2009-10-14 Cary Coutant <ccoutant@google.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_assert.h"
55 #include <sys/types.h>
56 #ifdef HAVE_ZLIB_H
57 #include <zlib.h>
58 #endif
59 #ifdef HAVE_MMAP
60 #include <sys/mman.h>
61 #endif
62
63 #if 0
64 /* .debug_info header for a compilation unit
65 Because of alignment constraints, this structure has padding and cannot
66 be mapped directly onto the beginning of the .debug_info section. */
67 typedef struct comp_unit_header
68 {
69 unsigned int length; /* length of the .debug_info
70 contribution */
71 unsigned short version; /* version number -- 2 for DWARF
72 version 2 */
73 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
74 unsigned char addr_size; /* byte size of an address -- 4 */
75 }
76 _COMP_UNIT_HEADER;
77 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
78 #endif
79
80 /* .debug_pubnames header
81 Because of alignment constraints, this structure has padding and cannot
82 be mapped directly onto the beginning of the .debug_info section. */
83 typedef struct pubnames_header
84 {
85 unsigned int length; /* length of the .debug_pubnames
86 contribution */
87 unsigned char version; /* version number -- 2 for DWARF
88 version 2 */
89 unsigned int info_offset; /* offset into .debug_info section */
90 unsigned int info_size; /* byte size of .debug_info section
91 portion */
92 }
93 _PUBNAMES_HEADER;
94 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
95
96 /* .debug_pubnames header
97 Because of alignment constraints, this structure has padding and cannot
98 be mapped directly onto the beginning of the .debug_info section. */
99 typedef struct aranges_header
100 {
101 unsigned int length; /* byte len of the .debug_aranges
102 contribution */
103 unsigned short version; /* version number -- 2 for DWARF
104 version 2 */
105 unsigned int info_offset; /* offset into .debug_info section */
106 unsigned char addr_size; /* byte size of an address */
107 unsigned char seg_size; /* byte size of segment descriptor */
108 }
109 _ARANGES_HEADER;
110 #define _ACTUAL_ARANGES_HEADER_SIZE 12
111
112 /* .debug_line statement program prologue
113 Because of alignment constraints, this structure has padding and cannot
114 be mapped directly onto the beginning of the .debug_info section. */
115 typedef struct statement_prologue
116 {
117 unsigned int total_length; /* byte length of the statement
118 information */
119 unsigned short version; /* version number -- 2 for DWARF
120 version 2 */
121 unsigned int prologue_length; /* # bytes between prologue &
122 stmt program */
123 unsigned char minimum_instruction_length; /* byte size of
124 smallest instr */
125 unsigned char default_is_stmt; /* initial value of is_stmt
126 register */
127 char line_base;
128 unsigned char line_range;
129 unsigned char opcode_base; /* number assigned to first special
130 opcode */
131 unsigned char *standard_opcode_lengths;
132 }
133 _STATEMENT_PROLOGUE;
134
135 /* When non-zero, dump DIEs after they are read in. */
136 static int dwarf2_die_debug = 0;
137
138 static int pagesize;
139
140 /* When set, the file that we're processing is known to have debugging
141 info for C++ namespaces. GCC 3.3.x did not produce this information,
142 but later versions do. */
143
144 static int processing_has_namespace_info;
145
146 static const struct objfile_data *dwarf2_objfile_data_key;
147
148 struct dwarf2_section_info
149 {
150 asection *asection;
151 gdb_byte *buffer;
152 bfd_size_type size;
153 int was_mmapped;
154 };
155
156 struct dwarf2_per_objfile
157 {
158 struct dwarf2_section_info info;
159 struct dwarf2_section_info abbrev;
160 struct dwarf2_section_info line;
161 struct dwarf2_section_info pubnames;
162 struct dwarf2_section_info aranges;
163 struct dwarf2_section_info loc;
164 struct dwarf2_section_info macinfo;
165 struct dwarf2_section_info str;
166 struct dwarf2_section_info ranges;
167 struct dwarf2_section_info types;
168 struct dwarf2_section_info frame;
169 struct dwarf2_section_info eh_frame;
170
171 /* A list of all the compilation units. This is used to locate
172 the target compilation unit of a particular reference. */
173 struct dwarf2_per_cu_data **all_comp_units;
174
175 /* The number of compilation units in ALL_COMP_UNITS. */
176 int n_comp_units;
177
178 /* A chain of compilation units that are currently read in, so that
179 they can be freed later. */
180 struct dwarf2_per_cu_data *read_in_chain;
181
182 /* A table mapping .debug_types signatures to its signatured_type entry.
183 This is NULL if the .debug_types section hasn't been read in yet. */
184 htab_t signatured_types;
185
186 /* A flag indicating wether this objfile has a section loaded at a
187 VMA of 0. */
188 int has_section_at_zero;
189 };
190
191 static struct dwarf2_per_objfile *dwarf2_per_objfile;
192
193 /* names of the debugging sections */
194
195 /* Note that if the debugging section has been compressed, it might
196 have a name like .zdebug_info. */
197
198 #define INFO_SECTION "debug_info"
199 #define ABBREV_SECTION "debug_abbrev"
200 #define LINE_SECTION "debug_line"
201 #define PUBNAMES_SECTION "debug_pubnames"
202 #define ARANGES_SECTION "debug_aranges"
203 #define LOC_SECTION "debug_loc"
204 #define MACINFO_SECTION "debug_macinfo"
205 #define STR_SECTION "debug_str"
206 #define RANGES_SECTION "debug_ranges"
207 #define TYPES_SECTION "debug_types"
208 #define FRAME_SECTION "debug_frame"
209 #define EH_FRAME_SECTION "eh_frame"
210
211 /* local data types */
212
213 /* We hold several abbreviation tables in memory at the same time. */
214 #ifndef ABBREV_HASH_SIZE
215 #define ABBREV_HASH_SIZE 121
216 #endif
217
218 /* The data in a compilation unit header, after target2host
219 translation, looks like this. */
220 struct comp_unit_head
221 {
222 unsigned int length;
223 short version;
224 unsigned char addr_size;
225 unsigned char signed_addr_p;
226 unsigned int abbrev_offset;
227
228 /* Size of file offsets; either 4 or 8. */
229 unsigned int offset_size;
230
231 /* Size of the length field; either 4 or 12. */
232 unsigned int initial_length_size;
233
234 /* Offset to the first byte of this compilation unit header in the
235 .debug_info section, for resolving relative reference dies. */
236 unsigned int offset;
237
238 /* Offset to first die in this cu from the start of the cu.
239 This will be the first byte following the compilation unit header. */
240 unsigned int first_die_offset;
241 };
242
243 /* Internal state when decoding a particular compilation unit. */
244 struct dwarf2_cu
245 {
246 /* The objfile containing this compilation unit. */
247 struct objfile *objfile;
248
249 /* The header of the compilation unit. */
250 struct comp_unit_head header;
251
252 /* Base address of this compilation unit. */
253 CORE_ADDR base_address;
254
255 /* Non-zero if base_address has been set. */
256 int base_known;
257
258 struct function_range *first_fn, *last_fn, *cached_fn;
259
260 /* The language we are debugging. */
261 enum language language;
262 const struct language_defn *language_defn;
263
264 const char *producer;
265
266 /* The generic symbol table building routines have separate lists for
267 file scope symbols and all all other scopes (local scopes). So
268 we need to select the right one to pass to add_symbol_to_list().
269 We do it by keeping a pointer to the correct list in list_in_scope.
270
271 FIXME: The original dwarf code just treated the file scope as the
272 first local scope, and all other local scopes as nested local
273 scopes, and worked fine. Check to see if we really need to
274 distinguish these in buildsym.c. */
275 struct pending **list_in_scope;
276
277 /* DWARF abbreviation table associated with this compilation unit. */
278 struct abbrev_info **dwarf2_abbrevs;
279
280 /* Storage for the abbrev table. */
281 struct obstack abbrev_obstack;
282
283 /* Hash table holding all the loaded partial DIEs. */
284 htab_t partial_dies;
285
286 /* `.debug_ranges' offset for this `DW_TAG_compile_unit' DIE. */
287 unsigned int ranges_offset;
288
289 /* Storage for things with the same lifetime as this read-in compilation
290 unit, including partial DIEs. */
291 struct obstack comp_unit_obstack;
292
293 /* When multiple dwarf2_cu structures are living in memory, this field
294 chains them all together, so that they can be released efficiently.
295 We will probably also want a generation counter so that most-recently-used
296 compilation units are cached... */
297 struct dwarf2_per_cu_data *read_in_chain;
298
299 /* Backchain to our per_cu entry if the tree has been built. */
300 struct dwarf2_per_cu_data *per_cu;
301
302 /* Pointer to the die -> type map. Although it is stored
303 permanently in per_cu, we copy it here to avoid double
304 indirection. */
305 htab_t type_hash;
306
307 /* How many compilation units ago was this CU last referenced? */
308 int last_used;
309
310 /* A hash table of die offsets for following references. */
311 htab_t die_hash;
312
313 /* Full DIEs if read in. */
314 struct die_info *dies;
315
316 /* A set of pointers to dwarf2_per_cu_data objects for compilation
317 units referenced by this one. Only set during full symbol processing;
318 partial symbol tables do not have dependencies. */
319 htab_t dependencies;
320
321 /* Header data from the line table, during full symbol processing. */
322 struct line_header *line_header;
323
324 /* Mark used when releasing cached dies. */
325 unsigned int mark : 1;
326
327 /* This flag will be set if this compilation unit might include
328 inter-compilation-unit references. */
329 unsigned int has_form_ref_addr : 1;
330
331 /* This flag will be set if this compilation unit includes any
332 DW_TAG_namespace DIEs. If we know that there are explicit
333 DIEs for namespaces, we don't need to try to infer them
334 from mangled names. */
335 unsigned int has_namespace_info : 1;
336
337 /* Field `ranges_offset' is filled in; flag as the value may be zero. */
338 unsigned int has_ranges_offset : 1;
339 };
340
341 /* Persistent data held for a compilation unit, even when not
342 processing it. We put a pointer to this structure in the
343 read_symtab_private field of the psymtab. If we encounter
344 inter-compilation-unit references, we also maintain a sorted
345 list of all compilation units. */
346
347 struct dwarf2_per_cu_data
348 {
349 /* The start offset and length of this compilation unit. 2**29-1
350 bytes should suffice to store the length of any compilation unit
351 - if it doesn't, GDB will fall over anyway.
352 NOTE: Unlike comp_unit_head.length, this length includes
353 initial_length_size. */
354 unsigned int offset;
355 unsigned int length : 29;
356
357 /* Flag indicating this compilation unit will be read in before
358 any of the current compilation units are processed. */
359 unsigned int queued : 1;
360
361 /* This flag will be set if we need to load absolutely all DIEs
362 for this compilation unit, instead of just the ones we think
363 are interesting. It gets set if we look for a DIE in the
364 hash table and don't find it. */
365 unsigned int load_all_dies : 1;
366
367 /* Non-zero if this CU is from .debug_types.
368 Otherwise it's from .debug_info. */
369 unsigned int from_debug_types : 1;
370
371 /* Set iff currently read in. */
372 struct dwarf2_cu *cu;
373
374 /* If full symbols for this CU have been read in, then this field
375 holds a map of DIE offsets to types. It isn't always possible
376 to reconstruct this information later, so we have to preserve
377 it. */
378 htab_t type_hash;
379
380 /* The partial symbol table associated with this compilation unit,
381 or NULL for partial units (which do not have an associated
382 symtab). */
383 struct partial_symtab *psymtab;
384 };
385
386 /* Entry in the signatured_types hash table. */
387
388 struct signatured_type
389 {
390 ULONGEST signature;
391
392 /* Offset in .debug_types of the TU (type_unit) for this type. */
393 unsigned int offset;
394
395 /* Offset in .debug_types of the type defined by this TU. */
396 unsigned int type_offset;
397
398 /* The CU(/TU) of this type. */
399 struct dwarf2_per_cu_data per_cu;
400 };
401
402 /* Struct used to pass misc. parameters to read_die_and_children, et. al.
403 which are used for both .debug_info and .debug_types dies.
404 All parameters here are unchanging for the life of the call.
405 This struct exists to abstract away the constant parameters of
406 die reading. */
407
408 struct die_reader_specs
409 {
410 /* The bfd of this objfile. */
411 bfd* abfd;
412
413 /* The CU of the DIE we are parsing. */
414 struct dwarf2_cu *cu;
415
416 /* Pointer to start of section buffer.
417 This is either the start of .debug_info or .debug_types. */
418 const gdb_byte *buffer;
419 };
420
421 /* The line number information for a compilation unit (found in the
422 .debug_line section) begins with a "statement program header",
423 which contains the following information. */
424 struct line_header
425 {
426 unsigned int total_length;
427 unsigned short version;
428 unsigned int header_length;
429 unsigned char minimum_instruction_length;
430 unsigned char default_is_stmt;
431 int line_base;
432 unsigned char line_range;
433 unsigned char opcode_base;
434
435 /* standard_opcode_lengths[i] is the number of operands for the
436 standard opcode whose value is i. This means that
437 standard_opcode_lengths[0] is unused, and the last meaningful
438 element is standard_opcode_lengths[opcode_base - 1]. */
439 unsigned char *standard_opcode_lengths;
440
441 /* The include_directories table. NOTE! These strings are not
442 allocated with xmalloc; instead, they are pointers into
443 debug_line_buffer. If you try to free them, `free' will get
444 indigestion. */
445 unsigned int num_include_dirs, include_dirs_size;
446 char **include_dirs;
447
448 /* The file_names table. NOTE! These strings are not allocated
449 with xmalloc; instead, they are pointers into debug_line_buffer.
450 Don't try to free them directly. */
451 unsigned int num_file_names, file_names_size;
452 struct file_entry
453 {
454 char *name;
455 unsigned int dir_index;
456 unsigned int mod_time;
457 unsigned int length;
458 int included_p; /* Non-zero if referenced by the Line Number Program. */
459 struct symtab *symtab; /* The associated symbol table, if any. */
460 } *file_names;
461
462 /* The start and end of the statement program following this
463 header. These point into dwarf2_per_objfile->line_buffer. */
464 gdb_byte *statement_program_start, *statement_program_end;
465 };
466
467 /* When we construct a partial symbol table entry we only
468 need this much information. */
469 struct partial_die_info
470 {
471 /* Offset of this DIE. */
472 unsigned int offset;
473
474 /* DWARF-2 tag for this DIE. */
475 ENUM_BITFIELD(dwarf_tag) tag : 16;
476
477 /* Language code associated with this DIE. This is only used
478 for the compilation unit DIE. */
479 unsigned int language : 8;
480
481 /* Assorted flags describing the data found in this DIE. */
482 unsigned int has_children : 1;
483 unsigned int is_external : 1;
484 unsigned int is_declaration : 1;
485 unsigned int has_type : 1;
486 unsigned int has_specification : 1;
487 unsigned int has_stmt_list : 1;
488 unsigned int has_pc_info : 1;
489
490 /* Flag set if the SCOPE field of this structure has been
491 computed. */
492 unsigned int scope_set : 1;
493
494 /* Flag set if the DIE has a byte_size attribute. */
495 unsigned int has_byte_size : 1;
496
497 /* The name of this DIE. Normally the value of DW_AT_name, but
498 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
499 other fashion. */
500 char *name;
501 char *dirname;
502
503 /* The scope to prepend to our children. This is generally
504 allocated on the comp_unit_obstack, so will disappear
505 when this compilation unit leaves the cache. */
506 char *scope;
507
508 /* The location description associated with this DIE, if any. */
509 struct dwarf_block *locdesc;
510
511 /* If HAS_PC_INFO, the PC range associated with this DIE. */
512 CORE_ADDR lowpc;
513 CORE_ADDR highpc;
514
515 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
516 DW_AT_sibling, if any. */
517 gdb_byte *sibling;
518
519 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
520 DW_AT_specification (or DW_AT_abstract_origin or
521 DW_AT_extension). */
522 unsigned int spec_offset;
523
524 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
525 unsigned int line_offset;
526
527 /* Pointers to this DIE's parent, first child, and next sibling,
528 if any. */
529 struct partial_die_info *die_parent, *die_child, *die_sibling;
530 };
531
532 /* This data structure holds the information of an abbrev. */
533 struct abbrev_info
534 {
535 unsigned int number; /* number identifying abbrev */
536 enum dwarf_tag tag; /* dwarf tag */
537 unsigned short has_children; /* boolean */
538 unsigned short num_attrs; /* number of attributes */
539 struct attr_abbrev *attrs; /* an array of attribute descriptions */
540 struct abbrev_info *next; /* next in chain */
541 };
542
543 struct attr_abbrev
544 {
545 ENUM_BITFIELD(dwarf_attribute) name : 16;
546 ENUM_BITFIELD(dwarf_form) form : 16;
547 };
548
549 /* Attributes have a name and a value */
550 struct attribute
551 {
552 ENUM_BITFIELD(dwarf_attribute) name : 16;
553 ENUM_BITFIELD(dwarf_form) form : 15;
554
555 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
556 field should be in u.str (existing only for DW_STRING) but it is kept
557 here for better struct attribute alignment. */
558 unsigned int string_is_canonical : 1;
559
560 union
561 {
562 char *str;
563 struct dwarf_block *blk;
564 unsigned long unsnd;
565 long int snd;
566 CORE_ADDR addr;
567 struct signatured_type *signatured_type;
568 }
569 u;
570 };
571
572 /* This data structure holds a complete die structure. */
573 struct die_info
574 {
575 /* DWARF-2 tag for this DIE. */
576 ENUM_BITFIELD(dwarf_tag) tag : 16;
577
578 /* Number of attributes */
579 unsigned short num_attrs;
580
581 /* Abbrev number */
582 unsigned int abbrev;
583
584 /* Offset in .debug_info or .debug_types section. */
585 unsigned int offset;
586
587 /* The dies in a compilation unit form an n-ary tree. PARENT
588 points to this die's parent; CHILD points to the first child of
589 this node; and all the children of a given node are chained
590 together via their SIBLING fields, terminated by a die whose
591 tag is zero. */
592 struct die_info *child; /* Its first child, if any. */
593 struct die_info *sibling; /* Its next sibling, if any. */
594 struct die_info *parent; /* Its parent, if any. */
595
596 /* An array of attributes, with NUM_ATTRS elements. There may be
597 zero, but it's not common and zero-sized arrays are not
598 sufficiently portable C. */
599 struct attribute attrs[1];
600 };
601
602 struct function_range
603 {
604 const char *name;
605 CORE_ADDR lowpc, highpc;
606 int seen_line;
607 struct function_range *next;
608 };
609
610 /* Get at parts of an attribute structure */
611
612 #define DW_STRING(attr) ((attr)->u.str)
613 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
614 #define DW_UNSND(attr) ((attr)->u.unsnd)
615 #define DW_BLOCK(attr) ((attr)->u.blk)
616 #define DW_SND(attr) ((attr)->u.snd)
617 #define DW_ADDR(attr) ((attr)->u.addr)
618 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
619
620 /* Blocks are a bunch of untyped bytes. */
621 struct dwarf_block
622 {
623 unsigned int size;
624 gdb_byte *data;
625 };
626
627 #ifndef ATTR_ALLOC_CHUNK
628 #define ATTR_ALLOC_CHUNK 4
629 #endif
630
631 /* Allocate fields for structs, unions and enums in this size. */
632 #ifndef DW_FIELD_ALLOC_CHUNK
633 #define DW_FIELD_ALLOC_CHUNK 4
634 #endif
635
636 /* A zeroed version of a partial die for initialization purposes. */
637 static struct partial_die_info zeroed_partial_die;
638
639 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
640 but this would require a corresponding change in unpack_field_as_long
641 and friends. */
642 static int bits_per_byte = 8;
643
644 /* The routines that read and process dies for a C struct or C++ class
645 pass lists of data member fields and lists of member function fields
646 in an instance of a field_info structure, as defined below. */
647 struct field_info
648 {
649 /* List of data member and baseclasses fields. */
650 struct nextfield
651 {
652 struct nextfield *next;
653 int accessibility;
654 int virtuality;
655 struct field field;
656 }
657 *fields;
658
659 /* Number of fields. */
660 int nfields;
661
662 /* Number of baseclasses. */
663 int nbaseclasses;
664
665 /* Set if the accesibility of one of the fields is not public. */
666 int non_public_fields;
667
668 /* Member function fields array, entries are allocated in the order they
669 are encountered in the object file. */
670 struct nextfnfield
671 {
672 struct nextfnfield *next;
673 struct fn_field fnfield;
674 }
675 *fnfields;
676
677 /* Member function fieldlist array, contains name of possibly overloaded
678 member function, number of overloaded member functions and a pointer
679 to the head of the member function field chain. */
680 struct fnfieldlist
681 {
682 char *name;
683 int length;
684 struct nextfnfield *head;
685 }
686 *fnfieldlists;
687
688 /* Number of entries in the fnfieldlists array. */
689 int nfnfields;
690 };
691
692 /* One item on the queue of compilation units to read in full symbols
693 for. */
694 struct dwarf2_queue_item
695 {
696 struct dwarf2_per_cu_data *per_cu;
697 struct dwarf2_queue_item *next;
698 };
699
700 /* The current queue. */
701 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
702
703 /* Loaded secondary compilation units are kept in memory until they
704 have not been referenced for the processing of this many
705 compilation units. Set this to zero to disable caching. Cache
706 sizes of up to at least twenty will improve startup time for
707 typical inter-CU-reference binaries, at an obvious memory cost. */
708 static int dwarf2_max_cache_age = 5;
709 static void
710 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
711 struct cmd_list_element *c, const char *value)
712 {
713 fprintf_filtered (file, _("\
714 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
715 value);
716 }
717
718
719 /* Various complaints about symbol reading that don't abort the process */
720
721 static void
722 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
723 {
724 complaint (&symfile_complaints,
725 _("statement list doesn't fit in .debug_line section"));
726 }
727
728 static void
729 dwarf2_debug_line_missing_file_complaint (void)
730 {
731 complaint (&symfile_complaints,
732 _(".debug_line section has line data without a file"));
733 }
734
735 static void
736 dwarf2_debug_line_missing_end_sequence_complaint (void)
737 {
738 complaint (&symfile_complaints,
739 _(".debug_line section has line program sequence without an end"));
740 }
741
742 static void
743 dwarf2_complex_location_expr_complaint (void)
744 {
745 complaint (&symfile_complaints, _("location expression too complex"));
746 }
747
748 static void
749 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
750 int arg3)
751 {
752 complaint (&symfile_complaints,
753 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
754 arg2, arg3);
755 }
756
757 static void
758 dwarf2_macros_too_long_complaint (void)
759 {
760 complaint (&symfile_complaints,
761 _("macro info runs off end of `.debug_macinfo' section"));
762 }
763
764 static void
765 dwarf2_macro_malformed_definition_complaint (const char *arg1)
766 {
767 complaint (&symfile_complaints,
768 _("macro debug info contains a malformed macro definition:\n`%s'"),
769 arg1);
770 }
771
772 static void
773 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
774 {
775 complaint (&symfile_complaints,
776 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
777 }
778
779 /* local function prototypes */
780
781 static void dwarf2_locate_sections (bfd *, asection *, void *);
782
783 #if 0
784 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
785 #endif
786
787 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
788 struct objfile *);
789
790 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
791 struct partial_die_info *,
792 struct partial_symtab *);
793
794 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
795
796 static void scan_partial_symbols (struct partial_die_info *,
797 CORE_ADDR *, CORE_ADDR *,
798 int, struct dwarf2_cu *);
799
800 static void add_partial_symbol (struct partial_die_info *,
801 struct dwarf2_cu *);
802
803 static int pdi_needs_namespace (enum dwarf_tag tag);
804
805 static void add_partial_namespace (struct partial_die_info *pdi,
806 CORE_ADDR *lowpc, CORE_ADDR *highpc,
807 int need_pc, struct dwarf2_cu *cu);
808
809 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
810 CORE_ADDR *highpc, int need_pc,
811 struct dwarf2_cu *cu);
812
813 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
814 struct dwarf2_cu *cu);
815
816 static void add_partial_subprogram (struct partial_die_info *pdi,
817 CORE_ADDR *lowpc, CORE_ADDR *highpc,
818 int need_pc, struct dwarf2_cu *cu);
819
820 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
821 gdb_byte *buffer, gdb_byte *info_ptr,
822 bfd *abfd, struct dwarf2_cu *cu);
823
824 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
825
826 static void psymtab_to_symtab_1 (struct partial_symtab *);
827
828 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
829
830 static void dwarf2_free_abbrev_table (void *);
831
832 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
833 struct dwarf2_cu *);
834
835 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
836 struct dwarf2_cu *);
837
838 static struct partial_die_info *load_partial_dies (bfd *,
839 gdb_byte *, gdb_byte *,
840 int, struct dwarf2_cu *);
841
842 static gdb_byte *read_partial_die (struct partial_die_info *,
843 struct abbrev_info *abbrev,
844 unsigned int, bfd *,
845 gdb_byte *, gdb_byte *,
846 struct dwarf2_cu *);
847
848 static struct partial_die_info *find_partial_die (unsigned int,
849 struct dwarf2_cu *);
850
851 static void fixup_partial_die (struct partial_die_info *,
852 struct dwarf2_cu *);
853
854 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
855 bfd *, gdb_byte *, struct dwarf2_cu *);
856
857 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
858 bfd *, gdb_byte *, struct dwarf2_cu *);
859
860 static unsigned int read_1_byte (bfd *, gdb_byte *);
861
862 static int read_1_signed_byte (bfd *, gdb_byte *);
863
864 static unsigned int read_2_bytes (bfd *, gdb_byte *);
865
866 static unsigned int read_4_bytes (bfd *, gdb_byte *);
867
868 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
869
870 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
871 unsigned int *);
872
873 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
874
875 static LONGEST read_checked_initial_length_and_offset
876 (bfd *, gdb_byte *, const struct comp_unit_head *,
877 unsigned int *, unsigned int *);
878
879 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
880 unsigned int *);
881
882 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
883
884 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
885
886 static char *read_string (bfd *, gdb_byte *, unsigned int *);
887
888 static char *read_indirect_string (bfd *, gdb_byte *,
889 const struct comp_unit_head *,
890 unsigned int *);
891
892 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
893
894 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
895
896 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
897
898 static void set_cu_language (unsigned int, struct dwarf2_cu *);
899
900 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
901 struct dwarf2_cu *);
902
903 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
904 unsigned int,
905 struct dwarf2_cu *);
906
907 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
908 struct dwarf2_cu *cu);
909
910 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
911
912 static struct die_info *die_specification (struct die_info *die,
913 struct dwarf2_cu **);
914
915 static void free_line_header (struct line_header *lh);
916
917 static void add_file_name (struct line_header *, char *, unsigned int,
918 unsigned int, unsigned int);
919
920 static struct line_header *(dwarf_decode_line_header
921 (unsigned int offset,
922 bfd *abfd, struct dwarf2_cu *cu));
923
924 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
925 struct dwarf2_cu *, struct partial_symtab *);
926
927 static void dwarf2_start_subfile (char *, char *, char *);
928
929 static struct symbol *new_symbol (struct die_info *, struct type *,
930 struct dwarf2_cu *);
931
932 static void dwarf2_const_value (struct attribute *, struct symbol *,
933 struct dwarf2_cu *);
934
935 static void dwarf2_const_value_data (struct attribute *attr,
936 struct symbol *sym,
937 int bits);
938
939 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
940
941 static struct type *die_containing_type (struct die_info *,
942 struct dwarf2_cu *);
943
944 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
945
946 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
947
948 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
949
950 static char *typename_concat (struct obstack *,
951 const char *prefix,
952 const char *suffix,
953 struct dwarf2_cu *);
954
955 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
956
957 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
958
959 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
960
961 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
962
963 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
964 struct dwarf2_cu *, struct partial_symtab *);
965
966 static int dwarf2_get_pc_bounds (struct die_info *,
967 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
968
969 static void get_scope_pc_bounds (struct die_info *,
970 CORE_ADDR *, CORE_ADDR *,
971 struct dwarf2_cu *);
972
973 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
974 CORE_ADDR, struct dwarf2_cu *);
975
976 static void dwarf2_add_field (struct field_info *, struct die_info *,
977 struct dwarf2_cu *);
978
979 static void dwarf2_attach_fields_to_type (struct field_info *,
980 struct type *, struct dwarf2_cu *);
981
982 static void dwarf2_add_member_fn (struct field_info *,
983 struct die_info *, struct type *,
984 struct dwarf2_cu *);
985
986 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
987 struct type *, struct dwarf2_cu *);
988
989 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
990
991 static const char *determine_class_name (struct die_info *die,
992 struct dwarf2_cu *cu);
993
994 static void read_common_block (struct die_info *, struct dwarf2_cu *);
995
996 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
997
998 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
999
1000 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1001
1002 static const char *namespace_name (struct die_info *die,
1003 int *is_anonymous, struct dwarf2_cu *);
1004
1005 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1006
1007 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1008
1009 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1010 struct dwarf2_cu *);
1011
1012 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1013
1014 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1015 gdb_byte *info_ptr,
1016 gdb_byte **new_info_ptr,
1017 struct die_info *parent);
1018
1019 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1020 gdb_byte *info_ptr,
1021 gdb_byte **new_info_ptr,
1022 struct die_info *parent);
1023
1024 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1025 gdb_byte *info_ptr,
1026 gdb_byte **new_info_ptr,
1027 struct die_info *parent);
1028
1029 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1030 struct die_info **, gdb_byte *,
1031 int *);
1032
1033 static void process_die (struct die_info *, struct dwarf2_cu *);
1034
1035 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
1036
1037 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1038 struct obstack *);
1039
1040 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1041
1042 static struct die_info *dwarf2_extension (struct die_info *die,
1043 struct dwarf2_cu **);
1044
1045 static char *dwarf_tag_name (unsigned int);
1046
1047 static char *dwarf_attr_name (unsigned int);
1048
1049 static char *dwarf_form_name (unsigned int);
1050
1051 static char *dwarf_stack_op_name (unsigned int);
1052
1053 static char *dwarf_bool_name (unsigned int);
1054
1055 static char *dwarf_type_encoding_name (unsigned int);
1056
1057 #if 0
1058 static char *dwarf_cfi_name (unsigned int);
1059 #endif
1060
1061 static struct die_info *sibling_die (struct die_info *);
1062
1063 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1064
1065 static void dump_die_for_error (struct die_info *);
1066
1067 static void dump_die_1 (struct ui_file *, int level, int max_level,
1068 struct die_info *);
1069
1070 /*static*/ void dump_die (struct die_info *, int max_level);
1071
1072 static void store_in_ref_table (struct die_info *,
1073 struct dwarf2_cu *);
1074
1075 static int is_ref_attr (struct attribute *);
1076
1077 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1078
1079 static int dwarf2_get_attr_constant_value (struct attribute *, int);
1080
1081 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1082 struct attribute *,
1083 struct dwarf2_cu **);
1084
1085 static struct die_info *follow_die_ref (struct die_info *,
1086 struct attribute *,
1087 struct dwarf2_cu **);
1088
1089 static struct die_info *follow_die_sig (struct die_info *,
1090 struct attribute *,
1091 struct dwarf2_cu **);
1092
1093 static void read_signatured_type_at_offset (struct objfile *objfile,
1094 unsigned int offset);
1095
1096 static void read_signatured_type (struct objfile *,
1097 struct signatured_type *type_sig);
1098
1099 /* memory allocation interface */
1100
1101 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1102
1103 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1104
1105 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1106
1107 static void initialize_cu_func_list (struct dwarf2_cu *);
1108
1109 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1110 struct dwarf2_cu *);
1111
1112 static void dwarf_decode_macros (struct line_header *, unsigned int,
1113 char *, bfd *, struct dwarf2_cu *);
1114
1115 static int attr_form_is_block (struct attribute *);
1116
1117 static int attr_form_is_section_offset (struct attribute *);
1118
1119 static int attr_form_is_constant (struct attribute *);
1120
1121 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1122 struct symbol *sym,
1123 struct dwarf2_cu *cu);
1124
1125 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1126 struct abbrev_info *abbrev,
1127 struct dwarf2_cu *cu);
1128
1129 static void free_stack_comp_unit (void *);
1130
1131 static hashval_t partial_die_hash (const void *item);
1132
1133 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1134
1135 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1136 (unsigned int offset, struct objfile *objfile);
1137
1138 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1139 (unsigned int offset, struct objfile *objfile);
1140
1141 static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile);
1142
1143 static void free_one_comp_unit (void *);
1144
1145 static void free_cached_comp_units (void *);
1146
1147 static void age_cached_comp_units (void);
1148
1149 static void free_one_cached_comp_unit (void *);
1150
1151 static struct type *set_die_type (struct die_info *, struct type *,
1152 struct dwarf2_cu *);
1153
1154 static void create_all_comp_units (struct objfile *);
1155
1156 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1157 struct objfile *);
1158
1159 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1160
1161 static void dwarf2_add_dependence (struct dwarf2_cu *,
1162 struct dwarf2_per_cu_data *);
1163
1164 static void dwarf2_mark (struct dwarf2_cu *);
1165
1166 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1167
1168 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1169
1170 /* Try to locate the sections we need for DWARF 2 debugging
1171 information and return true if we have enough to do something. */
1172
1173 int
1174 dwarf2_has_info (struct objfile *objfile)
1175 {
1176 struct dwarf2_per_objfile *data;
1177
1178 /* Initialize per-objfile state. */
1179 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1180 memset (data, 0, sizeof (*data));
1181 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1182 dwarf2_per_objfile = data;
1183
1184 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1185 return (data->info.asection != NULL && data->abbrev.asection != NULL);
1186 }
1187
1188 /* When loading sections, we can either look for ".<name>", or for
1189 * ".z<name>", which indicates a compressed section. */
1190
1191 static int
1192 section_is_p (const char *section_name, const char *name)
1193 {
1194 return (section_name[0] == '.'
1195 && (strcmp (section_name + 1, name) == 0
1196 || (section_name[1] == 'z'
1197 && strcmp (section_name + 2, name) == 0)));
1198 }
1199
1200 /* This function is mapped across the sections and remembers the
1201 offset and size of each of the debugging sections we are interested
1202 in. */
1203
1204 static void
1205 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1206 {
1207 if (section_is_p (sectp->name, INFO_SECTION))
1208 {
1209 dwarf2_per_objfile->info.asection = sectp;
1210 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1211 }
1212 else if (section_is_p (sectp->name, ABBREV_SECTION))
1213 {
1214 dwarf2_per_objfile->abbrev.asection = sectp;
1215 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1216 }
1217 else if (section_is_p (sectp->name, LINE_SECTION))
1218 {
1219 dwarf2_per_objfile->line.asection = sectp;
1220 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1221 }
1222 else if (section_is_p (sectp->name, PUBNAMES_SECTION))
1223 {
1224 dwarf2_per_objfile->pubnames.asection = sectp;
1225 dwarf2_per_objfile->pubnames.size = bfd_get_section_size (sectp);
1226 }
1227 else if (section_is_p (sectp->name, ARANGES_SECTION))
1228 {
1229 dwarf2_per_objfile->aranges.asection = sectp;
1230 dwarf2_per_objfile->aranges.size = bfd_get_section_size (sectp);
1231 }
1232 else if (section_is_p (sectp->name, LOC_SECTION))
1233 {
1234 dwarf2_per_objfile->loc.asection = sectp;
1235 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1236 }
1237 else if (section_is_p (sectp->name, MACINFO_SECTION))
1238 {
1239 dwarf2_per_objfile->macinfo.asection = sectp;
1240 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1241 }
1242 else if (section_is_p (sectp->name, STR_SECTION))
1243 {
1244 dwarf2_per_objfile->str.asection = sectp;
1245 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1246 }
1247 else if (section_is_p (sectp->name, FRAME_SECTION))
1248 {
1249 dwarf2_per_objfile->frame.asection = sectp;
1250 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1251 }
1252 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1253 {
1254 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1255 if (aflag & SEC_HAS_CONTENTS)
1256 {
1257 dwarf2_per_objfile->eh_frame.asection = sectp;
1258 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1259 }
1260 }
1261 else if (section_is_p (sectp->name, RANGES_SECTION))
1262 {
1263 dwarf2_per_objfile->ranges.asection = sectp;
1264 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1265 }
1266 else if (section_is_p (sectp->name, TYPES_SECTION))
1267 {
1268 dwarf2_per_objfile->types.asection = sectp;
1269 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1270 }
1271
1272 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1273 && bfd_section_vma (abfd, sectp) == 0)
1274 dwarf2_per_objfile->has_section_at_zero = 1;
1275 }
1276
1277 /* Decompress a section that was compressed using zlib. Store the
1278 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1279
1280 static void
1281 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1282 gdb_byte **outbuf, bfd_size_type *outsize)
1283 {
1284 bfd *abfd = objfile->obfd;
1285 #ifndef HAVE_ZLIB_H
1286 error (_("Support for zlib-compressed DWARF data (from '%s') "
1287 "is disabled in this copy of GDB"),
1288 bfd_get_filename (abfd));
1289 #else
1290 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1291 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1292 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1293 bfd_size_type uncompressed_size;
1294 gdb_byte *uncompressed_buffer;
1295 z_stream strm;
1296 int rc;
1297 int header_size = 12;
1298
1299 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1300 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1301 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1302 bfd_get_filename (abfd));
1303
1304 /* Read the zlib header. In this case, it should be "ZLIB" followed
1305 by the uncompressed section size, 8 bytes in big-endian order. */
1306 if (compressed_size < header_size
1307 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1308 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1309 bfd_get_filename (abfd));
1310 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1311 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1312 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1313 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1314 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1315 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1316 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1317 uncompressed_size += compressed_buffer[11];
1318
1319 /* It is possible the section consists of several compressed
1320 buffers concatenated together, so we uncompress in a loop. */
1321 strm.zalloc = NULL;
1322 strm.zfree = NULL;
1323 strm.opaque = NULL;
1324 strm.avail_in = compressed_size - header_size;
1325 strm.next_in = (Bytef*) compressed_buffer + header_size;
1326 strm.avail_out = uncompressed_size;
1327 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1328 uncompressed_size);
1329 rc = inflateInit (&strm);
1330 while (strm.avail_in > 0)
1331 {
1332 if (rc != Z_OK)
1333 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1334 bfd_get_filename (abfd), rc);
1335 strm.next_out = ((Bytef*) uncompressed_buffer
1336 + (uncompressed_size - strm.avail_out));
1337 rc = inflate (&strm, Z_FINISH);
1338 if (rc != Z_STREAM_END)
1339 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1340 bfd_get_filename (abfd), rc);
1341 rc = inflateReset (&strm);
1342 }
1343 rc = inflateEnd (&strm);
1344 if (rc != Z_OK
1345 || strm.avail_out != 0)
1346 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1347 bfd_get_filename (abfd), rc);
1348
1349 do_cleanups (cleanup);
1350 *outbuf = uncompressed_buffer;
1351 *outsize = uncompressed_size;
1352 #endif
1353 }
1354
1355 /* Read the contents of the section SECTP from object file specified by
1356 OBJFILE, store info about the section into INFO.
1357 If the section is compressed, uncompress it before returning. */
1358
1359 static void
1360 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1361 {
1362 bfd *abfd = objfile->obfd;
1363 asection *sectp = info->asection;
1364 gdb_byte *buf, *retbuf;
1365 unsigned char header[4];
1366
1367 info->buffer = NULL;
1368 info->was_mmapped = 0;
1369
1370 if (info->asection == NULL || info->size == 0)
1371 return;
1372
1373 /* Check if the file has a 4-byte header indicating compression. */
1374 if (info->size > sizeof (header)
1375 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1376 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1377 {
1378 /* Upon decompression, update the buffer and its size. */
1379 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1380 {
1381 zlib_decompress_section (objfile, sectp, &info->buffer,
1382 &info->size);
1383 return;
1384 }
1385 }
1386
1387 #ifdef HAVE_MMAP
1388 if (pagesize == 0)
1389 pagesize = getpagesize ();
1390
1391 /* Only try to mmap sections which are large enough: we don't want to
1392 waste space due to fragmentation. Also, only try mmap for sections
1393 without relocations. */
1394
1395 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1396 {
1397 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1398 size_t map_length = info->size + sectp->filepos - pg_offset;
1399 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1400 MAP_PRIVATE, pg_offset);
1401
1402 if (retbuf != MAP_FAILED)
1403 {
1404 info->was_mmapped = 1;
1405 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1406 return;
1407 }
1408 }
1409 #endif
1410
1411 /* If we get here, we are a normal, not-compressed section. */
1412 info->buffer = buf
1413 = obstack_alloc (&objfile->objfile_obstack, info->size);
1414
1415 /* When debugging .o files, we may need to apply relocations; see
1416 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1417 We never compress sections in .o files, so we only need to
1418 try this when the section is not compressed. */
1419 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
1420 if (retbuf != NULL)
1421 {
1422 info->buffer = retbuf;
1423 return;
1424 }
1425
1426 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1427 || bfd_bread (buf, info->size, abfd) != info->size)
1428 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1429 bfd_get_filename (abfd));
1430 }
1431
1432 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1433 SECTION_NAME. */
1434
1435 void
1436 dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1437 asection **sectp, gdb_byte **bufp,
1438 bfd_size_type *sizep)
1439 {
1440 struct dwarf2_per_objfile *data
1441 = objfile_data (objfile, dwarf2_objfile_data_key);
1442 struct dwarf2_section_info *info;
1443 if (section_is_p (section_name, EH_FRAME_SECTION))
1444 info = &data->eh_frame;
1445 else if (section_is_p (section_name, FRAME_SECTION))
1446 info = &data->frame;
1447 else
1448 gdb_assert (0);
1449
1450 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1451 /* We haven't read this section in yet. Do it now. */
1452 dwarf2_read_section (objfile, info);
1453
1454 *sectp = info->asection;
1455 *bufp = info->buffer;
1456 *sizep = info->size;
1457 }
1458
1459 /* Build a partial symbol table. */
1460
1461 void
1462 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1463 {
1464 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
1465 dwarf2_read_section (objfile, &dwarf2_per_objfile->abbrev);
1466 dwarf2_read_section (objfile, &dwarf2_per_objfile->line);
1467 dwarf2_read_section (objfile, &dwarf2_per_objfile->str);
1468 dwarf2_read_section (objfile, &dwarf2_per_objfile->macinfo);
1469 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
1470 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
1471 dwarf2_read_section (objfile, &dwarf2_per_objfile->loc);
1472 dwarf2_read_section (objfile, &dwarf2_per_objfile->eh_frame);
1473 dwarf2_read_section (objfile, &dwarf2_per_objfile->frame);
1474
1475 if (mainline
1476 || (objfile->global_psymbols.size == 0
1477 && objfile->static_psymbols.size == 0))
1478 {
1479 init_psymbol_list (objfile, 1024);
1480 }
1481
1482 #if 0
1483 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1484 {
1485 /* Things are significantly easier if we have .debug_aranges and
1486 .debug_pubnames sections */
1487
1488 dwarf2_build_psymtabs_easy (objfile, mainline);
1489 }
1490 else
1491 #endif
1492 /* only test this case for now */
1493 {
1494 /* In this case we have to work a bit harder */
1495 dwarf2_build_psymtabs_hard (objfile, mainline);
1496 }
1497 }
1498
1499 #if 0
1500 /* Build the partial symbol table from the information in the
1501 .debug_pubnames and .debug_aranges sections. */
1502
1503 static void
1504 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1505 {
1506 bfd *abfd = objfile->obfd;
1507 char *aranges_buffer, *pubnames_buffer;
1508 char *aranges_ptr, *pubnames_ptr;
1509 unsigned int entry_length, version, info_offset, info_size;
1510
1511 pubnames_buffer = dwarf2_read_section (objfile,
1512 dwarf_pubnames_section);
1513 pubnames_ptr = pubnames_buffer;
1514 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames.size)
1515 {
1516 unsigned int bytes_read;
1517
1518 entry_length = read_initial_length (abfd, pubnames_ptr, &bytes_read);
1519 pubnames_ptr += bytes_read;
1520 version = read_1_byte (abfd, pubnames_ptr);
1521 pubnames_ptr += 1;
1522 info_offset = read_4_bytes (abfd, pubnames_ptr);
1523 pubnames_ptr += 4;
1524 info_size = read_4_bytes (abfd, pubnames_ptr);
1525 pubnames_ptr += 4;
1526 }
1527
1528 aranges_buffer = dwarf2_read_section (objfile,
1529 dwarf_aranges_section);
1530
1531 }
1532 #endif
1533
1534 /* Return TRUE if OFFSET is within CU_HEADER. */
1535
1536 static inline int
1537 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
1538 {
1539 unsigned int bottom = cu_header->offset;
1540 unsigned int top = (cu_header->offset
1541 + cu_header->length
1542 + cu_header->initial_length_size);
1543 return (offset >= bottom && offset < top);
1544 }
1545
1546 /* Read in the comp unit header information from the debug_info at info_ptr.
1547 NOTE: This leaves members offset, first_die_offset to be filled in
1548 by the caller. */
1549
1550 static gdb_byte *
1551 read_comp_unit_head (struct comp_unit_head *cu_header,
1552 gdb_byte *info_ptr, bfd *abfd)
1553 {
1554 int signed_addr;
1555 unsigned int bytes_read;
1556
1557 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
1558 cu_header->initial_length_size = bytes_read;
1559 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
1560 info_ptr += bytes_read;
1561 cu_header->version = read_2_bytes (abfd, info_ptr);
1562 info_ptr += 2;
1563 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1564 &bytes_read);
1565 info_ptr += bytes_read;
1566 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1567 info_ptr += 1;
1568 signed_addr = bfd_get_sign_extend_vma (abfd);
1569 if (signed_addr < 0)
1570 internal_error (__FILE__, __LINE__,
1571 _("read_comp_unit_head: dwarf from non elf file"));
1572 cu_header->signed_addr_p = signed_addr;
1573
1574 return info_ptr;
1575 }
1576
1577 static gdb_byte *
1578 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1579 gdb_byte *buffer, unsigned int buffer_size,
1580 bfd *abfd)
1581 {
1582 gdb_byte *beg_of_comp_unit = info_ptr;
1583
1584 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1585
1586 if (header->version != 2 && header->version != 3)
1587 error (_("Dwarf Error: wrong version in compilation unit header "
1588 "(is %d, should be %d) [in module %s]"), header->version,
1589 2, bfd_get_filename (abfd));
1590
1591 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
1592 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1593 "(offset 0x%lx + 6) [in module %s]"),
1594 (long) header->abbrev_offset,
1595 (long) (beg_of_comp_unit - buffer),
1596 bfd_get_filename (abfd));
1597
1598 if (beg_of_comp_unit + header->length + header->initial_length_size
1599 > buffer + buffer_size)
1600 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1601 "(offset 0x%lx + 0) [in module %s]"),
1602 (long) header->length,
1603 (long) (beg_of_comp_unit - buffer),
1604 bfd_get_filename (abfd));
1605
1606 return info_ptr;
1607 }
1608
1609 /* Read in the types comp unit header information from .debug_types entry at
1610 types_ptr. The result is a pointer to one past the end of the header. */
1611
1612 static gdb_byte *
1613 read_type_comp_unit_head (struct comp_unit_head *cu_header,
1614 ULONGEST *signature,
1615 gdb_byte *types_ptr, bfd *abfd)
1616 {
1617 unsigned int bytes_read;
1618 gdb_byte *initial_types_ptr = types_ptr;
1619
1620 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
1621
1622 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
1623
1624 *signature = read_8_bytes (abfd, types_ptr);
1625 types_ptr += 8;
1626 types_ptr += cu_header->offset_size;
1627 cu_header->first_die_offset = types_ptr - initial_types_ptr;
1628
1629 return types_ptr;
1630 }
1631
1632 /* Allocate a new partial symtab for file named NAME and mark this new
1633 partial symtab as being an include of PST. */
1634
1635 static void
1636 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1637 struct objfile *objfile)
1638 {
1639 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1640
1641 subpst->section_offsets = pst->section_offsets;
1642 subpst->textlow = 0;
1643 subpst->texthigh = 0;
1644
1645 subpst->dependencies = (struct partial_symtab **)
1646 obstack_alloc (&objfile->objfile_obstack,
1647 sizeof (struct partial_symtab *));
1648 subpst->dependencies[0] = pst;
1649 subpst->number_of_dependencies = 1;
1650
1651 subpst->globals_offset = 0;
1652 subpst->n_global_syms = 0;
1653 subpst->statics_offset = 0;
1654 subpst->n_static_syms = 0;
1655 subpst->symtab = NULL;
1656 subpst->read_symtab = pst->read_symtab;
1657 subpst->readin = 0;
1658
1659 /* No private part is necessary for include psymtabs. This property
1660 can be used to differentiate between such include psymtabs and
1661 the regular ones. */
1662 subpst->read_symtab_private = NULL;
1663 }
1664
1665 /* Read the Line Number Program data and extract the list of files
1666 included by the source file represented by PST. Build an include
1667 partial symtab for each of these included files.
1668
1669 This procedure assumes that there *is* a Line Number Program in
1670 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1671 before calling this procedure. */
1672
1673 static void
1674 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1675 struct partial_die_info *pdi,
1676 struct partial_symtab *pst)
1677 {
1678 struct objfile *objfile = cu->objfile;
1679 bfd *abfd = objfile->obfd;
1680 struct line_header *lh;
1681
1682 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1683 if (lh == NULL)
1684 return; /* No linetable, so no includes. */
1685
1686 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1687
1688 free_line_header (lh);
1689 }
1690
1691 static hashval_t
1692 hash_type_signature (const void *item)
1693 {
1694 const struct signatured_type *type_sig = item;
1695 /* This drops the top 32 bits of the signature, but is ok for a hash. */
1696 return type_sig->signature;
1697 }
1698
1699 static int
1700 eq_type_signature (const void *item_lhs, const void *item_rhs)
1701 {
1702 const struct signatured_type *lhs = item_lhs;
1703 const struct signatured_type *rhs = item_rhs;
1704 return lhs->signature == rhs->signature;
1705 }
1706
1707 /* Create the hash table of all entries in the .debug_types section.
1708 The result is zero if there is an error (e.g. missing .debug_types section),
1709 otherwise non-zero. */
1710
1711 static int
1712 create_debug_types_hash_table (struct objfile *objfile)
1713 {
1714 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer;
1715 htab_t types_htab;
1716
1717 if (info_ptr == NULL)
1718 {
1719 dwarf2_per_objfile->signatured_types = NULL;
1720 return 0;
1721 }
1722
1723 types_htab = htab_create_alloc_ex (41,
1724 hash_type_signature,
1725 eq_type_signature,
1726 NULL,
1727 &objfile->objfile_obstack,
1728 hashtab_obstack_allocate,
1729 dummy_obstack_deallocate);
1730
1731 if (dwarf2_die_debug)
1732 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
1733
1734 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1735 {
1736 unsigned int offset;
1737 unsigned int offset_size;
1738 unsigned int type_offset;
1739 unsigned int length, initial_length_size;
1740 unsigned short version;
1741 ULONGEST signature;
1742 struct signatured_type *type_sig;
1743 void **slot;
1744 gdb_byte *ptr = info_ptr;
1745
1746 offset = ptr - dwarf2_per_objfile->types.buffer;
1747
1748 /* We need to read the type's signature in order to build the hash
1749 table, but we don't need to read anything else just yet. */
1750
1751 /* Sanity check to ensure entire cu is present. */
1752 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
1753 if (ptr + length + initial_length_size
1754 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1755 {
1756 complaint (&symfile_complaints,
1757 _("debug type entry runs off end of `.debug_types' section, ignored"));
1758 break;
1759 }
1760
1761 offset_size = initial_length_size == 4 ? 4 : 8;
1762 ptr += initial_length_size;
1763 version = bfd_get_16 (objfile->obfd, ptr);
1764 ptr += 2;
1765 ptr += offset_size; /* abbrev offset */
1766 ptr += 1; /* address size */
1767 signature = bfd_get_64 (objfile->obfd, ptr);
1768 ptr += 8;
1769 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
1770
1771 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
1772 memset (type_sig, 0, sizeof (*type_sig));
1773 type_sig->signature = signature;
1774 type_sig->offset = offset;
1775 type_sig->type_offset = type_offset;
1776
1777 slot = htab_find_slot (types_htab, type_sig, INSERT);
1778 gdb_assert (slot != NULL);
1779 *slot = type_sig;
1780
1781 if (dwarf2_die_debug)
1782 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
1783 offset, phex (signature, sizeof (signature)));
1784
1785 info_ptr = info_ptr + initial_length_size + length;
1786 }
1787
1788 dwarf2_per_objfile->signatured_types = types_htab;
1789
1790 return 1;
1791 }
1792
1793 /* Lookup a signature based type.
1794 Returns NULL if SIG is not present in the table. */
1795
1796 static struct signatured_type *
1797 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
1798 {
1799 struct signatured_type find_entry, *entry;
1800
1801 if (dwarf2_per_objfile->signatured_types == NULL)
1802 {
1803 complaint (&symfile_complaints,
1804 _("missing `.debug_types' section for DW_FORM_sig8 die"));
1805 return 0;
1806 }
1807
1808 find_entry.signature = sig;
1809 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
1810 return entry;
1811 }
1812
1813 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
1814 to combine the common parts.
1815 Process a compilation unit for a psymtab.
1816 BUFFER is a pointer to the beginning of the dwarf section buffer,
1817 either .debug_info or debug_types.
1818 INFO_PTR is a pointer to the start of the CU.
1819 Returns a pointer to the next CU. */
1820
1821 static gdb_byte *
1822 process_psymtab_comp_unit (struct objfile *objfile,
1823 struct dwarf2_per_cu_data *this_cu,
1824 gdb_byte *buffer, gdb_byte *info_ptr,
1825 unsigned int buffer_size)
1826 {
1827 bfd *abfd = objfile->obfd;
1828 gdb_byte *beg_of_comp_unit = info_ptr;
1829 struct partial_die_info comp_unit_die;
1830 struct partial_symtab *pst;
1831 CORE_ADDR baseaddr;
1832 struct cleanup *back_to_inner;
1833 struct dwarf2_cu cu;
1834 struct abbrev_info *abbrev;
1835 unsigned int bytes_read;
1836
1837 memset (&cu, 0, sizeof (cu));
1838 cu.objfile = objfile;
1839 obstack_init (&cu.comp_unit_obstack);
1840
1841 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1842
1843 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
1844 buffer, buffer_size,
1845 abfd);
1846
1847 /* Complete the cu_header. */
1848 cu.header.offset = beg_of_comp_unit - buffer;
1849 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
1850
1851 cu.list_in_scope = &file_symbols;
1852
1853 /* Read the abbrevs for this compilation unit into a table. */
1854 dwarf2_read_abbrevs (abfd, &cu);
1855 make_cleanup (dwarf2_free_abbrev_table, &cu);
1856
1857 /* Read the compilation unit die. */
1858 if (this_cu->from_debug_types)
1859 info_ptr += 8 /*signature*/ + cu.header.offset_size;
1860 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1861 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read, abfd,
1862 buffer, info_ptr, &cu);
1863
1864 if (this_cu->from_debug_types)
1865 {
1866 /* offset,length haven't been set yet for type units. */
1867 this_cu->offset = cu.header.offset;
1868 this_cu->length = cu.header.length + cu.header.initial_length_size;
1869 }
1870 else if (comp_unit_die.tag == DW_TAG_partial_unit)
1871 {
1872 info_ptr = (beg_of_comp_unit + cu.header.length
1873 + cu.header.initial_length_size);
1874 do_cleanups (back_to_inner);
1875 return info_ptr;
1876 }
1877
1878 /* Set the language we're debugging. */
1879 set_cu_language (comp_unit_die.language, &cu);
1880
1881 /* Allocate a new partial symbol table structure. */
1882 pst = start_psymtab_common (objfile, objfile->section_offsets,
1883 comp_unit_die.name ? comp_unit_die.name : "",
1884 /* TEXTLOW and TEXTHIGH are set below. */
1885 0,
1886 objfile->global_psymbols.next,
1887 objfile->static_psymbols.next);
1888
1889 if (comp_unit_die.dirname)
1890 pst->dirname = obsavestring (comp_unit_die.dirname,
1891 strlen (comp_unit_die.dirname),
1892 &objfile->objfile_obstack);
1893
1894 pst->read_symtab_private = (char *) this_cu;
1895
1896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1897
1898 /* Store the function that reads in the rest of the symbol table */
1899 pst->read_symtab = dwarf2_psymtab_to_symtab;
1900
1901 /* If this compilation unit was already read in, free the
1902 cached copy in order to read it in again. This is
1903 necessary because we skipped some symbols when we first
1904 read in the compilation unit (see load_partial_dies).
1905 This problem could be avoided, but the benefit is
1906 unclear. */
1907 if (this_cu->cu != NULL)
1908 free_one_cached_comp_unit (this_cu->cu);
1909
1910 cu.per_cu = this_cu;
1911
1912 /* Note that this is a pointer to our stack frame, being
1913 added to a global data structure. It will be cleaned up
1914 in free_stack_comp_unit when we finish with this
1915 compilation unit. */
1916 this_cu->cu = &cu;
1917
1918 this_cu->psymtab = pst;
1919
1920 /* Possibly set the default values of LOWPC and HIGHPC from
1921 `DW_AT_ranges'. */
1922 if (cu.has_ranges_offset)
1923 {
1924 if (dwarf2_ranges_read (cu.ranges_offset, &comp_unit_die.lowpc,
1925 &comp_unit_die.highpc, &cu, pst))
1926 comp_unit_die.has_pc_info = 1;
1927 }
1928 else if (comp_unit_die.has_pc_info
1929 && comp_unit_die.lowpc < comp_unit_die.highpc)
1930 /* Store the contiguous range if it is not empty; it can be empty for
1931 CUs with no code. */
1932 addrmap_set_empty (objfile->psymtabs_addrmap,
1933 comp_unit_die.lowpc + baseaddr,
1934 comp_unit_die.highpc + baseaddr - 1, pst);
1935
1936 /* Check if comp unit has_children.
1937 If so, read the rest of the partial symbols from this comp unit.
1938 If not, there's no more debug_info for this comp unit. */
1939 if (comp_unit_die.has_children)
1940 {
1941 struct partial_die_info *first_die;
1942 CORE_ADDR lowpc, highpc;
1943
1944 lowpc = ((CORE_ADDR) -1);
1945 highpc = ((CORE_ADDR) 0);
1946
1947 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
1948
1949 scan_partial_symbols (first_die, &lowpc, &highpc,
1950 ! comp_unit_die.has_pc_info, &cu);
1951
1952 /* If we didn't find a lowpc, set it to highpc to avoid
1953 complaints from `maint check'. */
1954 if (lowpc == ((CORE_ADDR) -1))
1955 lowpc = highpc;
1956
1957 /* If the compilation unit didn't have an explicit address range,
1958 then use the information extracted from its child dies. */
1959 if (! comp_unit_die.has_pc_info)
1960 {
1961 comp_unit_die.lowpc = lowpc;
1962 comp_unit_die.highpc = highpc;
1963 }
1964 }
1965 pst->textlow = comp_unit_die.lowpc + baseaddr;
1966 pst->texthigh = comp_unit_die.highpc + baseaddr;
1967
1968 pst->n_global_syms = objfile->global_psymbols.next -
1969 (objfile->global_psymbols.list + pst->globals_offset);
1970 pst->n_static_syms = objfile->static_psymbols.next -
1971 (objfile->static_psymbols.list + pst->statics_offset);
1972 sort_pst_symbols (pst);
1973
1974 /* If there is already a psymtab or symtab for a file of this
1975 name, remove it. (If there is a symtab, more drastic things
1976 also happen.) This happens in VxWorks. */
1977 if (! this_cu->from_debug_types)
1978 free_named_symtabs (pst->filename);
1979
1980 info_ptr = (beg_of_comp_unit + cu.header.length
1981 + cu.header.initial_length_size);
1982
1983 if (this_cu->from_debug_types)
1984 {
1985 /* It's not clear we want to do anything with stmt lists here.
1986 Waiting to see what gcc ultimately does. */
1987 }
1988 else if (comp_unit_die.has_stmt_list)
1989 {
1990 /* Get the list of files included in the current compilation unit,
1991 and build a psymtab for each of them. */
1992 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1993 }
1994
1995 do_cleanups (back_to_inner);
1996
1997 return info_ptr;
1998 }
1999
2000 /* Traversal function for htab_traverse_noresize.
2001 Process one .debug_types comp-unit. */
2002
2003 static int
2004 process_type_comp_unit (void **slot, void *info)
2005 {
2006 struct signatured_type *entry = (struct signatured_type *) *slot;
2007 struct objfile *objfile = (struct objfile *) info;
2008 struct dwarf2_per_cu_data *this_cu;
2009
2010 this_cu = &entry->per_cu;
2011 this_cu->from_debug_types = 1;
2012
2013 process_psymtab_comp_unit (objfile, this_cu,
2014 dwarf2_per_objfile->types.buffer,
2015 dwarf2_per_objfile->types.buffer + entry->offset,
2016 dwarf2_per_objfile->types.size);
2017
2018 return 1;
2019 }
2020
2021 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
2022 Build partial symbol tables for the .debug_types comp-units. */
2023
2024 static void
2025 build_type_psymtabs (struct objfile *objfile)
2026 {
2027 if (! create_debug_types_hash_table (objfile))
2028 return;
2029
2030 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
2031 process_type_comp_unit, objfile);
2032 }
2033
2034 /* Build the partial symbol table by doing a quick pass through the
2035 .debug_info and .debug_abbrev sections. */
2036
2037 static void
2038 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
2039 {
2040 /* Instead of reading this into a big buffer, we should probably use
2041 mmap() on architectures that support it. (FIXME) */
2042 bfd *abfd = objfile->obfd;
2043 gdb_byte *info_ptr;
2044 struct cleanup *back_to;
2045
2046 info_ptr = dwarf2_per_objfile->info.buffer;
2047
2048 /* Any cached compilation units will be linked by the per-objfile
2049 read_in_chain. Make sure to free them when we're done. */
2050 back_to = make_cleanup (free_cached_comp_units, NULL);
2051
2052 build_type_psymtabs (objfile);
2053
2054 create_all_comp_units (objfile);
2055
2056 objfile->psymtabs_addrmap =
2057 addrmap_create_mutable (&objfile->objfile_obstack);
2058
2059 /* Since the objects we're extracting from .debug_info vary in
2060 length, only the individual functions to extract them (like
2061 read_comp_unit_head and load_partial_die) can really know whether
2062 the buffer is large enough to hold another complete object.
2063
2064 At the moment, they don't actually check that. If .debug_info
2065 holds just one extra byte after the last compilation unit's dies,
2066 then read_comp_unit_head will happily read off the end of the
2067 buffer. read_partial_die is similarly casual. Those functions
2068 should be fixed.
2069
2070 For this loop condition, simply checking whether there's any data
2071 left at all should be sufficient. */
2072
2073 while (info_ptr < (dwarf2_per_objfile->info.buffer
2074 + dwarf2_per_objfile->info.size))
2075 {
2076 struct dwarf2_per_cu_data *this_cu;
2077
2078 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
2079 objfile);
2080
2081 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
2082 dwarf2_per_objfile->info.buffer,
2083 info_ptr,
2084 dwarf2_per_objfile->info.size);
2085 }
2086
2087 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
2088 &objfile->objfile_obstack);
2089
2090 do_cleanups (back_to);
2091 }
2092
2093 /* Load the partial DIEs for a secondary CU into memory. */
2094
2095 static void
2096 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
2097 struct objfile *objfile)
2098 {
2099 bfd *abfd = objfile->obfd;
2100 gdb_byte *info_ptr, *beg_of_comp_unit;
2101 struct partial_die_info comp_unit_die;
2102 struct dwarf2_cu *cu;
2103 struct abbrev_info *abbrev;
2104 unsigned int bytes_read;
2105 struct cleanup *back_to;
2106
2107 gdb_assert (! this_cu->from_debug_types);
2108
2109 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
2110 beg_of_comp_unit = info_ptr;
2111
2112 cu = alloc_one_comp_unit (objfile);
2113
2114 /* ??? Missing cleanup for CU? */
2115
2116 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
2117 dwarf2_per_objfile->info.buffer,
2118 dwarf2_per_objfile->info.size,
2119 abfd);
2120
2121 /* Complete the cu_header. */
2122 cu->header.offset = this_cu->offset;
2123 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
2124
2125 /* Read the abbrevs for this compilation unit into a table. */
2126 dwarf2_read_abbrevs (abfd, cu);
2127 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2128
2129 /* Read the compilation unit die. */
2130 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2131 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read, abfd,
2132 dwarf2_per_objfile->info.buffer, info_ptr, cu);
2133
2134 /* Set the language we're debugging. */
2135 set_cu_language (comp_unit_die.language, cu);
2136
2137 /* Link this compilation unit into the compilation unit tree. */
2138 this_cu->cu = cu;
2139 cu->per_cu = this_cu;
2140 cu->type_hash = this_cu->type_hash;
2141
2142 /* Check if comp unit has_children.
2143 If so, read the rest of the partial symbols from this comp unit.
2144 If not, there's no more debug_info for this comp unit. */
2145 if (comp_unit_die.has_children)
2146 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
2147
2148 do_cleanups (back_to);
2149 }
2150
2151 /* Create a list of all compilation units in OBJFILE. We do this only
2152 if an inter-comp-unit reference is found; presumably if there is one,
2153 there will be many, and one will occur early in the .debug_info section.
2154 So there's no point in building this list incrementally. */
2155
2156 static void
2157 create_all_comp_units (struct objfile *objfile)
2158 {
2159 int n_allocated;
2160 int n_comp_units;
2161 struct dwarf2_per_cu_data **all_comp_units;
2162 gdb_byte *info_ptr = dwarf2_per_objfile->info.buffer;
2163
2164 n_comp_units = 0;
2165 n_allocated = 10;
2166 all_comp_units = xmalloc (n_allocated
2167 * sizeof (struct dwarf2_per_cu_data *));
2168
2169 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
2170 {
2171 unsigned int length, initial_length_size;
2172 gdb_byte *beg_of_comp_unit;
2173 struct dwarf2_per_cu_data *this_cu;
2174 unsigned int offset;
2175
2176 offset = info_ptr - dwarf2_per_objfile->info.buffer;
2177
2178 /* Read just enough information to find out where the next
2179 compilation unit is. */
2180 length = read_initial_length (objfile->obfd, info_ptr,
2181 &initial_length_size);
2182
2183 /* Save the compilation unit for later lookup. */
2184 this_cu = obstack_alloc (&objfile->objfile_obstack,
2185 sizeof (struct dwarf2_per_cu_data));
2186 memset (this_cu, 0, sizeof (*this_cu));
2187 this_cu->offset = offset;
2188 this_cu->length = length + initial_length_size;
2189
2190 if (n_comp_units == n_allocated)
2191 {
2192 n_allocated *= 2;
2193 all_comp_units = xrealloc (all_comp_units,
2194 n_allocated
2195 * sizeof (struct dwarf2_per_cu_data *));
2196 }
2197 all_comp_units[n_comp_units++] = this_cu;
2198
2199 info_ptr = info_ptr + this_cu->length;
2200 }
2201
2202 dwarf2_per_objfile->all_comp_units
2203 = obstack_alloc (&objfile->objfile_obstack,
2204 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2205 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
2206 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2207 xfree (all_comp_units);
2208 dwarf2_per_objfile->n_comp_units = n_comp_units;
2209 }
2210
2211 /* Process all loaded DIEs for compilation unit CU, starting at
2212 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
2213 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
2214 DW_AT_ranges). If NEED_PC is set, then this function will set
2215 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
2216 and record the covered ranges in the addrmap. */
2217
2218 static void
2219 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
2220 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
2221 {
2222 struct objfile *objfile = cu->objfile;
2223 bfd *abfd = objfile->obfd;
2224 struct partial_die_info *pdi;
2225
2226 /* Now, march along the PDI's, descending into ones which have
2227 interesting children but skipping the children of the other ones,
2228 until we reach the end of the compilation unit. */
2229
2230 pdi = first_die;
2231
2232 while (pdi != NULL)
2233 {
2234 fixup_partial_die (pdi, cu);
2235
2236 /* Anonymous namespaces have no name but have interesting
2237 children, so we need to look at them. Ditto for anonymous
2238 enums. */
2239
2240 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
2241 || pdi->tag == DW_TAG_enumeration_type)
2242 {
2243 switch (pdi->tag)
2244 {
2245 case DW_TAG_subprogram:
2246 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
2247 break;
2248 case DW_TAG_variable:
2249 case DW_TAG_typedef:
2250 case DW_TAG_union_type:
2251 if (!pdi->is_declaration)
2252 {
2253 add_partial_symbol (pdi, cu);
2254 }
2255 break;
2256 case DW_TAG_class_type:
2257 case DW_TAG_interface_type:
2258 case DW_TAG_structure_type:
2259 if (!pdi->is_declaration)
2260 {
2261 add_partial_symbol (pdi, cu);
2262 }
2263 break;
2264 case DW_TAG_enumeration_type:
2265 if (!pdi->is_declaration)
2266 add_partial_enumeration (pdi, cu);
2267 break;
2268 case DW_TAG_base_type:
2269 case DW_TAG_subrange_type:
2270 /* File scope base type definitions are added to the partial
2271 symbol table. */
2272 add_partial_symbol (pdi, cu);
2273 break;
2274 case DW_TAG_namespace:
2275 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
2276 break;
2277 case DW_TAG_module:
2278 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
2279 break;
2280 default:
2281 break;
2282 }
2283 }
2284
2285 /* If the die has a sibling, skip to the sibling. */
2286
2287 pdi = pdi->die_sibling;
2288 }
2289 }
2290
2291 /* Functions used to compute the fully scoped name of a partial DIE.
2292
2293 Normally, this is simple. For C++, the parent DIE's fully scoped
2294 name is concatenated with "::" and the partial DIE's name. For
2295 Java, the same thing occurs except that "." is used instead of "::".
2296 Enumerators are an exception; they use the scope of their parent
2297 enumeration type, i.e. the name of the enumeration type is not
2298 prepended to the enumerator.
2299
2300 There are two complexities. One is DW_AT_specification; in this
2301 case "parent" means the parent of the target of the specification,
2302 instead of the direct parent of the DIE. The other is compilers
2303 which do not emit DW_TAG_namespace; in this case we try to guess
2304 the fully qualified name of structure types from their members'
2305 linkage names. This must be done using the DIE's children rather
2306 than the children of any DW_AT_specification target. We only need
2307 to do this for structures at the top level, i.e. if the target of
2308 any DW_AT_specification (if any; otherwise the DIE itself) does not
2309 have a parent. */
2310
2311 /* Compute the scope prefix associated with PDI's parent, in
2312 compilation unit CU. The result will be allocated on CU's
2313 comp_unit_obstack, or a copy of the already allocated PDI->NAME
2314 field. NULL is returned if no prefix is necessary. */
2315 static char *
2316 partial_die_parent_scope (struct partial_die_info *pdi,
2317 struct dwarf2_cu *cu)
2318 {
2319 char *grandparent_scope;
2320 struct partial_die_info *parent, *real_pdi;
2321
2322 /* We need to look at our parent DIE; if we have a DW_AT_specification,
2323 then this means the parent of the specification DIE. */
2324
2325 real_pdi = pdi;
2326 while (real_pdi->has_specification)
2327 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2328
2329 parent = real_pdi->die_parent;
2330 if (parent == NULL)
2331 return NULL;
2332
2333 if (parent->scope_set)
2334 return parent->scope;
2335
2336 fixup_partial_die (parent, cu);
2337
2338 grandparent_scope = partial_die_parent_scope (parent, cu);
2339
2340 if (parent->tag == DW_TAG_namespace
2341 || parent->tag == DW_TAG_structure_type
2342 || parent->tag == DW_TAG_class_type
2343 || parent->tag == DW_TAG_interface_type
2344 || parent->tag == DW_TAG_union_type)
2345 {
2346 if (grandparent_scope == NULL)
2347 parent->scope = parent->name;
2348 else
2349 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
2350 parent->name, cu);
2351 }
2352 else if (parent->tag == DW_TAG_enumeration_type)
2353 /* Enumerators should not get the name of the enumeration as a prefix. */
2354 parent->scope = grandparent_scope;
2355 else
2356 {
2357 /* FIXME drow/2004-04-01: What should we be doing with
2358 function-local names? For partial symbols, we should probably be
2359 ignoring them. */
2360 complaint (&symfile_complaints,
2361 _("unhandled containing DIE tag %d for DIE at %d"),
2362 parent->tag, pdi->offset);
2363 parent->scope = grandparent_scope;
2364 }
2365
2366 parent->scope_set = 1;
2367 return parent->scope;
2368 }
2369
2370 /* Return the fully scoped name associated with PDI, from compilation unit
2371 CU. The result will be allocated with malloc. */
2372 static char *
2373 partial_die_full_name (struct partial_die_info *pdi,
2374 struct dwarf2_cu *cu)
2375 {
2376 char *parent_scope;
2377
2378 parent_scope = partial_die_parent_scope (pdi, cu);
2379 if (parent_scope == NULL)
2380 return NULL;
2381 else
2382 return typename_concat (NULL, parent_scope, pdi->name, cu);
2383 }
2384
2385 static void
2386 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
2387 {
2388 struct objfile *objfile = cu->objfile;
2389 CORE_ADDR addr = 0;
2390 char *actual_name = NULL;
2391 const char *my_prefix;
2392 const struct partial_symbol *psym = NULL;
2393 CORE_ADDR baseaddr;
2394 int built_actual_name = 0;
2395
2396 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2397
2398 if (pdi_needs_namespace (pdi->tag))
2399 {
2400 actual_name = partial_die_full_name (pdi, cu);
2401 if (actual_name)
2402 built_actual_name = 1;
2403 }
2404
2405 if (actual_name == NULL)
2406 actual_name = pdi->name;
2407
2408 switch (pdi->tag)
2409 {
2410 case DW_TAG_subprogram:
2411 if (pdi->is_external || cu->language == language_ada)
2412 {
2413 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
2414 of the global scope. But in Ada, we want to be able to access
2415 nested procedures globally. So all Ada subprograms are stored
2416 in the global scope. */
2417 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
2418 mst_text, objfile); */
2419 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2420 VAR_DOMAIN, LOC_BLOCK,
2421 &objfile->global_psymbols,
2422 0, pdi->lowpc + baseaddr,
2423 cu->language, objfile);
2424 }
2425 else
2426 {
2427 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
2428 mst_file_text, objfile); */
2429 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2430 VAR_DOMAIN, LOC_BLOCK,
2431 &objfile->static_psymbols,
2432 0, pdi->lowpc + baseaddr,
2433 cu->language, objfile);
2434 }
2435 break;
2436 case DW_TAG_variable:
2437 if (pdi->is_external)
2438 {
2439 /* Global Variable.
2440 Don't enter into the minimal symbol tables as there is
2441 a minimal symbol table entry from the ELF symbols already.
2442 Enter into partial symbol table if it has a location
2443 descriptor or a type.
2444 If the location descriptor is missing, new_symbol will create
2445 a LOC_UNRESOLVED symbol, the address of the variable will then
2446 be determined from the minimal symbol table whenever the variable
2447 is referenced.
2448 The address for the partial symbol table entry is not
2449 used by GDB, but it comes in handy for debugging partial symbol
2450 table building. */
2451
2452 if (pdi->locdesc)
2453 addr = decode_locdesc (pdi->locdesc, cu);
2454 if (pdi->locdesc || pdi->has_type)
2455 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2456 VAR_DOMAIN, LOC_STATIC,
2457 &objfile->global_psymbols,
2458 0, addr + baseaddr,
2459 cu->language, objfile);
2460 }
2461 else
2462 {
2463 /* Static Variable. Skip symbols without location descriptors. */
2464 if (pdi->locdesc == NULL)
2465 {
2466 if (built_actual_name)
2467 xfree (actual_name);
2468 return;
2469 }
2470 addr = decode_locdesc (pdi->locdesc, cu);
2471 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
2472 mst_file_data, objfile); */
2473 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2474 VAR_DOMAIN, LOC_STATIC,
2475 &objfile->static_psymbols,
2476 0, addr + baseaddr,
2477 cu->language, objfile);
2478 }
2479 break;
2480 case DW_TAG_typedef:
2481 case DW_TAG_base_type:
2482 case DW_TAG_subrange_type:
2483 add_psymbol_to_list (actual_name, strlen (actual_name),
2484 VAR_DOMAIN, LOC_TYPEDEF,
2485 &objfile->static_psymbols,
2486 0, (CORE_ADDR) 0, cu->language, objfile);
2487 break;
2488 case DW_TAG_namespace:
2489 add_psymbol_to_list (actual_name, strlen (actual_name),
2490 VAR_DOMAIN, LOC_TYPEDEF,
2491 &objfile->global_psymbols,
2492 0, (CORE_ADDR) 0, cu->language, objfile);
2493 break;
2494 case DW_TAG_class_type:
2495 case DW_TAG_interface_type:
2496 case DW_TAG_structure_type:
2497 case DW_TAG_union_type:
2498 case DW_TAG_enumeration_type:
2499 /* Skip external references. The DWARF standard says in the section
2500 about "Structure, Union, and Class Type Entries": "An incomplete
2501 structure, union or class type is represented by a structure,
2502 union or class entry that does not have a byte size attribute
2503 and that has a DW_AT_declaration attribute." */
2504 if (!pdi->has_byte_size && pdi->is_declaration)
2505 {
2506 if (built_actual_name)
2507 xfree (actual_name);
2508 return;
2509 }
2510
2511 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2512 static vs. global. */
2513 add_psymbol_to_list (actual_name, strlen (actual_name),
2514 STRUCT_DOMAIN, LOC_TYPEDEF,
2515 (cu->language == language_cplus
2516 || cu->language == language_java)
2517 ? &objfile->global_psymbols
2518 : &objfile->static_psymbols,
2519 0, (CORE_ADDR) 0, cu->language, objfile);
2520
2521 break;
2522 case DW_TAG_enumerator:
2523 add_psymbol_to_list (actual_name, strlen (actual_name),
2524 VAR_DOMAIN, LOC_CONST,
2525 (cu->language == language_cplus
2526 || cu->language == language_java)
2527 ? &objfile->global_psymbols
2528 : &objfile->static_psymbols,
2529 0, (CORE_ADDR) 0, cu->language, objfile);
2530 break;
2531 default:
2532 break;
2533 }
2534
2535 /* Check to see if we should scan the name for possible namespace
2536 info. Only do this if this is C++, if we don't have namespace
2537 debugging info in the file, if the psym is of an appropriate type
2538 (otherwise we'll have psym == NULL), and if we actually had a
2539 mangled name to begin with. */
2540
2541 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2542 cases which do not set PSYM above? */
2543
2544 if (cu->language == language_cplus
2545 && cu->has_namespace_info == 0
2546 && psym != NULL
2547 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2548 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2549 objfile);
2550
2551 if (built_actual_name)
2552 xfree (actual_name);
2553 }
2554
2555 /* Determine whether a die of type TAG living in a C++ class or
2556 namespace needs to have the name of the scope prepended to the
2557 name listed in the die. */
2558
2559 static int
2560 pdi_needs_namespace (enum dwarf_tag tag)
2561 {
2562 switch (tag)
2563 {
2564 case DW_TAG_namespace:
2565 case DW_TAG_typedef:
2566 case DW_TAG_class_type:
2567 case DW_TAG_interface_type:
2568 case DW_TAG_structure_type:
2569 case DW_TAG_union_type:
2570 case DW_TAG_enumeration_type:
2571 case DW_TAG_enumerator:
2572 return 1;
2573 default:
2574 return 0;
2575 }
2576 }
2577
2578 /* Read a partial die corresponding to a namespace; also, add a symbol
2579 corresponding to that namespace to the symbol table. NAMESPACE is
2580 the name of the enclosing namespace. */
2581
2582 static void
2583 add_partial_namespace (struct partial_die_info *pdi,
2584 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2585 int need_pc, struct dwarf2_cu *cu)
2586 {
2587 struct objfile *objfile = cu->objfile;
2588
2589 /* Add a symbol for the namespace. */
2590
2591 add_partial_symbol (pdi, cu);
2592
2593 /* Now scan partial symbols in that namespace. */
2594
2595 if (pdi->has_children)
2596 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
2597 }
2598
2599 /* Read a partial die corresponding to a Fortran module. */
2600
2601 static void
2602 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
2603 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
2604 {
2605 /* Now scan partial symbols in that module.
2606
2607 FIXME: Support the separate Fortran module namespaces. */
2608
2609 if (pdi->has_children)
2610 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
2611 }
2612
2613 /* Read a partial die corresponding to a subprogram and create a partial
2614 symbol for that subprogram. When the CU language allows it, this
2615 routine also defines a partial symbol for each nested subprogram
2616 that this subprogram contains.
2617
2618 DIE my also be a lexical block, in which case we simply search
2619 recursively for suprograms defined inside that lexical block.
2620 Again, this is only performed when the CU language allows this
2621 type of definitions. */
2622
2623 static void
2624 add_partial_subprogram (struct partial_die_info *pdi,
2625 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2626 int need_pc, struct dwarf2_cu *cu)
2627 {
2628 if (pdi->tag == DW_TAG_subprogram)
2629 {
2630 if (pdi->has_pc_info)
2631 {
2632 if (pdi->lowpc < *lowpc)
2633 *lowpc = pdi->lowpc;
2634 if (pdi->highpc > *highpc)
2635 *highpc = pdi->highpc;
2636 if (need_pc)
2637 {
2638 CORE_ADDR baseaddr;
2639 struct objfile *objfile = cu->objfile;
2640
2641 baseaddr = ANOFFSET (objfile->section_offsets,
2642 SECT_OFF_TEXT (objfile));
2643 addrmap_set_empty (objfile->psymtabs_addrmap,
2644 pdi->lowpc, pdi->highpc - 1,
2645 cu->per_cu->psymtab);
2646 }
2647 if (!pdi->is_declaration)
2648 add_partial_symbol (pdi, cu);
2649 }
2650 }
2651
2652 if (! pdi->has_children)
2653 return;
2654
2655 if (cu->language == language_ada)
2656 {
2657 pdi = pdi->die_child;
2658 while (pdi != NULL)
2659 {
2660 fixup_partial_die (pdi, cu);
2661 if (pdi->tag == DW_TAG_subprogram
2662 || pdi->tag == DW_TAG_lexical_block)
2663 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
2664 pdi = pdi->die_sibling;
2665 }
2666 }
2667 }
2668
2669 /* See if we can figure out if the class lives in a namespace. We do
2670 this by looking for a member function; its demangled name will
2671 contain namespace info, if there is any. */
2672
2673 static void
2674 guess_structure_name (struct partial_die_info *struct_pdi,
2675 struct dwarf2_cu *cu)
2676 {
2677 if ((cu->language == language_cplus
2678 || cu->language == language_java)
2679 && cu->has_namespace_info == 0
2680 && struct_pdi->has_children)
2681 {
2682 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2683 what template types look like, because the demangler
2684 frequently doesn't give the same name as the debug info. We
2685 could fix this by only using the demangled name to get the
2686 prefix (but see comment in read_structure_type). */
2687
2688 struct partial_die_info *child_pdi = struct_pdi->die_child;
2689 struct partial_die_info *real_pdi;
2690
2691 /* If this DIE (this DIE's specification, if any) has a parent, then
2692 we should not do this. We'll prepend the parent's fully qualified
2693 name when we create the partial symbol. */
2694
2695 real_pdi = struct_pdi;
2696 while (real_pdi->has_specification)
2697 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2698
2699 if (real_pdi->die_parent != NULL)
2700 return;
2701
2702 while (child_pdi != NULL)
2703 {
2704 if (child_pdi->tag == DW_TAG_subprogram)
2705 {
2706 char *actual_class_name
2707 = language_class_name_from_physname (cu->language_defn,
2708 child_pdi->name);
2709 if (actual_class_name != NULL)
2710 {
2711 struct_pdi->name
2712 = obsavestring (actual_class_name,
2713 strlen (actual_class_name),
2714 &cu->comp_unit_obstack);
2715 xfree (actual_class_name);
2716 }
2717 break;
2718 }
2719
2720 child_pdi = child_pdi->die_sibling;
2721 }
2722 }
2723 }
2724
2725 /* Read a partial die corresponding to an enumeration type. */
2726
2727 static void
2728 add_partial_enumeration (struct partial_die_info *enum_pdi,
2729 struct dwarf2_cu *cu)
2730 {
2731 struct objfile *objfile = cu->objfile;
2732 bfd *abfd = objfile->obfd;
2733 struct partial_die_info *pdi;
2734
2735 if (enum_pdi->name != NULL)
2736 add_partial_symbol (enum_pdi, cu);
2737
2738 pdi = enum_pdi->die_child;
2739 while (pdi)
2740 {
2741 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2742 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2743 else
2744 add_partial_symbol (pdi, cu);
2745 pdi = pdi->die_sibling;
2746 }
2747 }
2748
2749 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2750 Return the corresponding abbrev, or NULL if the number is zero (indicating
2751 an empty DIE). In either case *BYTES_READ will be set to the length of
2752 the initial number. */
2753
2754 static struct abbrev_info *
2755 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2756 struct dwarf2_cu *cu)
2757 {
2758 bfd *abfd = cu->objfile->obfd;
2759 unsigned int abbrev_number;
2760 struct abbrev_info *abbrev;
2761
2762 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2763
2764 if (abbrev_number == 0)
2765 return NULL;
2766
2767 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2768 if (!abbrev)
2769 {
2770 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2771 bfd_get_filename (abfd));
2772 }
2773
2774 return abbrev;
2775 }
2776
2777 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2778 Returns a pointer to the end of a series of DIEs, terminated by an empty
2779 DIE. Any children of the skipped DIEs will also be skipped. */
2780
2781 static gdb_byte *
2782 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
2783 {
2784 struct abbrev_info *abbrev;
2785 unsigned int bytes_read;
2786
2787 while (1)
2788 {
2789 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2790 if (abbrev == NULL)
2791 return info_ptr + bytes_read;
2792 else
2793 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
2794 }
2795 }
2796
2797 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2798 INFO_PTR should point just after the initial uleb128 of a DIE, and the
2799 abbrev corresponding to that skipped uleb128 should be passed in
2800 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2801 children. */
2802
2803 static gdb_byte *
2804 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
2805 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
2806 {
2807 unsigned int bytes_read;
2808 struct attribute attr;
2809 bfd *abfd = cu->objfile->obfd;
2810 unsigned int form, i;
2811
2812 for (i = 0; i < abbrev->num_attrs; i++)
2813 {
2814 /* The only abbrev we care about is DW_AT_sibling. */
2815 if (abbrev->attrs[i].name == DW_AT_sibling)
2816 {
2817 read_attribute (&attr, &abbrev->attrs[i],
2818 abfd, info_ptr, cu);
2819 if (attr.form == DW_FORM_ref_addr)
2820 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2821 else
2822 return buffer + dwarf2_get_ref_die_offset (&attr);
2823 }
2824
2825 /* If it isn't DW_AT_sibling, skip this attribute. */
2826 form = abbrev->attrs[i].form;
2827 skip_attribute:
2828 switch (form)
2829 {
2830 case DW_FORM_addr:
2831 case DW_FORM_ref_addr:
2832 info_ptr += cu->header.addr_size;
2833 break;
2834 case DW_FORM_data1:
2835 case DW_FORM_ref1:
2836 case DW_FORM_flag:
2837 info_ptr += 1;
2838 break;
2839 case DW_FORM_data2:
2840 case DW_FORM_ref2:
2841 info_ptr += 2;
2842 break;
2843 case DW_FORM_data4:
2844 case DW_FORM_ref4:
2845 info_ptr += 4;
2846 break;
2847 case DW_FORM_data8:
2848 case DW_FORM_ref8:
2849 case DW_FORM_sig8:
2850 info_ptr += 8;
2851 break;
2852 case DW_FORM_string:
2853 read_string (abfd, info_ptr, &bytes_read);
2854 info_ptr += bytes_read;
2855 break;
2856 case DW_FORM_strp:
2857 info_ptr += cu->header.offset_size;
2858 break;
2859 case DW_FORM_block:
2860 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2861 info_ptr += bytes_read;
2862 break;
2863 case DW_FORM_block1:
2864 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2865 break;
2866 case DW_FORM_block2:
2867 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2868 break;
2869 case DW_FORM_block4:
2870 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2871 break;
2872 case DW_FORM_sdata:
2873 case DW_FORM_udata:
2874 case DW_FORM_ref_udata:
2875 info_ptr = skip_leb128 (abfd, info_ptr);
2876 break;
2877 case DW_FORM_indirect:
2878 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2879 info_ptr += bytes_read;
2880 /* We need to continue parsing from here, so just go back to
2881 the top. */
2882 goto skip_attribute;
2883
2884 default:
2885 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2886 dwarf_form_name (form),
2887 bfd_get_filename (abfd));
2888 }
2889 }
2890
2891 if (abbrev->has_children)
2892 return skip_children (buffer, info_ptr, cu);
2893 else
2894 return info_ptr;
2895 }
2896
2897 /* Locate ORIG_PDI's sibling.
2898 INFO_PTR should point to the start of the next DIE after ORIG_PDI
2899 in BUFFER. */
2900
2901 static gdb_byte *
2902 locate_pdi_sibling (struct partial_die_info *orig_pdi,
2903 gdb_byte *buffer, gdb_byte *info_ptr,
2904 bfd *abfd, struct dwarf2_cu *cu)
2905 {
2906 /* Do we know the sibling already? */
2907
2908 if (orig_pdi->sibling)
2909 return orig_pdi->sibling;
2910
2911 /* Are there any children to deal with? */
2912
2913 if (!orig_pdi->has_children)
2914 return info_ptr;
2915
2916 /* Skip the children the long way. */
2917
2918 return skip_children (buffer, info_ptr, cu);
2919 }
2920
2921 /* Expand this partial symbol table into a full symbol table. */
2922
2923 static void
2924 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2925 {
2926 /* FIXME: This is barely more than a stub. */
2927 if (pst != NULL)
2928 {
2929 if (pst->readin)
2930 {
2931 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2932 }
2933 else
2934 {
2935 if (info_verbose)
2936 {
2937 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2938 gdb_flush (gdb_stdout);
2939 }
2940
2941 /* Restore our global data. */
2942 dwarf2_per_objfile = objfile_data (pst->objfile,
2943 dwarf2_objfile_data_key);
2944
2945 /* If this psymtab is constructed from a debug-only objfile, the
2946 has_section_at_zero flag will not necessarily be correct. We
2947 can get the correct value for this flag by looking at the data
2948 associated with the (presumably stripped) associated objfile. */
2949 if (pst->objfile->separate_debug_objfile_backlink)
2950 {
2951 struct dwarf2_per_objfile *dpo_backlink
2952 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
2953 dwarf2_objfile_data_key);
2954 dwarf2_per_objfile->has_section_at_zero
2955 = dpo_backlink->has_section_at_zero;
2956 }
2957
2958 psymtab_to_symtab_1 (pst);
2959
2960 /* Finish up the debug error message. */
2961 if (info_verbose)
2962 printf_filtered (_("done.\n"));
2963 }
2964 }
2965 }
2966
2967 /* Add PER_CU to the queue. */
2968
2969 static void
2970 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
2971 {
2972 struct dwarf2_queue_item *item;
2973
2974 per_cu->queued = 1;
2975 item = xmalloc (sizeof (*item));
2976 item->per_cu = per_cu;
2977 item->next = NULL;
2978
2979 if (dwarf2_queue == NULL)
2980 dwarf2_queue = item;
2981 else
2982 dwarf2_queue_tail->next = item;
2983
2984 dwarf2_queue_tail = item;
2985 }
2986
2987 /* Process the queue. */
2988
2989 static void
2990 process_queue (struct objfile *objfile)
2991 {
2992 struct dwarf2_queue_item *item, *next_item;
2993
2994 /* The queue starts out with one item, but following a DIE reference
2995 may load a new CU, adding it to the end of the queue. */
2996 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2997 {
2998 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
2999 process_full_comp_unit (item->per_cu);
3000
3001 item->per_cu->queued = 0;
3002 next_item = item->next;
3003 xfree (item);
3004 }
3005
3006 dwarf2_queue_tail = NULL;
3007 }
3008
3009 /* Free all allocated queue entries. This function only releases anything if
3010 an error was thrown; if the queue was processed then it would have been
3011 freed as we went along. */
3012
3013 static void
3014 dwarf2_release_queue (void *dummy)
3015 {
3016 struct dwarf2_queue_item *item, *last;
3017
3018 item = dwarf2_queue;
3019 while (item)
3020 {
3021 /* Anything still marked queued is likely to be in an
3022 inconsistent state, so discard it. */
3023 if (item->per_cu->queued)
3024 {
3025 if (item->per_cu->cu != NULL)
3026 free_one_cached_comp_unit (item->per_cu->cu);
3027 item->per_cu->queued = 0;
3028 }
3029
3030 last = item;
3031 item = item->next;
3032 xfree (last);
3033 }
3034
3035 dwarf2_queue = dwarf2_queue_tail = NULL;
3036 }
3037
3038 /* Read in full symbols for PST, and anything it depends on. */
3039
3040 static void
3041 psymtab_to_symtab_1 (struct partial_symtab *pst)
3042 {
3043 struct dwarf2_per_cu_data *per_cu;
3044 struct cleanup *back_to;
3045 int i;
3046
3047 for (i = 0; i < pst->number_of_dependencies; i++)
3048 if (!pst->dependencies[i]->readin)
3049 {
3050 /* Inform about additional files that need to be read in. */
3051 if (info_verbose)
3052 {
3053 /* FIXME: i18n: Need to make this a single string. */
3054 fputs_filtered (" ", gdb_stdout);
3055 wrap_here ("");
3056 fputs_filtered ("and ", gdb_stdout);
3057 wrap_here ("");
3058 printf_filtered ("%s...", pst->dependencies[i]->filename);
3059 wrap_here (""); /* Flush output */
3060 gdb_flush (gdb_stdout);
3061 }
3062 psymtab_to_symtab_1 (pst->dependencies[i]);
3063 }
3064
3065 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
3066
3067 if (per_cu == NULL)
3068 {
3069 /* It's an include file, no symbols to read for it.
3070 Everything is in the parent symtab. */
3071 pst->readin = 1;
3072 return;
3073 }
3074
3075 back_to = make_cleanup (dwarf2_release_queue, NULL);
3076
3077 queue_comp_unit (per_cu, pst->objfile);
3078
3079 if (per_cu->from_debug_types)
3080 read_signatured_type_at_offset (pst->objfile, per_cu->offset);
3081 else
3082 load_full_comp_unit (per_cu, pst->objfile);
3083
3084 process_queue (pst->objfile);
3085
3086 /* Age the cache, releasing compilation units that have not
3087 been used recently. */
3088 age_cached_comp_units ();
3089
3090 do_cleanups (back_to);
3091 }
3092
3093 /* Load the DIEs associated with PER_CU into memory. */
3094
3095 static void
3096 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
3097 {
3098 bfd *abfd = objfile->obfd;
3099 struct dwarf2_cu *cu;
3100 unsigned int offset;
3101 gdb_byte *info_ptr, *beg_of_comp_unit;
3102 struct cleanup *back_to, *free_cu_cleanup;
3103 struct attribute *attr;
3104 CORE_ADDR baseaddr;
3105
3106 gdb_assert (! per_cu->from_debug_types);
3107
3108 /* Set local variables from the partial symbol table info. */
3109 offset = per_cu->offset;
3110
3111 info_ptr = dwarf2_per_objfile->info.buffer + offset;
3112 beg_of_comp_unit = info_ptr;
3113
3114 cu = alloc_one_comp_unit (objfile);
3115
3116 /* If an error occurs while loading, release our storage. */
3117 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3118
3119 /* Read in the comp_unit header. */
3120 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
3121
3122 /* Complete the cu_header. */
3123 cu->header.offset = offset;
3124 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3125
3126 /* Read the abbrevs for this compilation unit. */
3127 dwarf2_read_abbrevs (abfd, cu);
3128 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
3129
3130 /* Link this compilation unit into the compilation unit tree. */
3131 per_cu->cu = cu;
3132 cu->per_cu = per_cu;
3133 cu->type_hash = per_cu->type_hash;
3134
3135 cu->dies = read_comp_unit (info_ptr, cu);
3136
3137 /* We try not to read any attributes in this function, because not
3138 all objfiles needed for references have been loaded yet, and symbol
3139 table processing isn't initialized. But we have to set the CU language,
3140 or we won't be able to build types correctly. */
3141 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
3142 if (attr)
3143 set_cu_language (DW_UNSND (attr), cu);
3144 else
3145 set_cu_language (language_minimal, cu);
3146
3147 /* Link this CU into read_in_chain. */
3148 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3149 dwarf2_per_objfile->read_in_chain = per_cu;
3150
3151 do_cleanups (back_to);
3152
3153 /* We've successfully allocated this compilation unit. Let our caller
3154 clean it up when finished with it. */
3155 discard_cleanups (free_cu_cleanup);
3156 }
3157
3158 /* Generate full symbol information for PST and CU, whose DIEs have
3159 already been loaded into memory. */
3160
3161 static void
3162 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
3163 {
3164 struct partial_symtab *pst = per_cu->psymtab;
3165 struct dwarf2_cu *cu = per_cu->cu;
3166 struct objfile *objfile = pst->objfile;
3167 bfd *abfd = objfile->obfd;
3168 CORE_ADDR lowpc, highpc;
3169 struct symtab *symtab;
3170 struct cleanup *back_to;
3171 struct attribute *attr;
3172 CORE_ADDR baseaddr;
3173
3174 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3175
3176 buildsym_init ();
3177 back_to = make_cleanup (really_free_pendings, NULL);
3178
3179 cu->list_in_scope = &file_symbols;
3180
3181 /* Find the base address of the compilation unit for range lists and
3182 location lists. It will normally be specified by DW_AT_low_pc.
3183 In DWARF-3 draft 4, the base address could be overridden by
3184 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3185 compilation units with discontinuous ranges. */
3186
3187 cu->base_known = 0;
3188 cu->base_address = 0;
3189
3190 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
3191 if (attr)
3192 {
3193 cu->base_address = DW_ADDR (attr);
3194 cu->base_known = 1;
3195 }
3196 else
3197 {
3198 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
3199 if (attr)
3200 {
3201 cu->base_address = DW_ADDR (attr);
3202 cu->base_known = 1;
3203 }
3204 }
3205
3206 /* Do line number decoding in read_file_scope () */
3207 process_die (cu->dies, cu);
3208
3209 /* Some compilers don't define a DW_AT_high_pc attribute for the
3210 compilation unit. If the DW_AT_high_pc is missing, synthesize
3211 it, by scanning the DIE's below the compilation unit. */
3212 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
3213
3214 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
3215
3216 /* Set symtab language to language from DW_AT_language.
3217 If the compilation is from a C file generated by language preprocessors,
3218 do not set the language if it was already deduced by start_subfile. */
3219 if (symtab != NULL
3220 && !(cu->language == language_c && symtab->language != language_c))
3221 {
3222 symtab->language = cu->language;
3223 }
3224 pst->symtab = symtab;
3225 pst->readin = 1;
3226
3227 do_cleanups (back_to);
3228 }
3229
3230 /* Process a die and its children. */
3231
3232 static void
3233 process_die (struct die_info *die, struct dwarf2_cu *cu)
3234 {
3235 switch (die->tag)
3236 {
3237 case DW_TAG_padding:
3238 break;
3239 case DW_TAG_compile_unit:
3240 read_file_scope (die, cu);
3241 break;
3242 case DW_TAG_type_unit:
3243 read_type_unit_scope (die, cu);
3244 break;
3245 case DW_TAG_subprogram:
3246 case DW_TAG_inlined_subroutine:
3247 read_func_scope (die, cu);
3248 break;
3249 case DW_TAG_lexical_block:
3250 case DW_TAG_try_block:
3251 case DW_TAG_catch_block:
3252 read_lexical_block_scope (die, cu);
3253 break;
3254 case DW_TAG_class_type:
3255 case DW_TAG_interface_type:
3256 case DW_TAG_structure_type:
3257 case DW_TAG_union_type:
3258 process_structure_scope (die, cu);
3259 break;
3260 case DW_TAG_enumeration_type:
3261 process_enumeration_scope (die, cu);
3262 break;
3263
3264 /* These dies have a type, but processing them does not create
3265 a symbol or recurse to process the children. Therefore we can
3266 read them on-demand through read_type_die. */
3267 case DW_TAG_subroutine_type:
3268 case DW_TAG_set_type:
3269 case DW_TAG_array_type:
3270 case DW_TAG_pointer_type:
3271 case DW_TAG_ptr_to_member_type:
3272 case DW_TAG_reference_type:
3273 case DW_TAG_string_type:
3274 break;
3275
3276 case DW_TAG_base_type:
3277 case DW_TAG_subrange_type:
3278 case DW_TAG_typedef:
3279 /* Add a typedef symbol for the type definition, if it has a
3280 DW_AT_name. */
3281 new_symbol (die, read_type_die (die, cu), cu);
3282 break;
3283 case DW_TAG_common_block:
3284 read_common_block (die, cu);
3285 break;
3286 case DW_TAG_common_inclusion:
3287 break;
3288 case DW_TAG_namespace:
3289 processing_has_namespace_info = 1;
3290 read_namespace (die, cu);
3291 break;
3292 case DW_TAG_module:
3293 read_module (die, cu);
3294 break;
3295 case DW_TAG_imported_declaration:
3296 case DW_TAG_imported_module:
3297 processing_has_namespace_info = 1;
3298 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
3299 || cu->language != language_fortran))
3300 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
3301 dwarf_tag_name (die->tag));
3302 read_import_statement (die, cu);
3303 break;
3304 default:
3305 new_symbol (die, NULL, cu);
3306 break;
3307 }
3308 }
3309
3310 /* Return the fully qualified name of DIE, based on its DW_AT_name.
3311 If scope qualifiers are appropriate they will be added. The result
3312 will be allocated on the objfile_obstack, or NULL if the DIE does
3313 not have a name. */
3314
3315 static const char *
3316 dwarf2_full_name (struct die_info *die, struct dwarf2_cu *cu)
3317 {
3318 struct attribute *attr;
3319 char *prefix, *name;
3320 struct ui_file *buf = NULL;
3321
3322 name = dwarf2_name (die, cu);
3323 if (!name)
3324 return NULL;
3325
3326 /* These are the only languages we know how to qualify names in. */
3327 if (cu->language != language_cplus
3328 && cu->language != language_java)
3329 return name;
3330
3331 /* If no prefix is necessary for this type of DIE, return the
3332 unqualified name. The other three tags listed could be handled
3333 in pdi_needs_namespace, but that requires broader changes. */
3334 if (!pdi_needs_namespace (die->tag)
3335 && die->tag != DW_TAG_subprogram
3336 && die->tag != DW_TAG_variable
3337 && die->tag != DW_TAG_member)
3338 return name;
3339
3340 prefix = determine_prefix (die, cu);
3341 if (*prefix != '\0')
3342 name = typename_concat (&cu->objfile->objfile_obstack, prefix,
3343 name, cu);
3344
3345 return name;
3346 }
3347
3348 /* Read the import statement specified by the given die and record it. */
3349
3350 static void
3351 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
3352 {
3353 struct attribute *import_attr;
3354 struct die_info *imported_die;
3355 const char *imported_name;
3356 const char *imported_name_prefix;
3357 const char *import_prefix;
3358 char *canonical_name;
3359
3360 import_attr = dwarf2_attr (die, DW_AT_import, cu);
3361 if (import_attr == NULL)
3362 {
3363 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
3364 dwarf_tag_name (die->tag));
3365 return;
3366 }
3367
3368 imported_die = follow_die_ref_or_sig (die, import_attr, &cu);
3369 imported_name = dwarf2_name (imported_die, cu);
3370 if (imported_name == NULL)
3371 {
3372 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
3373
3374 The import in the following code:
3375 namespace A
3376 {
3377 typedef int B;
3378 }
3379
3380 int main ()
3381 {
3382 using A::B;
3383 B b;
3384 return b;
3385 }
3386
3387 ...
3388 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
3389 <52> DW_AT_decl_file : 1
3390 <53> DW_AT_decl_line : 6
3391 <54> DW_AT_import : <0x75>
3392 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
3393 <59> DW_AT_name : B
3394 <5b> DW_AT_decl_file : 1
3395 <5c> DW_AT_decl_line : 2
3396 <5d> DW_AT_type : <0x6e>
3397 ...
3398 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
3399 <76> DW_AT_byte_size : 4
3400 <77> DW_AT_encoding : 5 (signed)
3401
3402 imports the wrong die ( 0x75 instead of 0x58 ).
3403 This case will be ignored until the gcc bug is fixed. */
3404 return;
3405 }
3406
3407 /* FIXME: dwarf2_name (die); for the local name after import. */
3408
3409 /* Figure out where the statement is being imported to. */
3410 import_prefix = determine_prefix (die, cu);
3411
3412 /* Figure out what the scope of the imported die is and prepend it
3413 to the name of the imported die. */
3414 imported_name_prefix = determine_prefix (imported_die, cu);
3415
3416 if (strlen (imported_name_prefix) > 0)
3417 {
3418 canonical_name = alloca (strlen (imported_name_prefix) + 2 + strlen (imported_name) + 1);
3419 strcpy (canonical_name, imported_name_prefix);
3420 strcat (canonical_name, "::");
3421 strcat (canonical_name, imported_name);
3422 }
3423 else
3424 {
3425 canonical_name = alloca (strlen (imported_name) + 1);
3426 strcpy (canonical_name, imported_name);
3427 }
3428
3429 using_directives = cp_add_using (import_prefix,canonical_name, using_directives);
3430 }
3431
3432 static void
3433 initialize_cu_func_list (struct dwarf2_cu *cu)
3434 {
3435 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
3436 }
3437
3438 static void
3439 free_cu_line_header (void *arg)
3440 {
3441 struct dwarf2_cu *cu = arg;
3442
3443 free_line_header (cu->line_header);
3444 cu->line_header = NULL;
3445 }
3446
3447 static void
3448 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
3449 {
3450 struct objfile *objfile = cu->objfile;
3451 struct comp_unit_head *cu_header = &cu->header;
3452 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3453 CORE_ADDR lowpc = ((CORE_ADDR) -1);
3454 CORE_ADDR highpc = ((CORE_ADDR) 0);
3455 struct attribute *attr;
3456 char *name = NULL;
3457 char *comp_dir = NULL;
3458 struct die_info *child_die;
3459 bfd *abfd = objfile->obfd;
3460 struct line_header *line_header = 0;
3461 CORE_ADDR baseaddr;
3462
3463 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3464
3465 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
3466
3467 /* If we didn't find a lowpc, set it to highpc to avoid complaints
3468 from finish_block. */
3469 if (lowpc == ((CORE_ADDR) -1))
3470 lowpc = highpc;
3471 lowpc += baseaddr;
3472 highpc += baseaddr;
3473
3474 /* Find the filename. Do not use dwarf2_name here, since the filename
3475 is not a source language identifier. */
3476 attr = dwarf2_attr (die, DW_AT_name, cu);
3477 if (attr)
3478 {
3479 name = DW_STRING (attr);
3480 }
3481
3482 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
3483 if (attr)
3484 comp_dir = DW_STRING (attr);
3485 else if (name != NULL && IS_ABSOLUTE_PATH (name))
3486 {
3487 comp_dir = ldirname (name);
3488 if (comp_dir != NULL)
3489 make_cleanup (xfree, comp_dir);
3490 }
3491 if (comp_dir != NULL)
3492 {
3493 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3494 directory, get rid of it. */
3495 char *cp = strchr (comp_dir, ':');
3496
3497 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3498 comp_dir = cp + 1;
3499 }
3500
3501 if (name == NULL)
3502 name = "<unknown>";
3503
3504 attr = dwarf2_attr (die, DW_AT_language, cu);
3505 if (attr)
3506 {
3507 set_cu_language (DW_UNSND (attr), cu);
3508 }
3509
3510 attr = dwarf2_attr (die, DW_AT_producer, cu);
3511 if (attr)
3512 cu->producer = DW_STRING (attr);
3513
3514 /* We assume that we're processing GCC output. */
3515 processing_gcc_compilation = 2;
3516
3517 processing_has_namespace_info = 0;
3518
3519 start_symtab (name, comp_dir, lowpc);
3520 record_debugformat ("DWARF 2");
3521 record_producer (cu->producer);
3522
3523 initialize_cu_func_list (cu);
3524
3525 /* Decode line number information if present. We do this before
3526 processing child DIEs, so that the line header table is available
3527 for DW_AT_decl_file. */
3528 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3529 if (attr)
3530 {
3531 unsigned int line_offset = DW_UNSND (attr);
3532 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
3533 if (line_header)
3534 {
3535 cu->line_header = line_header;
3536 make_cleanup (free_cu_line_header, cu);
3537 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
3538 }
3539 }
3540
3541 /* Process all dies in compilation unit. */
3542 if (die->child != NULL)
3543 {
3544 child_die = die->child;
3545 while (child_die && child_die->tag)
3546 {
3547 process_die (child_die, cu);
3548 child_die = sibling_die (child_die);
3549 }
3550 }
3551
3552 /* Decode macro information, if present. Dwarf 2 macro information
3553 refers to information in the line number info statement program
3554 header, so we can only read it if we've read the header
3555 successfully. */
3556 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
3557 if (attr && line_header)
3558 {
3559 unsigned int macro_offset = DW_UNSND (attr);
3560 dwarf_decode_macros (line_header, macro_offset,
3561 comp_dir, abfd, cu);
3562 }
3563 do_cleanups (back_to);
3564 }
3565
3566 /* For TUs we want to skip the first top level sibling if it's not the
3567 actual type being defined by this TU. In this case the first top
3568 level sibling is there to provide context only. */
3569
3570 static void
3571 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
3572 {
3573 struct objfile *objfile = cu->objfile;
3574 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3575 CORE_ADDR lowpc;
3576 struct attribute *attr;
3577 char *name = NULL;
3578 char *comp_dir = NULL;
3579 struct die_info *child_die;
3580 bfd *abfd = objfile->obfd;
3581 struct line_header *line_header = 0;
3582
3583 /* start_symtab needs a low pc, but we don't really have one.
3584 Do what read_file_scope would do in the absence of such info. */
3585 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3586
3587 /* Find the filename. Do not use dwarf2_name here, since the filename
3588 is not a source language identifier. */
3589 attr = dwarf2_attr (die, DW_AT_name, cu);
3590 if (attr)
3591 name = DW_STRING (attr);
3592
3593 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
3594 if (attr)
3595 comp_dir = DW_STRING (attr);
3596 else if (name != NULL && IS_ABSOLUTE_PATH (name))
3597 {
3598 comp_dir = ldirname (name);
3599 if (comp_dir != NULL)
3600 make_cleanup (xfree, comp_dir);
3601 }
3602
3603 if (name == NULL)
3604 name = "<unknown>";
3605
3606 attr = dwarf2_attr (die, DW_AT_language, cu);
3607 if (attr)
3608 set_cu_language (DW_UNSND (attr), cu);
3609
3610 /* This isn't technically needed today. It is done for symmetry
3611 with read_file_scope. */
3612 attr = dwarf2_attr (die, DW_AT_producer, cu);
3613 if (attr)
3614 cu->producer = DW_STRING (attr);
3615
3616 /* We assume that we're processing GCC output. */
3617 processing_gcc_compilation = 2;
3618
3619 processing_has_namespace_info = 0;
3620
3621 start_symtab (name, comp_dir, lowpc);
3622 record_debugformat ("DWARF 2");
3623 record_producer (cu->producer);
3624
3625 /* Process the dies in the type unit. */
3626 if (die->child == NULL)
3627 {
3628 dump_die_for_error (die);
3629 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
3630 bfd_get_filename (abfd));
3631 }
3632
3633 child_die = die->child;
3634
3635 while (child_die && child_die->tag)
3636 {
3637 process_die (child_die, cu);
3638
3639 child_die = sibling_die (child_die);
3640 }
3641
3642 do_cleanups (back_to);
3643 }
3644
3645 static void
3646 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
3647 struct dwarf2_cu *cu)
3648 {
3649 struct function_range *thisfn;
3650
3651 thisfn = (struct function_range *)
3652 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
3653 thisfn->name = name;
3654 thisfn->lowpc = lowpc;
3655 thisfn->highpc = highpc;
3656 thisfn->seen_line = 0;
3657 thisfn->next = NULL;
3658
3659 if (cu->last_fn == NULL)
3660 cu->first_fn = thisfn;
3661 else
3662 cu->last_fn->next = thisfn;
3663
3664 cu->last_fn = thisfn;
3665 }
3666
3667 /* qsort helper for inherit_abstract_dies. */
3668
3669 static int
3670 unsigned_int_compar (const void *ap, const void *bp)
3671 {
3672 unsigned int a = *(unsigned int *) ap;
3673 unsigned int b = *(unsigned int *) bp;
3674
3675 return (a > b) - (b > a);
3676 }
3677
3678 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3679 Inherit only the children of the DW_AT_abstract_origin DIE not being already
3680 referenced by DW_AT_abstract_origin from the children of the current DIE. */
3681
3682 static void
3683 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
3684 {
3685 struct die_info *child_die;
3686 unsigned die_children_count;
3687 /* CU offsets which were referenced by children of the current DIE. */
3688 unsigned *offsets;
3689 unsigned *offsets_end, *offsetp;
3690 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
3691 struct die_info *origin_die;
3692 /* Iterator of the ORIGIN_DIE children. */
3693 struct die_info *origin_child_die;
3694 struct cleanup *cleanups;
3695 struct attribute *attr;
3696
3697 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
3698 if (!attr)
3699 return;
3700
3701 origin_die = follow_die_ref (die, attr, &cu);
3702 if (die->tag != origin_die->tag
3703 && !(die->tag == DW_TAG_inlined_subroutine
3704 && origin_die->tag == DW_TAG_subprogram))
3705 complaint (&symfile_complaints,
3706 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
3707 die->offset, origin_die->offset);
3708
3709 child_die = die->child;
3710 die_children_count = 0;
3711 while (child_die && child_die->tag)
3712 {
3713 child_die = sibling_die (child_die);
3714 die_children_count++;
3715 }
3716 offsets = xmalloc (sizeof (*offsets) * die_children_count);
3717 cleanups = make_cleanup (xfree, offsets);
3718
3719 offsets_end = offsets;
3720 child_die = die->child;
3721 while (child_die && child_die->tag)
3722 {
3723 /* For each CHILD_DIE, find the corresponding child of
3724 ORIGIN_DIE. If there is more than one layer of
3725 DW_AT_abstract_origin, follow them all; there shouldn't be,
3726 but GCC versions at least through 4.4 generate this (GCC PR
3727 40573). */
3728 struct die_info *child_origin_die = child_die;
3729 while (1)
3730 {
3731 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin, cu);
3732 if (attr == NULL)
3733 break;
3734 child_origin_die = follow_die_ref (child_origin_die, attr, &cu);
3735 }
3736
3737 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
3738 counterpart may exist. */
3739 if (child_origin_die != child_die)
3740 {
3741 if (child_die->tag != child_origin_die->tag
3742 && !(child_die->tag == DW_TAG_inlined_subroutine
3743 && child_origin_die->tag == DW_TAG_subprogram))
3744 complaint (&symfile_complaints,
3745 _("Child DIE 0x%x and its abstract origin 0x%x have "
3746 "different tags"), child_die->offset,
3747 child_origin_die->offset);
3748 if (child_origin_die->parent != origin_die)
3749 complaint (&symfile_complaints,
3750 _("Child DIE 0x%x and its abstract origin 0x%x have "
3751 "different parents"), child_die->offset,
3752 child_origin_die->offset);
3753 else
3754 *offsets_end++ = child_origin_die->offset;
3755 }
3756 child_die = sibling_die (child_die);
3757 }
3758 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
3759 unsigned_int_compar);
3760 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
3761 if (offsetp[-1] == *offsetp)
3762 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
3763 "to DIE 0x%x as their abstract origin"),
3764 die->offset, *offsetp);
3765
3766 offsetp = offsets;
3767 origin_child_die = origin_die->child;
3768 while (origin_child_die && origin_child_die->tag)
3769 {
3770 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
3771 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
3772 offsetp++;
3773 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
3774 {
3775 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
3776 process_die (origin_child_die, cu);
3777 }
3778 origin_child_die = sibling_die (origin_child_die);
3779 }
3780
3781 do_cleanups (cleanups);
3782 }
3783
3784 static void
3785 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
3786 {
3787 struct objfile *objfile = cu->objfile;
3788 struct context_stack *new;
3789 CORE_ADDR lowpc;
3790 CORE_ADDR highpc;
3791 struct die_info *child_die;
3792 struct attribute *attr, *call_line, *call_file;
3793 char *name;
3794 CORE_ADDR baseaddr;
3795 struct block *block;
3796 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
3797
3798 if (inlined_func)
3799 {
3800 /* If we do not have call site information, we can't show the
3801 caller of this inlined function. That's too confusing, so
3802 only use the scope for local variables. */
3803 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
3804 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
3805 if (call_line == NULL || call_file == NULL)
3806 {
3807 read_lexical_block_scope (die, cu);
3808 return;
3809 }
3810 }
3811
3812 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3813
3814 name = dwarf2_linkage_name (die, cu);
3815
3816 /* Ignore functions with missing or empty names and functions with
3817 missing or invalid low and high pc attributes. */
3818 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3819 return;
3820
3821 lowpc += baseaddr;
3822 highpc += baseaddr;
3823
3824 /* Record the function range for dwarf_decode_lines. */
3825 add_to_cu_func_list (name, lowpc, highpc, cu);
3826
3827 new = push_context (0, lowpc);
3828 new->name = new_symbol (die, read_type_die (die, cu), cu);
3829
3830 /* If there is a location expression for DW_AT_frame_base, record
3831 it. */
3832 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
3833 if (attr)
3834 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
3835 expression is being recorded directly in the function's symbol
3836 and not in a separate frame-base object. I guess this hack is
3837 to avoid adding some sort of frame-base adjunct/annex to the
3838 function's symbol :-(. The problem with doing this is that it
3839 results in a function symbol with a location expression that
3840 has nothing to do with the location of the function, ouch! The
3841 relationship should be: a function's symbol has-a frame base; a
3842 frame-base has-a location expression. */
3843 dwarf2_symbol_mark_computed (attr, new->name, cu);
3844
3845 cu->list_in_scope = &local_symbols;
3846
3847 if (die->child != NULL)
3848 {
3849 child_die = die->child;
3850 while (child_die && child_die->tag)
3851 {
3852 process_die (child_die, cu);
3853 child_die = sibling_die (child_die);
3854 }
3855 }
3856
3857 inherit_abstract_dies (die, cu);
3858
3859 new = pop_context ();
3860 /* Make a block for the local symbols within. */
3861 block = finish_block (new->name, &local_symbols, new->old_blocks,
3862 lowpc, highpc, objfile);
3863
3864 /* For C++, set the block's scope. */
3865 if (cu->language == language_cplus)
3866 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
3867 determine_prefix (die, cu),
3868 processing_has_namespace_info);
3869
3870 /* If we have address ranges, record them. */
3871 dwarf2_record_block_ranges (die, block, baseaddr, cu);
3872
3873 /* In C++, we can have functions nested inside functions (e.g., when
3874 a function declares a class that has methods). This means that
3875 when we finish processing a function scope, we may need to go
3876 back to building a containing block's symbol lists. */
3877 local_symbols = new->locals;
3878 param_symbols = new->params;
3879 using_directives = new->using_directives;
3880
3881 /* If we've finished processing a top-level function, subsequent
3882 symbols go in the file symbol list. */
3883 if (outermost_context_p ())
3884 cu->list_in_scope = &file_symbols;
3885 }
3886
3887 /* Process all the DIES contained within a lexical block scope. Start
3888 a new scope, process the dies, and then close the scope. */
3889
3890 static void
3891 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
3892 {
3893 struct objfile *objfile = cu->objfile;
3894 struct context_stack *new;
3895 CORE_ADDR lowpc, highpc;
3896 struct die_info *child_die;
3897 CORE_ADDR baseaddr;
3898
3899 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3900
3901 /* Ignore blocks with missing or invalid low and high pc attributes. */
3902 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3903 as multiple lexical blocks? Handling children in a sane way would
3904 be nasty. Might be easier to properly extend generic blocks to
3905 describe ranges. */
3906 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3907 return;
3908 lowpc += baseaddr;
3909 highpc += baseaddr;
3910
3911 push_context (0, lowpc);
3912 if (die->child != NULL)
3913 {
3914 child_die = die->child;
3915 while (child_die && child_die->tag)
3916 {
3917 process_die (child_die, cu);
3918 child_die = sibling_die (child_die);
3919 }
3920 }
3921 new = pop_context ();
3922
3923 if (local_symbols != NULL)
3924 {
3925 struct block *block
3926 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3927 highpc, objfile);
3928
3929 /* Note that recording ranges after traversing children, as we
3930 do here, means that recording a parent's ranges entails
3931 walking across all its children's ranges as they appear in
3932 the address map, which is quadratic behavior.
3933
3934 It would be nicer to record the parent's ranges before
3935 traversing its children, simply overriding whatever you find
3936 there. But since we don't even decide whether to create a
3937 block until after we've traversed its children, that's hard
3938 to do. */
3939 dwarf2_record_block_ranges (die, block, baseaddr, cu);
3940 }
3941 local_symbols = new->locals;
3942 using_directives = new->using_directives;
3943 }
3944
3945 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
3946 Return 1 if the attributes are present and valid, otherwise, return 0.
3947 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
3948
3949 static int
3950 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
3951 CORE_ADDR *high_return, struct dwarf2_cu *cu,
3952 struct partial_symtab *ranges_pst)
3953 {
3954 struct objfile *objfile = cu->objfile;
3955 struct comp_unit_head *cu_header = &cu->header;
3956 bfd *obfd = objfile->obfd;
3957 unsigned int addr_size = cu_header->addr_size;
3958 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3959 /* Base address selection entry. */
3960 CORE_ADDR base;
3961 int found_base;
3962 unsigned int dummy;
3963 gdb_byte *buffer;
3964 CORE_ADDR marker;
3965 int low_set;
3966 CORE_ADDR low = 0;
3967 CORE_ADDR high = 0;
3968 CORE_ADDR baseaddr;
3969
3970 found_base = cu->base_known;
3971 base = cu->base_address;
3972
3973 if (offset >= dwarf2_per_objfile->ranges.size)
3974 {
3975 complaint (&symfile_complaints,
3976 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3977 offset);
3978 return 0;
3979 }
3980 buffer = dwarf2_per_objfile->ranges.buffer + offset;
3981
3982 /* Read in the largest possible address. */
3983 marker = read_address (obfd, buffer, cu, &dummy);
3984 if ((marker & mask) == mask)
3985 {
3986 /* If we found the largest possible address, then
3987 read the base address. */
3988 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3989 buffer += 2 * addr_size;
3990 offset += 2 * addr_size;
3991 found_base = 1;
3992 }
3993
3994 low_set = 0;
3995
3996 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3997
3998 while (1)
3999 {
4000 CORE_ADDR range_beginning, range_end;
4001
4002 range_beginning = read_address (obfd, buffer, cu, &dummy);
4003 buffer += addr_size;
4004 range_end = read_address (obfd, buffer, cu, &dummy);
4005 buffer += addr_size;
4006 offset += 2 * addr_size;
4007
4008 /* An end of list marker is a pair of zero addresses. */
4009 if (range_beginning == 0 && range_end == 0)
4010 /* Found the end of list entry. */
4011 break;
4012
4013 /* Each base address selection entry is a pair of 2 values.
4014 The first is the largest possible address, the second is
4015 the base address. Check for a base address here. */
4016 if ((range_beginning & mask) == mask)
4017 {
4018 /* If we found the largest possible address, then
4019 read the base address. */
4020 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4021 found_base = 1;
4022 continue;
4023 }
4024
4025 if (!found_base)
4026 {
4027 /* We have no valid base address for the ranges
4028 data. */
4029 complaint (&symfile_complaints,
4030 _("Invalid .debug_ranges data (no base address)"));
4031 return 0;
4032 }
4033
4034 range_beginning += base;
4035 range_end += base;
4036
4037 if (ranges_pst != NULL && range_beginning < range_end)
4038 addrmap_set_empty (objfile->psymtabs_addrmap,
4039 range_beginning + baseaddr, range_end - 1 + baseaddr,
4040 ranges_pst);
4041
4042 /* FIXME: This is recording everything as a low-high
4043 segment of consecutive addresses. We should have a
4044 data structure for discontiguous block ranges
4045 instead. */
4046 if (! low_set)
4047 {
4048 low = range_beginning;
4049 high = range_end;
4050 low_set = 1;
4051 }
4052 else
4053 {
4054 if (range_beginning < low)
4055 low = range_beginning;
4056 if (range_end > high)
4057 high = range_end;
4058 }
4059 }
4060
4061 if (! low_set)
4062 /* If the first entry is an end-of-list marker, the range
4063 describes an empty scope, i.e. no instructions. */
4064 return 0;
4065
4066 if (low_return)
4067 *low_return = low;
4068 if (high_return)
4069 *high_return = high;
4070 return 1;
4071 }
4072
4073 /* Get low and high pc attributes from a die. Return 1 if the attributes
4074 are present and valid, otherwise, return 0. Return -1 if the range is
4075 discontinuous, i.e. derived from DW_AT_ranges information. */
4076 static int
4077 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
4078 CORE_ADDR *highpc, struct dwarf2_cu *cu)
4079 {
4080 struct attribute *attr;
4081 CORE_ADDR low = 0;
4082 CORE_ADDR high = 0;
4083 int ret = 0;
4084
4085 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
4086 if (attr)
4087 {
4088 high = DW_ADDR (attr);
4089 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4090 if (attr)
4091 low = DW_ADDR (attr);
4092 else
4093 /* Found high w/o low attribute. */
4094 return 0;
4095
4096 /* Found consecutive range of addresses. */
4097 ret = 1;
4098 }
4099 else
4100 {
4101 attr = dwarf2_attr (die, DW_AT_ranges, cu);
4102 if (attr != NULL)
4103 {
4104 /* Value of the DW_AT_ranges attribute is the offset in the
4105 .debug_ranges section. */
4106 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, NULL))
4107 return 0;
4108 /* Found discontinuous range of addresses. */
4109 ret = -1;
4110 }
4111 }
4112
4113 if (high < low)
4114 return 0;
4115
4116 /* When using the GNU linker, .gnu.linkonce. sections are used to
4117 eliminate duplicate copies of functions and vtables and such.
4118 The linker will arbitrarily choose one and discard the others.
4119 The AT_*_pc values for such functions refer to local labels in
4120 these sections. If the section from that file was discarded, the
4121 labels are not in the output, so the relocs get a value of 0.
4122 If this is a discarded function, mark the pc bounds as invalid,
4123 so that GDB will ignore it. */
4124 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
4125 return 0;
4126
4127 *lowpc = low;
4128 *highpc = high;
4129 return ret;
4130 }
4131
4132 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
4133 its low and high PC addresses. Do nothing if these addresses could not
4134 be determined. Otherwise, set LOWPC to the low address if it is smaller,
4135 and HIGHPC to the high address if greater than HIGHPC. */
4136
4137 static void
4138 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
4139 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4140 struct dwarf2_cu *cu)
4141 {
4142 CORE_ADDR low, high;
4143 struct die_info *child = die->child;
4144
4145 if (dwarf2_get_pc_bounds (die, &low, &high, cu))
4146 {
4147 *lowpc = min (*lowpc, low);
4148 *highpc = max (*highpc, high);
4149 }
4150
4151 /* If the language does not allow nested subprograms (either inside
4152 subprograms or lexical blocks), we're done. */
4153 if (cu->language != language_ada)
4154 return;
4155
4156 /* Check all the children of the given DIE. If it contains nested
4157 subprograms, then check their pc bounds. Likewise, we need to
4158 check lexical blocks as well, as they may also contain subprogram
4159 definitions. */
4160 while (child && child->tag)
4161 {
4162 if (child->tag == DW_TAG_subprogram
4163 || child->tag == DW_TAG_lexical_block)
4164 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
4165 child = sibling_die (child);
4166 }
4167 }
4168
4169 /* Get the low and high pc's represented by the scope DIE, and store
4170 them in *LOWPC and *HIGHPC. If the correct values can't be
4171 determined, set *LOWPC to -1 and *HIGHPC to 0. */
4172
4173 static void
4174 get_scope_pc_bounds (struct die_info *die,
4175 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4176 struct dwarf2_cu *cu)
4177 {
4178 CORE_ADDR best_low = (CORE_ADDR) -1;
4179 CORE_ADDR best_high = (CORE_ADDR) 0;
4180 CORE_ADDR current_low, current_high;
4181
4182 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
4183 {
4184 best_low = current_low;
4185 best_high = current_high;
4186 }
4187 else
4188 {
4189 struct die_info *child = die->child;
4190
4191 while (child && child->tag)
4192 {
4193 switch (child->tag) {
4194 case DW_TAG_subprogram:
4195 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
4196 break;
4197 case DW_TAG_namespace:
4198 /* FIXME: carlton/2004-01-16: Should we do this for
4199 DW_TAG_class_type/DW_TAG_structure_type, too? I think
4200 that current GCC's always emit the DIEs corresponding
4201 to definitions of methods of classes as children of a
4202 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
4203 the DIEs giving the declarations, which could be
4204 anywhere). But I don't see any reason why the
4205 standards says that they have to be there. */
4206 get_scope_pc_bounds (child, &current_low, &current_high, cu);
4207
4208 if (current_low != ((CORE_ADDR) -1))
4209 {
4210 best_low = min (best_low, current_low);
4211 best_high = max (best_high, current_high);
4212 }
4213 break;
4214 default:
4215 /* Ignore. */
4216 break;
4217 }
4218
4219 child = sibling_die (child);
4220 }
4221 }
4222
4223 *lowpc = best_low;
4224 *highpc = best_high;
4225 }
4226
4227 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
4228 in DIE. */
4229 static void
4230 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
4231 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
4232 {
4233 struct attribute *attr;
4234
4235 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
4236 if (attr)
4237 {
4238 CORE_ADDR high = DW_ADDR (attr);
4239 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4240 if (attr)
4241 {
4242 CORE_ADDR low = DW_ADDR (attr);
4243 record_block_range (block, baseaddr + low, baseaddr + high - 1);
4244 }
4245 }
4246
4247 attr = dwarf2_attr (die, DW_AT_ranges, cu);
4248 if (attr)
4249 {
4250 bfd *obfd = cu->objfile->obfd;
4251
4252 /* The value of the DW_AT_ranges attribute is the offset of the
4253 address range list in the .debug_ranges section. */
4254 unsigned long offset = DW_UNSND (attr);
4255 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
4256
4257 /* For some target architectures, but not others, the
4258 read_address function sign-extends the addresses it returns.
4259 To recognize base address selection entries, we need a
4260 mask. */
4261 unsigned int addr_size = cu->header.addr_size;
4262 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
4263
4264 /* The base address, to which the next pair is relative. Note
4265 that this 'base' is a DWARF concept: most entries in a range
4266 list are relative, to reduce the number of relocs against the
4267 debugging information. This is separate from this function's
4268 'baseaddr' argument, which GDB uses to relocate debugging
4269 information from a shared library based on the address at
4270 which the library was loaded. */
4271 CORE_ADDR base = cu->base_address;
4272 int base_known = cu->base_known;
4273
4274 if (offset >= dwarf2_per_objfile->ranges.size)
4275 {
4276 complaint (&symfile_complaints,
4277 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
4278 offset);
4279 return;
4280 }
4281
4282 for (;;)
4283 {
4284 unsigned int bytes_read;
4285 CORE_ADDR start, end;
4286
4287 start = read_address (obfd, buffer, cu, &bytes_read);
4288 buffer += bytes_read;
4289 end = read_address (obfd, buffer, cu, &bytes_read);
4290 buffer += bytes_read;
4291
4292 /* Did we find the end of the range list? */
4293 if (start == 0 && end == 0)
4294 break;
4295
4296 /* Did we find a base address selection entry? */
4297 else if ((start & base_select_mask) == base_select_mask)
4298 {
4299 base = end;
4300 base_known = 1;
4301 }
4302
4303 /* We found an ordinary address range. */
4304 else
4305 {
4306 if (!base_known)
4307 {
4308 complaint (&symfile_complaints,
4309 _("Invalid .debug_ranges data (no base address)"));
4310 return;
4311 }
4312
4313 record_block_range (block,
4314 baseaddr + base + start,
4315 baseaddr + base + end - 1);
4316 }
4317 }
4318 }
4319 }
4320
4321 /* Add an aggregate field to the field list. */
4322
4323 static void
4324 dwarf2_add_field (struct field_info *fip, struct die_info *die,
4325 struct dwarf2_cu *cu)
4326 {
4327 struct objfile *objfile = cu->objfile;
4328 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4329 struct nextfield *new_field;
4330 struct attribute *attr;
4331 struct field *fp;
4332 char *fieldname = "";
4333
4334 /* Allocate a new field list entry and link it in. */
4335 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
4336 make_cleanup (xfree, new_field);
4337 memset (new_field, 0, sizeof (struct nextfield));
4338 new_field->next = fip->fields;
4339 fip->fields = new_field;
4340 fip->nfields++;
4341
4342 /* Handle accessibility and virtuality of field.
4343 The default accessibility for members is public, the default
4344 accessibility for inheritance is private. */
4345 if (die->tag != DW_TAG_inheritance)
4346 new_field->accessibility = DW_ACCESS_public;
4347 else
4348 new_field->accessibility = DW_ACCESS_private;
4349 new_field->virtuality = DW_VIRTUALITY_none;
4350
4351 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
4352 if (attr)
4353 new_field->accessibility = DW_UNSND (attr);
4354 if (new_field->accessibility != DW_ACCESS_public)
4355 fip->non_public_fields = 1;
4356 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
4357 if (attr)
4358 new_field->virtuality = DW_UNSND (attr);
4359
4360 fp = &new_field->field;
4361
4362 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
4363 {
4364 /* Data member other than a C++ static data member. */
4365
4366 /* Get type of field. */
4367 fp->type = die_type (die, cu);
4368
4369 SET_FIELD_BITPOS (*fp, 0);
4370
4371 /* Get bit size of field (zero if none). */
4372 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
4373 if (attr)
4374 {
4375 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
4376 }
4377 else
4378 {
4379 FIELD_BITSIZE (*fp) = 0;
4380 }
4381
4382 /* Get bit offset of field. */
4383 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
4384 if (attr)
4385 {
4386 int byte_offset = 0;
4387
4388 if (attr_form_is_section_offset (attr))
4389 dwarf2_complex_location_expr_complaint ();
4390 else if (attr_form_is_constant (attr))
4391 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
4392 else if (attr_form_is_block (attr))
4393 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
4394 else
4395 dwarf2_complex_location_expr_complaint ();
4396
4397 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
4398 }
4399 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
4400 if (attr)
4401 {
4402 if (gdbarch_bits_big_endian (gdbarch))
4403 {
4404 /* For big endian bits, the DW_AT_bit_offset gives the
4405 additional bit offset from the MSB of the containing
4406 anonymous object to the MSB of the field. We don't
4407 have to do anything special since we don't need to
4408 know the size of the anonymous object. */
4409 FIELD_BITPOS (*fp) += DW_UNSND (attr);
4410 }
4411 else
4412 {
4413 /* For little endian bits, compute the bit offset to the
4414 MSB of the anonymous object, subtract off the number of
4415 bits from the MSB of the field to the MSB of the
4416 object, and then subtract off the number of bits of
4417 the field itself. The result is the bit offset of
4418 the LSB of the field. */
4419 int anonymous_size;
4420 int bit_offset = DW_UNSND (attr);
4421
4422 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4423 if (attr)
4424 {
4425 /* The size of the anonymous object containing
4426 the bit field is explicit, so use the
4427 indicated size (in bytes). */
4428 anonymous_size = DW_UNSND (attr);
4429 }
4430 else
4431 {
4432 /* The size of the anonymous object containing
4433 the bit field must be inferred from the type
4434 attribute of the data member containing the
4435 bit field. */
4436 anonymous_size = TYPE_LENGTH (fp->type);
4437 }
4438 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
4439 - bit_offset - FIELD_BITSIZE (*fp);
4440 }
4441 }
4442
4443 /* Get name of field. */
4444 fieldname = dwarf2_name (die, cu);
4445 if (fieldname == NULL)
4446 fieldname = "";
4447
4448 /* The name is already allocated along with this objfile, so we don't
4449 need to duplicate it for the type. */
4450 fp->name = fieldname;
4451
4452 /* Change accessibility for artificial fields (e.g. virtual table
4453 pointer or virtual base class pointer) to private. */
4454 if (dwarf2_attr (die, DW_AT_artificial, cu))
4455 {
4456 new_field->accessibility = DW_ACCESS_private;
4457 fip->non_public_fields = 1;
4458 }
4459 }
4460 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
4461 {
4462 /* C++ static member. */
4463
4464 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
4465 is a declaration, but all versions of G++ as of this writing
4466 (so through at least 3.2.1) incorrectly generate
4467 DW_TAG_variable tags. */
4468
4469 char *physname;
4470
4471 /* Get name of field. */
4472 fieldname = dwarf2_name (die, cu);
4473 if (fieldname == NULL)
4474 return;
4475
4476 /* Get physical name. */
4477 physname = dwarf2_linkage_name (die, cu);
4478
4479 /* The name is already allocated along with this objfile, so we don't
4480 need to duplicate it for the type. */
4481 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
4482 FIELD_TYPE (*fp) = die_type (die, cu);
4483 FIELD_NAME (*fp) = fieldname;
4484 }
4485 else if (die->tag == DW_TAG_inheritance)
4486 {
4487 /* C++ base class field. */
4488 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
4489 if (attr)
4490 {
4491 int byte_offset = 0;
4492
4493 if (attr_form_is_section_offset (attr))
4494 dwarf2_complex_location_expr_complaint ();
4495 else if (attr_form_is_constant (attr))
4496 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
4497 else if (attr_form_is_block (attr))
4498 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
4499 else
4500 dwarf2_complex_location_expr_complaint ();
4501
4502 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
4503 }
4504 FIELD_BITSIZE (*fp) = 0;
4505 FIELD_TYPE (*fp) = die_type (die, cu);
4506 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
4507 fip->nbaseclasses++;
4508 }
4509 }
4510
4511 /* Create the vector of fields, and attach it to the type. */
4512
4513 static void
4514 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
4515 struct dwarf2_cu *cu)
4516 {
4517 int nfields = fip->nfields;
4518
4519 /* Record the field count, allocate space for the array of fields,
4520 and create blank accessibility bitfields if necessary. */
4521 TYPE_NFIELDS (type) = nfields;
4522 TYPE_FIELDS (type) = (struct field *)
4523 TYPE_ALLOC (type, sizeof (struct field) * nfields);
4524 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
4525
4526 if (fip->non_public_fields)
4527 {
4528 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4529
4530 TYPE_FIELD_PRIVATE_BITS (type) =
4531 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4532 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4533
4534 TYPE_FIELD_PROTECTED_BITS (type) =
4535 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4536 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4537
4538 TYPE_FIELD_IGNORE_BITS (type) =
4539 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4540 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4541 }
4542
4543 /* If the type has baseclasses, allocate and clear a bit vector for
4544 TYPE_FIELD_VIRTUAL_BITS. */
4545 if (fip->nbaseclasses)
4546 {
4547 int num_bytes = B_BYTES (fip->nbaseclasses);
4548 unsigned char *pointer;
4549
4550 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4551 pointer = TYPE_ALLOC (type, num_bytes);
4552 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
4553 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
4554 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
4555 }
4556
4557 /* Copy the saved-up fields into the field vector. Start from the head
4558 of the list, adding to the tail of the field array, so that they end
4559 up in the same order in the array in which they were added to the list. */
4560 while (nfields-- > 0)
4561 {
4562 TYPE_FIELD (type, nfields) = fip->fields->field;
4563 switch (fip->fields->accessibility)
4564 {
4565 case DW_ACCESS_private:
4566 SET_TYPE_FIELD_PRIVATE (type, nfields);
4567 break;
4568
4569 case DW_ACCESS_protected:
4570 SET_TYPE_FIELD_PROTECTED (type, nfields);
4571 break;
4572
4573 case DW_ACCESS_public:
4574 break;
4575
4576 default:
4577 /* Unknown accessibility. Complain and treat it as public. */
4578 {
4579 complaint (&symfile_complaints, _("unsupported accessibility %d"),
4580 fip->fields->accessibility);
4581 }
4582 break;
4583 }
4584 if (nfields < fip->nbaseclasses)
4585 {
4586 switch (fip->fields->virtuality)
4587 {
4588 case DW_VIRTUALITY_virtual:
4589 case DW_VIRTUALITY_pure_virtual:
4590 SET_TYPE_FIELD_VIRTUAL (type, nfields);
4591 break;
4592 }
4593 }
4594 fip->fields = fip->fields->next;
4595 }
4596 }
4597
4598 /* Add a member function to the proper fieldlist. */
4599
4600 static void
4601 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
4602 struct type *type, struct dwarf2_cu *cu)
4603 {
4604 struct objfile *objfile = cu->objfile;
4605 struct attribute *attr;
4606 struct fnfieldlist *flp;
4607 int i;
4608 struct fn_field *fnp;
4609 char *fieldname;
4610 char *physname;
4611 struct nextfnfield *new_fnfield;
4612 struct type *this_type;
4613
4614 /* Get name of member function. */
4615 fieldname = dwarf2_name (die, cu);
4616 if (fieldname == NULL)
4617 return;
4618
4619 /* Get the mangled name. */
4620 physname = dwarf2_linkage_name (die, cu);
4621
4622 /* Look up member function name in fieldlist. */
4623 for (i = 0; i < fip->nfnfields; i++)
4624 {
4625 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
4626 break;
4627 }
4628
4629 /* Create new list element if necessary. */
4630 if (i < fip->nfnfields)
4631 flp = &fip->fnfieldlists[i];
4632 else
4633 {
4634 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
4635 {
4636 fip->fnfieldlists = (struct fnfieldlist *)
4637 xrealloc (fip->fnfieldlists,
4638 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
4639 * sizeof (struct fnfieldlist));
4640 if (fip->nfnfields == 0)
4641 make_cleanup (free_current_contents, &fip->fnfieldlists);
4642 }
4643 flp = &fip->fnfieldlists[fip->nfnfields];
4644 flp->name = fieldname;
4645 flp->length = 0;
4646 flp->head = NULL;
4647 fip->nfnfields++;
4648 }
4649
4650 /* Create a new member function field and chain it to the field list
4651 entry. */
4652 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
4653 make_cleanup (xfree, new_fnfield);
4654 memset (new_fnfield, 0, sizeof (struct nextfnfield));
4655 new_fnfield->next = flp->head;
4656 flp->head = new_fnfield;
4657 flp->length++;
4658
4659 /* Fill in the member function field info. */
4660 fnp = &new_fnfield->fnfield;
4661 /* The name is already allocated along with this objfile, so we don't
4662 need to duplicate it for the type. */
4663 fnp->physname = physname ? physname : "";
4664 fnp->type = alloc_type (objfile);
4665 this_type = read_type_die (die, cu);
4666 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
4667 {
4668 int nparams = TYPE_NFIELDS (this_type);
4669
4670 /* TYPE is the domain of this method, and THIS_TYPE is the type
4671 of the method itself (TYPE_CODE_METHOD). */
4672 smash_to_method_type (fnp->type, type,
4673 TYPE_TARGET_TYPE (this_type),
4674 TYPE_FIELDS (this_type),
4675 TYPE_NFIELDS (this_type),
4676 TYPE_VARARGS (this_type));
4677
4678 /* Handle static member functions.
4679 Dwarf2 has no clean way to discern C++ static and non-static
4680 member functions. G++ helps GDB by marking the first
4681 parameter for non-static member functions (which is the
4682 this pointer) as artificial. We obtain this information
4683 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
4684 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
4685 fnp->voffset = VOFFSET_STATIC;
4686 }
4687 else
4688 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4689 physname);
4690
4691 /* Get fcontext from DW_AT_containing_type if present. */
4692 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
4693 fnp->fcontext = die_containing_type (die, cu);
4694
4695 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
4696 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
4697
4698 /* Get accessibility. */
4699 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
4700 if (attr)
4701 {
4702 switch (DW_UNSND (attr))
4703 {
4704 case DW_ACCESS_private:
4705 fnp->is_private = 1;
4706 break;
4707 case DW_ACCESS_protected:
4708 fnp->is_protected = 1;
4709 break;
4710 }
4711 }
4712
4713 /* Check for artificial methods. */
4714 attr = dwarf2_attr (die, DW_AT_artificial, cu);
4715 if (attr && DW_UNSND (attr) != 0)
4716 fnp->is_artificial = 1;
4717
4718 /* Get index in virtual function table if it is a virtual member function. */
4719 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
4720 if (attr)
4721 {
4722 /* Support the .debug_loc offsets */
4723 if (attr_form_is_block (attr))
4724 {
4725 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
4726 }
4727 else if (attr_form_is_section_offset (attr))
4728 {
4729 dwarf2_complex_location_expr_complaint ();
4730 }
4731 else
4732 {
4733 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
4734 fieldname);
4735 }
4736 }
4737 }
4738
4739 /* Create the vector of member function fields, and attach it to the type. */
4740
4741 static void
4742 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
4743 struct dwarf2_cu *cu)
4744 {
4745 struct fnfieldlist *flp;
4746 int total_length = 0;
4747 int i;
4748
4749 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4750 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
4751 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
4752
4753 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
4754 {
4755 struct nextfnfield *nfp = flp->head;
4756 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
4757 int k;
4758
4759 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
4760 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
4761 fn_flp->fn_fields = (struct fn_field *)
4762 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
4763 for (k = flp->length; (k--, nfp); nfp = nfp->next)
4764 fn_flp->fn_fields[k] = nfp->fnfield;
4765
4766 total_length += flp->length;
4767 }
4768
4769 TYPE_NFN_FIELDS (type) = fip->nfnfields;
4770 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4771 }
4772
4773 /* Returns non-zero if NAME is the name of a vtable member in CU's
4774 language, zero otherwise. */
4775 static int
4776 is_vtable_name (const char *name, struct dwarf2_cu *cu)
4777 {
4778 static const char vptr[] = "_vptr";
4779 static const char vtable[] = "vtable";
4780
4781 /* Look for the C++ and Java forms of the vtable. */
4782 if ((cu->language == language_java
4783 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
4784 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
4785 && is_cplus_marker (name[sizeof (vptr) - 1])))
4786 return 1;
4787
4788 return 0;
4789 }
4790
4791 /* GCC outputs unnamed structures that are really pointers to member
4792 functions, with the ABI-specified layout. If DIE (from CU) describes
4793 such a structure, set its type, and return nonzero. Otherwise return
4794 zero.
4795
4796 GCC shouldn't do this; it should just output pointer to member DIEs.
4797 This is GCC PR debug/28767. */
4798
4799 static struct type *
4800 quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
4801 {
4802 struct objfile *objfile = cu->objfile;
4803 struct type *type;
4804 struct die_info *pfn_die, *delta_die;
4805 struct attribute *pfn_name, *delta_name;
4806 struct type *pfn_type, *domain_type;
4807
4808 /* Check for a structure with no name and two children. */
4809 if (die->tag != DW_TAG_structure_type
4810 || dwarf2_attr (die, DW_AT_name, cu) != NULL
4811 || die->child == NULL
4812 || die->child->sibling == NULL
4813 || (die->child->sibling->sibling != NULL
4814 && die->child->sibling->sibling->tag != DW_TAG_padding))
4815 return NULL;
4816
4817 /* Check for __pfn and __delta members. */
4818 pfn_die = die->child;
4819 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
4820 if (pfn_die->tag != DW_TAG_member
4821 || pfn_name == NULL
4822 || DW_STRING (pfn_name) == NULL
4823 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
4824 return NULL;
4825
4826 delta_die = pfn_die->sibling;
4827 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
4828 if (delta_die->tag != DW_TAG_member
4829 || delta_name == NULL
4830 || DW_STRING (delta_name) == NULL
4831 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
4832 return NULL;
4833
4834 /* Find the type of the method. */
4835 pfn_type = die_type (pfn_die, cu);
4836 if (pfn_type == NULL
4837 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
4838 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
4839 return NULL;
4840
4841 /* Look for the "this" argument. */
4842 pfn_type = TYPE_TARGET_TYPE (pfn_type);
4843 if (TYPE_NFIELDS (pfn_type) == 0
4844 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
4845 return NULL;
4846
4847 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
4848 type = alloc_type (objfile);
4849 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
4850 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
4851 TYPE_VARARGS (pfn_type));
4852 type = lookup_methodptr_type (type);
4853 return set_die_type (die, type, cu);
4854 }
4855
4856 /* Called when we find the DIE that starts a structure or union scope
4857 (definition) to process all dies that define the members of the
4858 structure or union.
4859
4860 NOTE: we need to call struct_type regardless of whether or not the
4861 DIE has an at_name attribute, since it might be an anonymous
4862 structure or union. This gets the type entered into our set of
4863 user defined types.
4864
4865 However, if the structure is incomplete (an opaque struct/union)
4866 then suppress creating a symbol table entry for it since gdb only
4867 wants to find the one with the complete definition. Note that if
4868 it is complete, we just call new_symbol, which does it's own
4869 checking about whether the struct/union is anonymous or not (and
4870 suppresses creating a symbol table entry itself). */
4871
4872 static struct type *
4873 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
4874 {
4875 struct objfile *objfile = cu->objfile;
4876 struct type *type;
4877 struct attribute *attr;
4878 char *name;
4879 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4880
4881 type = quirk_gcc_member_function_pointer (die, cu);
4882 if (type)
4883 return type;
4884
4885 /* If the definition of this type lives in .debug_types, read that type.
4886 Don't follow DW_AT_specification though, that will take us back up
4887 the chain and we want to go down. */
4888 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
4889 if (attr)
4890 {
4891 struct dwarf2_cu *type_cu = cu;
4892 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
4893 /* We could just recurse on read_structure_type, but we need to call
4894 get_die_type to ensure only one type for this DIE is created.
4895 This is important, for example, because for c++ classes we need
4896 TYPE_NAME set which is only done by new_symbol. Blech. */
4897 type = read_type_die (type_die, type_cu);
4898 return set_die_type (die, type, cu);
4899 }
4900
4901 type = alloc_type (objfile);
4902 INIT_CPLUS_SPECIFIC (type);
4903
4904 name = dwarf2_name (die, cu);
4905 if (name != NULL)
4906 {
4907 if (cu->language == language_cplus
4908 || cu->language == language_java)
4909 {
4910 const char *new_prefix = determine_class_name (die, cu);
4911 TYPE_TAG_NAME (type) = (char *) new_prefix;
4912 }
4913 else
4914 {
4915 /* The name is already allocated along with this objfile, so
4916 we don't need to duplicate it for the type. */
4917 TYPE_TAG_NAME (type) = name;
4918 }
4919 }
4920
4921 if (die->tag == DW_TAG_structure_type)
4922 {
4923 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4924 }
4925 else if (die->tag == DW_TAG_union_type)
4926 {
4927 TYPE_CODE (type) = TYPE_CODE_UNION;
4928 }
4929 else
4930 {
4931 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
4932 in gdbtypes.h. */
4933 TYPE_CODE (type) = TYPE_CODE_CLASS;
4934 }
4935
4936 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4937 if (attr)
4938 {
4939 TYPE_LENGTH (type) = DW_UNSND (attr);
4940 }
4941 else
4942 {
4943 TYPE_LENGTH (type) = 0;
4944 }
4945
4946 TYPE_STUB_SUPPORTED (type) = 1;
4947 if (die_is_declaration (die, cu))
4948 TYPE_STUB (type) = 1;
4949
4950 /* We need to add the type field to the die immediately so we don't
4951 infinitely recurse when dealing with pointers to the structure
4952 type within the structure itself. */
4953 set_die_type (die, type, cu);
4954
4955 if (die->child != NULL && ! die_is_declaration (die, cu))
4956 {
4957 struct field_info fi;
4958 struct die_info *child_die;
4959
4960 memset (&fi, 0, sizeof (struct field_info));
4961
4962 child_die = die->child;
4963
4964 while (child_die && child_die->tag)
4965 {
4966 if (child_die->tag == DW_TAG_member
4967 || child_die->tag == DW_TAG_variable)
4968 {
4969 /* NOTE: carlton/2002-11-05: A C++ static data member
4970 should be a DW_TAG_member that is a declaration, but
4971 all versions of G++ as of this writing (so through at
4972 least 3.2.1) incorrectly generate DW_TAG_variable
4973 tags for them instead. */
4974 dwarf2_add_field (&fi, child_die, cu);
4975 }
4976 else if (child_die->tag == DW_TAG_subprogram)
4977 {
4978 /* C++ member function. */
4979 dwarf2_add_member_fn (&fi, child_die, type, cu);
4980 }
4981 else if (child_die->tag == DW_TAG_inheritance)
4982 {
4983 /* C++ base class field. */
4984 dwarf2_add_field (&fi, child_die, cu);
4985 }
4986 child_die = sibling_die (child_die);
4987 }
4988
4989 /* Attach fields and member functions to the type. */
4990 if (fi.nfields)
4991 dwarf2_attach_fields_to_type (&fi, type, cu);
4992 if (fi.nfnfields)
4993 {
4994 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
4995
4996 /* Get the type which refers to the base class (possibly this
4997 class itself) which contains the vtable pointer for the current
4998 class from the DW_AT_containing_type attribute. */
4999
5000 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
5001 {
5002 struct type *t = die_containing_type (die, cu);
5003
5004 TYPE_VPTR_BASETYPE (type) = t;
5005 if (type == t)
5006 {
5007 int i;
5008
5009 /* Our own class provides vtbl ptr. */
5010 for (i = TYPE_NFIELDS (t) - 1;
5011 i >= TYPE_N_BASECLASSES (t);
5012 --i)
5013 {
5014 char *fieldname = TYPE_FIELD_NAME (t, i);
5015
5016 if (is_vtable_name (fieldname, cu))
5017 {
5018 TYPE_VPTR_FIELDNO (type) = i;
5019 break;
5020 }
5021 }
5022
5023 /* Complain if virtual function table field not found. */
5024 if (i < TYPE_N_BASECLASSES (t))
5025 complaint (&symfile_complaints,
5026 _("virtual function table pointer not found when defining class '%s'"),
5027 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
5028 "");
5029 }
5030 else
5031 {
5032 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
5033 }
5034 }
5035 else if (cu->producer
5036 && strncmp (cu->producer,
5037 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
5038 {
5039 /* The IBM XLC compiler does not provide direct indication
5040 of the containing type, but the vtable pointer is
5041 always named __vfp. */
5042
5043 int i;
5044
5045 for (i = TYPE_NFIELDS (type) - 1;
5046 i >= TYPE_N_BASECLASSES (type);
5047 --i)
5048 {
5049 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
5050 {
5051 TYPE_VPTR_FIELDNO (type) = i;
5052 TYPE_VPTR_BASETYPE (type) = type;
5053 break;
5054 }
5055 }
5056 }
5057 }
5058 }
5059
5060 do_cleanups (back_to);
5061 return type;
5062 }
5063
5064 static void
5065 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
5066 {
5067 struct objfile *objfile = cu->objfile;
5068 struct die_info *child_die = die->child;
5069 struct type *this_type;
5070
5071 this_type = get_die_type (die, cu);
5072 if (this_type == NULL)
5073 this_type = read_structure_type (die, cu);
5074
5075 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
5076 snapshots) has been known to create a die giving a declaration
5077 for a class that has, as a child, a die giving a definition for a
5078 nested class. So we have to process our children even if the
5079 current die is a declaration. Normally, of course, a declaration
5080 won't have any children at all. */
5081
5082 while (child_die != NULL && child_die->tag)
5083 {
5084 if (child_die->tag == DW_TAG_member
5085 || child_die->tag == DW_TAG_variable
5086 || child_die->tag == DW_TAG_inheritance)
5087 {
5088 /* Do nothing. */
5089 }
5090 else
5091 process_die (child_die, cu);
5092
5093 child_die = sibling_die (child_die);
5094 }
5095
5096 /* Do not consider external references. According to the DWARF standard,
5097 these DIEs are identified by the fact that they have no byte_size
5098 attribute, and a declaration attribute. */
5099 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
5100 || !die_is_declaration (die, cu))
5101 new_symbol (die, this_type, cu);
5102 }
5103
5104 /* Given a DW_AT_enumeration_type die, set its type. We do not
5105 complete the type's fields yet, or create any symbols. */
5106
5107 static struct type *
5108 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
5109 {
5110 struct objfile *objfile = cu->objfile;
5111 struct type *type;
5112 struct attribute *attr;
5113 const char *name;
5114
5115 /* If the definition of this type lives in .debug_types, read that type.
5116 Don't follow DW_AT_specification though, that will take us back up
5117 the chain and we want to go down. */
5118 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
5119 if (attr)
5120 {
5121 struct dwarf2_cu *type_cu = cu;
5122 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
5123 type = read_type_die (type_die, type_cu);
5124 return set_die_type (die, type, cu);
5125 }
5126
5127 type = alloc_type (objfile);
5128
5129 TYPE_CODE (type) = TYPE_CODE_ENUM;
5130 name = dwarf2_full_name (die, cu);
5131 if (name != NULL)
5132 TYPE_TAG_NAME (type) = (char *) name;
5133
5134 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5135 if (attr)
5136 {
5137 TYPE_LENGTH (type) = DW_UNSND (attr);
5138 }
5139 else
5140 {
5141 TYPE_LENGTH (type) = 0;
5142 }
5143
5144 /* The enumeration DIE can be incomplete. In Ada, any type can be
5145 declared as private in the package spec, and then defined only
5146 inside the package body. Such types are known as Taft Amendment
5147 Types. When another package uses such a type, an incomplete DIE
5148 may be generated by the compiler. */
5149 if (die_is_declaration (die, cu))
5150 TYPE_STUB (type) = 1;
5151
5152 return set_die_type (die, type, cu);
5153 }
5154
5155 /* Determine the name of the type represented by DIE, which should be
5156 a named C++ or Java compound type. Return the name in question,
5157 allocated on the objfile obstack. */
5158
5159 static const char *
5160 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
5161 {
5162 const char *new_prefix = NULL;
5163
5164 /* If we don't have namespace debug info, guess the name by trying
5165 to demangle the names of members, just like we did in
5166 guess_structure_name. */
5167 if (!processing_has_namespace_info)
5168 {
5169 struct die_info *child;
5170
5171 for (child = die->child;
5172 child != NULL && child->tag != 0;
5173 child = sibling_die (child))
5174 {
5175 if (child->tag == DW_TAG_subprogram)
5176 {
5177 char *phys_prefix
5178 = language_class_name_from_physname (cu->language_defn,
5179 dwarf2_linkage_name
5180 (child, cu));
5181
5182 if (phys_prefix != NULL)
5183 {
5184 new_prefix
5185 = obsavestring (phys_prefix, strlen (phys_prefix),
5186 &cu->objfile->objfile_obstack);
5187 xfree (phys_prefix);
5188 break;
5189 }
5190 }
5191 }
5192 }
5193
5194 if (new_prefix == NULL)
5195 new_prefix = dwarf2_full_name (die, cu);
5196
5197 return new_prefix;
5198 }
5199
5200 /* Given a pointer to a die which begins an enumeration, process all
5201 the dies that define the members of the enumeration, and create the
5202 symbol for the enumeration type.
5203
5204 NOTE: We reverse the order of the element list. */
5205
5206 static void
5207 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
5208 {
5209 struct objfile *objfile = cu->objfile;
5210 struct die_info *child_die;
5211 struct field *fields;
5212 struct symbol *sym;
5213 int num_fields;
5214 int unsigned_enum = 1;
5215 char *name;
5216 struct type *this_type;
5217
5218 num_fields = 0;
5219 fields = NULL;
5220 this_type = get_die_type (die, cu);
5221 if (this_type == NULL)
5222 this_type = read_enumeration_type (die, cu);
5223 if (die->child != NULL)
5224 {
5225 child_die = die->child;
5226 while (child_die && child_die->tag)
5227 {
5228 if (child_die->tag != DW_TAG_enumerator)
5229 {
5230 process_die (child_die, cu);
5231 }
5232 else
5233 {
5234 name = dwarf2_name (child_die, cu);
5235 if (name)
5236 {
5237 sym = new_symbol (child_die, this_type, cu);
5238 if (SYMBOL_VALUE (sym) < 0)
5239 unsigned_enum = 0;
5240
5241 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
5242 {
5243 fields = (struct field *)
5244 xrealloc (fields,
5245 (num_fields + DW_FIELD_ALLOC_CHUNK)
5246 * sizeof (struct field));
5247 }
5248
5249 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
5250 FIELD_TYPE (fields[num_fields]) = NULL;
5251 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
5252 FIELD_BITSIZE (fields[num_fields]) = 0;
5253
5254 num_fields++;
5255 }
5256 }
5257
5258 child_die = sibling_die (child_die);
5259 }
5260
5261 if (num_fields)
5262 {
5263 TYPE_NFIELDS (this_type) = num_fields;
5264 TYPE_FIELDS (this_type) = (struct field *)
5265 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
5266 memcpy (TYPE_FIELDS (this_type), fields,
5267 sizeof (struct field) * num_fields);
5268 xfree (fields);
5269 }
5270 if (unsigned_enum)
5271 TYPE_UNSIGNED (this_type) = 1;
5272 }
5273
5274 new_symbol (die, this_type, cu);
5275 }
5276
5277 /* Extract all information from a DW_TAG_array_type DIE and put it in
5278 the DIE's type field. For now, this only handles one dimensional
5279 arrays. */
5280
5281 static struct type *
5282 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
5283 {
5284 struct objfile *objfile = cu->objfile;
5285 struct die_info *child_die;
5286 struct type *type = NULL;
5287 struct type *element_type, *range_type, *index_type;
5288 struct type **range_types = NULL;
5289 struct attribute *attr;
5290 int ndim = 0;
5291 struct cleanup *back_to;
5292 char *name;
5293
5294 element_type = die_type (die, cu);
5295
5296 /* Irix 6.2 native cc creates array types without children for
5297 arrays with unspecified length. */
5298 if (die->child == NULL)
5299 {
5300 index_type = objfile_type (objfile)->builtin_int;
5301 range_type = create_range_type (NULL, index_type, 0, -1);
5302 type = create_array_type (NULL, element_type, range_type);
5303 return set_die_type (die, type, cu);
5304 }
5305
5306 back_to = make_cleanup (null_cleanup, NULL);
5307 child_die = die->child;
5308 while (child_die && child_die->tag)
5309 {
5310 if (child_die->tag == DW_TAG_subrange_type)
5311 {
5312 struct type *child_type = read_type_die (child_die, cu);
5313 if (child_type != NULL)
5314 {
5315 /* The range type was succesfully read. Save it for
5316 the array type creation. */
5317 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
5318 {
5319 range_types = (struct type **)
5320 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
5321 * sizeof (struct type *));
5322 if (ndim == 0)
5323 make_cleanup (free_current_contents, &range_types);
5324 }
5325 range_types[ndim++] = child_type;
5326 }
5327 }
5328 child_die = sibling_die (child_die);
5329 }
5330
5331 /* Dwarf2 dimensions are output from left to right, create the
5332 necessary array types in backwards order. */
5333
5334 type = element_type;
5335
5336 if (read_array_order (die, cu) == DW_ORD_col_major)
5337 {
5338 int i = 0;
5339 while (i < ndim)
5340 type = create_array_type (NULL, type, range_types[i++]);
5341 }
5342 else
5343 {
5344 while (ndim-- > 0)
5345 type = create_array_type (NULL, type, range_types[ndim]);
5346 }
5347
5348 /* Understand Dwarf2 support for vector types (like they occur on
5349 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
5350 array type. This is not part of the Dwarf2/3 standard yet, but a
5351 custom vendor extension. The main difference between a regular
5352 array and the vector variant is that vectors are passed by value
5353 to functions. */
5354 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
5355 if (attr)
5356 make_vector_type (type);
5357
5358 name = dwarf2_name (die, cu);
5359 if (name)
5360 TYPE_NAME (type) = name;
5361
5362 do_cleanups (back_to);
5363
5364 /* Install the type in the die. */
5365 return set_die_type (die, type, cu);
5366 }
5367
5368 static enum dwarf_array_dim_ordering
5369 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
5370 {
5371 struct attribute *attr;
5372
5373 attr = dwarf2_attr (die, DW_AT_ordering, cu);
5374
5375 if (attr) return DW_SND (attr);
5376
5377 /*
5378 GNU F77 is a special case, as at 08/2004 array type info is the
5379 opposite order to the dwarf2 specification, but data is still
5380 laid out as per normal fortran.
5381
5382 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
5383 version checking.
5384 */
5385
5386 if (cu->language == language_fortran
5387 && cu->producer && strstr (cu->producer, "GNU F77"))
5388 {
5389 return DW_ORD_row_major;
5390 }
5391
5392 switch (cu->language_defn->la_array_ordering)
5393 {
5394 case array_column_major:
5395 return DW_ORD_col_major;
5396 case array_row_major:
5397 default:
5398 return DW_ORD_row_major;
5399 };
5400 }
5401
5402 /* Extract all information from a DW_TAG_set_type DIE and put it in
5403 the DIE's type field. */
5404
5405 static struct type *
5406 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
5407 {
5408 struct type *set_type = create_set_type (NULL, die_type (die, cu));
5409
5410 return set_die_type (die, set_type, cu);
5411 }
5412
5413 /* First cut: install each common block member as a global variable. */
5414
5415 static void
5416 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
5417 {
5418 struct die_info *child_die;
5419 struct attribute *attr;
5420 struct symbol *sym;
5421 CORE_ADDR base = (CORE_ADDR) 0;
5422
5423 attr = dwarf2_attr (die, DW_AT_location, cu);
5424 if (attr)
5425 {
5426 /* Support the .debug_loc offsets */
5427 if (attr_form_is_block (attr))
5428 {
5429 base = decode_locdesc (DW_BLOCK (attr), cu);
5430 }
5431 else if (attr_form_is_section_offset (attr))
5432 {
5433 dwarf2_complex_location_expr_complaint ();
5434 }
5435 else
5436 {
5437 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5438 "common block member");
5439 }
5440 }
5441 if (die->child != NULL)
5442 {
5443 child_die = die->child;
5444 while (child_die && child_die->tag)
5445 {
5446 sym = new_symbol (child_die, NULL, cu);
5447 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
5448 if (attr)
5449 {
5450 CORE_ADDR byte_offset = 0;
5451
5452 if (attr_form_is_section_offset (attr))
5453 dwarf2_complex_location_expr_complaint ();
5454 else if (attr_form_is_constant (attr))
5455 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
5456 else if (attr_form_is_block (attr))
5457 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
5458 else
5459 dwarf2_complex_location_expr_complaint ();
5460
5461 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
5462 add_symbol_to_list (sym, &global_symbols);
5463 }
5464 child_die = sibling_die (child_die);
5465 }
5466 }
5467 }
5468
5469 /* Create a type for a C++ namespace. */
5470
5471 static struct type *
5472 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
5473 {
5474 struct objfile *objfile = cu->objfile;
5475 const char *previous_prefix, *name;
5476 int is_anonymous;
5477 struct type *type;
5478
5479 /* For extensions, reuse the type of the original namespace. */
5480 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
5481 {
5482 struct die_info *ext_die;
5483 struct dwarf2_cu *ext_cu = cu;
5484 ext_die = dwarf2_extension (die, &ext_cu);
5485 type = read_type_die (ext_die, ext_cu);
5486 return set_die_type (die, type, cu);
5487 }
5488
5489 name = namespace_name (die, &is_anonymous, cu);
5490
5491 /* Now build the name of the current namespace. */
5492
5493 previous_prefix = determine_prefix (die, cu);
5494 if (previous_prefix[0] != '\0')
5495 name = typename_concat (&objfile->objfile_obstack,
5496 previous_prefix, name, cu);
5497
5498 /* Create the type. */
5499 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
5500 objfile);
5501 TYPE_NAME (type) = (char *) name;
5502 TYPE_TAG_NAME (type) = TYPE_NAME (type);
5503
5504 set_die_type (die, type, cu);
5505
5506 return type;
5507 }
5508
5509 /* Read a C++ namespace. */
5510
5511 static void
5512 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
5513 {
5514 struct objfile *objfile = cu->objfile;
5515 const char *name;
5516 int is_anonymous;
5517
5518 /* Add a symbol associated to this if we haven't seen the namespace
5519 before. Also, add a using directive if it's an anonymous
5520 namespace. */
5521
5522 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5523 {
5524 struct type *type;
5525
5526 type = read_type_die (die, cu);
5527 new_symbol (die, type, cu);
5528
5529 name = namespace_name (die, &is_anonymous, cu);
5530 if (is_anonymous)
5531 {
5532 const char *previous_prefix = determine_prefix (die, cu);
5533 cp_add_using_directive (previous_prefix, TYPE_NAME (type));
5534 }
5535 }
5536
5537 if (die->child != NULL)
5538 {
5539 struct die_info *child_die = die->child;
5540
5541 while (child_die && child_die->tag)
5542 {
5543 process_die (child_die, cu);
5544 child_die = sibling_die (child_die);
5545 }
5546 }
5547 }
5548
5549 /* Read a Fortran module. */
5550
5551 static void
5552 read_module (struct die_info *die, struct dwarf2_cu *cu)
5553 {
5554 struct die_info *child_die = die->child;
5555
5556 /* FIXME: Support the separate Fortran module namespaces. */
5557
5558 while (child_die && child_die->tag)
5559 {
5560 process_die (child_die, cu);
5561 child_die = sibling_die (child_die);
5562 }
5563 }
5564
5565 /* Return the name of the namespace represented by DIE. Set
5566 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
5567 namespace. */
5568
5569 static const char *
5570 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
5571 {
5572 struct die_info *current_die;
5573 const char *name = NULL;
5574
5575 /* Loop through the extensions until we find a name. */
5576
5577 for (current_die = die;
5578 current_die != NULL;
5579 current_die = dwarf2_extension (die, &cu))
5580 {
5581 name = dwarf2_name (current_die, cu);
5582 if (name != NULL)
5583 break;
5584 }
5585
5586 /* Is it an anonymous namespace? */
5587
5588 *is_anonymous = (name == NULL);
5589 if (*is_anonymous)
5590 name = "(anonymous namespace)";
5591
5592 return name;
5593 }
5594
5595 /* Extract all information from a DW_TAG_pointer_type DIE and add to
5596 the user defined type vector. */
5597
5598 static struct type *
5599 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
5600 {
5601 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
5602 struct comp_unit_head *cu_header = &cu->header;
5603 struct type *type;
5604 struct attribute *attr_byte_size;
5605 struct attribute *attr_address_class;
5606 int byte_size, addr_class;
5607
5608 type = lookup_pointer_type (die_type (die, cu));
5609
5610 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
5611 if (attr_byte_size)
5612 byte_size = DW_UNSND (attr_byte_size);
5613 else
5614 byte_size = cu_header->addr_size;
5615
5616 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
5617 if (attr_address_class)
5618 addr_class = DW_UNSND (attr_address_class);
5619 else
5620 addr_class = DW_ADDR_none;
5621
5622 /* If the pointer size or address class is different than the
5623 default, create a type variant marked as such and set the
5624 length accordingly. */
5625 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
5626 {
5627 if (gdbarch_address_class_type_flags_p (gdbarch))
5628 {
5629 int type_flags;
5630
5631 type_flags = gdbarch_address_class_type_flags
5632 (gdbarch, byte_size, addr_class);
5633 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5634 == 0);
5635 type = make_type_with_address_space (type, type_flags);
5636 }
5637 else if (TYPE_LENGTH (type) != byte_size)
5638 {
5639 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
5640 }
5641 else {
5642 /* Should we also complain about unhandled address classes? */
5643 }
5644 }
5645
5646 TYPE_LENGTH (type) = byte_size;
5647 return set_die_type (die, type, cu);
5648 }
5649
5650 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
5651 the user defined type vector. */
5652
5653 static struct type *
5654 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
5655 {
5656 struct objfile *objfile = cu->objfile;
5657 struct type *type;
5658 struct type *to_type;
5659 struct type *domain;
5660
5661 to_type = die_type (die, cu);
5662 domain = die_containing_type (die, cu);
5663
5664 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
5665 type = lookup_methodptr_type (to_type);
5666 else
5667 type = lookup_memberptr_type (to_type, domain);
5668
5669 return set_die_type (die, type, cu);
5670 }
5671
5672 /* Extract all information from a DW_TAG_reference_type DIE and add to
5673 the user defined type vector. */
5674
5675 static struct type *
5676 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
5677 {
5678 struct comp_unit_head *cu_header = &cu->header;
5679 struct type *type;
5680 struct attribute *attr;
5681
5682 type = lookup_reference_type (die_type (die, cu));
5683 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5684 if (attr)
5685 {
5686 TYPE_LENGTH (type) = DW_UNSND (attr);
5687 }
5688 else
5689 {
5690 TYPE_LENGTH (type) = cu_header->addr_size;
5691 }
5692 return set_die_type (die, type, cu);
5693 }
5694
5695 static struct type *
5696 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
5697 {
5698 struct type *base_type, *cv_type;
5699
5700 base_type = die_type (die, cu);
5701 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
5702 return set_die_type (die, cv_type, cu);
5703 }
5704
5705 static struct type *
5706 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
5707 {
5708 struct type *base_type, *cv_type;
5709
5710 base_type = die_type (die, cu);
5711 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
5712 return set_die_type (die, cv_type, cu);
5713 }
5714
5715 /* Extract all information from a DW_TAG_string_type DIE and add to
5716 the user defined type vector. It isn't really a user defined type,
5717 but it behaves like one, with other DIE's using an AT_user_def_type
5718 attribute to reference it. */
5719
5720 static struct type *
5721 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
5722 {
5723 struct objfile *objfile = cu->objfile;
5724 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5725 struct type *type, *range_type, *index_type, *char_type;
5726 struct attribute *attr;
5727 unsigned int length;
5728
5729 attr = dwarf2_attr (die, DW_AT_string_length, cu);
5730 if (attr)
5731 {
5732 length = DW_UNSND (attr);
5733 }
5734 else
5735 {
5736 /* check for the DW_AT_byte_size attribute */
5737 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5738 if (attr)
5739 {
5740 length = DW_UNSND (attr);
5741 }
5742 else
5743 {
5744 length = 1;
5745 }
5746 }
5747
5748 index_type = objfile_type (objfile)->builtin_int;
5749 range_type = create_range_type (NULL, index_type, 1, length);
5750 char_type = language_string_char_type (cu->language_defn, gdbarch);
5751 type = create_string_type (NULL, char_type, range_type);
5752
5753 return set_die_type (die, type, cu);
5754 }
5755
5756 /* Handle DIES due to C code like:
5757
5758 struct foo
5759 {
5760 int (*funcp)(int a, long l);
5761 int b;
5762 };
5763
5764 ('funcp' generates a DW_TAG_subroutine_type DIE)
5765 */
5766
5767 static struct type *
5768 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
5769 {
5770 struct type *type; /* Type that this function returns */
5771 struct type *ftype; /* Function that returns above type */
5772 struct attribute *attr;
5773
5774 type = die_type (die, cu);
5775 ftype = lookup_function_type (type);
5776
5777 /* All functions in C++, Pascal and Java have prototypes. */
5778 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
5779 if ((attr && (DW_UNSND (attr) != 0))
5780 || cu->language == language_cplus
5781 || cu->language == language_java
5782 || cu->language == language_pascal)
5783 TYPE_PROTOTYPED (ftype) = 1;
5784
5785 /* Store the calling convention in the type if it's available in
5786 the subroutine die. Otherwise set the calling convention to
5787 the default value DW_CC_normal. */
5788 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
5789 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
5790
5791 if (die->child != NULL)
5792 {
5793 struct die_info *child_die;
5794 int nparams = 0;
5795 int iparams = 0;
5796
5797 /* Count the number of parameters.
5798 FIXME: GDB currently ignores vararg functions, but knows about
5799 vararg member functions. */
5800 child_die = die->child;
5801 while (child_die && child_die->tag)
5802 {
5803 if (child_die->tag == DW_TAG_formal_parameter)
5804 nparams++;
5805 else if (child_die->tag == DW_TAG_unspecified_parameters)
5806 TYPE_VARARGS (ftype) = 1;
5807 child_die = sibling_die (child_die);
5808 }
5809
5810 /* Allocate storage for parameters and fill them in. */
5811 TYPE_NFIELDS (ftype) = nparams;
5812 TYPE_FIELDS (ftype) = (struct field *)
5813 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
5814
5815 child_die = die->child;
5816 while (child_die && child_die->tag)
5817 {
5818 if (child_die->tag == DW_TAG_formal_parameter)
5819 {
5820 /* Dwarf2 has no clean way to discern C++ static and non-static
5821 member functions. G++ helps GDB by marking the first
5822 parameter for non-static member functions (which is the
5823 this pointer) as artificial. We pass this information
5824 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
5825 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
5826 if (attr)
5827 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
5828 else
5829 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
5830 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
5831 iparams++;
5832 }
5833 child_die = sibling_die (child_die);
5834 }
5835 }
5836
5837 return set_die_type (die, ftype, cu);
5838 }
5839
5840 static struct type *
5841 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
5842 {
5843 struct objfile *objfile = cu->objfile;
5844 struct attribute *attr;
5845 const char *name = NULL;
5846 struct type *this_type;
5847
5848 name = dwarf2_full_name (die, cu);
5849 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
5850 TYPE_FLAG_TARGET_STUB, NULL, objfile);
5851 TYPE_NAME (this_type) = (char *) name;
5852 set_die_type (die, this_type, cu);
5853 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
5854 return this_type;
5855 }
5856
5857 /* Find a representation of a given base type and install
5858 it in the TYPE field of the die. */
5859
5860 static struct type *
5861 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
5862 {
5863 struct objfile *objfile = cu->objfile;
5864 struct type *type;
5865 struct attribute *attr;
5866 int encoding = 0, size = 0;
5867 char *name;
5868 enum type_code code = TYPE_CODE_INT;
5869 int type_flags = 0;
5870 struct type *target_type = NULL;
5871
5872 attr = dwarf2_attr (die, DW_AT_encoding, cu);
5873 if (attr)
5874 {
5875 encoding = DW_UNSND (attr);
5876 }
5877 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5878 if (attr)
5879 {
5880 size = DW_UNSND (attr);
5881 }
5882 name = dwarf2_name (die, cu);
5883 if (!name)
5884 {
5885 complaint (&symfile_complaints,
5886 _("DW_AT_name missing from DW_TAG_base_type"));
5887 }
5888
5889 switch (encoding)
5890 {
5891 case DW_ATE_address:
5892 /* Turn DW_ATE_address into a void * pointer. */
5893 code = TYPE_CODE_PTR;
5894 type_flags |= TYPE_FLAG_UNSIGNED;
5895 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
5896 break;
5897 case DW_ATE_boolean:
5898 code = TYPE_CODE_BOOL;
5899 type_flags |= TYPE_FLAG_UNSIGNED;
5900 break;
5901 case DW_ATE_complex_float:
5902 code = TYPE_CODE_COMPLEX;
5903 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
5904 break;
5905 case DW_ATE_decimal_float:
5906 code = TYPE_CODE_DECFLOAT;
5907 break;
5908 case DW_ATE_float:
5909 code = TYPE_CODE_FLT;
5910 break;
5911 case DW_ATE_signed:
5912 break;
5913 case DW_ATE_unsigned:
5914 type_flags |= TYPE_FLAG_UNSIGNED;
5915 break;
5916 case DW_ATE_signed_char:
5917 if (cu->language == language_ada || cu->language == language_m2
5918 || cu->language == language_pascal)
5919 code = TYPE_CODE_CHAR;
5920 break;
5921 case DW_ATE_unsigned_char:
5922 if (cu->language == language_ada || cu->language == language_m2
5923 || cu->language == language_pascal)
5924 code = TYPE_CODE_CHAR;
5925 type_flags |= TYPE_FLAG_UNSIGNED;
5926 break;
5927 default:
5928 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
5929 dwarf_type_encoding_name (encoding));
5930 break;
5931 }
5932
5933 type = init_type (code, size, type_flags, NULL, objfile);
5934 TYPE_NAME (type) = name;
5935 TYPE_TARGET_TYPE (type) = target_type;
5936
5937 if (name && strcmp (name, "char") == 0)
5938 TYPE_NOSIGN (type) = 1;
5939
5940 return set_die_type (die, type, cu);
5941 }
5942
5943 /* Read the given DW_AT_subrange DIE. */
5944
5945 static struct type *
5946 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
5947 {
5948 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
5949 struct type *base_type;
5950 struct type *range_type;
5951 struct attribute *attr;
5952 int low = 0;
5953 int high = -1;
5954 char *name;
5955
5956 base_type = die_type (die, cu);
5957 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
5958 {
5959 complaint (&symfile_complaints,
5960 _("DW_AT_type missing from DW_TAG_subrange_type"));
5961 base_type
5962 = init_type (TYPE_CODE_INT, gdbarch_addr_bit (gdbarch) / 8,
5963 0, NULL, cu->objfile);
5964 }
5965
5966 if (cu->language == language_fortran)
5967 {
5968 /* FORTRAN implies a lower bound of 1, if not given. */
5969 low = 1;
5970 }
5971
5972 /* FIXME: For variable sized arrays either of these could be
5973 a variable rather than a constant value. We'll allow it,
5974 but we don't know how to handle it. */
5975 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
5976 if (attr)
5977 low = dwarf2_get_attr_constant_value (attr, 0);
5978
5979 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
5980 if (attr)
5981 {
5982 if (attr->form == DW_FORM_block1)
5983 {
5984 /* GCC encodes arrays with unspecified or dynamic length
5985 with a DW_FORM_block1 attribute.
5986 FIXME: GDB does not yet know how to handle dynamic
5987 arrays properly, treat them as arrays with unspecified
5988 length for now.
5989
5990 FIXME: jimb/2003-09-22: GDB does not really know
5991 how to handle arrays of unspecified length
5992 either; we just represent them as zero-length
5993 arrays. Choose an appropriate upper bound given
5994 the lower bound we've computed above. */
5995 high = low - 1;
5996 }
5997 else
5998 high = dwarf2_get_attr_constant_value (attr, 1);
5999 }
6000
6001 range_type = create_range_type (NULL, base_type, low, high);
6002
6003 name = dwarf2_name (die, cu);
6004 if (name)
6005 TYPE_NAME (range_type) = name;
6006
6007 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6008 if (attr)
6009 TYPE_LENGTH (range_type) = DW_UNSND (attr);
6010
6011 return set_die_type (die, range_type, cu);
6012 }
6013
6014 static struct type *
6015 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
6016 {
6017 struct type *type;
6018
6019 /* For now, we only support the C meaning of an unspecified type: void. */
6020
6021 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
6022 TYPE_NAME (type) = dwarf2_name (die, cu);
6023
6024 return set_die_type (die, type, cu);
6025 }
6026
6027 /* Trivial hash function for die_info: the hash value of a DIE
6028 is its offset in .debug_info for this objfile. */
6029
6030 static hashval_t
6031 die_hash (const void *item)
6032 {
6033 const struct die_info *die = item;
6034 return die->offset;
6035 }
6036
6037 /* Trivial comparison function for die_info structures: two DIEs
6038 are equal if they have the same offset. */
6039
6040 static int
6041 die_eq (const void *item_lhs, const void *item_rhs)
6042 {
6043 const struct die_info *die_lhs = item_lhs;
6044 const struct die_info *die_rhs = item_rhs;
6045 return die_lhs->offset == die_rhs->offset;
6046 }
6047
6048 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6049
6050 static void
6051 init_cu_die_reader (struct die_reader_specs *reader,
6052 struct dwarf2_cu *cu)
6053 {
6054 reader->abfd = cu->objfile->obfd;
6055 reader->cu = cu;
6056 if (cu->per_cu->from_debug_types)
6057 reader->buffer = dwarf2_per_objfile->types.buffer;
6058 else
6059 reader->buffer = dwarf2_per_objfile->info.buffer;
6060 }
6061
6062 /* Read a whole compilation unit into a linked list of dies. */
6063
6064 static struct die_info *
6065 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
6066 {
6067 struct die_reader_specs reader_specs;
6068
6069 gdb_assert (cu->die_hash == NULL);
6070 cu->die_hash
6071 = htab_create_alloc_ex (cu->header.length / 12,
6072 die_hash,
6073 die_eq,
6074 NULL,
6075 &cu->comp_unit_obstack,
6076 hashtab_obstack_allocate,
6077 dummy_obstack_deallocate);
6078
6079 init_cu_die_reader (&reader_specs, cu);
6080
6081 return read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
6082 }
6083
6084 /* Main entry point for reading a DIE and all children.
6085 Read the DIE and dump it if requested. */
6086
6087 static struct die_info *
6088 read_die_and_children (const struct die_reader_specs *reader,
6089 gdb_byte *info_ptr,
6090 gdb_byte **new_info_ptr,
6091 struct die_info *parent)
6092 {
6093 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
6094 new_info_ptr, parent);
6095
6096 if (dwarf2_die_debug)
6097 {
6098 fprintf_unfiltered (gdb_stdlog,
6099 "\nRead die from %s of %s:\n",
6100 reader->buffer == dwarf2_per_objfile->info.buffer
6101 ? ".debug_info"
6102 : reader->buffer == dwarf2_per_objfile->types.buffer
6103 ? ".debug_types"
6104 : "unknown section",
6105 reader->abfd->filename);
6106 dump_die (result, dwarf2_die_debug);
6107 }
6108
6109 return result;
6110 }
6111
6112 /* Read a single die and all its descendents. Set the die's sibling
6113 field to NULL; set other fields in the die correctly, and set all
6114 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
6115 location of the info_ptr after reading all of those dies. PARENT
6116 is the parent of the die in question. */
6117
6118 static struct die_info *
6119 read_die_and_children_1 (const struct die_reader_specs *reader,
6120 gdb_byte *info_ptr,
6121 gdb_byte **new_info_ptr,
6122 struct die_info *parent)
6123 {
6124 struct die_info *die;
6125 gdb_byte *cur_ptr;
6126 int has_children;
6127
6128 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
6129 if (die == NULL)
6130 {
6131 *new_info_ptr = cur_ptr;
6132 return NULL;
6133 }
6134 store_in_ref_table (die, reader->cu);
6135
6136 if (has_children)
6137 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
6138 else
6139 {
6140 die->child = NULL;
6141 *new_info_ptr = cur_ptr;
6142 }
6143
6144 die->sibling = NULL;
6145 die->parent = parent;
6146 return die;
6147 }
6148
6149 /* Read a die, all of its descendents, and all of its siblings; set
6150 all of the fields of all of the dies correctly. Arguments are as
6151 in read_die_and_children. */
6152
6153 static struct die_info *
6154 read_die_and_siblings (const struct die_reader_specs *reader,
6155 gdb_byte *info_ptr,
6156 gdb_byte **new_info_ptr,
6157 struct die_info *parent)
6158 {
6159 struct die_info *first_die, *last_sibling;
6160 gdb_byte *cur_ptr;
6161
6162 cur_ptr = info_ptr;
6163 first_die = last_sibling = NULL;
6164
6165 while (1)
6166 {
6167 struct die_info *die
6168 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
6169
6170 if (die == NULL)
6171 {
6172 *new_info_ptr = cur_ptr;
6173 return first_die;
6174 }
6175
6176 if (!first_die)
6177 first_die = die;
6178 else
6179 last_sibling->sibling = die;
6180
6181 last_sibling = die;
6182 }
6183 }
6184
6185 /* Read the die from the .debug_info section buffer. Set DIEP to
6186 point to a newly allocated die with its information, except for its
6187 child, sibling, and parent fields. Set HAS_CHILDREN to tell
6188 whether the die has children or not. */
6189
6190 static gdb_byte *
6191 read_full_die (const struct die_reader_specs *reader,
6192 struct die_info **diep, gdb_byte *info_ptr,
6193 int *has_children)
6194 {
6195 unsigned int abbrev_number, bytes_read, i, offset;
6196 struct abbrev_info *abbrev;
6197 struct die_info *die;
6198 struct dwarf2_cu *cu = reader->cu;
6199 bfd *abfd = reader->abfd;
6200
6201 offset = info_ptr - reader->buffer;
6202 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6203 info_ptr += bytes_read;
6204 if (!abbrev_number)
6205 {
6206 *diep = NULL;
6207 *has_children = 0;
6208 return info_ptr;
6209 }
6210
6211 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
6212 if (!abbrev)
6213 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
6214 abbrev_number,
6215 bfd_get_filename (abfd));
6216
6217 die = dwarf_alloc_die (cu, abbrev->num_attrs);
6218 die->offset = offset;
6219 die->tag = abbrev->tag;
6220 die->abbrev = abbrev_number;
6221
6222 die->num_attrs = abbrev->num_attrs;
6223
6224 for (i = 0; i < abbrev->num_attrs; ++i)
6225 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
6226 abfd, info_ptr, cu);
6227
6228 *diep = die;
6229 *has_children = abbrev->has_children;
6230 return info_ptr;
6231 }
6232
6233 /* In DWARF version 2, the description of the debugging information is
6234 stored in a separate .debug_abbrev section. Before we read any
6235 dies from a section we read in all abbreviations and install them
6236 in a hash table. This function also sets flags in CU describing
6237 the data found in the abbrev table. */
6238
6239 static void
6240 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
6241 {
6242 struct comp_unit_head *cu_header = &cu->header;
6243 gdb_byte *abbrev_ptr;
6244 struct abbrev_info *cur_abbrev;
6245 unsigned int abbrev_number, bytes_read, abbrev_name;
6246 unsigned int abbrev_form, hash_number;
6247 struct attr_abbrev *cur_attrs;
6248 unsigned int allocated_attrs;
6249
6250 /* Initialize dwarf2 abbrevs */
6251 obstack_init (&cu->abbrev_obstack);
6252 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
6253 (ABBREV_HASH_SIZE
6254 * sizeof (struct abbrev_info *)));
6255 memset (cu->dwarf2_abbrevs, 0,
6256 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
6257
6258 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
6259 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6260 abbrev_ptr += bytes_read;
6261
6262 allocated_attrs = ATTR_ALLOC_CHUNK;
6263 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6264
6265 /* loop until we reach an abbrev number of 0 */
6266 while (abbrev_number)
6267 {
6268 cur_abbrev = dwarf_alloc_abbrev (cu);
6269
6270 /* read in abbrev header */
6271 cur_abbrev->number = abbrev_number;
6272 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6273 abbrev_ptr += bytes_read;
6274 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
6275 abbrev_ptr += 1;
6276
6277 if (cur_abbrev->tag == DW_TAG_namespace)
6278 cu->has_namespace_info = 1;
6279
6280 /* now read in declarations */
6281 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6282 abbrev_ptr += bytes_read;
6283 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6284 abbrev_ptr += bytes_read;
6285 while (abbrev_name)
6286 {
6287 if (cur_abbrev->num_attrs == allocated_attrs)
6288 {
6289 allocated_attrs += ATTR_ALLOC_CHUNK;
6290 cur_attrs
6291 = xrealloc (cur_attrs, (allocated_attrs
6292 * sizeof (struct attr_abbrev)));
6293 }
6294
6295 /* Record whether this compilation unit might have
6296 inter-compilation-unit references. If we don't know what form
6297 this attribute will have, then it might potentially be a
6298 DW_FORM_ref_addr, so we conservatively expect inter-CU
6299 references. */
6300
6301 if (abbrev_form == DW_FORM_ref_addr
6302 || abbrev_form == DW_FORM_indirect)
6303 cu->has_form_ref_addr = 1;
6304
6305 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
6306 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
6307 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6308 abbrev_ptr += bytes_read;
6309 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6310 abbrev_ptr += bytes_read;
6311 }
6312
6313 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
6314 (cur_abbrev->num_attrs
6315 * sizeof (struct attr_abbrev)));
6316 memcpy (cur_abbrev->attrs, cur_attrs,
6317 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
6318
6319 hash_number = abbrev_number % ABBREV_HASH_SIZE;
6320 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
6321 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
6322
6323 /* Get next abbreviation.
6324 Under Irix6 the abbreviations for a compilation unit are not
6325 always properly terminated with an abbrev number of 0.
6326 Exit loop if we encounter an abbreviation which we have
6327 already read (which means we are about to read the abbreviations
6328 for the next compile unit) or if the end of the abbreviation
6329 table is reached. */
6330 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
6331 >= dwarf2_per_objfile->abbrev.size)
6332 break;
6333 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6334 abbrev_ptr += bytes_read;
6335 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
6336 break;
6337 }
6338
6339 xfree (cur_attrs);
6340 }
6341
6342 /* Release the memory used by the abbrev table for a compilation unit. */
6343
6344 static void
6345 dwarf2_free_abbrev_table (void *ptr_to_cu)
6346 {
6347 struct dwarf2_cu *cu = ptr_to_cu;
6348
6349 obstack_free (&cu->abbrev_obstack, NULL);
6350 cu->dwarf2_abbrevs = NULL;
6351 }
6352
6353 /* Lookup an abbrev_info structure in the abbrev hash table. */
6354
6355 static struct abbrev_info *
6356 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
6357 {
6358 unsigned int hash_number;
6359 struct abbrev_info *abbrev;
6360
6361 hash_number = number % ABBREV_HASH_SIZE;
6362 abbrev = cu->dwarf2_abbrevs[hash_number];
6363
6364 while (abbrev)
6365 {
6366 if (abbrev->number == number)
6367 return abbrev;
6368 else
6369 abbrev = abbrev->next;
6370 }
6371 return NULL;
6372 }
6373
6374 /* Returns nonzero if TAG represents a type that we might generate a partial
6375 symbol for. */
6376
6377 static int
6378 is_type_tag_for_partial (int tag)
6379 {
6380 switch (tag)
6381 {
6382 #if 0
6383 /* Some types that would be reasonable to generate partial symbols for,
6384 that we don't at present. */
6385 case DW_TAG_array_type:
6386 case DW_TAG_file_type:
6387 case DW_TAG_ptr_to_member_type:
6388 case DW_TAG_set_type:
6389 case DW_TAG_string_type:
6390 case DW_TAG_subroutine_type:
6391 #endif
6392 case DW_TAG_base_type:
6393 case DW_TAG_class_type:
6394 case DW_TAG_interface_type:
6395 case DW_TAG_enumeration_type:
6396 case DW_TAG_structure_type:
6397 case DW_TAG_subrange_type:
6398 case DW_TAG_typedef:
6399 case DW_TAG_union_type:
6400 return 1;
6401 default:
6402 return 0;
6403 }
6404 }
6405
6406 /* Load all DIEs that are interesting for partial symbols into memory. */
6407
6408 static struct partial_die_info *
6409 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
6410 int building_psymtab, struct dwarf2_cu *cu)
6411 {
6412 struct partial_die_info *part_die;
6413 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
6414 struct abbrev_info *abbrev;
6415 unsigned int bytes_read;
6416 unsigned int load_all = 0;
6417
6418 int nesting_level = 1;
6419
6420 parent_die = NULL;
6421 last_die = NULL;
6422
6423 if (cu->per_cu && cu->per_cu->load_all_dies)
6424 load_all = 1;
6425
6426 cu->partial_dies
6427 = htab_create_alloc_ex (cu->header.length / 12,
6428 partial_die_hash,
6429 partial_die_eq,
6430 NULL,
6431 &cu->comp_unit_obstack,
6432 hashtab_obstack_allocate,
6433 dummy_obstack_deallocate);
6434
6435 part_die = obstack_alloc (&cu->comp_unit_obstack,
6436 sizeof (struct partial_die_info));
6437
6438 while (1)
6439 {
6440 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6441
6442 /* A NULL abbrev means the end of a series of children. */
6443 if (abbrev == NULL)
6444 {
6445 if (--nesting_level == 0)
6446 {
6447 /* PART_DIE was probably the last thing allocated on the
6448 comp_unit_obstack, so we could call obstack_free
6449 here. We don't do that because the waste is small,
6450 and will be cleaned up when we're done with this
6451 compilation unit. This way, we're also more robust
6452 against other users of the comp_unit_obstack. */
6453 return first_die;
6454 }
6455 info_ptr += bytes_read;
6456 last_die = parent_die;
6457 parent_die = parent_die->die_parent;
6458 continue;
6459 }
6460
6461 /* Check whether this DIE is interesting enough to save. Normally
6462 we would not be interested in members here, but there may be
6463 later variables referencing them via DW_AT_specification (for
6464 static members). */
6465 if (!load_all
6466 && !is_type_tag_for_partial (abbrev->tag)
6467 && abbrev->tag != DW_TAG_enumerator
6468 && abbrev->tag != DW_TAG_subprogram
6469 && abbrev->tag != DW_TAG_lexical_block
6470 && abbrev->tag != DW_TAG_variable
6471 && abbrev->tag != DW_TAG_namespace
6472 && abbrev->tag != DW_TAG_member)
6473 {
6474 /* Otherwise we skip to the next sibling, if any. */
6475 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
6476 continue;
6477 }
6478
6479 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
6480 buffer, info_ptr, cu);
6481
6482 /* This two-pass algorithm for processing partial symbols has a
6483 high cost in cache pressure. Thus, handle some simple cases
6484 here which cover the majority of C partial symbols. DIEs
6485 which neither have specification tags in them, nor could have
6486 specification tags elsewhere pointing at them, can simply be
6487 processed and discarded.
6488
6489 This segment is also optional; scan_partial_symbols and
6490 add_partial_symbol will handle these DIEs if we chain
6491 them in normally. When compilers which do not emit large
6492 quantities of duplicate debug information are more common,
6493 this code can probably be removed. */
6494
6495 /* Any complete simple types at the top level (pretty much all
6496 of them, for a language without namespaces), can be processed
6497 directly. */
6498 if (parent_die == NULL
6499 && part_die->has_specification == 0
6500 && part_die->is_declaration == 0
6501 && (part_die->tag == DW_TAG_typedef
6502 || part_die->tag == DW_TAG_base_type
6503 || part_die->tag == DW_TAG_subrange_type))
6504 {
6505 if (building_psymtab && part_die->name != NULL)
6506 add_psymbol_to_list (part_die->name, strlen (part_die->name),
6507 VAR_DOMAIN, LOC_TYPEDEF,
6508 &cu->objfile->static_psymbols,
6509 0, (CORE_ADDR) 0, cu->language, cu->objfile);
6510 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
6511 continue;
6512 }
6513
6514 /* If we're at the second level, and we're an enumerator, and
6515 our parent has no specification (meaning possibly lives in a
6516 namespace elsewhere), then we can add the partial symbol now
6517 instead of queueing it. */
6518 if (part_die->tag == DW_TAG_enumerator
6519 && parent_die != NULL
6520 && parent_die->die_parent == NULL
6521 && parent_die->tag == DW_TAG_enumeration_type
6522 && parent_die->has_specification == 0)
6523 {
6524 if (part_die->name == NULL)
6525 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6526 else if (building_psymtab)
6527 add_psymbol_to_list (part_die->name, strlen (part_die->name),
6528 VAR_DOMAIN, LOC_CONST,
6529 (cu->language == language_cplus
6530 || cu->language == language_java)
6531 ? &cu->objfile->global_psymbols
6532 : &cu->objfile->static_psymbols,
6533 0, (CORE_ADDR) 0, cu->language, cu->objfile);
6534
6535 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
6536 continue;
6537 }
6538
6539 /* We'll save this DIE so link it in. */
6540 part_die->die_parent = parent_die;
6541 part_die->die_sibling = NULL;
6542 part_die->die_child = NULL;
6543
6544 if (last_die && last_die == parent_die)
6545 last_die->die_child = part_die;
6546 else if (last_die)
6547 last_die->die_sibling = part_die;
6548
6549 last_die = part_die;
6550
6551 if (first_die == NULL)
6552 first_die = part_die;
6553
6554 /* Maybe add the DIE to the hash table. Not all DIEs that we
6555 find interesting need to be in the hash table, because we
6556 also have the parent/sibling/child chains; only those that we
6557 might refer to by offset later during partial symbol reading.
6558
6559 For now this means things that might have be the target of a
6560 DW_AT_specification, DW_AT_abstract_origin, or
6561 DW_AT_extension. DW_AT_extension will refer only to
6562 namespaces; DW_AT_abstract_origin refers to functions (and
6563 many things under the function DIE, but we do not recurse
6564 into function DIEs during partial symbol reading) and
6565 possibly variables as well; DW_AT_specification refers to
6566 declarations. Declarations ought to have the DW_AT_declaration
6567 flag. It happens that GCC forgets to put it in sometimes, but
6568 only for functions, not for types.
6569
6570 Adding more things than necessary to the hash table is harmless
6571 except for the performance cost. Adding too few will result in
6572 wasted time in find_partial_die, when we reread the compilation
6573 unit with load_all_dies set. */
6574
6575 if (load_all
6576 || abbrev->tag == DW_TAG_subprogram
6577 || abbrev->tag == DW_TAG_variable
6578 || abbrev->tag == DW_TAG_namespace
6579 || part_die->is_declaration)
6580 {
6581 void **slot;
6582
6583 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
6584 part_die->offset, INSERT);
6585 *slot = part_die;
6586 }
6587
6588 part_die = obstack_alloc (&cu->comp_unit_obstack,
6589 sizeof (struct partial_die_info));
6590
6591 /* For some DIEs we want to follow their children (if any). For C
6592 we have no reason to follow the children of structures; for other
6593 languages we have to, both so that we can get at method physnames
6594 to infer fully qualified class names, and for DW_AT_specification.
6595
6596 For Ada, we need to scan the children of subprograms and lexical
6597 blocks as well because Ada allows the definition of nested
6598 entities that could be interesting for the debugger, such as
6599 nested subprograms for instance. */
6600 if (last_die->has_children
6601 && (load_all
6602 || last_die->tag == DW_TAG_namespace
6603 || last_die->tag == DW_TAG_enumeration_type
6604 || (cu->language != language_c
6605 && (last_die->tag == DW_TAG_class_type
6606 || last_die->tag == DW_TAG_interface_type
6607 || last_die->tag == DW_TAG_structure_type
6608 || last_die->tag == DW_TAG_union_type))
6609 || (cu->language == language_ada
6610 && (last_die->tag == DW_TAG_subprogram
6611 || last_die->tag == DW_TAG_lexical_block))))
6612 {
6613 nesting_level++;
6614 parent_die = last_die;
6615 continue;
6616 }
6617
6618 /* Otherwise we skip to the next sibling, if any. */
6619 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
6620
6621 /* Back to the top, do it again. */
6622 }
6623 }
6624
6625 /* Read a minimal amount of information into the minimal die structure. */
6626
6627 static gdb_byte *
6628 read_partial_die (struct partial_die_info *part_die,
6629 struct abbrev_info *abbrev,
6630 unsigned int abbrev_len, bfd *abfd,
6631 gdb_byte *buffer, gdb_byte *info_ptr,
6632 struct dwarf2_cu *cu)
6633 {
6634 unsigned int bytes_read, i;
6635 struct attribute attr;
6636 int has_low_pc_attr = 0;
6637 int has_high_pc_attr = 0;
6638 CORE_ADDR base_address = 0;
6639 enum
6640 {
6641 base_address_none,
6642 base_address_low_pc,
6643 /* Overrides BASE_ADDRESS_LOW_PC. */
6644 base_address_entry_pc
6645 }
6646 base_address_type = base_address_none;
6647
6648 memset (part_die, 0, sizeof (struct partial_die_info));
6649
6650 part_die->offset = info_ptr - buffer;
6651
6652 info_ptr += abbrev_len;
6653
6654 if (abbrev == NULL)
6655 return info_ptr;
6656
6657 part_die->tag = abbrev->tag;
6658 part_die->has_children = abbrev->has_children;
6659
6660 for (i = 0; i < abbrev->num_attrs; ++i)
6661 {
6662 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
6663
6664 /* Store the data if it is of an attribute we want to keep in a
6665 partial symbol table. */
6666 switch (attr.name)
6667 {
6668 case DW_AT_name:
6669 switch (part_die->tag)
6670 {
6671 case DW_TAG_compile_unit:
6672 case DW_TAG_type_unit:
6673 /* Compilation units have a DW_AT_name that is a filename, not
6674 a source language identifier. */
6675 case DW_TAG_enumeration_type:
6676 case DW_TAG_enumerator:
6677 /* These tags always have simple identifiers already; no need
6678 to canonicalize them. */
6679 part_die->name = DW_STRING (&attr);
6680 break;
6681 default:
6682 part_die->name
6683 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
6684 &cu->comp_unit_obstack);
6685 break;
6686 }
6687 break;
6688 case DW_AT_comp_dir:
6689 if (part_die->dirname == NULL)
6690 part_die->dirname = DW_STRING (&attr);
6691 break;
6692 case DW_AT_MIPS_linkage_name:
6693 part_die->name = DW_STRING (&attr);
6694 break;
6695 case DW_AT_low_pc:
6696 has_low_pc_attr = 1;
6697 part_die->lowpc = DW_ADDR (&attr);
6698 if (part_die->tag == DW_TAG_compile_unit
6699 && base_address_type < base_address_low_pc)
6700 {
6701 base_address = DW_ADDR (&attr);
6702 base_address_type = base_address_low_pc;
6703 }
6704 break;
6705 case DW_AT_high_pc:
6706 has_high_pc_attr = 1;
6707 part_die->highpc = DW_ADDR (&attr);
6708 break;
6709 case DW_AT_entry_pc:
6710 if (part_die->tag == DW_TAG_compile_unit
6711 && base_address_type < base_address_entry_pc)
6712 {
6713 base_address = DW_ADDR (&attr);
6714 base_address_type = base_address_entry_pc;
6715 }
6716 break;
6717 case DW_AT_ranges:
6718 if (part_die->tag == DW_TAG_compile_unit)
6719 {
6720 cu->ranges_offset = DW_UNSND (&attr);
6721 cu->has_ranges_offset = 1;
6722 }
6723 break;
6724 case DW_AT_location:
6725 /* Support the .debug_loc offsets */
6726 if (attr_form_is_block (&attr))
6727 {
6728 part_die->locdesc = DW_BLOCK (&attr);
6729 }
6730 else if (attr_form_is_section_offset (&attr))
6731 {
6732 dwarf2_complex_location_expr_complaint ();
6733 }
6734 else
6735 {
6736 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
6737 "partial symbol information");
6738 }
6739 break;
6740 case DW_AT_language:
6741 part_die->language = DW_UNSND (&attr);
6742 break;
6743 case DW_AT_external:
6744 part_die->is_external = DW_UNSND (&attr);
6745 break;
6746 case DW_AT_declaration:
6747 part_die->is_declaration = DW_UNSND (&attr);
6748 break;
6749 case DW_AT_type:
6750 part_die->has_type = 1;
6751 break;
6752 case DW_AT_abstract_origin:
6753 case DW_AT_specification:
6754 case DW_AT_extension:
6755 part_die->has_specification = 1;
6756 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
6757 break;
6758 case DW_AT_sibling:
6759 /* Ignore absolute siblings, they might point outside of
6760 the current compile unit. */
6761 if (attr.form == DW_FORM_ref_addr)
6762 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
6763 else
6764 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
6765 break;
6766 case DW_AT_stmt_list:
6767 part_die->has_stmt_list = 1;
6768 part_die->line_offset = DW_UNSND (&attr);
6769 break;
6770 case DW_AT_byte_size:
6771 part_die->has_byte_size = 1;
6772 break;
6773 case DW_AT_calling_convention:
6774 /* DWARF doesn't provide a way to identify a program's source-level
6775 entry point. DW_AT_calling_convention attributes are only meant
6776 to describe functions' calling conventions.
6777
6778 However, because it's a necessary piece of information in
6779 Fortran, and because DW_CC_program is the only piece of debugging
6780 information whose definition refers to a 'main program' at all,
6781 several compilers have begun marking Fortran main programs with
6782 DW_CC_program --- even when those functions use the standard
6783 calling conventions.
6784
6785 So until DWARF specifies a way to provide this information and
6786 compilers pick up the new representation, we'll support this
6787 practice. */
6788 if (DW_UNSND (&attr) == DW_CC_program
6789 && cu->language == language_fortran)
6790 set_main_name (part_die->name);
6791 break;
6792 default:
6793 break;
6794 }
6795 }
6796
6797 /* When using the GNU linker, .gnu.linkonce. sections are used to
6798 eliminate duplicate copies of functions and vtables and such.
6799 The linker will arbitrarily choose one and discard the others.
6800 The AT_*_pc values for such functions refer to local labels in
6801 these sections. If the section from that file was discarded, the
6802 labels are not in the output, so the relocs get a value of 0.
6803 If this is a discarded function, mark the pc bounds as invalid,
6804 so that GDB will ignore it. */
6805 if (has_low_pc_attr && has_high_pc_attr
6806 && part_die->lowpc < part_die->highpc
6807 && (part_die->lowpc != 0
6808 || dwarf2_per_objfile->has_section_at_zero))
6809 part_die->has_pc_info = 1;
6810
6811 if (base_address_type != base_address_none && !cu->base_known)
6812 {
6813 gdb_assert (part_die->tag == DW_TAG_compile_unit);
6814 cu->base_known = 1;
6815 cu->base_address = base_address;
6816 }
6817
6818 return info_ptr;
6819 }
6820
6821 /* Find a cached partial DIE at OFFSET in CU. */
6822
6823 static struct partial_die_info *
6824 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
6825 {
6826 struct partial_die_info *lookup_die = NULL;
6827 struct partial_die_info part_die;
6828
6829 part_die.offset = offset;
6830 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
6831
6832 return lookup_die;
6833 }
6834
6835 /* Find a partial DIE at OFFSET, which may or may not be in CU,
6836 except in the case of .debug_types DIEs which do not reference
6837 outside their CU (they do however referencing other types via
6838 DW_FORM_sig8). */
6839
6840 static struct partial_die_info *
6841 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
6842 {
6843 struct dwarf2_per_cu_data *per_cu = NULL;
6844 struct partial_die_info *pd = NULL;
6845
6846 if (cu->per_cu->from_debug_types)
6847 {
6848 pd = find_partial_die_in_comp_unit (offset, cu);
6849 if (pd != NULL)
6850 return pd;
6851 goto not_found;
6852 }
6853
6854 if (offset_in_cu_p (&cu->header, offset))
6855 {
6856 pd = find_partial_die_in_comp_unit (offset, cu);
6857 if (pd != NULL)
6858 return pd;
6859 }
6860
6861 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
6862
6863 if (per_cu->cu == NULL)
6864 {
6865 load_partial_comp_unit (per_cu, cu->objfile);
6866 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6867 dwarf2_per_objfile->read_in_chain = per_cu;
6868 }
6869
6870 per_cu->cu->last_used = 0;
6871 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
6872
6873 if (pd == NULL && per_cu->load_all_dies == 0)
6874 {
6875 struct cleanup *back_to;
6876 struct partial_die_info comp_unit_die;
6877 struct abbrev_info *abbrev;
6878 unsigned int bytes_read;
6879 char *info_ptr;
6880
6881 per_cu->load_all_dies = 1;
6882
6883 /* Re-read the DIEs. */
6884 back_to = make_cleanup (null_cleanup, 0);
6885 if (per_cu->cu->dwarf2_abbrevs == NULL)
6886 {
6887 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
6888 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
6889 }
6890 info_ptr = (dwarf2_per_objfile->info.buffer
6891 + per_cu->cu->header.offset
6892 + per_cu->cu->header.first_die_offset);
6893 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
6894 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
6895 per_cu->cu->objfile->obfd,
6896 dwarf2_per_objfile->info.buffer, info_ptr,
6897 per_cu->cu);
6898 if (comp_unit_die.has_children)
6899 load_partial_dies (per_cu->cu->objfile->obfd,
6900 dwarf2_per_objfile->info.buffer, info_ptr,
6901 0, per_cu->cu);
6902 do_cleanups (back_to);
6903
6904 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
6905 }
6906
6907 not_found:
6908
6909 if (pd == NULL)
6910 internal_error (__FILE__, __LINE__,
6911 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
6912 offset, bfd_get_filename (cu->objfile->obfd));
6913 return pd;
6914 }
6915
6916 /* Adjust PART_DIE before generating a symbol for it. This function
6917 may set the is_external flag or change the DIE's name. */
6918
6919 static void
6920 fixup_partial_die (struct partial_die_info *part_die,
6921 struct dwarf2_cu *cu)
6922 {
6923 /* If we found a reference attribute and the DIE has no name, try
6924 to find a name in the referred to DIE. */
6925
6926 if (part_die->name == NULL && part_die->has_specification)
6927 {
6928 struct partial_die_info *spec_die;
6929
6930 spec_die = find_partial_die (part_die->spec_offset, cu);
6931
6932 fixup_partial_die (spec_die, cu);
6933
6934 if (spec_die->name)
6935 {
6936 part_die->name = spec_die->name;
6937
6938 /* Copy DW_AT_external attribute if it is set. */
6939 if (spec_die->is_external)
6940 part_die->is_external = spec_die->is_external;
6941 }
6942 }
6943
6944 /* Set default names for some unnamed DIEs. */
6945 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
6946 || part_die->tag == DW_TAG_class_type))
6947 part_die->name = "(anonymous class)";
6948
6949 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
6950 part_die->name = "(anonymous namespace)";
6951
6952 if (part_die->tag == DW_TAG_structure_type
6953 || part_die->tag == DW_TAG_class_type
6954 || part_die->tag == DW_TAG_union_type)
6955 guess_structure_name (part_die, cu);
6956 }
6957
6958 /* Read an attribute value described by an attribute form. */
6959
6960 static gdb_byte *
6961 read_attribute_value (struct attribute *attr, unsigned form,
6962 bfd *abfd, gdb_byte *info_ptr,
6963 struct dwarf2_cu *cu)
6964 {
6965 struct comp_unit_head *cu_header = &cu->header;
6966 unsigned int bytes_read;
6967 struct dwarf_block *blk;
6968
6969 attr->form = form;
6970 switch (form)
6971 {
6972 case DW_FORM_addr:
6973 case DW_FORM_ref_addr:
6974 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
6975 info_ptr += bytes_read;
6976 break;
6977 case DW_FORM_block2:
6978 blk = dwarf_alloc_block (cu);
6979 blk->size = read_2_bytes (abfd, info_ptr);
6980 info_ptr += 2;
6981 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6982 info_ptr += blk->size;
6983 DW_BLOCK (attr) = blk;
6984 break;
6985 case DW_FORM_block4:
6986 blk = dwarf_alloc_block (cu);
6987 blk->size = read_4_bytes (abfd, info_ptr);
6988 info_ptr += 4;
6989 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6990 info_ptr += blk->size;
6991 DW_BLOCK (attr) = blk;
6992 break;
6993 case DW_FORM_data2:
6994 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
6995 info_ptr += 2;
6996 break;
6997 case DW_FORM_data4:
6998 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
6999 info_ptr += 4;
7000 break;
7001 case DW_FORM_data8:
7002 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
7003 info_ptr += 8;
7004 break;
7005 case DW_FORM_string:
7006 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
7007 DW_STRING_IS_CANONICAL (attr) = 0;
7008 info_ptr += bytes_read;
7009 break;
7010 case DW_FORM_strp:
7011 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
7012 &bytes_read);
7013 DW_STRING_IS_CANONICAL (attr) = 0;
7014 info_ptr += bytes_read;
7015 break;
7016 case DW_FORM_block:
7017 blk = dwarf_alloc_block (cu);
7018 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7019 info_ptr += bytes_read;
7020 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7021 info_ptr += blk->size;
7022 DW_BLOCK (attr) = blk;
7023 break;
7024 case DW_FORM_block1:
7025 blk = dwarf_alloc_block (cu);
7026 blk->size = read_1_byte (abfd, info_ptr);
7027 info_ptr += 1;
7028 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7029 info_ptr += blk->size;
7030 DW_BLOCK (attr) = blk;
7031 break;
7032 case DW_FORM_data1:
7033 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7034 info_ptr += 1;
7035 break;
7036 case DW_FORM_flag:
7037 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7038 info_ptr += 1;
7039 break;
7040 case DW_FORM_sdata:
7041 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
7042 info_ptr += bytes_read;
7043 break;
7044 case DW_FORM_udata:
7045 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7046 info_ptr += bytes_read;
7047 break;
7048 case DW_FORM_ref1:
7049 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
7050 info_ptr += 1;
7051 break;
7052 case DW_FORM_ref2:
7053 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
7054 info_ptr += 2;
7055 break;
7056 case DW_FORM_ref4:
7057 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
7058 info_ptr += 4;
7059 break;
7060 case DW_FORM_ref8:
7061 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
7062 info_ptr += 8;
7063 break;
7064 case DW_FORM_sig8:
7065 /* Convert the signature to something we can record in DW_UNSND
7066 for later lookup.
7067 NOTE: This is NULL if the type wasn't found. */
7068 DW_SIGNATURED_TYPE (attr) =
7069 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
7070 info_ptr += 8;
7071 break;
7072 case DW_FORM_ref_udata:
7073 DW_ADDR (attr) = (cu->header.offset
7074 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
7075 info_ptr += bytes_read;
7076 break;
7077 case DW_FORM_indirect:
7078 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7079 info_ptr += bytes_read;
7080 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
7081 break;
7082 default:
7083 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
7084 dwarf_form_name (form),
7085 bfd_get_filename (abfd));
7086 }
7087
7088 /* We have seen instances where the compiler tried to emit a byte
7089 size attribute of -1 which ended up being encoded as an unsigned
7090 0xffffffff. Although 0xffffffff is technically a valid size value,
7091 an object of this size seems pretty unlikely so we can relatively
7092 safely treat these cases as if the size attribute was invalid and
7093 treat them as zero by default. */
7094 if (attr->name == DW_AT_byte_size
7095 && form == DW_FORM_data4
7096 && DW_UNSND (attr) >= 0xffffffff)
7097 {
7098 complaint
7099 (&symfile_complaints,
7100 _("Suspicious DW_AT_byte_size value treated as zero instead of 0x%lx"),
7101 DW_UNSND (attr));
7102 DW_UNSND (attr) = 0;
7103 }
7104
7105 return info_ptr;
7106 }
7107
7108 /* Read an attribute described by an abbreviated attribute. */
7109
7110 static gdb_byte *
7111 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
7112 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
7113 {
7114 attr->name = abbrev->name;
7115 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
7116 }
7117
7118 /* read dwarf information from a buffer */
7119
7120 static unsigned int
7121 read_1_byte (bfd *abfd, gdb_byte *buf)
7122 {
7123 return bfd_get_8 (abfd, buf);
7124 }
7125
7126 static int
7127 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
7128 {
7129 return bfd_get_signed_8 (abfd, buf);
7130 }
7131
7132 static unsigned int
7133 read_2_bytes (bfd *abfd, gdb_byte *buf)
7134 {
7135 return bfd_get_16 (abfd, buf);
7136 }
7137
7138 static int
7139 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
7140 {
7141 return bfd_get_signed_16 (abfd, buf);
7142 }
7143
7144 static unsigned int
7145 read_4_bytes (bfd *abfd, gdb_byte *buf)
7146 {
7147 return bfd_get_32 (abfd, buf);
7148 }
7149
7150 static int
7151 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
7152 {
7153 return bfd_get_signed_32 (abfd, buf);
7154 }
7155
7156 static ULONGEST
7157 read_8_bytes (bfd *abfd, gdb_byte *buf)
7158 {
7159 return bfd_get_64 (abfd, buf);
7160 }
7161
7162 static CORE_ADDR
7163 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
7164 unsigned int *bytes_read)
7165 {
7166 struct comp_unit_head *cu_header = &cu->header;
7167 CORE_ADDR retval = 0;
7168
7169 if (cu_header->signed_addr_p)
7170 {
7171 switch (cu_header->addr_size)
7172 {
7173 case 2:
7174 retval = bfd_get_signed_16 (abfd, buf);
7175 break;
7176 case 4:
7177 retval = bfd_get_signed_32 (abfd, buf);
7178 break;
7179 case 8:
7180 retval = bfd_get_signed_64 (abfd, buf);
7181 break;
7182 default:
7183 internal_error (__FILE__, __LINE__,
7184 _("read_address: bad switch, signed [in module %s]"),
7185 bfd_get_filename (abfd));
7186 }
7187 }
7188 else
7189 {
7190 switch (cu_header->addr_size)
7191 {
7192 case 2:
7193 retval = bfd_get_16 (abfd, buf);
7194 break;
7195 case 4:
7196 retval = bfd_get_32 (abfd, buf);
7197 break;
7198 case 8:
7199 retval = bfd_get_64 (abfd, buf);
7200 break;
7201 default:
7202 internal_error (__FILE__, __LINE__,
7203 _("read_address: bad switch, unsigned [in module %s]"),
7204 bfd_get_filename (abfd));
7205 }
7206 }
7207
7208 *bytes_read = cu_header->addr_size;
7209 return retval;
7210 }
7211
7212 /* Read the initial length from a section. The (draft) DWARF 3
7213 specification allows the initial length to take up either 4 bytes
7214 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
7215 bytes describe the length and all offsets will be 8 bytes in length
7216 instead of 4.
7217
7218 An older, non-standard 64-bit format is also handled by this
7219 function. The older format in question stores the initial length
7220 as an 8-byte quantity without an escape value. Lengths greater
7221 than 2^32 aren't very common which means that the initial 4 bytes
7222 is almost always zero. Since a length value of zero doesn't make
7223 sense for the 32-bit format, this initial zero can be considered to
7224 be an escape value which indicates the presence of the older 64-bit
7225 format. As written, the code can't detect (old format) lengths
7226 greater than 4GB. If it becomes necessary to handle lengths
7227 somewhat larger than 4GB, we could allow other small values (such
7228 as the non-sensical values of 1, 2, and 3) to also be used as
7229 escape values indicating the presence of the old format.
7230
7231 The value returned via bytes_read should be used to increment the
7232 relevant pointer after calling read_initial_length().
7233
7234 [ Note: read_initial_length() and read_offset() are based on the
7235 document entitled "DWARF Debugging Information Format", revision
7236 3, draft 8, dated November 19, 2001. This document was obtained
7237 from:
7238
7239 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
7240
7241 This document is only a draft and is subject to change. (So beware.)
7242
7243 Details regarding the older, non-standard 64-bit format were
7244 determined empirically by examining 64-bit ELF files produced by
7245 the SGI toolchain on an IRIX 6.5 machine.
7246
7247 - Kevin, July 16, 2002
7248 ] */
7249
7250 static LONGEST
7251 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
7252 {
7253 LONGEST length = bfd_get_32 (abfd, buf);
7254
7255 if (length == 0xffffffff)
7256 {
7257 length = bfd_get_64 (abfd, buf + 4);
7258 *bytes_read = 12;
7259 }
7260 else if (length == 0)
7261 {
7262 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
7263 length = bfd_get_64 (abfd, buf);
7264 *bytes_read = 8;
7265 }
7266 else
7267 {
7268 *bytes_read = 4;
7269 }
7270
7271 return length;
7272 }
7273
7274 /* Cover function for read_initial_length.
7275 Returns the length of the object at BUF, and stores the size of the
7276 initial length in *BYTES_READ and stores the size that offsets will be in
7277 *OFFSET_SIZE.
7278 If the initial length size is not equivalent to that specified in
7279 CU_HEADER then issue a complaint.
7280 This is useful when reading non-comp-unit headers. */
7281
7282 static LONGEST
7283 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
7284 const struct comp_unit_head *cu_header,
7285 unsigned int *bytes_read,
7286 unsigned int *offset_size)
7287 {
7288 LONGEST length = read_initial_length (abfd, buf, bytes_read);
7289
7290 gdb_assert (cu_header->initial_length_size == 4
7291 || cu_header->initial_length_size == 8
7292 || cu_header->initial_length_size == 12);
7293
7294 if (cu_header->initial_length_size != *bytes_read)
7295 complaint (&symfile_complaints,
7296 _("intermixed 32-bit and 64-bit DWARF sections"));
7297
7298 *offset_size = (*bytes_read == 4) ? 4 : 8;
7299 return length;
7300 }
7301
7302 /* Read an offset from the data stream. The size of the offset is
7303 given by cu_header->offset_size. */
7304
7305 static LONGEST
7306 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
7307 unsigned int *bytes_read)
7308 {
7309 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
7310 *bytes_read = cu_header->offset_size;
7311 return offset;
7312 }
7313
7314 /* Read an offset from the data stream. */
7315
7316 static LONGEST
7317 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
7318 {
7319 LONGEST retval = 0;
7320
7321 switch (offset_size)
7322 {
7323 case 4:
7324 retval = bfd_get_32 (abfd, buf);
7325 break;
7326 case 8:
7327 retval = bfd_get_64 (abfd, buf);
7328 break;
7329 default:
7330 internal_error (__FILE__, __LINE__,
7331 _("read_offset_1: bad switch [in module %s]"),
7332 bfd_get_filename (abfd));
7333 }
7334
7335 return retval;
7336 }
7337
7338 static gdb_byte *
7339 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
7340 {
7341 /* If the size of a host char is 8 bits, we can return a pointer
7342 to the buffer, otherwise we have to copy the data to a buffer
7343 allocated on the temporary obstack. */
7344 gdb_assert (HOST_CHAR_BIT == 8);
7345 return buf;
7346 }
7347
7348 static char *
7349 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
7350 {
7351 /* If the size of a host char is 8 bits, we can return a pointer
7352 to the string, otherwise we have to copy the string to a buffer
7353 allocated on the temporary obstack. */
7354 gdb_assert (HOST_CHAR_BIT == 8);
7355 if (*buf == '\0')
7356 {
7357 *bytes_read_ptr = 1;
7358 return NULL;
7359 }
7360 *bytes_read_ptr = strlen ((char *) buf) + 1;
7361 return (char *) buf;
7362 }
7363
7364 static char *
7365 read_indirect_string (bfd *abfd, gdb_byte *buf,
7366 const struct comp_unit_head *cu_header,
7367 unsigned int *bytes_read_ptr)
7368 {
7369 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
7370
7371 if (dwarf2_per_objfile->str.buffer == NULL)
7372 {
7373 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
7374 bfd_get_filename (abfd));
7375 return NULL;
7376 }
7377 if (str_offset >= dwarf2_per_objfile->str.size)
7378 {
7379 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
7380 bfd_get_filename (abfd));
7381 return NULL;
7382 }
7383 gdb_assert (HOST_CHAR_BIT == 8);
7384 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
7385 return NULL;
7386 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
7387 }
7388
7389 static unsigned long
7390 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
7391 {
7392 unsigned long result;
7393 unsigned int num_read;
7394 int i, shift;
7395 unsigned char byte;
7396
7397 result = 0;
7398 shift = 0;
7399 num_read = 0;
7400 i = 0;
7401 while (1)
7402 {
7403 byte = bfd_get_8 (abfd, buf);
7404 buf++;
7405 num_read++;
7406 result |= ((unsigned long)(byte & 127) << shift);
7407 if ((byte & 128) == 0)
7408 {
7409 break;
7410 }
7411 shift += 7;
7412 }
7413 *bytes_read_ptr = num_read;
7414 return result;
7415 }
7416
7417 static long
7418 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
7419 {
7420 long result;
7421 int i, shift, num_read;
7422 unsigned char byte;
7423
7424 result = 0;
7425 shift = 0;
7426 num_read = 0;
7427 i = 0;
7428 while (1)
7429 {
7430 byte = bfd_get_8 (abfd, buf);
7431 buf++;
7432 num_read++;
7433 result |= ((long)(byte & 127) << shift);
7434 shift += 7;
7435 if ((byte & 128) == 0)
7436 {
7437 break;
7438 }
7439 }
7440 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
7441 result |= -(((long)1) << shift);
7442 *bytes_read_ptr = num_read;
7443 return result;
7444 }
7445
7446 /* Return a pointer to just past the end of an LEB128 number in BUF. */
7447
7448 static gdb_byte *
7449 skip_leb128 (bfd *abfd, gdb_byte *buf)
7450 {
7451 int byte;
7452
7453 while (1)
7454 {
7455 byte = bfd_get_8 (abfd, buf);
7456 buf++;
7457 if ((byte & 128) == 0)
7458 return buf;
7459 }
7460 }
7461
7462 static void
7463 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
7464 {
7465 switch (lang)
7466 {
7467 case DW_LANG_C89:
7468 case DW_LANG_C99:
7469 case DW_LANG_C:
7470 cu->language = language_c;
7471 break;
7472 case DW_LANG_C_plus_plus:
7473 cu->language = language_cplus;
7474 break;
7475 case DW_LANG_Fortran77:
7476 case DW_LANG_Fortran90:
7477 case DW_LANG_Fortran95:
7478 cu->language = language_fortran;
7479 break;
7480 case DW_LANG_Mips_Assembler:
7481 cu->language = language_asm;
7482 break;
7483 case DW_LANG_Java:
7484 cu->language = language_java;
7485 break;
7486 case DW_LANG_Ada83:
7487 case DW_LANG_Ada95:
7488 cu->language = language_ada;
7489 break;
7490 case DW_LANG_Modula2:
7491 cu->language = language_m2;
7492 break;
7493 case DW_LANG_Pascal83:
7494 cu->language = language_pascal;
7495 break;
7496 case DW_LANG_ObjC:
7497 cu->language = language_objc;
7498 break;
7499 case DW_LANG_Cobol74:
7500 case DW_LANG_Cobol85:
7501 default:
7502 cu->language = language_minimal;
7503 break;
7504 }
7505 cu->language_defn = language_def (cu->language);
7506 }
7507
7508 /* Return the named attribute or NULL if not there. */
7509
7510 static struct attribute *
7511 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
7512 {
7513 unsigned int i;
7514 struct attribute *spec = NULL;
7515
7516 for (i = 0; i < die->num_attrs; ++i)
7517 {
7518 if (die->attrs[i].name == name)
7519 return &die->attrs[i];
7520 if (die->attrs[i].name == DW_AT_specification
7521 || die->attrs[i].name == DW_AT_abstract_origin)
7522 spec = &die->attrs[i];
7523 }
7524
7525 if (spec)
7526 {
7527 die = follow_die_ref (die, spec, &cu);
7528 return dwarf2_attr (die, name, cu);
7529 }
7530
7531 return NULL;
7532 }
7533
7534 /* Return the named attribute or NULL if not there,
7535 but do not follow DW_AT_specification, etc.
7536 This is for use in contexts where we're reading .debug_types dies.
7537 Following DW_AT_specification, DW_AT_abstract_origin will take us
7538 back up the chain, and we want to go down. */
7539
7540 static struct attribute *
7541 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
7542 struct dwarf2_cu *cu)
7543 {
7544 unsigned int i;
7545
7546 for (i = 0; i < die->num_attrs; ++i)
7547 if (die->attrs[i].name == name)
7548 return &die->attrs[i];
7549
7550 return NULL;
7551 }
7552
7553 /* Return non-zero iff the attribute NAME is defined for the given DIE,
7554 and holds a non-zero value. This function should only be used for
7555 DW_FORM_flag attributes. */
7556
7557 static int
7558 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
7559 {
7560 struct attribute *attr = dwarf2_attr (die, name, cu);
7561
7562 return (attr && DW_UNSND (attr));
7563 }
7564
7565 static int
7566 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
7567 {
7568 /* A DIE is a declaration if it has a DW_AT_declaration attribute
7569 which value is non-zero. However, we have to be careful with
7570 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
7571 (via dwarf2_flag_true_p) follows this attribute. So we may
7572 end up accidently finding a declaration attribute that belongs
7573 to a different DIE referenced by the specification attribute,
7574 even though the given DIE does not have a declaration attribute. */
7575 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
7576 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
7577 }
7578
7579 /* Return the die giving the specification for DIE, if there is
7580 one. *SPEC_CU is the CU containing DIE on input, and the CU
7581 containing the return value on output. If there is no
7582 specification, but there is an abstract origin, that is
7583 returned. */
7584
7585 static struct die_info *
7586 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
7587 {
7588 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
7589 *spec_cu);
7590
7591 if (spec_attr == NULL)
7592 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
7593
7594 if (spec_attr == NULL)
7595 return NULL;
7596 else
7597 return follow_die_ref (die, spec_attr, spec_cu);
7598 }
7599
7600 /* Free the line_header structure *LH, and any arrays and strings it
7601 refers to. */
7602 static void
7603 free_line_header (struct line_header *lh)
7604 {
7605 if (lh->standard_opcode_lengths)
7606 xfree (lh->standard_opcode_lengths);
7607
7608 /* Remember that all the lh->file_names[i].name pointers are
7609 pointers into debug_line_buffer, and don't need to be freed. */
7610 if (lh->file_names)
7611 xfree (lh->file_names);
7612
7613 /* Similarly for the include directory names. */
7614 if (lh->include_dirs)
7615 xfree (lh->include_dirs);
7616
7617 xfree (lh);
7618 }
7619
7620
7621 /* Add an entry to LH's include directory table. */
7622 static void
7623 add_include_dir (struct line_header *lh, char *include_dir)
7624 {
7625 /* Grow the array if necessary. */
7626 if (lh->include_dirs_size == 0)
7627 {
7628 lh->include_dirs_size = 1; /* for testing */
7629 lh->include_dirs = xmalloc (lh->include_dirs_size
7630 * sizeof (*lh->include_dirs));
7631 }
7632 else if (lh->num_include_dirs >= lh->include_dirs_size)
7633 {
7634 lh->include_dirs_size *= 2;
7635 lh->include_dirs = xrealloc (lh->include_dirs,
7636 (lh->include_dirs_size
7637 * sizeof (*lh->include_dirs)));
7638 }
7639
7640 lh->include_dirs[lh->num_include_dirs++] = include_dir;
7641 }
7642
7643
7644 /* Add an entry to LH's file name table. */
7645 static void
7646 add_file_name (struct line_header *lh,
7647 char *name,
7648 unsigned int dir_index,
7649 unsigned int mod_time,
7650 unsigned int length)
7651 {
7652 struct file_entry *fe;
7653
7654 /* Grow the array if necessary. */
7655 if (lh->file_names_size == 0)
7656 {
7657 lh->file_names_size = 1; /* for testing */
7658 lh->file_names = xmalloc (lh->file_names_size
7659 * sizeof (*lh->file_names));
7660 }
7661 else if (lh->num_file_names >= lh->file_names_size)
7662 {
7663 lh->file_names_size *= 2;
7664 lh->file_names = xrealloc (lh->file_names,
7665 (lh->file_names_size
7666 * sizeof (*lh->file_names)));
7667 }
7668
7669 fe = &lh->file_names[lh->num_file_names++];
7670 fe->name = name;
7671 fe->dir_index = dir_index;
7672 fe->mod_time = mod_time;
7673 fe->length = length;
7674 fe->included_p = 0;
7675 fe->symtab = NULL;
7676 }
7677
7678
7679 /* Read the statement program header starting at OFFSET in
7680 .debug_line, according to the endianness of ABFD. Return a pointer
7681 to a struct line_header, allocated using xmalloc.
7682
7683 NOTE: the strings in the include directory and file name tables of
7684 the returned object point into debug_line_buffer, and must not be
7685 freed. */
7686 static struct line_header *
7687 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
7688 struct dwarf2_cu *cu)
7689 {
7690 struct cleanup *back_to;
7691 struct line_header *lh;
7692 gdb_byte *line_ptr;
7693 unsigned int bytes_read, offset_size;
7694 int i;
7695 char *cur_dir, *cur_file;
7696
7697 if (dwarf2_per_objfile->line.buffer == NULL)
7698 {
7699 complaint (&symfile_complaints, _("missing .debug_line section"));
7700 return 0;
7701 }
7702
7703 /* Make sure that at least there's room for the total_length field.
7704 That could be 12 bytes long, but we're just going to fudge that. */
7705 if (offset + 4 >= dwarf2_per_objfile->line.size)
7706 {
7707 dwarf2_statement_list_fits_in_line_number_section_complaint ();
7708 return 0;
7709 }
7710
7711 lh = xmalloc (sizeof (*lh));
7712 memset (lh, 0, sizeof (*lh));
7713 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
7714 (void *) lh);
7715
7716 line_ptr = dwarf2_per_objfile->line.buffer + offset;
7717
7718 /* Read in the header. */
7719 lh->total_length =
7720 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
7721 &bytes_read, &offset_size);
7722 line_ptr += bytes_read;
7723 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
7724 + dwarf2_per_objfile->line.size))
7725 {
7726 dwarf2_statement_list_fits_in_line_number_section_complaint ();
7727 return 0;
7728 }
7729 lh->statement_program_end = line_ptr + lh->total_length;
7730 lh->version = read_2_bytes (abfd, line_ptr);
7731 line_ptr += 2;
7732 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
7733 line_ptr += offset_size;
7734 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
7735 line_ptr += 1;
7736 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
7737 line_ptr += 1;
7738 lh->line_base = read_1_signed_byte (abfd, line_ptr);
7739 line_ptr += 1;
7740 lh->line_range = read_1_byte (abfd, line_ptr);
7741 line_ptr += 1;
7742 lh->opcode_base = read_1_byte (abfd, line_ptr);
7743 line_ptr += 1;
7744 lh->standard_opcode_lengths
7745 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
7746
7747 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
7748 for (i = 1; i < lh->opcode_base; ++i)
7749 {
7750 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
7751 line_ptr += 1;
7752 }
7753
7754 /* Read directory table. */
7755 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
7756 {
7757 line_ptr += bytes_read;
7758 add_include_dir (lh, cur_dir);
7759 }
7760 line_ptr += bytes_read;
7761
7762 /* Read file name table. */
7763 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
7764 {
7765 unsigned int dir_index, mod_time, length;
7766
7767 line_ptr += bytes_read;
7768 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7769 line_ptr += bytes_read;
7770 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7771 line_ptr += bytes_read;
7772 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7773 line_ptr += bytes_read;
7774
7775 add_file_name (lh, cur_file, dir_index, mod_time, length);
7776 }
7777 line_ptr += bytes_read;
7778 lh->statement_program_start = line_ptr;
7779
7780 if (line_ptr > (dwarf2_per_objfile->line.buffer
7781 + dwarf2_per_objfile->line.size))
7782 complaint (&symfile_complaints,
7783 _("line number info header doesn't fit in `.debug_line' section"));
7784
7785 discard_cleanups (back_to);
7786 return lh;
7787 }
7788
7789 /* This function exists to work around a bug in certain compilers
7790 (particularly GCC 2.95), in which the first line number marker of a
7791 function does not show up until after the prologue, right before
7792 the second line number marker. This function shifts ADDRESS down
7793 to the beginning of the function if necessary, and is called on
7794 addresses passed to record_line. */
7795
7796 static CORE_ADDR
7797 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
7798 {
7799 struct function_range *fn;
7800
7801 /* Find the function_range containing address. */
7802 if (!cu->first_fn)
7803 return address;
7804
7805 if (!cu->cached_fn)
7806 cu->cached_fn = cu->first_fn;
7807
7808 fn = cu->cached_fn;
7809 while (fn)
7810 if (fn->lowpc <= address && fn->highpc > address)
7811 goto found;
7812 else
7813 fn = fn->next;
7814
7815 fn = cu->first_fn;
7816 while (fn && fn != cu->cached_fn)
7817 if (fn->lowpc <= address && fn->highpc > address)
7818 goto found;
7819 else
7820 fn = fn->next;
7821
7822 return address;
7823
7824 found:
7825 if (fn->seen_line)
7826 return address;
7827 if (address != fn->lowpc)
7828 complaint (&symfile_complaints,
7829 _("misplaced first line number at 0x%lx for '%s'"),
7830 (unsigned long) address, fn->name);
7831 fn->seen_line = 1;
7832 return fn->lowpc;
7833 }
7834
7835 /* Decode the Line Number Program (LNP) for the given line_header
7836 structure and CU. The actual information extracted and the type
7837 of structures created from the LNP depends on the value of PST.
7838
7839 1. If PST is NULL, then this procedure uses the data from the program
7840 to create all necessary symbol tables, and their linetables.
7841 The compilation directory of the file is passed in COMP_DIR,
7842 and must not be NULL.
7843
7844 2. If PST is not NULL, this procedure reads the program to determine
7845 the list of files included by the unit represented by PST, and
7846 builds all the associated partial symbol tables. In this case,
7847 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
7848 is not used to compute the full name of the symtab, and therefore
7849 omitting it when building the partial symtab does not introduce
7850 the potential for inconsistency - a partial symtab and its associated
7851 symbtab having a different fullname -). */
7852
7853 static void
7854 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
7855 struct dwarf2_cu *cu, struct partial_symtab *pst)
7856 {
7857 gdb_byte *line_ptr, *extended_end;
7858 gdb_byte *line_end;
7859 unsigned int bytes_read, extended_len;
7860 unsigned char op_code, extended_op, adj_opcode;
7861 CORE_ADDR baseaddr;
7862 struct objfile *objfile = cu->objfile;
7863 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7864 const int decode_for_pst_p = (pst != NULL);
7865 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
7866
7867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7868
7869 line_ptr = lh->statement_program_start;
7870 line_end = lh->statement_program_end;
7871
7872 /* Read the statement sequences until there's nothing left. */
7873 while (line_ptr < line_end)
7874 {
7875 /* state machine registers */
7876 CORE_ADDR address = 0;
7877 unsigned int file = 1;
7878 unsigned int line = 1;
7879 unsigned int column = 0;
7880 int is_stmt = lh->default_is_stmt;
7881 int basic_block = 0;
7882 int end_sequence = 0;
7883 CORE_ADDR addr;
7884
7885 if (!decode_for_pst_p && lh->num_file_names >= file)
7886 {
7887 /* Start a subfile for the current file of the state machine. */
7888 /* lh->include_dirs and lh->file_names are 0-based, but the
7889 directory and file name numbers in the statement program
7890 are 1-based. */
7891 struct file_entry *fe = &lh->file_names[file - 1];
7892 char *dir = NULL;
7893
7894 if (fe->dir_index)
7895 dir = lh->include_dirs[fe->dir_index - 1];
7896
7897 dwarf2_start_subfile (fe->name, dir, comp_dir);
7898 }
7899
7900 /* Decode the table. */
7901 while (!end_sequence)
7902 {
7903 op_code = read_1_byte (abfd, line_ptr);
7904 line_ptr += 1;
7905 if (line_ptr > line_end)
7906 {
7907 dwarf2_debug_line_missing_end_sequence_complaint ();
7908 break;
7909 }
7910
7911 if (op_code >= lh->opcode_base)
7912 {
7913 /* Special operand. */
7914 adj_opcode = op_code - lh->opcode_base;
7915 address += (adj_opcode / lh->line_range)
7916 * lh->minimum_instruction_length;
7917 line += lh->line_base + (adj_opcode % lh->line_range);
7918 if (lh->num_file_names < file || file == 0)
7919 dwarf2_debug_line_missing_file_complaint ();
7920 else
7921 {
7922 lh->file_names[file - 1].included_p = 1;
7923 if (!decode_for_pst_p && is_stmt)
7924 {
7925 if (last_subfile != current_subfile)
7926 {
7927 addr = gdbarch_addr_bits_remove (gdbarch, address);
7928 if (last_subfile)
7929 record_line (last_subfile, 0, addr);
7930 last_subfile = current_subfile;
7931 }
7932 /* Append row to matrix using current values. */
7933 addr = check_cu_functions (address, cu);
7934 addr = gdbarch_addr_bits_remove (gdbarch, addr);
7935 record_line (current_subfile, line, addr);
7936 }
7937 }
7938 basic_block = 0;
7939 }
7940 else switch (op_code)
7941 {
7942 case DW_LNS_extended_op:
7943 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7944 line_ptr += bytes_read;
7945 extended_end = line_ptr + extended_len;
7946 extended_op = read_1_byte (abfd, line_ptr);
7947 line_ptr += 1;
7948 switch (extended_op)
7949 {
7950 case DW_LNE_end_sequence:
7951 end_sequence = 1;
7952 break;
7953 case DW_LNE_set_address:
7954 address = read_address (abfd, line_ptr, cu, &bytes_read);
7955 line_ptr += bytes_read;
7956 address += baseaddr;
7957 break;
7958 case DW_LNE_define_file:
7959 {
7960 char *cur_file;
7961 unsigned int dir_index, mod_time, length;
7962
7963 cur_file = read_string (abfd, line_ptr, &bytes_read);
7964 line_ptr += bytes_read;
7965 dir_index =
7966 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7967 line_ptr += bytes_read;
7968 mod_time =
7969 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7970 line_ptr += bytes_read;
7971 length =
7972 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7973 line_ptr += bytes_read;
7974 add_file_name (lh, cur_file, dir_index, mod_time, length);
7975 }
7976 break;
7977 case DW_LNE_set_discriminator:
7978 /* The discriminator is not interesting to the debugger;
7979 just ignore it. */
7980 line_ptr = extended_end;
7981 break;
7982 default:
7983 complaint (&symfile_complaints,
7984 _("mangled .debug_line section"));
7985 return;
7986 }
7987 /* Make sure that we parsed the extended op correctly. If e.g.
7988 we expected a different address size than the producer used,
7989 we may have read the wrong number of bytes. */
7990 if (line_ptr != extended_end)
7991 {
7992 complaint (&symfile_complaints,
7993 _("mangled .debug_line section"));
7994 return;
7995 }
7996 break;
7997 case DW_LNS_copy:
7998 if (lh->num_file_names < file || file == 0)
7999 dwarf2_debug_line_missing_file_complaint ();
8000 else
8001 {
8002 lh->file_names[file - 1].included_p = 1;
8003 if (!decode_for_pst_p && is_stmt)
8004 {
8005 if (last_subfile != current_subfile)
8006 {
8007 addr = gdbarch_addr_bits_remove (gdbarch, address);
8008 if (last_subfile)
8009 record_line (last_subfile, 0, addr);
8010 last_subfile = current_subfile;
8011 }
8012 addr = check_cu_functions (address, cu);
8013 addr = gdbarch_addr_bits_remove (gdbarch, addr);
8014 record_line (current_subfile, line, addr);
8015 }
8016 }
8017 basic_block = 0;
8018 break;
8019 case DW_LNS_advance_pc:
8020 address += lh->minimum_instruction_length
8021 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8022 line_ptr += bytes_read;
8023 break;
8024 case DW_LNS_advance_line:
8025 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
8026 line_ptr += bytes_read;
8027 break;
8028 case DW_LNS_set_file:
8029 {
8030 /* The arrays lh->include_dirs and lh->file_names are
8031 0-based, but the directory and file name numbers in
8032 the statement program are 1-based. */
8033 struct file_entry *fe;
8034 char *dir = NULL;
8035
8036 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8037 line_ptr += bytes_read;
8038 if (lh->num_file_names < file || file == 0)
8039 dwarf2_debug_line_missing_file_complaint ();
8040 else
8041 {
8042 fe = &lh->file_names[file - 1];
8043 if (fe->dir_index)
8044 dir = lh->include_dirs[fe->dir_index - 1];
8045 if (!decode_for_pst_p)
8046 {
8047 last_subfile = current_subfile;
8048 dwarf2_start_subfile (fe->name, dir, comp_dir);
8049 }
8050 }
8051 }
8052 break;
8053 case DW_LNS_set_column:
8054 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8055 line_ptr += bytes_read;
8056 break;
8057 case DW_LNS_negate_stmt:
8058 is_stmt = (!is_stmt);
8059 break;
8060 case DW_LNS_set_basic_block:
8061 basic_block = 1;
8062 break;
8063 /* Add to the address register of the state machine the
8064 address increment value corresponding to special opcode
8065 255. I.e., this value is scaled by the minimum
8066 instruction length since special opcode 255 would have
8067 scaled the the increment. */
8068 case DW_LNS_const_add_pc:
8069 address += (lh->minimum_instruction_length
8070 * ((255 - lh->opcode_base) / lh->line_range));
8071 break;
8072 case DW_LNS_fixed_advance_pc:
8073 address += read_2_bytes (abfd, line_ptr);
8074 line_ptr += 2;
8075 break;
8076 default:
8077 {
8078 /* Unknown standard opcode, ignore it. */
8079 int i;
8080
8081 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
8082 {
8083 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8084 line_ptr += bytes_read;
8085 }
8086 }
8087 }
8088 }
8089 if (lh->num_file_names < file || file == 0)
8090 dwarf2_debug_line_missing_file_complaint ();
8091 else
8092 {
8093 lh->file_names[file - 1].included_p = 1;
8094 if (!decode_for_pst_p)
8095 {
8096 addr = gdbarch_addr_bits_remove (gdbarch, address);
8097 record_line (current_subfile, 0, addr);
8098 }
8099 }
8100 }
8101
8102 if (decode_for_pst_p)
8103 {
8104 int file_index;
8105
8106 /* Now that we're done scanning the Line Header Program, we can
8107 create the psymtab of each included file. */
8108 for (file_index = 0; file_index < lh->num_file_names; file_index++)
8109 if (lh->file_names[file_index].included_p == 1)
8110 {
8111 const struct file_entry fe = lh->file_names [file_index];
8112 char *include_name = fe.name;
8113 char *dir_name = NULL;
8114 char *pst_filename = pst->filename;
8115
8116 if (fe.dir_index)
8117 dir_name = lh->include_dirs[fe.dir_index - 1];
8118
8119 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
8120 {
8121 include_name = concat (dir_name, SLASH_STRING,
8122 include_name, (char *)NULL);
8123 make_cleanup (xfree, include_name);
8124 }
8125
8126 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
8127 {
8128 pst_filename = concat (pst->dirname, SLASH_STRING,
8129 pst_filename, (char *)NULL);
8130 make_cleanup (xfree, pst_filename);
8131 }
8132
8133 if (strcmp (include_name, pst_filename) != 0)
8134 dwarf2_create_include_psymtab (include_name, pst, objfile);
8135 }
8136 }
8137 else
8138 {
8139 /* Make sure a symtab is created for every file, even files
8140 which contain only variables (i.e. no code with associated
8141 line numbers). */
8142
8143 int i;
8144 struct file_entry *fe;
8145
8146 for (i = 0; i < lh->num_file_names; i++)
8147 {
8148 char *dir = NULL;
8149 fe = &lh->file_names[i];
8150 if (fe->dir_index)
8151 dir = lh->include_dirs[fe->dir_index - 1];
8152 dwarf2_start_subfile (fe->name, dir, comp_dir);
8153
8154 /* Skip the main file; we don't need it, and it must be
8155 allocated last, so that it will show up before the
8156 non-primary symtabs in the objfile's symtab list. */
8157 if (current_subfile == first_subfile)
8158 continue;
8159
8160 if (current_subfile->symtab == NULL)
8161 current_subfile->symtab = allocate_symtab (current_subfile->name,
8162 cu->objfile);
8163 fe->symtab = current_subfile->symtab;
8164 }
8165 }
8166 }
8167
8168 /* Start a subfile for DWARF. FILENAME is the name of the file and
8169 DIRNAME the name of the source directory which contains FILENAME
8170 or NULL if not known. COMP_DIR is the compilation directory for the
8171 linetable's compilation unit or NULL if not known.
8172 This routine tries to keep line numbers from identical absolute and
8173 relative file names in a common subfile.
8174
8175 Using the `list' example from the GDB testsuite, which resides in
8176 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
8177 of /srcdir/list0.c yields the following debugging information for list0.c:
8178
8179 DW_AT_name: /srcdir/list0.c
8180 DW_AT_comp_dir: /compdir
8181 files.files[0].name: list0.h
8182 files.files[0].dir: /srcdir
8183 files.files[1].name: list0.c
8184 files.files[1].dir: /srcdir
8185
8186 The line number information for list0.c has to end up in a single
8187 subfile, so that `break /srcdir/list0.c:1' works as expected.
8188 start_subfile will ensure that this happens provided that we pass the
8189 concatenation of files.files[1].dir and files.files[1].name as the
8190 subfile's name. */
8191
8192 static void
8193 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
8194 {
8195 char *fullname;
8196
8197 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
8198 `start_symtab' will always pass the contents of DW_AT_comp_dir as
8199 second argument to start_subfile. To be consistent, we do the
8200 same here. In order not to lose the line information directory,
8201 we concatenate it to the filename when it makes sense.
8202 Note that the Dwarf3 standard says (speaking of filenames in line
8203 information): ``The directory index is ignored for file names
8204 that represent full path names''. Thus ignoring dirname in the
8205 `else' branch below isn't an issue. */
8206
8207 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
8208 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
8209 else
8210 fullname = filename;
8211
8212 start_subfile (fullname, comp_dir);
8213
8214 if (fullname != filename)
8215 xfree (fullname);
8216 }
8217
8218 static void
8219 var_decode_location (struct attribute *attr, struct symbol *sym,
8220 struct dwarf2_cu *cu)
8221 {
8222 struct objfile *objfile = cu->objfile;
8223 struct comp_unit_head *cu_header = &cu->header;
8224
8225 /* NOTE drow/2003-01-30: There used to be a comment and some special
8226 code here to turn a symbol with DW_AT_external and a
8227 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
8228 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
8229 with some versions of binutils) where shared libraries could have
8230 relocations against symbols in their debug information - the
8231 minimal symbol would have the right address, but the debug info
8232 would not. It's no longer necessary, because we will explicitly
8233 apply relocations when we read in the debug information now. */
8234
8235 /* A DW_AT_location attribute with no contents indicates that a
8236 variable has been optimized away. */
8237 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
8238 {
8239 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
8240 return;
8241 }
8242
8243 /* Handle one degenerate form of location expression specially, to
8244 preserve GDB's previous behavior when section offsets are
8245 specified. If this is just a DW_OP_addr then mark this symbol
8246 as LOC_STATIC. */
8247
8248 if (attr_form_is_block (attr)
8249 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
8250 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
8251 {
8252 unsigned int dummy;
8253
8254 SYMBOL_VALUE_ADDRESS (sym) =
8255 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
8256 SYMBOL_CLASS (sym) = LOC_STATIC;
8257 fixup_symbol_section (sym, objfile);
8258 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
8259 SYMBOL_SECTION (sym));
8260 return;
8261 }
8262
8263 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
8264 expression evaluator, and use LOC_COMPUTED only when necessary
8265 (i.e. when the value of a register or memory location is
8266 referenced, or a thread-local block, etc.). Then again, it might
8267 not be worthwhile. I'm assuming that it isn't unless performance
8268 or memory numbers show me otherwise. */
8269
8270 dwarf2_symbol_mark_computed (attr, sym, cu);
8271 SYMBOL_CLASS (sym) = LOC_COMPUTED;
8272 }
8273
8274 /* Given a pointer to a DWARF information entry, figure out if we need
8275 to make a symbol table entry for it, and if so, create a new entry
8276 and return a pointer to it.
8277 If TYPE is NULL, determine symbol type from the die, otherwise
8278 used the passed type. */
8279
8280 static struct symbol *
8281 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
8282 {
8283 struct objfile *objfile = cu->objfile;
8284 struct symbol *sym = NULL;
8285 char *name;
8286 struct attribute *attr = NULL;
8287 struct attribute *attr2 = NULL;
8288 CORE_ADDR baseaddr;
8289 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
8290
8291 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8292
8293 if (die->tag != DW_TAG_namespace)
8294 name = dwarf2_linkage_name (die, cu);
8295 else
8296 name = TYPE_NAME (type);
8297
8298 if (name)
8299 {
8300 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
8301 sizeof (struct symbol));
8302 OBJSTAT (objfile, n_syms++);
8303 memset (sym, 0, sizeof (struct symbol));
8304
8305 /* Cache this symbol's name and the name's demangled form (if any). */
8306 SYMBOL_LANGUAGE (sym) = cu->language;
8307 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
8308
8309 /* Default assumptions.
8310 Use the passed type or decode it from the die. */
8311 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
8312 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
8313 if (type != NULL)
8314 SYMBOL_TYPE (sym) = type;
8315 else
8316 SYMBOL_TYPE (sym) = die_type (die, cu);
8317 attr = dwarf2_attr (die,
8318 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
8319 cu);
8320 if (attr)
8321 {
8322 SYMBOL_LINE (sym) = DW_UNSND (attr);
8323 }
8324
8325 attr = dwarf2_attr (die,
8326 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
8327 cu);
8328 if (attr)
8329 {
8330 int file_index = DW_UNSND (attr);
8331 if (cu->line_header == NULL
8332 || file_index > cu->line_header->num_file_names)
8333 complaint (&symfile_complaints,
8334 _("file index out of range"));
8335 else if (file_index > 0)
8336 {
8337 struct file_entry *fe;
8338 fe = &cu->line_header->file_names[file_index - 1];
8339 SYMBOL_SYMTAB (sym) = fe->symtab;
8340 }
8341 }
8342
8343 switch (die->tag)
8344 {
8345 case DW_TAG_label:
8346 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
8347 if (attr)
8348 {
8349 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
8350 }
8351 SYMBOL_CLASS (sym) = LOC_LABEL;
8352 break;
8353 case DW_TAG_subprogram:
8354 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8355 finish_block. */
8356 SYMBOL_CLASS (sym) = LOC_BLOCK;
8357 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8358 if ((attr2 && (DW_UNSND (attr2) != 0))
8359 || cu->language == language_ada)
8360 {
8361 /* Subprograms marked external are stored as a global symbol.
8362 Ada subprograms, whether marked external or not, are always
8363 stored as a global symbol, because we want to be able to
8364 access them globally. For instance, we want to be able
8365 to break on a nested subprogram without having to
8366 specify the context. */
8367 add_symbol_to_list (sym, &global_symbols);
8368 }
8369 else
8370 {
8371 add_symbol_to_list (sym, cu->list_in_scope);
8372 }
8373 break;
8374 case DW_TAG_inlined_subroutine:
8375 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8376 finish_block. */
8377 SYMBOL_CLASS (sym) = LOC_BLOCK;
8378 SYMBOL_INLINED (sym) = 1;
8379 /* Do not add the symbol to any lists. It will be found via
8380 BLOCK_FUNCTION from the blockvector. */
8381 break;
8382 case DW_TAG_variable:
8383 /* Compilation with minimal debug info may result in variables
8384 with missing type entries. Change the misleading `void' type
8385 to something sensible. */
8386 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
8387 SYMBOL_TYPE (sym)
8388 = objfile_type (objfile)->nodebug_data_symbol;
8389
8390 attr = dwarf2_attr (die, DW_AT_const_value, cu);
8391 if (attr)
8392 {
8393 dwarf2_const_value (attr, sym, cu);
8394 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8395 if (attr2 && (DW_UNSND (attr2) != 0))
8396 add_symbol_to_list (sym, &global_symbols);
8397 else
8398 add_symbol_to_list (sym, cu->list_in_scope);
8399 break;
8400 }
8401 attr = dwarf2_attr (die, DW_AT_location, cu);
8402 if (attr)
8403 {
8404 var_decode_location (attr, sym, cu);
8405 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8406 if (attr2 && (DW_UNSND (attr2) != 0))
8407 add_symbol_to_list (sym, &global_symbols);
8408 else
8409 add_symbol_to_list (sym, cu->list_in_scope);
8410 }
8411 else
8412 {
8413 /* We do not know the address of this symbol.
8414 If it is an external symbol and we have type information
8415 for it, enter the symbol as a LOC_UNRESOLVED symbol.
8416 The address of the variable will then be determined from
8417 the minimal symbol table whenever the variable is
8418 referenced. */
8419 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8420 if (attr2 && (DW_UNSND (attr2) != 0)
8421 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
8422 {
8423 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
8424 add_symbol_to_list (sym, cu->list_in_scope);
8425 }
8426 else if (!die_is_declaration (die, cu))
8427 {
8428 /* Use the default LOC_OPTIMIZED_OUT class. */
8429 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
8430 add_symbol_to_list (sym, cu->list_in_scope);
8431 }
8432 }
8433 break;
8434 case DW_TAG_formal_parameter:
8435 /* If we are inside a function, mark this as an argument. If
8436 not, we might be looking at an argument to an inlined function
8437 when we do not have enough information to show inlined frames;
8438 pretend it's a local variable in that case so that the user can
8439 still see it. */
8440 if (context_stack_depth > 0
8441 && context_stack[context_stack_depth - 1].name != NULL)
8442 SYMBOL_IS_ARGUMENT (sym) = 1;
8443 attr = dwarf2_attr (die, DW_AT_location, cu);
8444 if (attr)
8445 {
8446 var_decode_location (attr, sym, cu);
8447 }
8448 attr = dwarf2_attr (die, DW_AT_const_value, cu);
8449 if (attr)
8450 {
8451 dwarf2_const_value (attr, sym, cu);
8452 }
8453 add_symbol_to_list (sym, cu->list_in_scope);
8454 break;
8455 case DW_TAG_unspecified_parameters:
8456 /* From varargs functions; gdb doesn't seem to have any
8457 interest in this information, so just ignore it for now.
8458 (FIXME?) */
8459 break;
8460 case DW_TAG_class_type:
8461 case DW_TAG_interface_type:
8462 case DW_TAG_structure_type:
8463 case DW_TAG_union_type:
8464 case DW_TAG_set_type:
8465 case DW_TAG_enumeration_type:
8466 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8467 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8468
8469 /* Make sure that the symbol includes appropriate enclosing
8470 classes/namespaces in its name. These are calculated in
8471 read_structure_type, and the correct name is saved in
8472 the type. */
8473
8474 if (cu->language == language_cplus
8475 || cu->language == language_java)
8476 {
8477 struct type *type = SYMBOL_TYPE (sym);
8478
8479 if (TYPE_TAG_NAME (type) != NULL)
8480 {
8481 /* FIXME: carlton/2003-11-10: Should this use
8482 SYMBOL_SET_NAMES instead? (The same problem also
8483 arises further down in this function.) */
8484 /* The type's name is already allocated along with
8485 this objfile, so we don't need to duplicate it
8486 for the symbol. */
8487 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
8488 }
8489 }
8490
8491 {
8492 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
8493 really ever be static objects: otherwise, if you try
8494 to, say, break of a class's method and you're in a file
8495 which doesn't mention that class, it won't work unless
8496 the check for all static symbols in lookup_symbol_aux
8497 saves you. See the OtherFileClass tests in
8498 gdb.c++/namespace.exp. */
8499
8500 struct pending **list_to_add;
8501
8502 list_to_add = (cu->list_in_scope == &file_symbols
8503 && (cu->language == language_cplus
8504 || cu->language == language_java)
8505 ? &global_symbols : cu->list_in_scope);
8506
8507 add_symbol_to_list (sym, list_to_add);
8508
8509 /* The semantics of C++ state that "struct foo { ... }" also
8510 defines a typedef for "foo". A Java class declaration also
8511 defines a typedef for the class. */
8512 if (cu->language == language_cplus
8513 || cu->language == language_java
8514 || cu->language == language_ada)
8515 {
8516 /* The symbol's name is already allocated along with
8517 this objfile, so we don't need to duplicate it for
8518 the type. */
8519 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
8520 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
8521 }
8522 }
8523 break;
8524 case DW_TAG_typedef:
8525 SYMBOL_LINKAGE_NAME (sym) = (char *) dwarf2_full_name (die, cu);
8526 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8527 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
8528 add_symbol_to_list (sym, cu->list_in_scope);
8529 break;
8530 case DW_TAG_base_type:
8531 case DW_TAG_subrange_type:
8532 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8533 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
8534 add_symbol_to_list (sym, cu->list_in_scope);
8535 break;
8536 case DW_TAG_enumerator:
8537 SYMBOL_LINKAGE_NAME (sym) = (char *) dwarf2_full_name (die, cu);
8538 attr = dwarf2_attr (die, DW_AT_const_value, cu);
8539 if (attr)
8540 {
8541 dwarf2_const_value (attr, sym, cu);
8542 }
8543 {
8544 /* NOTE: carlton/2003-11-10: See comment above in the
8545 DW_TAG_class_type, etc. block. */
8546
8547 struct pending **list_to_add;
8548
8549 list_to_add = (cu->list_in_scope == &file_symbols
8550 && (cu->language == language_cplus
8551 || cu->language == language_java)
8552 ? &global_symbols : cu->list_in_scope);
8553
8554 add_symbol_to_list (sym, list_to_add);
8555 }
8556 break;
8557 case DW_TAG_namespace:
8558 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8559 add_symbol_to_list (sym, &global_symbols);
8560 break;
8561 default:
8562 /* Not a tag we recognize. Hopefully we aren't processing
8563 trash data, but since we must specifically ignore things
8564 we don't recognize, there is nothing else we should do at
8565 this point. */
8566 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
8567 dwarf_tag_name (die->tag));
8568 break;
8569 }
8570
8571 /* For the benefit of old versions of GCC, check for anonymous
8572 namespaces based on the demangled name. */
8573 if (!processing_has_namespace_info
8574 && cu->language == language_cplus
8575 && dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu) != NULL)
8576 cp_scan_for_anonymous_namespaces (sym);
8577 }
8578 return (sym);
8579 }
8580
8581 /* Copy constant value from an attribute to a symbol. */
8582
8583 static void
8584 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
8585 struct dwarf2_cu *cu)
8586 {
8587 struct objfile *objfile = cu->objfile;
8588 struct comp_unit_head *cu_header = &cu->header;
8589 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
8590 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
8591 struct dwarf_block *blk;
8592
8593 switch (attr->form)
8594 {
8595 case DW_FORM_addr:
8596 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
8597 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
8598 cu_header->addr_size,
8599 TYPE_LENGTH (SYMBOL_TYPE
8600 (sym)));
8601 SYMBOL_VALUE_BYTES (sym) =
8602 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
8603 /* NOTE: cagney/2003-05-09: In-lined store_address call with
8604 it's body - store_unsigned_integer. */
8605 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
8606 byte_order, DW_ADDR (attr));
8607 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8608 break;
8609 case DW_FORM_string:
8610 case DW_FORM_strp:
8611 /* DW_STRING is already allocated on the obstack, point directly
8612 to it. */
8613 SYMBOL_VALUE_BYTES (sym) = (gdb_byte *) DW_STRING (attr);
8614 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8615 break;
8616 case DW_FORM_block1:
8617 case DW_FORM_block2:
8618 case DW_FORM_block4:
8619 case DW_FORM_block:
8620 blk = DW_BLOCK (attr);
8621 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
8622 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
8623 blk->size,
8624 TYPE_LENGTH (SYMBOL_TYPE
8625 (sym)));
8626 SYMBOL_VALUE_BYTES (sym) =
8627 obstack_alloc (&objfile->objfile_obstack, blk->size);
8628 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
8629 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8630 break;
8631
8632 /* The DW_AT_const_value attributes are supposed to carry the
8633 symbol's value "represented as it would be on the target
8634 architecture." By the time we get here, it's already been
8635 converted to host endianness, so we just need to sign- or
8636 zero-extend it as appropriate. */
8637 case DW_FORM_data1:
8638 dwarf2_const_value_data (attr, sym, 8);
8639 break;
8640 case DW_FORM_data2:
8641 dwarf2_const_value_data (attr, sym, 16);
8642 break;
8643 case DW_FORM_data4:
8644 dwarf2_const_value_data (attr, sym, 32);
8645 break;
8646 case DW_FORM_data8:
8647 dwarf2_const_value_data (attr, sym, 64);
8648 break;
8649
8650 case DW_FORM_sdata:
8651 SYMBOL_VALUE (sym) = DW_SND (attr);
8652 SYMBOL_CLASS (sym) = LOC_CONST;
8653 break;
8654
8655 case DW_FORM_udata:
8656 SYMBOL_VALUE (sym) = DW_UNSND (attr);
8657 SYMBOL_CLASS (sym) = LOC_CONST;
8658 break;
8659
8660 default:
8661 complaint (&symfile_complaints,
8662 _("unsupported const value attribute form: '%s'"),
8663 dwarf_form_name (attr->form));
8664 SYMBOL_VALUE (sym) = 0;
8665 SYMBOL_CLASS (sym) = LOC_CONST;
8666 break;
8667 }
8668 }
8669
8670
8671 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
8672 or zero-extend it as appropriate for the symbol's type. */
8673 static void
8674 dwarf2_const_value_data (struct attribute *attr,
8675 struct symbol *sym,
8676 int bits)
8677 {
8678 LONGEST l = DW_UNSND (attr);
8679
8680 if (bits < sizeof (l) * 8)
8681 {
8682 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
8683 l &= ((LONGEST) 1 << bits) - 1;
8684 else
8685 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
8686 }
8687
8688 SYMBOL_VALUE (sym) = l;
8689 SYMBOL_CLASS (sym) = LOC_CONST;
8690 }
8691
8692
8693 /* Return the type of the die in question using its DW_AT_type attribute. */
8694
8695 static struct type *
8696 die_type (struct die_info *die, struct dwarf2_cu *cu)
8697 {
8698 struct type *type;
8699 struct attribute *type_attr;
8700 struct die_info *type_die;
8701
8702 type_attr = dwarf2_attr (die, DW_AT_type, cu);
8703 if (!type_attr)
8704 {
8705 /* A missing DW_AT_type represents a void type. */
8706 return objfile_type (cu->objfile)->builtin_void;
8707 }
8708
8709 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
8710
8711 type = tag_type_to_type (type_die, cu);
8712 if (!type)
8713 {
8714 dump_die_for_error (type_die);
8715 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
8716 cu->objfile->name);
8717 }
8718 return type;
8719 }
8720
8721 /* Return the containing type of the die in question using its
8722 DW_AT_containing_type attribute. */
8723
8724 static struct type *
8725 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
8726 {
8727 struct type *type = NULL;
8728 struct attribute *type_attr;
8729 struct die_info *type_die = NULL;
8730
8731 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
8732 if (type_attr)
8733 {
8734 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
8735 type = tag_type_to_type (type_die, cu);
8736 }
8737 if (!type)
8738 {
8739 if (type_die)
8740 dump_die_for_error (type_die);
8741 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
8742 cu->objfile->name);
8743 }
8744 return type;
8745 }
8746
8747 static struct type *
8748 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
8749 {
8750 struct type *this_type;
8751
8752 this_type = read_type_die (die, cu);
8753 if (!this_type)
8754 {
8755 dump_die_for_error (die);
8756 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
8757 cu->objfile->name);
8758 }
8759 return this_type;
8760 }
8761
8762 static struct type *
8763 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
8764 {
8765 struct type *this_type;
8766
8767 this_type = get_die_type (die, cu);
8768 if (this_type)
8769 return this_type;
8770
8771 switch (die->tag)
8772 {
8773 case DW_TAG_class_type:
8774 case DW_TAG_interface_type:
8775 case DW_TAG_structure_type:
8776 case DW_TAG_union_type:
8777 this_type = read_structure_type (die, cu);
8778 break;
8779 case DW_TAG_enumeration_type:
8780 this_type = read_enumeration_type (die, cu);
8781 break;
8782 case DW_TAG_subprogram:
8783 case DW_TAG_subroutine_type:
8784 case DW_TAG_inlined_subroutine:
8785 this_type = read_subroutine_type (die, cu);
8786 break;
8787 case DW_TAG_array_type:
8788 this_type = read_array_type (die, cu);
8789 break;
8790 case DW_TAG_set_type:
8791 this_type = read_set_type (die, cu);
8792 break;
8793 case DW_TAG_pointer_type:
8794 this_type = read_tag_pointer_type (die, cu);
8795 break;
8796 case DW_TAG_ptr_to_member_type:
8797 this_type = read_tag_ptr_to_member_type (die, cu);
8798 break;
8799 case DW_TAG_reference_type:
8800 this_type = read_tag_reference_type (die, cu);
8801 break;
8802 case DW_TAG_const_type:
8803 this_type = read_tag_const_type (die, cu);
8804 break;
8805 case DW_TAG_volatile_type:
8806 this_type = read_tag_volatile_type (die, cu);
8807 break;
8808 case DW_TAG_string_type:
8809 this_type = read_tag_string_type (die, cu);
8810 break;
8811 case DW_TAG_typedef:
8812 this_type = read_typedef (die, cu);
8813 break;
8814 case DW_TAG_subrange_type:
8815 this_type = read_subrange_type (die, cu);
8816 break;
8817 case DW_TAG_base_type:
8818 this_type = read_base_type (die, cu);
8819 break;
8820 case DW_TAG_unspecified_type:
8821 this_type = read_unspecified_type (die, cu);
8822 break;
8823 case DW_TAG_namespace:
8824 this_type = read_namespace_type (die, cu);
8825 break;
8826 default:
8827 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
8828 dwarf_tag_name (die->tag));
8829 break;
8830 }
8831
8832 return this_type;
8833 }
8834
8835 /* Return the name of the namespace/class that DIE is defined within,
8836 or "" if we can't tell. The caller should not xfree the result.
8837
8838 For example, if we're within the method foo() in the following
8839 code:
8840
8841 namespace N {
8842 class C {
8843 void foo () {
8844 }
8845 };
8846 }
8847
8848 then determine_prefix on foo's die will return "N::C". */
8849
8850 static char *
8851 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
8852 {
8853 struct die_info *parent, *spec_die;
8854 struct dwarf2_cu *spec_cu;
8855 struct type *parent_type;
8856
8857 if (cu->language != language_cplus
8858 && cu->language != language_java)
8859 return "";
8860
8861 /* We have to be careful in the presence of DW_AT_specification.
8862 For example, with GCC 3.4, given the code
8863
8864 namespace N {
8865 void foo() {
8866 // Definition of N::foo.
8867 }
8868 }
8869
8870 then we'll have a tree of DIEs like this:
8871
8872 1: DW_TAG_compile_unit
8873 2: DW_TAG_namespace // N
8874 3: DW_TAG_subprogram // declaration of N::foo
8875 4: DW_TAG_subprogram // definition of N::foo
8876 DW_AT_specification // refers to die #3
8877
8878 Thus, when processing die #4, we have to pretend that we're in
8879 the context of its DW_AT_specification, namely the contex of die
8880 #3. */
8881 spec_cu = cu;
8882 spec_die = die_specification (die, &spec_cu);
8883 if (spec_die == NULL)
8884 parent = die->parent;
8885 else
8886 {
8887 parent = spec_die->parent;
8888 cu = spec_cu;
8889 }
8890
8891 if (parent == NULL)
8892 return "";
8893 else
8894 switch (parent->tag)
8895 {
8896 case DW_TAG_namespace:
8897 parent_type = read_type_die (parent, cu);
8898 /* We give a name to even anonymous namespaces. */
8899 return TYPE_TAG_NAME (parent_type);
8900 case DW_TAG_class_type:
8901 case DW_TAG_interface_type:
8902 case DW_TAG_structure_type:
8903 case DW_TAG_union_type:
8904 parent_type = read_type_die (parent, cu);
8905 if (TYPE_TAG_NAME (parent_type) != NULL)
8906 return TYPE_TAG_NAME (parent_type);
8907 else
8908 /* An anonymous structure is only allowed non-static data
8909 members; no typedefs, no member functions, et cetera.
8910 So it does not need a prefix. */
8911 return "";
8912 default:
8913 return determine_prefix (parent, cu);
8914 }
8915 }
8916
8917 /* Return a newly-allocated string formed by concatenating PREFIX and
8918 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
8919 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
8920 perform an obconcat, otherwise allocate storage for the result. The CU argument
8921 is used to determine the language and hence, the appropriate separator. */
8922
8923 #define MAX_SEP_LEN 2 /* sizeof ("::") */
8924
8925 static char *
8926 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
8927 struct dwarf2_cu *cu)
8928 {
8929 char *sep;
8930
8931 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
8932 sep = "";
8933 else if (cu->language == language_java)
8934 sep = ".";
8935 else
8936 sep = "::";
8937
8938 if (prefix == NULL)
8939 prefix = "";
8940 if (suffix == NULL)
8941 suffix = "";
8942
8943 if (obs == NULL)
8944 {
8945 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
8946 strcpy (retval, prefix);
8947 strcat (retval, sep);
8948 strcat (retval, suffix);
8949 return retval;
8950 }
8951 else
8952 {
8953 /* We have an obstack. */
8954 return obconcat (obs, prefix, sep, suffix);
8955 }
8956 }
8957
8958 /* Return sibling of die, NULL if no sibling. */
8959
8960 static struct die_info *
8961 sibling_die (struct die_info *die)
8962 {
8963 return die->sibling;
8964 }
8965
8966 /* Get linkage name of a die, return NULL if not found. */
8967
8968 static char *
8969 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
8970 {
8971 struct attribute *attr;
8972
8973 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8974 if (attr && DW_STRING (attr))
8975 return DW_STRING (attr);
8976 return dwarf2_name (die, cu);
8977 }
8978
8979 /* Get name of a die, return NULL if not found. */
8980
8981 static char *
8982 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
8983 struct obstack *obstack)
8984 {
8985 if (name && cu->language == language_cplus)
8986 {
8987 char *canon_name = cp_canonicalize_string (name);
8988
8989 if (canon_name != NULL)
8990 {
8991 if (strcmp (canon_name, name) != 0)
8992 name = obsavestring (canon_name, strlen (canon_name),
8993 obstack);
8994 xfree (canon_name);
8995 }
8996 }
8997
8998 return name;
8999 }
9000
9001 /* Get name of a die, return NULL if not found. */
9002
9003 static char *
9004 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9005 {
9006 struct attribute *attr;
9007
9008 attr = dwarf2_attr (die, DW_AT_name, cu);
9009 if (!attr || !DW_STRING (attr))
9010 return NULL;
9011
9012 switch (die->tag)
9013 {
9014 case DW_TAG_compile_unit:
9015 /* Compilation units have a DW_AT_name that is a filename, not
9016 a source language identifier. */
9017 case DW_TAG_enumeration_type:
9018 case DW_TAG_enumerator:
9019 /* These tags always have simple identifiers already; no need
9020 to canonicalize them. */
9021 return DW_STRING (attr);
9022 default:
9023 if (!DW_STRING_IS_CANONICAL (attr))
9024 {
9025 DW_STRING (attr)
9026 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
9027 &cu->objfile->objfile_obstack);
9028 DW_STRING_IS_CANONICAL (attr) = 1;
9029 }
9030 return DW_STRING (attr);
9031 }
9032 }
9033
9034 /* Return the die that this die in an extension of, or NULL if there
9035 is none. *EXT_CU is the CU containing DIE on input, and the CU
9036 containing the return value on output. */
9037
9038 static struct die_info *
9039 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9040 {
9041 struct attribute *attr;
9042
9043 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9044 if (attr == NULL)
9045 return NULL;
9046
9047 return follow_die_ref (die, attr, ext_cu);
9048 }
9049
9050 /* Convert a DIE tag into its string name. */
9051
9052 static char *
9053 dwarf_tag_name (unsigned tag)
9054 {
9055 switch (tag)
9056 {
9057 case DW_TAG_padding:
9058 return "DW_TAG_padding";
9059 case DW_TAG_array_type:
9060 return "DW_TAG_array_type";
9061 case DW_TAG_class_type:
9062 return "DW_TAG_class_type";
9063 case DW_TAG_entry_point:
9064 return "DW_TAG_entry_point";
9065 case DW_TAG_enumeration_type:
9066 return "DW_TAG_enumeration_type";
9067 case DW_TAG_formal_parameter:
9068 return "DW_TAG_formal_parameter";
9069 case DW_TAG_imported_declaration:
9070 return "DW_TAG_imported_declaration";
9071 case DW_TAG_label:
9072 return "DW_TAG_label";
9073 case DW_TAG_lexical_block:
9074 return "DW_TAG_lexical_block";
9075 case DW_TAG_member:
9076 return "DW_TAG_member";
9077 case DW_TAG_pointer_type:
9078 return "DW_TAG_pointer_type";
9079 case DW_TAG_reference_type:
9080 return "DW_TAG_reference_type";
9081 case DW_TAG_compile_unit:
9082 return "DW_TAG_compile_unit";
9083 case DW_TAG_string_type:
9084 return "DW_TAG_string_type";
9085 case DW_TAG_structure_type:
9086 return "DW_TAG_structure_type";
9087 case DW_TAG_subroutine_type:
9088 return "DW_TAG_subroutine_type";
9089 case DW_TAG_typedef:
9090 return "DW_TAG_typedef";
9091 case DW_TAG_union_type:
9092 return "DW_TAG_union_type";
9093 case DW_TAG_unspecified_parameters:
9094 return "DW_TAG_unspecified_parameters";
9095 case DW_TAG_variant:
9096 return "DW_TAG_variant";
9097 case DW_TAG_common_block:
9098 return "DW_TAG_common_block";
9099 case DW_TAG_common_inclusion:
9100 return "DW_TAG_common_inclusion";
9101 case DW_TAG_inheritance:
9102 return "DW_TAG_inheritance";
9103 case DW_TAG_inlined_subroutine:
9104 return "DW_TAG_inlined_subroutine";
9105 case DW_TAG_module:
9106 return "DW_TAG_module";
9107 case DW_TAG_ptr_to_member_type:
9108 return "DW_TAG_ptr_to_member_type";
9109 case DW_TAG_set_type:
9110 return "DW_TAG_set_type";
9111 case DW_TAG_subrange_type:
9112 return "DW_TAG_subrange_type";
9113 case DW_TAG_with_stmt:
9114 return "DW_TAG_with_stmt";
9115 case DW_TAG_access_declaration:
9116 return "DW_TAG_access_declaration";
9117 case DW_TAG_base_type:
9118 return "DW_TAG_base_type";
9119 case DW_TAG_catch_block:
9120 return "DW_TAG_catch_block";
9121 case DW_TAG_const_type:
9122 return "DW_TAG_const_type";
9123 case DW_TAG_constant:
9124 return "DW_TAG_constant";
9125 case DW_TAG_enumerator:
9126 return "DW_TAG_enumerator";
9127 case DW_TAG_file_type:
9128 return "DW_TAG_file_type";
9129 case DW_TAG_friend:
9130 return "DW_TAG_friend";
9131 case DW_TAG_namelist:
9132 return "DW_TAG_namelist";
9133 case DW_TAG_namelist_item:
9134 return "DW_TAG_namelist_item";
9135 case DW_TAG_packed_type:
9136 return "DW_TAG_packed_type";
9137 case DW_TAG_subprogram:
9138 return "DW_TAG_subprogram";
9139 case DW_TAG_template_type_param:
9140 return "DW_TAG_template_type_param";
9141 case DW_TAG_template_value_param:
9142 return "DW_TAG_template_value_param";
9143 case DW_TAG_thrown_type:
9144 return "DW_TAG_thrown_type";
9145 case DW_TAG_try_block:
9146 return "DW_TAG_try_block";
9147 case DW_TAG_variant_part:
9148 return "DW_TAG_variant_part";
9149 case DW_TAG_variable:
9150 return "DW_TAG_variable";
9151 case DW_TAG_volatile_type:
9152 return "DW_TAG_volatile_type";
9153 case DW_TAG_dwarf_procedure:
9154 return "DW_TAG_dwarf_procedure";
9155 case DW_TAG_restrict_type:
9156 return "DW_TAG_restrict_type";
9157 case DW_TAG_interface_type:
9158 return "DW_TAG_interface_type";
9159 case DW_TAG_namespace:
9160 return "DW_TAG_namespace";
9161 case DW_TAG_imported_module:
9162 return "DW_TAG_imported_module";
9163 case DW_TAG_unspecified_type:
9164 return "DW_TAG_unspecified_type";
9165 case DW_TAG_partial_unit:
9166 return "DW_TAG_partial_unit";
9167 case DW_TAG_imported_unit:
9168 return "DW_TAG_imported_unit";
9169 case DW_TAG_condition:
9170 return "DW_TAG_condition";
9171 case DW_TAG_shared_type:
9172 return "DW_TAG_shared_type";
9173 case DW_TAG_type_unit:
9174 return "DW_TAG_type_unit";
9175 case DW_TAG_MIPS_loop:
9176 return "DW_TAG_MIPS_loop";
9177 case DW_TAG_HP_array_descriptor:
9178 return "DW_TAG_HP_array_descriptor";
9179 case DW_TAG_format_label:
9180 return "DW_TAG_format_label";
9181 case DW_TAG_function_template:
9182 return "DW_TAG_function_template";
9183 case DW_TAG_class_template:
9184 return "DW_TAG_class_template";
9185 case DW_TAG_GNU_BINCL:
9186 return "DW_TAG_GNU_BINCL";
9187 case DW_TAG_GNU_EINCL:
9188 return "DW_TAG_GNU_EINCL";
9189 case DW_TAG_upc_shared_type:
9190 return "DW_TAG_upc_shared_type";
9191 case DW_TAG_upc_strict_type:
9192 return "DW_TAG_upc_strict_type";
9193 case DW_TAG_upc_relaxed_type:
9194 return "DW_TAG_upc_relaxed_type";
9195 case DW_TAG_PGI_kanji_type:
9196 return "DW_TAG_PGI_kanji_type";
9197 case DW_TAG_PGI_interface_block:
9198 return "DW_TAG_PGI_interface_block";
9199 default:
9200 return "DW_TAG_<unknown>";
9201 }
9202 }
9203
9204 /* Convert a DWARF attribute code into its string name. */
9205
9206 static char *
9207 dwarf_attr_name (unsigned attr)
9208 {
9209 switch (attr)
9210 {
9211 case DW_AT_sibling:
9212 return "DW_AT_sibling";
9213 case DW_AT_location:
9214 return "DW_AT_location";
9215 case DW_AT_name:
9216 return "DW_AT_name";
9217 case DW_AT_ordering:
9218 return "DW_AT_ordering";
9219 case DW_AT_subscr_data:
9220 return "DW_AT_subscr_data";
9221 case DW_AT_byte_size:
9222 return "DW_AT_byte_size";
9223 case DW_AT_bit_offset:
9224 return "DW_AT_bit_offset";
9225 case DW_AT_bit_size:
9226 return "DW_AT_bit_size";
9227 case DW_AT_element_list:
9228 return "DW_AT_element_list";
9229 case DW_AT_stmt_list:
9230 return "DW_AT_stmt_list";
9231 case DW_AT_low_pc:
9232 return "DW_AT_low_pc";
9233 case DW_AT_high_pc:
9234 return "DW_AT_high_pc";
9235 case DW_AT_language:
9236 return "DW_AT_language";
9237 case DW_AT_member:
9238 return "DW_AT_member";
9239 case DW_AT_discr:
9240 return "DW_AT_discr";
9241 case DW_AT_discr_value:
9242 return "DW_AT_discr_value";
9243 case DW_AT_visibility:
9244 return "DW_AT_visibility";
9245 case DW_AT_import:
9246 return "DW_AT_import";
9247 case DW_AT_string_length:
9248 return "DW_AT_string_length";
9249 case DW_AT_common_reference:
9250 return "DW_AT_common_reference";
9251 case DW_AT_comp_dir:
9252 return "DW_AT_comp_dir";
9253 case DW_AT_const_value:
9254 return "DW_AT_const_value";
9255 case DW_AT_containing_type:
9256 return "DW_AT_containing_type";
9257 case DW_AT_default_value:
9258 return "DW_AT_default_value";
9259 case DW_AT_inline:
9260 return "DW_AT_inline";
9261 case DW_AT_is_optional:
9262 return "DW_AT_is_optional";
9263 case DW_AT_lower_bound:
9264 return "DW_AT_lower_bound";
9265 case DW_AT_producer:
9266 return "DW_AT_producer";
9267 case DW_AT_prototyped:
9268 return "DW_AT_prototyped";
9269 case DW_AT_return_addr:
9270 return "DW_AT_return_addr";
9271 case DW_AT_start_scope:
9272 return "DW_AT_start_scope";
9273 case DW_AT_bit_stride:
9274 return "DW_AT_bit_stride";
9275 case DW_AT_upper_bound:
9276 return "DW_AT_upper_bound";
9277 case DW_AT_abstract_origin:
9278 return "DW_AT_abstract_origin";
9279 case DW_AT_accessibility:
9280 return "DW_AT_accessibility";
9281 case DW_AT_address_class:
9282 return "DW_AT_address_class";
9283 case DW_AT_artificial:
9284 return "DW_AT_artificial";
9285 case DW_AT_base_types:
9286 return "DW_AT_base_types";
9287 case DW_AT_calling_convention:
9288 return "DW_AT_calling_convention";
9289 case DW_AT_count:
9290 return "DW_AT_count";
9291 case DW_AT_data_member_location:
9292 return "DW_AT_data_member_location";
9293 case DW_AT_decl_column:
9294 return "DW_AT_decl_column";
9295 case DW_AT_decl_file:
9296 return "DW_AT_decl_file";
9297 case DW_AT_decl_line:
9298 return "DW_AT_decl_line";
9299 case DW_AT_declaration:
9300 return "DW_AT_declaration";
9301 case DW_AT_discr_list:
9302 return "DW_AT_discr_list";
9303 case DW_AT_encoding:
9304 return "DW_AT_encoding";
9305 case DW_AT_external:
9306 return "DW_AT_external";
9307 case DW_AT_frame_base:
9308 return "DW_AT_frame_base";
9309 case DW_AT_friend:
9310 return "DW_AT_friend";
9311 case DW_AT_identifier_case:
9312 return "DW_AT_identifier_case";
9313 case DW_AT_macro_info:
9314 return "DW_AT_macro_info";
9315 case DW_AT_namelist_items:
9316 return "DW_AT_namelist_items";
9317 case DW_AT_priority:
9318 return "DW_AT_priority";
9319 case DW_AT_segment:
9320 return "DW_AT_segment";
9321 case DW_AT_specification:
9322 return "DW_AT_specification";
9323 case DW_AT_static_link:
9324 return "DW_AT_static_link";
9325 case DW_AT_type:
9326 return "DW_AT_type";
9327 case DW_AT_use_location:
9328 return "DW_AT_use_location";
9329 case DW_AT_variable_parameter:
9330 return "DW_AT_variable_parameter";
9331 case DW_AT_virtuality:
9332 return "DW_AT_virtuality";
9333 case DW_AT_vtable_elem_location:
9334 return "DW_AT_vtable_elem_location";
9335 /* DWARF 3 values. */
9336 case DW_AT_allocated:
9337 return "DW_AT_allocated";
9338 case DW_AT_associated:
9339 return "DW_AT_associated";
9340 case DW_AT_data_location:
9341 return "DW_AT_data_location";
9342 case DW_AT_byte_stride:
9343 return "DW_AT_byte_stride";
9344 case DW_AT_entry_pc:
9345 return "DW_AT_entry_pc";
9346 case DW_AT_use_UTF8:
9347 return "DW_AT_use_UTF8";
9348 case DW_AT_extension:
9349 return "DW_AT_extension";
9350 case DW_AT_ranges:
9351 return "DW_AT_ranges";
9352 case DW_AT_trampoline:
9353 return "DW_AT_trampoline";
9354 case DW_AT_call_column:
9355 return "DW_AT_call_column";
9356 case DW_AT_call_file:
9357 return "DW_AT_call_file";
9358 case DW_AT_call_line:
9359 return "DW_AT_call_line";
9360 case DW_AT_description:
9361 return "DW_AT_description";
9362 case DW_AT_binary_scale:
9363 return "DW_AT_binary_scale";
9364 case DW_AT_decimal_scale:
9365 return "DW_AT_decimal_scale";
9366 case DW_AT_small:
9367 return "DW_AT_small";
9368 case DW_AT_decimal_sign:
9369 return "DW_AT_decimal_sign";
9370 case DW_AT_digit_count:
9371 return "DW_AT_digit_count";
9372 case DW_AT_picture_string:
9373 return "DW_AT_picture_string";
9374 case DW_AT_mutable:
9375 return "DW_AT_mutable";
9376 case DW_AT_threads_scaled:
9377 return "DW_AT_threads_scaled";
9378 case DW_AT_explicit:
9379 return "DW_AT_explicit";
9380 case DW_AT_object_pointer:
9381 return "DW_AT_object_pointer";
9382 case DW_AT_endianity:
9383 return "DW_AT_endianity";
9384 case DW_AT_elemental:
9385 return "DW_AT_elemental";
9386 case DW_AT_pure:
9387 return "DW_AT_pure";
9388 case DW_AT_recursive:
9389 return "DW_AT_recursive";
9390 /* DWARF 4 values. */
9391 case DW_AT_signature:
9392 return "DW_AT_signature";
9393 /* SGI/MIPS extensions. */
9394 #ifdef MIPS /* collides with DW_AT_HP_block_index */
9395 case DW_AT_MIPS_fde:
9396 return "DW_AT_MIPS_fde";
9397 #endif
9398 case DW_AT_MIPS_loop_begin:
9399 return "DW_AT_MIPS_loop_begin";
9400 case DW_AT_MIPS_tail_loop_begin:
9401 return "DW_AT_MIPS_tail_loop_begin";
9402 case DW_AT_MIPS_epilog_begin:
9403 return "DW_AT_MIPS_epilog_begin";
9404 case DW_AT_MIPS_loop_unroll_factor:
9405 return "DW_AT_MIPS_loop_unroll_factor";
9406 case DW_AT_MIPS_software_pipeline_depth:
9407 return "DW_AT_MIPS_software_pipeline_depth";
9408 case DW_AT_MIPS_linkage_name:
9409 return "DW_AT_MIPS_linkage_name";
9410 case DW_AT_MIPS_stride:
9411 return "DW_AT_MIPS_stride";
9412 case DW_AT_MIPS_abstract_name:
9413 return "DW_AT_MIPS_abstract_name";
9414 case DW_AT_MIPS_clone_origin:
9415 return "DW_AT_MIPS_clone_origin";
9416 case DW_AT_MIPS_has_inlines:
9417 return "DW_AT_MIPS_has_inlines";
9418 /* HP extensions. */
9419 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
9420 case DW_AT_HP_block_index:
9421 return "DW_AT_HP_block_index";
9422 #endif
9423 case DW_AT_HP_unmodifiable:
9424 return "DW_AT_HP_unmodifiable";
9425 case DW_AT_HP_actuals_stmt_list:
9426 return "DW_AT_HP_actuals_stmt_list";
9427 case DW_AT_HP_proc_per_section:
9428 return "DW_AT_HP_proc_per_section";
9429 case DW_AT_HP_raw_data_ptr:
9430 return "DW_AT_HP_raw_data_ptr";
9431 case DW_AT_HP_pass_by_reference:
9432 return "DW_AT_HP_pass_by_reference";
9433 case DW_AT_HP_opt_level:
9434 return "DW_AT_HP_opt_level";
9435 case DW_AT_HP_prof_version_id:
9436 return "DW_AT_HP_prof_version_id";
9437 case DW_AT_HP_opt_flags:
9438 return "DW_AT_HP_opt_flags";
9439 case DW_AT_HP_cold_region_low_pc:
9440 return "DW_AT_HP_cold_region_low_pc";
9441 case DW_AT_HP_cold_region_high_pc:
9442 return "DW_AT_HP_cold_region_high_pc";
9443 case DW_AT_HP_all_variables_modifiable:
9444 return "DW_AT_HP_all_variables_modifiable";
9445 case DW_AT_HP_linkage_name:
9446 return "DW_AT_HP_linkage_name";
9447 case DW_AT_HP_prof_flags:
9448 return "DW_AT_HP_prof_flags";
9449 /* GNU extensions. */
9450 case DW_AT_sf_names:
9451 return "DW_AT_sf_names";
9452 case DW_AT_src_info:
9453 return "DW_AT_src_info";
9454 case DW_AT_mac_info:
9455 return "DW_AT_mac_info";
9456 case DW_AT_src_coords:
9457 return "DW_AT_src_coords";
9458 case DW_AT_body_begin:
9459 return "DW_AT_body_begin";
9460 case DW_AT_body_end:
9461 return "DW_AT_body_end";
9462 case DW_AT_GNU_vector:
9463 return "DW_AT_GNU_vector";
9464 /* VMS extensions. */
9465 case DW_AT_VMS_rtnbeg_pd_address:
9466 return "DW_AT_VMS_rtnbeg_pd_address";
9467 /* UPC extension. */
9468 case DW_AT_upc_threads_scaled:
9469 return "DW_AT_upc_threads_scaled";
9470 /* PGI (STMicroelectronics) extensions. */
9471 case DW_AT_PGI_lbase:
9472 return "DW_AT_PGI_lbase";
9473 case DW_AT_PGI_soffset:
9474 return "DW_AT_PGI_soffset";
9475 case DW_AT_PGI_lstride:
9476 return "DW_AT_PGI_lstride";
9477 default:
9478 return "DW_AT_<unknown>";
9479 }
9480 }
9481
9482 /* Convert a DWARF value form code into its string name. */
9483
9484 static char *
9485 dwarf_form_name (unsigned form)
9486 {
9487 switch (form)
9488 {
9489 case DW_FORM_addr:
9490 return "DW_FORM_addr";
9491 case DW_FORM_block2:
9492 return "DW_FORM_block2";
9493 case DW_FORM_block4:
9494 return "DW_FORM_block4";
9495 case DW_FORM_data2:
9496 return "DW_FORM_data2";
9497 case DW_FORM_data4:
9498 return "DW_FORM_data4";
9499 case DW_FORM_data8:
9500 return "DW_FORM_data8";
9501 case DW_FORM_string:
9502 return "DW_FORM_string";
9503 case DW_FORM_block:
9504 return "DW_FORM_block";
9505 case DW_FORM_block1:
9506 return "DW_FORM_block1";
9507 case DW_FORM_data1:
9508 return "DW_FORM_data1";
9509 case DW_FORM_flag:
9510 return "DW_FORM_flag";
9511 case DW_FORM_sdata:
9512 return "DW_FORM_sdata";
9513 case DW_FORM_strp:
9514 return "DW_FORM_strp";
9515 case DW_FORM_udata:
9516 return "DW_FORM_udata";
9517 case DW_FORM_ref_addr:
9518 return "DW_FORM_ref_addr";
9519 case DW_FORM_ref1:
9520 return "DW_FORM_ref1";
9521 case DW_FORM_ref2:
9522 return "DW_FORM_ref2";
9523 case DW_FORM_ref4:
9524 return "DW_FORM_ref4";
9525 case DW_FORM_ref8:
9526 return "DW_FORM_ref8";
9527 case DW_FORM_ref_udata:
9528 return "DW_FORM_ref_udata";
9529 case DW_FORM_indirect:
9530 return "DW_FORM_indirect";
9531 case DW_FORM_sec_offset:
9532 return "DW_FORM_sec_offset";
9533 case DW_FORM_exprloc:
9534 return "DW_FORM_exprloc";
9535 case DW_FORM_flag_present:
9536 return "DW_FORM_flag_present";
9537 case DW_FORM_sig8:
9538 return "DW_FORM_sig8";
9539 default:
9540 return "DW_FORM_<unknown>";
9541 }
9542 }
9543
9544 /* Convert a DWARF stack opcode into its string name. */
9545
9546 static char *
9547 dwarf_stack_op_name (unsigned op)
9548 {
9549 switch (op)
9550 {
9551 case DW_OP_addr:
9552 return "DW_OP_addr";
9553 case DW_OP_deref:
9554 return "DW_OP_deref";
9555 case DW_OP_const1u:
9556 return "DW_OP_const1u";
9557 case DW_OP_const1s:
9558 return "DW_OP_const1s";
9559 case DW_OP_const2u:
9560 return "DW_OP_const2u";
9561 case DW_OP_const2s:
9562 return "DW_OP_const2s";
9563 case DW_OP_const4u:
9564 return "DW_OP_const4u";
9565 case DW_OP_const4s:
9566 return "DW_OP_const4s";
9567 case DW_OP_const8u:
9568 return "DW_OP_const8u";
9569 case DW_OP_const8s:
9570 return "DW_OP_const8s";
9571 case DW_OP_constu:
9572 return "DW_OP_constu";
9573 case DW_OP_consts:
9574 return "DW_OP_consts";
9575 case DW_OP_dup:
9576 return "DW_OP_dup";
9577 case DW_OP_drop:
9578 return "DW_OP_drop";
9579 case DW_OP_over:
9580 return "DW_OP_over";
9581 case DW_OP_pick:
9582 return "DW_OP_pick";
9583 case DW_OP_swap:
9584 return "DW_OP_swap";
9585 case DW_OP_rot:
9586 return "DW_OP_rot";
9587 case DW_OP_xderef:
9588 return "DW_OP_xderef";
9589 case DW_OP_abs:
9590 return "DW_OP_abs";
9591 case DW_OP_and:
9592 return "DW_OP_and";
9593 case DW_OP_div:
9594 return "DW_OP_div";
9595 case DW_OP_minus:
9596 return "DW_OP_minus";
9597 case DW_OP_mod:
9598 return "DW_OP_mod";
9599 case DW_OP_mul:
9600 return "DW_OP_mul";
9601 case DW_OP_neg:
9602 return "DW_OP_neg";
9603 case DW_OP_not:
9604 return "DW_OP_not";
9605 case DW_OP_or:
9606 return "DW_OP_or";
9607 case DW_OP_plus:
9608 return "DW_OP_plus";
9609 case DW_OP_plus_uconst:
9610 return "DW_OP_plus_uconst";
9611 case DW_OP_shl:
9612 return "DW_OP_shl";
9613 case DW_OP_shr:
9614 return "DW_OP_shr";
9615 case DW_OP_shra:
9616 return "DW_OP_shra";
9617 case DW_OP_xor:
9618 return "DW_OP_xor";
9619 case DW_OP_bra:
9620 return "DW_OP_bra";
9621 case DW_OP_eq:
9622 return "DW_OP_eq";
9623 case DW_OP_ge:
9624 return "DW_OP_ge";
9625 case DW_OP_gt:
9626 return "DW_OP_gt";
9627 case DW_OP_le:
9628 return "DW_OP_le";
9629 case DW_OP_lt:
9630 return "DW_OP_lt";
9631 case DW_OP_ne:
9632 return "DW_OP_ne";
9633 case DW_OP_skip:
9634 return "DW_OP_skip";
9635 case DW_OP_lit0:
9636 return "DW_OP_lit0";
9637 case DW_OP_lit1:
9638 return "DW_OP_lit1";
9639 case DW_OP_lit2:
9640 return "DW_OP_lit2";
9641 case DW_OP_lit3:
9642 return "DW_OP_lit3";
9643 case DW_OP_lit4:
9644 return "DW_OP_lit4";
9645 case DW_OP_lit5:
9646 return "DW_OP_lit5";
9647 case DW_OP_lit6:
9648 return "DW_OP_lit6";
9649 case DW_OP_lit7:
9650 return "DW_OP_lit7";
9651 case DW_OP_lit8:
9652 return "DW_OP_lit8";
9653 case DW_OP_lit9:
9654 return "DW_OP_lit9";
9655 case DW_OP_lit10:
9656 return "DW_OP_lit10";
9657 case DW_OP_lit11:
9658 return "DW_OP_lit11";
9659 case DW_OP_lit12:
9660 return "DW_OP_lit12";
9661 case DW_OP_lit13:
9662 return "DW_OP_lit13";
9663 case DW_OP_lit14:
9664 return "DW_OP_lit14";
9665 case DW_OP_lit15:
9666 return "DW_OP_lit15";
9667 case DW_OP_lit16:
9668 return "DW_OP_lit16";
9669 case DW_OP_lit17:
9670 return "DW_OP_lit17";
9671 case DW_OP_lit18:
9672 return "DW_OP_lit18";
9673 case DW_OP_lit19:
9674 return "DW_OP_lit19";
9675 case DW_OP_lit20:
9676 return "DW_OP_lit20";
9677 case DW_OP_lit21:
9678 return "DW_OP_lit21";
9679 case DW_OP_lit22:
9680 return "DW_OP_lit22";
9681 case DW_OP_lit23:
9682 return "DW_OP_lit23";
9683 case DW_OP_lit24:
9684 return "DW_OP_lit24";
9685 case DW_OP_lit25:
9686 return "DW_OP_lit25";
9687 case DW_OP_lit26:
9688 return "DW_OP_lit26";
9689 case DW_OP_lit27:
9690 return "DW_OP_lit27";
9691 case DW_OP_lit28:
9692 return "DW_OP_lit28";
9693 case DW_OP_lit29:
9694 return "DW_OP_lit29";
9695 case DW_OP_lit30:
9696 return "DW_OP_lit30";
9697 case DW_OP_lit31:
9698 return "DW_OP_lit31";
9699 case DW_OP_reg0:
9700 return "DW_OP_reg0";
9701 case DW_OP_reg1:
9702 return "DW_OP_reg1";
9703 case DW_OP_reg2:
9704 return "DW_OP_reg2";
9705 case DW_OP_reg3:
9706 return "DW_OP_reg3";
9707 case DW_OP_reg4:
9708 return "DW_OP_reg4";
9709 case DW_OP_reg5:
9710 return "DW_OP_reg5";
9711 case DW_OP_reg6:
9712 return "DW_OP_reg6";
9713 case DW_OP_reg7:
9714 return "DW_OP_reg7";
9715 case DW_OP_reg8:
9716 return "DW_OP_reg8";
9717 case DW_OP_reg9:
9718 return "DW_OP_reg9";
9719 case DW_OP_reg10:
9720 return "DW_OP_reg10";
9721 case DW_OP_reg11:
9722 return "DW_OP_reg11";
9723 case DW_OP_reg12:
9724 return "DW_OP_reg12";
9725 case DW_OP_reg13:
9726 return "DW_OP_reg13";
9727 case DW_OP_reg14:
9728 return "DW_OP_reg14";
9729 case DW_OP_reg15:
9730 return "DW_OP_reg15";
9731 case DW_OP_reg16:
9732 return "DW_OP_reg16";
9733 case DW_OP_reg17:
9734 return "DW_OP_reg17";
9735 case DW_OP_reg18:
9736 return "DW_OP_reg18";
9737 case DW_OP_reg19:
9738 return "DW_OP_reg19";
9739 case DW_OP_reg20:
9740 return "DW_OP_reg20";
9741 case DW_OP_reg21:
9742 return "DW_OP_reg21";
9743 case DW_OP_reg22:
9744 return "DW_OP_reg22";
9745 case DW_OP_reg23:
9746 return "DW_OP_reg23";
9747 case DW_OP_reg24:
9748 return "DW_OP_reg24";
9749 case DW_OP_reg25:
9750 return "DW_OP_reg25";
9751 case DW_OP_reg26:
9752 return "DW_OP_reg26";
9753 case DW_OP_reg27:
9754 return "DW_OP_reg27";
9755 case DW_OP_reg28:
9756 return "DW_OP_reg28";
9757 case DW_OP_reg29:
9758 return "DW_OP_reg29";
9759 case DW_OP_reg30:
9760 return "DW_OP_reg30";
9761 case DW_OP_reg31:
9762 return "DW_OP_reg31";
9763 case DW_OP_breg0:
9764 return "DW_OP_breg0";
9765 case DW_OP_breg1:
9766 return "DW_OP_breg1";
9767 case DW_OP_breg2:
9768 return "DW_OP_breg2";
9769 case DW_OP_breg3:
9770 return "DW_OP_breg3";
9771 case DW_OP_breg4:
9772 return "DW_OP_breg4";
9773 case DW_OP_breg5:
9774 return "DW_OP_breg5";
9775 case DW_OP_breg6:
9776 return "DW_OP_breg6";
9777 case DW_OP_breg7:
9778 return "DW_OP_breg7";
9779 case DW_OP_breg8:
9780 return "DW_OP_breg8";
9781 case DW_OP_breg9:
9782 return "DW_OP_breg9";
9783 case DW_OP_breg10:
9784 return "DW_OP_breg10";
9785 case DW_OP_breg11:
9786 return "DW_OP_breg11";
9787 case DW_OP_breg12:
9788 return "DW_OP_breg12";
9789 case DW_OP_breg13:
9790 return "DW_OP_breg13";
9791 case DW_OP_breg14:
9792 return "DW_OP_breg14";
9793 case DW_OP_breg15:
9794 return "DW_OP_breg15";
9795 case DW_OP_breg16:
9796 return "DW_OP_breg16";
9797 case DW_OP_breg17:
9798 return "DW_OP_breg17";
9799 case DW_OP_breg18:
9800 return "DW_OP_breg18";
9801 case DW_OP_breg19:
9802 return "DW_OP_breg19";
9803 case DW_OP_breg20:
9804 return "DW_OP_breg20";
9805 case DW_OP_breg21:
9806 return "DW_OP_breg21";
9807 case DW_OP_breg22:
9808 return "DW_OP_breg22";
9809 case DW_OP_breg23:
9810 return "DW_OP_breg23";
9811 case DW_OP_breg24:
9812 return "DW_OP_breg24";
9813 case DW_OP_breg25:
9814 return "DW_OP_breg25";
9815 case DW_OP_breg26:
9816 return "DW_OP_breg26";
9817 case DW_OP_breg27:
9818 return "DW_OP_breg27";
9819 case DW_OP_breg28:
9820 return "DW_OP_breg28";
9821 case DW_OP_breg29:
9822 return "DW_OP_breg29";
9823 case DW_OP_breg30:
9824 return "DW_OP_breg30";
9825 case DW_OP_breg31:
9826 return "DW_OP_breg31";
9827 case DW_OP_regx:
9828 return "DW_OP_regx";
9829 case DW_OP_fbreg:
9830 return "DW_OP_fbreg";
9831 case DW_OP_bregx:
9832 return "DW_OP_bregx";
9833 case DW_OP_piece:
9834 return "DW_OP_piece";
9835 case DW_OP_deref_size:
9836 return "DW_OP_deref_size";
9837 case DW_OP_xderef_size:
9838 return "DW_OP_xderef_size";
9839 case DW_OP_nop:
9840 return "DW_OP_nop";
9841 /* DWARF 3 extensions. */
9842 case DW_OP_push_object_address:
9843 return "DW_OP_push_object_address";
9844 case DW_OP_call2:
9845 return "DW_OP_call2";
9846 case DW_OP_call4:
9847 return "DW_OP_call4";
9848 case DW_OP_call_ref:
9849 return "DW_OP_call_ref";
9850 /* GNU extensions. */
9851 case DW_OP_form_tls_address:
9852 return "DW_OP_form_tls_address";
9853 case DW_OP_call_frame_cfa:
9854 return "DW_OP_call_frame_cfa";
9855 case DW_OP_bit_piece:
9856 return "DW_OP_bit_piece";
9857 case DW_OP_GNU_push_tls_address:
9858 return "DW_OP_GNU_push_tls_address";
9859 case DW_OP_GNU_uninit:
9860 return "DW_OP_GNU_uninit";
9861 /* HP extensions. */
9862 case DW_OP_HP_is_value:
9863 return "DW_OP_HP_is_value";
9864 case DW_OP_HP_fltconst4:
9865 return "DW_OP_HP_fltconst4";
9866 case DW_OP_HP_fltconst8:
9867 return "DW_OP_HP_fltconst8";
9868 case DW_OP_HP_mod_range:
9869 return "DW_OP_HP_mod_range";
9870 case DW_OP_HP_unmod_range:
9871 return "DW_OP_HP_unmod_range";
9872 case DW_OP_HP_tls:
9873 return "DW_OP_HP_tls";
9874 default:
9875 return "OP_<unknown>";
9876 }
9877 }
9878
9879 static char *
9880 dwarf_bool_name (unsigned mybool)
9881 {
9882 if (mybool)
9883 return "TRUE";
9884 else
9885 return "FALSE";
9886 }
9887
9888 /* Convert a DWARF type code into its string name. */
9889
9890 static char *
9891 dwarf_type_encoding_name (unsigned enc)
9892 {
9893 switch (enc)
9894 {
9895 case DW_ATE_void:
9896 return "DW_ATE_void";
9897 case DW_ATE_address:
9898 return "DW_ATE_address";
9899 case DW_ATE_boolean:
9900 return "DW_ATE_boolean";
9901 case DW_ATE_complex_float:
9902 return "DW_ATE_complex_float";
9903 case DW_ATE_float:
9904 return "DW_ATE_float";
9905 case DW_ATE_signed:
9906 return "DW_ATE_signed";
9907 case DW_ATE_signed_char:
9908 return "DW_ATE_signed_char";
9909 case DW_ATE_unsigned:
9910 return "DW_ATE_unsigned";
9911 case DW_ATE_unsigned_char:
9912 return "DW_ATE_unsigned_char";
9913 /* DWARF 3. */
9914 case DW_ATE_imaginary_float:
9915 return "DW_ATE_imaginary_float";
9916 case DW_ATE_packed_decimal:
9917 return "DW_ATE_packed_decimal";
9918 case DW_ATE_numeric_string:
9919 return "DW_ATE_numeric_string";
9920 case DW_ATE_edited:
9921 return "DW_ATE_edited";
9922 case DW_ATE_signed_fixed:
9923 return "DW_ATE_signed_fixed";
9924 case DW_ATE_unsigned_fixed:
9925 return "DW_ATE_unsigned_fixed";
9926 case DW_ATE_decimal_float:
9927 return "DW_ATE_decimal_float";
9928 /* HP extensions. */
9929 case DW_ATE_HP_float80:
9930 return "DW_ATE_HP_float80";
9931 case DW_ATE_HP_complex_float80:
9932 return "DW_ATE_HP_complex_float80";
9933 case DW_ATE_HP_float128:
9934 return "DW_ATE_HP_float128";
9935 case DW_ATE_HP_complex_float128:
9936 return "DW_ATE_HP_complex_float128";
9937 case DW_ATE_HP_floathpintel:
9938 return "DW_ATE_HP_floathpintel";
9939 case DW_ATE_HP_imaginary_float80:
9940 return "DW_ATE_HP_imaginary_float80";
9941 case DW_ATE_HP_imaginary_float128:
9942 return "DW_ATE_HP_imaginary_float128";
9943 default:
9944 return "DW_ATE_<unknown>";
9945 }
9946 }
9947
9948 /* Convert a DWARF call frame info operation to its string name. */
9949
9950 #if 0
9951 static char *
9952 dwarf_cfi_name (unsigned cfi_opc)
9953 {
9954 switch (cfi_opc)
9955 {
9956 case DW_CFA_advance_loc:
9957 return "DW_CFA_advance_loc";
9958 case DW_CFA_offset:
9959 return "DW_CFA_offset";
9960 case DW_CFA_restore:
9961 return "DW_CFA_restore";
9962 case DW_CFA_nop:
9963 return "DW_CFA_nop";
9964 case DW_CFA_set_loc:
9965 return "DW_CFA_set_loc";
9966 case DW_CFA_advance_loc1:
9967 return "DW_CFA_advance_loc1";
9968 case DW_CFA_advance_loc2:
9969 return "DW_CFA_advance_loc2";
9970 case DW_CFA_advance_loc4:
9971 return "DW_CFA_advance_loc4";
9972 case DW_CFA_offset_extended:
9973 return "DW_CFA_offset_extended";
9974 case DW_CFA_restore_extended:
9975 return "DW_CFA_restore_extended";
9976 case DW_CFA_undefined:
9977 return "DW_CFA_undefined";
9978 case DW_CFA_same_value:
9979 return "DW_CFA_same_value";
9980 case DW_CFA_register:
9981 return "DW_CFA_register";
9982 case DW_CFA_remember_state:
9983 return "DW_CFA_remember_state";
9984 case DW_CFA_restore_state:
9985 return "DW_CFA_restore_state";
9986 case DW_CFA_def_cfa:
9987 return "DW_CFA_def_cfa";
9988 case DW_CFA_def_cfa_register:
9989 return "DW_CFA_def_cfa_register";
9990 case DW_CFA_def_cfa_offset:
9991 return "DW_CFA_def_cfa_offset";
9992 /* DWARF 3. */
9993 case DW_CFA_def_cfa_expression:
9994 return "DW_CFA_def_cfa_expression";
9995 case DW_CFA_expression:
9996 return "DW_CFA_expression";
9997 case DW_CFA_offset_extended_sf:
9998 return "DW_CFA_offset_extended_sf";
9999 case DW_CFA_def_cfa_sf:
10000 return "DW_CFA_def_cfa_sf";
10001 case DW_CFA_def_cfa_offset_sf:
10002 return "DW_CFA_def_cfa_offset_sf";
10003 case DW_CFA_val_offset:
10004 return "DW_CFA_val_offset";
10005 case DW_CFA_val_offset_sf:
10006 return "DW_CFA_val_offset_sf";
10007 case DW_CFA_val_expression:
10008 return "DW_CFA_val_expression";
10009 /* SGI/MIPS specific. */
10010 case DW_CFA_MIPS_advance_loc8:
10011 return "DW_CFA_MIPS_advance_loc8";
10012 /* GNU extensions. */
10013 case DW_CFA_GNU_window_save:
10014 return "DW_CFA_GNU_window_save";
10015 case DW_CFA_GNU_args_size:
10016 return "DW_CFA_GNU_args_size";
10017 case DW_CFA_GNU_negative_offset_extended:
10018 return "DW_CFA_GNU_negative_offset_extended";
10019 default:
10020 return "DW_CFA_<unknown>";
10021 }
10022 }
10023 #endif
10024
10025 static void
10026 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
10027 {
10028 unsigned int i;
10029
10030 print_spaces (indent, f);
10031 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
10032 dwarf_tag_name (die->tag), die->abbrev, die->offset);
10033
10034 if (die->parent != NULL)
10035 {
10036 print_spaces (indent, f);
10037 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
10038 die->parent->offset);
10039 }
10040
10041 print_spaces (indent, f);
10042 fprintf_unfiltered (f, " has children: %s\n",
10043 dwarf_bool_name (die->child != NULL));
10044
10045 print_spaces (indent, f);
10046 fprintf_unfiltered (f, " attributes:\n");
10047
10048 for (i = 0; i < die->num_attrs; ++i)
10049 {
10050 print_spaces (indent, f);
10051 fprintf_unfiltered (f, " %s (%s) ",
10052 dwarf_attr_name (die->attrs[i].name),
10053 dwarf_form_name (die->attrs[i].form));
10054
10055 switch (die->attrs[i].form)
10056 {
10057 case DW_FORM_ref_addr:
10058 case DW_FORM_addr:
10059 fprintf_unfiltered (f, "address: ");
10060 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
10061 break;
10062 case DW_FORM_block2:
10063 case DW_FORM_block4:
10064 case DW_FORM_block:
10065 case DW_FORM_block1:
10066 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
10067 break;
10068 case DW_FORM_ref1:
10069 case DW_FORM_ref2:
10070 case DW_FORM_ref4:
10071 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10072 (long) (DW_ADDR (&die->attrs[i])));
10073 break;
10074 case DW_FORM_data1:
10075 case DW_FORM_data2:
10076 case DW_FORM_data4:
10077 case DW_FORM_data8:
10078 case DW_FORM_udata:
10079 case DW_FORM_sdata:
10080 fprintf_unfiltered (f, "constant: %ld", DW_UNSND (&die->attrs[i]));
10081 break;
10082 case DW_FORM_sig8:
10083 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
10084 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
10085 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
10086 else
10087 fprintf_unfiltered (f, "signatured type, offset: unknown");
10088 break;
10089 case DW_FORM_string:
10090 case DW_FORM_strp:
10091 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
10092 DW_STRING (&die->attrs[i])
10093 ? DW_STRING (&die->attrs[i]) : "",
10094 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
10095 break;
10096 case DW_FORM_flag:
10097 if (DW_UNSND (&die->attrs[i]))
10098 fprintf_unfiltered (f, "flag: TRUE");
10099 else
10100 fprintf_unfiltered (f, "flag: FALSE");
10101 break;
10102 case DW_FORM_indirect:
10103 /* the reader will have reduced the indirect form to
10104 the "base form" so this form should not occur */
10105 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
10106 break;
10107 default:
10108 fprintf_unfiltered (f, "unsupported attribute form: %d.",
10109 die->attrs[i].form);
10110 break;
10111 }
10112 fprintf_unfiltered (f, "\n");
10113 }
10114 }
10115
10116 static void
10117 dump_die_for_error (struct die_info *die)
10118 {
10119 dump_die_shallow (gdb_stderr, 0, die);
10120 }
10121
10122 static void
10123 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
10124 {
10125 int indent = level * 4;
10126
10127 gdb_assert (die != NULL);
10128
10129 if (level >= max_level)
10130 return;
10131
10132 dump_die_shallow (f, indent, die);
10133
10134 if (die->child != NULL)
10135 {
10136 print_spaces (indent, f);
10137 fprintf_unfiltered (f, " Children:");
10138 if (level + 1 < max_level)
10139 {
10140 fprintf_unfiltered (f, "\n");
10141 dump_die_1 (f, level + 1, max_level, die->child);
10142 }
10143 else
10144 {
10145 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
10146 }
10147 }
10148
10149 if (die->sibling != NULL && level > 0)
10150 {
10151 dump_die_1 (f, level, max_level, die->sibling);
10152 }
10153 }
10154
10155 /* This is called from the pdie macro in gdbinit.in.
10156 It's not static so gcc will keep a copy callable from gdb. */
10157
10158 void
10159 dump_die (struct die_info *die, int max_level)
10160 {
10161 dump_die_1 (gdb_stdlog, 0, max_level, die);
10162 }
10163
10164 static void
10165 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
10166 {
10167 void **slot;
10168
10169 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
10170
10171 *slot = die;
10172 }
10173
10174 static int
10175 is_ref_attr (struct attribute *attr)
10176 {
10177 switch (attr->form)
10178 {
10179 case DW_FORM_ref_addr:
10180 case DW_FORM_ref1:
10181 case DW_FORM_ref2:
10182 case DW_FORM_ref4:
10183 case DW_FORM_ref8:
10184 case DW_FORM_ref_udata:
10185 return 1;
10186 default:
10187 return 0;
10188 }
10189 }
10190
10191 static unsigned int
10192 dwarf2_get_ref_die_offset (struct attribute *attr)
10193 {
10194 if (is_ref_attr (attr))
10195 return DW_ADDR (attr);
10196
10197 complaint (&symfile_complaints,
10198 _("unsupported die ref attribute form: '%s'"),
10199 dwarf_form_name (attr->form));
10200 return 0;
10201 }
10202
10203 /* Return the constant value held by the given attribute. Return -1
10204 if the value held by the attribute is not constant. */
10205
10206 static int
10207 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
10208 {
10209 if (attr->form == DW_FORM_sdata)
10210 return DW_SND (attr);
10211 else if (attr->form == DW_FORM_udata
10212 || attr->form == DW_FORM_data1
10213 || attr->form == DW_FORM_data2
10214 || attr->form == DW_FORM_data4
10215 || attr->form == DW_FORM_data8)
10216 return DW_UNSND (attr);
10217 else
10218 {
10219 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
10220 dwarf_form_name (attr->form));
10221 return default_value;
10222 }
10223 }
10224
10225 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
10226 unit and add it to our queue.
10227 The result is non-zero if PER_CU was queued, otherwise the result is zero
10228 meaning either PER_CU is already queued or it is already loaded. */
10229
10230 static int
10231 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
10232 struct dwarf2_per_cu_data *per_cu)
10233 {
10234 /* Mark the dependence relation so that we don't flush PER_CU
10235 too early. */
10236 dwarf2_add_dependence (this_cu, per_cu);
10237
10238 /* If it's already on the queue, we have nothing to do. */
10239 if (per_cu->queued)
10240 return 0;
10241
10242 /* If the compilation unit is already loaded, just mark it as
10243 used. */
10244 if (per_cu->cu != NULL)
10245 {
10246 per_cu->cu->last_used = 0;
10247 return 0;
10248 }
10249
10250 /* Add it to the queue. */
10251 queue_comp_unit (per_cu, this_cu->objfile);
10252
10253 return 1;
10254 }
10255
10256 /* Follow reference or signature attribute ATTR of SRC_DIE.
10257 On entry *REF_CU is the CU of SRC_DIE.
10258 On exit *REF_CU is the CU of the result. */
10259
10260 static struct die_info *
10261 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
10262 struct dwarf2_cu **ref_cu)
10263 {
10264 struct die_info *die;
10265
10266 if (is_ref_attr (attr))
10267 die = follow_die_ref (src_die, attr, ref_cu);
10268 else if (attr->form == DW_FORM_sig8)
10269 die = follow_die_sig (src_die, attr, ref_cu);
10270 else
10271 {
10272 dump_die_for_error (src_die);
10273 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
10274 (*ref_cu)->objfile->name);
10275 }
10276
10277 return die;
10278 }
10279
10280 /* Follow reference attribute ATTR of SRC_DIE.
10281 On entry *REF_CU is the CU of SRC_DIE.
10282 On exit *REF_CU is the CU of the result. */
10283
10284 static struct die_info *
10285 follow_die_ref (struct die_info *src_die, struct attribute *attr,
10286 struct dwarf2_cu **ref_cu)
10287 {
10288 struct die_info *die;
10289 unsigned int offset;
10290 struct die_info temp_die;
10291 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10292
10293 gdb_assert (cu->per_cu != NULL);
10294
10295 offset = dwarf2_get_ref_die_offset (attr);
10296
10297 if (cu->per_cu->from_debug_types)
10298 {
10299 /* .debug_types CUs cannot reference anything outside their CU.
10300 If they need to, they have to reference a signatured type via
10301 DW_FORM_sig8. */
10302 if (! offset_in_cu_p (&cu->header, offset))
10303 goto not_found;
10304 target_cu = cu;
10305 }
10306 else if (! offset_in_cu_p (&cu->header, offset))
10307 {
10308 struct dwarf2_per_cu_data *per_cu;
10309 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
10310
10311 /* If necessary, add it to the queue and load its DIEs. */
10312 if (maybe_queue_comp_unit (cu, per_cu))
10313 load_full_comp_unit (per_cu, cu->objfile);
10314
10315 target_cu = per_cu->cu;
10316 }
10317 else
10318 target_cu = cu;
10319
10320 *ref_cu = target_cu;
10321 temp_die.offset = offset;
10322 die = htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
10323 if (die)
10324 return die;
10325
10326 not_found:
10327
10328 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
10329 "at 0x%x [in module %s]"),
10330 offset, src_die->offset, cu->objfile->name);
10331 }
10332
10333 /* Follow the signature attribute ATTR in SRC_DIE.
10334 On entry *REF_CU is the CU of SRC_DIE.
10335 On exit *REF_CU is the CU of the result. */
10336
10337 static struct die_info *
10338 follow_die_sig (struct die_info *src_die, struct attribute *attr,
10339 struct dwarf2_cu **ref_cu)
10340 {
10341 struct objfile *objfile = (*ref_cu)->objfile;
10342 struct die_info temp_die;
10343 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
10344 struct dwarf2_cu *sig_cu;
10345 struct die_info *die;
10346
10347 /* sig_type will be NULL if the signatured type is missing from
10348 the debug info. */
10349 if (sig_type == NULL)
10350 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
10351 "at 0x%x [in module %s]"),
10352 src_die->offset, objfile->name);
10353
10354 /* If necessary, add it to the queue and load its DIEs. */
10355
10356 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
10357 read_signatured_type (objfile, sig_type);
10358
10359 gdb_assert (sig_type->per_cu.cu != NULL);
10360
10361 sig_cu = sig_type->per_cu.cu;
10362 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
10363 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
10364 if (die)
10365 {
10366 *ref_cu = sig_cu;
10367 return die;
10368 }
10369
10370 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
10371 "at 0x%x [in module %s]"),
10372 sig_type->type_offset, src_die->offset, objfile->name);
10373 }
10374
10375 /* Given an offset of a signatured type, return its signatured_type. */
10376
10377 static struct signatured_type *
10378 lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
10379 {
10380 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
10381 unsigned int length, initial_length_size;
10382 unsigned int sig_offset;
10383 struct signatured_type find_entry, *type_sig;
10384
10385 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
10386 sig_offset = (initial_length_size
10387 + 2 /*version*/
10388 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
10389 + 1 /*address_size*/);
10390 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
10391 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
10392
10393 /* This is only used to lookup previously recorded types.
10394 If we didn't find it, it's our bug. */
10395 gdb_assert (type_sig != NULL);
10396 gdb_assert (offset == type_sig->offset);
10397
10398 return type_sig;
10399 }
10400
10401 /* Read in signatured type at OFFSET and build its CU and die(s). */
10402
10403 static void
10404 read_signatured_type_at_offset (struct objfile *objfile,
10405 unsigned int offset)
10406 {
10407 struct signatured_type *type_sig;
10408
10409 /* We have the section offset, but we need the signature to do the
10410 hash table lookup. */
10411 type_sig = lookup_signatured_type_at_offset (objfile, offset);
10412
10413 gdb_assert (type_sig->per_cu.cu == NULL);
10414
10415 read_signatured_type (objfile, type_sig);
10416
10417 gdb_assert (type_sig->per_cu.cu != NULL);
10418 }
10419
10420 /* Read in a signatured type and build its CU and DIEs. */
10421
10422 static void
10423 read_signatured_type (struct objfile *objfile,
10424 struct signatured_type *type_sig)
10425 {
10426 gdb_byte *types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
10427 struct die_reader_specs reader_specs;
10428 struct dwarf2_cu *cu;
10429 ULONGEST signature;
10430 struct cleanup *back_to, *free_cu_cleanup;
10431 struct attribute *attr;
10432
10433 gdb_assert (type_sig->per_cu.cu == NULL);
10434
10435 cu = xmalloc (sizeof (struct dwarf2_cu));
10436 memset (cu, 0, sizeof (struct dwarf2_cu));
10437 obstack_init (&cu->comp_unit_obstack);
10438 cu->objfile = objfile;
10439 type_sig->per_cu.cu = cu;
10440 cu->per_cu = &type_sig->per_cu;
10441
10442 /* If an error occurs while loading, release our storage. */
10443 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
10444
10445 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
10446 types_ptr, objfile->obfd);
10447 gdb_assert (signature == type_sig->signature);
10448
10449 cu->die_hash
10450 = htab_create_alloc_ex (cu->header.length / 12,
10451 die_hash,
10452 die_eq,
10453 NULL,
10454 &cu->comp_unit_obstack,
10455 hashtab_obstack_allocate,
10456 dummy_obstack_deallocate);
10457
10458 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
10459 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
10460
10461 init_cu_die_reader (&reader_specs, cu);
10462
10463 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
10464 NULL /*parent*/);
10465
10466 /* We try not to read any attributes in this function, because not
10467 all objfiles needed for references have been loaded yet, and symbol
10468 table processing isn't initialized. But we have to set the CU language,
10469 or we won't be able to build types correctly. */
10470 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
10471 if (attr)
10472 set_cu_language (DW_UNSND (attr), cu);
10473 else
10474 set_cu_language (language_minimal, cu);
10475
10476 do_cleanups (back_to);
10477
10478 /* We've successfully allocated this compilation unit. Let our caller
10479 clean it up when finished with it. */
10480 discard_cleanups (free_cu_cleanup);
10481
10482 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
10483 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
10484 }
10485
10486 /* Decode simple location descriptions.
10487 Given a pointer to a dwarf block that defines a location, compute
10488 the location and return the value.
10489
10490 NOTE drow/2003-11-18: This function is called in two situations
10491 now: for the address of static or global variables (partial symbols
10492 only) and for offsets into structures which are expected to be
10493 (more or less) constant. The partial symbol case should go away,
10494 and only the constant case should remain. That will let this
10495 function complain more accurately. A few special modes are allowed
10496 without complaint for global variables (for instance, global
10497 register values and thread-local values).
10498
10499 A location description containing no operations indicates that the
10500 object is optimized out. The return value is 0 for that case.
10501 FIXME drow/2003-11-16: No callers check for this case any more; soon all
10502 callers will only want a very basic result and this can become a
10503 complaint.
10504
10505 Note that stack[0] is unused except as a default error return.
10506 Note that stack overflow is not yet handled. */
10507
10508 static CORE_ADDR
10509 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
10510 {
10511 struct objfile *objfile = cu->objfile;
10512 struct comp_unit_head *cu_header = &cu->header;
10513 int i;
10514 int size = blk->size;
10515 gdb_byte *data = blk->data;
10516 CORE_ADDR stack[64];
10517 int stacki;
10518 unsigned int bytes_read, unsnd;
10519 gdb_byte op;
10520
10521 i = 0;
10522 stacki = 0;
10523 stack[stacki] = 0;
10524
10525 while (i < size)
10526 {
10527 op = data[i++];
10528 switch (op)
10529 {
10530 case DW_OP_lit0:
10531 case DW_OP_lit1:
10532 case DW_OP_lit2:
10533 case DW_OP_lit3:
10534 case DW_OP_lit4:
10535 case DW_OP_lit5:
10536 case DW_OP_lit6:
10537 case DW_OP_lit7:
10538 case DW_OP_lit8:
10539 case DW_OP_lit9:
10540 case DW_OP_lit10:
10541 case DW_OP_lit11:
10542 case DW_OP_lit12:
10543 case DW_OP_lit13:
10544 case DW_OP_lit14:
10545 case DW_OP_lit15:
10546 case DW_OP_lit16:
10547 case DW_OP_lit17:
10548 case DW_OP_lit18:
10549 case DW_OP_lit19:
10550 case DW_OP_lit20:
10551 case DW_OP_lit21:
10552 case DW_OP_lit22:
10553 case DW_OP_lit23:
10554 case DW_OP_lit24:
10555 case DW_OP_lit25:
10556 case DW_OP_lit26:
10557 case DW_OP_lit27:
10558 case DW_OP_lit28:
10559 case DW_OP_lit29:
10560 case DW_OP_lit30:
10561 case DW_OP_lit31:
10562 stack[++stacki] = op - DW_OP_lit0;
10563 break;
10564
10565 case DW_OP_reg0:
10566 case DW_OP_reg1:
10567 case DW_OP_reg2:
10568 case DW_OP_reg3:
10569 case DW_OP_reg4:
10570 case DW_OP_reg5:
10571 case DW_OP_reg6:
10572 case DW_OP_reg7:
10573 case DW_OP_reg8:
10574 case DW_OP_reg9:
10575 case DW_OP_reg10:
10576 case DW_OP_reg11:
10577 case DW_OP_reg12:
10578 case DW_OP_reg13:
10579 case DW_OP_reg14:
10580 case DW_OP_reg15:
10581 case DW_OP_reg16:
10582 case DW_OP_reg17:
10583 case DW_OP_reg18:
10584 case DW_OP_reg19:
10585 case DW_OP_reg20:
10586 case DW_OP_reg21:
10587 case DW_OP_reg22:
10588 case DW_OP_reg23:
10589 case DW_OP_reg24:
10590 case DW_OP_reg25:
10591 case DW_OP_reg26:
10592 case DW_OP_reg27:
10593 case DW_OP_reg28:
10594 case DW_OP_reg29:
10595 case DW_OP_reg30:
10596 case DW_OP_reg31:
10597 stack[++stacki] = op - DW_OP_reg0;
10598 if (i < size)
10599 dwarf2_complex_location_expr_complaint ();
10600 break;
10601
10602 case DW_OP_regx:
10603 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
10604 i += bytes_read;
10605 stack[++stacki] = unsnd;
10606 if (i < size)
10607 dwarf2_complex_location_expr_complaint ();
10608 break;
10609
10610 case DW_OP_addr:
10611 stack[++stacki] = read_address (objfile->obfd, &data[i],
10612 cu, &bytes_read);
10613 i += bytes_read;
10614 break;
10615
10616 case DW_OP_const1u:
10617 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
10618 i += 1;
10619 break;
10620
10621 case DW_OP_const1s:
10622 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
10623 i += 1;
10624 break;
10625
10626 case DW_OP_const2u:
10627 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
10628 i += 2;
10629 break;
10630
10631 case DW_OP_const2s:
10632 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
10633 i += 2;
10634 break;
10635
10636 case DW_OP_const4u:
10637 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
10638 i += 4;
10639 break;
10640
10641 case DW_OP_const4s:
10642 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
10643 i += 4;
10644 break;
10645
10646 case DW_OP_constu:
10647 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
10648 &bytes_read);
10649 i += bytes_read;
10650 break;
10651
10652 case DW_OP_consts:
10653 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
10654 i += bytes_read;
10655 break;
10656
10657 case DW_OP_dup:
10658 stack[stacki + 1] = stack[stacki];
10659 stacki++;
10660 break;
10661
10662 case DW_OP_plus:
10663 stack[stacki - 1] += stack[stacki];
10664 stacki--;
10665 break;
10666
10667 case DW_OP_plus_uconst:
10668 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
10669 i += bytes_read;
10670 break;
10671
10672 case DW_OP_minus:
10673 stack[stacki - 1] -= stack[stacki];
10674 stacki--;
10675 break;
10676
10677 case DW_OP_deref:
10678 /* If we're not the last op, then we definitely can't encode
10679 this using GDB's address_class enum. This is valid for partial
10680 global symbols, although the variable's address will be bogus
10681 in the psymtab. */
10682 if (i < size)
10683 dwarf2_complex_location_expr_complaint ();
10684 break;
10685
10686 case DW_OP_GNU_push_tls_address:
10687 /* The top of the stack has the offset from the beginning
10688 of the thread control block at which the variable is located. */
10689 /* Nothing should follow this operator, so the top of stack would
10690 be returned. */
10691 /* This is valid for partial global symbols, but the variable's
10692 address will be bogus in the psymtab. */
10693 if (i < size)
10694 dwarf2_complex_location_expr_complaint ();
10695 break;
10696
10697 case DW_OP_GNU_uninit:
10698 break;
10699
10700 default:
10701 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
10702 dwarf_stack_op_name (op));
10703 return (stack[stacki]);
10704 }
10705 }
10706 return (stack[stacki]);
10707 }
10708
10709 /* memory allocation interface */
10710
10711 static struct dwarf_block *
10712 dwarf_alloc_block (struct dwarf2_cu *cu)
10713 {
10714 struct dwarf_block *blk;
10715
10716 blk = (struct dwarf_block *)
10717 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
10718 return (blk);
10719 }
10720
10721 static struct abbrev_info *
10722 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
10723 {
10724 struct abbrev_info *abbrev;
10725
10726 abbrev = (struct abbrev_info *)
10727 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
10728 memset (abbrev, 0, sizeof (struct abbrev_info));
10729 return (abbrev);
10730 }
10731
10732 static struct die_info *
10733 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
10734 {
10735 struct die_info *die;
10736 size_t size = sizeof (struct die_info);
10737
10738 if (num_attrs > 1)
10739 size += (num_attrs - 1) * sizeof (struct attribute);
10740
10741 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
10742 memset (die, 0, sizeof (struct die_info));
10743 return (die);
10744 }
10745
10746 \f
10747 /* Macro support. */
10748
10749
10750 /* Return the full name of file number I in *LH's file name table.
10751 Use COMP_DIR as the name of the current directory of the
10752 compilation. The result is allocated using xmalloc; the caller is
10753 responsible for freeing it. */
10754 static char *
10755 file_full_name (int file, struct line_header *lh, const char *comp_dir)
10756 {
10757 /* Is the file number a valid index into the line header's file name
10758 table? Remember that file numbers start with one, not zero. */
10759 if (1 <= file && file <= lh->num_file_names)
10760 {
10761 struct file_entry *fe = &lh->file_names[file - 1];
10762
10763 if (IS_ABSOLUTE_PATH (fe->name))
10764 return xstrdup (fe->name);
10765 else
10766 {
10767 const char *dir;
10768 int dir_len;
10769 char *full_name;
10770
10771 if (fe->dir_index)
10772 dir = lh->include_dirs[fe->dir_index - 1];
10773 else
10774 dir = comp_dir;
10775
10776 if (dir)
10777 {
10778 dir_len = strlen (dir);
10779 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
10780 strcpy (full_name, dir);
10781 full_name[dir_len] = '/';
10782 strcpy (full_name + dir_len + 1, fe->name);
10783 return full_name;
10784 }
10785 else
10786 return xstrdup (fe->name);
10787 }
10788 }
10789 else
10790 {
10791 /* The compiler produced a bogus file number. We can at least
10792 record the macro definitions made in the file, even if we
10793 won't be able to find the file by name. */
10794 char fake_name[80];
10795 sprintf (fake_name, "<bad macro file number %d>", file);
10796
10797 complaint (&symfile_complaints,
10798 _("bad file number in macro information (%d)"),
10799 file);
10800
10801 return xstrdup (fake_name);
10802 }
10803 }
10804
10805
10806 static struct macro_source_file *
10807 macro_start_file (int file, int line,
10808 struct macro_source_file *current_file,
10809 const char *comp_dir,
10810 struct line_header *lh, struct objfile *objfile)
10811 {
10812 /* The full name of this source file. */
10813 char *full_name = file_full_name (file, lh, comp_dir);
10814
10815 /* We don't create a macro table for this compilation unit
10816 at all until we actually get a filename. */
10817 if (! pending_macros)
10818 pending_macros = new_macro_table (&objfile->objfile_obstack,
10819 objfile->macro_cache);
10820
10821 if (! current_file)
10822 /* If we have no current file, then this must be the start_file
10823 directive for the compilation unit's main source file. */
10824 current_file = macro_set_main (pending_macros, full_name);
10825 else
10826 current_file = macro_include (current_file, line, full_name);
10827
10828 xfree (full_name);
10829
10830 return current_file;
10831 }
10832
10833
10834 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
10835 followed by a null byte. */
10836 static char *
10837 copy_string (const char *buf, int len)
10838 {
10839 char *s = xmalloc (len + 1);
10840 memcpy (s, buf, len);
10841 s[len] = '\0';
10842
10843 return s;
10844 }
10845
10846
10847 static const char *
10848 consume_improper_spaces (const char *p, const char *body)
10849 {
10850 if (*p == ' ')
10851 {
10852 complaint (&symfile_complaints,
10853 _("macro definition contains spaces in formal argument list:\n`%s'"),
10854 body);
10855
10856 while (*p == ' ')
10857 p++;
10858 }
10859
10860 return p;
10861 }
10862
10863
10864 static void
10865 parse_macro_definition (struct macro_source_file *file, int line,
10866 const char *body)
10867 {
10868 const char *p;
10869
10870 /* The body string takes one of two forms. For object-like macro
10871 definitions, it should be:
10872
10873 <macro name> " " <definition>
10874
10875 For function-like macro definitions, it should be:
10876
10877 <macro name> "() " <definition>
10878 or
10879 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
10880
10881 Spaces may appear only where explicitly indicated, and in the
10882 <definition>.
10883
10884 The Dwarf 2 spec says that an object-like macro's name is always
10885 followed by a space, but versions of GCC around March 2002 omit
10886 the space when the macro's definition is the empty string.
10887
10888 The Dwarf 2 spec says that there should be no spaces between the
10889 formal arguments in a function-like macro's formal argument list,
10890 but versions of GCC around March 2002 include spaces after the
10891 commas. */
10892
10893
10894 /* Find the extent of the macro name. The macro name is terminated
10895 by either a space or null character (for an object-like macro) or
10896 an opening paren (for a function-like macro). */
10897 for (p = body; *p; p++)
10898 if (*p == ' ' || *p == '(')
10899 break;
10900
10901 if (*p == ' ' || *p == '\0')
10902 {
10903 /* It's an object-like macro. */
10904 int name_len = p - body;
10905 char *name = copy_string (body, name_len);
10906 const char *replacement;
10907
10908 if (*p == ' ')
10909 replacement = body + name_len + 1;
10910 else
10911 {
10912 dwarf2_macro_malformed_definition_complaint (body);
10913 replacement = body + name_len;
10914 }
10915
10916 macro_define_object (file, line, name, replacement);
10917
10918 xfree (name);
10919 }
10920 else if (*p == '(')
10921 {
10922 /* It's a function-like macro. */
10923 char *name = copy_string (body, p - body);
10924 int argc = 0;
10925 int argv_size = 1;
10926 char **argv = xmalloc (argv_size * sizeof (*argv));
10927
10928 p++;
10929
10930 p = consume_improper_spaces (p, body);
10931
10932 /* Parse the formal argument list. */
10933 while (*p && *p != ')')
10934 {
10935 /* Find the extent of the current argument name. */
10936 const char *arg_start = p;
10937
10938 while (*p && *p != ',' && *p != ')' && *p != ' ')
10939 p++;
10940
10941 if (! *p || p == arg_start)
10942 dwarf2_macro_malformed_definition_complaint (body);
10943 else
10944 {
10945 /* Make sure argv has room for the new argument. */
10946 if (argc >= argv_size)
10947 {
10948 argv_size *= 2;
10949 argv = xrealloc (argv, argv_size * sizeof (*argv));
10950 }
10951
10952 argv[argc++] = copy_string (arg_start, p - arg_start);
10953 }
10954
10955 p = consume_improper_spaces (p, body);
10956
10957 /* Consume the comma, if present. */
10958 if (*p == ',')
10959 {
10960 p++;
10961
10962 p = consume_improper_spaces (p, body);
10963 }
10964 }
10965
10966 if (*p == ')')
10967 {
10968 p++;
10969
10970 if (*p == ' ')
10971 /* Perfectly formed definition, no complaints. */
10972 macro_define_function (file, line, name,
10973 argc, (const char **) argv,
10974 p + 1);
10975 else if (*p == '\0')
10976 {
10977 /* Complain, but do define it. */
10978 dwarf2_macro_malformed_definition_complaint (body);
10979 macro_define_function (file, line, name,
10980 argc, (const char **) argv,
10981 p);
10982 }
10983 else
10984 /* Just complain. */
10985 dwarf2_macro_malformed_definition_complaint (body);
10986 }
10987 else
10988 /* Just complain. */
10989 dwarf2_macro_malformed_definition_complaint (body);
10990
10991 xfree (name);
10992 {
10993 int i;
10994
10995 for (i = 0; i < argc; i++)
10996 xfree (argv[i]);
10997 }
10998 xfree (argv);
10999 }
11000 else
11001 dwarf2_macro_malformed_definition_complaint (body);
11002 }
11003
11004
11005 static void
11006 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
11007 char *comp_dir, bfd *abfd,
11008 struct dwarf2_cu *cu)
11009 {
11010 gdb_byte *mac_ptr, *mac_end;
11011 struct macro_source_file *current_file = 0;
11012 enum dwarf_macinfo_record_type macinfo_type;
11013 int at_commandline;
11014
11015 if (dwarf2_per_objfile->macinfo.buffer == NULL)
11016 {
11017 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
11018 return;
11019 }
11020
11021 /* First pass: Find the name of the base filename.
11022 This filename is needed in order to process all macros whose definition
11023 (or undefinition) comes from the command line. These macros are defined
11024 before the first DW_MACINFO_start_file entry, and yet still need to be
11025 associated to the base file.
11026
11027 To determine the base file name, we scan the macro definitions until we
11028 reach the first DW_MACINFO_start_file entry. We then initialize
11029 CURRENT_FILE accordingly so that any macro definition found before the
11030 first DW_MACINFO_start_file can still be associated to the base file. */
11031
11032 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
11033 mac_end = dwarf2_per_objfile->macinfo.buffer
11034 + dwarf2_per_objfile->macinfo.size;
11035
11036 do
11037 {
11038 /* Do we at least have room for a macinfo type byte? */
11039 if (mac_ptr >= mac_end)
11040 {
11041 /* Complaint is printed during the second pass as GDB will probably
11042 stop the first pass earlier upon finding DW_MACINFO_start_file. */
11043 break;
11044 }
11045
11046 macinfo_type = read_1_byte (abfd, mac_ptr);
11047 mac_ptr++;
11048
11049 switch (macinfo_type)
11050 {
11051 /* A zero macinfo type indicates the end of the macro
11052 information. */
11053 case 0:
11054 break;
11055
11056 case DW_MACINFO_define:
11057 case DW_MACINFO_undef:
11058 /* Only skip the data by MAC_PTR. */
11059 {
11060 unsigned int bytes_read;
11061
11062 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11063 mac_ptr += bytes_read;
11064 read_string (abfd, mac_ptr, &bytes_read);
11065 mac_ptr += bytes_read;
11066 }
11067 break;
11068
11069 case DW_MACINFO_start_file:
11070 {
11071 unsigned int bytes_read;
11072 int line, file;
11073
11074 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11075 mac_ptr += bytes_read;
11076 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11077 mac_ptr += bytes_read;
11078
11079 current_file = macro_start_file (file, line, current_file, comp_dir,
11080 lh, cu->objfile);
11081 }
11082 break;
11083
11084 case DW_MACINFO_end_file:
11085 /* No data to skip by MAC_PTR. */
11086 break;
11087
11088 case DW_MACINFO_vendor_ext:
11089 /* Only skip the data by MAC_PTR. */
11090 {
11091 unsigned int bytes_read;
11092
11093 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11094 mac_ptr += bytes_read;
11095 read_string (abfd, mac_ptr, &bytes_read);
11096 mac_ptr += bytes_read;
11097 }
11098 break;
11099
11100 default:
11101 break;
11102 }
11103 } while (macinfo_type != 0 && current_file == NULL);
11104
11105 /* Second pass: Process all entries.
11106
11107 Use the AT_COMMAND_LINE flag to determine whether we are still processing
11108 command-line macro definitions/undefinitions. This flag is unset when we
11109 reach the first DW_MACINFO_start_file entry. */
11110
11111 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
11112
11113 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
11114 GDB is still reading the definitions from command line. First
11115 DW_MACINFO_start_file will need to be ignored as it was already executed
11116 to create CURRENT_FILE for the main source holding also the command line
11117 definitions. On first met DW_MACINFO_start_file this flag is reset to
11118 normally execute all the remaining DW_MACINFO_start_file macinfos. */
11119
11120 at_commandline = 1;
11121
11122 do
11123 {
11124 /* Do we at least have room for a macinfo type byte? */
11125 if (mac_ptr >= mac_end)
11126 {
11127 dwarf2_macros_too_long_complaint ();
11128 break;
11129 }
11130
11131 macinfo_type = read_1_byte (abfd, mac_ptr);
11132 mac_ptr++;
11133
11134 switch (macinfo_type)
11135 {
11136 /* A zero macinfo type indicates the end of the macro
11137 information. */
11138 case 0:
11139 break;
11140
11141 case DW_MACINFO_define:
11142 case DW_MACINFO_undef:
11143 {
11144 unsigned int bytes_read;
11145 int line;
11146 char *body;
11147
11148 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11149 mac_ptr += bytes_read;
11150 body = read_string (abfd, mac_ptr, &bytes_read);
11151 mac_ptr += bytes_read;
11152
11153 if (! current_file)
11154 {
11155 /* DWARF violation as no main source is present. */
11156 complaint (&symfile_complaints,
11157 _("debug info with no main source gives macro %s "
11158 "on line %d: %s"),
11159 macinfo_type == DW_MACINFO_define ?
11160 _("definition") :
11161 macinfo_type == DW_MACINFO_undef ?
11162 _("undefinition") :
11163 _("something-or-other"), line, body);
11164 break;
11165 }
11166 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
11167 complaint (&symfile_complaints,
11168 _("debug info gives %s macro %s with %s line %d: %s"),
11169 at_commandline ? _("command-line") : _("in-file"),
11170 macinfo_type == DW_MACINFO_define ?
11171 _("definition") :
11172 macinfo_type == DW_MACINFO_undef ?
11173 _("undefinition") :
11174 _("something-or-other"),
11175 line == 0 ? _("zero") : _("non-zero"), line, body);
11176
11177 if (macinfo_type == DW_MACINFO_define)
11178 parse_macro_definition (current_file, line, body);
11179 else if (macinfo_type == DW_MACINFO_undef)
11180 macro_undef (current_file, line, body);
11181 }
11182 break;
11183
11184 case DW_MACINFO_start_file:
11185 {
11186 unsigned int bytes_read;
11187 int line, file;
11188
11189 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11190 mac_ptr += bytes_read;
11191 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11192 mac_ptr += bytes_read;
11193
11194 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
11195 complaint (&symfile_complaints,
11196 _("debug info gives source %d included "
11197 "from %s at %s line %d"),
11198 file, at_commandline ? _("command-line") : _("file"),
11199 line == 0 ? _("zero") : _("non-zero"), line);
11200
11201 if (at_commandline)
11202 {
11203 /* This DW_MACINFO_start_file was executed in the pass one. */
11204 at_commandline = 0;
11205 }
11206 else
11207 current_file = macro_start_file (file, line,
11208 current_file, comp_dir,
11209 lh, cu->objfile);
11210 }
11211 break;
11212
11213 case DW_MACINFO_end_file:
11214 if (! current_file)
11215 complaint (&symfile_complaints,
11216 _("macro debug info has an unmatched `close_file' directive"));
11217 else
11218 {
11219 current_file = current_file->included_by;
11220 if (! current_file)
11221 {
11222 enum dwarf_macinfo_record_type next_type;
11223
11224 /* GCC circa March 2002 doesn't produce the zero
11225 type byte marking the end of the compilation
11226 unit. Complain if it's not there, but exit no
11227 matter what. */
11228
11229 /* Do we at least have room for a macinfo type byte? */
11230 if (mac_ptr >= mac_end)
11231 {
11232 dwarf2_macros_too_long_complaint ();
11233 return;
11234 }
11235
11236 /* We don't increment mac_ptr here, so this is just
11237 a look-ahead. */
11238 next_type = read_1_byte (abfd, mac_ptr);
11239 if (next_type != 0)
11240 complaint (&symfile_complaints,
11241 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
11242
11243 return;
11244 }
11245 }
11246 break;
11247
11248 case DW_MACINFO_vendor_ext:
11249 {
11250 unsigned int bytes_read;
11251 int constant;
11252 char *string;
11253
11254 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11255 mac_ptr += bytes_read;
11256 string = read_string (abfd, mac_ptr, &bytes_read);
11257 mac_ptr += bytes_read;
11258
11259 /* We don't recognize any vendor extensions. */
11260 }
11261 break;
11262 }
11263 } while (macinfo_type != 0);
11264 }
11265
11266 /* Check if the attribute's form is a DW_FORM_block*
11267 if so return true else false. */
11268 static int
11269 attr_form_is_block (struct attribute *attr)
11270 {
11271 return (attr == NULL ? 0 :
11272 attr->form == DW_FORM_block1
11273 || attr->form == DW_FORM_block2
11274 || attr->form == DW_FORM_block4
11275 || attr->form == DW_FORM_block);
11276 }
11277
11278 /* Return non-zero if ATTR's value is a section offset --- classes
11279 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
11280 You may use DW_UNSND (attr) to retrieve such offsets.
11281
11282 Section 7.5.4, "Attribute Encodings", explains that no attribute
11283 may have a value that belongs to more than one of these classes; it
11284 would be ambiguous if we did, because we use the same forms for all
11285 of them. */
11286 static int
11287 attr_form_is_section_offset (struct attribute *attr)
11288 {
11289 return (attr->form == DW_FORM_data4
11290 || attr->form == DW_FORM_data8);
11291 }
11292
11293
11294 /* Return non-zero if ATTR's value falls in the 'constant' class, or
11295 zero otherwise. When this function returns true, you can apply
11296 dwarf2_get_attr_constant_value to it.
11297
11298 However, note that for some attributes you must check
11299 attr_form_is_section_offset before using this test. DW_FORM_data4
11300 and DW_FORM_data8 are members of both the constant class, and of
11301 the classes that contain offsets into other debug sections
11302 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
11303 that, if an attribute's can be either a constant or one of the
11304 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
11305 taken as section offsets, not constants. */
11306 static int
11307 attr_form_is_constant (struct attribute *attr)
11308 {
11309 switch (attr->form)
11310 {
11311 case DW_FORM_sdata:
11312 case DW_FORM_udata:
11313 case DW_FORM_data1:
11314 case DW_FORM_data2:
11315 case DW_FORM_data4:
11316 case DW_FORM_data8:
11317 return 1;
11318 default:
11319 return 0;
11320 }
11321 }
11322
11323 static void
11324 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
11325 struct dwarf2_cu *cu)
11326 {
11327 if (attr_form_is_section_offset (attr)
11328 /* ".debug_loc" may not exist at all, or the offset may be outside
11329 the section. If so, fall through to the complaint in the
11330 other branch. */
11331 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
11332 {
11333 struct dwarf2_loclist_baton *baton;
11334
11335 baton = obstack_alloc (&cu->objfile->objfile_obstack,
11336 sizeof (struct dwarf2_loclist_baton));
11337 baton->per_cu = cu->per_cu;
11338 gdb_assert (baton->per_cu);
11339
11340 /* We don't know how long the location list is, but make sure we
11341 don't run off the edge of the section. */
11342 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
11343 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
11344 baton->base_address = cu->base_address;
11345 if (cu->base_known == 0)
11346 complaint (&symfile_complaints,
11347 _("Location list used without specifying the CU base address."));
11348
11349 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
11350 SYMBOL_LOCATION_BATON (sym) = baton;
11351 }
11352 else
11353 {
11354 struct dwarf2_locexpr_baton *baton;
11355
11356 baton = obstack_alloc (&cu->objfile->objfile_obstack,
11357 sizeof (struct dwarf2_locexpr_baton));
11358 baton->per_cu = cu->per_cu;
11359 gdb_assert (baton->per_cu);
11360
11361 if (attr_form_is_block (attr))
11362 {
11363 /* Note that we're just copying the block's data pointer
11364 here, not the actual data. We're still pointing into the
11365 info_buffer for SYM's objfile; right now we never release
11366 that buffer, but when we do clean up properly this may
11367 need to change. */
11368 baton->size = DW_BLOCK (attr)->size;
11369 baton->data = DW_BLOCK (attr)->data;
11370 }
11371 else
11372 {
11373 dwarf2_invalid_attrib_class_complaint ("location description",
11374 SYMBOL_NATURAL_NAME (sym));
11375 baton->size = 0;
11376 baton->data = NULL;
11377 }
11378
11379 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11380 SYMBOL_LOCATION_BATON (sym) = baton;
11381 }
11382 }
11383
11384 /* Return the OBJFILE associated with the compilation unit CU. */
11385
11386 struct objfile *
11387 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
11388 {
11389 struct objfile *objfile = per_cu->psymtab->objfile;
11390
11391 /* Return the master objfile, so that we can report and look up the
11392 correct file containing this variable. */
11393 if (objfile->separate_debug_objfile_backlink)
11394 objfile = objfile->separate_debug_objfile_backlink;
11395
11396 return objfile;
11397 }
11398
11399 /* Return the address size given in the compilation unit header for CU. */
11400
11401 CORE_ADDR
11402 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
11403 {
11404 if (per_cu->cu)
11405 return per_cu->cu->header.addr_size;
11406 else
11407 {
11408 /* If the CU is not currently read in, we re-read its header. */
11409 struct objfile *objfile = per_cu->psymtab->objfile;
11410 struct dwarf2_per_objfile *per_objfile
11411 = objfile_data (objfile, dwarf2_objfile_data_key);
11412 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
11413
11414 struct comp_unit_head cu_header;
11415 memset (&cu_header, 0, sizeof cu_header);
11416 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
11417 return cu_header.addr_size;
11418 }
11419 }
11420
11421 /* Locate the .debug_info compilation unit from CU's objfile which contains
11422 the DIE at OFFSET. Raises an error on failure. */
11423
11424 static struct dwarf2_per_cu_data *
11425 dwarf2_find_containing_comp_unit (unsigned int offset,
11426 struct objfile *objfile)
11427 {
11428 struct dwarf2_per_cu_data *this_cu;
11429 int low, high;
11430
11431 low = 0;
11432 high = dwarf2_per_objfile->n_comp_units - 1;
11433 while (high > low)
11434 {
11435 int mid = low + (high - low) / 2;
11436 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
11437 high = mid;
11438 else
11439 low = mid + 1;
11440 }
11441 gdb_assert (low == high);
11442 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
11443 {
11444 if (low == 0)
11445 error (_("Dwarf Error: could not find partial DIE containing "
11446 "offset 0x%lx [in module %s]"),
11447 (long) offset, bfd_get_filename (objfile->obfd));
11448
11449 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
11450 return dwarf2_per_objfile->all_comp_units[low-1];
11451 }
11452 else
11453 {
11454 this_cu = dwarf2_per_objfile->all_comp_units[low];
11455 if (low == dwarf2_per_objfile->n_comp_units - 1
11456 && offset >= this_cu->offset + this_cu->length)
11457 error (_("invalid dwarf2 offset %u"), offset);
11458 gdb_assert (offset < this_cu->offset + this_cu->length);
11459 return this_cu;
11460 }
11461 }
11462
11463 /* Locate the compilation unit from OBJFILE which is located at exactly
11464 OFFSET. Raises an error on failure. */
11465
11466 static struct dwarf2_per_cu_data *
11467 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
11468 {
11469 struct dwarf2_per_cu_data *this_cu;
11470 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
11471 if (this_cu->offset != offset)
11472 error (_("no compilation unit with offset %u."), offset);
11473 return this_cu;
11474 }
11475
11476 /* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */
11477
11478 static struct dwarf2_cu *
11479 alloc_one_comp_unit (struct objfile *objfile)
11480 {
11481 struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu));
11482 cu->objfile = objfile;
11483 obstack_init (&cu->comp_unit_obstack);
11484 return cu;
11485 }
11486
11487 /* Release one cached compilation unit, CU. We unlink it from the tree
11488 of compilation units, but we don't remove it from the read_in_chain;
11489 the caller is responsible for that.
11490 NOTE: DATA is a void * because this function is also used as a
11491 cleanup routine. */
11492
11493 static void
11494 free_one_comp_unit (void *data)
11495 {
11496 struct dwarf2_cu *cu = data;
11497
11498 if (cu->per_cu != NULL)
11499 cu->per_cu->cu = NULL;
11500 cu->per_cu = NULL;
11501
11502 obstack_free (&cu->comp_unit_obstack, NULL);
11503
11504 xfree (cu);
11505 }
11506
11507 /* This cleanup function is passed the address of a dwarf2_cu on the stack
11508 when we're finished with it. We can't free the pointer itself, but be
11509 sure to unlink it from the cache. Also release any associated storage
11510 and perform cache maintenance.
11511
11512 Only used during partial symbol parsing. */
11513
11514 static void
11515 free_stack_comp_unit (void *data)
11516 {
11517 struct dwarf2_cu *cu = data;
11518
11519 obstack_free (&cu->comp_unit_obstack, NULL);
11520 cu->partial_dies = NULL;
11521
11522 if (cu->per_cu != NULL)
11523 {
11524 /* This compilation unit is on the stack in our caller, so we
11525 should not xfree it. Just unlink it. */
11526 cu->per_cu->cu = NULL;
11527 cu->per_cu = NULL;
11528
11529 /* If we had a per-cu pointer, then we may have other compilation
11530 units loaded, so age them now. */
11531 age_cached_comp_units ();
11532 }
11533 }
11534
11535 /* Free all cached compilation units. */
11536
11537 static void
11538 free_cached_comp_units (void *data)
11539 {
11540 struct dwarf2_per_cu_data *per_cu, **last_chain;
11541
11542 per_cu = dwarf2_per_objfile->read_in_chain;
11543 last_chain = &dwarf2_per_objfile->read_in_chain;
11544 while (per_cu != NULL)
11545 {
11546 struct dwarf2_per_cu_data *next_cu;
11547
11548 next_cu = per_cu->cu->read_in_chain;
11549
11550 free_one_comp_unit (per_cu->cu);
11551 *last_chain = next_cu;
11552
11553 per_cu = next_cu;
11554 }
11555 }
11556
11557 /* Increase the age counter on each cached compilation unit, and free
11558 any that are too old. */
11559
11560 static void
11561 age_cached_comp_units (void)
11562 {
11563 struct dwarf2_per_cu_data *per_cu, **last_chain;
11564
11565 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
11566 per_cu = dwarf2_per_objfile->read_in_chain;
11567 while (per_cu != NULL)
11568 {
11569 per_cu->cu->last_used ++;
11570 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
11571 dwarf2_mark (per_cu->cu);
11572 per_cu = per_cu->cu->read_in_chain;
11573 }
11574
11575 per_cu = dwarf2_per_objfile->read_in_chain;
11576 last_chain = &dwarf2_per_objfile->read_in_chain;
11577 while (per_cu != NULL)
11578 {
11579 struct dwarf2_per_cu_data *next_cu;
11580
11581 next_cu = per_cu->cu->read_in_chain;
11582
11583 if (!per_cu->cu->mark)
11584 {
11585 free_one_comp_unit (per_cu->cu);
11586 *last_chain = next_cu;
11587 }
11588 else
11589 last_chain = &per_cu->cu->read_in_chain;
11590
11591 per_cu = next_cu;
11592 }
11593 }
11594
11595 /* Remove a single compilation unit from the cache. */
11596
11597 static void
11598 free_one_cached_comp_unit (void *target_cu)
11599 {
11600 struct dwarf2_per_cu_data *per_cu, **last_chain;
11601
11602 per_cu = dwarf2_per_objfile->read_in_chain;
11603 last_chain = &dwarf2_per_objfile->read_in_chain;
11604 while (per_cu != NULL)
11605 {
11606 struct dwarf2_per_cu_data *next_cu;
11607
11608 next_cu = per_cu->cu->read_in_chain;
11609
11610 if (per_cu->cu == target_cu)
11611 {
11612 free_one_comp_unit (per_cu->cu);
11613 *last_chain = next_cu;
11614 break;
11615 }
11616 else
11617 last_chain = &per_cu->cu->read_in_chain;
11618
11619 per_cu = next_cu;
11620 }
11621 }
11622
11623 /* Release all extra memory associated with OBJFILE. */
11624
11625 void
11626 dwarf2_free_objfile (struct objfile *objfile)
11627 {
11628 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
11629
11630 if (dwarf2_per_objfile == NULL)
11631 return;
11632
11633 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
11634 free_cached_comp_units (NULL);
11635
11636 /* Everything else should be on the objfile obstack. */
11637 }
11638
11639 /* A pair of DIE offset and GDB type pointer. We store these
11640 in a hash table separate from the DIEs, and preserve them
11641 when the DIEs are flushed out of cache. */
11642
11643 struct dwarf2_offset_and_type
11644 {
11645 unsigned int offset;
11646 struct type *type;
11647 };
11648
11649 /* Hash function for a dwarf2_offset_and_type. */
11650
11651 static hashval_t
11652 offset_and_type_hash (const void *item)
11653 {
11654 const struct dwarf2_offset_and_type *ofs = item;
11655 return ofs->offset;
11656 }
11657
11658 /* Equality function for a dwarf2_offset_and_type. */
11659
11660 static int
11661 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
11662 {
11663 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
11664 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
11665 return ofs_lhs->offset == ofs_rhs->offset;
11666 }
11667
11668 /* Set the type associated with DIE to TYPE. Save it in CU's hash
11669 table if necessary. For convenience, return TYPE. */
11670
11671 static struct type *
11672 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11673 {
11674 struct dwarf2_offset_and_type **slot, ofs;
11675
11676 if (cu->type_hash == NULL)
11677 {
11678 gdb_assert (cu->per_cu != NULL);
11679 cu->per_cu->type_hash
11680 = htab_create_alloc_ex (cu->header.length / 24,
11681 offset_and_type_hash,
11682 offset_and_type_eq,
11683 NULL,
11684 &cu->objfile->objfile_obstack,
11685 hashtab_obstack_allocate,
11686 dummy_obstack_deallocate);
11687 cu->type_hash = cu->per_cu->type_hash;
11688 }
11689
11690 ofs.offset = die->offset;
11691 ofs.type = type;
11692 slot = (struct dwarf2_offset_and_type **)
11693 htab_find_slot_with_hash (cu->type_hash, &ofs, ofs.offset, INSERT);
11694 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
11695 **slot = ofs;
11696 return type;
11697 }
11698
11699 /* Find the type for DIE in CU's type_hash, or return NULL if DIE does
11700 not have a saved type. */
11701
11702 static struct type *
11703 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
11704 {
11705 struct dwarf2_offset_and_type *slot, ofs;
11706 htab_t type_hash = cu->type_hash;
11707
11708 if (type_hash == NULL)
11709 return NULL;
11710
11711 ofs.offset = die->offset;
11712 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
11713 if (slot)
11714 return slot->type;
11715 else
11716 return NULL;
11717 }
11718
11719 /* Add a dependence relationship from CU to REF_PER_CU. */
11720
11721 static void
11722 dwarf2_add_dependence (struct dwarf2_cu *cu,
11723 struct dwarf2_per_cu_data *ref_per_cu)
11724 {
11725 void **slot;
11726
11727 if (cu->dependencies == NULL)
11728 cu->dependencies
11729 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
11730 NULL, &cu->comp_unit_obstack,
11731 hashtab_obstack_allocate,
11732 dummy_obstack_deallocate);
11733
11734 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
11735 if (*slot == NULL)
11736 *slot = ref_per_cu;
11737 }
11738
11739 /* Subroutine of dwarf2_mark to pass to htab_traverse.
11740 Set the mark field in every compilation unit in the
11741 cache that we must keep because we are keeping CU. */
11742
11743 static int
11744 dwarf2_mark_helper (void **slot, void *data)
11745 {
11746 struct dwarf2_per_cu_data *per_cu;
11747
11748 per_cu = (struct dwarf2_per_cu_data *) *slot;
11749 if (per_cu->cu->mark)
11750 return 1;
11751 per_cu->cu->mark = 1;
11752
11753 if (per_cu->cu->dependencies != NULL)
11754 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
11755
11756 return 1;
11757 }
11758
11759 /* Set the mark field in CU and in every other compilation unit in the
11760 cache that we must keep because we are keeping CU. */
11761
11762 static void
11763 dwarf2_mark (struct dwarf2_cu *cu)
11764 {
11765 if (cu->mark)
11766 return;
11767 cu->mark = 1;
11768 if (cu->dependencies != NULL)
11769 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
11770 }
11771
11772 static void
11773 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
11774 {
11775 while (per_cu)
11776 {
11777 per_cu->cu->mark = 0;
11778 per_cu = per_cu->cu->read_in_chain;
11779 }
11780 }
11781
11782 /* Trivial hash function for partial_die_info: the hash value of a DIE
11783 is its offset in .debug_info for this objfile. */
11784
11785 static hashval_t
11786 partial_die_hash (const void *item)
11787 {
11788 const struct partial_die_info *part_die = item;
11789 return part_die->offset;
11790 }
11791
11792 /* Trivial comparison function for partial_die_info structures: two DIEs
11793 are equal if they have the same offset. */
11794
11795 static int
11796 partial_die_eq (const void *item_lhs, const void *item_rhs)
11797 {
11798 const struct partial_die_info *part_die_lhs = item_lhs;
11799 const struct partial_die_info *part_die_rhs = item_rhs;
11800 return part_die_lhs->offset == part_die_rhs->offset;
11801 }
11802
11803 static struct cmd_list_element *set_dwarf2_cmdlist;
11804 static struct cmd_list_element *show_dwarf2_cmdlist;
11805
11806 static void
11807 set_dwarf2_cmd (char *args, int from_tty)
11808 {
11809 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
11810 }
11811
11812 static void
11813 show_dwarf2_cmd (char *args, int from_tty)
11814 {
11815 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
11816 }
11817
11818 /* If section described by INFO was mmapped, munmap it now. */
11819
11820 static void
11821 munmap_section_buffer (struct dwarf2_section_info *info)
11822 {
11823 if (info->was_mmapped)
11824 {
11825 #ifdef HAVE_MMAP
11826 intptr_t begin = (intptr_t) info->buffer;
11827 intptr_t map_begin = begin & ~(pagesize - 1);
11828 size_t map_length = info->size + begin - map_begin;
11829 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
11830 #else
11831 /* Without HAVE_MMAP, we should never be here to begin with. */
11832 gdb_assert (0);
11833 #endif
11834 }
11835 }
11836
11837 /* munmap debug sections for OBJFILE, if necessary. */
11838
11839 static void
11840 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
11841 {
11842 struct dwarf2_per_objfile *data = d;
11843 munmap_section_buffer (&data->info);
11844 munmap_section_buffer (&data->abbrev);
11845 munmap_section_buffer (&data->line);
11846 munmap_section_buffer (&data->str);
11847 munmap_section_buffer (&data->macinfo);
11848 munmap_section_buffer (&data->ranges);
11849 munmap_section_buffer (&data->loc);
11850 munmap_section_buffer (&data->frame);
11851 munmap_section_buffer (&data->eh_frame);
11852 }
11853
11854 void _initialize_dwarf2_read (void);
11855
11856 void
11857 _initialize_dwarf2_read (void)
11858 {
11859 dwarf2_objfile_data_key
11860 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
11861
11862 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
11863 Set DWARF 2 specific variables.\n\
11864 Configure DWARF 2 variables such as the cache size"),
11865 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
11866 0/*allow-unknown*/, &maintenance_set_cmdlist);
11867
11868 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
11869 Show DWARF 2 specific variables\n\
11870 Show DWARF 2 variables such as the cache size"),
11871 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
11872 0/*allow-unknown*/, &maintenance_show_cmdlist);
11873
11874 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
11875 &dwarf2_max_cache_age, _("\
11876 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
11877 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
11878 A higher limit means that cached compilation units will be stored\n\
11879 in memory longer, and more total memory will be used. Zero disables\n\
11880 caching, which can slow down startup."),
11881 NULL,
11882 show_dwarf2_max_cache_age,
11883 &set_dwarf2_cmdlist,
11884 &show_dwarf2_cmdlist);
11885
11886 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
11887 Set debugging of the dwarf2 DIE reader."), _("\
11888 Show debugging of the dwarf2 DIE reader."), _("\
11889 When enabled (non-zero), DIEs are dumped after they are read in.\n\
11890 The value is the maximum depth to print."),
11891 NULL,
11892 NULL,
11893 &setdebuglist, &showdebuglist);
11894 }
This page took 0.307186 seconds and 5 git commands to generate.