /* Decode line number information if present. We do this before
11580 processing child DIEs, so that the line header table is available
11581 for DW_AT_decl_file. */
11582 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11583
11584 /* Process all dies in compilation unit. */
11585 if (die->child != NULL)
11586 {
11587 child_die = die->child;
11588 while (child_die && child_die->tag)
11589 {
11590 process_die (child_die, cu);
11591 child_die = sibling_die (child_die);
11592 }
11593 }
11594
11595 /* Decode macro information, if present. Dwarf 2 macro information
11596 refers to information in the line number info statement program
11597 header, so we can only read it if we've read the header
11598 successfully. */
11599 attr = dwarf2_attr (die, DW_AT_macros, cu);
11600 if (attr == NULL)
11601 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11602 if (attr && cu->line_header)
11603 {
11604 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11605 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11606
11607 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11608 }
11609 else
11610 {
11611 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11612 if (attr && cu->line_header)
11613 {
11614 unsigned int macro_offset = DW_UNSND (attr);
11615
11616 dwarf_decode_macros (cu, macro_offset, 0);
11617 }
11618 }
11619 }
11620
11621 void
11622 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11623 {
11624 struct type_unit_group *tu_group;
11625 int first_time;
11626 struct attribute *attr;
11627 unsigned int i;
11628 struct signatured_type *sig_type;
11629
11630 gdb_assert (per_cu->is_debug_types);
11631 sig_type = (struct signatured_type *) per_cu;
11632
11633 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11634
11635 /* If we're using .gdb_index (includes -readnow) then
11636 per_cu->type_unit_group may not have been set up yet. */
11637 if (sig_type->type_unit_group == NULL)
11638 sig_type->type_unit_group = get_type_unit_group (this, attr);
11639 tu_group = sig_type->type_unit_group;
11640
11641 /* If we've already processed this stmt_list there's no real need to
11642 do it again, we could fake it and just recreate the part we need
11643 (file name,index -> symtab mapping). If data shows this optimization
11644 is useful we can do it then. */
11645 first_time = tu_group->compunit_symtab == NULL;
11646
11647 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11648 debug info. */
11649 line_header_up lh;
11650 if (attr != NULL)
11651 {
11652 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11653 lh = dwarf_decode_line_header (line_offset, this);
11654 }
11655 if (lh == NULL)
11656 {
11657 if (first_time)
11658 start_symtab ("", NULL, 0);
11659 else
11660 {
11661 gdb_assert (tu_group->symtabs == NULL);
11662 gdb_assert (m_builder == nullptr);
11663 struct compunit_symtab *cust = tu_group->compunit_symtab;
11664 m_builder.reset (new struct buildsym_compunit
11665 (COMPUNIT_OBJFILE (cust), "",
11666 COMPUNIT_DIRNAME (cust),
11667 compunit_language (cust),
11668 0, cust));
11669 }
11670 return;
11671 }
11672
11673 line_header = lh.release ();
11674 line_header_die_owner = die;
11675
11676 if (first_time)
11677 {
11678 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11679
11680 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11681 still initializing it, and our caller (a few levels up)
11682 process_full_type_unit still needs to know if this is the first
11683 time. */
11684
11685 tu_group->num_symtabs = line_header->file_names.size ();
11686 tu_group->symtabs = XNEWVEC (struct symtab *,
11687 line_header->file_names.size ());
11688
11689 for (i = 0; i < line_header->file_names.size (); ++i)
11690 {
11691 file_entry &fe = line_header->file_names[i];
11692
11693 dwarf2_start_subfile (this, fe.name,
11694 fe.include_dir (line_header));
11695 buildsym_compunit *b = get_builder ();
11696 if (b->get_current_subfile ()->symtab == NULL)
11697 {
11698 /* NOTE: start_subfile will recognize when it's been
11699 passed a file it has already seen. So we can't
11700 assume there's a simple mapping from
11701 cu->line_header->file_names to subfiles, plus
11702 cu->line_header->file_names may contain dups. */
11703 b->get_current_subfile ()->symtab
11704 = allocate_symtab (cust, b->get_current_subfile ()->name);
11705 }
11706
11707 fe.symtab = b->get_current_subfile ()->symtab;
11708 tu_group->symtabs[i] = fe.symtab;
11709 }
11710 }
11711 else
11712 {
11713 gdb_assert (m_builder == nullptr);
11714 struct compunit_symtab *cust = tu_group->compunit_symtab;
11715 m_builder.reset (new struct buildsym_compunit
11716 (COMPUNIT_OBJFILE (cust), "",
11717 COMPUNIT_DIRNAME (cust),
11718 compunit_language (cust),
11719 0, cust));
11720
11721 for (i = 0; i < line_header->file_names.size (); ++i)
11722 {
11723 file_entry &fe = line_header->file_names[i];
11724
11725 fe.symtab = tu_group->symtabs[i];
11726 }
11727 }
11728
11729 /* The main symtab is allocated last. Type units don't have DW_AT_name
11730 so they don't have a "real" (so to speak) symtab anyway.
11731 There is later code that will assign the main symtab to all symbols
11732 that don't have one. We need to handle the case of a symbol with a
11733 missing symtab (DW_AT_decl_file) anyway. */
11734 }
11735
11736 /* Process DW_TAG_type_unit.
11737 For TUs we want to skip the first top level sibling if it's not the
11738 actual type being defined by this TU. In this case the first top
11739 level sibling is there to provide context only. */
11740
11741 static void
11742 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11743 {
11744 struct die_info *child_die;
11745
11746 prepare_one_comp_unit (cu, die, language_minimal);
11747
11748 /* Initialize (or reinitialize) the machinery for building symtabs.
11749 We do this before processing child DIEs, so that the line header table
11750 is available for DW_AT_decl_file. */
11751 cu->setup_type_unit_groups (die);
11752
11753 if (die->child != NULL)
11754 {
11755 child_die = die->child;
11756 while (child_die && child_die->tag)
11757 {
11758 process_die (child_die, cu);
11759 child_die = sibling_die (child_die);
11760 }
11761 }
11762 }
11763 \f
11764 /* DWO/DWP files.
11765
11766 http://gcc.gnu.org/wiki/DebugFission
11767 http://gcc.gnu.org/wiki/DebugFissionDWP
11768
11769 To simplify handling of both DWO files ("object" files with the DWARF info)
11770 and DWP files (a file with the DWOs packaged up into one file), we treat
11771 DWP files as having a collection of virtual DWO files. */
11772
11773 static hashval_t
11774 hash_dwo_file (const void *item)
11775 {
11776 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11777 hashval_t hash;
11778
11779 hash = htab_hash_string (dwo_file->dwo_name);
11780 if (dwo_file->comp_dir != NULL)
11781 hash += htab_hash_string (dwo_file->comp_dir);
11782 return hash;
11783 }
11784
11785 static int
11786 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11787 {
11788 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11789 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11790
11791 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11792 return 0;
11793 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11794 return lhs->comp_dir == rhs->comp_dir;
11795 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11796 }
11797
11798 /* Allocate a hash table for DWO files. */
11799
11800 static htab_t
11801 allocate_dwo_file_hash_table (struct objfile *objfile)
11802 {
11803 return htab_create_alloc_ex (41,
11804 hash_dwo_file,
11805 eq_dwo_file,
11806 NULL,
11807 &objfile->objfile_obstack,
11808 hashtab_obstack_allocate,
11809 dummy_obstack_deallocate);
11810 }
11811
11812 /* Lookup DWO file DWO_NAME. */
11813
11814 static void **
11815 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11816 const char *dwo_name,
11817 const char *comp_dir)
11818 {
11819 struct dwo_file find_entry;
11820 void **slot;
11821
11822 if (dwarf2_per_objfile->dwo_files == NULL)
11823 dwarf2_per_objfile->dwo_files
11824 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11825
11826 memset (&find_entry, 0, sizeof (find_entry));
11827 find_entry.dwo_name = dwo_name;
11828 find_entry.comp_dir = comp_dir;
11829 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11830
11831 return slot;
11832 }
11833
11834 static hashval_t
11835 hash_dwo_unit (const void *item)
11836 {
11837 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11838
11839 /* This drops the top 32 bits of the id, but is ok for a hash. */
11840 return dwo_unit->signature;
11841 }
11842
11843 static int
11844 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11845 {
11846 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11847 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11848
11849 /* The signature is assumed to be unique within the DWO file.
11850 So while object file CU dwo_id's always have the value zero,
11851 that's OK, assuming each object file DWO file has only one CU,
11852 and that's the rule for now. */
11853 return lhs->signature == rhs->signature;
11854 }
11855
11856 /* Allocate a hash table for DWO CUs,TUs.
11857 There is one of these tables for each of CUs,TUs for each DWO file. */
11858
11859 static htab_t
11860 allocate_dwo_unit_table (struct objfile *objfile)
11861 {
11862 /* Start out with a pretty small number.
11863 Generally DWO files contain only one CU and maybe some TUs. */
11864 return htab_create_alloc_ex (3,
11865 hash_dwo_unit,
11866 eq_dwo_unit,
11867 NULL,
11868 &objfile->objfile_obstack,
11869 hashtab_obstack_allocate,
11870 dummy_obstack_deallocate);
11871 }
11872
11873 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11874
11875 struct create_dwo_cu_data
11876 {
11877 struct dwo_file *dwo_file;
11878 struct dwo_unit dwo_unit;
11879 };
11880
11881 /* die_reader_func for create_dwo_cu. */
11882
11883 static void
11884 create_dwo_cu_reader (const struct die_reader_specs *reader,
11885 const gdb_byte *info_ptr,
11886 struct die_info *comp_unit_die,
11887 int has_children,
11888 void *datap)
11889 {
11890 struct dwarf2_cu *cu = reader->cu;
11891 sect_offset sect_off = cu->per_cu->sect_off;
11892 struct dwarf2_section_info *section = cu->per_cu->section;
11893 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11894 struct dwo_file *dwo_file = data->dwo_file;
11895 struct dwo_unit *dwo_unit = &data->dwo_unit;
11896 struct attribute *attr;
11897
11898 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11899 if (attr == NULL)
11900 {
11901 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11902 " its dwo_id [in module %s]"),
11903 sect_offset_str (sect_off), dwo_file->dwo_name);
11904 return;
11905 }
11906
11907 dwo_unit->dwo_file = dwo_file;
11908 dwo_unit->signature = DW_UNSND (attr);
11909 dwo_unit->section = section;
11910 dwo_unit->sect_off = sect_off;
11911 dwo_unit->length = cu->per_cu->length;
11912
11913 if (dwarf_read_debug)
11914 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11915 sect_offset_str (sect_off),
11916 hex_string (dwo_unit->signature));
11917 }
11918
11919 /* Create the dwo_units for the CUs in a DWO_FILE.
11920 Note: This function processes DWO files only, not DWP files. */
11921
11922 static void
11923 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11924 struct dwo_file &dwo_file, dwarf2_section_info &section,
11925 htab_t &cus_htab)
11926 {
11927 struct objfile *objfile = dwarf2_per_objfile->objfile;
11928 const gdb_byte *info_ptr, *end_ptr;
11929
11930 dwarf2_read_section (objfile, &section);
11931 info_ptr = section.buffer;
11932
11933 if (info_ptr == NULL)
11934 return;
11935
11936 if (dwarf_read_debug)
11937 {
11938 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11939 get_section_name (&section),
11940 get_section_file_name (&section));
11941 }
11942
11943 end_ptr = info_ptr + section.size;
11944 while (info_ptr < end_ptr)
11945 {
11946 struct dwarf2_per_cu_data per_cu;
11947 struct create_dwo_cu_data create_dwo_cu_data;
11948 struct dwo_unit *dwo_unit;
11949 void **slot;
11950 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11951
11952 memset (&create_dwo_cu_data.dwo_unit, 0,
11953 sizeof (create_dwo_cu_data.dwo_unit));
11954 memset (&per_cu, 0, sizeof (per_cu));
11955 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11956 per_cu.is_debug_types = 0;
11957 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11958 per_cu.section = &section;
11959 create_dwo_cu_data.dwo_file = &dwo_file;
11960
11961 init_cutu_and_read_dies_no_follow (
11962 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11963 info_ptr += per_cu.length;
11964
11965 // If the unit could not be parsed, skip it.
11966 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11967 continue;
11968
11969 if (cus_htab == NULL)
11970 cus_htab = allocate_dwo_unit_table (objfile);
11971
11972 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11973 *dwo_unit = create_dwo_cu_data.dwo_unit;
11974 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11975 gdb_assert (slot != NULL);
11976 if (*slot != NULL)
11977 {
11978 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11979 sect_offset dup_sect_off = dup_cu->sect_off;
11980
11981 complaint (_("debug cu entry at offset %s is duplicate to"
11982 " the entry at offset %s, signature %s"),
11983 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11984 hex_string (dwo_unit->signature));
11985 }
11986 *slot = (void *)dwo_unit;
11987 }
11988 }
11989
11990 /* DWP file .debug_{cu,tu}_index section format:
11991 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11992
11993 DWP Version 1:
11994
11995 Both index sections have the same format, and serve to map a 64-bit
11996 signature to a set of section numbers. Each section begins with a header,
11997 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11998 indexes, and a pool of 32-bit section numbers. The index sections will be
11999 aligned at 8-byte boundaries in the file.
12000
12001 The index section header consists of:
12002
12003 V, 32 bit version number
12004 -, 32 bits unused
12005 N, 32 bit number of compilation units or type units in the index
12006 M, 32 bit number of slots in the hash table
12007
12008 Numbers are recorded using the byte order of the application binary.
12009
12010 The hash table begins at offset 16 in the section, and consists of an array
12011 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12012 order of the application binary). Unused slots in the hash table are 0.
12013 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12014
12015 The parallel table begins immediately after the hash table
12016 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12017 array of 32-bit indexes (using the byte order of the application binary),
12018 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12019 table contains a 32-bit index into the pool of section numbers. For unused
12020 hash table slots, the corresponding entry in the parallel table will be 0.
12021
12022 The pool of section numbers begins immediately following the hash table
12023 (at offset 16 + 12 * M from the beginning of the section). The pool of
12024 section numbers consists of an array of 32-bit words (using the byte order
12025 of the application binary). Each item in the array is indexed starting
12026 from 0. The hash table entry provides the index of the first section
12027 number in the set. Additional section numbers in the set follow, and the
12028 set is terminated by a 0 entry (section number 0 is not used in ELF).
12029
12030 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12031 section must be the first entry in the set, and the .debug_abbrev.dwo must
12032 be the second entry. Other members of the set may follow in any order.
12033
12034 ---
12035
12036 DWP Version 2:
12037
12038 DWP Version 2 combines all the .debug_info, etc. sections into one,
12039 and the entries in the index tables are now offsets into these sections.
12040 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12041 section.
12042
12043 Index Section Contents:
12044 Header
12045 Hash Table of Signatures dwp_hash_table.hash_table
12046 Parallel Table of Indices dwp_hash_table.unit_table
12047 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12048 Table of Section Sizes dwp_hash_table.v2.sizes
12049
12050 The index section header consists of:
12051
12052 V, 32 bit version number
12053 L, 32 bit number of columns in the table of section offsets
12054 N, 32 bit number of compilation units or type units in the index
12055 M, 32 bit number of slots in the hash table
12056
12057 Numbers are recorded using the byte order of the application binary.
12058
12059 The hash table has the same format as version 1.
12060 The parallel table of indices has the same format as version 1,
12061 except that the entries are origin-1 indices into the table of sections
12062 offsets and the table of section sizes.
12063
12064 The table of offsets begins immediately following the parallel table
12065 (at offset 16 + 12 * M from the beginning of the section). The table is
12066 a two-dimensional array of 32-bit words (using the byte order of the
12067 application binary), with L columns and N+1 rows, in row-major order.
12068 Each row in the array is indexed starting from 0. The first row provides
12069 a key to the remaining rows: each column in this row provides an identifier
12070 for a debug section, and the offsets in the same column of subsequent rows
12071 refer to that section. The section identifiers are:
12072
12073 DW_SECT_INFO 1 .debug_info.dwo
12074 DW_SECT_TYPES 2 .debug_types.dwo
12075 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12076 DW_SECT_LINE 4 .debug_line.dwo
12077 DW_SECT_LOC 5 .debug_loc.dwo
12078 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12079 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12080 DW_SECT_MACRO 8 .debug_macro.dwo
12081
12082 The offsets provided by the CU and TU index sections are the base offsets
12083 for the contributions made by each CU or TU to the corresponding section
12084 in the package file. Each CU and TU header contains an abbrev_offset
12085 field, used to find the abbreviations table for that CU or TU within the
12086 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12087 be interpreted as relative to the base offset given in the index section.
12088 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12089 should be interpreted as relative to the base offset for .debug_line.dwo,
12090 and offsets into other debug sections obtained from DWARF attributes should
12091 also be interpreted as relative to the corresponding base offset.
12092
12093 The table of sizes begins immediately following the table of offsets.
12094 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12095 with L columns and N rows, in row-major order. Each row in the array is
12096 indexed starting from 1 (row 0 is shared by the two tables).
12097
12098 ---
12099
12100 Hash table lookup is handled the same in version 1 and 2:
12101
12102 We assume that N and M will not exceed 2^32 - 1.
12103 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12104
12105 Given a 64-bit compilation unit signature or a type signature S, an entry
12106 in the hash table is located as follows:
12107
12108 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12109 the low-order k bits all set to 1.
12110
12111 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12112
12113 3) If the hash table entry at index H matches the signature, use that
12114 entry. If the hash table entry at index H is unused (all zeroes),
12115 terminate the search: the signature is not present in the table.
12116
12117 4) Let H = (H + H') modulo M. Repeat at Step 3.
12118
12119 Because M > N and H' and M are relatively prime, the search is guaranteed
12120 to stop at an unused slot or find the match. */
12121
12122 /* Create a hash table to map DWO IDs to their CU/TU entry in
12123 .debug_{info,types}.dwo in DWP_FILE.
12124 Returns NULL if there isn't one.
12125 Note: This function processes DWP files only, not DWO files. */
12126
12127 static struct dwp_hash_table *
12128 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12129 struct dwp_file *dwp_file, int is_debug_types)
12130 {
12131 struct objfile *objfile = dwarf2_per_objfile->objfile;
12132 bfd *dbfd = dwp_file->dbfd.get ();
12133 const gdb_byte *index_ptr, *index_end;
12134 struct dwarf2_section_info *index;
12135 uint32_t version, nr_columns, nr_units, nr_slots;
12136 struct dwp_hash_table *htab;
12137
12138 if (is_debug_types)
12139 index = &dwp_file->sections.tu_index;
12140 else
12141 index = &dwp_file->sections.cu_index;
12142
12143 if (dwarf2_section_empty_p (index))
12144 return NULL;
12145 dwarf2_read_section (objfile, index);
12146
12147 index_ptr = index->buffer;
12148 index_end = index_ptr + index->size;
12149
12150 version = read_4_bytes (dbfd, index_ptr);
12151 index_ptr += 4;
12152 if (version == 2)
12153 nr_columns = read_4_bytes (dbfd, index_ptr);
12154 else
12155 nr_columns = 0;
12156 index_ptr += 4;
12157 nr_units = read_4_bytes (dbfd, index_ptr);
12158 index_ptr += 4;
12159 nr_slots = read_4_bytes (dbfd, index_ptr);
12160 index_ptr += 4;
12161
12162 if (version != 1 && version != 2)
12163 {
12164 error (_("Dwarf Error: unsupported DWP file version (%s)"
12165 " [in module %s]"),
12166 pulongest (version), dwp_file->name);
12167 }
12168 if (nr_slots != (nr_slots & -nr_slots))
12169 {
12170 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12171 " is not power of 2 [in module %s]"),
12172 pulongest (nr_slots), dwp_file->name);
12173 }
12174
12175 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12176 htab->version = version;
12177 htab->nr_columns = nr_columns;
12178 htab->nr_units = nr_units;
12179 htab->nr_slots = nr_slots;
12180 htab->hash_table = index_ptr;
12181 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12182
12183 /* Exit early if the table is empty. */
12184 if (nr_slots == 0 || nr_units == 0
12185 || (version == 2 && nr_columns == 0))
12186 {
12187 /* All must be zero. */
12188 if (nr_slots != 0 || nr_units != 0
12189 || (version == 2 && nr_columns != 0))
12190 {
12191 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12192 " all zero [in modules %s]"),
12193 dwp_file->name);
12194 }
12195 return htab;
12196 }
12197
12198 if (version == 1)
12199 {
12200 htab->section_pool.v1.indices =
12201 htab->unit_table + sizeof (uint32_t) * nr_slots;
12202 /* It's harder to decide whether the section is too small in v1.
12203 V1 is deprecated anyway so we punt. */
12204 }
12205 else
12206 {
12207 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12208 int *ids = htab->section_pool.v2.section_ids;
12209 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12210 /* Reverse map for error checking. */
12211 int ids_seen[DW_SECT_MAX + 1];
12212 int i;
12213
12214 if (nr_columns < 2)
12215 {
12216 error (_("Dwarf Error: bad DWP hash table, too few columns"
12217 " in section table [in module %s]"),
12218 dwp_file->name);
12219 }
12220 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12221 {
12222 error (_("Dwarf Error: bad DWP hash table, too many columns"
12223 " in section table [in module %s]"),
12224 dwp_file->name);
12225 }
12226 memset (ids, 255, sizeof_ids);
12227 memset (ids_seen, 255, sizeof (ids_seen));
12228 for (i = 0; i < nr_columns; ++i)
12229 {
12230 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12231
12232 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12233 {
12234 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12235 " in section table [in module %s]"),
12236 id, dwp_file->name);
12237 }
12238 if (ids_seen[id] != -1)
12239 {
12240 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12241 " id %d in section table [in module %s]"),
12242 id, dwp_file->name);
12243 }
12244 ids_seen[id] = i;
12245 ids[i] = id;
12246 }
12247 /* Must have exactly one info or types section. */
12248 if (((ids_seen[DW_SECT_INFO] != -1)
12249 + (ids_seen[DW_SECT_TYPES] != -1))
12250 != 1)
12251 {
12252 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12253 " DWO info/types section [in module %s]"),
12254 dwp_file->name);
12255 }
12256 /* Must have an abbrev section. */
12257 if (ids_seen[DW_SECT_ABBREV] == -1)
12258 {
12259 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12260 " section [in module %s]"),
12261 dwp_file->name);
12262 }
12263 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12264 htab->section_pool.v2.sizes =
12265 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12266 * nr_units * nr_columns);
12267 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12268 * nr_units * nr_columns))
12269 > index_end)
12270 {
12271 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12272 " [in module %s]"),
12273 dwp_file->name);
12274 }
12275 }
12276
12277 return htab;
12278 }
12279
12280 /* Update SECTIONS with the data from SECTP.
12281
12282 This function is like the other "locate" section routines that are
12283 passed to bfd_map_over_sections, but in this context the sections to
12284 read comes from the DWP V1 hash table, not the full ELF section table.
12285
12286 The result is non-zero for success, or zero if an error was found. */
12287
12288 static int
12289 locate_v1_virtual_dwo_sections (asection *sectp,
12290 struct virtual_v1_dwo_sections *sections)
12291 {
12292 const struct dwop_section_names *names = &dwop_section_names;
12293
12294 if (section_is_p (sectp->name, &names->abbrev_dwo))
12295 {
12296 /* There can be only one. */
12297 if (sections->abbrev.s.section != NULL)
12298 return 0;
12299 sections->abbrev.s.section = sectp;
12300 sections->abbrev.size = bfd_get_section_size (sectp);
12301 }
12302 else if (section_is_p (sectp->name, &names->info_dwo)
12303 || section_is_p (sectp->name, &names->types_dwo))
12304 {
12305 /* There can be only one. */
12306 if (sections->info_or_types.s.section != NULL)
12307 return 0;
12308 sections->info_or_types.s.section = sectp;
12309 sections->info_or_types.size = bfd_get_section_size (sectp);
12310 }
12311 else if (section_is_p (sectp->name, &names->line_dwo))
12312 {
12313 /* There can be only one. */
12314 if (sections->line.s.section != NULL)
12315 return 0;
12316 sections->line.s.section = sectp;
12317 sections->line.size = bfd_get_section_size (sectp);
12318 }
12319 else if (section_is_p (sectp->name, &names->loc_dwo))
12320 {
12321 /* There can be only one. */
12322 if (sections->loc.s.section != NULL)
12323 return 0;
12324 sections->loc.s.section = sectp;
12325 sections->loc.size = bfd_get_section_size (sectp);
12326 }
12327 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12328 {
12329 /* There can be only one. */
12330 if (sections->macinfo.s.section != NULL)
12331 return 0;
12332 sections->macinfo.s.section = sectp;
12333 sections->macinfo.size = bfd_get_section_size (sectp);
12334 }
12335 else if (section_is_p (sectp->name, &names->macro_dwo))
12336 {
12337 /* There can be only one. */
12338 if (sections->macro.s.section != NULL)
12339 return 0;
12340 sections->macro.s.section = sectp;
12341 sections->macro.size = bfd_get_section_size (sectp);
12342 }
12343 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12344 {
12345 /* There can be only one. */
12346 if (sections->str_offsets.s.section != NULL)
12347 return 0;
12348 sections->str_offsets.s.section = sectp;
12349 sections->str_offsets.size = bfd_get_section_size (sectp);
12350 }
12351 else
12352 {
12353 /* No other kind of section is valid. */
12354 return 0;
12355 }
12356
12357 return 1;
12358 }
12359
12360 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12361 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12362 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12363 This is for DWP version 1 files. */
12364
12365 static struct dwo_unit *
12366 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12367 struct dwp_file *dwp_file,
12368 uint32_t unit_index,
12369 const char *comp_dir,
12370 ULONGEST signature, int is_debug_types)
12371 {
12372 struct objfile *objfile = dwarf2_per_objfile->objfile;
12373 const struct dwp_hash_table *dwp_htab =
12374 is_debug_types ? dwp_file->tus : dwp_file->cus;
12375 bfd *dbfd = dwp_file->dbfd.get ();
12376 const char *kind = is_debug_types ? "TU" : "CU";
12377 struct dwo_file *dwo_file;
12378 struct dwo_unit *dwo_unit;
12379 struct virtual_v1_dwo_sections sections;
12380 void **dwo_file_slot;
12381 int i;
12382
12383 gdb_assert (dwp_file->version == 1);
12384
12385 if (dwarf_read_debug)
12386 {
12387 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12388 kind,
12389 pulongest (unit_index), hex_string (signature),
12390 dwp_file->name);
12391 }
12392
12393 /* Fetch the sections of this DWO unit.
12394 Put a limit on the number of sections we look for so that bad data
12395 doesn't cause us to loop forever. */
12396
12397 #define MAX_NR_V1_DWO_SECTIONS \
12398 (1 /* .debug_info or .debug_types */ \
12399 + 1 /* .debug_abbrev */ \
12400 + 1 /* .debug_line */ \
12401 + 1 /* .debug_loc */ \
12402 + 1 /* .debug_str_offsets */ \
12403 + 1 /* .debug_macro or .debug_macinfo */ \
12404 + 1 /* trailing zero */)
12405
12406 memset (&sections, 0, sizeof (sections));
12407
12408 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12409 {
12410 asection *sectp;
12411 uint32_t section_nr =
12412 read_4_bytes (dbfd,
12413 dwp_htab->section_pool.v1.indices
12414 + (unit_index + i) * sizeof (uint32_t));
12415
12416 if (section_nr == 0)
12417 break;
12418 if (section_nr >= dwp_file->num_sections)
12419 {
12420 error (_("Dwarf Error: bad DWP hash table, section number too large"
12421 " [in module %s]"),
12422 dwp_file->name);
12423 }
12424
12425 sectp = dwp_file->elf_sections[section_nr];
12426 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12427 {
12428 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12429 " [in module %s]"),
12430 dwp_file->name);
12431 }
12432 }
12433
12434 if (i < 2
12435 || dwarf2_section_empty_p (&sections.info_or_types)
12436 || dwarf2_section_empty_p (&sections.abbrev))
12437 {
12438 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12439 " [in module %s]"),
12440 dwp_file->name);
12441 }
12442 if (i == MAX_NR_V1_DWO_SECTIONS)
12443 {
12444 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12445 " [in module %s]"),
12446 dwp_file->name);
12447 }
12448
12449 /* It's easier for the rest of the code if we fake a struct dwo_file and
12450 have dwo_unit "live" in that. At least for now.
12451
12452 The DWP file can be made up of a random collection of CUs and TUs.
12453 However, for each CU + set of TUs that came from the same original DWO
12454 file, we can combine them back into a virtual DWO file to save space
12455 (fewer struct dwo_file objects to allocate). Remember that for really
12456 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12457
12458 std::string virtual_dwo_name =
12459 string_printf ("virtual-dwo/%d-%d-%d-%d",
12460 get_section_id (&sections.abbrev),
12461 get_section_id (&sections.line),
12462 get_section_id (&sections.loc),
12463 get_section_id (&sections.str_offsets));
12464 /* Can we use an existing virtual DWO file? */
12465 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12466 virtual_dwo_name.c_str (),
12467 comp_dir);
12468 /* Create one if necessary. */
12469 if (*dwo_file_slot == NULL)
12470 {
12471 if (dwarf_read_debug)
12472 {
12473 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12474 virtual_dwo_name.c_str ());
12475 }
12476 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12477 dwo_file->dwo_name
12478 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12479 virtual_dwo_name.c_str (),
12480 virtual_dwo_name.size ());
12481 dwo_file->comp_dir = comp_dir;
12482 dwo_file->sections.abbrev = sections.abbrev;
12483 dwo_file->sections.line = sections.line;
12484 dwo_file->sections.loc = sections.loc;
12485 dwo_file->sections.macinfo = sections.macinfo;
12486 dwo_file->sections.macro = sections.macro;
12487 dwo_file->sections.str_offsets = sections.str_offsets;
12488 /* The "str" section is global to the entire DWP file. */
12489 dwo_file->sections.str = dwp_file->sections.str;
12490 /* The info or types section is assigned below to dwo_unit,
12491 there's no need to record it in dwo_file.
12492 Also, we can't simply record type sections in dwo_file because
12493 we record a pointer into the vector in dwo_unit. As we collect more
12494 types we'll grow the vector and eventually have to reallocate space
12495 for it, invalidating all copies of pointers into the previous
12496 contents. */
12497 *dwo_file_slot = dwo_file;
12498 }
12499 else
12500 {
12501 if (dwarf_read_debug)
12502 {
12503 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12504 virtual_dwo_name.c_str ());
12505 }
12506 dwo_file = (struct dwo_file *) *dwo_file_slot;
12507 }
12508
12509 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12510 dwo_unit->dwo_file = dwo_file;
12511 dwo_unit->signature = signature;
12512 dwo_unit->section =
12513 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12514 *dwo_unit->section = sections.info_or_types;
12515 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12516
12517 return dwo_unit;
12518 }
12519
12520 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12521 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12522 piece within that section used by a TU/CU, return a virtual section
12523 of just that piece. */
12524
12525 static struct dwarf2_section_info
12526 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12527 struct dwarf2_section_info *section,
12528 bfd_size_type offset, bfd_size_type size)
12529 {
12530 struct dwarf2_section_info result;
12531 asection *sectp;
12532
12533 gdb_assert (section != NULL);
12534 gdb_assert (!section->is_virtual);
12535
12536 memset (&result, 0, sizeof (result));
12537 result.s.containing_section = section;
12538 result.is_virtual = 1;
12539
12540 if (size == 0)
12541 return result;
12542
12543 sectp = get_section_bfd_section (section);
12544
12545 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12546 bounds of the real section. This is a pretty-rare event, so just
12547 flag an error (easier) instead of a warning and trying to cope. */
12548 if (sectp == NULL
12549 || offset + size > bfd_get_section_size (sectp))
12550 {
12551 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12552 " in section %s [in module %s]"),
12553 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12554 objfile_name (dwarf2_per_objfile->objfile));
12555 }
12556
12557 result.virtual_offset = offset;
12558 result.size = size;
12559 return result;
12560 }
12561
12562 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12563 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12564 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12565 This is for DWP version 2 files. */
12566
12567 static struct dwo_unit *
12568 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12569 struct dwp_file *dwp_file,
12570 uint32_t unit_index,
12571 const char *comp_dir,
12572 ULONGEST signature, int is_debug_types)
12573 {
12574 struct objfile *objfile = dwarf2_per_objfile->objfile;
12575 const struct dwp_hash_table *dwp_htab =
12576 is_debug_types ? dwp_file->tus : dwp_file->cus;
12577 bfd *dbfd = dwp_file->dbfd.get ();
12578 const char *kind = is_debug_types ? "TU" : "CU";
12579 struct dwo_file *dwo_file;
12580 struct dwo_unit *dwo_unit;
12581 struct virtual_v2_dwo_sections sections;
12582 void **dwo_file_slot;
12583 int i;
12584
12585 gdb_assert (dwp_file->version == 2);
12586
12587 if (dwarf_read_debug)
12588 {
12589 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12590 kind,
12591 pulongest (unit_index), hex_string (signature),
12592 dwp_file->name);
12593 }
12594
12595 /* Fetch the section offsets of this DWO unit. */
12596
12597 memset (&sections, 0, sizeof (sections));
12598
12599 for (i = 0; i < dwp_htab->nr_columns; ++i)
12600 {
12601 uint32_t offset = read_4_bytes (dbfd,
12602 dwp_htab->section_pool.v2.offsets
12603 + (((unit_index - 1) * dwp_htab->nr_columns
12604 + i)
12605 * sizeof (uint32_t)));
12606 uint32_t size = read_4_bytes (dbfd,
12607 dwp_htab->section_pool.v2.sizes
12608 + (((unit_index - 1) * dwp_htab->nr_columns
12609 + i)
12610 * sizeof (uint32_t)));
12611
12612 switch (dwp_htab->section_pool.v2.section_ids[i])
12613 {
12614 case DW_SECT_INFO:
12615 case DW_SECT_TYPES:
12616 sections.info_or_types_offset = offset;
12617 sections.info_or_types_size = size;
12618 break;
12619 case DW_SECT_ABBREV:
12620 sections.abbrev_offset = offset;
12621 sections.abbrev_size = size;
12622 break;
12623 case DW_SECT_LINE:
12624 sections.line_offset = offset;
12625 sections.line_size = size;
12626 break;
12627 case DW_SECT_LOC:
12628 sections.loc_offset = offset;
12629 sections.loc_size = size;
12630 break;
12631 case DW_SECT_STR_OFFSETS:
12632 sections.str_offsets_offset = offset;
12633 sections.str_offsets_size = size;
12634 break;
12635 case DW_SECT_MACINFO:
12636 sections.macinfo_offset = offset;
12637 sections.macinfo_size = size;
12638 break;
12639 case DW_SECT_MACRO:
12640 sections.macro_offset = offset;
12641 sections.macro_size = size;
12642 break;
12643 }
12644 }
12645
12646 /* It's easier for the rest of the code if we fake a struct dwo_file and
12647 have dwo_unit "live" in that. At least for now.
12648
12649 The DWP file can be made up of a random collection of CUs and TUs.
12650 However, for each CU + set of TUs that came from the same original DWO
12651 file, we can combine them back into a virtual DWO file to save space
12652 (fewer struct dwo_file objects to allocate). Remember that for really
12653 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12654
12655 std::string virtual_dwo_name =
12656 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12657 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12658 (long) (sections.line_size ? sections.line_offset : 0),
12659 (long) (sections.loc_size ? sections.loc_offset : 0),
12660 (long) (sections.str_offsets_size
12661 ? sections.str_offsets_offset : 0));
12662 /* Can we use an existing virtual DWO file? */
12663 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12664 virtual_dwo_name.c_str (),
12665 comp_dir);
12666 /* Create one if necessary. */
12667 if (*dwo_file_slot == NULL)
12668 {
12669 if (dwarf_read_debug)
12670 {
12671 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12672 virtual_dwo_name.c_str ());
12673 }
12674 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12675 dwo_file->dwo_name
12676 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12677 virtual_dwo_name.c_str (),
12678 virtual_dwo_name.size ());
12679 dwo_file->comp_dir = comp_dir;
12680 dwo_file->sections.abbrev =
12681 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12682 sections.abbrev_offset, sections.abbrev_size);
12683 dwo_file->sections.line =
12684 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12685 sections.line_offset, sections.line_size);
12686 dwo_file->sections.loc =
12687 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12688 sections.loc_offset, sections.loc_size);
12689 dwo_file->sections.macinfo =
12690 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12691 sections.macinfo_offset, sections.macinfo_size);
12692 dwo_file->sections.macro =
12693 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12694 sections.macro_offset, sections.macro_size);
12695 dwo_file->sections.str_offsets =
12696 create_dwp_v2_section (dwarf2_per_objfile,
12697 &dwp_file->sections.str_offsets,
12698 sections.str_offsets_offset,
12699 sections.str_offsets_size);
12700 /* The "str" section is global to the entire DWP file. */
12701 dwo_file->sections.str = dwp_file->sections.str;
12702 /* The info or types section is assigned below to dwo_unit,
12703 there's no need to record it in dwo_file.
12704 Also, we can't simply record type sections in dwo_file because
12705 we record a pointer into the vector in dwo_unit. As we collect more
12706 types we'll grow the vector and eventually have to reallocate space
12707 for it, invalidating all copies of pointers into the previous
12708 contents. */
12709 *dwo_file_slot = dwo_file;
12710 }
12711 else
12712 {
12713 if (dwarf_read_debug)
12714 {
12715 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12716 virtual_dwo_name.c_str ());
12717 }
12718 dwo_file = (struct dwo_file *) *dwo_file_slot;
12719 }
12720
12721 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12722 dwo_unit->dwo_file = dwo_file;
12723 dwo_unit->signature = signature;
12724 dwo_unit->section =
12725 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12726 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12727 is_debug_types
12728 ? &dwp_file->sections.types
12729 : &dwp_file->sections.info,
12730 sections.info_or_types_offset,
12731 sections.info_or_types_size);
12732 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12733
12734 return dwo_unit;
12735 }
12736
12737 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12738 Returns NULL if the signature isn't found. */
12739
12740 static struct dwo_unit *
12741 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12742 struct dwp_file *dwp_file, const char *comp_dir,
12743 ULONGEST signature, int is_debug_types)
12744 {
12745 const struct dwp_hash_table *dwp_htab =
12746 is_debug_types ? dwp_file->tus : dwp_file->cus;
12747 bfd *dbfd = dwp_file->dbfd.get ();
12748 uint32_t mask = dwp_htab->nr_slots - 1;
12749 uint32_t hash = signature & mask;
12750 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12751 unsigned int i;
12752 void **slot;
12753 struct dwo_unit find_dwo_cu;
12754
12755 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12756 find_dwo_cu.signature = signature;
12757 slot = htab_find_slot (is_debug_types
12758 ? dwp_file->loaded_tus
12759 : dwp_file->loaded_cus,
12760 &find_dwo_cu, INSERT);
12761
12762 if (*slot != NULL)
12763 return (struct dwo_unit *) *slot;
12764
12765 /* Use a for loop so that we don't loop forever on bad debug info. */
12766 for (i = 0; i < dwp_htab->nr_slots; ++i)
12767 {
12768 ULONGEST signature_in_table;
12769
12770 signature_in_table =
12771 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12772 if (signature_in_table == signature)
12773 {
12774 uint32_t unit_index =
12775 read_4_bytes (dbfd,
12776 dwp_htab->unit_table + hash * sizeof (uint32_t));
12777
12778 if (dwp_file->version == 1)
12779 {
12780 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12781 dwp_file, unit_index,
12782 comp_dir, signature,
12783 is_debug_types);
12784 }
12785 else
12786 {
12787 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12788 dwp_file, unit_index,
12789 comp_dir, signature,
12790 is_debug_types);
12791 }
12792 return (struct dwo_unit *) *slot;
12793 }
12794 if (signature_in_table == 0)
12795 return NULL;
12796 hash = (hash + hash2) & mask;
12797 }
12798
12799 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12800 " [in module %s]"),
12801 dwp_file->name);
12802 }
12803
12804 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12805 Open the file specified by FILE_NAME and hand it off to BFD for
12806 preliminary analysis. Return a newly initialized bfd *, which
12807 includes a canonicalized copy of FILE_NAME.
12808 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12809 SEARCH_CWD is true if the current directory is to be searched.
12810 It will be searched before debug-file-directory.
12811 If successful, the file is added to the bfd include table of the
12812 objfile's bfd (see gdb_bfd_record_inclusion).
12813 If unable to find/open the file, return NULL.
12814 NOTE: This function is derived from symfile_bfd_open. */
12815
12816 static gdb_bfd_ref_ptr
12817 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12818 const char *file_name, int is_dwp, int search_cwd)
12819 {
12820 int desc;
12821 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12822 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12823 to debug_file_directory. */
12824 const char *search_path;
12825 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12826
12827 gdb::unique_xmalloc_ptr<char> search_path_holder;
12828 if (search_cwd)
12829 {
12830 if (*debug_file_directory != '\0')
12831 {
12832 search_path_holder.reset (concat (".", dirname_separator_string,
12833 debug_file_directory,
12834 (char *) NULL));
12835 search_path = search_path_holder.get ();
12836 }
12837 else
12838 search_path = ".";
12839 }
12840 else
12841 search_path = debug_file_directory;
12842
12843 openp_flags flags = OPF_RETURN_REALPATH;
12844 if (is_dwp)
12845 flags |= OPF_SEARCH_IN_PATH;
12846
12847 gdb::unique_xmalloc_ptr<char> absolute_name;
12848 desc = openp (search_path, flags, file_name,
12849 O_RDONLY | O_BINARY, &absolute_name);
12850 if (desc < 0)
12851 return NULL;
12852
12853 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12854 gnutarget, desc));
12855 if (sym_bfd == NULL)
12856 return NULL;
12857 bfd_set_cacheable (sym_bfd.get (), 1);
12858
12859 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12860 return NULL;
12861
12862 /* Success. Record the bfd as having been included by the objfile's bfd.
12863 This is important because things like demangled_names_hash lives in the
12864 objfile's per_bfd space and may have references to things like symbol
12865 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12866 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12867
12868 return sym_bfd;
12869 }
12870
12871 /* Try to open DWO file FILE_NAME.
12872 COMP_DIR is the DW_AT_comp_dir attribute.
12873 The result is the bfd handle of the file.
12874 If there is a problem finding or opening the file, return NULL.
12875 Upon success, the canonicalized path of the file is stored in the bfd,
12876 same as symfile_bfd_open. */
12877
12878 static gdb_bfd_ref_ptr
12879 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12880 const char *file_name, const char *comp_dir)
12881 {
12882 if (IS_ABSOLUTE_PATH (file_name))
12883 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12884 0 /*is_dwp*/, 0 /*search_cwd*/);
12885
12886 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12887
12888 if (comp_dir != NULL)
12889 {
12890 char *path_to_try = concat (comp_dir, SLASH_STRING,
12891 file_name, (char *) NULL);
12892
12893 /* NOTE: If comp_dir is a relative path, this will also try the
12894 search path, which seems useful. */
12895 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12896 path_to_try,
12897 0 /*is_dwp*/,
12898 1 /*search_cwd*/));
12899 xfree (path_to_try);
12900 if (abfd != NULL)
12901 return abfd;
12902 }
12903
12904 /* That didn't work, try debug-file-directory, which, despite its name,
12905 is a list of paths. */
12906
12907 if (*debug_file_directory == '\0')
12908 return NULL;
12909
12910 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12911 0 /*is_dwp*/, 1 /*search_cwd*/);
12912 }
12913
12914 /* This function is mapped across the sections and remembers the offset and
12915 size of each of the DWO debugging sections we are interested in. */
12916
12917 static void
12918 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12919 {
12920 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12921 const struct dwop_section_names *names = &dwop_section_names;
12922
12923 if (section_is_p (sectp->name, &names->abbrev_dwo))
12924 {
12925 dwo_sections->abbrev.s.section = sectp;
12926 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12927 }
12928 else if (section_is_p (sectp->name, &names->info_dwo))
12929 {
12930 dwo_sections->info.s.section = sectp;
12931 dwo_sections->info.size = bfd_get_section_size (sectp);
12932 }
12933 else if (section_is_p (sectp->name, &names->line_dwo))
12934 {
12935 dwo_sections->line.s.section = sectp;
12936 dwo_sections->line.size = bfd_get_section_size (sectp);
12937 }
12938 else if (section_is_p (sectp->name, &names->loc_dwo))
12939 {
12940 dwo_sections->loc.s.section = sectp;
12941 dwo_sections->loc.size = bfd_get_section_size (sectp);
12942 }
12943 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12944 {
12945 dwo_sections->macinfo.s.section = sectp;
12946 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12947 }
12948 else if (section_is_p (sectp->name, &names->macro_dwo))
12949 {
12950 dwo_sections->macro.s.section = sectp;
12951 dwo_sections->macro.size = bfd_get_section_size (sectp);
12952 }
12953 else if (section_is_p (sectp->name, &names->str_dwo))
12954 {
12955 dwo_sections->str.s.section = sectp;
12956 dwo_sections->str.size = bfd_get_section_size (sectp);
12957 }
12958 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12959 {
12960 dwo_sections->str_offsets.s.section = sectp;
12961 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12962 }
12963 else if (section_is_p (sectp->name, &names->types_dwo))
12964 {
12965 struct dwarf2_section_info type_section;
12966
12967 memset (&type_section, 0, sizeof (type_section));
12968 type_section.s.section = sectp;
12969 type_section.size = bfd_get_section_size (sectp);
12970 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12971 &type_section);
12972 }
12973 }
12974
12975 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12976 by PER_CU. This is for the non-DWP case.
12977 The result is NULL if DWO_NAME can't be found. */
12978
12979 static struct dwo_file *
12980 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12981 const char *dwo_name, const char *comp_dir)
12982 {
12983 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12984 struct objfile *objfile = dwarf2_per_objfile->objfile;
12985
12986 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12987 if (dbfd == NULL)
12988 {
12989 if (dwarf_read_debug)
12990 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12991 return NULL;
12992 }
12993
12994 /* We use a unique pointer here, despite the obstack allocation,
12995 because a dwo_file needs some cleanup if it is abandoned. */
12996 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12997 struct dwo_file));
12998 dwo_file->dwo_name = dwo_name;
12999 dwo_file->comp_dir = comp_dir;
13000 dwo_file->dbfd = dbfd.release ();
13001
13002 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13003 &dwo_file->sections);
13004
13005 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13006 dwo_file->cus);
13007
13008 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13009 dwo_file->sections.types, dwo_file->tus);
13010
13011 if (dwarf_read_debug)
13012 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13013
13014 return dwo_file.release ();
13015 }
13016
13017 /* This function is mapped across the sections and remembers the offset and
13018 size of each of the DWP debugging sections common to version 1 and 2 that
13019 we are interested in. */
13020
13021 static void
13022 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13023 void *dwp_file_ptr)
13024 {
13025 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13026 const struct dwop_section_names *names = &dwop_section_names;
13027 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13028
13029 /* Record the ELF section number for later lookup: this is what the
13030 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13031 gdb_assert (elf_section_nr < dwp_file->num_sections);
13032 dwp_file->elf_sections[elf_section_nr] = sectp;
13033
13034 /* Look for specific sections that we need. */
13035 if (section_is_p (sectp->name, &names->str_dwo))
13036 {
13037 dwp_file->sections.str.s.section = sectp;
13038 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13039 }
13040 else if (section_is_p (sectp->name, &names->cu_index))
13041 {
13042 dwp_file->sections.cu_index.s.section = sectp;
13043 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13044 }
13045 else if (section_is_p (sectp->name, &names->tu_index))
13046 {
13047 dwp_file->sections.tu_index.s.section = sectp;
13048 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13049 }
13050 }
13051
13052 /* This function is mapped across the sections and remembers the offset and
13053 size of each of the DWP version 2 debugging sections that we are interested
13054 in. This is split into a separate function because we don't know if we
13055 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13056
13057 static void
13058 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13059 {
13060 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13061 const struct dwop_section_names *names = &dwop_section_names;
13062 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13063
13064 /* Record the ELF section number for later lookup: this is what the
13065 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13066 gdb_assert (elf_section_nr < dwp_file->num_sections);
13067 dwp_file->elf_sections[elf_section_nr] = sectp;
13068
13069 /* Look for specific sections that we need. */
13070 if (section_is_p (sectp->name, &names->abbrev_dwo))
13071 {
13072 dwp_file->sections.abbrev.s.section = sectp;
13073 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13074 }
13075 else if (section_is_p (sectp->name, &names->info_dwo))
13076 {
13077 dwp_file->sections.info.s.section = sectp;
13078 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13079 }
13080 else if (section_is_p (sectp->name, &names->line_dwo))
13081 {
13082 dwp_file->sections.line.s.section = sectp;
13083 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13084 }
13085 else if (section_is_p (sectp->name, &names->loc_dwo))
13086 {
13087 dwp_file->sections.loc.s.section = sectp;
13088 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13089 }
13090 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13091 {
13092 dwp_file->sections.macinfo.s.section = sectp;
13093 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13094 }
13095 else if (section_is_p (sectp->name, &names->macro_dwo))
13096 {
13097 dwp_file->sections.macro.s.section = sectp;
13098 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13099 }
13100 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13101 {
13102 dwp_file->sections.str_offsets.s.section = sectp;
13103 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13104 }
13105 else if (section_is_p (sectp->name, &names->types_dwo))
13106 {
13107 dwp_file->sections.types.s.section = sectp;
13108 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13109 }
13110 }
13111
13112 /* Hash function for dwp_file loaded CUs/TUs. */
13113
13114 static hashval_t
13115 hash_dwp_loaded_cutus (const void *item)
13116 {
13117 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13118
13119 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13120 return dwo_unit->signature;
13121 }
13122
13123 /* Equality function for dwp_file loaded CUs/TUs. */
13124
13125 static int
13126 eq_dwp_loaded_cutus (const void *a, const void *b)
13127 {
13128 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13129 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13130
13131 return dua->signature == dub->signature;
13132 }
13133
13134 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13135
13136 static htab_t
13137 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13138 {
13139 return htab_create_alloc_ex (3,
13140 hash_dwp_loaded_cutus,
13141 eq_dwp_loaded_cutus,
13142 NULL,
13143 &objfile->objfile_obstack,
13144 hashtab_obstack_allocate,
13145 dummy_obstack_deallocate);
13146 }
13147
13148 /* Try to open DWP file FILE_NAME.
13149 The result is the bfd handle of the file.
13150 If there is a problem finding or opening the file, return NULL.
13151 Upon success, the canonicalized path of the file is stored in the bfd,
13152 same as symfile_bfd_open. */
13153
13154 static gdb_bfd_ref_ptr
13155 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13156 const char *file_name)
13157 {
13158 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13159 1 /*is_dwp*/,
13160 1 /*search_cwd*/));
13161 if (abfd != NULL)
13162 return abfd;
13163
13164 /* Work around upstream bug 15652.
13165 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13166 [Whether that's a "bug" is debatable, but it is getting in our way.]
13167 We have no real idea where the dwp file is, because gdb's realpath-ing
13168 of the executable's path may have discarded the needed info.
13169 [IWBN if the dwp file name was recorded in the executable, akin to
13170 .gnu_debuglink, but that doesn't exist yet.]
13171 Strip the directory from FILE_NAME and search again. */
13172 if (*debug_file_directory != '\0')
13173 {
13174 /* Don't implicitly search the current directory here.
13175 If the user wants to search "." to handle this case,
13176 it must be added to debug-file-directory. */
13177 return try_open_dwop_file (dwarf2_per_objfile,
13178 lbasename (file_name), 1 /*is_dwp*/,
13179 0 /*search_cwd*/);
13180 }
13181
13182 return NULL;
13183 }
13184
13185 /* Initialize the use of the DWP file for the current objfile.
13186 By convention the name of the DWP file is ${objfile}.dwp.
13187 The result is NULL if it can't be found. */
13188
13189 static std::unique_ptr<struct dwp_file>
13190 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13191 {
13192 struct objfile *objfile = dwarf2_per_objfile->objfile;
13193
13194 /* Try to find first .dwp for the binary file before any symbolic links
13195 resolving. */
13196
13197 /* If the objfile is a debug file, find the name of the real binary
13198 file and get the name of dwp file from there. */
13199 std::string dwp_name;
13200 if (objfile->separate_debug_objfile_backlink != NULL)
13201 {
13202 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13203 const char *backlink_basename = lbasename (backlink->original_name);
13204
13205 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13206 }
13207 else
13208 dwp_name = objfile->original_name;
13209
13210 dwp_name += ".dwp";
13211
13212 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13213 if (dbfd == NULL
13214 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13215 {
13216 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13217 dwp_name = objfile_name (objfile);
13218 dwp_name += ".dwp";
13219 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13220 }
13221
13222 if (dbfd == NULL)
13223 {
13224 if (dwarf_read_debug)
13225 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13226 return std::unique_ptr<dwp_file> ();
13227 }
13228
13229 const char *name = bfd_get_filename (dbfd.get ());
13230 std::unique_ptr<struct dwp_file> dwp_file
13231 (new struct dwp_file (name, std::move (dbfd)));
13232
13233 /* +1: section 0 is unused */
13234 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13235 dwp_file->elf_sections =
13236 OBSTACK_CALLOC (&objfile->objfile_obstack,
13237 dwp_file->num_sections, asection *);
13238
13239 bfd_map_over_sections (dwp_file->dbfd.get (),
13240 dwarf2_locate_common_dwp_sections,
13241 dwp_file.get ());
13242
13243 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13244 0);
13245
13246 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13247 1);
13248
13249 /* The DWP file version is stored in the hash table. Oh well. */
13250 if (dwp_file->cus && dwp_file->tus
13251 && dwp_file->cus->version != dwp_file->tus->version)
13252 {
13253 /* Technically speaking, we should try to limp along, but this is
13254 pretty bizarre. We use pulongest here because that's the established
13255 portability solution (e.g, we cannot use %u for uint32_t). */
13256 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13257 " TU version %s [in DWP file %s]"),
13258 pulongest (dwp_file->cus->version),
13259 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13260 }
13261
13262 if (dwp_file->cus)
13263 dwp_file->version = dwp_file->cus->version;
13264 else if (dwp_file->tus)
13265 dwp_file->version = dwp_file->tus->version;
13266 else
13267 dwp_file->version = 2;
13268
13269 if (dwp_file->version == 2)
13270 bfd_map_over_sections (dwp_file->dbfd.get (),
13271 dwarf2_locate_v2_dwp_sections,
13272 dwp_file.get ());
13273
13274 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13275 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13276
13277 if (dwarf_read_debug)
13278 {
13279 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13280 fprintf_unfiltered (gdb_stdlog,
13281 " %s CUs, %s TUs\n",
13282 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13283 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13284 }
13285
13286 return dwp_file;
13287 }
13288
13289 /* Wrapper around open_and_init_dwp_file, only open it once. */
13290
13291 static struct dwp_file *
13292 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13293 {
13294 if (! dwarf2_per_objfile->dwp_checked)
13295 {
13296 dwarf2_per_objfile->dwp_file
13297 = open_and_init_dwp_file (dwarf2_per_objfile);
13298 dwarf2_per_objfile->dwp_checked = 1;
13299 }
13300 return dwarf2_per_objfile->dwp_file.get ();
13301 }
13302
13303 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13304 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13305 or in the DWP file for the objfile, referenced by THIS_UNIT.
13306 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13307 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13308
13309 This is called, for example, when wanting to read a variable with a
13310 complex location. Therefore we don't want to do file i/o for every call.
13311 Therefore we don't want to look for a DWO file on every call.
13312 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13313 then we check if we've already seen DWO_NAME, and only THEN do we check
13314 for a DWO file.
13315
13316 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13317 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13318
13319 static struct dwo_unit *
13320 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13321 const char *dwo_name, const char *comp_dir,
13322 ULONGEST signature, int is_debug_types)
13323 {
13324 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13325 struct objfile *objfile = dwarf2_per_objfile->objfile;
13326 const char *kind = is_debug_types ? "TU" : "CU";
13327 void **dwo_file_slot;
13328 struct dwo_file *dwo_file;
13329 struct dwp_file *dwp_file;
13330
13331 /* First see if there's a DWP file.
13332 If we have a DWP file but didn't find the DWO inside it, don't
13333 look for the original DWO file. It makes gdb behave differently
13334 depending on whether one is debugging in the build tree. */
13335
13336 dwp_file = get_dwp_file (dwarf2_per_objfile);
13337 if (dwp_file != NULL)
13338 {
13339 const struct dwp_hash_table *dwp_htab =
13340 is_debug_types ? dwp_file->tus : dwp_file->cus;
13341
13342 if (dwp_htab != NULL)
13343 {
13344 struct dwo_unit *dwo_cutu =
13345 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13346 signature, is_debug_types);
13347
13348 if (dwo_cutu != NULL)
13349 {
13350 if (dwarf_read_debug)
13351 {
13352 fprintf_unfiltered (gdb_stdlog,
13353 "Virtual DWO %s %s found: @%s\n",
13354 kind, hex_string (signature),
13355 host_address_to_string (dwo_cutu));
13356 }
13357 return dwo_cutu;
13358 }
13359 }
13360 }
13361 else
13362 {
13363 /* No DWP file, look for the DWO file. */
13364
13365 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13366 dwo_name, comp_dir);
13367 if (*dwo_file_slot == NULL)
13368 {
13369 /* Read in the file and build a table of the CUs/TUs it contains. */
13370 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13371 }
13372 /* NOTE: This will be NULL if unable to open the file. */
13373 dwo_file = (struct dwo_file *) *dwo_file_slot;
13374
13375 if (dwo_file != NULL)
13376 {
13377 struct dwo_unit *dwo_cutu = NULL;
13378
13379 if (is_debug_types && dwo_file->tus)
13380 {
13381 struct dwo_unit find_dwo_cutu;
13382
13383 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13384 find_dwo_cutu.signature = signature;
13385 dwo_cutu
13386 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13387 }
13388 else if (!is_debug_types && dwo_file->cus)
13389 {
13390 struct dwo_unit find_dwo_cutu;
13391
13392 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13393 find_dwo_cutu.signature = signature;
13394 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13395 &find_dwo_cutu);
13396 }
13397
13398 if (dwo_cutu != NULL)
13399 {
13400 if (dwarf_read_debug)
13401 {
13402 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13403 kind, dwo_name, hex_string (signature),
13404 host_address_to_string (dwo_cutu));
13405 }
13406 return dwo_cutu;
13407 }
13408 }
13409 }
13410
13411 /* We didn't find it. This could mean a dwo_id mismatch, or
13412 someone deleted the DWO/DWP file, or the search path isn't set up
13413 correctly to find the file. */
13414
13415 if (dwarf_read_debug)
13416 {
13417 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13418 kind, dwo_name, hex_string (signature));
13419 }
13420
13421 /* This is a warning and not a complaint because it can be caused by
13422 pilot error (e.g., user accidentally deleting the DWO). */
13423 {
13424 /* Print the name of the DWP file if we looked there, helps the user
13425 better diagnose the problem. */
13426 std::string dwp_text;
13427
13428 if (dwp_file != NULL)
13429 dwp_text = string_printf (" [in DWP file %s]",
13430 lbasename (dwp_file->name));
13431
13432 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13433 " [in module %s]"),
13434 kind, dwo_name, hex_string (signature),
13435 dwp_text.c_str (),
13436 this_unit->is_debug_types ? "TU" : "CU",
13437 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13438 }
13439 return NULL;
13440 }
13441
13442 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13443 See lookup_dwo_cutu_unit for details. */
13444
13445 static struct dwo_unit *
13446 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13447 const char *dwo_name, const char *comp_dir,
13448 ULONGEST signature)
13449 {
13450 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13451 }
13452
13453 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13454 See lookup_dwo_cutu_unit for details. */
13455
13456 static struct dwo_unit *
13457 lookup_dwo_type_unit (struct signatured_type *this_tu,
13458 const char *dwo_name, const char *comp_dir)
13459 {
13460 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13461 }
13462
13463 /* Traversal function for queue_and_load_all_dwo_tus. */
13464
13465 static int
13466 queue_and_load_dwo_tu (void **slot, void *info)
13467 {
13468 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13469 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13470 ULONGEST signature = dwo_unit->signature;
13471 struct signatured_type *sig_type =
13472 lookup_dwo_signatured_type (per_cu->cu, signature);
13473
13474 if (sig_type != NULL)
13475 {
13476 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13477
13478 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13479 a real dependency of PER_CU on SIG_TYPE. That is detected later
13480 while processing PER_CU. */
13481 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13482 load_full_type_unit (sig_cu);
13483 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13484 }
13485
13486 return 1;
13487 }
13488
13489 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13490 The DWO may have the only definition of the type, though it may not be
13491 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13492 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13493
13494 static void
13495 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13496 {
13497 struct dwo_unit *dwo_unit;
13498 struct dwo_file *dwo_file;
13499
13500 gdb_assert (!per_cu->is_debug_types);
13501 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13502 gdb_assert (per_cu->cu != NULL);
13503
13504 dwo_unit = per_cu->cu->dwo_unit;
13505 gdb_assert (dwo_unit != NULL);
13506
13507 dwo_file = dwo_unit->dwo_file;
13508 if (dwo_file->tus != NULL)
13509 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13510 }
13511
13512 /* Free all resources associated with DWO_FILE.
13513 Close the DWO file and munmap the sections. */
13514
13515 static void
13516 free_dwo_file (struct dwo_file *dwo_file)
13517 {
13518 /* Note: dbfd is NULL for virtual DWO files. */
13519 gdb_bfd_unref (dwo_file->dbfd);
13520
13521 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13522 }
13523
13524 /* Traversal function for free_dwo_files. */
13525
13526 static int
13527 free_dwo_file_from_slot (void **slot, void *info)
13528 {
13529 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13530
13531 free_dwo_file (dwo_file);
13532
13533 return 1;
13534 }
13535
13536 /* Free all resources associated with DWO_FILES. */
13537
13538 static void
13539 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13540 {
13541 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13542 }
13543 \f
13544 /* Read in various DIEs. */
13545
13546 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13547 Inherit only the children of the DW_AT_abstract_origin DIE not being
13548 already referenced by DW_AT_abstract_origin from the children of the
13549 current DIE. */
13550
13551 static void
13552 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13553 {
13554 struct die_info *child_die;
13555 sect_offset *offsetp;
13556 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13557 struct die_info *origin_die;
13558 /* Iterator of the ORIGIN_DIE children. */
13559 struct die_info *origin_child_die;
13560 struct attribute *attr;
13561 struct dwarf2_cu *origin_cu;
13562 struct pending **origin_previous_list_in_scope;
13563
13564 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13565 if (!attr)
13566 return;
13567
13568 /* Note that following die references may follow to a die in a
13569 different cu. */
13570
13571 origin_cu = cu;
13572 origin_die = follow_die_ref (die, attr, &origin_cu);
13573
13574 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13575 symbols in. */
13576 origin_previous_list_in_scope = origin_cu->list_in_scope;
13577 origin_cu->list_in_scope = cu->list_in_scope;
13578
13579 if (die->tag != origin_die->tag
13580 && !(die->tag == DW_TAG_inlined_subroutine
13581 && origin_die->tag == DW_TAG_subprogram))
13582 complaint (_("DIE %s and its abstract origin %s have different tags"),
13583 sect_offset_str (die->sect_off),
13584 sect_offset_str (origin_die->sect_off));
13585
13586 std::vector<sect_offset> offsets;
13587
13588 for (child_die = die->child;
13589 child_die && child_die->tag;
13590 child_die = sibling_die (child_die))
13591 {
13592 struct die_info *child_origin_die;
13593 struct dwarf2_cu *child_origin_cu;
13594
13595 /* We are trying to process concrete instance entries:
13596 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13597 it's not relevant to our analysis here. i.e. detecting DIEs that are
13598 present in the abstract instance but not referenced in the concrete
13599 one. */
13600 if (child_die->tag == DW_TAG_call_site
13601 || child_die->tag == DW_TAG_GNU_call_site)
13602 continue;
13603
13604 /* For each CHILD_DIE, find the corresponding child of
13605 ORIGIN_DIE. If there is more than one layer of
13606 DW_AT_abstract_origin, follow them all; there shouldn't be,
13607 but GCC versions at least through 4.4 generate this (GCC PR
13608 40573). */
13609 child_origin_die = child_die;
13610 child_origin_cu = cu;
13611 while (1)
13612 {
13613 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13614 child_origin_cu);
13615 if (attr == NULL)
13616 break;
13617 child_origin_die = follow_die_ref (child_origin_die, attr,
13618 &child_origin_cu);
13619 }
13620
13621 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13622 counterpart may exist. */
13623 if (child_origin_die != child_die)
13624 {
13625 if (child_die->tag != child_origin_die->tag
13626 && !(child_die->tag == DW_TAG_inlined_subroutine
13627 && child_origin_die->tag == DW_TAG_subprogram))
13628 complaint (_("Child DIE %s and its abstract origin %s have "
13629 "different tags"),
13630 sect_offset_str (child_die->sect_off),
13631 sect_offset_str (child_origin_die->sect_off));
13632 if (child_origin_die->parent != origin_die)
13633 complaint (_("Child DIE %s and its abstract origin %s have "
13634 "different parents"),
13635 sect_offset_str (child_die->sect_off),
13636 sect_offset_str (child_origin_die->sect_off));
13637 else
13638 offsets.push_back (child_origin_die->sect_off);
13639 }
13640 }
13641 std::sort (offsets.begin (), offsets.end ());
13642 sect_offset *offsets_end = offsets.data () + offsets.size ();
13643 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13644 if (offsetp[-1] == *offsetp)
13645 complaint (_("Multiple children of DIE %s refer "
13646 "to DIE %s as their abstract origin"),
13647 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13648
13649 offsetp = offsets.data ();
13650 origin_child_die = origin_die->child;
13651 while (origin_child_die && origin_child_die->tag)
13652 {
13653 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13654 while (offsetp < offsets_end
13655 && *offsetp < origin_child_die->sect_off)
13656 offsetp++;
13657 if (offsetp >= offsets_end
13658 || *offsetp > origin_child_die->sect_off)
13659 {
13660 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13661 Check whether we're already processing ORIGIN_CHILD_DIE.
13662 This can happen with mutually referenced abstract_origins.
13663 PR 16581. */
13664 if (!origin_child_die->in_process)
13665 process_die (origin_child_die, origin_cu);
13666 }
13667 origin_child_die = sibling_die (origin_child_die);
13668 }
13669 origin_cu->list_in_scope = origin_previous_list_in_scope;
13670 }
13671
13672 static void
13673 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13674 {
13675 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13676 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13677 struct context_stack *newobj;
13678 CORE_ADDR lowpc;
13679 CORE_ADDR highpc;
13680 struct die_info *child_die;
13681 struct attribute *attr, *call_line, *call_file;
13682 const char *name;
13683 CORE_ADDR baseaddr;
13684 struct block *block;
13685 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13686 std::vector<struct symbol *> template_args;
13687 struct template_symbol *templ_func = NULL;
13688
13689 if (inlined_func)
13690 {
13691 /* If we do not have call site information, we can't show the
13692 caller of this inlined function. That's too confusing, so
13693 only use the scope for local variables. */
13694 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13695 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13696 if (call_line == NULL || call_file == NULL)
13697 {
13698 read_lexical_block_scope (die, cu);
13699 return;
13700 }
13701 }
13702
13703 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13704
13705 name = dwarf2_name (die, cu);
13706
13707 /* Ignore functions with missing or empty names. These are actually
13708 illegal according to the DWARF standard. */
13709 if (name == NULL)
13710 {
13711 complaint (_("missing name for subprogram DIE at %s"),
13712 sect_offset_str (die->sect_off));
13713 return;
13714 }
13715
13716 /* Ignore functions with missing or invalid low and high pc attributes. */
13717 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13718 <= PC_BOUNDS_INVALID)
13719 {
13720 attr = dwarf2_attr (die, DW_AT_external, cu);
13721 if (!attr || !DW_UNSND (attr))
13722 complaint (_("cannot get low and high bounds "
13723 "for subprogram DIE at %s"),
13724 sect_offset_str (die->sect_off));
13725 return;
13726 }
13727
13728 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13729 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13730
13731 /* If we have any template arguments, then we must allocate a
13732 different sort of symbol. */
13733 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13734 {
13735 if (child_die->tag == DW_TAG_template_type_param
13736 || child_die->tag == DW_TAG_template_value_param)
13737 {
13738 templ_func = allocate_template_symbol (objfile);
13739 templ_func->subclass = SYMBOL_TEMPLATE;
13740 break;
13741 }
13742 }
13743
13744 newobj = cu->get_builder ()->push_context (0, lowpc);
13745 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13746 (struct symbol *) templ_func);
13747
13748 /* If there is a location expression for DW_AT_frame_base, record
13749 it. */
13750 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13751 if (attr)
13752 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13753
13754 /* If there is a location for the static link, record it. */
13755 newobj->static_link = NULL;
13756 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13757 if (attr)
13758 {
13759 newobj->static_link
13760 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13761 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13762 }
13763
13764 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13765
13766 if (die->child != NULL)
13767 {
13768 child_die = die->child;
13769 while (child_die && child_die->tag)
13770 {
13771 if (child_die->tag == DW_TAG_template_type_param
13772 || child_die->tag == DW_TAG_template_value_param)
13773 {
13774 struct symbol *arg = new_symbol (child_die, NULL, cu);
13775
13776 if (arg != NULL)
13777 template_args.push_back (arg);
13778 }
13779 else
13780 process_die (child_die, cu);
13781 child_die = sibling_die (child_die);
13782 }
13783 }
13784
13785 inherit_abstract_dies (die, cu);
13786
13787 /* If we have a DW_AT_specification, we might need to import using
13788 directives from the context of the specification DIE. See the
13789 comment in determine_prefix. */
13790 if (cu->language == language_cplus
13791 && dwarf2_attr (die, DW_AT_specification, cu))
13792 {
13793 struct dwarf2_cu *spec_cu = cu;
13794 struct die_info *spec_die = die_specification (die, &spec_cu);
13795
13796 while (spec_die)
13797 {
13798 child_die = spec_die->child;
13799 while (child_die && child_die->tag)
13800 {
13801 if (child_die->tag == DW_TAG_imported_module)
13802 process_die (child_die, spec_cu);
13803 child_die = sibling_die (child_die);
13804 }
13805
13806 /* In some cases, GCC generates specification DIEs that
13807 themselves contain DW_AT_specification attributes. */
13808 spec_die = die_specification (spec_die, &spec_cu);
13809 }
13810 }
13811
13812 struct context_stack cstk = cu->get_builder ()->pop_context ();
13813 /* Make a block for the local symbols within. */
13814 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13815 cstk.static_link, lowpc, highpc);
13816
13817 /* For C++, set the block's scope. */
13818 if ((cu->language == language_cplus
13819 || cu->language == language_fortran
13820 || cu->language == language_d
13821 || cu->language == language_rust)
13822 && cu->processing_has_namespace_info)
13823 block_set_scope (block, determine_prefix (die, cu),
13824 &objfile->objfile_obstack);
13825
13826 /* If we have address ranges, record them. */
13827 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13828
13829 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13830
13831 /* Attach template arguments to function. */
13832 if (!template_args.empty ())
13833 {
13834 gdb_assert (templ_func != NULL);
13835
13836 templ_func->n_template_arguments = template_args.size ();
13837 templ_func->template_arguments
13838 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13839 templ_func->n_template_arguments);
13840 memcpy (templ_func->template_arguments,
13841 template_args.data (),
13842 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13843
13844 /* Make sure that the symtab is set on the new symbols. Even
13845 though they don't appear in this symtab directly, other parts
13846 of gdb assume that symbols do, and this is reasonably
13847 true. */
13848 for (symbol *sym : template_args)
13849 symbol_set_symtab (sym, symbol_symtab (templ_func));
13850 }
13851
13852 /* In C++, we can have functions nested inside functions (e.g., when
13853 a function declares a class that has methods). This means that
13854 when we finish processing a function scope, we may need to go
13855 back to building a containing block's symbol lists. */
13856 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13857 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13858
13859 /* If we've finished processing a top-level function, subsequent
13860 symbols go in the file symbol list. */
13861 if (cu->get_builder ()->outermost_context_p ())
13862 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13863 }
13864
13865 /* Process all the DIES contained within a lexical block scope. Start
13866 a new scope, process the dies, and then close the scope. */
13867
13868 static void
13869 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13870 {
13871 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13872 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13873 CORE_ADDR lowpc, highpc;
13874 struct die_info *child_die;
13875 CORE_ADDR baseaddr;
13876
13877 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13878
13879 /* Ignore blocks with missing or invalid low and high pc attributes. */
13880 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13881 as multiple lexical blocks? Handling children in a sane way would
13882 be nasty. Might be easier to properly extend generic blocks to
13883 describe ranges. */
13884 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13885 {
13886 case PC_BOUNDS_NOT_PRESENT:
13887 /* DW_TAG_lexical_block has no attributes, process its children as if
13888 there was no wrapping by that DW_TAG_lexical_block.
13889 GCC does no longer produces such DWARF since GCC r224161. */
13890 for (child_die = die->child;
13891 child_die != NULL && child_die->tag;
13892 child_die = sibling_die (child_die))
13893 process_die (child_die, cu);
13894 return;
13895 case PC_BOUNDS_INVALID:
13896 return;
13897 }
13898 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13899 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13900
13901 cu->get_builder ()->push_context (0, lowpc);
13902 if (die->child != NULL)
13903 {
13904 child_die = die->child;
13905 while (child_die && child_die->tag)
13906 {
13907 process_die (child_die, cu);
13908 child_die = sibling_die (child_die);
13909 }
13910 }
13911 inherit_abstract_dies (die, cu);
13912 struct context_stack cstk = cu->get_builder ()->pop_context ();
13913
13914 if (*cu->get_builder ()->get_local_symbols () != NULL
13915 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13916 {
13917 struct block *block
13918 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13919 cstk.start_addr, highpc);
13920
13921 /* Note that recording ranges after traversing children, as we
13922 do here, means that recording a parent's ranges entails
13923 walking across all its children's ranges as they appear in
13924 the address map, which is quadratic behavior.
13925
13926 It would be nicer to record the parent's ranges before
13927 traversing its children, simply overriding whatever you find
13928 there. But since we don't even decide whether to create a
13929 block until after we've traversed its children, that's hard
13930 to do. */
13931 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13932 }
13933 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13934 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13935 }
13936
13937 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13938
13939 static void
13940 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13941 {
13942 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13943 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13944 CORE_ADDR pc, baseaddr;
13945 struct attribute *attr;
13946 struct call_site *call_site, call_site_local;
13947 void **slot;
13948 int nparams;
13949 struct die_info *child_die;
13950
13951 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13952
13953 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13954 if (attr == NULL)
13955 {
13956 /* This was a pre-DWARF-5 GNU extension alias
13957 for DW_AT_call_return_pc. */
13958 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13959 }
13960 if (!attr)
13961 {
13962 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13963 "DIE %s [in module %s]"),
13964 sect_offset_str (die->sect_off), objfile_name (objfile));
13965 return;
13966 }
13967 pc = attr_value_as_address (attr) + baseaddr;
13968 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13969
13970 if (cu->call_site_htab == NULL)
13971 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13972 NULL, &objfile->objfile_obstack,
13973 hashtab_obstack_allocate, NULL);
13974 call_site_local.pc = pc;
13975 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13976 if (*slot != NULL)
13977 {
13978 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13979 "DIE %s [in module %s]"),
13980 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13981 objfile_name (objfile));
13982 return;
13983 }
13984
13985 /* Count parameters at the caller. */
13986
13987 nparams = 0;
13988 for (child_die = die->child; child_die && child_die->tag;
13989 child_die = sibling_die (child_die))
13990 {
13991 if (child_die->tag != DW_TAG_call_site_parameter
13992 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13993 {
13994 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13995 "DW_TAG_call_site child DIE %s [in module %s]"),
13996 child_die->tag, sect_offset_str (child_die->sect_off),
13997 objfile_name (objfile));
13998 continue;
13999 }
14000
14001 nparams++;
14002 }
14003
14004 call_site
14005 = ((struct call_site *)
14006 obstack_alloc (&objfile->objfile_obstack,
14007 sizeof (*call_site)
14008 + (sizeof (*call_site->parameter) * (nparams - 1))));
14009 *slot = call_site;
14010 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14011 call_site->pc = pc;
14012
14013 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14014 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14015 {
14016 struct die_info *func_die;
14017
14018 /* Skip also over DW_TAG_inlined_subroutine. */
14019 for (func_die = die->parent;
14020 func_die && func_die->tag != DW_TAG_subprogram
14021 && func_die->tag != DW_TAG_subroutine_type;
14022 func_die = func_die->parent);
14023
14024 /* DW_AT_call_all_calls is a superset
14025 of DW_AT_call_all_tail_calls. */
14026 if (func_die
14027 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14028 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14029 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14030 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14031 {
14032 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14033 not complete. But keep CALL_SITE for look ups via call_site_htab,
14034 both the initial caller containing the real return address PC and
14035 the final callee containing the current PC of a chain of tail
14036 calls do not need to have the tail call list complete. But any
14037 function candidate for a virtual tail call frame searched via
14038 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14039 determined unambiguously. */
14040 }
14041 else
14042 {
14043 struct type *func_type = NULL;
14044
14045 if (func_die)
14046 func_type = get_die_type (func_die, cu);
14047 if (func_type != NULL)
14048 {
14049 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14050
14051 /* Enlist this call site to the function. */
14052 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14053 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14054 }
14055 else
14056 complaint (_("Cannot find function owning DW_TAG_call_site "
14057 "DIE %s [in module %s]"),
14058 sect_offset_str (die->sect_off), objfile_name (objfile));
14059 }
14060 }
14061
14062 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14063 if (attr == NULL)
14064 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14065 if (attr == NULL)
14066 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14067 if (attr == NULL)
14068 {
14069 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14070 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14071 }
14072 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14073 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14074 /* Keep NULL DWARF_BLOCK. */;
14075 else if (attr_form_is_block (attr))
14076 {
14077 struct dwarf2_locexpr_baton *dlbaton;
14078
14079 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14080 dlbaton->data = DW_BLOCK (attr)->data;
14081 dlbaton->size = DW_BLOCK (attr)->size;
14082 dlbaton->per_cu = cu->per_cu;
14083
14084 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14085 }
14086 else if (attr_form_is_ref (attr))
14087 {
14088 struct dwarf2_cu *target_cu = cu;
14089 struct die_info *target_die;
14090
14091 target_die = follow_die_ref (die, attr, &target_cu);
14092 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14093 if (die_is_declaration (target_die, target_cu))
14094 {
14095 const char *target_physname;
14096
14097 /* Prefer the mangled name; otherwise compute the demangled one. */
14098 target_physname = dw2_linkage_name (target_die, target_cu);
14099 if (target_physname == NULL)
14100 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14101 if (target_physname == NULL)
14102 complaint (_("DW_AT_call_target target DIE has invalid "
14103 "physname, for referencing DIE %s [in module %s]"),
14104 sect_offset_str (die->sect_off), objfile_name (objfile));
14105 else
14106 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14107 }
14108 else
14109 {
14110 CORE_ADDR lowpc;
14111
14112 /* DW_AT_entry_pc should be preferred. */
14113 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14114 <= PC_BOUNDS_INVALID)
14115 complaint (_("DW_AT_call_target target DIE has invalid "
14116 "low pc, for referencing DIE %s [in module %s]"),
14117 sect_offset_str (die->sect_off), objfile_name (objfile));
14118 else
14119 {
14120 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14121 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14122 }
14123 }
14124 }
14125 else
14126 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14127 "block nor reference, for DIE %s [in module %s]"),
14128 sect_offset_str (die->sect_off), objfile_name (objfile));
14129
14130 call_site->per_cu = cu->per_cu;
14131
14132 for (child_die = die->child;
14133 child_die && child_die->tag;
14134 child_die = sibling_die (child_die))
14135 {
14136 struct call_site_parameter *parameter;
14137 struct attribute *loc, *origin;
14138
14139 if (child_die->tag != DW_TAG_call_site_parameter
14140 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14141 {
14142 /* Already printed the complaint above. */
14143 continue;
14144 }
14145
14146 gdb_assert (call_site->parameter_count < nparams);
14147 parameter = &call_site->parameter[call_site->parameter_count];
14148
14149 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14150 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14151 register is contained in DW_AT_call_value. */
14152
14153 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14154 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14155 if (origin == NULL)
14156 {
14157 /* This was a pre-DWARF-5 GNU extension alias
14158 for DW_AT_call_parameter. */
14159 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14160 }
14161 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14162 {
14163 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14164
14165 sect_offset sect_off
14166 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14167 if (!offset_in_cu_p (&cu->header, sect_off))
14168 {
14169 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14170 binding can be done only inside one CU. Such referenced DIE
14171 therefore cannot be even moved to DW_TAG_partial_unit. */
14172 complaint (_("DW_AT_call_parameter offset is not in CU for "
14173 "DW_TAG_call_site child DIE %s [in module %s]"),
14174 sect_offset_str (child_die->sect_off),
14175 objfile_name (objfile));
14176 continue;
14177 }
14178 parameter->u.param_cu_off
14179 = (cu_offset) (sect_off - cu->header.sect_off);
14180 }
14181 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14182 {
14183 complaint (_("No DW_FORM_block* DW_AT_location for "
14184 "DW_TAG_call_site child DIE %s [in module %s]"),
14185 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14186 continue;
14187 }
14188 else
14189 {
14190 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14191 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14192 if (parameter->u.dwarf_reg != -1)
14193 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14194 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14195 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14196 &parameter->u.fb_offset))
14197 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14198 else
14199 {
14200 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14201 "for DW_FORM_block* DW_AT_location is supported for "
14202 "DW_TAG_call_site child DIE %s "
14203 "[in module %s]"),
14204 sect_offset_str (child_die->sect_off),
14205 objfile_name (objfile));
14206 continue;
14207 }
14208 }
14209
14210 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14211 if (attr == NULL)
14212 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14213 if (!attr_form_is_block (attr))
14214 {
14215 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14216 "DW_TAG_call_site child DIE %s [in module %s]"),
14217 sect_offset_str (child_die->sect_off),
14218 objfile_name (objfile));
14219 continue;
14220 }
14221 parameter->value = DW_BLOCK (attr)->data;
14222 parameter->value_size = DW_BLOCK (attr)->size;
14223
14224 /* Parameters are not pre-cleared by memset above. */
14225 parameter->data_value = NULL;
14226 parameter->data_value_size = 0;
14227 call_site->parameter_count++;
14228
14229 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14230 if (attr == NULL)
14231 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14232 if (attr)
14233 {
14234 if (!attr_form_is_block (attr))
14235 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14236 "DW_TAG_call_site child DIE %s [in module %s]"),
14237 sect_offset_str (child_die->sect_off),
14238 objfile_name (objfile));
14239 else
14240 {
14241 parameter->data_value = DW_BLOCK (attr)->data;
14242 parameter->data_value_size = DW_BLOCK (attr)->size;
14243 }
14244 }
14245 }
14246 }
14247
14248 /* Helper function for read_variable. If DIE represents a virtual
14249 table, then return the type of the concrete object that is
14250 associated with the virtual table. Otherwise, return NULL. */
14251
14252 static struct type *
14253 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14254 {
14255 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14256 if (attr == NULL)
14257 return NULL;
14258
14259 /* Find the type DIE. */
14260 struct die_info *type_die = NULL;
14261 struct dwarf2_cu *type_cu = cu;
14262
14263 if (attr_form_is_ref (attr))
14264 type_die = follow_die_ref (die, attr, &type_cu);
14265 if (type_die == NULL)
14266 return NULL;
14267
14268 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14269 return NULL;
14270 return die_containing_type (type_die, type_cu);
14271 }
14272
14273 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14274
14275 static void
14276 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14277 {
14278 struct rust_vtable_symbol *storage = NULL;
14279
14280 if (cu->language == language_rust)
14281 {
14282 struct type *containing_type = rust_containing_type (die, cu);
14283
14284 if (containing_type != NULL)
14285 {
14286 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14287
14288 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14289 struct rust_vtable_symbol);
14290 initialize_objfile_symbol (storage);
14291 storage->concrete_type = containing_type;
14292 storage->subclass = SYMBOL_RUST_VTABLE;
14293 }
14294 }
14295
14296 struct symbol *res = new_symbol (die, NULL, cu, storage);
14297 struct attribute *abstract_origin
14298 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14299 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14300 if (res == NULL && loc && abstract_origin)
14301 {
14302 /* We have a variable without a name, but with a location and an abstract
14303 origin. This may be a concrete instance of an abstract variable
14304 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14305 later. */
14306 struct dwarf2_cu *origin_cu = cu;
14307 struct die_info *origin_die
14308 = follow_die_ref (die, abstract_origin, &origin_cu);
14309 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14310 dpo->abstract_to_concrete[origin_die].push_back (die);
14311 }
14312 }
14313
14314 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14315 reading .debug_rnglists.
14316 Callback's type should be:
14317 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14318 Return true if the attributes are present and valid, otherwise,
14319 return false. */
14320
14321 template <typename Callback>
14322 static bool
14323 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14324 Callback &&callback)
14325 {
14326 struct dwarf2_per_objfile *dwarf2_per_objfile
14327 = cu->per_cu->dwarf2_per_objfile;
14328 struct objfile *objfile = dwarf2_per_objfile->objfile;
14329 bfd *obfd = objfile->obfd;
14330 /* Base address selection entry. */
14331 CORE_ADDR base;
14332 int found_base;
14333 const gdb_byte *buffer;
14334 CORE_ADDR baseaddr;
14335 bool overflow = false;
14336
14337 found_base = cu->base_known;
14338 base = cu->base_address;
14339
14340 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14341 if (offset >= dwarf2_per_objfile->rnglists.size)
14342 {
14343 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14344 offset);
14345 return false;
14346 }
14347 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14348
14349 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14350
14351 while (1)
14352 {
14353 /* Initialize it due to a false compiler warning. */
14354 CORE_ADDR range_beginning = 0, range_end = 0;
14355 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14356 + dwarf2_per_objfile->rnglists.size);
14357 unsigned int bytes_read;
14358
14359 if (buffer == buf_end)
14360 {
14361 overflow = true;
14362 break;
14363 }
14364 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14365 switch (rlet)
14366 {
14367 case DW_RLE_end_of_list:
14368 break;
14369 case DW_RLE_base_address:
14370 if (buffer + cu->header.addr_size > buf_end)
14371 {
14372 overflow = true;
14373 break;
14374 }
14375 base = read_address (obfd, buffer, cu, &bytes_read);
14376 found_base = 1;
14377 buffer += bytes_read;
14378 break;
14379 case DW_RLE_start_length:
14380 if (buffer + cu->header.addr_size > buf_end)
14381 {
14382 overflow = true;
14383 break;
14384 }
14385 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14386 buffer += bytes_read;
14387 range_end = (range_beginning
14388 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14389 buffer += bytes_read;
14390 if (buffer > buf_end)
14391 {
14392 overflow = true;
14393 break;
14394 }
14395 break;
14396 case DW_RLE_offset_pair:
14397 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14398 buffer += bytes_read;
14399 if (buffer > buf_end)
14400 {
14401 overflow = true;
14402 break;
14403 }
14404 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14405 buffer += bytes_read;
14406 if (buffer > buf_end)
14407 {
14408 overflow = true;
14409 break;
14410 }
14411 break;
14412 case DW_RLE_start_end:
14413 if (buffer + 2 * cu->header.addr_size > buf_end)
14414 {
14415 overflow = true;
14416 break;
14417 }
14418 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14419 buffer += bytes_read;
14420 range_end = read_address (obfd, buffer, cu, &bytes_read);
14421 buffer += bytes_read;
14422 break;
14423 default:
14424 complaint (_("Invalid .debug_rnglists data (no base address)"));
14425 return false;
14426 }
14427 if (rlet == DW_RLE_end_of_list || overflow)
14428 break;
14429 if (rlet == DW_RLE_base_address)
14430 continue;
14431
14432 if (!found_base)
14433 {
14434 /* We have no valid base address for the ranges
14435 data. */
14436 complaint (_("Invalid .debug_rnglists data (no base address)"));
14437 return false;
14438 }
14439
14440 if (range_beginning > range_end)
14441 {
14442 /* Inverted range entries are invalid. */
14443 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14444 return false;
14445 }
14446
14447 /* Empty range entries have no effect. */
14448 if (range_beginning == range_end)
14449 continue;
14450
14451 range_beginning += base;
14452 range_end += base;
14453
14454 /* A not-uncommon case of bad debug info.
14455 Don't pollute the addrmap with bad data. */
14456 if (range_beginning + baseaddr == 0
14457 && !dwarf2_per_objfile->has_section_at_zero)
14458 {
14459 complaint (_(".debug_rnglists entry has start address of zero"
14460 " [in module %s]"), objfile_name (objfile));
14461 continue;
14462 }
14463
14464 callback (range_beginning, range_end);
14465 }
14466
14467 if (overflow)
14468 {
14469 complaint (_("Offset %d is not terminated "
14470 "for DW_AT_ranges attribute"),
14471 offset);
14472 return false;
14473 }
14474
14475 return true;
14476 }
14477
14478 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14479 Callback's type should be:
14480 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14481 Return 1 if the attributes are present and valid, otherwise, return 0. */
14482
14483 template <typename Callback>
14484 static int
14485 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14486 Callback &&callback)
14487 {
14488 struct dwarf2_per_objfile *dwarf2_per_objfile
14489 = cu->per_cu->dwarf2_per_objfile;
14490 struct objfile *objfile = dwarf2_per_objfile->objfile;
14491 struct comp_unit_head *cu_header = &cu->header;
14492 bfd *obfd = objfile->obfd;
14493 unsigned int addr_size = cu_header->addr_size;
14494 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14495 /* Base address selection entry. */
14496 CORE_ADDR base;
14497 int found_base;
14498 unsigned int dummy;
14499 const gdb_byte *buffer;
14500 CORE_ADDR baseaddr;
14501
14502 if (cu_header->version >= 5)
14503 return dwarf2_rnglists_process (offset, cu, callback);
14504
14505 found_base = cu->base_known;
14506 base = cu->base_address;
14507
14508 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14509 if (offset >= dwarf2_per_objfile->ranges.size)
14510 {
14511 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14512 offset);
14513 return 0;
14514 }
14515 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14516
14517 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14518
14519 while (1)
14520 {
14521 CORE_ADDR range_beginning, range_end;
14522
14523 range_beginning = read_address (obfd, buffer, cu, &dummy);
14524 buffer += addr_size;
14525 range_end = read_address (obfd, buffer, cu, &dummy);
14526 buffer += addr_size;
14527 offset += 2 * addr_size;
14528
14529 /* An end of list marker is a pair of zero addresses. */
14530 if (range_beginning == 0 && range_end == 0)
14531 /* Found the end of list entry. */
14532 break;
14533
14534 /* Each base address selection entry is a pair of 2 values.
14535 The first is the largest possible address, the second is
14536 the base address. Check for a base address here. */
14537 if ((range_beginning & mask) == mask)
14538 {
14539 /* If we found the largest possible address, then we already
14540 have the base address in range_end. */
14541 base = range_end;
14542 found_base = 1;
14543 continue;
14544 }
14545
14546 if (!found_base)
14547 {
14548 /* We have no valid base address for the ranges
14549 data. */
14550 complaint (_("Invalid .debug_ranges data (no base address)"));
14551 return 0;
14552 }
14553
14554 if (range_beginning > range_end)
14555 {
14556 /* Inverted range entries are invalid. */
14557 complaint (_("Invalid .debug_ranges data (inverted range)"));
14558 return 0;
14559 }
14560
14561 /* Empty range entries have no effect. */
14562 if (range_beginning == range_end)
14563 continue;
14564
14565 range_beginning += base;
14566 range_end += base;
14567
14568 /* A not-uncommon case of bad debug info.
14569 Don't pollute the addrmap with bad data. */
14570 if (range_beginning + baseaddr == 0
14571 && !dwarf2_per_objfile->has_section_at_zero)
14572 {
14573 complaint (_(".debug_ranges entry has start address of zero"
14574 " [in module %s]"), objfile_name (objfile));
14575 continue;
14576 }
14577
14578 callback (range_beginning, range_end);
14579 }
14580
14581 return 1;
14582 }
14583
14584 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14585 Return 1 if the attributes are present and valid, otherwise, return 0.
14586 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14587
14588 static int
14589 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14590 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14591 struct partial_symtab *ranges_pst)
14592 {
14593 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14594 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14595 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14596 SECT_OFF_TEXT (objfile));
14597 int low_set = 0;
14598 CORE_ADDR low = 0;
14599 CORE_ADDR high = 0;
14600 int retval;
14601
14602 retval = dwarf2_ranges_process (offset, cu,
14603 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14604 {
14605 if (ranges_pst != NULL)
14606 {
14607 CORE_ADDR lowpc;
14608 CORE_ADDR highpc;
14609
14610 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14611 range_beginning + baseaddr)
14612 - baseaddr);
14613 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14614 range_end + baseaddr)
14615 - baseaddr);
14616 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14617 lowpc, highpc - 1, ranges_pst);
14618 }
14619
14620 /* FIXME: This is recording everything as a low-high
14621 segment of consecutive addresses. We should have a
14622 data structure for discontiguous block ranges
14623 instead. */
14624 if (! low_set)
14625 {
14626 low = range_beginning;
14627 high = range_end;
14628 low_set = 1;
14629 }
14630 else
14631 {
14632 if (range_beginning < low)
14633 low = range_beginning;
14634 if (range_end > high)
14635 high = range_end;
14636 }
14637 });
14638 if (!retval)
14639 return 0;
14640
14641 if (! low_set)
14642 /* If the first entry is an end-of-list marker, the range
14643 describes an empty scope, i.e. no instructions. */
14644 return 0;
14645
14646 if (low_return)
14647 *low_return = low;
14648 if (high_return)
14649 *high_return = high;
14650 return 1;
14651 }
14652
14653 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14654 definition for the return value. *LOWPC and *HIGHPC are set iff
14655 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14656
14657 static enum pc_bounds_kind
14658 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14659 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14660 struct partial_symtab *pst)
14661 {
14662 struct dwarf2_per_objfile *dwarf2_per_objfile
14663 = cu->per_cu->dwarf2_per_objfile;
14664 struct attribute *attr;
14665 struct attribute *attr_high;
14666 CORE_ADDR low = 0;
14667 CORE_ADDR high = 0;
14668 enum pc_bounds_kind ret;
14669
14670 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14671 if (attr_high)
14672 {
14673 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14674 if (attr)
14675 {
14676 low = attr_value_as_address (attr);
14677 high = attr_value_as_address (attr_high);
14678 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14679 high += low;
14680 }
14681 else
14682 /* Found high w/o low attribute. */
14683 return PC_BOUNDS_INVALID;
14684
14685 /* Found consecutive range of addresses. */
14686 ret = PC_BOUNDS_HIGH_LOW;
14687 }
14688 else
14689 {
14690 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14691 if (attr != NULL)
14692 {
14693 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14694 We take advantage of the fact that DW_AT_ranges does not appear
14695 in DW_TAG_compile_unit of DWO files. */
14696 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14697 unsigned int ranges_offset = (DW_UNSND (attr)
14698 + (need_ranges_base
14699 ? cu->ranges_base
14700 : 0));
14701
14702 /* Value of the DW_AT_ranges attribute is the offset in the
14703 .debug_ranges section. */
14704 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14705 return PC_BOUNDS_INVALID;
14706 /* Found discontinuous range of addresses. */
14707 ret = PC_BOUNDS_RANGES;
14708 }
14709 else
14710 return PC_BOUNDS_NOT_PRESENT;
14711 }
14712
14713 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14714 if (high <= low)
14715 return PC_BOUNDS_INVALID;
14716
14717 /* When using the GNU linker, .gnu.linkonce. sections are used to
14718 eliminate duplicate copies of functions and vtables and such.
14719 The linker will arbitrarily choose one and discard the others.
14720 The AT_*_pc values for such functions refer to local labels in
14721 these sections. If the section from that file was discarded, the
14722 labels are not in the output, so the relocs get a value of 0.
14723 If this is a discarded function, mark the pc bounds as invalid,
14724 so that GDB will ignore it. */
14725 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14726 return PC_BOUNDS_INVALID;
14727
14728 *lowpc = low;
14729 if (highpc)
14730 *highpc = high;
14731 return ret;
14732 }
14733
14734 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14735 its low and high PC addresses. Do nothing if these addresses could not
14736 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14737 and HIGHPC to the high address if greater than HIGHPC. */
14738
14739 static void
14740 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14741 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14742 struct dwarf2_cu *cu)
14743 {
14744 CORE_ADDR low, high;
14745 struct die_info *child = die->child;
14746
14747 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14748 {
14749 *lowpc = std::min (*lowpc, low);
14750 *highpc = std::max (*highpc, high);
14751 }
14752
14753 /* If the language does not allow nested subprograms (either inside
14754 subprograms or lexical blocks), we're done. */
14755 if (cu->language != language_ada)
14756 return;
14757
14758 /* Check all the children of the given DIE. If it contains nested
14759 subprograms, then check their pc bounds. Likewise, we need to
14760 check lexical blocks as well, as they may also contain subprogram
14761 definitions. */
14762 while (child && child->tag)
14763 {
14764 if (child->tag == DW_TAG_subprogram
14765 || child->tag == DW_TAG_lexical_block)
14766 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14767 child = sibling_die (child);
14768 }
14769 }
14770
14771 /* Get the low and high pc's represented by the scope DIE, and store
14772 them in *LOWPC and *HIGHPC. If the correct values can't be
14773 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14774
14775 static void
14776 get_scope_pc_bounds (struct die_info *die,
14777 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14778 struct dwarf2_cu *cu)
14779 {
14780 CORE_ADDR best_low = (CORE_ADDR) -1;
14781 CORE_ADDR best_high = (CORE_ADDR) 0;
14782 CORE_ADDR current_low, current_high;
14783
14784 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14785 >= PC_BOUNDS_RANGES)
14786 {
14787 best_low = current_low;
14788 best_high = current_high;
14789 }
14790 else
14791 {
14792 struct die_info *child = die->child;
14793
14794 while (child && child->tag)
14795 {
14796 switch (child->tag) {
14797 case DW_TAG_subprogram:
14798 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14799 break;
14800 case DW_TAG_namespace:
14801 case DW_TAG_module:
14802 /* FIXME: carlton/2004-01-16: Should we do this for
14803 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14804 that current GCC's always emit the DIEs corresponding
14805 to definitions of methods of classes as children of a
14806 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14807 the DIEs giving the declarations, which could be
14808 anywhere). But I don't see any reason why the
14809 standards says that they have to be there. */
14810 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14811
14812 if (current_low != ((CORE_ADDR) -1))
14813 {
14814 best_low = std::min (best_low, current_low);
14815 best_high = std::max (best_high, current_high);
14816 }
14817 break;
14818 default:
14819 /* Ignore. */
14820 break;
14821 }
14822
14823 child = sibling_die (child);
14824 }
14825 }
14826
14827 *lowpc = best_low;
14828 *highpc = best_high;
14829 }
14830
14831 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14832 in DIE. */
14833
14834 static void
14835 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14836 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14837 {
14838 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14839 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14840 struct attribute *attr;
14841 struct attribute *attr_high;
14842
14843 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14844 if (attr_high)
14845 {
14846 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14847 if (attr)
14848 {
14849 CORE_ADDR low = attr_value_as_address (attr);
14850 CORE_ADDR high = attr_value_as_address (attr_high);
14851
14852 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14853 high += low;
14854
14855 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14856 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14857 cu->get_builder ()->record_block_range (block, low, high - 1);
14858 }
14859 }
14860
14861 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14862 if (attr)
14863 {
14864 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14865 We take advantage of the fact that DW_AT_ranges does not appear
14866 in DW_TAG_compile_unit of DWO files. */
14867 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14868
14869 /* The value of the DW_AT_ranges attribute is the offset of the
14870 address range list in the .debug_ranges section. */
14871 unsigned long offset = (DW_UNSND (attr)
14872 + (need_ranges_base ? cu->ranges_base : 0));
14873
14874 std::vector<blockrange> blockvec;
14875 dwarf2_ranges_process (offset, cu,
14876 [&] (CORE_ADDR start, CORE_ADDR end)
14877 {
14878 start += baseaddr;
14879 end += baseaddr;
14880 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14881 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14882 cu->get_builder ()->record_block_range (block, start, end - 1);
14883 blockvec.emplace_back (start, end);
14884 });
14885
14886 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14887 }
14888 }
14889
14890 /* Check whether the producer field indicates either of GCC < 4.6, or the
14891 Intel C/C++ compiler, and cache the result in CU. */
14892
14893 static void
14894 check_producer (struct dwarf2_cu *cu)
14895 {
14896 int major, minor;
14897
14898 if (cu->producer == NULL)
14899 {
14900 /* For unknown compilers expect their behavior is DWARF version
14901 compliant.
14902
14903 GCC started to support .debug_types sections by -gdwarf-4 since
14904 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14905 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14906 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14907 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14908 }
14909 else if (producer_is_gcc (cu->producer, &major, &minor))
14910 {
14911 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14912 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14913 }
14914 else if (producer_is_icc (cu->producer, &major, &minor))
14915 {
14916 cu->producer_is_icc = true;
14917 cu->producer_is_icc_lt_14 = major < 14;
14918 }
14919 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14920 cu->producer_is_codewarrior = true;
14921 else
14922 {
14923 /* For other non-GCC compilers, expect their behavior is DWARF version
14924 compliant. */
14925 }
14926
14927 cu->checked_producer = true;
14928 }
14929
14930 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14931 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14932 during 4.6.0 experimental. */
14933
14934 static bool
14935 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14936 {
14937 if (!cu->checked_producer)
14938 check_producer (cu);
14939
14940 return cu->producer_is_gxx_lt_4_6;
14941 }
14942
14943
14944 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14945 with incorrect is_stmt attributes. */
14946
14947 static bool
14948 producer_is_codewarrior (struct dwarf2_cu *cu)
14949 {
14950 if (!cu->checked_producer)
14951 check_producer (cu);
14952
14953 return cu->producer_is_codewarrior;
14954 }
14955
14956 /* Return the default accessibility type if it is not overriden by
14957 DW_AT_accessibility. */
14958
14959 static enum dwarf_access_attribute
14960 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14961 {
14962 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14963 {
14964 /* The default DWARF 2 accessibility for members is public, the default
14965 accessibility for inheritance is private. */
14966
14967 if (die->tag != DW_TAG_inheritance)
14968 return DW_ACCESS_public;
14969 else
14970 return DW_ACCESS_private;
14971 }
14972 else
14973 {
14974 /* DWARF 3+ defines the default accessibility a different way. The same
14975 rules apply now for DW_TAG_inheritance as for the members and it only
14976 depends on the container kind. */
14977
14978 if (die->parent->tag == DW_TAG_class_type)
14979 return DW_ACCESS_private;
14980 else
14981 return DW_ACCESS_public;
14982 }
14983 }
14984
14985 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14986 offset. If the attribute was not found return 0, otherwise return
14987 1. If it was found but could not properly be handled, set *OFFSET
14988 to 0. */
14989
14990 static int
14991 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14992 LONGEST *offset)
14993 {
14994 struct attribute *attr;
14995
14996 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14997 if (attr != NULL)
14998 {
14999 *offset = 0;
15000
15001 /* Note that we do not check for a section offset first here.
15002 This is because DW_AT_data_member_location is new in DWARF 4,
15003 so if we see it, we can assume that a constant form is really
15004 a constant and not a section offset. */
15005 if (attr_form_is_constant (attr))
15006 *offset = dwarf2_get_attr_constant_value (attr, 0);
15007 else if (attr_form_is_section_offset (attr))
15008 dwarf2_complex_location_expr_complaint ();
15009 else if (attr_form_is_block (attr))
15010 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15011 else
15012 dwarf2_complex_location_expr_complaint ();
15013
15014 return 1;
15015 }
15016
15017 return 0;
15018 }
15019
15020 /* Add an aggregate field to the field list. */
15021
15022 static void
15023 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15024 struct dwarf2_cu *cu)
15025 {
15026 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15027 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15028 struct nextfield *new_field;
15029 struct attribute *attr;
15030 struct field *fp;
15031 const char *fieldname = "";
15032
15033 if (die->tag == DW_TAG_inheritance)
15034 {
15035 fip->baseclasses.emplace_back ();
15036 new_field = &fip->baseclasses.back ();
15037 }
15038 else
15039 {
15040 fip->fields.emplace_back ();
15041 new_field = &fip->fields.back ();
15042 }
15043
15044 fip->nfields++;
15045
15046 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15047 if (attr)
15048 new_field->accessibility = DW_UNSND (attr);
15049 else
15050 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15051 if (new_field->accessibility != DW_ACCESS_public)
15052 fip->non_public_fields = 1;
15053
15054 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15055 if (attr)
15056 new_field->virtuality = DW_UNSND (attr);
15057 else
15058 new_field->virtuality = DW_VIRTUALITY_none;
15059
15060 fp = &new_field->field;
15061
15062 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15063 {
15064 LONGEST offset;
15065
15066 /* Data member other than a C++ static data member. */
15067
15068 /* Get type of field. */
15069 fp->type = die_type (die, cu);
15070
15071 SET_FIELD_BITPOS (*fp, 0);
15072
15073 /* Get bit size of field (zero if none). */
15074 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15075 if (attr)
15076 {
15077 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15078 }
15079 else
15080 {
15081 FIELD_BITSIZE (*fp) = 0;
15082 }
15083
15084 /* Get bit offset of field. */
15085 if (handle_data_member_location (die, cu, &offset))
15086 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15087 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15088 if (attr)
15089 {
15090 if (gdbarch_bits_big_endian (gdbarch))
15091 {
15092 /* For big endian bits, the DW_AT_bit_offset gives the
15093 additional bit offset from the MSB of the containing
15094 anonymous object to the MSB of the field. We don't
15095 have to do anything special since we don't need to
15096 know the size of the anonymous object. */
15097 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15098 }
15099 else
15100 {
15101 /* For little endian bits, compute the bit offset to the
15102 MSB of the anonymous object, subtract off the number of
15103 bits from the MSB of the field to the MSB of the
15104 object, and then subtract off the number of bits of
15105 the field itself. The result is the bit offset of
15106 the LSB of the field. */
15107 int anonymous_size;
15108 int bit_offset = DW_UNSND (attr);
15109
15110 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15111 if (attr)
15112 {
15113 /* The size of the anonymous object containing
15114 the bit field is explicit, so use the
15115 indicated size (in bytes). */
15116 anonymous_size = DW_UNSND (attr);
15117 }
15118 else
15119 {
15120 /* The size of the anonymous object containing
15121 the bit field must be inferred from the type
15122 attribute of the data member containing the
15123 bit field. */
15124 anonymous_size = TYPE_LENGTH (fp->type);
15125 }
15126 SET_FIELD_BITPOS (*fp,
15127 (FIELD_BITPOS (*fp)
15128 + anonymous_size * bits_per_byte
15129 - bit_offset - FIELD_BITSIZE (*fp)));
15130 }
15131 }
15132 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15133 if (attr != NULL)
15134 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15135 + dwarf2_get_attr_constant_value (attr, 0)));
15136
15137 /* Get name of field. */
15138 fieldname = dwarf2_name (die, cu);
15139 if (fieldname == NULL)
15140 fieldname = "";
15141
15142 /* The name is already allocated along with this objfile, so we don't
15143 need to duplicate it for the type. */
15144 fp->name = fieldname;
15145
15146 /* Change accessibility for artificial fields (e.g. virtual table
15147 pointer or virtual base class pointer) to private. */
15148 if (dwarf2_attr (die, DW_AT_artificial, cu))
15149 {
15150 FIELD_ARTIFICIAL (*fp) = 1;
15151 new_field->accessibility = DW_ACCESS_private;
15152 fip->non_public_fields = 1;
15153 }
15154 }
15155 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15156 {
15157 /* C++ static member. */
15158
15159 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15160 is a declaration, but all versions of G++ as of this writing
15161 (so through at least 3.2.1) incorrectly generate
15162 DW_TAG_variable tags. */
15163
15164 const char *physname;
15165
15166 /* Get name of field. */
15167 fieldname = dwarf2_name (die, cu);
15168 if (fieldname == NULL)
15169 return;
15170
15171 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15172 if (attr
15173 /* Only create a symbol if this is an external value.
15174 new_symbol checks this and puts the value in the global symbol
15175 table, which we want. If it is not external, new_symbol
15176 will try to put the value in cu->list_in_scope which is wrong. */
15177 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15178 {
15179 /* A static const member, not much different than an enum as far as
15180 we're concerned, except that we can support more types. */
15181 new_symbol (die, NULL, cu);
15182 }
15183
15184 /* Get physical name. */
15185 physname = dwarf2_physname (fieldname, die, cu);
15186
15187 /* The name is already allocated along with this objfile, so we don't
15188 need to duplicate it for the type. */
15189 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15190 FIELD_TYPE (*fp) = die_type (die, cu);
15191 FIELD_NAME (*fp) = fieldname;
15192 }
15193 else if (die->tag == DW_TAG_inheritance)
15194 {
15195 LONGEST offset;
15196
15197 /* C++ base class field. */
15198 if (handle_data_member_location (die, cu, &offset))
15199 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15200 FIELD_BITSIZE (*fp) = 0;
15201 FIELD_TYPE (*fp) = die_type (die, cu);
15202 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15203 }
15204 else if (die->tag == DW_TAG_variant_part)
15205 {
15206 /* process_structure_scope will treat this DIE as a union. */
15207 process_structure_scope (die, cu);
15208
15209 /* The variant part is relative to the start of the enclosing
15210 structure. */
15211 SET_FIELD_BITPOS (*fp, 0);
15212 fp->type = get_die_type (die, cu);
15213 fp->artificial = 1;
15214 fp->name = "<<variant>>";
15215
15216 /* Normally a DW_TAG_variant_part won't have a size, but our
15217 representation requires one, so set it to the maximum of the
15218 child sizes. */
15219 if (TYPE_LENGTH (fp->type) == 0)
15220 {
15221 unsigned max = 0;
15222 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15223 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15224 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15225 TYPE_LENGTH (fp->type) = max;
15226 }
15227 }
15228 else
15229 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15230 }
15231
15232 /* Can the type given by DIE define another type? */
15233
15234 static bool
15235 type_can_define_types (const struct die_info *die)
15236 {
15237 switch (die->tag)
15238 {
15239 case DW_TAG_typedef:
15240 case DW_TAG_class_type:
15241 case DW_TAG_structure_type:
15242 case DW_TAG_union_type:
15243 case DW_TAG_enumeration_type:
15244 return true;
15245
15246 default:
15247 return false;
15248 }
15249 }
15250
15251 /* Add a type definition defined in the scope of the FIP's class. */
15252
15253 static void
15254 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15255 struct dwarf2_cu *cu)
15256 {
15257 struct decl_field fp;
15258 memset (&fp, 0, sizeof (fp));
15259
15260 gdb_assert (type_can_define_types (die));
15261
15262 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15263 fp.name = dwarf2_name (die, cu);
15264 fp.type = read_type_die (die, cu);
15265
15266 /* Save accessibility. */
15267 enum dwarf_access_attribute accessibility;
15268 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15269 if (attr != NULL)
15270 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15271 else
15272 accessibility = dwarf2_default_access_attribute (die, cu);
15273 switch (accessibility)
15274 {
15275 case DW_ACCESS_public:
15276 /* The assumed value if neither private nor protected. */
15277 break;
15278 case DW_ACCESS_private:
15279 fp.is_private = 1;
15280 break;
15281 case DW_ACCESS_protected:
15282 fp.is_protected = 1;
15283 break;
15284 default:
15285 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15286 }
15287
15288 if (die->tag == DW_TAG_typedef)
15289 fip->typedef_field_list.push_back (fp);
15290 else
15291 fip->nested_types_list.push_back (fp);
15292 }
15293
15294 /* Create the vector of fields, and attach it to the type. */
15295
15296 static void
15297 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15298 struct dwarf2_cu *cu)
15299 {
15300 int nfields = fip->nfields;
15301
15302 /* Record the field count, allocate space for the array of fields,
15303 and create blank accessibility bitfields if necessary. */
15304 TYPE_NFIELDS (type) = nfields;
15305 TYPE_FIELDS (type) = (struct field *)
15306 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15307
15308 if (fip->non_public_fields && cu->language != language_ada)
15309 {
15310 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15311
15312 TYPE_FIELD_PRIVATE_BITS (type) =
15313 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15314 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15315
15316 TYPE_FIELD_PROTECTED_BITS (type) =
15317 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15318 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15319
15320 TYPE_FIELD_IGNORE_BITS (type) =
15321 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15322 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15323 }
15324
15325 /* If the type has baseclasses, allocate and clear a bit vector for
15326 TYPE_FIELD_VIRTUAL_BITS. */
15327 if (!fip->baseclasses.empty () && cu->language != language_ada)
15328 {
15329 int num_bytes = B_BYTES (fip->baseclasses.size ());
15330 unsigned char *pointer;
15331
15332 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15333 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15334 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15335 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15336 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15337 }
15338
15339 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15340 {
15341 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15342
15343 for (int index = 0; index < nfields; ++index)
15344 {
15345 struct nextfield &field = fip->fields[index];
15346
15347 if (field.variant.is_discriminant)
15348 di->discriminant_index = index;
15349 else if (field.variant.default_branch)
15350 di->default_index = index;
15351 else
15352 di->discriminants[index] = field.variant.discriminant_value;
15353 }
15354 }
15355
15356 /* Copy the saved-up fields into the field vector. */
15357 for (int i = 0; i < nfields; ++i)
15358 {
15359 struct nextfield &field
15360 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15361 : fip->fields[i - fip->baseclasses.size ()]);
15362
15363 TYPE_FIELD (type, i) = field.field;
15364 switch (field.accessibility)
15365 {
15366 case DW_ACCESS_private:
15367 if (cu->language != language_ada)
15368 SET_TYPE_FIELD_PRIVATE (type, i);
15369 break;
15370
15371 case DW_ACCESS_protected:
15372 if (cu->language != language_ada)
15373 SET_TYPE_FIELD_PROTECTED (type, i);
15374 break;
15375
15376 case DW_ACCESS_public:
15377 break;
15378
15379 default:
15380 /* Unknown accessibility. Complain and treat it as public. */
15381 {
15382 complaint (_("unsupported accessibility %d"),
15383 field.accessibility);
15384 }
15385 break;
15386 }
15387 if (i < fip->baseclasses.size ())
15388 {
15389 switch (field.virtuality)
15390 {
15391 case DW_VIRTUALITY_virtual:
15392 case DW_VIRTUALITY_pure_virtual:
15393 if (cu->language == language_ada)
15394 error (_("unexpected virtuality in component of Ada type"));
15395 SET_TYPE_FIELD_VIRTUAL (type, i);
15396 break;
15397 }
15398 }
15399 }
15400 }
15401
15402 /* Return true if this member function is a constructor, false
15403 otherwise. */
15404
15405 static int
15406 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15407 {
15408 const char *fieldname;
15409 const char *type_name;
15410 int len;
15411
15412 if (die->parent == NULL)
15413 return 0;
15414
15415 if (die->parent->tag != DW_TAG_structure_type
15416 && die->parent->tag != DW_TAG_union_type
15417 && die->parent->tag != DW_TAG_class_type)
15418 return 0;
15419
15420 fieldname = dwarf2_name (die, cu);
15421 type_name = dwarf2_name (die->parent, cu);
15422 if (fieldname == NULL || type_name == NULL)
15423 return 0;
15424
15425 len = strlen (fieldname);
15426 return (strncmp (fieldname, type_name, len) == 0
15427 && (type_name[len] == '\0' || type_name[len] == '<'));
15428 }
15429
15430 /* Add a member function to the proper fieldlist. */
15431
15432 static void
15433 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15434 struct type *type, struct dwarf2_cu *cu)
15435 {
15436 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15437 struct attribute *attr;
15438 int i;
15439 struct fnfieldlist *flp = nullptr;
15440 struct fn_field *fnp;
15441 const char *fieldname;
15442 struct type *this_type;
15443 enum dwarf_access_attribute accessibility;
15444
15445 if (cu->language == language_ada)
15446 error (_("unexpected member function in Ada type"));
15447
15448 /* Get name of member function. */
15449 fieldname = dwarf2_name (die, cu);
15450 if (fieldname == NULL)
15451 return;
15452
15453 /* Look up member function name in fieldlist. */
15454 for (i = 0; i < fip->fnfieldlists.size (); i++)
15455 {
15456 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15457 {
15458 flp = &fip->fnfieldlists[i];
15459 break;
15460 }
15461 }
15462
15463 /* Create a new fnfieldlist if necessary. */
15464 if (flp == nullptr)
15465 {
15466 fip->fnfieldlists.emplace_back ();
15467 flp = &fip->fnfieldlists.back ();
15468 flp->name = fieldname;
15469 i = fip->fnfieldlists.size () - 1;
15470 }
15471
15472 /* Create a new member function field and add it to the vector of
15473 fnfieldlists. */
15474 flp->fnfields.emplace_back ();
15475 fnp = &flp->fnfields.back ();
15476
15477 /* Delay processing of the physname until later. */
15478 if (cu->language == language_cplus)
15479 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15480 die, cu);
15481 else
15482 {
15483 const char *physname = dwarf2_physname (fieldname, die, cu);
15484 fnp->physname = physname ? physname : "";
15485 }
15486
15487 fnp->type = alloc_type (objfile);
15488 this_type = read_type_die (die, cu);
15489 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15490 {
15491 int nparams = TYPE_NFIELDS (this_type);
15492
15493 /* TYPE is the domain of this method, and THIS_TYPE is the type
15494 of the method itself (TYPE_CODE_METHOD). */
15495 smash_to_method_type (fnp->type, type,
15496 TYPE_TARGET_TYPE (this_type),
15497 TYPE_FIELDS (this_type),
15498 TYPE_NFIELDS (this_type),
15499 TYPE_VARARGS (this_type));
15500
15501 /* Handle static member functions.
15502 Dwarf2 has no clean way to discern C++ static and non-static
15503 member functions. G++ helps GDB by marking the first
15504 parameter for non-static member functions (which is the this
15505 pointer) as artificial. We obtain this information from
15506 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15507 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15508 fnp->voffset = VOFFSET_STATIC;
15509 }
15510 else
15511 complaint (_("member function type missing for '%s'"),
15512 dwarf2_full_name (fieldname, die, cu));
15513
15514 /* Get fcontext from DW_AT_containing_type if present. */
15515 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15516 fnp->fcontext = die_containing_type (die, cu);
15517
15518 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15519 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15520
15521 /* Get accessibility. */
15522 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15523 if (attr)
15524 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15525 else
15526 accessibility = dwarf2_default_access_attribute (die, cu);
15527 switch (accessibility)
15528 {
15529 case DW_ACCESS_private:
15530 fnp->is_private = 1;
15531 break;
15532 case DW_ACCESS_protected:
15533 fnp->is_protected = 1;
15534 break;
15535 }
15536
15537 /* Check for artificial methods. */
15538 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15539 if (attr && DW_UNSND (attr) != 0)
15540 fnp->is_artificial = 1;
15541
15542 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15543
15544 /* Get index in virtual function table if it is a virtual member
15545 function. For older versions of GCC, this is an offset in the
15546 appropriate virtual table, as specified by DW_AT_containing_type.
15547 For everyone else, it is an expression to be evaluated relative
15548 to the object address. */
15549
15550 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15551 if (attr)
15552 {
15553 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15554 {
15555 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15556 {
15557 /* Old-style GCC. */
15558 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15559 }
15560 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15561 || (DW_BLOCK (attr)->size > 1
15562 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15563 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15564 {
15565 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15566 if ((fnp->voffset % cu->header.addr_size) != 0)
15567 dwarf2_complex_location_expr_complaint ();
15568 else
15569 fnp->voffset /= cu->header.addr_size;
15570 fnp->voffset += 2;
15571 }
15572 else
15573 dwarf2_complex_location_expr_complaint ();
15574
15575 if (!fnp->fcontext)
15576 {
15577 /* If there is no `this' field and no DW_AT_containing_type,
15578 we cannot actually find a base class context for the
15579 vtable! */
15580 if (TYPE_NFIELDS (this_type) == 0
15581 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15582 {
15583 complaint (_("cannot determine context for virtual member "
15584 "function \"%s\" (offset %s)"),
15585 fieldname, sect_offset_str (die->sect_off));
15586 }
15587 else
15588 {
15589 fnp->fcontext
15590 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15591 }
15592 }
15593 }
15594 else if (attr_form_is_section_offset (attr))
15595 {
15596 dwarf2_complex_location_expr_complaint ();
15597 }
15598 else
15599 {
15600 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15601 fieldname);
15602 }
15603 }
15604 else
15605 {
15606 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15607 if (attr && DW_UNSND (attr))
15608 {
15609 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15610 complaint (_("Member function \"%s\" (offset %s) is virtual "
15611 "but the vtable offset is not specified"),
15612 fieldname, sect_offset_str (die->sect_off));
15613 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15614 TYPE_CPLUS_DYNAMIC (type) = 1;
15615 }
15616 }
15617 }
15618
15619 /* Create the vector of member function fields, and attach it to the type. */
15620
15621 static void
15622 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15623 struct dwarf2_cu *cu)
15624 {
15625 if (cu->language == language_ada)
15626 error (_("unexpected member functions in Ada type"));
15627
15628 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15629 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15630 TYPE_ALLOC (type,
15631 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15632
15633 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15634 {
15635 struct fnfieldlist &nf = fip->fnfieldlists[i];
15636 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15637
15638 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15639 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15640 fn_flp->fn_fields = (struct fn_field *)
15641 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15642
15643 for (int k = 0; k < nf.fnfields.size (); ++k)
15644 fn_flp->fn_fields[k] = nf.fnfields[k];
15645 }
15646
15647 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15648 }
15649
15650 /* Returns non-zero if NAME is the name of a vtable member in CU's
15651 language, zero otherwise. */
15652 static int
15653 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15654 {
15655 static const char vptr[] = "_vptr";
15656
15657 /* Look for the C++ form of the vtable. */
15658 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15659 return 1;
15660
15661 return 0;
15662 }
15663
15664 /* GCC outputs unnamed structures that are really pointers to member
15665 functions, with the ABI-specified layout. If TYPE describes
15666 such a structure, smash it into a member function type.
15667
15668 GCC shouldn't do this; it should just output pointer to member DIEs.
15669 This is GCC PR debug/28767. */
15670
15671 static void
15672 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15673 {
15674 struct type *pfn_type, *self_type, *new_type;
15675
15676 /* Check for a structure with no name and two children. */
15677 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15678 return;
15679
15680 /* Check for __pfn and __delta members. */
15681 if (TYPE_FIELD_NAME (type, 0) == NULL
15682 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15683 || TYPE_FIELD_NAME (type, 1) == NULL
15684 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15685 return;
15686
15687 /* Find the type of the method. */
15688 pfn_type = TYPE_FIELD_TYPE (type, 0);
15689 if (pfn_type == NULL
15690 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15691 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15692 return;
15693
15694 /* Look for the "this" argument. */
15695 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15696 if (TYPE_NFIELDS (pfn_type) == 0
15697 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15698 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15699 return;
15700
15701 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15702 new_type = alloc_type (objfile);
15703 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15704 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15705 TYPE_VARARGS (pfn_type));
15706 smash_to_methodptr_type (type, new_type);
15707 }
15708
15709 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15710 appropriate error checking and issuing complaints if there is a
15711 problem. */
15712
15713 static ULONGEST
15714 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15715 {
15716 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15717
15718 if (attr == nullptr)
15719 return 0;
15720
15721 if (!attr_form_is_constant (attr))
15722 {
15723 complaint (_("DW_AT_alignment must have constant form"
15724 " - DIE at %s [in module %s]"),
15725 sect_offset_str (die->sect_off),
15726 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15727 return 0;
15728 }
15729
15730 ULONGEST align;
15731 if (attr->form == DW_FORM_sdata)
15732 {
15733 LONGEST val = DW_SND (attr);
15734 if (val < 0)
15735 {
15736 complaint (_("DW_AT_alignment value must not be negative"
15737 " - DIE at %s [in module %s]"),
15738 sect_offset_str (die->sect_off),
15739 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15740 return 0;
15741 }
15742 align = val;
15743 }
15744 else
15745 align = DW_UNSND (attr);
15746
15747 if (align == 0)
15748 {
15749 complaint (_("DW_AT_alignment value must not be zero"
15750 " - DIE at %s [in module %s]"),
15751 sect_offset_str (die->sect_off),
15752 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15753 return 0;
15754 }
15755 if ((align & (align - 1)) != 0)
15756 {
15757 complaint (_("DW_AT_alignment value must be a power of 2"
15758 " - DIE at %s [in module %s]"),
15759 sect_offset_str (die->sect_off),
15760 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15761 return 0;
15762 }
15763
15764 return align;
15765 }
15766
15767 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15768 the alignment for TYPE. */
15769
15770 static void
15771 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15772 struct type *type)
15773 {
15774 if (!set_type_align (type, get_alignment (cu, die)))
15775 complaint (_("DW_AT_alignment value too large"
15776 " - DIE at %s [in module %s]"),
15777 sect_offset_str (die->sect_off),
15778 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15779 }
15780
15781 /* Called when we find the DIE that starts a structure or union scope
15782 (definition) to create a type for the structure or union. Fill in
15783 the type's name and general properties; the members will not be
15784 processed until process_structure_scope. A symbol table entry for
15785 the type will also not be done until process_structure_scope (assuming
15786 the type has a name).
15787
15788 NOTE: we need to call these functions regardless of whether or not the
15789 DIE has a DW_AT_name attribute, since it might be an anonymous
15790 structure or union. This gets the type entered into our set of
15791 user defined types. */
15792
15793 static struct type *
15794 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15795 {
15796 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15797 struct type *type;
15798 struct attribute *attr;
15799 const char *name;
15800
15801 /* If the definition of this type lives in .debug_types, read that type.
15802 Don't follow DW_AT_specification though, that will take us back up
15803 the chain and we want to go down. */
15804 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15805 if (attr)
15806 {
15807 type = get_DW_AT_signature_type (die, attr, cu);
15808
15809 /* The type's CU may not be the same as CU.
15810 Ensure TYPE is recorded with CU in die_type_hash. */
15811 return set_die_type (die, type, cu);
15812 }
15813
15814 type = alloc_type (objfile);
15815 INIT_CPLUS_SPECIFIC (type);
15816
15817 name = dwarf2_name (die, cu);
15818 if (name != NULL)
15819 {
15820 if (cu->language == language_cplus
15821 || cu->language == language_d
15822 || cu->language == language_rust)
15823 {
15824 const char *full_name = dwarf2_full_name (name, die, cu);
15825
15826 /* dwarf2_full_name might have already finished building the DIE's
15827 type. If so, there is no need to continue. */
15828 if (get_die_type (die, cu) != NULL)
15829 return get_die_type (die, cu);
15830
15831 TYPE_NAME (type) = full_name;
15832 }
15833 else
15834 {
15835 /* The name is already allocated along with this objfile, so
15836 we don't need to duplicate it for the type. */
15837 TYPE_NAME (type) = name;
15838 }
15839 }
15840
15841 if (die->tag == DW_TAG_structure_type)
15842 {
15843 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15844 }
15845 else if (die->tag == DW_TAG_union_type)
15846 {
15847 TYPE_CODE (type) = TYPE_CODE_UNION;
15848 }
15849 else if (die->tag == DW_TAG_variant_part)
15850 {
15851 TYPE_CODE (type) = TYPE_CODE_UNION;
15852 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15853 }
15854 else
15855 {
15856 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15857 }
15858
15859 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15860 TYPE_DECLARED_CLASS (type) = 1;
15861
15862 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15863 if (attr)
15864 {
15865 if (attr_form_is_constant (attr))
15866 TYPE_LENGTH (type) = DW_UNSND (attr);
15867 else
15868 {
15869 /* For the moment, dynamic type sizes are not supported
15870 by GDB's struct type. The actual size is determined
15871 on-demand when resolving the type of a given object,
15872 so set the type's length to zero for now. Otherwise,
15873 we record an expression as the length, and that expression
15874 could lead to a very large value, which could eventually
15875 lead to us trying to allocate that much memory when creating
15876 a value of that type. */
15877 TYPE_LENGTH (type) = 0;
15878 }
15879 }
15880 else
15881 {
15882 TYPE_LENGTH (type) = 0;
15883 }
15884
15885 maybe_set_alignment (cu, die, type);
15886
15887 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15888 {
15889 /* ICC<14 does not output the required DW_AT_declaration on
15890 incomplete types, but gives them a size of zero. */
15891 TYPE_STUB (type) = 1;
15892 }
15893 else
15894 TYPE_STUB_SUPPORTED (type) = 1;
15895
15896 if (die_is_declaration (die, cu))
15897 TYPE_STUB (type) = 1;
15898 else if (attr == NULL && die->child == NULL
15899 && producer_is_realview (cu->producer))
15900 /* RealView does not output the required DW_AT_declaration
15901 on incomplete types. */
15902 TYPE_STUB (type) = 1;
15903
15904 /* We need to add the type field to the die immediately so we don't
15905 infinitely recurse when dealing with pointers to the structure
15906 type within the structure itself. */
15907 set_die_type (die, type, cu);
15908
15909 /* set_die_type should be already done. */
15910 set_descriptive_type (type, die, cu);
15911
15912 return type;
15913 }
15914
15915 /* A helper for process_structure_scope that handles a single member
15916 DIE. */
15917
15918 static void
15919 handle_struct_member_die (struct die_info *child_die, struct type *type,
15920 struct field_info *fi,
15921 std::vector<struct symbol *> *template_args,
15922 struct dwarf2_cu *cu)
15923 {
15924 if (child_die->tag == DW_TAG_member
15925 || child_die->tag == DW_TAG_variable
15926 || child_die->tag == DW_TAG_variant_part)
15927 {
15928 /* NOTE: carlton/2002-11-05: A C++ static data member
15929 should be a DW_TAG_member that is a declaration, but
15930 all versions of G++ as of this writing (so through at
15931 least 3.2.1) incorrectly generate DW_TAG_variable
15932 tags for them instead. */
15933 dwarf2_add_field (fi, child_die, cu);
15934 }
15935 else if (child_die->tag == DW_TAG_subprogram)
15936 {
15937 /* Rust doesn't have member functions in the C++ sense.
15938 However, it does emit ordinary functions as children
15939 of a struct DIE. */
15940 if (cu->language == language_rust)
15941 read_func_scope (child_die, cu);
15942 else
15943 {
15944 /* C++ member function. */
15945 dwarf2_add_member_fn (fi, child_die, type, cu);
15946 }
15947 }
15948 else if (child_die->tag == DW_TAG_inheritance)
15949 {
15950 /* C++ base class field. */
15951 dwarf2_add_field (fi, child_die, cu);
15952 }
15953 else if (type_can_define_types (child_die))
15954 dwarf2_add_type_defn (fi, child_die, cu);
15955 else if (child_die->tag == DW_TAG_template_type_param
15956 || child_die->tag == DW_TAG_template_value_param)
15957 {
15958 struct symbol *arg = new_symbol (child_die, NULL, cu);
15959
15960 if (arg != NULL)
15961 template_args->push_back (arg);
15962 }
15963 else if (child_die->tag == DW_TAG_variant)
15964 {
15965 /* In a variant we want to get the discriminant and also add a
15966 field for our sole member child. */
15967 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15968
15969 for (struct die_info *variant_child = child_die->child;
15970 variant_child != NULL;
15971 variant_child = sibling_die (variant_child))
15972 {
15973 if (variant_child->tag == DW_TAG_member)
15974 {
15975 handle_struct_member_die (variant_child, type, fi,
15976 template_args, cu);
15977 /* Only handle the one. */
15978 break;
15979 }
15980 }
15981
15982 /* We don't handle this but we might as well report it if we see
15983 it. */
15984 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15985 complaint (_("DW_AT_discr_list is not supported yet"
15986 " - DIE at %s [in module %s]"),
15987 sect_offset_str (child_die->sect_off),
15988 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15989
15990 /* The first field was just added, so we can stash the
15991 discriminant there. */
15992 gdb_assert (!fi->fields.empty ());
15993 if (discr == NULL)
15994 fi->fields.back ().variant.default_branch = true;
15995 else
15996 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15997 }
15998 }
15999
16000 /* Finish creating a structure or union type, including filling in
16001 its members and creating a symbol for it. */
16002
16003 static void
16004 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16005 {
16006 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16007 struct die_info *child_die;
16008 struct type *type;
16009
16010 type = get_die_type (die, cu);
16011 if (type == NULL)
16012 type = read_structure_type (die, cu);
16013
16014 /* When reading a DW_TAG_variant_part, we need to notice when we
16015 read the discriminant member, so we can record it later in the
16016 discriminant_info. */
16017 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16018 sect_offset discr_offset;
16019 bool has_template_parameters = false;
16020
16021 if (is_variant_part)
16022 {
16023 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16024 if (discr == NULL)
16025 {
16026 /* Maybe it's a univariant form, an extension we support.
16027 In this case arrange not to check the offset. */
16028 is_variant_part = false;
16029 }
16030 else if (attr_form_is_ref (discr))
16031 {
16032 struct dwarf2_cu *target_cu = cu;
16033 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16034
16035 discr_offset = target_die->sect_off;
16036 }
16037 else
16038 {
16039 complaint (_("DW_AT_discr does not have DIE reference form"
16040 " - DIE at %s [in module %s]"),
16041 sect_offset_str (die->sect_off),
16042 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16043 is_variant_part = false;
16044 }
16045 }
16046
16047 if (die->child != NULL && ! die_is_declaration (die, cu))
16048 {
16049 struct field_info fi;
16050 std::vector<struct symbol *> template_args;
16051
16052 child_die = die->child;
16053
16054 while (child_die && child_die->tag)
16055 {
16056 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16057
16058 if (is_variant_part && discr_offset == child_die->sect_off)
16059 fi.fields.back ().variant.is_discriminant = true;
16060
16061 child_die = sibling_die (child_die);
16062 }
16063
16064 /* Attach template arguments to type. */
16065 if (!template_args.empty ())
16066 {
16067 has_template_parameters = true;
16068 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16069 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16070 TYPE_TEMPLATE_ARGUMENTS (type)
16071 = XOBNEWVEC (&objfile->objfile_obstack,
16072 struct symbol *,
16073 TYPE_N_TEMPLATE_ARGUMENTS (type));
16074 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16075 template_args.data (),
16076 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16077 * sizeof (struct symbol *)));
16078 }
16079
16080 /* Attach fields and member functions to the type. */
16081 if (fi.nfields)
16082 dwarf2_attach_fields_to_type (&fi, type, cu);
16083 if (!fi.fnfieldlists.empty ())
16084 {
16085 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16086
16087 /* Get the type which refers to the base class (possibly this
16088 class itself) which contains the vtable pointer for the current
16089 class from the DW_AT_containing_type attribute. This use of
16090 DW_AT_containing_type is a GNU extension. */
16091
16092 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16093 {
16094 struct type *t = die_containing_type (die, cu);
16095
16096 set_type_vptr_basetype (type, t);
16097 if (type == t)
16098 {
16099 int i;
16100
16101 /* Our own class provides vtbl ptr. */
16102 for (i = TYPE_NFIELDS (t) - 1;
16103 i >= TYPE_N_BASECLASSES (t);
16104 --i)
16105 {
16106 const char *fieldname = TYPE_FIELD_NAME (t, i);
16107
16108 if (is_vtable_name (fieldname, cu))
16109 {
16110 set_type_vptr_fieldno (type, i);
16111 break;
16112 }
16113 }
16114
16115 /* Complain if virtual function table field not found. */
16116 if (i < TYPE_N_BASECLASSES (t))
16117 complaint (_("virtual function table pointer "
16118 "not found when defining class '%s'"),
16119 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16120 }
16121 else
16122 {
16123 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16124 }
16125 }
16126 else if (cu->producer
16127 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16128 {
16129 /* The IBM XLC compiler does not provide direct indication
16130 of the containing type, but the vtable pointer is
16131 always named __vfp. */
16132
16133 int i;
16134
16135 for (i = TYPE_NFIELDS (type) - 1;
16136 i >= TYPE_N_BASECLASSES (type);
16137 --i)
16138 {
16139 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16140 {
16141 set_type_vptr_fieldno (type, i);
16142 set_type_vptr_basetype (type, type);
16143 break;
16144 }
16145 }
16146 }
16147 }
16148
16149 /* Copy fi.typedef_field_list linked list elements content into the
16150 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16151 if (!fi.typedef_field_list.empty ())
16152 {
16153 int count = fi.typedef_field_list.size ();
16154
16155 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16156 TYPE_TYPEDEF_FIELD_ARRAY (type)
16157 = ((struct decl_field *)
16158 TYPE_ALLOC (type,
16159 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16160 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16161
16162 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16163 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16164 }
16165
16166 /* Copy fi.nested_types_list linked list elements content into the
16167 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16168 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16169 {
16170 int count = fi.nested_types_list.size ();
16171
16172 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16173 TYPE_NESTED_TYPES_ARRAY (type)
16174 = ((struct decl_field *)
16175 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16176 TYPE_NESTED_TYPES_COUNT (type) = count;
16177
16178 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16179 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16180 }
16181 }
16182
16183 quirk_gcc_member_function_pointer (type, objfile);
16184 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16185 cu->rust_unions.push_back (type);
16186
16187 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16188 snapshots) has been known to create a die giving a declaration
16189 for a class that has, as a child, a die giving a definition for a
16190 nested class. So we have to process our children even if the
16191 current die is a declaration. Normally, of course, a declaration
16192 won't have any children at all. */
16193
16194 child_die = die->child;
16195
16196 while (child_die != NULL && child_die->tag)
16197 {
16198 if (child_die->tag == DW_TAG_member
16199 || child_die->tag == DW_TAG_variable
16200 || child_die->tag == DW_TAG_inheritance
16201 || child_die->tag == DW_TAG_template_value_param
16202 || child_die->tag == DW_TAG_template_type_param)
16203 {
16204 /* Do nothing. */
16205 }
16206 else
16207 process_die (child_die, cu);
16208
16209 child_die = sibling_die (child_die);
16210 }
16211
16212 /* Do not consider external references. According to the DWARF standard,
16213 these DIEs are identified by the fact that they have no byte_size
16214 attribute, and a declaration attribute. */
16215 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16216 || !die_is_declaration (die, cu))
16217 {
16218 struct symbol *sym = new_symbol (die, type, cu);
16219
16220 if (has_template_parameters)
16221 {
16222 /* Make sure that the symtab is set on the new symbols.
16223 Even though they don't appear in this symtab directly,
16224 other parts of gdb assume that symbols do, and this is
16225 reasonably true. */
16226 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16227 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16228 symbol_symtab (sym));
16229 }
16230 }
16231 }
16232
16233 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16234 update TYPE using some information only available in DIE's children. */
16235
16236 static void
16237 update_enumeration_type_from_children (struct die_info *die,
16238 struct type *type,
16239 struct dwarf2_cu *cu)
16240 {
16241 struct die_info *child_die;
16242 int unsigned_enum = 1;
16243 int flag_enum = 1;
16244 ULONGEST mask = 0;
16245
16246 auto_obstack obstack;
16247
16248 for (child_die = die->child;
16249 child_die != NULL && child_die->tag;
16250 child_die = sibling_die (child_die))
16251 {
16252 struct attribute *attr;
16253 LONGEST value;
16254 const gdb_byte *bytes;
16255 struct dwarf2_locexpr_baton *baton;
16256 const char *name;
16257
16258 if (child_die->tag != DW_TAG_enumerator)
16259 continue;
16260
16261 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16262 if (attr == NULL)
16263 continue;
16264
16265 name = dwarf2_name (child_die, cu);
16266 if (name == NULL)
16267 name = "<anonymous enumerator>";
16268
16269 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16270 &value, &bytes, &baton);
16271 if (value < 0)
16272 {
16273 unsigned_enum = 0;
16274 flag_enum = 0;
16275 }
16276 else if ((mask & value) != 0)
16277 flag_enum = 0;
16278 else
16279 mask |= value;
16280
16281 /* If we already know that the enum type is neither unsigned, nor
16282 a flag type, no need to look at the rest of the enumerates. */
16283 if (!unsigned_enum && !flag_enum)
16284 break;
16285 }
16286
16287 if (unsigned_enum)
16288 TYPE_UNSIGNED (type) = 1;
16289 if (flag_enum)
16290 TYPE_FLAG_ENUM (type) = 1;
16291 }
16292
16293 /* Given a DW_AT_enumeration_type die, set its type. We do not
16294 complete the type's fields yet, or create any symbols. */
16295
16296 static struct type *
16297 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16298 {
16299 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16300 struct type *type;
16301 struct attribute *attr;
16302 const char *name;
16303
16304 /* If the definition of this type lives in .debug_types, read that type.
16305 Don't follow DW_AT_specification though, that will take us back up
16306 the chain and we want to go down. */
16307 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16308 if (attr)
16309 {
16310 type = get_DW_AT_signature_type (die, attr, cu);
16311
16312 /* The type's CU may not be the same as CU.
16313 Ensure TYPE is recorded with CU in die_type_hash. */
16314 return set_die_type (die, type, cu);
16315 }
16316
16317 type = alloc_type (objfile);
16318
16319 TYPE_CODE (type) = TYPE_CODE_ENUM;
16320 name = dwarf2_full_name (NULL, die, cu);
16321 if (name != NULL)
16322 TYPE_NAME (type) = name;
16323
16324 attr = dwarf2_attr (die, DW_AT_type, cu);
16325 if (attr != NULL)
16326 {
16327 struct type *underlying_type = die_type (die, cu);
16328
16329 TYPE_TARGET_TYPE (type) = underlying_type;
16330 }
16331
16332 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16333 if (attr)
16334 {
16335 TYPE_LENGTH (type) = DW_UNSND (attr);
16336 }
16337 else
16338 {
16339 TYPE_LENGTH (type) = 0;
16340 }
16341
16342 maybe_set_alignment (cu, die, type);
16343
16344 /* The enumeration DIE can be incomplete. In Ada, any type can be
16345 declared as private in the package spec, and then defined only
16346 inside the package body. Such types are known as Taft Amendment
16347 Types. When another package uses such a type, an incomplete DIE
16348 may be generated by the compiler. */
16349 if (die_is_declaration (die, cu))
16350 TYPE_STUB (type) = 1;
16351
16352 /* Finish the creation of this type by using the enum's children.
16353 We must call this even when the underlying type has been provided
16354 so that we can determine if we're looking at a "flag" enum. */
16355 update_enumeration_type_from_children (die, type, cu);
16356
16357 /* If this type has an underlying type that is not a stub, then we
16358 may use its attributes. We always use the "unsigned" attribute
16359 in this situation, because ordinarily we guess whether the type
16360 is unsigned -- but the guess can be wrong and the underlying type
16361 can tell us the reality. However, we defer to a local size
16362 attribute if one exists, because this lets the compiler override
16363 the underlying type if needed. */
16364 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16365 {
16366 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16367 if (TYPE_LENGTH (type) == 0)
16368 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16369 if (TYPE_RAW_ALIGN (type) == 0
16370 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16371 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16372 }
16373
16374 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16375
16376 return set_die_type (die, type, cu);
16377 }
16378
16379 /* Given a pointer to a die which begins an enumeration, process all
16380 the dies that define the members of the enumeration, and create the
16381 symbol for the enumeration type.
16382
16383 NOTE: We reverse the order of the element list. */
16384
16385 static void
16386 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16387 {
16388 struct type *this_type;
16389
16390 this_type = get_die_type (die, cu);
16391 if (this_type == NULL)
16392 this_type = read_enumeration_type (die, cu);
16393
16394 if (die->child != NULL)
16395 {
16396 struct die_info *child_die;
16397 struct symbol *sym;
16398 struct field *fields = NULL;
16399 int num_fields = 0;
16400 const char *name;
16401
16402 child_die = die->child;
16403 while (child_die && child_die->tag)
16404 {
16405 if (child_die->tag != DW_TAG_enumerator)
16406 {
16407 process_die (child_die, cu);
16408 }
16409 else
16410 {
16411 name = dwarf2_name (child_die, cu);
16412 if (name)
16413 {
16414 sym = new_symbol (child_die, this_type, cu);
16415
16416 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16417 {
16418 fields = (struct field *)
16419 xrealloc (fields,
16420 (num_fields + DW_FIELD_ALLOC_CHUNK)
16421 * sizeof (struct field));
16422 }
16423
16424 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16425 FIELD_TYPE (fields[num_fields]) = NULL;
16426 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16427 FIELD_BITSIZE (fields[num_fields]) = 0;
16428
16429 num_fields++;
16430 }
16431 }
16432
16433 child_die = sibling_die (child_die);
16434 }
16435
16436 if (num_fields)
16437 {
16438 TYPE_NFIELDS (this_type) = num_fields;
16439 TYPE_FIELDS (this_type) = (struct field *)
16440 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16441 memcpy (TYPE_FIELDS (this_type), fields,
16442 sizeof (struct field) * num_fields);
16443 xfree (fields);
16444 }
16445 }
16446
16447 /* If we are reading an enum from a .debug_types unit, and the enum
16448 is a declaration, and the enum is not the signatured type in the
16449 unit, then we do not want to add a symbol for it. Adding a
16450 symbol would in some cases obscure the true definition of the
16451 enum, giving users an incomplete type when the definition is
16452 actually available. Note that we do not want to do this for all
16453 enums which are just declarations, because C++0x allows forward
16454 enum declarations. */
16455 if (cu->per_cu->is_debug_types
16456 && die_is_declaration (die, cu))
16457 {
16458 struct signatured_type *sig_type;
16459
16460 sig_type = (struct signatured_type *) cu->per_cu;
16461 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16462 if (sig_type->type_offset_in_section != die->sect_off)
16463 return;
16464 }
16465
16466 new_symbol (die, this_type, cu);
16467 }
16468
16469 /* Extract all information from a DW_TAG_array_type DIE and put it in
16470 the DIE's type field. For now, this only handles one dimensional
16471 arrays. */
16472
16473 static struct type *
16474 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16475 {
16476 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16477 struct die_info *child_die;
16478 struct type *type;
16479 struct type *element_type, *range_type, *index_type;
16480 struct attribute *attr;
16481 const char *name;
16482 struct dynamic_prop *byte_stride_prop = NULL;
16483 unsigned int bit_stride = 0;
16484
16485 element_type = die_type (die, cu);
16486
16487 /* The die_type call above may have already set the type for this DIE. */
16488 type = get_die_type (die, cu);
16489 if (type)
16490 return type;
16491
16492 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16493 if (attr != NULL)
16494 {
16495 int stride_ok;
16496
16497 byte_stride_prop
16498 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16499 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16500 if (!stride_ok)
16501 {
16502 complaint (_("unable to read array DW_AT_byte_stride "
16503 " - DIE at %s [in module %s]"),
16504 sect_offset_str (die->sect_off),
16505 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16506 /* Ignore this attribute. We will likely not be able to print
16507 arrays of this type correctly, but there is little we can do
16508 to help if we cannot read the attribute's value. */
16509 byte_stride_prop = NULL;
16510 }
16511 }
16512
16513 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16514 if (attr != NULL)
16515 bit_stride = DW_UNSND (attr);
16516
16517 /* Irix 6.2 native cc creates array types without children for
16518 arrays with unspecified length. */
16519 if (die->child == NULL)
16520 {
16521 index_type = objfile_type (objfile)->builtin_int;
16522 range_type = create_static_range_type (NULL, index_type, 0, -1);
16523 type = create_array_type_with_stride (NULL, element_type, range_type,
16524 byte_stride_prop, bit_stride);
16525 return set_die_type (die, type, cu);
16526 }
16527
16528 std::vector<struct type *> range_types;
16529 child_die = die->child;
16530 while (child_die && child_die->tag)
16531 {
16532 if (child_die->tag == DW_TAG_subrange_type)
16533 {
16534 struct type *child_type = read_type_die (child_die, cu);
16535
16536 if (child_type != NULL)
16537 {
16538 /* The range type was succesfully read. Save it for the
16539 array type creation. */
16540 range_types.push_back (child_type);
16541 }
16542 }
16543 child_die = sibling_die (child_die);
16544 }
16545
16546 /* Dwarf2 dimensions are output from left to right, create the
16547 necessary array types in backwards order. */
16548
16549 type = element_type;
16550
16551 if (read_array_order (die, cu) == DW_ORD_col_major)
16552 {
16553 int i = 0;
16554
16555 while (i < range_types.size ())
16556 type = create_array_type_with_stride (NULL, type, range_types[i++],
16557 byte_stride_prop, bit_stride);
16558 }
16559 else
16560 {
16561 size_t ndim = range_types.size ();
16562 while (ndim-- > 0)
16563 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16564 byte_stride_prop, bit_stride);
16565 }
16566
16567 /* Understand Dwarf2 support for vector types (like they occur on
16568 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16569 array type. This is not part of the Dwarf2/3 standard yet, but a
16570 custom vendor extension. The main difference between a regular
16571 array and the vector variant is that vectors are passed by value
16572 to functions. */
16573 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16574 if (attr)
16575 make_vector_type (type);
16576
16577 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16578 implementation may choose to implement triple vectors using this
16579 attribute. */
16580 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16581 if (attr)
16582 {
16583 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16584 TYPE_LENGTH (type) = DW_UNSND (attr);
16585 else
16586 complaint (_("DW_AT_byte_size for array type smaller "
16587 "than the total size of elements"));
16588 }
16589
16590 name = dwarf2_name (die, cu);
16591 if (name)
16592 TYPE_NAME (type) = name;
16593
16594 maybe_set_alignment (cu, die, type);
16595
16596 /* Install the type in the die. */
16597 set_die_type (die, type, cu);
16598
16599 /* set_die_type should be already done. */
16600 set_descriptive_type (type, die, cu);
16601
16602 return type;
16603 }
16604
16605 static enum dwarf_array_dim_ordering
16606 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16607 {
16608 struct attribute *attr;
16609
16610 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16611
16612 if (attr)
16613 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16614
16615 /* GNU F77 is a special case, as at 08/2004 array type info is the
16616 opposite order to the dwarf2 specification, but data is still
16617 laid out as per normal fortran.
16618
16619 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16620 version checking. */
16621
16622 if (cu->language == language_fortran
16623 && cu->producer && strstr (cu->producer, "GNU F77"))
16624 {
16625 return DW_ORD_row_major;
16626 }
16627
16628 switch (cu->language_defn->la_array_ordering)
16629 {
16630 case array_column_major:
16631 return DW_ORD_col_major;
16632 case array_row_major:
16633 default:
16634 return DW_ORD_row_major;
16635 };
16636 }
16637
16638 /* Extract all information from a DW_TAG_set_type DIE and put it in
16639 the DIE's type field. */
16640
16641 static struct type *
16642 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16643 {
16644 struct type *domain_type, *set_type;
16645 struct attribute *attr;
16646
16647 domain_type = die_type (die, cu);
16648
16649 /* The die_type call above may have already set the type for this DIE. */
16650 set_type = get_die_type (die, cu);
16651 if (set_type)
16652 return set_type;
16653
16654 set_type = create_set_type (NULL, domain_type);
16655
16656 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16657 if (attr)
16658 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16659
16660 maybe_set_alignment (cu, die, set_type);
16661
16662 return set_die_type (die, set_type, cu);
16663 }
16664
16665 /* A helper for read_common_block that creates a locexpr baton.
16666 SYM is the symbol which we are marking as computed.
16667 COMMON_DIE is the DIE for the common block.
16668 COMMON_LOC is the location expression attribute for the common
16669 block itself.
16670 MEMBER_LOC is the location expression attribute for the particular
16671 member of the common block that we are processing.
16672 CU is the CU from which the above come. */
16673
16674 static void
16675 mark_common_block_symbol_computed (struct symbol *sym,
16676 struct die_info *common_die,
16677 struct attribute *common_loc,
16678 struct attribute *member_loc,
16679 struct dwarf2_cu *cu)
16680 {
16681 struct dwarf2_per_objfile *dwarf2_per_objfile
16682 = cu->per_cu->dwarf2_per_objfile;
16683 struct objfile *objfile = dwarf2_per_objfile->objfile;
16684 struct dwarf2_locexpr_baton *baton;
16685 gdb_byte *ptr;
16686 unsigned int cu_off;
16687 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16688 LONGEST offset = 0;
16689
16690 gdb_assert (common_loc && member_loc);
16691 gdb_assert (attr_form_is_block (common_loc));
16692 gdb_assert (attr_form_is_block (member_loc)
16693 || attr_form_is_constant (member_loc));
16694
16695 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16696 baton->per_cu = cu->per_cu;
16697 gdb_assert (baton->per_cu);
16698
16699 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16700
16701 if (attr_form_is_constant (member_loc))
16702 {
16703 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16704 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16705 }
16706 else
16707 baton->size += DW_BLOCK (member_loc)->size;
16708
16709 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16710 baton->data = ptr;
16711
16712 *ptr++ = DW_OP_call4;
16713 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16714 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16715 ptr += 4;
16716
16717 if (attr_form_is_constant (member_loc))
16718 {
16719 *ptr++ = DW_OP_addr;
16720 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16721 ptr += cu->header.addr_size;
16722 }
16723 else
16724 {
16725 /* We have to copy the data here, because DW_OP_call4 will only
16726 use a DW_AT_location attribute. */
16727 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16728 ptr += DW_BLOCK (member_loc)->size;
16729 }
16730
16731 *ptr++ = DW_OP_plus;
16732 gdb_assert (ptr - baton->data == baton->size);
16733
16734 SYMBOL_LOCATION_BATON (sym) = baton;
16735 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16736 }
16737
16738 /* Create appropriate locally-scoped variables for all the
16739 DW_TAG_common_block entries. Also create a struct common_block
16740 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16741 is used to sepate the common blocks name namespace from regular
16742 variable names. */
16743
16744 static void
16745 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16746 {
16747 struct attribute *attr;
16748
16749 attr = dwarf2_attr (die, DW_AT_location, cu);
16750 if (attr)
16751 {
16752 /* Support the .debug_loc offsets. */
16753 if (attr_form_is_block (attr))
16754 {
16755 /* Ok. */
16756 }
16757 else if (attr_form_is_section_offset (attr))
16758 {
16759 dwarf2_complex_location_expr_complaint ();
16760 attr = NULL;
16761 }
16762 else
16763 {
16764 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16765 "common block member");
16766 attr = NULL;
16767 }
16768 }
16769
16770 if (die->child != NULL)
16771 {
16772 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16773 struct die_info *child_die;
16774 size_t n_entries = 0, size;
16775 struct common_block *common_block;
16776 struct symbol *sym;
16777
16778 for (child_die = die->child;
16779 child_die && child_die->tag;
16780 child_die = sibling_die (child_die))
16781 ++n_entries;
16782
16783 size = (sizeof (struct common_block)
16784 + (n_entries - 1) * sizeof (struct symbol *));
16785 common_block
16786 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16787 size);
16788 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16789 common_block->n_entries = 0;
16790
16791 for (child_die = die->child;
16792 child_die && child_die->tag;
16793 child_die = sibling_die (child_die))
16794 {
16795 /* Create the symbol in the DW_TAG_common_block block in the current
16796 symbol scope. */
16797 sym = new_symbol (child_die, NULL, cu);
16798 if (sym != NULL)
16799 {
16800 struct attribute *member_loc;
16801
16802 common_block->contents[common_block->n_entries++] = sym;
16803
16804 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16805 cu);
16806 if (member_loc)
16807 {
16808 /* GDB has handled this for a long time, but it is
16809 not specified by DWARF. It seems to have been
16810 emitted by gfortran at least as recently as:
16811 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16812 complaint (_("Variable in common block has "
16813 "DW_AT_data_member_location "
16814 "- DIE at %s [in module %s]"),
16815 sect_offset_str (child_die->sect_off),
16816 objfile_name (objfile));
16817
16818 if (attr_form_is_section_offset (member_loc))
16819 dwarf2_complex_location_expr_complaint ();
16820 else if (attr_form_is_constant (member_loc)
16821 || attr_form_is_block (member_loc))
16822 {
16823 if (attr)
16824 mark_common_block_symbol_computed (sym, die, attr,
16825 member_loc, cu);
16826 }
16827 else
16828 dwarf2_complex_location_expr_complaint ();
16829 }
16830 }
16831 }
16832
16833 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16834 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16835 }
16836 }
16837
16838 /* Create a type for a C++ namespace. */
16839
16840 static struct type *
16841 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16842 {
16843 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16844 const char *previous_prefix, *name;
16845 int is_anonymous;
16846 struct type *type;
16847
16848 /* For extensions, reuse the type of the original namespace. */
16849 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16850 {
16851 struct die_info *ext_die;
16852 struct dwarf2_cu *ext_cu = cu;
16853
16854 ext_die = dwarf2_extension (die, &ext_cu);
16855 type = read_type_die (ext_die, ext_cu);
16856
16857 /* EXT_CU may not be the same as CU.
16858 Ensure TYPE is recorded with CU in die_type_hash. */
16859 return set_die_type (die, type, cu);
16860 }
16861
16862 name = namespace_name (die, &is_anonymous, cu);
16863
16864 /* Now build the name of the current namespace. */
16865
16866 previous_prefix = determine_prefix (die, cu);
16867 if (previous_prefix[0] != '\0')
16868 name = typename_concat (&objfile->objfile_obstack,
16869 previous_prefix, name, 0, cu);
16870
16871 /* Create the type. */
16872 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16873
16874 return set_die_type (die, type, cu);
16875 }
16876
16877 /* Read a namespace scope. */
16878
16879 static void
16880 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16881 {
16882 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16883 int is_anonymous;
16884
16885 /* Add a symbol associated to this if we haven't seen the namespace
16886 before. Also, add a using directive if it's an anonymous
16887 namespace. */
16888
16889 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16890 {
16891 struct type *type;
16892
16893 type = read_type_die (die, cu);
16894 new_symbol (die, type, cu);
16895
16896 namespace_name (die, &is_anonymous, cu);
16897 if (is_anonymous)
16898 {
16899 const char *previous_prefix = determine_prefix (die, cu);
16900
16901 std::vector<const char *> excludes;
16902 add_using_directive (using_directives (cu),
16903 previous_prefix, TYPE_NAME (type), NULL,
16904 NULL, excludes, 0, &objfile->objfile_obstack);
16905 }
16906 }
16907
16908 if (die->child != NULL)
16909 {
16910 struct die_info *child_die = die->child;
16911
16912 while (child_die && child_die->tag)
16913 {
16914 process_die (child_die, cu);
16915 child_die = sibling_die (child_die);
16916 }
16917 }
16918 }
16919
16920 /* Read a Fortran module as type. This DIE can be only a declaration used for
16921 imported module. Still we need that type as local Fortran "use ... only"
16922 declaration imports depend on the created type in determine_prefix. */
16923
16924 static struct type *
16925 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16926 {
16927 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16928 const char *module_name;
16929 struct type *type;
16930
16931 module_name = dwarf2_name (die, cu);
16932 if (!module_name)
16933 complaint (_("DW_TAG_module has no name, offset %s"),
16934 sect_offset_str (die->sect_off));
16935 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16936
16937 return set_die_type (die, type, cu);
16938 }
16939
16940 /* Read a Fortran module. */
16941
16942 static void
16943 read_module (struct die_info *die, struct dwarf2_cu *cu)
16944 {
16945 struct die_info *child_die = die->child;
16946 struct type *type;
16947
16948 type = read_type_die (die, cu);
16949 new_symbol (die, type, cu);
16950
16951 while (child_die && child_die->tag)
16952 {
16953 process_die (child_die, cu);
16954 child_die = sibling_die (child_die);
16955 }
16956 }
16957
16958 /* Return the name of the namespace represented by DIE. Set
16959 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16960 namespace. */
16961
16962 static const char *
16963 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16964 {
16965 struct die_info *current_die;
16966 const char *name = NULL;
16967
16968 /* Loop through the extensions until we find a name. */
16969
16970 for (current_die = die;
16971 current_die != NULL;
16972 current_die = dwarf2_extension (die, &cu))
16973 {
16974 /* We don't use dwarf2_name here so that we can detect the absence
16975 of a name -> anonymous namespace. */
16976 name = dwarf2_string_attr (die, DW_AT_name, cu);
16977
16978 if (name != NULL)
16979 break;
16980 }
16981
16982 /* Is it an anonymous namespace? */
16983
16984 *is_anonymous = (name == NULL);
16985 if (*is_anonymous)
16986 name = CP_ANONYMOUS_NAMESPACE_STR;
16987
16988 return name;
16989 }
16990
16991 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16992 the user defined type vector. */
16993
16994 static struct type *
16995 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16996 {
16997 struct gdbarch *gdbarch
16998 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16999 struct comp_unit_head *cu_header = &cu->header;
17000 struct type *type;
17001 struct attribute *attr_byte_size;
17002 struct attribute *attr_address_class;
17003 int byte_size, addr_class;
17004 struct type *target_type;
17005
17006 target_type = die_type (die, cu);
17007
17008 /* The die_type call above may have already set the type for this DIE. */
17009 type = get_die_type (die, cu);
17010 if (type)
17011 return type;
17012
17013 type = lookup_pointer_type (target_type);
17014
17015 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17016 if (attr_byte_size)
17017 byte_size = DW_UNSND (attr_byte_size);
17018 else
17019 byte_size = cu_header->addr_size;
17020
17021 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17022 if (attr_address_class)
17023 addr_class = DW_UNSND (attr_address_class);
17024 else
17025 addr_class = DW_ADDR_none;
17026
17027 ULONGEST alignment = get_alignment (cu, die);
17028
17029 /* If the pointer size, alignment, or address class is different
17030 than the default, create a type variant marked as such and set
17031 the length accordingly. */
17032 if (TYPE_LENGTH (type) != byte_size
17033 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17034 && alignment != TYPE_RAW_ALIGN (type))
17035 || addr_class != DW_ADDR_none)
17036 {
17037 if (gdbarch_address_class_type_flags_p (gdbarch))
17038 {
17039 int type_flags;
17040
17041 type_flags = gdbarch_address_class_type_flags
17042 (gdbarch, byte_size, addr_class);
17043 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17044 == 0);
17045 type = make_type_with_address_space (type, type_flags);
17046 }
17047 else if (TYPE_LENGTH (type) != byte_size)
17048 {
17049 complaint (_("invalid pointer size %d"), byte_size);
17050 }
17051 else if (TYPE_RAW_ALIGN (type) != alignment)
17052 {
17053 complaint (_("Invalid DW_AT_alignment"
17054 " - DIE at %s [in module %s]"),
17055 sect_offset_str (die->sect_off),
17056 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17057 }
17058 else
17059 {
17060 /* Should we also complain about unhandled address classes? */
17061 }
17062 }
17063
17064 TYPE_LENGTH (type) = byte_size;
17065 set_type_align (type, alignment);
17066 return set_die_type (die, type, cu);
17067 }
17068
17069 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17070 the user defined type vector. */
17071
17072 static struct type *
17073 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17074 {
17075 struct type *type;
17076 struct type *to_type;
17077 struct type *domain;
17078
17079 to_type = die_type (die, cu);
17080 domain = die_containing_type (die, cu);
17081
17082 /* The calls above may have already set the type for this DIE. */
17083 type = get_die_type (die, cu);
17084 if (type)
17085 return type;
17086
17087 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17088 type = lookup_methodptr_type (to_type);
17089 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17090 {
17091 struct type *new_type
17092 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17093
17094 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17095 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17096 TYPE_VARARGS (to_type));
17097 type = lookup_methodptr_type (new_type);
17098 }
17099 else
17100 type = lookup_memberptr_type (to_type, domain);
17101
17102 return set_die_type (die, type, cu);
17103 }
17104
17105 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17106 the user defined type vector. */
17107
17108 static struct type *
17109 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17110 enum type_code refcode)
17111 {
17112 struct comp_unit_head *cu_header = &cu->header;
17113 struct type *type, *target_type;
17114 struct attribute *attr;
17115
17116 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17117
17118 target_type = die_type (die, cu);
17119
17120 /* The die_type call above may have already set the type for this DIE. */
17121 type = get_die_type (die, cu);
17122 if (type)
17123 return type;
17124
17125 type = lookup_reference_type (target_type, refcode);
17126 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17127 if (attr)
17128 {
17129 TYPE_LENGTH (type) = DW_UNSND (attr);
17130 }
17131 else
17132 {
17133 TYPE_LENGTH (type) = cu_header->addr_size;
17134 }
17135 maybe_set_alignment (cu, die, type);
17136 return set_die_type (die, type, cu);
17137 }
17138
17139 /* Add the given cv-qualifiers to the element type of the array. GCC
17140 outputs DWARF type qualifiers that apply to an array, not the
17141 element type. But GDB relies on the array element type to carry
17142 the cv-qualifiers. This mimics section 6.7.3 of the C99
17143 specification. */
17144
17145 static struct type *
17146 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17147 struct type *base_type, int cnst, int voltl)
17148 {
17149 struct type *el_type, *inner_array;
17150
17151 base_type = copy_type (base_type);
17152 inner_array = base_type;
17153
17154 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17155 {
17156 TYPE_TARGET_TYPE (inner_array) =
17157 copy_type (TYPE_TARGET_TYPE (inner_array));
17158 inner_array = TYPE_TARGET_TYPE (inner_array);
17159 }
17160
17161 el_type = TYPE_TARGET_TYPE (inner_array);
17162 cnst |= TYPE_CONST (el_type);
17163 voltl |= TYPE_VOLATILE (el_type);
17164 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17165
17166 return set_die_type (die, base_type, cu);
17167 }
17168
17169 static struct type *
17170 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17171 {
17172 struct type *base_type, *cv_type;
17173
17174 base_type = die_type (die, cu);
17175
17176 /* The die_type call above may have already set the type for this DIE. */
17177 cv_type = get_die_type (die, cu);
17178 if (cv_type)
17179 return cv_type;
17180
17181 /* In case the const qualifier is applied to an array type, the element type
17182 is so qualified, not the array type (section 6.7.3 of C99). */
17183 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17184 return add_array_cv_type (die, cu, base_type, 1, 0);
17185
17186 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17187 return set_die_type (die, cv_type, cu);
17188 }
17189
17190 static struct type *
17191 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17192 {
17193 struct type *base_type, *cv_type;
17194
17195 base_type = die_type (die, cu);
17196
17197 /* The die_type call above may have already set the type for this DIE. */
17198 cv_type = get_die_type (die, cu);
17199 if (cv_type)
17200 return cv_type;
17201
17202 /* In case the volatile qualifier is applied to an array type, the
17203 element type is so qualified, not the array type (section 6.7.3
17204 of C99). */
17205 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17206 return add_array_cv_type (die, cu, base_type, 0, 1);
17207
17208 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17209 return set_die_type (die, cv_type, cu);
17210 }
17211
17212 /* Handle DW_TAG_restrict_type. */
17213
17214 static struct type *
17215 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17216 {
17217 struct type *base_type, *cv_type;
17218
17219 base_type = die_type (die, cu);
17220
17221 /* The die_type call above may have already set the type for this DIE. */
17222 cv_type = get_die_type (die, cu);
17223 if (cv_type)
17224 return cv_type;
17225
17226 cv_type = make_restrict_type (base_type);
17227 return set_die_type (die, cv_type, cu);
17228 }
17229
17230 /* Handle DW_TAG_atomic_type. */
17231
17232 static struct type *
17233 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17234 {
17235 struct type *base_type, *cv_type;
17236
17237 base_type = die_type (die, cu);
17238
17239 /* The die_type call above may have already set the type for this DIE. */
17240 cv_type = get_die_type (die, cu);
17241 if (cv_type)
17242 return cv_type;
17243
17244 cv_type = make_atomic_type (base_type);
17245 return set_die_type (die, cv_type, cu);
17246 }
17247
17248 /* Extract all information from a DW_TAG_string_type DIE and add to
17249 the user defined type vector. It isn't really a user defined type,
17250 but it behaves like one, with other DIE's using an AT_user_def_type
17251 attribute to reference it. */
17252
17253 static struct type *
17254 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17255 {
17256 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17257 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17258 struct type *type, *range_type, *index_type, *char_type;
17259 struct attribute *attr;
17260 unsigned int length;
17261
17262 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17263 if (attr)
17264 {
17265 length = DW_UNSND (attr);
17266 }
17267 else
17268 {
17269 /* Check for the DW_AT_byte_size attribute. */
17270 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17271 if (attr)
17272 {
17273 length = DW_UNSND (attr);
17274 }
17275 else
17276 {
17277 length = 1;
17278 }
17279 }
17280
17281 index_type = objfile_type (objfile)->builtin_int;
17282 range_type = create_static_range_type (NULL, index_type, 1, length);
17283 char_type = language_string_char_type (cu->language_defn, gdbarch);
17284 type = create_string_type (NULL, char_type, range_type);
17285
17286 return set_die_type (die, type, cu);
17287 }
17288
17289 /* Assuming that DIE corresponds to a function, returns nonzero
17290 if the function is prototyped. */
17291
17292 static int
17293 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17294 {
17295 struct attribute *attr;
17296
17297 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17298 if (attr && (DW_UNSND (attr) != 0))
17299 return 1;
17300
17301 /* The DWARF standard implies that the DW_AT_prototyped attribute
17302 is only meaninful for C, but the concept also extends to other
17303 languages that allow unprototyped functions (Eg: Objective C).
17304 For all other languages, assume that functions are always
17305 prototyped. */
17306 if (cu->language != language_c
17307 && cu->language != language_objc
17308 && cu->language != language_opencl)
17309 return 1;
17310
17311 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17312 prototyped and unprototyped functions; default to prototyped,
17313 since that is more common in modern code (and RealView warns
17314 about unprototyped functions). */
17315 if (producer_is_realview (cu->producer))
17316 return 1;
17317
17318 return 0;
17319 }
17320
17321 /* Handle DIES due to C code like:
17322
17323 struct foo
17324 {
17325 int (*funcp)(int a, long l);
17326 int b;
17327 };
17328
17329 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17330
17331 static struct type *
17332 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17333 {
17334 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17335 struct type *type; /* Type that this function returns. */
17336 struct type *ftype; /* Function that returns above type. */
17337 struct attribute *attr;
17338
17339 type = die_type (die, cu);
17340
17341 /* The die_type call above may have already set the type for this DIE. */
17342 ftype = get_die_type (die, cu);
17343 if (ftype)
17344 return ftype;
17345
17346 ftype = lookup_function_type (type);
17347
17348 if (prototyped_function_p (die, cu))
17349 TYPE_PROTOTYPED (ftype) = 1;
17350
17351 /* Store the calling convention in the type if it's available in
17352 the subroutine die. Otherwise set the calling convention to
17353 the default value DW_CC_normal. */
17354 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17355 if (attr)
17356 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17357 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17358 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17359 else
17360 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17361
17362 /* Record whether the function returns normally to its caller or not
17363 if the DWARF producer set that information. */
17364 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17365 if (attr && (DW_UNSND (attr) != 0))
17366 TYPE_NO_RETURN (ftype) = 1;
17367
17368 /* We need to add the subroutine type to the die immediately so
17369 we don't infinitely recurse when dealing with parameters
17370 declared as the same subroutine type. */
17371 set_die_type (die, ftype, cu);
17372
17373 if (die->child != NULL)
17374 {
17375 struct type *void_type = objfile_type (objfile)->builtin_void;
17376 struct die_info *child_die;
17377 int nparams, iparams;
17378
17379 /* Count the number of parameters.
17380 FIXME: GDB currently ignores vararg functions, but knows about
17381 vararg member functions. */
17382 nparams = 0;
17383 child_die = die->child;
17384 while (child_die && child_die->tag)
17385 {
17386 if (child_die->tag == DW_TAG_formal_parameter)
17387 nparams++;
17388 else if (child_die->tag == DW_TAG_unspecified_parameters)
17389 TYPE_VARARGS (ftype) = 1;
17390 child_die = sibling_die (child_die);
17391 }
17392
17393 /* Allocate storage for parameters and fill them in. */
17394 TYPE_NFIELDS (ftype) = nparams;
17395 TYPE_FIELDS (ftype) = (struct field *)
17396 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17397
17398 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17399 even if we error out during the parameters reading below. */
17400 for (iparams = 0; iparams < nparams; iparams++)
17401 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17402
17403 iparams = 0;
17404 child_die = die->child;
17405 while (child_die && child_die->tag)
17406 {
17407 if (child_die->tag == DW_TAG_formal_parameter)
17408 {
17409 struct type *arg_type;
17410
17411 /* DWARF version 2 has no clean way to discern C++
17412 static and non-static member functions. G++ helps
17413 GDB by marking the first parameter for non-static
17414 member functions (which is the this pointer) as
17415 artificial. We pass this information to
17416 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17417
17418 DWARF version 3 added DW_AT_object_pointer, which GCC
17419 4.5 does not yet generate. */
17420 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17421 if (attr)
17422 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17423 else
17424 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17425 arg_type = die_type (child_die, cu);
17426
17427 /* RealView does not mark THIS as const, which the testsuite
17428 expects. GCC marks THIS as const in method definitions,
17429 but not in the class specifications (GCC PR 43053). */
17430 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17431 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17432 {
17433 int is_this = 0;
17434 struct dwarf2_cu *arg_cu = cu;
17435 const char *name = dwarf2_name (child_die, cu);
17436
17437 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17438 if (attr)
17439 {
17440 /* If the compiler emits this, use it. */
17441 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17442 is_this = 1;
17443 }
17444 else if (name && strcmp (name, "this") == 0)
17445 /* Function definitions will have the argument names. */
17446 is_this = 1;
17447 else if (name == NULL && iparams == 0)
17448 /* Declarations may not have the names, so like
17449 elsewhere in GDB, assume an artificial first
17450 argument is "this". */
17451 is_this = 1;
17452
17453 if (is_this)
17454 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17455 arg_type, 0);
17456 }
17457
17458 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17459 iparams++;
17460 }
17461 child_die = sibling_die (child_die);
17462 }
17463 }
17464
17465 return ftype;
17466 }
17467
17468 static struct type *
17469 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17470 {
17471 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17472 const char *name = NULL;
17473 struct type *this_type, *target_type;
17474
17475 name = dwarf2_full_name (NULL, die, cu);
17476 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17477 TYPE_TARGET_STUB (this_type) = 1;
17478 set_die_type (die, this_type, cu);
17479 target_type = die_type (die, cu);
17480 if (target_type != this_type)
17481 TYPE_TARGET_TYPE (this_type) = target_type;
17482 else
17483 {
17484 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17485 spec and cause infinite loops in GDB. */
17486 complaint (_("Self-referential DW_TAG_typedef "
17487 "- DIE at %s [in module %s]"),
17488 sect_offset_str (die->sect_off), objfile_name (objfile));
17489 TYPE_TARGET_TYPE (this_type) = NULL;
17490 }
17491 return this_type;
17492 }
17493
17494 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17495 (which may be different from NAME) to the architecture back-end to allow
17496 it to guess the correct format if necessary. */
17497
17498 static struct type *
17499 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17500 const char *name_hint)
17501 {
17502 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17503 const struct floatformat **format;
17504 struct type *type;
17505
17506 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17507 if (format)
17508 type = init_float_type (objfile, bits, name, format);
17509 else
17510 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17511
17512 return type;
17513 }
17514
17515 /* Allocate an integer type of size BITS and name NAME. */
17516
17517 static struct type *
17518 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17519 int bits, int unsigned_p, const char *name)
17520 {
17521 struct type *type;
17522
17523 /* Versions of Intel's C Compiler generate an integer type called "void"
17524 instead of using DW_TAG_unspecified_type. This has been seen on
17525 at least versions 14, 17, and 18. */
17526 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17527 && strcmp (name, "void") == 0)
17528 type = objfile_type (objfile)->builtin_void;
17529 else
17530 type = init_integer_type (objfile, bits, unsigned_p, name);
17531
17532 return type;
17533 }
17534
17535 /* Find a representation of a given base type and install
17536 it in the TYPE field of the die. */
17537
17538 static struct type *
17539 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17540 {
17541 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17542 struct type *type;
17543 struct attribute *attr;
17544 int encoding = 0, bits = 0;
17545 const char *name;
17546
17547 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17548 if (attr)
17549 {
17550 encoding = DW_UNSND (attr);
17551 }
17552 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17553 if (attr)
17554 {
17555 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17556 }
17557 name = dwarf2_name (die, cu);
17558 if (!name)
17559 {
17560 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17561 }
17562
17563 switch (encoding)
17564 {
17565 case DW_ATE_address:
17566 /* Turn DW_ATE_address into a void * pointer. */
17567 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17568 type = init_pointer_type (objfile, bits, name, type);
17569 break;
17570 case DW_ATE_boolean:
17571 type = init_boolean_type (objfile, bits, 1, name);
17572 break;
17573 case DW_ATE_complex_float:
17574 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17575 type = init_complex_type (objfile, name, type);
17576 break;
17577 case DW_ATE_decimal_float:
17578 type = init_decfloat_type (objfile, bits, name);
17579 break;
17580 case DW_ATE_float:
17581 type = dwarf2_init_float_type (objfile, bits, name, name);
17582 break;
17583 case DW_ATE_signed:
17584 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17585 break;
17586 case DW_ATE_unsigned:
17587 if (cu->language == language_fortran
17588 && name
17589 && startswith (name, "character("))
17590 type = init_character_type (objfile, bits, 1, name);
17591 else
17592 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17593 break;
17594 case DW_ATE_signed_char:
17595 if (cu->language == language_ada || cu->language == language_m2
17596 || cu->language == language_pascal
17597 || cu->language == language_fortran)
17598 type = init_character_type (objfile, bits, 0, name);
17599 else
17600 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17601 break;
17602 case DW_ATE_unsigned_char:
17603 if (cu->language == language_ada || cu->language == language_m2
17604 || cu->language == language_pascal
17605 || cu->language == language_fortran
17606 || cu->language == language_rust)
17607 type = init_character_type (objfile, bits, 1, name);
17608 else
17609 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17610 break;
17611 case DW_ATE_UTF:
17612 {
17613 gdbarch *arch = get_objfile_arch (objfile);
17614
17615 if (bits == 16)
17616 type = builtin_type (arch)->builtin_char16;
17617 else if (bits == 32)
17618 type = builtin_type (arch)->builtin_char32;
17619 else
17620 {
17621 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17622 bits);
17623 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17624 }
17625 return set_die_type (die, type, cu);
17626 }
17627 break;
17628
17629 default:
17630 complaint (_("unsupported DW_AT_encoding: '%s'"),
17631 dwarf_type_encoding_name (encoding));
17632 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17633 break;
17634 }
17635
17636 if (name && strcmp (name, "char") == 0)
17637 TYPE_NOSIGN (type) = 1;
17638
17639 maybe_set_alignment (cu, die, type);
17640
17641 return set_die_type (die, type, cu);
17642 }
17643
17644 /* Parse dwarf attribute if it's a block, reference or constant and put the
17645 resulting value of the attribute into struct bound_prop.
17646 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17647
17648 static int
17649 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17650 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17651 {
17652 struct dwarf2_property_baton *baton;
17653 struct obstack *obstack
17654 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17655
17656 if (attr == NULL || prop == NULL)
17657 return 0;
17658
17659 if (attr_form_is_block (attr))
17660 {
17661 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17662 baton->referenced_type = NULL;
17663 baton->locexpr.per_cu = cu->per_cu;
17664 baton->locexpr.size = DW_BLOCK (attr)->size;
17665 baton->locexpr.data = DW_BLOCK (attr)->data;
17666 prop->data.baton = baton;
17667 prop->kind = PROP_LOCEXPR;
17668 gdb_assert (prop->data.baton != NULL);
17669 }
17670 else if (attr_form_is_ref (attr))
17671 {
17672 struct dwarf2_cu *target_cu = cu;
17673 struct die_info *target_die;
17674 struct attribute *target_attr;
17675
17676 target_die = follow_die_ref (die, attr, &target_cu);
17677 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17678 if (target_attr == NULL)
17679 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17680 target_cu);
17681 if (target_attr == NULL)
17682 return 0;
17683
17684 switch (target_attr->name)
17685 {
17686 case DW_AT_location:
17687 if (attr_form_is_section_offset (target_attr))
17688 {
17689 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17690 baton->referenced_type = die_type (target_die, target_cu);
17691 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17692 prop->data.baton = baton;
17693 prop->kind = PROP_LOCLIST;
17694 gdb_assert (prop->data.baton != NULL);
17695 }
17696 else if (attr_form_is_block (target_attr))
17697 {
17698 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17699 baton->referenced_type = die_type (target_die, target_cu);
17700 baton->locexpr.per_cu = cu->per_cu;
17701 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17702 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17703 prop->data.baton = baton;
17704 prop->kind = PROP_LOCEXPR;
17705 gdb_assert (prop->data.baton != NULL);
17706 }
17707 else
17708 {
17709 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17710 "dynamic property");
17711 return 0;
17712 }
17713 break;
17714 case DW_AT_data_member_location:
17715 {
17716 LONGEST offset;
17717
17718 if (!handle_data_member_location (target_die, target_cu,
17719 &offset))
17720 return 0;
17721
17722 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17723 baton->referenced_type = read_type_die (target_die->parent,
17724 target_cu);
17725 baton->offset_info.offset = offset;
17726 baton->offset_info.type = die_type (target_die, target_cu);
17727 prop->data.baton = baton;
17728 prop->kind = PROP_ADDR_OFFSET;
17729 break;
17730 }
17731 }
17732 }
17733 else if (attr_form_is_constant (attr))
17734 {
17735 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17736 prop->kind = PROP_CONST;
17737 }
17738 else
17739 {
17740 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17741 dwarf2_name (die, cu));
17742 return 0;
17743 }
17744
17745 return 1;
17746 }
17747
17748 /* Read the given DW_AT_subrange DIE. */
17749
17750 static struct type *
17751 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17752 {
17753 struct type *base_type, *orig_base_type;
17754 struct type *range_type;
17755 struct attribute *attr;
17756 struct dynamic_prop low, high;
17757 int low_default_is_valid;
17758 int high_bound_is_count = 0;
17759 const char *name;
17760 ULONGEST negative_mask;
17761
17762 orig_base_type = die_type (die, cu);
17763 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17764 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17765 creating the range type, but we use the result of check_typedef
17766 when examining properties of the type. */
17767 base_type = check_typedef (orig_base_type);
17768
17769 /* The die_type call above may have already set the type for this DIE. */
17770 range_type = get_die_type (die, cu);
17771 if (range_type)
17772 return range_type;
17773
17774 low.kind = PROP_CONST;
17775 high.kind = PROP_CONST;
17776 high.data.const_val = 0;
17777
17778 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17779 omitting DW_AT_lower_bound. */
17780 switch (cu->language)
17781 {
17782 case language_c:
17783 case language_cplus:
17784 low.data.const_val = 0;
17785 low_default_is_valid = 1;
17786 break;
17787 case language_fortran:
17788 low.data.const_val = 1;
17789 low_default_is_valid = 1;
17790 break;
17791 case language_d:
17792 case language_objc:
17793 case language_rust:
17794 low.data.const_val = 0;
17795 low_default_is_valid = (cu->header.version >= 4);
17796 break;
17797 case language_ada:
17798 case language_m2:
17799 case language_pascal:
17800 low.data.const_val = 1;
17801 low_default_is_valid = (cu->header.version >= 4);
17802 break;
17803 default:
17804 low.data.const_val = 0;
17805 low_default_is_valid = 0;
17806 break;
17807 }
17808
17809 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17810 if (attr)
17811 attr_to_dynamic_prop (attr, die, cu, &low);
17812 else if (!low_default_is_valid)
17813 complaint (_("Missing DW_AT_lower_bound "
17814 "- DIE at %s [in module %s]"),
17815 sect_offset_str (die->sect_off),
17816 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17817
17818 struct attribute *attr_ub, *attr_count;
17819 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17820 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17821 {
17822 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17823 if (attr_to_dynamic_prop (attr, die, cu, &high))
17824 {
17825 /* If bounds are constant do the final calculation here. */
17826 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17827 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17828 else
17829 high_bound_is_count = 1;
17830 }
17831 else
17832 {
17833 if (attr_ub != NULL)
17834 complaint (_("Unresolved DW_AT_upper_bound "
17835 "- DIE at %s [in module %s]"),
17836 sect_offset_str (die->sect_off),
17837 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17838 if (attr_count != NULL)
17839 complaint (_("Unresolved DW_AT_count "
17840 "- DIE at %s [in module %s]"),
17841 sect_offset_str (die->sect_off),
17842 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17843 }
17844
17845 }
17846
17847 /* Dwarf-2 specifications explicitly allows to create subrange types
17848 without specifying a base type.
17849 In that case, the base type must be set to the type of
17850 the lower bound, upper bound or count, in that order, if any of these
17851 three attributes references an object that has a type.
17852 If no base type is found, the Dwarf-2 specifications say that
17853 a signed integer type of size equal to the size of an address should
17854 be used.
17855 For the following C code: `extern char gdb_int [];'
17856 GCC produces an empty range DIE.
17857 FIXME: muller/2010-05-28: Possible references to object for low bound,
17858 high bound or count are not yet handled by this code. */
17859 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17860 {
17861 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17863 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17864 struct type *int_type = objfile_type (objfile)->builtin_int;
17865
17866 /* Test "int", "long int", and "long long int" objfile types,
17867 and select the first one having a size above or equal to the
17868 architecture address size. */
17869 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17870 base_type = int_type;
17871 else
17872 {
17873 int_type = objfile_type (objfile)->builtin_long;
17874 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17875 base_type = int_type;
17876 else
17877 {
17878 int_type = objfile_type (objfile)->builtin_long_long;
17879 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17880 base_type = int_type;
17881 }
17882 }
17883 }
17884
17885 /* Normally, the DWARF producers are expected to use a signed
17886 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17887 But this is unfortunately not always the case, as witnessed
17888 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17889 is used instead. To work around that ambiguity, we treat
17890 the bounds as signed, and thus sign-extend their values, when
17891 the base type is signed. */
17892 negative_mask =
17893 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17894 if (low.kind == PROP_CONST
17895 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17896 low.data.const_val |= negative_mask;
17897 if (high.kind == PROP_CONST
17898 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17899 high.data.const_val |= negative_mask;
17900
17901 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17902
17903 if (high_bound_is_count)
17904 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17905
17906 /* Ada expects an empty array on no boundary attributes. */
17907 if (attr == NULL && cu->language != language_ada)
17908 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17909
17910 name = dwarf2_name (die, cu);
17911 if (name)
17912 TYPE_NAME (range_type) = name;
17913
17914 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17915 if (attr)
17916 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17917
17918 maybe_set_alignment (cu, die, range_type);
17919
17920 set_die_type (die, range_type, cu);
17921
17922 /* set_die_type should be already done. */
17923 set_descriptive_type (range_type, die, cu);
17924
17925 return range_type;
17926 }
17927
17928 static struct type *
17929 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17930 {
17931 struct type *type;
17932
17933 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17934 NULL);
17935 TYPE_NAME (type) = dwarf2_name (die, cu);
17936
17937 /* In Ada, an unspecified type is typically used when the description
17938 of the type is defered to a different unit. When encountering
17939 such a type, we treat it as a stub, and try to resolve it later on,
17940 when needed. */
17941 if (cu->language == language_ada)
17942 TYPE_STUB (type) = 1;
17943
17944 return set_die_type (die, type, cu);
17945 }
17946
17947 /* Read a single die and all its descendents. Set the die's sibling
17948 field to NULL; set other fields in the die correctly, and set all
17949 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17950 location of the info_ptr after reading all of those dies. PARENT
17951 is the parent of the die in question. */
17952
17953 static struct die_info *
17954 read_die_and_children (const struct die_reader_specs *reader,
17955 const gdb_byte *info_ptr,
17956 const gdb_byte **new_info_ptr,
17957 struct die_info *parent)
17958 {
17959 struct die_info *die;
17960 const gdb_byte *cur_ptr;
17961 int has_children;
17962
17963 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17964 if (die == NULL)
17965 {
17966 *new_info_ptr = cur_ptr;
17967 return NULL;
17968 }
17969 store_in_ref_table (die, reader->cu);
17970
17971 if (has_children)
17972 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17973 else
17974 {
17975 die->child = NULL;
17976 *new_info_ptr = cur_ptr;
17977 }
17978
17979 die->sibling = NULL;
17980 die->parent = parent;
17981 return die;
17982 }
17983
17984 /* Read a die, all of its descendents, and all of its siblings; set
17985 all of the fields of all of the dies correctly. Arguments are as
17986 in read_die_and_children. */
17987
17988 static struct die_info *
17989 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17990 const gdb_byte *info_ptr,
17991 const gdb_byte **new_info_ptr,
17992 struct die_info *parent)
17993 {
17994 struct die_info *first_die, *last_sibling;
17995 const gdb_byte *cur_ptr;
17996
17997 cur_ptr = info_ptr;
17998 first_die = last_sibling = NULL;
17999
18000 while (1)
18001 {
18002 struct die_info *die
18003 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18004
18005 if (die == NULL)
18006 {
18007 *new_info_ptr = cur_ptr;
18008 return first_die;
18009 }
18010
18011 if (!first_die)
18012 first_die = die;
18013 else
18014 last_sibling->sibling = die;
18015
18016 last_sibling = die;
18017 }
18018 }
18019
18020 /* Read a die, all of its descendents, and all of its siblings; set
18021 all of the fields of all of the dies correctly. Arguments are as
18022 in read_die_and_children.
18023 This the main entry point for reading a DIE and all its children. */
18024
18025 static struct die_info *
18026 read_die_and_siblings (const struct die_reader_specs *reader,
18027 const gdb_byte *info_ptr,
18028 const gdb_byte **new_info_ptr,
18029 struct die_info *parent)
18030 {
18031 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18032 new_info_ptr, parent);
18033
18034 if (dwarf_die_debug)
18035 {
18036 fprintf_unfiltered (gdb_stdlog,
18037 "Read die from %s@0x%x of %s:\n",
18038 get_section_name (reader->die_section),
18039 (unsigned) (info_ptr - reader->die_section->buffer),
18040 bfd_get_filename (reader->abfd));
18041 dump_die (die, dwarf_die_debug);
18042 }
18043
18044 return die;
18045 }
18046
18047 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18048 attributes.
18049 The caller is responsible for filling in the extra attributes
18050 and updating (*DIEP)->num_attrs.
18051 Set DIEP to point to a newly allocated die with its information,
18052 except for its child, sibling, and parent fields.
18053 Set HAS_CHILDREN to tell whether the die has children or not. */
18054
18055 static const gdb_byte *
18056 read_full_die_1 (const struct die_reader_specs *reader,
18057 struct die_info **diep, const gdb_byte *info_ptr,
18058 int *has_children, int num_extra_attrs)
18059 {
18060 unsigned int abbrev_number, bytes_read, i;
18061 struct abbrev_info *abbrev;
18062 struct die_info *die;
18063 struct dwarf2_cu *cu = reader->cu;
18064 bfd *abfd = reader->abfd;
18065
18066 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18067 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18068 info_ptr += bytes_read;
18069 if (!abbrev_number)
18070 {
18071 *diep = NULL;
18072 *has_children = 0;
18073 return info_ptr;
18074 }
18075
18076 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18077 if (!abbrev)
18078 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18079 abbrev_number,
18080 bfd_get_filename (abfd));
18081
18082 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18083 die->sect_off = sect_off;
18084 die->tag = abbrev->tag;
18085 die->abbrev = abbrev_number;
18086
18087 /* Make the result usable.
18088 The caller needs to update num_attrs after adding the extra
18089 attributes. */
18090 die->num_attrs = abbrev->num_attrs;
18091
18092 for (i = 0; i < abbrev->num_attrs; ++i)
18093 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18094 info_ptr);
18095
18096 *diep = die;
18097 *has_children = abbrev->has_children;
18098 return info_ptr;
18099 }
18100
18101 /* Read a die and all its attributes.
18102 Set DIEP to point to a newly allocated die with its information,
18103 except for its child, sibling, and parent fields.
18104 Set HAS_CHILDREN to tell whether the die has children or not. */
18105
18106 static const gdb_byte *
18107 read_full_die (const struct die_reader_specs *reader,
18108 struct die_info **diep, const gdb_byte *info_ptr,
18109 int *has_children)
18110 {
18111 const gdb_byte *result;
18112
18113 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18114
18115 if (dwarf_die_debug)
18116 {
18117 fprintf_unfiltered (gdb_stdlog,
18118 "Read die from %s@0x%x of %s:\n",
18119 get_section_name (reader->die_section),
18120 (unsigned) (info_ptr - reader->die_section->buffer),
18121 bfd_get_filename (reader->abfd));
18122 dump_die (*diep, dwarf_die_debug);
18123 }
18124
18125 return result;
18126 }
18127 \f
18128 /* Abbreviation tables.
18129
18130 In DWARF version 2, the description of the debugging information is
18131 stored in a separate .debug_abbrev section. Before we read any
18132 dies from a section we read in all abbreviations and install them
18133 in a hash table. */
18134
18135 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18136
18137 struct abbrev_info *
18138 abbrev_table::alloc_abbrev ()
18139 {
18140 struct abbrev_info *abbrev;
18141
18142 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18143 memset (abbrev, 0, sizeof (struct abbrev_info));
18144
18145 return abbrev;
18146 }
18147
18148 /* Add an abbreviation to the table. */
18149
18150 void
18151 abbrev_table::add_abbrev (unsigned int abbrev_number,
18152 struct abbrev_info *abbrev)
18153 {
18154 unsigned int hash_number;
18155
18156 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18157 abbrev->next = m_abbrevs[hash_number];
18158 m_abbrevs[hash_number] = abbrev;
18159 }
18160
18161 /* Look up an abbrev in the table.
18162 Returns NULL if the abbrev is not found. */
18163
18164 struct abbrev_info *
18165 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18166 {
18167 unsigned int hash_number;
18168 struct abbrev_info *abbrev;
18169
18170 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18171 abbrev = m_abbrevs[hash_number];
18172
18173 while (abbrev)
18174 {
18175 if (abbrev->number == abbrev_number)
18176 return abbrev;
18177 abbrev = abbrev->next;
18178 }
18179 return NULL;
18180 }
18181
18182 /* Read in an abbrev table. */
18183
18184 static abbrev_table_up
18185 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18186 struct dwarf2_section_info *section,
18187 sect_offset sect_off)
18188 {
18189 struct objfile *objfile = dwarf2_per_objfile->objfile;
18190 bfd *abfd = get_section_bfd_owner (section);
18191 const gdb_byte *abbrev_ptr;
18192 struct abbrev_info *cur_abbrev;
18193 unsigned int abbrev_number, bytes_read, abbrev_name;
18194 unsigned int abbrev_form;
18195 struct attr_abbrev *cur_attrs;
18196 unsigned int allocated_attrs;
18197
18198 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18199
18200 dwarf2_read_section (objfile, section);
18201 abbrev_ptr = section->buffer + to_underlying (sect_off);
18202 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18203 abbrev_ptr += bytes_read;
18204
18205 allocated_attrs = ATTR_ALLOC_CHUNK;
18206 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18207
18208 /* Loop until we reach an abbrev number of 0. */
18209 while (abbrev_number)
18210 {
18211 cur_abbrev = abbrev_table->alloc_abbrev ();
18212
18213 /* read in abbrev header */
18214 cur_abbrev->number = abbrev_number;
18215 cur_abbrev->tag
18216 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18217 abbrev_ptr += bytes_read;
18218 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18219 abbrev_ptr += 1;
18220
18221 /* now read in declarations */
18222 for (;;)
18223 {
18224 LONGEST implicit_const;
18225
18226 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18227 abbrev_ptr += bytes_read;
18228 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18229 abbrev_ptr += bytes_read;
18230 if (abbrev_form == DW_FORM_implicit_const)
18231 {
18232 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18233 &bytes_read);
18234 abbrev_ptr += bytes_read;
18235 }
18236 else
18237 {
18238 /* Initialize it due to a false compiler warning. */
18239 implicit_const = -1;
18240 }
18241
18242 if (abbrev_name == 0)
18243 break;
18244
18245 if (cur_abbrev->num_attrs == allocated_attrs)
18246 {
18247 allocated_attrs += ATTR_ALLOC_CHUNK;
18248 cur_attrs
18249 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18250 }
18251
18252 cur_attrs[cur_abbrev->num_attrs].name
18253 = (enum dwarf_attribute) abbrev_name;
18254 cur_attrs[cur_abbrev->num_attrs].form
18255 = (enum dwarf_form) abbrev_form;
18256 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18257 ++cur_abbrev->num_attrs;
18258 }
18259
18260 cur_abbrev->attrs =
18261 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18262 cur_abbrev->num_attrs);
18263 memcpy (cur_abbrev->attrs, cur_attrs,
18264 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18265
18266 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18267
18268 /* Get next abbreviation.
18269 Under Irix6 the abbreviations for a compilation unit are not
18270 always properly terminated with an abbrev number of 0.
18271 Exit loop if we encounter an abbreviation which we have
18272 already read (which means we are about to read the abbreviations
18273 for the next compile unit) or if the end of the abbreviation
18274 table is reached. */
18275 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18276 break;
18277 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18278 abbrev_ptr += bytes_read;
18279 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18280 break;
18281 }
18282
18283 xfree (cur_attrs);
18284 return abbrev_table;
18285 }
18286
18287 /* Returns nonzero if TAG represents a type that we might generate a partial
18288 symbol for. */
18289
18290 static int
18291 is_type_tag_for_partial (int tag)
18292 {
18293 switch (tag)
18294 {
18295 #if 0
18296 /* Some types that would be reasonable to generate partial symbols for,
18297 that we don't at present. */
18298 case DW_TAG_array_type:
18299 case DW_TAG_file_type:
18300 case DW_TAG_ptr_to_member_type:
18301 case DW_TAG_set_type:
18302 case DW_TAG_string_type:
18303 case DW_TAG_subroutine_type:
18304 #endif
18305 case DW_TAG_base_type:
18306 case DW_TAG_class_type:
18307 case DW_TAG_interface_type:
18308 case DW_TAG_enumeration_type:
18309 case DW_TAG_structure_type:
18310 case DW_TAG_subrange_type:
18311 case DW_TAG_typedef:
18312 case DW_TAG_union_type:
18313 return 1;
18314 default:
18315 return 0;
18316 }
18317 }
18318
18319 /* Load all DIEs that are interesting for partial symbols into memory. */
18320
18321 static struct partial_die_info *
18322 load_partial_dies (const struct die_reader_specs *reader,
18323 const gdb_byte *info_ptr, int building_psymtab)
18324 {
18325 struct dwarf2_cu *cu = reader->cu;
18326 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18327 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18328 unsigned int bytes_read;
18329 unsigned int load_all = 0;
18330 int nesting_level = 1;
18331
18332 parent_die = NULL;
18333 last_die = NULL;
18334
18335 gdb_assert (cu->per_cu != NULL);
18336 if (cu->per_cu->load_all_dies)
18337 load_all = 1;
18338
18339 cu->partial_dies
18340 = htab_create_alloc_ex (cu->header.length / 12,
18341 partial_die_hash,
18342 partial_die_eq,
18343 NULL,
18344 &cu->comp_unit_obstack,
18345 hashtab_obstack_allocate,
18346 dummy_obstack_deallocate);
18347
18348 while (1)
18349 {
18350 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18351
18352 /* A NULL abbrev means the end of a series of children. */
18353 if (abbrev == NULL)
18354 {
18355 if (--nesting_level == 0)
18356 return first_die;
18357
18358 info_ptr += bytes_read;
18359 last_die = parent_die;
18360 parent_die = parent_die->die_parent;
18361 continue;
18362 }
18363
18364 /* Check for template arguments. We never save these; if
18365 they're seen, we just mark the parent, and go on our way. */
18366 if (parent_die != NULL
18367 && cu->language == language_cplus
18368 && (abbrev->tag == DW_TAG_template_type_param
18369 || abbrev->tag == DW_TAG_template_value_param))
18370 {
18371 parent_die->has_template_arguments = 1;
18372
18373 if (!load_all)
18374 {
18375 /* We don't need a partial DIE for the template argument. */
18376 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18377 continue;
18378 }
18379 }
18380
18381 /* We only recurse into c++ subprograms looking for template arguments.
18382 Skip their other children. */
18383 if (!load_all
18384 && cu->language == language_cplus
18385 && parent_die != NULL
18386 && parent_die->tag == DW_TAG_subprogram)
18387 {
18388 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18389 continue;
18390 }
18391
18392 /* Check whether this DIE is interesting enough to save. Normally
18393 we would not be interested in members here, but there may be
18394 later variables referencing them via DW_AT_specification (for
18395 static members). */
18396 if (!load_all
18397 && !is_type_tag_for_partial (abbrev->tag)
18398 && abbrev->tag != DW_TAG_constant
18399 && abbrev->tag != DW_TAG_enumerator
18400 && abbrev->tag != DW_TAG_subprogram
18401 && abbrev->tag != DW_TAG_inlined_subroutine
18402 && abbrev->tag != DW_TAG_lexical_block
18403 && abbrev->tag != DW_TAG_variable
18404 && abbrev->tag != DW_TAG_namespace
18405 && abbrev->tag != DW_TAG_module
18406 && abbrev->tag != DW_TAG_member
18407 && abbrev->tag != DW_TAG_imported_unit
18408 && abbrev->tag != DW_TAG_imported_declaration)
18409 {
18410 /* Otherwise we skip to the next sibling, if any. */
18411 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18412 continue;
18413 }
18414
18415 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18416 abbrev);
18417
18418 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18419
18420 /* This two-pass algorithm for processing partial symbols has a
18421 high cost in cache pressure. Thus, handle some simple cases
18422 here which cover the majority of C partial symbols. DIEs
18423 which neither have specification tags in them, nor could have
18424 specification tags elsewhere pointing at them, can simply be
18425 processed and discarded.
18426
18427 This segment is also optional; scan_partial_symbols and
18428 add_partial_symbol will handle these DIEs if we chain
18429 them in normally. When compilers which do not emit large
18430 quantities of duplicate debug information are more common,
18431 this code can probably be removed. */
18432
18433 /* Any complete simple types at the top level (pretty much all
18434 of them, for a language without namespaces), can be processed
18435 directly. */
18436 if (parent_die == NULL
18437 && pdi.has_specification == 0
18438 && pdi.is_declaration == 0
18439 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18440 || pdi.tag == DW_TAG_base_type
18441 || pdi.tag == DW_TAG_subrange_type))
18442 {
18443 if (building_psymtab && pdi.name != NULL)
18444 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18445 VAR_DOMAIN, LOC_TYPEDEF, -1,
18446 psymbol_placement::STATIC,
18447 0, cu->language, objfile);
18448 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18449 continue;
18450 }
18451
18452 /* The exception for DW_TAG_typedef with has_children above is
18453 a workaround of GCC PR debug/47510. In the case of this complaint
18454 type_name_or_error will error on such types later.
18455
18456 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18457 it could not find the child DIEs referenced later, this is checked
18458 above. In correct DWARF DW_TAG_typedef should have no children. */
18459
18460 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18461 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18462 "- DIE at %s [in module %s]"),
18463 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18464
18465 /* If we're at the second level, and we're an enumerator, and
18466 our parent has no specification (meaning possibly lives in a
18467 namespace elsewhere), then we can add the partial symbol now
18468 instead of queueing it. */
18469 if (pdi.tag == DW_TAG_enumerator
18470 && parent_die != NULL
18471 && parent_die->die_parent == NULL
18472 && parent_die->tag == DW_TAG_enumeration_type
18473 && parent_die->has_specification == 0)
18474 {
18475 if (pdi.name == NULL)
18476 complaint (_("malformed enumerator DIE ignored"));
18477 else if (building_psymtab)
18478 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18479 VAR_DOMAIN, LOC_CONST, -1,
18480 cu->language == language_cplus
18481 ? psymbol_placement::GLOBAL
18482 : psymbol_placement::STATIC,
18483 0, cu->language, objfile);
18484
18485 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18486 continue;
18487 }
18488
18489 struct partial_die_info *part_die
18490 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18491
18492 /* We'll save this DIE so link it in. */
18493 part_die->die_parent = parent_die;
18494 part_die->die_sibling = NULL;
18495 part_die->die_child = NULL;
18496
18497 if (last_die && last_die == parent_die)
18498 last_die->die_child = part_die;
18499 else if (last_die)
18500 last_die->die_sibling = part_die;
18501
18502 last_die = part_die;
18503
18504 if (first_die == NULL)
18505 first_die = part_die;
18506
18507 /* Maybe add the DIE to the hash table. Not all DIEs that we
18508 find interesting need to be in the hash table, because we
18509 also have the parent/sibling/child chains; only those that we
18510 might refer to by offset later during partial symbol reading.
18511
18512 For now this means things that might have be the target of a
18513 DW_AT_specification, DW_AT_abstract_origin, or
18514 DW_AT_extension. DW_AT_extension will refer only to
18515 namespaces; DW_AT_abstract_origin refers to functions (and
18516 many things under the function DIE, but we do not recurse
18517 into function DIEs during partial symbol reading) and
18518 possibly variables as well; DW_AT_specification refers to
18519 declarations. Declarations ought to have the DW_AT_declaration
18520 flag. It happens that GCC forgets to put it in sometimes, but
18521 only for functions, not for types.
18522
18523 Adding more things than necessary to the hash table is harmless
18524 except for the performance cost. Adding too few will result in
18525 wasted time in find_partial_die, when we reread the compilation
18526 unit with load_all_dies set. */
18527
18528 if (load_all
18529 || abbrev->tag == DW_TAG_constant
18530 || abbrev->tag == DW_TAG_subprogram
18531 || abbrev->tag == DW_TAG_variable
18532 || abbrev->tag == DW_TAG_namespace
18533 || part_die->is_declaration)
18534 {
18535 void **slot;
18536
18537 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18538 to_underlying (part_die->sect_off),
18539 INSERT);
18540 *slot = part_die;
18541 }
18542
18543 /* For some DIEs we want to follow their children (if any). For C
18544 we have no reason to follow the children of structures; for other
18545 languages we have to, so that we can get at method physnames
18546 to infer fully qualified class names, for DW_AT_specification,
18547 and for C++ template arguments. For C++, we also look one level
18548 inside functions to find template arguments (if the name of the
18549 function does not already contain the template arguments).
18550
18551 For Ada, we need to scan the children of subprograms and lexical
18552 blocks as well because Ada allows the definition of nested
18553 entities that could be interesting for the debugger, such as
18554 nested subprograms for instance. */
18555 if (last_die->has_children
18556 && (load_all
18557 || last_die->tag == DW_TAG_namespace
18558 || last_die->tag == DW_TAG_module
18559 || last_die->tag == DW_TAG_enumeration_type
18560 || (cu->language == language_cplus
18561 && last_die->tag == DW_TAG_subprogram
18562 && (last_die->name == NULL
18563 || strchr (last_die->name, '<') == NULL))
18564 || (cu->language != language_c
18565 && (last_die->tag == DW_TAG_class_type
18566 || last_die->tag == DW_TAG_interface_type
18567 || last_die->tag == DW_TAG_structure_type
18568 || last_die->tag == DW_TAG_union_type))
18569 || (cu->language == language_ada
18570 && (last_die->tag == DW_TAG_subprogram
18571 || last_die->tag == DW_TAG_lexical_block))))
18572 {
18573 nesting_level++;
18574 parent_die = last_die;
18575 continue;
18576 }
18577
18578 /* Otherwise we skip to the next sibling, if any. */
18579 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18580
18581 /* Back to the top, do it again. */
18582 }
18583 }
18584
18585 partial_die_info::partial_die_info (sect_offset sect_off_,
18586 struct abbrev_info *abbrev)
18587 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18588 {
18589 }
18590
18591 /* Read a minimal amount of information into the minimal die structure.
18592 INFO_PTR should point just after the initial uleb128 of a DIE. */
18593
18594 const gdb_byte *
18595 partial_die_info::read (const struct die_reader_specs *reader,
18596 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18597 {
18598 struct dwarf2_cu *cu = reader->cu;
18599 struct dwarf2_per_objfile *dwarf2_per_objfile
18600 = cu->per_cu->dwarf2_per_objfile;
18601 unsigned int i;
18602 int has_low_pc_attr = 0;
18603 int has_high_pc_attr = 0;
18604 int high_pc_relative = 0;
18605
18606 for (i = 0; i < abbrev.num_attrs; ++i)
18607 {
18608 struct attribute attr;
18609
18610 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18611
18612 /* Store the data if it is of an attribute we want to keep in a
18613 partial symbol table. */
18614 switch (attr.name)
18615 {
18616 case DW_AT_name:
18617 switch (tag)
18618 {
18619 case DW_TAG_compile_unit:
18620 case DW_TAG_partial_unit:
18621 case DW_TAG_type_unit:
18622 /* Compilation units have a DW_AT_name that is a filename, not
18623 a source language identifier. */
18624 case DW_TAG_enumeration_type:
18625 case DW_TAG_enumerator:
18626 /* These tags always have simple identifiers already; no need
18627 to canonicalize them. */
18628 name = DW_STRING (&attr);
18629 break;
18630 default:
18631 {
18632 struct objfile *objfile = dwarf2_per_objfile->objfile;
18633
18634 name
18635 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18636 &objfile->per_bfd->storage_obstack);
18637 }
18638 break;
18639 }
18640 break;
18641 case DW_AT_linkage_name:
18642 case DW_AT_MIPS_linkage_name:
18643 /* Note that both forms of linkage name might appear. We
18644 assume they will be the same, and we only store the last
18645 one we see. */
18646 if (cu->language == language_ada)
18647 name = DW_STRING (&attr);
18648 linkage_name = DW_STRING (&attr);
18649 break;
18650 case DW_AT_low_pc:
18651 has_low_pc_attr = 1;
18652 lowpc = attr_value_as_address (&attr);
18653 break;
18654 case DW_AT_high_pc:
18655 has_high_pc_attr = 1;
18656 highpc = attr_value_as_address (&attr);
18657 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18658 high_pc_relative = 1;
18659 break;
18660 case DW_AT_location:
18661 /* Support the .debug_loc offsets. */
18662 if (attr_form_is_block (&attr))
18663 {
18664 d.locdesc = DW_BLOCK (&attr);
18665 }
18666 else if (attr_form_is_section_offset (&attr))
18667 {
18668 dwarf2_complex_location_expr_complaint ();
18669 }
18670 else
18671 {
18672 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18673 "partial symbol information");
18674 }
18675 break;
18676 case DW_AT_external:
18677 is_external = DW_UNSND (&attr);
18678 break;
18679 case DW_AT_declaration:
18680 is_declaration = DW_UNSND (&attr);
18681 break;
18682 case DW_AT_type:
18683 has_type = 1;
18684 break;
18685 case DW_AT_abstract_origin:
18686 case DW_AT_specification:
18687 case DW_AT_extension:
18688 has_specification = 1;
18689 spec_offset = dwarf2_get_ref_die_offset (&attr);
18690 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18691 || cu->per_cu->is_dwz);
18692 break;
18693 case DW_AT_sibling:
18694 /* Ignore absolute siblings, they might point outside of
18695 the current compile unit. */
18696 if (attr.form == DW_FORM_ref_addr)
18697 complaint (_("ignoring absolute DW_AT_sibling"));
18698 else
18699 {
18700 const gdb_byte *buffer = reader->buffer;
18701 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18702 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18703
18704 if (sibling_ptr < info_ptr)
18705 complaint (_("DW_AT_sibling points backwards"));
18706 else if (sibling_ptr > reader->buffer_end)
18707 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18708 else
18709 sibling = sibling_ptr;
18710 }
18711 break;
18712 case DW_AT_byte_size:
18713 has_byte_size = 1;
18714 break;
18715 case DW_AT_const_value:
18716 has_const_value = 1;
18717 break;
18718 case DW_AT_calling_convention:
18719 /* DWARF doesn't provide a way to identify a program's source-level
18720 entry point. DW_AT_calling_convention attributes are only meant
18721 to describe functions' calling conventions.
18722
18723 However, because it's a necessary piece of information in
18724 Fortran, and before DWARF 4 DW_CC_program was the only
18725 piece of debugging information whose definition refers to
18726 a 'main program' at all, several compilers marked Fortran
18727 main programs with DW_CC_program --- even when those
18728 functions use the standard calling conventions.
18729
18730 Although DWARF now specifies a way to provide this
18731 information, we support this practice for backward
18732 compatibility. */
18733 if (DW_UNSND (&attr) == DW_CC_program
18734 && cu->language == language_fortran)
18735 main_subprogram = 1;
18736 break;
18737 case DW_AT_inline:
18738 if (DW_UNSND (&attr) == DW_INL_inlined
18739 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18740 may_be_inlined = 1;
18741 break;
18742
18743 case DW_AT_import:
18744 if (tag == DW_TAG_imported_unit)
18745 {
18746 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18747 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18748 || cu->per_cu->is_dwz);
18749 }
18750 break;
18751
18752 case DW_AT_main_subprogram:
18753 main_subprogram = DW_UNSND (&attr);
18754 break;
18755
18756 default:
18757 break;
18758 }
18759 }
18760
18761 if (high_pc_relative)
18762 highpc += lowpc;
18763
18764 if (has_low_pc_attr && has_high_pc_attr)
18765 {
18766 /* When using the GNU linker, .gnu.linkonce. sections are used to
18767 eliminate duplicate copies of functions and vtables and such.
18768 The linker will arbitrarily choose one and discard the others.
18769 The AT_*_pc values for such functions refer to local labels in
18770 these sections. If the section from that file was discarded, the
18771 labels are not in the output, so the relocs get a value of 0.
18772 If this is a discarded function, mark the pc bounds as invalid,
18773 so that GDB will ignore it. */
18774 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18775 {
18776 struct objfile *objfile = dwarf2_per_objfile->objfile;
18777 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18778
18779 complaint (_("DW_AT_low_pc %s is zero "
18780 "for DIE at %s [in module %s]"),
18781 paddress (gdbarch, lowpc),
18782 sect_offset_str (sect_off),
18783 objfile_name (objfile));
18784 }
18785 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18786 else if (lowpc >= highpc)
18787 {
18788 struct objfile *objfile = dwarf2_per_objfile->objfile;
18789 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18790
18791 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18792 "for DIE at %s [in module %s]"),
18793 paddress (gdbarch, lowpc),
18794 paddress (gdbarch, highpc),
18795 sect_offset_str (sect_off),
18796 objfile_name (objfile));
18797 }
18798 else
18799 has_pc_info = 1;
18800 }
18801
18802 return info_ptr;
18803 }
18804
18805 /* Find a cached partial DIE at OFFSET in CU. */
18806
18807 struct partial_die_info *
18808 dwarf2_cu::find_partial_die (sect_offset sect_off)
18809 {
18810 struct partial_die_info *lookup_die = NULL;
18811 struct partial_die_info part_die (sect_off);
18812
18813 lookup_die = ((struct partial_die_info *)
18814 htab_find_with_hash (partial_dies, &part_die,
18815 to_underlying (sect_off)));
18816
18817 return lookup_die;
18818 }
18819
18820 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18821 except in the case of .debug_types DIEs which do not reference
18822 outside their CU (they do however referencing other types via
18823 DW_FORM_ref_sig8). */
18824
18825 static struct partial_die_info *
18826 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18827 {
18828 struct dwarf2_per_objfile *dwarf2_per_objfile
18829 = cu->per_cu->dwarf2_per_objfile;
18830 struct objfile *objfile = dwarf2_per_objfile->objfile;
18831 struct dwarf2_per_cu_data *per_cu = NULL;
18832 struct partial_die_info *pd = NULL;
18833
18834 if (offset_in_dwz == cu->per_cu->is_dwz
18835 && offset_in_cu_p (&cu->header, sect_off))
18836 {
18837 pd = cu->find_partial_die (sect_off);
18838 if (pd != NULL)
18839 return pd;
18840 /* We missed recording what we needed.
18841 Load all dies and try again. */
18842 per_cu = cu->per_cu;
18843 }
18844 else
18845 {
18846 /* TUs don't reference other CUs/TUs (except via type signatures). */
18847 if (cu->per_cu->is_debug_types)
18848 {
18849 error (_("Dwarf Error: Type Unit at offset %s contains"
18850 " external reference to offset %s [in module %s].\n"),
18851 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18852 bfd_get_filename (objfile->obfd));
18853 }
18854 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18855 dwarf2_per_objfile);
18856
18857 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18858 load_partial_comp_unit (per_cu);
18859
18860 per_cu->cu->last_used = 0;
18861 pd = per_cu->cu->find_partial_die (sect_off);
18862 }
18863
18864 /* If we didn't find it, and not all dies have been loaded,
18865 load them all and try again. */
18866
18867 if (pd == NULL && per_cu->load_all_dies == 0)
18868 {
18869 per_cu->load_all_dies = 1;
18870
18871 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18872 THIS_CU->cu may already be in use. So we can't just free it and
18873 replace its DIEs with the ones we read in. Instead, we leave those
18874 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18875 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18876 set. */
18877 load_partial_comp_unit (per_cu);
18878
18879 pd = per_cu->cu->find_partial_die (sect_off);
18880 }
18881
18882 if (pd == NULL)
18883 internal_error (__FILE__, __LINE__,
18884 _("could not find partial DIE %s "
18885 "in cache [from module %s]\n"),
18886 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18887 return pd;
18888 }
18889
18890 /* See if we can figure out if the class lives in a namespace. We do
18891 this by looking for a member function; its demangled name will
18892 contain namespace info, if there is any. */
18893
18894 static void
18895 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18896 struct dwarf2_cu *cu)
18897 {
18898 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18899 what template types look like, because the demangler
18900 frequently doesn't give the same name as the debug info. We
18901 could fix this by only using the demangled name to get the
18902 prefix (but see comment in read_structure_type). */
18903
18904 struct partial_die_info *real_pdi;
18905 struct partial_die_info *child_pdi;
18906
18907 /* If this DIE (this DIE's specification, if any) has a parent, then
18908 we should not do this. We'll prepend the parent's fully qualified
18909 name when we create the partial symbol. */
18910
18911 real_pdi = struct_pdi;
18912 while (real_pdi->has_specification)
18913 real_pdi = find_partial_die (real_pdi->spec_offset,
18914 real_pdi->spec_is_dwz, cu);
18915
18916 if (real_pdi->die_parent != NULL)
18917 return;
18918
18919 for (child_pdi = struct_pdi->die_child;
18920 child_pdi != NULL;
18921 child_pdi = child_pdi->die_sibling)
18922 {
18923 if (child_pdi->tag == DW_TAG_subprogram
18924 && child_pdi->linkage_name != NULL)
18925 {
18926 char *actual_class_name
18927 = language_class_name_from_physname (cu->language_defn,
18928 child_pdi->linkage_name);
18929 if (actual_class_name != NULL)
18930 {
18931 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18932 struct_pdi->name
18933 = ((const char *)
18934 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18935 actual_class_name,
18936 strlen (actual_class_name)));
18937 xfree (actual_class_name);
18938 }
18939 break;
18940 }
18941 }
18942 }
18943
18944 void
18945 partial_die_info::fixup (struct dwarf2_cu *cu)
18946 {
18947 /* Once we've fixed up a die, there's no point in doing so again.
18948 This also avoids a memory leak if we were to call
18949 guess_partial_die_structure_name multiple times. */
18950 if (fixup_called)
18951 return;
18952
18953 /* If we found a reference attribute and the DIE has no name, try
18954 to find a name in the referred to DIE. */
18955
18956 if (name == NULL && has_specification)
18957 {
18958 struct partial_die_info *spec_die;
18959
18960 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18961
18962 spec_die->fixup (cu);
18963
18964 if (spec_die->name)
18965 {
18966 name = spec_die->name;
18967
18968 /* Copy DW_AT_external attribute if it is set. */
18969 if (spec_die->is_external)
18970 is_external = spec_die->is_external;
18971 }
18972 }
18973
18974 /* Set default names for some unnamed DIEs. */
18975
18976 if (name == NULL && tag == DW_TAG_namespace)
18977 name = CP_ANONYMOUS_NAMESPACE_STR;
18978
18979 /* If there is no parent die to provide a namespace, and there are
18980 children, see if we can determine the namespace from their linkage
18981 name. */
18982 if (cu->language == language_cplus
18983 && !VEC_empty (dwarf2_section_info_def,
18984 cu->per_cu->dwarf2_per_objfile->types)
18985 && die_parent == NULL
18986 && has_children
18987 && (tag == DW_TAG_class_type
18988 || tag == DW_TAG_structure_type
18989 || tag == DW_TAG_union_type))
18990 guess_partial_die_structure_name (this, cu);
18991
18992 /* GCC might emit a nameless struct or union that has a linkage
18993 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18994 if (name == NULL
18995 && (tag == DW_TAG_class_type
18996 || tag == DW_TAG_interface_type
18997 || tag == DW_TAG_structure_type
18998 || tag == DW_TAG_union_type)
18999 && linkage_name != NULL)
19000 {
19001 char *demangled;
19002
19003 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19004 if (demangled)
19005 {
19006 const char *base;
19007
19008 /* Strip any leading namespaces/classes, keep only the base name.
19009 DW_AT_name for named DIEs does not contain the prefixes. */
19010 base = strrchr (demangled, ':');
19011 if (base && base > demangled && base[-1] == ':')
19012 base++;
19013 else
19014 base = demangled;
19015
19016 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19017 name
19018 = ((const char *)
19019 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19020 base, strlen (base)));
19021 xfree (demangled);
19022 }
19023 }
19024
19025 fixup_called = 1;
19026 }
19027
19028 /* Read an attribute value described by an attribute form. */
19029
19030 static const gdb_byte *
19031 read_attribute_value (const struct die_reader_specs *reader,
19032 struct attribute *attr, unsigned form,
19033 LONGEST implicit_const, const gdb_byte *info_ptr)
19034 {
19035 struct dwarf2_cu *cu = reader->cu;
19036 struct dwarf2_per_objfile *dwarf2_per_objfile
19037 = cu->per_cu->dwarf2_per_objfile;
19038 struct objfile *objfile = dwarf2_per_objfile->objfile;
19039 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19040 bfd *abfd = reader->abfd;
19041 struct comp_unit_head *cu_header = &cu->header;
19042 unsigned int bytes_read;
19043 struct dwarf_block *blk;
19044
19045 attr->form = (enum dwarf_form) form;
19046 switch (form)
19047 {
19048 case DW_FORM_ref_addr:
19049 if (cu->header.version == 2)
19050 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19051 else
19052 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19053 &cu->header, &bytes_read);
19054 info_ptr += bytes_read;
19055 break;
19056 case DW_FORM_GNU_ref_alt:
19057 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19058 info_ptr += bytes_read;
19059 break;
19060 case DW_FORM_addr:
19061 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19062 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19063 info_ptr += bytes_read;
19064 break;
19065 case DW_FORM_block2:
19066 blk = dwarf_alloc_block (cu);
19067 blk->size = read_2_bytes (abfd, info_ptr);
19068 info_ptr += 2;
19069 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19070 info_ptr += blk->size;
19071 DW_BLOCK (attr) = blk;
19072 break;
19073 case DW_FORM_block4:
19074 blk = dwarf_alloc_block (cu);
19075 blk->size = read_4_bytes (abfd, info_ptr);
19076 info_ptr += 4;
19077 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19078 info_ptr += blk->size;
19079 DW_BLOCK (attr) = blk;
19080 break;
19081 case DW_FORM_data2:
19082 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19083 info_ptr += 2;
19084 break;
19085 case DW_FORM_data4:
19086 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19087 info_ptr += 4;
19088 break;
19089 case DW_FORM_data8:
19090 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19091 info_ptr += 8;
19092 break;
19093 case DW_FORM_data16:
19094 blk = dwarf_alloc_block (cu);
19095 blk->size = 16;
19096 blk->data = read_n_bytes (abfd, info_ptr, 16);
19097 info_ptr += 16;
19098 DW_BLOCK (attr) = blk;
19099 break;
19100 case DW_FORM_sec_offset:
19101 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19102 info_ptr += bytes_read;
19103 break;
19104 case DW_FORM_string:
19105 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19106 DW_STRING_IS_CANONICAL (attr) = 0;
19107 info_ptr += bytes_read;
19108 break;
19109 case DW_FORM_strp:
19110 if (!cu->per_cu->is_dwz)
19111 {
19112 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19113 abfd, info_ptr, cu_header,
19114 &bytes_read);
19115 DW_STRING_IS_CANONICAL (attr) = 0;
19116 info_ptr += bytes_read;
19117 break;
19118 }
19119 /* FALLTHROUGH */
19120 case DW_FORM_line_strp:
19121 if (!cu->per_cu->is_dwz)
19122 {
19123 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19124 abfd, info_ptr,
19125 cu_header, &bytes_read);
19126 DW_STRING_IS_CANONICAL (attr) = 0;
19127 info_ptr += bytes_read;
19128 break;
19129 }
19130 /* FALLTHROUGH */
19131 case DW_FORM_GNU_strp_alt:
19132 {
19133 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19134 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19135 &bytes_read);
19136
19137 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19138 dwz, str_offset);
19139 DW_STRING_IS_CANONICAL (attr) = 0;
19140 info_ptr += bytes_read;
19141 }
19142 break;
19143 case DW_FORM_exprloc:
19144 case DW_FORM_block:
19145 blk = dwarf_alloc_block (cu);
19146 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19147 info_ptr += bytes_read;
19148 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19149 info_ptr += blk->size;
19150 DW_BLOCK (attr) = blk;
19151 break;
19152 case DW_FORM_block1:
19153 blk = dwarf_alloc_block (cu);
19154 blk->size = read_1_byte (abfd, info_ptr);
19155 info_ptr += 1;
19156 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19157 info_ptr += blk->size;
19158 DW_BLOCK (attr) = blk;
19159 break;
19160 case DW_FORM_data1:
19161 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19162 info_ptr += 1;
19163 break;
19164 case DW_FORM_flag:
19165 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19166 info_ptr += 1;
19167 break;
19168 case DW_FORM_flag_present:
19169 DW_UNSND (attr) = 1;
19170 break;
19171 case DW_FORM_sdata:
19172 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19173 info_ptr += bytes_read;
19174 break;
19175 case DW_FORM_udata:
19176 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19177 info_ptr += bytes_read;
19178 break;
19179 case DW_FORM_ref1:
19180 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19181 + read_1_byte (abfd, info_ptr));
19182 info_ptr += 1;
19183 break;
19184 case DW_FORM_ref2:
19185 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19186 + read_2_bytes (abfd, info_ptr));
19187 info_ptr += 2;
19188 break;
19189 case DW_FORM_ref4:
19190 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19191 + read_4_bytes (abfd, info_ptr));
19192 info_ptr += 4;
19193 break;
19194 case DW_FORM_ref8:
19195 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19196 + read_8_bytes (abfd, info_ptr));
19197 info_ptr += 8;
19198 break;
19199 case DW_FORM_ref_sig8:
19200 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19201 info_ptr += 8;
19202 break;
19203 case DW_FORM_ref_udata:
19204 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19205 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19206 info_ptr += bytes_read;
19207 break;
19208 case DW_FORM_indirect:
19209 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19210 info_ptr += bytes_read;
19211 if (form == DW_FORM_implicit_const)
19212 {
19213 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19214 info_ptr += bytes_read;
19215 }
19216 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19217 info_ptr);
19218 break;
19219 case DW_FORM_implicit_const:
19220 DW_SND (attr) = implicit_const;
19221 break;
19222 case DW_FORM_GNU_addr_index:
19223 if (reader->dwo_file == NULL)
19224 {
19225 /* For now flag a hard error.
19226 Later we can turn this into a complaint. */
19227 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19228 dwarf_form_name (form),
19229 bfd_get_filename (abfd));
19230 }
19231 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19232 info_ptr += bytes_read;
19233 break;
19234 case DW_FORM_GNU_str_index:
19235 if (reader->dwo_file == NULL)
19236 {
19237 /* For now flag a hard error.
19238 Later we can turn this into a complaint if warranted. */
19239 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19240 dwarf_form_name (form),
19241 bfd_get_filename (abfd));
19242 }
19243 {
19244 ULONGEST str_index =
19245 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19246
19247 DW_STRING (attr) = read_str_index (reader, str_index);
19248 DW_STRING_IS_CANONICAL (attr) = 0;
19249 info_ptr += bytes_read;
19250 }
19251 break;
19252 default:
19253 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19254 dwarf_form_name (form),
19255 bfd_get_filename (abfd));
19256 }
19257
19258 /* Super hack. */
19259 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19260 attr->form = DW_FORM_GNU_ref_alt;
19261
19262 /* We have seen instances where the compiler tried to emit a byte
19263 size attribute of -1 which ended up being encoded as an unsigned
19264 0xffffffff. Although 0xffffffff is technically a valid size value,
19265 an object of this size seems pretty unlikely so we can relatively
19266 safely treat these cases as if the size attribute was invalid and
19267 treat them as zero by default. */
19268 if (attr->name == DW_AT_byte_size
19269 && form == DW_FORM_data4
19270 && DW_UNSND (attr) >= 0xffffffff)
19271 {
19272 complaint
19273 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19274 hex_string (DW_UNSND (attr)));
19275 DW_UNSND (attr) = 0;
19276 }
19277
19278 return info_ptr;
19279 }
19280
19281 /* Read an attribute described by an abbreviated attribute. */
19282
19283 static const gdb_byte *
19284 read_attribute (const struct die_reader_specs *reader,
19285 struct attribute *attr, struct attr_abbrev *abbrev,
19286 const gdb_byte *info_ptr)
19287 {
19288 attr->name = abbrev->name;
19289 return read_attribute_value (reader, attr, abbrev->form,
19290 abbrev->implicit_const, info_ptr);
19291 }
19292
19293 /* Read dwarf information from a buffer. */
19294
19295 static unsigned int
19296 read_1_byte (bfd *abfd, const gdb_byte *buf)
19297 {
19298 return bfd_get_8 (abfd, buf);
19299 }
19300
19301 static int
19302 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19303 {
19304 return bfd_get_signed_8 (abfd, buf);
19305 }
19306
19307 static unsigned int
19308 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19309 {
19310 return bfd_get_16 (abfd, buf);
19311 }
19312
19313 static int
19314 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19315 {
19316 return bfd_get_signed_16 (abfd, buf);
19317 }
19318
19319 static unsigned int
19320 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19321 {
19322 return bfd_get_32 (abfd, buf);
19323 }
19324
19325 static int
19326 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19327 {
19328 return bfd_get_signed_32 (abfd, buf);
19329 }
19330
19331 static ULONGEST
19332 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19333 {
19334 return bfd_get_64 (abfd, buf);
19335 }
19336
19337 static CORE_ADDR
19338 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19339 unsigned int *bytes_read)
19340 {
19341 struct comp_unit_head *cu_header = &cu->header;
19342 CORE_ADDR retval = 0;
19343
19344 if (cu_header->signed_addr_p)
19345 {
19346 switch (cu_header->addr_size)
19347 {
19348 case 2:
19349 retval = bfd_get_signed_16 (abfd, buf);
19350 break;
19351 case 4:
19352 retval = bfd_get_signed_32 (abfd, buf);
19353 break;
19354 case 8:
19355 retval = bfd_get_signed_64 (abfd, buf);
19356 break;
19357 default:
19358 internal_error (__FILE__, __LINE__,
19359 _("read_address: bad switch, signed [in module %s]"),
19360 bfd_get_filename (abfd));
19361 }
19362 }
19363 else
19364 {
19365 switch (cu_header->addr_size)
19366 {
19367 case 2:
19368 retval = bfd_get_16 (abfd, buf);
19369 break;
19370 case 4:
19371 retval = bfd_get_32 (abfd, buf);
19372 break;
19373 case 8:
19374 retval = bfd_get_64 (abfd, buf);
19375 break;
19376 default:
19377 internal_error (__FILE__, __LINE__,
19378 _("read_address: bad switch, "
19379 "unsigned [in module %s]"),
19380 bfd_get_filename (abfd));
19381 }
19382 }
19383
19384 *bytes_read = cu_header->addr_size;
19385 return retval;
19386 }
19387
19388 /* Read the initial length from a section. The (draft) DWARF 3
19389 specification allows the initial length to take up either 4 bytes
19390 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19391 bytes describe the length and all offsets will be 8 bytes in length
19392 instead of 4.
19393
19394 An older, non-standard 64-bit format is also handled by this
19395 function. The older format in question stores the initial length
19396 as an 8-byte quantity without an escape value. Lengths greater
19397 than 2^32 aren't very common which means that the initial 4 bytes
19398 is almost always zero. Since a length value of zero doesn't make
19399 sense for the 32-bit format, this initial zero can be considered to
19400 be an escape value which indicates the presence of the older 64-bit
19401 format. As written, the code can't detect (old format) lengths
19402 greater than 4GB. If it becomes necessary to handle lengths
19403 somewhat larger than 4GB, we could allow other small values (such
19404 as the non-sensical values of 1, 2, and 3) to also be used as
19405 escape values indicating the presence of the old format.
19406
19407 The value returned via bytes_read should be used to increment the
19408 relevant pointer after calling read_initial_length().
19409
19410 [ Note: read_initial_length() and read_offset() are based on the
19411 document entitled "DWARF Debugging Information Format", revision
19412 3, draft 8, dated November 19, 2001. This document was obtained
19413 from:
19414
19415 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19416
19417 This document is only a draft and is subject to change. (So beware.)
19418
19419 Details regarding the older, non-standard 64-bit format were
19420 determined empirically by examining 64-bit ELF files produced by
19421 the SGI toolchain on an IRIX 6.5 machine.
19422
19423 - Kevin, July 16, 2002
19424 ] */
19425
19426 static LONGEST
19427 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19428 {
19429 LONGEST length = bfd_get_32 (abfd, buf);
19430
19431 if (length == 0xffffffff)
19432 {
19433 length = bfd_get_64 (abfd, buf + 4);
19434 *bytes_read = 12;
19435 }
19436 else if (length == 0)
19437 {
19438 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19439 length = bfd_get_64 (abfd, buf);
19440 *bytes_read = 8;
19441 }
19442 else
19443 {
19444 *bytes_read = 4;
19445 }
19446
19447 return length;
19448 }
19449
19450 /* Cover function for read_initial_length.
19451 Returns the length of the object at BUF, and stores the size of the
19452 initial length in *BYTES_READ and stores the size that offsets will be in
19453 *OFFSET_SIZE.
19454 If the initial length size is not equivalent to that specified in
19455 CU_HEADER then issue a complaint.
19456 This is useful when reading non-comp-unit headers. */
19457
19458 static LONGEST
19459 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19460 const struct comp_unit_head *cu_header,
19461 unsigned int *bytes_read,
19462 unsigned int *offset_size)
19463 {
19464 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19465
19466 gdb_assert (cu_header->initial_length_size == 4
19467 || cu_header->initial_length_size == 8
19468 || cu_header->initial_length_size == 12);
19469
19470 if (cu_header->initial_length_size != *bytes_read)
19471 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19472
19473 *offset_size = (*bytes_read == 4) ? 4 : 8;
19474 return length;
19475 }
19476
19477 /* Read an offset from the data stream. The size of the offset is
19478 given by cu_header->offset_size. */
19479
19480 static LONGEST
19481 read_offset (bfd *abfd, const gdb_byte *buf,
19482 const struct comp_unit_head *cu_header,
19483 unsigned int *bytes_read)
19484 {
19485 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19486
19487 *bytes_read = cu_header->offset_size;
19488 return offset;
19489 }
19490
19491 /* Read an offset from the data stream. */
19492
19493 static LONGEST
19494 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19495 {
19496 LONGEST retval = 0;
19497
19498 switch (offset_size)
19499 {
19500 case 4:
19501 retval = bfd_get_32 (abfd, buf);
19502 break;
19503 case 8:
19504 retval = bfd_get_64 (abfd, buf);
19505 break;
19506 default:
19507 internal_error (__FILE__, __LINE__,
19508 _("read_offset_1: bad switch [in module %s]"),
19509 bfd_get_filename (abfd));
19510 }
19511
19512 return retval;
19513 }
19514
19515 static const gdb_byte *
19516 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19517 {
19518 /* If the size of a host char is 8 bits, we can return a pointer
19519 to the buffer, otherwise we have to copy the data to a buffer
19520 allocated on the temporary obstack. */
19521 gdb_assert (HOST_CHAR_BIT == 8);
19522 return buf;
19523 }
19524
19525 static const char *
19526 read_direct_string (bfd *abfd, const gdb_byte *buf,
19527 unsigned int *bytes_read_ptr)
19528 {
19529 /* If the size of a host char is 8 bits, we can return a pointer
19530 to the string, otherwise we have to copy the string to a buffer
19531 allocated on the temporary obstack. */
19532 gdb_assert (HOST_CHAR_BIT == 8);
19533 if (*buf == '\0')
19534 {
19535 *bytes_read_ptr = 1;
19536 return NULL;
19537 }
19538 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19539 return (const char *) buf;
19540 }
19541
19542 /* Return pointer to string at section SECT offset STR_OFFSET with error
19543 reporting strings FORM_NAME and SECT_NAME. */
19544
19545 static const char *
19546 read_indirect_string_at_offset_from (struct objfile *objfile,
19547 bfd *abfd, LONGEST str_offset,
19548 struct dwarf2_section_info *sect,
19549 const char *form_name,
19550 const char *sect_name)
19551 {
19552 dwarf2_read_section (objfile, sect);
19553 if (sect->buffer == NULL)
19554 error (_("%s used without %s section [in module %s]"),
19555 form_name, sect_name, bfd_get_filename (abfd));
19556 if (str_offset >= sect->size)
19557 error (_("%s pointing outside of %s section [in module %s]"),
19558 form_name, sect_name, bfd_get_filename (abfd));
19559 gdb_assert (HOST_CHAR_BIT == 8);
19560 if (sect->buffer[str_offset] == '\0')
19561 return NULL;
19562 return (const char *) (sect->buffer + str_offset);
19563 }
19564
19565 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19566
19567 static const char *
19568 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19569 bfd *abfd, LONGEST str_offset)
19570 {
19571 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19572 abfd, str_offset,
19573 &dwarf2_per_objfile->str,
19574 "DW_FORM_strp", ".debug_str");
19575 }
19576
19577 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19578
19579 static const char *
19580 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19581 bfd *abfd, LONGEST str_offset)
19582 {
19583 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19584 abfd, str_offset,
19585 &dwarf2_per_objfile->line_str,
19586 "DW_FORM_line_strp",
19587 ".debug_line_str");
19588 }
19589
19590 /* Read a string at offset STR_OFFSET in the .debug_str section from
19591 the .dwz file DWZ. Throw an error if the offset is too large. If
19592 the string consists of a single NUL byte, return NULL; otherwise
19593 return a pointer to the string. */
19594
19595 static const char *
19596 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19597 LONGEST str_offset)
19598 {
19599 dwarf2_read_section (objfile, &dwz->str);
19600
19601 if (dwz->str.buffer == NULL)
19602 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19603 "section [in module %s]"),
19604 bfd_get_filename (dwz->dwz_bfd));
19605 if (str_offset >= dwz->str.size)
19606 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19607 ".debug_str section [in module %s]"),
19608 bfd_get_filename (dwz->dwz_bfd));
19609 gdb_assert (HOST_CHAR_BIT == 8);
19610 if (dwz->str.buffer[str_offset] == '\0')
19611 return NULL;
19612 return (const char *) (dwz->str.buffer + str_offset);
19613 }
19614
19615 /* Return pointer to string at .debug_str offset as read from BUF.
19616 BUF is assumed to be in a compilation unit described by CU_HEADER.
19617 Return *BYTES_READ_PTR count of bytes read from BUF. */
19618
19619 static const char *
19620 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19621 const gdb_byte *buf,
19622 const struct comp_unit_head *cu_header,
19623 unsigned int *bytes_read_ptr)
19624 {
19625 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19626
19627 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19628 }
19629
19630 /* Return pointer to string at .debug_line_str offset as read from BUF.
19631 BUF is assumed to be in a compilation unit described by CU_HEADER.
19632 Return *BYTES_READ_PTR count of bytes read from BUF. */
19633
19634 static const char *
19635 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19636 bfd *abfd, const gdb_byte *buf,
19637 const struct comp_unit_head *cu_header,
19638 unsigned int *bytes_read_ptr)
19639 {
19640 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19641
19642 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19643 str_offset);
19644 }
19645
19646 ULONGEST
19647 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19648 unsigned int *bytes_read_ptr)
19649 {
19650 ULONGEST result;
19651 unsigned int num_read;
19652 int shift;
19653 unsigned char byte;
19654
19655 result = 0;
19656 shift = 0;
19657 num_read = 0;
19658 while (1)
19659 {
19660 byte = bfd_get_8 (abfd, buf);
19661 buf++;
19662 num_read++;
19663 result |= ((ULONGEST) (byte & 127) << shift);
19664 if ((byte & 128) == 0)
19665 {
19666 break;
19667 }
19668 shift += 7;
19669 }
19670 *bytes_read_ptr = num_read;
19671 return result;
19672 }
19673
19674 static LONGEST
19675 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19676 unsigned int *bytes_read_ptr)
19677 {
19678 ULONGEST result;
19679 int shift, num_read;
19680 unsigned char byte;
19681
19682 result = 0;
19683 shift = 0;
19684 num_read = 0;
19685 while (1)
19686 {
19687 byte = bfd_get_8 (abfd, buf);
19688 buf++;
19689 num_read++;
19690 result |= ((ULONGEST) (byte & 127) << shift);
19691 shift += 7;
19692 if ((byte & 128) == 0)
19693 {
19694 break;
19695 }
19696 }
19697 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19698 result |= -(((ULONGEST) 1) << shift);
19699 *bytes_read_ptr = num_read;
19700 return result;
19701 }
19702
19703 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19704 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19705 ADDR_SIZE is the size of addresses from the CU header. */
19706
19707 static CORE_ADDR
19708 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19709 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19710 {
19711 struct objfile *objfile = dwarf2_per_objfile->objfile;
19712 bfd *abfd = objfile->obfd;
19713 const gdb_byte *info_ptr;
19714
19715 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19716 if (dwarf2_per_objfile->addr.buffer == NULL)
19717 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19718 objfile_name (objfile));
19719 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19720 error (_("DW_FORM_addr_index pointing outside of "
19721 ".debug_addr section [in module %s]"),
19722 objfile_name (objfile));
19723 info_ptr = (dwarf2_per_objfile->addr.buffer
19724 + addr_base + addr_index * addr_size);
19725 if (addr_size == 4)
19726 return bfd_get_32 (abfd, info_ptr);
19727 else
19728 return bfd_get_64 (abfd, info_ptr);
19729 }
19730
19731 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19732
19733 static CORE_ADDR
19734 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19735 {
19736 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19737 cu->addr_base, cu->header.addr_size);
19738 }
19739
19740 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19741
19742 static CORE_ADDR
19743 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19744 unsigned int *bytes_read)
19745 {
19746 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19747 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19748
19749 return read_addr_index (cu, addr_index);
19750 }
19751
19752 /* Data structure to pass results from dwarf2_read_addr_index_reader
19753 back to dwarf2_read_addr_index. */
19754
19755 struct dwarf2_read_addr_index_data
19756 {
19757 ULONGEST addr_base;
19758 int addr_size;
19759 };
19760
19761 /* die_reader_func for dwarf2_read_addr_index. */
19762
19763 static void
19764 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19765 const gdb_byte *info_ptr,
19766 struct die_info *comp_unit_die,
19767 int has_children,
19768 void *data)
19769 {
19770 struct dwarf2_cu *cu = reader->cu;
19771 struct dwarf2_read_addr_index_data *aidata =
19772 (struct dwarf2_read_addr_index_data *) data;
19773
19774 aidata->addr_base = cu->addr_base;
19775 aidata->addr_size = cu->header.addr_size;
19776 }
19777
19778 /* Given an index in .debug_addr, fetch the value.
19779 NOTE: This can be called during dwarf expression evaluation,
19780 long after the debug information has been read, and thus per_cu->cu
19781 may no longer exist. */
19782
19783 CORE_ADDR
19784 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19785 unsigned int addr_index)
19786 {
19787 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19788 struct dwarf2_cu *cu = per_cu->cu;
19789 ULONGEST addr_base;
19790 int addr_size;
19791
19792 /* We need addr_base and addr_size.
19793 If we don't have PER_CU->cu, we have to get it.
19794 Nasty, but the alternative is storing the needed info in PER_CU,
19795 which at this point doesn't seem justified: it's not clear how frequently
19796 it would get used and it would increase the size of every PER_CU.
19797 Entry points like dwarf2_per_cu_addr_size do a similar thing
19798 so we're not in uncharted territory here.
19799 Alas we need to be a bit more complicated as addr_base is contained
19800 in the DIE.
19801
19802 We don't need to read the entire CU(/TU).
19803 We just need the header and top level die.
19804
19805 IWBN to use the aging mechanism to let us lazily later discard the CU.
19806 For now we skip this optimization. */
19807
19808 if (cu != NULL)
19809 {
19810 addr_base = cu->addr_base;
19811 addr_size = cu->header.addr_size;
19812 }
19813 else
19814 {
19815 struct dwarf2_read_addr_index_data aidata;
19816
19817 /* Note: We can't use init_cutu_and_read_dies_simple here,
19818 we need addr_base. */
19819 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19820 dwarf2_read_addr_index_reader, &aidata);
19821 addr_base = aidata.addr_base;
19822 addr_size = aidata.addr_size;
19823 }
19824
19825 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19826 addr_size);
19827 }
19828
19829 /* Given a DW_FORM_GNU_str_index, fetch the string.
19830 This is only used by the Fission support. */
19831
19832 static const char *
19833 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19834 {
19835 struct dwarf2_cu *cu = reader->cu;
19836 struct dwarf2_per_objfile *dwarf2_per_objfile
19837 = cu->per_cu->dwarf2_per_objfile;
19838 struct objfile *objfile = dwarf2_per_objfile->objfile;
19839 const char *objf_name = objfile_name (objfile);
19840 bfd *abfd = objfile->obfd;
19841 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19842 struct dwarf2_section_info *str_offsets_section =
19843 &reader->dwo_file->sections.str_offsets;
19844 const gdb_byte *info_ptr;
19845 ULONGEST str_offset;
19846 static const char form_name[] = "DW_FORM_GNU_str_index";
19847
19848 dwarf2_read_section (objfile, str_section);
19849 dwarf2_read_section (objfile, str_offsets_section);
19850 if (str_section->buffer == NULL)
19851 error (_("%s used without .debug_str.dwo section"
19852 " in CU at offset %s [in module %s]"),
19853 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19854 if (str_offsets_section->buffer == NULL)
19855 error (_("%s used without .debug_str_offsets.dwo section"
19856 " in CU at offset %s [in module %s]"),
19857 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19858 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19859 error (_("%s pointing outside of .debug_str_offsets.dwo"
19860 " section in CU at offset %s [in module %s]"),
19861 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19862 info_ptr = (str_offsets_section->buffer
19863 + str_index * cu->header.offset_size);
19864 if (cu->header.offset_size == 4)
19865 str_offset = bfd_get_32 (abfd, info_ptr);
19866 else
19867 str_offset = bfd_get_64 (abfd, info_ptr);
19868 if (str_offset >= str_section->size)
19869 error (_("Offset from %s pointing outside of"
19870 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19871 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19872 return (const char *) (str_section->buffer + str_offset);
19873 }
19874
19875 /* Return the length of an LEB128 number in BUF. */
19876
19877 static int
19878 leb128_size (const gdb_byte *buf)
19879 {
19880 const gdb_byte *begin = buf;
19881 gdb_byte byte;
19882
19883 while (1)
19884 {
19885 byte = *buf++;
19886 if ((byte & 128) == 0)
19887 return buf - begin;
19888 }
19889 }
19890
19891 static void
19892 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19893 {
19894 switch (lang)
19895 {
19896 case DW_LANG_C89:
19897 case DW_LANG_C99:
19898 case DW_LANG_C11:
19899 case DW_LANG_C:
19900 case DW_LANG_UPC:
19901 cu->language = language_c;
19902 break;
19903 case DW_LANG_Java:
19904 case DW_LANG_C_plus_plus:
19905 case DW_LANG_C_plus_plus_11:
19906 case DW_LANG_C_plus_plus_14:
19907 cu->language = language_cplus;
19908 break;
19909 case DW_LANG_D:
19910 cu->language = language_d;
19911 break;
19912 case DW_LANG_Fortran77:
19913 case DW_LANG_Fortran90:
19914 case DW_LANG_Fortran95:
19915 case DW_LANG_Fortran03:
19916 case DW_LANG_Fortran08:
19917 cu->language = language_fortran;
19918 break;
19919 case DW_LANG_Go:
19920 cu->language = language_go;
19921 break;
19922 case DW_LANG_Mips_Assembler:
19923 cu->language = language_asm;
19924 break;
19925 case DW_LANG_Ada83:
19926 case DW_LANG_Ada95:
19927 cu->language = language_ada;
19928 break;
19929 case DW_LANG_Modula2:
19930 cu->language = language_m2;
19931 break;
19932 case DW_LANG_Pascal83:
19933 cu->language = language_pascal;
19934 break;
19935 case DW_LANG_ObjC:
19936 cu->language = language_objc;
19937 break;
19938 case DW_LANG_Rust:
19939 case DW_LANG_Rust_old:
19940 cu->language = language_rust;
19941 break;
19942 case DW_LANG_Cobol74:
19943 case DW_LANG_Cobol85:
19944 default:
19945 cu->language = language_minimal;
19946 break;
19947 }
19948 cu->language_defn = language_def (cu->language);
19949 }
19950
19951 /* Return the named attribute or NULL if not there. */
19952
19953 static struct attribute *
19954 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19955 {
19956 for (;;)
19957 {
19958 unsigned int i;
19959 struct attribute *spec = NULL;
19960
19961 for (i = 0; i < die->num_attrs; ++i)
19962 {
19963 if (die->attrs[i].name == name)
19964 return &die->attrs[i];
19965 if (die->attrs[i].name == DW_AT_specification
19966 || die->attrs[i].name == DW_AT_abstract_origin)
19967 spec = &die->attrs[i];
19968 }
19969
19970 if (!spec)
19971 break;
19972
19973 die = follow_die_ref (die, spec, &cu);
19974 }
19975
19976 return NULL;
19977 }
19978
19979 /* Return the named attribute or NULL if not there,
19980 but do not follow DW_AT_specification, etc.
19981 This is for use in contexts where we're reading .debug_types dies.
19982 Following DW_AT_specification, DW_AT_abstract_origin will take us
19983 back up the chain, and we want to go down. */
19984
19985 static struct attribute *
19986 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19987 {
19988 unsigned int i;
19989
19990 for (i = 0; i < die->num_attrs; ++i)
19991 if (die->attrs[i].name == name)
19992 return &die->attrs[i];
19993
19994 return NULL;
19995 }
19996
19997 /* Return the string associated with a string-typed attribute, or NULL if it
19998 is either not found or is of an incorrect type. */
19999
20000 static const char *
20001 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20002 {
20003 struct attribute *attr;
20004 const char *str = NULL;
20005
20006 attr = dwarf2_attr (die, name, cu);
20007
20008 if (attr != NULL)
20009 {
20010 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20011 || attr->form == DW_FORM_string
20012 || attr->form == DW_FORM_GNU_str_index
20013 || attr->form == DW_FORM_GNU_strp_alt)
20014 str = DW_STRING (attr);
20015 else
20016 complaint (_("string type expected for attribute %s for "
20017 "DIE at %s in module %s"),
20018 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20019 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20020 }
20021
20022 return str;
20023 }
20024
20025 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20026 and holds a non-zero value. This function should only be used for
20027 DW_FORM_flag or DW_FORM_flag_present attributes. */
20028
20029 static int
20030 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20031 {
20032 struct attribute *attr = dwarf2_attr (die, name, cu);
20033
20034 return (attr && DW_UNSND (attr));
20035 }
20036
20037 static int
20038 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20039 {
20040 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20041 which value is non-zero. However, we have to be careful with
20042 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20043 (via dwarf2_flag_true_p) follows this attribute. So we may
20044 end up accidently finding a declaration attribute that belongs
20045 to a different DIE referenced by the specification attribute,
20046 even though the given DIE does not have a declaration attribute. */
20047 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20048 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20049 }
20050
20051 /* Return the die giving the specification for DIE, if there is
20052 one. *SPEC_CU is the CU containing DIE on input, and the CU
20053 containing the return value on output. If there is no
20054 specification, but there is an abstract origin, that is
20055 returned. */
20056
20057 static struct die_info *
20058 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20059 {
20060 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20061 *spec_cu);
20062
20063 if (spec_attr == NULL)
20064 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20065
20066 if (spec_attr == NULL)
20067 return NULL;
20068 else
20069 return follow_die_ref (die, spec_attr, spec_cu);
20070 }
20071
20072 /* Stub for free_line_header to match void * callback types. */
20073
20074 static void
20075 free_line_header_voidp (void *arg)
20076 {
20077 struct line_header *lh = (struct line_header *) arg;
20078
20079 delete lh;
20080 }
20081
20082 void
20083 line_header::add_include_dir (const char *include_dir)
20084 {
20085 if (dwarf_line_debug >= 2)
20086 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20087 include_dirs.size () + 1, include_dir);
20088
20089 include_dirs.push_back (include_dir);
20090 }
20091
20092 void
20093 line_header::add_file_name (const char *name,
20094 dir_index d_index,
20095 unsigned int mod_time,
20096 unsigned int length)
20097 {
20098 if (dwarf_line_debug >= 2)
20099 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20100 (unsigned) file_names.size () + 1, name);
20101
20102 file_names.emplace_back (name, d_index, mod_time, length);
20103 }
20104
20105 /* A convenience function to find the proper .debug_line section for a CU. */
20106
20107 static struct dwarf2_section_info *
20108 get_debug_line_section (struct dwarf2_cu *cu)
20109 {
20110 struct dwarf2_section_info *section;
20111 struct dwarf2_per_objfile *dwarf2_per_objfile
20112 = cu->per_cu->dwarf2_per_objfile;
20113
20114 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20115 DWO file. */
20116 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20117 section = &cu->dwo_unit->dwo_file->sections.line;
20118 else if (cu->per_cu->is_dwz)
20119 {
20120 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20121
20122 section = &dwz->line;
20123 }
20124 else
20125 section = &dwarf2_per_objfile->line;
20126
20127 return section;
20128 }
20129
20130 /* Read directory or file name entry format, starting with byte of
20131 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20132 entries count and the entries themselves in the described entry
20133 format. */
20134
20135 static void
20136 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20137 bfd *abfd, const gdb_byte **bufp,
20138 struct line_header *lh,
20139 const struct comp_unit_head *cu_header,
20140 void (*callback) (struct line_header *lh,
20141 const char *name,
20142 dir_index d_index,
20143 unsigned int mod_time,
20144 unsigned int length))
20145 {
20146 gdb_byte format_count, formati;
20147 ULONGEST data_count, datai;
20148 const gdb_byte *buf = *bufp;
20149 const gdb_byte *format_header_data;
20150 unsigned int bytes_read;
20151
20152 format_count = read_1_byte (abfd, buf);
20153 buf += 1;
20154 format_header_data = buf;
20155 for (formati = 0; formati < format_count; formati++)
20156 {
20157 read_unsigned_leb128 (abfd, buf, &bytes_read);
20158 buf += bytes_read;
20159 read_unsigned_leb128 (abfd, buf, &bytes_read);
20160 buf += bytes_read;
20161 }
20162
20163 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20164 buf += bytes_read;
20165 for (datai = 0; datai < data_count; datai++)
20166 {
20167 const gdb_byte *format = format_header_data;
20168 struct file_entry fe;
20169
20170 for (formati = 0; formati < format_count; formati++)
20171 {
20172 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20173 format += bytes_read;
20174
20175 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20176 format += bytes_read;
20177
20178 gdb::optional<const char *> string;
20179 gdb::optional<unsigned int> uint;
20180
20181 switch (form)
20182 {
20183 case DW_FORM_string:
20184 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20185 buf += bytes_read;
20186 break;
20187
20188 case DW_FORM_line_strp:
20189 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20190 abfd, buf,
20191 cu_header,
20192 &bytes_read));
20193 buf += bytes_read;
20194 break;
20195
20196 case DW_FORM_data1:
20197 uint.emplace (read_1_byte (abfd, buf));
20198 buf += 1;
20199 break;
20200
20201 case DW_FORM_data2:
20202 uint.emplace (read_2_bytes (abfd, buf));
20203 buf += 2;
20204 break;
20205
20206 case DW_FORM_data4:
20207 uint.emplace (read_4_bytes (abfd, buf));
20208 buf += 4;
20209 break;
20210
20211 case DW_FORM_data8:
20212 uint.emplace (read_8_bytes (abfd, buf));
20213 buf += 8;
20214 break;
20215
20216 case DW_FORM_udata:
20217 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20218 buf += bytes_read;
20219 break;
20220
20221 case DW_FORM_block:
20222 /* It is valid only for DW_LNCT_timestamp which is ignored by
20223 current GDB. */
20224 break;
20225 }
20226
20227 switch (content_type)
20228 {
20229 case DW_LNCT_path:
20230 if (string.has_value ())
20231 fe.name = *string;
20232 break;
20233 case DW_LNCT_directory_index:
20234 if (uint.has_value ())
20235 fe.d_index = (dir_index) *uint;
20236 break;
20237 case DW_LNCT_timestamp:
20238 if (uint.has_value ())
20239 fe.mod_time = *uint;
20240 break;
20241 case DW_LNCT_size:
20242 if (uint.has_value ())
20243 fe.length = *uint;
20244 break;
20245 case DW_LNCT_MD5:
20246 break;
20247 default:
20248 complaint (_("Unknown format content type %s"),
20249 pulongest (content_type));
20250 }
20251 }
20252
20253 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20254 }
20255
20256 *bufp = buf;
20257 }
20258
20259 /* Read the statement program header starting at OFFSET in
20260 .debug_line, or .debug_line.dwo. Return a pointer
20261 to a struct line_header, allocated using xmalloc.
20262 Returns NULL if there is a problem reading the header, e.g., if it
20263 has a version we don't understand.
20264
20265 NOTE: the strings in the include directory and file name tables of
20266 the returned object point into the dwarf line section buffer,
20267 and must not be freed. */
20268
20269 static line_header_up
20270 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20271 {
20272 const gdb_byte *line_ptr;
20273 unsigned int bytes_read, offset_size;
20274 int i;
20275 const char *cur_dir, *cur_file;
20276 struct dwarf2_section_info *section;
20277 bfd *abfd;
20278 struct dwarf2_per_objfile *dwarf2_per_objfile
20279 = cu->per_cu->dwarf2_per_objfile;
20280
20281 section = get_debug_line_section (cu);
20282 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20283 if (section->buffer == NULL)
20284 {
20285 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20286 complaint (_("missing .debug_line.dwo section"));
20287 else
20288 complaint (_("missing .debug_line section"));
20289 return 0;
20290 }
20291
20292 /* We can't do this until we know the section is non-empty.
20293 Only then do we know we have such a section. */
20294 abfd = get_section_bfd_owner (section);
20295
20296 /* Make sure that at least there's room for the total_length field.
20297 That could be 12 bytes long, but we're just going to fudge that. */
20298 if (to_underlying (sect_off) + 4 >= section->size)
20299 {
20300 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20301 return 0;
20302 }
20303
20304 line_header_up lh (new line_header ());
20305
20306 lh->sect_off = sect_off;
20307 lh->offset_in_dwz = cu->per_cu->is_dwz;
20308
20309 line_ptr = section->buffer + to_underlying (sect_off);
20310
20311 /* Read in the header. */
20312 lh->total_length =
20313 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20314 &bytes_read, &offset_size);
20315 line_ptr += bytes_read;
20316 if (line_ptr + lh->total_length > (section->buffer + section->size))
20317 {
20318 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20319 return 0;
20320 }
20321 lh->statement_program_end = line_ptr + lh->total_length;
20322 lh->version = read_2_bytes (abfd, line_ptr);
20323 line_ptr += 2;
20324 if (lh->version > 5)
20325 {
20326 /* This is a version we don't understand. The format could have
20327 changed in ways we don't handle properly so just punt. */
20328 complaint (_("unsupported version in .debug_line section"));
20329 return NULL;
20330 }
20331 if (lh->version >= 5)
20332 {
20333 gdb_byte segment_selector_size;
20334
20335 /* Skip address size. */
20336 read_1_byte (abfd, line_ptr);
20337 line_ptr += 1;
20338
20339 segment_selector_size = read_1_byte (abfd, line_ptr);
20340 line_ptr += 1;
20341 if (segment_selector_size != 0)
20342 {
20343 complaint (_("unsupported segment selector size %u "
20344 "in .debug_line section"),
20345 segment_selector_size);
20346 return NULL;
20347 }
20348 }
20349 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20350 line_ptr += offset_size;
20351 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20352 line_ptr += 1;
20353 if (lh->version >= 4)
20354 {
20355 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20356 line_ptr += 1;
20357 }
20358 else
20359 lh->maximum_ops_per_instruction = 1;
20360
20361 if (lh->maximum_ops_per_instruction == 0)
20362 {
20363 lh->maximum_ops_per_instruction = 1;
20364 complaint (_("invalid maximum_ops_per_instruction "
20365 "in `.debug_line' section"));
20366 }
20367
20368 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20369 line_ptr += 1;
20370 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20371 line_ptr += 1;
20372 lh->line_range = read_1_byte (abfd, line_ptr);
20373 line_ptr += 1;
20374 lh->opcode_base = read_1_byte (abfd, line_ptr);
20375 line_ptr += 1;
20376 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20377
20378 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20379 for (i = 1; i < lh->opcode_base; ++i)
20380 {
20381 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20382 line_ptr += 1;
20383 }
20384
20385 if (lh->version >= 5)
20386 {
20387 /* Read directory table. */
20388 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20389 &cu->header,
20390 [] (struct line_header *header, const char *name,
20391 dir_index d_index, unsigned int mod_time,
20392 unsigned int length)
20393 {
20394 header->add_include_dir (name);
20395 });
20396
20397 /* Read file name table. */
20398 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20399 &cu->header,
20400 [] (struct line_header *header, const char *name,
20401 dir_index d_index, unsigned int mod_time,
20402 unsigned int length)
20403 {
20404 header->add_file_name (name, d_index, mod_time, length);
20405 });
20406 }
20407 else
20408 {
20409 /* Read directory table. */
20410 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20411 {
20412 line_ptr += bytes_read;
20413 lh->add_include_dir (cur_dir);
20414 }
20415 line_ptr += bytes_read;
20416
20417 /* Read file name table. */
20418 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20419 {
20420 unsigned int mod_time, length;
20421 dir_index d_index;
20422
20423 line_ptr += bytes_read;
20424 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20425 line_ptr += bytes_read;
20426 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20427 line_ptr += bytes_read;
20428 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20429 line_ptr += bytes_read;
20430
20431 lh->add_file_name (cur_file, d_index, mod_time, length);
20432 }
20433 line_ptr += bytes_read;
20434 }
20435 lh->statement_program_start = line_ptr;
20436
20437 if (line_ptr > (section->buffer + section->size))
20438 complaint (_("line number info header doesn't "
20439 "fit in `.debug_line' section"));
20440
20441 return lh;
20442 }
20443
20444 /* Subroutine of dwarf_decode_lines to simplify it.
20445 Return the file name of the psymtab for included file FILE_INDEX
20446 in line header LH of PST.
20447 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20448 If space for the result is malloc'd, *NAME_HOLDER will be set.
20449 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20450
20451 static const char *
20452 psymtab_include_file_name (const struct line_header *lh, int file_index,
20453 const struct partial_symtab *pst,
20454 const char *comp_dir,
20455 gdb::unique_xmalloc_ptr<char> *name_holder)
20456 {
20457 const file_entry &fe = lh->file_names[file_index];
20458 const char *include_name = fe.name;
20459 const char *include_name_to_compare = include_name;
20460 const char *pst_filename;
20461 int file_is_pst;
20462
20463 const char *dir_name = fe.include_dir (lh);
20464
20465 gdb::unique_xmalloc_ptr<char> hold_compare;
20466 if (!IS_ABSOLUTE_PATH (include_name)
20467 && (dir_name != NULL || comp_dir != NULL))
20468 {
20469 /* Avoid creating a duplicate psymtab for PST.
20470 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20471 Before we do the comparison, however, we need to account
20472 for DIR_NAME and COMP_DIR.
20473 First prepend dir_name (if non-NULL). If we still don't
20474 have an absolute path prepend comp_dir (if non-NULL).
20475 However, the directory we record in the include-file's
20476 psymtab does not contain COMP_DIR (to match the
20477 corresponding symtab(s)).
20478
20479 Example:
20480
20481 bash$ cd /tmp
20482 bash$ gcc -g ./hello.c
20483 include_name = "hello.c"
20484 dir_name = "."
20485 DW_AT_comp_dir = comp_dir = "/tmp"
20486 DW_AT_name = "./hello.c"
20487
20488 */
20489
20490 if (dir_name != NULL)
20491 {
20492 name_holder->reset (concat (dir_name, SLASH_STRING,
20493 include_name, (char *) NULL));
20494 include_name = name_holder->get ();
20495 include_name_to_compare = include_name;
20496 }
20497 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20498 {
20499 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20500 include_name, (char *) NULL));
20501 include_name_to_compare = hold_compare.get ();
20502 }
20503 }
20504
20505 pst_filename = pst->filename;
20506 gdb::unique_xmalloc_ptr<char> copied_name;
20507 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20508 {
20509 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20510 pst_filename, (char *) NULL));
20511 pst_filename = copied_name.get ();
20512 }
20513
20514 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20515
20516 if (file_is_pst)
20517 return NULL;
20518 return include_name;
20519 }
20520
20521 /* State machine to track the state of the line number program. */
20522
20523 class lnp_state_machine
20524 {
20525 public:
20526 /* Initialize a machine state for the start of a line number
20527 program. */
20528 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20529 bool record_lines_p);
20530
20531 file_entry *current_file ()
20532 {
20533 /* lh->file_names is 0-based, but the file name numbers in the
20534 statement program are 1-based. */
20535 return m_line_header->file_name_at (m_file);
20536 }
20537
20538 /* Record the line in the state machine. END_SEQUENCE is true if
20539 we're processing the end of a sequence. */
20540 void record_line (bool end_sequence);
20541
20542 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20543 nop-out rest of the lines in this sequence. */
20544 void check_line_address (struct dwarf2_cu *cu,
20545 const gdb_byte *line_ptr,
20546 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20547
20548 void handle_set_discriminator (unsigned int discriminator)
20549 {
20550 m_discriminator = discriminator;
20551 m_line_has_non_zero_discriminator |= discriminator != 0;
20552 }
20553
20554 /* Handle DW_LNE_set_address. */
20555 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20556 {
20557 m_op_index = 0;
20558 address += baseaddr;
20559 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20560 }
20561
20562 /* Handle DW_LNS_advance_pc. */
20563 void handle_advance_pc (CORE_ADDR adjust);
20564
20565 /* Handle a special opcode. */
20566 void handle_special_opcode (unsigned char op_code);
20567
20568 /* Handle DW_LNS_advance_line. */
20569 void handle_advance_line (int line_delta)
20570 {
20571 advance_line (line_delta);
20572 }
20573
20574 /* Handle DW_LNS_set_file. */
20575 void handle_set_file (file_name_index file);
20576
20577 /* Handle DW_LNS_negate_stmt. */
20578 void handle_negate_stmt ()
20579 {
20580 m_is_stmt = !m_is_stmt;
20581 }
20582
20583 /* Handle DW_LNS_const_add_pc. */
20584 void handle_const_add_pc ();
20585
20586 /* Handle DW_LNS_fixed_advance_pc. */
20587 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20588 {
20589 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20590 m_op_index = 0;
20591 }
20592
20593 /* Handle DW_LNS_copy. */
20594 void handle_copy ()
20595 {
20596 record_line (false);
20597 m_discriminator = 0;
20598 }
20599
20600 /* Handle DW_LNE_end_sequence. */
20601 void handle_end_sequence ()
20602 {
20603 m_currently_recording_lines = true;
20604 }
20605
20606 private:
20607 /* Advance the line by LINE_DELTA. */
20608 void advance_line (int line_delta)
20609 {
20610 m_line += line_delta;
20611
20612 if (line_delta != 0)
20613 m_line_has_non_zero_discriminator = m_discriminator != 0;
20614 }
20615
20616 struct dwarf2_cu *m_cu;
20617
20618 gdbarch *m_gdbarch;
20619
20620 /* True if we're recording lines.
20621 Otherwise we're building partial symtabs and are just interested in
20622 finding include files mentioned by the line number program. */
20623 bool m_record_lines_p;
20624
20625 /* The line number header. */
20626 line_header *m_line_header;
20627
20628 /* These are part of the standard DWARF line number state machine,
20629 and initialized according to the DWARF spec. */
20630
20631 unsigned char m_op_index = 0;
20632 /* The line table index (1-based) of the current file. */
20633 file_name_index m_file = (file_name_index) 1;
20634 unsigned int m_line = 1;
20635
20636 /* These are initialized in the constructor. */
20637
20638 CORE_ADDR m_address;
20639 bool m_is_stmt;
20640 unsigned int m_discriminator;
20641
20642 /* Additional bits of state we need to track. */
20643
20644 /* The last file that we called dwarf2_start_subfile for.
20645 This is only used for TLLs. */
20646 unsigned int m_last_file = 0;
20647 /* The last file a line number was recorded for. */
20648 struct subfile *m_last_subfile = NULL;
20649
20650 /* When true, record the lines we decode. */
20651 bool m_currently_recording_lines = false;
20652
20653 /* The last line number that was recorded, used to coalesce
20654 consecutive entries for the same line. This can happen, for
20655 example, when discriminators are present. PR 17276. */
20656 unsigned int m_last_line = 0;
20657 bool m_line_has_non_zero_discriminator = false;
20658 };
20659
20660 void
20661 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20662 {
20663 CORE_ADDR addr_adj = (((m_op_index + adjust)
20664 / m_line_header->maximum_ops_per_instruction)
20665 * m_line_header->minimum_instruction_length);
20666 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20667 m_op_index = ((m_op_index + adjust)
20668 % m_line_header->maximum_ops_per_instruction);
20669 }
20670
20671 void
20672 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20673 {
20674 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20675 CORE_ADDR addr_adj = (((m_op_index
20676 + (adj_opcode / m_line_header->line_range))
20677 / m_line_header->maximum_ops_per_instruction)
20678 * m_line_header->minimum_instruction_length);
20679 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20680 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20681 % m_line_header->maximum_ops_per_instruction);
20682
20683 int line_delta = (m_line_header->line_base
20684 + (adj_opcode % m_line_header->line_range));
20685 advance_line (line_delta);
20686 record_line (false);
20687 m_discriminator = 0;
20688 }
20689
20690 void
20691 lnp_state_machine::handle_set_file (file_name_index file)
20692 {
20693 m_file = file;
20694
20695 const file_entry *fe = current_file ();
20696 if (fe == NULL)
20697 dwarf2_debug_line_missing_file_complaint ();
20698 else if (m_record_lines_p)
20699 {
20700 const char *dir = fe->include_dir (m_line_header);
20701
20702 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20703 m_line_has_non_zero_discriminator = m_discriminator != 0;
20704 dwarf2_start_subfile (m_cu, fe->name, dir);
20705 }
20706 }
20707
20708 void
20709 lnp_state_machine::handle_const_add_pc ()
20710 {
20711 CORE_ADDR adjust
20712 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20713
20714 CORE_ADDR addr_adj
20715 = (((m_op_index + adjust)
20716 / m_line_header->maximum_ops_per_instruction)
20717 * m_line_header->minimum_instruction_length);
20718
20719 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20720 m_op_index = ((m_op_index + adjust)
20721 % m_line_header->maximum_ops_per_instruction);
20722 }
20723
20724 /* Return non-zero if we should add LINE to the line number table.
20725 LINE is the line to add, LAST_LINE is the last line that was added,
20726 LAST_SUBFILE is the subfile for LAST_LINE.
20727 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20728 had a non-zero discriminator.
20729
20730 We have to be careful in the presence of discriminators.
20731 E.g., for this line:
20732
20733 for (i = 0; i < 100000; i++);
20734
20735 clang can emit four line number entries for that one line,
20736 each with a different discriminator.
20737 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20738
20739 However, we want gdb to coalesce all four entries into one.
20740 Otherwise the user could stepi into the middle of the line and
20741 gdb would get confused about whether the pc really was in the
20742 middle of the line.
20743
20744 Things are further complicated by the fact that two consecutive
20745 line number entries for the same line is a heuristic used by gcc
20746 to denote the end of the prologue. So we can't just discard duplicate
20747 entries, we have to be selective about it. The heuristic we use is
20748 that we only collapse consecutive entries for the same line if at least
20749 one of those entries has a non-zero discriminator. PR 17276.
20750
20751 Note: Addresses in the line number state machine can never go backwards
20752 within one sequence, thus this coalescing is ok. */
20753
20754 static int
20755 dwarf_record_line_p (struct dwarf2_cu *cu,
20756 unsigned int line, unsigned int last_line,
20757 int line_has_non_zero_discriminator,
20758 struct subfile *last_subfile)
20759 {
20760 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20761 return 1;
20762 if (line != last_line)
20763 return 1;
20764 /* Same line for the same file that we've seen already.
20765 As a last check, for pr 17276, only record the line if the line
20766 has never had a non-zero discriminator. */
20767 if (!line_has_non_zero_discriminator)
20768 return 1;
20769 return 0;
20770 }
20771
20772 /* Use the CU's builder to record line number LINE beginning at
20773 address ADDRESS in the line table of subfile SUBFILE. */
20774
20775 static void
20776 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20777 unsigned int line, CORE_ADDR address,
20778 struct dwarf2_cu *cu)
20779 {
20780 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20781
20782 if (dwarf_line_debug)
20783 {
20784 fprintf_unfiltered (gdb_stdlog,
20785 "Recording line %u, file %s, address %s\n",
20786 line, lbasename (subfile->name),
20787 paddress (gdbarch, address));
20788 }
20789
20790 if (cu != nullptr)
20791 cu->get_builder ()->record_line (subfile, line, addr);
20792 }
20793
20794 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20795 Mark the end of a set of line number records.
20796 The arguments are the same as for dwarf_record_line_1.
20797 If SUBFILE is NULL the request is ignored. */
20798
20799 static void
20800 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20801 CORE_ADDR address, struct dwarf2_cu *cu)
20802 {
20803 if (subfile == NULL)
20804 return;
20805
20806 if (dwarf_line_debug)
20807 {
20808 fprintf_unfiltered (gdb_stdlog,
20809 "Finishing current line, file %s, address %s\n",
20810 lbasename (subfile->name),
20811 paddress (gdbarch, address));
20812 }
20813
20814 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20815 }
20816
20817 void
20818 lnp_state_machine::record_line (bool end_sequence)
20819 {
20820 if (dwarf_line_debug)
20821 {
20822 fprintf_unfiltered (gdb_stdlog,
20823 "Processing actual line %u: file %u,"
20824 " address %s, is_stmt %u, discrim %u\n",
20825 m_line, to_underlying (m_file),
20826 paddress (m_gdbarch, m_address),
20827 m_is_stmt, m_discriminator);
20828 }
20829
20830 file_entry *fe = current_file ();
20831
20832 if (fe == NULL)
20833 dwarf2_debug_line_missing_file_complaint ();
20834 /* For now we ignore lines not starting on an instruction boundary.
20835 But not when processing end_sequence for compatibility with the
20836 previous version of the code. */
20837 else if (m_op_index == 0 || end_sequence)
20838 {
20839 fe->included_p = 1;
20840 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20841 {
20842 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20843 || end_sequence)
20844 {
20845 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20846 m_currently_recording_lines ? m_cu : nullptr);
20847 }
20848
20849 if (!end_sequence)
20850 {
20851 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20852 m_line_has_non_zero_discriminator,
20853 m_last_subfile))
20854 {
20855 buildsym_compunit *builder = m_cu->get_builder ();
20856 dwarf_record_line_1 (m_gdbarch,
20857 builder->get_current_subfile (),
20858 m_line, m_address,
20859 m_currently_recording_lines ? m_cu : nullptr);
20860 }
20861 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20862 m_last_line = m_line;
20863 }
20864 }
20865 }
20866 }
20867
20868 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20869 line_header *lh, bool record_lines_p)
20870 {
20871 m_cu = cu;
20872 m_gdbarch = arch;
20873 m_record_lines_p = record_lines_p;
20874 m_line_header = lh;
20875
20876 m_currently_recording_lines = true;
20877
20878 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20879 was a line entry for it so that the backend has a chance to adjust it
20880 and also record it in case it needs it. This is currently used by MIPS
20881 code, cf. `mips_adjust_dwarf2_line'. */
20882 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20883 m_is_stmt = lh->default_is_stmt;
20884 m_discriminator = 0;
20885 }
20886
20887 void
20888 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20889 const gdb_byte *line_ptr,
20890 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20891 {
20892 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20893 the pc range of the CU. However, we restrict the test to only ADDRESS
20894 values of zero to preserve GDB's previous behaviour which is to handle
20895 the specific case of a function being GC'd by the linker. */
20896
20897 if (address == 0 && address < unrelocated_lowpc)
20898 {
20899 /* This line table is for a function which has been
20900 GCd by the linker. Ignore it. PR gdb/12528 */
20901
20902 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20903 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20904
20905 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20906 line_offset, objfile_name (objfile));
20907 m_currently_recording_lines = false;
20908 /* Note: m_currently_recording_lines is left as false until we see
20909 DW_LNE_end_sequence. */
20910 }
20911 }
20912
20913 /* Subroutine of dwarf_decode_lines to simplify it.
20914 Process the line number information in LH.
20915 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20916 program in order to set included_p for every referenced header. */
20917
20918 static void
20919 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20920 const int decode_for_pst_p, CORE_ADDR lowpc)
20921 {
20922 const gdb_byte *line_ptr, *extended_end;
20923 const gdb_byte *line_end;
20924 unsigned int bytes_read, extended_len;
20925 unsigned char op_code, extended_op;
20926 CORE_ADDR baseaddr;
20927 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20928 bfd *abfd = objfile->obfd;
20929 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20930 /* True if we're recording line info (as opposed to building partial
20931 symtabs and just interested in finding include files mentioned by
20932 the line number program). */
20933 bool record_lines_p = !decode_for_pst_p;
20934
20935 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20936
20937 line_ptr = lh->statement_program_start;
20938 line_end = lh->statement_program_end;
20939
20940 /* Read the statement sequences until there's nothing left. */
20941 while (line_ptr < line_end)
20942 {
20943 /* The DWARF line number program state machine. Reset the state
20944 machine at the start of each sequence. */
20945 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20946 bool end_sequence = false;
20947
20948 if (record_lines_p)
20949 {
20950 /* Start a subfile for the current file of the state
20951 machine. */
20952 const file_entry *fe = state_machine.current_file ();
20953
20954 if (fe != NULL)
20955 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20956 }
20957
20958 /* Decode the table. */
20959 while (line_ptr < line_end && !end_sequence)
20960 {
20961 op_code = read_1_byte (abfd, line_ptr);
20962 line_ptr += 1;
20963
20964 if (op_code >= lh->opcode_base)
20965 {
20966 /* Special opcode. */
20967 state_machine.handle_special_opcode (op_code);
20968 }
20969 else switch (op_code)
20970 {
20971 case DW_LNS_extended_op:
20972 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20973 &bytes_read);
20974 line_ptr += bytes_read;
20975 extended_end = line_ptr + extended_len;
20976 extended_op = read_1_byte (abfd, line_ptr);
20977 line_ptr += 1;
20978 switch (extended_op)
20979 {
20980 case DW_LNE_end_sequence:
20981 state_machine.handle_end_sequence ();
20982 end_sequence = true;
20983 break;
20984 case DW_LNE_set_address:
20985 {
20986 CORE_ADDR address
20987 = read_address (abfd, line_ptr, cu, &bytes_read);
20988 line_ptr += bytes_read;
20989
20990 state_machine.check_line_address (cu, line_ptr,
20991 lowpc - baseaddr, address);
20992 state_machine.handle_set_address (baseaddr, address);
20993 }
20994 break;
20995 case DW_LNE_define_file:
20996 {
20997 const char *cur_file;
20998 unsigned int mod_time, length;
20999 dir_index dindex;
21000
21001 cur_file = read_direct_string (abfd, line_ptr,
21002 &bytes_read);
21003 line_ptr += bytes_read;
21004 dindex = (dir_index)
21005 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21006 line_ptr += bytes_read;
21007 mod_time =
21008 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21009 line_ptr += bytes_read;
21010 length =
21011 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21012 line_ptr += bytes_read;
21013 lh->add_file_name (cur_file, dindex, mod_time, length);
21014 }
21015 break;
21016 case DW_LNE_set_discriminator:
21017 {
21018 /* The discriminator is not interesting to the
21019 debugger; just ignore it. We still need to
21020 check its value though:
21021 if there are consecutive entries for the same
21022 (non-prologue) line we want to coalesce them.
21023 PR 17276. */
21024 unsigned int discr
21025 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21026 line_ptr += bytes_read;
21027
21028 state_machine.handle_set_discriminator (discr);
21029 }
21030 break;
21031 default:
21032 complaint (_("mangled .debug_line section"));
21033 return;
21034 }
21035 /* Make sure that we parsed the extended op correctly. If e.g.
21036 we expected a different address size than the producer used,
21037 we may have read the wrong number of bytes. */
21038 if (line_ptr != extended_end)
21039 {
21040 complaint (_("mangled .debug_line section"));
21041 return;
21042 }
21043 break;
21044 case DW_LNS_copy:
21045 state_machine.handle_copy ();
21046 break;
21047 case DW_LNS_advance_pc:
21048 {
21049 CORE_ADDR adjust
21050 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21051 line_ptr += bytes_read;
21052
21053 state_machine.handle_advance_pc (adjust);
21054 }
21055 break;
21056 case DW_LNS_advance_line:
21057 {
21058 int line_delta
21059 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21060 line_ptr += bytes_read;
21061
21062 state_machine.handle_advance_line (line_delta);
21063 }
21064 break;
21065 case DW_LNS_set_file:
21066 {
21067 file_name_index file
21068 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21069 &bytes_read);
21070 line_ptr += bytes_read;
21071
21072 state_machine.handle_set_file (file);
21073 }
21074 break;
21075 case DW_LNS_set_column:
21076 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21077 line_ptr += bytes_read;
21078 break;
21079 case DW_LNS_negate_stmt:
21080 state_machine.handle_negate_stmt ();
21081 break;
21082 case DW_LNS_set_basic_block:
21083 break;
21084 /* Add to the address register of the state machine the
21085 address increment value corresponding to special opcode
21086 255. I.e., this value is scaled by the minimum
21087 instruction length since special opcode 255 would have
21088 scaled the increment. */
21089 case DW_LNS_const_add_pc:
21090 state_machine.handle_const_add_pc ();
21091 break;
21092 case DW_LNS_fixed_advance_pc:
21093 {
21094 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21095 line_ptr += 2;
21096
21097 state_machine.handle_fixed_advance_pc (addr_adj);
21098 }
21099 break;
21100 default:
21101 {
21102 /* Unknown standard opcode, ignore it. */
21103 int i;
21104
21105 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21106 {
21107 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21108 line_ptr += bytes_read;
21109 }
21110 }
21111 }
21112 }
21113
21114 if (!end_sequence)
21115 dwarf2_debug_line_missing_end_sequence_complaint ();
21116
21117 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21118 in which case we still finish recording the last line). */
21119 state_machine.record_line (true);
21120 }
21121 }
21122
21123 /* Decode the Line Number Program (LNP) for the given line_header
21124 structure and CU. The actual information extracted and the type
21125 of structures created from the LNP depends on the value of PST.
21126
21127 1. If PST is NULL, then this procedure uses the data from the program
21128 to create all necessary symbol tables, and their linetables.
21129
21130 2. If PST is not NULL, this procedure reads the program to determine
21131 the list of files included by the unit represented by PST, and
21132 builds all the associated partial symbol tables.
21133
21134 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21135 It is used for relative paths in the line table.
21136 NOTE: When processing partial symtabs (pst != NULL),
21137 comp_dir == pst->dirname.
21138
21139 NOTE: It is important that psymtabs have the same file name (via strcmp)
21140 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21141 symtab we don't use it in the name of the psymtabs we create.
21142 E.g. expand_line_sal requires this when finding psymtabs to expand.
21143 A good testcase for this is mb-inline.exp.
21144
21145 LOWPC is the lowest address in CU (or 0 if not known).
21146
21147 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21148 for its PC<->lines mapping information. Otherwise only the filename
21149 table is read in. */
21150
21151 static void
21152 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21153 struct dwarf2_cu *cu, struct partial_symtab *pst,
21154 CORE_ADDR lowpc, int decode_mapping)
21155 {
21156 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21157 const int decode_for_pst_p = (pst != NULL);
21158
21159 if (decode_mapping)
21160 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21161
21162 if (decode_for_pst_p)
21163 {
21164 int file_index;
21165
21166 /* Now that we're done scanning the Line Header Program, we can
21167 create the psymtab of each included file. */
21168 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21169 if (lh->file_names[file_index].included_p == 1)
21170 {
21171 gdb::unique_xmalloc_ptr<char> name_holder;
21172 const char *include_name =
21173 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21174 &name_holder);
21175 if (include_name != NULL)
21176 dwarf2_create_include_psymtab (include_name, pst, objfile);
21177 }
21178 }
21179 else
21180 {
21181 /* Make sure a symtab is created for every file, even files
21182 which contain only variables (i.e. no code with associated
21183 line numbers). */
21184 buildsym_compunit *builder = cu->get_builder ();
21185 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21186 int i;
21187
21188 for (i = 0; i < lh->file_names.size (); i++)
21189 {
21190 file_entry &fe = lh->file_names[i];
21191
21192 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21193
21194 if (builder->get_current_subfile ()->symtab == NULL)
21195 {
21196 builder->get_current_subfile ()->symtab
21197 = allocate_symtab (cust,
21198 builder->get_current_subfile ()->name);
21199 }
21200 fe.symtab = builder->get_current_subfile ()->symtab;
21201 }
21202 }
21203 }
21204
21205 /* Start a subfile for DWARF. FILENAME is the name of the file and
21206 DIRNAME the name of the source directory which contains FILENAME
21207 or NULL if not known.
21208 This routine tries to keep line numbers from identical absolute and
21209 relative file names in a common subfile.
21210
21211 Using the `list' example from the GDB testsuite, which resides in
21212 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21213 of /srcdir/list0.c yields the following debugging information for list0.c:
21214
21215 DW_AT_name: /srcdir/list0.c
21216 DW_AT_comp_dir: /compdir
21217 files.files[0].name: list0.h
21218 files.files[0].dir: /srcdir
21219 files.files[1].name: list0.c
21220 files.files[1].dir: /srcdir
21221
21222 The line number information for list0.c has to end up in a single
21223 subfile, so that `break /srcdir/list0.c:1' works as expected.
21224 start_subfile will ensure that this happens provided that we pass the
21225 concatenation of files.files[1].dir and files.files[1].name as the
21226 subfile's name. */
21227
21228 static void
21229 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21230 const char *dirname)
21231 {
21232 char *copy = NULL;
21233
21234 /* In order not to lose the line information directory,
21235 we concatenate it to the filename when it makes sense.
21236 Note that the Dwarf3 standard says (speaking of filenames in line
21237 information): ``The directory index is ignored for file names
21238 that represent full path names''. Thus ignoring dirname in the
21239 `else' branch below isn't an issue. */
21240
21241 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21242 {
21243 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21244 filename = copy;
21245 }
21246
21247 cu->get_builder ()->start_subfile (filename);
21248
21249 if (copy != NULL)
21250 xfree (copy);
21251 }
21252
21253 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21254 buildsym_compunit constructor. */
21255
21256 struct compunit_symtab *
21257 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21258 CORE_ADDR low_pc)
21259 {
21260 gdb_assert (m_builder == nullptr);
21261
21262 m_builder.reset (new struct buildsym_compunit
21263 (per_cu->dwarf2_per_objfile->objfile,
21264 name, comp_dir, language, low_pc));
21265
21266 list_in_scope = get_builder ()->get_file_symbols ();
21267
21268 get_builder ()->record_debugformat ("DWARF 2");
21269 get_builder ()->record_producer (producer);
21270
21271 processing_has_namespace_info = false;
21272
21273 return get_builder ()->get_compunit_symtab ();
21274 }
21275
21276 static void
21277 var_decode_location (struct attribute *attr, struct symbol *sym,
21278 struct dwarf2_cu *cu)
21279 {
21280 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21281 struct comp_unit_head *cu_header = &cu->header;
21282
21283 /* NOTE drow/2003-01-30: There used to be a comment and some special
21284 code here to turn a symbol with DW_AT_external and a
21285 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21286 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21287 with some versions of binutils) where shared libraries could have
21288 relocations against symbols in their debug information - the
21289 minimal symbol would have the right address, but the debug info
21290 would not. It's no longer necessary, because we will explicitly
21291 apply relocations when we read in the debug information now. */
21292
21293 /* A DW_AT_location attribute with no contents indicates that a
21294 variable has been optimized away. */
21295 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21296 {
21297 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21298 return;
21299 }
21300
21301 /* Handle one degenerate form of location expression specially, to
21302 preserve GDB's previous behavior when section offsets are
21303 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21304 then mark this symbol as LOC_STATIC. */
21305
21306 if (attr_form_is_block (attr)
21307 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21308 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21309 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21310 && (DW_BLOCK (attr)->size
21311 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21312 {
21313 unsigned int dummy;
21314
21315 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21316 SYMBOL_VALUE_ADDRESS (sym) =
21317 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21318 else
21319 SYMBOL_VALUE_ADDRESS (sym) =
21320 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21321 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21322 fixup_symbol_section (sym, objfile);
21323 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21324 SYMBOL_SECTION (sym));
21325 return;
21326 }
21327
21328 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21329 expression evaluator, and use LOC_COMPUTED only when necessary
21330 (i.e. when the value of a register or memory location is
21331 referenced, or a thread-local block, etc.). Then again, it might
21332 not be worthwhile. I'm assuming that it isn't unless performance
21333 or memory numbers show me otherwise. */
21334
21335 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21336
21337 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21338 cu->has_loclist = true;
21339 }
21340
21341 /* Given a pointer to a DWARF information entry, figure out if we need
21342 to make a symbol table entry for it, and if so, create a new entry
21343 and return a pointer to it.
21344 If TYPE is NULL, determine symbol type from the die, otherwise
21345 used the passed type.
21346 If SPACE is not NULL, use it to hold the new symbol. If it is
21347 NULL, allocate a new symbol on the objfile's obstack. */
21348
21349 static struct symbol *
21350 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21351 struct symbol *space)
21352 {
21353 struct dwarf2_per_objfile *dwarf2_per_objfile
21354 = cu->per_cu->dwarf2_per_objfile;
21355 struct objfile *objfile = dwarf2_per_objfile->objfile;
21356 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21357 struct symbol *sym = NULL;
21358 const char *name;
21359 struct attribute *attr = NULL;
21360 struct attribute *attr2 = NULL;
21361 CORE_ADDR baseaddr;
21362 struct pending **list_to_add = NULL;
21363
21364 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21365
21366 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21367
21368 name = dwarf2_name (die, cu);
21369 if (name)
21370 {
21371 const char *linkagename;
21372 int suppress_add = 0;
21373
21374 if (space)
21375 sym = space;
21376 else
21377 sym = allocate_symbol (objfile);
21378 OBJSTAT (objfile, n_syms++);
21379
21380 /* Cache this symbol's name and the name's demangled form (if any). */
21381 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21382 linkagename = dwarf2_physname (name, die, cu);
21383 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21384
21385 /* Fortran does not have mangling standard and the mangling does differ
21386 between gfortran, iFort etc. */
21387 if (cu->language == language_fortran
21388 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21389 symbol_set_demangled_name (&(sym->ginfo),
21390 dwarf2_full_name (name, die, cu),
21391 NULL);
21392
21393 /* Default assumptions.
21394 Use the passed type or decode it from the die. */
21395 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21396 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21397 if (type != NULL)
21398 SYMBOL_TYPE (sym) = type;
21399 else
21400 SYMBOL_TYPE (sym) = die_type (die, cu);
21401 attr = dwarf2_attr (die,
21402 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21403 cu);
21404 if (attr)
21405 {
21406 SYMBOL_LINE (sym) = DW_UNSND (attr);
21407 }
21408
21409 attr = dwarf2_attr (die,
21410 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21411 cu);
21412 if (attr)
21413 {
21414 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21415 struct file_entry *fe;
21416
21417 if (cu->line_header != NULL)
21418 fe = cu->line_header->file_name_at (file_index);
21419 else
21420 fe = NULL;
21421
21422 if (fe == NULL)
21423 complaint (_("file index out of range"));
21424 else
21425 symbol_set_symtab (sym, fe->symtab);
21426 }
21427
21428 switch (die->tag)
21429 {
21430 case DW_TAG_label:
21431 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21432 if (attr)
21433 {
21434 CORE_ADDR addr;
21435
21436 addr = attr_value_as_address (attr);
21437 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21438 SYMBOL_VALUE_ADDRESS (sym) = addr;
21439 }
21440 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21441 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21442 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21443 add_symbol_to_list (sym, cu->list_in_scope);
21444 break;
21445 case DW_TAG_subprogram:
21446 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21447 finish_block. */
21448 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21449 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21450 if ((attr2 && (DW_UNSND (attr2) != 0))
21451 || cu->language == language_ada)
21452 {
21453 /* Subprograms marked external are stored as a global symbol.
21454 Ada subprograms, whether marked external or not, are always
21455 stored as a global symbol, because we want to be able to
21456 access them globally. For instance, we want to be able
21457 to break on a nested subprogram without having to
21458 specify the context. */
21459 list_to_add = cu->get_builder ()->get_global_symbols ();
21460 }
21461 else
21462 {
21463 list_to_add = cu->list_in_scope;
21464 }
21465 break;
21466 case DW_TAG_inlined_subroutine:
21467 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21468 finish_block. */
21469 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21470 SYMBOL_INLINED (sym) = 1;
21471 list_to_add = cu->list_in_scope;
21472 break;
21473 case DW_TAG_template_value_param:
21474 suppress_add = 1;
21475 /* Fall through. */
21476 case DW_TAG_constant:
21477 case DW_TAG_variable:
21478 case DW_TAG_member:
21479 /* Compilation with minimal debug info may result in
21480 variables with missing type entries. Change the
21481 misleading `void' type to something sensible. */
21482 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21483 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21484
21485 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21486 /* In the case of DW_TAG_member, we should only be called for
21487 static const members. */
21488 if (die->tag == DW_TAG_member)
21489 {
21490 /* dwarf2_add_field uses die_is_declaration,
21491 so we do the same. */
21492 gdb_assert (die_is_declaration (die, cu));
21493 gdb_assert (attr);
21494 }
21495 if (attr)
21496 {
21497 dwarf2_const_value (attr, sym, cu);
21498 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21499 if (!suppress_add)
21500 {
21501 if (attr2 && (DW_UNSND (attr2) != 0))
21502 list_to_add = cu->get_builder ()->get_global_symbols ();
21503 else
21504 list_to_add = cu->list_in_scope;
21505 }
21506 break;
21507 }
21508 attr = dwarf2_attr (die, DW_AT_location, cu);
21509 if (attr)
21510 {
21511 var_decode_location (attr, sym, cu);
21512 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21513
21514 /* Fortran explicitly imports any global symbols to the local
21515 scope by DW_TAG_common_block. */
21516 if (cu->language == language_fortran && die->parent
21517 && die->parent->tag == DW_TAG_common_block)
21518 attr2 = NULL;
21519
21520 if (SYMBOL_CLASS (sym) == LOC_STATIC
21521 && SYMBOL_VALUE_ADDRESS (sym) == 0
21522 && !dwarf2_per_objfile->has_section_at_zero)
21523 {
21524 /* When a static variable is eliminated by the linker,
21525 the corresponding debug information is not stripped
21526 out, but the variable address is set to null;
21527 do not add such variables into symbol table. */
21528 }
21529 else if (attr2 && (DW_UNSND (attr2) != 0))
21530 {
21531 /* Workaround gfortran PR debug/40040 - it uses
21532 DW_AT_location for variables in -fPIC libraries which may
21533 get overriden by other libraries/executable and get
21534 a different address. Resolve it by the minimal symbol
21535 which may come from inferior's executable using copy
21536 relocation. Make this workaround only for gfortran as for
21537 other compilers GDB cannot guess the minimal symbol
21538 Fortran mangling kind. */
21539 if (cu->language == language_fortran && die->parent
21540 && die->parent->tag == DW_TAG_module
21541 && cu->producer
21542 && startswith (cu->producer, "GNU Fortran"))
21543 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21544
21545 /* A variable with DW_AT_external is never static,
21546 but it may be block-scoped. */
21547 list_to_add
21548 = ((cu->list_in_scope
21549 == cu->get_builder ()->get_file_symbols ())
21550 ? cu->get_builder ()->get_global_symbols ()
21551 : cu->list_in_scope);
21552 }
21553 else
21554 list_to_add = cu->list_in_scope;
21555 }
21556 else
21557 {
21558 /* We do not know the address of this symbol.
21559 If it is an external symbol and we have type information
21560 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21561 The address of the variable will then be determined from
21562 the minimal symbol table whenever the variable is
21563 referenced. */
21564 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21565
21566 /* Fortran explicitly imports any global symbols to the local
21567 scope by DW_TAG_common_block. */
21568 if (cu->language == language_fortran && die->parent
21569 && die->parent->tag == DW_TAG_common_block)
21570 {
21571 /* SYMBOL_CLASS doesn't matter here because
21572 read_common_block is going to reset it. */
21573 if (!suppress_add)
21574 list_to_add = cu->list_in_scope;
21575 }
21576 else if (attr2 && (DW_UNSND (attr2) != 0)
21577 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21578 {
21579 /* A variable with DW_AT_external is never static, but it
21580 may be block-scoped. */
21581 list_to_add
21582 = ((cu->list_in_scope
21583 == cu->get_builder ()->get_file_symbols ())
21584 ? cu->get_builder ()->get_global_symbols ()
21585 : cu->list_in_scope);
21586
21587 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21588 }
21589 else if (!die_is_declaration (die, cu))
21590 {
21591 /* Use the default LOC_OPTIMIZED_OUT class. */
21592 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21593 if (!suppress_add)
21594 list_to_add = cu->list_in_scope;
21595 }
21596 }
21597 break;
21598 case DW_TAG_formal_parameter:
21599 {
21600 /* If we are inside a function, mark this as an argument. If
21601 not, we might be looking at an argument to an inlined function
21602 when we do not have enough information to show inlined frames;
21603 pretend it's a local variable in that case so that the user can
21604 still see it. */
21605 struct context_stack *curr
21606 = cu->get_builder ()->get_current_context_stack ();
21607 if (curr != nullptr && curr->name != nullptr)
21608 SYMBOL_IS_ARGUMENT (sym) = 1;
21609 attr = dwarf2_attr (die, DW_AT_location, cu);
21610 if (attr)
21611 {
21612 var_decode_location (attr, sym, cu);
21613 }
21614 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21615 if (attr)
21616 {
21617 dwarf2_const_value (attr, sym, cu);
21618 }
21619
21620 list_to_add = cu->list_in_scope;
21621 }
21622 break;
21623 case DW_TAG_unspecified_parameters:
21624 /* From varargs functions; gdb doesn't seem to have any
21625 interest in this information, so just ignore it for now.
21626 (FIXME?) */
21627 break;
21628 case DW_TAG_template_type_param:
21629 suppress_add = 1;
21630 /* Fall through. */
21631 case DW_TAG_class_type:
21632 case DW_TAG_interface_type:
21633 case DW_TAG_structure_type:
21634 case DW_TAG_union_type:
21635 case DW_TAG_set_type:
21636 case DW_TAG_enumeration_type:
21637 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21638 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21639
21640 {
21641 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21642 really ever be static objects: otherwise, if you try
21643 to, say, break of a class's method and you're in a file
21644 which doesn't mention that class, it won't work unless
21645 the check for all static symbols in lookup_symbol_aux
21646 saves you. See the OtherFileClass tests in
21647 gdb.c++/namespace.exp. */
21648
21649 if (!suppress_add)
21650 {
21651 buildsym_compunit *builder = cu->get_builder ();
21652 list_to_add
21653 = (cu->list_in_scope == builder->get_file_symbols ()
21654 && cu->language == language_cplus
21655 ? builder->get_global_symbols ()
21656 : cu->list_in_scope);
21657
21658 /* The semantics of C++ state that "struct foo {
21659 ... }" also defines a typedef for "foo". */
21660 if (cu->language == language_cplus
21661 || cu->language == language_ada
21662 || cu->language == language_d
21663 || cu->language == language_rust)
21664 {
21665 /* The symbol's name is already allocated along
21666 with this objfile, so we don't need to
21667 duplicate it for the type. */
21668 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21669 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21670 }
21671 }
21672 }
21673 break;
21674 case DW_TAG_typedef:
21675 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21676 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21677 list_to_add = cu->list_in_scope;
21678 break;
21679 case DW_TAG_base_type:
21680 case DW_TAG_subrange_type:
21681 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21682 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21683 list_to_add = cu->list_in_scope;
21684 break;
21685 case DW_TAG_enumerator:
21686 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21687 if (attr)
21688 {
21689 dwarf2_const_value (attr, sym, cu);
21690 }
21691 {
21692 /* NOTE: carlton/2003-11-10: See comment above in the
21693 DW_TAG_class_type, etc. block. */
21694
21695 list_to_add
21696 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21697 && cu->language == language_cplus
21698 ? cu->get_builder ()->get_global_symbols ()
21699 : cu->list_in_scope);
21700 }
21701 break;
21702 case DW_TAG_imported_declaration:
21703 case DW_TAG_namespace:
21704 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21705 list_to_add = cu->get_builder ()->get_global_symbols ();
21706 break;
21707 case DW_TAG_module:
21708 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21709 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21710 list_to_add = cu->get_builder ()->get_global_symbols ();
21711 break;
21712 case DW_TAG_common_block:
21713 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21714 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21715 add_symbol_to_list (sym, cu->list_in_scope);
21716 break;
21717 default:
21718 /* Not a tag we recognize. Hopefully we aren't processing
21719 trash data, but since we must specifically ignore things
21720 we don't recognize, there is nothing else we should do at
21721 this point. */
21722 complaint (_("unsupported tag: '%s'"),
21723 dwarf_tag_name (die->tag));
21724 break;
21725 }
21726
21727 if (suppress_add)
21728 {
21729 sym->hash_next = objfile->template_symbols;
21730 objfile->template_symbols = sym;
21731 list_to_add = NULL;
21732 }
21733
21734 if (list_to_add != NULL)
21735 add_symbol_to_list (sym, list_to_add);
21736
21737 /* For the benefit of old versions of GCC, check for anonymous
21738 namespaces based on the demangled name. */
21739 if (!cu->processing_has_namespace_info
21740 && cu->language == language_cplus)
21741 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21742 }
21743 return (sym);
21744 }
21745
21746 /* Given an attr with a DW_FORM_dataN value in host byte order,
21747 zero-extend it as appropriate for the symbol's type. The DWARF
21748 standard (v4) is not entirely clear about the meaning of using
21749 DW_FORM_dataN for a constant with a signed type, where the type is
21750 wider than the data. The conclusion of a discussion on the DWARF
21751 list was that this is unspecified. We choose to always zero-extend
21752 because that is the interpretation long in use by GCC. */
21753
21754 static gdb_byte *
21755 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21756 struct dwarf2_cu *cu, LONGEST *value, int bits)
21757 {
21758 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21759 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21760 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21761 LONGEST l = DW_UNSND (attr);
21762
21763 if (bits < sizeof (*value) * 8)
21764 {
21765 l &= ((LONGEST) 1 << bits) - 1;
21766 *value = l;
21767 }
21768 else if (bits == sizeof (*value) * 8)
21769 *value = l;
21770 else
21771 {
21772 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21773 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21774 return bytes;
21775 }
21776
21777 return NULL;
21778 }
21779
21780 /* Read a constant value from an attribute. Either set *VALUE, or if
21781 the value does not fit in *VALUE, set *BYTES - either already
21782 allocated on the objfile obstack, or newly allocated on OBSTACK,
21783 or, set *BATON, if we translated the constant to a location
21784 expression. */
21785
21786 static void
21787 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21788 const char *name, struct obstack *obstack,
21789 struct dwarf2_cu *cu,
21790 LONGEST *value, const gdb_byte **bytes,
21791 struct dwarf2_locexpr_baton **baton)
21792 {
21793 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21794 struct comp_unit_head *cu_header = &cu->header;
21795 struct dwarf_block *blk;
21796 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21797 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21798
21799 *value = 0;
21800 *bytes = NULL;
21801 *baton = NULL;
21802
21803 switch (attr->form)
21804 {
21805 case DW_FORM_addr:
21806 case DW_FORM_GNU_addr_index:
21807 {
21808 gdb_byte *data;
21809
21810 if (TYPE_LENGTH (type) != cu_header->addr_size)
21811 dwarf2_const_value_length_mismatch_complaint (name,
21812 cu_header->addr_size,
21813 TYPE_LENGTH (type));
21814 /* Symbols of this form are reasonably rare, so we just
21815 piggyback on the existing location code rather than writing
21816 a new implementation of symbol_computed_ops. */
21817 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21818 (*baton)->per_cu = cu->per_cu;
21819 gdb_assert ((*baton)->per_cu);
21820
21821 (*baton)->size = 2 + cu_header->addr_size;
21822 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21823 (*baton)->data = data;
21824
21825 data[0] = DW_OP_addr;
21826 store_unsigned_integer (&data[1], cu_header->addr_size,
21827 byte_order, DW_ADDR (attr));
21828 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21829 }
21830 break;
21831 case DW_FORM_string:
21832 case DW_FORM_strp:
21833 case DW_FORM_GNU_str_index:
21834 case DW_FORM_GNU_strp_alt:
21835 /* DW_STRING is already allocated on the objfile obstack, point
21836 directly to it. */
21837 *bytes = (const gdb_byte *) DW_STRING (attr);
21838 break;
21839 case DW_FORM_block1:
21840 case DW_FORM_block2:
21841 case DW_FORM_block4:
21842 case DW_FORM_block:
21843 case DW_FORM_exprloc:
21844 case DW_FORM_data16:
21845 blk = DW_BLOCK (attr);
21846 if (TYPE_LENGTH (type) != blk->size)
21847 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21848 TYPE_LENGTH (type));
21849 *bytes = blk->data;
21850 break;
21851
21852 /* The DW_AT_const_value attributes are supposed to carry the
21853 symbol's value "represented as it would be on the target
21854 architecture." By the time we get here, it's already been
21855 converted to host endianness, so we just need to sign- or
21856 zero-extend it as appropriate. */
21857 case DW_FORM_data1:
21858 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21859 break;
21860 case DW_FORM_data2:
21861 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21862 break;
21863 case DW_FORM_data4:
21864 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21865 break;
21866 case DW_FORM_data8:
21867 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21868 break;
21869
21870 case DW_FORM_sdata:
21871 case DW_FORM_implicit_const:
21872 *value = DW_SND (attr);
21873 break;
21874
21875 case DW_FORM_udata:
21876 *value = DW_UNSND (attr);
21877 break;
21878
21879 default:
21880 complaint (_("unsupported const value attribute form: '%s'"),
21881 dwarf_form_name (attr->form));
21882 *value = 0;
21883 break;
21884 }
21885 }
21886
21887
21888 /* Copy constant value from an attribute to a symbol. */
21889
21890 static void
21891 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21892 struct dwarf2_cu *cu)
21893 {
21894 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21895 LONGEST value;
21896 const gdb_byte *bytes;
21897 struct dwarf2_locexpr_baton *baton;
21898
21899 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21900 SYMBOL_PRINT_NAME (sym),
21901 &objfile->objfile_obstack, cu,
21902 &value, &bytes, &baton);
21903
21904 if (baton != NULL)
21905 {
21906 SYMBOL_LOCATION_BATON (sym) = baton;
21907 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21908 }
21909 else if (bytes != NULL)
21910 {
21911 SYMBOL_VALUE_BYTES (sym) = bytes;
21912 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21913 }
21914 else
21915 {
21916 SYMBOL_VALUE (sym) = value;
21917 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21918 }
21919 }
21920
21921 /* Return the type of the die in question using its DW_AT_type attribute. */
21922
21923 static struct type *
21924 die_type (struct die_info *die, struct dwarf2_cu *cu)
21925 {
21926 struct attribute *type_attr;
21927
21928 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21929 if (!type_attr)
21930 {
21931 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21932 /* A missing DW_AT_type represents a void type. */
21933 return objfile_type (objfile)->builtin_void;
21934 }
21935
21936 return lookup_die_type (die, type_attr, cu);
21937 }
21938
21939 /* True iff CU's producer generates GNAT Ada auxiliary information
21940 that allows to find parallel types through that information instead
21941 of having to do expensive parallel lookups by type name. */
21942
21943 static int
21944 need_gnat_info (struct dwarf2_cu *cu)
21945 {
21946 /* Assume that the Ada compiler was GNAT, which always produces
21947 the auxiliary information. */
21948 return (cu->language == language_ada);
21949 }
21950
21951 /* Return the auxiliary type of the die in question using its
21952 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21953 attribute is not present. */
21954
21955 static struct type *
21956 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21957 {
21958 struct attribute *type_attr;
21959
21960 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21961 if (!type_attr)
21962 return NULL;
21963
21964 return lookup_die_type (die, type_attr, cu);
21965 }
21966
21967 /* If DIE has a descriptive_type attribute, then set the TYPE's
21968 descriptive type accordingly. */
21969
21970 static void
21971 set_descriptive_type (struct type *type, struct die_info *die,
21972 struct dwarf2_cu *cu)
21973 {
21974 struct type *descriptive_type = die_descriptive_type (die, cu);
21975
21976 if (descriptive_type)
21977 {
21978 ALLOCATE_GNAT_AUX_TYPE (type);
21979 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21980 }
21981 }
21982
21983 /* Return the containing type of the die in question using its
21984 DW_AT_containing_type attribute. */
21985
21986 static struct type *
21987 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21988 {
21989 struct attribute *type_attr;
21990 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21991
21992 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21993 if (!type_attr)
21994 error (_("Dwarf Error: Problem turning containing type into gdb type "
21995 "[in module %s]"), objfile_name (objfile));
21996
21997 return lookup_die_type (die, type_attr, cu);
21998 }
21999
22000 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22001
22002 static struct type *
22003 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22004 {
22005 struct dwarf2_per_objfile *dwarf2_per_objfile
22006 = cu->per_cu->dwarf2_per_objfile;
22007 struct objfile *objfile = dwarf2_per_objfile->objfile;
22008 char *saved;
22009
22010 std::string message
22011 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22012 objfile_name (objfile),
22013 sect_offset_str (cu->header.sect_off),
22014 sect_offset_str (die->sect_off));
22015 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22016 message.c_str (), message.length ());
22017
22018 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22019 }
22020
22021 /* Look up the type of DIE in CU using its type attribute ATTR.
22022 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22023 DW_AT_containing_type.
22024 If there is no type substitute an error marker. */
22025
22026 static struct type *
22027 lookup_die_type (struct die_info *die, const struct attribute *attr,
22028 struct dwarf2_cu *cu)
22029 {
22030 struct dwarf2_per_objfile *dwarf2_per_objfile
22031 = cu->per_cu->dwarf2_per_objfile;
22032 struct objfile *objfile = dwarf2_per_objfile->objfile;
22033 struct type *this_type;
22034
22035 gdb_assert (attr->name == DW_AT_type
22036 || attr->name == DW_AT_GNAT_descriptive_type
22037 || attr->name == DW_AT_containing_type);
22038
22039 /* First see if we have it cached. */
22040
22041 if (attr->form == DW_FORM_GNU_ref_alt)
22042 {
22043 struct dwarf2_per_cu_data *per_cu;
22044 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22045
22046 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22047 dwarf2_per_objfile);
22048 this_type = get_die_type_at_offset (sect_off, per_cu);
22049 }
22050 else if (attr_form_is_ref (attr))
22051 {
22052 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22053
22054 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22055 }
22056 else if (attr->form == DW_FORM_ref_sig8)
22057 {
22058 ULONGEST signature = DW_SIGNATURE (attr);
22059
22060 return get_signatured_type (die, signature, cu);
22061 }
22062 else
22063 {
22064 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22065 " at %s [in module %s]"),
22066 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22067 objfile_name (objfile));
22068 return build_error_marker_type (cu, die);
22069 }
22070
22071 /* If not cached we need to read it in. */
22072
22073 if (this_type == NULL)
22074 {
22075 struct die_info *type_die = NULL;
22076 struct dwarf2_cu *type_cu = cu;
22077
22078 if (attr_form_is_ref (attr))
22079 type_die = follow_die_ref (die, attr, &type_cu);
22080 if (type_die == NULL)
22081 return build_error_marker_type (cu, die);
22082 /* If we find the type now, it's probably because the type came
22083 from an inter-CU reference and the type's CU got expanded before
22084 ours. */
22085 this_type = read_type_die (type_die, type_cu);
22086 }
22087
22088 /* If we still don't have a type use an error marker. */
22089
22090 if (this_type == NULL)
22091 return build_error_marker_type (cu, die);
22092
22093 return this_type;
22094 }
22095
22096 /* Return the type in DIE, CU.
22097 Returns NULL for invalid types.
22098
22099 This first does a lookup in die_type_hash,
22100 and only reads the die in if necessary.
22101
22102 NOTE: This can be called when reading in partial or full symbols. */
22103
22104 static struct type *
22105 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22106 {
22107 struct type *this_type;
22108
22109 this_type = get_die_type (die, cu);
22110 if (this_type)
22111 return this_type;
22112
22113 return read_type_die_1 (die, cu);
22114 }
22115
22116 /* Read the type in DIE, CU.
22117 Returns NULL for invalid types. */
22118
22119 static struct type *
22120 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22121 {
22122 struct type *this_type = NULL;
22123
22124 switch (die->tag)
22125 {
22126 case DW_TAG_class_type:
22127 case DW_TAG_interface_type:
22128 case DW_TAG_structure_type:
22129 case DW_TAG_union_type:
22130 this_type = read_structure_type (die, cu);
22131 break;
22132 case DW_TAG_enumeration_type:
22133 this_type = read_enumeration_type (die, cu);
22134 break;
22135 case DW_TAG_subprogram:
22136 case DW_TAG_subroutine_type:
22137 case DW_TAG_inlined_subroutine:
22138 this_type = read_subroutine_type (die, cu);
22139 break;
22140 case DW_TAG_array_type:
22141 this_type = read_array_type (die, cu);
22142 break;
22143 case DW_TAG_set_type:
22144 this_type = read_set_type (die, cu);
22145 break;
22146 case DW_TAG_pointer_type:
22147 this_type = read_tag_pointer_type (die, cu);
22148 break;
22149 case DW_TAG_ptr_to_member_type:
22150 this_type = read_tag_ptr_to_member_type (die, cu);
22151 break;
22152 case DW_TAG_reference_type:
22153 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22154 break;
22155 case DW_TAG_rvalue_reference_type:
22156 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22157 break;
22158 case DW_TAG_const_type:
22159 this_type = read_tag_const_type (die, cu);
22160 break;
22161 case DW_TAG_volatile_type:
22162 this_type = read_tag_volatile_type (die, cu);
22163 break;
22164 case DW_TAG_restrict_type:
22165 this_type = read_tag_restrict_type (die, cu);
22166 break;
22167 case DW_TAG_string_type:
22168 this_type = read_tag_string_type (die, cu);
22169 break;
22170 case DW_TAG_typedef:
22171 this_type = read_typedef (die, cu);
22172 break;
22173 case DW_TAG_subrange_type:
22174 this_type = read_subrange_type (die, cu);
22175 break;
22176 case DW_TAG_base_type:
22177 this_type = read_base_type (die, cu);
22178 break;
22179 case DW_TAG_unspecified_type:
22180 this_type = read_unspecified_type (die, cu);
22181 break;
22182 case DW_TAG_namespace:
22183 this_type = read_namespace_type (die, cu);
22184 break;
22185 case DW_TAG_module:
22186 this_type = read_module_type (die, cu);
22187 break;
22188 case DW_TAG_atomic_type:
22189 this_type = read_tag_atomic_type (die, cu);
22190 break;
22191 default:
22192 complaint (_("unexpected tag in read_type_die: '%s'"),
22193 dwarf_tag_name (die->tag));
22194 break;
22195 }
22196
22197 return this_type;
22198 }
22199
22200 /* See if we can figure out if the class lives in a namespace. We do
22201 this by looking for a member function; its demangled name will
22202 contain namespace info, if there is any.
22203 Return the computed name or NULL.
22204 Space for the result is allocated on the objfile's obstack.
22205 This is the full-die version of guess_partial_die_structure_name.
22206 In this case we know DIE has no useful parent. */
22207
22208 static char *
22209 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22210 {
22211 struct die_info *spec_die;
22212 struct dwarf2_cu *spec_cu;
22213 struct die_info *child;
22214 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22215
22216 spec_cu = cu;
22217 spec_die = die_specification (die, &spec_cu);
22218 if (spec_die != NULL)
22219 {
22220 die = spec_die;
22221 cu = spec_cu;
22222 }
22223
22224 for (child = die->child;
22225 child != NULL;
22226 child = child->sibling)
22227 {
22228 if (child->tag == DW_TAG_subprogram)
22229 {
22230 const char *linkage_name = dw2_linkage_name (child, cu);
22231
22232 if (linkage_name != NULL)
22233 {
22234 char *actual_name
22235 = language_class_name_from_physname (cu->language_defn,
22236 linkage_name);
22237 char *name = NULL;
22238
22239 if (actual_name != NULL)
22240 {
22241 const char *die_name = dwarf2_name (die, cu);
22242
22243 if (die_name != NULL
22244 && strcmp (die_name, actual_name) != 0)
22245 {
22246 /* Strip off the class name from the full name.
22247 We want the prefix. */
22248 int die_name_len = strlen (die_name);
22249 int actual_name_len = strlen (actual_name);
22250
22251 /* Test for '::' as a sanity check. */
22252 if (actual_name_len > die_name_len + 2
22253 && actual_name[actual_name_len
22254 - die_name_len - 1] == ':')
22255 name = (char *) obstack_copy0 (
22256 &objfile->per_bfd->storage_obstack,
22257 actual_name, actual_name_len - die_name_len - 2);
22258 }
22259 }
22260 xfree (actual_name);
22261 return name;
22262 }
22263 }
22264 }
22265
22266 return NULL;
22267 }
22268
22269 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22270 prefix part in such case. See
22271 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22272
22273 static const char *
22274 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22275 {
22276 struct attribute *attr;
22277 const char *base;
22278
22279 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22280 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22281 return NULL;
22282
22283 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22284 return NULL;
22285
22286 attr = dw2_linkage_name_attr (die, cu);
22287 if (attr == NULL || DW_STRING (attr) == NULL)
22288 return NULL;
22289
22290 /* dwarf2_name had to be already called. */
22291 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22292
22293 /* Strip the base name, keep any leading namespaces/classes. */
22294 base = strrchr (DW_STRING (attr), ':');
22295 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22296 return "";
22297
22298 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22299 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22300 DW_STRING (attr),
22301 &base[-1] - DW_STRING (attr));
22302 }
22303
22304 /* Return the name of the namespace/class that DIE is defined within,
22305 or "" if we can't tell. The caller should not xfree the result.
22306
22307 For example, if we're within the method foo() in the following
22308 code:
22309
22310 namespace N {
22311 class C {
22312 void foo () {
22313 }
22314 };
22315 }
22316
22317 then determine_prefix on foo's die will return "N::C". */
22318
22319 static const char *
22320 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22321 {
22322 struct dwarf2_per_objfile *dwarf2_per_objfile
22323 = cu->per_cu->dwarf2_per_objfile;
22324 struct die_info *parent, *spec_die;
22325 struct dwarf2_cu *spec_cu;
22326 struct type *parent_type;
22327 const char *retval;
22328
22329 if (cu->language != language_cplus
22330 && cu->language != language_fortran && cu->language != language_d
22331 && cu->language != language_rust)
22332 return "";
22333
22334 retval = anonymous_struct_prefix (die, cu);
22335 if (retval)
22336 return retval;
22337
22338 /* We have to be careful in the presence of DW_AT_specification.
22339 For example, with GCC 3.4, given the code
22340
22341 namespace N {
22342 void foo() {
22343 // Definition of N::foo.
22344 }
22345 }
22346
22347 then we'll have a tree of DIEs like this:
22348
22349 1: DW_TAG_compile_unit
22350 2: DW_TAG_namespace // N
22351 3: DW_TAG_subprogram // declaration of N::foo
22352 4: DW_TAG_subprogram // definition of N::foo
22353 DW_AT_specification // refers to die #3
22354
22355 Thus, when processing die #4, we have to pretend that we're in
22356 the context of its DW_AT_specification, namely the contex of die
22357 #3. */
22358 spec_cu = cu;
22359 spec_die = die_specification (die, &spec_cu);
22360 if (spec_die == NULL)
22361 parent = die->parent;
22362 else
22363 {
22364 parent = spec_die->parent;
22365 cu = spec_cu;
22366 }
22367
22368 if (parent == NULL)
22369 return "";
22370 else if (parent->building_fullname)
22371 {
22372 const char *name;
22373 const char *parent_name;
22374
22375 /* It has been seen on RealView 2.2 built binaries,
22376 DW_TAG_template_type_param types actually _defined_ as
22377 children of the parent class:
22378
22379 enum E {};
22380 template class <class Enum> Class{};
22381 Class<enum E> class_e;
22382
22383 1: DW_TAG_class_type (Class)
22384 2: DW_TAG_enumeration_type (E)
22385 3: DW_TAG_enumerator (enum1:0)
22386 3: DW_TAG_enumerator (enum2:1)
22387 ...
22388 2: DW_TAG_template_type_param
22389 DW_AT_type DW_FORM_ref_udata (E)
22390
22391 Besides being broken debug info, it can put GDB into an
22392 infinite loop. Consider:
22393
22394 When we're building the full name for Class<E>, we'll start
22395 at Class, and go look over its template type parameters,
22396 finding E. We'll then try to build the full name of E, and
22397 reach here. We're now trying to build the full name of E,
22398 and look over the parent DIE for containing scope. In the
22399 broken case, if we followed the parent DIE of E, we'd again
22400 find Class, and once again go look at its template type
22401 arguments, etc., etc. Simply don't consider such parent die
22402 as source-level parent of this die (it can't be, the language
22403 doesn't allow it), and break the loop here. */
22404 name = dwarf2_name (die, cu);
22405 parent_name = dwarf2_name (parent, cu);
22406 complaint (_("template param type '%s' defined within parent '%s'"),
22407 name ? name : "<unknown>",
22408 parent_name ? parent_name : "<unknown>");
22409 return "";
22410 }
22411 else
22412 switch (parent->tag)
22413 {
22414 case DW_TAG_namespace:
22415 parent_type = read_type_die (parent, cu);
22416 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22417 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22418 Work around this problem here. */
22419 if (cu->language == language_cplus
22420 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22421 return "";
22422 /* We give a name to even anonymous namespaces. */
22423 return TYPE_NAME (parent_type);
22424 case DW_TAG_class_type:
22425 case DW_TAG_interface_type:
22426 case DW_TAG_structure_type:
22427 case DW_TAG_union_type:
22428 case DW_TAG_module:
22429 parent_type = read_type_die (parent, cu);
22430 if (TYPE_NAME (parent_type) != NULL)
22431 return TYPE_NAME (parent_type);
22432 else
22433 /* An anonymous structure is only allowed non-static data
22434 members; no typedefs, no member functions, et cetera.
22435 So it does not need a prefix. */
22436 return "";
22437 case DW_TAG_compile_unit:
22438 case DW_TAG_partial_unit:
22439 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22440 if (cu->language == language_cplus
22441 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22442 && die->child != NULL
22443 && (die->tag == DW_TAG_class_type
22444 || die->tag == DW_TAG_structure_type
22445 || die->tag == DW_TAG_union_type))
22446 {
22447 char *name = guess_full_die_structure_name (die, cu);
22448 if (name != NULL)
22449 return name;
22450 }
22451 return "";
22452 case DW_TAG_enumeration_type:
22453 parent_type = read_type_die (parent, cu);
22454 if (TYPE_DECLARED_CLASS (parent_type))
22455 {
22456 if (TYPE_NAME (parent_type) != NULL)
22457 return TYPE_NAME (parent_type);
22458 return "";
22459 }
22460 /* Fall through. */
22461 default:
22462 return determine_prefix (parent, cu);
22463 }
22464 }
22465
22466 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22467 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22468 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22469 an obconcat, otherwise allocate storage for the result. The CU argument is
22470 used to determine the language and hence, the appropriate separator. */
22471
22472 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22473
22474 static char *
22475 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22476 int physname, struct dwarf2_cu *cu)
22477 {
22478 const char *lead = "";
22479 const char *sep;
22480
22481 if (suffix == NULL || suffix[0] == '\0'
22482 || prefix == NULL || prefix[0] == '\0')
22483 sep = "";
22484 else if (cu->language == language_d)
22485 {
22486 /* For D, the 'main' function could be defined in any module, but it
22487 should never be prefixed. */
22488 if (strcmp (suffix, "D main") == 0)
22489 {
22490 prefix = "";
22491 sep = "";
22492 }
22493 else
22494 sep = ".";
22495 }
22496 else if (cu->language == language_fortran && physname)
22497 {
22498 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22499 DW_AT_MIPS_linkage_name is preferred and used instead. */
22500
22501 lead = "__";
22502 sep = "_MOD_";
22503 }
22504 else
22505 sep = "::";
22506
22507 if (prefix == NULL)
22508 prefix = "";
22509 if (suffix == NULL)
22510 suffix = "";
22511
22512 if (obs == NULL)
22513 {
22514 char *retval
22515 = ((char *)
22516 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22517
22518 strcpy (retval, lead);
22519 strcat (retval, prefix);
22520 strcat (retval, sep);
22521 strcat (retval, suffix);
22522 return retval;
22523 }
22524 else
22525 {
22526 /* We have an obstack. */
22527 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22528 }
22529 }
22530
22531 /* Return sibling of die, NULL if no sibling. */
22532
22533 static struct die_info *
22534 sibling_die (struct die_info *die)
22535 {
22536 return die->sibling;
22537 }
22538
22539 /* Get name of a die, return NULL if not found. */
22540
22541 static const char *
22542 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22543 struct obstack *obstack)
22544 {
22545 if (name && cu->language == language_cplus)
22546 {
22547 std::string canon_name = cp_canonicalize_string (name);
22548
22549 if (!canon_name.empty ())
22550 {
22551 if (canon_name != name)
22552 name = (const char *) obstack_copy0 (obstack,
22553 canon_name.c_str (),
22554 canon_name.length ());
22555 }
22556 }
22557
22558 return name;
22559 }
22560
22561 /* Get name of a die, return NULL if not found.
22562 Anonymous namespaces are converted to their magic string. */
22563
22564 static const char *
22565 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22566 {
22567 struct attribute *attr;
22568 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22569
22570 attr = dwarf2_attr (die, DW_AT_name, cu);
22571 if ((!attr || !DW_STRING (attr))
22572 && die->tag != DW_TAG_namespace
22573 && die->tag != DW_TAG_class_type
22574 && die->tag != DW_TAG_interface_type
22575 && die->tag != DW_TAG_structure_type
22576 && die->tag != DW_TAG_union_type)
22577 return NULL;
22578
22579 switch (die->tag)
22580 {
22581 case DW_TAG_compile_unit:
22582 case DW_TAG_partial_unit:
22583 /* Compilation units have a DW_AT_name that is a filename, not
22584 a source language identifier. */
22585 case DW_TAG_enumeration_type:
22586 case DW_TAG_enumerator:
22587 /* These tags always have simple identifiers already; no need
22588 to canonicalize them. */
22589 return DW_STRING (attr);
22590
22591 case DW_TAG_namespace:
22592 if (attr != NULL && DW_STRING (attr) != NULL)
22593 return DW_STRING (attr);
22594 return CP_ANONYMOUS_NAMESPACE_STR;
22595
22596 case DW_TAG_class_type:
22597 case DW_TAG_interface_type:
22598 case DW_TAG_structure_type:
22599 case DW_TAG_union_type:
22600 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22601 structures or unions. These were of the form "._%d" in GCC 4.1,
22602 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22603 and GCC 4.4. We work around this problem by ignoring these. */
22604 if (attr && DW_STRING (attr)
22605 && (startswith (DW_STRING (attr), "._")
22606 || startswith (DW_STRING (attr), "<anonymous")))
22607 return NULL;
22608
22609 /* GCC might emit a nameless typedef that has a linkage name. See
22610 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22611 if (!attr || DW_STRING (attr) == NULL)
22612 {
22613 char *demangled = NULL;
22614
22615 attr = dw2_linkage_name_attr (die, cu);
22616 if (attr == NULL || DW_STRING (attr) == NULL)
22617 return NULL;
22618
22619 /* Avoid demangling DW_STRING (attr) the second time on a second
22620 call for the same DIE. */
22621 if (!DW_STRING_IS_CANONICAL (attr))
22622 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22623
22624 if (demangled)
22625 {
22626 const char *base;
22627
22628 /* FIXME: we already did this for the partial symbol... */
22629 DW_STRING (attr)
22630 = ((const char *)
22631 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22632 demangled, strlen (demangled)));
22633 DW_STRING_IS_CANONICAL (attr) = 1;
22634 xfree (demangled);
22635
22636 /* Strip any leading namespaces/classes, keep only the base name.
22637 DW_AT_name for named DIEs does not contain the prefixes. */
22638 base = strrchr (DW_STRING (attr), ':');
22639 if (base && base > DW_STRING (attr) && base[-1] == ':')
22640 return &base[1];
22641 else
22642 return DW_STRING (attr);
22643 }
22644 }
22645 break;
22646
22647 default:
22648 break;
22649 }
22650
22651 if (!DW_STRING_IS_CANONICAL (attr))
22652 {
22653 DW_STRING (attr)
22654 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22655 &objfile->per_bfd->storage_obstack);
22656 DW_STRING_IS_CANONICAL (attr) = 1;
22657 }
22658 return DW_STRING (attr);
22659 }
22660
22661 /* Return the die that this die in an extension of, or NULL if there
22662 is none. *EXT_CU is the CU containing DIE on input, and the CU
22663 containing the return value on output. */
22664
22665 static struct die_info *
22666 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22667 {
22668 struct attribute *attr;
22669
22670 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22671 if (attr == NULL)
22672 return NULL;
22673
22674 return follow_die_ref (die, attr, ext_cu);
22675 }
22676
22677 /* Convert a DIE tag into its string name. */
22678
22679 static const char *
22680 dwarf_tag_name (unsigned tag)
22681 {
22682 const char *name = get_DW_TAG_name (tag);
22683
22684 if (name == NULL)
22685 return "DW_TAG_<unknown>";
22686
22687 return name;
22688 }
22689
22690 /* Convert a DWARF attribute code into its string name. */
22691
22692 static const char *
22693 dwarf_attr_name (unsigned attr)
22694 {
22695 const char *name;
22696
22697 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22698 if (attr == DW_AT_MIPS_fde)
22699 return "DW_AT_MIPS_fde";
22700 #else
22701 if (attr == DW_AT_HP_block_index)
22702 return "DW_AT_HP_block_index";
22703 #endif
22704
22705 name = get_DW_AT_name (attr);
22706
22707 if (name == NULL)
22708 return "DW_AT_<unknown>";
22709
22710 return name;
22711 }
22712
22713 /* Convert a DWARF value form code into its string name. */
22714
22715 static const char *
22716 dwarf_form_name (unsigned form)
22717 {
22718 const char *name = get_DW_FORM_name (form);
22719
22720 if (name == NULL)
22721 return "DW_FORM_<unknown>";
22722
22723 return name;
22724 }
22725
22726 static const char *
22727 dwarf_bool_name (unsigned mybool)
22728 {
22729 if (mybool)
22730 return "TRUE";
22731 else
22732 return "FALSE";
22733 }
22734
22735 /* Convert a DWARF type code into its string name. */
22736
22737 static const char *
22738 dwarf_type_encoding_name (unsigned enc)
22739 {
22740 const char *name = get_DW_ATE_name (enc);
22741
22742 if (name == NULL)
22743 return "DW_ATE_<unknown>";
22744
22745 return name;
22746 }
22747
22748 static void
22749 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22750 {
22751 unsigned int i;
22752
22753 print_spaces (indent, f);
22754 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22755 dwarf_tag_name (die->tag), die->abbrev,
22756 sect_offset_str (die->sect_off));
22757
22758 if (die->parent != NULL)
22759 {
22760 print_spaces (indent, f);
22761 fprintf_unfiltered (f, " parent at offset: %s\n",
22762 sect_offset_str (die->parent->sect_off));
22763 }
22764
22765 print_spaces (indent, f);
22766 fprintf_unfiltered (f, " has children: %s\n",
22767 dwarf_bool_name (die->child != NULL));
22768
22769 print_spaces (indent, f);
22770 fprintf_unfiltered (f, " attributes:\n");
22771
22772 for (i = 0; i < die->num_attrs; ++i)
22773 {
22774 print_spaces (indent, f);
22775 fprintf_unfiltered (f, " %s (%s) ",
22776 dwarf_attr_name (die->attrs[i].name),
22777 dwarf_form_name (die->attrs[i].form));
22778
22779 switch (die->attrs[i].form)
22780 {
22781 case DW_FORM_addr:
22782 case DW_FORM_GNU_addr_index:
22783 fprintf_unfiltered (f, "address: ");
22784 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22785 break;
22786 case DW_FORM_block2:
22787 case DW_FORM_block4:
22788 case DW_FORM_block:
22789 case DW_FORM_block1:
22790 fprintf_unfiltered (f, "block: size %s",
22791 pulongest (DW_BLOCK (&die->attrs[i])->size));
22792 break;
22793 case DW_FORM_exprloc:
22794 fprintf_unfiltered (f, "expression: size %s",
22795 pulongest (DW_BLOCK (&die->attrs[i])->size));
22796 break;
22797 case DW_FORM_data16:
22798 fprintf_unfiltered (f, "constant of 16 bytes");
22799 break;
22800 case DW_FORM_ref_addr:
22801 fprintf_unfiltered (f, "ref address: ");
22802 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22803 break;
22804 case DW_FORM_GNU_ref_alt:
22805 fprintf_unfiltered (f, "alt ref address: ");
22806 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22807 break;
22808 case DW_FORM_ref1:
22809 case DW_FORM_ref2:
22810 case DW_FORM_ref4:
22811 case DW_FORM_ref8:
22812 case DW_FORM_ref_udata:
22813 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22814 (long) (DW_UNSND (&die->attrs[i])));
22815 break;
22816 case DW_FORM_data1:
22817 case DW_FORM_data2:
22818 case DW_FORM_data4:
22819 case DW_FORM_data8:
22820 case DW_FORM_udata:
22821 case DW_FORM_sdata:
22822 fprintf_unfiltered (f, "constant: %s",
22823 pulongest (DW_UNSND (&die->attrs[i])));
22824 break;
22825 case DW_FORM_sec_offset:
22826 fprintf_unfiltered (f, "section offset: %s",
22827 pulongest (DW_UNSND (&die->attrs[i])));
22828 break;
22829 case DW_FORM_ref_sig8:
22830 fprintf_unfiltered (f, "signature: %s",
22831 hex_string (DW_SIGNATURE (&die->attrs[i])));
22832 break;
22833 case DW_FORM_string:
22834 case DW_FORM_strp:
22835 case DW_FORM_line_strp:
22836 case DW_FORM_GNU_str_index:
22837 case DW_FORM_GNU_strp_alt:
22838 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22839 DW_STRING (&die->attrs[i])
22840 ? DW_STRING (&die->attrs[i]) : "",
22841 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22842 break;
22843 case DW_FORM_flag:
22844 if (DW_UNSND (&die->attrs[i]))
22845 fprintf_unfiltered (f, "flag: TRUE");
22846 else
22847 fprintf_unfiltered (f, "flag: FALSE");
22848 break;
22849 case DW_FORM_flag_present:
22850 fprintf_unfiltered (f, "flag: TRUE");
22851 break;
22852 case DW_FORM_indirect:
22853 /* The reader will have reduced the indirect form to
22854 the "base form" so this form should not occur. */
22855 fprintf_unfiltered (f,
22856 "unexpected attribute form: DW_FORM_indirect");
22857 break;
22858 case DW_FORM_implicit_const:
22859 fprintf_unfiltered (f, "constant: %s",
22860 plongest (DW_SND (&die->attrs[i])));
22861 break;
22862 default:
22863 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22864 die->attrs[i].form);
22865 break;
22866 }
22867 fprintf_unfiltered (f, "\n");
22868 }
22869 }
22870
22871 static void
22872 dump_die_for_error (struct die_info *die)
22873 {
22874 dump_die_shallow (gdb_stderr, 0, die);
22875 }
22876
22877 static void
22878 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22879 {
22880 int indent = level * 4;
22881
22882 gdb_assert (die != NULL);
22883
22884 if (level >= max_level)
22885 return;
22886
22887 dump_die_shallow (f, indent, die);
22888
22889 if (die->child != NULL)
22890 {
22891 print_spaces (indent, f);
22892 fprintf_unfiltered (f, " Children:");
22893 if (level + 1 < max_level)
22894 {
22895 fprintf_unfiltered (f, "\n");
22896 dump_die_1 (f, level + 1, max_level, die->child);
22897 }
22898 else
22899 {
22900 fprintf_unfiltered (f,
22901 " [not printed, max nesting level reached]\n");
22902 }
22903 }
22904
22905 if (die->sibling != NULL && level > 0)
22906 {
22907 dump_die_1 (f, level, max_level, die->sibling);
22908 }
22909 }
22910
22911 /* This is called from the pdie macro in gdbinit.in.
22912 It's not static so gcc will keep a copy callable from gdb. */
22913
22914 void
22915 dump_die (struct die_info *die, int max_level)
22916 {
22917 dump_die_1 (gdb_stdlog, 0, max_level, die);
22918 }
22919
22920 static void
22921 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22922 {
22923 void **slot;
22924
22925 slot = htab_find_slot_with_hash (cu->die_hash, die,
22926 to_underlying (die->sect_off),
22927 INSERT);
22928
22929 *slot = die;
22930 }
22931
22932 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22933 required kind. */
22934
22935 static sect_offset
22936 dwarf2_get_ref_die_offset (const struct attribute *attr)
22937 {
22938 if (attr_form_is_ref (attr))
22939 return (sect_offset) DW_UNSND (attr);
22940
22941 complaint (_("unsupported die ref attribute form: '%s'"),
22942 dwarf_form_name (attr->form));
22943 return {};
22944 }
22945
22946 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22947 * the value held by the attribute is not constant. */
22948
22949 static LONGEST
22950 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22951 {
22952 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22953 return DW_SND (attr);
22954 else if (attr->form == DW_FORM_udata
22955 || attr->form == DW_FORM_data1
22956 || attr->form == DW_FORM_data2
22957 || attr->form == DW_FORM_data4
22958 || attr->form == DW_FORM_data8)
22959 return DW_UNSND (attr);
22960 else
22961 {
22962 /* For DW_FORM_data16 see attr_form_is_constant. */
22963 complaint (_("Attribute value is not a constant (%s)"),
22964 dwarf_form_name (attr->form));
22965 return default_value;
22966 }
22967 }
22968
22969 /* Follow reference or signature attribute ATTR of SRC_DIE.
22970 On entry *REF_CU is the CU of SRC_DIE.
22971 On exit *REF_CU is the CU of the result. */
22972
22973 static struct die_info *
22974 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22975 struct dwarf2_cu **ref_cu)
22976 {
22977 struct die_info *die;
22978
22979 if (attr_form_is_ref (attr))
22980 die = follow_die_ref (src_die, attr, ref_cu);
22981 else if (attr->form == DW_FORM_ref_sig8)
22982 die = follow_die_sig (src_die, attr, ref_cu);
22983 else
22984 {
22985 dump_die_for_error (src_die);
22986 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22987 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22988 }
22989
22990 return die;
22991 }
22992
22993 /* Follow reference OFFSET.
22994 On entry *REF_CU is the CU of the source die referencing OFFSET.
22995 On exit *REF_CU is the CU of the result.
22996 Returns NULL if OFFSET is invalid. */
22997
22998 static struct die_info *
22999 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23000 struct dwarf2_cu **ref_cu)
23001 {
23002 struct die_info temp_die;
23003 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23004 struct dwarf2_per_objfile *dwarf2_per_objfile
23005 = cu->per_cu->dwarf2_per_objfile;
23006
23007 gdb_assert (cu->per_cu != NULL);
23008
23009 target_cu = cu;
23010
23011 if (cu->per_cu->is_debug_types)
23012 {
23013 /* .debug_types CUs cannot reference anything outside their CU.
23014 If they need to, they have to reference a signatured type via
23015 DW_FORM_ref_sig8. */
23016 if (!offset_in_cu_p (&cu->header, sect_off))
23017 return NULL;
23018 }
23019 else if (offset_in_dwz != cu->per_cu->is_dwz
23020 || !offset_in_cu_p (&cu->header, sect_off))
23021 {
23022 struct dwarf2_per_cu_data *per_cu;
23023
23024 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23025 dwarf2_per_objfile);
23026
23027 /* If necessary, add it to the queue and load its DIEs. */
23028 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23029 load_full_comp_unit (per_cu, false, cu->language);
23030
23031 target_cu = per_cu->cu;
23032 }
23033 else if (cu->dies == NULL)
23034 {
23035 /* We're loading full DIEs during partial symbol reading. */
23036 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23037 load_full_comp_unit (cu->per_cu, false, language_minimal);
23038 }
23039
23040 *ref_cu = target_cu;
23041 temp_die.sect_off = sect_off;
23042
23043 if (target_cu != cu)
23044 target_cu->ancestor = cu;
23045
23046 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23047 &temp_die,
23048 to_underlying (sect_off));
23049 }
23050
23051 /* Follow reference attribute ATTR of SRC_DIE.
23052 On entry *REF_CU is the CU of SRC_DIE.
23053 On exit *REF_CU is the CU of the result. */
23054
23055 static struct die_info *
23056 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23057 struct dwarf2_cu **ref_cu)
23058 {
23059 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23060 struct dwarf2_cu *cu = *ref_cu;
23061 struct die_info *die;
23062
23063 die = follow_die_offset (sect_off,
23064 (attr->form == DW_FORM_GNU_ref_alt
23065 || cu->per_cu->is_dwz),
23066 ref_cu);
23067 if (!die)
23068 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23069 "at %s [in module %s]"),
23070 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23071 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23072
23073 return die;
23074 }
23075
23076 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23077 Returned value is intended for DW_OP_call*. Returned
23078 dwarf2_locexpr_baton->data has lifetime of
23079 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23080
23081 struct dwarf2_locexpr_baton
23082 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23083 struct dwarf2_per_cu_data *per_cu,
23084 CORE_ADDR (*get_frame_pc) (void *baton),
23085 void *baton, bool resolve_abstract_p)
23086 {
23087 struct dwarf2_cu *cu;
23088 struct die_info *die;
23089 struct attribute *attr;
23090 struct dwarf2_locexpr_baton retval;
23091 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23092 struct objfile *objfile = dwarf2_per_objfile->objfile;
23093
23094 if (per_cu->cu == NULL)
23095 load_cu (per_cu, false);
23096 cu = per_cu->cu;
23097 if (cu == NULL)
23098 {
23099 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23100 Instead just throw an error, not much else we can do. */
23101 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23102 sect_offset_str (sect_off), objfile_name (objfile));
23103 }
23104
23105 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23106 if (!die)
23107 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23108 sect_offset_str (sect_off), objfile_name (objfile));
23109
23110 attr = dwarf2_attr (die, DW_AT_location, cu);
23111 if (!attr && resolve_abstract_p
23112 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23113 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23114 {
23115 CORE_ADDR pc = (*get_frame_pc) (baton);
23116
23117 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23118 {
23119 if (!cand->parent
23120 || cand->parent->tag != DW_TAG_subprogram)
23121 continue;
23122
23123 CORE_ADDR pc_low, pc_high;
23124 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23125 if (pc_low == ((CORE_ADDR) -1)
23126 || !(pc_low <= pc && pc < pc_high))
23127 continue;
23128
23129 die = cand;
23130 attr = dwarf2_attr (die, DW_AT_location, cu);
23131 break;
23132 }
23133 }
23134
23135 if (!attr)
23136 {
23137 /* DWARF: "If there is no such attribute, then there is no effect.".
23138 DATA is ignored if SIZE is 0. */
23139
23140 retval.data = NULL;
23141 retval.size = 0;
23142 }
23143 else if (attr_form_is_section_offset (attr))
23144 {
23145 struct dwarf2_loclist_baton loclist_baton;
23146 CORE_ADDR pc = (*get_frame_pc) (baton);
23147 size_t size;
23148
23149 fill_in_loclist_baton (cu, &loclist_baton, attr);
23150
23151 retval.data = dwarf2_find_location_expression (&loclist_baton,
23152 &size, pc);
23153 retval.size = size;
23154 }
23155 else
23156 {
23157 if (!attr_form_is_block (attr))
23158 error (_("Dwarf Error: DIE at %s referenced in module %s "
23159 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23160 sect_offset_str (sect_off), objfile_name (objfile));
23161
23162 retval.data = DW_BLOCK (attr)->data;
23163 retval.size = DW_BLOCK (attr)->size;
23164 }
23165 retval.per_cu = cu->per_cu;
23166
23167 age_cached_comp_units (dwarf2_per_objfile);
23168
23169 return retval;
23170 }
23171
23172 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23173 offset. */
23174
23175 struct dwarf2_locexpr_baton
23176 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23177 struct dwarf2_per_cu_data *per_cu,
23178 CORE_ADDR (*get_frame_pc) (void *baton),
23179 void *baton)
23180 {
23181 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23182
23183 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23184 }
23185
23186 /* Write a constant of a given type as target-ordered bytes into
23187 OBSTACK. */
23188
23189 static const gdb_byte *
23190 write_constant_as_bytes (struct obstack *obstack,
23191 enum bfd_endian byte_order,
23192 struct type *type,
23193 ULONGEST value,
23194 LONGEST *len)
23195 {
23196 gdb_byte *result;
23197
23198 *len = TYPE_LENGTH (type);
23199 result = (gdb_byte *) obstack_alloc (obstack, *len);
23200 store_unsigned_integer (result, *len, byte_order, value);
23201
23202 return result;
23203 }
23204
23205 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23206 pointer to the constant bytes and set LEN to the length of the
23207 data. If memory is needed, allocate it on OBSTACK. If the DIE
23208 does not have a DW_AT_const_value, return NULL. */
23209
23210 const gdb_byte *
23211 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23212 struct dwarf2_per_cu_data *per_cu,
23213 struct obstack *obstack,
23214 LONGEST *len)
23215 {
23216 struct dwarf2_cu *cu;
23217 struct die_info *die;
23218 struct attribute *attr;
23219 const gdb_byte *result = NULL;
23220 struct type *type;
23221 LONGEST value;
23222 enum bfd_endian byte_order;
23223 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23224
23225 if (per_cu->cu == NULL)
23226 load_cu (per_cu, false);
23227 cu = per_cu->cu;
23228 if (cu == NULL)
23229 {
23230 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23231 Instead just throw an error, not much else we can do. */
23232 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23233 sect_offset_str (sect_off), objfile_name (objfile));
23234 }
23235
23236 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23237 if (!die)
23238 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23239 sect_offset_str (sect_off), objfile_name (objfile));
23240
23241 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23242 if (attr == NULL)
23243 return NULL;
23244
23245 byte_order = (bfd_big_endian (objfile->obfd)
23246 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23247
23248 switch (attr->form)
23249 {
23250 case DW_FORM_addr:
23251 case DW_FORM_GNU_addr_index:
23252 {
23253 gdb_byte *tem;
23254
23255 *len = cu->header.addr_size;
23256 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23257 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23258 result = tem;
23259 }
23260 break;
23261 case DW_FORM_string:
23262 case DW_FORM_strp:
23263 case DW_FORM_GNU_str_index:
23264 case DW_FORM_GNU_strp_alt:
23265 /* DW_STRING is already allocated on the objfile obstack, point
23266 directly to it. */
23267 result = (const gdb_byte *) DW_STRING (attr);
23268 *len = strlen (DW_STRING (attr));
23269 break;
23270 case DW_FORM_block1:
23271 case DW_FORM_block2:
23272 case DW_FORM_block4:
23273 case DW_FORM_block:
23274 case DW_FORM_exprloc:
23275 case DW_FORM_data16:
23276 result = DW_BLOCK (attr)->data;
23277 *len = DW_BLOCK (attr)->size;
23278 break;
23279
23280 /* The DW_AT_const_value attributes are supposed to carry the
23281 symbol's value "represented as it would be on the target
23282 architecture." By the time we get here, it's already been
23283 converted to host endianness, so we just need to sign- or
23284 zero-extend it as appropriate. */
23285 case DW_FORM_data1:
23286 type = die_type (die, cu);
23287 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23288 if (result == NULL)
23289 result = write_constant_as_bytes (obstack, byte_order,
23290 type, value, len);
23291 break;
23292 case DW_FORM_data2:
23293 type = die_type (die, cu);
23294 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23295 if (result == NULL)
23296 result = write_constant_as_bytes (obstack, byte_order,
23297 type, value, len);
23298 break;
23299 case DW_FORM_data4:
23300 type = die_type (die, cu);
23301 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23302 if (result == NULL)
23303 result = write_constant_as_bytes (obstack, byte_order,
23304 type, value, len);
23305 break;
23306 case DW_FORM_data8:
23307 type = die_type (die, cu);
23308 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23309 if (result == NULL)
23310 result = write_constant_as_bytes (obstack, byte_order,
23311 type, value, len);
23312 break;
23313
23314 case DW_FORM_sdata:
23315 case DW_FORM_implicit_const:
23316 type = die_type (die, cu);
23317 result = write_constant_as_bytes (obstack, byte_order,
23318 type, DW_SND (attr), len);
23319 break;
23320
23321 case DW_FORM_udata:
23322 type = die_type (die, cu);
23323 result = write_constant_as_bytes (obstack, byte_order,
23324 type, DW_UNSND (attr), len);
23325 break;
23326
23327 default:
23328 complaint (_("unsupported const value attribute form: '%s'"),
23329 dwarf_form_name (attr->form));
23330 break;
23331 }
23332
23333 return result;
23334 }
23335
23336 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23337 valid type for this die is found. */
23338
23339 struct type *
23340 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23341 struct dwarf2_per_cu_data *per_cu)
23342 {
23343 struct dwarf2_cu *cu;
23344 struct die_info *die;
23345
23346 if (per_cu->cu == NULL)
23347 load_cu (per_cu, false);
23348 cu = per_cu->cu;
23349 if (!cu)
23350 return NULL;
23351
23352 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23353 if (!die)
23354 return NULL;
23355
23356 return die_type (die, cu);
23357 }
23358
23359 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23360 PER_CU. */
23361
23362 struct type *
23363 dwarf2_get_die_type (cu_offset die_offset,
23364 struct dwarf2_per_cu_data *per_cu)
23365 {
23366 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23367 return get_die_type_at_offset (die_offset_sect, per_cu);
23368 }
23369
23370 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23371 On entry *REF_CU is the CU of SRC_DIE.
23372 On exit *REF_CU is the CU of the result.
23373 Returns NULL if the referenced DIE isn't found. */
23374
23375 static struct die_info *
23376 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23377 struct dwarf2_cu **ref_cu)
23378 {
23379 struct die_info temp_die;
23380 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23381 struct die_info *die;
23382
23383 /* While it might be nice to assert sig_type->type == NULL here,
23384 we can get here for DW_AT_imported_declaration where we need
23385 the DIE not the type. */
23386
23387 /* If necessary, add it to the queue and load its DIEs. */
23388
23389 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23390 read_signatured_type (sig_type);
23391
23392 sig_cu = sig_type->per_cu.cu;
23393 gdb_assert (sig_cu != NULL);
23394 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23395 temp_die.sect_off = sig_type->type_offset_in_section;
23396 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23397 to_underlying (temp_die.sect_off));
23398 if (die)
23399 {
23400 struct dwarf2_per_objfile *dwarf2_per_objfile
23401 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23402
23403 /* For .gdb_index version 7 keep track of included TUs.
23404 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23405 if (dwarf2_per_objfile->index_table != NULL
23406 && dwarf2_per_objfile->index_table->version <= 7)
23407 {
23408 VEC_safe_push (dwarf2_per_cu_ptr,
23409 (*ref_cu)->per_cu->imported_symtabs,
23410 sig_cu->per_cu);
23411 }
23412
23413 *ref_cu = sig_cu;
23414 if (sig_cu != cu)
23415 sig_cu->ancestor = cu;
23416
23417 return die;
23418 }
23419
23420 return NULL;
23421 }
23422
23423 /* Follow signatured type referenced by ATTR in SRC_DIE.
23424 On entry *REF_CU is the CU of SRC_DIE.
23425 On exit *REF_CU is the CU of the result.
23426 The result is the DIE of the type.
23427 If the referenced type cannot be found an error is thrown. */
23428
23429 static struct die_info *
23430 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23431 struct dwarf2_cu **ref_cu)
23432 {
23433 ULONGEST signature = DW_SIGNATURE (attr);
23434 struct signatured_type *sig_type;
23435 struct die_info *die;
23436
23437 gdb_assert (attr->form == DW_FORM_ref_sig8);
23438
23439 sig_type = lookup_signatured_type (*ref_cu, signature);
23440 /* sig_type will be NULL if the signatured type is missing from
23441 the debug info. */
23442 if (sig_type == NULL)
23443 {
23444 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23445 " from DIE at %s [in module %s]"),
23446 hex_string (signature), sect_offset_str (src_die->sect_off),
23447 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23448 }
23449
23450 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23451 if (die == NULL)
23452 {
23453 dump_die_for_error (src_die);
23454 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23455 " from DIE at %s [in module %s]"),
23456 hex_string (signature), sect_offset_str (src_die->sect_off),
23457 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23458 }
23459
23460 return die;
23461 }
23462
23463 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23464 reading in and processing the type unit if necessary. */
23465
23466 static struct type *
23467 get_signatured_type (struct die_info *die, ULONGEST signature,
23468 struct dwarf2_cu *cu)
23469 {
23470 struct dwarf2_per_objfile *dwarf2_per_objfile
23471 = cu->per_cu->dwarf2_per_objfile;
23472 struct signatured_type *sig_type;
23473 struct dwarf2_cu *type_cu;
23474 struct die_info *type_die;
23475 struct type *type;
23476
23477 sig_type = lookup_signatured_type (cu, signature);
23478 /* sig_type will be NULL if the signatured type is missing from
23479 the debug info. */
23480 if (sig_type == NULL)
23481 {
23482 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23483 " from DIE at %s [in module %s]"),
23484 hex_string (signature), sect_offset_str (die->sect_off),
23485 objfile_name (dwarf2_per_objfile->objfile));
23486 return build_error_marker_type (cu, die);
23487 }
23488
23489 /* If we already know the type we're done. */
23490 if (sig_type->type != NULL)
23491 return sig_type->type;
23492
23493 type_cu = cu;
23494 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23495 if (type_die != NULL)
23496 {
23497 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23498 is created. This is important, for example, because for c++ classes
23499 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23500 type = read_type_die (type_die, type_cu);
23501 if (type == NULL)
23502 {
23503 complaint (_("Dwarf Error: Cannot build signatured type %s"
23504 " referenced from DIE at %s [in module %s]"),
23505 hex_string (signature), sect_offset_str (die->sect_off),
23506 objfile_name (dwarf2_per_objfile->objfile));
23507 type = build_error_marker_type (cu, die);
23508 }
23509 }
23510 else
23511 {
23512 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23513 " from DIE at %s [in module %s]"),
23514 hex_string (signature), sect_offset_str (die->sect_off),
23515 objfile_name (dwarf2_per_objfile->objfile));
23516 type = build_error_marker_type (cu, die);
23517 }
23518 sig_type->type = type;
23519
23520 return type;
23521 }
23522
23523 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23524 reading in and processing the type unit if necessary. */
23525
23526 static struct type *
23527 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23528 struct dwarf2_cu *cu) /* ARI: editCase function */
23529 {
23530 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23531 if (attr_form_is_ref (attr))
23532 {
23533 struct dwarf2_cu *type_cu = cu;
23534 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23535
23536 return read_type_die (type_die, type_cu);
23537 }
23538 else if (attr->form == DW_FORM_ref_sig8)
23539 {
23540 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23541 }
23542 else
23543 {
23544 struct dwarf2_per_objfile *dwarf2_per_objfile
23545 = cu->per_cu->dwarf2_per_objfile;
23546
23547 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23548 " at %s [in module %s]"),
23549 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23550 objfile_name (dwarf2_per_objfile->objfile));
23551 return build_error_marker_type (cu, die);
23552 }
23553 }
23554
23555 /* Load the DIEs associated with type unit PER_CU into memory. */
23556
23557 static void
23558 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23559 {
23560 struct signatured_type *sig_type;
23561
23562 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23563 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23564
23565 /* We have the per_cu, but we need the signatured_type.
23566 Fortunately this is an easy translation. */
23567 gdb_assert (per_cu->is_debug_types);
23568 sig_type = (struct signatured_type *) per_cu;
23569
23570 gdb_assert (per_cu->cu == NULL);
23571
23572 read_signatured_type (sig_type);
23573
23574 gdb_assert (per_cu->cu != NULL);
23575 }
23576
23577 /* die_reader_func for read_signatured_type.
23578 This is identical to load_full_comp_unit_reader,
23579 but is kept separate for now. */
23580
23581 static void
23582 read_signatured_type_reader (const struct die_reader_specs *reader,
23583 const gdb_byte *info_ptr,
23584 struct die_info *comp_unit_die,
23585 int has_children,
23586 void *data)
23587 {
23588 struct dwarf2_cu *cu = reader->cu;
23589
23590 gdb_assert (cu->die_hash == NULL);
23591 cu->die_hash =
23592 htab_create_alloc_ex (cu->header.length / 12,
23593 die_hash,
23594 die_eq,
23595 NULL,
23596 &cu->comp_unit_obstack,
23597 hashtab_obstack_allocate,
23598 dummy_obstack_deallocate);
23599
23600 if (has_children)
23601 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23602 &info_ptr, comp_unit_die);
23603 cu->dies = comp_unit_die;
23604 /* comp_unit_die is not stored in die_hash, no need. */
23605
23606 /* We try not to read any attributes in this function, because not
23607 all CUs needed for references have been loaded yet, and symbol
23608 table processing isn't initialized. But we have to set the CU language,
23609 or we won't be able to build types correctly.
23610 Similarly, if we do not read the producer, we can not apply
23611 producer-specific interpretation. */
23612 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23613 }
23614
23615 /* Read in a signatured type and build its CU and DIEs.
23616 If the type is a stub for the real type in a DWO file,
23617 read in the real type from the DWO file as well. */
23618
23619 static void
23620 read_signatured_type (struct signatured_type *sig_type)
23621 {
23622 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23623
23624 gdb_assert (per_cu->is_debug_types);
23625 gdb_assert (per_cu->cu == NULL);
23626
23627 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23628 read_signatured_type_reader, NULL);
23629 sig_type->per_cu.tu_read = 1;
23630 }
23631
23632 /* Decode simple location descriptions.
23633 Given a pointer to a dwarf block that defines a location, compute
23634 the location and return the value.
23635
23636 NOTE drow/2003-11-18: This function is called in two situations
23637 now: for the address of static or global variables (partial symbols
23638 only) and for offsets into structures which are expected to be
23639 (more or less) constant. The partial symbol case should go away,
23640 and only the constant case should remain. That will let this
23641 function complain more accurately. A few special modes are allowed
23642 without complaint for global variables (for instance, global
23643 register values and thread-local values).
23644
23645 A location description containing no operations indicates that the
23646 object is optimized out. The return value is 0 for that case.
23647 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23648 callers will only want a very basic result and this can become a
23649 complaint.
23650
23651 Note that stack[0] is unused except as a default error return. */
23652
23653 static CORE_ADDR
23654 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23655 {
23656 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23657 size_t i;
23658 size_t size = blk->size;
23659 const gdb_byte *data = blk->data;
23660 CORE_ADDR stack[64];
23661 int stacki;
23662 unsigned int bytes_read, unsnd;
23663 gdb_byte op;
23664
23665 i = 0;
23666 stacki = 0;
23667 stack[stacki] = 0;
23668 stack[++stacki] = 0;
23669
23670 while (i < size)
23671 {
23672 op = data[i++];
23673 switch (op)
23674 {
23675 case DW_OP_lit0:
23676 case DW_OP_lit1:
23677 case DW_OP_lit2:
23678 case DW_OP_lit3:
23679 case DW_OP_lit4:
23680 case DW_OP_lit5:
23681 case DW_OP_lit6:
23682 case DW_OP_lit7:
23683 case DW_OP_lit8:
23684 case DW_OP_lit9:
23685 case DW_OP_lit10:
23686 case DW_OP_lit11:
23687 case DW_OP_lit12:
23688 case DW_OP_lit13:
23689 case DW_OP_lit14:
23690 case DW_OP_lit15:
23691 case DW_OP_lit16:
23692 case DW_OP_lit17:
23693 case DW_OP_lit18:
23694 case DW_OP_lit19:
23695 case DW_OP_lit20:
23696 case DW_OP_lit21:
23697 case DW_OP_lit22:
23698 case DW_OP_lit23:
23699 case DW_OP_lit24:
23700 case DW_OP_lit25:
23701 case DW_OP_lit26:
23702 case DW_OP_lit27:
23703 case DW_OP_lit28:
23704 case DW_OP_lit29:
23705 case DW_OP_lit30:
23706 case DW_OP_lit31:
23707 stack[++stacki] = op - DW_OP_lit0;
23708 break;
23709
23710 case DW_OP_reg0:
23711 case DW_OP_reg1:
23712 case DW_OP_reg2:
23713 case DW_OP_reg3:
23714 case DW_OP_reg4:
23715 case DW_OP_reg5:
23716 case DW_OP_reg6:
23717 case DW_OP_reg7:
23718 case DW_OP_reg8:
23719 case DW_OP_reg9:
23720 case DW_OP_reg10:
23721 case DW_OP_reg11:
23722 case DW_OP_reg12:
23723 case DW_OP_reg13:
23724 case DW_OP_reg14:
23725 case DW_OP_reg15:
23726 case DW_OP_reg16:
23727 case DW_OP_reg17:
23728 case DW_OP_reg18:
23729 case DW_OP_reg19:
23730 case DW_OP_reg20:
23731 case DW_OP_reg21:
23732 case DW_OP_reg22:
23733 case DW_OP_reg23:
23734 case DW_OP_reg24:
23735 case DW_OP_reg25:
23736 case DW_OP_reg26:
23737 case DW_OP_reg27:
23738 case DW_OP_reg28:
23739 case DW_OP_reg29:
23740 case DW_OP_reg30:
23741 case DW_OP_reg31:
23742 stack[++stacki] = op - DW_OP_reg0;
23743 if (i < size)
23744 dwarf2_complex_location_expr_complaint ();
23745 break;
23746
23747 case DW_OP_regx:
23748 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23749 i += bytes_read;
23750 stack[++stacki] = unsnd;
23751 if (i < size)
23752 dwarf2_complex_location_expr_complaint ();
23753 break;
23754
23755 case DW_OP_addr:
23756 stack[++stacki] = read_address (objfile->obfd, &data[i],
23757 cu, &bytes_read);
23758 i += bytes_read;
23759 break;
23760
23761 case DW_OP_const1u:
23762 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23763 i += 1;
23764 break;
23765
23766 case DW_OP_const1s:
23767 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23768 i += 1;
23769 break;
23770
23771 case DW_OP_const2u:
23772 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23773 i += 2;
23774 break;
23775
23776 case DW_OP_const2s:
23777 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23778 i += 2;
23779 break;
23780
23781 case DW_OP_const4u:
23782 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23783 i += 4;
23784 break;
23785
23786 case DW_OP_const4s:
23787 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23788 i += 4;
23789 break;
23790
23791 case DW_OP_const8u:
23792 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23793 i += 8;
23794 break;
23795
23796 case DW_OP_constu:
23797 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23798 &bytes_read);
23799 i += bytes_read;
23800 break;
23801
23802 case DW_OP_consts:
23803 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23804 i += bytes_read;
23805 break;
23806
23807 case DW_OP_dup:
23808 stack[stacki + 1] = stack[stacki];
23809 stacki++;
23810 break;
23811
23812 case DW_OP_plus:
23813 stack[stacki - 1] += stack[stacki];
23814 stacki--;
23815 break;
23816
23817 case DW_OP_plus_uconst:
23818 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23819 &bytes_read);
23820 i += bytes_read;
23821 break;
23822
23823 case DW_OP_minus:
23824 stack[stacki - 1] -= stack[stacki];
23825 stacki--;
23826 break;
23827
23828 case DW_OP_deref:
23829 /* If we're not the last op, then we definitely can't encode
23830 this using GDB's address_class enum. This is valid for partial
23831 global symbols, although the variable's address will be bogus
23832 in the psymtab. */
23833 if (i < size)
23834 dwarf2_complex_location_expr_complaint ();
23835 break;
23836
23837 case DW_OP_GNU_push_tls_address:
23838 case DW_OP_form_tls_address:
23839 /* The top of the stack has the offset from the beginning
23840 of the thread control block at which the variable is located. */
23841 /* Nothing should follow this operator, so the top of stack would
23842 be returned. */
23843 /* This is valid for partial global symbols, but the variable's
23844 address will be bogus in the psymtab. Make it always at least
23845 non-zero to not look as a variable garbage collected by linker
23846 which have DW_OP_addr 0. */
23847 if (i < size)
23848 dwarf2_complex_location_expr_complaint ();
23849 stack[stacki]++;
23850 break;
23851
23852 case DW_OP_GNU_uninit:
23853 break;
23854
23855 case DW_OP_GNU_addr_index:
23856 case DW_OP_GNU_const_index:
23857 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23858 &bytes_read);
23859 i += bytes_read;
23860 break;
23861
23862 default:
23863 {
23864 const char *name = get_DW_OP_name (op);
23865
23866 if (name)
23867 complaint (_("unsupported stack op: '%s'"),
23868 name);
23869 else
23870 complaint (_("unsupported stack op: '%02x'"),
23871 op);
23872 }
23873
23874 return (stack[stacki]);
23875 }
23876
23877 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23878 outside of the allocated space. Also enforce minimum>0. */
23879 if (stacki >= ARRAY_SIZE (stack) - 1)
23880 {
23881 complaint (_("location description stack overflow"));
23882 return 0;
23883 }
23884
23885 if (stacki <= 0)
23886 {
23887 complaint (_("location description stack underflow"));
23888 return 0;
23889 }
23890 }
23891 return (stack[stacki]);
23892 }
23893
23894 /* memory allocation interface */
23895
23896 static struct dwarf_block *
23897 dwarf_alloc_block (struct dwarf2_cu *cu)
23898 {
23899 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23900 }
23901
23902 static struct die_info *
23903 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23904 {
23905 struct die_info *die;
23906 size_t size = sizeof (struct die_info);
23907
23908 if (num_attrs > 1)
23909 size += (num_attrs - 1) * sizeof (struct attribute);
23910
23911 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23912 memset (die, 0, sizeof (struct die_info));
23913 return (die);
23914 }
23915
23916 \f
23917 /* Macro support. */
23918
23919 /* Return file name relative to the compilation directory of file number I in
23920 *LH's file name table. The result is allocated using xmalloc; the caller is
23921 responsible for freeing it. */
23922
23923 static char *
23924 file_file_name (int file, struct line_header *lh)
23925 {
23926 /* Is the file number a valid index into the line header's file name
23927 table? Remember that file numbers start with one, not zero. */
23928 if (1 <= file && file <= lh->file_names.size ())
23929 {
23930 const file_entry &fe = lh->file_names[file - 1];
23931
23932 if (!IS_ABSOLUTE_PATH (fe.name))
23933 {
23934 const char *dir = fe.include_dir (lh);
23935 if (dir != NULL)
23936 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23937 }
23938 return xstrdup (fe.name);
23939 }
23940 else
23941 {
23942 /* The compiler produced a bogus file number. We can at least
23943 record the macro definitions made in the file, even if we
23944 won't be able to find the file by name. */
23945 char fake_name[80];
23946
23947 xsnprintf (fake_name, sizeof (fake_name),
23948 "<bad macro file number %d>", file);
23949
23950 complaint (_("bad file number in macro information (%d)"),
23951 file);
23952
23953 return xstrdup (fake_name);
23954 }
23955 }
23956
23957 /* Return the full name of file number I in *LH's file name table.
23958 Use COMP_DIR as the name of the current directory of the
23959 compilation. The result is allocated using xmalloc; the caller is
23960 responsible for freeing it. */
23961 static char *
23962 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23963 {
23964 /* Is the file number a valid index into the line header's file name
23965 table? Remember that file numbers start with one, not zero. */
23966 if (1 <= file && file <= lh->file_names.size ())
23967 {
23968 char *relative = file_file_name (file, lh);
23969
23970 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23971 return relative;
23972 return reconcat (relative, comp_dir, SLASH_STRING,
23973 relative, (char *) NULL);
23974 }
23975 else
23976 return file_file_name (file, lh);
23977 }
23978
23979
23980 static struct macro_source_file *
23981 macro_start_file (struct dwarf2_cu *cu,
23982 int file, int line,
23983 struct macro_source_file *current_file,
23984 struct line_header *lh)
23985 {
23986 /* File name relative to the compilation directory of this source file. */
23987 char *file_name = file_file_name (file, lh);
23988
23989 if (! current_file)
23990 {
23991 /* Note: We don't create a macro table for this compilation unit
23992 at all until we actually get a filename. */
23993 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
23994
23995 /* If we have no current file, then this must be the start_file
23996 directive for the compilation unit's main source file. */
23997 current_file = macro_set_main (macro_table, file_name);
23998 macro_define_special (macro_table);
23999 }
24000 else
24001 current_file = macro_include (current_file, line, file_name);
24002
24003 xfree (file_name);
24004
24005 return current_file;
24006 }
24007
24008 static const char *
24009 consume_improper_spaces (const char *p, const char *body)
24010 {
24011 if (*p == ' ')
24012 {
24013 complaint (_("macro definition contains spaces "
24014 "in formal argument list:\n`%s'"),
24015 body);
24016
24017 while (*p == ' ')
24018 p++;
24019 }
24020
24021 return p;
24022 }
24023
24024
24025 static void
24026 parse_macro_definition (struct macro_source_file *file, int line,
24027 const char *body)
24028 {
24029 const char *p;
24030
24031 /* The body string takes one of two forms. For object-like macro
24032 definitions, it should be:
24033
24034 <macro name> " " <definition>
24035
24036 For function-like macro definitions, it should be:
24037
24038 <macro name> "() " <definition>
24039 or
24040 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24041
24042 Spaces may appear only where explicitly indicated, and in the
24043 <definition>.
24044
24045 The Dwarf 2 spec says that an object-like macro's name is always
24046 followed by a space, but versions of GCC around March 2002 omit
24047 the space when the macro's definition is the empty string.
24048
24049 The Dwarf 2 spec says that there should be no spaces between the
24050 formal arguments in a function-like macro's formal argument list,
24051 but versions of GCC around March 2002 include spaces after the
24052 commas. */
24053
24054
24055 /* Find the extent of the macro name. The macro name is terminated
24056 by either a space or null character (for an object-like macro) or
24057 an opening paren (for a function-like macro). */
24058 for (p = body; *p; p++)
24059 if (*p == ' ' || *p == '(')
24060 break;
24061
24062 if (*p == ' ' || *p == '\0')
24063 {
24064 /* It's an object-like macro. */
24065 int name_len = p - body;
24066 char *name = savestring (body, name_len);
24067 const char *replacement;
24068
24069 if (*p == ' ')
24070 replacement = body + name_len + 1;
24071 else
24072 {
24073 dwarf2_macro_malformed_definition_complaint (body);
24074 replacement = body + name_len;
24075 }
24076
24077 macro_define_object (file, line, name, replacement);
24078
24079 xfree (name);
24080 }
24081 else if (*p == '(')
24082 {
24083 /* It's a function-like macro. */
24084 char *name = savestring (body, p - body);
24085 int argc = 0;
24086 int argv_size = 1;
24087 char **argv = XNEWVEC (char *, argv_size);
24088
24089 p++;
24090
24091 p = consume_improper_spaces (p, body);
24092
24093 /* Parse the formal argument list. */
24094 while (*p && *p != ')')
24095 {
24096 /* Find the extent of the current argument name. */
24097 const char *arg_start = p;
24098
24099 while (*p && *p != ',' && *p != ')' && *p != ' ')
24100 p++;
24101
24102 if (! *p || p == arg_start)
24103 dwarf2_macro_malformed_definition_complaint (body);
24104 else
24105 {
24106 /* Make sure argv has room for the new argument. */
24107 if (argc >= argv_size)
24108 {
24109 argv_size *= 2;
24110 argv = XRESIZEVEC (char *, argv, argv_size);
24111 }
24112
24113 argv[argc++] = savestring (arg_start, p - arg_start);
24114 }
24115
24116 p = consume_improper_spaces (p, body);
24117
24118 /* Consume the comma, if present. */
24119 if (*p == ',')
24120 {
24121 p++;
24122
24123 p = consume_improper_spaces (p, body);
24124 }
24125 }
24126
24127 if (*p == ')')
24128 {
24129 p++;
24130
24131 if (*p == ' ')
24132 /* Perfectly formed definition, no complaints. */
24133 macro_define_function (file, line, name,
24134 argc, (const char **) argv,
24135 p + 1);
24136 else if (*p == '\0')
24137 {
24138 /* Complain, but do define it. */
24139 dwarf2_macro_malformed_definition_complaint (body);
24140 macro_define_function (file, line, name,
24141 argc, (const char **) argv,
24142 p);
24143 }
24144 else
24145 /* Just complain. */
24146 dwarf2_macro_malformed_definition_complaint (body);
24147 }
24148 else
24149 /* Just complain. */
24150 dwarf2_macro_malformed_definition_complaint (body);
24151
24152 xfree (name);
24153 {
24154 int i;
24155
24156 for (i = 0; i < argc; i++)
24157 xfree (argv[i]);
24158 }
24159 xfree (argv);
24160 }
24161 else
24162 dwarf2_macro_malformed_definition_complaint (body);
24163 }
24164
24165 /* Skip some bytes from BYTES according to the form given in FORM.
24166 Returns the new pointer. */
24167
24168 static const gdb_byte *
24169 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24170 enum dwarf_form form,
24171 unsigned int offset_size,
24172 struct dwarf2_section_info *section)
24173 {
24174 unsigned int bytes_read;
24175
24176 switch (form)
24177 {
24178 case DW_FORM_data1:
24179 case DW_FORM_flag:
24180 ++bytes;
24181 break;
24182
24183 case DW_FORM_data2:
24184 bytes += 2;
24185 break;
24186
24187 case DW_FORM_data4:
24188 bytes += 4;
24189 break;
24190
24191 case DW_FORM_data8:
24192 bytes += 8;
24193 break;
24194
24195 case DW_FORM_data16:
24196 bytes += 16;
24197 break;
24198
24199 case DW_FORM_string:
24200 read_direct_string (abfd, bytes, &bytes_read);
24201 bytes += bytes_read;
24202 break;
24203
24204 case DW_FORM_sec_offset:
24205 case DW_FORM_strp:
24206 case DW_FORM_GNU_strp_alt:
24207 bytes += offset_size;
24208 break;
24209
24210 case DW_FORM_block:
24211 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24212 bytes += bytes_read;
24213 break;
24214
24215 case DW_FORM_block1:
24216 bytes += 1 + read_1_byte (abfd, bytes);
24217 break;
24218 case DW_FORM_block2:
24219 bytes += 2 + read_2_bytes (abfd, bytes);
24220 break;
24221 case DW_FORM_block4:
24222 bytes += 4 + read_4_bytes (abfd, bytes);
24223 break;
24224
24225 case DW_FORM_sdata:
24226 case DW_FORM_udata:
24227 case DW_FORM_GNU_addr_index:
24228 case DW_FORM_GNU_str_index:
24229 bytes = gdb_skip_leb128 (bytes, buffer_end);
24230 if (bytes == NULL)
24231 {
24232 dwarf2_section_buffer_overflow_complaint (section);
24233 return NULL;
24234 }
24235 break;
24236
24237 case DW_FORM_implicit_const:
24238 break;
24239
24240 default:
24241 {
24242 complaint (_("invalid form 0x%x in `%s'"),
24243 form, get_section_name (section));
24244 return NULL;
24245 }
24246 }
24247
24248 return bytes;
24249 }
24250
24251 /* A helper for dwarf_decode_macros that handles skipping an unknown
24252 opcode. Returns an updated pointer to the macro data buffer; or,
24253 on error, issues a complaint and returns NULL. */
24254
24255 static const gdb_byte *
24256 skip_unknown_opcode (unsigned int opcode,
24257 const gdb_byte **opcode_definitions,
24258 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24259 bfd *abfd,
24260 unsigned int offset_size,
24261 struct dwarf2_section_info *section)
24262 {
24263 unsigned int bytes_read, i;
24264 unsigned long arg;
24265 const gdb_byte *defn;
24266
24267 if (opcode_definitions[opcode] == NULL)
24268 {
24269 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24270 opcode);
24271 return NULL;
24272 }
24273
24274 defn = opcode_definitions[opcode];
24275 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24276 defn += bytes_read;
24277
24278 for (i = 0; i < arg; ++i)
24279 {
24280 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24281 (enum dwarf_form) defn[i], offset_size,
24282 section);
24283 if (mac_ptr == NULL)
24284 {
24285 /* skip_form_bytes already issued the complaint. */
24286 return NULL;
24287 }
24288 }
24289
24290 return mac_ptr;
24291 }
24292
24293 /* A helper function which parses the header of a macro section.
24294 If the macro section is the extended (for now called "GNU") type,
24295 then this updates *OFFSET_SIZE. Returns a pointer to just after
24296 the header, or issues a complaint and returns NULL on error. */
24297
24298 static const gdb_byte *
24299 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24300 bfd *abfd,
24301 const gdb_byte *mac_ptr,
24302 unsigned int *offset_size,
24303 int section_is_gnu)
24304 {
24305 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24306
24307 if (section_is_gnu)
24308 {
24309 unsigned int version, flags;
24310
24311 version = read_2_bytes (abfd, mac_ptr);
24312 if (version != 4 && version != 5)
24313 {
24314 complaint (_("unrecognized version `%d' in .debug_macro section"),
24315 version);
24316 return NULL;
24317 }
24318 mac_ptr += 2;
24319
24320 flags = read_1_byte (abfd, mac_ptr);
24321 ++mac_ptr;
24322 *offset_size = (flags & 1) ? 8 : 4;
24323
24324 if ((flags & 2) != 0)
24325 /* We don't need the line table offset. */
24326 mac_ptr += *offset_size;
24327
24328 /* Vendor opcode descriptions. */
24329 if ((flags & 4) != 0)
24330 {
24331 unsigned int i, count;
24332
24333 count = read_1_byte (abfd, mac_ptr);
24334 ++mac_ptr;
24335 for (i = 0; i < count; ++i)
24336 {
24337 unsigned int opcode, bytes_read;
24338 unsigned long arg;
24339
24340 opcode = read_1_byte (abfd, mac_ptr);
24341 ++mac_ptr;
24342 opcode_definitions[opcode] = mac_ptr;
24343 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24344 mac_ptr += bytes_read;
24345 mac_ptr += arg;
24346 }
24347 }
24348 }
24349
24350 return mac_ptr;
24351 }
24352
24353 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24354 including DW_MACRO_import. */
24355
24356 static void
24357 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24358 bfd *abfd,
24359 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24360 struct macro_source_file *current_file,
24361 struct line_header *lh,
24362 struct dwarf2_section_info *section,
24363 int section_is_gnu, int section_is_dwz,
24364 unsigned int offset_size,
24365 htab_t include_hash)
24366 {
24367 struct dwarf2_per_objfile *dwarf2_per_objfile
24368 = cu->per_cu->dwarf2_per_objfile;
24369 struct objfile *objfile = dwarf2_per_objfile->objfile;
24370 enum dwarf_macro_record_type macinfo_type;
24371 int at_commandline;
24372 const gdb_byte *opcode_definitions[256];
24373
24374 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24375 &offset_size, section_is_gnu);
24376 if (mac_ptr == NULL)
24377 {
24378 /* We already issued a complaint. */
24379 return;
24380 }
24381
24382 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24383 GDB is still reading the definitions from command line. First
24384 DW_MACINFO_start_file will need to be ignored as it was already executed
24385 to create CURRENT_FILE for the main source holding also the command line
24386 definitions. On first met DW_MACINFO_start_file this flag is reset to
24387 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24388
24389 at_commandline = 1;
24390
24391 do
24392 {
24393 /* Do we at least have room for a macinfo type byte? */
24394 if (mac_ptr >= mac_end)
24395 {
24396 dwarf2_section_buffer_overflow_complaint (section);
24397 break;
24398 }
24399
24400 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24401 mac_ptr++;
24402
24403 /* Note that we rely on the fact that the corresponding GNU and
24404 DWARF constants are the same. */
24405 DIAGNOSTIC_PUSH
24406 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24407 switch (macinfo_type)
24408 {
24409 /* A zero macinfo type indicates the end of the macro
24410 information. */
24411 case 0:
24412 break;
24413
24414 case DW_MACRO_define:
24415 case DW_MACRO_undef:
24416 case DW_MACRO_define_strp:
24417 case DW_MACRO_undef_strp:
24418 case DW_MACRO_define_sup:
24419 case DW_MACRO_undef_sup:
24420 {
24421 unsigned int bytes_read;
24422 int line;
24423 const char *body;
24424 int is_define;
24425
24426 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24427 mac_ptr += bytes_read;
24428
24429 if (macinfo_type == DW_MACRO_define
24430 || macinfo_type == DW_MACRO_undef)
24431 {
24432 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24433 mac_ptr += bytes_read;
24434 }
24435 else
24436 {
24437 LONGEST str_offset;
24438
24439 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24440 mac_ptr += offset_size;
24441
24442 if (macinfo_type == DW_MACRO_define_sup
24443 || macinfo_type == DW_MACRO_undef_sup
24444 || section_is_dwz)
24445 {
24446 struct dwz_file *dwz
24447 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24448
24449 body = read_indirect_string_from_dwz (objfile,
24450 dwz, str_offset);
24451 }
24452 else
24453 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24454 abfd, str_offset);
24455 }
24456
24457 is_define = (macinfo_type == DW_MACRO_define
24458 || macinfo_type == DW_MACRO_define_strp
24459 || macinfo_type == DW_MACRO_define_sup);
24460 if (! current_file)
24461 {
24462 /* DWARF violation as no main source is present. */
24463 complaint (_("debug info with no main source gives macro %s "
24464 "on line %d: %s"),
24465 is_define ? _("definition") : _("undefinition"),
24466 line, body);
24467 break;
24468 }
24469 if ((line == 0 && !at_commandline)
24470 || (line != 0 && at_commandline))
24471 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24472 at_commandline ? _("command-line") : _("in-file"),
24473 is_define ? _("definition") : _("undefinition"),
24474 line == 0 ? _("zero") : _("non-zero"), line, body);
24475
24476 if (is_define)
24477 parse_macro_definition (current_file, line, body);
24478 else
24479 {
24480 gdb_assert (macinfo_type == DW_MACRO_undef
24481 || macinfo_type == DW_MACRO_undef_strp
24482 || macinfo_type == DW_MACRO_undef_sup);
24483 macro_undef (current_file, line, body);
24484 }
24485 }
24486 break;
24487
24488 case DW_MACRO_start_file:
24489 {
24490 unsigned int bytes_read;
24491 int line, file;
24492
24493 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24494 mac_ptr += bytes_read;
24495 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24496 mac_ptr += bytes_read;
24497
24498 if ((line == 0 && !at_commandline)
24499 || (line != 0 && at_commandline))
24500 complaint (_("debug info gives source %d included "
24501 "from %s at %s line %d"),
24502 file, at_commandline ? _("command-line") : _("file"),
24503 line == 0 ? _("zero") : _("non-zero"), line);
24504
24505 if (at_commandline)
24506 {
24507 /* This DW_MACRO_start_file was executed in the
24508 pass one. */
24509 at_commandline = 0;
24510 }
24511 else
24512 current_file = macro_start_file (cu, file, line, current_file,
24513 lh);
24514 }
24515 break;
24516
24517 case DW_MACRO_end_file:
24518 if (! current_file)
24519 complaint (_("macro debug info has an unmatched "
24520 "`close_file' directive"));
24521 else
24522 {
24523 current_file = current_file->included_by;
24524 if (! current_file)
24525 {
24526 enum dwarf_macro_record_type next_type;
24527
24528 /* GCC circa March 2002 doesn't produce the zero
24529 type byte marking the end of the compilation
24530 unit. Complain if it's not there, but exit no
24531 matter what. */
24532
24533 /* Do we at least have room for a macinfo type byte? */
24534 if (mac_ptr >= mac_end)
24535 {
24536 dwarf2_section_buffer_overflow_complaint (section);
24537 return;
24538 }
24539
24540 /* We don't increment mac_ptr here, so this is just
24541 a look-ahead. */
24542 next_type
24543 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24544 mac_ptr);
24545 if (next_type != 0)
24546 complaint (_("no terminating 0-type entry for "
24547 "macros in `.debug_macinfo' section"));
24548
24549 return;
24550 }
24551 }
24552 break;
24553
24554 case DW_MACRO_import:
24555 case DW_MACRO_import_sup:
24556 {
24557 LONGEST offset;
24558 void **slot;
24559 bfd *include_bfd = abfd;
24560 struct dwarf2_section_info *include_section = section;
24561 const gdb_byte *include_mac_end = mac_end;
24562 int is_dwz = section_is_dwz;
24563 const gdb_byte *new_mac_ptr;
24564
24565 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24566 mac_ptr += offset_size;
24567
24568 if (macinfo_type == DW_MACRO_import_sup)
24569 {
24570 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24571
24572 dwarf2_read_section (objfile, &dwz->macro);
24573
24574 include_section = &dwz->macro;
24575 include_bfd = get_section_bfd_owner (include_section);
24576 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24577 is_dwz = 1;
24578 }
24579
24580 new_mac_ptr = include_section->buffer + offset;
24581 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24582
24583 if (*slot != NULL)
24584 {
24585 /* This has actually happened; see
24586 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24587 complaint (_("recursive DW_MACRO_import in "
24588 ".debug_macro section"));
24589 }
24590 else
24591 {
24592 *slot = (void *) new_mac_ptr;
24593
24594 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24595 include_mac_end, current_file, lh,
24596 section, section_is_gnu, is_dwz,
24597 offset_size, include_hash);
24598
24599 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24600 }
24601 }
24602 break;
24603
24604 case DW_MACINFO_vendor_ext:
24605 if (!section_is_gnu)
24606 {
24607 unsigned int bytes_read;
24608
24609 /* This reads the constant, but since we don't recognize
24610 any vendor extensions, we ignore it. */
24611 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24612 mac_ptr += bytes_read;
24613 read_direct_string (abfd, mac_ptr, &bytes_read);
24614 mac_ptr += bytes_read;
24615
24616 /* We don't recognize any vendor extensions. */
24617 break;
24618 }
24619 /* FALLTHROUGH */
24620
24621 default:
24622 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24623 mac_ptr, mac_end, abfd, offset_size,
24624 section);
24625 if (mac_ptr == NULL)
24626 return;
24627 break;
24628 }
24629 DIAGNOSTIC_POP
24630 } while (macinfo_type != 0);
24631 }
24632
24633 static void
24634 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24635 int section_is_gnu)
24636 {
24637 struct dwarf2_per_objfile *dwarf2_per_objfile
24638 = cu->per_cu->dwarf2_per_objfile;
24639 struct objfile *objfile = dwarf2_per_objfile->objfile;
24640 struct line_header *lh = cu->line_header;
24641 bfd *abfd;
24642 const gdb_byte *mac_ptr, *mac_end;
24643 struct macro_source_file *current_file = 0;
24644 enum dwarf_macro_record_type macinfo_type;
24645 unsigned int offset_size = cu->header.offset_size;
24646 const gdb_byte *opcode_definitions[256];
24647 void **slot;
24648 struct dwarf2_section_info *section;
24649 const char *section_name;
24650
24651 if (cu->dwo_unit != NULL)
24652 {
24653 if (section_is_gnu)
24654 {
24655 section = &cu->dwo_unit->dwo_file->sections.macro;
24656 section_name = ".debug_macro.dwo";
24657 }
24658 else
24659 {
24660 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24661 section_name = ".debug_macinfo.dwo";
24662 }
24663 }
24664 else
24665 {
24666 if (section_is_gnu)
24667 {
24668 section = &dwarf2_per_objfile->macro;
24669 section_name = ".debug_macro";
24670 }
24671 else
24672 {
24673 section = &dwarf2_per_objfile->macinfo;
24674 section_name = ".debug_macinfo";
24675 }
24676 }
24677
24678 dwarf2_read_section (objfile, section);
24679 if (section->buffer == NULL)
24680 {
24681 complaint (_("missing %s section"), section_name);
24682 return;
24683 }
24684 abfd = get_section_bfd_owner (section);
24685
24686 /* First pass: Find the name of the base filename.
24687 This filename is needed in order to process all macros whose definition
24688 (or undefinition) comes from the command line. These macros are defined
24689 before the first DW_MACINFO_start_file entry, and yet still need to be
24690 associated to the base file.
24691
24692 To determine the base file name, we scan the macro definitions until we
24693 reach the first DW_MACINFO_start_file entry. We then initialize
24694 CURRENT_FILE accordingly so that any macro definition found before the
24695 first DW_MACINFO_start_file can still be associated to the base file. */
24696
24697 mac_ptr = section->buffer + offset;
24698 mac_end = section->buffer + section->size;
24699
24700 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24701 &offset_size, section_is_gnu);
24702 if (mac_ptr == NULL)
24703 {
24704 /* We already issued a complaint. */
24705 return;
24706 }
24707
24708 do
24709 {
24710 /* Do we at least have room for a macinfo type byte? */
24711 if (mac_ptr >= mac_end)
24712 {
24713 /* Complaint is printed during the second pass as GDB will probably
24714 stop the first pass earlier upon finding
24715 DW_MACINFO_start_file. */
24716 break;
24717 }
24718
24719 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24720 mac_ptr++;
24721
24722 /* Note that we rely on the fact that the corresponding GNU and
24723 DWARF constants are the same. */
24724 DIAGNOSTIC_PUSH
24725 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24726 switch (macinfo_type)
24727 {
24728 /* A zero macinfo type indicates the end of the macro
24729 information. */
24730 case 0:
24731 break;
24732
24733 case DW_MACRO_define:
24734 case DW_MACRO_undef:
24735 /* Only skip the data by MAC_PTR. */
24736 {
24737 unsigned int bytes_read;
24738
24739 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24740 mac_ptr += bytes_read;
24741 read_direct_string (abfd, mac_ptr, &bytes_read);
24742 mac_ptr += bytes_read;
24743 }
24744 break;
24745
24746 case DW_MACRO_start_file:
24747 {
24748 unsigned int bytes_read;
24749 int line, file;
24750
24751 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24752 mac_ptr += bytes_read;
24753 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24754 mac_ptr += bytes_read;
24755
24756 current_file = macro_start_file (cu, file, line, current_file, lh);
24757 }
24758 break;
24759
24760 case DW_MACRO_end_file:
24761 /* No data to skip by MAC_PTR. */
24762 break;
24763
24764 case DW_MACRO_define_strp:
24765 case DW_MACRO_undef_strp:
24766 case DW_MACRO_define_sup:
24767 case DW_MACRO_undef_sup:
24768 {
24769 unsigned int bytes_read;
24770
24771 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24772 mac_ptr += bytes_read;
24773 mac_ptr += offset_size;
24774 }
24775 break;
24776
24777 case DW_MACRO_import:
24778 case DW_MACRO_import_sup:
24779 /* Note that, according to the spec, a transparent include
24780 chain cannot call DW_MACRO_start_file. So, we can just
24781 skip this opcode. */
24782 mac_ptr += offset_size;
24783 break;
24784
24785 case DW_MACINFO_vendor_ext:
24786 /* Only skip the data by MAC_PTR. */
24787 if (!section_is_gnu)
24788 {
24789 unsigned int bytes_read;
24790
24791 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24792 mac_ptr += bytes_read;
24793 read_direct_string (abfd, mac_ptr, &bytes_read);
24794 mac_ptr += bytes_read;
24795 }
24796 /* FALLTHROUGH */
24797
24798 default:
24799 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24800 mac_ptr, mac_end, abfd, offset_size,
24801 section);
24802 if (mac_ptr == NULL)
24803 return;
24804 break;
24805 }
24806 DIAGNOSTIC_POP
24807 } while (macinfo_type != 0 && current_file == NULL);
24808
24809 /* Second pass: Process all entries.
24810
24811 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24812 command-line macro definitions/undefinitions. This flag is unset when we
24813 reach the first DW_MACINFO_start_file entry. */
24814
24815 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24816 htab_eq_pointer,
24817 NULL, xcalloc, xfree));
24818 mac_ptr = section->buffer + offset;
24819 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24820 *slot = (void *) mac_ptr;
24821 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24822 current_file, lh, section,
24823 section_is_gnu, 0, offset_size,
24824 include_hash.get ());
24825 }
24826
24827 /* Check if the attribute's form is a DW_FORM_block*
24828 if so return true else false. */
24829
24830 static int
24831 attr_form_is_block (const struct attribute *attr)
24832 {
24833 return (attr == NULL ? 0 :
24834 attr->form == DW_FORM_block1
24835 || attr->form == DW_FORM_block2
24836 || attr->form == DW_FORM_block4
24837 || attr->form == DW_FORM_block
24838 || attr->form == DW_FORM_exprloc);
24839 }
24840
24841 /* Return non-zero if ATTR's value is a section offset --- classes
24842 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24843 You may use DW_UNSND (attr) to retrieve such offsets.
24844
24845 Section 7.5.4, "Attribute Encodings", explains that no attribute
24846 may have a value that belongs to more than one of these classes; it
24847 would be ambiguous if we did, because we use the same forms for all
24848 of them. */
24849
24850 static int
24851 attr_form_is_section_offset (const struct attribute *attr)
24852 {
24853 return (attr->form == DW_FORM_data4
24854 || attr->form == DW_FORM_data8
24855 || attr->form == DW_FORM_sec_offset);
24856 }
24857
24858 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24859 zero otherwise. When this function returns true, you can apply
24860 dwarf2_get_attr_constant_value to it.
24861
24862 However, note that for some attributes you must check
24863 attr_form_is_section_offset before using this test. DW_FORM_data4
24864 and DW_FORM_data8 are members of both the constant class, and of
24865 the classes that contain offsets into other debug sections
24866 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24867 that, if an attribute's can be either a constant or one of the
24868 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24869 taken as section offsets, not constants.
24870
24871 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24872 cannot handle that. */
24873
24874 static int
24875 attr_form_is_constant (const struct attribute *attr)
24876 {
24877 switch (attr->form)
24878 {
24879 case DW_FORM_sdata:
24880 case DW_FORM_udata:
24881 case DW_FORM_data1:
24882 case DW_FORM_data2:
24883 case DW_FORM_data4:
24884 case DW_FORM_data8:
24885 case DW_FORM_implicit_const:
24886 return 1;
24887 default:
24888 return 0;
24889 }
24890 }
24891
24892
24893 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24894 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24895
24896 static int
24897 attr_form_is_ref (const struct attribute *attr)
24898 {
24899 switch (attr->form)
24900 {
24901 case DW_FORM_ref_addr:
24902 case DW_FORM_ref1:
24903 case DW_FORM_ref2:
24904 case DW_FORM_ref4:
24905 case DW_FORM_ref8:
24906 case DW_FORM_ref_udata:
24907 case DW_FORM_GNU_ref_alt:
24908 return 1;
24909 default:
24910 return 0;
24911 }
24912 }
24913
24914 /* Return the .debug_loc section to use for CU.
24915 For DWO files use .debug_loc.dwo. */
24916
24917 static struct dwarf2_section_info *
24918 cu_debug_loc_section (struct dwarf2_cu *cu)
24919 {
24920 struct dwarf2_per_objfile *dwarf2_per_objfile
24921 = cu->per_cu->dwarf2_per_objfile;
24922
24923 if (cu->dwo_unit)
24924 {
24925 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24926
24927 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24928 }
24929 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24930 : &dwarf2_per_objfile->loc);
24931 }
24932
24933 /* A helper function that fills in a dwarf2_loclist_baton. */
24934
24935 static void
24936 fill_in_loclist_baton (struct dwarf2_cu *cu,
24937 struct dwarf2_loclist_baton *baton,
24938 const struct attribute *attr)
24939 {
24940 struct dwarf2_per_objfile *dwarf2_per_objfile
24941 = cu->per_cu->dwarf2_per_objfile;
24942 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24943
24944 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24945
24946 baton->per_cu = cu->per_cu;
24947 gdb_assert (baton->per_cu);
24948 /* We don't know how long the location list is, but make sure we
24949 don't run off the edge of the section. */
24950 baton->size = section->size - DW_UNSND (attr);
24951 baton->data = section->buffer + DW_UNSND (attr);
24952 baton->base_address = cu->base_address;
24953 baton->from_dwo = cu->dwo_unit != NULL;
24954 }
24955
24956 static void
24957 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24958 struct dwarf2_cu *cu, int is_block)
24959 {
24960 struct dwarf2_per_objfile *dwarf2_per_objfile
24961 = cu->per_cu->dwarf2_per_objfile;
24962 struct objfile *objfile = dwarf2_per_objfile->objfile;
24963 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24964
24965 if (attr_form_is_section_offset (attr)
24966 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24967 the section. If so, fall through to the complaint in the
24968 other branch. */
24969 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24970 {
24971 struct dwarf2_loclist_baton *baton;
24972
24973 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24974
24975 fill_in_loclist_baton (cu, baton, attr);
24976
24977 if (cu->base_known == 0)
24978 complaint (_("Location list used without "
24979 "specifying the CU base address."));
24980
24981 SYMBOL_ACLASS_INDEX (sym) = (is_block
24982 ? dwarf2_loclist_block_index
24983 : dwarf2_loclist_index);
24984 SYMBOL_LOCATION_BATON (sym) = baton;
24985 }
24986 else
24987 {
24988 struct dwarf2_locexpr_baton *baton;
24989
24990 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24991 baton->per_cu = cu->per_cu;
24992 gdb_assert (baton->per_cu);
24993
24994 if (attr_form_is_block (attr))
24995 {
24996 /* Note that we're just copying the block's data pointer
24997 here, not the actual data. We're still pointing into the
24998 info_buffer for SYM's objfile; right now we never release
24999 that buffer, but when we do clean up properly this may
25000 need to change. */
25001 baton->size = DW_BLOCK (attr)->size;
25002 baton->data = DW_BLOCK (attr)->data;
25003 }
25004 else
25005 {
25006 dwarf2_invalid_attrib_class_complaint ("location description",
25007 SYMBOL_NATURAL_NAME (sym));
25008 baton->size = 0;
25009 }
25010
25011 SYMBOL_ACLASS_INDEX (sym) = (is_block
25012 ? dwarf2_locexpr_block_index
25013 : dwarf2_locexpr_index);
25014 SYMBOL_LOCATION_BATON (sym) = baton;
25015 }
25016 }
25017
25018 /* Return the OBJFILE associated with the compilation unit CU. If CU
25019 came from a separate debuginfo file, then the master objfile is
25020 returned. */
25021
25022 struct objfile *
25023 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25024 {
25025 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25026
25027 /* Return the master objfile, so that we can report and look up the
25028 correct file containing this variable. */
25029 if (objfile->separate_debug_objfile_backlink)
25030 objfile = objfile->separate_debug_objfile_backlink;
25031
25032 return objfile;
25033 }
25034
25035 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25036 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25037 CU_HEADERP first. */
25038
25039 static const struct comp_unit_head *
25040 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25041 struct dwarf2_per_cu_data *per_cu)
25042 {
25043 const gdb_byte *info_ptr;
25044
25045 if (per_cu->cu)
25046 return &per_cu->cu->header;
25047
25048 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25049
25050 memset (cu_headerp, 0, sizeof (*cu_headerp));
25051 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25052 rcuh_kind::COMPILE);
25053
25054 return cu_headerp;
25055 }
25056
25057 /* Return the address size given in the compilation unit header for CU. */
25058
25059 int
25060 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25061 {
25062 struct comp_unit_head cu_header_local;
25063 const struct comp_unit_head *cu_headerp;
25064
25065 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25066
25067 return cu_headerp->addr_size;
25068 }
25069
25070 /* Return the offset size given in the compilation unit header for CU. */
25071
25072 int
25073 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25074 {
25075 struct comp_unit_head cu_header_local;
25076 const struct comp_unit_head *cu_headerp;
25077
25078 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25079
25080 return cu_headerp->offset_size;
25081 }
25082
25083 /* See its dwarf2loc.h declaration. */
25084
25085 int
25086 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25087 {
25088 struct comp_unit_head cu_header_local;
25089 const struct comp_unit_head *cu_headerp;
25090
25091 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25092
25093 if (cu_headerp->version == 2)
25094 return cu_headerp->addr_size;
25095 else
25096 return cu_headerp->offset_size;
25097 }
25098
25099 /* Return the text offset of the CU. The returned offset comes from
25100 this CU's objfile. If this objfile came from a separate debuginfo
25101 file, then the offset may be different from the corresponding
25102 offset in the parent objfile. */
25103
25104 CORE_ADDR
25105 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25106 {
25107 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25108
25109 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25110 }
25111
25112 /* Return DWARF version number of PER_CU. */
25113
25114 short
25115 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25116 {
25117 return per_cu->dwarf_version;
25118 }
25119
25120 /* Locate the .debug_info compilation unit from CU's objfile which contains
25121 the DIE at OFFSET. Raises an error on failure. */
25122
25123 static struct dwarf2_per_cu_data *
25124 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25125 unsigned int offset_in_dwz,
25126 struct dwarf2_per_objfile *dwarf2_per_objfile)
25127 {
25128 struct dwarf2_per_cu_data *this_cu;
25129 int low, high;
25130
25131 low = 0;
25132 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25133 while (high > low)
25134 {
25135 struct dwarf2_per_cu_data *mid_cu;
25136 int mid = low + (high - low) / 2;
25137
25138 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25139 if (mid_cu->is_dwz > offset_in_dwz
25140 || (mid_cu->is_dwz == offset_in_dwz
25141 && mid_cu->sect_off + mid_cu->length >= sect_off))
25142 high = mid;
25143 else
25144 low = mid + 1;
25145 }
25146 gdb_assert (low == high);
25147 this_cu = dwarf2_per_objfile->all_comp_units[low];
25148 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25149 {
25150 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25151 error (_("Dwarf Error: could not find partial DIE containing "
25152 "offset %s [in module %s]"),
25153 sect_offset_str (sect_off),
25154 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25155
25156 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25157 <= sect_off);
25158 return dwarf2_per_objfile->all_comp_units[low-1];
25159 }
25160 else
25161 {
25162 this_cu = dwarf2_per_objfile->all_comp_units[low];
25163 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25164 && sect_off >= this_cu->sect_off + this_cu->length)
25165 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25166 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25167 return this_cu;
25168 }
25169 }
25170
25171 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25172
25173 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25174 : per_cu (per_cu_),
25175 mark (false),
25176 has_loclist (false),
25177 checked_producer (false),
25178 producer_is_gxx_lt_4_6 (false),
25179 producer_is_gcc_lt_4_3 (false),
25180 producer_is_icc (false),
25181 producer_is_icc_lt_14 (false),
25182 producer_is_codewarrior (false),
25183 processing_has_namespace_info (false)
25184 {
25185 per_cu->cu = this;
25186 }
25187
25188 /* Destroy a dwarf2_cu. */
25189
25190 dwarf2_cu::~dwarf2_cu ()
25191 {
25192 per_cu->cu = NULL;
25193 }
25194
25195 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25196
25197 static void
25198 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25199 enum language pretend_language)
25200 {
25201 struct attribute *attr;
25202
25203 /* Set the language we're debugging. */
25204 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25205 if (attr)
25206 set_cu_language (DW_UNSND (attr), cu);
25207 else
25208 {
25209 cu->language = pretend_language;
25210 cu->language_defn = language_def (cu->language);
25211 }
25212
25213 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25214 }
25215
25216 /* Increase the age counter on each cached compilation unit, and free
25217 any that are too old. */
25218
25219 static void
25220 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25221 {
25222 struct dwarf2_per_cu_data *per_cu, **last_chain;
25223
25224 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25225 per_cu = dwarf2_per_objfile->read_in_chain;
25226 while (per_cu != NULL)
25227 {
25228 per_cu->cu->last_used ++;
25229 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25230 dwarf2_mark (per_cu->cu);
25231 per_cu = per_cu->cu->read_in_chain;
25232 }
25233
25234 per_cu = dwarf2_per_objfile->read_in_chain;
25235 last_chain = &dwarf2_per_objfile->read_in_chain;
25236 while (per_cu != NULL)
25237 {
25238 struct dwarf2_per_cu_data *next_cu;
25239
25240 next_cu = per_cu->cu->read_in_chain;
25241
25242 if (!per_cu->cu->mark)
25243 {
25244 delete per_cu->cu;
25245 *last_chain = next_cu;
25246 }
25247 else
25248 last_chain = &per_cu->cu->read_in_chain;
25249
25250 per_cu = next_cu;
25251 }
25252 }
25253
25254 /* Remove a single compilation unit from the cache. */
25255
25256 static void
25257 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25258 {
25259 struct dwarf2_per_cu_data *per_cu, **last_chain;
25260 struct dwarf2_per_objfile *dwarf2_per_objfile
25261 = target_per_cu->dwarf2_per_objfile;
25262
25263 per_cu = dwarf2_per_objfile->read_in_chain;
25264 last_chain = &dwarf2_per_objfile->read_in_chain;
25265 while (per_cu != NULL)
25266 {
25267 struct dwarf2_per_cu_data *next_cu;
25268
25269 next_cu = per_cu->cu->read_in_chain;
25270
25271 if (per_cu == target_per_cu)
25272 {
25273 delete per_cu->cu;
25274 per_cu->cu = NULL;
25275 *last_chain = next_cu;
25276 break;
25277 }
25278 else
25279 last_chain = &per_cu->cu->read_in_chain;
25280
25281 per_cu = next_cu;
25282 }
25283 }
25284
25285 /* Cleanup function for the dwarf2_per_objfile data. */
25286
25287 static void
25288 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25289 {
25290 struct dwarf2_per_objfile *dwarf2_per_objfile
25291 = static_cast<struct dwarf2_per_objfile *> (datum);
25292
25293 delete dwarf2_per_objfile;
25294 }
25295
25296 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25297 We store these in a hash table separate from the DIEs, and preserve them
25298 when the DIEs are flushed out of cache.
25299
25300 The CU "per_cu" pointer is needed because offset alone is not enough to
25301 uniquely identify the type. A file may have multiple .debug_types sections,
25302 or the type may come from a DWO file. Furthermore, while it's more logical
25303 to use per_cu->section+offset, with Fission the section with the data is in
25304 the DWO file but we don't know that section at the point we need it.
25305 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25306 because we can enter the lookup routine, get_die_type_at_offset, from
25307 outside this file, and thus won't necessarily have PER_CU->cu.
25308 Fortunately, PER_CU is stable for the life of the objfile. */
25309
25310 struct dwarf2_per_cu_offset_and_type
25311 {
25312 const struct dwarf2_per_cu_data *per_cu;
25313 sect_offset sect_off;
25314 struct type *type;
25315 };
25316
25317 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25318
25319 static hashval_t
25320 per_cu_offset_and_type_hash (const void *item)
25321 {
25322 const struct dwarf2_per_cu_offset_and_type *ofs
25323 = (const struct dwarf2_per_cu_offset_and_type *) item;
25324
25325 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25326 }
25327
25328 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25329
25330 static int
25331 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25332 {
25333 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25334 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25335 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25336 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25337
25338 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25339 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25340 }
25341
25342 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25343 table if necessary. For convenience, return TYPE.
25344
25345 The DIEs reading must have careful ordering to:
25346 * Not cause infite loops trying to read in DIEs as a prerequisite for
25347 reading current DIE.
25348 * Not trying to dereference contents of still incompletely read in types
25349 while reading in other DIEs.
25350 * Enable referencing still incompletely read in types just by a pointer to
25351 the type without accessing its fields.
25352
25353 Therefore caller should follow these rules:
25354 * Try to fetch any prerequisite types we may need to build this DIE type
25355 before building the type and calling set_die_type.
25356 * After building type call set_die_type for current DIE as soon as
25357 possible before fetching more types to complete the current type.
25358 * Make the type as complete as possible before fetching more types. */
25359
25360 static struct type *
25361 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25362 {
25363 struct dwarf2_per_objfile *dwarf2_per_objfile
25364 = cu->per_cu->dwarf2_per_objfile;
25365 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25366 struct objfile *objfile = dwarf2_per_objfile->objfile;
25367 struct attribute *attr;
25368 struct dynamic_prop prop;
25369
25370 /* For Ada types, make sure that the gnat-specific data is always
25371 initialized (if not already set). There are a few types where
25372 we should not be doing so, because the type-specific area is
25373 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25374 where the type-specific area is used to store the floatformat).
25375 But this is not a problem, because the gnat-specific information
25376 is actually not needed for these types. */
25377 if (need_gnat_info (cu)
25378 && TYPE_CODE (type) != TYPE_CODE_FUNC
25379 && TYPE_CODE (type) != TYPE_CODE_FLT
25380 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25381 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25382 && TYPE_CODE (type) != TYPE_CODE_METHOD
25383 && !HAVE_GNAT_AUX_INFO (type))
25384 INIT_GNAT_SPECIFIC (type);
25385
25386 /* Read DW_AT_allocated and set in type. */
25387 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25388 if (attr_form_is_block (attr))
25389 {
25390 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25391 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25392 }
25393 else if (attr != NULL)
25394 {
25395 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25396 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25397 sect_offset_str (die->sect_off));
25398 }
25399
25400 /* Read DW_AT_associated and set in type. */
25401 attr = dwarf2_attr (die, DW_AT_associated, cu);
25402 if (attr_form_is_block (attr))
25403 {
25404 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25405 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25406 }
25407 else if (attr != NULL)
25408 {
25409 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25410 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25411 sect_offset_str (die->sect_off));
25412 }
25413
25414 /* Read DW_AT_data_location and set in type. */
25415 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25416 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25417 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25418
25419 if (dwarf2_per_objfile->die_type_hash == NULL)
25420 {
25421 dwarf2_per_objfile->die_type_hash =
25422 htab_create_alloc_ex (127,
25423 per_cu_offset_and_type_hash,
25424 per_cu_offset_and_type_eq,
25425 NULL,
25426 &objfile->objfile_obstack,
25427 hashtab_obstack_allocate,
25428 dummy_obstack_deallocate);
25429 }
25430
25431 ofs.per_cu = cu->per_cu;
25432 ofs.sect_off = die->sect_off;
25433 ofs.type = type;
25434 slot = (struct dwarf2_per_cu_offset_and_type **)
25435 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25436 if (*slot)
25437 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25438 sect_offset_str (die->sect_off));
25439 *slot = XOBNEW (&objfile->objfile_obstack,
25440 struct dwarf2_per_cu_offset_and_type);
25441 **slot = ofs;
25442 return type;
25443 }
25444
25445 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25446 or return NULL if the die does not have a saved type. */
25447
25448 static struct type *
25449 get_die_type_at_offset (sect_offset sect_off,
25450 struct dwarf2_per_cu_data *per_cu)
25451 {
25452 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25453 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25454
25455 if (dwarf2_per_objfile->die_type_hash == NULL)
25456 return NULL;
25457
25458 ofs.per_cu = per_cu;
25459 ofs.sect_off = sect_off;
25460 slot = ((struct dwarf2_per_cu_offset_and_type *)
25461 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25462 if (slot)
25463 return slot->type;
25464 else
25465 return NULL;
25466 }
25467
25468 /* Look up the type for DIE in CU in die_type_hash,
25469 or return NULL if DIE does not have a saved type. */
25470
25471 static struct type *
25472 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25473 {
25474 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25475 }
25476
25477 /* Add a dependence relationship from CU to REF_PER_CU. */
25478
25479 static void
25480 dwarf2_add_dependence (struct dwarf2_cu *cu,
25481 struct dwarf2_per_cu_data *ref_per_cu)
25482 {
25483 void **slot;
25484
25485 if (cu->dependencies == NULL)
25486 cu->dependencies
25487 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25488 NULL, &cu->comp_unit_obstack,
25489 hashtab_obstack_allocate,
25490 dummy_obstack_deallocate);
25491
25492 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25493 if (*slot == NULL)
25494 *slot = ref_per_cu;
25495 }
25496
25497 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25498 Set the mark field in every compilation unit in the
25499 cache that we must keep because we are keeping CU. */
25500
25501 static int
25502 dwarf2_mark_helper (void **slot, void *data)
25503 {
25504 struct dwarf2_per_cu_data *per_cu;
25505
25506 per_cu = (struct dwarf2_per_cu_data *) *slot;
25507
25508 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25509 reading of the chain. As such dependencies remain valid it is not much
25510 useful to track and undo them during QUIT cleanups. */
25511 if (per_cu->cu == NULL)
25512 return 1;
25513
25514 if (per_cu->cu->mark)
25515 return 1;
25516 per_cu->cu->mark = true;
25517
25518 if (per_cu->cu->dependencies != NULL)
25519 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25520
25521 return 1;
25522 }
25523
25524 /* Set the mark field in CU and in every other compilation unit in the
25525 cache that we must keep because we are keeping CU. */
25526
25527 static void
25528 dwarf2_mark (struct dwarf2_cu *cu)
25529 {
25530 if (cu->mark)
25531 return;
25532 cu->mark = true;
25533 if (cu->dependencies != NULL)
25534 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25535 }
25536
25537 static void
25538 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25539 {
25540 while (per_cu)
25541 {
25542 per_cu->cu->mark = false;
25543 per_cu = per_cu->cu->read_in_chain;
25544 }
25545 }
25546
25547 /* Trivial hash function for partial_die_info: the hash value of a DIE
25548 is its offset in .debug_info for this objfile. */
25549
25550 static hashval_t
25551 partial_die_hash (const void *item)
25552 {
25553 const struct partial_die_info *part_die
25554 = (const struct partial_die_info *) item;
25555
25556 return to_underlying (part_die->sect_off);
25557 }
25558
25559 /* Trivial comparison function for partial_die_info structures: two DIEs
25560 are equal if they have the same offset. */
25561
25562 static int
25563 partial_die_eq (const void *item_lhs, const void *item_rhs)
25564 {
25565 const struct partial_die_info *part_die_lhs
25566 = (const struct partial_die_info *) item_lhs;
25567 const struct partial_die_info *part_die_rhs
25568 = (const struct partial_die_info *) item_rhs;
25569
25570 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25571 }
25572
25573 struct cmd_list_element *set_dwarf_cmdlist;
25574 struct cmd_list_element *show_dwarf_cmdlist;
25575
25576 static void
25577 set_dwarf_cmd (const char *args, int from_tty)
25578 {
25579 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25580 gdb_stdout);
25581 }
25582
25583 static void
25584 show_dwarf_cmd (const char *args, int from_tty)
25585 {
25586 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25587 }
25588
25589 int dwarf_always_disassemble;
25590
25591 static void
25592 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25593 struct cmd_list_element *c, const char *value)
25594 {
25595 fprintf_filtered (file,
25596 _("Whether to always disassemble "
25597 "DWARF expressions is %s.\n"),
25598 value);
25599 }
25600
25601 static void
25602 show_check_physname (struct ui_file *file, int from_tty,
25603 struct cmd_list_element *c, const char *value)
25604 {
25605 fprintf_filtered (file,
25606 _("Whether to check \"physname\" is %s.\n"),
25607 value);
25608 }
25609
25610 void
25611 _initialize_dwarf2_read (void)
25612 {
25613 dwarf2_objfile_data_key
25614 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25615
25616 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25617 Set DWARF specific variables.\n\
25618 Configure DWARF variables such as the cache size"),
25619 &set_dwarf_cmdlist, "maintenance set dwarf ",
25620 0/*allow-unknown*/, &maintenance_set_cmdlist);
25621
25622 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25623 Show DWARF specific variables\n\
25624 Show DWARF variables such as the cache size"),
25625 &show_dwarf_cmdlist, "maintenance show dwarf ",
25626 0/*allow-unknown*/, &maintenance_show_cmdlist);
25627
25628 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25629 &dwarf_max_cache_age, _("\
25630 Set the upper bound on the age of cached DWARF compilation units."), _("\
25631 Show the upper bound on the age of cached DWARF compilation units."), _("\
25632 A higher limit means that cached compilation units will be stored\n\
25633 in memory longer, and more total memory will be used. Zero disables\n\
25634 caching, which can slow down startup."),
25635 NULL,
25636 show_dwarf_max_cache_age,
25637 &set_dwarf_cmdlist,
25638 &show_dwarf_cmdlist);
25639
25640 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25641 &dwarf_always_disassemble, _("\
25642 Set whether `info address' always disassembles DWARF expressions."), _("\
25643 Show whether `info address' always disassembles DWARF expressions."), _("\
25644 When enabled, DWARF expressions are always printed in an assembly-like\n\
25645 syntax. When disabled, expressions will be printed in a more\n\
25646 conversational style, when possible."),
25647 NULL,
25648 show_dwarf_always_disassemble,
25649 &set_dwarf_cmdlist,
25650 &show_dwarf_cmdlist);
25651
25652 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25653 Set debugging of the DWARF reader."), _("\
25654 Show debugging of the DWARF reader."), _("\
25655 When enabled (non-zero), debugging messages are printed during DWARF\n\
25656 reading and symtab expansion. A value of 1 (one) provides basic\n\
25657 information. A value greater than 1 provides more verbose information."),
25658 NULL,
25659 NULL,
25660 &setdebuglist, &showdebuglist);
25661
25662 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25663 Set debugging of the DWARF DIE reader."), _("\
25664 Show debugging of the DWARF DIE reader."), _("\
25665 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25666 The value is the maximum depth to print."),
25667 NULL,
25668 NULL,
25669 &setdebuglist, &showdebuglist);
25670
25671 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25672 Set debugging of the dwarf line reader."), _("\
25673 Show debugging of the dwarf line reader."), _("\
25674 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25675 A value of 1 (one) provides basic information.\n\
25676 A value greater than 1 provides more verbose information."),
25677 NULL,
25678 NULL,
25679 &setdebuglist, &showdebuglist);
25680
25681 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25682 Set cross-checking of \"physname\" code against demangler."), _("\
25683 Show cross-checking of \"physname\" code against demangler."), _("\
25684 When enabled, GDB's internal \"physname\" code is checked against\n\
25685 the demangler."),
25686 NULL, show_check_physname,
25687 &setdebuglist, &showdebuglist);
25688
25689 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25690 no_class, &use_deprecated_index_sections, _("\
25691 Set whether to use deprecated gdb_index sections."), _("\
25692 Show whether to use deprecated gdb_index sections."), _("\
25693 When enabled, deprecated .gdb_index sections are used anyway.\n\
25694 Normally they are ignored either because of a missing feature or\n\
25695 performance issue.\n\
25696 Warning: This option must be enabled before gdb reads the file."),
25697 NULL,
25698 NULL,
25699 &setlist, &showlist);
25700
25701 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25702 &dwarf2_locexpr_funcs);
25703 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25704 &dwarf2_loclist_funcs);
25705
25706 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25707 &dwarf2_block_frame_base_locexpr_funcs);
25708 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25709 &dwarf2_block_frame_base_loclist_funcs);
25710
25711 #if GDB_SELF_TEST
25712 selftests::register_test ("dw2_expand_symtabs_matching",
25713 selftests::dw2_expand_symtabs_matching::run_test);
25714 #endif
25715 }
This page took 1.045667 seconds and 4 git commands to generate.