* dwarf2read.c (read_subroutine_type): Add the subroutine type to the
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_assert.h"
55 #include <sys/types.h>
56 #ifdef HAVE_ZLIB_H
57 #include <zlib.h>
58 #endif
59 #ifdef HAVE_MMAP
60 #include <sys/mman.h>
61 #ifndef MAP_FAILED
62 #define MAP_FAILED ((void *) -1)
63 #endif
64 #endif
65
66 #if 0
67 /* .debug_info header for a compilation unit
68 Because of alignment constraints, this structure has padding and cannot
69 be mapped directly onto the beginning of the .debug_info section. */
70 typedef struct comp_unit_header
71 {
72 unsigned int length; /* length of the .debug_info
73 contribution */
74 unsigned short version; /* version number -- 2 for DWARF
75 version 2 */
76 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
77 unsigned char addr_size; /* byte size of an address -- 4 */
78 }
79 _COMP_UNIT_HEADER;
80 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
81 #endif
82
83 /* .debug_pubnames header
84 Because of alignment constraints, this structure has padding and cannot
85 be mapped directly onto the beginning of the .debug_info section. */
86 typedef struct pubnames_header
87 {
88 unsigned int length; /* length of the .debug_pubnames
89 contribution */
90 unsigned char version; /* version number -- 2 for DWARF
91 version 2 */
92 unsigned int info_offset; /* offset into .debug_info section */
93 unsigned int info_size; /* byte size of .debug_info section
94 portion */
95 }
96 _PUBNAMES_HEADER;
97 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
98
99 /* .debug_pubnames header
100 Because of alignment constraints, this structure has padding and cannot
101 be mapped directly onto the beginning of the .debug_info section. */
102 typedef struct aranges_header
103 {
104 unsigned int length; /* byte len of the .debug_aranges
105 contribution */
106 unsigned short version; /* version number -- 2 for DWARF
107 version 2 */
108 unsigned int info_offset; /* offset into .debug_info section */
109 unsigned char addr_size; /* byte size of an address */
110 unsigned char seg_size; /* byte size of segment descriptor */
111 }
112 _ARANGES_HEADER;
113 #define _ACTUAL_ARANGES_HEADER_SIZE 12
114
115 /* .debug_line statement program prologue
116 Because of alignment constraints, this structure has padding and cannot
117 be mapped directly onto the beginning of the .debug_info section. */
118 typedef struct statement_prologue
119 {
120 unsigned int total_length; /* byte length of the statement
121 information */
122 unsigned short version; /* version number -- 2 for DWARF
123 version 2 */
124 unsigned int prologue_length; /* # bytes between prologue &
125 stmt program */
126 unsigned char minimum_instruction_length; /* byte size of
127 smallest instr */
128 unsigned char default_is_stmt; /* initial value of is_stmt
129 register */
130 char line_base;
131 unsigned char line_range;
132 unsigned char opcode_base; /* number assigned to first special
133 opcode */
134 unsigned char *standard_opcode_lengths;
135 }
136 _STATEMENT_PROLOGUE;
137
138 /* When non-zero, dump DIEs after they are read in. */
139 static int dwarf2_die_debug = 0;
140
141 static int pagesize;
142
143 /* When set, the file that we're processing is known to have debugging
144 info for C++ namespaces. GCC 3.3.x did not produce this information,
145 but later versions do. */
146
147 static int processing_has_namespace_info;
148
149 static const struct objfile_data *dwarf2_objfile_data_key;
150
151 struct dwarf2_section_info
152 {
153 asection *asection;
154 gdb_byte *buffer;
155 bfd_size_type size;
156 int was_mmapped;
157 };
158
159 struct dwarf2_per_objfile
160 {
161 struct dwarf2_section_info info;
162 struct dwarf2_section_info abbrev;
163 struct dwarf2_section_info line;
164 struct dwarf2_section_info pubnames;
165 struct dwarf2_section_info aranges;
166 struct dwarf2_section_info loc;
167 struct dwarf2_section_info macinfo;
168 struct dwarf2_section_info str;
169 struct dwarf2_section_info ranges;
170 struct dwarf2_section_info types;
171 struct dwarf2_section_info frame;
172 struct dwarf2_section_info eh_frame;
173
174 /* A list of all the compilation units. This is used to locate
175 the target compilation unit of a particular reference. */
176 struct dwarf2_per_cu_data **all_comp_units;
177
178 /* The number of compilation units in ALL_COMP_UNITS. */
179 int n_comp_units;
180
181 /* A chain of compilation units that are currently read in, so that
182 they can be freed later. */
183 struct dwarf2_per_cu_data *read_in_chain;
184
185 /* A table mapping .debug_types signatures to its signatured_type entry.
186 This is NULL if the .debug_types section hasn't been read in yet. */
187 htab_t signatured_types;
188
189 /* A flag indicating wether this objfile has a section loaded at a
190 VMA of 0. */
191 int has_section_at_zero;
192 };
193
194 static struct dwarf2_per_objfile *dwarf2_per_objfile;
195
196 /* names of the debugging sections */
197
198 /* Note that if the debugging section has been compressed, it might
199 have a name like .zdebug_info. */
200
201 #define INFO_SECTION "debug_info"
202 #define ABBREV_SECTION "debug_abbrev"
203 #define LINE_SECTION "debug_line"
204 #define PUBNAMES_SECTION "debug_pubnames"
205 #define ARANGES_SECTION "debug_aranges"
206 #define LOC_SECTION "debug_loc"
207 #define MACINFO_SECTION "debug_macinfo"
208 #define STR_SECTION "debug_str"
209 #define RANGES_SECTION "debug_ranges"
210 #define TYPES_SECTION "debug_types"
211 #define FRAME_SECTION "debug_frame"
212 #define EH_FRAME_SECTION "eh_frame"
213
214 /* local data types */
215
216 /* We hold several abbreviation tables in memory at the same time. */
217 #ifndef ABBREV_HASH_SIZE
218 #define ABBREV_HASH_SIZE 121
219 #endif
220
221 /* The data in a compilation unit header, after target2host
222 translation, looks like this. */
223 struct comp_unit_head
224 {
225 unsigned int length;
226 short version;
227 unsigned char addr_size;
228 unsigned char signed_addr_p;
229 unsigned int abbrev_offset;
230
231 /* Size of file offsets; either 4 or 8. */
232 unsigned int offset_size;
233
234 /* Size of the length field; either 4 or 12. */
235 unsigned int initial_length_size;
236
237 /* Offset to the first byte of this compilation unit header in the
238 .debug_info section, for resolving relative reference dies. */
239 unsigned int offset;
240
241 /* Offset to first die in this cu from the start of the cu.
242 This will be the first byte following the compilation unit header. */
243 unsigned int first_die_offset;
244 };
245
246 /* Internal state when decoding a particular compilation unit. */
247 struct dwarf2_cu
248 {
249 /* The objfile containing this compilation unit. */
250 struct objfile *objfile;
251
252 /* The header of the compilation unit. */
253 struct comp_unit_head header;
254
255 /* Base address of this compilation unit. */
256 CORE_ADDR base_address;
257
258 /* Non-zero if base_address has been set. */
259 int base_known;
260
261 struct function_range *first_fn, *last_fn, *cached_fn;
262
263 /* The language we are debugging. */
264 enum language language;
265 const struct language_defn *language_defn;
266
267 const char *producer;
268
269 /* The generic symbol table building routines have separate lists for
270 file scope symbols and all all other scopes (local scopes). So
271 we need to select the right one to pass to add_symbol_to_list().
272 We do it by keeping a pointer to the correct list in list_in_scope.
273
274 FIXME: The original dwarf code just treated the file scope as the
275 first local scope, and all other local scopes as nested local
276 scopes, and worked fine. Check to see if we really need to
277 distinguish these in buildsym.c. */
278 struct pending **list_in_scope;
279
280 /* DWARF abbreviation table associated with this compilation unit. */
281 struct abbrev_info **dwarf2_abbrevs;
282
283 /* Storage for the abbrev table. */
284 struct obstack abbrev_obstack;
285
286 /* Hash table holding all the loaded partial DIEs. */
287 htab_t partial_dies;
288
289 /* Storage for things with the same lifetime as this read-in compilation
290 unit, including partial DIEs. */
291 struct obstack comp_unit_obstack;
292
293 /* When multiple dwarf2_cu structures are living in memory, this field
294 chains them all together, so that they can be released efficiently.
295 We will probably also want a generation counter so that most-recently-used
296 compilation units are cached... */
297 struct dwarf2_per_cu_data *read_in_chain;
298
299 /* Backchain to our per_cu entry if the tree has been built. */
300 struct dwarf2_per_cu_data *per_cu;
301
302 /* Pointer to the die -> type map. Although it is stored
303 permanently in per_cu, we copy it here to avoid double
304 indirection. */
305 htab_t type_hash;
306
307 /* How many compilation units ago was this CU last referenced? */
308 int last_used;
309
310 /* A hash table of die offsets for following references. */
311 htab_t die_hash;
312
313 /* Full DIEs if read in. */
314 struct die_info *dies;
315
316 /* A set of pointers to dwarf2_per_cu_data objects for compilation
317 units referenced by this one. Only set during full symbol processing;
318 partial symbol tables do not have dependencies. */
319 htab_t dependencies;
320
321 /* Header data from the line table, during full symbol processing. */
322 struct line_header *line_header;
323
324 /* Mark used when releasing cached dies. */
325 unsigned int mark : 1;
326
327 /* This flag will be set if this compilation unit might include
328 inter-compilation-unit references. */
329 unsigned int has_form_ref_addr : 1;
330
331 /* This flag will be set if this compilation unit includes any
332 DW_TAG_namespace DIEs. If we know that there are explicit
333 DIEs for namespaces, we don't need to try to infer them
334 from mangled names. */
335 unsigned int has_namespace_info : 1;
336 };
337
338 /* Persistent data held for a compilation unit, even when not
339 processing it. We put a pointer to this structure in the
340 read_symtab_private field of the psymtab. If we encounter
341 inter-compilation-unit references, we also maintain a sorted
342 list of all compilation units. */
343
344 struct dwarf2_per_cu_data
345 {
346 /* The start offset and length of this compilation unit. 2**29-1
347 bytes should suffice to store the length of any compilation unit
348 - if it doesn't, GDB will fall over anyway.
349 NOTE: Unlike comp_unit_head.length, this length includes
350 initial_length_size. */
351 unsigned int offset;
352 unsigned int length : 29;
353
354 /* Flag indicating this compilation unit will be read in before
355 any of the current compilation units are processed. */
356 unsigned int queued : 1;
357
358 /* This flag will be set if we need to load absolutely all DIEs
359 for this compilation unit, instead of just the ones we think
360 are interesting. It gets set if we look for a DIE in the
361 hash table and don't find it. */
362 unsigned int load_all_dies : 1;
363
364 /* Non-zero if this CU is from .debug_types.
365 Otherwise it's from .debug_info. */
366 unsigned int from_debug_types : 1;
367
368 /* Set iff currently read in. */
369 struct dwarf2_cu *cu;
370
371 /* If full symbols for this CU have been read in, then this field
372 holds a map of DIE offsets to types. It isn't always possible
373 to reconstruct this information later, so we have to preserve
374 it. */
375 htab_t type_hash;
376
377 /* The partial symbol table associated with this compilation unit,
378 or NULL for partial units (which do not have an associated
379 symtab). */
380 struct partial_symtab *psymtab;
381 };
382
383 /* Entry in the signatured_types hash table. */
384
385 struct signatured_type
386 {
387 ULONGEST signature;
388
389 /* Offset in .debug_types of the TU (type_unit) for this type. */
390 unsigned int offset;
391
392 /* Offset in .debug_types of the type defined by this TU. */
393 unsigned int type_offset;
394
395 /* The CU(/TU) of this type. */
396 struct dwarf2_per_cu_data per_cu;
397 };
398
399 /* Struct used to pass misc. parameters to read_die_and_children, et. al.
400 which are used for both .debug_info and .debug_types dies.
401 All parameters here are unchanging for the life of the call.
402 This struct exists to abstract away the constant parameters of
403 die reading. */
404
405 struct die_reader_specs
406 {
407 /* The bfd of this objfile. */
408 bfd* abfd;
409
410 /* The CU of the DIE we are parsing. */
411 struct dwarf2_cu *cu;
412
413 /* Pointer to start of section buffer.
414 This is either the start of .debug_info or .debug_types. */
415 const gdb_byte *buffer;
416 };
417
418 /* The line number information for a compilation unit (found in the
419 .debug_line section) begins with a "statement program header",
420 which contains the following information. */
421 struct line_header
422 {
423 unsigned int total_length;
424 unsigned short version;
425 unsigned int header_length;
426 unsigned char minimum_instruction_length;
427 unsigned char default_is_stmt;
428 int line_base;
429 unsigned char line_range;
430 unsigned char opcode_base;
431
432 /* standard_opcode_lengths[i] is the number of operands for the
433 standard opcode whose value is i. This means that
434 standard_opcode_lengths[0] is unused, and the last meaningful
435 element is standard_opcode_lengths[opcode_base - 1]. */
436 unsigned char *standard_opcode_lengths;
437
438 /* The include_directories table. NOTE! These strings are not
439 allocated with xmalloc; instead, they are pointers into
440 debug_line_buffer. If you try to free them, `free' will get
441 indigestion. */
442 unsigned int num_include_dirs, include_dirs_size;
443 char **include_dirs;
444
445 /* The file_names table. NOTE! These strings are not allocated
446 with xmalloc; instead, they are pointers into debug_line_buffer.
447 Don't try to free them directly. */
448 unsigned int num_file_names, file_names_size;
449 struct file_entry
450 {
451 char *name;
452 unsigned int dir_index;
453 unsigned int mod_time;
454 unsigned int length;
455 int included_p; /* Non-zero if referenced by the Line Number Program. */
456 struct symtab *symtab; /* The associated symbol table, if any. */
457 } *file_names;
458
459 /* The start and end of the statement program following this
460 header. These point into dwarf2_per_objfile->line_buffer. */
461 gdb_byte *statement_program_start, *statement_program_end;
462 };
463
464 /* When we construct a partial symbol table entry we only
465 need this much information. */
466 struct partial_die_info
467 {
468 /* Offset of this DIE. */
469 unsigned int offset;
470
471 /* DWARF-2 tag for this DIE. */
472 ENUM_BITFIELD(dwarf_tag) tag : 16;
473
474 /* Assorted flags describing the data found in this DIE. */
475 unsigned int has_children : 1;
476 unsigned int is_external : 1;
477 unsigned int is_declaration : 1;
478 unsigned int has_type : 1;
479 unsigned int has_specification : 1;
480 unsigned int has_pc_info : 1;
481
482 /* Flag set if the SCOPE field of this structure has been
483 computed. */
484 unsigned int scope_set : 1;
485
486 /* Flag set if the DIE has a byte_size attribute. */
487 unsigned int has_byte_size : 1;
488
489 /* The name of this DIE. Normally the value of DW_AT_name, but
490 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
491 other fashion. */
492 char *name;
493
494 /* The scope to prepend to our children. This is generally
495 allocated on the comp_unit_obstack, so will disappear
496 when this compilation unit leaves the cache. */
497 char *scope;
498
499 /* The location description associated with this DIE, if any. */
500 struct dwarf_block *locdesc;
501
502 /* If HAS_PC_INFO, the PC range associated with this DIE. */
503 CORE_ADDR lowpc;
504 CORE_ADDR highpc;
505
506 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
507 DW_AT_sibling, if any. */
508 gdb_byte *sibling;
509
510 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
511 DW_AT_specification (or DW_AT_abstract_origin or
512 DW_AT_extension). */
513 unsigned int spec_offset;
514
515 /* Pointers to this DIE's parent, first child, and next sibling,
516 if any. */
517 struct partial_die_info *die_parent, *die_child, *die_sibling;
518 };
519
520 /* This data structure holds the information of an abbrev. */
521 struct abbrev_info
522 {
523 unsigned int number; /* number identifying abbrev */
524 enum dwarf_tag tag; /* dwarf tag */
525 unsigned short has_children; /* boolean */
526 unsigned short num_attrs; /* number of attributes */
527 struct attr_abbrev *attrs; /* an array of attribute descriptions */
528 struct abbrev_info *next; /* next in chain */
529 };
530
531 struct attr_abbrev
532 {
533 ENUM_BITFIELD(dwarf_attribute) name : 16;
534 ENUM_BITFIELD(dwarf_form) form : 16;
535 };
536
537 /* Attributes have a name and a value */
538 struct attribute
539 {
540 ENUM_BITFIELD(dwarf_attribute) name : 16;
541 ENUM_BITFIELD(dwarf_form) form : 15;
542
543 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
544 field should be in u.str (existing only for DW_STRING) but it is kept
545 here for better struct attribute alignment. */
546 unsigned int string_is_canonical : 1;
547
548 union
549 {
550 char *str;
551 struct dwarf_block *blk;
552 ULONGEST unsnd;
553 LONGEST snd;
554 CORE_ADDR addr;
555 struct signatured_type *signatured_type;
556 }
557 u;
558 };
559
560 /* This data structure holds a complete die structure. */
561 struct die_info
562 {
563 /* DWARF-2 tag for this DIE. */
564 ENUM_BITFIELD(dwarf_tag) tag : 16;
565
566 /* Number of attributes */
567 unsigned short num_attrs;
568
569 /* Abbrev number */
570 unsigned int abbrev;
571
572 /* Offset in .debug_info or .debug_types section. */
573 unsigned int offset;
574
575 /* The dies in a compilation unit form an n-ary tree. PARENT
576 points to this die's parent; CHILD points to the first child of
577 this node; and all the children of a given node are chained
578 together via their SIBLING fields, terminated by a die whose
579 tag is zero. */
580 struct die_info *child; /* Its first child, if any. */
581 struct die_info *sibling; /* Its next sibling, if any. */
582 struct die_info *parent; /* Its parent, if any. */
583
584 /* An array of attributes, with NUM_ATTRS elements. There may be
585 zero, but it's not common and zero-sized arrays are not
586 sufficiently portable C. */
587 struct attribute attrs[1];
588 };
589
590 struct function_range
591 {
592 const char *name;
593 CORE_ADDR lowpc, highpc;
594 int seen_line;
595 struct function_range *next;
596 };
597
598 /* Get at parts of an attribute structure */
599
600 #define DW_STRING(attr) ((attr)->u.str)
601 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
602 #define DW_UNSND(attr) ((attr)->u.unsnd)
603 #define DW_BLOCK(attr) ((attr)->u.blk)
604 #define DW_SND(attr) ((attr)->u.snd)
605 #define DW_ADDR(attr) ((attr)->u.addr)
606 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
607
608 /* Blocks are a bunch of untyped bytes. */
609 struct dwarf_block
610 {
611 unsigned int size;
612 gdb_byte *data;
613 };
614
615 #ifndef ATTR_ALLOC_CHUNK
616 #define ATTR_ALLOC_CHUNK 4
617 #endif
618
619 /* Allocate fields for structs, unions and enums in this size. */
620 #ifndef DW_FIELD_ALLOC_CHUNK
621 #define DW_FIELD_ALLOC_CHUNK 4
622 #endif
623
624 /* A zeroed version of a partial die for initialization purposes. */
625 static struct partial_die_info zeroed_partial_die;
626
627 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
628 but this would require a corresponding change in unpack_field_as_long
629 and friends. */
630 static int bits_per_byte = 8;
631
632 /* The routines that read and process dies for a C struct or C++ class
633 pass lists of data member fields and lists of member function fields
634 in an instance of a field_info structure, as defined below. */
635 struct field_info
636 {
637 /* List of data member and baseclasses fields. */
638 struct nextfield
639 {
640 struct nextfield *next;
641 int accessibility;
642 int virtuality;
643 struct field field;
644 }
645 *fields, *baseclasses;
646
647 /* Number of fields (including baseclasses). */
648 int nfields;
649
650 /* Number of baseclasses. */
651 int nbaseclasses;
652
653 /* Set if the accesibility of one of the fields is not public. */
654 int non_public_fields;
655
656 /* Member function fields array, entries are allocated in the order they
657 are encountered in the object file. */
658 struct nextfnfield
659 {
660 struct nextfnfield *next;
661 struct fn_field fnfield;
662 }
663 *fnfields;
664
665 /* Member function fieldlist array, contains name of possibly overloaded
666 member function, number of overloaded member functions and a pointer
667 to the head of the member function field chain. */
668 struct fnfieldlist
669 {
670 char *name;
671 int length;
672 struct nextfnfield *head;
673 }
674 *fnfieldlists;
675
676 /* Number of entries in the fnfieldlists array. */
677 int nfnfields;
678 };
679
680 /* One item on the queue of compilation units to read in full symbols
681 for. */
682 struct dwarf2_queue_item
683 {
684 struct dwarf2_per_cu_data *per_cu;
685 struct dwarf2_queue_item *next;
686 };
687
688 /* The current queue. */
689 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
690
691 /* Loaded secondary compilation units are kept in memory until they
692 have not been referenced for the processing of this many
693 compilation units. Set this to zero to disable caching. Cache
694 sizes of up to at least twenty will improve startup time for
695 typical inter-CU-reference binaries, at an obvious memory cost. */
696 static int dwarf2_max_cache_age = 5;
697 static void
698 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
699 struct cmd_list_element *c, const char *value)
700 {
701 fprintf_filtered (file, _("\
702 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
703 value);
704 }
705
706
707 /* Various complaints about symbol reading that don't abort the process */
708
709 static void
710 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
711 {
712 complaint (&symfile_complaints,
713 _("statement list doesn't fit in .debug_line section"));
714 }
715
716 static void
717 dwarf2_debug_line_missing_file_complaint (void)
718 {
719 complaint (&symfile_complaints,
720 _(".debug_line section has line data without a file"));
721 }
722
723 static void
724 dwarf2_debug_line_missing_end_sequence_complaint (void)
725 {
726 complaint (&symfile_complaints,
727 _(".debug_line section has line program sequence without an end"));
728 }
729
730 static void
731 dwarf2_complex_location_expr_complaint (void)
732 {
733 complaint (&symfile_complaints, _("location expression too complex"));
734 }
735
736 static void
737 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
738 int arg3)
739 {
740 complaint (&symfile_complaints,
741 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
742 arg2, arg3);
743 }
744
745 static void
746 dwarf2_macros_too_long_complaint (void)
747 {
748 complaint (&symfile_complaints,
749 _("macro info runs off end of `.debug_macinfo' section"));
750 }
751
752 static void
753 dwarf2_macro_malformed_definition_complaint (const char *arg1)
754 {
755 complaint (&symfile_complaints,
756 _("macro debug info contains a malformed macro definition:\n`%s'"),
757 arg1);
758 }
759
760 static void
761 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
762 {
763 complaint (&symfile_complaints,
764 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
765 }
766
767 /* local function prototypes */
768
769 static void dwarf2_locate_sections (bfd *, asection *, void *);
770
771 #if 0
772 static void dwarf2_build_psymtabs_easy (struct objfile *);
773 #endif
774
775 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
776 struct objfile *);
777
778 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
779 struct die_info *,
780 struct partial_symtab *);
781
782 static void dwarf2_build_psymtabs_hard (struct objfile *);
783
784 static void scan_partial_symbols (struct partial_die_info *,
785 CORE_ADDR *, CORE_ADDR *,
786 int, struct dwarf2_cu *);
787
788 static void add_partial_symbol (struct partial_die_info *,
789 struct dwarf2_cu *);
790
791 static int pdi_needs_namespace (enum dwarf_tag tag);
792
793 static void add_partial_namespace (struct partial_die_info *pdi,
794 CORE_ADDR *lowpc, CORE_ADDR *highpc,
795 int need_pc, struct dwarf2_cu *cu);
796
797 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
798 CORE_ADDR *highpc, int need_pc,
799 struct dwarf2_cu *cu);
800
801 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
802 struct dwarf2_cu *cu);
803
804 static void add_partial_subprogram (struct partial_die_info *pdi,
805 CORE_ADDR *lowpc, CORE_ADDR *highpc,
806 int need_pc, struct dwarf2_cu *cu);
807
808 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
809 gdb_byte *buffer, gdb_byte *info_ptr,
810 bfd *abfd, struct dwarf2_cu *cu);
811
812 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
813
814 static void psymtab_to_symtab_1 (struct partial_symtab *);
815
816 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
817
818 static void dwarf2_free_abbrev_table (void *);
819
820 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
821 struct dwarf2_cu *);
822
823 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
824 struct dwarf2_cu *);
825
826 static struct partial_die_info *load_partial_dies (bfd *,
827 gdb_byte *, gdb_byte *,
828 int, struct dwarf2_cu *);
829
830 static gdb_byte *read_partial_die (struct partial_die_info *,
831 struct abbrev_info *abbrev,
832 unsigned int, bfd *,
833 gdb_byte *, gdb_byte *,
834 struct dwarf2_cu *);
835
836 static struct partial_die_info *find_partial_die (unsigned int,
837 struct dwarf2_cu *);
838
839 static void fixup_partial_die (struct partial_die_info *,
840 struct dwarf2_cu *);
841
842 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
843 bfd *, gdb_byte *, struct dwarf2_cu *);
844
845 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
846 bfd *, gdb_byte *, struct dwarf2_cu *);
847
848 static unsigned int read_1_byte (bfd *, gdb_byte *);
849
850 static int read_1_signed_byte (bfd *, gdb_byte *);
851
852 static unsigned int read_2_bytes (bfd *, gdb_byte *);
853
854 static unsigned int read_4_bytes (bfd *, gdb_byte *);
855
856 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
857
858 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
859 unsigned int *);
860
861 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
862
863 static LONGEST read_checked_initial_length_and_offset
864 (bfd *, gdb_byte *, const struct comp_unit_head *,
865 unsigned int *, unsigned int *);
866
867 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
868 unsigned int *);
869
870 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
871
872 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
873
874 static char *read_string (bfd *, gdb_byte *, unsigned int *);
875
876 static char *read_indirect_string (bfd *, gdb_byte *,
877 const struct comp_unit_head *,
878 unsigned int *);
879
880 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
881
882 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
883
884 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
885
886 static void set_cu_language (unsigned int, struct dwarf2_cu *);
887
888 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
889 struct dwarf2_cu *);
890
891 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
892 unsigned int,
893 struct dwarf2_cu *);
894
895 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
896 struct dwarf2_cu *cu);
897
898 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
899
900 static struct die_info *die_specification (struct die_info *die,
901 struct dwarf2_cu **);
902
903 static void free_line_header (struct line_header *lh);
904
905 static void add_file_name (struct line_header *, char *, unsigned int,
906 unsigned int, unsigned int);
907
908 static struct line_header *(dwarf_decode_line_header
909 (unsigned int offset,
910 bfd *abfd, struct dwarf2_cu *cu));
911
912 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
913 struct dwarf2_cu *, struct partial_symtab *);
914
915 static void dwarf2_start_subfile (char *, char *, char *);
916
917 static struct symbol *new_symbol (struct die_info *, struct type *,
918 struct dwarf2_cu *);
919
920 static void dwarf2_const_value (struct attribute *, struct symbol *,
921 struct dwarf2_cu *);
922
923 static void dwarf2_const_value_data (struct attribute *attr,
924 struct symbol *sym,
925 int bits);
926
927 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
928
929 static struct type *die_containing_type (struct die_info *,
930 struct dwarf2_cu *);
931
932 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
933
934 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
935
936 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
937
938 static char *typename_concat (struct obstack *,
939 const char *prefix,
940 const char *suffix,
941 struct dwarf2_cu *);
942
943 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
944
945 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
946
947 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
948
949 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
950
951 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
952 struct dwarf2_cu *, struct partial_symtab *);
953
954 static int dwarf2_get_pc_bounds (struct die_info *,
955 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
956 struct partial_symtab *);
957
958 static void get_scope_pc_bounds (struct die_info *,
959 CORE_ADDR *, CORE_ADDR *,
960 struct dwarf2_cu *);
961
962 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
963 CORE_ADDR, struct dwarf2_cu *);
964
965 static void dwarf2_add_field (struct field_info *, struct die_info *,
966 struct dwarf2_cu *);
967
968 static void dwarf2_attach_fields_to_type (struct field_info *,
969 struct type *, struct dwarf2_cu *);
970
971 static void dwarf2_add_member_fn (struct field_info *,
972 struct die_info *, struct type *,
973 struct dwarf2_cu *);
974
975 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
976 struct type *, struct dwarf2_cu *);
977
978 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
979
980 static const char *determine_class_name (struct die_info *die,
981 struct dwarf2_cu *cu);
982
983 static void read_common_block (struct die_info *, struct dwarf2_cu *);
984
985 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
986
987 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
988
989 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
990
991 static const char *namespace_name (struct die_info *die,
992 int *is_anonymous, struct dwarf2_cu *);
993
994 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
995
996 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
997
998 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
999 struct dwarf2_cu *);
1000
1001 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1002
1003 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1004 gdb_byte *info_ptr,
1005 gdb_byte **new_info_ptr,
1006 struct die_info *parent);
1007
1008 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1009 gdb_byte *info_ptr,
1010 gdb_byte **new_info_ptr,
1011 struct die_info *parent);
1012
1013 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1014 gdb_byte *info_ptr,
1015 gdb_byte **new_info_ptr,
1016 struct die_info *parent);
1017
1018 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1019 struct die_info **, gdb_byte *,
1020 int *);
1021
1022 static void process_die (struct die_info *, struct dwarf2_cu *);
1023
1024 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
1025
1026 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1027 struct obstack *);
1028
1029 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1030
1031 static struct die_info *dwarf2_extension (struct die_info *die,
1032 struct dwarf2_cu **);
1033
1034 static char *dwarf_tag_name (unsigned int);
1035
1036 static char *dwarf_attr_name (unsigned int);
1037
1038 static char *dwarf_form_name (unsigned int);
1039
1040 static char *dwarf_stack_op_name (unsigned int);
1041
1042 static char *dwarf_bool_name (unsigned int);
1043
1044 static char *dwarf_type_encoding_name (unsigned int);
1045
1046 #if 0
1047 static char *dwarf_cfi_name (unsigned int);
1048 #endif
1049
1050 static struct die_info *sibling_die (struct die_info *);
1051
1052 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1053
1054 static void dump_die_for_error (struct die_info *);
1055
1056 static void dump_die_1 (struct ui_file *, int level, int max_level,
1057 struct die_info *);
1058
1059 /*static*/ void dump_die (struct die_info *, int max_level);
1060
1061 static void store_in_ref_table (struct die_info *,
1062 struct dwarf2_cu *);
1063
1064 static int is_ref_attr (struct attribute *);
1065
1066 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1067
1068 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1069
1070 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1071 struct attribute *,
1072 struct dwarf2_cu **);
1073
1074 static struct die_info *follow_die_ref (struct die_info *,
1075 struct attribute *,
1076 struct dwarf2_cu **);
1077
1078 static struct die_info *follow_die_sig (struct die_info *,
1079 struct attribute *,
1080 struct dwarf2_cu **);
1081
1082 static void read_signatured_type_at_offset (struct objfile *objfile,
1083 unsigned int offset);
1084
1085 static void read_signatured_type (struct objfile *,
1086 struct signatured_type *type_sig);
1087
1088 /* memory allocation interface */
1089
1090 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1091
1092 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1093
1094 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1095
1096 static void initialize_cu_func_list (struct dwarf2_cu *);
1097
1098 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1099 struct dwarf2_cu *);
1100
1101 static void dwarf_decode_macros (struct line_header *, unsigned int,
1102 char *, bfd *, struct dwarf2_cu *);
1103
1104 static int attr_form_is_block (struct attribute *);
1105
1106 static int attr_form_is_section_offset (struct attribute *);
1107
1108 static int attr_form_is_constant (struct attribute *);
1109
1110 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1111 struct symbol *sym,
1112 struct dwarf2_cu *cu);
1113
1114 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1115 struct abbrev_info *abbrev,
1116 struct dwarf2_cu *cu);
1117
1118 static void free_stack_comp_unit (void *);
1119
1120 static hashval_t partial_die_hash (const void *item);
1121
1122 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1123
1124 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1125 (unsigned int offset, struct objfile *objfile);
1126
1127 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1128 (unsigned int offset, struct objfile *objfile);
1129
1130 static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile);
1131
1132 static void free_one_comp_unit (void *);
1133
1134 static void free_cached_comp_units (void *);
1135
1136 static void age_cached_comp_units (void);
1137
1138 static void free_one_cached_comp_unit (void *);
1139
1140 static struct type *set_die_type (struct die_info *, struct type *,
1141 struct dwarf2_cu *);
1142
1143 static void create_all_comp_units (struct objfile *);
1144
1145 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1146 struct objfile *);
1147
1148 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1149
1150 static void dwarf2_add_dependence (struct dwarf2_cu *,
1151 struct dwarf2_per_cu_data *);
1152
1153 static void dwarf2_mark (struct dwarf2_cu *);
1154
1155 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1156
1157 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1158
1159 /* Try to locate the sections we need for DWARF 2 debugging
1160 information and return true if we have enough to do something. */
1161
1162 int
1163 dwarf2_has_info (struct objfile *objfile)
1164 {
1165 struct dwarf2_per_objfile *data;
1166
1167 /* Initialize per-objfile state. */
1168 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1169 memset (data, 0, sizeof (*data));
1170 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1171 dwarf2_per_objfile = data;
1172
1173 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1174 return (data->info.asection != NULL && data->abbrev.asection != NULL);
1175 }
1176
1177 /* When loading sections, we can either look for ".<name>", or for
1178 * ".z<name>", which indicates a compressed section. */
1179
1180 static int
1181 section_is_p (const char *section_name, const char *name)
1182 {
1183 return (section_name[0] == '.'
1184 && (strcmp (section_name + 1, name) == 0
1185 || (section_name[1] == 'z'
1186 && strcmp (section_name + 2, name) == 0)));
1187 }
1188
1189 /* This function is mapped across the sections and remembers the
1190 offset and size of each of the debugging sections we are interested
1191 in. */
1192
1193 static void
1194 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1195 {
1196 if (section_is_p (sectp->name, INFO_SECTION))
1197 {
1198 dwarf2_per_objfile->info.asection = sectp;
1199 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1200 }
1201 else if (section_is_p (sectp->name, ABBREV_SECTION))
1202 {
1203 dwarf2_per_objfile->abbrev.asection = sectp;
1204 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1205 }
1206 else if (section_is_p (sectp->name, LINE_SECTION))
1207 {
1208 dwarf2_per_objfile->line.asection = sectp;
1209 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1210 }
1211 else if (section_is_p (sectp->name, PUBNAMES_SECTION))
1212 {
1213 dwarf2_per_objfile->pubnames.asection = sectp;
1214 dwarf2_per_objfile->pubnames.size = bfd_get_section_size (sectp);
1215 }
1216 else if (section_is_p (sectp->name, ARANGES_SECTION))
1217 {
1218 dwarf2_per_objfile->aranges.asection = sectp;
1219 dwarf2_per_objfile->aranges.size = bfd_get_section_size (sectp);
1220 }
1221 else if (section_is_p (sectp->name, LOC_SECTION))
1222 {
1223 dwarf2_per_objfile->loc.asection = sectp;
1224 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1225 }
1226 else if (section_is_p (sectp->name, MACINFO_SECTION))
1227 {
1228 dwarf2_per_objfile->macinfo.asection = sectp;
1229 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1230 }
1231 else if (section_is_p (sectp->name, STR_SECTION))
1232 {
1233 dwarf2_per_objfile->str.asection = sectp;
1234 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1235 }
1236 else if (section_is_p (sectp->name, FRAME_SECTION))
1237 {
1238 dwarf2_per_objfile->frame.asection = sectp;
1239 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1240 }
1241 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1242 {
1243 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1244 if (aflag & SEC_HAS_CONTENTS)
1245 {
1246 dwarf2_per_objfile->eh_frame.asection = sectp;
1247 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1248 }
1249 }
1250 else if (section_is_p (sectp->name, RANGES_SECTION))
1251 {
1252 dwarf2_per_objfile->ranges.asection = sectp;
1253 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1254 }
1255 else if (section_is_p (sectp->name, TYPES_SECTION))
1256 {
1257 dwarf2_per_objfile->types.asection = sectp;
1258 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1259 }
1260
1261 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1262 && bfd_section_vma (abfd, sectp) == 0)
1263 dwarf2_per_objfile->has_section_at_zero = 1;
1264 }
1265
1266 /* Decompress a section that was compressed using zlib. Store the
1267 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1268
1269 static void
1270 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1271 gdb_byte **outbuf, bfd_size_type *outsize)
1272 {
1273 bfd *abfd = objfile->obfd;
1274 #ifndef HAVE_ZLIB_H
1275 error (_("Support for zlib-compressed DWARF data (from '%s') "
1276 "is disabled in this copy of GDB"),
1277 bfd_get_filename (abfd));
1278 #else
1279 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1280 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1281 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1282 bfd_size_type uncompressed_size;
1283 gdb_byte *uncompressed_buffer;
1284 z_stream strm;
1285 int rc;
1286 int header_size = 12;
1287
1288 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1289 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1290 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1291 bfd_get_filename (abfd));
1292
1293 /* Read the zlib header. In this case, it should be "ZLIB" followed
1294 by the uncompressed section size, 8 bytes in big-endian order. */
1295 if (compressed_size < header_size
1296 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1297 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1298 bfd_get_filename (abfd));
1299 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1300 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1301 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1302 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1303 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1304 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1305 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1306 uncompressed_size += compressed_buffer[11];
1307
1308 /* It is possible the section consists of several compressed
1309 buffers concatenated together, so we uncompress in a loop. */
1310 strm.zalloc = NULL;
1311 strm.zfree = NULL;
1312 strm.opaque = NULL;
1313 strm.avail_in = compressed_size - header_size;
1314 strm.next_in = (Bytef*) compressed_buffer + header_size;
1315 strm.avail_out = uncompressed_size;
1316 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1317 uncompressed_size);
1318 rc = inflateInit (&strm);
1319 while (strm.avail_in > 0)
1320 {
1321 if (rc != Z_OK)
1322 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1323 bfd_get_filename (abfd), rc);
1324 strm.next_out = ((Bytef*) uncompressed_buffer
1325 + (uncompressed_size - strm.avail_out));
1326 rc = inflate (&strm, Z_FINISH);
1327 if (rc != Z_STREAM_END)
1328 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1329 bfd_get_filename (abfd), rc);
1330 rc = inflateReset (&strm);
1331 }
1332 rc = inflateEnd (&strm);
1333 if (rc != Z_OK
1334 || strm.avail_out != 0)
1335 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1336 bfd_get_filename (abfd), rc);
1337
1338 do_cleanups (cleanup);
1339 *outbuf = uncompressed_buffer;
1340 *outsize = uncompressed_size;
1341 #endif
1342 }
1343
1344 /* Read the contents of the section SECTP from object file specified by
1345 OBJFILE, store info about the section into INFO.
1346 If the section is compressed, uncompress it before returning. */
1347
1348 static void
1349 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1350 {
1351 bfd *abfd = objfile->obfd;
1352 asection *sectp = info->asection;
1353 gdb_byte *buf, *retbuf;
1354 unsigned char header[4];
1355
1356 info->buffer = NULL;
1357 info->was_mmapped = 0;
1358
1359 if (info->asection == NULL || info->size == 0)
1360 return;
1361
1362 /* Check if the file has a 4-byte header indicating compression. */
1363 if (info->size > sizeof (header)
1364 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1365 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1366 {
1367 /* Upon decompression, update the buffer and its size. */
1368 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1369 {
1370 zlib_decompress_section (objfile, sectp, &info->buffer,
1371 &info->size);
1372 return;
1373 }
1374 }
1375
1376 #ifdef HAVE_MMAP
1377 if (pagesize == 0)
1378 pagesize = getpagesize ();
1379
1380 /* Only try to mmap sections which are large enough: we don't want to
1381 waste space due to fragmentation. Also, only try mmap for sections
1382 without relocations. */
1383
1384 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1385 {
1386 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1387 size_t map_length = info->size + sectp->filepos - pg_offset;
1388 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1389 MAP_PRIVATE, pg_offset);
1390
1391 if (retbuf != MAP_FAILED)
1392 {
1393 info->was_mmapped = 1;
1394 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1395 return;
1396 }
1397 }
1398 #endif
1399
1400 /* If we get here, we are a normal, not-compressed section. */
1401 info->buffer = buf
1402 = obstack_alloc (&objfile->objfile_obstack, info->size);
1403
1404 /* When debugging .o files, we may need to apply relocations; see
1405 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1406 We never compress sections in .o files, so we only need to
1407 try this when the section is not compressed. */
1408 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
1409 if (retbuf != NULL)
1410 {
1411 info->buffer = retbuf;
1412 return;
1413 }
1414
1415 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1416 || bfd_bread (buf, info->size, abfd) != info->size)
1417 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1418 bfd_get_filename (abfd));
1419 }
1420
1421 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1422 SECTION_NAME. */
1423
1424 void
1425 dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1426 asection **sectp, gdb_byte **bufp,
1427 bfd_size_type *sizep)
1428 {
1429 struct dwarf2_per_objfile *data
1430 = objfile_data (objfile, dwarf2_objfile_data_key);
1431 struct dwarf2_section_info *info;
1432 if (section_is_p (section_name, EH_FRAME_SECTION))
1433 info = &data->eh_frame;
1434 else if (section_is_p (section_name, FRAME_SECTION))
1435 info = &data->frame;
1436 else
1437 gdb_assert (0);
1438
1439 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1440 /* We haven't read this section in yet. Do it now. */
1441 dwarf2_read_section (objfile, info);
1442
1443 *sectp = info->asection;
1444 *bufp = info->buffer;
1445 *sizep = info->size;
1446 }
1447
1448 /* Build a partial symbol table. */
1449
1450 void
1451 dwarf2_build_psymtabs (struct objfile *objfile)
1452 {
1453 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
1454 dwarf2_read_section (objfile, &dwarf2_per_objfile->abbrev);
1455 dwarf2_read_section (objfile, &dwarf2_per_objfile->line);
1456 dwarf2_read_section (objfile, &dwarf2_per_objfile->str);
1457 dwarf2_read_section (objfile, &dwarf2_per_objfile->macinfo);
1458 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
1459 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
1460 dwarf2_read_section (objfile, &dwarf2_per_objfile->loc);
1461 dwarf2_read_section (objfile, &dwarf2_per_objfile->eh_frame);
1462 dwarf2_read_section (objfile, &dwarf2_per_objfile->frame);
1463
1464 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
1465 {
1466 init_psymbol_list (objfile, 1024);
1467 }
1468
1469 #if 0
1470 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1471 {
1472 /* Things are significantly easier if we have .debug_aranges and
1473 .debug_pubnames sections */
1474
1475 dwarf2_build_psymtabs_easy (objfile);
1476 }
1477 else
1478 #endif
1479 /* only test this case for now */
1480 {
1481 /* In this case we have to work a bit harder */
1482 dwarf2_build_psymtabs_hard (objfile);
1483 }
1484 }
1485
1486 #if 0
1487 /* Build the partial symbol table from the information in the
1488 .debug_pubnames and .debug_aranges sections. */
1489
1490 static void
1491 dwarf2_build_psymtabs_easy (struct objfile *objfile)
1492 {
1493 bfd *abfd = objfile->obfd;
1494 char *aranges_buffer, *pubnames_buffer;
1495 char *aranges_ptr, *pubnames_ptr;
1496 unsigned int entry_length, version, info_offset, info_size;
1497
1498 pubnames_buffer = dwarf2_read_section (objfile,
1499 dwarf_pubnames_section);
1500 pubnames_ptr = pubnames_buffer;
1501 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames.size)
1502 {
1503 unsigned int bytes_read;
1504
1505 entry_length = read_initial_length (abfd, pubnames_ptr, &bytes_read);
1506 pubnames_ptr += bytes_read;
1507 version = read_1_byte (abfd, pubnames_ptr);
1508 pubnames_ptr += 1;
1509 info_offset = read_4_bytes (abfd, pubnames_ptr);
1510 pubnames_ptr += 4;
1511 info_size = read_4_bytes (abfd, pubnames_ptr);
1512 pubnames_ptr += 4;
1513 }
1514
1515 aranges_buffer = dwarf2_read_section (objfile,
1516 dwarf_aranges_section);
1517
1518 }
1519 #endif
1520
1521 /* Return TRUE if OFFSET is within CU_HEADER. */
1522
1523 static inline int
1524 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
1525 {
1526 unsigned int bottom = cu_header->offset;
1527 unsigned int top = (cu_header->offset
1528 + cu_header->length
1529 + cu_header->initial_length_size);
1530 return (offset >= bottom && offset < top);
1531 }
1532
1533 /* Read in the comp unit header information from the debug_info at info_ptr.
1534 NOTE: This leaves members offset, first_die_offset to be filled in
1535 by the caller. */
1536
1537 static gdb_byte *
1538 read_comp_unit_head (struct comp_unit_head *cu_header,
1539 gdb_byte *info_ptr, bfd *abfd)
1540 {
1541 int signed_addr;
1542 unsigned int bytes_read;
1543
1544 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
1545 cu_header->initial_length_size = bytes_read;
1546 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
1547 info_ptr += bytes_read;
1548 cu_header->version = read_2_bytes (abfd, info_ptr);
1549 info_ptr += 2;
1550 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1551 &bytes_read);
1552 info_ptr += bytes_read;
1553 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1554 info_ptr += 1;
1555 signed_addr = bfd_get_sign_extend_vma (abfd);
1556 if (signed_addr < 0)
1557 internal_error (__FILE__, __LINE__,
1558 _("read_comp_unit_head: dwarf from non elf file"));
1559 cu_header->signed_addr_p = signed_addr;
1560
1561 return info_ptr;
1562 }
1563
1564 static gdb_byte *
1565 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1566 gdb_byte *buffer, unsigned int buffer_size,
1567 bfd *abfd)
1568 {
1569 gdb_byte *beg_of_comp_unit = info_ptr;
1570
1571 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1572
1573 if (header->version != 2 && header->version != 3)
1574 error (_("Dwarf Error: wrong version in compilation unit header "
1575 "(is %d, should be %d) [in module %s]"), header->version,
1576 2, bfd_get_filename (abfd));
1577
1578 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
1579 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1580 "(offset 0x%lx + 6) [in module %s]"),
1581 (long) header->abbrev_offset,
1582 (long) (beg_of_comp_unit - buffer),
1583 bfd_get_filename (abfd));
1584
1585 if (beg_of_comp_unit + header->length + header->initial_length_size
1586 > buffer + buffer_size)
1587 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1588 "(offset 0x%lx + 0) [in module %s]"),
1589 (long) header->length,
1590 (long) (beg_of_comp_unit - buffer),
1591 bfd_get_filename (abfd));
1592
1593 return info_ptr;
1594 }
1595
1596 /* Read in the types comp unit header information from .debug_types entry at
1597 types_ptr. The result is a pointer to one past the end of the header. */
1598
1599 static gdb_byte *
1600 read_type_comp_unit_head (struct comp_unit_head *cu_header,
1601 ULONGEST *signature,
1602 gdb_byte *types_ptr, bfd *abfd)
1603 {
1604 unsigned int bytes_read;
1605 gdb_byte *initial_types_ptr = types_ptr;
1606
1607 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
1608
1609 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
1610
1611 *signature = read_8_bytes (abfd, types_ptr);
1612 types_ptr += 8;
1613 types_ptr += cu_header->offset_size;
1614 cu_header->first_die_offset = types_ptr - initial_types_ptr;
1615
1616 return types_ptr;
1617 }
1618
1619 /* Allocate a new partial symtab for file named NAME and mark this new
1620 partial symtab as being an include of PST. */
1621
1622 static void
1623 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1624 struct objfile *objfile)
1625 {
1626 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1627
1628 subpst->section_offsets = pst->section_offsets;
1629 subpst->textlow = 0;
1630 subpst->texthigh = 0;
1631
1632 subpst->dependencies = (struct partial_symtab **)
1633 obstack_alloc (&objfile->objfile_obstack,
1634 sizeof (struct partial_symtab *));
1635 subpst->dependencies[0] = pst;
1636 subpst->number_of_dependencies = 1;
1637
1638 subpst->globals_offset = 0;
1639 subpst->n_global_syms = 0;
1640 subpst->statics_offset = 0;
1641 subpst->n_static_syms = 0;
1642 subpst->symtab = NULL;
1643 subpst->read_symtab = pst->read_symtab;
1644 subpst->readin = 0;
1645
1646 /* No private part is necessary for include psymtabs. This property
1647 can be used to differentiate between such include psymtabs and
1648 the regular ones. */
1649 subpst->read_symtab_private = NULL;
1650 }
1651
1652 /* Read the Line Number Program data and extract the list of files
1653 included by the source file represented by PST. Build an include
1654 partial symtab for each of these included files. */
1655
1656 static void
1657 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1658 struct die_info *die,
1659 struct partial_symtab *pst)
1660 {
1661 struct objfile *objfile = cu->objfile;
1662 bfd *abfd = objfile->obfd;
1663 struct line_header *lh = NULL;
1664 struct attribute *attr;
1665
1666 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
1667 if (attr)
1668 {
1669 unsigned int line_offset = DW_UNSND (attr);
1670 lh = dwarf_decode_line_header (line_offset, abfd, cu);
1671 }
1672 if (lh == NULL)
1673 return; /* No linetable, so no includes. */
1674
1675 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1676
1677 free_line_header (lh);
1678 }
1679
1680 static hashval_t
1681 hash_type_signature (const void *item)
1682 {
1683 const struct signatured_type *type_sig = item;
1684 /* This drops the top 32 bits of the signature, but is ok for a hash. */
1685 return type_sig->signature;
1686 }
1687
1688 static int
1689 eq_type_signature (const void *item_lhs, const void *item_rhs)
1690 {
1691 const struct signatured_type *lhs = item_lhs;
1692 const struct signatured_type *rhs = item_rhs;
1693 return lhs->signature == rhs->signature;
1694 }
1695
1696 /* Create the hash table of all entries in the .debug_types section.
1697 The result is zero if there is an error (e.g. missing .debug_types section),
1698 otherwise non-zero. */
1699
1700 static int
1701 create_debug_types_hash_table (struct objfile *objfile)
1702 {
1703 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer;
1704 htab_t types_htab;
1705
1706 if (info_ptr == NULL)
1707 {
1708 dwarf2_per_objfile->signatured_types = NULL;
1709 return 0;
1710 }
1711
1712 types_htab = htab_create_alloc_ex (41,
1713 hash_type_signature,
1714 eq_type_signature,
1715 NULL,
1716 &objfile->objfile_obstack,
1717 hashtab_obstack_allocate,
1718 dummy_obstack_deallocate);
1719
1720 if (dwarf2_die_debug)
1721 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
1722
1723 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1724 {
1725 unsigned int offset;
1726 unsigned int offset_size;
1727 unsigned int type_offset;
1728 unsigned int length, initial_length_size;
1729 unsigned short version;
1730 ULONGEST signature;
1731 struct signatured_type *type_sig;
1732 void **slot;
1733 gdb_byte *ptr = info_ptr;
1734
1735 offset = ptr - dwarf2_per_objfile->types.buffer;
1736
1737 /* We need to read the type's signature in order to build the hash
1738 table, but we don't need to read anything else just yet. */
1739
1740 /* Sanity check to ensure entire cu is present. */
1741 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
1742 if (ptr + length + initial_length_size
1743 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1744 {
1745 complaint (&symfile_complaints,
1746 _("debug type entry runs off end of `.debug_types' section, ignored"));
1747 break;
1748 }
1749
1750 offset_size = initial_length_size == 4 ? 4 : 8;
1751 ptr += initial_length_size;
1752 version = bfd_get_16 (objfile->obfd, ptr);
1753 ptr += 2;
1754 ptr += offset_size; /* abbrev offset */
1755 ptr += 1; /* address size */
1756 signature = bfd_get_64 (objfile->obfd, ptr);
1757 ptr += 8;
1758 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
1759
1760 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
1761 memset (type_sig, 0, sizeof (*type_sig));
1762 type_sig->signature = signature;
1763 type_sig->offset = offset;
1764 type_sig->type_offset = type_offset;
1765
1766 slot = htab_find_slot (types_htab, type_sig, INSERT);
1767 gdb_assert (slot != NULL);
1768 *slot = type_sig;
1769
1770 if (dwarf2_die_debug)
1771 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
1772 offset, phex (signature, sizeof (signature)));
1773
1774 info_ptr = info_ptr + initial_length_size + length;
1775 }
1776
1777 dwarf2_per_objfile->signatured_types = types_htab;
1778
1779 return 1;
1780 }
1781
1782 /* Lookup a signature based type.
1783 Returns NULL if SIG is not present in the table. */
1784
1785 static struct signatured_type *
1786 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
1787 {
1788 struct signatured_type find_entry, *entry;
1789
1790 if (dwarf2_per_objfile->signatured_types == NULL)
1791 {
1792 complaint (&symfile_complaints,
1793 _("missing `.debug_types' section for DW_FORM_sig8 die"));
1794 return 0;
1795 }
1796
1797 find_entry.signature = sig;
1798 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
1799 return entry;
1800 }
1801
1802 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
1803
1804 static void
1805 init_cu_die_reader (struct die_reader_specs *reader,
1806 struct dwarf2_cu *cu)
1807 {
1808 reader->abfd = cu->objfile->obfd;
1809 reader->cu = cu;
1810 if (cu->per_cu->from_debug_types)
1811 reader->buffer = dwarf2_per_objfile->types.buffer;
1812 else
1813 reader->buffer = dwarf2_per_objfile->info.buffer;
1814 }
1815
1816 /* Find the base address of the compilation unit for range lists and
1817 location lists. It will normally be specified by DW_AT_low_pc.
1818 In DWARF-3 draft 4, the base address could be overridden by
1819 DW_AT_entry_pc. It's been removed, but GCC still uses this for
1820 compilation units with discontinuous ranges. */
1821
1822 static void
1823 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
1824 {
1825 struct attribute *attr;
1826
1827 cu->base_known = 0;
1828 cu->base_address = 0;
1829
1830 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
1831 if (attr)
1832 {
1833 cu->base_address = DW_ADDR (attr);
1834 cu->base_known = 1;
1835 }
1836 else
1837 {
1838 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
1839 if (attr)
1840 {
1841 cu->base_address = DW_ADDR (attr);
1842 cu->base_known = 1;
1843 }
1844 }
1845 }
1846
1847 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
1848 to combine the common parts.
1849 Process a compilation unit for a psymtab.
1850 BUFFER is a pointer to the beginning of the dwarf section buffer,
1851 either .debug_info or debug_types.
1852 INFO_PTR is a pointer to the start of the CU.
1853 Returns a pointer to the next CU. */
1854
1855 static gdb_byte *
1856 process_psymtab_comp_unit (struct objfile *objfile,
1857 struct dwarf2_per_cu_data *this_cu,
1858 gdb_byte *buffer, gdb_byte *info_ptr,
1859 unsigned int buffer_size)
1860 {
1861 bfd *abfd = objfile->obfd;
1862 gdb_byte *beg_of_comp_unit = info_ptr;
1863 struct die_info *comp_unit_die;
1864 struct partial_symtab *pst;
1865 CORE_ADDR baseaddr;
1866 struct cleanup *back_to_inner;
1867 struct dwarf2_cu cu;
1868 unsigned int bytes_read;
1869 int has_children, has_pc_info;
1870 struct attribute *attr;
1871 const char *name;
1872 CORE_ADDR best_lowpc = 0, best_highpc = 0;
1873 struct die_reader_specs reader_specs;
1874
1875 memset (&cu, 0, sizeof (cu));
1876 cu.objfile = objfile;
1877 obstack_init (&cu.comp_unit_obstack);
1878
1879 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1880
1881 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
1882 buffer, buffer_size,
1883 abfd);
1884
1885 /* Complete the cu_header. */
1886 cu.header.offset = beg_of_comp_unit - buffer;
1887 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
1888
1889 cu.list_in_scope = &file_symbols;
1890
1891 /* If this compilation unit was already read in, free the
1892 cached copy in order to read it in again. This is
1893 necessary because we skipped some symbols when we first
1894 read in the compilation unit (see load_partial_dies).
1895 This problem could be avoided, but the benefit is
1896 unclear. */
1897 if (this_cu->cu != NULL)
1898 free_one_cached_comp_unit (this_cu->cu);
1899
1900 /* Note that this is a pointer to our stack frame, being
1901 added to a global data structure. It will be cleaned up
1902 in free_stack_comp_unit when we finish with this
1903 compilation unit. */
1904 this_cu->cu = &cu;
1905 cu.per_cu = this_cu;
1906
1907 /* Read the abbrevs for this compilation unit into a table. */
1908 dwarf2_read_abbrevs (abfd, &cu);
1909 make_cleanup (dwarf2_free_abbrev_table, &cu);
1910
1911 /* Read the compilation unit die. */
1912 if (this_cu->from_debug_types)
1913 info_ptr += 8 /*signature*/ + cu.header.offset_size;
1914 init_cu_die_reader (&reader_specs, &cu);
1915 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
1916 &has_children);
1917
1918 if (this_cu->from_debug_types)
1919 {
1920 /* offset,length haven't been set yet for type units. */
1921 this_cu->offset = cu.header.offset;
1922 this_cu->length = cu.header.length + cu.header.initial_length_size;
1923 }
1924 else if (comp_unit_die->tag == DW_TAG_partial_unit)
1925 {
1926 info_ptr = (beg_of_comp_unit + cu.header.length
1927 + cu.header.initial_length_size);
1928 do_cleanups (back_to_inner);
1929 return info_ptr;
1930 }
1931
1932 /* Set the language we're debugging. */
1933 attr = dwarf2_attr (comp_unit_die, DW_AT_language, &cu);
1934 if (attr)
1935 set_cu_language (DW_UNSND (attr), &cu);
1936 else
1937 set_cu_language (language_minimal, &cu);
1938
1939 /* Allocate a new partial symbol table structure. */
1940 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
1941 pst = start_psymtab_common (objfile, objfile->section_offsets,
1942 (attr != NULL) ? DW_STRING (attr) : "",
1943 /* TEXTLOW and TEXTHIGH are set below. */
1944 0,
1945 objfile->global_psymbols.next,
1946 objfile->static_psymbols.next);
1947
1948 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
1949 if (attr != NULL)
1950 pst->dirname = DW_STRING (attr);
1951
1952 pst->read_symtab_private = (char *) this_cu;
1953
1954 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1955
1956 /* Store the function that reads in the rest of the symbol table */
1957 pst->read_symtab = dwarf2_psymtab_to_symtab;
1958
1959 this_cu->psymtab = pst;
1960
1961 dwarf2_find_base_address (comp_unit_die, &cu);
1962
1963 /* Possibly set the default values of LOWPC and HIGHPC from
1964 `DW_AT_ranges'. */
1965 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
1966 &best_highpc, &cu, pst);
1967 if (has_pc_info == 1 && best_lowpc < best_highpc)
1968 /* Store the contiguous range if it is not empty; it can be empty for
1969 CUs with no code. */
1970 addrmap_set_empty (objfile->psymtabs_addrmap,
1971 best_lowpc + baseaddr,
1972 best_highpc + baseaddr - 1, pst);
1973
1974 /* Check if comp unit has_children.
1975 If so, read the rest of the partial symbols from this comp unit.
1976 If not, there's no more debug_info for this comp unit. */
1977 if (has_children)
1978 {
1979 struct partial_die_info *first_die;
1980 CORE_ADDR lowpc, highpc;
1981
1982 lowpc = ((CORE_ADDR) -1);
1983 highpc = ((CORE_ADDR) 0);
1984
1985 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
1986
1987 scan_partial_symbols (first_die, &lowpc, &highpc,
1988 ! has_pc_info, &cu);
1989
1990 /* If we didn't find a lowpc, set it to highpc to avoid
1991 complaints from `maint check'. */
1992 if (lowpc == ((CORE_ADDR) -1))
1993 lowpc = highpc;
1994
1995 /* If the compilation unit didn't have an explicit address range,
1996 then use the information extracted from its child dies. */
1997 if (! has_pc_info)
1998 {
1999 best_lowpc = lowpc;
2000 best_highpc = highpc;
2001 }
2002 }
2003 pst->textlow = best_lowpc + baseaddr;
2004 pst->texthigh = best_highpc + baseaddr;
2005
2006 pst->n_global_syms = objfile->global_psymbols.next -
2007 (objfile->global_psymbols.list + pst->globals_offset);
2008 pst->n_static_syms = objfile->static_psymbols.next -
2009 (objfile->static_psymbols.list + pst->statics_offset);
2010 sort_pst_symbols (pst);
2011
2012 /* If there is already a psymtab or symtab for a file of this
2013 name, remove it. (If there is a symtab, more drastic things
2014 also happen.) This happens in VxWorks. */
2015 if (! this_cu->from_debug_types)
2016 free_named_symtabs (pst->filename);
2017
2018 info_ptr = (beg_of_comp_unit + cu.header.length
2019 + cu.header.initial_length_size);
2020
2021 if (this_cu->from_debug_types)
2022 {
2023 /* It's not clear we want to do anything with stmt lists here.
2024 Waiting to see what gcc ultimately does. */
2025 }
2026 else
2027 {
2028 /* Get the list of files included in the current compilation unit,
2029 and build a psymtab for each of them. */
2030 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
2031 }
2032
2033 do_cleanups (back_to_inner);
2034
2035 return info_ptr;
2036 }
2037
2038 /* Traversal function for htab_traverse_noresize.
2039 Process one .debug_types comp-unit. */
2040
2041 static int
2042 process_type_comp_unit (void **slot, void *info)
2043 {
2044 struct signatured_type *entry = (struct signatured_type *) *slot;
2045 struct objfile *objfile = (struct objfile *) info;
2046 struct dwarf2_per_cu_data *this_cu;
2047
2048 this_cu = &entry->per_cu;
2049 this_cu->from_debug_types = 1;
2050
2051 process_psymtab_comp_unit (objfile, this_cu,
2052 dwarf2_per_objfile->types.buffer,
2053 dwarf2_per_objfile->types.buffer + entry->offset,
2054 dwarf2_per_objfile->types.size);
2055
2056 return 1;
2057 }
2058
2059 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
2060 Build partial symbol tables for the .debug_types comp-units. */
2061
2062 static void
2063 build_type_psymtabs (struct objfile *objfile)
2064 {
2065 if (! create_debug_types_hash_table (objfile))
2066 return;
2067
2068 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
2069 process_type_comp_unit, objfile);
2070 }
2071
2072 /* Build the partial symbol table by doing a quick pass through the
2073 .debug_info and .debug_abbrev sections. */
2074
2075 static void
2076 dwarf2_build_psymtabs_hard (struct objfile *objfile)
2077 {
2078 /* Instead of reading this into a big buffer, we should probably use
2079 mmap() on architectures that support it. (FIXME) */
2080 bfd *abfd = objfile->obfd;
2081 gdb_byte *info_ptr;
2082 struct cleanup *back_to;
2083
2084 info_ptr = dwarf2_per_objfile->info.buffer;
2085
2086 /* Any cached compilation units will be linked by the per-objfile
2087 read_in_chain. Make sure to free them when we're done. */
2088 back_to = make_cleanup (free_cached_comp_units, NULL);
2089
2090 build_type_psymtabs (objfile);
2091
2092 create_all_comp_units (objfile);
2093
2094 objfile->psymtabs_addrmap =
2095 addrmap_create_mutable (&objfile->objfile_obstack);
2096
2097 /* Since the objects we're extracting from .debug_info vary in
2098 length, only the individual functions to extract them (like
2099 read_comp_unit_head and load_partial_die) can really know whether
2100 the buffer is large enough to hold another complete object.
2101
2102 At the moment, they don't actually check that. If .debug_info
2103 holds just one extra byte after the last compilation unit's dies,
2104 then read_comp_unit_head will happily read off the end of the
2105 buffer. read_partial_die is similarly casual. Those functions
2106 should be fixed.
2107
2108 For this loop condition, simply checking whether there's any data
2109 left at all should be sufficient. */
2110
2111 while (info_ptr < (dwarf2_per_objfile->info.buffer
2112 + dwarf2_per_objfile->info.size))
2113 {
2114 struct dwarf2_per_cu_data *this_cu;
2115
2116 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
2117 objfile);
2118
2119 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
2120 dwarf2_per_objfile->info.buffer,
2121 info_ptr,
2122 dwarf2_per_objfile->info.size);
2123 }
2124
2125 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
2126 &objfile->objfile_obstack);
2127
2128 do_cleanups (back_to);
2129 }
2130
2131 /* Load the partial DIEs for a secondary CU into memory. */
2132
2133 static void
2134 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
2135 struct objfile *objfile)
2136 {
2137 bfd *abfd = objfile->obfd;
2138 gdb_byte *info_ptr, *beg_of_comp_unit;
2139 struct die_info *comp_unit_die;
2140 struct dwarf2_cu *cu;
2141 unsigned int bytes_read;
2142 struct cleanup *back_to;
2143 struct attribute *attr;
2144 int has_children;
2145 struct die_reader_specs reader_specs;
2146
2147 gdb_assert (! this_cu->from_debug_types);
2148
2149 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
2150 beg_of_comp_unit = info_ptr;
2151
2152 cu = alloc_one_comp_unit (objfile);
2153
2154 /* ??? Missing cleanup for CU? */
2155
2156 /* Link this compilation unit into the compilation unit tree. */
2157 this_cu->cu = cu;
2158 cu->per_cu = this_cu;
2159 cu->type_hash = this_cu->type_hash;
2160
2161 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
2162 dwarf2_per_objfile->info.buffer,
2163 dwarf2_per_objfile->info.size,
2164 abfd);
2165
2166 /* Complete the cu_header. */
2167 cu->header.offset = this_cu->offset;
2168 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
2169
2170 /* Read the abbrevs for this compilation unit into a table. */
2171 dwarf2_read_abbrevs (abfd, cu);
2172 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2173
2174 /* Read the compilation unit die. */
2175 init_cu_die_reader (&reader_specs, cu);
2176 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2177 &has_children);
2178
2179 /* Set the language we're debugging. */
2180 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
2181 if (attr)
2182 set_cu_language (DW_UNSND (attr), cu);
2183 else
2184 set_cu_language (language_minimal, cu);
2185
2186 /* Check if comp unit has_children.
2187 If so, read the rest of the partial symbols from this comp unit.
2188 If not, there's no more debug_info for this comp unit. */
2189 if (has_children)
2190 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
2191
2192 do_cleanups (back_to);
2193 }
2194
2195 /* Create a list of all compilation units in OBJFILE. We do this only
2196 if an inter-comp-unit reference is found; presumably if there is one,
2197 there will be many, and one will occur early in the .debug_info section.
2198 So there's no point in building this list incrementally. */
2199
2200 static void
2201 create_all_comp_units (struct objfile *objfile)
2202 {
2203 int n_allocated;
2204 int n_comp_units;
2205 struct dwarf2_per_cu_data **all_comp_units;
2206 gdb_byte *info_ptr = dwarf2_per_objfile->info.buffer;
2207
2208 n_comp_units = 0;
2209 n_allocated = 10;
2210 all_comp_units = xmalloc (n_allocated
2211 * sizeof (struct dwarf2_per_cu_data *));
2212
2213 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
2214 {
2215 unsigned int length, initial_length_size;
2216 gdb_byte *beg_of_comp_unit;
2217 struct dwarf2_per_cu_data *this_cu;
2218 unsigned int offset;
2219
2220 offset = info_ptr - dwarf2_per_objfile->info.buffer;
2221
2222 /* Read just enough information to find out where the next
2223 compilation unit is. */
2224 length = read_initial_length (objfile->obfd, info_ptr,
2225 &initial_length_size);
2226
2227 /* Save the compilation unit for later lookup. */
2228 this_cu = obstack_alloc (&objfile->objfile_obstack,
2229 sizeof (struct dwarf2_per_cu_data));
2230 memset (this_cu, 0, sizeof (*this_cu));
2231 this_cu->offset = offset;
2232 this_cu->length = length + initial_length_size;
2233
2234 if (n_comp_units == n_allocated)
2235 {
2236 n_allocated *= 2;
2237 all_comp_units = xrealloc (all_comp_units,
2238 n_allocated
2239 * sizeof (struct dwarf2_per_cu_data *));
2240 }
2241 all_comp_units[n_comp_units++] = this_cu;
2242
2243 info_ptr = info_ptr + this_cu->length;
2244 }
2245
2246 dwarf2_per_objfile->all_comp_units
2247 = obstack_alloc (&objfile->objfile_obstack,
2248 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2249 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
2250 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2251 xfree (all_comp_units);
2252 dwarf2_per_objfile->n_comp_units = n_comp_units;
2253 }
2254
2255 /* Process all loaded DIEs for compilation unit CU, starting at
2256 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
2257 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
2258 DW_AT_ranges). If NEED_PC is set, then this function will set
2259 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
2260 and record the covered ranges in the addrmap. */
2261
2262 static void
2263 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
2264 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
2265 {
2266 struct objfile *objfile = cu->objfile;
2267 bfd *abfd = objfile->obfd;
2268 struct partial_die_info *pdi;
2269
2270 /* Now, march along the PDI's, descending into ones which have
2271 interesting children but skipping the children of the other ones,
2272 until we reach the end of the compilation unit. */
2273
2274 pdi = first_die;
2275
2276 while (pdi != NULL)
2277 {
2278 fixup_partial_die (pdi, cu);
2279
2280 /* Anonymous namespaces have no name but have interesting
2281 children, so we need to look at them. Ditto for anonymous
2282 enums. */
2283
2284 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
2285 || pdi->tag == DW_TAG_enumeration_type)
2286 {
2287 switch (pdi->tag)
2288 {
2289 case DW_TAG_subprogram:
2290 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
2291 break;
2292 case DW_TAG_variable:
2293 case DW_TAG_typedef:
2294 case DW_TAG_union_type:
2295 if (!pdi->is_declaration)
2296 {
2297 add_partial_symbol (pdi, cu);
2298 }
2299 break;
2300 case DW_TAG_class_type:
2301 case DW_TAG_interface_type:
2302 case DW_TAG_structure_type:
2303 if (!pdi->is_declaration)
2304 {
2305 add_partial_symbol (pdi, cu);
2306 }
2307 break;
2308 case DW_TAG_enumeration_type:
2309 if (!pdi->is_declaration)
2310 add_partial_enumeration (pdi, cu);
2311 break;
2312 case DW_TAG_base_type:
2313 case DW_TAG_subrange_type:
2314 /* File scope base type definitions are added to the partial
2315 symbol table. */
2316 add_partial_symbol (pdi, cu);
2317 break;
2318 case DW_TAG_namespace:
2319 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
2320 break;
2321 case DW_TAG_module:
2322 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
2323 break;
2324 default:
2325 break;
2326 }
2327 }
2328
2329 /* If the die has a sibling, skip to the sibling. */
2330
2331 pdi = pdi->die_sibling;
2332 }
2333 }
2334
2335 /* Functions used to compute the fully scoped name of a partial DIE.
2336
2337 Normally, this is simple. For C++, the parent DIE's fully scoped
2338 name is concatenated with "::" and the partial DIE's name. For
2339 Java, the same thing occurs except that "." is used instead of "::".
2340 Enumerators are an exception; they use the scope of their parent
2341 enumeration type, i.e. the name of the enumeration type is not
2342 prepended to the enumerator.
2343
2344 There are two complexities. One is DW_AT_specification; in this
2345 case "parent" means the parent of the target of the specification,
2346 instead of the direct parent of the DIE. The other is compilers
2347 which do not emit DW_TAG_namespace; in this case we try to guess
2348 the fully qualified name of structure types from their members'
2349 linkage names. This must be done using the DIE's children rather
2350 than the children of any DW_AT_specification target. We only need
2351 to do this for structures at the top level, i.e. if the target of
2352 any DW_AT_specification (if any; otherwise the DIE itself) does not
2353 have a parent. */
2354
2355 /* Compute the scope prefix associated with PDI's parent, in
2356 compilation unit CU. The result will be allocated on CU's
2357 comp_unit_obstack, or a copy of the already allocated PDI->NAME
2358 field. NULL is returned if no prefix is necessary. */
2359 static char *
2360 partial_die_parent_scope (struct partial_die_info *pdi,
2361 struct dwarf2_cu *cu)
2362 {
2363 char *grandparent_scope;
2364 struct partial_die_info *parent, *real_pdi;
2365
2366 /* We need to look at our parent DIE; if we have a DW_AT_specification,
2367 then this means the parent of the specification DIE. */
2368
2369 real_pdi = pdi;
2370 while (real_pdi->has_specification)
2371 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2372
2373 parent = real_pdi->die_parent;
2374 if (parent == NULL)
2375 return NULL;
2376
2377 if (parent->scope_set)
2378 return parent->scope;
2379
2380 fixup_partial_die (parent, cu);
2381
2382 grandparent_scope = partial_die_parent_scope (parent, cu);
2383
2384 if (parent->tag == DW_TAG_namespace
2385 || parent->tag == DW_TAG_structure_type
2386 || parent->tag == DW_TAG_class_type
2387 || parent->tag == DW_TAG_interface_type
2388 || parent->tag == DW_TAG_union_type)
2389 {
2390 if (grandparent_scope == NULL)
2391 parent->scope = parent->name;
2392 else
2393 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
2394 parent->name, cu);
2395 }
2396 else if (parent->tag == DW_TAG_enumeration_type)
2397 /* Enumerators should not get the name of the enumeration as a prefix. */
2398 parent->scope = grandparent_scope;
2399 else
2400 {
2401 /* FIXME drow/2004-04-01: What should we be doing with
2402 function-local names? For partial symbols, we should probably be
2403 ignoring them. */
2404 complaint (&symfile_complaints,
2405 _("unhandled containing DIE tag %d for DIE at %d"),
2406 parent->tag, pdi->offset);
2407 parent->scope = grandparent_scope;
2408 }
2409
2410 parent->scope_set = 1;
2411 return parent->scope;
2412 }
2413
2414 /* Return the fully scoped name associated with PDI, from compilation unit
2415 CU. The result will be allocated with malloc. */
2416 static char *
2417 partial_die_full_name (struct partial_die_info *pdi,
2418 struct dwarf2_cu *cu)
2419 {
2420 char *parent_scope;
2421
2422 parent_scope = partial_die_parent_scope (pdi, cu);
2423 if (parent_scope == NULL)
2424 return NULL;
2425 else
2426 return typename_concat (NULL, parent_scope, pdi->name, cu);
2427 }
2428
2429 static void
2430 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
2431 {
2432 struct objfile *objfile = cu->objfile;
2433 CORE_ADDR addr = 0;
2434 char *actual_name = NULL;
2435 const char *my_prefix;
2436 const struct partial_symbol *psym = NULL;
2437 CORE_ADDR baseaddr;
2438 int built_actual_name = 0;
2439
2440 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2441
2442 if (pdi_needs_namespace (pdi->tag))
2443 {
2444 actual_name = partial_die_full_name (pdi, cu);
2445 if (actual_name)
2446 built_actual_name = 1;
2447 }
2448
2449 if (actual_name == NULL)
2450 actual_name = pdi->name;
2451
2452 switch (pdi->tag)
2453 {
2454 case DW_TAG_subprogram:
2455 if (pdi->is_external || cu->language == language_ada)
2456 {
2457 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
2458 of the global scope. But in Ada, we want to be able to access
2459 nested procedures globally. So all Ada subprograms are stored
2460 in the global scope. */
2461 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
2462 mst_text, objfile); */
2463 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2464 built_actual_name,
2465 VAR_DOMAIN, LOC_BLOCK,
2466 &objfile->global_psymbols,
2467 0, pdi->lowpc + baseaddr,
2468 cu->language, objfile);
2469 }
2470 else
2471 {
2472 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
2473 mst_file_text, objfile); */
2474 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2475 built_actual_name,
2476 VAR_DOMAIN, LOC_BLOCK,
2477 &objfile->static_psymbols,
2478 0, pdi->lowpc + baseaddr,
2479 cu->language, objfile);
2480 }
2481 break;
2482 case DW_TAG_variable:
2483 if (pdi->is_external)
2484 {
2485 /* Global Variable.
2486 Don't enter into the minimal symbol tables as there is
2487 a minimal symbol table entry from the ELF symbols already.
2488 Enter into partial symbol table if it has a location
2489 descriptor or a type.
2490 If the location descriptor is missing, new_symbol will create
2491 a LOC_UNRESOLVED symbol, the address of the variable will then
2492 be determined from the minimal symbol table whenever the variable
2493 is referenced.
2494 The address for the partial symbol table entry is not
2495 used by GDB, but it comes in handy for debugging partial symbol
2496 table building. */
2497
2498 if (pdi->locdesc)
2499 addr = decode_locdesc (pdi->locdesc, cu);
2500 if (pdi->locdesc || pdi->has_type)
2501 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2502 built_actual_name,
2503 VAR_DOMAIN, LOC_STATIC,
2504 &objfile->global_psymbols,
2505 0, addr + baseaddr,
2506 cu->language, objfile);
2507 }
2508 else
2509 {
2510 /* Static Variable. Skip symbols without location descriptors. */
2511 if (pdi->locdesc == NULL)
2512 {
2513 if (built_actual_name)
2514 xfree (actual_name);
2515 return;
2516 }
2517 addr = decode_locdesc (pdi->locdesc, cu);
2518 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
2519 mst_file_data, objfile); */
2520 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2521 built_actual_name,
2522 VAR_DOMAIN, LOC_STATIC,
2523 &objfile->static_psymbols,
2524 0, addr + baseaddr,
2525 cu->language, objfile);
2526 }
2527 break;
2528 case DW_TAG_typedef:
2529 case DW_TAG_base_type:
2530 case DW_TAG_subrange_type:
2531 add_psymbol_to_list (actual_name, strlen (actual_name),
2532 built_actual_name,
2533 VAR_DOMAIN, LOC_TYPEDEF,
2534 &objfile->static_psymbols,
2535 0, (CORE_ADDR) 0, cu->language, objfile);
2536 break;
2537 case DW_TAG_namespace:
2538 add_psymbol_to_list (actual_name, strlen (actual_name),
2539 built_actual_name,
2540 VAR_DOMAIN, LOC_TYPEDEF,
2541 &objfile->global_psymbols,
2542 0, (CORE_ADDR) 0, cu->language, objfile);
2543 break;
2544 case DW_TAG_class_type:
2545 case DW_TAG_interface_type:
2546 case DW_TAG_structure_type:
2547 case DW_TAG_union_type:
2548 case DW_TAG_enumeration_type:
2549 /* Skip external references. The DWARF standard says in the section
2550 about "Structure, Union, and Class Type Entries": "An incomplete
2551 structure, union or class type is represented by a structure,
2552 union or class entry that does not have a byte size attribute
2553 and that has a DW_AT_declaration attribute." */
2554 if (!pdi->has_byte_size && pdi->is_declaration)
2555 {
2556 if (built_actual_name)
2557 xfree (actual_name);
2558 return;
2559 }
2560
2561 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2562 static vs. global. */
2563 add_psymbol_to_list (actual_name, strlen (actual_name),
2564 built_actual_name,
2565 STRUCT_DOMAIN, LOC_TYPEDEF,
2566 (cu->language == language_cplus
2567 || cu->language == language_java)
2568 ? &objfile->global_psymbols
2569 : &objfile->static_psymbols,
2570 0, (CORE_ADDR) 0, cu->language, objfile);
2571
2572 break;
2573 case DW_TAG_enumerator:
2574 add_psymbol_to_list (actual_name, strlen (actual_name),
2575 built_actual_name,
2576 VAR_DOMAIN, LOC_CONST,
2577 (cu->language == language_cplus
2578 || cu->language == language_java)
2579 ? &objfile->global_psymbols
2580 : &objfile->static_psymbols,
2581 0, (CORE_ADDR) 0, cu->language, objfile);
2582 break;
2583 default:
2584 break;
2585 }
2586
2587 /* Check to see if we should scan the name for possible namespace
2588 info. Only do this if this is C++, if we don't have namespace
2589 debugging info in the file, if the psym is of an appropriate type
2590 (otherwise we'll have psym == NULL), and if we actually had a
2591 mangled name to begin with. */
2592
2593 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2594 cases which do not set PSYM above? */
2595
2596 if (cu->language == language_cplus
2597 && cu->has_namespace_info == 0
2598 && psym != NULL
2599 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2600 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2601 objfile);
2602
2603 if (built_actual_name)
2604 xfree (actual_name);
2605 }
2606
2607 /* Determine whether a die of type TAG living in a C++ class or
2608 namespace needs to have the name of the scope prepended to the
2609 name listed in the die. */
2610
2611 static int
2612 pdi_needs_namespace (enum dwarf_tag tag)
2613 {
2614 switch (tag)
2615 {
2616 case DW_TAG_namespace:
2617 case DW_TAG_typedef:
2618 case DW_TAG_class_type:
2619 case DW_TAG_interface_type:
2620 case DW_TAG_structure_type:
2621 case DW_TAG_union_type:
2622 case DW_TAG_enumeration_type:
2623 case DW_TAG_enumerator:
2624 return 1;
2625 default:
2626 return 0;
2627 }
2628 }
2629
2630 /* Read a partial die corresponding to a namespace; also, add a symbol
2631 corresponding to that namespace to the symbol table. NAMESPACE is
2632 the name of the enclosing namespace. */
2633
2634 static void
2635 add_partial_namespace (struct partial_die_info *pdi,
2636 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2637 int need_pc, struct dwarf2_cu *cu)
2638 {
2639 struct objfile *objfile = cu->objfile;
2640
2641 /* Add a symbol for the namespace. */
2642
2643 add_partial_symbol (pdi, cu);
2644
2645 /* Now scan partial symbols in that namespace. */
2646
2647 if (pdi->has_children)
2648 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
2649 }
2650
2651 /* Read a partial die corresponding to a Fortran module. */
2652
2653 static void
2654 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
2655 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
2656 {
2657 /* Now scan partial symbols in that module.
2658
2659 FIXME: Support the separate Fortran module namespaces. */
2660
2661 if (pdi->has_children)
2662 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
2663 }
2664
2665 /* Read a partial die corresponding to a subprogram and create a partial
2666 symbol for that subprogram. When the CU language allows it, this
2667 routine also defines a partial symbol for each nested subprogram
2668 that this subprogram contains.
2669
2670 DIE my also be a lexical block, in which case we simply search
2671 recursively for suprograms defined inside that lexical block.
2672 Again, this is only performed when the CU language allows this
2673 type of definitions. */
2674
2675 static void
2676 add_partial_subprogram (struct partial_die_info *pdi,
2677 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2678 int need_pc, struct dwarf2_cu *cu)
2679 {
2680 if (pdi->tag == DW_TAG_subprogram)
2681 {
2682 if (pdi->has_pc_info)
2683 {
2684 if (pdi->lowpc < *lowpc)
2685 *lowpc = pdi->lowpc;
2686 if (pdi->highpc > *highpc)
2687 *highpc = pdi->highpc;
2688 if (need_pc)
2689 {
2690 CORE_ADDR baseaddr;
2691 struct objfile *objfile = cu->objfile;
2692
2693 baseaddr = ANOFFSET (objfile->section_offsets,
2694 SECT_OFF_TEXT (objfile));
2695 addrmap_set_empty (objfile->psymtabs_addrmap,
2696 pdi->lowpc, pdi->highpc - 1,
2697 cu->per_cu->psymtab);
2698 }
2699 if (!pdi->is_declaration)
2700 add_partial_symbol (pdi, cu);
2701 }
2702 }
2703
2704 if (! pdi->has_children)
2705 return;
2706
2707 if (cu->language == language_ada)
2708 {
2709 pdi = pdi->die_child;
2710 while (pdi != NULL)
2711 {
2712 fixup_partial_die (pdi, cu);
2713 if (pdi->tag == DW_TAG_subprogram
2714 || pdi->tag == DW_TAG_lexical_block)
2715 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
2716 pdi = pdi->die_sibling;
2717 }
2718 }
2719 }
2720
2721 /* See if we can figure out if the class lives in a namespace. We do
2722 this by looking for a member function; its demangled name will
2723 contain namespace info, if there is any. */
2724
2725 static void
2726 guess_structure_name (struct partial_die_info *struct_pdi,
2727 struct dwarf2_cu *cu)
2728 {
2729 if ((cu->language == language_cplus
2730 || cu->language == language_java)
2731 && cu->has_namespace_info == 0
2732 && struct_pdi->has_children)
2733 {
2734 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2735 what template types look like, because the demangler
2736 frequently doesn't give the same name as the debug info. We
2737 could fix this by only using the demangled name to get the
2738 prefix (but see comment in read_structure_type). */
2739
2740 struct partial_die_info *child_pdi = struct_pdi->die_child;
2741 struct partial_die_info *real_pdi;
2742
2743 /* If this DIE (this DIE's specification, if any) has a parent, then
2744 we should not do this. We'll prepend the parent's fully qualified
2745 name when we create the partial symbol. */
2746
2747 real_pdi = struct_pdi;
2748 while (real_pdi->has_specification)
2749 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2750
2751 if (real_pdi->die_parent != NULL)
2752 return;
2753
2754 while (child_pdi != NULL)
2755 {
2756 if (child_pdi->tag == DW_TAG_subprogram)
2757 {
2758 char *actual_class_name
2759 = language_class_name_from_physname (cu->language_defn,
2760 child_pdi->name);
2761 if (actual_class_name != NULL)
2762 {
2763 struct_pdi->name
2764 = obsavestring (actual_class_name,
2765 strlen (actual_class_name),
2766 &cu->comp_unit_obstack);
2767 xfree (actual_class_name);
2768 }
2769 break;
2770 }
2771
2772 child_pdi = child_pdi->die_sibling;
2773 }
2774 }
2775 }
2776
2777 /* Read a partial die corresponding to an enumeration type. */
2778
2779 static void
2780 add_partial_enumeration (struct partial_die_info *enum_pdi,
2781 struct dwarf2_cu *cu)
2782 {
2783 struct objfile *objfile = cu->objfile;
2784 bfd *abfd = objfile->obfd;
2785 struct partial_die_info *pdi;
2786
2787 if (enum_pdi->name != NULL)
2788 add_partial_symbol (enum_pdi, cu);
2789
2790 pdi = enum_pdi->die_child;
2791 while (pdi)
2792 {
2793 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2794 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2795 else
2796 add_partial_symbol (pdi, cu);
2797 pdi = pdi->die_sibling;
2798 }
2799 }
2800
2801 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2802 Return the corresponding abbrev, or NULL if the number is zero (indicating
2803 an empty DIE). In either case *BYTES_READ will be set to the length of
2804 the initial number. */
2805
2806 static struct abbrev_info *
2807 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2808 struct dwarf2_cu *cu)
2809 {
2810 bfd *abfd = cu->objfile->obfd;
2811 unsigned int abbrev_number;
2812 struct abbrev_info *abbrev;
2813
2814 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2815
2816 if (abbrev_number == 0)
2817 return NULL;
2818
2819 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2820 if (!abbrev)
2821 {
2822 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2823 bfd_get_filename (abfd));
2824 }
2825
2826 return abbrev;
2827 }
2828
2829 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2830 Returns a pointer to the end of a series of DIEs, terminated by an empty
2831 DIE. Any children of the skipped DIEs will also be skipped. */
2832
2833 static gdb_byte *
2834 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
2835 {
2836 struct abbrev_info *abbrev;
2837 unsigned int bytes_read;
2838
2839 while (1)
2840 {
2841 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2842 if (abbrev == NULL)
2843 return info_ptr + bytes_read;
2844 else
2845 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
2846 }
2847 }
2848
2849 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2850 INFO_PTR should point just after the initial uleb128 of a DIE, and the
2851 abbrev corresponding to that skipped uleb128 should be passed in
2852 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2853 children. */
2854
2855 static gdb_byte *
2856 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
2857 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
2858 {
2859 unsigned int bytes_read;
2860 struct attribute attr;
2861 bfd *abfd = cu->objfile->obfd;
2862 unsigned int form, i;
2863
2864 for (i = 0; i < abbrev->num_attrs; i++)
2865 {
2866 /* The only abbrev we care about is DW_AT_sibling. */
2867 if (abbrev->attrs[i].name == DW_AT_sibling)
2868 {
2869 read_attribute (&attr, &abbrev->attrs[i],
2870 abfd, info_ptr, cu);
2871 if (attr.form == DW_FORM_ref_addr)
2872 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2873 else
2874 return buffer + dwarf2_get_ref_die_offset (&attr);
2875 }
2876
2877 /* If it isn't DW_AT_sibling, skip this attribute. */
2878 form = abbrev->attrs[i].form;
2879 skip_attribute:
2880 switch (form)
2881 {
2882 case DW_FORM_addr:
2883 case DW_FORM_ref_addr:
2884 info_ptr += cu->header.addr_size;
2885 break;
2886 case DW_FORM_data1:
2887 case DW_FORM_ref1:
2888 case DW_FORM_flag:
2889 info_ptr += 1;
2890 break;
2891 case DW_FORM_data2:
2892 case DW_FORM_ref2:
2893 info_ptr += 2;
2894 break;
2895 case DW_FORM_data4:
2896 case DW_FORM_ref4:
2897 info_ptr += 4;
2898 break;
2899 case DW_FORM_data8:
2900 case DW_FORM_ref8:
2901 case DW_FORM_sig8:
2902 info_ptr += 8;
2903 break;
2904 case DW_FORM_string:
2905 read_string (abfd, info_ptr, &bytes_read);
2906 info_ptr += bytes_read;
2907 break;
2908 case DW_FORM_strp:
2909 info_ptr += cu->header.offset_size;
2910 break;
2911 case DW_FORM_block:
2912 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2913 info_ptr += bytes_read;
2914 break;
2915 case DW_FORM_block1:
2916 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2917 break;
2918 case DW_FORM_block2:
2919 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2920 break;
2921 case DW_FORM_block4:
2922 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2923 break;
2924 case DW_FORM_sdata:
2925 case DW_FORM_udata:
2926 case DW_FORM_ref_udata:
2927 info_ptr = skip_leb128 (abfd, info_ptr);
2928 break;
2929 case DW_FORM_indirect:
2930 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2931 info_ptr += bytes_read;
2932 /* We need to continue parsing from here, so just go back to
2933 the top. */
2934 goto skip_attribute;
2935
2936 default:
2937 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2938 dwarf_form_name (form),
2939 bfd_get_filename (abfd));
2940 }
2941 }
2942
2943 if (abbrev->has_children)
2944 return skip_children (buffer, info_ptr, cu);
2945 else
2946 return info_ptr;
2947 }
2948
2949 /* Locate ORIG_PDI's sibling.
2950 INFO_PTR should point to the start of the next DIE after ORIG_PDI
2951 in BUFFER. */
2952
2953 static gdb_byte *
2954 locate_pdi_sibling (struct partial_die_info *orig_pdi,
2955 gdb_byte *buffer, gdb_byte *info_ptr,
2956 bfd *abfd, struct dwarf2_cu *cu)
2957 {
2958 /* Do we know the sibling already? */
2959
2960 if (orig_pdi->sibling)
2961 return orig_pdi->sibling;
2962
2963 /* Are there any children to deal with? */
2964
2965 if (!orig_pdi->has_children)
2966 return info_ptr;
2967
2968 /* Skip the children the long way. */
2969
2970 return skip_children (buffer, info_ptr, cu);
2971 }
2972
2973 /* Expand this partial symbol table into a full symbol table. */
2974
2975 static void
2976 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2977 {
2978 /* FIXME: This is barely more than a stub. */
2979 if (pst != NULL)
2980 {
2981 if (pst->readin)
2982 {
2983 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2984 }
2985 else
2986 {
2987 if (info_verbose)
2988 {
2989 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2990 gdb_flush (gdb_stdout);
2991 }
2992
2993 /* Restore our global data. */
2994 dwarf2_per_objfile = objfile_data (pst->objfile,
2995 dwarf2_objfile_data_key);
2996
2997 /* If this psymtab is constructed from a debug-only objfile, the
2998 has_section_at_zero flag will not necessarily be correct. We
2999 can get the correct value for this flag by looking at the data
3000 associated with the (presumably stripped) associated objfile. */
3001 if (pst->objfile->separate_debug_objfile_backlink)
3002 {
3003 struct dwarf2_per_objfile *dpo_backlink
3004 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
3005 dwarf2_objfile_data_key);
3006 dwarf2_per_objfile->has_section_at_zero
3007 = dpo_backlink->has_section_at_zero;
3008 }
3009
3010 psymtab_to_symtab_1 (pst);
3011
3012 /* Finish up the debug error message. */
3013 if (info_verbose)
3014 printf_filtered (_("done.\n"));
3015 }
3016 }
3017 }
3018
3019 /* Add PER_CU to the queue. */
3020
3021 static void
3022 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
3023 {
3024 struct dwarf2_queue_item *item;
3025
3026 per_cu->queued = 1;
3027 item = xmalloc (sizeof (*item));
3028 item->per_cu = per_cu;
3029 item->next = NULL;
3030
3031 if (dwarf2_queue == NULL)
3032 dwarf2_queue = item;
3033 else
3034 dwarf2_queue_tail->next = item;
3035
3036 dwarf2_queue_tail = item;
3037 }
3038
3039 /* Process the queue. */
3040
3041 static void
3042 process_queue (struct objfile *objfile)
3043 {
3044 struct dwarf2_queue_item *item, *next_item;
3045
3046 /* The queue starts out with one item, but following a DIE reference
3047 may load a new CU, adding it to the end of the queue. */
3048 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
3049 {
3050 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
3051 process_full_comp_unit (item->per_cu);
3052
3053 item->per_cu->queued = 0;
3054 next_item = item->next;
3055 xfree (item);
3056 }
3057
3058 dwarf2_queue_tail = NULL;
3059 }
3060
3061 /* Free all allocated queue entries. This function only releases anything if
3062 an error was thrown; if the queue was processed then it would have been
3063 freed as we went along. */
3064
3065 static void
3066 dwarf2_release_queue (void *dummy)
3067 {
3068 struct dwarf2_queue_item *item, *last;
3069
3070 item = dwarf2_queue;
3071 while (item)
3072 {
3073 /* Anything still marked queued is likely to be in an
3074 inconsistent state, so discard it. */
3075 if (item->per_cu->queued)
3076 {
3077 if (item->per_cu->cu != NULL)
3078 free_one_cached_comp_unit (item->per_cu->cu);
3079 item->per_cu->queued = 0;
3080 }
3081
3082 last = item;
3083 item = item->next;
3084 xfree (last);
3085 }
3086
3087 dwarf2_queue = dwarf2_queue_tail = NULL;
3088 }
3089
3090 /* Read in full symbols for PST, and anything it depends on. */
3091
3092 static void
3093 psymtab_to_symtab_1 (struct partial_symtab *pst)
3094 {
3095 struct dwarf2_per_cu_data *per_cu;
3096 struct cleanup *back_to;
3097 int i;
3098
3099 for (i = 0; i < pst->number_of_dependencies; i++)
3100 if (!pst->dependencies[i]->readin)
3101 {
3102 /* Inform about additional files that need to be read in. */
3103 if (info_verbose)
3104 {
3105 /* FIXME: i18n: Need to make this a single string. */
3106 fputs_filtered (" ", gdb_stdout);
3107 wrap_here ("");
3108 fputs_filtered ("and ", gdb_stdout);
3109 wrap_here ("");
3110 printf_filtered ("%s...", pst->dependencies[i]->filename);
3111 wrap_here (""); /* Flush output */
3112 gdb_flush (gdb_stdout);
3113 }
3114 psymtab_to_symtab_1 (pst->dependencies[i]);
3115 }
3116
3117 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
3118
3119 if (per_cu == NULL)
3120 {
3121 /* It's an include file, no symbols to read for it.
3122 Everything is in the parent symtab. */
3123 pst->readin = 1;
3124 return;
3125 }
3126
3127 back_to = make_cleanup (dwarf2_release_queue, NULL);
3128
3129 queue_comp_unit (per_cu, pst->objfile);
3130
3131 if (per_cu->from_debug_types)
3132 read_signatured_type_at_offset (pst->objfile, per_cu->offset);
3133 else
3134 load_full_comp_unit (per_cu, pst->objfile);
3135
3136 process_queue (pst->objfile);
3137
3138 /* Age the cache, releasing compilation units that have not
3139 been used recently. */
3140 age_cached_comp_units ();
3141
3142 do_cleanups (back_to);
3143 }
3144
3145 /* Load the DIEs associated with PER_CU into memory. */
3146
3147 static void
3148 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
3149 {
3150 bfd *abfd = objfile->obfd;
3151 struct dwarf2_cu *cu;
3152 unsigned int offset;
3153 gdb_byte *info_ptr, *beg_of_comp_unit;
3154 struct cleanup *back_to, *free_cu_cleanup;
3155 struct attribute *attr;
3156 CORE_ADDR baseaddr;
3157
3158 gdb_assert (! per_cu->from_debug_types);
3159
3160 /* Set local variables from the partial symbol table info. */
3161 offset = per_cu->offset;
3162
3163 info_ptr = dwarf2_per_objfile->info.buffer + offset;
3164 beg_of_comp_unit = info_ptr;
3165
3166 cu = alloc_one_comp_unit (objfile);
3167
3168 /* If an error occurs while loading, release our storage. */
3169 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3170
3171 /* Read in the comp_unit header. */
3172 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
3173
3174 /* Complete the cu_header. */
3175 cu->header.offset = offset;
3176 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3177
3178 /* Read the abbrevs for this compilation unit. */
3179 dwarf2_read_abbrevs (abfd, cu);
3180 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
3181
3182 /* Link this compilation unit into the compilation unit tree. */
3183 per_cu->cu = cu;
3184 cu->per_cu = per_cu;
3185 cu->type_hash = per_cu->type_hash;
3186
3187 cu->dies = read_comp_unit (info_ptr, cu);
3188
3189 /* We try not to read any attributes in this function, because not
3190 all objfiles needed for references have been loaded yet, and symbol
3191 table processing isn't initialized. But we have to set the CU language,
3192 or we won't be able to build types correctly. */
3193 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
3194 if (attr)
3195 set_cu_language (DW_UNSND (attr), cu);
3196 else
3197 set_cu_language (language_minimal, cu);
3198
3199 /* Link this CU into read_in_chain. */
3200 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3201 dwarf2_per_objfile->read_in_chain = per_cu;
3202
3203 do_cleanups (back_to);
3204
3205 /* We've successfully allocated this compilation unit. Let our caller
3206 clean it up when finished with it. */
3207 discard_cleanups (free_cu_cleanup);
3208 }
3209
3210 /* Generate full symbol information for PST and CU, whose DIEs have
3211 already been loaded into memory. */
3212
3213 static void
3214 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
3215 {
3216 struct partial_symtab *pst = per_cu->psymtab;
3217 struct dwarf2_cu *cu = per_cu->cu;
3218 struct objfile *objfile = pst->objfile;
3219 bfd *abfd = objfile->obfd;
3220 CORE_ADDR lowpc, highpc;
3221 struct symtab *symtab;
3222 struct cleanup *back_to;
3223 CORE_ADDR baseaddr;
3224
3225 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3226
3227 buildsym_init ();
3228 back_to = make_cleanup (really_free_pendings, NULL);
3229
3230 cu->list_in_scope = &file_symbols;
3231
3232 dwarf2_find_base_address (cu->dies, cu);
3233
3234 /* Do line number decoding in read_file_scope () */
3235 process_die (cu->dies, cu);
3236
3237 /* Some compilers don't define a DW_AT_high_pc attribute for the
3238 compilation unit. If the DW_AT_high_pc is missing, synthesize
3239 it, by scanning the DIE's below the compilation unit. */
3240 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
3241
3242 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
3243
3244 /* Set symtab language to language from DW_AT_language.
3245 If the compilation is from a C file generated by language preprocessors,
3246 do not set the language if it was already deduced by start_subfile. */
3247 if (symtab != NULL
3248 && !(cu->language == language_c && symtab->language != language_c))
3249 {
3250 symtab->language = cu->language;
3251 }
3252 pst->symtab = symtab;
3253 pst->readin = 1;
3254
3255 do_cleanups (back_to);
3256 }
3257
3258 /* Process a die and its children. */
3259
3260 static void
3261 process_die (struct die_info *die, struct dwarf2_cu *cu)
3262 {
3263 switch (die->tag)
3264 {
3265 case DW_TAG_padding:
3266 break;
3267 case DW_TAG_compile_unit:
3268 read_file_scope (die, cu);
3269 break;
3270 case DW_TAG_type_unit:
3271 read_type_unit_scope (die, cu);
3272 break;
3273 case DW_TAG_subprogram:
3274 case DW_TAG_inlined_subroutine:
3275 read_func_scope (die, cu);
3276 break;
3277 case DW_TAG_lexical_block:
3278 case DW_TAG_try_block:
3279 case DW_TAG_catch_block:
3280 read_lexical_block_scope (die, cu);
3281 break;
3282 case DW_TAG_class_type:
3283 case DW_TAG_interface_type:
3284 case DW_TAG_structure_type:
3285 case DW_TAG_union_type:
3286 process_structure_scope (die, cu);
3287 break;
3288 case DW_TAG_enumeration_type:
3289 process_enumeration_scope (die, cu);
3290 break;
3291
3292 /* These dies have a type, but processing them does not create
3293 a symbol or recurse to process the children. Therefore we can
3294 read them on-demand through read_type_die. */
3295 case DW_TAG_subroutine_type:
3296 case DW_TAG_set_type:
3297 case DW_TAG_array_type:
3298 case DW_TAG_pointer_type:
3299 case DW_TAG_ptr_to_member_type:
3300 case DW_TAG_reference_type:
3301 case DW_TAG_string_type:
3302 break;
3303
3304 case DW_TAG_base_type:
3305 case DW_TAG_subrange_type:
3306 case DW_TAG_typedef:
3307 /* Add a typedef symbol for the type definition, if it has a
3308 DW_AT_name. */
3309 new_symbol (die, read_type_die (die, cu), cu);
3310 break;
3311 case DW_TAG_common_block:
3312 read_common_block (die, cu);
3313 break;
3314 case DW_TAG_common_inclusion:
3315 break;
3316 case DW_TAG_namespace:
3317 processing_has_namespace_info = 1;
3318 read_namespace (die, cu);
3319 break;
3320 case DW_TAG_module:
3321 read_module (die, cu);
3322 break;
3323 case DW_TAG_imported_declaration:
3324 case DW_TAG_imported_module:
3325 processing_has_namespace_info = 1;
3326 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
3327 || cu->language != language_fortran))
3328 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
3329 dwarf_tag_name (die->tag));
3330 read_import_statement (die, cu);
3331 break;
3332 default:
3333 new_symbol (die, NULL, cu);
3334 break;
3335 }
3336 }
3337
3338 /* Return the fully qualified name of DIE, based on its DW_AT_name.
3339 If scope qualifiers are appropriate they will be added. The result
3340 will be allocated on the objfile_obstack, or NULL if the DIE does
3341 not have a name. */
3342
3343 static const char *
3344 dwarf2_full_name (struct die_info *die, struct dwarf2_cu *cu)
3345 {
3346 struct attribute *attr;
3347 char *prefix, *name;
3348 struct ui_file *buf = NULL;
3349
3350 name = dwarf2_name (die, cu);
3351 if (!name)
3352 return NULL;
3353
3354 /* These are the only languages we know how to qualify names in. */
3355 if (cu->language != language_cplus
3356 && cu->language != language_java)
3357 return name;
3358
3359 /* If no prefix is necessary for this type of DIE, return the
3360 unqualified name. The other three tags listed could be handled
3361 in pdi_needs_namespace, but that requires broader changes. */
3362 if (!pdi_needs_namespace (die->tag)
3363 && die->tag != DW_TAG_subprogram
3364 && die->tag != DW_TAG_variable
3365 && die->tag != DW_TAG_member)
3366 return name;
3367
3368 prefix = determine_prefix (die, cu);
3369 if (*prefix != '\0')
3370 name = typename_concat (&cu->objfile->objfile_obstack, prefix,
3371 name, cu);
3372
3373 return name;
3374 }
3375
3376 /* Read the import statement specified by the given die and record it. */
3377
3378 static void
3379 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
3380 {
3381 struct attribute *import_attr;
3382 struct die_info *imported_die;
3383 struct dwarf2_cu *imported_cu;
3384 const char *imported_name;
3385 const char *imported_name_prefix;
3386 const char *import_prefix;
3387 char *canonical_name;
3388
3389 import_attr = dwarf2_attr (die, DW_AT_import, cu);
3390 if (import_attr == NULL)
3391 {
3392 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
3393 dwarf_tag_name (die->tag));
3394 return;
3395 }
3396
3397 imported_cu = cu;
3398 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
3399 imported_name = dwarf2_name (imported_die, imported_cu);
3400 if (imported_name == NULL)
3401 {
3402 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
3403
3404 The import in the following code:
3405 namespace A
3406 {
3407 typedef int B;
3408 }
3409
3410 int main ()
3411 {
3412 using A::B;
3413 B b;
3414 return b;
3415 }
3416
3417 ...
3418 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
3419 <52> DW_AT_decl_file : 1
3420 <53> DW_AT_decl_line : 6
3421 <54> DW_AT_import : <0x75>
3422 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
3423 <59> DW_AT_name : B
3424 <5b> DW_AT_decl_file : 1
3425 <5c> DW_AT_decl_line : 2
3426 <5d> DW_AT_type : <0x6e>
3427 ...
3428 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
3429 <76> DW_AT_byte_size : 4
3430 <77> DW_AT_encoding : 5 (signed)
3431
3432 imports the wrong die ( 0x75 instead of 0x58 ).
3433 This case will be ignored until the gcc bug is fixed. */
3434 return;
3435 }
3436
3437 /* FIXME: dwarf2_name (die); for the local name after import. */
3438
3439 /* Figure out where the statement is being imported to. */
3440 import_prefix = determine_prefix (die, cu);
3441
3442 /* Figure out what the scope of the imported die is and prepend it
3443 to the name of the imported die. */
3444 imported_name_prefix = determine_prefix (imported_die, imported_cu);
3445
3446 if (strlen (imported_name_prefix) > 0)
3447 {
3448 canonical_name = alloca (strlen (imported_name_prefix) + 2 + strlen (imported_name) + 1);
3449 strcpy (canonical_name, imported_name_prefix);
3450 strcat (canonical_name, "::");
3451 strcat (canonical_name, imported_name);
3452 }
3453 else
3454 {
3455 canonical_name = alloca (strlen (imported_name) + 1);
3456 strcpy (canonical_name, imported_name);
3457 }
3458
3459 using_directives = cp_add_using (import_prefix,canonical_name, using_directives);
3460 }
3461
3462 static void
3463 initialize_cu_func_list (struct dwarf2_cu *cu)
3464 {
3465 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
3466 }
3467
3468 static void
3469 free_cu_line_header (void *arg)
3470 {
3471 struct dwarf2_cu *cu = arg;
3472
3473 free_line_header (cu->line_header);
3474 cu->line_header = NULL;
3475 }
3476
3477 static void
3478 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
3479 {
3480 struct objfile *objfile = cu->objfile;
3481 struct comp_unit_head *cu_header = &cu->header;
3482 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3483 CORE_ADDR lowpc = ((CORE_ADDR) -1);
3484 CORE_ADDR highpc = ((CORE_ADDR) 0);
3485 struct attribute *attr;
3486 char *name = NULL;
3487 char *comp_dir = NULL;
3488 struct die_info *child_die;
3489 bfd *abfd = objfile->obfd;
3490 struct line_header *line_header = 0;
3491 CORE_ADDR baseaddr;
3492
3493 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3494
3495 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
3496
3497 /* If we didn't find a lowpc, set it to highpc to avoid complaints
3498 from finish_block. */
3499 if (lowpc == ((CORE_ADDR) -1))
3500 lowpc = highpc;
3501 lowpc += baseaddr;
3502 highpc += baseaddr;
3503
3504 /* Find the filename. Do not use dwarf2_name here, since the filename
3505 is not a source language identifier. */
3506 attr = dwarf2_attr (die, DW_AT_name, cu);
3507 if (attr)
3508 {
3509 name = DW_STRING (attr);
3510 }
3511
3512 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
3513 if (attr)
3514 comp_dir = DW_STRING (attr);
3515 else if (name != NULL && IS_ABSOLUTE_PATH (name))
3516 {
3517 comp_dir = ldirname (name);
3518 if (comp_dir != NULL)
3519 make_cleanup (xfree, comp_dir);
3520 }
3521 if (comp_dir != NULL)
3522 {
3523 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3524 directory, get rid of it. */
3525 char *cp = strchr (comp_dir, ':');
3526
3527 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3528 comp_dir = cp + 1;
3529 }
3530
3531 if (name == NULL)
3532 name = "<unknown>";
3533
3534 attr = dwarf2_attr (die, DW_AT_language, cu);
3535 if (attr)
3536 {
3537 set_cu_language (DW_UNSND (attr), cu);
3538 }
3539
3540 attr = dwarf2_attr (die, DW_AT_producer, cu);
3541 if (attr)
3542 cu->producer = DW_STRING (attr);
3543
3544 /* We assume that we're processing GCC output. */
3545 processing_gcc_compilation = 2;
3546
3547 processing_has_namespace_info = 0;
3548
3549 start_symtab (name, comp_dir, lowpc);
3550 record_debugformat ("DWARF 2");
3551 record_producer (cu->producer);
3552
3553 initialize_cu_func_list (cu);
3554
3555 /* Decode line number information if present. We do this before
3556 processing child DIEs, so that the line header table is available
3557 for DW_AT_decl_file. */
3558 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3559 if (attr)
3560 {
3561 unsigned int line_offset = DW_UNSND (attr);
3562 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
3563 if (line_header)
3564 {
3565 cu->line_header = line_header;
3566 make_cleanup (free_cu_line_header, cu);
3567 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
3568 }
3569 }
3570
3571 /* Process all dies in compilation unit. */
3572 if (die->child != NULL)
3573 {
3574 child_die = die->child;
3575 while (child_die && child_die->tag)
3576 {
3577 process_die (child_die, cu);
3578 child_die = sibling_die (child_die);
3579 }
3580 }
3581
3582 /* Decode macro information, if present. Dwarf 2 macro information
3583 refers to information in the line number info statement program
3584 header, so we can only read it if we've read the header
3585 successfully. */
3586 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
3587 if (attr && line_header)
3588 {
3589 unsigned int macro_offset = DW_UNSND (attr);
3590 dwarf_decode_macros (line_header, macro_offset,
3591 comp_dir, abfd, cu);
3592 }
3593 do_cleanups (back_to);
3594 }
3595
3596 /* For TUs we want to skip the first top level sibling if it's not the
3597 actual type being defined by this TU. In this case the first top
3598 level sibling is there to provide context only. */
3599
3600 static void
3601 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
3602 {
3603 struct objfile *objfile = cu->objfile;
3604 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3605 CORE_ADDR lowpc;
3606 struct attribute *attr;
3607 char *name = NULL;
3608 char *comp_dir = NULL;
3609 struct die_info *child_die;
3610 bfd *abfd = objfile->obfd;
3611 struct line_header *line_header = 0;
3612
3613 /* start_symtab needs a low pc, but we don't really have one.
3614 Do what read_file_scope would do in the absence of such info. */
3615 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3616
3617 /* Find the filename. Do not use dwarf2_name here, since the filename
3618 is not a source language identifier. */
3619 attr = dwarf2_attr (die, DW_AT_name, cu);
3620 if (attr)
3621 name = DW_STRING (attr);
3622
3623 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
3624 if (attr)
3625 comp_dir = DW_STRING (attr);
3626 else if (name != NULL && IS_ABSOLUTE_PATH (name))
3627 {
3628 comp_dir = ldirname (name);
3629 if (comp_dir != NULL)
3630 make_cleanup (xfree, comp_dir);
3631 }
3632
3633 if (name == NULL)
3634 name = "<unknown>";
3635
3636 attr = dwarf2_attr (die, DW_AT_language, cu);
3637 if (attr)
3638 set_cu_language (DW_UNSND (attr), cu);
3639
3640 /* This isn't technically needed today. It is done for symmetry
3641 with read_file_scope. */
3642 attr = dwarf2_attr (die, DW_AT_producer, cu);
3643 if (attr)
3644 cu->producer = DW_STRING (attr);
3645
3646 /* We assume that we're processing GCC output. */
3647 processing_gcc_compilation = 2;
3648
3649 processing_has_namespace_info = 0;
3650
3651 start_symtab (name, comp_dir, lowpc);
3652 record_debugformat ("DWARF 2");
3653 record_producer (cu->producer);
3654
3655 /* Process the dies in the type unit. */
3656 if (die->child == NULL)
3657 {
3658 dump_die_for_error (die);
3659 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
3660 bfd_get_filename (abfd));
3661 }
3662
3663 child_die = die->child;
3664
3665 while (child_die && child_die->tag)
3666 {
3667 process_die (child_die, cu);
3668
3669 child_die = sibling_die (child_die);
3670 }
3671
3672 do_cleanups (back_to);
3673 }
3674
3675 static void
3676 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
3677 struct dwarf2_cu *cu)
3678 {
3679 struct function_range *thisfn;
3680
3681 thisfn = (struct function_range *)
3682 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
3683 thisfn->name = name;
3684 thisfn->lowpc = lowpc;
3685 thisfn->highpc = highpc;
3686 thisfn->seen_line = 0;
3687 thisfn->next = NULL;
3688
3689 if (cu->last_fn == NULL)
3690 cu->first_fn = thisfn;
3691 else
3692 cu->last_fn->next = thisfn;
3693
3694 cu->last_fn = thisfn;
3695 }
3696
3697 /* qsort helper for inherit_abstract_dies. */
3698
3699 static int
3700 unsigned_int_compar (const void *ap, const void *bp)
3701 {
3702 unsigned int a = *(unsigned int *) ap;
3703 unsigned int b = *(unsigned int *) bp;
3704
3705 return (a > b) - (b > a);
3706 }
3707
3708 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3709 Inherit only the children of the DW_AT_abstract_origin DIE not being already
3710 referenced by DW_AT_abstract_origin from the children of the current DIE. */
3711
3712 static void
3713 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
3714 {
3715 struct die_info *child_die;
3716 unsigned die_children_count;
3717 /* CU offsets which were referenced by children of the current DIE. */
3718 unsigned *offsets;
3719 unsigned *offsets_end, *offsetp;
3720 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
3721 struct die_info *origin_die;
3722 /* Iterator of the ORIGIN_DIE children. */
3723 struct die_info *origin_child_die;
3724 struct cleanup *cleanups;
3725 struct attribute *attr;
3726
3727 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
3728 if (!attr)
3729 return;
3730
3731 origin_die = follow_die_ref (die, attr, &cu);
3732 if (die->tag != origin_die->tag
3733 && !(die->tag == DW_TAG_inlined_subroutine
3734 && origin_die->tag == DW_TAG_subprogram))
3735 complaint (&symfile_complaints,
3736 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
3737 die->offset, origin_die->offset);
3738
3739 child_die = die->child;
3740 die_children_count = 0;
3741 while (child_die && child_die->tag)
3742 {
3743 child_die = sibling_die (child_die);
3744 die_children_count++;
3745 }
3746 offsets = xmalloc (sizeof (*offsets) * die_children_count);
3747 cleanups = make_cleanup (xfree, offsets);
3748
3749 offsets_end = offsets;
3750 child_die = die->child;
3751 while (child_die && child_die->tag)
3752 {
3753 /* For each CHILD_DIE, find the corresponding child of
3754 ORIGIN_DIE. If there is more than one layer of
3755 DW_AT_abstract_origin, follow them all; there shouldn't be,
3756 but GCC versions at least through 4.4 generate this (GCC PR
3757 40573). */
3758 struct die_info *child_origin_die = child_die;
3759 while (1)
3760 {
3761 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin, cu);
3762 if (attr == NULL)
3763 break;
3764 child_origin_die = follow_die_ref (child_origin_die, attr, &cu);
3765 }
3766
3767 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
3768 counterpart may exist. */
3769 if (child_origin_die != child_die)
3770 {
3771 if (child_die->tag != child_origin_die->tag
3772 && !(child_die->tag == DW_TAG_inlined_subroutine
3773 && child_origin_die->tag == DW_TAG_subprogram))
3774 complaint (&symfile_complaints,
3775 _("Child DIE 0x%x and its abstract origin 0x%x have "
3776 "different tags"), child_die->offset,
3777 child_origin_die->offset);
3778 if (child_origin_die->parent != origin_die)
3779 complaint (&symfile_complaints,
3780 _("Child DIE 0x%x and its abstract origin 0x%x have "
3781 "different parents"), child_die->offset,
3782 child_origin_die->offset);
3783 else
3784 *offsets_end++ = child_origin_die->offset;
3785 }
3786 child_die = sibling_die (child_die);
3787 }
3788 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
3789 unsigned_int_compar);
3790 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
3791 if (offsetp[-1] == *offsetp)
3792 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
3793 "to DIE 0x%x as their abstract origin"),
3794 die->offset, *offsetp);
3795
3796 offsetp = offsets;
3797 origin_child_die = origin_die->child;
3798 while (origin_child_die && origin_child_die->tag)
3799 {
3800 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
3801 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
3802 offsetp++;
3803 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
3804 {
3805 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
3806 process_die (origin_child_die, cu);
3807 }
3808 origin_child_die = sibling_die (origin_child_die);
3809 }
3810
3811 do_cleanups (cleanups);
3812 }
3813
3814 static void
3815 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
3816 {
3817 struct objfile *objfile = cu->objfile;
3818 struct context_stack *new;
3819 CORE_ADDR lowpc;
3820 CORE_ADDR highpc;
3821 struct die_info *child_die;
3822 struct attribute *attr, *call_line, *call_file;
3823 char *name;
3824 CORE_ADDR baseaddr;
3825 struct block *block;
3826 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
3827
3828 if (inlined_func)
3829 {
3830 /* If we do not have call site information, we can't show the
3831 caller of this inlined function. That's too confusing, so
3832 only use the scope for local variables. */
3833 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
3834 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
3835 if (call_line == NULL || call_file == NULL)
3836 {
3837 read_lexical_block_scope (die, cu);
3838 return;
3839 }
3840 }
3841
3842 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3843
3844 name = dwarf2_linkage_name (die, cu);
3845
3846 /* Ignore functions with missing or empty names and functions with
3847 missing or invalid low and high pc attributes. */
3848 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
3849 return;
3850
3851 lowpc += baseaddr;
3852 highpc += baseaddr;
3853
3854 /* Record the function range for dwarf_decode_lines. */
3855 add_to_cu_func_list (name, lowpc, highpc, cu);
3856
3857 new = push_context (0, lowpc);
3858 new->name = new_symbol (die, read_type_die (die, cu), cu);
3859
3860 /* If there is a location expression for DW_AT_frame_base, record
3861 it. */
3862 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
3863 if (attr)
3864 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
3865 expression is being recorded directly in the function's symbol
3866 and not in a separate frame-base object. I guess this hack is
3867 to avoid adding some sort of frame-base adjunct/annex to the
3868 function's symbol :-(. The problem with doing this is that it
3869 results in a function symbol with a location expression that
3870 has nothing to do with the location of the function, ouch! The
3871 relationship should be: a function's symbol has-a frame base; a
3872 frame-base has-a location expression. */
3873 dwarf2_symbol_mark_computed (attr, new->name, cu);
3874
3875 cu->list_in_scope = &local_symbols;
3876
3877 if (die->child != NULL)
3878 {
3879 child_die = die->child;
3880 while (child_die && child_die->tag)
3881 {
3882 process_die (child_die, cu);
3883 child_die = sibling_die (child_die);
3884 }
3885 }
3886
3887 inherit_abstract_dies (die, cu);
3888
3889 new = pop_context ();
3890 /* Make a block for the local symbols within. */
3891 block = finish_block (new->name, &local_symbols, new->old_blocks,
3892 lowpc, highpc, objfile);
3893
3894 /* For C++, set the block's scope. */
3895 if (cu->language == language_cplus)
3896 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
3897 determine_prefix (die, cu),
3898 processing_has_namespace_info);
3899
3900 /* If we have address ranges, record them. */
3901 dwarf2_record_block_ranges (die, block, baseaddr, cu);
3902
3903 /* In C++, we can have functions nested inside functions (e.g., when
3904 a function declares a class that has methods). This means that
3905 when we finish processing a function scope, we may need to go
3906 back to building a containing block's symbol lists. */
3907 local_symbols = new->locals;
3908 param_symbols = new->params;
3909 using_directives = new->using_directives;
3910
3911 /* If we've finished processing a top-level function, subsequent
3912 symbols go in the file symbol list. */
3913 if (outermost_context_p ())
3914 cu->list_in_scope = &file_symbols;
3915 }
3916
3917 /* Process all the DIES contained within a lexical block scope. Start
3918 a new scope, process the dies, and then close the scope. */
3919
3920 static void
3921 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
3922 {
3923 struct objfile *objfile = cu->objfile;
3924 struct context_stack *new;
3925 CORE_ADDR lowpc, highpc;
3926 struct die_info *child_die;
3927 CORE_ADDR baseaddr;
3928
3929 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3930
3931 /* Ignore blocks with missing or invalid low and high pc attributes. */
3932 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3933 as multiple lexical blocks? Handling children in a sane way would
3934 be nasty. Might be easier to properly extend generic blocks to
3935 describe ranges. */
3936 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
3937 return;
3938 lowpc += baseaddr;
3939 highpc += baseaddr;
3940
3941 push_context (0, lowpc);
3942 if (die->child != NULL)
3943 {
3944 child_die = die->child;
3945 while (child_die && child_die->tag)
3946 {
3947 process_die (child_die, cu);
3948 child_die = sibling_die (child_die);
3949 }
3950 }
3951 new = pop_context ();
3952
3953 if (local_symbols != NULL)
3954 {
3955 struct block *block
3956 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3957 highpc, objfile);
3958
3959 /* Note that recording ranges after traversing children, as we
3960 do here, means that recording a parent's ranges entails
3961 walking across all its children's ranges as they appear in
3962 the address map, which is quadratic behavior.
3963
3964 It would be nicer to record the parent's ranges before
3965 traversing its children, simply overriding whatever you find
3966 there. But since we don't even decide whether to create a
3967 block until after we've traversed its children, that's hard
3968 to do. */
3969 dwarf2_record_block_ranges (die, block, baseaddr, cu);
3970 }
3971 local_symbols = new->locals;
3972 using_directives = new->using_directives;
3973 }
3974
3975 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
3976 Return 1 if the attributes are present and valid, otherwise, return 0.
3977 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
3978
3979 static int
3980 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
3981 CORE_ADDR *high_return, struct dwarf2_cu *cu,
3982 struct partial_symtab *ranges_pst)
3983 {
3984 struct objfile *objfile = cu->objfile;
3985 struct comp_unit_head *cu_header = &cu->header;
3986 bfd *obfd = objfile->obfd;
3987 unsigned int addr_size = cu_header->addr_size;
3988 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3989 /* Base address selection entry. */
3990 CORE_ADDR base;
3991 int found_base;
3992 unsigned int dummy;
3993 gdb_byte *buffer;
3994 CORE_ADDR marker;
3995 int low_set;
3996 CORE_ADDR low = 0;
3997 CORE_ADDR high = 0;
3998 CORE_ADDR baseaddr;
3999
4000 found_base = cu->base_known;
4001 base = cu->base_address;
4002
4003 if (offset >= dwarf2_per_objfile->ranges.size)
4004 {
4005 complaint (&symfile_complaints,
4006 _("Offset %d out of bounds for DW_AT_ranges attribute"),
4007 offset);
4008 return 0;
4009 }
4010 buffer = dwarf2_per_objfile->ranges.buffer + offset;
4011
4012 /* Read in the largest possible address. */
4013 marker = read_address (obfd, buffer, cu, &dummy);
4014 if ((marker & mask) == mask)
4015 {
4016 /* If we found the largest possible address, then
4017 read the base address. */
4018 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4019 buffer += 2 * addr_size;
4020 offset += 2 * addr_size;
4021 found_base = 1;
4022 }
4023
4024 low_set = 0;
4025
4026 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4027
4028 while (1)
4029 {
4030 CORE_ADDR range_beginning, range_end;
4031
4032 range_beginning = read_address (obfd, buffer, cu, &dummy);
4033 buffer += addr_size;
4034 range_end = read_address (obfd, buffer, cu, &dummy);
4035 buffer += addr_size;
4036 offset += 2 * addr_size;
4037
4038 /* An end of list marker is a pair of zero addresses. */
4039 if (range_beginning == 0 && range_end == 0)
4040 /* Found the end of list entry. */
4041 break;
4042
4043 /* Each base address selection entry is a pair of 2 values.
4044 The first is the largest possible address, the second is
4045 the base address. Check for a base address here. */
4046 if ((range_beginning & mask) == mask)
4047 {
4048 /* If we found the largest possible address, then
4049 read the base address. */
4050 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4051 found_base = 1;
4052 continue;
4053 }
4054
4055 if (!found_base)
4056 {
4057 /* We have no valid base address for the ranges
4058 data. */
4059 complaint (&symfile_complaints,
4060 _("Invalid .debug_ranges data (no base address)"));
4061 return 0;
4062 }
4063
4064 range_beginning += base;
4065 range_end += base;
4066
4067 if (ranges_pst != NULL && range_beginning < range_end)
4068 addrmap_set_empty (objfile->psymtabs_addrmap,
4069 range_beginning + baseaddr, range_end - 1 + baseaddr,
4070 ranges_pst);
4071
4072 /* FIXME: This is recording everything as a low-high
4073 segment of consecutive addresses. We should have a
4074 data structure for discontiguous block ranges
4075 instead. */
4076 if (! low_set)
4077 {
4078 low = range_beginning;
4079 high = range_end;
4080 low_set = 1;
4081 }
4082 else
4083 {
4084 if (range_beginning < low)
4085 low = range_beginning;
4086 if (range_end > high)
4087 high = range_end;
4088 }
4089 }
4090
4091 if (! low_set)
4092 /* If the first entry is an end-of-list marker, the range
4093 describes an empty scope, i.e. no instructions. */
4094 return 0;
4095
4096 if (low_return)
4097 *low_return = low;
4098 if (high_return)
4099 *high_return = high;
4100 return 1;
4101 }
4102
4103 /* Get low and high pc attributes from a die. Return 1 if the attributes
4104 are present and valid, otherwise, return 0. Return -1 if the range is
4105 discontinuous, i.e. derived from DW_AT_ranges information. */
4106 static int
4107 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
4108 CORE_ADDR *highpc, struct dwarf2_cu *cu,
4109 struct partial_symtab *pst)
4110 {
4111 struct attribute *attr;
4112 CORE_ADDR low = 0;
4113 CORE_ADDR high = 0;
4114 int ret = 0;
4115
4116 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
4117 if (attr)
4118 {
4119 high = DW_ADDR (attr);
4120 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4121 if (attr)
4122 low = DW_ADDR (attr);
4123 else
4124 /* Found high w/o low attribute. */
4125 return 0;
4126
4127 /* Found consecutive range of addresses. */
4128 ret = 1;
4129 }
4130 else
4131 {
4132 attr = dwarf2_attr (die, DW_AT_ranges, cu);
4133 if (attr != NULL)
4134 {
4135 /* Value of the DW_AT_ranges attribute is the offset in the
4136 .debug_ranges section. */
4137 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
4138 return 0;
4139 /* Found discontinuous range of addresses. */
4140 ret = -1;
4141 }
4142 }
4143
4144 if (high < low)
4145 return 0;
4146
4147 /* When using the GNU linker, .gnu.linkonce. sections are used to
4148 eliminate duplicate copies of functions and vtables and such.
4149 The linker will arbitrarily choose one and discard the others.
4150 The AT_*_pc values for such functions refer to local labels in
4151 these sections. If the section from that file was discarded, the
4152 labels are not in the output, so the relocs get a value of 0.
4153 If this is a discarded function, mark the pc bounds as invalid,
4154 so that GDB will ignore it. */
4155 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
4156 return 0;
4157
4158 *lowpc = low;
4159 *highpc = high;
4160 return ret;
4161 }
4162
4163 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
4164 its low and high PC addresses. Do nothing if these addresses could not
4165 be determined. Otherwise, set LOWPC to the low address if it is smaller,
4166 and HIGHPC to the high address if greater than HIGHPC. */
4167
4168 static void
4169 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
4170 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4171 struct dwarf2_cu *cu)
4172 {
4173 CORE_ADDR low, high;
4174 struct die_info *child = die->child;
4175
4176 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
4177 {
4178 *lowpc = min (*lowpc, low);
4179 *highpc = max (*highpc, high);
4180 }
4181
4182 /* If the language does not allow nested subprograms (either inside
4183 subprograms or lexical blocks), we're done. */
4184 if (cu->language != language_ada)
4185 return;
4186
4187 /* Check all the children of the given DIE. If it contains nested
4188 subprograms, then check their pc bounds. Likewise, we need to
4189 check lexical blocks as well, as they may also contain subprogram
4190 definitions. */
4191 while (child && child->tag)
4192 {
4193 if (child->tag == DW_TAG_subprogram
4194 || child->tag == DW_TAG_lexical_block)
4195 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
4196 child = sibling_die (child);
4197 }
4198 }
4199
4200 /* Get the low and high pc's represented by the scope DIE, and store
4201 them in *LOWPC and *HIGHPC. If the correct values can't be
4202 determined, set *LOWPC to -1 and *HIGHPC to 0. */
4203
4204 static void
4205 get_scope_pc_bounds (struct die_info *die,
4206 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4207 struct dwarf2_cu *cu)
4208 {
4209 CORE_ADDR best_low = (CORE_ADDR) -1;
4210 CORE_ADDR best_high = (CORE_ADDR) 0;
4211 CORE_ADDR current_low, current_high;
4212
4213 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
4214 {
4215 best_low = current_low;
4216 best_high = current_high;
4217 }
4218 else
4219 {
4220 struct die_info *child = die->child;
4221
4222 while (child && child->tag)
4223 {
4224 switch (child->tag) {
4225 case DW_TAG_subprogram:
4226 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
4227 break;
4228 case DW_TAG_namespace:
4229 /* FIXME: carlton/2004-01-16: Should we do this for
4230 DW_TAG_class_type/DW_TAG_structure_type, too? I think
4231 that current GCC's always emit the DIEs corresponding
4232 to definitions of methods of classes as children of a
4233 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
4234 the DIEs giving the declarations, which could be
4235 anywhere). But I don't see any reason why the
4236 standards says that they have to be there. */
4237 get_scope_pc_bounds (child, &current_low, &current_high, cu);
4238
4239 if (current_low != ((CORE_ADDR) -1))
4240 {
4241 best_low = min (best_low, current_low);
4242 best_high = max (best_high, current_high);
4243 }
4244 break;
4245 default:
4246 /* Ignore. */
4247 break;
4248 }
4249
4250 child = sibling_die (child);
4251 }
4252 }
4253
4254 *lowpc = best_low;
4255 *highpc = best_high;
4256 }
4257
4258 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
4259 in DIE. */
4260 static void
4261 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
4262 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
4263 {
4264 struct attribute *attr;
4265
4266 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
4267 if (attr)
4268 {
4269 CORE_ADDR high = DW_ADDR (attr);
4270 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4271 if (attr)
4272 {
4273 CORE_ADDR low = DW_ADDR (attr);
4274 record_block_range (block, baseaddr + low, baseaddr + high - 1);
4275 }
4276 }
4277
4278 attr = dwarf2_attr (die, DW_AT_ranges, cu);
4279 if (attr)
4280 {
4281 bfd *obfd = cu->objfile->obfd;
4282
4283 /* The value of the DW_AT_ranges attribute is the offset of the
4284 address range list in the .debug_ranges section. */
4285 unsigned long offset = DW_UNSND (attr);
4286 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
4287
4288 /* For some target architectures, but not others, the
4289 read_address function sign-extends the addresses it returns.
4290 To recognize base address selection entries, we need a
4291 mask. */
4292 unsigned int addr_size = cu->header.addr_size;
4293 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
4294
4295 /* The base address, to which the next pair is relative. Note
4296 that this 'base' is a DWARF concept: most entries in a range
4297 list are relative, to reduce the number of relocs against the
4298 debugging information. This is separate from this function's
4299 'baseaddr' argument, which GDB uses to relocate debugging
4300 information from a shared library based on the address at
4301 which the library was loaded. */
4302 CORE_ADDR base = cu->base_address;
4303 int base_known = cu->base_known;
4304
4305 if (offset >= dwarf2_per_objfile->ranges.size)
4306 {
4307 complaint (&symfile_complaints,
4308 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
4309 offset);
4310 return;
4311 }
4312
4313 for (;;)
4314 {
4315 unsigned int bytes_read;
4316 CORE_ADDR start, end;
4317
4318 start = read_address (obfd, buffer, cu, &bytes_read);
4319 buffer += bytes_read;
4320 end = read_address (obfd, buffer, cu, &bytes_read);
4321 buffer += bytes_read;
4322
4323 /* Did we find the end of the range list? */
4324 if (start == 0 && end == 0)
4325 break;
4326
4327 /* Did we find a base address selection entry? */
4328 else if ((start & base_select_mask) == base_select_mask)
4329 {
4330 base = end;
4331 base_known = 1;
4332 }
4333
4334 /* We found an ordinary address range. */
4335 else
4336 {
4337 if (!base_known)
4338 {
4339 complaint (&symfile_complaints,
4340 _("Invalid .debug_ranges data (no base address)"));
4341 return;
4342 }
4343
4344 record_block_range (block,
4345 baseaddr + base + start,
4346 baseaddr + base + end - 1);
4347 }
4348 }
4349 }
4350 }
4351
4352 /* Add an aggregate field to the field list. */
4353
4354 static void
4355 dwarf2_add_field (struct field_info *fip, struct die_info *die,
4356 struct dwarf2_cu *cu)
4357 {
4358 struct objfile *objfile = cu->objfile;
4359 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4360 struct nextfield *new_field;
4361 struct attribute *attr;
4362 struct field *fp;
4363 char *fieldname = "";
4364
4365 /* Allocate a new field list entry and link it in. */
4366 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
4367 make_cleanup (xfree, new_field);
4368 memset (new_field, 0, sizeof (struct nextfield));
4369
4370 if (die->tag == DW_TAG_inheritance)
4371 {
4372 new_field->next = fip->baseclasses;
4373 fip->baseclasses = new_field;
4374 }
4375 else
4376 {
4377 new_field->next = fip->fields;
4378 fip->fields = new_field;
4379 }
4380 fip->nfields++;
4381
4382 /* Handle accessibility and virtuality of field.
4383 The default accessibility for members is public, the default
4384 accessibility for inheritance is private. */
4385 if (die->tag != DW_TAG_inheritance)
4386 new_field->accessibility = DW_ACCESS_public;
4387 else
4388 new_field->accessibility = DW_ACCESS_private;
4389 new_field->virtuality = DW_VIRTUALITY_none;
4390
4391 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
4392 if (attr)
4393 new_field->accessibility = DW_UNSND (attr);
4394 if (new_field->accessibility != DW_ACCESS_public)
4395 fip->non_public_fields = 1;
4396 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
4397 if (attr)
4398 new_field->virtuality = DW_UNSND (attr);
4399
4400 fp = &new_field->field;
4401
4402 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
4403 {
4404 /* Data member other than a C++ static data member. */
4405
4406 /* Get type of field. */
4407 fp->type = die_type (die, cu);
4408
4409 SET_FIELD_BITPOS (*fp, 0);
4410
4411 /* Get bit size of field (zero if none). */
4412 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
4413 if (attr)
4414 {
4415 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
4416 }
4417 else
4418 {
4419 FIELD_BITSIZE (*fp) = 0;
4420 }
4421
4422 /* Get bit offset of field. */
4423 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
4424 if (attr)
4425 {
4426 int byte_offset = 0;
4427
4428 if (attr_form_is_section_offset (attr))
4429 dwarf2_complex_location_expr_complaint ();
4430 else if (attr_form_is_constant (attr))
4431 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
4432 else if (attr_form_is_block (attr))
4433 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
4434 else
4435 dwarf2_complex_location_expr_complaint ();
4436
4437 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
4438 }
4439 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
4440 if (attr)
4441 {
4442 if (gdbarch_bits_big_endian (gdbarch))
4443 {
4444 /* For big endian bits, the DW_AT_bit_offset gives the
4445 additional bit offset from the MSB of the containing
4446 anonymous object to the MSB of the field. We don't
4447 have to do anything special since we don't need to
4448 know the size of the anonymous object. */
4449 FIELD_BITPOS (*fp) += DW_UNSND (attr);
4450 }
4451 else
4452 {
4453 /* For little endian bits, compute the bit offset to the
4454 MSB of the anonymous object, subtract off the number of
4455 bits from the MSB of the field to the MSB of the
4456 object, and then subtract off the number of bits of
4457 the field itself. The result is the bit offset of
4458 the LSB of the field. */
4459 int anonymous_size;
4460 int bit_offset = DW_UNSND (attr);
4461
4462 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4463 if (attr)
4464 {
4465 /* The size of the anonymous object containing
4466 the bit field is explicit, so use the
4467 indicated size (in bytes). */
4468 anonymous_size = DW_UNSND (attr);
4469 }
4470 else
4471 {
4472 /* The size of the anonymous object containing
4473 the bit field must be inferred from the type
4474 attribute of the data member containing the
4475 bit field. */
4476 anonymous_size = TYPE_LENGTH (fp->type);
4477 }
4478 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
4479 - bit_offset - FIELD_BITSIZE (*fp);
4480 }
4481 }
4482
4483 /* Get name of field. */
4484 fieldname = dwarf2_name (die, cu);
4485 if (fieldname == NULL)
4486 fieldname = "";
4487
4488 /* The name is already allocated along with this objfile, so we don't
4489 need to duplicate it for the type. */
4490 fp->name = fieldname;
4491
4492 /* Change accessibility for artificial fields (e.g. virtual table
4493 pointer or virtual base class pointer) to private. */
4494 if (dwarf2_attr (die, DW_AT_artificial, cu))
4495 {
4496 FIELD_ARTIFICIAL (*fp) = 1;
4497 new_field->accessibility = DW_ACCESS_private;
4498 fip->non_public_fields = 1;
4499 }
4500 }
4501 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
4502 {
4503 /* C++ static member. */
4504
4505 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
4506 is a declaration, but all versions of G++ as of this writing
4507 (so through at least 3.2.1) incorrectly generate
4508 DW_TAG_variable tags. */
4509
4510 char *physname;
4511
4512 /* Get name of field. */
4513 fieldname = dwarf2_name (die, cu);
4514 if (fieldname == NULL)
4515 return;
4516
4517 /* Get physical name. */
4518 physname = dwarf2_linkage_name (die, cu);
4519
4520 /* The name is already allocated along with this objfile, so we don't
4521 need to duplicate it for the type. */
4522 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
4523 FIELD_TYPE (*fp) = die_type (die, cu);
4524 FIELD_NAME (*fp) = fieldname;
4525 }
4526 else if (die->tag == DW_TAG_inheritance)
4527 {
4528 /* C++ base class field. */
4529 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
4530 if (attr)
4531 {
4532 int byte_offset = 0;
4533
4534 if (attr_form_is_section_offset (attr))
4535 dwarf2_complex_location_expr_complaint ();
4536 else if (attr_form_is_constant (attr))
4537 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
4538 else if (attr_form_is_block (attr))
4539 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
4540 else
4541 dwarf2_complex_location_expr_complaint ();
4542
4543 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
4544 }
4545 FIELD_BITSIZE (*fp) = 0;
4546 FIELD_TYPE (*fp) = die_type (die, cu);
4547 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
4548 fip->nbaseclasses++;
4549 }
4550 }
4551
4552 /* Create the vector of fields, and attach it to the type. */
4553
4554 static void
4555 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
4556 struct dwarf2_cu *cu)
4557 {
4558 int nfields = fip->nfields;
4559
4560 /* Record the field count, allocate space for the array of fields,
4561 and create blank accessibility bitfields if necessary. */
4562 TYPE_NFIELDS (type) = nfields;
4563 TYPE_FIELDS (type) = (struct field *)
4564 TYPE_ALLOC (type, sizeof (struct field) * nfields);
4565 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
4566
4567 if (fip->non_public_fields)
4568 {
4569 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4570
4571 TYPE_FIELD_PRIVATE_BITS (type) =
4572 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4573 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4574
4575 TYPE_FIELD_PROTECTED_BITS (type) =
4576 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4577 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4578
4579 TYPE_FIELD_IGNORE_BITS (type) =
4580 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4581 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4582 }
4583
4584 /* If the type has baseclasses, allocate and clear a bit vector for
4585 TYPE_FIELD_VIRTUAL_BITS. */
4586 if (fip->nbaseclasses)
4587 {
4588 int num_bytes = B_BYTES (fip->nbaseclasses);
4589 unsigned char *pointer;
4590
4591 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4592 pointer = TYPE_ALLOC (type, num_bytes);
4593 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
4594 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
4595 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
4596 }
4597
4598 /* Copy the saved-up fields into the field vector. Start from the head
4599 of the list, adding to the tail of the field array, so that they end
4600 up in the same order in the array in which they were added to the list. */
4601 while (nfields-- > 0)
4602 {
4603 struct nextfield *fieldp;
4604
4605 if (fip->fields)
4606 {
4607 fieldp = fip->fields;
4608 fip->fields = fieldp->next;
4609 }
4610 else
4611 {
4612 fieldp = fip->baseclasses;
4613 fip->baseclasses = fieldp->next;
4614 }
4615
4616 TYPE_FIELD (type, nfields) = fieldp->field;
4617 switch (fieldp->accessibility)
4618 {
4619 case DW_ACCESS_private:
4620 SET_TYPE_FIELD_PRIVATE (type, nfields);
4621 break;
4622
4623 case DW_ACCESS_protected:
4624 SET_TYPE_FIELD_PROTECTED (type, nfields);
4625 break;
4626
4627 case DW_ACCESS_public:
4628 break;
4629
4630 default:
4631 /* Unknown accessibility. Complain and treat it as public. */
4632 {
4633 complaint (&symfile_complaints, _("unsupported accessibility %d"),
4634 fieldp->accessibility);
4635 }
4636 break;
4637 }
4638 if (nfields < fip->nbaseclasses)
4639 {
4640 switch (fieldp->virtuality)
4641 {
4642 case DW_VIRTUALITY_virtual:
4643 case DW_VIRTUALITY_pure_virtual:
4644 SET_TYPE_FIELD_VIRTUAL (type, nfields);
4645 break;
4646 }
4647 }
4648 }
4649 }
4650
4651 /* Add a member function to the proper fieldlist. */
4652
4653 static void
4654 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
4655 struct type *type, struct dwarf2_cu *cu)
4656 {
4657 struct objfile *objfile = cu->objfile;
4658 struct attribute *attr;
4659 struct fnfieldlist *flp;
4660 int i;
4661 struct fn_field *fnp;
4662 char *fieldname;
4663 char *physname;
4664 struct nextfnfield *new_fnfield;
4665 struct type *this_type;
4666
4667 /* Get name of member function. */
4668 fieldname = dwarf2_name (die, cu);
4669 if (fieldname == NULL)
4670 return;
4671
4672 /* Get the mangled name. */
4673 physname = dwarf2_linkage_name (die, cu);
4674
4675 /* Look up member function name in fieldlist. */
4676 for (i = 0; i < fip->nfnfields; i++)
4677 {
4678 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
4679 break;
4680 }
4681
4682 /* Create new list element if necessary. */
4683 if (i < fip->nfnfields)
4684 flp = &fip->fnfieldlists[i];
4685 else
4686 {
4687 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
4688 {
4689 fip->fnfieldlists = (struct fnfieldlist *)
4690 xrealloc (fip->fnfieldlists,
4691 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
4692 * sizeof (struct fnfieldlist));
4693 if (fip->nfnfields == 0)
4694 make_cleanup (free_current_contents, &fip->fnfieldlists);
4695 }
4696 flp = &fip->fnfieldlists[fip->nfnfields];
4697 flp->name = fieldname;
4698 flp->length = 0;
4699 flp->head = NULL;
4700 fip->nfnfields++;
4701 }
4702
4703 /* Create a new member function field and chain it to the field list
4704 entry. */
4705 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
4706 make_cleanup (xfree, new_fnfield);
4707 memset (new_fnfield, 0, sizeof (struct nextfnfield));
4708 new_fnfield->next = flp->head;
4709 flp->head = new_fnfield;
4710 flp->length++;
4711
4712 /* Fill in the member function field info. */
4713 fnp = &new_fnfield->fnfield;
4714 /* The name is already allocated along with this objfile, so we don't
4715 need to duplicate it for the type. */
4716 fnp->physname = physname ? physname : "";
4717 fnp->type = alloc_type (objfile);
4718 this_type = read_type_die (die, cu);
4719 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
4720 {
4721 int nparams = TYPE_NFIELDS (this_type);
4722
4723 /* TYPE is the domain of this method, and THIS_TYPE is the type
4724 of the method itself (TYPE_CODE_METHOD). */
4725 smash_to_method_type (fnp->type, type,
4726 TYPE_TARGET_TYPE (this_type),
4727 TYPE_FIELDS (this_type),
4728 TYPE_NFIELDS (this_type),
4729 TYPE_VARARGS (this_type));
4730
4731 /* Handle static member functions.
4732 Dwarf2 has no clean way to discern C++ static and non-static
4733 member functions. G++ helps GDB by marking the first
4734 parameter for non-static member functions (which is the
4735 this pointer) as artificial. We obtain this information
4736 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
4737 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
4738 fnp->voffset = VOFFSET_STATIC;
4739 }
4740 else
4741 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4742 physname);
4743
4744 /* Get fcontext from DW_AT_containing_type if present. */
4745 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
4746 fnp->fcontext = die_containing_type (die, cu);
4747
4748 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
4749 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
4750
4751 /* Get accessibility. */
4752 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
4753 if (attr)
4754 {
4755 switch (DW_UNSND (attr))
4756 {
4757 case DW_ACCESS_private:
4758 fnp->is_private = 1;
4759 break;
4760 case DW_ACCESS_protected:
4761 fnp->is_protected = 1;
4762 break;
4763 }
4764 }
4765
4766 /* Check for artificial methods. */
4767 attr = dwarf2_attr (die, DW_AT_artificial, cu);
4768 if (attr && DW_UNSND (attr) != 0)
4769 fnp->is_artificial = 1;
4770
4771 /* Get index in virtual function table if it is a virtual member
4772 function. For GCC, this is an offset in the appropriate
4773 virtual table, as specified by DW_AT_containing_type. For
4774 everyone else, it is an expression to be evaluated relative
4775 to the object address. */
4776
4777 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
4778 if (attr && fnp->fcontext)
4779 {
4780 /* Support the .debug_loc offsets */
4781 if (attr_form_is_block (attr))
4782 {
4783 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
4784 }
4785 else if (attr_form_is_section_offset (attr))
4786 {
4787 dwarf2_complex_location_expr_complaint ();
4788 }
4789 else
4790 {
4791 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
4792 fieldname);
4793 }
4794 }
4795 else if (attr)
4796 {
4797 /* We only support trivial expressions here. This hack will work
4798 for v3 classes, which always start with the vtable pointer. */
4799 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0
4800 && DW_BLOCK (attr)->data[0] == DW_OP_deref)
4801 {
4802 struct dwarf_block blk;
4803 blk.size = DW_BLOCK (attr)->size - 1;
4804 blk.data = DW_BLOCK (attr)->data + 1;
4805 fnp->voffset = decode_locdesc (&blk, cu);
4806 if ((fnp->voffset % cu->header.addr_size) != 0)
4807 dwarf2_complex_location_expr_complaint ();
4808 else
4809 fnp->voffset /= cu->header.addr_size;
4810 fnp->voffset += 2;
4811 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
4812 }
4813 else
4814 dwarf2_complex_location_expr_complaint ();
4815 }
4816 else
4817 {
4818 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
4819 if (attr && DW_UNSND (attr))
4820 {
4821 /* GCC does this, as of 2008-08-25; PR debug/37237. */
4822 complaint (&symfile_complaints,
4823 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
4824 fieldname, die->offset);
4825 TYPE_CPLUS_DYNAMIC (type) = 1;
4826 }
4827 }
4828 }
4829
4830 /* Create the vector of member function fields, and attach it to the type. */
4831
4832 static void
4833 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
4834 struct dwarf2_cu *cu)
4835 {
4836 struct fnfieldlist *flp;
4837 int total_length = 0;
4838 int i;
4839
4840 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4841 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
4842 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
4843
4844 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
4845 {
4846 struct nextfnfield *nfp = flp->head;
4847 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
4848 int k;
4849
4850 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
4851 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
4852 fn_flp->fn_fields = (struct fn_field *)
4853 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
4854 for (k = flp->length; (k--, nfp); nfp = nfp->next)
4855 fn_flp->fn_fields[k] = nfp->fnfield;
4856
4857 total_length += flp->length;
4858 }
4859
4860 TYPE_NFN_FIELDS (type) = fip->nfnfields;
4861 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4862 }
4863
4864 /* Returns non-zero if NAME is the name of a vtable member in CU's
4865 language, zero otherwise. */
4866 static int
4867 is_vtable_name (const char *name, struct dwarf2_cu *cu)
4868 {
4869 static const char vptr[] = "_vptr";
4870 static const char vtable[] = "vtable";
4871
4872 /* Look for the C++ and Java forms of the vtable. */
4873 if ((cu->language == language_java
4874 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
4875 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
4876 && is_cplus_marker (name[sizeof (vptr) - 1])))
4877 return 1;
4878
4879 return 0;
4880 }
4881
4882 /* GCC outputs unnamed structures that are really pointers to member
4883 functions, with the ABI-specified layout. If DIE (from CU) describes
4884 such a structure, set its type, and return nonzero. Otherwise return
4885 zero.
4886
4887 GCC shouldn't do this; it should just output pointer to member DIEs.
4888 This is GCC PR debug/28767. */
4889
4890 static struct type *
4891 quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
4892 {
4893 struct objfile *objfile = cu->objfile;
4894 struct type *type;
4895 struct die_info *pfn_die, *delta_die;
4896 struct attribute *pfn_name, *delta_name;
4897 struct type *pfn_type, *domain_type;
4898
4899 /* Check for a structure with no name and two children. */
4900 if (die->tag != DW_TAG_structure_type
4901 || dwarf2_attr (die, DW_AT_name, cu) != NULL
4902 || die->child == NULL
4903 || die->child->sibling == NULL
4904 || (die->child->sibling->sibling != NULL
4905 && die->child->sibling->sibling->tag != DW_TAG_padding))
4906 return NULL;
4907
4908 /* Check for __pfn and __delta members. */
4909 pfn_die = die->child;
4910 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
4911 if (pfn_die->tag != DW_TAG_member
4912 || pfn_name == NULL
4913 || DW_STRING (pfn_name) == NULL
4914 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
4915 return NULL;
4916
4917 delta_die = pfn_die->sibling;
4918 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
4919 if (delta_die->tag != DW_TAG_member
4920 || delta_name == NULL
4921 || DW_STRING (delta_name) == NULL
4922 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
4923 return NULL;
4924
4925 /* Find the type of the method. */
4926 pfn_type = die_type (pfn_die, cu);
4927 if (pfn_type == NULL
4928 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
4929 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
4930 return NULL;
4931
4932 /* Look for the "this" argument. */
4933 pfn_type = TYPE_TARGET_TYPE (pfn_type);
4934 if (TYPE_NFIELDS (pfn_type) == 0
4935 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
4936 return NULL;
4937
4938 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
4939 type = alloc_type (objfile);
4940 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
4941 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
4942 TYPE_VARARGS (pfn_type));
4943 type = lookup_methodptr_type (type);
4944 return set_die_type (die, type, cu);
4945 }
4946
4947 /* Called when we find the DIE that starts a structure or union scope
4948 (definition) to process all dies that define the members of the
4949 structure or union.
4950
4951 NOTE: we need to call struct_type regardless of whether or not the
4952 DIE has an at_name attribute, since it might be an anonymous
4953 structure or union. This gets the type entered into our set of
4954 user defined types.
4955
4956 However, if the structure is incomplete (an opaque struct/union)
4957 then suppress creating a symbol table entry for it since gdb only
4958 wants to find the one with the complete definition. Note that if
4959 it is complete, we just call new_symbol, which does it's own
4960 checking about whether the struct/union is anonymous or not (and
4961 suppresses creating a symbol table entry itself). */
4962
4963 static struct type *
4964 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
4965 {
4966 struct objfile *objfile = cu->objfile;
4967 struct type *type;
4968 struct attribute *attr;
4969 char *name;
4970 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4971
4972 type = quirk_gcc_member_function_pointer (die, cu);
4973 if (type)
4974 return type;
4975
4976 /* If the definition of this type lives in .debug_types, read that type.
4977 Don't follow DW_AT_specification though, that will take us back up
4978 the chain and we want to go down. */
4979 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
4980 if (attr)
4981 {
4982 struct dwarf2_cu *type_cu = cu;
4983 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
4984 /* We could just recurse on read_structure_type, but we need to call
4985 get_die_type to ensure only one type for this DIE is created.
4986 This is important, for example, because for c++ classes we need
4987 TYPE_NAME set which is only done by new_symbol. Blech. */
4988 type = read_type_die (type_die, type_cu);
4989 return set_die_type (die, type, cu);
4990 }
4991
4992 type = alloc_type (objfile);
4993 INIT_CPLUS_SPECIFIC (type);
4994
4995 name = dwarf2_name (die, cu);
4996 if (name != NULL)
4997 {
4998 if (cu->language == language_cplus
4999 || cu->language == language_java)
5000 {
5001 const char *new_prefix = determine_class_name (die, cu);
5002 TYPE_TAG_NAME (type) = (char *) new_prefix;
5003 }
5004 else
5005 {
5006 /* The name is already allocated along with this objfile, so
5007 we don't need to duplicate it for the type. */
5008 TYPE_TAG_NAME (type) = name;
5009 }
5010 }
5011
5012 if (die->tag == DW_TAG_structure_type)
5013 {
5014 TYPE_CODE (type) = TYPE_CODE_STRUCT;
5015 }
5016 else if (die->tag == DW_TAG_union_type)
5017 {
5018 TYPE_CODE (type) = TYPE_CODE_UNION;
5019 }
5020 else
5021 {
5022 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
5023 in gdbtypes.h. */
5024 TYPE_CODE (type) = TYPE_CODE_CLASS;
5025 }
5026
5027 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5028 if (attr)
5029 {
5030 TYPE_LENGTH (type) = DW_UNSND (attr);
5031 }
5032 else
5033 {
5034 TYPE_LENGTH (type) = 0;
5035 }
5036
5037 TYPE_STUB_SUPPORTED (type) = 1;
5038 if (die_is_declaration (die, cu))
5039 TYPE_STUB (type) = 1;
5040
5041 /* We need to add the type field to the die immediately so we don't
5042 infinitely recurse when dealing with pointers to the structure
5043 type within the structure itself. */
5044 set_die_type (die, type, cu);
5045
5046 if (die->child != NULL && ! die_is_declaration (die, cu))
5047 {
5048 struct field_info fi;
5049 struct die_info *child_die;
5050
5051 memset (&fi, 0, sizeof (struct field_info));
5052
5053 child_die = die->child;
5054
5055 while (child_die && child_die->tag)
5056 {
5057 if (child_die->tag == DW_TAG_member
5058 || child_die->tag == DW_TAG_variable)
5059 {
5060 /* NOTE: carlton/2002-11-05: A C++ static data member
5061 should be a DW_TAG_member that is a declaration, but
5062 all versions of G++ as of this writing (so through at
5063 least 3.2.1) incorrectly generate DW_TAG_variable
5064 tags for them instead. */
5065 dwarf2_add_field (&fi, child_die, cu);
5066 }
5067 else if (child_die->tag == DW_TAG_subprogram)
5068 {
5069 /* C++ member function. */
5070 dwarf2_add_member_fn (&fi, child_die, type, cu);
5071 }
5072 else if (child_die->tag == DW_TAG_inheritance)
5073 {
5074 /* C++ base class field. */
5075 dwarf2_add_field (&fi, child_die, cu);
5076 }
5077 child_die = sibling_die (child_die);
5078 }
5079
5080 /* Attach fields and member functions to the type. */
5081 if (fi.nfields)
5082 dwarf2_attach_fields_to_type (&fi, type, cu);
5083 if (fi.nfnfields)
5084 {
5085 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
5086
5087 /* Get the type which refers to the base class (possibly this
5088 class itself) which contains the vtable pointer for the current
5089 class from the DW_AT_containing_type attribute. This use of
5090 DW_AT_containing_type is a GNU extension. */
5091
5092 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
5093 {
5094 struct type *t = die_containing_type (die, cu);
5095
5096 TYPE_VPTR_BASETYPE (type) = t;
5097 if (type == t)
5098 {
5099 int i;
5100
5101 /* Our own class provides vtbl ptr. */
5102 for (i = TYPE_NFIELDS (t) - 1;
5103 i >= TYPE_N_BASECLASSES (t);
5104 --i)
5105 {
5106 char *fieldname = TYPE_FIELD_NAME (t, i);
5107
5108 if (is_vtable_name (fieldname, cu))
5109 {
5110 TYPE_VPTR_FIELDNO (type) = i;
5111 break;
5112 }
5113 }
5114
5115 /* Complain if virtual function table field not found. */
5116 if (i < TYPE_N_BASECLASSES (t))
5117 complaint (&symfile_complaints,
5118 _("virtual function table pointer not found when defining class '%s'"),
5119 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
5120 "");
5121 }
5122 else
5123 {
5124 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
5125 }
5126 }
5127 else if (cu->producer
5128 && strncmp (cu->producer,
5129 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
5130 {
5131 /* The IBM XLC compiler does not provide direct indication
5132 of the containing type, but the vtable pointer is
5133 always named __vfp. */
5134
5135 int i;
5136
5137 for (i = TYPE_NFIELDS (type) - 1;
5138 i >= TYPE_N_BASECLASSES (type);
5139 --i)
5140 {
5141 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
5142 {
5143 TYPE_VPTR_FIELDNO (type) = i;
5144 TYPE_VPTR_BASETYPE (type) = type;
5145 break;
5146 }
5147 }
5148 }
5149 }
5150 }
5151
5152 do_cleanups (back_to);
5153 return type;
5154 }
5155
5156 static void
5157 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
5158 {
5159 struct objfile *objfile = cu->objfile;
5160 struct die_info *child_die = die->child;
5161 struct type *this_type;
5162
5163 this_type = get_die_type (die, cu);
5164 if (this_type == NULL)
5165 this_type = read_structure_type (die, cu);
5166
5167 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
5168 snapshots) has been known to create a die giving a declaration
5169 for a class that has, as a child, a die giving a definition for a
5170 nested class. So we have to process our children even if the
5171 current die is a declaration. Normally, of course, a declaration
5172 won't have any children at all. */
5173
5174 while (child_die != NULL && child_die->tag)
5175 {
5176 if (child_die->tag == DW_TAG_member
5177 || child_die->tag == DW_TAG_variable
5178 || child_die->tag == DW_TAG_inheritance)
5179 {
5180 /* Do nothing. */
5181 }
5182 else
5183 process_die (child_die, cu);
5184
5185 child_die = sibling_die (child_die);
5186 }
5187
5188 /* Do not consider external references. According to the DWARF standard,
5189 these DIEs are identified by the fact that they have no byte_size
5190 attribute, and a declaration attribute. */
5191 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
5192 || !die_is_declaration (die, cu))
5193 new_symbol (die, this_type, cu);
5194 }
5195
5196 /* Given a DW_AT_enumeration_type die, set its type. We do not
5197 complete the type's fields yet, or create any symbols. */
5198
5199 static struct type *
5200 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
5201 {
5202 struct objfile *objfile = cu->objfile;
5203 struct type *type;
5204 struct attribute *attr;
5205 const char *name;
5206
5207 /* If the definition of this type lives in .debug_types, read that type.
5208 Don't follow DW_AT_specification though, that will take us back up
5209 the chain and we want to go down. */
5210 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
5211 if (attr)
5212 {
5213 struct dwarf2_cu *type_cu = cu;
5214 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
5215 type = read_type_die (type_die, type_cu);
5216 return set_die_type (die, type, cu);
5217 }
5218
5219 type = alloc_type (objfile);
5220
5221 TYPE_CODE (type) = TYPE_CODE_ENUM;
5222 name = dwarf2_full_name (die, cu);
5223 if (name != NULL)
5224 TYPE_TAG_NAME (type) = (char *) name;
5225
5226 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5227 if (attr)
5228 {
5229 TYPE_LENGTH (type) = DW_UNSND (attr);
5230 }
5231 else
5232 {
5233 TYPE_LENGTH (type) = 0;
5234 }
5235
5236 /* The enumeration DIE can be incomplete. In Ada, any type can be
5237 declared as private in the package spec, and then defined only
5238 inside the package body. Such types are known as Taft Amendment
5239 Types. When another package uses such a type, an incomplete DIE
5240 may be generated by the compiler. */
5241 if (die_is_declaration (die, cu))
5242 TYPE_STUB (type) = 1;
5243
5244 return set_die_type (die, type, cu);
5245 }
5246
5247 /* Determine the name of the type represented by DIE, which should be
5248 a named C++ or Java compound type. Return the name in question,
5249 allocated on the objfile obstack. */
5250
5251 static const char *
5252 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
5253 {
5254 const char *new_prefix = NULL;
5255
5256 /* If we don't have namespace debug info, guess the name by trying
5257 to demangle the names of members, just like we did in
5258 guess_structure_name. */
5259 if (!processing_has_namespace_info)
5260 {
5261 struct die_info *child;
5262
5263 for (child = die->child;
5264 child != NULL && child->tag != 0;
5265 child = sibling_die (child))
5266 {
5267 if (child->tag == DW_TAG_subprogram)
5268 {
5269 char *phys_prefix
5270 = language_class_name_from_physname (cu->language_defn,
5271 dwarf2_linkage_name
5272 (child, cu));
5273
5274 if (phys_prefix != NULL)
5275 {
5276 new_prefix
5277 = obsavestring (phys_prefix, strlen (phys_prefix),
5278 &cu->objfile->objfile_obstack);
5279 xfree (phys_prefix);
5280 break;
5281 }
5282 }
5283 }
5284 }
5285
5286 if (new_prefix == NULL)
5287 new_prefix = dwarf2_full_name (die, cu);
5288
5289 return new_prefix;
5290 }
5291
5292 /* Given a pointer to a die which begins an enumeration, process all
5293 the dies that define the members of the enumeration, and create the
5294 symbol for the enumeration type.
5295
5296 NOTE: We reverse the order of the element list. */
5297
5298 static void
5299 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
5300 {
5301 struct objfile *objfile = cu->objfile;
5302 struct die_info *child_die;
5303 struct field *fields;
5304 struct symbol *sym;
5305 int num_fields;
5306 int unsigned_enum = 1;
5307 char *name;
5308 struct type *this_type;
5309
5310 num_fields = 0;
5311 fields = NULL;
5312 this_type = get_die_type (die, cu);
5313 if (this_type == NULL)
5314 this_type = read_enumeration_type (die, cu);
5315 if (die->child != NULL)
5316 {
5317 child_die = die->child;
5318 while (child_die && child_die->tag)
5319 {
5320 if (child_die->tag != DW_TAG_enumerator)
5321 {
5322 process_die (child_die, cu);
5323 }
5324 else
5325 {
5326 name = dwarf2_name (child_die, cu);
5327 if (name)
5328 {
5329 sym = new_symbol (child_die, this_type, cu);
5330 if (SYMBOL_VALUE (sym) < 0)
5331 unsigned_enum = 0;
5332
5333 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
5334 {
5335 fields = (struct field *)
5336 xrealloc (fields,
5337 (num_fields + DW_FIELD_ALLOC_CHUNK)
5338 * sizeof (struct field));
5339 }
5340
5341 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
5342 FIELD_TYPE (fields[num_fields]) = NULL;
5343 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
5344 FIELD_BITSIZE (fields[num_fields]) = 0;
5345
5346 num_fields++;
5347 }
5348 }
5349
5350 child_die = sibling_die (child_die);
5351 }
5352
5353 if (num_fields)
5354 {
5355 TYPE_NFIELDS (this_type) = num_fields;
5356 TYPE_FIELDS (this_type) = (struct field *)
5357 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
5358 memcpy (TYPE_FIELDS (this_type), fields,
5359 sizeof (struct field) * num_fields);
5360 xfree (fields);
5361 }
5362 if (unsigned_enum)
5363 TYPE_UNSIGNED (this_type) = 1;
5364 }
5365
5366 new_symbol (die, this_type, cu);
5367 }
5368
5369 /* Extract all information from a DW_TAG_array_type DIE and put it in
5370 the DIE's type field. For now, this only handles one dimensional
5371 arrays. */
5372
5373 static struct type *
5374 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
5375 {
5376 struct objfile *objfile = cu->objfile;
5377 struct die_info *child_die;
5378 struct type *type = NULL;
5379 struct type *element_type, *range_type, *index_type;
5380 struct type **range_types = NULL;
5381 struct attribute *attr;
5382 int ndim = 0;
5383 struct cleanup *back_to;
5384 char *name;
5385
5386 element_type = die_type (die, cu);
5387
5388 /* Irix 6.2 native cc creates array types without children for
5389 arrays with unspecified length. */
5390 if (die->child == NULL)
5391 {
5392 index_type = objfile_type (objfile)->builtin_int;
5393 range_type = create_range_type (NULL, index_type, 0, -1);
5394 type = create_array_type (NULL, element_type, range_type);
5395 return set_die_type (die, type, cu);
5396 }
5397
5398 back_to = make_cleanup (null_cleanup, NULL);
5399 child_die = die->child;
5400 while (child_die && child_die->tag)
5401 {
5402 if (child_die->tag == DW_TAG_subrange_type)
5403 {
5404 struct type *child_type = read_type_die (child_die, cu);
5405 if (child_type != NULL)
5406 {
5407 /* The range type was succesfully read. Save it for
5408 the array type creation. */
5409 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
5410 {
5411 range_types = (struct type **)
5412 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
5413 * sizeof (struct type *));
5414 if (ndim == 0)
5415 make_cleanup (free_current_contents, &range_types);
5416 }
5417 range_types[ndim++] = child_type;
5418 }
5419 }
5420 child_die = sibling_die (child_die);
5421 }
5422
5423 /* Dwarf2 dimensions are output from left to right, create the
5424 necessary array types in backwards order. */
5425
5426 type = element_type;
5427
5428 if (read_array_order (die, cu) == DW_ORD_col_major)
5429 {
5430 int i = 0;
5431 while (i < ndim)
5432 type = create_array_type (NULL, type, range_types[i++]);
5433 }
5434 else
5435 {
5436 while (ndim-- > 0)
5437 type = create_array_type (NULL, type, range_types[ndim]);
5438 }
5439
5440 /* Understand Dwarf2 support for vector types (like they occur on
5441 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
5442 array type. This is not part of the Dwarf2/3 standard yet, but a
5443 custom vendor extension. The main difference between a regular
5444 array and the vector variant is that vectors are passed by value
5445 to functions. */
5446 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
5447 if (attr)
5448 make_vector_type (type);
5449
5450 name = dwarf2_name (die, cu);
5451 if (name)
5452 TYPE_NAME (type) = name;
5453
5454 do_cleanups (back_to);
5455
5456 /* Install the type in the die. */
5457 return set_die_type (die, type, cu);
5458 }
5459
5460 static enum dwarf_array_dim_ordering
5461 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
5462 {
5463 struct attribute *attr;
5464
5465 attr = dwarf2_attr (die, DW_AT_ordering, cu);
5466
5467 if (attr) return DW_SND (attr);
5468
5469 /*
5470 GNU F77 is a special case, as at 08/2004 array type info is the
5471 opposite order to the dwarf2 specification, but data is still
5472 laid out as per normal fortran.
5473
5474 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
5475 version checking.
5476 */
5477
5478 if (cu->language == language_fortran
5479 && cu->producer && strstr (cu->producer, "GNU F77"))
5480 {
5481 return DW_ORD_row_major;
5482 }
5483
5484 switch (cu->language_defn->la_array_ordering)
5485 {
5486 case array_column_major:
5487 return DW_ORD_col_major;
5488 case array_row_major:
5489 default:
5490 return DW_ORD_row_major;
5491 };
5492 }
5493
5494 /* Extract all information from a DW_TAG_set_type DIE and put it in
5495 the DIE's type field. */
5496
5497 static struct type *
5498 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
5499 {
5500 struct type *set_type = create_set_type (NULL, die_type (die, cu));
5501
5502 return set_die_type (die, set_type, cu);
5503 }
5504
5505 /* First cut: install each common block member as a global variable. */
5506
5507 static void
5508 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
5509 {
5510 struct die_info *child_die;
5511 struct attribute *attr;
5512 struct symbol *sym;
5513 CORE_ADDR base = (CORE_ADDR) 0;
5514
5515 attr = dwarf2_attr (die, DW_AT_location, cu);
5516 if (attr)
5517 {
5518 /* Support the .debug_loc offsets */
5519 if (attr_form_is_block (attr))
5520 {
5521 base = decode_locdesc (DW_BLOCK (attr), cu);
5522 }
5523 else if (attr_form_is_section_offset (attr))
5524 {
5525 dwarf2_complex_location_expr_complaint ();
5526 }
5527 else
5528 {
5529 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5530 "common block member");
5531 }
5532 }
5533 if (die->child != NULL)
5534 {
5535 child_die = die->child;
5536 while (child_die && child_die->tag)
5537 {
5538 sym = new_symbol (child_die, NULL, cu);
5539 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
5540 if (attr)
5541 {
5542 CORE_ADDR byte_offset = 0;
5543
5544 if (attr_form_is_section_offset (attr))
5545 dwarf2_complex_location_expr_complaint ();
5546 else if (attr_form_is_constant (attr))
5547 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
5548 else if (attr_form_is_block (attr))
5549 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
5550 else
5551 dwarf2_complex_location_expr_complaint ();
5552
5553 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
5554 add_symbol_to_list (sym, &global_symbols);
5555 }
5556 child_die = sibling_die (child_die);
5557 }
5558 }
5559 }
5560
5561 /* Create a type for a C++ namespace. */
5562
5563 static struct type *
5564 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
5565 {
5566 struct objfile *objfile = cu->objfile;
5567 const char *previous_prefix, *name;
5568 int is_anonymous;
5569 struct type *type;
5570
5571 /* For extensions, reuse the type of the original namespace. */
5572 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
5573 {
5574 struct die_info *ext_die;
5575 struct dwarf2_cu *ext_cu = cu;
5576 ext_die = dwarf2_extension (die, &ext_cu);
5577 type = read_type_die (ext_die, ext_cu);
5578 return set_die_type (die, type, cu);
5579 }
5580
5581 name = namespace_name (die, &is_anonymous, cu);
5582
5583 /* Now build the name of the current namespace. */
5584
5585 previous_prefix = determine_prefix (die, cu);
5586 if (previous_prefix[0] != '\0')
5587 name = typename_concat (&objfile->objfile_obstack,
5588 previous_prefix, name, cu);
5589
5590 /* Create the type. */
5591 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
5592 objfile);
5593 TYPE_NAME (type) = (char *) name;
5594 TYPE_TAG_NAME (type) = TYPE_NAME (type);
5595
5596 set_die_type (die, type, cu);
5597
5598 return type;
5599 }
5600
5601 /* Read a C++ namespace. */
5602
5603 static void
5604 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
5605 {
5606 struct objfile *objfile = cu->objfile;
5607 const char *name;
5608 int is_anonymous;
5609
5610 /* Add a symbol associated to this if we haven't seen the namespace
5611 before. Also, add a using directive if it's an anonymous
5612 namespace. */
5613
5614 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5615 {
5616 struct type *type;
5617
5618 type = read_type_die (die, cu);
5619 new_symbol (die, type, cu);
5620
5621 name = namespace_name (die, &is_anonymous, cu);
5622 if (is_anonymous)
5623 {
5624 const char *previous_prefix = determine_prefix (die, cu);
5625 cp_add_using_directive (previous_prefix, TYPE_NAME (type));
5626 }
5627 }
5628
5629 if (die->child != NULL)
5630 {
5631 struct die_info *child_die = die->child;
5632
5633 while (child_die && child_die->tag)
5634 {
5635 process_die (child_die, cu);
5636 child_die = sibling_die (child_die);
5637 }
5638 }
5639 }
5640
5641 /* Read a Fortran module. */
5642
5643 static void
5644 read_module (struct die_info *die, struct dwarf2_cu *cu)
5645 {
5646 struct die_info *child_die = die->child;
5647
5648 /* FIXME: Support the separate Fortran module namespaces. */
5649
5650 while (child_die && child_die->tag)
5651 {
5652 process_die (child_die, cu);
5653 child_die = sibling_die (child_die);
5654 }
5655 }
5656
5657 /* Return the name of the namespace represented by DIE. Set
5658 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
5659 namespace. */
5660
5661 static const char *
5662 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
5663 {
5664 struct die_info *current_die;
5665 const char *name = NULL;
5666
5667 /* Loop through the extensions until we find a name. */
5668
5669 for (current_die = die;
5670 current_die != NULL;
5671 current_die = dwarf2_extension (die, &cu))
5672 {
5673 name = dwarf2_name (current_die, cu);
5674 if (name != NULL)
5675 break;
5676 }
5677
5678 /* Is it an anonymous namespace? */
5679
5680 *is_anonymous = (name == NULL);
5681 if (*is_anonymous)
5682 name = "(anonymous namespace)";
5683
5684 return name;
5685 }
5686
5687 /* Extract all information from a DW_TAG_pointer_type DIE and add to
5688 the user defined type vector. */
5689
5690 static struct type *
5691 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
5692 {
5693 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
5694 struct comp_unit_head *cu_header = &cu->header;
5695 struct type *type;
5696 struct attribute *attr_byte_size;
5697 struct attribute *attr_address_class;
5698 int byte_size, addr_class;
5699
5700 type = lookup_pointer_type (die_type (die, cu));
5701
5702 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
5703 if (attr_byte_size)
5704 byte_size = DW_UNSND (attr_byte_size);
5705 else
5706 byte_size = cu_header->addr_size;
5707
5708 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
5709 if (attr_address_class)
5710 addr_class = DW_UNSND (attr_address_class);
5711 else
5712 addr_class = DW_ADDR_none;
5713
5714 /* If the pointer size or address class is different than the
5715 default, create a type variant marked as such and set the
5716 length accordingly. */
5717 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
5718 {
5719 if (gdbarch_address_class_type_flags_p (gdbarch))
5720 {
5721 int type_flags;
5722
5723 type_flags = gdbarch_address_class_type_flags
5724 (gdbarch, byte_size, addr_class);
5725 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5726 == 0);
5727 type = make_type_with_address_space (type, type_flags);
5728 }
5729 else if (TYPE_LENGTH (type) != byte_size)
5730 {
5731 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
5732 }
5733 else {
5734 /* Should we also complain about unhandled address classes? */
5735 }
5736 }
5737
5738 TYPE_LENGTH (type) = byte_size;
5739 return set_die_type (die, type, cu);
5740 }
5741
5742 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
5743 the user defined type vector. */
5744
5745 static struct type *
5746 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
5747 {
5748 struct objfile *objfile = cu->objfile;
5749 struct type *type;
5750 struct type *to_type;
5751 struct type *domain;
5752
5753 to_type = die_type (die, cu);
5754 domain = die_containing_type (die, cu);
5755
5756 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
5757 type = lookup_methodptr_type (to_type);
5758 else
5759 type = lookup_memberptr_type (to_type, domain);
5760
5761 return set_die_type (die, type, cu);
5762 }
5763
5764 /* Extract all information from a DW_TAG_reference_type DIE and add to
5765 the user defined type vector. */
5766
5767 static struct type *
5768 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
5769 {
5770 struct comp_unit_head *cu_header = &cu->header;
5771 struct type *type;
5772 struct attribute *attr;
5773
5774 type = lookup_reference_type (die_type (die, cu));
5775 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5776 if (attr)
5777 {
5778 TYPE_LENGTH (type) = DW_UNSND (attr);
5779 }
5780 else
5781 {
5782 TYPE_LENGTH (type) = cu_header->addr_size;
5783 }
5784 return set_die_type (die, type, cu);
5785 }
5786
5787 static struct type *
5788 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
5789 {
5790 struct type *base_type, *cv_type;
5791
5792 base_type = die_type (die, cu);
5793 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
5794 return set_die_type (die, cv_type, cu);
5795 }
5796
5797 static struct type *
5798 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
5799 {
5800 struct type *base_type, *cv_type;
5801
5802 base_type = die_type (die, cu);
5803 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
5804 return set_die_type (die, cv_type, cu);
5805 }
5806
5807 /* Extract all information from a DW_TAG_string_type DIE and add to
5808 the user defined type vector. It isn't really a user defined type,
5809 but it behaves like one, with other DIE's using an AT_user_def_type
5810 attribute to reference it. */
5811
5812 static struct type *
5813 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
5814 {
5815 struct objfile *objfile = cu->objfile;
5816 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5817 struct type *type, *range_type, *index_type, *char_type;
5818 struct attribute *attr;
5819 unsigned int length;
5820
5821 attr = dwarf2_attr (die, DW_AT_string_length, cu);
5822 if (attr)
5823 {
5824 length = DW_UNSND (attr);
5825 }
5826 else
5827 {
5828 /* check for the DW_AT_byte_size attribute */
5829 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5830 if (attr)
5831 {
5832 length = DW_UNSND (attr);
5833 }
5834 else
5835 {
5836 length = 1;
5837 }
5838 }
5839
5840 index_type = objfile_type (objfile)->builtin_int;
5841 range_type = create_range_type (NULL, index_type, 1, length);
5842 char_type = language_string_char_type (cu->language_defn, gdbarch);
5843 type = create_string_type (NULL, char_type, range_type);
5844
5845 return set_die_type (die, type, cu);
5846 }
5847
5848 /* Handle DIES due to C code like:
5849
5850 struct foo
5851 {
5852 int (*funcp)(int a, long l);
5853 int b;
5854 };
5855
5856 ('funcp' generates a DW_TAG_subroutine_type DIE)
5857 */
5858
5859 static struct type *
5860 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
5861 {
5862 struct type *type; /* Type that this function returns */
5863 struct type *ftype; /* Function that returns above type */
5864 struct attribute *attr;
5865
5866 type = die_type (die, cu);
5867 ftype = lookup_function_type (type);
5868
5869 /* All functions in C++, Pascal and Java have prototypes. */
5870 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
5871 if ((attr && (DW_UNSND (attr) != 0))
5872 || cu->language == language_cplus
5873 || cu->language == language_java
5874 || cu->language == language_pascal)
5875 TYPE_PROTOTYPED (ftype) = 1;
5876
5877 /* Store the calling convention in the type if it's available in
5878 the subroutine die. Otherwise set the calling convention to
5879 the default value DW_CC_normal. */
5880 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
5881 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
5882
5883 /* We need to add the subroutine type to the die immediately so
5884 we don't infinitely recurse when dealing with parameters
5885 declared as the same subroutine type. */
5886 set_die_type (die, ftype, cu);
5887
5888 if (die->child != NULL)
5889 {
5890 struct die_info *child_die;
5891 int nparams = 0;
5892 int iparams = 0;
5893
5894 /* Count the number of parameters.
5895 FIXME: GDB currently ignores vararg functions, but knows about
5896 vararg member functions. */
5897 child_die = die->child;
5898 while (child_die && child_die->tag)
5899 {
5900 if (child_die->tag == DW_TAG_formal_parameter)
5901 nparams++;
5902 else if (child_die->tag == DW_TAG_unspecified_parameters)
5903 TYPE_VARARGS (ftype) = 1;
5904 child_die = sibling_die (child_die);
5905 }
5906
5907 /* Allocate storage for parameters and fill them in. */
5908 TYPE_NFIELDS (ftype) = nparams;
5909 TYPE_FIELDS (ftype) = (struct field *)
5910 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
5911
5912 child_die = die->child;
5913 while (child_die && child_die->tag)
5914 {
5915 if (child_die->tag == DW_TAG_formal_parameter)
5916 {
5917 /* Dwarf2 has no clean way to discern C++ static and non-static
5918 member functions. G++ helps GDB by marking the first
5919 parameter for non-static member functions (which is the
5920 this pointer) as artificial. We pass this information
5921 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
5922 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
5923 if (attr)
5924 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
5925 else
5926 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
5927 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
5928 iparams++;
5929 }
5930 child_die = sibling_die (child_die);
5931 }
5932 }
5933
5934 return ftype;
5935 }
5936
5937 static struct type *
5938 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
5939 {
5940 struct objfile *objfile = cu->objfile;
5941 struct attribute *attr;
5942 const char *name = NULL;
5943 struct type *this_type;
5944
5945 name = dwarf2_full_name (die, cu);
5946 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
5947 TYPE_FLAG_TARGET_STUB, NULL, objfile);
5948 TYPE_NAME (this_type) = (char *) name;
5949 set_die_type (die, this_type, cu);
5950 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
5951 return this_type;
5952 }
5953
5954 /* Find a representation of a given base type and install
5955 it in the TYPE field of the die. */
5956
5957 static struct type *
5958 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
5959 {
5960 struct objfile *objfile = cu->objfile;
5961 struct type *type;
5962 struct attribute *attr;
5963 int encoding = 0, size = 0;
5964 char *name;
5965 enum type_code code = TYPE_CODE_INT;
5966 int type_flags = 0;
5967 struct type *target_type = NULL;
5968
5969 attr = dwarf2_attr (die, DW_AT_encoding, cu);
5970 if (attr)
5971 {
5972 encoding = DW_UNSND (attr);
5973 }
5974 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5975 if (attr)
5976 {
5977 size = DW_UNSND (attr);
5978 }
5979 name = dwarf2_name (die, cu);
5980 if (!name)
5981 {
5982 complaint (&symfile_complaints,
5983 _("DW_AT_name missing from DW_TAG_base_type"));
5984 }
5985
5986 switch (encoding)
5987 {
5988 case DW_ATE_address:
5989 /* Turn DW_ATE_address into a void * pointer. */
5990 code = TYPE_CODE_PTR;
5991 type_flags |= TYPE_FLAG_UNSIGNED;
5992 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
5993 break;
5994 case DW_ATE_boolean:
5995 code = TYPE_CODE_BOOL;
5996 type_flags |= TYPE_FLAG_UNSIGNED;
5997 break;
5998 case DW_ATE_complex_float:
5999 code = TYPE_CODE_COMPLEX;
6000 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
6001 break;
6002 case DW_ATE_decimal_float:
6003 code = TYPE_CODE_DECFLOAT;
6004 break;
6005 case DW_ATE_float:
6006 code = TYPE_CODE_FLT;
6007 break;
6008 case DW_ATE_signed:
6009 break;
6010 case DW_ATE_unsigned:
6011 type_flags |= TYPE_FLAG_UNSIGNED;
6012 break;
6013 case DW_ATE_signed_char:
6014 if (cu->language == language_ada || cu->language == language_m2
6015 || cu->language == language_pascal)
6016 code = TYPE_CODE_CHAR;
6017 break;
6018 case DW_ATE_unsigned_char:
6019 if (cu->language == language_ada || cu->language == language_m2
6020 || cu->language == language_pascal)
6021 code = TYPE_CODE_CHAR;
6022 type_flags |= TYPE_FLAG_UNSIGNED;
6023 break;
6024 default:
6025 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
6026 dwarf_type_encoding_name (encoding));
6027 break;
6028 }
6029
6030 type = init_type (code, size, type_flags, NULL, objfile);
6031 TYPE_NAME (type) = name;
6032 TYPE_TARGET_TYPE (type) = target_type;
6033
6034 if (name && strcmp (name, "char") == 0)
6035 TYPE_NOSIGN (type) = 1;
6036
6037 return set_die_type (die, type, cu);
6038 }
6039
6040 /* Read the given DW_AT_subrange DIE. */
6041
6042 static struct type *
6043 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
6044 {
6045 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
6046 struct type *base_type;
6047 struct type *range_type;
6048 struct attribute *attr;
6049 LONGEST low = 0;
6050 LONGEST high = -1;
6051 char *name;
6052 LONGEST negative_mask;
6053
6054 base_type = die_type (die, cu);
6055 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
6056 {
6057 complaint (&symfile_complaints,
6058 _("DW_AT_type missing from DW_TAG_subrange_type"));
6059 base_type
6060 = init_type (TYPE_CODE_INT, gdbarch_addr_bit (gdbarch) / 8,
6061 0, NULL, cu->objfile);
6062 }
6063
6064 if (cu->language == language_fortran)
6065 {
6066 /* FORTRAN implies a lower bound of 1, if not given. */
6067 low = 1;
6068 }
6069
6070 /* FIXME: For variable sized arrays either of these could be
6071 a variable rather than a constant value. We'll allow it,
6072 but we don't know how to handle it. */
6073 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
6074 if (attr)
6075 low = dwarf2_get_attr_constant_value (attr, 0);
6076
6077 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
6078 if (attr)
6079 {
6080 if (attr->form == DW_FORM_block1)
6081 {
6082 /* GCC encodes arrays with unspecified or dynamic length
6083 with a DW_FORM_block1 attribute.
6084 FIXME: GDB does not yet know how to handle dynamic
6085 arrays properly, treat them as arrays with unspecified
6086 length for now.
6087
6088 FIXME: jimb/2003-09-22: GDB does not really know
6089 how to handle arrays of unspecified length
6090 either; we just represent them as zero-length
6091 arrays. Choose an appropriate upper bound given
6092 the lower bound we've computed above. */
6093 high = low - 1;
6094 }
6095 else
6096 high = dwarf2_get_attr_constant_value (attr, 1);
6097 }
6098
6099 negative_mask =
6100 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
6101 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
6102 low |= negative_mask;
6103 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
6104 high |= negative_mask;
6105
6106 range_type = create_range_type (NULL, base_type, low, high);
6107
6108 name = dwarf2_name (die, cu);
6109 if (name)
6110 TYPE_NAME (range_type) = name;
6111
6112 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6113 if (attr)
6114 TYPE_LENGTH (range_type) = DW_UNSND (attr);
6115
6116 return set_die_type (die, range_type, cu);
6117 }
6118
6119 static struct type *
6120 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
6121 {
6122 struct type *type;
6123
6124 /* For now, we only support the C meaning of an unspecified type: void. */
6125
6126 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
6127 TYPE_NAME (type) = dwarf2_name (die, cu);
6128
6129 return set_die_type (die, type, cu);
6130 }
6131
6132 /* Trivial hash function for die_info: the hash value of a DIE
6133 is its offset in .debug_info for this objfile. */
6134
6135 static hashval_t
6136 die_hash (const void *item)
6137 {
6138 const struct die_info *die = item;
6139 return die->offset;
6140 }
6141
6142 /* Trivial comparison function for die_info structures: two DIEs
6143 are equal if they have the same offset. */
6144
6145 static int
6146 die_eq (const void *item_lhs, const void *item_rhs)
6147 {
6148 const struct die_info *die_lhs = item_lhs;
6149 const struct die_info *die_rhs = item_rhs;
6150 return die_lhs->offset == die_rhs->offset;
6151 }
6152
6153 /* Read a whole compilation unit into a linked list of dies. */
6154
6155 static struct die_info *
6156 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
6157 {
6158 struct die_reader_specs reader_specs;
6159
6160 gdb_assert (cu->die_hash == NULL);
6161 cu->die_hash
6162 = htab_create_alloc_ex (cu->header.length / 12,
6163 die_hash,
6164 die_eq,
6165 NULL,
6166 &cu->comp_unit_obstack,
6167 hashtab_obstack_allocate,
6168 dummy_obstack_deallocate);
6169
6170 init_cu_die_reader (&reader_specs, cu);
6171
6172 return read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
6173 }
6174
6175 /* Main entry point for reading a DIE and all children.
6176 Read the DIE and dump it if requested. */
6177
6178 static struct die_info *
6179 read_die_and_children (const struct die_reader_specs *reader,
6180 gdb_byte *info_ptr,
6181 gdb_byte **new_info_ptr,
6182 struct die_info *parent)
6183 {
6184 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
6185 new_info_ptr, parent);
6186
6187 if (dwarf2_die_debug)
6188 {
6189 fprintf_unfiltered (gdb_stdlog,
6190 "\nRead die from %s of %s:\n",
6191 reader->buffer == dwarf2_per_objfile->info.buffer
6192 ? ".debug_info"
6193 : reader->buffer == dwarf2_per_objfile->types.buffer
6194 ? ".debug_types"
6195 : "unknown section",
6196 reader->abfd->filename);
6197 dump_die (result, dwarf2_die_debug);
6198 }
6199
6200 return result;
6201 }
6202
6203 /* Read a single die and all its descendents. Set the die's sibling
6204 field to NULL; set other fields in the die correctly, and set all
6205 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
6206 location of the info_ptr after reading all of those dies. PARENT
6207 is the parent of the die in question. */
6208
6209 static struct die_info *
6210 read_die_and_children_1 (const struct die_reader_specs *reader,
6211 gdb_byte *info_ptr,
6212 gdb_byte **new_info_ptr,
6213 struct die_info *parent)
6214 {
6215 struct die_info *die;
6216 gdb_byte *cur_ptr;
6217 int has_children;
6218
6219 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
6220 if (die == NULL)
6221 {
6222 *new_info_ptr = cur_ptr;
6223 return NULL;
6224 }
6225 store_in_ref_table (die, reader->cu);
6226
6227 if (has_children)
6228 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
6229 else
6230 {
6231 die->child = NULL;
6232 *new_info_ptr = cur_ptr;
6233 }
6234
6235 die->sibling = NULL;
6236 die->parent = parent;
6237 return die;
6238 }
6239
6240 /* Read a die, all of its descendents, and all of its siblings; set
6241 all of the fields of all of the dies correctly. Arguments are as
6242 in read_die_and_children. */
6243
6244 static struct die_info *
6245 read_die_and_siblings (const struct die_reader_specs *reader,
6246 gdb_byte *info_ptr,
6247 gdb_byte **new_info_ptr,
6248 struct die_info *parent)
6249 {
6250 struct die_info *first_die, *last_sibling;
6251 gdb_byte *cur_ptr;
6252
6253 cur_ptr = info_ptr;
6254 first_die = last_sibling = NULL;
6255
6256 while (1)
6257 {
6258 struct die_info *die
6259 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
6260
6261 if (die == NULL)
6262 {
6263 *new_info_ptr = cur_ptr;
6264 return first_die;
6265 }
6266
6267 if (!first_die)
6268 first_die = die;
6269 else
6270 last_sibling->sibling = die;
6271
6272 last_sibling = die;
6273 }
6274 }
6275
6276 /* Read the die from the .debug_info section buffer. Set DIEP to
6277 point to a newly allocated die with its information, except for its
6278 child, sibling, and parent fields. Set HAS_CHILDREN to tell
6279 whether the die has children or not. */
6280
6281 static gdb_byte *
6282 read_full_die (const struct die_reader_specs *reader,
6283 struct die_info **diep, gdb_byte *info_ptr,
6284 int *has_children)
6285 {
6286 unsigned int abbrev_number, bytes_read, i, offset;
6287 struct abbrev_info *abbrev;
6288 struct die_info *die;
6289 struct dwarf2_cu *cu = reader->cu;
6290 bfd *abfd = reader->abfd;
6291
6292 offset = info_ptr - reader->buffer;
6293 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6294 info_ptr += bytes_read;
6295 if (!abbrev_number)
6296 {
6297 *diep = NULL;
6298 *has_children = 0;
6299 return info_ptr;
6300 }
6301
6302 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
6303 if (!abbrev)
6304 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
6305 abbrev_number,
6306 bfd_get_filename (abfd));
6307
6308 die = dwarf_alloc_die (cu, abbrev->num_attrs);
6309 die->offset = offset;
6310 die->tag = abbrev->tag;
6311 die->abbrev = abbrev_number;
6312
6313 die->num_attrs = abbrev->num_attrs;
6314
6315 for (i = 0; i < abbrev->num_attrs; ++i)
6316 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
6317 abfd, info_ptr, cu);
6318
6319 *diep = die;
6320 *has_children = abbrev->has_children;
6321 return info_ptr;
6322 }
6323
6324 /* In DWARF version 2, the description of the debugging information is
6325 stored in a separate .debug_abbrev section. Before we read any
6326 dies from a section we read in all abbreviations and install them
6327 in a hash table. This function also sets flags in CU describing
6328 the data found in the abbrev table. */
6329
6330 static void
6331 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
6332 {
6333 struct comp_unit_head *cu_header = &cu->header;
6334 gdb_byte *abbrev_ptr;
6335 struct abbrev_info *cur_abbrev;
6336 unsigned int abbrev_number, bytes_read, abbrev_name;
6337 unsigned int abbrev_form, hash_number;
6338 struct attr_abbrev *cur_attrs;
6339 unsigned int allocated_attrs;
6340
6341 /* Initialize dwarf2 abbrevs */
6342 obstack_init (&cu->abbrev_obstack);
6343 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
6344 (ABBREV_HASH_SIZE
6345 * sizeof (struct abbrev_info *)));
6346 memset (cu->dwarf2_abbrevs, 0,
6347 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
6348
6349 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
6350 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6351 abbrev_ptr += bytes_read;
6352
6353 allocated_attrs = ATTR_ALLOC_CHUNK;
6354 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6355
6356 /* loop until we reach an abbrev number of 0 */
6357 while (abbrev_number)
6358 {
6359 cur_abbrev = dwarf_alloc_abbrev (cu);
6360
6361 /* read in abbrev header */
6362 cur_abbrev->number = abbrev_number;
6363 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6364 abbrev_ptr += bytes_read;
6365 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
6366 abbrev_ptr += 1;
6367
6368 if (cur_abbrev->tag == DW_TAG_namespace)
6369 cu->has_namespace_info = 1;
6370
6371 /* now read in declarations */
6372 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6373 abbrev_ptr += bytes_read;
6374 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6375 abbrev_ptr += bytes_read;
6376 while (abbrev_name)
6377 {
6378 if (cur_abbrev->num_attrs == allocated_attrs)
6379 {
6380 allocated_attrs += ATTR_ALLOC_CHUNK;
6381 cur_attrs
6382 = xrealloc (cur_attrs, (allocated_attrs
6383 * sizeof (struct attr_abbrev)));
6384 }
6385
6386 /* Record whether this compilation unit might have
6387 inter-compilation-unit references. If we don't know what form
6388 this attribute will have, then it might potentially be a
6389 DW_FORM_ref_addr, so we conservatively expect inter-CU
6390 references. */
6391
6392 if (abbrev_form == DW_FORM_ref_addr
6393 || abbrev_form == DW_FORM_indirect)
6394 cu->has_form_ref_addr = 1;
6395
6396 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
6397 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
6398 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6399 abbrev_ptr += bytes_read;
6400 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6401 abbrev_ptr += bytes_read;
6402 }
6403
6404 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
6405 (cur_abbrev->num_attrs
6406 * sizeof (struct attr_abbrev)));
6407 memcpy (cur_abbrev->attrs, cur_attrs,
6408 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
6409
6410 hash_number = abbrev_number % ABBREV_HASH_SIZE;
6411 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
6412 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
6413
6414 /* Get next abbreviation.
6415 Under Irix6 the abbreviations for a compilation unit are not
6416 always properly terminated with an abbrev number of 0.
6417 Exit loop if we encounter an abbreviation which we have
6418 already read (which means we are about to read the abbreviations
6419 for the next compile unit) or if the end of the abbreviation
6420 table is reached. */
6421 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
6422 >= dwarf2_per_objfile->abbrev.size)
6423 break;
6424 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6425 abbrev_ptr += bytes_read;
6426 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
6427 break;
6428 }
6429
6430 xfree (cur_attrs);
6431 }
6432
6433 /* Release the memory used by the abbrev table for a compilation unit. */
6434
6435 static void
6436 dwarf2_free_abbrev_table (void *ptr_to_cu)
6437 {
6438 struct dwarf2_cu *cu = ptr_to_cu;
6439
6440 obstack_free (&cu->abbrev_obstack, NULL);
6441 cu->dwarf2_abbrevs = NULL;
6442 }
6443
6444 /* Lookup an abbrev_info structure in the abbrev hash table. */
6445
6446 static struct abbrev_info *
6447 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
6448 {
6449 unsigned int hash_number;
6450 struct abbrev_info *abbrev;
6451
6452 hash_number = number % ABBREV_HASH_SIZE;
6453 abbrev = cu->dwarf2_abbrevs[hash_number];
6454
6455 while (abbrev)
6456 {
6457 if (abbrev->number == number)
6458 return abbrev;
6459 else
6460 abbrev = abbrev->next;
6461 }
6462 return NULL;
6463 }
6464
6465 /* Returns nonzero if TAG represents a type that we might generate a partial
6466 symbol for. */
6467
6468 static int
6469 is_type_tag_for_partial (int tag)
6470 {
6471 switch (tag)
6472 {
6473 #if 0
6474 /* Some types that would be reasonable to generate partial symbols for,
6475 that we don't at present. */
6476 case DW_TAG_array_type:
6477 case DW_TAG_file_type:
6478 case DW_TAG_ptr_to_member_type:
6479 case DW_TAG_set_type:
6480 case DW_TAG_string_type:
6481 case DW_TAG_subroutine_type:
6482 #endif
6483 case DW_TAG_base_type:
6484 case DW_TAG_class_type:
6485 case DW_TAG_interface_type:
6486 case DW_TAG_enumeration_type:
6487 case DW_TAG_structure_type:
6488 case DW_TAG_subrange_type:
6489 case DW_TAG_typedef:
6490 case DW_TAG_union_type:
6491 return 1;
6492 default:
6493 return 0;
6494 }
6495 }
6496
6497 /* Load all DIEs that are interesting for partial symbols into memory. */
6498
6499 static struct partial_die_info *
6500 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
6501 int building_psymtab, struct dwarf2_cu *cu)
6502 {
6503 struct partial_die_info *part_die;
6504 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
6505 struct abbrev_info *abbrev;
6506 unsigned int bytes_read;
6507 unsigned int load_all = 0;
6508
6509 int nesting_level = 1;
6510
6511 parent_die = NULL;
6512 last_die = NULL;
6513
6514 if (cu->per_cu && cu->per_cu->load_all_dies)
6515 load_all = 1;
6516
6517 cu->partial_dies
6518 = htab_create_alloc_ex (cu->header.length / 12,
6519 partial_die_hash,
6520 partial_die_eq,
6521 NULL,
6522 &cu->comp_unit_obstack,
6523 hashtab_obstack_allocate,
6524 dummy_obstack_deallocate);
6525
6526 part_die = obstack_alloc (&cu->comp_unit_obstack,
6527 sizeof (struct partial_die_info));
6528
6529 while (1)
6530 {
6531 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6532
6533 /* A NULL abbrev means the end of a series of children. */
6534 if (abbrev == NULL)
6535 {
6536 if (--nesting_level == 0)
6537 {
6538 /* PART_DIE was probably the last thing allocated on the
6539 comp_unit_obstack, so we could call obstack_free
6540 here. We don't do that because the waste is small,
6541 and will be cleaned up when we're done with this
6542 compilation unit. This way, we're also more robust
6543 against other users of the comp_unit_obstack. */
6544 return first_die;
6545 }
6546 info_ptr += bytes_read;
6547 last_die = parent_die;
6548 parent_die = parent_die->die_parent;
6549 continue;
6550 }
6551
6552 /* Check whether this DIE is interesting enough to save. Normally
6553 we would not be interested in members here, but there may be
6554 later variables referencing them via DW_AT_specification (for
6555 static members). */
6556 if (!load_all
6557 && !is_type_tag_for_partial (abbrev->tag)
6558 && abbrev->tag != DW_TAG_enumerator
6559 && abbrev->tag != DW_TAG_subprogram
6560 && abbrev->tag != DW_TAG_lexical_block
6561 && abbrev->tag != DW_TAG_variable
6562 && abbrev->tag != DW_TAG_namespace
6563 && abbrev->tag != DW_TAG_member)
6564 {
6565 /* Otherwise we skip to the next sibling, if any. */
6566 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
6567 continue;
6568 }
6569
6570 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
6571 buffer, info_ptr, cu);
6572
6573 /* This two-pass algorithm for processing partial symbols has a
6574 high cost in cache pressure. Thus, handle some simple cases
6575 here which cover the majority of C partial symbols. DIEs
6576 which neither have specification tags in them, nor could have
6577 specification tags elsewhere pointing at them, can simply be
6578 processed and discarded.
6579
6580 This segment is also optional; scan_partial_symbols and
6581 add_partial_symbol will handle these DIEs if we chain
6582 them in normally. When compilers which do not emit large
6583 quantities of duplicate debug information are more common,
6584 this code can probably be removed. */
6585
6586 /* Any complete simple types at the top level (pretty much all
6587 of them, for a language without namespaces), can be processed
6588 directly. */
6589 if (parent_die == NULL
6590 && part_die->has_specification == 0
6591 && part_die->is_declaration == 0
6592 && (part_die->tag == DW_TAG_typedef
6593 || part_die->tag == DW_TAG_base_type
6594 || part_die->tag == DW_TAG_subrange_type))
6595 {
6596 if (building_psymtab && part_die->name != NULL)
6597 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
6598 VAR_DOMAIN, LOC_TYPEDEF,
6599 &cu->objfile->static_psymbols,
6600 0, (CORE_ADDR) 0, cu->language, cu->objfile);
6601 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
6602 continue;
6603 }
6604
6605 /* If we're at the second level, and we're an enumerator, and
6606 our parent has no specification (meaning possibly lives in a
6607 namespace elsewhere), then we can add the partial symbol now
6608 instead of queueing it. */
6609 if (part_die->tag == DW_TAG_enumerator
6610 && parent_die != NULL
6611 && parent_die->die_parent == NULL
6612 && parent_die->tag == DW_TAG_enumeration_type
6613 && parent_die->has_specification == 0)
6614 {
6615 if (part_die->name == NULL)
6616 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6617 else if (building_psymtab)
6618 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
6619 VAR_DOMAIN, LOC_CONST,
6620 (cu->language == language_cplus
6621 || cu->language == language_java)
6622 ? &cu->objfile->global_psymbols
6623 : &cu->objfile->static_psymbols,
6624 0, (CORE_ADDR) 0, cu->language, cu->objfile);
6625
6626 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
6627 continue;
6628 }
6629
6630 /* We'll save this DIE so link it in. */
6631 part_die->die_parent = parent_die;
6632 part_die->die_sibling = NULL;
6633 part_die->die_child = NULL;
6634
6635 if (last_die && last_die == parent_die)
6636 last_die->die_child = part_die;
6637 else if (last_die)
6638 last_die->die_sibling = part_die;
6639
6640 last_die = part_die;
6641
6642 if (first_die == NULL)
6643 first_die = part_die;
6644
6645 /* Maybe add the DIE to the hash table. Not all DIEs that we
6646 find interesting need to be in the hash table, because we
6647 also have the parent/sibling/child chains; only those that we
6648 might refer to by offset later during partial symbol reading.
6649
6650 For now this means things that might have be the target of a
6651 DW_AT_specification, DW_AT_abstract_origin, or
6652 DW_AT_extension. DW_AT_extension will refer only to
6653 namespaces; DW_AT_abstract_origin refers to functions (and
6654 many things under the function DIE, but we do not recurse
6655 into function DIEs during partial symbol reading) and
6656 possibly variables as well; DW_AT_specification refers to
6657 declarations. Declarations ought to have the DW_AT_declaration
6658 flag. It happens that GCC forgets to put it in sometimes, but
6659 only for functions, not for types.
6660
6661 Adding more things than necessary to the hash table is harmless
6662 except for the performance cost. Adding too few will result in
6663 wasted time in find_partial_die, when we reread the compilation
6664 unit with load_all_dies set. */
6665
6666 if (load_all
6667 || abbrev->tag == DW_TAG_subprogram
6668 || abbrev->tag == DW_TAG_variable
6669 || abbrev->tag == DW_TAG_namespace
6670 || part_die->is_declaration)
6671 {
6672 void **slot;
6673
6674 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
6675 part_die->offset, INSERT);
6676 *slot = part_die;
6677 }
6678
6679 part_die = obstack_alloc (&cu->comp_unit_obstack,
6680 sizeof (struct partial_die_info));
6681
6682 /* For some DIEs we want to follow their children (if any). For C
6683 we have no reason to follow the children of structures; for other
6684 languages we have to, both so that we can get at method physnames
6685 to infer fully qualified class names, and for DW_AT_specification.
6686
6687 For Ada, we need to scan the children of subprograms and lexical
6688 blocks as well because Ada allows the definition of nested
6689 entities that could be interesting for the debugger, such as
6690 nested subprograms for instance. */
6691 if (last_die->has_children
6692 && (load_all
6693 || last_die->tag == DW_TAG_namespace
6694 || last_die->tag == DW_TAG_enumeration_type
6695 || (cu->language != language_c
6696 && (last_die->tag == DW_TAG_class_type
6697 || last_die->tag == DW_TAG_interface_type
6698 || last_die->tag == DW_TAG_structure_type
6699 || last_die->tag == DW_TAG_union_type))
6700 || (cu->language == language_ada
6701 && (last_die->tag == DW_TAG_subprogram
6702 || last_die->tag == DW_TAG_lexical_block))))
6703 {
6704 nesting_level++;
6705 parent_die = last_die;
6706 continue;
6707 }
6708
6709 /* Otherwise we skip to the next sibling, if any. */
6710 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
6711
6712 /* Back to the top, do it again. */
6713 }
6714 }
6715
6716 /* Read a minimal amount of information into the minimal die structure. */
6717
6718 static gdb_byte *
6719 read_partial_die (struct partial_die_info *part_die,
6720 struct abbrev_info *abbrev,
6721 unsigned int abbrev_len, bfd *abfd,
6722 gdb_byte *buffer, gdb_byte *info_ptr,
6723 struct dwarf2_cu *cu)
6724 {
6725 unsigned int bytes_read, i;
6726 struct attribute attr;
6727 int has_low_pc_attr = 0;
6728 int has_high_pc_attr = 0;
6729
6730 memset (part_die, 0, sizeof (struct partial_die_info));
6731
6732 part_die->offset = info_ptr - buffer;
6733
6734 info_ptr += abbrev_len;
6735
6736 if (abbrev == NULL)
6737 return info_ptr;
6738
6739 part_die->tag = abbrev->tag;
6740 part_die->has_children = abbrev->has_children;
6741
6742 for (i = 0; i < abbrev->num_attrs; ++i)
6743 {
6744 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
6745
6746 /* Store the data if it is of an attribute we want to keep in a
6747 partial symbol table. */
6748 switch (attr.name)
6749 {
6750 case DW_AT_name:
6751 switch (part_die->tag)
6752 {
6753 case DW_TAG_compile_unit:
6754 case DW_TAG_type_unit:
6755 /* Compilation units have a DW_AT_name that is a filename, not
6756 a source language identifier. */
6757 case DW_TAG_enumeration_type:
6758 case DW_TAG_enumerator:
6759 /* These tags always have simple identifiers already; no need
6760 to canonicalize them. */
6761 part_die->name = DW_STRING (&attr);
6762 break;
6763 default:
6764 part_die->name
6765 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
6766 &cu->comp_unit_obstack);
6767 break;
6768 }
6769 break;
6770 case DW_AT_MIPS_linkage_name:
6771 part_die->name = DW_STRING (&attr);
6772 break;
6773 case DW_AT_low_pc:
6774 has_low_pc_attr = 1;
6775 part_die->lowpc = DW_ADDR (&attr);
6776 break;
6777 case DW_AT_high_pc:
6778 has_high_pc_attr = 1;
6779 part_die->highpc = DW_ADDR (&attr);
6780 break;
6781 case DW_AT_location:
6782 /* Support the .debug_loc offsets */
6783 if (attr_form_is_block (&attr))
6784 {
6785 part_die->locdesc = DW_BLOCK (&attr);
6786 }
6787 else if (attr_form_is_section_offset (&attr))
6788 {
6789 dwarf2_complex_location_expr_complaint ();
6790 }
6791 else
6792 {
6793 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
6794 "partial symbol information");
6795 }
6796 break;
6797 case DW_AT_external:
6798 part_die->is_external = DW_UNSND (&attr);
6799 break;
6800 case DW_AT_declaration:
6801 part_die->is_declaration = DW_UNSND (&attr);
6802 break;
6803 case DW_AT_type:
6804 part_die->has_type = 1;
6805 break;
6806 case DW_AT_abstract_origin:
6807 case DW_AT_specification:
6808 case DW_AT_extension:
6809 part_die->has_specification = 1;
6810 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
6811 break;
6812 case DW_AT_sibling:
6813 /* Ignore absolute siblings, they might point outside of
6814 the current compile unit. */
6815 if (attr.form == DW_FORM_ref_addr)
6816 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
6817 else
6818 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
6819 break;
6820 case DW_AT_byte_size:
6821 part_die->has_byte_size = 1;
6822 break;
6823 case DW_AT_calling_convention:
6824 /* DWARF doesn't provide a way to identify a program's source-level
6825 entry point. DW_AT_calling_convention attributes are only meant
6826 to describe functions' calling conventions.
6827
6828 However, because it's a necessary piece of information in
6829 Fortran, and because DW_CC_program is the only piece of debugging
6830 information whose definition refers to a 'main program' at all,
6831 several compilers have begun marking Fortran main programs with
6832 DW_CC_program --- even when those functions use the standard
6833 calling conventions.
6834
6835 So until DWARF specifies a way to provide this information and
6836 compilers pick up the new representation, we'll support this
6837 practice. */
6838 if (DW_UNSND (&attr) == DW_CC_program
6839 && cu->language == language_fortran)
6840 set_main_name (part_die->name);
6841 break;
6842 default:
6843 break;
6844 }
6845 }
6846
6847 /* When using the GNU linker, .gnu.linkonce. sections are used to
6848 eliminate duplicate copies of functions and vtables and such.
6849 The linker will arbitrarily choose one and discard the others.
6850 The AT_*_pc values for such functions refer to local labels in
6851 these sections. If the section from that file was discarded, the
6852 labels are not in the output, so the relocs get a value of 0.
6853 If this is a discarded function, mark the pc bounds as invalid,
6854 so that GDB will ignore it. */
6855 if (has_low_pc_attr && has_high_pc_attr
6856 && part_die->lowpc < part_die->highpc
6857 && (part_die->lowpc != 0
6858 || dwarf2_per_objfile->has_section_at_zero))
6859 part_die->has_pc_info = 1;
6860
6861 return info_ptr;
6862 }
6863
6864 /* Find a cached partial DIE at OFFSET in CU. */
6865
6866 static struct partial_die_info *
6867 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
6868 {
6869 struct partial_die_info *lookup_die = NULL;
6870 struct partial_die_info part_die;
6871
6872 part_die.offset = offset;
6873 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
6874
6875 return lookup_die;
6876 }
6877
6878 /* Find a partial DIE at OFFSET, which may or may not be in CU,
6879 except in the case of .debug_types DIEs which do not reference
6880 outside their CU (they do however referencing other types via
6881 DW_FORM_sig8). */
6882
6883 static struct partial_die_info *
6884 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
6885 {
6886 struct dwarf2_per_cu_data *per_cu = NULL;
6887 struct partial_die_info *pd = NULL;
6888
6889 if (cu->per_cu->from_debug_types)
6890 {
6891 pd = find_partial_die_in_comp_unit (offset, cu);
6892 if (pd != NULL)
6893 return pd;
6894 goto not_found;
6895 }
6896
6897 if (offset_in_cu_p (&cu->header, offset))
6898 {
6899 pd = find_partial_die_in_comp_unit (offset, cu);
6900 if (pd != NULL)
6901 return pd;
6902 }
6903
6904 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
6905
6906 if (per_cu->cu == NULL)
6907 {
6908 load_partial_comp_unit (per_cu, cu->objfile);
6909 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6910 dwarf2_per_objfile->read_in_chain = per_cu;
6911 }
6912
6913 per_cu->cu->last_used = 0;
6914 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
6915
6916 if (pd == NULL && per_cu->load_all_dies == 0)
6917 {
6918 struct cleanup *back_to;
6919 struct partial_die_info comp_unit_die;
6920 struct abbrev_info *abbrev;
6921 unsigned int bytes_read;
6922 char *info_ptr;
6923
6924 per_cu->load_all_dies = 1;
6925
6926 /* Re-read the DIEs. */
6927 back_to = make_cleanup (null_cleanup, 0);
6928 if (per_cu->cu->dwarf2_abbrevs == NULL)
6929 {
6930 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
6931 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
6932 }
6933 info_ptr = (dwarf2_per_objfile->info.buffer
6934 + per_cu->cu->header.offset
6935 + per_cu->cu->header.first_die_offset);
6936 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
6937 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
6938 per_cu->cu->objfile->obfd,
6939 dwarf2_per_objfile->info.buffer, info_ptr,
6940 per_cu->cu);
6941 if (comp_unit_die.has_children)
6942 load_partial_dies (per_cu->cu->objfile->obfd,
6943 dwarf2_per_objfile->info.buffer, info_ptr,
6944 0, per_cu->cu);
6945 do_cleanups (back_to);
6946
6947 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
6948 }
6949
6950 not_found:
6951
6952 if (pd == NULL)
6953 internal_error (__FILE__, __LINE__,
6954 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
6955 offset, bfd_get_filename (cu->objfile->obfd));
6956 return pd;
6957 }
6958
6959 /* Adjust PART_DIE before generating a symbol for it. This function
6960 may set the is_external flag or change the DIE's name. */
6961
6962 static void
6963 fixup_partial_die (struct partial_die_info *part_die,
6964 struct dwarf2_cu *cu)
6965 {
6966 /* If we found a reference attribute and the DIE has no name, try
6967 to find a name in the referred to DIE. */
6968
6969 if (part_die->name == NULL && part_die->has_specification)
6970 {
6971 struct partial_die_info *spec_die;
6972
6973 spec_die = find_partial_die (part_die->spec_offset, cu);
6974
6975 fixup_partial_die (spec_die, cu);
6976
6977 if (spec_die->name)
6978 {
6979 part_die->name = spec_die->name;
6980
6981 /* Copy DW_AT_external attribute if it is set. */
6982 if (spec_die->is_external)
6983 part_die->is_external = spec_die->is_external;
6984 }
6985 }
6986
6987 /* Set default names for some unnamed DIEs. */
6988 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
6989 || part_die->tag == DW_TAG_class_type))
6990 part_die->name = "(anonymous class)";
6991
6992 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
6993 part_die->name = "(anonymous namespace)";
6994
6995 if (part_die->tag == DW_TAG_structure_type
6996 || part_die->tag == DW_TAG_class_type
6997 || part_die->tag == DW_TAG_union_type)
6998 guess_structure_name (part_die, cu);
6999 }
7000
7001 /* Read an attribute value described by an attribute form. */
7002
7003 static gdb_byte *
7004 read_attribute_value (struct attribute *attr, unsigned form,
7005 bfd *abfd, gdb_byte *info_ptr,
7006 struct dwarf2_cu *cu)
7007 {
7008 struct comp_unit_head *cu_header = &cu->header;
7009 unsigned int bytes_read;
7010 struct dwarf_block *blk;
7011
7012 attr->form = form;
7013 switch (form)
7014 {
7015 case DW_FORM_addr:
7016 case DW_FORM_ref_addr:
7017 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
7018 info_ptr += bytes_read;
7019 break;
7020 case DW_FORM_block2:
7021 blk = dwarf_alloc_block (cu);
7022 blk->size = read_2_bytes (abfd, info_ptr);
7023 info_ptr += 2;
7024 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7025 info_ptr += blk->size;
7026 DW_BLOCK (attr) = blk;
7027 break;
7028 case DW_FORM_block4:
7029 blk = dwarf_alloc_block (cu);
7030 blk->size = read_4_bytes (abfd, info_ptr);
7031 info_ptr += 4;
7032 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7033 info_ptr += blk->size;
7034 DW_BLOCK (attr) = blk;
7035 break;
7036 case DW_FORM_data2:
7037 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
7038 info_ptr += 2;
7039 break;
7040 case DW_FORM_data4:
7041 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
7042 info_ptr += 4;
7043 break;
7044 case DW_FORM_data8:
7045 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
7046 info_ptr += 8;
7047 break;
7048 case DW_FORM_string:
7049 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
7050 DW_STRING_IS_CANONICAL (attr) = 0;
7051 info_ptr += bytes_read;
7052 break;
7053 case DW_FORM_strp:
7054 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
7055 &bytes_read);
7056 DW_STRING_IS_CANONICAL (attr) = 0;
7057 info_ptr += bytes_read;
7058 break;
7059 case DW_FORM_block:
7060 blk = dwarf_alloc_block (cu);
7061 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7062 info_ptr += bytes_read;
7063 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7064 info_ptr += blk->size;
7065 DW_BLOCK (attr) = blk;
7066 break;
7067 case DW_FORM_block1:
7068 blk = dwarf_alloc_block (cu);
7069 blk->size = read_1_byte (abfd, info_ptr);
7070 info_ptr += 1;
7071 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7072 info_ptr += blk->size;
7073 DW_BLOCK (attr) = blk;
7074 break;
7075 case DW_FORM_data1:
7076 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7077 info_ptr += 1;
7078 break;
7079 case DW_FORM_flag:
7080 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7081 info_ptr += 1;
7082 break;
7083 case DW_FORM_sdata:
7084 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
7085 info_ptr += bytes_read;
7086 break;
7087 case DW_FORM_udata:
7088 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7089 info_ptr += bytes_read;
7090 break;
7091 case DW_FORM_ref1:
7092 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
7093 info_ptr += 1;
7094 break;
7095 case DW_FORM_ref2:
7096 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
7097 info_ptr += 2;
7098 break;
7099 case DW_FORM_ref4:
7100 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
7101 info_ptr += 4;
7102 break;
7103 case DW_FORM_ref8:
7104 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
7105 info_ptr += 8;
7106 break;
7107 case DW_FORM_sig8:
7108 /* Convert the signature to something we can record in DW_UNSND
7109 for later lookup.
7110 NOTE: This is NULL if the type wasn't found. */
7111 DW_SIGNATURED_TYPE (attr) =
7112 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
7113 info_ptr += 8;
7114 break;
7115 case DW_FORM_ref_udata:
7116 DW_ADDR (attr) = (cu->header.offset
7117 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
7118 info_ptr += bytes_read;
7119 break;
7120 case DW_FORM_indirect:
7121 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7122 info_ptr += bytes_read;
7123 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
7124 break;
7125 default:
7126 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
7127 dwarf_form_name (form),
7128 bfd_get_filename (abfd));
7129 }
7130
7131 /* We have seen instances where the compiler tried to emit a byte
7132 size attribute of -1 which ended up being encoded as an unsigned
7133 0xffffffff. Although 0xffffffff is technically a valid size value,
7134 an object of this size seems pretty unlikely so we can relatively
7135 safely treat these cases as if the size attribute was invalid and
7136 treat them as zero by default. */
7137 if (attr->name == DW_AT_byte_size
7138 && form == DW_FORM_data4
7139 && DW_UNSND (attr) >= 0xffffffff)
7140 {
7141 complaint
7142 (&symfile_complaints,
7143 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
7144 hex_string (DW_UNSND (attr)));
7145 DW_UNSND (attr) = 0;
7146 }
7147
7148 return info_ptr;
7149 }
7150
7151 /* Read an attribute described by an abbreviated attribute. */
7152
7153 static gdb_byte *
7154 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
7155 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
7156 {
7157 attr->name = abbrev->name;
7158 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
7159 }
7160
7161 /* read dwarf information from a buffer */
7162
7163 static unsigned int
7164 read_1_byte (bfd *abfd, gdb_byte *buf)
7165 {
7166 return bfd_get_8 (abfd, buf);
7167 }
7168
7169 static int
7170 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
7171 {
7172 return bfd_get_signed_8 (abfd, buf);
7173 }
7174
7175 static unsigned int
7176 read_2_bytes (bfd *abfd, gdb_byte *buf)
7177 {
7178 return bfd_get_16 (abfd, buf);
7179 }
7180
7181 static int
7182 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
7183 {
7184 return bfd_get_signed_16 (abfd, buf);
7185 }
7186
7187 static unsigned int
7188 read_4_bytes (bfd *abfd, gdb_byte *buf)
7189 {
7190 return bfd_get_32 (abfd, buf);
7191 }
7192
7193 static int
7194 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
7195 {
7196 return bfd_get_signed_32 (abfd, buf);
7197 }
7198
7199 static ULONGEST
7200 read_8_bytes (bfd *abfd, gdb_byte *buf)
7201 {
7202 return bfd_get_64 (abfd, buf);
7203 }
7204
7205 static CORE_ADDR
7206 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
7207 unsigned int *bytes_read)
7208 {
7209 struct comp_unit_head *cu_header = &cu->header;
7210 CORE_ADDR retval = 0;
7211
7212 if (cu_header->signed_addr_p)
7213 {
7214 switch (cu_header->addr_size)
7215 {
7216 case 2:
7217 retval = bfd_get_signed_16 (abfd, buf);
7218 break;
7219 case 4:
7220 retval = bfd_get_signed_32 (abfd, buf);
7221 break;
7222 case 8:
7223 retval = bfd_get_signed_64 (abfd, buf);
7224 break;
7225 default:
7226 internal_error (__FILE__, __LINE__,
7227 _("read_address: bad switch, signed [in module %s]"),
7228 bfd_get_filename (abfd));
7229 }
7230 }
7231 else
7232 {
7233 switch (cu_header->addr_size)
7234 {
7235 case 2:
7236 retval = bfd_get_16 (abfd, buf);
7237 break;
7238 case 4:
7239 retval = bfd_get_32 (abfd, buf);
7240 break;
7241 case 8:
7242 retval = bfd_get_64 (abfd, buf);
7243 break;
7244 default:
7245 internal_error (__FILE__, __LINE__,
7246 _("read_address: bad switch, unsigned [in module %s]"),
7247 bfd_get_filename (abfd));
7248 }
7249 }
7250
7251 *bytes_read = cu_header->addr_size;
7252 return retval;
7253 }
7254
7255 /* Read the initial length from a section. The (draft) DWARF 3
7256 specification allows the initial length to take up either 4 bytes
7257 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
7258 bytes describe the length and all offsets will be 8 bytes in length
7259 instead of 4.
7260
7261 An older, non-standard 64-bit format is also handled by this
7262 function. The older format in question stores the initial length
7263 as an 8-byte quantity without an escape value. Lengths greater
7264 than 2^32 aren't very common which means that the initial 4 bytes
7265 is almost always zero. Since a length value of zero doesn't make
7266 sense for the 32-bit format, this initial zero can be considered to
7267 be an escape value which indicates the presence of the older 64-bit
7268 format. As written, the code can't detect (old format) lengths
7269 greater than 4GB. If it becomes necessary to handle lengths
7270 somewhat larger than 4GB, we could allow other small values (such
7271 as the non-sensical values of 1, 2, and 3) to also be used as
7272 escape values indicating the presence of the old format.
7273
7274 The value returned via bytes_read should be used to increment the
7275 relevant pointer after calling read_initial_length().
7276
7277 [ Note: read_initial_length() and read_offset() are based on the
7278 document entitled "DWARF Debugging Information Format", revision
7279 3, draft 8, dated November 19, 2001. This document was obtained
7280 from:
7281
7282 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
7283
7284 This document is only a draft and is subject to change. (So beware.)
7285
7286 Details regarding the older, non-standard 64-bit format were
7287 determined empirically by examining 64-bit ELF files produced by
7288 the SGI toolchain on an IRIX 6.5 machine.
7289
7290 - Kevin, July 16, 2002
7291 ] */
7292
7293 static LONGEST
7294 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
7295 {
7296 LONGEST length = bfd_get_32 (abfd, buf);
7297
7298 if (length == 0xffffffff)
7299 {
7300 length = bfd_get_64 (abfd, buf + 4);
7301 *bytes_read = 12;
7302 }
7303 else if (length == 0)
7304 {
7305 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
7306 length = bfd_get_64 (abfd, buf);
7307 *bytes_read = 8;
7308 }
7309 else
7310 {
7311 *bytes_read = 4;
7312 }
7313
7314 return length;
7315 }
7316
7317 /* Cover function for read_initial_length.
7318 Returns the length of the object at BUF, and stores the size of the
7319 initial length in *BYTES_READ and stores the size that offsets will be in
7320 *OFFSET_SIZE.
7321 If the initial length size is not equivalent to that specified in
7322 CU_HEADER then issue a complaint.
7323 This is useful when reading non-comp-unit headers. */
7324
7325 static LONGEST
7326 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
7327 const struct comp_unit_head *cu_header,
7328 unsigned int *bytes_read,
7329 unsigned int *offset_size)
7330 {
7331 LONGEST length = read_initial_length (abfd, buf, bytes_read);
7332
7333 gdb_assert (cu_header->initial_length_size == 4
7334 || cu_header->initial_length_size == 8
7335 || cu_header->initial_length_size == 12);
7336
7337 if (cu_header->initial_length_size != *bytes_read)
7338 complaint (&symfile_complaints,
7339 _("intermixed 32-bit and 64-bit DWARF sections"));
7340
7341 *offset_size = (*bytes_read == 4) ? 4 : 8;
7342 return length;
7343 }
7344
7345 /* Read an offset from the data stream. The size of the offset is
7346 given by cu_header->offset_size. */
7347
7348 static LONGEST
7349 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
7350 unsigned int *bytes_read)
7351 {
7352 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
7353 *bytes_read = cu_header->offset_size;
7354 return offset;
7355 }
7356
7357 /* Read an offset from the data stream. */
7358
7359 static LONGEST
7360 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
7361 {
7362 LONGEST retval = 0;
7363
7364 switch (offset_size)
7365 {
7366 case 4:
7367 retval = bfd_get_32 (abfd, buf);
7368 break;
7369 case 8:
7370 retval = bfd_get_64 (abfd, buf);
7371 break;
7372 default:
7373 internal_error (__FILE__, __LINE__,
7374 _("read_offset_1: bad switch [in module %s]"),
7375 bfd_get_filename (abfd));
7376 }
7377
7378 return retval;
7379 }
7380
7381 static gdb_byte *
7382 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
7383 {
7384 /* If the size of a host char is 8 bits, we can return a pointer
7385 to the buffer, otherwise we have to copy the data to a buffer
7386 allocated on the temporary obstack. */
7387 gdb_assert (HOST_CHAR_BIT == 8);
7388 return buf;
7389 }
7390
7391 static char *
7392 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
7393 {
7394 /* If the size of a host char is 8 bits, we can return a pointer
7395 to the string, otherwise we have to copy the string to a buffer
7396 allocated on the temporary obstack. */
7397 gdb_assert (HOST_CHAR_BIT == 8);
7398 if (*buf == '\0')
7399 {
7400 *bytes_read_ptr = 1;
7401 return NULL;
7402 }
7403 *bytes_read_ptr = strlen ((char *) buf) + 1;
7404 return (char *) buf;
7405 }
7406
7407 static char *
7408 read_indirect_string (bfd *abfd, gdb_byte *buf,
7409 const struct comp_unit_head *cu_header,
7410 unsigned int *bytes_read_ptr)
7411 {
7412 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
7413
7414 if (dwarf2_per_objfile->str.buffer == NULL)
7415 {
7416 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
7417 bfd_get_filename (abfd));
7418 return NULL;
7419 }
7420 if (str_offset >= dwarf2_per_objfile->str.size)
7421 {
7422 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
7423 bfd_get_filename (abfd));
7424 return NULL;
7425 }
7426 gdb_assert (HOST_CHAR_BIT == 8);
7427 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
7428 return NULL;
7429 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
7430 }
7431
7432 static unsigned long
7433 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
7434 {
7435 unsigned long result;
7436 unsigned int num_read;
7437 int i, shift;
7438 unsigned char byte;
7439
7440 result = 0;
7441 shift = 0;
7442 num_read = 0;
7443 i = 0;
7444 while (1)
7445 {
7446 byte = bfd_get_8 (abfd, buf);
7447 buf++;
7448 num_read++;
7449 result |= ((unsigned long)(byte & 127) << shift);
7450 if ((byte & 128) == 0)
7451 {
7452 break;
7453 }
7454 shift += 7;
7455 }
7456 *bytes_read_ptr = num_read;
7457 return result;
7458 }
7459
7460 static long
7461 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
7462 {
7463 long result;
7464 int i, shift, num_read;
7465 unsigned char byte;
7466
7467 result = 0;
7468 shift = 0;
7469 num_read = 0;
7470 i = 0;
7471 while (1)
7472 {
7473 byte = bfd_get_8 (abfd, buf);
7474 buf++;
7475 num_read++;
7476 result |= ((long)(byte & 127) << shift);
7477 shift += 7;
7478 if ((byte & 128) == 0)
7479 {
7480 break;
7481 }
7482 }
7483 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
7484 result |= -(((long)1) << shift);
7485 *bytes_read_ptr = num_read;
7486 return result;
7487 }
7488
7489 /* Return a pointer to just past the end of an LEB128 number in BUF. */
7490
7491 static gdb_byte *
7492 skip_leb128 (bfd *abfd, gdb_byte *buf)
7493 {
7494 int byte;
7495
7496 while (1)
7497 {
7498 byte = bfd_get_8 (abfd, buf);
7499 buf++;
7500 if ((byte & 128) == 0)
7501 return buf;
7502 }
7503 }
7504
7505 static void
7506 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
7507 {
7508 switch (lang)
7509 {
7510 case DW_LANG_C89:
7511 case DW_LANG_C99:
7512 case DW_LANG_C:
7513 cu->language = language_c;
7514 break;
7515 case DW_LANG_C_plus_plus:
7516 cu->language = language_cplus;
7517 break;
7518 case DW_LANG_Fortran77:
7519 case DW_LANG_Fortran90:
7520 case DW_LANG_Fortran95:
7521 cu->language = language_fortran;
7522 break;
7523 case DW_LANG_Mips_Assembler:
7524 cu->language = language_asm;
7525 break;
7526 case DW_LANG_Java:
7527 cu->language = language_java;
7528 break;
7529 case DW_LANG_Ada83:
7530 case DW_LANG_Ada95:
7531 cu->language = language_ada;
7532 break;
7533 case DW_LANG_Modula2:
7534 cu->language = language_m2;
7535 break;
7536 case DW_LANG_Pascal83:
7537 cu->language = language_pascal;
7538 break;
7539 case DW_LANG_ObjC:
7540 cu->language = language_objc;
7541 break;
7542 case DW_LANG_Cobol74:
7543 case DW_LANG_Cobol85:
7544 default:
7545 cu->language = language_minimal;
7546 break;
7547 }
7548 cu->language_defn = language_def (cu->language);
7549 }
7550
7551 /* Return the named attribute or NULL if not there. */
7552
7553 static struct attribute *
7554 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
7555 {
7556 unsigned int i;
7557 struct attribute *spec = NULL;
7558
7559 for (i = 0; i < die->num_attrs; ++i)
7560 {
7561 if (die->attrs[i].name == name)
7562 return &die->attrs[i];
7563 if (die->attrs[i].name == DW_AT_specification
7564 || die->attrs[i].name == DW_AT_abstract_origin)
7565 spec = &die->attrs[i];
7566 }
7567
7568 if (spec)
7569 {
7570 die = follow_die_ref (die, spec, &cu);
7571 return dwarf2_attr (die, name, cu);
7572 }
7573
7574 return NULL;
7575 }
7576
7577 /* Return the named attribute or NULL if not there,
7578 but do not follow DW_AT_specification, etc.
7579 This is for use in contexts where we're reading .debug_types dies.
7580 Following DW_AT_specification, DW_AT_abstract_origin will take us
7581 back up the chain, and we want to go down. */
7582
7583 static struct attribute *
7584 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
7585 struct dwarf2_cu *cu)
7586 {
7587 unsigned int i;
7588
7589 for (i = 0; i < die->num_attrs; ++i)
7590 if (die->attrs[i].name == name)
7591 return &die->attrs[i];
7592
7593 return NULL;
7594 }
7595
7596 /* Return non-zero iff the attribute NAME is defined for the given DIE,
7597 and holds a non-zero value. This function should only be used for
7598 DW_FORM_flag attributes. */
7599
7600 static int
7601 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
7602 {
7603 struct attribute *attr = dwarf2_attr (die, name, cu);
7604
7605 return (attr && DW_UNSND (attr));
7606 }
7607
7608 static int
7609 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
7610 {
7611 /* A DIE is a declaration if it has a DW_AT_declaration attribute
7612 which value is non-zero. However, we have to be careful with
7613 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
7614 (via dwarf2_flag_true_p) follows this attribute. So we may
7615 end up accidently finding a declaration attribute that belongs
7616 to a different DIE referenced by the specification attribute,
7617 even though the given DIE does not have a declaration attribute. */
7618 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
7619 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
7620 }
7621
7622 /* Return the die giving the specification for DIE, if there is
7623 one. *SPEC_CU is the CU containing DIE on input, and the CU
7624 containing the return value on output. If there is no
7625 specification, but there is an abstract origin, that is
7626 returned. */
7627
7628 static struct die_info *
7629 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
7630 {
7631 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
7632 *spec_cu);
7633
7634 if (spec_attr == NULL)
7635 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
7636
7637 if (spec_attr == NULL)
7638 return NULL;
7639 else
7640 return follow_die_ref (die, spec_attr, spec_cu);
7641 }
7642
7643 /* Free the line_header structure *LH, and any arrays and strings it
7644 refers to. */
7645 static void
7646 free_line_header (struct line_header *lh)
7647 {
7648 if (lh->standard_opcode_lengths)
7649 xfree (lh->standard_opcode_lengths);
7650
7651 /* Remember that all the lh->file_names[i].name pointers are
7652 pointers into debug_line_buffer, and don't need to be freed. */
7653 if (lh->file_names)
7654 xfree (lh->file_names);
7655
7656 /* Similarly for the include directory names. */
7657 if (lh->include_dirs)
7658 xfree (lh->include_dirs);
7659
7660 xfree (lh);
7661 }
7662
7663
7664 /* Add an entry to LH's include directory table. */
7665 static void
7666 add_include_dir (struct line_header *lh, char *include_dir)
7667 {
7668 /* Grow the array if necessary. */
7669 if (lh->include_dirs_size == 0)
7670 {
7671 lh->include_dirs_size = 1; /* for testing */
7672 lh->include_dirs = xmalloc (lh->include_dirs_size
7673 * sizeof (*lh->include_dirs));
7674 }
7675 else if (lh->num_include_dirs >= lh->include_dirs_size)
7676 {
7677 lh->include_dirs_size *= 2;
7678 lh->include_dirs = xrealloc (lh->include_dirs,
7679 (lh->include_dirs_size
7680 * sizeof (*lh->include_dirs)));
7681 }
7682
7683 lh->include_dirs[lh->num_include_dirs++] = include_dir;
7684 }
7685
7686
7687 /* Add an entry to LH's file name table. */
7688 static void
7689 add_file_name (struct line_header *lh,
7690 char *name,
7691 unsigned int dir_index,
7692 unsigned int mod_time,
7693 unsigned int length)
7694 {
7695 struct file_entry *fe;
7696
7697 /* Grow the array if necessary. */
7698 if (lh->file_names_size == 0)
7699 {
7700 lh->file_names_size = 1; /* for testing */
7701 lh->file_names = xmalloc (lh->file_names_size
7702 * sizeof (*lh->file_names));
7703 }
7704 else if (lh->num_file_names >= lh->file_names_size)
7705 {
7706 lh->file_names_size *= 2;
7707 lh->file_names = xrealloc (lh->file_names,
7708 (lh->file_names_size
7709 * sizeof (*lh->file_names)));
7710 }
7711
7712 fe = &lh->file_names[lh->num_file_names++];
7713 fe->name = name;
7714 fe->dir_index = dir_index;
7715 fe->mod_time = mod_time;
7716 fe->length = length;
7717 fe->included_p = 0;
7718 fe->symtab = NULL;
7719 }
7720
7721
7722 /* Read the statement program header starting at OFFSET in
7723 .debug_line, according to the endianness of ABFD. Return a pointer
7724 to a struct line_header, allocated using xmalloc.
7725
7726 NOTE: the strings in the include directory and file name tables of
7727 the returned object point into debug_line_buffer, and must not be
7728 freed. */
7729 static struct line_header *
7730 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
7731 struct dwarf2_cu *cu)
7732 {
7733 struct cleanup *back_to;
7734 struct line_header *lh;
7735 gdb_byte *line_ptr;
7736 unsigned int bytes_read, offset_size;
7737 int i;
7738 char *cur_dir, *cur_file;
7739
7740 if (dwarf2_per_objfile->line.buffer == NULL)
7741 {
7742 complaint (&symfile_complaints, _("missing .debug_line section"));
7743 return 0;
7744 }
7745
7746 /* Make sure that at least there's room for the total_length field.
7747 That could be 12 bytes long, but we're just going to fudge that. */
7748 if (offset + 4 >= dwarf2_per_objfile->line.size)
7749 {
7750 dwarf2_statement_list_fits_in_line_number_section_complaint ();
7751 return 0;
7752 }
7753
7754 lh = xmalloc (sizeof (*lh));
7755 memset (lh, 0, sizeof (*lh));
7756 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
7757 (void *) lh);
7758
7759 line_ptr = dwarf2_per_objfile->line.buffer + offset;
7760
7761 /* Read in the header. */
7762 lh->total_length =
7763 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
7764 &bytes_read, &offset_size);
7765 line_ptr += bytes_read;
7766 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
7767 + dwarf2_per_objfile->line.size))
7768 {
7769 dwarf2_statement_list_fits_in_line_number_section_complaint ();
7770 return 0;
7771 }
7772 lh->statement_program_end = line_ptr + lh->total_length;
7773 lh->version = read_2_bytes (abfd, line_ptr);
7774 line_ptr += 2;
7775 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
7776 line_ptr += offset_size;
7777 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
7778 line_ptr += 1;
7779 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
7780 line_ptr += 1;
7781 lh->line_base = read_1_signed_byte (abfd, line_ptr);
7782 line_ptr += 1;
7783 lh->line_range = read_1_byte (abfd, line_ptr);
7784 line_ptr += 1;
7785 lh->opcode_base = read_1_byte (abfd, line_ptr);
7786 line_ptr += 1;
7787 lh->standard_opcode_lengths
7788 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
7789
7790 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
7791 for (i = 1; i < lh->opcode_base; ++i)
7792 {
7793 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
7794 line_ptr += 1;
7795 }
7796
7797 /* Read directory table. */
7798 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
7799 {
7800 line_ptr += bytes_read;
7801 add_include_dir (lh, cur_dir);
7802 }
7803 line_ptr += bytes_read;
7804
7805 /* Read file name table. */
7806 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
7807 {
7808 unsigned int dir_index, mod_time, length;
7809
7810 line_ptr += bytes_read;
7811 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7812 line_ptr += bytes_read;
7813 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7814 line_ptr += bytes_read;
7815 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7816 line_ptr += bytes_read;
7817
7818 add_file_name (lh, cur_file, dir_index, mod_time, length);
7819 }
7820 line_ptr += bytes_read;
7821 lh->statement_program_start = line_ptr;
7822
7823 if (line_ptr > (dwarf2_per_objfile->line.buffer
7824 + dwarf2_per_objfile->line.size))
7825 complaint (&symfile_complaints,
7826 _("line number info header doesn't fit in `.debug_line' section"));
7827
7828 discard_cleanups (back_to);
7829 return lh;
7830 }
7831
7832 /* This function exists to work around a bug in certain compilers
7833 (particularly GCC 2.95), in which the first line number marker of a
7834 function does not show up until after the prologue, right before
7835 the second line number marker. This function shifts ADDRESS down
7836 to the beginning of the function if necessary, and is called on
7837 addresses passed to record_line. */
7838
7839 static CORE_ADDR
7840 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
7841 {
7842 struct function_range *fn;
7843
7844 /* Find the function_range containing address. */
7845 if (!cu->first_fn)
7846 return address;
7847
7848 if (!cu->cached_fn)
7849 cu->cached_fn = cu->first_fn;
7850
7851 fn = cu->cached_fn;
7852 while (fn)
7853 if (fn->lowpc <= address && fn->highpc > address)
7854 goto found;
7855 else
7856 fn = fn->next;
7857
7858 fn = cu->first_fn;
7859 while (fn && fn != cu->cached_fn)
7860 if (fn->lowpc <= address && fn->highpc > address)
7861 goto found;
7862 else
7863 fn = fn->next;
7864
7865 return address;
7866
7867 found:
7868 if (fn->seen_line)
7869 return address;
7870 if (address != fn->lowpc)
7871 complaint (&symfile_complaints,
7872 _("misplaced first line number at 0x%lx for '%s'"),
7873 (unsigned long) address, fn->name);
7874 fn->seen_line = 1;
7875 return fn->lowpc;
7876 }
7877
7878 /* Decode the Line Number Program (LNP) for the given line_header
7879 structure and CU. The actual information extracted and the type
7880 of structures created from the LNP depends on the value of PST.
7881
7882 1. If PST is NULL, then this procedure uses the data from the program
7883 to create all necessary symbol tables, and their linetables.
7884 The compilation directory of the file is passed in COMP_DIR,
7885 and must not be NULL.
7886
7887 2. If PST is not NULL, this procedure reads the program to determine
7888 the list of files included by the unit represented by PST, and
7889 builds all the associated partial symbol tables. In this case,
7890 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
7891 is not used to compute the full name of the symtab, and therefore
7892 omitting it when building the partial symtab does not introduce
7893 the potential for inconsistency - a partial symtab and its associated
7894 symbtab having a different fullname -). */
7895
7896 static void
7897 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
7898 struct dwarf2_cu *cu, struct partial_symtab *pst)
7899 {
7900 gdb_byte *line_ptr, *extended_end;
7901 gdb_byte *line_end;
7902 unsigned int bytes_read, extended_len;
7903 unsigned char op_code, extended_op, adj_opcode;
7904 CORE_ADDR baseaddr;
7905 struct objfile *objfile = cu->objfile;
7906 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7907 const int decode_for_pst_p = (pst != NULL);
7908 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
7909
7910 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7911
7912 line_ptr = lh->statement_program_start;
7913 line_end = lh->statement_program_end;
7914
7915 /* Read the statement sequences until there's nothing left. */
7916 while (line_ptr < line_end)
7917 {
7918 /* state machine registers */
7919 CORE_ADDR address = 0;
7920 unsigned int file = 1;
7921 unsigned int line = 1;
7922 unsigned int column = 0;
7923 int is_stmt = lh->default_is_stmt;
7924 int basic_block = 0;
7925 int end_sequence = 0;
7926 CORE_ADDR addr;
7927
7928 if (!decode_for_pst_p && lh->num_file_names >= file)
7929 {
7930 /* Start a subfile for the current file of the state machine. */
7931 /* lh->include_dirs and lh->file_names are 0-based, but the
7932 directory and file name numbers in the statement program
7933 are 1-based. */
7934 struct file_entry *fe = &lh->file_names[file - 1];
7935 char *dir = NULL;
7936
7937 if (fe->dir_index)
7938 dir = lh->include_dirs[fe->dir_index - 1];
7939
7940 dwarf2_start_subfile (fe->name, dir, comp_dir);
7941 }
7942
7943 /* Decode the table. */
7944 while (!end_sequence)
7945 {
7946 op_code = read_1_byte (abfd, line_ptr);
7947 line_ptr += 1;
7948 if (line_ptr > line_end)
7949 {
7950 dwarf2_debug_line_missing_end_sequence_complaint ();
7951 break;
7952 }
7953
7954 if (op_code >= lh->opcode_base)
7955 {
7956 /* Special operand. */
7957 adj_opcode = op_code - lh->opcode_base;
7958 address += (adj_opcode / lh->line_range)
7959 * lh->minimum_instruction_length;
7960 line += lh->line_base + (adj_opcode % lh->line_range);
7961 if (lh->num_file_names < file || file == 0)
7962 dwarf2_debug_line_missing_file_complaint ();
7963 else
7964 {
7965 lh->file_names[file - 1].included_p = 1;
7966 if (!decode_for_pst_p && is_stmt)
7967 {
7968 if (last_subfile != current_subfile)
7969 {
7970 addr = gdbarch_addr_bits_remove (gdbarch, address);
7971 if (last_subfile)
7972 record_line (last_subfile, 0, addr);
7973 last_subfile = current_subfile;
7974 }
7975 /* Append row to matrix using current values. */
7976 addr = check_cu_functions (address, cu);
7977 addr = gdbarch_addr_bits_remove (gdbarch, addr);
7978 record_line (current_subfile, line, addr);
7979 }
7980 }
7981 basic_block = 0;
7982 }
7983 else switch (op_code)
7984 {
7985 case DW_LNS_extended_op:
7986 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7987 line_ptr += bytes_read;
7988 extended_end = line_ptr + extended_len;
7989 extended_op = read_1_byte (abfd, line_ptr);
7990 line_ptr += 1;
7991 switch (extended_op)
7992 {
7993 case DW_LNE_end_sequence:
7994 end_sequence = 1;
7995 break;
7996 case DW_LNE_set_address:
7997 address = read_address (abfd, line_ptr, cu, &bytes_read);
7998 line_ptr += bytes_read;
7999 address += baseaddr;
8000 break;
8001 case DW_LNE_define_file:
8002 {
8003 char *cur_file;
8004 unsigned int dir_index, mod_time, length;
8005
8006 cur_file = read_string (abfd, line_ptr, &bytes_read);
8007 line_ptr += bytes_read;
8008 dir_index =
8009 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8010 line_ptr += bytes_read;
8011 mod_time =
8012 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8013 line_ptr += bytes_read;
8014 length =
8015 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8016 line_ptr += bytes_read;
8017 add_file_name (lh, cur_file, dir_index, mod_time, length);
8018 }
8019 break;
8020 case DW_LNE_set_discriminator:
8021 /* The discriminator is not interesting to the debugger;
8022 just ignore it. */
8023 line_ptr = extended_end;
8024 break;
8025 default:
8026 complaint (&symfile_complaints,
8027 _("mangled .debug_line section"));
8028 return;
8029 }
8030 /* Make sure that we parsed the extended op correctly. If e.g.
8031 we expected a different address size than the producer used,
8032 we may have read the wrong number of bytes. */
8033 if (line_ptr != extended_end)
8034 {
8035 complaint (&symfile_complaints,
8036 _("mangled .debug_line section"));
8037 return;
8038 }
8039 break;
8040 case DW_LNS_copy:
8041 if (lh->num_file_names < file || file == 0)
8042 dwarf2_debug_line_missing_file_complaint ();
8043 else
8044 {
8045 lh->file_names[file - 1].included_p = 1;
8046 if (!decode_for_pst_p && is_stmt)
8047 {
8048 if (last_subfile != current_subfile)
8049 {
8050 addr = gdbarch_addr_bits_remove (gdbarch, address);
8051 if (last_subfile)
8052 record_line (last_subfile, 0, addr);
8053 last_subfile = current_subfile;
8054 }
8055 addr = check_cu_functions (address, cu);
8056 addr = gdbarch_addr_bits_remove (gdbarch, addr);
8057 record_line (current_subfile, line, addr);
8058 }
8059 }
8060 basic_block = 0;
8061 break;
8062 case DW_LNS_advance_pc:
8063 address += lh->minimum_instruction_length
8064 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8065 line_ptr += bytes_read;
8066 break;
8067 case DW_LNS_advance_line:
8068 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
8069 line_ptr += bytes_read;
8070 break;
8071 case DW_LNS_set_file:
8072 {
8073 /* The arrays lh->include_dirs and lh->file_names are
8074 0-based, but the directory and file name numbers in
8075 the statement program are 1-based. */
8076 struct file_entry *fe;
8077 char *dir = NULL;
8078
8079 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8080 line_ptr += bytes_read;
8081 if (lh->num_file_names < file || file == 0)
8082 dwarf2_debug_line_missing_file_complaint ();
8083 else
8084 {
8085 fe = &lh->file_names[file - 1];
8086 if (fe->dir_index)
8087 dir = lh->include_dirs[fe->dir_index - 1];
8088 if (!decode_for_pst_p)
8089 {
8090 last_subfile = current_subfile;
8091 dwarf2_start_subfile (fe->name, dir, comp_dir);
8092 }
8093 }
8094 }
8095 break;
8096 case DW_LNS_set_column:
8097 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8098 line_ptr += bytes_read;
8099 break;
8100 case DW_LNS_negate_stmt:
8101 is_stmt = (!is_stmt);
8102 break;
8103 case DW_LNS_set_basic_block:
8104 basic_block = 1;
8105 break;
8106 /* Add to the address register of the state machine the
8107 address increment value corresponding to special opcode
8108 255. I.e., this value is scaled by the minimum
8109 instruction length since special opcode 255 would have
8110 scaled the the increment. */
8111 case DW_LNS_const_add_pc:
8112 address += (lh->minimum_instruction_length
8113 * ((255 - lh->opcode_base) / lh->line_range));
8114 break;
8115 case DW_LNS_fixed_advance_pc:
8116 address += read_2_bytes (abfd, line_ptr);
8117 line_ptr += 2;
8118 break;
8119 default:
8120 {
8121 /* Unknown standard opcode, ignore it. */
8122 int i;
8123
8124 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
8125 {
8126 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8127 line_ptr += bytes_read;
8128 }
8129 }
8130 }
8131 }
8132 if (lh->num_file_names < file || file == 0)
8133 dwarf2_debug_line_missing_file_complaint ();
8134 else
8135 {
8136 lh->file_names[file - 1].included_p = 1;
8137 if (!decode_for_pst_p)
8138 {
8139 addr = gdbarch_addr_bits_remove (gdbarch, address);
8140 record_line (current_subfile, 0, addr);
8141 }
8142 }
8143 }
8144
8145 if (decode_for_pst_p)
8146 {
8147 int file_index;
8148
8149 /* Now that we're done scanning the Line Header Program, we can
8150 create the psymtab of each included file. */
8151 for (file_index = 0; file_index < lh->num_file_names; file_index++)
8152 if (lh->file_names[file_index].included_p == 1)
8153 {
8154 const struct file_entry fe = lh->file_names [file_index];
8155 char *include_name = fe.name;
8156 char *dir_name = NULL;
8157 char *pst_filename = pst->filename;
8158
8159 if (fe.dir_index)
8160 dir_name = lh->include_dirs[fe.dir_index - 1];
8161
8162 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
8163 {
8164 include_name = concat (dir_name, SLASH_STRING,
8165 include_name, (char *)NULL);
8166 make_cleanup (xfree, include_name);
8167 }
8168
8169 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
8170 {
8171 pst_filename = concat (pst->dirname, SLASH_STRING,
8172 pst_filename, (char *)NULL);
8173 make_cleanup (xfree, pst_filename);
8174 }
8175
8176 if (strcmp (include_name, pst_filename) != 0)
8177 dwarf2_create_include_psymtab (include_name, pst, objfile);
8178 }
8179 }
8180 else
8181 {
8182 /* Make sure a symtab is created for every file, even files
8183 which contain only variables (i.e. no code with associated
8184 line numbers). */
8185
8186 int i;
8187 struct file_entry *fe;
8188
8189 for (i = 0; i < lh->num_file_names; i++)
8190 {
8191 char *dir = NULL;
8192 fe = &lh->file_names[i];
8193 if (fe->dir_index)
8194 dir = lh->include_dirs[fe->dir_index - 1];
8195 dwarf2_start_subfile (fe->name, dir, comp_dir);
8196
8197 /* Skip the main file; we don't need it, and it must be
8198 allocated last, so that it will show up before the
8199 non-primary symtabs in the objfile's symtab list. */
8200 if (current_subfile == first_subfile)
8201 continue;
8202
8203 if (current_subfile->symtab == NULL)
8204 current_subfile->symtab = allocate_symtab (current_subfile->name,
8205 cu->objfile);
8206 fe->symtab = current_subfile->symtab;
8207 }
8208 }
8209 }
8210
8211 /* Start a subfile for DWARF. FILENAME is the name of the file and
8212 DIRNAME the name of the source directory which contains FILENAME
8213 or NULL if not known. COMP_DIR is the compilation directory for the
8214 linetable's compilation unit or NULL if not known.
8215 This routine tries to keep line numbers from identical absolute and
8216 relative file names in a common subfile.
8217
8218 Using the `list' example from the GDB testsuite, which resides in
8219 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
8220 of /srcdir/list0.c yields the following debugging information for list0.c:
8221
8222 DW_AT_name: /srcdir/list0.c
8223 DW_AT_comp_dir: /compdir
8224 files.files[0].name: list0.h
8225 files.files[0].dir: /srcdir
8226 files.files[1].name: list0.c
8227 files.files[1].dir: /srcdir
8228
8229 The line number information for list0.c has to end up in a single
8230 subfile, so that `break /srcdir/list0.c:1' works as expected.
8231 start_subfile will ensure that this happens provided that we pass the
8232 concatenation of files.files[1].dir and files.files[1].name as the
8233 subfile's name. */
8234
8235 static void
8236 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
8237 {
8238 char *fullname;
8239
8240 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
8241 `start_symtab' will always pass the contents of DW_AT_comp_dir as
8242 second argument to start_subfile. To be consistent, we do the
8243 same here. In order not to lose the line information directory,
8244 we concatenate it to the filename when it makes sense.
8245 Note that the Dwarf3 standard says (speaking of filenames in line
8246 information): ``The directory index is ignored for file names
8247 that represent full path names''. Thus ignoring dirname in the
8248 `else' branch below isn't an issue. */
8249
8250 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
8251 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
8252 else
8253 fullname = filename;
8254
8255 start_subfile (fullname, comp_dir);
8256
8257 if (fullname != filename)
8258 xfree (fullname);
8259 }
8260
8261 static void
8262 var_decode_location (struct attribute *attr, struct symbol *sym,
8263 struct dwarf2_cu *cu)
8264 {
8265 struct objfile *objfile = cu->objfile;
8266 struct comp_unit_head *cu_header = &cu->header;
8267
8268 /* NOTE drow/2003-01-30: There used to be a comment and some special
8269 code here to turn a symbol with DW_AT_external and a
8270 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
8271 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
8272 with some versions of binutils) where shared libraries could have
8273 relocations against symbols in their debug information - the
8274 minimal symbol would have the right address, but the debug info
8275 would not. It's no longer necessary, because we will explicitly
8276 apply relocations when we read in the debug information now. */
8277
8278 /* A DW_AT_location attribute with no contents indicates that a
8279 variable has been optimized away. */
8280 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
8281 {
8282 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
8283 return;
8284 }
8285
8286 /* Handle one degenerate form of location expression specially, to
8287 preserve GDB's previous behavior when section offsets are
8288 specified. If this is just a DW_OP_addr then mark this symbol
8289 as LOC_STATIC. */
8290
8291 if (attr_form_is_block (attr)
8292 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
8293 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
8294 {
8295 unsigned int dummy;
8296
8297 SYMBOL_VALUE_ADDRESS (sym) =
8298 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
8299 SYMBOL_CLASS (sym) = LOC_STATIC;
8300 fixup_symbol_section (sym, objfile);
8301 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
8302 SYMBOL_SECTION (sym));
8303 return;
8304 }
8305
8306 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
8307 expression evaluator, and use LOC_COMPUTED only when necessary
8308 (i.e. when the value of a register or memory location is
8309 referenced, or a thread-local block, etc.). Then again, it might
8310 not be worthwhile. I'm assuming that it isn't unless performance
8311 or memory numbers show me otherwise. */
8312
8313 dwarf2_symbol_mark_computed (attr, sym, cu);
8314 SYMBOL_CLASS (sym) = LOC_COMPUTED;
8315 }
8316
8317 /* Given a pointer to a DWARF information entry, figure out if we need
8318 to make a symbol table entry for it, and if so, create a new entry
8319 and return a pointer to it.
8320 If TYPE is NULL, determine symbol type from the die, otherwise
8321 used the passed type. */
8322
8323 static struct symbol *
8324 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
8325 {
8326 struct objfile *objfile = cu->objfile;
8327 struct symbol *sym = NULL;
8328 char *name;
8329 struct attribute *attr = NULL;
8330 struct attribute *attr2 = NULL;
8331 CORE_ADDR baseaddr;
8332 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
8333
8334 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8335
8336 if (die->tag != DW_TAG_namespace)
8337 name = dwarf2_linkage_name (die, cu);
8338 else
8339 name = TYPE_NAME (type);
8340
8341 if (name)
8342 {
8343 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
8344 sizeof (struct symbol));
8345 OBJSTAT (objfile, n_syms++);
8346 memset (sym, 0, sizeof (struct symbol));
8347
8348 /* Cache this symbol's name and the name's demangled form (if any). */
8349 SYMBOL_LANGUAGE (sym) = cu->language;
8350 SYMBOL_SET_NAMES (sym, name, strlen (name), 0, objfile);
8351
8352 /* Default assumptions.
8353 Use the passed type or decode it from the die. */
8354 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
8355 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
8356 if (type != NULL)
8357 SYMBOL_TYPE (sym) = type;
8358 else
8359 SYMBOL_TYPE (sym) = die_type (die, cu);
8360 attr = dwarf2_attr (die,
8361 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
8362 cu);
8363 if (attr)
8364 {
8365 SYMBOL_LINE (sym) = DW_UNSND (attr);
8366 }
8367
8368 attr = dwarf2_attr (die,
8369 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
8370 cu);
8371 if (attr)
8372 {
8373 int file_index = DW_UNSND (attr);
8374 if (cu->line_header == NULL
8375 || file_index > cu->line_header->num_file_names)
8376 complaint (&symfile_complaints,
8377 _("file index out of range"));
8378 else if (file_index > 0)
8379 {
8380 struct file_entry *fe;
8381 fe = &cu->line_header->file_names[file_index - 1];
8382 SYMBOL_SYMTAB (sym) = fe->symtab;
8383 }
8384 }
8385
8386 switch (die->tag)
8387 {
8388 case DW_TAG_label:
8389 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
8390 if (attr)
8391 {
8392 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
8393 }
8394 SYMBOL_CLASS (sym) = LOC_LABEL;
8395 break;
8396 case DW_TAG_subprogram:
8397 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8398 finish_block. */
8399 SYMBOL_CLASS (sym) = LOC_BLOCK;
8400 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8401 if ((attr2 && (DW_UNSND (attr2) != 0))
8402 || cu->language == language_ada)
8403 {
8404 /* Subprograms marked external are stored as a global symbol.
8405 Ada subprograms, whether marked external or not, are always
8406 stored as a global symbol, because we want to be able to
8407 access them globally. For instance, we want to be able
8408 to break on a nested subprogram without having to
8409 specify the context. */
8410 add_symbol_to_list (sym, &global_symbols);
8411 }
8412 else
8413 {
8414 add_symbol_to_list (sym, cu->list_in_scope);
8415 }
8416 break;
8417 case DW_TAG_inlined_subroutine:
8418 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8419 finish_block. */
8420 SYMBOL_CLASS (sym) = LOC_BLOCK;
8421 SYMBOL_INLINED (sym) = 1;
8422 /* Do not add the symbol to any lists. It will be found via
8423 BLOCK_FUNCTION from the blockvector. */
8424 break;
8425 case DW_TAG_variable:
8426 /* Compilation with minimal debug info may result in variables
8427 with missing type entries. Change the misleading `void' type
8428 to something sensible. */
8429 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
8430 SYMBOL_TYPE (sym)
8431 = objfile_type (objfile)->nodebug_data_symbol;
8432
8433 attr = dwarf2_attr (die, DW_AT_const_value, cu);
8434 if (attr)
8435 {
8436 dwarf2_const_value (attr, sym, cu);
8437 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8438 if (attr2 && (DW_UNSND (attr2) != 0))
8439 add_symbol_to_list (sym, &global_symbols);
8440 else
8441 add_symbol_to_list (sym, cu->list_in_scope);
8442 break;
8443 }
8444 attr = dwarf2_attr (die, DW_AT_location, cu);
8445 if (attr)
8446 {
8447 var_decode_location (attr, sym, cu);
8448 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8449 if (attr2 && (DW_UNSND (attr2) != 0))
8450 add_symbol_to_list (sym, &global_symbols);
8451 else
8452 add_symbol_to_list (sym, cu->list_in_scope);
8453 }
8454 else
8455 {
8456 /* We do not know the address of this symbol.
8457 If it is an external symbol and we have type information
8458 for it, enter the symbol as a LOC_UNRESOLVED symbol.
8459 The address of the variable will then be determined from
8460 the minimal symbol table whenever the variable is
8461 referenced. */
8462 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8463 if (attr2 && (DW_UNSND (attr2) != 0)
8464 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
8465 {
8466 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
8467 add_symbol_to_list (sym, cu->list_in_scope);
8468 }
8469 else if (!die_is_declaration (die, cu))
8470 {
8471 /* Use the default LOC_OPTIMIZED_OUT class. */
8472 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
8473 add_symbol_to_list (sym, cu->list_in_scope);
8474 }
8475 }
8476 break;
8477 case DW_TAG_formal_parameter:
8478 /* If we are inside a function, mark this as an argument. If
8479 not, we might be looking at an argument to an inlined function
8480 when we do not have enough information to show inlined frames;
8481 pretend it's a local variable in that case so that the user can
8482 still see it. */
8483 if (context_stack_depth > 0
8484 && context_stack[context_stack_depth - 1].name != NULL)
8485 SYMBOL_IS_ARGUMENT (sym) = 1;
8486 attr = dwarf2_attr (die, DW_AT_location, cu);
8487 if (attr)
8488 {
8489 var_decode_location (attr, sym, cu);
8490 }
8491 attr = dwarf2_attr (die, DW_AT_const_value, cu);
8492 if (attr)
8493 {
8494 dwarf2_const_value (attr, sym, cu);
8495 }
8496 add_symbol_to_list (sym, cu->list_in_scope);
8497 break;
8498 case DW_TAG_unspecified_parameters:
8499 /* From varargs functions; gdb doesn't seem to have any
8500 interest in this information, so just ignore it for now.
8501 (FIXME?) */
8502 break;
8503 case DW_TAG_class_type:
8504 case DW_TAG_interface_type:
8505 case DW_TAG_structure_type:
8506 case DW_TAG_union_type:
8507 case DW_TAG_set_type:
8508 case DW_TAG_enumeration_type:
8509 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8510 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8511
8512 /* Make sure that the symbol includes appropriate enclosing
8513 classes/namespaces in its name. These are calculated in
8514 read_structure_type, and the correct name is saved in
8515 the type. */
8516
8517 if (cu->language == language_cplus
8518 || cu->language == language_java)
8519 {
8520 struct type *type = SYMBOL_TYPE (sym);
8521
8522 if (TYPE_TAG_NAME (type) != NULL)
8523 {
8524 /* FIXME: carlton/2003-11-10: Should this use
8525 SYMBOL_SET_NAMES instead? (The same problem also
8526 arises further down in this function.) */
8527 /* The type's name is already allocated along with
8528 this objfile, so we don't need to duplicate it
8529 for the symbol. */
8530 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
8531 }
8532 }
8533
8534 {
8535 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
8536 really ever be static objects: otherwise, if you try
8537 to, say, break of a class's method and you're in a file
8538 which doesn't mention that class, it won't work unless
8539 the check for all static symbols in lookup_symbol_aux
8540 saves you. See the OtherFileClass tests in
8541 gdb.c++/namespace.exp. */
8542
8543 struct pending **list_to_add;
8544
8545 list_to_add = (cu->list_in_scope == &file_symbols
8546 && (cu->language == language_cplus
8547 || cu->language == language_java)
8548 ? &global_symbols : cu->list_in_scope);
8549
8550 add_symbol_to_list (sym, list_to_add);
8551
8552 /* The semantics of C++ state that "struct foo { ... }" also
8553 defines a typedef for "foo". A Java class declaration also
8554 defines a typedef for the class. */
8555 if (cu->language == language_cplus
8556 || cu->language == language_java
8557 || cu->language == language_ada)
8558 {
8559 /* The symbol's name is already allocated along with
8560 this objfile, so we don't need to duplicate it for
8561 the type. */
8562 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
8563 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
8564 }
8565 }
8566 break;
8567 case DW_TAG_typedef:
8568 SYMBOL_LINKAGE_NAME (sym) = (char *) dwarf2_full_name (die, cu);
8569 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8570 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
8571 add_symbol_to_list (sym, cu->list_in_scope);
8572 break;
8573 case DW_TAG_base_type:
8574 case DW_TAG_subrange_type:
8575 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8576 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
8577 add_symbol_to_list (sym, cu->list_in_scope);
8578 break;
8579 case DW_TAG_enumerator:
8580 SYMBOL_LINKAGE_NAME (sym) = (char *) dwarf2_full_name (die, cu);
8581 attr = dwarf2_attr (die, DW_AT_const_value, cu);
8582 if (attr)
8583 {
8584 dwarf2_const_value (attr, sym, cu);
8585 }
8586 {
8587 /* NOTE: carlton/2003-11-10: See comment above in the
8588 DW_TAG_class_type, etc. block. */
8589
8590 struct pending **list_to_add;
8591
8592 list_to_add = (cu->list_in_scope == &file_symbols
8593 && (cu->language == language_cplus
8594 || cu->language == language_java)
8595 ? &global_symbols : cu->list_in_scope);
8596
8597 add_symbol_to_list (sym, list_to_add);
8598 }
8599 break;
8600 case DW_TAG_namespace:
8601 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8602 add_symbol_to_list (sym, &global_symbols);
8603 break;
8604 default:
8605 /* Not a tag we recognize. Hopefully we aren't processing
8606 trash data, but since we must specifically ignore things
8607 we don't recognize, there is nothing else we should do at
8608 this point. */
8609 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
8610 dwarf_tag_name (die->tag));
8611 break;
8612 }
8613
8614 /* For the benefit of old versions of GCC, check for anonymous
8615 namespaces based on the demangled name. */
8616 if (!processing_has_namespace_info
8617 && cu->language == language_cplus
8618 && dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu) != NULL)
8619 cp_scan_for_anonymous_namespaces (sym);
8620 }
8621 return (sym);
8622 }
8623
8624 /* Copy constant value from an attribute to a symbol. */
8625
8626 static void
8627 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
8628 struct dwarf2_cu *cu)
8629 {
8630 struct objfile *objfile = cu->objfile;
8631 struct comp_unit_head *cu_header = &cu->header;
8632 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
8633 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
8634 struct dwarf_block *blk;
8635
8636 switch (attr->form)
8637 {
8638 case DW_FORM_addr:
8639 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
8640 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
8641 cu_header->addr_size,
8642 TYPE_LENGTH (SYMBOL_TYPE
8643 (sym)));
8644 SYMBOL_VALUE_BYTES (sym) =
8645 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
8646 /* NOTE: cagney/2003-05-09: In-lined store_address call with
8647 it's body - store_unsigned_integer. */
8648 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
8649 byte_order, DW_ADDR (attr));
8650 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8651 break;
8652 case DW_FORM_string:
8653 case DW_FORM_strp:
8654 /* DW_STRING is already allocated on the obstack, point directly
8655 to it. */
8656 SYMBOL_VALUE_BYTES (sym) = (gdb_byte *) DW_STRING (attr);
8657 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8658 break;
8659 case DW_FORM_block1:
8660 case DW_FORM_block2:
8661 case DW_FORM_block4:
8662 case DW_FORM_block:
8663 blk = DW_BLOCK (attr);
8664 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
8665 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
8666 blk->size,
8667 TYPE_LENGTH (SYMBOL_TYPE
8668 (sym)));
8669 SYMBOL_VALUE_BYTES (sym) =
8670 obstack_alloc (&objfile->objfile_obstack, blk->size);
8671 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
8672 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8673 break;
8674
8675 /* The DW_AT_const_value attributes are supposed to carry the
8676 symbol's value "represented as it would be on the target
8677 architecture." By the time we get here, it's already been
8678 converted to host endianness, so we just need to sign- or
8679 zero-extend it as appropriate. */
8680 case DW_FORM_data1:
8681 dwarf2_const_value_data (attr, sym, 8);
8682 break;
8683 case DW_FORM_data2:
8684 dwarf2_const_value_data (attr, sym, 16);
8685 break;
8686 case DW_FORM_data4:
8687 dwarf2_const_value_data (attr, sym, 32);
8688 break;
8689 case DW_FORM_data8:
8690 dwarf2_const_value_data (attr, sym, 64);
8691 break;
8692
8693 case DW_FORM_sdata:
8694 SYMBOL_VALUE (sym) = DW_SND (attr);
8695 SYMBOL_CLASS (sym) = LOC_CONST;
8696 break;
8697
8698 case DW_FORM_udata:
8699 SYMBOL_VALUE (sym) = DW_UNSND (attr);
8700 SYMBOL_CLASS (sym) = LOC_CONST;
8701 break;
8702
8703 default:
8704 complaint (&symfile_complaints,
8705 _("unsupported const value attribute form: '%s'"),
8706 dwarf_form_name (attr->form));
8707 SYMBOL_VALUE (sym) = 0;
8708 SYMBOL_CLASS (sym) = LOC_CONST;
8709 break;
8710 }
8711 }
8712
8713
8714 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
8715 or zero-extend it as appropriate for the symbol's type. */
8716 static void
8717 dwarf2_const_value_data (struct attribute *attr,
8718 struct symbol *sym,
8719 int bits)
8720 {
8721 LONGEST l = DW_UNSND (attr);
8722
8723 if (bits < sizeof (l) * 8)
8724 {
8725 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
8726 l &= ((LONGEST) 1 << bits) - 1;
8727 else
8728 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
8729 }
8730
8731 SYMBOL_VALUE (sym) = l;
8732 SYMBOL_CLASS (sym) = LOC_CONST;
8733 }
8734
8735
8736 /* Return the type of the die in question using its DW_AT_type attribute. */
8737
8738 static struct type *
8739 die_type (struct die_info *die, struct dwarf2_cu *cu)
8740 {
8741 struct type *type;
8742 struct attribute *type_attr;
8743 struct die_info *type_die;
8744
8745 type_attr = dwarf2_attr (die, DW_AT_type, cu);
8746 if (!type_attr)
8747 {
8748 /* A missing DW_AT_type represents a void type. */
8749 return objfile_type (cu->objfile)->builtin_void;
8750 }
8751
8752 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
8753
8754 type = tag_type_to_type (type_die, cu);
8755 if (!type)
8756 {
8757 dump_die_for_error (type_die);
8758 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
8759 cu->objfile->name);
8760 }
8761 return type;
8762 }
8763
8764 /* Return the containing type of the die in question using its
8765 DW_AT_containing_type attribute. */
8766
8767 static struct type *
8768 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
8769 {
8770 struct type *type = NULL;
8771 struct attribute *type_attr;
8772 struct die_info *type_die = NULL;
8773
8774 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
8775 if (type_attr)
8776 {
8777 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
8778 type = tag_type_to_type (type_die, cu);
8779 }
8780 if (!type)
8781 {
8782 if (type_die)
8783 dump_die_for_error (type_die);
8784 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
8785 cu->objfile->name);
8786 }
8787 return type;
8788 }
8789
8790 static struct type *
8791 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
8792 {
8793 struct type *this_type;
8794
8795 this_type = read_type_die (die, cu);
8796 if (!this_type)
8797 {
8798 dump_die_for_error (die);
8799 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
8800 cu->objfile->name);
8801 }
8802 return this_type;
8803 }
8804
8805 static struct type *
8806 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
8807 {
8808 struct type *this_type;
8809
8810 this_type = get_die_type (die, cu);
8811 if (this_type)
8812 return this_type;
8813
8814 switch (die->tag)
8815 {
8816 case DW_TAG_class_type:
8817 case DW_TAG_interface_type:
8818 case DW_TAG_structure_type:
8819 case DW_TAG_union_type:
8820 this_type = read_structure_type (die, cu);
8821 break;
8822 case DW_TAG_enumeration_type:
8823 this_type = read_enumeration_type (die, cu);
8824 break;
8825 case DW_TAG_subprogram:
8826 case DW_TAG_subroutine_type:
8827 case DW_TAG_inlined_subroutine:
8828 this_type = read_subroutine_type (die, cu);
8829 break;
8830 case DW_TAG_array_type:
8831 this_type = read_array_type (die, cu);
8832 break;
8833 case DW_TAG_set_type:
8834 this_type = read_set_type (die, cu);
8835 break;
8836 case DW_TAG_pointer_type:
8837 this_type = read_tag_pointer_type (die, cu);
8838 break;
8839 case DW_TAG_ptr_to_member_type:
8840 this_type = read_tag_ptr_to_member_type (die, cu);
8841 break;
8842 case DW_TAG_reference_type:
8843 this_type = read_tag_reference_type (die, cu);
8844 break;
8845 case DW_TAG_const_type:
8846 this_type = read_tag_const_type (die, cu);
8847 break;
8848 case DW_TAG_volatile_type:
8849 this_type = read_tag_volatile_type (die, cu);
8850 break;
8851 case DW_TAG_string_type:
8852 this_type = read_tag_string_type (die, cu);
8853 break;
8854 case DW_TAG_typedef:
8855 this_type = read_typedef (die, cu);
8856 break;
8857 case DW_TAG_subrange_type:
8858 this_type = read_subrange_type (die, cu);
8859 break;
8860 case DW_TAG_base_type:
8861 this_type = read_base_type (die, cu);
8862 break;
8863 case DW_TAG_unspecified_type:
8864 this_type = read_unspecified_type (die, cu);
8865 break;
8866 case DW_TAG_namespace:
8867 this_type = read_namespace_type (die, cu);
8868 break;
8869 default:
8870 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
8871 dwarf_tag_name (die->tag));
8872 break;
8873 }
8874
8875 return this_type;
8876 }
8877
8878 /* Return the name of the namespace/class that DIE is defined within,
8879 or "" if we can't tell. The caller should not xfree the result.
8880
8881 For example, if we're within the method foo() in the following
8882 code:
8883
8884 namespace N {
8885 class C {
8886 void foo () {
8887 }
8888 };
8889 }
8890
8891 then determine_prefix on foo's die will return "N::C". */
8892
8893 static char *
8894 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
8895 {
8896 struct die_info *parent, *spec_die;
8897 struct dwarf2_cu *spec_cu;
8898 struct type *parent_type;
8899
8900 if (cu->language != language_cplus
8901 && cu->language != language_java)
8902 return "";
8903
8904 /* We have to be careful in the presence of DW_AT_specification.
8905 For example, with GCC 3.4, given the code
8906
8907 namespace N {
8908 void foo() {
8909 // Definition of N::foo.
8910 }
8911 }
8912
8913 then we'll have a tree of DIEs like this:
8914
8915 1: DW_TAG_compile_unit
8916 2: DW_TAG_namespace // N
8917 3: DW_TAG_subprogram // declaration of N::foo
8918 4: DW_TAG_subprogram // definition of N::foo
8919 DW_AT_specification // refers to die #3
8920
8921 Thus, when processing die #4, we have to pretend that we're in
8922 the context of its DW_AT_specification, namely the contex of die
8923 #3. */
8924 spec_cu = cu;
8925 spec_die = die_specification (die, &spec_cu);
8926 if (spec_die == NULL)
8927 parent = die->parent;
8928 else
8929 {
8930 parent = spec_die->parent;
8931 cu = spec_cu;
8932 }
8933
8934 if (parent == NULL)
8935 return "";
8936 else
8937 switch (parent->tag)
8938 {
8939 case DW_TAG_namespace:
8940 parent_type = read_type_die (parent, cu);
8941 /* We give a name to even anonymous namespaces. */
8942 return TYPE_TAG_NAME (parent_type);
8943 case DW_TAG_class_type:
8944 case DW_TAG_interface_type:
8945 case DW_TAG_structure_type:
8946 case DW_TAG_union_type:
8947 parent_type = read_type_die (parent, cu);
8948 if (TYPE_TAG_NAME (parent_type) != NULL)
8949 return TYPE_TAG_NAME (parent_type);
8950 else
8951 /* An anonymous structure is only allowed non-static data
8952 members; no typedefs, no member functions, et cetera.
8953 So it does not need a prefix. */
8954 return "";
8955 default:
8956 return determine_prefix (parent, cu);
8957 }
8958 }
8959
8960 /* Return a newly-allocated string formed by concatenating PREFIX and
8961 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
8962 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
8963 perform an obconcat, otherwise allocate storage for the result. The CU argument
8964 is used to determine the language and hence, the appropriate separator. */
8965
8966 #define MAX_SEP_LEN 2 /* sizeof ("::") */
8967
8968 static char *
8969 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
8970 struct dwarf2_cu *cu)
8971 {
8972 char *sep;
8973
8974 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
8975 sep = "";
8976 else if (cu->language == language_java)
8977 sep = ".";
8978 else
8979 sep = "::";
8980
8981 if (prefix == NULL)
8982 prefix = "";
8983 if (suffix == NULL)
8984 suffix = "";
8985
8986 if (obs == NULL)
8987 {
8988 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
8989 strcpy (retval, prefix);
8990 strcat (retval, sep);
8991 strcat (retval, suffix);
8992 return retval;
8993 }
8994 else
8995 {
8996 /* We have an obstack. */
8997 return obconcat (obs, prefix, sep, suffix);
8998 }
8999 }
9000
9001 /* Return sibling of die, NULL if no sibling. */
9002
9003 static struct die_info *
9004 sibling_die (struct die_info *die)
9005 {
9006 return die->sibling;
9007 }
9008
9009 /* Get linkage name of a die, return NULL if not found. */
9010
9011 static char *
9012 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9013 {
9014 struct attribute *attr;
9015
9016 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9017 if (attr && DW_STRING (attr))
9018 return DW_STRING (attr);
9019 return dwarf2_name (die, cu);
9020 }
9021
9022 /* Get name of a die, return NULL if not found. */
9023
9024 static char *
9025 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
9026 struct obstack *obstack)
9027 {
9028 if (name && cu->language == language_cplus)
9029 {
9030 char *canon_name = cp_canonicalize_string (name);
9031
9032 if (canon_name != NULL)
9033 {
9034 if (strcmp (canon_name, name) != 0)
9035 name = obsavestring (canon_name, strlen (canon_name),
9036 obstack);
9037 xfree (canon_name);
9038 }
9039 }
9040
9041 return name;
9042 }
9043
9044 /* Get name of a die, return NULL if not found. */
9045
9046 static char *
9047 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9048 {
9049 struct attribute *attr;
9050
9051 attr = dwarf2_attr (die, DW_AT_name, cu);
9052 if (!attr || !DW_STRING (attr))
9053 return NULL;
9054
9055 switch (die->tag)
9056 {
9057 case DW_TAG_compile_unit:
9058 /* Compilation units have a DW_AT_name that is a filename, not
9059 a source language identifier. */
9060 case DW_TAG_enumeration_type:
9061 case DW_TAG_enumerator:
9062 /* These tags always have simple identifiers already; no need
9063 to canonicalize them. */
9064 return DW_STRING (attr);
9065 default:
9066 if (!DW_STRING_IS_CANONICAL (attr))
9067 {
9068 DW_STRING (attr)
9069 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
9070 &cu->objfile->objfile_obstack);
9071 DW_STRING_IS_CANONICAL (attr) = 1;
9072 }
9073 return DW_STRING (attr);
9074 }
9075 }
9076
9077 /* Return the die that this die in an extension of, or NULL if there
9078 is none. *EXT_CU is the CU containing DIE on input, and the CU
9079 containing the return value on output. */
9080
9081 static struct die_info *
9082 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9083 {
9084 struct attribute *attr;
9085
9086 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9087 if (attr == NULL)
9088 return NULL;
9089
9090 return follow_die_ref (die, attr, ext_cu);
9091 }
9092
9093 /* Convert a DIE tag into its string name. */
9094
9095 static char *
9096 dwarf_tag_name (unsigned tag)
9097 {
9098 switch (tag)
9099 {
9100 case DW_TAG_padding:
9101 return "DW_TAG_padding";
9102 case DW_TAG_array_type:
9103 return "DW_TAG_array_type";
9104 case DW_TAG_class_type:
9105 return "DW_TAG_class_type";
9106 case DW_TAG_entry_point:
9107 return "DW_TAG_entry_point";
9108 case DW_TAG_enumeration_type:
9109 return "DW_TAG_enumeration_type";
9110 case DW_TAG_formal_parameter:
9111 return "DW_TAG_formal_parameter";
9112 case DW_TAG_imported_declaration:
9113 return "DW_TAG_imported_declaration";
9114 case DW_TAG_label:
9115 return "DW_TAG_label";
9116 case DW_TAG_lexical_block:
9117 return "DW_TAG_lexical_block";
9118 case DW_TAG_member:
9119 return "DW_TAG_member";
9120 case DW_TAG_pointer_type:
9121 return "DW_TAG_pointer_type";
9122 case DW_TAG_reference_type:
9123 return "DW_TAG_reference_type";
9124 case DW_TAG_compile_unit:
9125 return "DW_TAG_compile_unit";
9126 case DW_TAG_string_type:
9127 return "DW_TAG_string_type";
9128 case DW_TAG_structure_type:
9129 return "DW_TAG_structure_type";
9130 case DW_TAG_subroutine_type:
9131 return "DW_TAG_subroutine_type";
9132 case DW_TAG_typedef:
9133 return "DW_TAG_typedef";
9134 case DW_TAG_union_type:
9135 return "DW_TAG_union_type";
9136 case DW_TAG_unspecified_parameters:
9137 return "DW_TAG_unspecified_parameters";
9138 case DW_TAG_variant:
9139 return "DW_TAG_variant";
9140 case DW_TAG_common_block:
9141 return "DW_TAG_common_block";
9142 case DW_TAG_common_inclusion:
9143 return "DW_TAG_common_inclusion";
9144 case DW_TAG_inheritance:
9145 return "DW_TAG_inheritance";
9146 case DW_TAG_inlined_subroutine:
9147 return "DW_TAG_inlined_subroutine";
9148 case DW_TAG_module:
9149 return "DW_TAG_module";
9150 case DW_TAG_ptr_to_member_type:
9151 return "DW_TAG_ptr_to_member_type";
9152 case DW_TAG_set_type:
9153 return "DW_TAG_set_type";
9154 case DW_TAG_subrange_type:
9155 return "DW_TAG_subrange_type";
9156 case DW_TAG_with_stmt:
9157 return "DW_TAG_with_stmt";
9158 case DW_TAG_access_declaration:
9159 return "DW_TAG_access_declaration";
9160 case DW_TAG_base_type:
9161 return "DW_TAG_base_type";
9162 case DW_TAG_catch_block:
9163 return "DW_TAG_catch_block";
9164 case DW_TAG_const_type:
9165 return "DW_TAG_const_type";
9166 case DW_TAG_constant:
9167 return "DW_TAG_constant";
9168 case DW_TAG_enumerator:
9169 return "DW_TAG_enumerator";
9170 case DW_TAG_file_type:
9171 return "DW_TAG_file_type";
9172 case DW_TAG_friend:
9173 return "DW_TAG_friend";
9174 case DW_TAG_namelist:
9175 return "DW_TAG_namelist";
9176 case DW_TAG_namelist_item:
9177 return "DW_TAG_namelist_item";
9178 case DW_TAG_packed_type:
9179 return "DW_TAG_packed_type";
9180 case DW_TAG_subprogram:
9181 return "DW_TAG_subprogram";
9182 case DW_TAG_template_type_param:
9183 return "DW_TAG_template_type_param";
9184 case DW_TAG_template_value_param:
9185 return "DW_TAG_template_value_param";
9186 case DW_TAG_thrown_type:
9187 return "DW_TAG_thrown_type";
9188 case DW_TAG_try_block:
9189 return "DW_TAG_try_block";
9190 case DW_TAG_variant_part:
9191 return "DW_TAG_variant_part";
9192 case DW_TAG_variable:
9193 return "DW_TAG_variable";
9194 case DW_TAG_volatile_type:
9195 return "DW_TAG_volatile_type";
9196 case DW_TAG_dwarf_procedure:
9197 return "DW_TAG_dwarf_procedure";
9198 case DW_TAG_restrict_type:
9199 return "DW_TAG_restrict_type";
9200 case DW_TAG_interface_type:
9201 return "DW_TAG_interface_type";
9202 case DW_TAG_namespace:
9203 return "DW_TAG_namespace";
9204 case DW_TAG_imported_module:
9205 return "DW_TAG_imported_module";
9206 case DW_TAG_unspecified_type:
9207 return "DW_TAG_unspecified_type";
9208 case DW_TAG_partial_unit:
9209 return "DW_TAG_partial_unit";
9210 case DW_TAG_imported_unit:
9211 return "DW_TAG_imported_unit";
9212 case DW_TAG_condition:
9213 return "DW_TAG_condition";
9214 case DW_TAG_shared_type:
9215 return "DW_TAG_shared_type";
9216 case DW_TAG_type_unit:
9217 return "DW_TAG_type_unit";
9218 case DW_TAG_MIPS_loop:
9219 return "DW_TAG_MIPS_loop";
9220 case DW_TAG_HP_array_descriptor:
9221 return "DW_TAG_HP_array_descriptor";
9222 case DW_TAG_format_label:
9223 return "DW_TAG_format_label";
9224 case DW_TAG_function_template:
9225 return "DW_TAG_function_template";
9226 case DW_TAG_class_template:
9227 return "DW_TAG_class_template";
9228 case DW_TAG_GNU_BINCL:
9229 return "DW_TAG_GNU_BINCL";
9230 case DW_TAG_GNU_EINCL:
9231 return "DW_TAG_GNU_EINCL";
9232 case DW_TAG_upc_shared_type:
9233 return "DW_TAG_upc_shared_type";
9234 case DW_TAG_upc_strict_type:
9235 return "DW_TAG_upc_strict_type";
9236 case DW_TAG_upc_relaxed_type:
9237 return "DW_TAG_upc_relaxed_type";
9238 case DW_TAG_PGI_kanji_type:
9239 return "DW_TAG_PGI_kanji_type";
9240 case DW_TAG_PGI_interface_block:
9241 return "DW_TAG_PGI_interface_block";
9242 default:
9243 return "DW_TAG_<unknown>";
9244 }
9245 }
9246
9247 /* Convert a DWARF attribute code into its string name. */
9248
9249 static char *
9250 dwarf_attr_name (unsigned attr)
9251 {
9252 switch (attr)
9253 {
9254 case DW_AT_sibling:
9255 return "DW_AT_sibling";
9256 case DW_AT_location:
9257 return "DW_AT_location";
9258 case DW_AT_name:
9259 return "DW_AT_name";
9260 case DW_AT_ordering:
9261 return "DW_AT_ordering";
9262 case DW_AT_subscr_data:
9263 return "DW_AT_subscr_data";
9264 case DW_AT_byte_size:
9265 return "DW_AT_byte_size";
9266 case DW_AT_bit_offset:
9267 return "DW_AT_bit_offset";
9268 case DW_AT_bit_size:
9269 return "DW_AT_bit_size";
9270 case DW_AT_element_list:
9271 return "DW_AT_element_list";
9272 case DW_AT_stmt_list:
9273 return "DW_AT_stmt_list";
9274 case DW_AT_low_pc:
9275 return "DW_AT_low_pc";
9276 case DW_AT_high_pc:
9277 return "DW_AT_high_pc";
9278 case DW_AT_language:
9279 return "DW_AT_language";
9280 case DW_AT_member:
9281 return "DW_AT_member";
9282 case DW_AT_discr:
9283 return "DW_AT_discr";
9284 case DW_AT_discr_value:
9285 return "DW_AT_discr_value";
9286 case DW_AT_visibility:
9287 return "DW_AT_visibility";
9288 case DW_AT_import:
9289 return "DW_AT_import";
9290 case DW_AT_string_length:
9291 return "DW_AT_string_length";
9292 case DW_AT_common_reference:
9293 return "DW_AT_common_reference";
9294 case DW_AT_comp_dir:
9295 return "DW_AT_comp_dir";
9296 case DW_AT_const_value:
9297 return "DW_AT_const_value";
9298 case DW_AT_containing_type:
9299 return "DW_AT_containing_type";
9300 case DW_AT_default_value:
9301 return "DW_AT_default_value";
9302 case DW_AT_inline:
9303 return "DW_AT_inline";
9304 case DW_AT_is_optional:
9305 return "DW_AT_is_optional";
9306 case DW_AT_lower_bound:
9307 return "DW_AT_lower_bound";
9308 case DW_AT_producer:
9309 return "DW_AT_producer";
9310 case DW_AT_prototyped:
9311 return "DW_AT_prototyped";
9312 case DW_AT_return_addr:
9313 return "DW_AT_return_addr";
9314 case DW_AT_start_scope:
9315 return "DW_AT_start_scope";
9316 case DW_AT_bit_stride:
9317 return "DW_AT_bit_stride";
9318 case DW_AT_upper_bound:
9319 return "DW_AT_upper_bound";
9320 case DW_AT_abstract_origin:
9321 return "DW_AT_abstract_origin";
9322 case DW_AT_accessibility:
9323 return "DW_AT_accessibility";
9324 case DW_AT_address_class:
9325 return "DW_AT_address_class";
9326 case DW_AT_artificial:
9327 return "DW_AT_artificial";
9328 case DW_AT_base_types:
9329 return "DW_AT_base_types";
9330 case DW_AT_calling_convention:
9331 return "DW_AT_calling_convention";
9332 case DW_AT_count:
9333 return "DW_AT_count";
9334 case DW_AT_data_member_location:
9335 return "DW_AT_data_member_location";
9336 case DW_AT_decl_column:
9337 return "DW_AT_decl_column";
9338 case DW_AT_decl_file:
9339 return "DW_AT_decl_file";
9340 case DW_AT_decl_line:
9341 return "DW_AT_decl_line";
9342 case DW_AT_declaration:
9343 return "DW_AT_declaration";
9344 case DW_AT_discr_list:
9345 return "DW_AT_discr_list";
9346 case DW_AT_encoding:
9347 return "DW_AT_encoding";
9348 case DW_AT_external:
9349 return "DW_AT_external";
9350 case DW_AT_frame_base:
9351 return "DW_AT_frame_base";
9352 case DW_AT_friend:
9353 return "DW_AT_friend";
9354 case DW_AT_identifier_case:
9355 return "DW_AT_identifier_case";
9356 case DW_AT_macro_info:
9357 return "DW_AT_macro_info";
9358 case DW_AT_namelist_items:
9359 return "DW_AT_namelist_items";
9360 case DW_AT_priority:
9361 return "DW_AT_priority";
9362 case DW_AT_segment:
9363 return "DW_AT_segment";
9364 case DW_AT_specification:
9365 return "DW_AT_specification";
9366 case DW_AT_static_link:
9367 return "DW_AT_static_link";
9368 case DW_AT_type:
9369 return "DW_AT_type";
9370 case DW_AT_use_location:
9371 return "DW_AT_use_location";
9372 case DW_AT_variable_parameter:
9373 return "DW_AT_variable_parameter";
9374 case DW_AT_virtuality:
9375 return "DW_AT_virtuality";
9376 case DW_AT_vtable_elem_location:
9377 return "DW_AT_vtable_elem_location";
9378 /* DWARF 3 values. */
9379 case DW_AT_allocated:
9380 return "DW_AT_allocated";
9381 case DW_AT_associated:
9382 return "DW_AT_associated";
9383 case DW_AT_data_location:
9384 return "DW_AT_data_location";
9385 case DW_AT_byte_stride:
9386 return "DW_AT_byte_stride";
9387 case DW_AT_entry_pc:
9388 return "DW_AT_entry_pc";
9389 case DW_AT_use_UTF8:
9390 return "DW_AT_use_UTF8";
9391 case DW_AT_extension:
9392 return "DW_AT_extension";
9393 case DW_AT_ranges:
9394 return "DW_AT_ranges";
9395 case DW_AT_trampoline:
9396 return "DW_AT_trampoline";
9397 case DW_AT_call_column:
9398 return "DW_AT_call_column";
9399 case DW_AT_call_file:
9400 return "DW_AT_call_file";
9401 case DW_AT_call_line:
9402 return "DW_AT_call_line";
9403 case DW_AT_description:
9404 return "DW_AT_description";
9405 case DW_AT_binary_scale:
9406 return "DW_AT_binary_scale";
9407 case DW_AT_decimal_scale:
9408 return "DW_AT_decimal_scale";
9409 case DW_AT_small:
9410 return "DW_AT_small";
9411 case DW_AT_decimal_sign:
9412 return "DW_AT_decimal_sign";
9413 case DW_AT_digit_count:
9414 return "DW_AT_digit_count";
9415 case DW_AT_picture_string:
9416 return "DW_AT_picture_string";
9417 case DW_AT_mutable:
9418 return "DW_AT_mutable";
9419 case DW_AT_threads_scaled:
9420 return "DW_AT_threads_scaled";
9421 case DW_AT_explicit:
9422 return "DW_AT_explicit";
9423 case DW_AT_object_pointer:
9424 return "DW_AT_object_pointer";
9425 case DW_AT_endianity:
9426 return "DW_AT_endianity";
9427 case DW_AT_elemental:
9428 return "DW_AT_elemental";
9429 case DW_AT_pure:
9430 return "DW_AT_pure";
9431 case DW_AT_recursive:
9432 return "DW_AT_recursive";
9433 /* DWARF 4 values. */
9434 case DW_AT_signature:
9435 return "DW_AT_signature";
9436 /* SGI/MIPS extensions. */
9437 #ifdef MIPS /* collides with DW_AT_HP_block_index */
9438 case DW_AT_MIPS_fde:
9439 return "DW_AT_MIPS_fde";
9440 #endif
9441 case DW_AT_MIPS_loop_begin:
9442 return "DW_AT_MIPS_loop_begin";
9443 case DW_AT_MIPS_tail_loop_begin:
9444 return "DW_AT_MIPS_tail_loop_begin";
9445 case DW_AT_MIPS_epilog_begin:
9446 return "DW_AT_MIPS_epilog_begin";
9447 case DW_AT_MIPS_loop_unroll_factor:
9448 return "DW_AT_MIPS_loop_unroll_factor";
9449 case DW_AT_MIPS_software_pipeline_depth:
9450 return "DW_AT_MIPS_software_pipeline_depth";
9451 case DW_AT_MIPS_linkage_name:
9452 return "DW_AT_MIPS_linkage_name";
9453 case DW_AT_MIPS_stride:
9454 return "DW_AT_MIPS_stride";
9455 case DW_AT_MIPS_abstract_name:
9456 return "DW_AT_MIPS_abstract_name";
9457 case DW_AT_MIPS_clone_origin:
9458 return "DW_AT_MIPS_clone_origin";
9459 case DW_AT_MIPS_has_inlines:
9460 return "DW_AT_MIPS_has_inlines";
9461 /* HP extensions. */
9462 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
9463 case DW_AT_HP_block_index:
9464 return "DW_AT_HP_block_index";
9465 #endif
9466 case DW_AT_HP_unmodifiable:
9467 return "DW_AT_HP_unmodifiable";
9468 case DW_AT_HP_actuals_stmt_list:
9469 return "DW_AT_HP_actuals_stmt_list";
9470 case DW_AT_HP_proc_per_section:
9471 return "DW_AT_HP_proc_per_section";
9472 case DW_AT_HP_raw_data_ptr:
9473 return "DW_AT_HP_raw_data_ptr";
9474 case DW_AT_HP_pass_by_reference:
9475 return "DW_AT_HP_pass_by_reference";
9476 case DW_AT_HP_opt_level:
9477 return "DW_AT_HP_opt_level";
9478 case DW_AT_HP_prof_version_id:
9479 return "DW_AT_HP_prof_version_id";
9480 case DW_AT_HP_opt_flags:
9481 return "DW_AT_HP_opt_flags";
9482 case DW_AT_HP_cold_region_low_pc:
9483 return "DW_AT_HP_cold_region_low_pc";
9484 case DW_AT_HP_cold_region_high_pc:
9485 return "DW_AT_HP_cold_region_high_pc";
9486 case DW_AT_HP_all_variables_modifiable:
9487 return "DW_AT_HP_all_variables_modifiable";
9488 case DW_AT_HP_linkage_name:
9489 return "DW_AT_HP_linkage_name";
9490 case DW_AT_HP_prof_flags:
9491 return "DW_AT_HP_prof_flags";
9492 /* GNU extensions. */
9493 case DW_AT_sf_names:
9494 return "DW_AT_sf_names";
9495 case DW_AT_src_info:
9496 return "DW_AT_src_info";
9497 case DW_AT_mac_info:
9498 return "DW_AT_mac_info";
9499 case DW_AT_src_coords:
9500 return "DW_AT_src_coords";
9501 case DW_AT_body_begin:
9502 return "DW_AT_body_begin";
9503 case DW_AT_body_end:
9504 return "DW_AT_body_end";
9505 case DW_AT_GNU_vector:
9506 return "DW_AT_GNU_vector";
9507 /* VMS extensions. */
9508 case DW_AT_VMS_rtnbeg_pd_address:
9509 return "DW_AT_VMS_rtnbeg_pd_address";
9510 /* UPC extension. */
9511 case DW_AT_upc_threads_scaled:
9512 return "DW_AT_upc_threads_scaled";
9513 /* PGI (STMicroelectronics) extensions. */
9514 case DW_AT_PGI_lbase:
9515 return "DW_AT_PGI_lbase";
9516 case DW_AT_PGI_soffset:
9517 return "DW_AT_PGI_soffset";
9518 case DW_AT_PGI_lstride:
9519 return "DW_AT_PGI_lstride";
9520 default:
9521 return "DW_AT_<unknown>";
9522 }
9523 }
9524
9525 /* Convert a DWARF value form code into its string name. */
9526
9527 static char *
9528 dwarf_form_name (unsigned form)
9529 {
9530 switch (form)
9531 {
9532 case DW_FORM_addr:
9533 return "DW_FORM_addr";
9534 case DW_FORM_block2:
9535 return "DW_FORM_block2";
9536 case DW_FORM_block4:
9537 return "DW_FORM_block4";
9538 case DW_FORM_data2:
9539 return "DW_FORM_data2";
9540 case DW_FORM_data4:
9541 return "DW_FORM_data4";
9542 case DW_FORM_data8:
9543 return "DW_FORM_data8";
9544 case DW_FORM_string:
9545 return "DW_FORM_string";
9546 case DW_FORM_block:
9547 return "DW_FORM_block";
9548 case DW_FORM_block1:
9549 return "DW_FORM_block1";
9550 case DW_FORM_data1:
9551 return "DW_FORM_data1";
9552 case DW_FORM_flag:
9553 return "DW_FORM_flag";
9554 case DW_FORM_sdata:
9555 return "DW_FORM_sdata";
9556 case DW_FORM_strp:
9557 return "DW_FORM_strp";
9558 case DW_FORM_udata:
9559 return "DW_FORM_udata";
9560 case DW_FORM_ref_addr:
9561 return "DW_FORM_ref_addr";
9562 case DW_FORM_ref1:
9563 return "DW_FORM_ref1";
9564 case DW_FORM_ref2:
9565 return "DW_FORM_ref2";
9566 case DW_FORM_ref4:
9567 return "DW_FORM_ref4";
9568 case DW_FORM_ref8:
9569 return "DW_FORM_ref8";
9570 case DW_FORM_ref_udata:
9571 return "DW_FORM_ref_udata";
9572 case DW_FORM_indirect:
9573 return "DW_FORM_indirect";
9574 case DW_FORM_sec_offset:
9575 return "DW_FORM_sec_offset";
9576 case DW_FORM_exprloc:
9577 return "DW_FORM_exprloc";
9578 case DW_FORM_flag_present:
9579 return "DW_FORM_flag_present";
9580 case DW_FORM_sig8:
9581 return "DW_FORM_sig8";
9582 default:
9583 return "DW_FORM_<unknown>";
9584 }
9585 }
9586
9587 /* Convert a DWARF stack opcode into its string name. */
9588
9589 static char *
9590 dwarf_stack_op_name (unsigned op)
9591 {
9592 switch (op)
9593 {
9594 case DW_OP_addr:
9595 return "DW_OP_addr";
9596 case DW_OP_deref:
9597 return "DW_OP_deref";
9598 case DW_OP_const1u:
9599 return "DW_OP_const1u";
9600 case DW_OP_const1s:
9601 return "DW_OP_const1s";
9602 case DW_OP_const2u:
9603 return "DW_OP_const2u";
9604 case DW_OP_const2s:
9605 return "DW_OP_const2s";
9606 case DW_OP_const4u:
9607 return "DW_OP_const4u";
9608 case DW_OP_const4s:
9609 return "DW_OP_const4s";
9610 case DW_OP_const8u:
9611 return "DW_OP_const8u";
9612 case DW_OP_const8s:
9613 return "DW_OP_const8s";
9614 case DW_OP_constu:
9615 return "DW_OP_constu";
9616 case DW_OP_consts:
9617 return "DW_OP_consts";
9618 case DW_OP_dup:
9619 return "DW_OP_dup";
9620 case DW_OP_drop:
9621 return "DW_OP_drop";
9622 case DW_OP_over:
9623 return "DW_OP_over";
9624 case DW_OP_pick:
9625 return "DW_OP_pick";
9626 case DW_OP_swap:
9627 return "DW_OP_swap";
9628 case DW_OP_rot:
9629 return "DW_OP_rot";
9630 case DW_OP_xderef:
9631 return "DW_OP_xderef";
9632 case DW_OP_abs:
9633 return "DW_OP_abs";
9634 case DW_OP_and:
9635 return "DW_OP_and";
9636 case DW_OP_div:
9637 return "DW_OP_div";
9638 case DW_OP_minus:
9639 return "DW_OP_minus";
9640 case DW_OP_mod:
9641 return "DW_OP_mod";
9642 case DW_OP_mul:
9643 return "DW_OP_mul";
9644 case DW_OP_neg:
9645 return "DW_OP_neg";
9646 case DW_OP_not:
9647 return "DW_OP_not";
9648 case DW_OP_or:
9649 return "DW_OP_or";
9650 case DW_OP_plus:
9651 return "DW_OP_plus";
9652 case DW_OP_plus_uconst:
9653 return "DW_OP_plus_uconst";
9654 case DW_OP_shl:
9655 return "DW_OP_shl";
9656 case DW_OP_shr:
9657 return "DW_OP_shr";
9658 case DW_OP_shra:
9659 return "DW_OP_shra";
9660 case DW_OP_xor:
9661 return "DW_OP_xor";
9662 case DW_OP_bra:
9663 return "DW_OP_bra";
9664 case DW_OP_eq:
9665 return "DW_OP_eq";
9666 case DW_OP_ge:
9667 return "DW_OP_ge";
9668 case DW_OP_gt:
9669 return "DW_OP_gt";
9670 case DW_OP_le:
9671 return "DW_OP_le";
9672 case DW_OP_lt:
9673 return "DW_OP_lt";
9674 case DW_OP_ne:
9675 return "DW_OP_ne";
9676 case DW_OP_skip:
9677 return "DW_OP_skip";
9678 case DW_OP_lit0:
9679 return "DW_OP_lit0";
9680 case DW_OP_lit1:
9681 return "DW_OP_lit1";
9682 case DW_OP_lit2:
9683 return "DW_OP_lit2";
9684 case DW_OP_lit3:
9685 return "DW_OP_lit3";
9686 case DW_OP_lit4:
9687 return "DW_OP_lit4";
9688 case DW_OP_lit5:
9689 return "DW_OP_lit5";
9690 case DW_OP_lit6:
9691 return "DW_OP_lit6";
9692 case DW_OP_lit7:
9693 return "DW_OP_lit7";
9694 case DW_OP_lit8:
9695 return "DW_OP_lit8";
9696 case DW_OP_lit9:
9697 return "DW_OP_lit9";
9698 case DW_OP_lit10:
9699 return "DW_OP_lit10";
9700 case DW_OP_lit11:
9701 return "DW_OP_lit11";
9702 case DW_OP_lit12:
9703 return "DW_OP_lit12";
9704 case DW_OP_lit13:
9705 return "DW_OP_lit13";
9706 case DW_OP_lit14:
9707 return "DW_OP_lit14";
9708 case DW_OP_lit15:
9709 return "DW_OP_lit15";
9710 case DW_OP_lit16:
9711 return "DW_OP_lit16";
9712 case DW_OP_lit17:
9713 return "DW_OP_lit17";
9714 case DW_OP_lit18:
9715 return "DW_OP_lit18";
9716 case DW_OP_lit19:
9717 return "DW_OP_lit19";
9718 case DW_OP_lit20:
9719 return "DW_OP_lit20";
9720 case DW_OP_lit21:
9721 return "DW_OP_lit21";
9722 case DW_OP_lit22:
9723 return "DW_OP_lit22";
9724 case DW_OP_lit23:
9725 return "DW_OP_lit23";
9726 case DW_OP_lit24:
9727 return "DW_OP_lit24";
9728 case DW_OP_lit25:
9729 return "DW_OP_lit25";
9730 case DW_OP_lit26:
9731 return "DW_OP_lit26";
9732 case DW_OP_lit27:
9733 return "DW_OP_lit27";
9734 case DW_OP_lit28:
9735 return "DW_OP_lit28";
9736 case DW_OP_lit29:
9737 return "DW_OP_lit29";
9738 case DW_OP_lit30:
9739 return "DW_OP_lit30";
9740 case DW_OP_lit31:
9741 return "DW_OP_lit31";
9742 case DW_OP_reg0:
9743 return "DW_OP_reg0";
9744 case DW_OP_reg1:
9745 return "DW_OP_reg1";
9746 case DW_OP_reg2:
9747 return "DW_OP_reg2";
9748 case DW_OP_reg3:
9749 return "DW_OP_reg3";
9750 case DW_OP_reg4:
9751 return "DW_OP_reg4";
9752 case DW_OP_reg5:
9753 return "DW_OP_reg5";
9754 case DW_OP_reg6:
9755 return "DW_OP_reg6";
9756 case DW_OP_reg7:
9757 return "DW_OP_reg7";
9758 case DW_OP_reg8:
9759 return "DW_OP_reg8";
9760 case DW_OP_reg9:
9761 return "DW_OP_reg9";
9762 case DW_OP_reg10:
9763 return "DW_OP_reg10";
9764 case DW_OP_reg11:
9765 return "DW_OP_reg11";
9766 case DW_OP_reg12:
9767 return "DW_OP_reg12";
9768 case DW_OP_reg13:
9769 return "DW_OP_reg13";
9770 case DW_OP_reg14:
9771 return "DW_OP_reg14";
9772 case DW_OP_reg15:
9773 return "DW_OP_reg15";
9774 case DW_OP_reg16:
9775 return "DW_OP_reg16";
9776 case DW_OP_reg17:
9777 return "DW_OP_reg17";
9778 case DW_OP_reg18:
9779 return "DW_OP_reg18";
9780 case DW_OP_reg19:
9781 return "DW_OP_reg19";
9782 case DW_OP_reg20:
9783 return "DW_OP_reg20";
9784 case DW_OP_reg21:
9785 return "DW_OP_reg21";
9786 case DW_OP_reg22:
9787 return "DW_OP_reg22";
9788 case DW_OP_reg23:
9789 return "DW_OP_reg23";
9790 case DW_OP_reg24:
9791 return "DW_OP_reg24";
9792 case DW_OP_reg25:
9793 return "DW_OP_reg25";
9794 case DW_OP_reg26:
9795 return "DW_OP_reg26";
9796 case DW_OP_reg27:
9797 return "DW_OP_reg27";
9798 case DW_OP_reg28:
9799 return "DW_OP_reg28";
9800 case DW_OP_reg29:
9801 return "DW_OP_reg29";
9802 case DW_OP_reg30:
9803 return "DW_OP_reg30";
9804 case DW_OP_reg31:
9805 return "DW_OP_reg31";
9806 case DW_OP_breg0:
9807 return "DW_OP_breg0";
9808 case DW_OP_breg1:
9809 return "DW_OP_breg1";
9810 case DW_OP_breg2:
9811 return "DW_OP_breg2";
9812 case DW_OP_breg3:
9813 return "DW_OP_breg3";
9814 case DW_OP_breg4:
9815 return "DW_OP_breg4";
9816 case DW_OP_breg5:
9817 return "DW_OP_breg5";
9818 case DW_OP_breg6:
9819 return "DW_OP_breg6";
9820 case DW_OP_breg7:
9821 return "DW_OP_breg7";
9822 case DW_OP_breg8:
9823 return "DW_OP_breg8";
9824 case DW_OP_breg9:
9825 return "DW_OP_breg9";
9826 case DW_OP_breg10:
9827 return "DW_OP_breg10";
9828 case DW_OP_breg11:
9829 return "DW_OP_breg11";
9830 case DW_OP_breg12:
9831 return "DW_OP_breg12";
9832 case DW_OP_breg13:
9833 return "DW_OP_breg13";
9834 case DW_OP_breg14:
9835 return "DW_OP_breg14";
9836 case DW_OP_breg15:
9837 return "DW_OP_breg15";
9838 case DW_OP_breg16:
9839 return "DW_OP_breg16";
9840 case DW_OP_breg17:
9841 return "DW_OP_breg17";
9842 case DW_OP_breg18:
9843 return "DW_OP_breg18";
9844 case DW_OP_breg19:
9845 return "DW_OP_breg19";
9846 case DW_OP_breg20:
9847 return "DW_OP_breg20";
9848 case DW_OP_breg21:
9849 return "DW_OP_breg21";
9850 case DW_OP_breg22:
9851 return "DW_OP_breg22";
9852 case DW_OP_breg23:
9853 return "DW_OP_breg23";
9854 case DW_OP_breg24:
9855 return "DW_OP_breg24";
9856 case DW_OP_breg25:
9857 return "DW_OP_breg25";
9858 case DW_OP_breg26:
9859 return "DW_OP_breg26";
9860 case DW_OP_breg27:
9861 return "DW_OP_breg27";
9862 case DW_OP_breg28:
9863 return "DW_OP_breg28";
9864 case DW_OP_breg29:
9865 return "DW_OP_breg29";
9866 case DW_OP_breg30:
9867 return "DW_OP_breg30";
9868 case DW_OP_breg31:
9869 return "DW_OP_breg31";
9870 case DW_OP_regx:
9871 return "DW_OP_regx";
9872 case DW_OP_fbreg:
9873 return "DW_OP_fbreg";
9874 case DW_OP_bregx:
9875 return "DW_OP_bregx";
9876 case DW_OP_piece:
9877 return "DW_OP_piece";
9878 case DW_OP_deref_size:
9879 return "DW_OP_deref_size";
9880 case DW_OP_xderef_size:
9881 return "DW_OP_xderef_size";
9882 case DW_OP_nop:
9883 return "DW_OP_nop";
9884 /* DWARF 3 extensions. */
9885 case DW_OP_push_object_address:
9886 return "DW_OP_push_object_address";
9887 case DW_OP_call2:
9888 return "DW_OP_call2";
9889 case DW_OP_call4:
9890 return "DW_OP_call4";
9891 case DW_OP_call_ref:
9892 return "DW_OP_call_ref";
9893 /* GNU extensions. */
9894 case DW_OP_form_tls_address:
9895 return "DW_OP_form_tls_address";
9896 case DW_OP_call_frame_cfa:
9897 return "DW_OP_call_frame_cfa";
9898 case DW_OP_bit_piece:
9899 return "DW_OP_bit_piece";
9900 case DW_OP_GNU_push_tls_address:
9901 return "DW_OP_GNU_push_tls_address";
9902 case DW_OP_GNU_uninit:
9903 return "DW_OP_GNU_uninit";
9904 /* HP extensions. */
9905 case DW_OP_HP_is_value:
9906 return "DW_OP_HP_is_value";
9907 case DW_OP_HP_fltconst4:
9908 return "DW_OP_HP_fltconst4";
9909 case DW_OP_HP_fltconst8:
9910 return "DW_OP_HP_fltconst8";
9911 case DW_OP_HP_mod_range:
9912 return "DW_OP_HP_mod_range";
9913 case DW_OP_HP_unmod_range:
9914 return "DW_OP_HP_unmod_range";
9915 case DW_OP_HP_tls:
9916 return "DW_OP_HP_tls";
9917 default:
9918 return "OP_<unknown>";
9919 }
9920 }
9921
9922 static char *
9923 dwarf_bool_name (unsigned mybool)
9924 {
9925 if (mybool)
9926 return "TRUE";
9927 else
9928 return "FALSE";
9929 }
9930
9931 /* Convert a DWARF type code into its string name. */
9932
9933 static char *
9934 dwarf_type_encoding_name (unsigned enc)
9935 {
9936 switch (enc)
9937 {
9938 case DW_ATE_void:
9939 return "DW_ATE_void";
9940 case DW_ATE_address:
9941 return "DW_ATE_address";
9942 case DW_ATE_boolean:
9943 return "DW_ATE_boolean";
9944 case DW_ATE_complex_float:
9945 return "DW_ATE_complex_float";
9946 case DW_ATE_float:
9947 return "DW_ATE_float";
9948 case DW_ATE_signed:
9949 return "DW_ATE_signed";
9950 case DW_ATE_signed_char:
9951 return "DW_ATE_signed_char";
9952 case DW_ATE_unsigned:
9953 return "DW_ATE_unsigned";
9954 case DW_ATE_unsigned_char:
9955 return "DW_ATE_unsigned_char";
9956 /* DWARF 3. */
9957 case DW_ATE_imaginary_float:
9958 return "DW_ATE_imaginary_float";
9959 case DW_ATE_packed_decimal:
9960 return "DW_ATE_packed_decimal";
9961 case DW_ATE_numeric_string:
9962 return "DW_ATE_numeric_string";
9963 case DW_ATE_edited:
9964 return "DW_ATE_edited";
9965 case DW_ATE_signed_fixed:
9966 return "DW_ATE_signed_fixed";
9967 case DW_ATE_unsigned_fixed:
9968 return "DW_ATE_unsigned_fixed";
9969 case DW_ATE_decimal_float:
9970 return "DW_ATE_decimal_float";
9971 /* HP extensions. */
9972 case DW_ATE_HP_float80:
9973 return "DW_ATE_HP_float80";
9974 case DW_ATE_HP_complex_float80:
9975 return "DW_ATE_HP_complex_float80";
9976 case DW_ATE_HP_float128:
9977 return "DW_ATE_HP_float128";
9978 case DW_ATE_HP_complex_float128:
9979 return "DW_ATE_HP_complex_float128";
9980 case DW_ATE_HP_floathpintel:
9981 return "DW_ATE_HP_floathpintel";
9982 case DW_ATE_HP_imaginary_float80:
9983 return "DW_ATE_HP_imaginary_float80";
9984 case DW_ATE_HP_imaginary_float128:
9985 return "DW_ATE_HP_imaginary_float128";
9986 default:
9987 return "DW_ATE_<unknown>";
9988 }
9989 }
9990
9991 /* Convert a DWARF call frame info operation to its string name. */
9992
9993 #if 0
9994 static char *
9995 dwarf_cfi_name (unsigned cfi_opc)
9996 {
9997 switch (cfi_opc)
9998 {
9999 case DW_CFA_advance_loc:
10000 return "DW_CFA_advance_loc";
10001 case DW_CFA_offset:
10002 return "DW_CFA_offset";
10003 case DW_CFA_restore:
10004 return "DW_CFA_restore";
10005 case DW_CFA_nop:
10006 return "DW_CFA_nop";
10007 case DW_CFA_set_loc:
10008 return "DW_CFA_set_loc";
10009 case DW_CFA_advance_loc1:
10010 return "DW_CFA_advance_loc1";
10011 case DW_CFA_advance_loc2:
10012 return "DW_CFA_advance_loc2";
10013 case DW_CFA_advance_loc4:
10014 return "DW_CFA_advance_loc4";
10015 case DW_CFA_offset_extended:
10016 return "DW_CFA_offset_extended";
10017 case DW_CFA_restore_extended:
10018 return "DW_CFA_restore_extended";
10019 case DW_CFA_undefined:
10020 return "DW_CFA_undefined";
10021 case DW_CFA_same_value:
10022 return "DW_CFA_same_value";
10023 case DW_CFA_register:
10024 return "DW_CFA_register";
10025 case DW_CFA_remember_state:
10026 return "DW_CFA_remember_state";
10027 case DW_CFA_restore_state:
10028 return "DW_CFA_restore_state";
10029 case DW_CFA_def_cfa:
10030 return "DW_CFA_def_cfa";
10031 case DW_CFA_def_cfa_register:
10032 return "DW_CFA_def_cfa_register";
10033 case DW_CFA_def_cfa_offset:
10034 return "DW_CFA_def_cfa_offset";
10035 /* DWARF 3. */
10036 case DW_CFA_def_cfa_expression:
10037 return "DW_CFA_def_cfa_expression";
10038 case DW_CFA_expression:
10039 return "DW_CFA_expression";
10040 case DW_CFA_offset_extended_sf:
10041 return "DW_CFA_offset_extended_sf";
10042 case DW_CFA_def_cfa_sf:
10043 return "DW_CFA_def_cfa_sf";
10044 case DW_CFA_def_cfa_offset_sf:
10045 return "DW_CFA_def_cfa_offset_sf";
10046 case DW_CFA_val_offset:
10047 return "DW_CFA_val_offset";
10048 case DW_CFA_val_offset_sf:
10049 return "DW_CFA_val_offset_sf";
10050 case DW_CFA_val_expression:
10051 return "DW_CFA_val_expression";
10052 /* SGI/MIPS specific. */
10053 case DW_CFA_MIPS_advance_loc8:
10054 return "DW_CFA_MIPS_advance_loc8";
10055 /* GNU extensions. */
10056 case DW_CFA_GNU_window_save:
10057 return "DW_CFA_GNU_window_save";
10058 case DW_CFA_GNU_args_size:
10059 return "DW_CFA_GNU_args_size";
10060 case DW_CFA_GNU_negative_offset_extended:
10061 return "DW_CFA_GNU_negative_offset_extended";
10062 default:
10063 return "DW_CFA_<unknown>";
10064 }
10065 }
10066 #endif
10067
10068 static void
10069 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
10070 {
10071 unsigned int i;
10072
10073 print_spaces (indent, f);
10074 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
10075 dwarf_tag_name (die->tag), die->abbrev, die->offset);
10076
10077 if (die->parent != NULL)
10078 {
10079 print_spaces (indent, f);
10080 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
10081 die->parent->offset);
10082 }
10083
10084 print_spaces (indent, f);
10085 fprintf_unfiltered (f, " has children: %s\n",
10086 dwarf_bool_name (die->child != NULL));
10087
10088 print_spaces (indent, f);
10089 fprintf_unfiltered (f, " attributes:\n");
10090
10091 for (i = 0; i < die->num_attrs; ++i)
10092 {
10093 print_spaces (indent, f);
10094 fprintf_unfiltered (f, " %s (%s) ",
10095 dwarf_attr_name (die->attrs[i].name),
10096 dwarf_form_name (die->attrs[i].form));
10097
10098 switch (die->attrs[i].form)
10099 {
10100 case DW_FORM_ref_addr:
10101 case DW_FORM_addr:
10102 fprintf_unfiltered (f, "address: ");
10103 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
10104 break;
10105 case DW_FORM_block2:
10106 case DW_FORM_block4:
10107 case DW_FORM_block:
10108 case DW_FORM_block1:
10109 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
10110 break;
10111 case DW_FORM_ref1:
10112 case DW_FORM_ref2:
10113 case DW_FORM_ref4:
10114 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10115 (long) (DW_ADDR (&die->attrs[i])));
10116 break;
10117 case DW_FORM_data1:
10118 case DW_FORM_data2:
10119 case DW_FORM_data4:
10120 case DW_FORM_data8:
10121 case DW_FORM_udata:
10122 case DW_FORM_sdata:
10123 fprintf_unfiltered (f, "constant: %s",
10124 pulongest (DW_UNSND (&die->attrs[i])));
10125 break;
10126 case DW_FORM_sig8:
10127 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
10128 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
10129 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
10130 else
10131 fprintf_unfiltered (f, "signatured type, offset: unknown");
10132 break;
10133 case DW_FORM_string:
10134 case DW_FORM_strp:
10135 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
10136 DW_STRING (&die->attrs[i])
10137 ? DW_STRING (&die->attrs[i]) : "",
10138 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
10139 break;
10140 case DW_FORM_flag:
10141 if (DW_UNSND (&die->attrs[i]))
10142 fprintf_unfiltered (f, "flag: TRUE");
10143 else
10144 fprintf_unfiltered (f, "flag: FALSE");
10145 break;
10146 case DW_FORM_indirect:
10147 /* the reader will have reduced the indirect form to
10148 the "base form" so this form should not occur */
10149 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
10150 break;
10151 default:
10152 fprintf_unfiltered (f, "unsupported attribute form: %d.",
10153 die->attrs[i].form);
10154 break;
10155 }
10156 fprintf_unfiltered (f, "\n");
10157 }
10158 }
10159
10160 static void
10161 dump_die_for_error (struct die_info *die)
10162 {
10163 dump_die_shallow (gdb_stderr, 0, die);
10164 }
10165
10166 static void
10167 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
10168 {
10169 int indent = level * 4;
10170
10171 gdb_assert (die != NULL);
10172
10173 if (level >= max_level)
10174 return;
10175
10176 dump_die_shallow (f, indent, die);
10177
10178 if (die->child != NULL)
10179 {
10180 print_spaces (indent, f);
10181 fprintf_unfiltered (f, " Children:");
10182 if (level + 1 < max_level)
10183 {
10184 fprintf_unfiltered (f, "\n");
10185 dump_die_1 (f, level + 1, max_level, die->child);
10186 }
10187 else
10188 {
10189 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
10190 }
10191 }
10192
10193 if (die->sibling != NULL && level > 0)
10194 {
10195 dump_die_1 (f, level, max_level, die->sibling);
10196 }
10197 }
10198
10199 /* This is called from the pdie macro in gdbinit.in.
10200 It's not static so gcc will keep a copy callable from gdb. */
10201
10202 void
10203 dump_die (struct die_info *die, int max_level)
10204 {
10205 dump_die_1 (gdb_stdlog, 0, max_level, die);
10206 }
10207
10208 static void
10209 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
10210 {
10211 void **slot;
10212
10213 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
10214
10215 *slot = die;
10216 }
10217
10218 static int
10219 is_ref_attr (struct attribute *attr)
10220 {
10221 switch (attr->form)
10222 {
10223 case DW_FORM_ref_addr:
10224 case DW_FORM_ref1:
10225 case DW_FORM_ref2:
10226 case DW_FORM_ref4:
10227 case DW_FORM_ref8:
10228 case DW_FORM_ref_udata:
10229 return 1;
10230 default:
10231 return 0;
10232 }
10233 }
10234
10235 static unsigned int
10236 dwarf2_get_ref_die_offset (struct attribute *attr)
10237 {
10238 if (is_ref_attr (attr))
10239 return DW_ADDR (attr);
10240
10241 complaint (&symfile_complaints,
10242 _("unsupported die ref attribute form: '%s'"),
10243 dwarf_form_name (attr->form));
10244 return 0;
10245 }
10246
10247 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
10248 * the value held by the attribute is not constant. */
10249
10250 static LONGEST
10251 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
10252 {
10253 if (attr->form == DW_FORM_sdata)
10254 return DW_SND (attr);
10255 else if (attr->form == DW_FORM_udata
10256 || attr->form == DW_FORM_data1
10257 || attr->form == DW_FORM_data2
10258 || attr->form == DW_FORM_data4
10259 || attr->form == DW_FORM_data8)
10260 return DW_UNSND (attr);
10261 else
10262 {
10263 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
10264 dwarf_form_name (attr->form));
10265 return default_value;
10266 }
10267 }
10268
10269 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
10270 unit and add it to our queue.
10271 The result is non-zero if PER_CU was queued, otherwise the result is zero
10272 meaning either PER_CU is already queued or it is already loaded. */
10273
10274 static int
10275 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
10276 struct dwarf2_per_cu_data *per_cu)
10277 {
10278 /* Mark the dependence relation so that we don't flush PER_CU
10279 too early. */
10280 dwarf2_add_dependence (this_cu, per_cu);
10281
10282 /* If it's already on the queue, we have nothing to do. */
10283 if (per_cu->queued)
10284 return 0;
10285
10286 /* If the compilation unit is already loaded, just mark it as
10287 used. */
10288 if (per_cu->cu != NULL)
10289 {
10290 per_cu->cu->last_used = 0;
10291 return 0;
10292 }
10293
10294 /* Add it to the queue. */
10295 queue_comp_unit (per_cu, this_cu->objfile);
10296
10297 return 1;
10298 }
10299
10300 /* Follow reference or signature attribute ATTR of SRC_DIE.
10301 On entry *REF_CU is the CU of SRC_DIE.
10302 On exit *REF_CU is the CU of the result. */
10303
10304 static struct die_info *
10305 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
10306 struct dwarf2_cu **ref_cu)
10307 {
10308 struct die_info *die;
10309
10310 if (is_ref_attr (attr))
10311 die = follow_die_ref (src_die, attr, ref_cu);
10312 else if (attr->form == DW_FORM_sig8)
10313 die = follow_die_sig (src_die, attr, ref_cu);
10314 else
10315 {
10316 dump_die_for_error (src_die);
10317 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
10318 (*ref_cu)->objfile->name);
10319 }
10320
10321 return die;
10322 }
10323
10324 /* Follow reference attribute ATTR of SRC_DIE.
10325 On entry *REF_CU is the CU of SRC_DIE.
10326 On exit *REF_CU is the CU of the result. */
10327
10328 static struct die_info *
10329 follow_die_ref (struct die_info *src_die, struct attribute *attr,
10330 struct dwarf2_cu **ref_cu)
10331 {
10332 struct die_info *die;
10333 unsigned int offset;
10334 struct die_info temp_die;
10335 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10336
10337 gdb_assert (cu->per_cu != NULL);
10338
10339 offset = dwarf2_get_ref_die_offset (attr);
10340
10341 if (cu->per_cu->from_debug_types)
10342 {
10343 /* .debug_types CUs cannot reference anything outside their CU.
10344 If they need to, they have to reference a signatured type via
10345 DW_FORM_sig8. */
10346 if (! offset_in_cu_p (&cu->header, offset))
10347 goto not_found;
10348 target_cu = cu;
10349 }
10350 else if (! offset_in_cu_p (&cu->header, offset))
10351 {
10352 struct dwarf2_per_cu_data *per_cu;
10353 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
10354
10355 /* If necessary, add it to the queue and load its DIEs. */
10356 if (maybe_queue_comp_unit (cu, per_cu))
10357 load_full_comp_unit (per_cu, cu->objfile);
10358
10359 target_cu = per_cu->cu;
10360 }
10361 else
10362 target_cu = cu;
10363
10364 *ref_cu = target_cu;
10365 temp_die.offset = offset;
10366 die = htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
10367 if (die)
10368 return die;
10369
10370 not_found:
10371
10372 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
10373 "at 0x%x [in module %s]"),
10374 offset, src_die->offset, cu->objfile->name);
10375 }
10376
10377 /* Follow the signature attribute ATTR in SRC_DIE.
10378 On entry *REF_CU is the CU of SRC_DIE.
10379 On exit *REF_CU is the CU of the result. */
10380
10381 static struct die_info *
10382 follow_die_sig (struct die_info *src_die, struct attribute *attr,
10383 struct dwarf2_cu **ref_cu)
10384 {
10385 struct objfile *objfile = (*ref_cu)->objfile;
10386 struct die_info temp_die;
10387 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
10388 struct dwarf2_cu *sig_cu;
10389 struct die_info *die;
10390
10391 /* sig_type will be NULL if the signatured type is missing from
10392 the debug info. */
10393 if (sig_type == NULL)
10394 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
10395 "at 0x%x [in module %s]"),
10396 src_die->offset, objfile->name);
10397
10398 /* If necessary, add it to the queue and load its DIEs. */
10399
10400 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
10401 read_signatured_type (objfile, sig_type);
10402
10403 gdb_assert (sig_type->per_cu.cu != NULL);
10404
10405 sig_cu = sig_type->per_cu.cu;
10406 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
10407 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
10408 if (die)
10409 {
10410 *ref_cu = sig_cu;
10411 return die;
10412 }
10413
10414 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
10415 "at 0x%x [in module %s]"),
10416 sig_type->type_offset, src_die->offset, objfile->name);
10417 }
10418
10419 /* Given an offset of a signatured type, return its signatured_type. */
10420
10421 static struct signatured_type *
10422 lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
10423 {
10424 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
10425 unsigned int length, initial_length_size;
10426 unsigned int sig_offset;
10427 struct signatured_type find_entry, *type_sig;
10428
10429 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
10430 sig_offset = (initial_length_size
10431 + 2 /*version*/
10432 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
10433 + 1 /*address_size*/);
10434 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
10435 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
10436
10437 /* This is only used to lookup previously recorded types.
10438 If we didn't find it, it's our bug. */
10439 gdb_assert (type_sig != NULL);
10440 gdb_assert (offset == type_sig->offset);
10441
10442 return type_sig;
10443 }
10444
10445 /* Read in signatured type at OFFSET and build its CU and die(s). */
10446
10447 static void
10448 read_signatured_type_at_offset (struct objfile *objfile,
10449 unsigned int offset)
10450 {
10451 struct signatured_type *type_sig;
10452
10453 /* We have the section offset, but we need the signature to do the
10454 hash table lookup. */
10455 type_sig = lookup_signatured_type_at_offset (objfile, offset);
10456
10457 gdb_assert (type_sig->per_cu.cu == NULL);
10458
10459 read_signatured_type (objfile, type_sig);
10460
10461 gdb_assert (type_sig->per_cu.cu != NULL);
10462 }
10463
10464 /* Read in a signatured type and build its CU and DIEs. */
10465
10466 static void
10467 read_signatured_type (struct objfile *objfile,
10468 struct signatured_type *type_sig)
10469 {
10470 gdb_byte *types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
10471 struct die_reader_specs reader_specs;
10472 struct dwarf2_cu *cu;
10473 ULONGEST signature;
10474 struct cleanup *back_to, *free_cu_cleanup;
10475 struct attribute *attr;
10476
10477 gdb_assert (type_sig->per_cu.cu == NULL);
10478
10479 cu = xmalloc (sizeof (struct dwarf2_cu));
10480 memset (cu, 0, sizeof (struct dwarf2_cu));
10481 obstack_init (&cu->comp_unit_obstack);
10482 cu->objfile = objfile;
10483 type_sig->per_cu.cu = cu;
10484 cu->per_cu = &type_sig->per_cu;
10485
10486 /* If an error occurs while loading, release our storage. */
10487 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
10488
10489 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
10490 types_ptr, objfile->obfd);
10491 gdb_assert (signature == type_sig->signature);
10492
10493 cu->die_hash
10494 = htab_create_alloc_ex (cu->header.length / 12,
10495 die_hash,
10496 die_eq,
10497 NULL,
10498 &cu->comp_unit_obstack,
10499 hashtab_obstack_allocate,
10500 dummy_obstack_deallocate);
10501
10502 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
10503 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
10504
10505 init_cu_die_reader (&reader_specs, cu);
10506
10507 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
10508 NULL /*parent*/);
10509
10510 /* We try not to read any attributes in this function, because not
10511 all objfiles needed for references have been loaded yet, and symbol
10512 table processing isn't initialized. But we have to set the CU language,
10513 or we won't be able to build types correctly. */
10514 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
10515 if (attr)
10516 set_cu_language (DW_UNSND (attr), cu);
10517 else
10518 set_cu_language (language_minimal, cu);
10519
10520 do_cleanups (back_to);
10521
10522 /* We've successfully allocated this compilation unit. Let our caller
10523 clean it up when finished with it. */
10524 discard_cleanups (free_cu_cleanup);
10525
10526 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
10527 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
10528 }
10529
10530 /* Decode simple location descriptions.
10531 Given a pointer to a dwarf block that defines a location, compute
10532 the location and return the value.
10533
10534 NOTE drow/2003-11-18: This function is called in two situations
10535 now: for the address of static or global variables (partial symbols
10536 only) and for offsets into structures which are expected to be
10537 (more or less) constant. The partial symbol case should go away,
10538 and only the constant case should remain. That will let this
10539 function complain more accurately. A few special modes are allowed
10540 without complaint for global variables (for instance, global
10541 register values and thread-local values).
10542
10543 A location description containing no operations indicates that the
10544 object is optimized out. The return value is 0 for that case.
10545 FIXME drow/2003-11-16: No callers check for this case any more; soon all
10546 callers will only want a very basic result and this can become a
10547 complaint.
10548
10549 Note that stack[0] is unused except as a default error return.
10550 Note that stack overflow is not yet handled. */
10551
10552 static CORE_ADDR
10553 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
10554 {
10555 struct objfile *objfile = cu->objfile;
10556 struct comp_unit_head *cu_header = &cu->header;
10557 int i;
10558 int size = blk->size;
10559 gdb_byte *data = blk->data;
10560 CORE_ADDR stack[64];
10561 int stacki;
10562 unsigned int bytes_read, unsnd;
10563 gdb_byte op;
10564
10565 i = 0;
10566 stacki = 0;
10567 stack[stacki] = 0;
10568
10569 while (i < size)
10570 {
10571 op = data[i++];
10572 switch (op)
10573 {
10574 case DW_OP_lit0:
10575 case DW_OP_lit1:
10576 case DW_OP_lit2:
10577 case DW_OP_lit3:
10578 case DW_OP_lit4:
10579 case DW_OP_lit5:
10580 case DW_OP_lit6:
10581 case DW_OP_lit7:
10582 case DW_OP_lit8:
10583 case DW_OP_lit9:
10584 case DW_OP_lit10:
10585 case DW_OP_lit11:
10586 case DW_OP_lit12:
10587 case DW_OP_lit13:
10588 case DW_OP_lit14:
10589 case DW_OP_lit15:
10590 case DW_OP_lit16:
10591 case DW_OP_lit17:
10592 case DW_OP_lit18:
10593 case DW_OP_lit19:
10594 case DW_OP_lit20:
10595 case DW_OP_lit21:
10596 case DW_OP_lit22:
10597 case DW_OP_lit23:
10598 case DW_OP_lit24:
10599 case DW_OP_lit25:
10600 case DW_OP_lit26:
10601 case DW_OP_lit27:
10602 case DW_OP_lit28:
10603 case DW_OP_lit29:
10604 case DW_OP_lit30:
10605 case DW_OP_lit31:
10606 stack[++stacki] = op - DW_OP_lit0;
10607 break;
10608
10609 case DW_OP_reg0:
10610 case DW_OP_reg1:
10611 case DW_OP_reg2:
10612 case DW_OP_reg3:
10613 case DW_OP_reg4:
10614 case DW_OP_reg5:
10615 case DW_OP_reg6:
10616 case DW_OP_reg7:
10617 case DW_OP_reg8:
10618 case DW_OP_reg9:
10619 case DW_OP_reg10:
10620 case DW_OP_reg11:
10621 case DW_OP_reg12:
10622 case DW_OP_reg13:
10623 case DW_OP_reg14:
10624 case DW_OP_reg15:
10625 case DW_OP_reg16:
10626 case DW_OP_reg17:
10627 case DW_OP_reg18:
10628 case DW_OP_reg19:
10629 case DW_OP_reg20:
10630 case DW_OP_reg21:
10631 case DW_OP_reg22:
10632 case DW_OP_reg23:
10633 case DW_OP_reg24:
10634 case DW_OP_reg25:
10635 case DW_OP_reg26:
10636 case DW_OP_reg27:
10637 case DW_OP_reg28:
10638 case DW_OP_reg29:
10639 case DW_OP_reg30:
10640 case DW_OP_reg31:
10641 stack[++stacki] = op - DW_OP_reg0;
10642 if (i < size)
10643 dwarf2_complex_location_expr_complaint ();
10644 break;
10645
10646 case DW_OP_regx:
10647 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
10648 i += bytes_read;
10649 stack[++stacki] = unsnd;
10650 if (i < size)
10651 dwarf2_complex_location_expr_complaint ();
10652 break;
10653
10654 case DW_OP_addr:
10655 stack[++stacki] = read_address (objfile->obfd, &data[i],
10656 cu, &bytes_read);
10657 i += bytes_read;
10658 break;
10659
10660 case DW_OP_const1u:
10661 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
10662 i += 1;
10663 break;
10664
10665 case DW_OP_const1s:
10666 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
10667 i += 1;
10668 break;
10669
10670 case DW_OP_const2u:
10671 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
10672 i += 2;
10673 break;
10674
10675 case DW_OP_const2s:
10676 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
10677 i += 2;
10678 break;
10679
10680 case DW_OP_const4u:
10681 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
10682 i += 4;
10683 break;
10684
10685 case DW_OP_const4s:
10686 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
10687 i += 4;
10688 break;
10689
10690 case DW_OP_constu:
10691 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
10692 &bytes_read);
10693 i += bytes_read;
10694 break;
10695
10696 case DW_OP_consts:
10697 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
10698 i += bytes_read;
10699 break;
10700
10701 case DW_OP_dup:
10702 stack[stacki + 1] = stack[stacki];
10703 stacki++;
10704 break;
10705
10706 case DW_OP_plus:
10707 stack[stacki - 1] += stack[stacki];
10708 stacki--;
10709 break;
10710
10711 case DW_OP_plus_uconst:
10712 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
10713 i += bytes_read;
10714 break;
10715
10716 case DW_OP_minus:
10717 stack[stacki - 1] -= stack[stacki];
10718 stacki--;
10719 break;
10720
10721 case DW_OP_deref:
10722 /* If we're not the last op, then we definitely can't encode
10723 this using GDB's address_class enum. This is valid for partial
10724 global symbols, although the variable's address will be bogus
10725 in the psymtab. */
10726 if (i < size)
10727 dwarf2_complex_location_expr_complaint ();
10728 break;
10729
10730 case DW_OP_GNU_push_tls_address:
10731 /* The top of the stack has the offset from the beginning
10732 of the thread control block at which the variable is located. */
10733 /* Nothing should follow this operator, so the top of stack would
10734 be returned. */
10735 /* This is valid for partial global symbols, but the variable's
10736 address will be bogus in the psymtab. */
10737 if (i < size)
10738 dwarf2_complex_location_expr_complaint ();
10739 break;
10740
10741 case DW_OP_GNU_uninit:
10742 break;
10743
10744 default:
10745 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
10746 dwarf_stack_op_name (op));
10747 return (stack[stacki]);
10748 }
10749 }
10750 return (stack[stacki]);
10751 }
10752
10753 /* memory allocation interface */
10754
10755 static struct dwarf_block *
10756 dwarf_alloc_block (struct dwarf2_cu *cu)
10757 {
10758 struct dwarf_block *blk;
10759
10760 blk = (struct dwarf_block *)
10761 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
10762 return (blk);
10763 }
10764
10765 static struct abbrev_info *
10766 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
10767 {
10768 struct abbrev_info *abbrev;
10769
10770 abbrev = (struct abbrev_info *)
10771 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
10772 memset (abbrev, 0, sizeof (struct abbrev_info));
10773 return (abbrev);
10774 }
10775
10776 static struct die_info *
10777 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
10778 {
10779 struct die_info *die;
10780 size_t size = sizeof (struct die_info);
10781
10782 if (num_attrs > 1)
10783 size += (num_attrs - 1) * sizeof (struct attribute);
10784
10785 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
10786 memset (die, 0, sizeof (struct die_info));
10787 return (die);
10788 }
10789
10790 \f
10791 /* Macro support. */
10792
10793
10794 /* Return the full name of file number I in *LH's file name table.
10795 Use COMP_DIR as the name of the current directory of the
10796 compilation. The result is allocated using xmalloc; the caller is
10797 responsible for freeing it. */
10798 static char *
10799 file_full_name (int file, struct line_header *lh, const char *comp_dir)
10800 {
10801 /* Is the file number a valid index into the line header's file name
10802 table? Remember that file numbers start with one, not zero. */
10803 if (1 <= file && file <= lh->num_file_names)
10804 {
10805 struct file_entry *fe = &lh->file_names[file - 1];
10806
10807 if (IS_ABSOLUTE_PATH (fe->name))
10808 return xstrdup (fe->name);
10809 else
10810 {
10811 const char *dir;
10812 int dir_len;
10813 char *full_name;
10814
10815 if (fe->dir_index)
10816 dir = lh->include_dirs[fe->dir_index - 1];
10817 else
10818 dir = comp_dir;
10819
10820 if (dir)
10821 {
10822 dir_len = strlen (dir);
10823 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
10824 strcpy (full_name, dir);
10825 full_name[dir_len] = '/';
10826 strcpy (full_name + dir_len + 1, fe->name);
10827 return full_name;
10828 }
10829 else
10830 return xstrdup (fe->name);
10831 }
10832 }
10833 else
10834 {
10835 /* The compiler produced a bogus file number. We can at least
10836 record the macro definitions made in the file, even if we
10837 won't be able to find the file by name. */
10838 char fake_name[80];
10839 sprintf (fake_name, "<bad macro file number %d>", file);
10840
10841 complaint (&symfile_complaints,
10842 _("bad file number in macro information (%d)"),
10843 file);
10844
10845 return xstrdup (fake_name);
10846 }
10847 }
10848
10849
10850 static struct macro_source_file *
10851 macro_start_file (int file, int line,
10852 struct macro_source_file *current_file,
10853 const char *comp_dir,
10854 struct line_header *lh, struct objfile *objfile)
10855 {
10856 /* The full name of this source file. */
10857 char *full_name = file_full_name (file, lh, comp_dir);
10858
10859 /* We don't create a macro table for this compilation unit
10860 at all until we actually get a filename. */
10861 if (! pending_macros)
10862 pending_macros = new_macro_table (&objfile->objfile_obstack,
10863 objfile->macro_cache);
10864
10865 if (! current_file)
10866 /* If we have no current file, then this must be the start_file
10867 directive for the compilation unit's main source file. */
10868 current_file = macro_set_main (pending_macros, full_name);
10869 else
10870 current_file = macro_include (current_file, line, full_name);
10871
10872 xfree (full_name);
10873
10874 return current_file;
10875 }
10876
10877
10878 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
10879 followed by a null byte. */
10880 static char *
10881 copy_string (const char *buf, int len)
10882 {
10883 char *s = xmalloc (len + 1);
10884 memcpy (s, buf, len);
10885 s[len] = '\0';
10886
10887 return s;
10888 }
10889
10890
10891 static const char *
10892 consume_improper_spaces (const char *p, const char *body)
10893 {
10894 if (*p == ' ')
10895 {
10896 complaint (&symfile_complaints,
10897 _("macro definition contains spaces in formal argument list:\n`%s'"),
10898 body);
10899
10900 while (*p == ' ')
10901 p++;
10902 }
10903
10904 return p;
10905 }
10906
10907
10908 static void
10909 parse_macro_definition (struct macro_source_file *file, int line,
10910 const char *body)
10911 {
10912 const char *p;
10913
10914 /* The body string takes one of two forms. For object-like macro
10915 definitions, it should be:
10916
10917 <macro name> " " <definition>
10918
10919 For function-like macro definitions, it should be:
10920
10921 <macro name> "() " <definition>
10922 or
10923 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
10924
10925 Spaces may appear only where explicitly indicated, and in the
10926 <definition>.
10927
10928 The Dwarf 2 spec says that an object-like macro's name is always
10929 followed by a space, but versions of GCC around March 2002 omit
10930 the space when the macro's definition is the empty string.
10931
10932 The Dwarf 2 spec says that there should be no spaces between the
10933 formal arguments in a function-like macro's formal argument list,
10934 but versions of GCC around March 2002 include spaces after the
10935 commas. */
10936
10937
10938 /* Find the extent of the macro name. The macro name is terminated
10939 by either a space or null character (for an object-like macro) or
10940 an opening paren (for a function-like macro). */
10941 for (p = body; *p; p++)
10942 if (*p == ' ' || *p == '(')
10943 break;
10944
10945 if (*p == ' ' || *p == '\0')
10946 {
10947 /* It's an object-like macro. */
10948 int name_len = p - body;
10949 char *name = copy_string (body, name_len);
10950 const char *replacement;
10951
10952 if (*p == ' ')
10953 replacement = body + name_len + 1;
10954 else
10955 {
10956 dwarf2_macro_malformed_definition_complaint (body);
10957 replacement = body + name_len;
10958 }
10959
10960 macro_define_object (file, line, name, replacement);
10961
10962 xfree (name);
10963 }
10964 else if (*p == '(')
10965 {
10966 /* It's a function-like macro. */
10967 char *name = copy_string (body, p - body);
10968 int argc = 0;
10969 int argv_size = 1;
10970 char **argv = xmalloc (argv_size * sizeof (*argv));
10971
10972 p++;
10973
10974 p = consume_improper_spaces (p, body);
10975
10976 /* Parse the formal argument list. */
10977 while (*p && *p != ')')
10978 {
10979 /* Find the extent of the current argument name. */
10980 const char *arg_start = p;
10981
10982 while (*p && *p != ',' && *p != ')' && *p != ' ')
10983 p++;
10984
10985 if (! *p || p == arg_start)
10986 dwarf2_macro_malformed_definition_complaint (body);
10987 else
10988 {
10989 /* Make sure argv has room for the new argument. */
10990 if (argc >= argv_size)
10991 {
10992 argv_size *= 2;
10993 argv = xrealloc (argv, argv_size * sizeof (*argv));
10994 }
10995
10996 argv[argc++] = copy_string (arg_start, p - arg_start);
10997 }
10998
10999 p = consume_improper_spaces (p, body);
11000
11001 /* Consume the comma, if present. */
11002 if (*p == ',')
11003 {
11004 p++;
11005
11006 p = consume_improper_spaces (p, body);
11007 }
11008 }
11009
11010 if (*p == ')')
11011 {
11012 p++;
11013
11014 if (*p == ' ')
11015 /* Perfectly formed definition, no complaints. */
11016 macro_define_function (file, line, name,
11017 argc, (const char **) argv,
11018 p + 1);
11019 else if (*p == '\0')
11020 {
11021 /* Complain, but do define it. */
11022 dwarf2_macro_malformed_definition_complaint (body);
11023 macro_define_function (file, line, name,
11024 argc, (const char **) argv,
11025 p);
11026 }
11027 else
11028 /* Just complain. */
11029 dwarf2_macro_malformed_definition_complaint (body);
11030 }
11031 else
11032 /* Just complain. */
11033 dwarf2_macro_malformed_definition_complaint (body);
11034
11035 xfree (name);
11036 {
11037 int i;
11038
11039 for (i = 0; i < argc; i++)
11040 xfree (argv[i]);
11041 }
11042 xfree (argv);
11043 }
11044 else
11045 dwarf2_macro_malformed_definition_complaint (body);
11046 }
11047
11048
11049 static void
11050 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
11051 char *comp_dir, bfd *abfd,
11052 struct dwarf2_cu *cu)
11053 {
11054 gdb_byte *mac_ptr, *mac_end;
11055 struct macro_source_file *current_file = 0;
11056 enum dwarf_macinfo_record_type macinfo_type;
11057 int at_commandline;
11058
11059 if (dwarf2_per_objfile->macinfo.buffer == NULL)
11060 {
11061 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
11062 return;
11063 }
11064
11065 /* First pass: Find the name of the base filename.
11066 This filename is needed in order to process all macros whose definition
11067 (or undefinition) comes from the command line. These macros are defined
11068 before the first DW_MACINFO_start_file entry, and yet still need to be
11069 associated to the base file.
11070
11071 To determine the base file name, we scan the macro definitions until we
11072 reach the first DW_MACINFO_start_file entry. We then initialize
11073 CURRENT_FILE accordingly so that any macro definition found before the
11074 first DW_MACINFO_start_file can still be associated to the base file. */
11075
11076 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
11077 mac_end = dwarf2_per_objfile->macinfo.buffer
11078 + dwarf2_per_objfile->macinfo.size;
11079
11080 do
11081 {
11082 /* Do we at least have room for a macinfo type byte? */
11083 if (mac_ptr >= mac_end)
11084 {
11085 /* Complaint is printed during the second pass as GDB will probably
11086 stop the first pass earlier upon finding DW_MACINFO_start_file. */
11087 break;
11088 }
11089
11090 macinfo_type = read_1_byte (abfd, mac_ptr);
11091 mac_ptr++;
11092
11093 switch (macinfo_type)
11094 {
11095 /* A zero macinfo type indicates the end of the macro
11096 information. */
11097 case 0:
11098 break;
11099
11100 case DW_MACINFO_define:
11101 case DW_MACINFO_undef:
11102 /* Only skip the data by MAC_PTR. */
11103 {
11104 unsigned int bytes_read;
11105
11106 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11107 mac_ptr += bytes_read;
11108 read_string (abfd, mac_ptr, &bytes_read);
11109 mac_ptr += bytes_read;
11110 }
11111 break;
11112
11113 case DW_MACINFO_start_file:
11114 {
11115 unsigned int bytes_read;
11116 int line, file;
11117
11118 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11119 mac_ptr += bytes_read;
11120 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11121 mac_ptr += bytes_read;
11122
11123 current_file = macro_start_file (file, line, current_file, comp_dir,
11124 lh, cu->objfile);
11125 }
11126 break;
11127
11128 case DW_MACINFO_end_file:
11129 /* No data to skip by MAC_PTR. */
11130 break;
11131
11132 case DW_MACINFO_vendor_ext:
11133 /* Only skip the data by MAC_PTR. */
11134 {
11135 unsigned int bytes_read;
11136
11137 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11138 mac_ptr += bytes_read;
11139 read_string (abfd, mac_ptr, &bytes_read);
11140 mac_ptr += bytes_read;
11141 }
11142 break;
11143
11144 default:
11145 break;
11146 }
11147 } while (macinfo_type != 0 && current_file == NULL);
11148
11149 /* Second pass: Process all entries.
11150
11151 Use the AT_COMMAND_LINE flag to determine whether we are still processing
11152 command-line macro definitions/undefinitions. This flag is unset when we
11153 reach the first DW_MACINFO_start_file entry. */
11154
11155 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
11156
11157 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
11158 GDB is still reading the definitions from command line. First
11159 DW_MACINFO_start_file will need to be ignored as it was already executed
11160 to create CURRENT_FILE for the main source holding also the command line
11161 definitions. On first met DW_MACINFO_start_file this flag is reset to
11162 normally execute all the remaining DW_MACINFO_start_file macinfos. */
11163
11164 at_commandline = 1;
11165
11166 do
11167 {
11168 /* Do we at least have room for a macinfo type byte? */
11169 if (mac_ptr >= mac_end)
11170 {
11171 dwarf2_macros_too_long_complaint ();
11172 break;
11173 }
11174
11175 macinfo_type = read_1_byte (abfd, mac_ptr);
11176 mac_ptr++;
11177
11178 switch (macinfo_type)
11179 {
11180 /* A zero macinfo type indicates the end of the macro
11181 information. */
11182 case 0:
11183 break;
11184
11185 case DW_MACINFO_define:
11186 case DW_MACINFO_undef:
11187 {
11188 unsigned int bytes_read;
11189 int line;
11190 char *body;
11191
11192 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11193 mac_ptr += bytes_read;
11194 body = read_string (abfd, mac_ptr, &bytes_read);
11195 mac_ptr += bytes_read;
11196
11197 if (! current_file)
11198 {
11199 /* DWARF violation as no main source is present. */
11200 complaint (&symfile_complaints,
11201 _("debug info with no main source gives macro %s "
11202 "on line %d: %s"),
11203 macinfo_type == DW_MACINFO_define ?
11204 _("definition") :
11205 macinfo_type == DW_MACINFO_undef ?
11206 _("undefinition") :
11207 _("something-or-other"), line, body);
11208 break;
11209 }
11210 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
11211 complaint (&symfile_complaints,
11212 _("debug info gives %s macro %s with %s line %d: %s"),
11213 at_commandline ? _("command-line") : _("in-file"),
11214 macinfo_type == DW_MACINFO_define ?
11215 _("definition") :
11216 macinfo_type == DW_MACINFO_undef ?
11217 _("undefinition") :
11218 _("something-or-other"),
11219 line == 0 ? _("zero") : _("non-zero"), line, body);
11220
11221 if (macinfo_type == DW_MACINFO_define)
11222 parse_macro_definition (current_file, line, body);
11223 else if (macinfo_type == DW_MACINFO_undef)
11224 macro_undef (current_file, line, body);
11225 }
11226 break;
11227
11228 case DW_MACINFO_start_file:
11229 {
11230 unsigned int bytes_read;
11231 int line, file;
11232
11233 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11234 mac_ptr += bytes_read;
11235 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11236 mac_ptr += bytes_read;
11237
11238 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
11239 complaint (&symfile_complaints,
11240 _("debug info gives source %d included "
11241 "from %s at %s line %d"),
11242 file, at_commandline ? _("command-line") : _("file"),
11243 line == 0 ? _("zero") : _("non-zero"), line);
11244
11245 if (at_commandline)
11246 {
11247 /* This DW_MACINFO_start_file was executed in the pass one. */
11248 at_commandline = 0;
11249 }
11250 else
11251 current_file = macro_start_file (file, line,
11252 current_file, comp_dir,
11253 lh, cu->objfile);
11254 }
11255 break;
11256
11257 case DW_MACINFO_end_file:
11258 if (! current_file)
11259 complaint (&symfile_complaints,
11260 _("macro debug info has an unmatched `close_file' directive"));
11261 else
11262 {
11263 current_file = current_file->included_by;
11264 if (! current_file)
11265 {
11266 enum dwarf_macinfo_record_type next_type;
11267
11268 /* GCC circa March 2002 doesn't produce the zero
11269 type byte marking the end of the compilation
11270 unit. Complain if it's not there, but exit no
11271 matter what. */
11272
11273 /* Do we at least have room for a macinfo type byte? */
11274 if (mac_ptr >= mac_end)
11275 {
11276 dwarf2_macros_too_long_complaint ();
11277 return;
11278 }
11279
11280 /* We don't increment mac_ptr here, so this is just
11281 a look-ahead. */
11282 next_type = read_1_byte (abfd, mac_ptr);
11283 if (next_type != 0)
11284 complaint (&symfile_complaints,
11285 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
11286
11287 return;
11288 }
11289 }
11290 break;
11291
11292 case DW_MACINFO_vendor_ext:
11293 {
11294 unsigned int bytes_read;
11295 int constant;
11296 char *string;
11297
11298 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11299 mac_ptr += bytes_read;
11300 string = read_string (abfd, mac_ptr, &bytes_read);
11301 mac_ptr += bytes_read;
11302
11303 /* We don't recognize any vendor extensions. */
11304 }
11305 break;
11306 }
11307 } while (macinfo_type != 0);
11308 }
11309
11310 /* Check if the attribute's form is a DW_FORM_block*
11311 if so return true else false. */
11312 static int
11313 attr_form_is_block (struct attribute *attr)
11314 {
11315 return (attr == NULL ? 0 :
11316 attr->form == DW_FORM_block1
11317 || attr->form == DW_FORM_block2
11318 || attr->form == DW_FORM_block4
11319 || attr->form == DW_FORM_block);
11320 }
11321
11322 /* Return non-zero if ATTR's value is a section offset --- classes
11323 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
11324 You may use DW_UNSND (attr) to retrieve such offsets.
11325
11326 Section 7.5.4, "Attribute Encodings", explains that no attribute
11327 may have a value that belongs to more than one of these classes; it
11328 would be ambiguous if we did, because we use the same forms for all
11329 of them. */
11330 static int
11331 attr_form_is_section_offset (struct attribute *attr)
11332 {
11333 return (attr->form == DW_FORM_data4
11334 || attr->form == DW_FORM_data8);
11335 }
11336
11337
11338 /* Return non-zero if ATTR's value falls in the 'constant' class, or
11339 zero otherwise. When this function returns true, you can apply
11340 dwarf2_get_attr_constant_value to it.
11341
11342 However, note that for some attributes you must check
11343 attr_form_is_section_offset before using this test. DW_FORM_data4
11344 and DW_FORM_data8 are members of both the constant class, and of
11345 the classes that contain offsets into other debug sections
11346 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
11347 that, if an attribute's can be either a constant or one of the
11348 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
11349 taken as section offsets, not constants. */
11350 static int
11351 attr_form_is_constant (struct attribute *attr)
11352 {
11353 switch (attr->form)
11354 {
11355 case DW_FORM_sdata:
11356 case DW_FORM_udata:
11357 case DW_FORM_data1:
11358 case DW_FORM_data2:
11359 case DW_FORM_data4:
11360 case DW_FORM_data8:
11361 return 1;
11362 default:
11363 return 0;
11364 }
11365 }
11366
11367 static void
11368 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
11369 struct dwarf2_cu *cu)
11370 {
11371 if (attr_form_is_section_offset (attr)
11372 /* ".debug_loc" may not exist at all, or the offset may be outside
11373 the section. If so, fall through to the complaint in the
11374 other branch. */
11375 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
11376 {
11377 struct dwarf2_loclist_baton *baton;
11378
11379 baton = obstack_alloc (&cu->objfile->objfile_obstack,
11380 sizeof (struct dwarf2_loclist_baton));
11381 baton->per_cu = cu->per_cu;
11382 gdb_assert (baton->per_cu);
11383
11384 /* We don't know how long the location list is, but make sure we
11385 don't run off the edge of the section. */
11386 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
11387 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
11388 baton->base_address = cu->base_address;
11389 if (cu->base_known == 0)
11390 complaint (&symfile_complaints,
11391 _("Location list used without specifying the CU base address."));
11392
11393 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
11394 SYMBOL_LOCATION_BATON (sym) = baton;
11395 }
11396 else
11397 {
11398 struct dwarf2_locexpr_baton *baton;
11399
11400 baton = obstack_alloc (&cu->objfile->objfile_obstack,
11401 sizeof (struct dwarf2_locexpr_baton));
11402 baton->per_cu = cu->per_cu;
11403 gdb_assert (baton->per_cu);
11404
11405 if (attr_form_is_block (attr))
11406 {
11407 /* Note that we're just copying the block's data pointer
11408 here, not the actual data. We're still pointing into the
11409 info_buffer for SYM's objfile; right now we never release
11410 that buffer, but when we do clean up properly this may
11411 need to change. */
11412 baton->size = DW_BLOCK (attr)->size;
11413 baton->data = DW_BLOCK (attr)->data;
11414 }
11415 else
11416 {
11417 dwarf2_invalid_attrib_class_complaint ("location description",
11418 SYMBOL_NATURAL_NAME (sym));
11419 baton->size = 0;
11420 baton->data = NULL;
11421 }
11422
11423 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11424 SYMBOL_LOCATION_BATON (sym) = baton;
11425 }
11426 }
11427
11428 /* Return the OBJFILE associated with the compilation unit CU. */
11429
11430 struct objfile *
11431 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
11432 {
11433 struct objfile *objfile = per_cu->psymtab->objfile;
11434
11435 /* Return the master objfile, so that we can report and look up the
11436 correct file containing this variable. */
11437 if (objfile->separate_debug_objfile_backlink)
11438 objfile = objfile->separate_debug_objfile_backlink;
11439
11440 return objfile;
11441 }
11442
11443 /* Return the address size given in the compilation unit header for CU. */
11444
11445 CORE_ADDR
11446 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
11447 {
11448 if (per_cu->cu)
11449 return per_cu->cu->header.addr_size;
11450 else
11451 {
11452 /* If the CU is not currently read in, we re-read its header. */
11453 struct objfile *objfile = per_cu->psymtab->objfile;
11454 struct dwarf2_per_objfile *per_objfile
11455 = objfile_data (objfile, dwarf2_objfile_data_key);
11456 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
11457
11458 struct comp_unit_head cu_header;
11459 memset (&cu_header, 0, sizeof cu_header);
11460 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
11461 return cu_header.addr_size;
11462 }
11463 }
11464
11465 /* Locate the .debug_info compilation unit from CU's objfile which contains
11466 the DIE at OFFSET. Raises an error on failure. */
11467
11468 static struct dwarf2_per_cu_data *
11469 dwarf2_find_containing_comp_unit (unsigned int offset,
11470 struct objfile *objfile)
11471 {
11472 struct dwarf2_per_cu_data *this_cu;
11473 int low, high;
11474
11475 low = 0;
11476 high = dwarf2_per_objfile->n_comp_units - 1;
11477 while (high > low)
11478 {
11479 int mid = low + (high - low) / 2;
11480 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
11481 high = mid;
11482 else
11483 low = mid + 1;
11484 }
11485 gdb_assert (low == high);
11486 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
11487 {
11488 if (low == 0)
11489 error (_("Dwarf Error: could not find partial DIE containing "
11490 "offset 0x%lx [in module %s]"),
11491 (long) offset, bfd_get_filename (objfile->obfd));
11492
11493 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
11494 return dwarf2_per_objfile->all_comp_units[low-1];
11495 }
11496 else
11497 {
11498 this_cu = dwarf2_per_objfile->all_comp_units[low];
11499 if (low == dwarf2_per_objfile->n_comp_units - 1
11500 && offset >= this_cu->offset + this_cu->length)
11501 error (_("invalid dwarf2 offset %u"), offset);
11502 gdb_assert (offset < this_cu->offset + this_cu->length);
11503 return this_cu;
11504 }
11505 }
11506
11507 /* Locate the compilation unit from OBJFILE which is located at exactly
11508 OFFSET. Raises an error on failure. */
11509
11510 static struct dwarf2_per_cu_data *
11511 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
11512 {
11513 struct dwarf2_per_cu_data *this_cu;
11514 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
11515 if (this_cu->offset != offset)
11516 error (_("no compilation unit with offset %u."), offset);
11517 return this_cu;
11518 }
11519
11520 /* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */
11521
11522 static struct dwarf2_cu *
11523 alloc_one_comp_unit (struct objfile *objfile)
11524 {
11525 struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu));
11526 cu->objfile = objfile;
11527 obstack_init (&cu->comp_unit_obstack);
11528 return cu;
11529 }
11530
11531 /* Release one cached compilation unit, CU. We unlink it from the tree
11532 of compilation units, but we don't remove it from the read_in_chain;
11533 the caller is responsible for that.
11534 NOTE: DATA is a void * because this function is also used as a
11535 cleanup routine. */
11536
11537 static void
11538 free_one_comp_unit (void *data)
11539 {
11540 struct dwarf2_cu *cu = data;
11541
11542 if (cu->per_cu != NULL)
11543 cu->per_cu->cu = NULL;
11544 cu->per_cu = NULL;
11545
11546 obstack_free (&cu->comp_unit_obstack, NULL);
11547
11548 xfree (cu);
11549 }
11550
11551 /* This cleanup function is passed the address of a dwarf2_cu on the stack
11552 when we're finished with it. We can't free the pointer itself, but be
11553 sure to unlink it from the cache. Also release any associated storage
11554 and perform cache maintenance.
11555
11556 Only used during partial symbol parsing. */
11557
11558 static void
11559 free_stack_comp_unit (void *data)
11560 {
11561 struct dwarf2_cu *cu = data;
11562
11563 obstack_free (&cu->comp_unit_obstack, NULL);
11564 cu->partial_dies = NULL;
11565
11566 if (cu->per_cu != NULL)
11567 {
11568 /* This compilation unit is on the stack in our caller, so we
11569 should not xfree it. Just unlink it. */
11570 cu->per_cu->cu = NULL;
11571 cu->per_cu = NULL;
11572
11573 /* If we had a per-cu pointer, then we may have other compilation
11574 units loaded, so age them now. */
11575 age_cached_comp_units ();
11576 }
11577 }
11578
11579 /* Free all cached compilation units. */
11580
11581 static void
11582 free_cached_comp_units (void *data)
11583 {
11584 struct dwarf2_per_cu_data *per_cu, **last_chain;
11585
11586 per_cu = dwarf2_per_objfile->read_in_chain;
11587 last_chain = &dwarf2_per_objfile->read_in_chain;
11588 while (per_cu != NULL)
11589 {
11590 struct dwarf2_per_cu_data *next_cu;
11591
11592 next_cu = per_cu->cu->read_in_chain;
11593
11594 free_one_comp_unit (per_cu->cu);
11595 *last_chain = next_cu;
11596
11597 per_cu = next_cu;
11598 }
11599 }
11600
11601 /* Increase the age counter on each cached compilation unit, and free
11602 any that are too old. */
11603
11604 static void
11605 age_cached_comp_units (void)
11606 {
11607 struct dwarf2_per_cu_data *per_cu, **last_chain;
11608
11609 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
11610 per_cu = dwarf2_per_objfile->read_in_chain;
11611 while (per_cu != NULL)
11612 {
11613 per_cu->cu->last_used ++;
11614 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
11615 dwarf2_mark (per_cu->cu);
11616 per_cu = per_cu->cu->read_in_chain;
11617 }
11618
11619 per_cu = dwarf2_per_objfile->read_in_chain;
11620 last_chain = &dwarf2_per_objfile->read_in_chain;
11621 while (per_cu != NULL)
11622 {
11623 struct dwarf2_per_cu_data *next_cu;
11624
11625 next_cu = per_cu->cu->read_in_chain;
11626
11627 if (!per_cu->cu->mark)
11628 {
11629 free_one_comp_unit (per_cu->cu);
11630 *last_chain = next_cu;
11631 }
11632 else
11633 last_chain = &per_cu->cu->read_in_chain;
11634
11635 per_cu = next_cu;
11636 }
11637 }
11638
11639 /* Remove a single compilation unit from the cache. */
11640
11641 static void
11642 free_one_cached_comp_unit (void *target_cu)
11643 {
11644 struct dwarf2_per_cu_data *per_cu, **last_chain;
11645
11646 per_cu = dwarf2_per_objfile->read_in_chain;
11647 last_chain = &dwarf2_per_objfile->read_in_chain;
11648 while (per_cu != NULL)
11649 {
11650 struct dwarf2_per_cu_data *next_cu;
11651
11652 next_cu = per_cu->cu->read_in_chain;
11653
11654 if (per_cu->cu == target_cu)
11655 {
11656 free_one_comp_unit (per_cu->cu);
11657 *last_chain = next_cu;
11658 break;
11659 }
11660 else
11661 last_chain = &per_cu->cu->read_in_chain;
11662
11663 per_cu = next_cu;
11664 }
11665 }
11666
11667 /* Release all extra memory associated with OBJFILE. */
11668
11669 void
11670 dwarf2_free_objfile (struct objfile *objfile)
11671 {
11672 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
11673
11674 if (dwarf2_per_objfile == NULL)
11675 return;
11676
11677 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
11678 free_cached_comp_units (NULL);
11679
11680 /* Everything else should be on the objfile obstack. */
11681 }
11682
11683 /* A pair of DIE offset and GDB type pointer. We store these
11684 in a hash table separate from the DIEs, and preserve them
11685 when the DIEs are flushed out of cache. */
11686
11687 struct dwarf2_offset_and_type
11688 {
11689 unsigned int offset;
11690 struct type *type;
11691 };
11692
11693 /* Hash function for a dwarf2_offset_and_type. */
11694
11695 static hashval_t
11696 offset_and_type_hash (const void *item)
11697 {
11698 const struct dwarf2_offset_and_type *ofs = item;
11699 return ofs->offset;
11700 }
11701
11702 /* Equality function for a dwarf2_offset_and_type. */
11703
11704 static int
11705 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
11706 {
11707 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
11708 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
11709 return ofs_lhs->offset == ofs_rhs->offset;
11710 }
11711
11712 /* Set the type associated with DIE to TYPE. Save it in CU's hash
11713 table if necessary. For convenience, return TYPE. */
11714
11715 static struct type *
11716 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11717 {
11718 struct dwarf2_offset_and_type **slot, ofs;
11719
11720 if (cu->type_hash == NULL)
11721 {
11722 gdb_assert (cu->per_cu != NULL);
11723 cu->per_cu->type_hash
11724 = htab_create_alloc_ex (cu->header.length / 24,
11725 offset_and_type_hash,
11726 offset_and_type_eq,
11727 NULL,
11728 &cu->objfile->objfile_obstack,
11729 hashtab_obstack_allocate,
11730 dummy_obstack_deallocate);
11731 cu->type_hash = cu->per_cu->type_hash;
11732 }
11733
11734 ofs.offset = die->offset;
11735 ofs.type = type;
11736 slot = (struct dwarf2_offset_and_type **)
11737 htab_find_slot_with_hash (cu->type_hash, &ofs, ofs.offset, INSERT);
11738 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
11739 **slot = ofs;
11740 return type;
11741 }
11742
11743 /* Find the type for DIE in CU's type_hash, or return NULL if DIE does
11744 not have a saved type. */
11745
11746 static struct type *
11747 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
11748 {
11749 struct dwarf2_offset_and_type *slot, ofs;
11750 htab_t type_hash = cu->type_hash;
11751
11752 if (type_hash == NULL)
11753 return NULL;
11754
11755 ofs.offset = die->offset;
11756 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
11757 if (slot)
11758 return slot->type;
11759 else
11760 return NULL;
11761 }
11762
11763 /* Add a dependence relationship from CU to REF_PER_CU. */
11764
11765 static void
11766 dwarf2_add_dependence (struct dwarf2_cu *cu,
11767 struct dwarf2_per_cu_data *ref_per_cu)
11768 {
11769 void **slot;
11770
11771 if (cu->dependencies == NULL)
11772 cu->dependencies
11773 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
11774 NULL, &cu->comp_unit_obstack,
11775 hashtab_obstack_allocate,
11776 dummy_obstack_deallocate);
11777
11778 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
11779 if (*slot == NULL)
11780 *slot = ref_per_cu;
11781 }
11782
11783 /* Subroutine of dwarf2_mark to pass to htab_traverse.
11784 Set the mark field in every compilation unit in the
11785 cache that we must keep because we are keeping CU. */
11786
11787 static int
11788 dwarf2_mark_helper (void **slot, void *data)
11789 {
11790 struct dwarf2_per_cu_data *per_cu;
11791
11792 per_cu = (struct dwarf2_per_cu_data *) *slot;
11793 if (per_cu->cu->mark)
11794 return 1;
11795 per_cu->cu->mark = 1;
11796
11797 if (per_cu->cu->dependencies != NULL)
11798 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
11799
11800 return 1;
11801 }
11802
11803 /* Set the mark field in CU and in every other compilation unit in the
11804 cache that we must keep because we are keeping CU. */
11805
11806 static void
11807 dwarf2_mark (struct dwarf2_cu *cu)
11808 {
11809 if (cu->mark)
11810 return;
11811 cu->mark = 1;
11812 if (cu->dependencies != NULL)
11813 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
11814 }
11815
11816 static void
11817 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
11818 {
11819 while (per_cu)
11820 {
11821 per_cu->cu->mark = 0;
11822 per_cu = per_cu->cu->read_in_chain;
11823 }
11824 }
11825
11826 /* Trivial hash function for partial_die_info: the hash value of a DIE
11827 is its offset in .debug_info for this objfile. */
11828
11829 static hashval_t
11830 partial_die_hash (const void *item)
11831 {
11832 const struct partial_die_info *part_die = item;
11833 return part_die->offset;
11834 }
11835
11836 /* Trivial comparison function for partial_die_info structures: two DIEs
11837 are equal if they have the same offset. */
11838
11839 static int
11840 partial_die_eq (const void *item_lhs, const void *item_rhs)
11841 {
11842 const struct partial_die_info *part_die_lhs = item_lhs;
11843 const struct partial_die_info *part_die_rhs = item_rhs;
11844 return part_die_lhs->offset == part_die_rhs->offset;
11845 }
11846
11847 static struct cmd_list_element *set_dwarf2_cmdlist;
11848 static struct cmd_list_element *show_dwarf2_cmdlist;
11849
11850 static void
11851 set_dwarf2_cmd (char *args, int from_tty)
11852 {
11853 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
11854 }
11855
11856 static void
11857 show_dwarf2_cmd (char *args, int from_tty)
11858 {
11859 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
11860 }
11861
11862 /* If section described by INFO was mmapped, munmap it now. */
11863
11864 static void
11865 munmap_section_buffer (struct dwarf2_section_info *info)
11866 {
11867 if (info->was_mmapped)
11868 {
11869 #ifdef HAVE_MMAP
11870 intptr_t begin = (intptr_t) info->buffer;
11871 intptr_t map_begin = begin & ~(pagesize - 1);
11872 size_t map_length = info->size + begin - map_begin;
11873 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
11874 #else
11875 /* Without HAVE_MMAP, we should never be here to begin with. */
11876 gdb_assert (0);
11877 #endif
11878 }
11879 }
11880
11881 /* munmap debug sections for OBJFILE, if necessary. */
11882
11883 static void
11884 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
11885 {
11886 struct dwarf2_per_objfile *data = d;
11887 munmap_section_buffer (&data->info);
11888 munmap_section_buffer (&data->abbrev);
11889 munmap_section_buffer (&data->line);
11890 munmap_section_buffer (&data->str);
11891 munmap_section_buffer (&data->macinfo);
11892 munmap_section_buffer (&data->ranges);
11893 munmap_section_buffer (&data->loc);
11894 munmap_section_buffer (&data->frame);
11895 munmap_section_buffer (&data->eh_frame);
11896 }
11897
11898 void _initialize_dwarf2_read (void);
11899
11900 void
11901 _initialize_dwarf2_read (void)
11902 {
11903 dwarf2_objfile_data_key
11904 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
11905
11906 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
11907 Set DWARF 2 specific variables.\n\
11908 Configure DWARF 2 variables such as the cache size"),
11909 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
11910 0/*allow-unknown*/, &maintenance_set_cmdlist);
11911
11912 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
11913 Show DWARF 2 specific variables\n\
11914 Show DWARF 2 variables such as the cache size"),
11915 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
11916 0/*allow-unknown*/, &maintenance_show_cmdlist);
11917
11918 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
11919 &dwarf2_max_cache_age, _("\
11920 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
11921 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
11922 A higher limit means that cached compilation units will be stored\n\
11923 in memory longer, and more total memory will be used. Zero disables\n\
11924 caching, which can slow down startup."),
11925 NULL,
11926 show_dwarf2_max_cache_age,
11927 &set_dwarf2_cmdlist,
11928 &show_dwarf2_cmdlist);
11929
11930 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
11931 Set debugging of the dwarf2 DIE reader."), _("\
11932 Show debugging of the dwarf2 DIE reader."), _("\
11933 When enabled (non-zero), DIEs are dumped after they are read in.\n\
11934 The value is the maximum depth to print."),
11935 NULL,
11936 NULL,
11937 &setdebuglist, &showdebuglist);
11938 }
This page took 0.2993 seconds and 4 git commands to generate.