* dwarf2read.c (save_gdb_index_command): Add comment.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51 #include "typeprint.h"
52 #include "jv-lang.h"
53 #include "psympriv.h"
54 #include "exceptions.h"
55 #include "gdb_stat.h"
56 #include "completer.h"
57 #include "vec.h"
58 #include "c-lang.h"
59 #include "valprint.h"
60
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_assert.h"
64 #include <sys/types.h>
65 #ifdef HAVE_ZLIB_H
66 #include <zlib.h>
67 #endif
68 #ifdef HAVE_MMAP
69 #include <sys/mman.h>
70 #ifndef MAP_FAILED
71 #define MAP_FAILED ((void *) -1)
72 #endif
73 #endif
74
75 typedef struct symbol *symbolp;
76 DEF_VEC_P (symbolp);
77
78 #if 0
79 /* .debug_info header for a compilation unit
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82 typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91 _COMP_UNIT_HEADER;
92 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
93 #endif
94
95 /* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98 typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116 _STATEMENT_PROLOGUE;
117
118 /* When non-zero, dump DIEs after they are read in. */
119 static int dwarf2_die_debug = 0;
120
121 static int pagesize;
122
123 /* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127 static int processing_has_namespace_info;
128
129 static const struct objfile_data *dwarf2_objfile_data_key;
130
131 struct dwarf2_section_info
132 {
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
137 /* True if we have tried to read this section. */
138 int readin;
139 };
140
141 /* All offsets in the index are of this type. It must be
142 architecture-independent. */
143 typedef uint32_t offset_type;
144
145 DEF_VEC_I (offset_type);
146
147 /* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149 struct mapped_index
150 {
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163 };
164
165 struct dwarf2_per_objfile
166 {
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
174 struct dwarf2_section_info types;
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
177 struct dwarf2_section_info gdb_index;
178
179 /* Back link. */
180 struct objfile *objfile;
181
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
198
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
206
207 /* True if we are using the mapped index. */
208 unsigned char using_index;
209
210 /* The mapped index. */
211 struct mapped_index *index_table;
212
213 /* Set during partial symbol reading, to prevent queueing of full
214 symbols. */
215 int reading_partial_symbols;
216
217 /* Table mapping type .debug_info DIE offsets to types.
218 This is NULL if not allocated yet.
219 It (currently) makes sense to allocate debug_types_type_hash lazily.
220 To keep things simple we allocate both lazily. */
221 htab_t debug_info_type_hash;
222
223 /* Table mapping type .debug_types DIE offsets to types.
224 This is NULL if not allocated yet. */
225 htab_t debug_types_type_hash;
226 };
227
228 static struct dwarf2_per_objfile *dwarf2_per_objfile;
229
230 /* names of the debugging sections */
231
232 /* Note that if the debugging section has been compressed, it might
233 have a name like .zdebug_info. */
234
235 #define INFO_SECTION "debug_info"
236 #define ABBREV_SECTION "debug_abbrev"
237 #define LINE_SECTION "debug_line"
238 #define LOC_SECTION "debug_loc"
239 #define MACINFO_SECTION "debug_macinfo"
240 #define STR_SECTION "debug_str"
241 #define RANGES_SECTION "debug_ranges"
242 #define TYPES_SECTION "debug_types"
243 #define FRAME_SECTION "debug_frame"
244 #define EH_FRAME_SECTION "eh_frame"
245 #define GDB_INDEX_SECTION "gdb_index"
246
247 /* local data types */
248
249 /* We hold several abbreviation tables in memory at the same time. */
250 #ifndef ABBREV_HASH_SIZE
251 #define ABBREV_HASH_SIZE 121
252 #endif
253
254 /* The data in a compilation unit header, after target2host
255 translation, looks like this. */
256 struct comp_unit_head
257 {
258 unsigned int length;
259 short version;
260 unsigned char addr_size;
261 unsigned char signed_addr_p;
262 unsigned int abbrev_offset;
263
264 /* Size of file offsets; either 4 or 8. */
265 unsigned int offset_size;
266
267 /* Size of the length field; either 4 or 12. */
268 unsigned int initial_length_size;
269
270 /* Offset to the first byte of this compilation unit header in the
271 .debug_info section, for resolving relative reference dies. */
272 unsigned int offset;
273
274 /* Offset to first die in this cu from the start of the cu.
275 This will be the first byte following the compilation unit header. */
276 unsigned int first_die_offset;
277 };
278
279 /* Type used for delaying computation of method physnames.
280 See comments for compute_delayed_physnames. */
281 struct delayed_method_info
282 {
283 /* The type to which the method is attached, i.e., its parent class. */
284 struct type *type;
285
286 /* The index of the method in the type's function fieldlists. */
287 int fnfield_index;
288
289 /* The index of the method in the fieldlist. */
290 int index;
291
292 /* The name of the DIE. */
293 const char *name;
294
295 /* The DIE associated with this method. */
296 struct die_info *die;
297 };
298
299 typedef struct delayed_method_info delayed_method_info;
300 DEF_VEC_O (delayed_method_info);
301
302 /* Internal state when decoding a particular compilation unit. */
303 struct dwarf2_cu
304 {
305 /* The objfile containing this compilation unit. */
306 struct objfile *objfile;
307
308 /* The header of the compilation unit. */
309 struct comp_unit_head header;
310
311 /* Base address of this compilation unit. */
312 CORE_ADDR base_address;
313
314 /* Non-zero if base_address has been set. */
315 int base_known;
316
317 struct function_range *first_fn, *last_fn, *cached_fn;
318
319 /* The language we are debugging. */
320 enum language language;
321 const struct language_defn *language_defn;
322
323 const char *producer;
324
325 /* The generic symbol table building routines have separate lists for
326 file scope symbols and all all other scopes (local scopes). So
327 we need to select the right one to pass to add_symbol_to_list().
328 We do it by keeping a pointer to the correct list in list_in_scope.
329
330 FIXME: The original dwarf code just treated the file scope as the
331 first local scope, and all other local scopes as nested local
332 scopes, and worked fine. Check to see if we really need to
333 distinguish these in buildsym.c. */
334 struct pending **list_in_scope;
335
336 /* DWARF abbreviation table associated with this compilation unit. */
337 struct abbrev_info **dwarf2_abbrevs;
338
339 /* Storage for the abbrev table. */
340 struct obstack abbrev_obstack;
341
342 /* Hash table holding all the loaded partial DIEs. */
343 htab_t partial_dies;
344
345 /* Storage for things with the same lifetime as this read-in compilation
346 unit, including partial DIEs. */
347 struct obstack comp_unit_obstack;
348
349 /* When multiple dwarf2_cu structures are living in memory, this field
350 chains them all together, so that they can be released efficiently.
351 We will probably also want a generation counter so that most-recently-used
352 compilation units are cached... */
353 struct dwarf2_per_cu_data *read_in_chain;
354
355 /* Backchain to our per_cu entry if the tree has been built. */
356 struct dwarf2_per_cu_data *per_cu;
357
358 /* How many compilation units ago was this CU last referenced? */
359 int last_used;
360
361 /* A hash table of die offsets for following references. */
362 htab_t die_hash;
363
364 /* Full DIEs if read in. */
365 struct die_info *dies;
366
367 /* A set of pointers to dwarf2_per_cu_data objects for compilation
368 units referenced by this one. Only set during full symbol processing;
369 partial symbol tables do not have dependencies. */
370 htab_t dependencies;
371
372 /* Header data from the line table, during full symbol processing. */
373 struct line_header *line_header;
374
375 /* A list of methods which need to have physnames computed
376 after all type information has been read. */
377 VEC (delayed_method_info) *method_list;
378
379 /* Mark used when releasing cached dies. */
380 unsigned int mark : 1;
381
382 /* This flag will be set if this compilation unit might include
383 inter-compilation-unit references. */
384 unsigned int has_form_ref_addr : 1;
385
386 /* This flag will be set if this compilation unit includes any
387 DW_TAG_namespace DIEs. If we know that there are explicit
388 DIEs for namespaces, we don't need to try to infer them
389 from mangled names. */
390 unsigned int has_namespace_info : 1;
391 };
392
393 /* When using the index (and thus not using psymtabs), each CU has an
394 object of this type. This is used to hold information needed by
395 the various "quick" methods. */
396 struct dwarf2_per_cu_quick_data
397 {
398 /* The line table. This can be NULL if there was no line table. */
399 struct line_header *lines;
400
401 /* The file names from the line table. */
402 const char **file_names;
403 /* The file names from the line table after being run through
404 gdb_realpath. */
405 const char **full_names;
406
407 /* The corresponding symbol table. This is NULL if symbols for this
408 CU have not yet been read. */
409 struct symtab *symtab;
410
411 /* A temporary mark bit used when iterating over all CUs in
412 expand_symtabs_matching. */
413 unsigned int mark : 1;
414
415 /* True if we've tried to read the line table. */
416 unsigned int read_lines : 1;
417 };
418
419 /* Persistent data held for a compilation unit, even when not
420 processing it. We put a pointer to this structure in the
421 read_symtab_private field of the psymtab. If we encounter
422 inter-compilation-unit references, we also maintain a sorted
423 list of all compilation units. */
424
425 struct dwarf2_per_cu_data
426 {
427 /* The start offset and length of this compilation unit. 2**29-1
428 bytes should suffice to store the length of any compilation unit
429 - if it doesn't, GDB will fall over anyway.
430 NOTE: Unlike comp_unit_head.length, this length includes
431 initial_length_size. */
432 unsigned int offset;
433 unsigned int length : 29;
434
435 /* Flag indicating this compilation unit will be read in before
436 any of the current compilation units are processed. */
437 unsigned int queued : 1;
438
439 /* This flag will be set if we need to load absolutely all DIEs
440 for this compilation unit, instead of just the ones we think
441 are interesting. It gets set if we look for a DIE in the
442 hash table and don't find it. */
443 unsigned int load_all_dies : 1;
444
445 /* Non-zero if this CU is from .debug_types.
446 Otherwise it's from .debug_info. */
447 unsigned int from_debug_types : 1;
448
449 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
450 of the CU cache it gets reset to NULL again. */
451 struct dwarf2_cu *cu;
452
453 /* The corresponding objfile. */
454 struct objfile *objfile;
455
456 /* When using partial symbol tables, the 'psymtab' field is active.
457 Otherwise the 'quick' field is active. */
458 union
459 {
460 /* The partial symbol table associated with this compilation unit,
461 or NULL for partial units (which do not have an associated
462 symtab). */
463 struct partial_symtab *psymtab;
464
465 /* Data needed by the "quick" functions. */
466 struct dwarf2_per_cu_quick_data *quick;
467 } v;
468 };
469
470 /* Entry in the signatured_types hash table. */
471
472 struct signatured_type
473 {
474 ULONGEST signature;
475
476 /* Offset in .debug_types of the TU (type_unit) for this type. */
477 unsigned int offset;
478
479 /* Offset in .debug_types of the type defined by this TU. */
480 unsigned int type_offset;
481
482 /* The CU(/TU) of this type. */
483 struct dwarf2_per_cu_data per_cu;
484 };
485
486 /* Struct used to pass misc. parameters to read_die_and_children, et. al.
487 which are used for both .debug_info and .debug_types dies.
488 All parameters here are unchanging for the life of the call.
489 This struct exists to abstract away the constant parameters of
490 die reading. */
491
492 struct die_reader_specs
493 {
494 /* The bfd of this objfile. */
495 bfd* abfd;
496
497 /* The CU of the DIE we are parsing. */
498 struct dwarf2_cu *cu;
499
500 /* Pointer to start of section buffer.
501 This is either the start of .debug_info or .debug_types. */
502 const gdb_byte *buffer;
503 };
504
505 /* The line number information for a compilation unit (found in the
506 .debug_line section) begins with a "statement program header",
507 which contains the following information. */
508 struct line_header
509 {
510 unsigned int total_length;
511 unsigned short version;
512 unsigned int header_length;
513 unsigned char minimum_instruction_length;
514 unsigned char maximum_ops_per_instruction;
515 unsigned char default_is_stmt;
516 int line_base;
517 unsigned char line_range;
518 unsigned char opcode_base;
519
520 /* standard_opcode_lengths[i] is the number of operands for the
521 standard opcode whose value is i. This means that
522 standard_opcode_lengths[0] is unused, and the last meaningful
523 element is standard_opcode_lengths[opcode_base - 1]. */
524 unsigned char *standard_opcode_lengths;
525
526 /* The include_directories table. NOTE! These strings are not
527 allocated with xmalloc; instead, they are pointers into
528 debug_line_buffer. If you try to free them, `free' will get
529 indigestion. */
530 unsigned int num_include_dirs, include_dirs_size;
531 char **include_dirs;
532
533 /* The file_names table. NOTE! These strings are not allocated
534 with xmalloc; instead, they are pointers into debug_line_buffer.
535 Don't try to free them directly. */
536 unsigned int num_file_names, file_names_size;
537 struct file_entry
538 {
539 char *name;
540 unsigned int dir_index;
541 unsigned int mod_time;
542 unsigned int length;
543 int included_p; /* Non-zero if referenced by the Line Number Program. */
544 struct symtab *symtab; /* The associated symbol table, if any. */
545 } *file_names;
546
547 /* The start and end of the statement program following this
548 header. These point into dwarf2_per_objfile->line_buffer. */
549 gdb_byte *statement_program_start, *statement_program_end;
550 };
551
552 /* When we construct a partial symbol table entry we only
553 need this much information. */
554 struct partial_die_info
555 {
556 /* Offset of this DIE. */
557 unsigned int offset;
558
559 /* DWARF-2 tag for this DIE. */
560 ENUM_BITFIELD(dwarf_tag) tag : 16;
561
562 /* Assorted flags describing the data found in this DIE. */
563 unsigned int has_children : 1;
564 unsigned int is_external : 1;
565 unsigned int is_declaration : 1;
566 unsigned int has_type : 1;
567 unsigned int has_specification : 1;
568 unsigned int has_pc_info : 1;
569
570 /* Flag set if the SCOPE field of this structure has been
571 computed. */
572 unsigned int scope_set : 1;
573
574 /* Flag set if the DIE has a byte_size attribute. */
575 unsigned int has_byte_size : 1;
576
577 /* Flag set if any of the DIE's children are template arguments. */
578 unsigned int has_template_arguments : 1;
579
580 /* Flag set if fixup_partial_die has been called on this die. */
581 unsigned int fixup_called : 1;
582
583 /* The name of this DIE. Normally the value of DW_AT_name, but
584 sometimes a default name for unnamed DIEs. */
585 char *name;
586
587 /* The linkage name, if present. */
588 const char *linkage_name;
589
590 /* The scope to prepend to our children. This is generally
591 allocated on the comp_unit_obstack, so will disappear
592 when this compilation unit leaves the cache. */
593 char *scope;
594
595 /* The location description associated with this DIE, if any. */
596 struct dwarf_block *locdesc;
597
598 /* If HAS_PC_INFO, the PC range associated with this DIE. */
599 CORE_ADDR lowpc;
600 CORE_ADDR highpc;
601
602 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
603 DW_AT_sibling, if any. */
604 /* NOTE: This member isn't strictly necessary, read_partial_die could
605 return DW_AT_sibling values to its caller load_partial_dies. */
606 gdb_byte *sibling;
607
608 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
609 DW_AT_specification (or DW_AT_abstract_origin or
610 DW_AT_extension). */
611 unsigned int spec_offset;
612
613 /* Pointers to this DIE's parent, first child, and next sibling,
614 if any. */
615 struct partial_die_info *die_parent, *die_child, *die_sibling;
616 };
617
618 /* This data structure holds the information of an abbrev. */
619 struct abbrev_info
620 {
621 unsigned int number; /* number identifying abbrev */
622 enum dwarf_tag tag; /* dwarf tag */
623 unsigned short has_children; /* boolean */
624 unsigned short num_attrs; /* number of attributes */
625 struct attr_abbrev *attrs; /* an array of attribute descriptions */
626 struct abbrev_info *next; /* next in chain */
627 };
628
629 struct attr_abbrev
630 {
631 ENUM_BITFIELD(dwarf_attribute) name : 16;
632 ENUM_BITFIELD(dwarf_form) form : 16;
633 };
634
635 /* Attributes have a name and a value */
636 struct attribute
637 {
638 ENUM_BITFIELD(dwarf_attribute) name : 16;
639 ENUM_BITFIELD(dwarf_form) form : 15;
640
641 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
642 field should be in u.str (existing only for DW_STRING) but it is kept
643 here for better struct attribute alignment. */
644 unsigned int string_is_canonical : 1;
645
646 union
647 {
648 char *str;
649 struct dwarf_block *blk;
650 ULONGEST unsnd;
651 LONGEST snd;
652 CORE_ADDR addr;
653 struct signatured_type *signatured_type;
654 }
655 u;
656 };
657
658 /* This data structure holds a complete die structure. */
659 struct die_info
660 {
661 /* DWARF-2 tag for this DIE. */
662 ENUM_BITFIELD(dwarf_tag) tag : 16;
663
664 /* Number of attributes */
665 unsigned char num_attrs;
666
667 /* True if we're presently building the full type name for the
668 type derived from this DIE. */
669 unsigned char building_fullname : 1;
670
671 /* Abbrev number */
672 unsigned int abbrev;
673
674 /* Offset in .debug_info or .debug_types section. */
675 unsigned int offset;
676
677 /* The dies in a compilation unit form an n-ary tree. PARENT
678 points to this die's parent; CHILD points to the first child of
679 this node; and all the children of a given node are chained
680 together via their SIBLING fields. */
681 struct die_info *child; /* Its first child, if any. */
682 struct die_info *sibling; /* Its next sibling, if any. */
683 struct die_info *parent; /* Its parent, if any. */
684
685 /* An array of attributes, with NUM_ATTRS elements. There may be
686 zero, but it's not common and zero-sized arrays are not
687 sufficiently portable C. */
688 struct attribute attrs[1];
689 };
690
691 struct function_range
692 {
693 const char *name;
694 CORE_ADDR lowpc, highpc;
695 int seen_line;
696 struct function_range *next;
697 };
698
699 /* Get at parts of an attribute structure */
700
701 #define DW_STRING(attr) ((attr)->u.str)
702 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
703 #define DW_UNSND(attr) ((attr)->u.unsnd)
704 #define DW_BLOCK(attr) ((attr)->u.blk)
705 #define DW_SND(attr) ((attr)->u.snd)
706 #define DW_ADDR(attr) ((attr)->u.addr)
707 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
708
709 /* Blocks are a bunch of untyped bytes. */
710 struct dwarf_block
711 {
712 unsigned int size;
713 gdb_byte *data;
714 };
715
716 #ifndef ATTR_ALLOC_CHUNK
717 #define ATTR_ALLOC_CHUNK 4
718 #endif
719
720 /* Allocate fields for structs, unions and enums in this size. */
721 #ifndef DW_FIELD_ALLOC_CHUNK
722 #define DW_FIELD_ALLOC_CHUNK 4
723 #endif
724
725 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
726 but this would require a corresponding change in unpack_field_as_long
727 and friends. */
728 static int bits_per_byte = 8;
729
730 /* The routines that read and process dies for a C struct or C++ class
731 pass lists of data member fields and lists of member function fields
732 in an instance of a field_info structure, as defined below. */
733 struct field_info
734 {
735 /* List of data member and baseclasses fields. */
736 struct nextfield
737 {
738 struct nextfield *next;
739 int accessibility;
740 int virtuality;
741 struct field field;
742 }
743 *fields, *baseclasses;
744
745 /* Number of fields (including baseclasses). */
746 int nfields;
747
748 /* Number of baseclasses. */
749 int nbaseclasses;
750
751 /* Set if the accesibility of one of the fields is not public. */
752 int non_public_fields;
753
754 /* Member function fields array, entries are allocated in the order they
755 are encountered in the object file. */
756 struct nextfnfield
757 {
758 struct nextfnfield *next;
759 struct fn_field fnfield;
760 }
761 *fnfields;
762
763 /* Member function fieldlist array, contains name of possibly overloaded
764 member function, number of overloaded member functions and a pointer
765 to the head of the member function field chain. */
766 struct fnfieldlist
767 {
768 char *name;
769 int length;
770 struct nextfnfield *head;
771 }
772 *fnfieldlists;
773
774 /* Number of entries in the fnfieldlists array. */
775 int nfnfields;
776
777 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
778 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
779 struct typedef_field_list
780 {
781 struct typedef_field field;
782 struct typedef_field_list *next;
783 }
784 *typedef_field_list;
785 unsigned typedef_field_list_count;
786 };
787
788 /* One item on the queue of compilation units to read in full symbols
789 for. */
790 struct dwarf2_queue_item
791 {
792 struct dwarf2_per_cu_data *per_cu;
793 struct dwarf2_queue_item *next;
794 };
795
796 /* The current queue. */
797 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
798
799 /* Loaded secondary compilation units are kept in memory until they
800 have not been referenced for the processing of this many
801 compilation units. Set this to zero to disable caching. Cache
802 sizes of up to at least twenty will improve startup time for
803 typical inter-CU-reference binaries, at an obvious memory cost. */
804 static int dwarf2_max_cache_age = 5;
805 static void
806 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
807 struct cmd_list_element *c, const char *value)
808 {
809 fprintf_filtered (file, _("\
810 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
811 value);
812 }
813
814
815 /* Various complaints about symbol reading that don't abort the process */
816
817 static void
818 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
819 {
820 complaint (&symfile_complaints,
821 _("statement list doesn't fit in .debug_line section"));
822 }
823
824 static void
825 dwarf2_debug_line_missing_file_complaint (void)
826 {
827 complaint (&symfile_complaints,
828 _(".debug_line section has line data without a file"));
829 }
830
831 static void
832 dwarf2_debug_line_missing_end_sequence_complaint (void)
833 {
834 complaint (&symfile_complaints,
835 _(".debug_line section has line program sequence without an end"));
836 }
837
838 static void
839 dwarf2_complex_location_expr_complaint (void)
840 {
841 complaint (&symfile_complaints, _("location expression too complex"));
842 }
843
844 static void
845 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
846 int arg3)
847 {
848 complaint (&symfile_complaints,
849 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
850 arg2, arg3);
851 }
852
853 static void
854 dwarf2_macros_too_long_complaint (void)
855 {
856 complaint (&symfile_complaints,
857 _("macro info runs off end of `.debug_macinfo' section"));
858 }
859
860 static void
861 dwarf2_macro_malformed_definition_complaint (const char *arg1)
862 {
863 complaint (&symfile_complaints,
864 _("macro debug info contains a malformed macro definition:\n`%s'"),
865 arg1);
866 }
867
868 static void
869 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
870 {
871 complaint (&symfile_complaints,
872 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
873 }
874
875 /* local function prototypes */
876
877 static void dwarf2_locate_sections (bfd *, asection *, void *);
878
879 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
880 struct objfile *);
881
882 static void dwarf2_build_psymtabs_hard (struct objfile *);
883
884 static void scan_partial_symbols (struct partial_die_info *,
885 CORE_ADDR *, CORE_ADDR *,
886 int, struct dwarf2_cu *);
887
888 static void add_partial_symbol (struct partial_die_info *,
889 struct dwarf2_cu *);
890
891 static void add_partial_namespace (struct partial_die_info *pdi,
892 CORE_ADDR *lowpc, CORE_ADDR *highpc,
893 int need_pc, struct dwarf2_cu *cu);
894
895 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
896 CORE_ADDR *highpc, int need_pc,
897 struct dwarf2_cu *cu);
898
899 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
900 struct dwarf2_cu *cu);
901
902 static void add_partial_subprogram (struct partial_die_info *pdi,
903 CORE_ADDR *lowpc, CORE_ADDR *highpc,
904 int need_pc, struct dwarf2_cu *cu);
905
906 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
907 gdb_byte *buffer, gdb_byte *info_ptr,
908 bfd *abfd, struct dwarf2_cu *cu);
909
910 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
911
912 static void psymtab_to_symtab_1 (struct partial_symtab *);
913
914 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
915
916 static void dwarf2_free_abbrev_table (void *);
917
918 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
919 struct dwarf2_cu *);
920
921 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
922 struct dwarf2_cu *);
923
924 static struct partial_die_info *load_partial_dies (bfd *,
925 gdb_byte *, gdb_byte *,
926 int, struct dwarf2_cu *);
927
928 static gdb_byte *read_partial_die (struct partial_die_info *,
929 struct abbrev_info *abbrev,
930 unsigned int, bfd *,
931 gdb_byte *, gdb_byte *,
932 struct dwarf2_cu *);
933
934 static struct partial_die_info *find_partial_die (unsigned int,
935 struct dwarf2_cu *);
936
937 static void fixup_partial_die (struct partial_die_info *,
938 struct dwarf2_cu *);
939
940 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
941 bfd *, gdb_byte *, struct dwarf2_cu *);
942
943 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
944 bfd *, gdb_byte *, struct dwarf2_cu *);
945
946 static unsigned int read_1_byte (bfd *, gdb_byte *);
947
948 static int read_1_signed_byte (bfd *, gdb_byte *);
949
950 static unsigned int read_2_bytes (bfd *, gdb_byte *);
951
952 static unsigned int read_4_bytes (bfd *, gdb_byte *);
953
954 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
955
956 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
957 unsigned int *);
958
959 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
960
961 static LONGEST read_checked_initial_length_and_offset
962 (bfd *, gdb_byte *, const struct comp_unit_head *,
963 unsigned int *, unsigned int *);
964
965 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
966 unsigned int *);
967
968 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
969
970 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
971
972 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
973
974 static char *read_indirect_string (bfd *, gdb_byte *,
975 const struct comp_unit_head *,
976 unsigned int *);
977
978 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
979
980 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
981
982 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
983
984 static void set_cu_language (unsigned int, struct dwarf2_cu *);
985
986 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
987 struct dwarf2_cu *);
988
989 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
990 unsigned int,
991 struct dwarf2_cu *);
992
993 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
994 struct dwarf2_cu *cu);
995
996 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
997
998 static struct die_info *die_specification (struct die_info *die,
999 struct dwarf2_cu **);
1000
1001 static void free_line_header (struct line_header *lh);
1002
1003 static void add_file_name (struct line_header *, char *, unsigned int,
1004 unsigned int, unsigned int);
1005
1006 static struct line_header *(dwarf_decode_line_header
1007 (unsigned int offset,
1008 bfd *abfd, struct dwarf2_cu *cu));
1009
1010 static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
1011 struct dwarf2_cu *, struct partial_symtab *);
1012
1013 static void dwarf2_start_subfile (char *, const char *, const char *);
1014
1015 static struct symbol *new_symbol (struct die_info *, struct type *,
1016 struct dwarf2_cu *);
1017
1018 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1019 struct dwarf2_cu *, struct symbol *);
1020
1021 static void dwarf2_const_value (struct attribute *, struct symbol *,
1022 struct dwarf2_cu *);
1023
1024 static void dwarf2_const_value_attr (struct attribute *attr,
1025 struct type *type,
1026 const char *name,
1027 struct obstack *obstack,
1028 struct dwarf2_cu *cu, long *value,
1029 gdb_byte **bytes,
1030 struct dwarf2_locexpr_baton **baton);
1031
1032 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1033
1034 static int need_gnat_info (struct dwarf2_cu *);
1035
1036 static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
1037
1038 static void set_descriptive_type (struct type *, struct die_info *,
1039 struct dwarf2_cu *);
1040
1041 static struct type *die_containing_type (struct die_info *,
1042 struct dwarf2_cu *);
1043
1044 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1045 struct dwarf2_cu *);
1046
1047 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1048
1049 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1050
1051 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1052
1053 static char *typename_concat (struct obstack *obs, const char *prefix,
1054 const char *suffix, int physname,
1055 struct dwarf2_cu *cu);
1056
1057 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1058
1059 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1060
1061 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1062
1063 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1064
1065 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1066 struct dwarf2_cu *, struct partial_symtab *);
1067
1068 static int dwarf2_get_pc_bounds (struct die_info *,
1069 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1070 struct partial_symtab *);
1071
1072 static void get_scope_pc_bounds (struct die_info *,
1073 CORE_ADDR *, CORE_ADDR *,
1074 struct dwarf2_cu *);
1075
1076 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1077 CORE_ADDR, struct dwarf2_cu *);
1078
1079 static void dwarf2_add_field (struct field_info *, struct die_info *,
1080 struct dwarf2_cu *);
1081
1082 static void dwarf2_attach_fields_to_type (struct field_info *,
1083 struct type *, struct dwarf2_cu *);
1084
1085 static void dwarf2_add_member_fn (struct field_info *,
1086 struct die_info *, struct type *,
1087 struct dwarf2_cu *);
1088
1089 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1090 struct type *, struct dwarf2_cu *);
1091
1092 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1093
1094 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1095
1096 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1097
1098 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1099
1100 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1101
1102 static struct type *read_module_type (struct die_info *die,
1103 struct dwarf2_cu *cu);
1104
1105 static const char *namespace_name (struct die_info *die,
1106 int *is_anonymous, struct dwarf2_cu *);
1107
1108 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1109
1110 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1111
1112 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1113 struct dwarf2_cu *);
1114
1115 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1116
1117 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1118 gdb_byte *info_ptr,
1119 gdb_byte **new_info_ptr,
1120 struct die_info *parent);
1121
1122 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1123 gdb_byte *info_ptr,
1124 gdb_byte **new_info_ptr,
1125 struct die_info *parent);
1126
1127 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1128 gdb_byte *info_ptr,
1129 gdb_byte **new_info_ptr,
1130 struct die_info *parent);
1131
1132 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1133 struct die_info **, gdb_byte *,
1134 int *);
1135
1136 static void process_die (struct die_info *, struct dwarf2_cu *);
1137
1138 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1139 struct obstack *);
1140
1141 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1142
1143 static const char *dwarf2_full_name (char *name,
1144 struct die_info *die,
1145 struct dwarf2_cu *cu);
1146
1147 static struct die_info *dwarf2_extension (struct die_info *die,
1148 struct dwarf2_cu **);
1149
1150 static char *dwarf_tag_name (unsigned int);
1151
1152 static char *dwarf_attr_name (unsigned int);
1153
1154 static char *dwarf_form_name (unsigned int);
1155
1156 static char *dwarf_bool_name (unsigned int);
1157
1158 static char *dwarf_type_encoding_name (unsigned int);
1159
1160 #if 0
1161 static char *dwarf_cfi_name (unsigned int);
1162 #endif
1163
1164 static struct die_info *sibling_die (struct die_info *);
1165
1166 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1167
1168 static void dump_die_for_error (struct die_info *);
1169
1170 static void dump_die_1 (struct ui_file *, int level, int max_level,
1171 struct die_info *);
1172
1173 /*static*/ void dump_die (struct die_info *, int max_level);
1174
1175 static void store_in_ref_table (struct die_info *,
1176 struct dwarf2_cu *);
1177
1178 static int is_ref_attr (struct attribute *);
1179
1180 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1181
1182 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1183
1184 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1185 struct attribute *,
1186 struct dwarf2_cu **);
1187
1188 static struct die_info *follow_die_ref (struct die_info *,
1189 struct attribute *,
1190 struct dwarf2_cu **);
1191
1192 static struct die_info *follow_die_sig (struct die_info *,
1193 struct attribute *,
1194 struct dwarf2_cu **);
1195
1196 static void read_signatured_type_at_offset (struct objfile *objfile,
1197 unsigned int offset);
1198
1199 static void read_signatured_type (struct objfile *,
1200 struct signatured_type *type_sig);
1201
1202 /* memory allocation interface */
1203
1204 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1205
1206 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1207
1208 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1209
1210 static void initialize_cu_func_list (struct dwarf2_cu *);
1211
1212 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1213 struct dwarf2_cu *);
1214
1215 static void dwarf_decode_macros (struct line_header *, unsigned int,
1216 char *, bfd *, struct dwarf2_cu *);
1217
1218 static int attr_form_is_block (struct attribute *);
1219
1220 static int attr_form_is_section_offset (struct attribute *);
1221
1222 static int attr_form_is_constant (struct attribute *);
1223
1224 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1225 struct dwarf2_loclist_baton *baton,
1226 struct attribute *attr);
1227
1228 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1229 struct symbol *sym,
1230 struct dwarf2_cu *cu);
1231
1232 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1233 struct abbrev_info *abbrev,
1234 struct dwarf2_cu *cu);
1235
1236 static void free_stack_comp_unit (void *);
1237
1238 static hashval_t partial_die_hash (const void *item);
1239
1240 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1241
1242 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1243 (unsigned int offset, struct objfile *objfile);
1244
1245 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1246 (unsigned int offset, struct objfile *objfile);
1247
1248 static void init_one_comp_unit (struct dwarf2_cu *cu,
1249 struct objfile *objfile);
1250
1251 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1252 struct die_info *comp_unit_die);
1253
1254 static void free_one_comp_unit (void *);
1255
1256 static void free_cached_comp_units (void *);
1257
1258 static void age_cached_comp_units (void);
1259
1260 static void free_one_cached_comp_unit (void *);
1261
1262 static struct type *set_die_type (struct die_info *, struct type *,
1263 struct dwarf2_cu *);
1264
1265 static void create_all_comp_units (struct objfile *);
1266
1267 static int create_debug_types_hash_table (struct objfile *objfile);
1268
1269 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1270 struct objfile *);
1271
1272 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1273
1274 static void dwarf2_add_dependence (struct dwarf2_cu *,
1275 struct dwarf2_per_cu_data *);
1276
1277 static void dwarf2_mark (struct dwarf2_cu *);
1278
1279 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1280
1281 static struct type *get_die_type_at_offset (unsigned int,
1282 struct dwarf2_per_cu_data *per_cu);
1283
1284 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1285
1286 static void dwarf2_release_queue (void *dummy);
1287
1288 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1289 struct objfile *objfile);
1290
1291 static void process_queue (struct objfile *objfile);
1292
1293 static void find_file_and_directory (struct die_info *die,
1294 struct dwarf2_cu *cu,
1295 char **name, char **comp_dir);
1296
1297 static char *file_full_name (int file, struct line_header *lh,
1298 const char *comp_dir);
1299
1300 static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1301 gdb_byte *info_ptr,
1302 gdb_byte *buffer,
1303 unsigned int buffer_size,
1304 bfd *abfd);
1305
1306 static void init_cu_die_reader (struct die_reader_specs *reader,
1307 struct dwarf2_cu *cu);
1308
1309 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1310
1311 #if WORDS_BIGENDIAN
1312
1313 /* Convert VALUE between big- and little-endian. */
1314 static offset_type
1315 byte_swap (offset_type value)
1316 {
1317 offset_type result;
1318
1319 result = (value & 0xff) << 24;
1320 result |= (value & 0xff00) << 8;
1321 result |= (value & 0xff0000) >> 8;
1322 result |= (value & 0xff000000) >> 24;
1323 return result;
1324 }
1325
1326 #define MAYBE_SWAP(V) byte_swap (V)
1327
1328 #else
1329 #define MAYBE_SWAP(V) (V)
1330 #endif /* WORDS_BIGENDIAN */
1331
1332 /* The suffix for an index file. */
1333 #define INDEX_SUFFIX ".gdb-index"
1334
1335 static const char *dwarf2_physname (char *name, struct die_info *die,
1336 struct dwarf2_cu *cu);
1337
1338 /* Try to locate the sections we need for DWARF 2 debugging
1339 information and return true if we have enough to do something. */
1340
1341 int
1342 dwarf2_has_info (struct objfile *objfile)
1343 {
1344 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1345 if (!dwarf2_per_objfile)
1346 {
1347 /* Initialize per-objfile state. */
1348 struct dwarf2_per_objfile *data
1349 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1350
1351 memset (data, 0, sizeof (*data));
1352 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1353 dwarf2_per_objfile = data;
1354
1355 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1356 dwarf2_per_objfile->objfile = objfile;
1357 }
1358 return (dwarf2_per_objfile->info.asection != NULL
1359 && dwarf2_per_objfile->abbrev.asection != NULL);
1360 }
1361
1362 /* When loading sections, we can either look for ".<name>", or for
1363 * ".z<name>", which indicates a compressed section. */
1364
1365 static int
1366 section_is_p (const char *section_name, const char *name)
1367 {
1368 return (section_name[0] == '.'
1369 && (strcmp (section_name + 1, name) == 0
1370 || (section_name[1] == 'z'
1371 && strcmp (section_name + 2, name) == 0)));
1372 }
1373
1374 /* This function is mapped across the sections and remembers the
1375 offset and size of each of the debugging sections we are interested
1376 in. */
1377
1378 static void
1379 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1380 {
1381 if (section_is_p (sectp->name, INFO_SECTION))
1382 {
1383 dwarf2_per_objfile->info.asection = sectp;
1384 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1385 }
1386 else if (section_is_p (sectp->name, ABBREV_SECTION))
1387 {
1388 dwarf2_per_objfile->abbrev.asection = sectp;
1389 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1390 }
1391 else if (section_is_p (sectp->name, LINE_SECTION))
1392 {
1393 dwarf2_per_objfile->line.asection = sectp;
1394 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1395 }
1396 else if (section_is_p (sectp->name, LOC_SECTION))
1397 {
1398 dwarf2_per_objfile->loc.asection = sectp;
1399 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1400 }
1401 else if (section_is_p (sectp->name, MACINFO_SECTION))
1402 {
1403 dwarf2_per_objfile->macinfo.asection = sectp;
1404 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1405 }
1406 else if (section_is_p (sectp->name, STR_SECTION))
1407 {
1408 dwarf2_per_objfile->str.asection = sectp;
1409 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1410 }
1411 else if (section_is_p (sectp->name, FRAME_SECTION))
1412 {
1413 dwarf2_per_objfile->frame.asection = sectp;
1414 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1415 }
1416 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1417 {
1418 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1419
1420 if (aflag & SEC_HAS_CONTENTS)
1421 {
1422 dwarf2_per_objfile->eh_frame.asection = sectp;
1423 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1424 }
1425 }
1426 else if (section_is_p (sectp->name, RANGES_SECTION))
1427 {
1428 dwarf2_per_objfile->ranges.asection = sectp;
1429 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1430 }
1431 else if (section_is_p (sectp->name, TYPES_SECTION))
1432 {
1433 dwarf2_per_objfile->types.asection = sectp;
1434 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1435 }
1436 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1437 {
1438 dwarf2_per_objfile->gdb_index.asection = sectp;
1439 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1440 }
1441
1442 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1443 && bfd_section_vma (abfd, sectp) == 0)
1444 dwarf2_per_objfile->has_section_at_zero = 1;
1445 }
1446
1447 /* Decompress a section that was compressed using zlib. Store the
1448 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1449
1450 static void
1451 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1452 gdb_byte **outbuf, bfd_size_type *outsize)
1453 {
1454 bfd *abfd = objfile->obfd;
1455 #ifndef HAVE_ZLIB_H
1456 error (_("Support for zlib-compressed DWARF data (from '%s') "
1457 "is disabled in this copy of GDB"),
1458 bfd_get_filename (abfd));
1459 #else
1460 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1461 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1462 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1463 bfd_size_type uncompressed_size;
1464 gdb_byte *uncompressed_buffer;
1465 z_stream strm;
1466 int rc;
1467 int header_size = 12;
1468
1469 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1470 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1471 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1472 bfd_get_filename (abfd));
1473
1474 /* Read the zlib header. In this case, it should be "ZLIB" followed
1475 by the uncompressed section size, 8 bytes in big-endian order. */
1476 if (compressed_size < header_size
1477 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1478 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1479 bfd_get_filename (abfd));
1480 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1481 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1482 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1483 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1484 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1485 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1486 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1487 uncompressed_size += compressed_buffer[11];
1488
1489 /* It is possible the section consists of several compressed
1490 buffers concatenated together, so we uncompress in a loop. */
1491 strm.zalloc = NULL;
1492 strm.zfree = NULL;
1493 strm.opaque = NULL;
1494 strm.avail_in = compressed_size - header_size;
1495 strm.next_in = (Bytef*) compressed_buffer + header_size;
1496 strm.avail_out = uncompressed_size;
1497 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1498 uncompressed_size);
1499 rc = inflateInit (&strm);
1500 while (strm.avail_in > 0)
1501 {
1502 if (rc != Z_OK)
1503 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1504 bfd_get_filename (abfd), rc);
1505 strm.next_out = ((Bytef*) uncompressed_buffer
1506 + (uncompressed_size - strm.avail_out));
1507 rc = inflate (&strm, Z_FINISH);
1508 if (rc != Z_STREAM_END)
1509 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1510 bfd_get_filename (abfd), rc);
1511 rc = inflateReset (&strm);
1512 }
1513 rc = inflateEnd (&strm);
1514 if (rc != Z_OK
1515 || strm.avail_out != 0)
1516 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1517 bfd_get_filename (abfd), rc);
1518
1519 do_cleanups (cleanup);
1520 *outbuf = uncompressed_buffer;
1521 *outsize = uncompressed_size;
1522 #endif
1523 }
1524
1525 /* Read the contents of the section SECTP from object file specified by
1526 OBJFILE, store info about the section into INFO.
1527 If the section is compressed, uncompress it before returning. */
1528
1529 static void
1530 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1531 {
1532 bfd *abfd = objfile->obfd;
1533 asection *sectp = info->asection;
1534 gdb_byte *buf, *retbuf;
1535 unsigned char header[4];
1536
1537 if (info->readin)
1538 return;
1539 info->buffer = NULL;
1540 info->was_mmapped = 0;
1541 info->readin = 1;
1542
1543 if (info->asection == NULL || info->size == 0)
1544 return;
1545
1546 /* Check if the file has a 4-byte header indicating compression. */
1547 if (info->size > sizeof (header)
1548 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1549 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1550 {
1551 /* Upon decompression, update the buffer and its size. */
1552 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1553 {
1554 zlib_decompress_section (objfile, sectp, &info->buffer,
1555 &info->size);
1556 return;
1557 }
1558 }
1559
1560 #ifdef HAVE_MMAP
1561 if (pagesize == 0)
1562 pagesize = getpagesize ();
1563
1564 /* Only try to mmap sections which are large enough: we don't want to
1565 waste space due to fragmentation. Also, only try mmap for sections
1566 without relocations. */
1567
1568 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1569 {
1570 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1571 size_t map_length = info->size + sectp->filepos - pg_offset;
1572 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1573 MAP_PRIVATE, pg_offset);
1574
1575 if (retbuf != MAP_FAILED)
1576 {
1577 info->was_mmapped = 1;
1578 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1579 #if HAVE_POSIX_MADVISE
1580 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1581 #endif
1582 return;
1583 }
1584 }
1585 #endif
1586
1587 /* If we get here, we are a normal, not-compressed section. */
1588 info->buffer = buf
1589 = obstack_alloc (&objfile->objfile_obstack, info->size);
1590
1591 /* When debugging .o files, we may need to apply relocations; see
1592 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1593 We never compress sections in .o files, so we only need to
1594 try this when the section is not compressed. */
1595 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1596 if (retbuf != NULL)
1597 {
1598 info->buffer = retbuf;
1599 return;
1600 }
1601
1602 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1603 || bfd_bread (buf, info->size, abfd) != info->size)
1604 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1605 bfd_get_filename (abfd));
1606 }
1607
1608 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1609 SECTION_NAME. */
1610
1611 void
1612 dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1613 asection **sectp, gdb_byte **bufp,
1614 bfd_size_type *sizep)
1615 {
1616 struct dwarf2_per_objfile *data
1617 = objfile_data (objfile, dwarf2_objfile_data_key);
1618 struct dwarf2_section_info *info;
1619
1620 /* We may see an objfile without any DWARF, in which case we just
1621 return nothing. */
1622 if (data == NULL)
1623 {
1624 *sectp = NULL;
1625 *bufp = NULL;
1626 *sizep = 0;
1627 return;
1628 }
1629 if (section_is_p (section_name, EH_FRAME_SECTION))
1630 info = &data->eh_frame;
1631 else if (section_is_p (section_name, FRAME_SECTION))
1632 info = &data->frame;
1633 else
1634 gdb_assert_not_reached ("unexpected section");
1635
1636 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1637 /* We haven't read this section in yet. Do it now. */
1638 dwarf2_read_section (objfile, info);
1639
1640 *sectp = info->asection;
1641 *bufp = info->buffer;
1642 *sizep = info->size;
1643 }
1644
1645 \f
1646
1647 /* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1648 this CU came. */
1649
1650 static void
1651 dw2_do_instantiate_symtab (struct objfile *objfile,
1652 struct dwarf2_per_cu_data *per_cu)
1653 {
1654 struct cleanup *back_to;
1655
1656 back_to = make_cleanup (dwarf2_release_queue, NULL);
1657
1658 queue_comp_unit (per_cu, objfile);
1659
1660 if (per_cu->from_debug_types)
1661 read_signatured_type_at_offset (objfile, per_cu->offset);
1662 else
1663 load_full_comp_unit (per_cu, objfile);
1664
1665 process_queue (objfile);
1666
1667 /* Age the cache, releasing compilation units that have not
1668 been used recently. */
1669 age_cached_comp_units ();
1670
1671 do_cleanups (back_to);
1672 }
1673
1674 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1675 the objfile from which this CU came. Returns the resulting symbol
1676 table. */
1677
1678 static struct symtab *
1679 dw2_instantiate_symtab (struct objfile *objfile,
1680 struct dwarf2_per_cu_data *per_cu)
1681 {
1682 if (!per_cu->v.quick->symtab)
1683 {
1684 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1685 increment_reading_symtab ();
1686 dw2_do_instantiate_symtab (objfile, per_cu);
1687 do_cleanups (back_to);
1688 }
1689 return per_cu->v.quick->symtab;
1690 }
1691
1692 /* Return the CU given its index. */
1693
1694 static struct dwarf2_per_cu_data *
1695 dw2_get_cu (int index)
1696 {
1697 if (index >= dwarf2_per_objfile->n_comp_units)
1698 {
1699 index -= dwarf2_per_objfile->n_comp_units;
1700 return dwarf2_per_objfile->type_comp_units[index];
1701 }
1702 return dwarf2_per_objfile->all_comp_units[index];
1703 }
1704
1705 /* A helper function that knows how to read a 64-bit value in a way
1706 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1707 otherwise. */
1708
1709 static int
1710 extract_cu_value (const char *bytes, ULONGEST *result)
1711 {
1712 if (sizeof (ULONGEST) < 8)
1713 {
1714 int i;
1715
1716 /* Ignore the upper 4 bytes if they are all zero. */
1717 for (i = 0; i < 4; ++i)
1718 if (bytes[i + 4] != 0)
1719 return 0;
1720
1721 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1722 }
1723 else
1724 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1725 return 1;
1726 }
1727
1728 /* Read the CU list from the mapped index, and use it to create all
1729 the CU objects for this objfile. Return 0 if something went wrong,
1730 1 if everything went ok. */
1731
1732 static int
1733 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1734 offset_type cu_list_elements)
1735 {
1736 offset_type i;
1737
1738 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1739 dwarf2_per_objfile->all_comp_units
1740 = obstack_alloc (&objfile->objfile_obstack,
1741 dwarf2_per_objfile->n_comp_units
1742 * sizeof (struct dwarf2_per_cu_data *));
1743
1744 for (i = 0; i < cu_list_elements; i += 2)
1745 {
1746 struct dwarf2_per_cu_data *the_cu;
1747 ULONGEST offset, length;
1748
1749 if (!extract_cu_value (cu_list, &offset)
1750 || !extract_cu_value (cu_list + 8, &length))
1751 return 0;
1752 cu_list += 2 * 8;
1753
1754 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1755 struct dwarf2_per_cu_data);
1756 the_cu->offset = offset;
1757 the_cu->length = length;
1758 the_cu->objfile = objfile;
1759 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1760 struct dwarf2_per_cu_quick_data);
1761 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1762 }
1763
1764 return 1;
1765 }
1766
1767 /* Create the signatured type hash table from the index. */
1768
1769 static int
1770 create_signatured_type_table_from_index (struct objfile *objfile,
1771 const gdb_byte *bytes,
1772 offset_type elements)
1773 {
1774 offset_type i;
1775 htab_t sig_types_hash;
1776
1777 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1778 dwarf2_per_objfile->type_comp_units
1779 = obstack_alloc (&objfile->objfile_obstack,
1780 dwarf2_per_objfile->n_type_comp_units
1781 * sizeof (struct dwarf2_per_cu_data *));
1782
1783 sig_types_hash = allocate_signatured_type_table (objfile);
1784
1785 for (i = 0; i < elements; i += 3)
1786 {
1787 struct signatured_type *type_sig;
1788 ULONGEST offset, type_offset, signature;
1789 void **slot;
1790
1791 if (!extract_cu_value (bytes, &offset)
1792 || !extract_cu_value (bytes + 8, &type_offset))
1793 return 0;
1794 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1795 bytes += 3 * 8;
1796
1797 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1798 struct signatured_type);
1799 type_sig->signature = signature;
1800 type_sig->offset = offset;
1801 type_sig->type_offset = type_offset;
1802 type_sig->per_cu.from_debug_types = 1;
1803 type_sig->per_cu.offset = offset;
1804 type_sig->per_cu.objfile = objfile;
1805 type_sig->per_cu.v.quick
1806 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1807 struct dwarf2_per_cu_quick_data);
1808
1809 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1810 *slot = type_sig;
1811
1812 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1813 }
1814
1815 dwarf2_per_objfile->signatured_types = sig_types_hash;
1816
1817 return 1;
1818 }
1819
1820 /* Read the address map data from the mapped index, and use it to
1821 populate the objfile's psymtabs_addrmap. */
1822
1823 static void
1824 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1825 {
1826 const gdb_byte *iter, *end;
1827 struct obstack temp_obstack;
1828 struct addrmap *mutable_map;
1829 struct cleanup *cleanup;
1830 CORE_ADDR baseaddr;
1831
1832 obstack_init (&temp_obstack);
1833 cleanup = make_cleanup_obstack_free (&temp_obstack);
1834 mutable_map = addrmap_create_mutable (&temp_obstack);
1835
1836 iter = index->address_table;
1837 end = iter + index->address_table_size;
1838
1839 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1840
1841 while (iter < end)
1842 {
1843 ULONGEST hi, lo, cu_index;
1844 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1845 iter += 8;
1846 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1847 iter += 8;
1848 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1849 iter += 4;
1850
1851 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1852 dw2_get_cu (cu_index));
1853 }
1854
1855 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1856 &objfile->objfile_obstack);
1857 do_cleanups (cleanup);
1858 }
1859
1860 /* The hash function for strings in the mapped index. This is the
1861 same as the hashtab.c hash function, but we keep a separate copy to
1862 maintain control over the implementation. This is necessary
1863 because the hash function is tied to the format of the mapped index
1864 file. */
1865
1866 static hashval_t
1867 mapped_index_string_hash (const void *p)
1868 {
1869 const unsigned char *str = (const unsigned char *) p;
1870 hashval_t r = 0;
1871 unsigned char c;
1872
1873 while ((c = *str++) != 0)
1874 r = r * 67 + c - 113;
1875
1876 return r;
1877 }
1878
1879 /* Find a slot in the mapped index INDEX for the object named NAME.
1880 If NAME is found, set *VEC_OUT to point to the CU vector in the
1881 constant pool and return 1. If NAME cannot be found, return 0. */
1882
1883 static int
1884 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1885 offset_type **vec_out)
1886 {
1887 offset_type hash = mapped_index_string_hash (name);
1888 offset_type slot, step;
1889
1890 slot = hash & (index->symbol_table_slots - 1);
1891 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
1892
1893 for (;;)
1894 {
1895 /* Convert a slot number to an offset into the table. */
1896 offset_type i = 2 * slot;
1897 const char *str;
1898 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
1899 return 0;
1900
1901 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
1902 if (!strcmp (name, str))
1903 {
1904 *vec_out = (offset_type *) (index->constant_pool
1905 + MAYBE_SWAP (index->symbol_table[i + 1]));
1906 return 1;
1907 }
1908
1909 slot = (slot + step) & (index->symbol_table_slots - 1);
1910 }
1911 }
1912
1913 /* Read the index file. If everything went ok, initialize the "quick"
1914 elements of all the CUs and return 1. Otherwise, return 0. */
1915
1916 static int
1917 dwarf2_read_index (struct objfile *objfile)
1918 {
1919 char *addr;
1920 struct mapped_index *map;
1921 offset_type *metadata;
1922 const gdb_byte *cu_list;
1923 const gdb_byte *types_list = NULL;
1924 offset_type version, cu_list_elements;
1925 offset_type types_list_elements = 0;
1926 int i;
1927
1928 if (dwarf2_per_objfile->gdb_index.asection == NULL
1929 || dwarf2_per_objfile->gdb_index.size == 0)
1930 return 0;
1931
1932 /* Older elfutils strip versions could keep the section in the main
1933 executable while splitting it for the separate debug info file. */
1934 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
1935 & SEC_HAS_CONTENTS) == 0)
1936 return 0;
1937
1938 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
1939
1940 addr = dwarf2_per_objfile->gdb_index.buffer;
1941 /* Version check. */
1942 version = MAYBE_SWAP (*(offset_type *) addr);
1943 /* Versions earlier than 3 emitted every copy of a psymbol. This
1944 causes the index to behave very poorly for certain requests. So,
1945 it seems better to just ignore such indices. */
1946 if (version < 3)
1947 return 0;
1948 /* Indexes with higher version than the one supported by GDB may be no
1949 longer backward compatible. */
1950 if (version > 3)
1951 return 0;
1952
1953 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
1954 map->total_size = dwarf2_per_objfile->gdb_index.size;
1955
1956 metadata = (offset_type *) (addr + sizeof (offset_type));
1957
1958 i = 0;
1959 cu_list = addr + MAYBE_SWAP (metadata[i]);
1960 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
1961 / 8);
1962 ++i;
1963
1964 types_list = addr + MAYBE_SWAP (metadata[i]);
1965 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
1966 - MAYBE_SWAP (metadata[i]))
1967 / 8);
1968 ++i;
1969
1970 map->address_table = addr + MAYBE_SWAP (metadata[i]);
1971 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
1972 - MAYBE_SWAP (metadata[i]));
1973 ++i;
1974
1975 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
1976 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
1977 - MAYBE_SWAP (metadata[i]))
1978 / (2 * sizeof (offset_type)));
1979 ++i;
1980
1981 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
1982
1983 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
1984 return 0;
1985
1986 if (types_list_elements
1987 && !create_signatured_type_table_from_index (objfile, types_list,
1988 types_list_elements))
1989 return 0;
1990
1991 create_addrmap_from_index (objfile, map);
1992
1993 dwarf2_per_objfile->index_table = map;
1994 dwarf2_per_objfile->using_index = 1;
1995
1996 return 1;
1997 }
1998
1999 /* A helper for the "quick" functions which sets the global
2000 dwarf2_per_objfile according to OBJFILE. */
2001
2002 static void
2003 dw2_setup (struct objfile *objfile)
2004 {
2005 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2006 gdb_assert (dwarf2_per_objfile);
2007 }
2008
2009 /* A helper for the "quick" functions which attempts to read the line
2010 table for THIS_CU. */
2011
2012 static void
2013 dw2_require_line_header (struct objfile *objfile,
2014 struct dwarf2_per_cu_data *this_cu)
2015 {
2016 bfd *abfd = objfile->obfd;
2017 struct line_header *lh = NULL;
2018 struct attribute *attr;
2019 struct cleanup *cleanups;
2020 struct die_info *comp_unit_die;
2021 struct dwarf2_section_info* sec;
2022 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2023 int has_children, i;
2024 struct dwarf2_cu cu;
2025 unsigned int bytes_read, buffer_size;
2026 struct die_reader_specs reader_specs;
2027 char *name, *comp_dir;
2028
2029 if (this_cu->v.quick->read_lines)
2030 return;
2031 this_cu->v.quick->read_lines = 1;
2032
2033 init_one_comp_unit (&cu, objfile);
2034 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2035
2036 if (this_cu->from_debug_types)
2037 sec = &dwarf2_per_objfile->types;
2038 else
2039 sec = &dwarf2_per_objfile->info;
2040 dwarf2_read_section (objfile, sec);
2041 buffer_size = sec->size;
2042 buffer = sec->buffer;
2043 info_ptr = buffer + this_cu->offset;
2044 beg_of_comp_unit = info_ptr;
2045
2046 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2047 buffer, buffer_size,
2048 abfd);
2049
2050 /* Complete the cu_header. */
2051 cu.header.offset = beg_of_comp_unit - buffer;
2052 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2053
2054 this_cu->cu = &cu;
2055 cu.per_cu = this_cu;
2056
2057 dwarf2_read_abbrevs (abfd, &cu);
2058 make_cleanup (dwarf2_free_abbrev_table, &cu);
2059
2060 if (this_cu->from_debug_types)
2061 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2062 init_cu_die_reader (&reader_specs, &cu);
2063 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2064 &has_children);
2065
2066 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2067 if (attr)
2068 {
2069 unsigned int line_offset = DW_UNSND (attr);
2070 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2071 }
2072 if (lh == NULL)
2073 {
2074 do_cleanups (cleanups);
2075 return;
2076 }
2077
2078 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2079
2080 this_cu->v.quick->lines = lh;
2081
2082 this_cu->v.quick->file_names
2083 = obstack_alloc (&objfile->objfile_obstack,
2084 lh->num_file_names * sizeof (char *));
2085 for (i = 0; i < lh->num_file_names; ++i)
2086 this_cu->v.quick->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2087
2088 do_cleanups (cleanups);
2089 }
2090
2091 /* A helper for the "quick" functions which computes and caches the
2092 real path for a given file name from the line table.
2093 dw2_require_line_header must have been called before this is
2094 invoked. */
2095
2096 static const char *
2097 dw2_require_full_path (struct objfile *objfile,
2098 struct dwarf2_per_cu_data *per_cu,
2099 int index)
2100 {
2101 if (!per_cu->v.quick->full_names)
2102 per_cu->v.quick->full_names
2103 = OBSTACK_CALLOC (&objfile->objfile_obstack,
2104 per_cu->v.quick->lines->num_file_names,
2105 sizeof (char *));
2106
2107 if (!per_cu->v.quick->full_names[index])
2108 per_cu->v.quick->full_names[index]
2109 = gdb_realpath (per_cu->v.quick->file_names[index]);
2110
2111 return per_cu->v.quick->full_names[index];
2112 }
2113
2114 static struct symtab *
2115 dw2_find_last_source_symtab (struct objfile *objfile)
2116 {
2117 int index;
2118 dw2_setup (objfile);
2119 index = dwarf2_per_objfile->n_comp_units - 1;
2120 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
2121 }
2122
2123 static void
2124 dw2_forget_cached_source_info (struct objfile *objfile)
2125 {
2126 int i;
2127
2128 dw2_setup (objfile);
2129 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2130 + dwarf2_per_objfile->n_type_comp_units); ++i)
2131 {
2132 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2133
2134 if (per_cu->v.quick->full_names)
2135 {
2136 int j;
2137
2138 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2139 {
2140 xfree ((void *) per_cu->v.quick->full_names[j]);
2141 per_cu->v.quick->full_names[j] = NULL;
2142 }
2143 }
2144 }
2145 }
2146
2147 static int
2148 dw2_lookup_symtab (struct objfile *objfile, const char *name,
2149 const char *full_path, const char *real_path,
2150 struct symtab **result)
2151 {
2152 int i;
2153 int check_basename = lbasename (name) == name;
2154 struct dwarf2_per_cu_data *base_cu = NULL;
2155
2156 dw2_setup (objfile);
2157 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2158 + dwarf2_per_objfile->n_type_comp_units); ++i)
2159 {
2160 int j;
2161 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2162
2163 if (per_cu->v.quick->symtab)
2164 continue;
2165
2166 dw2_require_line_header (objfile, per_cu);
2167 if (!per_cu->v.quick->lines)
2168 continue;
2169
2170 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2171 {
2172 const char *this_name = per_cu->v.quick->file_names[j];
2173
2174 if (FILENAME_CMP (name, this_name) == 0)
2175 {
2176 *result = dw2_instantiate_symtab (objfile, per_cu);
2177 return 1;
2178 }
2179
2180 if (check_basename && ! base_cu
2181 && FILENAME_CMP (lbasename (this_name), name) == 0)
2182 base_cu = per_cu;
2183
2184 if (full_path != NULL)
2185 {
2186 const char *this_full_name = dw2_require_full_path (objfile,
2187 per_cu, j);
2188
2189 if (this_full_name
2190 && FILENAME_CMP (full_path, this_full_name) == 0)
2191 {
2192 *result = dw2_instantiate_symtab (objfile, per_cu);
2193 return 1;
2194 }
2195 }
2196
2197 if (real_path != NULL)
2198 {
2199 const char *this_full_name = dw2_require_full_path (objfile,
2200 per_cu, j);
2201
2202 if (this_full_name != NULL)
2203 {
2204 char *rp = gdb_realpath (this_full_name);
2205 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
2206 {
2207 xfree (rp);
2208 *result = dw2_instantiate_symtab (objfile, per_cu);
2209 return 1;
2210 }
2211 xfree (rp);
2212 }
2213 }
2214 }
2215 }
2216
2217 if (base_cu)
2218 {
2219 *result = dw2_instantiate_symtab (objfile, base_cu);
2220 return 1;
2221 }
2222
2223 return 0;
2224 }
2225
2226 static struct symtab *
2227 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2228 const char *name, domain_enum domain)
2229 {
2230 /* We do all the work in the pre_expand_symtabs_matching hook
2231 instead. */
2232 return NULL;
2233 }
2234
2235 /* A helper function that expands all symtabs that hold an object
2236 named NAME. */
2237
2238 static void
2239 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2240 {
2241 dw2_setup (objfile);
2242
2243 if (dwarf2_per_objfile->index_table)
2244 {
2245 offset_type *vec;
2246
2247 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2248 name, &vec))
2249 {
2250 offset_type i, len = MAYBE_SWAP (*vec);
2251 for (i = 0; i < len; ++i)
2252 {
2253 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2254 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2255
2256 dw2_instantiate_symtab (objfile, per_cu);
2257 }
2258 }
2259 }
2260 }
2261
2262 static void
2263 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2264 int kind, const char *name,
2265 domain_enum domain)
2266 {
2267 dw2_do_expand_symtabs_matching (objfile, name);
2268 }
2269
2270 static void
2271 dw2_print_stats (struct objfile *objfile)
2272 {
2273 int i, count;
2274
2275 dw2_setup (objfile);
2276 count = 0;
2277 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2278 + dwarf2_per_objfile->n_type_comp_units); ++i)
2279 {
2280 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2281
2282 if (!per_cu->v.quick->symtab)
2283 ++count;
2284 }
2285 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2286 }
2287
2288 static void
2289 dw2_dump (struct objfile *objfile)
2290 {
2291 /* Nothing worth printing. */
2292 }
2293
2294 static void
2295 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2296 struct section_offsets *delta)
2297 {
2298 /* There's nothing to relocate here. */
2299 }
2300
2301 static void
2302 dw2_expand_symtabs_for_function (struct objfile *objfile,
2303 const char *func_name)
2304 {
2305 dw2_do_expand_symtabs_matching (objfile, func_name);
2306 }
2307
2308 static void
2309 dw2_expand_all_symtabs (struct objfile *objfile)
2310 {
2311 int i;
2312
2313 dw2_setup (objfile);
2314
2315 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2316 + dwarf2_per_objfile->n_type_comp_units); ++i)
2317 {
2318 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2319
2320 dw2_instantiate_symtab (objfile, per_cu);
2321 }
2322 }
2323
2324 static void
2325 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2326 const char *filename)
2327 {
2328 int i;
2329
2330 dw2_setup (objfile);
2331 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2332 + dwarf2_per_objfile->n_type_comp_units); ++i)
2333 {
2334 int j;
2335 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2336
2337 if (per_cu->v.quick->symtab)
2338 continue;
2339
2340 dw2_require_line_header (objfile, per_cu);
2341 if (!per_cu->v.quick->lines)
2342 continue;
2343
2344 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2345 {
2346 const char *this_name = per_cu->v.quick->file_names[j];
2347 if (strcmp (this_name, filename) == 0)
2348 {
2349 dw2_instantiate_symtab (objfile, per_cu);
2350 break;
2351 }
2352 }
2353 }
2354 }
2355
2356 static const char *
2357 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2358 {
2359 struct dwarf2_per_cu_data *per_cu;
2360 offset_type *vec;
2361
2362 dw2_setup (objfile);
2363
2364 if (!dwarf2_per_objfile->index_table)
2365 return NULL;
2366
2367 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2368 name, &vec))
2369 return NULL;
2370
2371 /* Note that this just looks at the very first one named NAME -- but
2372 actually we are looking for a function. find_main_filename
2373 should be rewritten so that it doesn't require a custom hook. It
2374 could just use the ordinary symbol tables. */
2375 /* vec[0] is the length, which must always be >0. */
2376 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2377
2378 dw2_require_line_header (objfile, per_cu);
2379 if (!per_cu->v.quick->lines)
2380 return NULL;
2381
2382 return per_cu->v.quick->file_names[per_cu->v.quick->lines->num_file_names - 1];
2383 }
2384
2385 static void
2386 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2387 struct objfile *objfile, int global,
2388 int (*callback) (struct block *,
2389 struct symbol *, void *),
2390 void *data, symbol_compare_ftype *match,
2391 symbol_compare_ftype *ordered_compare)
2392 {
2393 /* Currently unimplemented; used for Ada. The function can be called if the
2394 current language is Ada for a non-Ada objfile using GNU index. As Ada
2395 does not look for non-Ada symbols this function should just return. */
2396 }
2397
2398 static void
2399 dw2_expand_symtabs_matching (struct objfile *objfile,
2400 int (*file_matcher) (const char *, void *),
2401 int (*name_matcher) (const char *, void *),
2402 domain_enum kind,
2403 void *data)
2404 {
2405 int i;
2406 offset_type iter;
2407 struct mapped_index *index;
2408
2409 dw2_setup (objfile);
2410 if (!dwarf2_per_objfile->index_table)
2411 return;
2412 index = dwarf2_per_objfile->index_table;
2413
2414 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2415 + dwarf2_per_objfile->n_type_comp_units); ++i)
2416 {
2417 int j;
2418 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2419
2420 per_cu->v.quick->mark = 0;
2421 if (per_cu->v.quick->symtab)
2422 continue;
2423
2424 dw2_require_line_header (objfile, per_cu);
2425 if (!per_cu->v.quick->lines)
2426 continue;
2427
2428 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2429 {
2430 if (file_matcher (per_cu->v.quick->file_names[j], data))
2431 {
2432 per_cu->v.quick->mark = 1;
2433 break;
2434 }
2435 }
2436 }
2437
2438 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2439 {
2440 offset_type idx = 2 * iter;
2441 const char *name;
2442 offset_type *vec, vec_len, vec_idx;
2443
2444 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2445 continue;
2446
2447 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2448
2449 if (! (*name_matcher) (name, data))
2450 continue;
2451
2452 /* The name was matched, now expand corresponding CUs that were
2453 marked. */
2454 vec = (offset_type *) (index->constant_pool
2455 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2456 vec_len = MAYBE_SWAP (vec[0]);
2457 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2458 {
2459 struct dwarf2_per_cu_data *per_cu;
2460
2461 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2462 if (per_cu->v.quick->mark)
2463 dw2_instantiate_symtab (objfile, per_cu);
2464 }
2465 }
2466 }
2467
2468 static struct symtab *
2469 dw2_find_pc_sect_symtab (struct objfile *objfile,
2470 struct minimal_symbol *msymbol,
2471 CORE_ADDR pc,
2472 struct obj_section *section,
2473 int warn_if_readin)
2474 {
2475 struct dwarf2_per_cu_data *data;
2476
2477 dw2_setup (objfile);
2478
2479 if (!objfile->psymtabs_addrmap)
2480 return NULL;
2481
2482 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2483 if (!data)
2484 return NULL;
2485
2486 if (warn_if_readin && data->v.quick->symtab)
2487 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2488 paddress (get_objfile_arch (objfile), pc));
2489
2490 return dw2_instantiate_symtab (objfile, data);
2491 }
2492
2493 static void
2494 dw2_map_symbol_names (struct objfile *objfile,
2495 void (*fun) (const char *, void *),
2496 void *data)
2497 {
2498 offset_type iter;
2499 struct mapped_index *index;
2500
2501 dw2_setup (objfile);
2502
2503 if (!dwarf2_per_objfile->index_table)
2504 return;
2505 index = dwarf2_per_objfile->index_table;
2506
2507 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2508 {
2509 offset_type idx = 2 * iter;
2510 const char *name;
2511 offset_type *vec, vec_len, vec_idx;
2512
2513 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2514 continue;
2515
2516 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
2517
2518 (*fun) (name, data);
2519 }
2520 }
2521
2522 static void
2523 dw2_map_symbol_filenames (struct objfile *objfile,
2524 void (*fun) (const char *, const char *, void *),
2525 void *data)
2526 {
2527 int i;
2528
2529 dw2_setup (objfile);
2530 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2531 + dwarf2_per_objfile->n_type_comp_units); ++i)
2532 {
2533 int j;
2534 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2535
2536 if (per_cu->v.quick->symtab)
2537 continue;
2538
2539 dw2_require_line_header (objfile, per_cu);
2540 if (!per_cu->v.quick->lines)
2541 continue;
2542
2543 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2544 {
2545 const char *this_full_name = dw2_require_full_path (objfile, per_cu,
2546 j);
2547 (*fun) (per_cu->v.quick->file_names[j], this_full_name, data);
2548 }
2549 }
2550 }
2551
2552 static int
2553 dw2_has_symbols (struct objfile *objfile)
2554 {
2555 return 1;
2556 }
2557
2558 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2559 {
2560 dw2_has_symbols,
2561 dw2_find_last_source_symtab,
2562 dw2_forget_cached_source_info,
2563 dw2_lookup_symtab,
2564 dw2_lookup_symbol,
2565 dw2_pre_expand_symtabs_matching,
2566 dw2_print_stats,
2567 dw2_dump,
2568 dw2_relocate,
2569 dw2_expand_symtabs_for_function,
2570 dw2_expand_all_symtabs,
2571 dw2_expand_symtabs_with_filename,
2572 dw2_find_symbol_file,
2573 dw2_map_matching_symbols,
2574 dw2_expand_symtabs_matching,
2575 dw2_find_pc_sect_symtab,
2576 dw2_map_symbol_names,
2577 dw2_map_symbol_filenames
2578 };
2579
2580 /* Initialize for reading DWARF for this objfile. Return 0 if this
2581 file will use psymtabs, or 1 if using the GNU index. */
2582
2583 int
2584 dwarf2_initialize_objfile (struct objfile *objfile)
2585 {
2586 /* If we're about to read full symbols, don't bother with the
2587 indices. In this case we also don't care if some other debug
2588 format is making psymtabs, because they are all about to be
2589 expanded anyway. */
2590 if ((objfile->flags & OBJF_READNOW))
2591 {
2592 int i;
2593
2594 dwarf2_per_objfile->using_index = 1;
2595 create_all_comp_units (objfile);
2596 create_debug_types_hash_table (objfile);
2597
2598 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2599 + dwarf2_per_objfile->n_type_comp_units); ++i)
2600 {
2601 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2602
2603 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2604 struct dwarf2_per_cu_quick_data);
2605 }
2606
2607 /* Return 1 so that gdb sees the "quick" functions. However,
2608 these functions will be no-ops because we will have expanded
2609 all symtabs. */
2610 return 1;
2611 }
2612
2613 if (dwarf2_read_index (objfile))
2614 return 1;
2615
2616 dwarf2_build_psymtabs (objfile);
2617 return 0;
2618 }
2619
2620 \f
2621
2622 /* Build a partial symbol table. */
2623
2624 void
2625 dwarf2_build_psymtabs (struct objfile *objfile)
2626 {
2627 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2628 {
2629 init_psymbol_list (objfile, 1024);
2630 }
2631
2632 dwarf2_build_psymtabs_hard (objfile);
2633 }
2634
2635 /* Return TRUE if OFFSET is within CU_HEADER. */
2636
2637 static inline int
2638 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2639 {
2640 unsigned int bottom = cu_header->offset;
2641 unsigned int top = (cu_header->offset
2642 + cu_header->length
2643 + cu_header->initial_length_size);
2644
2645 return (offset >= bottom && offset < top);
2646 }
2647
2648 /* Read in the comp unit header information from the debug_info at info_ptr.
2649 NOTE: This leaves members offset, first_die_offset to be filled in
2650 by the caller. */
2651
2652 static gdb_byte *
2653 read_comp_unit_head (struct comp_unit_head *cu_header,
2654 gdb_byte *info_ptr, bfd *abfd)
2655 {
2656 int signed_addr;
2657 unsigned int bytes_read;
2658
2659 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2660 cu_header->initial_length_size = bytes_read;
2661 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2662 info_ptr += bytes_read;
2663 cu_header->version = read_2_bytes (abfd, info_ptr);
2664 info_ptr += 2;
2665 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2666 &bytes_read);
2667 info_ptr += bytes_read;
2668 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2669 info_ptr += 1;
2670 signed_addr = bfd_get_sign_extend_vma (abfd);
2671 if (signed_addr < 0)
2672 internal_error (__FILE__, __LINE__,
2673 _("read_comp_unit_head: dwarf from non elf file"));
2674 cu_header->signed_addr_p = signed_addr;
2675
2676 return info_ptr;
2677 }
2678
2679 static gdb_byte *
2680 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
2681 gdb_byte *buffer, unsigned int buffer_size,
2682 bfd *abfd)
2683 {
2684 gdb_byte *beg_of_comp_unit = info_ptr;
2685
2686 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2687
2688 if (header->version != 2 && header->version != 3 && header->version != 4)
2689 error (_("Dwarf Error: wrong version in compilation unit header "
2690 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2691 bfd_get_filename (abfd));
2692
2693 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
2694 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2695 "(offset 0x%lx + 6) [in module %s]"),
2696 (long) header->abbrev_offset,
2697 (long) (beg_of_comp_unit - buffer),
2698 bfd_get_filename (abfd));
2699
2700 if (beg_of_comp_unit + header->length + header->initial_length_size
2701 > buffer + buffer_size)
2702 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2703 "(offset 0x%lx + 0) [in module %s]"),
2704 (long) header->length,
2705 (long) (beg_of_comp_unit - buffer),
2706 bfd_get_filename (abfd));
2707
2708 return info_ptr;
2709 }
2710
2711 /* Read in the types comp unit header information from .debug_types entry at
2712 types_ptr. The result is a pointer to one past the end of the header. */
2713
2714 static gdb_byte *
2715 read_type_comp_unit_head (struct comp_unit_head *cu_header,
2716 ULONGEST *signature,
2717 gdb_byte *types_ptr, bfd *abfd)
2718 {
2719 gdb_byte *initial_types_ptr = types_ptr;
2720
2721 dwarf2_read_section (dwarf2_per_objfile->objfile,
2722 &dwarf2_per_objfile->types);
2723 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2724
2725 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2726
2727 *signature = read_8_bytes (abfd, types_ptr);
2728 types_ptr += 8;
2729 types_ptr += cu_header->offset_size;
2730 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2731
2732 return types_ptr;
2733 }
2734
2735 /* Allocate a new partial symtab for file named NAME and mark this new
2736 partial symtab as being an include of PST. */
2737
2738 static void
2739 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2740 struct objfile *objfile)
2741 {
2742 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2743
2744 subpst->section_offsets = pst->section_offsets;
2745 subpst->textlow = 0;
2746 subpst->texthigh = 0;
2747
2748 subpst->dependencies = (struct partial_symtab **)
2749 obstack_alloc (&objfile->objfile_obstack,
2750 sizeof (struct partial_symtab *));
2751 subpst->dependencies[0] = pst;
2752 subpst->number_of_dependencies = 1;
2753
2754 subpst->globals_offset = 0;
2755 subpst->n_global_syms = 0;
2756 subpst->statics_offset = 0;
2757 subpst->n_static_syms = 0;
2758 subpst->symtab = NULL;
2759 subpst->read_symtab = pst->read_symtab;
2760 subpst->readin = 0;
2761
2762 /* No private part is necessary for include psymtabs. This property
2763 can be used to differentiate between such include psymtabs and
2764 the regular ones. */
2765 subpst->read_symtab_private = NULL;
2766 }
2767
2768 /* Read the Line Number Program data and extract the list of files
2769 included by the source file represented by PST. Build an include
2770 partial symtab for each of these included files. */
2771
2772 static void
2773 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
2774 struct die_info *die,
2775 struct partial_symtab *pst)
2776 {
2777 struct objfile *objfile = cu->objfile;
2778 bfd *abfd = objfile->obfd;
2779 struct line_header *lh = NULL;
2780 struct attribute *attr;
2781
2782 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2783 if (attr)
2784 {
2785 unsigned int line_offset = DW_UNSND (attr);
2786
2787 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2788 }
2789 if (lh == NULL)
2790 return; /* No linetable, so no includes. */
2791
2792 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2793 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
2794
2795 free_line_header (lh);
2796 }
2797
2798 static hashval_t
2799 hash_type_signature (const void *item)
2800 {
2801 const struct signatured_type *type_sig = item;
2802
2803 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2804 return type_sig->signature;
2805 }
2806
2807 static int
2808 eq_type_signature (const void *item_lhs, const void *item_rhs)
2809 {
2810 const struct signatured_type *lhs = item_lhs;
2811 const struct signatured_type *rhs = item_rhs;
2812
2813 return lhs->signature == rhs->signature;
2814 }
2815
2816 /* Allocate a hash table for signatured types. */
2817
2818 static htab_t
2819 allocate_signatured_type_table (struct objfile *objfile)
2820 {
2821 return htab_create_alloc_ex (41,
2822 hash_type_signature,
2823 eq_type_signature,
2824 NULL,
2825 &objfile->objfile_obstack,
2826 hashtab_obstack_allocate,
2827 dummy_obstack_deallocate);
2828 }
2829
2830 /* A helper function to add a signatured type CU to a list. */
2831
2832 static int
2833 add_signatured_type_cu_to_list (void **slot, void *datum)
2834 {
2835 struct signatured_type *sigt = *slot;
2836 struct dwarf2_per_cu_data ***datap = datum;
2837
2838 **datap = &sigt->per_cu;
2839 ++*datap;
2840
2841 return 1;
2842 }
2843
2844 /* Create the hash table of all entries in the .debug_types section.
2845 The result is zero if there is an error (e.g. missing .debug_types section),
2846 otherwise non-zero. */
2847
2848 static int
2849 create_debug_types_hash_table (struct objfile *objfile)
2850 {
2851 gdb_byte *info_ptr;
2852 htab_t types_htab;
2853 struct dwarf2_per_cu_data **iter;
2854
2855 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
2856 info_ptr = dwarf2_per_objfile->types.buffer;
2857
2858 if (info_ptr == NULL)
2859 {
2860 dwarf2_per_objfile->signatured_types = NULL;
2861 return 0;
2862 }
2863
2864 types_htab = allocate_signatured_type_table (objfile);
2865
2866 if (dwarf2_die_debug)
2867 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
2868
2869 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2870 {
2871 unsigned int offset;
2872 unsigned int offset_size;
2873 unsigned int type_offset;
2874 unsigned int length, initial_length_size;
2875 unsigned short version;
2876 ULONGEST signature;
2877 struct signatured_type *type_sig;
2878 void **slot;
2879 gdb_byte *ptr = info_ptr;
2880
2881 offset = ptr - dwarf2_per_objfile->types.buffer;
2882
2883 /* We need to read the type's signature in order to build the hash
2884 table, but we don't need to read anything else just yet. */
2885
2886 /* Sanity check to ensure entire cu is present. */
2887 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
2888 if (ptr + length + initial_length_size
2889 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2890 {
2891 complaint (&symfile_complaints,
2892 _("debug type entry runs off end of `.debug_types' section, ignored"));
2893 break;
2894 }
2895
2896 offset_size = initial_length_size == 4 ? 4 : 8;
2897 ptr += initial_length_size;
2898 version = bfd_get_16 (objfile->obfd, ptr);
2899 ptr += 2;
2900 ptr += offset_size; /* abbrev offset */
2901 ptr += 1; /* address size */
2902 signature = bfd_get_64 (objfile->obfd, ptr);
2903 ptr += 8;
2904 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
2905
2906 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
2907 memset (type_sig, 0, sizeof (*type_sig));
2908 type_sig->signature = signature;
2909 type_sig->offset = offset;
2910 type_sig->type_offset = type_offset;
2911 type_sig->per_cu.objfile = objfile;
2912 type_sig->per_cu.from_debug_types = 1;
2913
2914 slot = htab_find_slot (types_htab, type_sig, INSERT);
2915 gdb_assert (slot != NULL);
2916 *slot = type_sig;
2917
2918 if (dwarf2_die_debug)
2919 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
2920 offset, phex (signature, sizeof (signature)));
2921
2922 info_ptr = info_ptr + initial_length_size + length;
2923 }
2924
2925 dwarf2_per_objfile->signatured_types = types_htab;
2926
2927 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
2928 dwarf2_per_objfile->type_comp_units
2929 = obstack_alloc (&objfile->objfile_obstack,
2930 dwarf2_per_objfile->n_type_comp_units
2931 * sizeof (struct dwarf2_per_cu_data *));
2932 iter = &dwarf2_per_objfile->type_comp_units[0];
2933 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
2934 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
2935 == dwarf2_per_objfile->n_type_comp_units);
2936
2937 return 1;
2938 }
2939
2940 /* Lookup a signature based type.
2941 Returns NULL if SIG is not present in the table. */
2942
2943 static struct signatured_type *
2944 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
2945 {
2946 struct signatured_type find_entry, *entry;
2947
2948 if (dwarf2_per_objfile->signatured_types == NULL)
2949 {
2950 complaint (&symfile_complaints,
2951 _("missing `.debug_types' section for DW_FORM_sig8 die"));
2952 return 0;
2953 }
2954
2955 find_entry.signature = sig;
2956 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
2957 return entry;
2958 }
2959
2960 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
2961
2962 static void
2963 init_cu_die_reader (struct die_reader_specs *reader,
2964 struct dwarf2_cu *cu)
2965 {
2966 reader->abfd = cu->objfile->obfd;
2967 reader->cu = cu;
2968 if (cu->per_cu->from_debug_types)
2969 {
2970 gdb_assert (dwarf2_per_objfile->types.readin);
2971 reader->buffer = dwarf2_per_objfile->types.buffer;
2972 }
2973 else
2974 {
2975 gdb_assert (dwarf2_per_objfile->info.readin);
2976 reader->buffer = dwarf2_per_objfile->info.buffer;
2977 }
2978 }
2979
2980 /* Find the base address of the compilation unit for range lists and
2981 location lists. It will normally be specified by DW_AT_low_pc.
2982 In DWARF-3 draft 4, the base address could be overridden by
2983 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2984 compilation units with discontinuous ranges. */
2985
2986 static void
2987 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
2988 {
2989 struct attribute *attr;
2990
2991 cu->base_known = 0;
2992 cu->base_address = 0;
2993
2994 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
2995 if (attr)
2996 {
2997 cu->base_address = DW_ADDR (attr);
2998 cu->base_known = 1;
2999 }
3000 else
3001 {
3002 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3003 if (attr)
3004 {
3005 cu->base_address = DW_ADDR (attr);
3006 cu->base_known = 1;
3007 }
3008 }
3009 }
3010
3011 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3012 to combine the common parts.
3013 Process a compilation unit for a psymtab.
3014 BUFFER is a pointer to the beginning of the dwarf section buffer,
3015 either .debug_info or debug_types.
3016 INFO_PTR is a pointer to the start of the CU.
3017 Returns a pointer to the next CU. */
3018
3019 static gdb_byte *
3020 process_psymtab_comp_unit (struct objfile *objfile,
3021 struct dwarf2_per_cu_data *this_cu,
3022 gdb_byte *buffer, gdb_byte *info_ptr,
3023 unsigned int buffer_size)
3024 {
3025 bfd *abfd = objfile->obfd;
3026 gdb_byte *beg_of_comp_unit = info_ptr;
3027 struct die_info *comp_unit_die;
3028 struct partial_symtab *pst;
3029 CORE_ADDR baseaddr;
3030 struct cleanup *back_to_inner;
3031 struct dwarf2_cu cu;
3032 int has_children, has_pc_info;
3033 struct attribute *attr;
3034 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3035 struct die_reader_specs reader_specs;
3036
3037 init_one_comp_unit (&cu, objfile);
3038 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3039
3040 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3041 buffer, buffer_size,
3042 abfd);
3043
3044 /* Complete the cu_header. */
3045 cu.header.offset = beg_of_comp_unit - buffer;
3046 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
3047
3048 cu.list_in_scope = &file_symbols;
3049
3050 /* If this compilation unit was already read in, free the
3051 cached copy in order to read it in again. This is
3052 necessary because we skipped some symbols when we first
3053 read in the compilation unit (see load_partial_dies).
3054 This problem could be avoided, but the benefit is
3055 unclear. */
3056 if (this_cu->cu != NULL)
3057 free_one_cached_comp_unit (this_cu->cu);
3058
3059 /* Note that this is a pointer to our stack frame, being
3060 added to a global data structure. It will be cleaned up
3061 in free_stack_comp_unit when we finish with this
3062 compilation unit. */
3063 this_cu->cu = &cu;
3064 cu.per_cu = this_cu;
3065
3066 /* Read the abbrevs for this compilation unit into a table. */
3067 dwarf2_read_abbrevs (abfd, &cu);
3068 make_cleanup (dwarf2_free_abbrev_table, &cu);
3069
3070 /* Read the compilation unit die. */
3071 if (this_cu->from_debug_types)
3072 info_ptr += 8 /*signature*/ + cu.header.offset_size;
3073 init_cu_die_reader (&reader_specs, &cu);
3074 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3075 &has_children);
3076
3077 if (this_cu->from_debug_types)
3078 {
3079 /* offset,length haven't been set yet for type units. */
3080 this_cu->offset = cu.header.offset;
3081 this_cu->length = cu.header.length + cu.header.initial_length_size;
3082 }
3083 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3084 {
3085 info_ptr = (beg_of_comp_unit + cu.header.length
3086 + cu.header.initial_length_size);
3087 do_cleanups (back_to_inner);
3088 return info_ptr;
3089 }
3090
3091 prepare_one_comp_unit (&cu, comp_unit_die);
3092
3093 /* Allocate a new partial symbol table structure. */
3094 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3095 pst = start_psymtab_common (objfile, objfile->section_offsets,
3096 (attr != NULL) ? DW_STRING (attr) : "",
3097 /* TEXTLOW and TEXTHIGH are set below. */
3098 0,
3099 objfile->global_psymbols.next,
3100 objfile->static_psymbols.next);
3101
3102 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3103 if (attr != NULL)
3104 pst->dirname = DW_STRING (attr);
3105
3106 pst->read_symtab_private = this_cu;
3107
3108 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3109
3110 /* Store the function that reads in the rest of the symbol table */
3111 pst->read_symtab = dwarf2_psymtab_to_symtab;
3112
3113 this_cu->v.psymtab = pst;
3114
3115 dwarf2_find_base_address (comp_unit_die, &cu);
3116
3117 /* Possibly set the default values of LOWPC and HIGHPC from
3118 `DW_AT_ranges'. */
3119 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3120 &best_highpc, &cu, pst);
3121 if (has_pc_info == 1 && best_lowpc < best_highpc)
3122 /* Store the contiguous range if it is not empty; it can be empty for
3123 CUs with no code. */
3124 addrmap_set_empty (objfile->psymtabs_addrmap,
3125 best_lowpc + baseaddr,
3126 best_highpc + baseaddr - 1, pst);
3127
3128 /* Check if comp unit has_children.
3129 If so, read the rest of the partial symbols from this comp unit.
3130 If not, there's no more debug_info for this comp unit. */
3131 if (has_children)
3132 {
3133 struct partial_die_info *first_die;
3134 CORE_ADDR lowpc, highpc;
3135
3136 lowpc = ((CORE_ADDR) -1);
3137 highpc = ((CORE_ADDR) 0);
3138
3139 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3140
3141 scan_partial_symbols (first_die, &lowpc, &highpc,
3142 ! has_pc_info, &cu);
3143
3144 /* If we didn't find a lowpc, set it to highpc to avoid
3145 complaints from `maint check'. */
3146 if (lowpc == ((CORE_ADDR) -1))
3147 lowpc = highpc;
3148
3149 /* If the compilation unit didn't have an explicit address range,
3150 then use the information extracted from its child dies. */
3151 if (! has_pc_info)
3152 {
3153 best_lowpc = lowpc;
3154 best_highpc = highpc;
3155 }
3156 }
3157 pst->textlow = best_lowpc + baseaddr;
3158 pst->texthigh = best_highpc + baseaddr;
3159
3160 pst->n_global_syms = objfile->global_psymbols.next -
3161 (objfile->global_psymbols.list + pst->globals_offset);
3162 pst->n_static_syms = objfile->static_psymbols.next -
3163 (objfile->static_psymbols.list + pst->statics_offset);
3164 sort_pst_symbols (pst);
3165
3166 info_ptr = (beg_of_comp_unit + cu.header.length
3167 + cu.header.initial_length_size);
3168
3169 if (this_cu->from_debug_types)
3170 {
3171 /* It's not clear we want to do anything with stmt lists here.
3172 Waiting to see what gcc ultimately does. */
3173 }
3174 else
3175 {
3176 /* Get the list of files included in the current compilation unit,
3177 and build a psymtab for each of them. */
3178 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3179 }
3180
3181 do_cleanups (back_to_inner);
3182
3183 return info_ptr;
3184 }
3185
3186 /* Traversal function for htab_traverse_noresize.
3187 Process one .debug_types comp-unit. */
3188
3189 static int
3190 process_type_comp_unit (void **slot, void *info)
3191 {
3192 struct signatured_type *entry = (struct signatured_type *) *slot;
3193 struct objfile *objfile = (struct objfile *) info;
3194 struct dwarf2_per_cu_data *this_cu;
3195
3196 this_cu = &entry->per_cu;
3197
3198 gdb_assert (dwarf2_per_objfile->types.readin);
3199 process_psymtab_comp_unit (objfile, this_cu,
3200 dwarf2_per_objfile->types.buffer,
3201 dwarf2_per_objfile->types.buffer + entry->offset,
3202 dwarf2_per_objfile->types.size);
3203
3204 return 1;
3205 }
3206
3207 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3208 Build partial symbol tables for the .debug_types comp-units. */
3209
3210 static void
3211 build_type_psymtabs (struct objfile *objfile)
3212 {
3213 if (! create_debug_types_hash_table (objfile))
3214 return;
3215
3216 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3217 process_type_comp_unit, objfile);
3218 }
3219
3220 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3221
3222 static void
3223 psymtabs_addrmap_cleanup (void *o)
3224 {
3225 struct objfile *objfile = o;
3226
3227 objfile->psymtabs_addrmap = NULL;
3228 }
3229
3230 /* Build the partial symbol table by doing a quick pass through the
3231 .debug_info and .debug_abbrev sections. */
3232
3233 static void
3234 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3235 {
3236 gdb_byte *info_ptr;
3237 struct cleanup *back_to, *addrmap_cleanup;
3238 struct obstack temp_obstack;
3239
3240 dwarf2_per_objfile->reading_partial_symbols = 1;
3241
3242 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3243 info_ptr = dwarf2_per_objfile->info.buffer;
3244
3245 /* Any cached compilation units will be linked by the per-objfile
3246 read_in_chain. Make sure to free them when we're done. */
3247 back_to = make_cleanup (free_cached_comp_units, NULL);
3248
3249 build_type_psymtabs (objfile);
3250
3251 create_all_comp_units (objfile);
3252
3253 /* Create a temporary address map on a temporary obstack. We later
3254 copy this to the final obstack. */
3255 obstack_init (&temp_obstack);
3256 make_cleanup_obstack_free (&temp_obstack);
3257 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3258 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3259
3260 /* Since the objects we're extracting from .debug_info vary in
3261 length, only the individual functions to extract them (like
3262 read_comp_unit_head and load_partial_die) can really know whether
3263 the buffer is large enough to hold another complete object.
3264
3265 At the moment, they don't actually check that. If .debug_info
3266 holds just one extra byte after the last compilation unit's dies,
3267 then read_comp_unit_head will happily read off the end of the
3268 buffer. read_partial_die is similarly casual. Those functions
3269 should be fixed.
3270
3271 For this loop condition, simply checking whether there's any data
3272 left at all should be sufficient. */
3273
3274 while (info_ptr < (dwarf2_per_objfile->info.buffer
3275 + dwarf2_per_objfile->info.size))
3276 {
3277 struct dwarf2_per_cu_data *this_cu;
3278
3279 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
3280 objfile);
3281
3282 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3283 dwarf2_per_objfile->info.buffer,
3284 info_ptr,
3285 dwarf2_per_objfile->info.size);
3286 }
3287
3288 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3289 &objfile->objfile_obstack);
3290 discard_cleanups (addrmap_cleanup);
3291
3292 do_cleanups (back_to);
3293 }
3294
3295 /* Load the partial DIEs for a secondary CU into memory. */
3296
3297 static void
3298 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3299 struct objfile *objfile)
3300 {
3301 bfd *abfd = objfile->obfd;
3302 gdb_byte *info_ptr, *beg_of_comp_unit;
3303 struct die_info *comp_unit_die;
3304 struct dwarf2_cu *cu;
3305 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3306 int has_children;
3307 struct die_reader_specs reader_specs;
3308 int read_cu = 0;
3309
3310 gdb_assert (! this_cu->from_debug_types);
3311
3312 gdb_assert (dwarf2_per_objfile->info.readin);
3313 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3314 beg_of_comp_unit = info_ptr;
3315
3316 if (this_cu->cu == NULL)
3317 {
3318 cu = xmalloc (sizeof (*cu));
3319 init_one_comp_unit (cu, objfile);
3320
3321 read_cu = 1;
3322
3323 /* If an error occurs while loading, release our storage. */
3324 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3325
3326 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3327 dwarf2_per_objfile->info.buffer,
3328 dwarf2_per_objfile->info.size,
3329 abfd);
3330
3331 /* Complete the cu_header. */
3332 cu->header.offset = this_cu->offset;
3333 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3334
3335 /* Link this compilation unit into the compilation unit tree. */
3336 this_cu->cu = cu;
3337 cu->per_cu = this_cu;
3338
3339 /* Link this CU into read_in_chain. */
3340 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3341 dwarf2_per_objfile->read_in_chain = this_cu;
3342 }
3343 else
3344 {
3345 cu = this_cu->cu;
3346 info_ptr += cu->header.first_die_offset;
3347 }
3348
3349 /* Read the abbrevs for this compilation unit into a table. */
3350 gdb_assert (cu->dwarf2_abbrevs == NULL);
3351 dwarf2_read_abbrevs (abfd, cu);
3352 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3353
3354 /* Read the compilation unit die. */
3355 init_cu_die_reader (&reader_specs, cu);
3356 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3357 &has_children);
3358
3359 prepare_one_comp_unit (cu, comp_unit_die);
3360
3361 /* Check if comp unit has_children.
3362 If so, read the rest of the partial symbols from this comp unit.
3363 If not, there's no more debug_info for this comp unit. */
3364 if (has_children)
3365 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3366
3367 do_cleanups (free_abbrevs_cleanup);
3368
3369 if (read_cu)
3370 {
3371 /* We've successfully allocated this compilation unit. Let our
3372 caller clean it up when finished with it. */
3373 discard_cleanups (free_cu_cleanup);
3374 }
3375 }
3376
3377 /* Create a list of all compilation units in OBJFILE. We do this only
3378 if an inter-comp-unit reference is found; presumably if there is one,
3379 there will be many, and one will occur early in the .debug_info section.
3380 So there's no point in building this list incrementally. */
3381
3382 static void
3383 create_all_comp_units (struct objfile *objfile)
3384 {
3385 int n_allocated;
3386 int n_comp_units;
3387 struct dwarf2_per_cu_data **all_comp_units;
3388 gdb_byte *info_ptr;
3389
3390 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3391 info_ptr = dwarf2_per_objfile->info.buffer;
3392
3393 n_comp_units = 0;
3394 n_allocated = 10;
3395 all_comp_units = xmalloc (n_allocated
3396 * sizeof (struct dwarf2_per_cu_data *));
3397
3398 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
3399 {
3400 unsigned int length, initial_length_size;
3401 struct dwarf2_per_cu_data *this_cu;
3402 unsigned int offset;
3403
3404 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3405
3406 /* Read just enough information to find out where the next
3407 compilation unit is. */
3408 length = read_initial_length (objfile->obfd, info_ptr,
3409 &initial_length_size);
3410
3411 /* Save the compilation unit for later lookup. */
3412 this_cu = obstack_alloc (&objfile->objfile_obstack,
3413 sizeof (struct dwarf2_per_cu_data));
3414 memset (this_cu, 0, sizeof (*this_cu));
3415 this_cu->offset = offset;
3416 this_cu->length = length + initial_length_size;
3417 this_cu->objfile = objfile;
3418
3419 if (n_comp_units == n_allocated)
3420 {
3421 n_allocated *= 2;
3422 all_comp_units = xrealloc (all_comp_units,
3423 n_allocated
3424 * sizeof (struct dwarf2_per_cu_data *));
3425 }
3426 all_comp_units[n_comp_units++] = this_cu;
3427
3428 info_ptr = info_ptr + this_cu->length;
3429 }
3430
3431 dwarf2_per_objfile->all_comp_units
3432 = obstack_alloc (&objfile->objfile_obstack,
3433 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3434 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3435 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3436 xfree (all_comp_units);
3437 dwarf2_per_objfile->n_comp_units = n_comp_units;
3438 }
3439
3440 /* Process all loaded DIEs for compilation unit CU, starting at
3441 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3442 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3443 DW_AT_ranges). If NEED_PC is set, then this function will set
3444 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3445 and record the covered ranges in the addrmap. */
3446
3447 static void
3448 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3449 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3450 {
3451 struct partial_die_info *pdi;
3452
3453 /* Now, march along the PDI's, descending into ones which have
3454 interesting children but skipping the children of the other ones,
3455 until we reach the end of the compilation unit. */
3456
3457 pdi = first_die;
3458
3459 while (pdi != NULL)
3460 {
3461 fixup_partial_die (pdi, cu);
3462
3463 /* Anonymous namespaces or modules have no name but have interesting
3464 children, so we need to look at them. Ditto for anonymous
3465 enums. */
3466
3467 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3468 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3469 {
3470 switch (pdi->tag)
3471 {
3472 case DW_TAG_subprogram:
3473 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3474 break;
3475 case DW_TAG_constant:
3476 case DW_TAG_variable:
3477 case DW_TAG_typedef:
3478 case DW_TAG_union_type:
3479 if (!pdi->is_declaration)
3480 {
3481 add_partial_symbol (pdi, cu);
3482 }
3483 break;
3484 case DW_TAG_class_type:
3485 case DW_TAG_interface_type:
3486 case DW_TAG_structure_type:
3487 if (!pdi->is_declaration)
3488 {
3489 add_partial_symbol (pdi, cu);
3490 }
3491 break;
3492 case DW_TAG_enumeration_type:
3493 if (!pdi->is_declaration)
3494 add_partial_enumeration (pdi, cu);
3495 break;
3496 case DW_TAG_base_type:
3497 case DW_TAG_subrange_type:
3498 /* File scope base type definitions are added to the partial
3499 symbol table. */
3500 add_partial_symbol (pdi, cu);
3501 break;
3502 case DW_TAG_namespace:
3503 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3504 break;
3505 case DW_TAG_module:
3506 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3507 break;
3508 default:
3509 break;
3510 }
3511 }
3512
3513 /* If the die has a sibling, skip to the sibling. */
3514
3515 pdi = pdi->die_sibling;
3516 }
3517 }
3518
3519 /* Functions used to compute the fully scoped name of a partial DIE.
3520
3521 Normally, this is simple. For C++, the parent DIE's fully scoped
3522 name is concatenated with "::" and the partial DIE's name. For
3523 Java, the same thing occurs except that "." is used instead of "::".
3524 Enumerators are an exception; they use the scope of their parent
3525 enumeration type, i.e. the name of the enumeration type is not
3526 prepended to the enumerator.
3527
3528 There are two complexities. One is DW_AT_specification; in this
3529 case "parent" means the parent of the target of the specification,
3530 instead of the direct parent of the DIE. The other is compilers
3531 which do not emit DW_TAG_namespace; in this case we try to guess
3532 the fully qualified name of structure types from their members'
3533 linkage names. This must be done using the DIE's children rather
3534 than the children of any DW_AT_specification target. We only need
3535 to do this for structures at the top level, i.e. if the target of
3536 any DW_AT_specification (if any; otherwise the DIE itself) does not
3537 have a parent. */
3538
3539 /* Compute the scope prefix associated with PDI's parent, in
3540 compilation unit CU. The result will be allocated on CU's
3541 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3542 field. NULL is returned if no prefix is necessary. */
3543 static char *
3544 partial_die_parent_scope (struct partial_die_info *pdi,
3545 struct dwarf2_cu *cu)
3546 {
3547 char *grandparent_scope;
3548 struct partial_die_info *parent, *real_pdi;
3549
3550 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3551 then this means the parent of the specification DIE. */
3552
3553 real_pdi = pdi;
3554 while (real_pdi->has_specification)
3555 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3556
3557 parent = real_pdi->die_parent;
3558 if (parent == NULL)
3559 return NULL;
3560
3561 if (parent->scope_set)
3562 return parent->scope;
3563
3564 fixup_partial_die (parent, cu);
3565
3566 grandparent_scope = partial_die_parent_scope (parent, cu);
3567
3568 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3569 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3570 Work around this problem here. */
3571 if (cu->language == language_cplus
3572 && parent->tag == DW_TAG_namespace
3573 && strcmp (parent->name, "::") == 0
3574 && grandparent_scope == NULL)
3575 {
3576 parent->scope = NULL;
3577 parent->scope_set = 1;
3578 return NULL;
3579 }
3580
3581 if (parent->tag == DW_TAG_namespace
3582 || parent->tag == DW_TAG_module
3583 || parent->tag == DW_TAG_structure_type
3584 || parent->tag == DW_TAG_class_type
3585 || parent->tag == DW_TAG_interface_type
3586 || parent->tag == DW_TAG_union_type
3587 || parent->tag == DW_TAG_enumeration_type)
3588 {
3589 if (grandparent_scope == NULL)
3590 parent->scope = parent->name;
3591 else
3592 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
3593 parent->name, 0, cu);
3594 }
3595 else if (parent->tag == DW_TAG_enumerator)
3596 /* Enumerators should not get the name of the enumeration as a prefix. */
3597 parent->scope = grandparent_scope;
3598 else
3599 {
3600 /* FIXME drow/2004-04-01: What should we be doing with
3601 function-local names? For partial symbols, we should probably be
3602 ignoring them. */
3603 complaint (&symfile_complaints,
3604 _("unhandled containing DIE tag %d for DIE at %d"),
3605 parent->tag, pdi->offset);
3606 parent->scope = grandparent_scope;
3607 }
3608
3609 parent->scope_set = 1;
3610 return parent->scope;
3611 }
3612
3613 /* Return the fully scoped name associated with PDI, from compilation unit
3614 CU. The result will be allocated with malloc. */
3615 static char *
3616 partial_die_full_name (struct partial_die_info *pdi,
3617 struct dwarf2_cu *cu)
3618 {
3619 char *parent_scope;
3620
3621 /* If this is a template instantiation, we can not work out the
3622 template arguments from partial DIEs. So, unfortunately, we have
3623 to go through the full DIEs. At least any work we do building
3624 types here will be reused if full symbols are loaded later. */
3625 if (pdi->has_template_arguments)
3626 {
3627 fixup_partial_die (pdi, cu);
3628
3629 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3630 {
3631 struct die_info *die;
3632 struct attribute attr;
3633 struct dwarf2_cu *ref_cu = cu;
3634
3635 attr.name = 0;
3636 attr.form = DW_FORM_ref_addr;
3637 attr.u.addr = pdi->offset;
3638 die = follow_die_ref (NULL, &attr, &ref_cu);
3639
3640 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3641 }
3642 }
3643
3644 parent_scope = partial_die_parent_scope (pdi, cu);
3645 if (parent_scope == NULL)
3646 return NULL;
3647 else
3648 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
3649 }
3650
3651 static void
3652 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
3653 {
3654 struct objfile *objfile = cu->objfile;
3655 CORE_ADDR addr = 0;
3656 char *actual_name = NULL;
3657 const struct partial_symbol *psym = NULL;
3658 CORE_ADDR baseaddr;
3659 int built_actual_name = 0;
3660
3661 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3662
3663 actual_name = partial_die_full_name (pdi, cu);
3664 if (actual_name)
3665 built_actual_name = 1;
3666
3667 if (actual_name == NULL)
3668 actual_name = pdi->name;
3669
3670 switch (pdi->tag)
3671 {
3672 case DW_TAG_subprogram:
3673 if (pdi->is_external || cu->language == language_ada)
3674 {
3675 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3676 of the global scope. But in Ada, we want to be able to access
3677 nested procedures globally. So all Ada subprograms are stored
3678 in the global scope. */
3679 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3680 mst_text, objfile); */
3681 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3682 built_actual_name,
3683 VAR_DOMAIN, LOC_BLOCK,
3684 &objfile->global_psymbols,
3685 0, pdi->lowpc + baseaddr,
3686 cu->language, objfile);
3687 }
3688 else
3689 {
3690 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3691 mst_file_text, objfile); */
3692 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3693 built_actual_name,
3694 VAR_DOMAIN, LOC_BLOCK,
3695 &objfile->static_psymbols,
3696 0, pdi->lowpc + baseaddr,
3697 cu->language, objfile);
3698 }
3699 break;
3700 case DW_TAG_constant:
3701 {
3702 struct psymbol_allocation_list *list;
3703
3704 if (pdi->is_external)
3705 list = &objfile->global_psymbols;
3706 else
3707 list = &objfile->static_psymbols;
3708 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3709 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3710 list, 0, 0, cu->language, objfile);
3711
3712 }
3713 break;
3714 case DW_TAG_variable:
3715 if (pdi->locdesc)
3716 addr = decode_locdesc (pdi->locdesc, cu);
3717
3718 if (pdi->locdesc
3719 && addr == 0
3720 && !dwarf2_per_objfile->has_section_at_zero)
3721 {
3722 /* A global or static variable may also have been stripped
3723 out by the linker if unused, in which case its address
3724 will be nullified; do not add such variables into partial
3725 symbol table then. */
3726 }
3727 else if (pdi->is_external)
3728 {
3729 /* Global Variable.
3730 Don't enter into the minimal symbol tables as there is
3731 a minimal symbol table entry from the ELF symbols already.
3732 Enter into partial symbol table if it has a location
3733 descriptor or a type.
3734 If the location descriptor is missing, new_symbol will create
3735 a LOC_UNRESOLVED symbol, the address of the variable will then
3736 be determined from the minimal symbol table whenever the variable
3737 is referenced.
3738 The address for the partial symbol table entry is not
3739 used by GDB, but it comes in handy for debugging partial symbol
3740 table building. */
3741
3742 if (pdi->locdesc || pdi->has_type)
3743 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3744 built_actual_name,
3745 VAR_DOMAIN, LOC_STATIC,
3746 &objfile->global_psymbols,
3747 0, addr + baseaddr,
3748 cu->language, objfile);
3749 }
3750 else
3751 {
3752 /* Static Variable. Skip symbols without location descriptors. */
3753 if (pdi->locdesc == NULL)
3754 {
3755 if (built_actual_name)
3756 xfree (actual_name);
3757 return;
3758 }
3759 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
3760 mst_file_data, objfile); */
3761 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3762 built_actual_name,
3763 VAR_DOMAIN, LOC_STATIC,
3764 &objfile->static_psymbols,
3765 0, addr + baseaddr,
3766 cu->language, objfile);
3767 }
3768 break;
3769 case DW_TAG_typedef:
3770 case DW_TAG_base_type:
3771 case DW_TAG_subrange_type:
3772 add_psymbol_to_list (actual_name, strlen (actual_name),
3773 built_actual_name,
3774 VAR_DOMAIN, LOC_TYPEDEF,
3775 &objfile->static_psymbols,
3776 0, (CORE_ADDR) 0, cu->language, objfile);
3777 break;
3778 case DW_TAG_namespace:
3779 add_psymbol_to_list (actual_name, strlen (actual_name),
3780 built_actual_name,
3781 VAR_DOMAIN, LOC_TYPEDEF,
3782 &objfile->global_psymbols,
3783 0, (CORE_ADDR) 0, cu->language, objfile);
3784 break;
3785 case DW_TAG_class_type:
3786 case DW_TAG_interface_type:
3787 case DW_TAG_structure_type:
3788 case DW_TAG_union_type:
3789 case DW_TAG_enumeration_type:
3790 /* Skip external references. The DWARF standard says in the section
3791 about "Structure, Union, and Class Type Entries": "An incomplete
3792 structure, union or class type is represented by a structure,
3793 union or class entry that does not have a byte size attribute
3794 and that has a DW_AT_declaration attribute." */
3795 if (!pdi->has_byte_size && pdi->is_declaration)
3796 {
3797 if (built_actual_name)
3798 xfree (actual_name);
3799 return;
3800 }
3801
3802 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3803 static vs. global. */
3804 add_psymbol_to_list (actual_name, strlen (actual_name),
3805 built_actual_name,
3806 STRUCT_DOMAIN, LOC_TYPEDEF,
3807 (cu->language == language_cplus
3808 || cu->language == language_java)
3809 ? &objfile->global_psymbols
3810 : &objfile->static_psymbols,
3811 0, (CORE_ADDR) 0, cu->language, objfile);
3812
3813 break;
3814 case DW_TAG_enumerator:
3815 add_psymbol_to_list (actual_name, strlen (actual_name),
3816 built_actual_name,
3817 VAR_DOMAIN, LOC_CONST,
3818 (cu->language == language_cplus
3819 || cu->language == language_java)
3820 ? &objfile->global_psymbols
3821 : &objfile->static_psymbols,
3822 0, (CORE_ADDR) 0, cu->language, objfile);
3823 break;
3824 default:
3825 break;
3826 }
3827
3828 if (built_actual_name)
3829 xfree (actual_name);
3830 }
3831
3832 /* Read a partial die corresponding to a namespace; also, add a symbol
3833 corresponding to that namespace to the symbol table. NAMESPACE is
3834 the name of the enclosing namespace. */
3835
3836 static void
3837 add_partial_namespace (struct partial_die_info *pdi,
3838 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3839 int need_pc, struct dwarf2_cu *cu)
3840 {
3841 /* Add a symbol for the namespace. */
3842
3843 add_partial_symbol (pdi, cu);
3844
3845 /* Now scan partial symbols in that namespace. */
3846
3847 if (pdi->has_children)
3848 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3849 }
3850
3851 /* Read a partial die corresponding to a Fortran module. */
3852
3853 static void
3854 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
3855 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3856 {
3857 /* Now scan partial symbols in that module. */
3858
3859 if (pdi->has_children)
3860 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3861 }
3862
3863 /* Read a partial die corresponding to a subprogram and create a partial
3864 symbol for that subprogram. When the CU language allows it, this
3865 routine also defines a partial symbol for each nested subprogram
3866 that this subprogram contains.
3867
3868 DIE my also be a lexical block, in which case we simply search
3869 recursively for suprograms defined inside that lexical block.
3870 Again, this is only performed when the CU language allows this
3871 type of definitions. */
3872
3873 static void
3874 add_partial_subprogram (struct partial_die_info *pdi,
3875 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3876 int need_pc, struct dwarf2_cu *cu)
3877 {
3878 if (pdi->tag == DW_TAG_subprogram)
3879 {
3880 if (pdi->has_pc_info)
3881 {
3882 if (pdi->lowpc < *lowpc)
3883 *lowpc = pdi->lowpc;
3884 if (pdi->highpc > *highpc)
3885 *highpc = pdi->highpc;
3886 if (need_pc)
3887 {
3888 CORE_ADDR baseaddr;
3889 struct objfile *objfile = cu->objfile;
3890
3891 baseaddr = ANOFFSET (objfile->section_offsets,
3892 SECT_OFF_TEXT (objfile));
3893 addrmap_set_empty (objfile->psymtabs_addrmap,
3894 pdi->lowpc + baseaddr,
3895 pdi->highpc - 1 + baseaddr,
3896 cu->per_cu->v.psymtab);
3897 }
3898 if (!pdi->is_declaration)
3899 /* Ignore subprogram DIEs that do not have a name, they are
3900 illegal. Do not emit a complaint at this point, we will
3901 do so when we convert this psymtab into a symtab. */
3902 if (pdi->name)
3903 add_partial_symbol (pdi, cu);
3904 }
3905 }
3906
3907 if (! pdi->has_children)
3908 return;
3909
3910 if (cu->language == language_ada)
3911 {
3912 pdi = pdi->die_child;
3913 while (pdi != NULL)
3914 {
3915 fixup_partial_die (pdi, cu);
3916 if (pdi->tag == DW_TAG_subprogram
3917 || pdi->tag == DW_TAG_lexical_block)
3918 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3919 pdi = pdi->die_sibling;
3920 }
3921 }
3922 }
3923
3924 /* Read a partial die corresponding to an enumeration type. */
3925
3926 static void
3927 add_partial_enumeration (struct partial_die_info *enum_pdi,
3928 struct dwarf2_cu *cu)
3929 {
3930 struct partial_die_info *pdi;
3931
3932 if (enum_pdi->name != NULL)
3933 add_partial_symbol (enum_pdi, cu);
3934
3935 pdi = enum_pdi->die_child;
3936 while (pdi)
3937 {
3938 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
3939 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
3940 else
3941 add_partial_symbol (pdi, cu);
3942 pdi = pdi->die_sibling;
3943 }
3944 }
3945
3946 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
3947 Return the corresponding abbrev, or NULL if the number is zero (indicating
3948 an empty DIE). In either case *BYTES_READ will be set to the length of
3949 the initial number. */
3950
3951 static struct abbrev_info *
3952 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
3953 struct dwarf2_cu *cu)
3954 {
3955 bfd *abfd = cu->objfile->obfd;
3956 unsigned int abbrev_number;
3957 struct abbrev_info *abbrev;
3958
3959 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
3960
3961 if (abbrev_number == 0)
3962 return NULL;
3963
3964 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
3965 if (!abbrev)
3966 {
3967 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
3968 bfd_get_filename (abfd));
3969 }
3970
3971 return abbrev;
3972 }
3973
3974 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3975 Returns a pointer to the end of a series of DIEs, terminated by an empty
3976 DIE. Any children of the skipped DIEs will also be skipped. */
3977
3978 static gdb_byte *
3979 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
3980 {
3981 struct abbrev_info *abbrev;
3982 unsigned int bytes_read;
3983
3984 while (1)
3985 {
3986 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
3987 if (abbrev == NULL)
3988 return info_ptr + bytes_read;
3989 else
3990 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
3991 }
3992 }
3993
3994 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3995 INFO_PTR should point just after the initial uleb128 of a DIE, and the
3996 abbrev corresponding to that skipped uleb128 should be passed in
3997 ABBREV. Returns a pointer to this DIE's sibling, skipping any
3998 children. */
3999
4000 static gdb_byte *
4001 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4002 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4003 {
4004 unsigned int bytes_read;
4005 struct attribute attr;
4006 bfd *abfd = cu->objfile->obfd;
4007 unsigned int form, i;
4008
4009 for (i = 0; i < abbrev->num_attrs; i++)
4010 {
4011 /* The only abbrev we care about is DW_AT_sibling. */
4012 if (abbrev->attrs[i].name == DW_AT_sibling)
4013 {
4014 read_attribute (&attr, &abbrev->attrs[i],
4015 abfd, info_ptr, cu);
4016 if (attr.form == DW_FORM_ref_addr)
4017 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4018 else
4019 return buffer + dwarf2_get_ref_die_offset (&attr);
4020 }
4021
4022 /* If it isn't DW_AT_sibling, skip this attribute. */
4023 form = abbrev->attrs[i].form;
4024 skip_attribute:
4025 switch (form)
4026 {
4027 case DW_FORM_ref_addr:
4028 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4029 and later it is offset sized. */
4030 if (cu->header.version == 2)
4031 info_ptr += cu->header.addr_size;
4032 else
4033 info_ptr += cu->header.offset_size;
4034 break;
4035 case DW_FORM_addr:
4036 info_ptr += cu->header.addr_size;
4037 break;
4038 case DW_FORM_data1:
4039 case DW_FORM_ref1:
4040 case DW_FORM_flag:
4041 info_ptr += 1;
4042 break;
4043 case DW_FORM_flag_present:
4044 break;
4045 case DW_FORM_data2:
4046 case DW_FORM_ref2:
4047 info_ptr += 2;
4048 break;
4049 case DW_FORM_data4:
4050 case DW_FORM_ref4:
4051 info_ptr += 4;
4052 break;
4053 case DW_FORM_data8:
4054 case DW_FORM_ref8:
4055 case DW_FORM_sig8:
4056 info_ptr += 8;
4057 break;
4058 case DW_FORM_string:
4059 read_direct_string (abfd, info_ptr, &bytes_read);
4060 info_ptr += bytes_read;
4061 break;
4062 case DW_FORM_sec_offset:
4063 case DW_FORM_strp:
4064 info_ptr += cu->header.offset_size;
4065 break;
4066 case DW_FORM_exprloc:
4067 case DW_FORM_block:
4068 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4069 info_ptr += bytes_read;
4070 break;
4071 case DW_FORM_block1:
4072 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4073 break;
4074 case DW_FORM_block2:
4075 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4076 break;
4077 case DW_FORM_block4:
4078 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4079 break;
4080 case DW_FORM_sdata:
4081 case DW_FORM_udata:
4082 case DW_FORM_ref_udata:
4083 info_ptr = skip_leb128 (abfd, info_ptr);
4084 break;
4085 case DW_FORM_indirect:
4086 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4087 info_ptr += bytes_read;
4088 /* We need to continue parsing from here, so just go back to
4089 the top. */
4090 goto skip_attribute;
4091
4092 default:
4093 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4094 dwarf_form_name (form),
4095 bfd_get_filename (abfd));
4096 }
4097 }
4098
4099 if (abbrev->has_children)
4100 return skip_children (buffer, info_ptr, cu);
4101 else
4102 return info_ptr;
4103 }
4104
4105 /* Locate ORIG_PDI's sibling.
4106 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4107 in BUFFER. */
4108
4109 static gdb_byte *
4110 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4111 gdb_byte *buffer, gdb_byte *info_ptr,
4112 bfd *abfd, struct dwarf2_cu *cu)
4113 {
4114 /* Do we know the sibling already? */
4115
4116 if (orig_pdi->sibling)
4117 return orig_pdi->sibling;
4118
4119 /* Are there any children to deal with? */
4120
4121 if (!orig_pdi->has_children)
4122 return info_ptr;
4123
4124 /* Skip the children the long way. */
4125
4126 return skip_children (buffer, info_ptr, cu);
4127 }
4128
4129 /* Expand this partial symbol table into a full symbol table. */
4130
4131 static void
4132 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4133 {
4134 if (pst != NULL)
4135 {
4136 if (pst->readin)
4137 {
4138 warning (_("bug: psymtab for %s is already read in."), pst->filename);
4139 }
4140 else
4141 {
4142 if (info_verbose)
4143 {
4144 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
4145 gdb_flush (gdb_stdout);
4146 }
4147
4148 /* Restore our global data. */
4149 dwarf2_per_objfile = objfile_data (pst->objfile,
4150 dwarf2_objfile_data_key);
4151
4152 /* If this psymtab is constructed from a debug-only objfile, the
4153 has_section_at_zero flag will not necessarily be correct. We
4154 can get the correct value for this flag by looking at the data
4155 associated with the (presumably stripped) associated objfile. */
4156 if (pst->objfile->separate_debug_objfile_backlink)
4157 {
4158 struct dwarf2_per_objfile *dpo_backlink
4159 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4160 dwarf2_objfile_data_key);
4161
4162 dwarf2_per_objfile->has_section_at_zero
4163 = dpo_backlink->has_section_at_zero;
4164 }
4165
4166 dwarf2_per_objfile->reading_partial_symbols = 0;
4167
4168 psymtab_to_symtab_1 (pst);
4169
4170 /* Finish up the debug error message. */
4171 if (info_verbose)
4172 printf_filtered (_("done.\n"));
4173 }
4174 }
4175 }
4176
4177 /* Add PER_CU to the queue. */
4178
4179 static void
4180 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4181 {
4182 struct dwarf2_queue_item *item;
4183
4184 per_cu->queued = 1;
4185 item = xmalloc (sizeof (*item));
4186 item->per_cu = per_cu;
4187 item->next = NULL;
4188
4189 if (dwarf2_queue == NULL)
4190 dwarf2_queue = item;
4191 else
4192 dwarf2_queue_tail->next = item;
4193
4194 dwarf2_queue_tail = item;
4195 }
4196
4197 /* Process the queue. */
4198
4199 static void
4200 process_queue (struct objfile *objfile)
4201 {
4202 struct dwarf2_queue_item *item, *next_item;
4203
4204 /* The queue starts out with one item, but following a DIE reference
4205 may load a new CU, adding it to the end of the queue. */
4206 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4207 {
4208 if (dwarf2_per_objfile->using_index
4209 ? !item->per_cu->v.quick->symtab
4210 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4211 process_full_comp_unit (item->per_cu);
4212
4213 item->per_cu->queued = 0;
4214 next_item = item->next;
4215 xfree (item);
4216 }
4217
4218 dwarf2_queue_tail = NULL;
4219 }
4220
4221 /* Free all allocated queue entries. This function only releases anything if
4222 an error was thrown; if the queue was processed then it would have been
4223 freed as we went along. */
4224
4225 static void
4226 dwarf2_release_queue (void *dummy)
4227 {
4228 struct dwarf2_queue_item *item, *last;
4229
4230 item = dwarf2_queue;
4231 while (item)
4232 {
4233 /* Anything still marked queued is likely to be in an
4234 inconsistent state, so discard it. */
4235 if (item->per_cu->queued)
4236 {
4237 if (item->per_cu->cu != NULL)
4238 free_one_cached_comp_unit (item->per_cu->cu);
4239 item->per_cu->queued = 0;
4240 }
4241
4242 last = item;
4243 item = item->next;
4244 xfree (last);
4245 }
4246
4247 dwarf2_queue = dwarf2_queue_tail = NULL;
4248 }
4249
4250 /* Read in full symbols for PST, and anything it depends on. */
4251
4252 static void
4253 psymtab_to_symtab_1 (struct partial_symtab *pst)
4254 {
4255 struct dwarf2_per_cu_data *per_cu;
4256 struct cleanup *back_to;
4257 int i;
4258
4259 for (i = 0; i < pst->number_of_dependencies; i++)
4260 if (!pst->dependencies[i]->readin)
4261 {
4262 /* Inform about additional files that need to be read in. */
4263 if (info_verbose)
4264 {
4265 /* FIXME: i18n: Need to make this a single string. */
4266 fputs_filtered (" ", gdb_stdout);
4267 wrap_here ("");
4268 fputs_filtered ("and ", gdb_stdout);
4269 wrap_here ("");
4270 printf_filtered ("%s...", pst->dependencies[i]->filename);
4271 wrap_here (""); /* Flush output */
4272 gdb_flush (gdb_stdout);
4273 }
4274 psymtab_to_symtab_1 (pst->dependencies[i]);
4275 }
4276
4277 per_cu = pst->read_symtab_private;
4278
4279 if (per_cu == NULL)
4280 {
4281 /* It's an include file, no symbols to read for it.
4282 Everything is in the parent symtab. */
4283 pst->readin = 1;
4284 return;
4285 }
4286
4287 dw2_do_instantiate_symtab (pst->objfile, per_cu);
4288 }
4289
4290 /* Load the DIEs associated with PER_CU into memory. */
4291
4292 static void
4293 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4294 {
4295 bfd *abfd = objfile->obfd;
4296 struct dwarf2_cu *cu;
4297 unsigned int offset;
4298 gdb_byte *info_ptr, *beg_of_comp_unit;
4299 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4300 struct attribute *attr;
4301 int read_cu = 0;
4302
4303 gdb_assert (! per_cu->from_debug_types);
4304
4305 /* Set local variables from the partial symbol table info. */
4306 offset = per_cu->offset;
4307
4308 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4309 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4310 beg_of_comp_unit = info_ptr;
4311
4312 if (per_cu->cu == NULL)
4313 {
4314 cu = xmalloc (sizeof (*cu));
4315 init_one_comp_unit (cu, objfile);
4316
4317 read_cu = 1;
4318
4319 /* If an error occurs while loading, release our storage. */
4320 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4321
4322 /* Read in the comp_unit header. */
4323 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4324
4325 /* Complete the cu_header. */
4326 cu->header.offset = offset;
4327 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4328
4329 /* Read the abbrevs for this compilation unit. */
4330 dwarf2_read_abbrevs (abfd, cu);
4331 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4332
4333 /* Link this compilation unit into the compilation unit tree. */
4334 per_cu->cu = cu;
4335 cu->per_cu = per_cu;
4336
4337 /* Link this CU into read_in_chain. */
4338 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4339 dwarf2_per_objfile->read_in_chain = per_cu;
4340 }
4341 else
4342 {
4343 cu = per_cu->cu;
4344 info_ptr += cu->header.first_die_offset;
4345 }
4346
4347 cu->dies = read_comp_unit (info_ptr, cu);
4348
4349 /* We try not to read any attributes in this function, because not
4350 all objfiles needed for references have been loaded yet, and symbol
4351 table processing isn't initialized. But we have to set the CU language,
4352 or we won't be able to build types correctly. */
4353 prepare_one_comp_unit (cu, cu->dies);
4354
4355 /* Similarly, if we do not read the producer, we can not apply
4356 producer-specific interpretation. */
4357 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4358 if (attr)
4359 cu->producer = DW_STRING (attr);
4360
4361 if (read_cu)
4362 {
4363 do_cleanups (free_abbrevs_cleanup);
4364
4365 /* We've successfully allocated this compilation unit. Let our
4366 caller clean it up when finished with it. */
4367 discard_cleanups (free_cu_cleanup);
4368 }
4369 }
4370
4371 /* Add a DIE to the delayed physname list. */
4372
4373 static void
4374 add_to_method_list (struct type *type, int fnfield_index, int index,
4375 const char *name, struct die_info *die,
4376 struct dwarf2_cu *cu)
4377 {
4378 struct delayed_method_info mi;
4379 mi.type = type;
4380 mi.fnfield_index = fnfield_index;
4381 mi.index = index;
4382 mi.name = name;
4383 mi.die = die;
4384 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4385 }
4386
4387 /* A cleanup for freeing the delayed method list. */
4388
4389 static void
4390 free_delayed_list (void *ptr)
4391 {
4392 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4393 if (cu->method_list != NULL)
4394 {
4395 VEC_free (delayed_method_info, cu->method_list);
4396 cu->method_list = NULL;
4397 }
4398 }
4399
4400 /* Compute the physnames of any methods on the CU's method list.
4401
4402 The computation of method physnames is delayed in order to avoid the
4403 (bad) condition that one of the method's formal parameters is of an as yet
4404 incomplete type. */
4405
4406 static void
4407 compute_delayed_physnames (struct dwarf2_cu *cu)
4408 {
4409 int i;
4410 struct delayed_method_info *mi;
4411 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4412 {
4413 char *physname;
4414 struct fn_fieldlist *fn_flp
4415 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4416 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4417 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4418 }
4419 }
4420
4421 /* Generate full symbol information for PST and CU, whose DIEs have
4422 already been loaded into memory. */
4423
4424 static void
4425 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4426 {
4427 struct dwarf2_cu *cu = per_cu->cu;
4428 struct objfile *objfile = per_cu->objfile;
4429 CORE_ADDR lowpc, highpc;
4430 struct symtab *symtab;
4431 struct cleanup *back_to, *delayed_list_cleanup;
4432 CORE_ADDR baseaddr;
4433
4434 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4435
4436 buildsym_init ();
4437 back_to = make_cleanup (really_free_pendings, NULL);
4438 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4439
4440 cu->list_in_scope = &file_symbols;
4441
4442 dwarf2_find_base_address (cu->dies, cu);
4443
4444 /* Do line number decoding in read_file_scope () */
4445 process_die (cu->dies, cu);
4446
4447 /* Now that we have processed all the DIEs in the CU, all the types
4448 should be complete, and it should now be safe to compute all of the
4449 physnames. */
4450 compute_delayed_physnames (cu);
4451 do_cleanups (delayed_list_cleanup);
4452
4453 /* Some compilers don't define a DW_AT_high_pc attribute for the
4454 compilation unit. If the DW_AT_high_pc is missing, synthesize
4455 it, by scanning the DIE's below the compilation unit. */
4456 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4457
4458 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4459
4460 /* Set symtab language to language from DW_AT_language.
4461 If the compilation is from a C file generated by language preprocessors,
4462 do not set the language if it was already deduced by start_subfile. */
4463 if (symtab != NULL
4464 && !(cu->language == language_c && symtab->language != language_c))
4465 {
4466 symtab->language = cu->language;
4467 }
4468
4469 if (dwarf2_per_objfile->using_index)
4470 per_cu->v.quick->symtab = symtab;
4471 else
4472 {
4473 struct partial_symtab *pst = per_cu->v.psymtab;
4474 pst->symtab = symtab;
4475 pst->readin = 1;
4476 }
4477
4478 do_cleanups (back_to);
4479 }
4480
4481 /* Process a die and its children. */
4482
4483 static void
4484 process_die (struct die_info *die, struct dwarf2_cu *cu)
4485 {
4486 switch (die->tag)
4487 {
4488 case DW_TAG_padding:
4489 break;
4490 case DW_TAG_compile_unit:
4491 read_file_scope (die, cu);
4492 break;
4493 case DW_TAG_type_unit:
4494 read_type_unit_scope (die, cu);
4495 break;
4496 case DW_TAG_subprogram:
4497 case DW_TAG_inlined_subroutine:
4498 read_func_scope (die, cu);
4499 break;
4500 case DW_TAG_lexical_block:
4501 case DW_TAG_try_block:
4502 case DW_TAG_catch_block:
4503 read_lexical_block_scope (die, cu);
4504 break;
4505 case DW_TAG_class_type:
4506 case DW_TAG_interface_type:
4507 case DW_TAG_structure_type:
4508 case DW_TAG_union_type:
4509 process_structure_scope (die, cu);
4510 break;
4511 case DW_TAG_enumeration_type:
4512 process_enumeration_scope (die, cu);
4513 break;
4514
4515 /* These dies have a type, but processing them does not create
4516 a symbol or recurse to process the children. Therefore we can
4517 read them on-demand through read_type_die. */
4518 case DW_TAG_subroutine_type:
4519 case DW_TAG_set_type:
4520 case DW_TAG_array_type:
4521 case DW_TAG_pointer_type:
4522 case DW_TAG_ptr_to_member_type:
4523 case DW_TAG_reference_type:
4524 case DW_TAG_string_type:
4525 break;
4526
4527 case DW_TAG_base_type:
4528 case DW_TAG_subrange_type:
4529 case DW_TAG_typedef:
4530 /* Add a typedef symbol for the type definition, if it has a
4531 DW_AT_name. */
4532 new_symbol (die, read_type_die (die, cu), cu);
4533 break;
4534 case DW_TAG_common_block:
4535 read_common_block (die, cu);
4536 break;
4537 case DW_TAG_common_inclusion:
4538 break;
4539 case DW_TAG_namespace:
4540 processing_has_namespace_info = 1;
4541 read_namespace (die, cu);
4542 break;
4543 case DW_TAG_module:
4544 processing_has_namespace_info = 1;
4545 read_module (die, cu);
4546 break;
4547 case DW_TAG_imported_declaration:
4548 case DW_TAG_imported_module:
4549 processing_has_namespace_info = 1;
4550 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4551 || cu->language != language_fortran))
4552 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4553 dwarf_tag_name (die->tag));
4554 read_import_statement (die, cu);
4555 break;
4556 default:
4557 new_symbol (die, NULL, cu);
4558 break;
4559 }
4560 }
4561
4562 /* A helper function for dwarf2_compute_name which determines whether DIE
4563 needs to have the name of the scope prepended to the name listed in the
4564 die. */
4565
4566 static int
4567 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4568 {
4569 struct attribute *attr;
4570
4571 switch (die->tag)
4572 {
4573 case DW_TAG_namespace:
4574 case DW_TAG_typedef:
4575 case DW_TAG_class_type:
4576 case DW_TAG_interface_type:
4577 case DW_TAG_structure_type:
4578 case DW_TAG_union_type:
4579 case DW_TAG_enumeration_type:
4580 case DW_TAG_enumerator:
4581 case DW_TAG_subprogram:
4582 case DW_TAG_member:
4583 return 1;
4584
4585 case DW_TAG_variable:
4586 case DW_TAG_constant:
4587 /* We only need to prefix "globally" visible variables. These include
4588 any variable marked with DW_AT_external or any variable that
4589 lives in a namespace. [Variables in anonymous namespaces
4590 require prefixing, but they are not DW_AT_external.] */
4591
4592 if (dwarf2_attr (die, DW_AT_specification, cu))
4593 {
4594 struct dwarf2_cu *spec_cu = cu;
4595
4596 return die_needs_namespace (die_specification (die, &spec_cu),
4597 spec_cu);
4598 }
4599
4600 attr = dwarf2_attr (die, DW_AT_external, cu);
4601 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4602 && die->parent->tag != DW_TAG_module)
4603 return 0;
4604 /* A variable in a lexical block of some kind does not need a
4605 namespace, even though in C++ such variables may be external
4606 and have a mangled name. */
4607 if (die->parent->tag == DW_TAG_lexical_block
4608 || die->parent->tag == DW_TAG_try_block
4609 || die->parent->tag == DW_TAG_catch_block
4610 || die->parent->tag == DW_TAG_subprogram)
4611 return 0;
4612 return 1;
4613
4614 default:
4615 return 0;
4616 }
4617 }
4618
4619 /* Retrieve the last character from a mem_file. */
4620
4621 static void
4622 do_ui_file_peek_last (void *object, const char *buffer, long length)
4623 {
4624 char *last_char_p = (char *) object;
4625
4626 if (length > 0)
4627 *last_char_p = buffer[length - 1];
4628 }
4629
4630 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4631 compute the physname for the object, which include a method's
4632 formal parameters (C++/Java) and return type (Java).
4633
4634 For Ada, return the DIE's linkage name rather than the fully qualified
4635 name. PHYSNAME is ignored..
4636
4637 The result is allocated on the objfile_obstack and canonicalized. */
4638
4639 static const char *
4640 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4641 int physname)
4642 {
4643 if (name == NULL)
4644 name = dwarf2_name (die, cu);
4645
4646 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4647 compute it by typename_concat inside GDB. */
4648 if (cu->language == language_ada
4649 || (cu->language == language_fortran && physname))
4650 {
4651 /* For Ada unit, we prefer the linkage name over the name, as
4652 the former contains the exported name, which the user expects
4653 to be able to reference. Ideally, we want the user to be able
4654 to reference this entity using either natural or linkage name,
4655 but we haven't started looking at this enhancement yet. */
4656 struct attribute *attr;
4657
4658 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4659 if (attr == NULL)
4660 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4661 if (attr && DW_STRING (attr))
4662 return DW_STRING (attr);
4663 }
4664
4665 /* These are the only languages we know how to qualify names in. */
4666 if (name != NULL
4667 && (cu->language == language_cplus || cu->language == language_java
4668 || cu->language == language_fortran))
4669 {
4670 if (die_needs_namespace (die, cu))
4671 {
4672 long length;
4673 char *prefix;
4674 struct ui_file *buf;
4675
4676 prefix = determine_prefix (die, cu);
4677 buf = mem_fileopen ();
4678 if (*prefix != '\0')
4679 {
4680 char *prefixed_name = typename_concat (NULL, prefix, name,
4681 physname, cu);
4682
4683 fputs_unfiltered (prefixed_name, buf);
4684 xfree (prefixed_name);
4685 }
4686 else
4687 fputs_unfiltered (name ? name : "", buf);
4688
4689 /* Template parameters may be specified in the DIE's DW_AT_name, or
4690 as children with DW_TAG_template_type_param or
4691 DW_TAG_value_type_param. If the latter, add them to the name
4692 here. If the name already has template parameters, then
4693 skip this step; some versions of GCC emit both, and
4694 it is more efficient to use the pre-computed name.
4695
4696 Something to keep in mind about this process: it is very
4697 unlikely, or in some cases downright impossible, to produce
4698 something that will match the mangled name of a function.
4699 If the definition of the function has the same debug info,
4700 we should be able to match up with it anyway. But fallbacks
4701 using the minimal symbol, for instance to find a method
4702 implemented in a stripped copy of libstdc++, will not work.
4703 If we do not have debug info for the definition, we will have to
4704 match them up some other way.
4705
4706 When we do name matching there is a related problem with function
4707 templates; two instantiated function templates are allowed to
4708 differ only by their return types, which we do not add here. */
4709
4710 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4711 {
4712 struct attribute *attr;
4713 struct die_info *child;
4714 int first = 1;
4715
4716 die->building_fullname = 1;
4717
4718 for (child = die->child; child != NULL; child = child->sibling)
4719 {
4720 struct type *type;
4721 long value;
4722 gdb_byte *bytes;
4723 struct dwarf2_locexpr_baton *baton;
4724 struct value *v;
4725
4726 if (child->tag != DW_TAG_template_type_param
4727 && child->tag != DW_TAG_template_value_param)
4728 continue;
4729
4730 if (first)
4731 {
4732 fputs_unfiltered ("<", buf);
4733 first = 0;
4734 }
4735 else
4736 fputs_unfiltered (", ", buf);
4737
4738 attr = dwarf2_attr (child, DW_AT_type, cu);
4739 if (attr == NULL)
4740 {
4741 complaint (&symfile_complaints,
4742 _("template parameter missing DW_AT_type"));
4743 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4744 continue;
4745 }
4746 type = die_type (child, cu);
4747
4748 if (child->tag == DW_TAG_template_type_param)
4749 {
4750 c_print_type (type, "", buf, -1, 0);
4751 continue;
4752 }
4753
4754 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4755 if (attr == NULL)
4756 {
4757 complaint (&symfile_complaints,
4758 _("template parameter missing DW_AT_const_value"));
4759 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4760 continue;
4761 }
4762
4763 dwarf2_const_value_attr (attr, type, name,
4764 &cu->comp_unit_obstack, cu,
4765 &value, &bytes, &baton);
4766
4767 if (TYPE_NOSIGN (type))
4768 /* GDB prints characters as NUMBER 'CHAR'. If that's
4769 changed, this can use value_print instead. */
4770 c_printchar (value, type, buf);
4771 else
4772 {
4773 struct value_print_options opts;
4774
4775 if (baton != NULL)
4776 v = dwarf2_evaluate_loc_desc (type, NULL,
4777 baton->data,
4778 baton->size,
4779 baton->per_cu);
4780 else if (bytes != NULL)
4781 {
4782 v = allocate_value (type);
4783 memcpy (value_contents_writeable (v), bytes,
4784 TYPE_LENGTH (type));
4785 }
4786 else
4787 v = value_from_longest (type, value);
4788
4789 /* Specify decimal so that we do not depend on the radix. */
4790 get_formatted_print_options (&opts, 'd');
4791 opts.raw = 1;
4792 value_print (v, buf, &opts);
4793 release_value (v);
4794 value_free (v);
4795 }
4796 }
4797
4798 die->building_fullname = 0;
4799
4800 if (!first)
4801 {
4802 /* Close the argument list, with a space if necessary
4803 (nested templates). */
4804 char last_char = '\0';
4805 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4806 if (last_char == '>')
4807 fputs_unfiltered (" >", buf);
4808 else
4809 fputs_unfiltered (">", buf);
4810 }
4811 }
4812
4813 /* For Java and C++ methods, append formal parameter type
4814 information, if PHYSNAME. */
4815
4816 if (physname && die->tag == DW_TAG_subprogram
4817 && (cu->language == language_cplus
4818 || cu->language == language_java))
4819 {
4820 struct type *type = read_type_die (die, cu);
4821
4822 c_type_print_args (type, buf, 0, cu->language);
4823
4824 if (cu->language == language_java)
4825 {
4826 /* For java, we must append the return type to method
4827 names. */
4828 if (die->tag == DW_TAG_subprogram)
4829 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
4830 0, 0);
4831 }
4832 else if (cu->language == language_cplus)
4833 {
4834 /* Assume that an artificial first parameter is
4835 "this", but do not crash if it is not. RealView
4836 marks unnamed (and thus unused) parameters as
4837 artificial; there is no way to differentiate
4838 the two cases. */
4839 if (TYPE_NFIELDS (type) > 0
4840 && TYPE_FIELD_ARTIFICIAL (type, 0)
4841 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
4842 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0))))
4843 fputs_unfiltered (" const", buf);
4844 }
4845 }
4846
4847 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
4848 &length);
4849 ui_file_delete (buf);
4850
4851 if (cu->language == language_cplus)
4852 {
4853 char *cname
4854 = dwarf2_canonicalize_name (name, cu,
4855 &cu->objfile->objfile_obstack);
4856
4857 if (cname != NULL)
4858 name = cname;
4859 }
4860 }
4861 }
4862
4863 return name;
4864 }
4865
4866 /* Return the fully qualified name of DIE, based on its DW_AT_name.
4867 If scope qualifiers are appropriate they will be added. The result
4868 will be allocated on the objfile_obstack, or NULL if the DIE does
4869 not have a name. NAME may either be from a previous call to
4870 dwarf2_name or NULL.
4871
4872 The output string will be canonicalized (if C++/Java). */
4873
4874 static const char *
4875 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
4876 {
4877 return dwarf2_compute_name (name, die, cu, 0);
4878 }
4879
4880 /* Construct a physname for the given DIE in CU. NAME may either be
4881 from a previous call to dwarf2_name or NULL. The result will be
4882 allocated on the objfile_objstack or NULL if the DIE does not have a
4883 name.
4884
4885 The output string will be canonicalized (if C++/Java). */
4886
4887 static const char *
4888 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
4889 {
4890 return dwarf2_compute_name (name, die, cu, 1);
4891 }
4892
4893 /* Read the import statement specified by the given die and record it. */
4894
4895 static void
4896 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
4897 {
4898 struct attribute *import_attr;
4899 struct die_info *imported_die;
4900 struct dwarf2_cu *imported_cu;
4901 const char *imported_name;
4902 const char *imported_name_prefix;
4903 const char *canonical_name;
4904 const char *import_alias;
4905 const char *imported_declaration = NULL;
4906 const char *import_prefix;
4907
4908 char *temp;
4909
4910 import_attr = dwarf2_attr (die, DW_AT_import, cu);
4911 if (import_attr == NULL)
4912 {
4913 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
4914 dwarf_tag_name (die->tag));
4915 return;
4916 }
4917
4918 imported_cu = cu;
4919 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
4920 imported_name = dwarf2_name (imported_die, imported_cu);
4921 if (imported_name == NULL)
4922 {
4923 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
4924
4925 The import in the following code:
4926 namespace A
4927 {
4928 typedef int B;
4929 }
4930
4931 int main ()
4932 {
4933 using A::B;
4934 B b;
4935 return b;
4936 }
4937
4938 ...
4939 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
4940 <52> DW_AT_decl_file : 1
4941 <53> DW_AT_decl_line : 6
4942 <54> DW_AT_import : <0x75>
4943 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
4944 <59> DW_AT_name : B
4945 <5b> DW_AT_decl_file : 1
4946 <5c> DW_AT_decl_line : 2
4947 <5d> DW_AT_type : <0x6e>
4948 ...
4949 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
4950 <76> DW_AT_byte_size : 4
4951 <77> DW_AT_encoding : 5 (signed)
4952
4953 imports the wrong die ( 0x75 instead of 0x58 ).
4954 This case will be ignored until the gcc bug is fixed. */
4955 return;
4956 }
4957
4958 /* Figure out the local name after import. */
4959 import_alias = dwarf2_name (die, cu);
4960
4961 /* Figure out where the statement is being imported to. */
4962 import_prefix = determine_prefix (die, cu);
4963
4964 /* Figure out what the scope of the imported die is and prepend it
4965 to the name of the imported die. */
4966 imported_name_prefix = determine_prefix (imported_die, imported_cu);
4967
4968 if (imported_die->tag != DW_TAG_namespace
4969 && imported_die->tag != DW_TAG_module)
4970 {
4971 imported_declaration = imported_name;
4972 canonical_name = imported_name_prefix;
4973 }
4974 else if (strlen (imported_name_prefix) > 0)
4975 {
4976 temp = alloca (strlen (imported_name_prefix)
4977 + 2 + strlen (imported_name) + 1);
4978 strcpy (temp, imported_name_prefix);
4979 strcat (temp, "::");
4980 strcat (temp, imported_name);
4981 canonical_name = temp;
4982 }
4983 else
4984 canonical_name = imported_name;
4985
4986 cp_add_using_directive (import_prefix,
4987 canonical_name,
4988 import_alias,
4989 imported_declaration,
4990 &cu->objfile->objfile_obstack);
4991 }
4992
4993 static void
4994 initialize_cu_func_list (struct dwarf2_cu *cu)
4995 {
4996 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
4997 }
4998
4999 static void
5000 free_cu_line_header (void *arg)
5001 {
5002 struct dwarf2_cu *cu = arg;
5003
5004 free_line_header (cu->line_header);
5005 cu->line_header = NULL;
5006 }
5007
5008 static void
5009 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5010 char **name, char **comp_dir)
5011 {
5012 struct attribute *attr;
5013
5014 *name = NULL;
5015 *comp_dir = NULL;
5016
5017 /* Find the filename. Do not use dwarf2_name here, since the filename
5018 is not a source language identifier. */
5019 attr = dwarf2_attr (die, DW_AT_name, cu);
5020 if (attr)
5021 {
5022 *name = DW_STRING (attr);
5023 }
5024
5025 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5026 if (attr)
5027 *comp_dir = DW_STRING (attr);
5028 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5029 {
5030 *comp_dir = ldirname (*name);
5031 if (*comp_dir != NULL)
5032 make_cleanup (xfree, *comp_dir);
5033 }
5034 if (*comp_dir != NULL)
5035 {
5036 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5037 directory, get rid of it. */
5038 char *cp = strchr (*comp_dir, ':');
5039
5040 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5041 *comp_dir = cp + 1;
5042 }
5043
5044 if (*name == NULL)
5045 *name = "<unknown>";
5046 }
5047
5048 static void
5049 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5050 {
5051 struct objfile *objfile = cu->objfile;
5052 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5053 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5054 CORE_ADDR highpc = ((CORE_ADDR) 0);
5055 struct attribute *attr;
5056 char *name = NULL;
5057 char *comp_dir = NULL;
5058 struct die_info *child_die;
5059 bfd *abfd = objfile->obfd;
5060 struct line_header *line_header = 0;
5061 CORE_ADDR baseaddr;
5062
5063 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5064
5065 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5066
5067 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5068 from finish_block. */
5069 if (lowpc == ((CORE_ADDR) -1))
5070 lowpc = highpc;
5071 lowpc += baseaddr;
5072 highpc += baseaddr;
5073
5074 find_file_and_directory (die, cu, &name, &comp_dir);
5075
5076 attr = dwarf2_attr (die, DW_AT_language, cu);
5077 if (attr)
5078 {
5079 set_cu_language (DW_UNSND (attr), cu);
5080 }
5081
5082 attr = dwarf2_attr (die, DW_AT_producer, cu);
5083 if (attr)
5084 cu->producer = DW_STRING (attr);
5085
5086 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5087 standardised yet. As a workaround for the language detection we fall
5088 back to the DW_AT_producer string. */
5089 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5090 cu->language = language_opencl;
5091
5092 /* We assume that we're processing GCC output. */
5093 processing_gcc_compilation = 2;
5094
5095 processing_has_namespace_info = 0;
5096
5097 start_symtab (name, comp_dir, lowpc);
5098 record_debugformat ("DWARF 2");
5099 record_producer (cu->producer);
5100
5101 initialize_cu_func_list (cu);
5102
5103 /* Decode line number information if present. We do this before
5104 processing child DIEs, so that the line header table is available
5105 for DW_AT_decl_file. */
5106 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5107 if (attr)
5108 {
5109 unsigned int line_offset = DW_UNSND (attr);
5110 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
5111 if (line_header)
5112 {
5113 cu->line_header = line_header;
5114 make_cleanup (free_cu_line_header, cu);
5115 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
5116 }
5117 }
5118
5119 /* Process all dies in compilation unit. */
5120 if (die->child != NULL)
5121 {
5122 child_die = die->child;
5123 while (child_die && child_die->tag)
5124 {
5125 process_die (child_die, cu);
5126 child_die = sibling_die (child_die);
5127 }
5128 }
5129
5130 /* Decode macro information, if present. Dwarf 2 macro information
5131 refers to information in the line number info statement program
5132 header, so we can only read it if we've read the header
5133 successfully. */
5134 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5135 if (attr && line_header)
5136 {
5137 unsigned int macro_offset = DW_UNSND (attr);
5138
5139 dwarf_decode_macros (line_header, macro_offset,
5140 comp_dir, abfd, cu);
5141 }
5142 do_cleanups (back_to);
5143 }
5144
5145 /* For TUs we want to skip the first top level sibling if it's not the
5146 actual type being defined by this TU. In this case the first top
5147 level sibling is there to provide context only. */
5148
5149 static void
5150 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5151 {
5152 struct objfile *objfile = cu->objfile;
5153 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5154 CORE_ADDR lowpc;
5155 struct attribute *attr;
5156 char *name = NULL;
5157 char *comp_dir = NULL;
5158 struct die_info *child_die;
5159 bfd *abfd = objfile->obfd;
5160
5161 /* start_symtab needs a low pc, but we don't really have one.
5162 Do what read_file_scope would do in the absence of such info. */
5163 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5164
5165 /* Find the filename. Do not use dwarf2_name here, since the filename
5166 is not a source language identifier. */
5167 attr = dwarf2_attr (die, DW_AT_name, cu);
5168 if (attr)
5169 name = DW_STRING (attr);
5170
5171 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5172 if (attr)
5173 comp_dir = DW_STRING (attr);
5174 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5175 {
5176 comp_dir = ldirname (name);
5177 if (comp_dir != NULL)
5178 make_cleanup (xfree, comp_dir);
5179 }
5180
5181 if (name == NULL)
5182 name = "<unknown>";
5183
5184 attr = dwarf2_attr (die, DW_AT_language, cu);
5185 if (attr)
5186 set_cu_language (DW_UNSND (attr), cu);
5187
5188 /* This isn't technically needed today. It is done for symmetry
5189 with read_file_scope. */
5190 attr = dwarf2_attr (die, DW_AT_producer, cu);
5191 if (attr)
5192 cu->producer = DW_STRING (attr);
5193
5194 /* We assume that we're processing GCC output. */
5195 processing_gcc_compilation = 2;
5196
5197 processing_has_namespace_info = 0;
5198
5199 start_symtab (name, comp_dir, lowpc);
5200 record_debugformat ("DWARF 2");
5201 record_producer (cu->producer);
5202
5203 /* Process the dies in the type unit. */
5204 if (die->child == NULL)
5205 {
5206 dump_die_for_error (die);
5207 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5208 bfd_get_filename (abfd));
5209 }
5210
5211 child_die = die->child;
5212
5213 while (child_die && child_die->tag)
5214 {
5215 process_die (child_die, cu);
5216
5217 child_die = sibling_die (child_die);
5218 }
5219
5220 do_cleanups (back_to);
5221 }
5222
5223 static void
5224 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5225 struct dwarf2_cu *cu)
5226 {
5227 struct function_range *thisfn;
5228
5229 thisfn = (struct function_range *)
5230 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5231 thisfn->name = name;
5232 thisfn->lowpc = lowpc;
5233 thisfn->highpc = highpc;
5234 thisfn->seen_line = 0;
5235 thisfn->next = NULL;
5236
5237 if (cu->last_fn == NULL)
5238 cu->first_fn = thisfn;
5239 else
5240 cu->last_fn->next = thisfn;
5241
5242 cu->last_fn = thisfn;
5243 }
5244
5245 /* qsort helper for inherit_abstract_dies. */
5246
5247 static int
5248 unsigned_int_compar (const void *ap, const void *bp)
5249 {
5250 unsigned int a = *(unsigned int *) ap;
5251 unsigned int b = *(unsigned int *) bp;
5252
5253 return (a > b) - (b > a);
5254 }
5255
5256 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5257 Inherit only the children of the DW_AT_abstract_origin DIE not being already
5258 referenced by DW_AT_abstract_origin from the children of the current DIE. */
5259
5260 static void
5261 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5262 {
5263 struct die_info *child_die;
5264 unsigned die_children_count;
5265 /* CU offsets which were referenced by children of the current DIE. */
5266 unsigned *offsets;
5267 unsigned *offsets_end, *offsetp;
5268 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5269 struct die_info *origin_die;
5270 /* Iterator of the ORIGIN_DIE children. */
5271 struct die_info *origin_child_die;
5272 struct cleanup *cleanups;
5273 struct attribute *attr;
5274 struct dwarf2_cu *origin_cu;
5275 struct pending **origin_previous_list_in_scope;
5276
5277 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5278 if (!attr)
5279 return;
5280
5281 /* Note that following die references may follow to a die in a
5282 different cu. */
5283
5284 origin_cu = cu;
5285 origin_die = follow_die_ref (die, attr, &origin_cu);
5286
5287 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5288 symbols in. */
5289 origin_previous_list_in_scope = origin_cu->list_in_scope;
5290 origin_cu->list_in_scope = cu->list_in_scope;
5291
5292 if (die->tag != origin_die->tag
5293 && !(die->tag == DW_TAG_inlined_subroutine
5294 && origin_die->tag == DW_TAG_subprogram))
5295 complaint (&symfile_complaints,
5296 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5297 die->offset, origin_die->offset);
5298
5299 child_die = die->child;
5300 die_children_count = 0;
5301 while (child_die && child_die->tag)
5302 {
5303 child_die = sibling_die (child_die);
5304 die_children_count++;
5305 }
5306 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5307 cleanups = make_cleanup (xfree, offsets);
5308
5309 offsets_end = offsets;
5310 child_die = die->child;
5311 while (child_die && child_die->tag)
5312 {
5313 /* For each CHILD_DIE, find the corresponding child of
5314 ORIGIN_DIE. If there is more than one layer of
5315 DW_AT_abstract_origin, follow them all; there shouldn't be,
5316 but GCC versions at least through 4.4 generate this (GCC PR
5317 40573). */
5318 struct die_info *child_origin_die = child_die;
5319 struct dwarf2_cu *child_origin_cu = cu;
5320
5321 while (1)
5322 {
5323 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5324 child_origin_cu);
5325 if (attr == NULL)
5326 break;
5327 child_origin_die = follow_die_ref (child_origin_die, attr,
5328 &child_origin_cu);
5329 }
5330
5331 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5332 counterpart may exist. */
5333 if (child_origin_die != child_die)
5334 {
5335 if (child_die->tag != child_origin_die->tag
5336 && !(child_die->tag == DW_TAG_inlined_subroutine
5337 && child_origin_die->tag == DW_TAG_subprogram))
5338 complaint (&symfile_complaints,
5339 _("Child DIE 0x%x and its abstract origin 0x%x have "
5340 "different tags"), child_die->offset,
5341 child_origin_die->offset);
5342 if (child_origin_die->parent != origin_die)
5343 complaint (&symfile_complaints,
5344 _("Child DIE 0x%x and its abstract origin 0x%x have "
5345 "different parents"), child_die->offset,
5346 child_origin_die->offset);
5347 else
5348 *offsets_end++ = child_origin_die->offset;
5349 }
5350 child_die = sibling_die (child_die);
5351 }
5352 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5353 unsigned_int_compar);
5354 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5355 if (offsetp[-1] == *offsetp)
5356 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
5357 "to DIE 0x%x as their abstract origin"),
5358 die->offset, *offsetp);
5359
5360 offsetp = offsets;
5361 origin_child_die = origin_die->child;
5362 while (origin_child_die && origin_child_die->tag)
5363 {
5364 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5365 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5366 offsetp++;
5367 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5368 {
5369 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5370 process_die (origin_child_die, origin_cu);
5371 }
5372 origin_child_die = sibling_die (origin_child_die);
5373 }
5374 origin_cu->list_in_scope = origin_previous_list_in_scope;
5375
5376 do_cleanups (cleanups);
5377 }
5378
5379 static void
5380 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5381 {
5382 struct objfile *objfile = cu->objfile;
5383 struct context_stack *new;
5384 CORE_ADDR lowpc;
5385 CORE_ADDR highpc;
5386 struct die_info *child_die;
5387 struct attribute *attr, *call_line, *call_file;
5388 char *name;
5389 CORE_ADDR baseaddr;
5390 struct block *block;
5391 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5392 VEC (symbolp) *template_args = NULL;
5393 struct template_symbol *templ_func = NULL;
5394
5395 if (inlined_func)
5396 {
5397 /* If we do not have call site information, we can't show the
5398 caller of this inlined function. That's too confusing, so
5399 only use the scope for local variables. */
5400 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5401 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5402 if (call_line == NULL || call_file == NULL)
5403 {
5404 read_lexical_block_scope (die, cu);
5405 return;
5406 }
5407 }
5408
5409 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5410
5411 name = dwarf2_name (die, cu);
5412
5413 /* Ignore functions with missing or empty names. These are actually
5414 illegal according to the DWARF standard. */
5415 if (name == NULL)
5416 {
5417 complaint (&symfile_complaints,
5418 _("missing name for subprogram DIE at %d"), die->offset);
5419 return;
5420 }
5421
5422 /* Ignore functions with missing or invalid low and high pc attributes. */
5423 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5424 {
5425 attr = dwarf2_attr (die, DW_AT_external, cu);
5426 if (!attr || !DW_UNSND (attr))
5427 complaint (&symfile_complaints,
5428 _("cannot get low and high bounds for subprogram DIE at %d"),
5429 die->offset);
5430 return;
5431 }
5432
5433 lowpc += baseaddr;
5434 highpc += baseaddr;
5435
5436 /* Record the function range for dwarf_decode_lines. */
5437 add_to_cu_func_list (name, lowpc, highpc, cu);
5438
5439 /* If we have any template arguments, then we must allocate a
5440 different sort of symbol. */
5441 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5442 {
5443 if (child_die->tag == DW_TAG_template_type_param
5444 || child_die->tag == DW_TAG_template_value_param)
5445 {
5446 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5447 struct template_symbol);
5448 templ_func->base.is_cplus_template_function = 1;
5449 break;
5450 }
5451 }
5452
5453 new = push_context (0, lowpc);
5454 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5455 (struct symbol *) templ_func);
5456
5457 /* If there is a location expression for DW_AT_frame_base, record
5458 it. */
5459 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
5460 if (attr)
5461 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5462 expression is being recorded directly in the function's symbol
5463 and not in a separate frame-base object. I guess this hack is
5464 to avoid adding some sort of frame-base adjunct/annex to the
5465 function's symbol :-(. The problem with doing this is that it
5466 results in a function symbol with a location expression that
5467 has nothing to do with the location of the function, ouch! The
5468 relationship should be: a function's symbol has-a frame base; a
5469 frame-base has-a location expression. */
5470 dwarf2_symbol_mark_computed (attr, new->name, cu);
5471
5472 cu->list_in_scope = &local_symbols;
5473
5474 if (die->child != NULL)
5475 {
5476 child_die = die->child;
5477 while (child_die && child_die->tag)
5478 {
5479 if (child_die->tag == DW_TAG_template_type_param
5480 || child_die->tag == DW_TAG_template_value_param)
5481 {
5482 struct symbol *arg = new_symbol (child_die, NULL, cu);
5483
5484 if (arg != NULL)
5485 VEC_safe_push (symbolp, template_args, arg);
5486 }
5487 else
5488 process_die (child_die, cu);
5489 child_die = sibling_die (child_die);
5490 }
5491 }
5492
5493 inherit_abstract_dies (die, cu);
5494
5495 /* If we have a DW_AT_specification, we might need to import using
5496 directives from the context of the specification DIE. See the
5497 comment in determine_prefix. */
5498 if (cu->language == language_cplus
5499 && dwarf2_attr (die, DW_AT_specification, cu))
5500 {
5501 struct dwarf2_cu *spec_cu = cu;
5502 struct die_info *spec_die = die_specification (die, &spec_cu);
5503
5504 while (spec_die)
5505 {
5506 child_die = spec_die->child;
5507 while (child_die && child_die->tag)
5508 {
5509 if (child_die->tag == DW_TAG_imported_module)
5510 process_die (child_die, spec_cu);
5511 child_die = sibling_die (child_die);
5512 }
5513
5514 /* In some cases, GCC generates specification DIEs that
5515 themselves contain DW_AT_specification attributes. */
5516 spec_die = die_specification (spec_die, &spec_cu);
5517 }
5518 }
5519
5520 new = pop_context ();
5521 /* Make a block for the local symbols within. */
5522 block = finish_block (new->name, &local_symbols, new->old_blocks,
5523 lowpc, highpc, objfile);
5524
5525 /* For C++, set the block's scope. */
5526 if (cu->language == language_cplus || cu->language == language_fortran)
5527 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
5528 determine_prefix (die, cu),
5529 processing_has_namespace_info);
5530
5531 /* If we have address ranges, record them. */
5532 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5533
5534 /* Attach template arguments to function. */
5535 if (! VEC_empty (symbolp, template_args))
5536 {
5537 gdb_assert (templ_func != NULL);
5538
5539 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5540 templ_func->template_arguments
5541 = obstack_alloc (&objfile->objfile_obstack,
5542 (templ_func->n_template_arguments
5543 * sizeof (struct symbol *)));
5544 memcpy (templ_func->template_arguments,
5545 VEC_address (symbolp, template_args),
5546 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5547 VEC_free (symbolp, template_args);
5548 }
5549
5550 /* In C++, we can have functions nested inside functions (e.g., when
5551 a function declares a class that has methods). This means that
5552 when we finish processing a function scope, we may need to go
5553 back to building a containing block's symbol lists. */
5554 local_symbols = new->locals;
5555 param_symbols = new->params;
5556 using_directives = new->using_directives;
5557
5558 /* If we've finished processing a top-level function, subsequent
5559 symbols go in the file symbol list. */
5560 if (outermost_context_p ())
5561 cu->list_in_scope = &file_symbols;
5562 }
5563
5564 /* Process all the DIES contained within a lexical block scope. Start
5565 a new scope, process the dies, and then close the scope. */
5566
5567 static void
5568 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
5569 {
5570 struct objfile *objfile = cu->objfile;
5571 struct context_stack *new;
5572 CORE_ADDR lowpc, highpc;
5573 struct die_info *child_die;
5574 CORE_ADDR baseaddr;
5575
5576 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5577
5578 /* Ignore blocks with missing or invalid low and high pc attributes. */
5579 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5580 as multiple lexical blocks? Handling children in a sane way would
5581 be nasty. Might be easier to properly extend generic blocks to
5582 describe ranges. */
5583 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5584 return;
5585 lowpc += baseaddr;
5586 highpc += baseaddr;
5587
5588 push_context (0, lowpc);
5589 if (die->child != NULL)
5590 {
5591 child_die = die->child;
5592 while (child_die && child_die->tag)
5593 {
5594 process_die (child_die, cu);
5595 child_die = sibling_die (child_die);
5596 }
5597 }
5598 new = pop_context ();
5599
5600 if (local_symbols != NULL || using_directives != NULL)
5601 {
5602 struct block *block
5603 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5604 highpc, objfile);
5605
5606 /* Note that recording ranges after traversing children, as we
5607 do here, means that recording a parent's ranges entails
5608 walking across all its children's ranges as they appear in
5609 the address map, which is quadratic behavior.
5610
5611 It would be nicer to record the parent's ranges before
5612 traversing its children, simply overriding whatever you find
5613 there. But since we don't even decide whether to create a
5614 block until after we've traversed its children, that's hard
5615 to do. */
5616 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5617 }
5618 local_symbols = new->locals;
5619 using_directives = new->using_directives;
5620 }
5621
5622 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
5623 Return 1 if the attributes are present and valid, otherwise, return 0.
5624 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
5625
5626 static int
5627 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
5628 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5629 struct partial_symtab *ranges_pst)
5630 {
5631 struct objfile *objfile = cu->objfile;
5632 struct comp_unit_head *cu_header = &cu->header;
5633 bfd *obfd = objfile->obfd;
5634 unsigned int addr_size = cu_header->addr_size;
5635 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5636 /* Base address selection entry. */
5637 CORE_ADDR base;
5638 int found_base;
5639 unsigned int dummy;
5640 gdb_byte *buffer;
5641 CORE_ADDR marker;
5642 int low_set;
5643 CORE_ADDR low = 0;
5644 CORE_ADDR high = 0;
5645 CORE_ADDR baseaddr;
5646
5647 found_base = cu->base_known;
5648 base = cu->base_address;
5649
5650 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
5651 if (offset >= dwarf2_per_objfile->ranges.size)
5652 {
5653 complaint (&symfile_complaints,
5654 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5655 offset);
5656 return 0;
5657 }
5658 buffer = dwarf2_per_objfile->ranges.buffer + offset;
5659
5660 /* Read in the largest possible address. */
5661 marker = read_address (obfd, buffer, cu, &dummy);
5662 if ((marker & mask) == mask)
5663 {
5664 /* If we found the largest possible address, then
5665 read the base address. */
5666 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5667 buffer += 2 * addr_size;
5668 offset += 2 * addr_size;
5669 found_base = 1;
5670 }
5671
5672 low_set = 0;
5673
5674 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5675
5676 while (1)
5677 {
5678 CORE_ADDR range_beginning, range_end;
5679
5680 range_beginning = read_address (obfd, buffer, cu, &dummy);
5681 buffer += addr_size;
5682 range_end = read_address (obfd, buffer, cu, &dummy);
5683 buffer += addr_size;
5684 offset += 2 * addr_size;
5685
5686 /* An end of list marker is a pair of zero addresses. */
5687 if (range_beginning == 0 && range_end == 0)
5688 /* Found the end of list entry. */
5689 break;
5690
5691 /* Each base address selection entry is a pair of 2 values.
5692 The first is the largest possible address, the second is
5693 the base address. Check for a base address here. */
5694 if ((range_beginning & mask) == mask)
5695 {
5696 /* If we found the largest possible address, then
5697 read the base address. */
5698 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5699 found_base = 1;
5700 continue;
5701 }
5702
5703 if (!found_base)
5704 {
5705 /* We have no valid base address for the ranges
5706 data. */
5707 complaint (&symfile_complaints,
5708 _("Invalid .debug_ranges data (no base address)"));
5709 return 0;
5710 }
5711
5712 range_beginning += base;
5713 range_end += base;
5714
5715 if (ranges_pst != NULL && range_beginning < range_end)
5716 addrmap_set_empty (objfile->psymtabs_addrmap,
5717 range_beginning + baseaddr, range_end - 1 + baseaddr,
5718 ranges_pst);
5719
5720 /* FIXME: This is recording everything as a low-high
5721 segment of consecutive addresses. We should have a
5722 data structure for discontiguous block ranges
5723 instead. */
5724 if (! low_set)
5725 {
5726 low = range_beginning;
5727 high = range_end;
5728 low_set = 1;
5729 }
5730 else
5731 {
5732 if (range_beginning < low)
5733 low = range_beginning;
5734 if (range_end > high)
5735 high = range_end;
5736 }
5737 }
5738
5739 if (! low_set)
5740 /* If the first entry is an end-of-list marker, the range
5741 describes an empty scope, i.e. no instructions. */
5742 return 0;
5743
5744 if (low_return)
5745 *low_return = low;
5746 if (high_return)
5747 *high_return = high;
5748 return 1;
5749 }
5750
5751 /* Get low and high pc attributes from a die. Return 1 if the attributes
5752 are present and valid, otherwise, return 0. Return -1 if the range is
5753 discontinuous, i.e. derived from DW_AT_ranges information. */
5754 static int
5755 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
5756 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5757 struct partial_symtab *pst)
5758 {
5759 struct attribute *attr;
5760 CORE_ADDR low = 0;
5761 CORE_ADDR high = 0;
5762 int ret = 0;
5763
5764 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5765 if (attr)
5766 {
5767 high = DW_ADDR (attr);
5768 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5769 if (attr)
5770 low = DW_ADDR (attr);
5771 else
5772 /* Found high w/o low attribute. */
5773 return 0;
5774
5775 /* Found consecutive range of addresses. */
5776 ret = 1;
5777 }
5778 else
5779 {
5780 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5781 if (attr != NULL)
5782 {
5783 /* Value of the DW_AT_ranges attribute is the offset in the
5784 .debug_ranges section. */
5785 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
5786 return 0;
5787 /* Found discontinuous range of addresses. */
5788 ret = -1;
5789 }
5790 }
5791
5792 if (high < low)
5793 return 0;
5794
5795 /* When using the GNU linker, .gnu.linkonce. sections are used to
5796 eliminate duplicate copies of functions and vtables and such.
5797 The linker will arbitrarily choose one and discard the others.
5798 The AT_*_pc values for such functions refer to local labels in
5799 these sections. If the section from that file was discarded, the
5800 labels are not in the output, so the relocs get a value of 0.
5801 If this is a discarded function, mark the pc bounds as invalid,
5802 so that GDB will ignore it. */
5803 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
5804 return 0;
5805
5806 *lowpc = low;
5807 *highpc = high;
5808 return ret;
5809 }
5810
5811 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
5812 its low and high PC addresses. Do nothing if these addresses could not
5813 be determined. Otherwise, set LOWPC to the low address if it is smaller,
5814 and HIGHPC to the high address if greater than HIGHPC. */
5815
5816 static void
5817 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
5818 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5819 struct dwarf2_cu *cu)
5820 {
5821 CORE_ADDR low, high;
5822 struct die_info *child = die->child;
5823
5824 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
5825 {
5826 *lowpc = min (*lowpc, low);
5827 *highpc = max (*highpc, high);
5828 }
5829
5830 /* If the language does not allow nested subprograms (either inside
5831 subprograms or lexical blocks), we're done. */
5832 if (cu->language != language_ada)
5833 return;
5834
5835 /* Check all the children of the given DIE. If it contains nested
5836 subprograms, then check their pc bounds. Likewise, we need to
5837 check lexical blocks as well, as they may also contain subprogram
5838 definitions. */
5839 while (child && child->tag)
5840 {
5841 if (child->tag == DW_TAG_subprogram
5842 || child->tag == DW_TAG_lexical_block)
5843 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
5844 child = sibling_die (child);
5845 }
5846 }
5847
5848 /* Get the low and high pc's represented by the scope DIE, and store
5849 them in *LOWPC and *HIGHPC. If the correct values can't be
5850 determined, set *LOWPC to -1 and *HIGHPC to 0. */
5851
5852 static void
5853 get_scope_pc_bounds (struct die_info *die,
5854 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5855 struct dwarf2_cu *cu)
5856 {
5857 CORE_ADDR best_low = (CORE_ADDR) -1;
5858 CORE_ADDR best_high = (CORE_ADDR) 0;
5859 CORE_ADDR current_low, current_high;
5860
5861 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
5862 {
5863 best_low = current_low;
5864 best_high = current_high;
5865 }
5866 else
5867 {
5868 struct die_info *child = die->child;
5869
5870 while (child && child->tag)
5871 {
5872 switch (child->tag) {
5873 case DW_TAG_subprogram:
5874 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
5875 break;
5876 case DW_TAG_namespace:
5877 case DW_TAG_module:
5878 /* FIXME: carlton/2004-01-16: Should we do this for
5879 DW_TAG_class_type/DW_TAG_structure_type, too? I think
5880 that current GCC's always emit the DIEs corresponding
5881 to definitions of methods of classes as children of a
5882 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
5883 the DIEs giving the declarations, which could be
5884 anywhere). But I don't see any reason why the
5885 standards says that they have to be there. */
5886 get_scope_pc_bounds (child, &current_low, &current_high, cu);
5887
5888 if (current_low != ((CORE_ADDR) -1))
5889 {
5890 best_low = min (best_low, current_low);
5891 best_high = max (best_high, current_high);
5892 }
5893 break;
5894 default:
5895 /* Ignore. */
5896 break;
5897 }
5898
5899 child = sibling_die (child);
5900 }
5901 }
5902
5903 *lowpc = best_low;
5904 *highpc = best_high;
5905 }
5906
5907 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
5908 in DIE. */
5909 static void
5910 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
5911 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
5912 {
5913 struct attribute *attr;
5914
5915 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5916 if (attr)
5917 {
5918 CORE_ADDR high = DW_ADDR (attr);
5919
5920 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5921 if (attr)
5922 {
5923 CORE_ADDR low = DW_ADDR (attr);
5924
5925 record_block_range (block, baseaddr + low, baseaddr + high - 1);
5926 }
5927 }
5928
5929 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5930 if (attr)
5931 {
5932 bfd *obfd = cu->objfile->obfd;
5933
5934 /* The value of the DW_AT_ranges attribute is the offset of the
5935 address range list in the .debug_ranges section. */
5936 unsigned long offset = DW_UNSND (attr);
5937 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
5938
5939 /* For some target architectures, but not others, the
5940 read_address function sign-extends the addresses it returns.
5941 To recognize base address selection entries, we need a
5942 mask. */
5943 unsigned int addr_size = cu->header.addr_size;
5944 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5945
5946 /* The base address, to which the next pair is relative. Note
5947 that this 'base' is a DWARF concept: most entries in a range
5948 list are relative, to reduce the number of relocs against the
5949 debugging information. This is separate from this function's
5950 'baseaddr' argument, which GDB uses to relocate debugging
5951 information from a shared library based on the address at
5952 which the library was loaded. */
5953 CORE_ADDR base = cu->base_address;
5954 int base_known = cu->base_known;
5955
5956 gdb_assert (dwarf2_per_objfile->ranges.readin);
5957 if (offset >= dwarf2_per_objfile->ranges.size)
5958 {
5959 complaint (&symfile_complaints,
5960 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
5961 offset);
5962 return;
5963 }
5964
5965 for (;;)
5966 {
5967 unsigned int bytes_read;
5968 CORE_ADDR start, end;
5969
5970 start = read_address (obfd, buffer, cu, &bytes_read);
5971 buffer += bytes_read;
5972 end = read_address (obfd, buffer, cu, &bytes_read);
5973 buffer += bytes_read;
5974
5975 /* Did we find the end of the range list? */
5976 if (start == 0 && end == 0)
5977 break;
5978
5979 /* Did we find a base address selection entry? */
5980 else if ((start & base_select_mask) == base_select_mask)
5981 {
5982 base = end;
5983 base_known = 1;
5984 }
5985
5986 /* We found an ordinary address range. */
5987 else
5988 {
5989 if (!base_known)
5990 {
5991 complaint (&symfile_complaints,
5992 _("Invalid .debug_ranges data (no base address)"));
5993 return;
5994 }
5995
5996 record_block_range (block,
5997 baseaddr + base + start,
5998 baseaddr + base + end - 1);
5999 }
6000 }
6001 }
6002 }
6003
6004 /* Add an aggregate field to the field list. */
6005
6006 static void
6007 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6008 struct dwarf2_cu *cu)
6009 {
6010 struct objfile *objfile = cu->objfile;
6011 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6012 struct nextfield *new_field;
6013 struct attribute *attr;
6014 struct field *fp;
6015 char *fieldname = "";
6016
6017 /* Allocate a new field list entry and link it in. */
6018 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6019 make_cleanup (xfree, new_field);
6020 memset (new_field, 0, sizeof (struct nextfield));
6021
6022 if (die->tag == DW_TAG_inheritance)
6023 {
6024 new_field->next = fip->baseclasses;
6025 fip->baseclasses = new_field;
6026 }
6027 else
6028 {
6029 new_field->next = fip->fields;
6030 fip->fields = new_field;
6031 }
6032 fip->nfields++;
6033
6034 /* Handle accessibility and virtuality of field.
6035 The default accessibility for members is public, the default
6036 accessibility for inheritance is private. */
6037 if (die->tag != DW_TAG_inheritance)
6038 new_field->accessibility = DW_ACCESS_public;
6039 else
6040 new_field->accessibility = DW_ACCESS_private;
6041 new_field->virtuality = DW_VIRTUALITY_none;
6042
6043 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6044 if (attr)
6045 new_field->accessibility = DW_UNSND (attr);
6046 if (new_field->accessibility != DW_ACCESS_public)
6047 fip->non_public_fields = 1;
6048 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6049 if (attr)
6050 new_field->virtuality = DW_UNSND (attr);
6051
6052 fp = &new_field->field;
6053
6054 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
6055 {
6056 /* Data member other than a C++ static data member. */
6057
6058 /* Get type of field. */
6059 fp->type = die_type (die, cu);
6060
6061 SET_FIELD_BITPOS (*fp, 0);
6062
6063 /* Get bit size of field (zero if none). */
6064 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
6065 if (attr)
6066 {
6067 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6068 }
6069 else
6070 {
6071 FIELD_BITSIZE (*fp) = 0;
6072 }
6073
6074 /* Get bit offset of field. */
6075 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6076 if (attr)
6077 {
6078 int byte_offset = 0;
6079
6080 if (attr_form_is_section_offset (attr))
6081 dwarf2_complex_location_expr_complaint ();
6082 else if (attr_form_is_constant (attr))
6083 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6084 else if (attr_form_is_block (attr))
6085 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6086 else
6087 dwarf2_complex_location_expr_complaint ();
6088
6089 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6090 }
6091 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
6092 if (attr)
6093 {
6094 if (gdbarch_bits_big_endian (gdbarch))
6095 {
6096 /* For big endian bits, the DW_AT_bit_offset gives the
6097 additional bit offset from the MSB of the containing
6098 anonymous object to the MSB of the field. We don't
6099 have to do anything special since we don't need to
6100 know the size of the anonymous object. */
6101 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6102 }
6103 else
6104 {
6105 /* For little endian bits, compute the bit offset to the
6106 MSB of the anonymous object, subtract off the number of
6107 bits from the MSB of the field to the MSB of the
6108 object, and then subtract off the number of bits of
6109 the field itself. The result is the bit offset of
6110 the LSB of the field. */
6111 int anonymous_size;
6112 int bit_offset = DW_UNSND (attr);
6113
6114 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6115 if (attr)
6116 {
6117 /* The size of the anonymous object containing
6118 the bit field is explicit, so use the
6119 indicated size (in bytes). */
6120 anonymous_size = DW_UNSND (attr);
6121 }
6122 else
6123 {
6124 /* The size of the anonymous object containing
6125 the bit field must be inferred from the type
6126 attribute of the data member containing the
6127 bit field. */
6128 anonymous_size = TYPE_LENGTH (fp->type);
6129 }
6130 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6131 - bit_offset - FIELD_BITSIZE (*fp);
6132 }
6133 }
6134
6135 /* Get name of field. */
6136 fieldname = dwarf2_name (die, cu);
6137 if (fieldname == NULL)
6138 fieldname = "";
6139
6140 /* The name is already allocated along with this objfile, so we don't
6141 need to duplicate it for the type. */
6142 fp->name = fieldname;
6143
6144 /* Change accessibility for artificial fields (e.g. virtual table
6145 pointer or virtual base class pointer) to private. */
6146 if (dwarf2_attr (die, DW_AT_artificial, cu))
6147 {
6148 FIELD_ARTIFICIAL (*fp) = 1;
6149 new_field->accessibility = DW_ACCESS_private;
6150 fip->non_public_fields = 1;
6151 }
6152 }
6153 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
6154 {
6155 /* C++ static member. */
6156
6157 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6158 is a declaration, but all versions of G++ as of this writing
6159 (so through at least 3.2.1) incorrectly generate
6160 DW_TAG_variable tags. */
6161
6162 char *physname;
6163
6164 /* Get name of field. */
6165 fieldname = dwarf2_name (die, cu);
6166 if (fieldname == NULL)
6167 return;
6168
6169 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6170 if (attr
6171 /* Only create a symbol if this is an external value.
6172 new_symbol checks this and puts the value in the global symbol
6173 table, which we want. If it is not external, new_symbol
6174 will try to put the value in cu->list_in_scope which is wrong. */
6175 && dwarf2_flag_true_p (die, DW_AT_external, cu))
6176 {
6177 /* A static const member, not much different than an enum as far as
6178 we're concerned, except that we can support more types. */
6179 new_symbol (die, NULL, cu);
6180 }
6181
6182 /* Get physical name. */
6183 physname = (char *) dwarf2_physname (fieldname, die, cu);
6184
6185 /* The name is already allocated along with this objfile, so we don't
6186 need to duplicate it for the type. */
6187 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
6188 FIELD_TYPE (*fp) = die_type (die, cu);
6189 FIELD_NAME (*fp) = fieldname;
6190 }
6191 else if (die->tag == DW_TAG_inheritance)
6192 {
6193 /* C++ base class field. */
6194 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6195 if (attr)
6196 {
6197 int byte_offset = 0;
6198
6199 if (attr_form_is_section_offset (attr))
6200 dwarf2_complex_location_expr_complaint ();
6201 else if (attr_form_is_constant (attr))
6202 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6203 else if (attr_form_is_block (attr))
6204 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6205 else
6206 dwarf2_complex_location_expr_complaint ();
6207
6208 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6209 }
6210 FIELD_BITSIZE (*fp) = 0;
6211 FIELD_TYPE (*fp) = die_type (die, cu);
6212 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6213 fip->nbaseclasses++;
6214 }
6215 }
6216
6217 /* Add a typedef defined in the scope of the FIP's class. */
6218
6219 static void
6220 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6221 struct dwarf2_cu *cu)
6222 {
6223 struct objfile *objfile = cu->objfile;
6224 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6225 struct typedef_field_list *new_field;
6226 struct attribute *attr;
6227 struct typedef_field *fp;
6228 char *fieldname = "";
6229
6230 /* Allocate a new field list entry and link it in. */
6231 new_field = xzalloc (sizeof (*new_field));
6232 make_cleanup (xfree, new_field);
6233
6234 gdb_assert (die->tag == DW_TAG_typedef);
6235
6236 fp = &new_field->field;
6237
6238 /* Get name of field. */
6239 fp->name = dwarf2_name (die, cu);
6240 if (fp->name == NULL)
6241 return;
6242
6243 fp->type = read_type_die (die, cu);
6244
6245 new_field->next = fip->typedef_field_list;
6246 fip->typedef_field_list = new_field;
6247 fip->typedef_field_list_count++;
6248 }
6249
6250 /* Create the vector of fields, and attach it to the type. */
6251
6252 static void
6253 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
6254 struct dwarf2_cu *cu)
6255 {
6256 int nfields = fip->nfields;
6257
6258 /* Record the field count, allocate space for the array of fields,
6259 and create blank accessibility bitfields if necessary. */
6260 TYPE_NFIELDS (type) = nfields;
6261 TYPE_FIELDS (type) = (struct field *)
6262 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6263 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6264
6265 if (fip->non_public_fields && cu->language != language_ada)
6266 {
6267 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6268
6269 TYPE_FIELD_PRIVATE_BITS (type) =
6270 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6271 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6272
6273 TYPE_FIELD_PROTECTED_BITS (type) =
6274 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6275 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6276
6277 TYPE_FIELD_IGNORE_BITS (type) =
6278 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6279 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
6280 }
6281
6282 /* If the type has baseclasses, allocate and clear a bit vector for
6283 TYPE_FIELD_VIRTUAL_BITS. */
6284 if (fip->nbaseclasses && cu->language != language_ada)
6285 {
6286 int num_bytes = B_BYTES (fip->nbaseclasses);
6287 unsigned char *pointer;
6288
6289 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6290 pointer = TYPE_ALLOC (type, num_bytes);
6291 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
6292 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6293 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6294 }
6295
6296 /* Copy the saved-up fields into the field vector. Start from the head
6297 of the list, adding to the tail of the field array, so that they end
6298 up in the same order in the array in which they were added to the list. */
6299 while (nfields-- > 0)
6300 {
6301 struct nextfield *fieldp;
6302
6303 if (fip->fields)
6304 {
6305 fieldp = fip->fields;
6306 fip->fields = fieldp->next;
6307 }
6308 else
6309 {
6310 fieldp = fip->baseclasses;
6311 fip->baseclasses = fieldp->next;
6312 }
6313
6314 TYPE_FIELD (type, nfields) = fieldp->field;
6315 switch (fieldp->accessibility)
6316 {
6317 case DW_ACCESS_private:
6318 if (cu->language != language_ada)
6319 SET_TYPE_FIELD_PRIVATE (type, nfields);
6320 break;
6321
6322 case DW_ACCESS_protected:
6323 if (cu->language != language_ada)
6324 SET_TYPE_FIELD_PROTECTED (type, nfields);
6325 break;
6326
6327 case DW_ACCESS_public:
6328 break;
6329
6330 default:
6331 /* Unknown accessibility. Complain and treat it as public. */
6332 {
6333 complaint (&symfile_complaints, _("unsupported accessibility %d"),
6334 fieldp->accessibility);
6335 }
6336 break;
6337 }
6338 if (nfields < fip->nbaseclasses)
6339 {
6340 switch (fieldp->virtuality)
6341 {
6342 case DW_VIRTUALITY_virtual:
6343 case DW_VIRTUALITY_pure_virtual:
6344 if (cu->language == language_ada)
6345 error ("unexpected virtuality in component of Ada type");
6346 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6347 break;
6348 }
6349 }
6350 }
6351 }
6352
6353 /* Add a member function to the proper fieldlist. */
6354
6355 static void
6356 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
6357 struct type *type, struct dwarf2_cu *cu)
6358 {
6359 struct objfile *objfile = cu->objfile;
6360 struct attribute *attr;
6361 struct fnfieldlist *flp;
6362 int i;
6363 struct fn_field *fnp;
6364 char *fieldname;
6365 struct nextfnfield *new_fnfield;
6366 struct type *this_type;
6367
6368 if (cu->language == language_ada)
6369 error ("unexpected member function in Ada type");
6370
6371 /* Get name of member function. */
6372 fieldname = dwarf2_name (die, cu);
6373 if (fieldname == NULL)
6374 return;
6375
6376 /* Look up member function name in fieldlist. */
6377 for (i = 0; i < fip->nfnfields; i++)
6378 {
6379 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
6380 break;
6381 }
6382
6383 /* Create new list element if necessary. */
6384 if (i < fip->nfnfields)
6385 flp = &fip->fnfieldlists[i];
6386 else
6387 {
6388 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6389 {
6390 fip->fnfieldlists = (struct fnfieldlist *)
6391 xrealloc (fip->fnfieldlists,
6392 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
6393 * sizeof (struct fnfieldlist));
6394 if (fip->nfnfields == 0)
6395 make_cleanup (free_current_contents, &fip->fnfieldlists);
6396 }
6397 flp = &fip->fnfieldlists[fip->nfnfields];
6398 flp->name = fieldname;
6399 flp->length = 0;
6400 flp->head = NULL;
6401 i = fip->nfnfields++;
6402 }
6403
6404 /* Create a new member function field and chain it to the field list
6405 entry. */
6406 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
6407 make_cleanup (xfree, new_fnfield);
6408 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6409 new_fnfield->next = flp->head;
6410 flp->head = new_fnfield;
6411 flp->length++;
6412
6413 /* Fill in the member function field info. */
6414 fnp = &new_fnfield->fnfield;
6415
6416 /* Delay processing of the physname until later. */
6417 if (cu->language == language_cplus || cu->language == language_java)
6418 {
6419 add_to_method_list (type, i, flp->length - 1, fieldname,
6420 die, cu);
6421 }
6422 else
6423 {
6424 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6425 fnp->physname = physname ? physname : "";
6426 }
6427
6428 fnp->type = alloc_type (objfile);
6429 this_type = read_type_die (die, cu);
6430 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
6431 {
6432 int nparams = TYPE_NFIELDS (this_type);
6433
6434 /* TYPE is the domain of this method, and THIS_TYPE is the type
6435 of the method itself (TYPE_CODE_METHOD). */
6436 smash_to_method_type (fnp->type, type,
6437 TYPE_TARGET_TYPE (this_type),
6438 TYPE_FIELDS (this_type),
6439 TYPE_NFIELDS (this_type),
6440 TYPE_VARARGS (this_type));
6441
6442 /* Handle static member functions.
6443 Dwarf2 has no clean way to discern C++ static and non-static
6444 member functions. G++ helps GDB by marking the first
6445 parameter for non-static member functions (which is the
6446 this pointer) as artificial. We obtain this information
6447 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
6448 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
6449 fnp->voffset = VOFFSET_STATIC;
6450 }
6451 else
6452 complaint (&symfile_complaints, _("member function type missing for '%s'"),
6453 dwarf2_full_name (fieldname, die, cu));
6454
6455 /* Get fcontext from DW_AT_containing_type if present. */
6456 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6457 fnp->fcontext = die_containing_type (die, cu);
6458
6459 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
6460 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
6461
6462 /* Get accessibility. */
6463 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6464 if (attr)
6465 {
6466 switch (DW_UNSND (attr))
6467 {
6468 case DW_ACCESS_private:
6469 fnp->is_private = 1;
6470 break;
6471 case DW_ACCESS_protected:
6472 fnp->is_protected = 1;
6473 break;
6474 }
6475 }
6476
6477 /* Check for artificial methods. */
6478 attr = dwarf2_attr (die, DW_AT_artificial, cu);
6479 if (attr && DW_UNSND (attr) != 0)
6480 fnp->is_artificial = 1;
6481
6482 /* Get index in virtual function table if it is a virtual member
6483 function. For older versions of GCC, this is an offset in the
6484 appropriate virtual table, as specified by DW_AT_containing_type.
6485 For everyone else, it is an expression to be evaluated relative
6486 to the object address. */
6487
6488 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
6489 if (attr)
6490 {
6491 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
6492 {
6493 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6494 {
6495 /* Old-style GCC. */
6496 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6497 }
6498 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6499 || (DW_BLOCK (attr)->size > 1
6500 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6501 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6502 {
6503 struct dwarf_block blk;
6504 int offset;
6505
6506 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6507 ? 1 : 2);
6508 blk.size = DW_BLOCK (attr)->size - offset;
6509 blk.data = DW_BLOCK (attr)->data + offset;
6510 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6511 if ((fnp->voffset % cu->header.addr_size) != 0)
6512 dwarf2_complex_location_expr_complaint ();
6513 else
6514 fnp->voffset /= cu->header.addr_size;
6515 fnp->voffset += 2;
6516 }
6517 else
6518 dwarf2_complex_location_expr_complaint ();
6519
6520 if (!fnp->fcontext)
6521 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6522 }
6523 else if (attr_form_is_section_offset (attr))
6524 {
6525 dwarf2_complex_location_expr_complaint ();
6526 }
6527 else
6528 {
6529 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6530 fieldname);
6531 }
6532 }
6533 else
6534 {
6535 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6536 if (attr && DW_UNSND (attr))
6537 {
6538 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6539 complaint (&symfile_complaints,
6540 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
6541 fieldname, die->offset);
6542 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6543 TYPE_CPLUS_DYNAMIC (type) = 1;
6544 }
6545 }
6546 }
6547
6548 /* Create the vector of member function fields, and attach it to the type. */
6549
6550 static void
6551 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
6552 struct dwarf2_cu *cu)
6553 {
6554 struct fnfieldlist *flp;
6555 int total_length = 0;
6556 int i;
6557
6558 if (cu->language == language_ada)
6559 error ("unexpected member functions in Ada type");
6560
6561 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6562 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6563 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6564
6565 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6566 {
6567 struct nextfnfield *nfp = flp->head;
6568 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6569 int k;
6570
6571 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6572 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6573 fn_flp->fn_fields = (struct fn_field *)
6574 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6575 for (k = flp->length; (k--, nfp); nfp = nfp->next)
6576 fn_flp->fn_fields[k] = nfp->fnfield;
6577
6578 total_length += flp->length;
6579 }
6580
6581 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6582 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6583 }
6584
6585 /* Returns non-zero if NAME is the name of a vtable member in CU's
6586 language, zero otherwise. */
6587 static int
6588 is_vtable_name (const char *name, struct dwarf2_cu *cu)
6589 {
6590 static const char vptr[] = "_vptr";
6591 static const char vtable[] = "vtable";
6592
6593 /* Look for the C++ and Java forms of the vtable. */
6594 if ((cu->language == language_java
6595 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6596 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6597 && is_cplus_marker (name[sizeof (vptr) - 1])))
6598 return 1;
6599
6600 return 0;
6601 }
6602
6603 /* GCC outputs unnamed structures that are really pointers to member
6604 functions, with the ABI-specified layout. If TYPE describes
6605 such a structure, smash it into a member function type.
6606
6607 GCC shouldn't do this; it should just output pointer to member DIEs.
6608 This is GCC PR debug/28767. */
6609
6610 static void
6611 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
6612 {
6613 struct type *pfn_type, *domain_type, *new_type;
6614
6615 /* Check for a structure with no name and two children. */
6616 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6617 return;
6618
6619 /* Check for __pfn and __delta members. */
6620 if (TYPE_FIELD_NAME (type, 0) == NULL
6621 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6622 || TYPE_FIELD_NAME (type, 1) == NULL
6623 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6624 return;
6625
6626 /* Find the type of the method. */
6627 pfn_type = TYPE_FIELD_TYPE (type, 0);
6628 if (pfn_type == NULL
6629 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6630 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
6631 return;
6632
6633 /* Look for the "this" argument. */
6634 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6635 if (TYPE_NFIELDS (pfn_type) == 0
6636 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
6637 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
6638 return;
6639
6640 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
6641 new_type = alloc_type (objfile);
6642 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
6643 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6644 TYPE_VARARGS (pfn_type));
6645 smash_to_methodptr_type (type, new_type);
6646 }
6647
6648 /* Called when we find the DIE that starts a structure or union scope
6649 (definition) to create a type for the structure or union. Fill in
6650 the type's name and general properties; the members will not be
6651 processed until process_structure_type.
6652
6653 NOTE: we need to call these functions regardless of whether or not the
6654 DIE has a DW_AT_name attribute, since it might be an anonymous
6655 structure or union. This gets the type entered into our set of
6656 user defined types.
6657
6658 However, if the structure is incomplete (an opaque struct/union)
6659 then suppress creating a symbol table entry for it since gdb only
6660 wants to find the one with the complete definition. Note that if
6661 it is complete, we just call new_symbol, which does it's own
6662 checking about whether the struct/union is anonymous or not (and
6663 suppresses creating a symbol table entry itself). */
6664
6665 static struct type *
6666 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
6667 {
6668 struct objfile *objfile = cu->objfile;
6669 struct type *type;
6670 struct attribute *attr;
6671 char *name;
6672
6673 /* If the definition of this type lives in .debug_types, read that type.
6674 Don't follow DW_AT_specification though, that will take us back up
6675 the chain and we want to go down. */
6676 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6677 if (attr)
6678 {
6679 struct dwarf2_cu *type_cu = cu;
6680 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6681
6682 /* We could just recurse on read_structure_type, but we need to call
6683 get_die_type to ensure only one type for this DIE is created.
6684 This is important, for example, because for c++ classes we need
6685 TYPE_NAME set which is only done by new_symbol. Blech. */
6686 type = read_type_die (type_die, type_cu);
6687
6688 /* TYPE_CU may not be the same as CU.
6689 Ensure TYPE is recorded in CU's type_hash table. */
6690 return set_die_type (die, type, cu);
6691 }
6692
6693 type = alloc_type (objfile);
6694 INIT_CPLUS_SPECIFIC (type);
6695
6696 name = dwarf2_name (die, cu);
6697 if (name != NULL)
6698 {
6699 if (cu->language == language_cplus
6700 || cu->language == language_java)
6701 {
6702 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6703
6704 /* dwarf2_full_name might have already finished building the DIE's
6705 type. If so, there is no need to continue. */
6706 if (get_die_type (die, cu) != NULL)
6707 return get_die_type (die, cu);
6708
6709 TYPE_TAG_NAME (type) = full_name;
6710 if (die->tag == DW_TAG_structure_type
6711 || die->tag == DW_TAG_class_type)
6712 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6713 }
6714 else
6715 {
6716 /* The name is already allocated along with this objfile, so
6717 we don't need to duplicate it for the type. */
6718 TYPE_TAG_NAME (type) = (char *) name;
6719 if (die->tag == DW_TAG_class_type)
6720 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6721 }
6722 }
6723
6724 if (die->tag == DW_TAG_structure_type)
6725 {
6726 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6727 }
6728 else if (die->tag == DW_TAG_union_type)
6729 {
6730 TYPE_CODE (type) = TYPE_CODE_UNION;
6731 }
6732 else
6733 {
6734 TYPE_CODE (type) = TYPE_CODE_CLASS;
6735 }
6736
6737 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6738 TYPE_DECLARED_CLASS (type) = 1;
6739
6740 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6741 if (attr)
6742 {
6743 TYPE_LENGTH (type) = DW_UNSND (attr);
6744 }
6745 else
6746 {
6747 TYPE_LENGTH (type) = 0;
6748 }
6749
6750 TYPE_STUB_SUPPORTED (type) = 1;
6751 if (die_is_declaration (die, cu))
6752 TYPE_STUB (type) = 1;
6753 else if (attr == NULL && die->child == NULL
6754 && producer_is_realview (cu->producer))
6755 /* RealView does not output the required DW_AT_declaration
6756 on incomplete types. */
6757 TYPE_STUB (type) = 1;
6758
6759 /* We need to add the type field to the die immediately so we don't
6760 infinitely recurse when dealing with pointers to the structure
6761 type within the structure itself. */
6762 set_die_type (die, type, cu);
6763
6764 /* set_die_type should be already done. */
6765 set_descriptive_type (type, die, cu);
6766
6767 return type;
6768 }
6769
6770 /* Finish creating a structure or union type, including filling in
6771 its members and creating a symbol for it. */
6772
6773 static void
6774 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6775 {
6776 struct objfile *objfile = cu->objfile;
6777 struct die_info *child_die = die->child;
6778 struct type *type;
6779
6780 type = get_die_type (die, cu);
6781 if (type == NULL)
6782 type = read_structure_type (die, cu);
6783
6784 if (die->child != NULL && ! die_is_declaration (die, cu))
6785 {
6786 struct field_info fi;
6787 struct die_info *child_die;
6788 VEC (symbolp) *template_args = NULL;
6789 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
6790
6791 memset (&fi, 0, sizeof (struct field_info));
6792
6793 child_die = die->child;
6794
6795 while (child_die && child_die->tag)
6796 {
6797 if (child_die->tag == DW_TAG_member
6798 || child_die->tag == DW_TAG_variable)
6799 {
6800 /* NOTE: carlton/2002-11-05: A C++ static data member
6801 should be a DW_TAG_member that is a declaration, but
6802 all versions of G++ as of this writing (so through at
6803 least 3.2.1) incorrectly generate DW_TAG_variable
6804 tags for them instead. */
6805 dwarf2_add_field (&fi, child_die, cu);
6806 }
6807 else if (child_die->tag == DW_TAG_subprogram)
6808 {
6809 /* C++ member function. */
6810 dwarf2_add_member_fn (&fi, child_die, type, cu);
6811 }
6812 else if (child_die->tag == DW_TAG_inheritance)
6813 {
6814 /* C++ base class field. */
6815 dwarf2_add_field (&fi, child_die, cu);
6816 }
6817 else if (child_die->tag == DW_TAG_typedef)
6818 dwarf2_add_typedef (&fi, child_die, cu);
6819 else if (child_die->tag == DW_TAG_template_type_param
6820 || child_die->tag == DW_TAG_template_value_param)
6821 {
6822 struct symbol *arg = new_symbol (child_die, NULL, cu);
6823
6824 if (arg != NULL)
6825 VEC_safe_push (symbolp, template_args, arg);
6826 }
6827
6828 child_die = sibling_die (child_die);
6829 }
6830
6831 /* Attach template arguments to type. */
6832 if (! VEC_empty (symbolp, template_args))
6833 {
6834 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6835 TYPE_N_TEMPLATE_ARGUMENTS (type)
6836 = VEC_length (symbolp, template_args);
6837 TYPE_TEMPLATE_ARGUMENTS (type)
6838 = obstack_alloc (&objfile->objfile_obstack,
6839 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6840 * sizeof (struct symbol *)));
6841 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
6842 VEC_address (symbolp, template_args),
6843 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6844 * sizeof (struct symbol *)));
6845 VEC_free (symbolp, template_args);
6846 }
6847
6848 /* Attach fields and member functions to the type. */
6849 if (fi.nfields)
6850 dwarf2_attach_fields_to_type (&fi, type, cu);
6851 if (fi.nfnfields)
6852 {
6853 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
6854
6855 /* Get the type which refers to the base class (possibly this
6856 class itself) which contains the vtable pointer for the current
6857 class from the DW_AT_containing_type attribute. This use of
6858 DW_AT_containing_type is a GNU extension. */
6859
6860 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6861 {
6862 struct type *t = die_containing_type (die, cu);
6863
6864 TYPE_VPTR_BASETYPE (type) = t;
6865 if (type == t)
6866 {
6867 int i;
6868
6869 /* Our own class provides vtbl ptr. */
6870 for (i = TYPE_NFIELDS (t) - 1;
6871 i >= TYPE_N_BASECLASSES (t);
6872 --i)
6873 {
6874 char *fieldname = TYPE_FIELD_NAME (t, i);
6875
6876 if (is_vtable_name (fieldname, cu))
6877 {
6878 TYPE_VPTR_FIELDNO (type) = i;
6879 break;
6880 }
6881 }
6882
6883 /* Complain if virtual function table field not found. */
6884 if (i < TYPE_N_BASECLASSES (t))
6885 complaint (&symfile_complaints,
6886 _("virtual function table pointer not found when defining class '%s'"),
6887 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
6888 "");
6889 }
6890 else
6891 {
6892 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
6893 }
6894 }
6895 else if (cu->producer
6896 && strncmp (cu->producer,
6897 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
6898 {
6899 /* The IBM XLC compiler does not provide direct indication
6900 of the containing type, but the vtable pointer is
6901 always named __vfp. */
6902
6903 int i;
6904
6905 for (i = TYPE_NFIELDS (type) - 1;
6906 i >= TYPE_N_BASECLASSES (type);
6907 --i)
6908 {
6909 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
6910 {
6911 TYPE_VPTR_FIELDNO (type) = i;
6912 TYPE_VPTR_BASETYPE (type) = type;
6913 break;
6914 }
6915 }
6916 }
6917 }
6918
6919 /* Copy fi.typedef_field_list linked list elements content into the
6920 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
6921 if (fi.typedef_field_list)
6922 {
6923 int i = fi.typedef_field_list_count;
6924
6925 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6926 TYPE_TYPEDEF_FIELD_ARRAY (type)
6927 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
6928 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
6929
6930 /* Reverse the list order to keep the debug info elements order. */
6931 while (--i >= 0)
6932 {
6933 struct typedef_field *dest, *src;
6934
6935 dest = &TYPE_TYPEDEF_FIELD (type, i);
6936 src = &fi.typedef_field_list->field;
6937 fi.typedef_field_list = fi.typedef_field_list->next;
6938 *dest = *src;
6939 }
6940 }
6941
6942 do_cleanups (back_to);
6943 }
6944
6945 quirk_gcc_member_function_pointer (type, cu->objfile);
6946
6947 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
6948 snapshots) has been known to create a die giving a declaration
6949 for a class that has, as a child, a die giving a definition for a
6950 nested class. So we have to process our children even if the
6951 current die is a declaration. Normally, of course, a declaration
6952 won't have any children at all. */
6953
6954 while (child_die != NULL && child_die->tag)
6955 {
6956 if (child_die->tag == DW_TAG_member
6957 || child_die->tag == DW_TAG_variable
6958 || child_die->tag == DW_TAG_inheritance
6959 || child_die->tag == DW_TAG_template_value_param
6960 || child_die->tag == DW_TAG_template_type_param)
6961 {
6962 /* Do nothing. */
6963 }
6964 else
6965 process_die (child_die, cu);
6966
6967 child_die = sibling_die (child_die);
6968 }
6969
6970 /* Do not consider external references. According to the DWARF standard,
6971 these DIEs are identified by the fact that they have no byte_size
6972 attribute, and a declaration attribute. */
6973 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
6974 || !die_is_declaration (die, cu))
6975 new_symbol (die, type, cu);
6976 }
6977
6978 /* Given a DW_AT_enumeration_type die, set its type. We do not
6979 complete the type's fields yet, or create any symbols. */
6980
6981 static struct type *
6982 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
6983 {
6984 struct objfile *objfile = cu->objfile;
6985 struct type *type;
6986 struct attribute *attr;
6987 const char *name;
6988
6989 /* If the definition of this type lives in .debug_types, read that type.
6990 Don't follow DW_AT_specification though, that will take us back up
6991 the chain and we want to go down. */
6992 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6993 if (attr)
6994 {
6995 struct dwarf2_cu *type_cu = cu;
6996 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6997
6998 type = read_type_die (type_die, type_cu);
6999
7000 /* TYPE_CU may not be the same as CU.
7001 Ensure TYPE is recorded in CU's type_hash table. */
7002 return set_die_type (die, type, cu);
7003 }
7004
7005 type = alloc_type (objfile);
7006
7007 TYPE_CODE (type) = TYPE_CODE_ENUM;
7008 name = dwarf2_full_name (NULL, die, cu);
7009 if (name != NULL)
7010 TYPE_TAG_NAME (type) = (char *) name;
7011
7012 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7013 if (attr)
7014 {
7015 TYPE_LENGTH (type) = DW_UNSND (attr);
7016 }
7017 else
7018 {
7019 TYPE_LENGTH (type) = 0;
7020 }
7021
7022 /* The enumeration DIE can be incomplete. In Ada, any type can be
7023 declared as private in the package spec, and then defined only
7024 inside the package body. Such types are known as Taft Amendment
7025 Types. When another package uses such a type, an incomplete DIE
7026 may be generated by the compiler. */
7027 if (die_is_declaration (die, cu))
7028 TYPE_STUB (type) = 1;
7029
7030 return set_die_type (die, type, cu);
7031 }
7032
7033 /* Given a pointer to a die which begins an enumeration, process all
7034 the dies that define the members of the enumeration, and create the
7035 symbol for the enumeration type.
7036
7037 NOTE: We reverse the order of the element list. */
7038
7039 static void
7040 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7041 {
7042 struct type *this_type;
7043
7044 this_type = get_die_type (die, cu);
7045 if (this_type == NULL)
7046 this_type = read_enumeration_type (die, cu);
7047
7048 if (die->child != NULL)
7049 {
7050 struct die_info *child_die;
7051 struct symbol *sym;
7052 struct field *fields = NULL;
7053 int num_fields = 0;
7054 int unsigned_enum = 1;
7055 char *name;
7056
7057 child_die = die->child;
7058 while (child_die && child_die->tag)
7059 {
7060 if (child_die->tag != DW_TAG_enumerator)
7061 {
7062 process_die (child_die, cu);
7063 }
7064 else
7065 {
7066 name = dwarf2_name (child_die, cu);
7067 if (name)
7068 {
7069 sym = new_symbol (child_die, this_type, cu);
7070 if (SYMBOL_VALUE (sym) < 0)
7071 unsigned_enum = 0;
7072
7073 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7074 {
7075 fields = (struct field *)
7076 xrealloc (fields,
7077 (num_fields + DW_FIELD_ALLOC_CHUNK)
7078 * sizeof (struct field));
7079 }
7080
7081 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
7082 FIELD_TYPE (fields[num_fields]) = NULL;
7083 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
7084 FIELD_BITSIZE (fields[num_fields]) = 0;
7085
7086 num_fields++;
7087 }
7088 }
7089
7090 child_die = sibling_die (child_die);
7091 }
7092
7093 if (num_fields)
7094 {
7095 TYPE_NFIELDS (this_type) = num_fields;
7096 TYPE_FIELDS (this_type) = (struct field *)
7097 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7098 memcpy (TYPE_FIELDS (this_type), fields,
7099 sizeof (struct field) * num_fields);
7100 xfree (fields);
7101 }
7102 if (unsigned_enum)
7103 TYPE_UNSIGNED (this_type) = 1;
7104 }
7105
7106 new_symbol (die, this_type, cu);
7107 }
7108
7109 /* Extract all information from a DW_TAG_array_type DIE and put it in
7110 the DIE's type field. For now, this only handles one dimensional
7111 arrays. */
7112
7113 static struct type *
7114 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
7115 {
7116 struct objfile *objfile = cu->objfile;
7117 struct die_info *child_die;
7118 struct type *type;
7119 struct type *element_type, *range_type, *index_type;
7120 struct type **range_types = NULL;
7121 struct attribute *attr;
7122 int ndim = 0;
7123 struct cleanup *back_to;
7124 char *name;
7125
7126 element_type = die_type (die, cu);
7127
7128 /* The die_type call above may have already set the type for this DIE. */
7129 type = get_die_type (die, cu);
7130 if (type)
7131 return type;
7132
7133 /* Irix 6.2 native cc creates array types without children for
7134 arrays with unspecified length. */
7135 if (die->child == NULL)
7136 {
7137 index_type = objfile_type (objfile)->builtin_int;
7138 range_type = create_range_type (NULL, index_type, 0, -1);
7139 type = create_array_type (NULL, element_type, range_type);
7140 return set_die_type (die, type, cu);
7141 }
7142
7143 back_to = make_cleanup (null_cleanup, NULL);
7144 child_die = die->child;
7145 while (child_die && child_die->tag)
7146 {
7147 if (child_die->tag == DW_TAG_subrange_type)
7148 {
7149 struct type *child_type = read_type_die (child_die, cu);
7150
7151 if (child_type != NULL)
7152 {
7153 /* The range type was succesfully read. Save it for
7154 the array type creation. */
7155 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7156 {
7157 range_types = (struct type **)
7158 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7159 * sizeof (struct type *));
7160 if (ndim == 0)
7161 make_cleanup (free_current_contents, &range_types);
7162 }
7163 range_types[ndim++] = child_type;
7164 }
7165 }
7166 child_die = sibling_die (child_die);
7167 }
7168
7169 /* Dwarf2 dimensions are output from left to right, create the
7170 necessary array types in backwards order. */
7171
7172 type = element_type;
7173
7174 if (read_array_order (die, cu) == DW_ORD_col_major)
7175 {
7176 int i = 0;
7177
7178 while (i < ndim)
7179 type = create_array_type (NULL, type, range_types[i++]);
7180 }
7181 else
7182 {
7183 while (ndim-- > 0)
7184 type = create_array_type (NULL, type, range_types[ndim]);
7185 }
7186
7187 /* Understand Dwarf2 support for vector types (like they occur on
7188 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7189 array type. This is not part of the Dwarf2/3 standard yet, but a
7190 custom vendor extension. The main difference between a regular
7191 array and the vector variant is that vectors are passed by value
7192 to functions. */
7193 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
7194 if (attr)
7195 make_vector_type (type);
7196
7197 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
7198 implementation may choose to implement triple vectors using this
7199 attribute. */
7200 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7201 if (attr)
7202 {
7203 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
7204 TYPE_LENGTH (type) = DW_UNSND (attr);
7205 else
7206 complaint (&symfile_complaints, _("\
7207 DW_AT_byte_size for array type smaller than the total size of elements"));
7208 }
7209
7210 name = dwarf2_name (die, cu);
7211 if (name)
7212 TYPE_NAME (type) = name;
7213
7214 /* Install the type in the die. */
7215 set_die_type (die, type, cu);
7216
7217 /* set_die_type should be already done. */
7218 set_descriptive_type (type, die, cu);
7219
7220 do_cleanups (back_to);
7221
7222 return type;
7223 }
7224
7225 static enum dwarf_array_dim_ordering
7226 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7227 {
7228 struct attribute *attr;
7229
7230 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7231
7232 if (attr) return DW_SND (attr);
7233
7234 /*
7235 GNU F77 is a special case, as at 08/2004 array type info is the
7236 opposite order to the dwarf2 specification, but data is still
7237 laid out as per normal fortran.
7238
7239 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7240 version checking.
7241 */
7242
7243 if (cu->language == language_fortran
7244 && cu->producer && strstr (cu->producer, "GNU F77"))
7245 {
7246 return DW_ORD_row_major;
7247 }
7248
7249 switch (cu->language_defn->la_array_ordering)
7250 {
7251 case array_column_major:
7252 return DW_ORD_col_major;
7253 case array_row_major:
7254 default:
7255 return DW_ORD_row_major;
7256 };
7257 }
7258
7259 /* Extract all information from a DW_TAG_set_type DIE and put it in
7260 the DIE's type field. */
7261
7262 static struct type *
7263 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7264 {
7265 struct type *domain_type, *set_type;
7266 struct attribute *attr;
7267
7268 domain_type = die_type (die, cu);
7269
7270 /* The die_type call above may have already set the type for this DIE. */
7271 set_type = get_die_type (die, cu);
7272 if (set_type)
7273 return set_type;
7274
7275 set_type = create_set_type (NULL, domain_type);
7276
7277 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7278 if (attr)
7279 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7280
7281 return set_die_type (die, set_type, cu);
7282 }
7283
7284 /* First cut: install each common block member as a global variable. */
7285
7286 static void
7287 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
7288 {
7289 struct die_info *child_die;
7290 struct attribute *attr;
7291 struct symbol *sym;
7292 CORE_ADDR base = (CORE_ADDR) 0;
7293
7294 attr = dwarf2_attr (die, DW_AT_location, cu);
7295 if (attr)
7296 {
7297 /* Support the .debug_loc offsets */
7298 if (attr_form_is_block (attr))
7299 {
7300 base = decode_locdesc (DW_BLOCK (attr), cu);
7301 }
7302 else if (attr_form_is_section_offset (attr))
7303 {
7304 dwarf2_complex_location_expr_complaint ();
7305 }
7306 else
7307 {
7308 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7309 "common block member");
7310 }
7311 }
7312 if (die->child != NULL)
7313 {
7314 child_die = die->child;
7315 while (child_die && child_die->tag)
7316 {
7317 sym = new_symbol (child_die, NULL, cu);
7318 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
7319 if (sym != NULL && attr != NULL)
7320 {
7321 CORE_ADDR byte_offset = 0;
7322
7323 if (attr_form_is_section_offset (attr))
7324 dwarf2_complex_location_expr_complaint ();
7325 else if (attr_form_is_constant (attr))
7326 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7327 else if (attr_form_is_block (attr))
7328 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7329 else
7330 dwarf2_complex_location_expr_complaint ();
7331
7332 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
7333 add_symbol_to_list (sym, &global_symbols);
7334 }
7335 child_die = sibling_die (child_die);
7336 }
7337 }
7338 }
7339
7340 /* Create a type for a C++ namespace. */
7341
7342 static struct type *
7343 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
7344 {
7345 struct objfile *objfile = cu->objfile;
7346 const char *previous_prefix, *name;
7347 int is_anonymous;
7348 struct type *type;
7349
7350 /* For extensions, reuse the type of the original namespace. */
7351 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7352 {
7353 struct die_info *ext_die;
7354 struct dwarf2_cu *ext_cu = cu;
7355
7356 ext_die = dwarf2_extension (die, &ext_cu);
7357 type = read_type_die (ext_die, ext_cu);
7358
7359 /* EXT_CU may not be the same as CU.
7360 Ensure TYPE is recorded in CU's type_hash table. */
7361 return set_die_type (die, type, cu);
7362 }
7363
7364 name = namespace_name (die, &is_anonymous, cu);
7365
7366 /* Now build the name of the current namespace. */
7367
7368 previous_prefix = determine_prefix (die, cu);
7369 if (previous_prefix[0] != '\0')
7370 name = typename_concat (&objfile->objfile_obstack,
7371 previous_prefix, name, 0, cu);
7372
7373 /* Create the type. */
7374 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7375 objfile);
7376 TYPE_NAME (type) = (char *) name;
7377 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7378
7379 return set_die_type (die, type, cu);
7380 }
7381
7382 /* Read a C++ namespace. */
7383
7384 static void
7385 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7386 {
7387 struct objfile *objfile = cu->objfile;
7388 const char *name;
7389 int is_anonymous;
7390
7391 /* Add a symbol associated to this if we haven't seen the namespace
7392 before. Also, add a using directive if it's an anonymous
7393 namespace. */
7394
7395 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
7396 {
7397 struct type *type;
7398
7399 type = read_type_die (die, cu);
7400 new_symbol (die, type, cu);
7401
7402 name = namespace_name (die, &is_anonymous, cu);
7403 if (is_anonymous)
7404 {
7405 const char *previous_prefix = determine_prefix (die, cu);
7406
7407 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
7408 NULL, &objfile->objfile_obstack);
7409 }
7410 }
7411
7412 if (die->child != NULL)
7413 {
7414 struct die_info *child_die = die->child;
7415
7416 while (child_die && child_die->tag)
7417 {
7418 process_die (child_die, cu);
7419 child_die = sibling_die (child_die);
7420 }
7421 }
7422 }
7423
7424 /* Read a Fortran module as type. This DIE can be only a declaration used for
7425 imported module. Still we need that type as local Fortran "use ... only"
7426 declaration imports depend on the created type in determine_prefix. */
7427
7428 static struct type *
7429 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7430 {
7431 struct objfile *objfile = cu->objfile;
7432 char *module_name;
7433 struct type *type;
7434
7435 module_name = dwarf2_name (die, cu);
7436 if (!module_name)
7437 complaint (&symfile_complaints, _("DW_TAG_module has no name, offset 0x%x"),
7438 die->offset);
7439 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7440
7441 /* determine_prefix uses TYPE_TAG_NAME. */
7442 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7443
7444 return set_die_type (die, type, cu);
7445 }
7446
7447 /* Read a Fortran module. */
7448
7449 static void
7450 read_module (struct die_info *die, struct dwarf2_cu *cu)
7451 {
7452 struct die_info *child_die = die->child;
7453
7454 while (child_die && child_die->tag)
7455 {
7456 process_die (child_die, cu);
7457 child_die = sibling_die (child_die);
7458 }
7459 }
7460
7461 /* Return the name of the namespace represented by DIE. Set
7462 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7463 namespace. */
7464
7465 static const char *
7466 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
7467 {
7468 struct die_info *current_die;
7469 const char *name = NULL;
7470
7471 /* Loop through the extensions until we find a name. */
7472
7473 for (current_die = die;
7474 current_die != NULL;
7475 current_die = dwarf2_extension (die, &cu))
7476 {
7477 name = dwarf2_name (current_die, cu);
7478 if (name != NULL)
7479 break;
7480 }
7481
7482 /* Is it an anonymous namespace? */
7483
7484 *is_anonymous = (name == NULL);
7485 if (*is_anonymous)
7486 name = "(anonymous namespace)";
7487
7488 return name;
7489 }
7490
7491 /* Extract all information from a DW_TAG_pointer_type DIE and add to
7492 the user defined type vector. */
7493
7494 static struct type *
7495 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
7496 {
7497 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7498 struct comp_unit_head *cu_header = &cu->header;
7499 struct type *type;
7500 struct attribute *attr_byte_size;
7501 struct attribute *attr_address_class;
7502 int byte_size, addr_class;
7503 struct type *target_type;
7504
7505 target_type = die_type (die, cu);
7506
7507 /* The die_type call above may have already set the type for this DIE. */
7508 type = get_die_type (die, cu);
7509 if (type)
7510 return type;
7511
7512 type = lookup_pointer_type (target_type);
7513
7514 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
7515 if (attr_byte_size)
7516 byte_size = DW_UNSND (attr_byte_size);
7517 else
7518 byte_size = cu_header->addr_size;
7519
7520 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
7521 if (attr_address_class)
7522 addr_class = DW_UNSND (attr_address_class);
7523 else
7524 addr_class = DW_ADDR_none;
7525
7526 /* If the pointer size or address class is different than the
7527 default, create a type variant marked as such and set the
7528 length accordingly. */
7529 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
7530 {
7531 if (gdbarch_address_class_type_flags_p (gdbarch))
7532 {
7533 int type_flags;
7534
7535 type_flags = gdbarch_address_class_type_flags
7536 (gdbarch, byte_size, addr_class);
7537 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7538 == 0);
7539 type = make_type_with_address_space (type, type_flags);
7540 }
7541 else if (TYPE_LENGTH (type) != byte_size)
7542 {
7543 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
7544 }
7545 else
7546 {
7547 /* Should we also complain about unhandled address classes? */
7548 }
7549 }
7550
7551 TYPE_LENGTH (type) = byte_size;
7552 return set_die_type (die, type, cu);
7553 }
7554
7555 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7556 the user defined type vector. */
7557
7558 static struct type *
7559 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
7560 {
7561 struct type *type;
7562 struct type *to_type;
7563 struct type *domain;
7564
7565 to_type = die_type (die, cu);
7566 domain = die_containing_type (die, cu);
7567
7568 /* The calls above may have already set the type for this DIE. */
7569 type = get_die_type (die, cu);
7570 if (type)
7571 return type;
7572
7573 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7574 type = lookup_methodptr_type (to_type);
7575 else
7576 type = lookup_memberptr_type (to_type, domain);
7577
7578 return set_die_type (die, type, cu);
7579 }
7580
7581 /* Extract all information from a DW_TAG_reference_type DIE and add to
7582 the user defined type vector. */
7583
7584 static struct type *
7585 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
7586 {
7587 struct comp_unit_head *cu_header = &cu->header;
7588 struct type *type, *target_type;
7589 struct attribute *attr;
7590
7591 target_type = die_type (die, cu);
7592
7593 /* The die_type call above may have already set the type for this DIE. */
7594 type = get_die_type (die, cu);
7595 if (type)
7596 return type;
7597
7598 type = lookup_reference_type (target_type);
7599 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7600 if (attr)
7601 {
7602 TYPE_LENGTH (type) = DW_UNSND (attr);
7603 }
7604 else
7605 {
7606 TYPE_LENGTH (type) = cu_header->addr_size;
7607 }
7608 return set_die_type (die, type, cu);
7609 }
7610
7611 static struct type *
7612 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
7613 {
7614 struct type *base_type, *cv_type;
7615
7616 base_type = die_type (die, cu);
7617
7618 /* The die_type call above may have already set the type for this DIE. */
7619 cv_type = get_die_type (die, cu);
7620 if (cv_type)
7621 return cv_type;
7622
7623 /* In case the const qualifier is applied to an array type, the element type
7624 is so qualified, not the array type (section 6.7.3 of C99). */
7625 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7626 {
7627 struct type *el_type, *inner_array;
7628
7629 base_type = copy_type (base_type);
7630 inner_array = base_type;
7631
7632 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7633 {
7634 TYPE_TARGET_TYPE (inner_array) =
7635 copy_type (TYPE_TARGET_TYPE (inner_array));
7636 inner_array = TYPE_TARGET_TYPE (inner_array);
7637 }
7638
7639 el_type = TYPE_TARGET_TYPE (inner_array);
7640 TYPE_TARGET_TYPE (inner_array) =
7641 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7642
7643 return set_die_type (die, base_type, cu);
7644 }
7645
7646 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7647 return set_die_type (die, cv_type, cu);
7648 }
7649
7650 static struct type *
7651 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
7652 {
7653 struct type *base_type, *cv_type;
7654
7655 base_type = die_type (die, cu);
7656
7657 /* The die_type call above may have already set the type for this DIE. */
7658 cv_type = get_die_type (die, cu);
7659 if (cv_type)
7660 return cv_type;
7661
7662 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7663 return set_die_type (die, cv_type, cu);
7664 }
7665
7666 /* Extract all information from a DW_TAG_string_type DIE and add to
7667 the user defined type vector. It isn't really a user defined type,
7668 but it behaves like one, with other DIE's using an AT_user_def_type
7669 attribute to reference it. */
7670
7671 static struct type *
7672 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
7673 {
7674 struct objfile *objfile = cu->objfile;
7675 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7676 struct type *type, *range_type, *index_type, *char_type;
7677 struct attribute *attr;
7678 unsigned int length;
7679
7680 attr = dwarf2_attr (die, DW_AT_string_length, cu);
7681 if (attr)
7682 {
7683 length = DW_UNSND (attr);
7684 }
7685 else
7686 {
7687 /* check for the DW_AT_byte_size attribute */
7688 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7689 if (attr)
7690 {
7691 length = DW_UNSND (attr);
7692 }
7693 else
7694 {
7695 length = 1;
7696 }
7697 }
7698
7699 index_type = objfile_type (objfile)->builtin_int;
7700 range_type = create_range_type (NULL, index_type, 1, length);
7701 char_type = language_string_char_type (cu->language_defn, gdbarch);
7702 type = create_string_type (NULL, char_type, range_type);
7703
7704 return set_die_type (die, type, cu);
7705 }
7706
7707 /* Handle DIES due to C code like:
7708
7709 struct foo
7710 {
7711 int (*funcp)(int a, long l);
7712 int b;
7713 };
7714
7715 ('funcp' generates a DW_TAG_subroutine_type DIE)
7716 */
7717
7718 static struct type *
7719 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
7720 {
7721 struct type *type; /* Type that this function returns */
7722 struct type *ftype; /* Function that returns above type */
7723 struct attribute *attr;
7724
7725 type = die_type (die, cu);
7726
7727 /* The die_type call above may have already set the type for this DIE. */
7728 ftype = get_die_type (die, cu);
7729 if (ftype)
7730 return ftype;
7731
7732 ftype = lookup_function_type (type);
7733
7734 /* All functions in C++, Pascal and Java have prototypes. */
7735 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
7736 if ((attr && (DW_UNSND (attr) != 0))
7737 || cu->language == language_cplus
7738 || cu->language == language_java
7739 || cu->language == language_pascal)
7740 TYPE_PROTOTYPED (ftype) = 1;
7741 else if (producer_is_realview (cu->producer))
7742 /* RealView does not emit DW_AT_prototyped. We can not
7743 distinguish prototyped and unprototyped functions; default to
7744 prototyped, since that is more common in modern code (and
7745 RealView warns about unprototyped functions). */
7746 TYPE_PROTOTYPED (ftype) = 1;
7747
7748 /* Store the calling convention in the type if it's available in
7749 the subroutine die. Otherwise set the calling convention to
7750 the default value DW_CC_normal. */
7751 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7752 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
7753
7754 /* We need to add the subroutine type to the die immediately so
7755 we don't infinitely recurse when dealing with parameters
7756 declared as the same subroutine type. */
7757 set_die_type (die, ftype, cu);
7758
7759 if (die->child != NULL)
7760 {
7761 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
7762 struct die_info *child_die;
7763 int nparams, iparams;
7764
7765 /* Count the number of parameters.
7766 FIXME: GDB currently ignores vararg functions, but knows about
7767 vararg member functions. */
7768 nparams = 0;
7769 child_die = die->child;
7770 while (child_die && child_die->tag)
7771 {
7772 if (child_die->tag == DW_TAG_formal_parameter)
7773 nparams++;
7774 else if (child_die->tag == DW_TAG_unspecified_parameters)
7775 TYPE_VARARGS (ftype) = 1;
7776 child_die = sibling_die (child_die);
7777 }
7778
7779 /* Allocate storage for parameters and fill them in. */
7780 TYPE_NFIELDS (ftype) = nparams;
7781 TYPE_FIELDS (ftype) = (struct field *)
7782 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
7783
7784 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7785 even if we error out during the parameters reading below. */
7786 for (iparams = 0; iparams < nparams; iparams++)
7787 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
7788
7789 iparams = 0;
7790 child_die = die->child;
7791 while (child_die && child_die->tag)
7792 {
7793 if (child_die->tag == DW_TAG_formal_parameter)
7794 {
7795 struct type *arg_type;
7796
7797 /* DWARF version 2 has no clean way to discern C++
7798 static and non-static member functions. G++ helps
7799 GDB by marking the first parameter for non-static
7800 member functions (which is the this pointer) as
7801 artificial. We pass this information to
7802 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
7803
7804 DWARF version 3 added DW_AT_object_pointer, which GCC
7805 4.5 does not yet generate. */
7806 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
7807 if (attr)
7808 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
7809 else
7810 {
7811 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
7812
7813 /* GCC/43521: In java, the formal parameter
7814 "this" is sometimes not marked with DW_AT_artificial. */
7815 if (cu->language == language_java)
7816 {
7817 const char *name = dwarf2_name (child_die, cu);
7818
7819 if (name && !strcmp (name, "this"))
7820 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
7821 }
7822 }
7823 arg_type = die_type (child_die, cu);
7824
7825 /* RealView does not mark THIS as const, which the testsuite
7826 expects. GCC marks THIS as const in method definitions,
7827 but not in the class specifications (GCC PR 43053). */
7828 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
7829 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
7830 {
7831 int is_this = 0;
7832 struct dwarf2_cu *arg_cu = cu;
7833 const char *name = dwarf2_name (child_die, cu);
7834
7835 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
7836 if (attr)
7837 {
7838 /* If the compiler emits this, use it. */
7839 if (follow_die_ref (die, attr, &arg_cu) == child_die)
7840 is_this = 1;
7841 }
7842 else if (name && strcmp (name, "this") == 0)
7843 /* Function definitions will have the argument names. */
7844 is_this = 1;
7845 else if (name == NULL && iparams == 0)
7846 /* Declarations may not have the names, so like
7847 elsewhere in GDB, assume an artificial first
7848 argument is "this". */
7849 is_this = 1;
7850
7851 if (is_this)
7852 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
7853 arg_type, 0);
7854 }
7855
7856 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
7857 iparams++;
7858 }
7859 child_die = sibling_die (child_die);
7860 }
7861 }
7862
7863 return ftype;
7864 }
7865
7866 static struct type *
7867 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
7868 {
7869 struct objfile *objfile = cu->objfile;
7870 const char *name = NULL;
7871 struct type *this_type;
7872
7873 name = dwarf2_full_name (NULL, die, cu);
7874 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
7875 TYPE_FLAG_TARGET_STUB, NULL, objfile);
7876 TYPE_NAME (this_type) = (char *) name;
7877 set_die_type (die, this_type, cu);
7878 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
7879 return this_type;
7880 }
7881
7882 /* Find a representation of a given base type and install
7883 it in the TYPE field of the die. */
7884
7885 static struct type *
7886 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
7887 {
7888 struct objfile *objfile = cu->objfile;
7889 struct type *type;
7890 struct attribute *attr;
7891 int encoding = 0, size = 0;
7892 char *name;
7893 enum type_code code = TYPE_CODE_INT;
7894 int type_flags = 0;
7895 struct type *target_type = NULL;
7896
7897 attr = dwarf2_attr (die, DW_AT_encoding, cu);
7898 if (attr)
7899 {
7900 encoding = DW_UNSND (attr);
7901 }
7902 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7903 if (attr)
7904 {
7905 size = DW_UNSND (attr);
7906 }
7907 name = dwarf2_name (die, cu);
7908 if (!name)
7909 {
7910 complaint (&symfile_complaints,
7911 _("DW_AT_name missing from DW_TAG_base_type"));
7912 }
7913
7914 switch (encoding)
7915 {
7916 case DW_ATE_address:
7917 /* Turn DW_ATE_address into a void * pointer. */
7918 code = TYPE_CODE_PTR;
7919 type_flags |= TYPE_FLAG_UNSIGNED;
7920 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
7921 break;
7922 case DW_ATE_boolean:
7923 code = TYPE_CODE_BOOL;
7924 type_flags |= TYPE_FLAG_UNSIGNED;
7925 break;
7926 case DW_ATE_complex_float:
7927 code = TYPE_CODE_COMPLEX;
7928 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
7929 break;
7930 case DW_ATE_decimal_float:
7931 code = TYPE_CODE_DECFLOAT;
7932 break;
7933 case DW_ATE_float:
7934 code = TYPE_CODE_FLT;
7935 break;
7936 case DW_ATE_signed:
7937 break;
7938 case DW_ATE_unsigned:
7939 type_flags |= TYPE_FLAG_UNSIGNED;
7940 break;
7941 case DW_ATE_signed_char:
7942 if (cu->language == language_ada || cu->language == language_m2
7943 || cu->language == language_pascal)
7944 code = TYPE_CODE_CHAR;
7945 break;
7946 case DW_ATE_unsigned_char:
7947 if (cu->language == language_ada || cu->language == language_m2
7948 || cu->language == language_pascal)
7949 code = TYPE_CODE_CHAR;
7950 type_flags |= TYPE_FLAG_UNSIGNED;
7951 break;
7952 case DW_ATE_UTF:
7953 /* We just treat this as an integer and then recognize the
7954 type by name elsewhere. */
7955 break;
7956
7957 default:
7958 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
7959 dwarf_type_encoding_name (encoding));
7960 break;
7961 }
7962
7963 type = init_type (code, size, type_flags, NULL, objfile);
7964 TYPE_NAME (type) = name;
7965 TYPE_TARGET_TYPE (type) = target_type;
7966
7967 if (name && strcmp (name, "char") == 0)
7968 TYPE_NOSIGN (type) = 1;
7969
7970 return set_die_type (die, type, cu);
7971 }
7972
7973 /* Read the given DW_AT_subrange DIE. */
7974
7975 static struct type *
7976 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
7977 {
7978 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7979 struct type *base_type;
7980 struct type *range_type;
7981 struct attribute *attr;
7982 LONGEST low = 0;
7983 LONGEST high = -1;
7984 char *name;
7985 LONGEST negative_mask;
7986
7987 base_type = die_type (die, cu);
7988 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
7989 check_typedef (base_type);
7990
7991 /* The die_type call above may have already set the type for this DIE. */
7992 range_type = get_die_type (die, cu);
7993 if (range_type)
7994 return range_type;
7995
7996 if (cu->language == language_fortran)
7997 {
7998 /* FORTRAN implies a lower bound of 1, if not given. */
7999 low = 1;
8000 }
8001
8002 /* FIXME: For variable sized arrays either of these could be
8003 a variable rather than a constant value. We'll allow it,
8004 but we don't know how to handle it. */
8005 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8006 if (attr)
8007 low = dwarf2_get_attr_constant_value (attr, 0);
8008
8009 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8010 if (attr)
8011 {
8012 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
8013 {
8014 /* GCC encodes arrays with unspecified or dynamic length
8015 with a DW_FORM_block1 attribute or a reference attribute.
8016 FIXME: GDB does not yet know how to handle dynamic
8017 arrays properly, treat them as arrays with unspecified
8018 length for now.
8019
8020 FIXME: jimb/2003-09-22: GDB does not really know
8021 how to handle arrays of unspecified length
8022 either; we just represent them as zero-length
8023 arrays. Choose an appropriate upper bound given
8024 the lower bound we've computed above. */
8025 high = low - 1;
8026 }
8027 else
8028 high = dwarf2_get_attr_constant_value (attr, 1);
8029 }
8030 else
8031 {
8032 attr = dwarf2_attr (die, DW_AT_count, cu);
8033 if (attr)
8034 {
8035 int count = dwarf2_get_attr_constant_value (attr, 1);
8036 high = low + count - 1;
8037 }
8038 }
8039
8040 /* Dwarf-2 specifications explicitly allows to create subrange types
8041 without specifying a base type.
8042 In that case, the base type must be set to the type of
8043 the lower bound, upper bound or count, in that order, if any of these
8044 three attributes references an object that has a type.
8045 If no base type is found, the Dwarf-2 specifications say that
8046 a signed integer type of size equal to the size of an address should
8047 be used.
8048 For the following C code: `extern char gdb_int [];'
8049 GCC produces an empty range DIE.
8050 FIXME: muller/2010-05-28: Possible references to object for low bound,
8051 high bound or count are not yet handled by this code.
8052 */
8053 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8054 {
8055 struct objfile *objfile = cu->objfile;
8056 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8057 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8058 struct type *int_type = objfile_type (objfile)->builtin_int;
8059
8060 /* Test "int", "long int", and "long long int" objfile types,
8061 and select the first one having a size above or equal to the
8062 architecture address size. */
8063 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8064 base_type = int_type;
8065 else
8066 {
8067 int_type = objfile_type (objfile)->builtin_long;
8068 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8069 base_type = int_type;
8070 else
8071 {
8072 int_type = objfile_type (objfile)->builtin_long_long;
8073 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8074 base_type = int_type;
8075 }
8076 }
8077 }
8078
8079 negative_mask =
8080 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8081 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8082 low |= negative_mask;
8083 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8084 high |= negative_mask;
8085
8086 range_type = create_range_type (NULL, base_type, low, high);
8087
8088 /* Mark arrays with dynamic length at least as an array of unspecified
8089 length. GDB could check the boundary but before it gets implemented at
8090 least allow accessing the array elements. */
8091 if (attr && attr->form == DW_FORM_block1)
8092 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8093
8094 name = dwarf2_name (die, cu);
8095 if (name)
8096 TYPE_NAME (range_type) = name;
8097
8098 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8099 if (attr)
8100 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8101
8102 set_die_type (die, range_type, cu);
8103
8104 /* set_die_type should be already done. */
8105 set_descriptive_type (range_type, die, cu);
8106
8107 return range_type;
8108 }
8109
8110 static struct type *
8111 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8112 {
8113 struct type *type;
8114
8115 /* For now, we only support the C meaning of an unspecified type: void. */
8116
8117 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8118 TYPE_NAME (type) = dwarf2_name (die, cu);
8119
8120 return set_die_type (die, type, cu);
8121 }
8122
8123 /* Trivial hash function for die_info: the hash value of a DIE
8124 is its offset in .debug_info for this objfile. */
8125
8126 static hashval_t
8127 die_hash (const void *item)
8128 {
8129 const struct die_info *die = item;
8130
8131 return die->offset;
8132 }
8133
8134 /* Trivial comparison function for die_info structures: two DIEs
8135 are equal if they have the same offset. */
8136
8137 static int
8138 die_eq (const void *item_lhs, const void *item_rhs)
8139 {
8140 const struct die_info *die_lhs = item_lhs;
8141 const struct die_info *die_rhs = item_rhs;
8142
8143 return die_lhs->offset == die_rhs->offset;
8144 }
8145
8146 /* Read a whole compilation unit into a linked list of dies. */
8147
8148 static struct die_info *
8149 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
8150 {
8151 struct die_reader_specs reader_specs;
8152 int read_abbrevs = 0;
8153 struct cleanup *back_to = NULL;
8154 struct die_info *die;
8155
8156 if (cu->dwarf2_abbrevs == NULL)
8157 {
8158 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8159 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8160 read_abbrevs = 1;
8161 }
8162
8163 gdb_assert (cu->die_hash == NULL);
8164 cu->die_hash
8165 = htab_create_alloc_ex (cu->header.length / 12,
8166 die_hash,
8167 die_eq,
8168 NULL,
8169 &cu->comp_unit_obstack,
8170 hashtab_obstack_allocate,
8171 dummy_obstack_deallocate);
8172
8173 init_cu_die_reader (&reader_specs, cu);
8174
8175 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8176
8177 if (read_abbrevs)
8178 do_cleanups (back_to);
8179
8180 return die;
8181 }
8182
8183 /* Main entry point for reading a DIE and all children.
8184 Read the DIE and dump it if requested. */
8185
8186 static struct die_info *
8187 read_die_and_children (const struct die_reader_specs *reader,
8188 gdb_byte *info_ptr,
8189 gdb_byte **new_info_ptr,
8190 struct die_info *parent)
8191 {
8192 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
8193 new_info_ptr, parent);
8194
8195 if (dwarf2_die_debug)
8196 {
8197 fprintf_unfiltered (gdb_stdlog,
8198 "\nRead die from %s of %s:\n",
8199 reader->buffer == dwarf2_per_objfile->info.buffer
8200 ? ".debug_info"
8201 : reader->buffer == dwarf2_per_objfile->types.buffer
8202 ? ".debug_types"
8203 : "unknown section",
8204 reader->abfd->filename);
8205 dump_die (result, dwarf2_die_debug);
8206 }
8207
8208 return result;
8209 }
8210
8211 /* Read a single die and all its descendents. Set the die's sibling
8212 field to NULL; set other fields in the die correctly, and set all
8213 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8214 location of the info_ptr after reading all of those dies. PARENT
8215 is the parent of the die in question. */
8216
8217 static struct die_info *
8218 read_die_and_children_1 (const struct die_reader_specs *reader,
8219 gdb_byte *info_ptr,
8220 gdb_byte **new_info_ptr,
8221 struct die_info *parent)
8222 {
8223 struct die_info *die;
8224 gdb_byte *cur_ptr;
8225 int has_children;
8226
8227 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
8228 if (die == NULL)
8229 {
8230 *new_info_ptr = cur_ptr;
8231 return NULL;
8232 }
8233 store_in_ref_table (die, reader->cu);
8234
8235 if (has_children)
8236 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
8237 else
8238 {
8239 die->child = NULL;
8240 *new_info_ptr = cur_ptr;
8241 }
8242
8243 die->sibling = NULL;
8244 die->parent = parent;
8245 return die;
8246 }
8247
8248 /* Read a die, all of its descendents, and all of its siblings; set
8249 all of the fields of all of the dies correctly. Arguments are as
8250 in read_die_and_children. */
8251
8252 static struct die_info *
8253 read_die_and_siblings (const struct die_reader_specs *reader,
8254 gdb_byte *info_ptr,
8255 gdb_byte **new_info_ptr,
8256 struct die_info *parent)
8257 {
8258 struct die_info *first_die, *last_sibling;
8259 gdb_byte *cur_ptr;
8260
8261 cur_ptr = info_ptr;
8262 first_die = last_sibling = NULL;
8263
8264 while (1)
8265 {
8266 struct die_info *die
8267 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
8268
8269 if (die == NULL)
8270 {
8271 *new_info_ptr = cur_ptr;
8272 return first_die;
8273 }
8274
8275 if (!first_die)
8276 first_die = die;
8277 else
8278 last_sibling->sibling = die;
8279
8280 last_sibling = die;
8281 }
8282 }
8283
8284 /* Read the die from the .debug_info section buffer. Set DIEP to
8285 point to a newly allocated die with its information, except for its
8286 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8287 whether the die has children or not. */
8288
8289 static gdb_byte *
8290 read_full_die (const struct die_reader_specs *reader,
8291 struct die_info **diep, gdb_byte *info_ptr,
8292 int *has_children)
8293 {
8294 unsigned int abbrev_number, bytes_read, i, offset;
8295 struct abbrev_info *abbrev;
8296 struct die_info *die;
8297 struct dwarf2_cu *cu = reader->cu;
8298 bfd *abfd = reader->abfd;
8299
8300 offset = info_ptr - reader->buffer;
8301 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8302 info_ptr += bytes_read;
8303 if (!abbrev_number)
8304 {
8305 *diep = NULL;
8306 *has_children = 0;
8307 return info_ptr;
8308 }
8309
8310 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8311 if (!abbrev)
8312 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8313 abbrev_number,
8314 bfd_get_filename (abfd));
8315
8316 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8317 die->offset = offset;
8318 die->tag = abbrev->tag;
8319 die->abbrev = abbrev_number;
8320
8321 die->num_attrs = abbrev->num_attrs;
8322
8323 for (i = 0; i < abbrev->num_attrs; ++i)
8324 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8325 abfd, info_ptr, cu);
8326
8327 *diep = die;
8328 *has_children = abbrev->has_children;
8329 return info_ptr;
8330 }
8331
8332 /* In DWARF version 2, the description of the debugging information is
8333 stored in a separate .debug_abbrev section. Before we read any
8334 dies from a section we read in all abbreviations and install them
8335 in a hash table. This function also sets flags in CU describing
8336 the data found in the abbrev table. */
8337
8338 static void
8339 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
8340 {
8341 struct comp_unit_head *cu_header = &cu->header;
8342 gdb_byte *abbrev_ptr;
8343 struct abbrev_info *cur_abbrev;
8344 unsigned int abbrev_number, bytes_read, abbrev_name;
8345 unsigned int abbrev_form, hash_number;
8346 struct attr_abbrev *cur_attrs;
8347 unsigned int allocated_attrs;
8348
8349 /* Initialize dwarf2 abbrevs */
8350 obstack_init (&cu->abbrev_obstack);
8351 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8352 (ABBREV_HASH_SIZE
8353 * sizeof (struct abbrev_info *)));
8354 memset (cu->dwarf2_abbrevs, 0,
8355 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
8356
8357 dwarf2_read_section (dwarf2_per_objfile->objfile,
8358 &dwarf2_per_objfile->abbrev);
8359 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
8360 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8361 abbrev_ptr += bytes_read;
8362
8363 allocated_attrs = ATTR_ALLOC_CHUNK;
8364 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
8365
8366 /* loop until we reach an abbrev number of 0 */
8367 while (abbrev_number)
8368 {
8369 cur_abbrev = dwarf_alloc_abbrev (cu);
8370
8371 /* read in abbrev header */
8372 cur_abbrev->number = abbrev_number;
8373 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8374 abbrev_ptr += bytes_read;
8375 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8376 abbrev_ptr += 1;
8377
8378 if (cur_abbrev->tag == DW_TAG_namespace)
8379 cu->has_namespace_info = 1;
8380
8381 /* now read in declarations */
8382 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8383 abbrev_ptr += bytes_read;
8384 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8385 abbrev_ptr += bytes_read;
8386 while (abbrev_name)
8387 {
8388 if (cur_abbrev->num_attrs == allocated_attrs)
8389 {
8390 allocated_attrs += ATTR_ALLOC_CHUNK;
8391 cur_attrs
8392 = xrealloc (cur_attrs, (allocated_attrs
8393 * sizeof (struct attr_abbrev)));
8394 }
8395
8396 /* Record whether this compilation unit might have
8397 inter-compilation-unit references. If we don't know what form
8398 this attribute will have, then it might potentially be a
8399 DW_FORM_ref_addr, so we conservatively expect inter-CU
8400 references. */
8401
8402 if (abbrev_form == DW_FORM_ref_addr
8403 || abbrev_form == DW_FORM_indirect)
8404 cu->has_form_ref_addr = 1;
8405
8406 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8407 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
8408 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8409 abbrev_ptr += bytes_read;
8410 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8411 abbrev_ptr += bytes_read;
8412 }
8413
8414 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8415 (cur_abbrev->num_attrs
8416 * sizeof (struct attr_abbrev)));
8417 memcpy (cur_abbrev->attrs, cur_attrs,
8418 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8419
8420 hash_number = abbrev_number % ABBREV_HASH_SIZE;
8421 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8422 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
8423
8424 /* Get next abbreviation.
8425 Under Irix6 the abbreviations for a compilation unit are not
8426 always properly terminated with an abbrev number of 0.
8427 Exit loop if we encounter an abbreviation which we have
8428 already read (which means we are about to read the abbreviations
8429 for the next compile unit) or if the end of the abbreviation
8430 table is reached. */
8431 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8432 >= dwarf2_per_objfile->abbrev.size)
8433 break;
8434 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8435 abbrev_ptr += bytes_read;
8436 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
8437 break;
8438 }
8439
8440 xfree (cur_attrs);
8441 }
8442
8443 /* Release the memory used by the abbrev table for a compilation unit. */
8444
8445 static void
8446 dwarf2_free_abbrev_table (void *ptr_to_cu)
8447 {
8448 struct dwarf2_cu *cu = ptr_to_cu;
8449
8450 obstack_free (&cu->abbrev_obstack, NULL);
8451 cu->dwarf2_abbrevs = NULL;
8452 }
8453
8454 /* Lookup an abbrev_info structure in the abbrev hash table. */
8455
8456 static struct abbrev_info *
8457 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
8458 {
8459 unsigned int hash_number;
8460 struct abbrev_info *abbrev;
8461
8462 hash_number = number % ABBREV_HASH_SIZE;
8463 abbrev = cu->dwarf2_abbrevs[hash_number];
8464
8465 while (abbrev)
8466 {
8467 if (abbrev->number == number)
8468 return abbrev;
8469 else
8470 abbrev = abbrev->next;
8471 }
8472 return NULL;
8473 }
8474
8475 /* Returns nonzero if TAG represents a type that we might generate a partial
8476 symbol for. */
8477
8478 static int
8479 is_type_tag_for_partial (int tag)
8480 {
8481 switch (tag)
8482 {
8483 #if 0
8484 /* Some types that would be reasonable to generate partial symbols for,
8485 that we don't at present. */
8486 case DW_TAG_array_type:
8487 case DW_TAG_file_type:
8488 case DW_TAG_ptr_to_member_type:
8489 case DW_TAG_set_type:
8490 case DW_TAG_string_type:
8491 case DW_TAG_subroutine_type:
8492 #endif
8493 case DW_TAG_base_type:
8494 case DW_TAG_class_type:
8495 case DW_TAG_interface_type:
8496 case DW_TAG_enumeration_type:
8497 case DW_TAG_structure_type:
8498 case DW_TAG_subrange_type:
8499 case DW_TAG_typedef:
8500 case DW_TAG_union_type:
8501 return 1;
8502 default:
8503 return 0;
8504 }
8505 }
8506
8507 /* Load all DIEs that are interesting for partial symbols into memory. */
8508
8509 static struct partial_die_info *
8510 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8511 int building_psymtab, struct dwarf2_cu *cu)
8512 {
8513 struct partial_die_info *part_die;
8514 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8515 struct abbrev_info *abbrev;
8516 unsigned int bytes_read;
8517 unsigned int load_all = 0;
8518
8519 int nesting_level = 1;
8520
8521 parent_die = NULL;
8522 last_die = NULL;
8523
8524 if (cu->per_cu && cu->per_cu->load_all_dies)
8525 load_all = 1;
8526
8527 cu->partial_dies
8528 = htab_create_alloc_ex (cu->header.length / 12,
8529 partial_die_hash,
8530 partial_die_eq,
8531 NULL,
8532 &cu->comp_unit_obstack,
8533 hashtab_obstack_allocate,
8534 dummy_obstack_deallocate);
8535
8536 part_die = obstack_alloc (&cu->comp_unit_obstack,
8537 sizeof (struct partial_die_info));
8538
8539 while (1)
8540 {
8541 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8542
8543 /* A NULL abbrev means the end of a series of children. */
8544 if (abbrev == NULL)
8545 {
8546 if (--nesting_level == 0)
8547 {
8548 /* PART_DIE was probably the last thing allocated on the
8549 comp_unit_obstack, so we could call obstack_free
8550 here. We don't do that because the waste is small,
8551 and will be cleaned up when we're done with this
8552 compilation unit. This way, we're also more robust
8553 against other users of the comp_unit_obstack. */
8554 return first_die;
8555 }
8556 info_ptr += bytes_read;
8557 last_die = parent_die;
8558 parent_die = parent_die->die_parent;
8559 continue;
8560 }
8561
8562 /* Check for template arguments. We never save these; if
8563 they're seen, we just mark the parent, and go on our way. */
8564 if (parent_die != NULL
8565 && cu->language == language_cplus
8566 && (abbrev->tag == DW_TAG_template_type_param
8567 || abbrev->tag == DW_TAG_template_value_param))
8568 {
8569 parent_die->has_template_arguments = 1;
8570
8571 if (!load_all)
8572 {
8573 /* We don't need a partial DIE for the template argument. */
8574 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8575 cu);
8576 continue;
8577 }
8578 }
8579
8580 /* We only recurse into subprograms looking for template arguments.
8581 Skip their other children. */
8582 if (!load_all
8583 && cu->language == language_cplus
8584 && parent_die != NULL
8585 && parent_die->tag == DW_TAG_subprogram)
8586 {
8587 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8588 continue;
8589 }
8590
8591 /* Check whether this DIE is interesting enough to save. Normally
8592 we would not be interested in members here, but there may be
8593 later variables referencing them via DW_AT_specification (for
8594 static members). */
8595 if (!load_all
8596 && !is_type_tag_for_partial (abbrev->tag)
8597 && abbrev->tag != DW_TAG_constant
8598 && abbrev->tag != DW_TAG_enumerator
8599 && abbrev->tag != DW_TAG_subprogram
8600 && abbrev->tag != DW_TAG_lexical_block
8601 && abbrev->tag != DW_TAG_variable
8602 && abbrev->tag != DW_TAG_namespace
8603 && abbrev->tag != DW_TAG_module
8604 && abbrev->tag != DW_TAG_member)
8605 {
8606 /* Otherwise we skip to the next sibling, if any. */
8607 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8608 continue;
8609 }
8610
8611 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8612 buffer, info_ptr, cu);
8613
8614 /* This two-pass algorithm for processing partial symbols has a
8615 high cost in cache pressure. Thus, handle some simple cases
8616 here which cover the majority of C partial symbols. DIEs
8617 which neither have specification tags in them, nor could have
8618 specification tags elsewhere pointing at them, can simply be
8619 processed and discarded.
8620
8621 This segment is also optional; scan_partial_symbols and
8622 add_partial_symbol will handle these DIEs if we chain
8623 them in normally. When compilers which do not emit large
8624 quantities of duplicate debug information are more common,
8625 this code can probably be removed. */
8626
8627 /* Any complete simple types at the top level (pretty much all
8628 of them, for a language without namespaces), can be processed
8629 directly. */
8630 if (parent_die == NULL
8631 && part_die->has_specification == 0
8632 && part_die->is_declaration == 0
8633 && (part_die->tag == DW_TAG_typedef
8634 || part_die->tag == DW_TAG_base_type
8635 || part_die->tag == DW_TAG_subrange_type))
8636 {
8637 if (building_psymtab && part_die->name != NULL)
8638 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8639 VAR_DOMAIN, LOC_TYPEDEF,
8640 &cu->objfile->static_psymbols,
8641 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8642 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8643 continue;
8644 }
8645
8646 /* If we're at the second level, and we're an enumerator, and
8647 our parent has no specification (meaning possibly lives in a
8648 namespace elsewhere), then we can add the partial symbol now
8649 instead of queueing it. */
8650 if (part_die->tag == DW_TAG_enumerator
8651 && parent_die != NULL
8652 && parent_die->die_parent == NULL
8653 && parent_die->tag == DW_TAG_enumeration_type
8654 && parent_die->has_specification == 0)
8655 {
8656 if (part_die->name == NULL)
8657 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
8658 else if (building_psymtab)
8659 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8660 VAR_DOMAIN, LOC_CONST,
8661 (cu->language == language_cplus
8662 || cu->language == language_java)
8663 ? &cu->objfile->global_psymbols
8664 : &cu->objfile->static_psymbols,
8665 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8666
8667 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8668 continue;
8669 }
8670
8671 /* We'll save this DIE so link it in. */
8672 part_die->die_parent = parent_die;
8673 part_die->die_sibling = NULL;
8674 part_die->die_child = NULL;
8675
8676 if (last_die && last_die == parent_die)
8677 last_die->die_child = part_die;
8678 else if (last_die)
8679 last_die->die_sibling = part_die;
8680
8681 last_die = part_die;
8682
8683 if (first_die == NULL)
8684 first_die = part_die;
8685
8686 /* Maybe add the DIE to the hash table. Not all DIEs that we
8687 find interesting need to be in the hash table, because we
8688 also have the parent/sibling/child chains; only those that we
8689 might refer to by offset later during partial symbol reading.
8690
8691 For now this means things that might have be the target of a
8692 DW_AT_specification, DW_AT_abstract_origin, or
8693 DW_AT_extension. DW_AT_extension will refer only to
8694 namespaces; DW_AT_abstract_origin refers to functions (and
8695 many things under the function DIE, but we do not recurse
8696 into function DIEs during partial symbol reading) and
8697 possibly variables as well; DW_AT_specification refers to
8698 declarations. Declarations ought to have the DW_AT_declaration
8699 flag. It happens that GCC forgets to put it in sometimes, but
8700 only for functions, not for types.
8701
8702 Adding more things than necessary to the hash table is harmless
8703 except for the performance cost. Adding too few will result in
8704 wasted time in find_partial_die, when we reread the compilation
8705 unit with load_all_dies set. */
8706
8707 if (load_all
8708 || abbrev->tag == DW_TAG_constant
8709 || abbrev->tag == DW_TAG_subprogram
8710 || abbrev->tag == DW_TAG_variable
8711 || abbrev->tag == DW_TAG_namespace
8712 || part_die->is_declaration)
8713 {
8714 void **slot;
8715
8716 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8717 part_die->offset, INSERT);
8718 *slot = part_die;
8719 }
8720
8721 part_die = obstack_alloc (&cu->comp_unit_obstack,
8722 sizeof (struct partial_die_info));
8723
8724 /* For some DIEs we want to follow their children (if any). For C
8725 we have no reason to follow the children of structures; for other
8726 languages we have to, so that we can get at method physnames
8727 to infer fully qualified class names, for DW_AT_specification,
8728 and for C++ template arguments. For C++, we also look one level
8729 inside functions to find template arguments (if the name of the
8730 function does not already contain the template arguments).
8731
8732 For Ada, we need to scan the children of subprograms and lexical
8733 blocks as well because Ada allows the definition of nested
8734 entities that could be interesting for the debugger, such as
8735 nested subprograms for instance. */
8736 if (last_die->has_children
8737 && (load_all
8738 || last_die->tag == DW_TAG_namespace
8739 || last_die->tag == DW_TAG_module
8740 || last_die->tag == DW_TAG_enumeration_type
8741 || (cu->language == language_cplus
8742 && last_die->tag == DW_TAG_subprogram
8743 && (last_die->name == NULL
8744 || strchr (last_die->name, '<') == NULL))
8745 || (cu->language != language_c
8746 && (last_die->tag == DW_TAG_class_type
8747 || last_die->tag == DW_TAG_interface_type
8748 || last_die->tag == DW_TAG_structure_type
8749 || last_die->tag == DW_TAG_union_type))
8750 || (cu->language == language_ada
8751 && (last_die->tag == DW_TAG_subprogram
8752 || last_die->tag == DW_TAG_lexical_block))))
8753 {
8754 nesting_level++;
8755 parent_die = last_die;
8756 continue;
8757 }
8758
8759 /* Otherwise we skip to the next sibling, if any. */
8760 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
8761
8762 /* Back to the top, do it again. */
8763 }
8764 }
8765
8766 /* Read a minimal amount of information into the minimal die structure. */
8767
8768 static gdb_byte *
8769 read_partial_die (struct partial_die_info *part_die,
8770 struct abbrev_info *abbrev,
8771 unsigned int abbrev_len, bfd *abfd,
8772 gdb_byte *buffer, gdb_byte *info_ptr,
8773 struct dwarf2_cu *cu)
8774 {
8775 unsigned int i;
8776 struct attribute attr;
8777 int has_low_pc_attr = 0;
8778 int has_high_pc_attr = 0;
8779
8780 memset (part_die, 0, sizeof (struct partial_die_info));
8781
8782 part_die->offset = info_ptr - buffer;
8783
8784 info_ptr += abbrev_len;
8785
8786 if (abbrev == NULL)
8787 return info_ptr;
8788
8789 part_die->tag = abbrev->tag;
8790 part_die->has_children = abbrev->has_children;
8791
8792 for (i = 0; i < abbrev->num_attrs; ++i)
8793 {
8794 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
8795
8796 /* Store the data if it is of an attribute we want to keep in a
8797 partial symbol table. */
8798 switch (attr.name)
8799 {
8800 case DW_AT_name:
8801 switch (part_die->tag)
8802 {
8803 case DW_TAG_compile_unit:
8804 case DW_TAG_type_unit:
8805 /* Compilation units have a DW_AT_name that is a filename, not
8806 a source language identifier. */
8807 case DW_TAG_enumeration_type:
8808 case DW_TAG_enumerator:
8809 /* These tags always have simple identifiers already; no need
8810 to canonicalize them. */
8811 part_die->name = DW_STRING (&attr);
8812 break;
8813 default:
8814 part_die->name
8815 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
8816 &cu->objfile->objfile_obstack);
8817 break;
8818 }
8819 break;
8820 case DW_AT_linkage_name:
8821 case DW_AT_MIPS_linkage_name:
8822 /* Note that both forms of linkage name might appear. We
8823 assume they will be the same, and we only store the last
8824 one we see. */
8825 if (cu->language == language_ada)
8826 part_die->name = DW_STRING (&attr);
8827 part_die->linkage_name = DW_STRING (&attr);
8828 break;
8829 case DW_AT_low_pc:
8830 has_low_pc_attr = 1;
8831 part_die->lowpc = DW_ADDR (&attr);
8832 break;
8833 case DW_AT_high_pc:
8834 has_high_pc_attr = 1;
8835 part_die->highpc = DW_ADDR (&attr);
8836 break;
8837 case DW_AT_location:
8838 /* Support the .debug_loc offsets */
8839 if (attr_form_is_block (&attr))
8840 {
8841 part_die->locdesc = DW_BLOCK (&attr);
8842 }
8843 else if (attr_form_is_section_offset (&attr))
8844 {
8845 dwarf2_complex_location_expr_complaint ();
8846 }
8847 else
8848 {
8849 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8850 "partial symbol information");
8851 }
8852 break;
8853 case DW_AT_external:
8854 part_die->is_external = DW_UNSND (&attr);
8855 break;
8856 case DW_AT_declaration:
8857 part_die->is_declaration = DW_UNSND (&attr);
8858 break;
8859 case DW_AT_type:
8860 part_die->has_type = 1;
8861 break;
8862 case DW_AT_abstract_origin:
8863 case DW_AT_specification:
8864 case DW_AT_extension:
8865 part_die->has_specification = 1;
8866 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
8867 break;
8868 case DW_AT_sibling:
8869 /* Ignore absolute siblings, they might point outside of
8870 the current compile unit. */
8871 if (attr.form == DW_FORM_ref_addr)
8872 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
8873 else
8874 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
8875 break;
8876 case DW_AT_byte_size:
8877 part_die->has_byte_size = 1;
8878 break;
8879 case DW_AT_calling_convention:
8880 /* DWARF doesn't provide a way to identify a program's source-level
8881 entry point. DW_AT_calling_convention attributes are only meant
8882 to describe functions' calling conventions.
8883
8884 However, because it's a necessary piece of information in
8885 Fortran, and because DW_CC_program is the only piece of debugging
8886 information whose definition refers to a 'main program' at all,
8887 several compilers have begun marking Fortran main programs with
8888 DW_CC_program --- even when those functions use the standard
8889 calling conventions.
8890
8891 So until DWARF specifies a way to provide this information and
8892 compilers pick up the new representation, we'll support this
8893 practice. */
8894 if (DW_UNSND (&attr) == DW_CC_program
8895 && cu->language == language_fortran)
8896 {
8897 set_main_name (part_die->name);
8898
8899 /* As this DIE has a static linkage the name would be difficult
8900 to look up later. */
8901 language_of_main = language_fortran;
8902 }
8903 break;
8904 default:
8905 break;
8906 }
8907 }
8908
8909 /* When using the GNU linker, .gnu.linkonce. sections are used to
8910 eliminate duplicate copies of functions and vtables and such.
8911 The linker will arbitrarily choose one and discard the others.
8912 The AT_*_pc values for such functions refer to local labels in
8913 these sections. If the section from that file was discarded, the
8914 labels are not in the output, so the relocs get a value of 0.
8915 If this is a discarded function, mark the pc bounds as invalid,
8916 so that GDB will ignore it. */
8917 if (has_low_pc_attr && has_high_pc_attr
8918 && part_die->lowpc < part_die->highpc
8919 && (part_die->lowpc != 0
8920 || dwarf2_per_objfile->has_section_at_zero))
8921 part_die->has_pc_info = 1;
8922
8923 return info_ptr;
8924 }
8925
8926 /* Find a cached partial DIE at OFFSET in CU. */
8927
8928 static struct partial_die_info *
8929 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
8930 {
8931 struct partial_die_info *lookup_die = NULL;
8932 struct partial_die_info part_die;
8933
8934 part_die.offset = offset;
8935 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
8936
8937 return lookup_die;
8938 }
8939
8940 /* Find a partial DIE at OFFSET, which may or may not be in CU,
8941 except in the case of .debug_types DIEs which do not reference
8942 outside their CU (they do however referencing other types via
8943 DW_FORM_sig8). */
8944
8945 static struct partial_die_info *
8946 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
8947 {
8948 struct dwarf2_per_cu_data *per_cu = NULL;
8949 struct partial_die_info *pd = NULL;
8950
8951 if (cu->per_cu->from_debug_types)
8952 {
8953 pd = find_partial_die_in_comp_unit (offset, cu);
8954 if (pd != NULL)
8955 return pd;
8956 goto not_found;
8957 }
8958
8959 if (offset_in_cu_p (&cu->header, offset))
8960 {
8961 pd = find_partial_die_in_comp_unit (offset, cu);
8962 if (pd != NULL)
8963 return pd;
8964 }
8965
8966 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
8967
8968 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
8969 load_partial_comp_unit (per_cu, cu->objfile);
8970
8971 per_cu->cu->last_used = 0;
8972 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
8973
8974 if (pd == NULL && per_cu->load_all_dies == 0)
8975 {
8976 struct cleanup *back_to;
8977 struct partial_die_info comp_unit_die;
8978 struct abbrev_info *abbrev;
8979 unsigned int bytes_read;
8980 char *info_ptr;
8981
8982 per_cu->load_all_dies = 1;
8983
8984 /* Re-read the DIEs. */
8985 back_to = make_cleanup (null_cleanup, 0);
8986 if (per_cu->cu->dwarf2_abbrevs == NULL)
8987 {
8988 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
8989 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
8990 }
8991 info_ptr = (dwarf2_per_objfile->info.buffer
8992 + per_cu->cu->header.offset
8993 + per_cu->cu->header.first_die_offset);
8994 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
8995 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
8996 per_cu->cu->objfile->obfd,
8997 dwarf2_per_objfile->info.buffer, info_ptr,
8998 per_cu->cu);
8999 if (comp_unit_die.has_children)
9000 load_partial_dies (per_cu->cu->objfile->obfd,
9001 dwarf2_per_objfile->info.buffer, info_ptr,
9002 0, per_cu->cu);
9003 do_cleanups (back_to);
9004
9005 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9006 }
9007
9008 not_found:
9009
9010 if (pd == NULL)
9011 internal_error (__FILE__, __LINE__,
9012 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
9013 offset, bfd_get_filename (cu->objfile->obfd));
9014 return pd;
9015 }
9016
9017 /* See if we can figure out if the class lives in a namespace. We do
9018 this by looking for a member function; its demangled name will
9019 contain namespace info, if there is any. */
9020
9021 static void
9022 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9023 struct dwarf2_cu *cu)
9024 {
9025 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9026 what template types look like, because the demangler
9027 frequently doesn't give the same name as the debug info. We
9028 could fix this by only using the demangled name to get the
9029 prefix (but see comment in read_structure_type). */
9030
9031 struct partial_die_info *real_pdi;
9032 struct partial_die_info *child_pdi;
9033
9034 /* If this DIE (this DIE's specification, if any) has a parent, then
9035 we should not do this. We'll prepend the parent's fully qualified
9036 name when we create the partial symbol. */
9037
9038 real_pdi = struct_pdi;
9039 while (real_pdi->has_specification)
9040 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9041
9042 if (real_pdi->die_parent != NULL)
9043 return;
9044
9045 for (child_pdi = struct_pdi->die_child;
9046 child_pdi != NULL;
9047 child_pdi = child_pdi->die_sibling)
9048 {
9049 if (child_pdi->tag == DW_TAG_subprogram
9050 && child_pdi->linkage_name != NULL)
9051 {
9052 char *actual_class_name
9053 = language_class_name_from_physname (cu->language_defn,
9054 child_pdi->linkage_name);
9055 if (actual_class_name != NULL)
9056 {
9057 struct_pdi->name
9058 = obsavestring (actual_class_name,
9059 strlen (actual_class_name),
9060 &cu->objfile->objfile_obstack);
9061 xfree (actual_class_name);
9062 }
9063 break;
9064 }
9065 }
9066 }
9067
9068 /* Adjust PART_DIE before generating a symbol for it. This function
9069 may set the is_external flag or change the DIE's name. */
9070
9071 static void
9072 fixup_partial_die (struct partial_die_info *part_die,
9073 struct dwarf2_cu *cu)
9074 {
9075 /* Once we've fixed up a die, there's no point in doing so again.
9076 This also avoids a memory leak if we were to call
9077 guess_partial_die_structure_name multiple times. */
9078 if (part_die->fixup_called)
9079 return;
9080
9081 /* If we found a reference attribute and the DIE has no name, try
9082 to find a name in the referred to DIE. */
9083
9084 if (part_die->name == NULL && part_die->has_specification)
9085 {
9086 struct partial_die_info *spec_die;
9087
9088 spec_die = find_partial_die (part_die->spec_offset, cu);
9089
9090 fixup_partial_die (spec_die, cu);
9091
9092 if (spec_die->name)
9093 {
9094 part_die->name = spec_die->name;
9095
9096 /* Copy DW_AT_external attribute if it is set. */
9097 if (spec_die->is_external)
9098 part_die->is_external = spec_die->is_external;
9099 }
9100 }
9101
9102 /* Set default names for some unnamed DIEs. */
9103
9104 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9105 part_die->name = "(anonymous namespace)";
9106
9107 /* If there is no parent die to provide a namespace, and there are
9108 children, see if we can determine the namespace from their linkage
9109 name.
9110 NOTE: We need to do this even if cu->has_namespace_info != 0.
9111 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9112 if (cu->language == language_cplus
9113 && dwarf2_per_objfile->types.asection != NULL
9114 && part_die->die_parent == NULL
9115 && part_die->has_children
9116 && (part_die->tag == DW_TAG_class_type
9117 || part_die->tag == DW_TAG_structure_type
9118 || part_die->tag == DW_TAG_union_type))
9119 guess_partial_die_structure_name (part_die, cu);
9120
9121 part_die->fixup_called = 1;
9122 }
9123
9124 /* Read an attribute value described by an attribute form. */
9125
9126 static gdb_byte *
9127 read_attribute_value (struct attribute *attr, unsigned form,
9128 bfd *abfd, gdb_byte *info_ptr,
9129 struct dwarf2_cu *cu)
9130 {
9131 struct comp_unit_head *cu_header = &cu->header;
9132 unsigned int bytes_read;
9133 struct dwarf_block *blk;
9134
9135 attr->form = form;
9136 switch (form)
9137 {
9138 case DW_FORM_ref_addr:
9139 if (cu->header.version == 2)
9140 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9141 else
9142 DW_ADDR (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9143 info_ptr += bytes_read;
9144 break;
9145 case DW_FORM_addr:
9146 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9147 info_ptr += bytes_read;
9148 break;
9149 case DW_FORM_block2:
9150 blk = dwarf_alloc_block (cu);
9151 blk->size = read_2_bytes (abfd, info_ptr);
9152 info_ptr += 2;
9153 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9154 info_ptr += blk->size;
9155 DW_BLOCK (attr) = blk;
9156 break;
9157 case DW_FORM_block4:
9158 blk = dwarf_alloc_block (cu);
9159 blk->size = read_4_bytes (abfd, info_ptr);
9160 info_ptr += 4;
9161 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9162 info_ptr += blk->size;
9163 DW_BLOCK (attr) = blk;
9164 break;
9165 case DW_FORM_data2:
9166 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9167 info_ptr += 2;
9168 break;
9169 case DW_FORM_data4:
9170 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9171 info_ptr += 4;
9172 break;
9173 case DW_FORM_data8:
9174 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9175 info_ptr += 8;
9176 break;
9177 case DW_FORM_sec_offset:
9178 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9179 info_ptr += bytes_read;
9180 break;
9181 case DW_FORM_string:
9182 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
9183 DW_STRING_IS_CANONICAL (attr) = 0;
9184 info_ptr += bytes_read;
9185 break;
9186 case DW_FORM_strp:
9187 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9188 &bytes_read);
9189 DW_STRING_IS_CANONICAL (attr) = 0;
9190 info_ptr += bytes_read;
9191 break;
9192 case DW_FORM_exprloc:
9193 case DW_FORM_block:
9194 blk = dwarf_alloc_block (cu);
9195 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9196 info_ptr += bytes_read;
9197 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9198 info_ptr += blk->size;
9199 DW_BLOCK (attr) = blk;
9200 break;
9201 case DW_FORM_block1:
9202 blk = dwarf_alloc_block (cu);
9203 blk->size = read_1_byte (abfd, info_ptr);
9204 info_ptr += 1;
9205 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9206 info_ptr += blk->size;
9207 DW_BLOCK (attr) = blk;
9208 break;
9209 case DW_FORM_data1:
9210 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9211 info_ptr += 1;
9212 break;
9213 case DW_FORM_flag:
9214 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9215 info_ptr += 1;
9216 break;
9217 case DW_FORM_flag_present:
9218 DW_UNSND (attr) = 1;
9219 break;
9220 case DW_FORM_sdata:
9221 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9222 info_ptr += bytes_read;
9223 break;
9224 case DW_FORM_udata:
9225 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9226 info_ptr += bytes_read;
9227 break;
9228 case DW_FORM_ref1:
9229 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
9230 info_ptr += 1;
9231 break;
9232 case DW_FORM_ref2:
9233 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
9234 info_ptr += 2;
9235 break;
9236 case DW_FORM_ref4:
9237 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
9238 info_ptr += 4;
9239 break;
9240 case DW_FORM_ref8:
9241 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
9242 info_ptr += 8;
9243 break;
9244 case DW_FORM_sig8:
9245 /* Convert the signature to something we can record in DW_UNSND
9246 for later lookup.
9247 NOTE: This is NULL if the type wasn't found. */
9248 DW_SIGNATURED_TYPE (attr) =
9249 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9250 info_ptr += 8;
9251 break;
9252 case DW_FORM_ref_udata:
9253 DW_ADDR (attr) = (cu->header.offset
9254 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
9255 info_ptr += bytes_read;
9256 break;
9257 case DW_FORM_indirect:
9258 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9259 info_ptr += bytes_read;
9260 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
9261 break;
9262 default:
9263 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
9264 dwarf_form_name (form),
9265 bfd_get_filename (abfd));
9266 }
9267
9268 /* We have seen instances where the compiler tried to emit a byte
9269 size attribute of -1 which ended up being encoded as an unsigned
9270 0xffffffff. Although 0xffffffff is technically a valid size value,
9271 an object of this size seems pretty unlikely so we can relatively
9272 safely treat these cases as if the size attribute was invalid and
9273 treat them as zero by default. */
9274 if (attr->name == DW_AT_byte_size
9275 && form == DW_FORM_data4
9276 && DW_UNSND (attr) >= 0xffffffff)
9277 {
9278 complaint
9279 (&symfile_complaints,
9280 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9281 hex_string (DW_UNSND (attr)));
9282 DW_UNSND (attr) = 0;
9283 }
9284
9285 return info_ptr;
9286 }
9287
9288 /* Read an attribute described by an abbreviated attribute. */
9289
9290 static gdb_byte *
9291 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
9292 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
9293 {
9294 attr->name = abbrev->name;
9295 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
9296 }
9297
9298 /* read dwarf information from a buffer */
9299
9300 static unsigned int
9301 read_1_byte (bfd *abfd, gdb_byte *buf)
9302 {
9303 return bfd_get_8 (abfd, buf);
9304 }
9305
9306 static int
9307 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
9308 {
9309 return bfd_get_signed_8 (abfd, buf);
9310 }
9311
9312 static unsigned int
9313 read_2_bytes (bfd *abfd, gdb_byte *buf)
9314 {
9315 return bfd_get_16 (abfd, buf);
9316 }
9317
9318 static int
9319 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
9320 {
9321 return bfd_get_signed_16 (abfd, buf);
9322 }
9323
9324 static unsigned int
9325 read_4_bytes (bfd *abfd, gdb_byte *buf)
9326 {
9327 return bfd_get_32 (abfd, buf);
9328 }
9329
9330 static int
9331 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
9332 {
9333 return bfd_get_signed_32 (abfd, buf);
9334 }
9335
9336 static ULONGEST
9337 read_8_bytes (bfd *abfd, gdb_byte *buf)
9338 {
9339 return bfd_get_64 (abfd, buf);
9340 }
9341
9342 static CORE_ADDR
9343 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
9344 unsigned int *bytes_read)
9345 {
9346 struct comp_unit_head *cu_header = &cu->header;
9347 CORE_ADDR retval = 0;
9348
9349 if (cu_header->signed_addr_p)
9350 {
9351 switch (cu_header->addr_size)
9352 {
9353 case 2:
9354 retval = bfd_get_signed_16 (abfd, buf);
9355 break;
9356 case 4:
9357 retval = bfd_get_signed_32 (abfd, buf);
9358 break;
9359 case 8:
9360 retval = bfd_get_signed_64 (abfd, buf);
9361 break;
9362 default:
9363 internal_error (__FILE__, __LINE__,
9364 _("read_address: bad switch, signed [in module %s]"),
9365 bfd_get_filename (abfd));
9366 }
9367 }
9368 else
9369 {
9370 switch (cu_header->addr_size)
9371 {
9372 case 2:
9373 retval = bfd_get_16 (abfd, buf);
9374 break;
9375 case 4:
9376 retval = bfd_get_32 (abfd, buf);
9377 break;
9378 case 8:
9379 retval = bfd_get_64 (abfd, buf);
9380 break;
9381 default:
9382 internal_error (__FILE__, __LINE__,
9383 _("read_address: bad switch, unsigned [in module %s]"),
9384 bfd_get_filename (abfd));
9385 }
9386 }
9387
9388 *bytes_read = cu_header->addr_size;
9389 return retval;
9390 }
9391
9392 /* Read the initial length from a section. The (draft) DWARF 3
9393 specification allows the initial length to take up either 4 bytes
9394 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9395 bytes describe the length and all offsets will be 8 bytes in length
9396 instead of 4.
9397
9398 An older, non-standard 64-bit format is also handled by this
9399 function. The older format in question stores the initial length
9400 as an 8-byte quantity without an escape value. Lengths greater
9401 than 2^32 aren't very common which means that the initial 4 bytes
9402 is almost always zero. Since a length value of zero doesn't make
9403 sense for the 32-bit format, this initial zero can be considered to
9404 be an escape value which indicates the presence of the older 64-bit
9405 format. As written, the code can't detect (old format) lengths
9406 greater than 4GB. If it becomes necessary to handle lengths
9407 somewhat larger than 4GB, we could allow other small values (such
9408 as the non-sensical values of 1, 2, and 3) to also be used as
9409 escape values indicating the presence of the old format.
9410
9411 The value returned via bytes_read should be used to increment the
9412 relevant pointer after calling read_initial_length().
9413
9414 [ Note: read_initial_length() and read_offset() are based on the
9415 document entitled "DWARF Debugging Information Format", revision
9416 3, draft 8, dated November 19, 2001. This document was obtained
9417 from:
9418
9419 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
9420
9421 This document is only a draft and is subject to change. (So beware.)
9422
9423 Details regarding the older, non-standard 64-bit format were
9424 determined empirically by examining 64-bit ELF files produced by
9425 the SGI toolchain on an IRIX 6.5 machine.
9426
9427 - Kevin, July 16, 2002
9428 ] */
9429
9430 static LONGEST
9431 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
9432 {
9433 LONGEST length = bfd_get_32 (abfd, buf);
9434
9435 if (length == 0xffffffff)
9436 {
9437 length = bfd_get_64 (abfd, buf + 4);
9438 *bytes_read = 12;
9439 }
9440 else if (length == 0)
9441 {
9442 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
9443 length = bfd_get_64 (abfd, buf);
9444 *bytes_read = 8;
9445 }
9446 else
9447 {
9448 *bytes_read = 4;
9449 }
9450
9451 return length;
9452 }
9453
9454 /* Cover function for read_initial_length.
9455 Returns the length of the object at BUF, and stores the size of the
9456 initial length in *BYTES_READ and stores the size that offsets will be in
9457 *OFFSET_SIZE.
9458 If the initial length size is not equivalent to that specified in
9459 CU_HEADER then issue a complaint.
9460 This is useful when reading non-comp-unit headers. */
9461
9462 static LONGEST
9463 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9464 const struct comp_unit_head *cu_header,
9465 unsigned int *bytes_read,
9466 unsigned int *offset_size)
9467 {
9468 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9469
9470 gdb_assert (cu_header->initial_length_size == 4
9471 || cu_header->initial_length_size == 8
9472 || cu_header->initial_length_size == 12);
9473
9474 if (cu_header->initial_length_size != *bytes_read)
9475 complaint (&symfile_complaints,
9476 _("intermixed 32-bit and 64-bit DWARF sections"));
9477
9478 *offset_size = (*bytes_read == 4) ? 4 : 8;
9479 return length;
9480 }
9481
9482 /* Read an offset from the data stream. The size of the offset is
9483 given by cu_header->offset_size. */
9484
9485 static LONGEST
9486 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
9487 unsigned int *bytes_read)
9488 {
9489 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9490
9491 *bytes_read = cu_header->offset_size;
9492 return offset;
9493 }
9494
9495 /* Read an offset from the data stream. */
9496
9497 static LONGEST
9498 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
9499 {
9500 LONGEST retval = 0;
9501
9502 switch (offset_size)
9503 {
9504 case 4:
9505 retval = bfd_get_32 (abfd, buf);
9506 break;
9507 case 8:
9508 retval = bfd_get_64 (abfd, buf);
9509 break;
9510 default:
9511 internal_error (__FILE__, __LINE__,
9512 _("read_offset_1: bad switch [in module %s]"),
9513 bfd_get_filename (abfd));
9514 }
9515
9516 return retval;
9517 }
9518
9519 static gdb_byte *
9520 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
9521 {
9522 /* If the size of a host char is 8 bits, we can return a pointer
9523 to the buffer, otherwise we have to copy the data to a buffer
9524 allocated on the temporary obstack. */
9525 gdb_assert (HOST_CHAR_BIT == 8);
9526 return buf;
9527 }
9528
9529 static char *
9530 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9531 {
9532 /* If the size of a host char is 8 bits, we can return a pointer
9533 to the string, otherwise we have to copy the string to a buffer
9534 allocated on the temporary obstack. */
9535 gdb_assert (HOST_CHAR_BIT == 8);
9536 if (*buf == '\0')
9537 {
9538 *bytes_read_ptr = 1;
9539 return NULL;
9540 }
9541 *bytes_read_ptr = strlen ((char *) buf) + 1;
9542 return (char *) buf;
9543 }
9544
9545 static char *
9546 read_indirect_string (bfd *abfd, gdb_byte *buf,
9547 const struct comp_unit_head *cu_header,
9548 unsigned int *bytes_read_ptr)
9549 {
9550 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
9551
9552 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
9553 if (dwarf2_per_objfile->str.buffer == NULL)
9554 {
9555 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
9556 bfd_get_filename (abfd));
9557 return NULL;
9558 }
9559 if (str_offset >= dwarf2_per_objfile->str.size)
9560 {
9561 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
9562 bfd_get_filename (abfd));
9563 return NULL;
9564 }
9565 gdb_assert (HOST_CHAR_BIT == 8);
9566 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
9567 return NULL;
9568 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
9569 }
9570
9571 static unsigned long
9572 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9573 {
9574 unsigned long result;
9575 unsigned int num_read;
9576 int i, shift;
9577 unsigned char byte;
9578
9579 result = 0;
9580 shift = 0;
9581 num_read = 0;
9582 i = 0;
9583 while (1)
9584 {
9585 byte = bfd_get_8 (abfd, buf);
9586 buf++;
9587 num_read++;
9588 result |= ((unsigned long)(byte & 127) << shift);
9589 if ((byte & 128) == 0)
9590 {
9591 break;
9592 }
9593 shift += 7;
9594 }
9595 *bytes_read_ptr = num_read;
9596 return result;
9597 }
9598
9599 static long
9600 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9601 {
9602 long result;
9603 int i, shift, num_read;
9604 unsigned char byte;
9605
9606 result = 0;
9607 shift = 0;
9608 num_read = 0;
9609 i = 0;
9610 while (1)
9611 {
9612 byte = bfd_get_8 (abfd, buf);
9613 buf++;
9614 num_read++;
9615 result |= ((long)(byte & 127) << shift);
9616 shift += 7;
9617 if ((byte & 128) == 0)
9618 {
9619 break;
9620 }
9621 }
9622 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9623 result |= -(((long)1) << shift);
9624 *bytes_read_ptr = num_read;
9625 return result;
9626 }
9627
9628 /* Return a pointer to just past the end of an LEB128 number in BUF. */
9629
9630 static gdb_byte *
9631 skip_leb128 (bfd *abfd, gdb_byte *buf)
9632 {
9633 int byte;
9634
9635 while (1)
9636 {
9637 byte = bfd_get_8 (abfd, buf);
9638 buf++;
9639 if ((byte & 128) == 0)
9640 return buf;
9641 }
9642 }
9643
9644 static void
9645 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
9646 {
9647 switch (lang)
9648 {
9649 case DW_LANG_C89:
9650 case DW_LANG_C99:
9651 case DW_LANG_C:
9652 cu->language = language_c;
9653 break;
9654 case DW_LANG_C_plus_plus:
9655 cu->language = language_cplus;
9656 break;
9657 case DW_LANG_D:
9658 cu->language = language_d;
9659 break;
9660 case DW_LANG_Fortran77:
9661 case DW_LANG_Fortran90:
9662 case DW_LANG_Fortran95:
9663 cu->language = language_fortran;
9664 break;
9665 case DW_LANG_Mips_Assembler:
9666 cu->language = language_asm;
9667 break;
9668 case DW_LANG_Java:
9669 cu->language = language_java;
9670 break;
9671 case DW_LANG_Ada83:
9672 case DW_LANG_Ada95:
9673 cu->language = language_ada;
9674 break;
9675 case DW_LANG_Modula2:
9676 cu->language = language_m2;
9677 break;
9678 case DW_LANG_Pascal83:
9679 cu->language = language_pascal;
9680 break;
9681 case DW_LANG_ObjC:
9682 cu->language = language_objc;
9683 break;
9684 case DW_LANG_Cobol74:
9685 case DW_LANG_Cobol85:
9686 default:
9687 cu->language = language_minimal;
9688 break;
9689 }
9690 cu->language_defn = language_def (cu->language);
9691 }
9692
9693 /* Return the named attribute or NULL if not there. */
9694
9695 static struct attribute *
9696 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
9697 {
9698 unsigned int i;
9699 struct attribute *spec = NULL;
9700
9701 for (i = 0; i < die->num_attrs; ++i)
9702 {
9703 if (die->attrs[i].name == name)
9704 return &die->attrs[i];
9705 if (die->attrs[i].name == DW_AT_specification
9706 || die->attrs[i].name == DW_AT_abstract_origin)
9707 spec = &die->attrs[i];
9708 }
9709
9710 if (spec)
9711 {
9712 die = follow_die_ref (die, spec, &cu);
9713 return dwarf2_attr (die, name, cu);
9714 }
9715
9716 return NULL;
9717 }
9718
9719 /* Return the named attribute or NULL if not there,
9720 but do not follow DW_AT_specification, etc.
9721 This is for use in contexts where we're reading .debug_types dies.
9722 Following DW_AT_specification, DW_AT_abstract_origin will take us
9723 back up the chain, and we want to go down. */
9724
9725 static struct attribute *
9726 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9727 struct dwarf2_cu *cu)
9728 {
9729 unsigned int i;
9730
9731 for (i = 0; i < die->num_attrs; ++i)
9732 if (die->attrs[i].name == name)
9733 return &die->attrs[i];
9734
9735 return NULL;
9736 }
9737
9738 /* Return non-zero iff the attribute NAME is defined for the given DIE,
9739 and holds a non-zero value. This function should only be used for
9740 DW_FORM_flag or DW_FORM_flag_present attributes. */
9741
9742 static int
9743 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
9744 {
9745 struct attribute *attr = dwarf2_attr (die, name, cu);
9746
9747 return (attr && DW_UNSND (attr));
9748 }
9749
9750 static int
9751 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
9752 {
9753 /* A DIE is a declaration if it has a DW_AT_declaration attribute
9754 which value is non-zero. However, we have to be careful with
9755 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
9756 (via dwarf2_flag_true_p) follows this attribute. So we may
9757 end up accidently finding a declaration attribute that belongs
9758 to a different DIE referenced by the specification attribute,
9759 even though the given DIE does not have a declaration attribute. */
9760 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
9761 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
9762 }
9763
9764 /* Return the die giving the specification for DIE, if there is
9765 one. *SPEC_CU is the CU containing DIE on input, and the CU
9766 containing the return value on output. If there is no
9767 specification, but there is an abstract origin, that is
9768 returned. */
9769
9770 static struct die_info *
9771 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
9772 {
9773 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
9774 *spec_cu);
9775
9776 if (spec_attr == NULL)
9777 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
9778
9779 if (spec_attr == NULL)
9780 return NULL;
9781 else
9782 return follow_die_ref (die, spec_attr, spec_cu);
9783 }
9784
9785 /* Free the line_header structure *LH, and any arrays and strings it
9786 refers to. */
9787 static void
9788 free_line_header (struct line_header *lh)
9789 {
9790 if (lh->standard_opcode_lengths)
9791 xfree (lh->standard_opcode_lengths);
9792
9793 /* Remember that all the lh->file_names[i].name pointers are
9794 pointers into debug_line_buffer, and don't need to be freed. */
9795 if (lh->file_names)
9796 xfree (lh->file_names);
9797
9798 /* Similarly for the include directory names. */
9799 if (lh->include_dirs)
9800 xfree (lh->include_dirs);
9801
9802 xfree (lh);
9803 }
9804
9805
9806 /* Add an entry to LH's include directory table. */
9807 static void
9808 add_include_dir (struct line_header *lh, char *include_dir)
9809 {
9810 /* Grow the array if necessary. */
9811 if (lh->include_dirs_size == 0)
9812 {
9813 lh->include_dirs_size = 1; /* for testing */
9814 lh->include_dirs = xmalloc (lh->include_dirs_size
9815 * sizeof (*lh->include_dirs));
9816 }
9817 else if (lh->num_include_dirs >= lh->include_dirs_size)
9818 {
9819 lh->include_dirs_size *= 2;
9820 lh->include_dirs = xrealloc (lh->include_dirs,
9821 (lh->include_dirs_size
9822 * sizeof (*lh->include_dirs)));
9823 }
9824
9825 lh->include_dirs[lh->num_include_dirs++] = include_dir;
9826 }
9827
9828
9829 /* Add an entry to LH's file name table. */
9830 static void
9831 add_file_name (struct line_header *lh,
9832 char *name,
9833 unsigned int dir_index,
9834 unsigned int mod_time,
9835 unsigned int length)
9836 {
9837 struct file_entry *fe;
9838
9839 /* Grow the array if necessary. */
9840 if (lh->file_names_size == 0)
9841 {
9842 lh->file_names_size = 1; /* for testing */
9843 lh->file_names = xmalloc (lh->file_names_size
9844 * sizeof (*lh->file_names));
9845 }
9846 else if (lh->num_file_names >= lh->file_names_size)
9847 {
9848 lh->file_names_size *= 2;
9849 lh->file_names = xrealloc (lh->file_names,
9850 (lh->file_names_size
9851 * sizeof (*lh->file_names)));
9852 }
9853
9854 fe = &lh->file_names[lh->num_file_names++];
9855 fe->name = name;
9856 fe->dir_index = dir_index;
9857 fe->mod_time = mod_time;
9858 fe->length = length;
9859 fe->included_p = 0;
9860 fe->symtab = NULL;
9861 }
9862
9863
9864 /* Read the statement program header starting at OFFSET in
9865 .debug_line, according to the endianness of ABFD. Return a pointer
9866 to a struct line_header, allocated using xmalloc.
9867
9868 NOTE: the strings in the include directory and file name tables of
9869 the returned object point into debug_line_buffer, and must not be
9870 freed. */
9871 static struct line_header *
9872 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
9873 struct dwarf2_cu *cu)
9874 {
9875 struct cleanup *back_to;
9876 struct line_header *lh;
9877 gdb_byte *line_ptr;
9878 unsigned int bytes_read, offset_size;
9879 int i;
9880 char *cur_dir, *cur_file;
9881
9882 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
9883 if (dwarf2_per_objfile->line.buffer == NULL)
9884 {
9885 complaint (&symfile_complaints, _("missing .debug_line section"));
9886 return 0;
9887 }
9888
9889 /* Make sure that at least there's room for the total_length field.
9890 That could be 12 bytes long, but we're just going to fudge that. */
9891 if (offset + 4 >= dwarf2_per_objfile->line.size)
9892 {
9893 dwarf2_statement_list_fits_in_line_number_section_complaint ();
9894 return 0;
9895 }
9896
9897 lh = xmalloc (sizeof (*lh));
9898 memset (lh, 0, sizeof (*lh));
9899 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
9900 (void *) lh);
9901
9902 line_ptr = dwarf2_per_objfile->line.buffer + offset;
9903
9904 /* Read in the header. */
9905 lh->total_length =
9906 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
9907 &bytes_read, &offset_size);
9908 line_ptr += bytes_read;
9909 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
9910 + dwarf2_per_objfile->line.size))
9911 {
9912 dwarf2_statement_list_fits_in_line_number_section_complaint ();
9913 return 0;
9914 }
9915 lh->statement_program_end = line_ptr + lh->total_length;
9916 lh->version = read_2_bytes (abfd, line_ptr);
9917 line_ptr += 2;
9918 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
9919 line_ptr += offset_size;
9920 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
9921 line_ptr += 1;
9922 if (lh->version >= 4)
9923 {
9924 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
9925 line_ptr += 1;
9926 }
9927 else
9928 lh->maximum_ops_per_instruction = 1;
9929
9930 if (lh->maximum_ops_per_instruction == 0)
9931 {
9932 lh->maximum_ops_per_instruction = 1;
9933 complaint (&symfile_complaints,
9934 _("invalid maximum_ops_per_instruction in `.debug_line' section"));
9935 }
9936
9937 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
9938 line_ptr += 1;
9939 lh->line_base = read_1_signed_byte (abfd, line_ptr);
9940 line_ptr += 1;
9941 lh->line_range = read_1_byte (abfd, line_ptr);
9942 line_ptr += 1;
9943 lh->opcode_base = read_1_byte (abfd, line_ptr);
9944 line_ptr += 1;
9945 lh->standard_opcode_lengths
9946 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
9947
9948 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
9949 for (i = 1; i < lh->opcode_base; ++i)
9950 {
9951 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
9952 line_ptr += 1;
9953 }
9954
9955 /* Read directory table. */
9956 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
9957 {
9958 line_ptr += bytes_read;
9959 add_include_dir (lh, cur_dir);
9960 }
9961 line_ptr += bytes_read;
9962
9963 /* Read file name table. */
9964 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
9965 {
9966 unsigned int dir_index, mod_time, length;
9967
9968 line_ptr += bytes_read;
9969 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9970 line_ptr += bytes_read;
9971 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9972 line_ptr += bytes_read;
9973 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9974 line_ptr += bytes_read;
9975
9976 add_file_name (lh, cur_file, dir_index, mod_time, length);
9977 }
9978 line_ptr += bytes_read;
9979 lh->statement_program_start = line_ptr;
9980
9981 if (line_ptr > (dwarf2_per_objfile->line.buffer
9982 + dwarf2_per_objfile->line.size))
9983 complaint (&symfile_complaints,
9984 _("line number info header doesn't fit in `.debug_line' section"));
9985
9986 discard_cleanups (back_to);
9987 return lh;
9988 }
9989
9990 /* This function exists to work around a bug in certain compilers
9991 (particularly GCC 2.95), in which the first line number marker of a
9992 function does not show up until after the prologue, right before
9993 the second line number marker. This function shifts ADDRESS down
9994 to the beginning of the function if necessary, and is called on
9995 addresses passed to record_line. */
9996
9997 static CORE_ADDR
9998 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
9999 {
10000 struct function_range *fn;
10001
10002 /* Find the function_range containing address. */
10003 if (!cu->first_fn)
10004 return address;
10005
10006 if (!cu->cached_fn)
10007 cu->cached_fn = cu->first_fn;
10008
10009 fn = cu->cached_fn;
10010 while (fn)
10011 if (fn->lowpc <= address && fn->highpc > address)
10012 goto found;
10013 else
10014 fn = fn->next;
10015
10016 fn = cu->first_fn;
10017 while (fn && fn != cu->cached_fn)
10018 if (fn->lowpc <= address && fn->highpc > address)
10019 goto found;
10020 else
10021 fn = fn->next;
10022
10023 return address;
10024
10025 found:
10026 if (fn->seen_line)
10027 return address;
10028 if (address != fn->lowpc)
10029 complaint (&symfile_complaints,
10030 _("misplaced first line number at 0x%lx for '%s'"),
10031 (unsigned long) address, fn->name);
10032 fn->seen_line = 1;
10033 return fn->lowpc;
10034 }
10035
10036 /* Subroutine of dwarf_decode_lines to simplify it.
10037 Return the file name of the psymtab for included file FILE_INDEX
10038 in line header LH of PST.
10039 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10040 If space for the result is malloc'd, it will be freed by a cleanup.
10041 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10042
10043 static char *
10044 psymtab_include_file_name (const struct line_header *lh, int file_index,
10045 const struct partial_symtab *pst,
10046 const char *comp_dir)
10047 {
10048 const struct file_entry fe = lh->file_names [file_index];
10049 char *include_name = fe.name;
10050 char *include_name_to_compare = include_name;
10051 char *dir_name = NULL;
10052 const char *pst_filename;
10053 char *copied_name = NULL;
10054 int file_is_pst;
10055
10056 if (fe.dir_index)
10057 dir_name = lh->include_dirs[fe.dir_index - 1];
10058
10059 if (!IS_ABSOLUTE_PATH (include_name)
10060 && (dir_name != NULL || comp_dir != NULL))
10061 {
10062 /* Avoid creating a duplicate psymtab for PST.
10063 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10064 Before we do the comparison, however, we need to account
10065 for DIR_NAME and COMP_DIR.
10066 First prepend dir_name (if non-NULL). If we still don't
10067 have an absolute path prepend comp_dir (if non-NULL).
10068 However, the directory we record in the include-file's
10069 psymtab does not contain COMP_DIR (to match the
10070 corresponding symtab(s)).
10071
10072 Example:
10073
10074 bash$ cd /tmp
10075 bash$ gcc -g ./hello.c
10076 include_name = "hello.c"
10077 dir_name = "."
10078 DW_AT_comp_dir = comp_dir = "/tmp"
10079 DW_AT_name = "./hello.c" */
10080
10081 if (dir_name != NULL)
10082 {
10083 include_name = concat (dir_name, SLASH_STRING,
10084 include_name, (char *)NULL);
10085 include_name_to_compare = include_name;
10086 make_cleanup (xfree, include_name);
10087 }
10088 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10089 {
10090 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10091 include_name, (char *)NULL);
10092 }
10093 }
10094
10095 pst_filename = pst->filename;
10096 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10097 {
10098 copied_name = concat (pst->dirname, SLASH_STRING,
10099 pst_filename, (char *)NULL);
10100 pst_filename = copied_name;
10101 }
10102
10103 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
10104
10105 if (include_name_to_compare != include_name)
10106 xfree (include_name_to_compare);
10107 if (copied_name != NULL)
10108 xfree (copied_name);
10109
10110 if (file_is_pst)
10111 return NULL;
10112 return include_name;
10113 }
10114
10115 /* Decode the Line Number Program (LNP) for the given line_header
10116 structure and CU. The actual information extracted and the type
10117 of structures created from the LNP depends on the value of PST.
10118
10119 1. If PST is NULL, then this procedure uses the data from the program
10120 to create all necessary symbol tables, and their linetables.
10121
10122 2. If PST is not NULL, this procedure reads the program to determine
10123 the list of files included by the unit represented by PST, and
10124 builds all the associated partial symbol tables.
10125
10126 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10127 It is used for relative paths in the line table.
10128 NOTE: When processing partial symtabs (pst != NULL),
10129 comp_dir == pst->dirname.
10130
10131 NOTE: It is important that psymtabs have the same file name (via strcmp)
10132 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10133 symtab we don't use it in the name of the psymtabs we create.
10134 E.g. expand_line_sal requires this when finding psymtabs to expand.
10135 A good testcase for this is mb-inline.exp. */
10136
10137 static void
10138 dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
10139 struct dwarf2_cu *cu, struct partial_symtab *pst)
10140 {
10141 gdb_byte *line_ptr, *extended_end;
10142 gdb_byte *line_end;
10143 unsigned int bytes_read, extended_len;
10144 unsigned char op_code, extended_op, adj_opcode;
10145 CORE_ADDR baseaddr;
10146 struct objfile *objfile = cu->objfile;
10147 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10148 const int decode_for_pst_p = (pst != NULL);
10149 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
10150
10151 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10152
10153 line_ptr = lh->statement_program_start;
10154 line_end = lh->statement_program_end;
10155
10156 /* Read the statement sequences until there's nothing left. */
10157 while (line_ptr < line_end)
10158 {
10159 /* state machine registers */
10160 CORE_ADDR address = 0;
10161 unsigned int file = 1;
10162 unsigned int line = 1;
10163 unsigned int column = 0;
10164 int is_stmt = lh->default_is_stmt;
10165 int basic_block = 0;
10166 int end_sequence = 0;
10167 CORE_ADDR addr;
10168 unsigned char op_index = 0;
10169
10170 if (!decode_for_pst_p && lh->num_file_names >= file)
10171 {
10172 /* Start a subfile for the current file of the state machine. */
10173 /* lh->include_dirs and lh->file_names are 0-based, but the
10174 directory and file name numbers in the statement program
10175 are 1-based. */
10176 struct file_entry *fe = &lh->file_names[file - 1];
10177 char *dir = NULL;
10178
10179 if (fe->dir_index)
10180 dir = lh->include_dirs[fe->dir_index - 1];
10181
10182 dwarf2_start_subfile (fe->name, dir, comp_dir);
10183 }
10184
10185 /* Decode the table. */
10186 while (!end_sequence)
10187 {
10188 op_code = read_1_byte (abfd, line_ptr);
10189 line_ptr += 1;
10190 if (line_ptr > line_end)
10191 {
10192 dwarf2_debug_line_missing_end_sequence_complaint ();
10193 break;
10194 }
10195
10196 if (op_code >= lh->opcode_base)
10197 {
10198 /* Special operand. */
10199 adj_opcode = op_code - lh->opcode_base;
10200 address += (((op_index + (adj_opcode / lh->line_range))
10201 / lh->maximum_ops_per_instruction)
10202 * lh->minimum_instruction_length);
10203 op_index = ((op_index + (adj_opcode / lh->line_range))
10204 % lh->maximum_ops_per_instruction);
10205 line += lh->line_base + (adj_opcode % lh->line_range);
10206 if (lh->num_file_names < file || file == 0)
10207 dwarf2_debug_line_missing_file_complaint ();
10208 /* For now we ignore lines not starting on an
10209 instruction boundary. */
10210 else if (op_index == 0)
10211 {
10212 lh->file_names[file - 1].included_p = 1;
10213 if (!decode_for_pst_p && is_stmt)
10214 {
10215 if (last_subfile != current_subfile)
10216 {
10217 addr = gdbarch_addr_bits_remove (gdbarch, address);
10218 if (last_subfile)
10219 record_line (last_subfile, 0, addr);
10220 last_subfile = current_subfile;
10221 }
10222 /* Append row to matrix using current values. */
10223 addr = check_cu_functions (address, cu);
10224 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10225 record_line (current_subfile, line, addr);
10226 }
10227 }
10228 basic_block = 0;
10229 }
10230 else switch (op_code)
10231 {
10232 case DW_LNS_extended_op:
10233 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10234 line_ptr += bytes_read;
10235 extended_end = line_ptr + extended_len;
10236 extended_op = read_1_byte (abfd, line_ptr);
10237 line_ptr += 1;
10238 switch (extended_op)
10239 {
10240 case DW_LNE_end_sequence:
10241 end_sequence = 1;
10242 break;
10243 case DW_LNE_set_address:
10244 address = read_address (abfd, line_ptr, cu, &bytes_read);
10245 op_index = 0;
10246 line_ptr += bytes_read;
10247 address += baseaddr;
10248 break;
10249 case DW_LNE_define_file:
10250 {
10251 char *cur_file;
10252 unsigned int dir_index, mod_time, length;
10253
10254 cur_file = read_direct_string (abfd, line_ptr, &bytes_read);
10255 line_ptr += bytes_read;
10256 dir_index =
10257 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10258 line_ptr += bytes_read;
10259 mod_time =
10260 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10261 line_ptr += bytes_read;
10262 length =
10263 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10264 line_ptr += bytes_read;
10265 add_file_name (lh, cur_file, dir_index, mod_time, length);
10266 }
10267 break;
10268 case DW_LNE_set_discriminator:
10269 /* The discriminator is not interesting to the debugger;
10270 just ignore it. */
10271 line_ptr = extended_end;
10272 break;
10273 default:
10274 complaint (&symfile_complaints,
10275 _("mangled .debug_line section"));
10276 return;
10277 }
10278 /* Make sure that we parsed the extended op correctly. If e.g.
10279 we expected a different address size than the producer used,
10280 we may have read the wrong number of bytes. */
10281 if (line_ptr != extended_end)
10282 {
10283 complaint (&symfile_complaints,
10284 _("mangled .debug_line section"));
10285 return;
10286 }
10287 break;
10288 case DW_LNS_copy:
10289 if (lh->num_file_names < file || file == 0)
10290 dwarf2_debug_line_missing_file_complaint ();
10291 else
10292 {
10293 lh->file_names[file - 1].included_p = 1;
10294 if (!decode_for_pst_p && is_stmt)
10295 {
10296 if (last_subfile != current_subfile)
10297 {
10298 addr = gdbarch_addr_bits_remove (gdbarch, address);
10299 if (last_subfile)
10300 record_line (last_subfile, 0, addr);
10301 last_subfile = current_subfile;
10302 }
10303 addr = check_cu_functions (address, cu);
10304 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10305 record_line (current_subfile, line, addr);
10306 }
10307 }
10308 basic_block = 0;
10309 break;
10310 case DW_LNS_advance_pc:
10311 {
10312 CORE_ADDR adjust
10313 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10314
10315 address += (((op_index + adjust)
10316 / lh->maximum_ops_per_instruction)
10317 * lh->minimum_instruction_length);
10318 op_index = ((op_index + adjust)
10319 % lh->maximum_ops_per_instruction);
10320 line_ptr += bytes_read;
10321 }
10322 break;
10323 case DW_LNS_advance_line:
10324 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10325 line_ptr += bytes_read;
10326 break;
10327 case DW_LNS_set_file:
10328 {
10329 /* The arrays lh->include_dirs and lh->file_names are
10330 0-based, but the directory and file name numbers in
10331 the statement program are 1-based. */
10332 struct file_entry *fe;
10333 char *dir = NULL;
10334
10335 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10336 line_ptr += bytes_read;
10337 if (lh->num_file_names < file || file == 0)
10338 dwarf2_debug_line_missing_file_complaint ();
10339 else
10340 {
10341 fe = &lh->file_names[file - 1];
10342 if (fe->dir_index)
10343 dir = lh->include_dirs[fe->dir_index - 1];
10344 if (!decode_for_pst_p)
10345 {
10346 last_subfile = current_subfile;
10347 dwarf2_start_subfile (fe->name, dir, comp_dir);
10348 }
10349 }
10350 }
10351 break;
10352 case DW_LNS_set_column:
10353 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10354 line_ptr += bytes_read;
10355 break;
10356 case DW_LNS_negate_stmt:
10357 is_stmt = (!is_stmt);
10358 break;
10359 case DW_LNS_set_basic_block:
10360 basic_block = 1;
10361 break;
10362 /* Add to the address register of the state machine the
10363 address increment value corresponding to special opcode
10364 255. I.e., this value is scaled by the minimum
10365 instruction length since special opcode 255 would have
10366 scaled the the increment. */
10367 case DW_LNS_const_add_pc:
10368 {
10369 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10370
10371 address += (((op_index + adjust)
10372 / lh->maximum_ops_per_instruction)
10373 * lh->minimum_instruction_length);
10374 op_index = ((op_index + adjust)
10375 % lh->maximum_ops_per_instruction);
10376 }
10377 break;
10378 case DW_LNS_fixed_advance_pc:
10379 address += read_2_bytes (abfd, line_ptr);
10380 op_index = 0;
10381 line_ptr += 2;
10382 break;
10383 default:
10384 {
10385 /* Unknown standard opcode, ignore it. */
10386 int i;
10387
10388 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
10389 {
10390 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10391 line_ptr += bytes_read;
10392 }
10393 }
10394 }
10395 }
10396 if (lh->num_file_names < file || file == 0)
10397 dwarf2_debug_line_missing_file_complaint ();
10398 else
10399 {
10400 lh->file_names[file - 1].included_p = 1;
10401 if (!decode_for_pst_p)
10402 {
10403 addr = gdbarch_addr_bits_remove (gdbarch, address);
10404 record_line (current_subfile, 0, addr);
10405 }
10406 }
10407 }
10408
10409 if (decode_for_pst_p)
10410 {
10411 int file_index;
10412
10413 /* Now that we're done scanning the Line Header Program, we can
10414 create the psymtab of each included file. */
10415 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10416 if (lh->file_names[file_index].included_p == 1)
10417 {
10418 char *include_name =
10419 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10420 if (include_name != NULL)
10421 dwarf2_create_include_psymtab (include_name, pst, objfile);
10422 }
10423 }
10424 else
10425 {
10426 /* Make sure a symtab is created for every file, even files
10427 which contain only variables (i.e. no code with associated
10428 line numbers). */
10429
10430 int i;
10431 struct file_entry *fe;
10432
10433 for (i = 0; i < lh->num_file_names; i++)
10434 {
10435 char *dir = NULL;
10436
10437 fe = &lh->file_names[i];
10438 if (fe->dir_index)
10439 dir = lh->include_dirs[fe->dir_index - 1];
10440 dwarf2_start_subfile (fe->name, dir, comp_dir);
10441
10442 /* Skip the main file; we don't need it, and it must be
10443 allocated last, so that it will show up before the
10444 non-primary symtabs in the objfile's symtab list. */
10445 if (current_subfile == first_subfile)
10446 continue;
10447
10448 if (current_subfile->symtab == NULL)
10449 current_subfile->symtab = allocate_symtab (current_subfile->name,
10450 cu->objfile);
10451 fe->symtab = current_subfile->symtab;
10452 }
10453 }
10454 }
10455
10456 /* Start a subfile for DWARF. FILENAME is the name of the file and
10457 DIRNAME the name of the source directory which contains FILENAME
10458 or NULL if not known. COMP_DIR is the compilation directory for the
10459 linetable's compilation unit or NULL if not known.
10460 This routine tries to keep line numbers from identical absolute and
10461 relative file names in a common subfile.
10462
10463 Using the `list' example from the GDB testsuite, which resides in
10464 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10465 of /srcdir/list0.c yields the following debugging information for list0.c:
10466
10467 DW_AT_name: /srcdir/list0.c
10468 DW_AT_comp_dir: /compdir
10469 files.files[0].name: list0.h
10470 files.files[0].dir: /srcdir
10471 files.files[1].name: list0.c
10472 files.files[1].dir: /srcdir
10473
10474 The line number information for list0.c has to end up in a single
10475 subfile, so that `break /srcdir/list0.c:1' works as expected.
10476 start_subfile will ensure that this happens provided that we pass the
10477 concatenation of files.files[1].dir and files.files[1].name as the
10478 subfile's name. */
10479
10480 static void
10481 dwarf2_start_subfile (char *filename, const char *dirname, const char *comp_dir)
10482 {
10483 char *fullname;
10484
10485 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10486 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10487 second argument to start_subfile. To be consistent, we do the
10488 same here. In order not to lose the line information directory,
10489 we concatenate it to the filename when it makes sense.
10490 Note that the Dwarf3 standard says (speaking of filenames in line
10491 information): ``The directory index is ignored for file names
10492 that represent full path names''. Thus ignoring dirname in the
10493 `else' branch below isn't an issue. */
10494
10495 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
10496 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10497 else
10498 fullname = filename;
10499
10500 start_subfile (fullname, comp_dir);
10501
10502 if (fullname != filename)
10503 xfree (fullname);
10504 }
10505
10506 static void
10507 var_decode_location (struct attribute *attr, struct symbol *sym,
10508 struct dwarf2_cu *cu)
10509 {
10510 struct objfile *objfile = cu->objfile;
10511 struct comp_unit_head *cu_header = &cu->header;
10512
10513 /* NOTE drow/2003-01-30: There used to be a comment and some special
10514 code here to turn a symbol with DW_AT_external and a
10515 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10516 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10517 with some versions of binutils) where shared libraries could have
10518 relocations against symbols in their debug information - the
10519 minimal symbol would have the right address, but the debug info
10520 would not. It's no longer necessary, because we will explicitly
10521 apply relocations when we read in the debug information now. */
10522
10523 /* A DW_AT_location attribute with no contents indicates that a
10524 variable has been optimized away. */
10525 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10526 {
10527 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10528 return;
10529 }
10530
10531 /* Handle one degenerate form of location expression specially, to
10532 preserve GDB's previous behavior when section offsets are
10533 specified. If this is just a DW_OP_addr then mark this symbol
10534 as LOC_STATIC. */
10535
10536 if (attr_form_is_block (attr)
10537 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10538 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10539 {
10540 unsigned int dummy;
10541
10542 SYMBOL_VALUE_ADDRESS (sym) =
10543 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
10544 SYMBOL_CLASS (sym) = LOC_STATIC;
10545 fixup_symbol_section (sym, objfile);
10546 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10547 SYMBOL_SECTION (sym));
10548 return;
10549 }
10550
10551 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10552 expression evaluator, and use LOC_COMPUTED only when necessary
10553 (i.e. when the value of a register or memory location is
10554 referenced, or a thread-local block, etc.). Then again, it might
10555 not be worthwhile. I'm assuming that it isn't unless performance
10556 or memory numbers show me otherwise. */
10557
10558 dwarf2_symbol_mark_computed (attr, sym, cu);
10559 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10560 }
10561
10562 /* Given a pointer to a DWARF information entry, figure out if we need
10563 to make a symbol table entry for it, and if so, create a new entry
10564 and return a pointer to it.
10565 If TYPE is NULL, determine symbol type from the die, otherwise
10566 used the passed type.
10567 If SPACE is not NULL, use it to hold the new symbol. If it is
10568 NULL, allocate a new symbol on the objfile's obstack. */
10569
10570 static struct symbol *
10571 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10572 struct symbol *space)
10573 {
10574 struct objfile *objfile = cu->objfile;
10575 struct symbol *sym = NULL;
10576 char *name;
10577 struct attribute *attr = NULL;
10578 struct attribute *attr2 = NULL;
10579 CORE_ADDR baseaddr;
10580 struct pending **list_to_add = NULL;
10581
10582 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10583
10584 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10585
10586 name = dwarf2_name (die, cu);
10587 if (name)
10588 {
10589 const char *linkagename;
10590 int suppress_add = 0;
10591
10592 if (space)
10593 sym = space;
10594 else
10595 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
10596 OBJSTAT (objfile, n_syms++);
10597
10598 /* Cache this symbol's name and the name's demangled form (if any). */
10599 SYMBOL_SET_LANGUAGE (sym, cu->language);
10600 linkagename = dwarf2_physname (name, die, cu);
10601 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
10602
10603 /* Fortran does not have mangling standard and the mangling does differ
10604 between gfortran, iFort etc. */
10605 if (cu->language == language_fortran
10606 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
10607 symbol_set_demangled_name (&(sym->ginfo),
10608 (char *) dwarf2_full_name (name, die, cu),
10609 NULL);
10610
10611 /* Default assumptions.
10612 Use the passed type or decode it from the die. */
10613 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10614 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10615 if (type != NULL)
10616 SYMBOL_TYPE (sym) = type;
10617 else
10618 SYMBOL_TYPE (sym) = die_type (die, cu);
10619 attr = dwarf2_attr (die,
10620 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10621 cu);
10622 if (attr)
10623 {
10624 SYMBOL_LINE (sym) = DW_UNSND (attr);
10625 }
10626
10627 attr = dwarf2_attr (die,
10628 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10629 cu);
10630 if (attr)
10631 {
10632 int file_index = DW_UNSND (attr);
10633
10634 if (cu->line_header == NULL
10635 || file_index > cu->line_header->num_file_names)
10636 complaint (&symfile_complaints,
10637 _("file index out of range"));
10638 else if (file_index > 0)
10639 {
10640 struct file_entry *fe;
10641
10642 fe = &cu->line_header->file_names[file_index - 1];
10643 SYMBOL_SYMTAB (sym) = fe->symtab;
10644 }
10645 }
10646
10647 switch (die->tag)
10648 {
10649 case DW_TAG_label:
10650 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10651 if (attr)
10652 {
10653 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10654 }
10655 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10656 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
10657 SYMBOL_CLASS (sym) = LOC_LABEL;
10658 add_symbol_to_list (sym, cu->list_in_scope);
10659 break;
10660 case DW_TAG_subprogram:
10661 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10662 finish_block. */
10663 SYMBOL_CLASS (sym) = LOC_BLOCK;
10664 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10665 if ((attr2 && (DW_UNSND (attr2) != 0))
10666 || cu->language == language_ada)
10667 {
10668 /* Subprograms marked external are stored as a global symbol.
10669 Ada subprograms, whether marked external or not, are always
10670 stored as a global symbol, because we want to be able to
10671 access them globally. For instance, we want to be able
10672 to break on a nested subprogram without having to
10673 specify the context. */
10674 list_to_add = &global_symbols;
10675 }
10676 else
10677 {
10678 list_to_add = cu->list_in_scope;
10679 }
10680 break;
10681 case DW_TAG_inlined_subroutine:
10682 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10683 finish_block. */
10684 SYMBOL_CLASS (sym) = LOC_BLOCK;
10685 SYMBOL_INLINED (sym) = 1;
10686 /* Do not add the symbol to any lists. It will be found via
10687 BLOCK_FUNCTION from the blockvector. */
10688 break;
10689 case DW_TAG_template_value_param:
10690 suppress_add = 1;
10691 /* Fall through. */
10692 case DW_TAG_constant:
10693 case DW_TAG_variable:
10694 case DW_TAG_member:
10695 /* Compilation with minimal debug info may result in variables
10696 with missing type entries. Change the misleading `void' type
10697 to something sensible. */
10698 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
10699 SYMBOL_TYPE (sym)
10700 = objfile_type (objfile)->nodebug_data_symbol;
10701
10702 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10703 /* In the case of DW_TAG_member, we should only be called for
10704 static const members. */
10705 if (die->tag == DW_TAG_member)
10706 {
10707 /* dwarf2_add_field uses die_is_declaration,
10708 so we do the same. */
10709 gdb_assert (die_is_declaration (die, cu));
10710 gdb_assert (attr);
10711 }
10712 if (attr)
10713 {
10714 dwarf2_const_value (attr, sym, cu);
10715 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10716 if (!suppress_add)
10717 {
10718 if (attr2 && (DW_UNSND (attr2) != 0))
10719 list_to_add = &global_symbols;
10720 else
10721 list_to_add = cu->list_in_scope;
10722 }
10723 break;
10724 }
10725 attr = dwarf2_attr (die, DW_AT_location, cu);
10726 if (attr)
10727 {
10728 var_decode_location (attr, sym, cu);
10729 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10730 if (SYMBOL_CLASS (sym) == LOC_STATIC
10731 && SYMBOL_VALUE_ADDRESS (sym) == 0
10732 && !dwarf2_per_objfile->has_section_at_zero)
10733 {
10734 /* When a static variable is eliminated by the linker,
10735 the corresponding debug information is not stripped
10736 out, but the variable address is set to null;
10737 do not add such variables into symbol table. */
10738 }
10739 else if (attr2 && (DW_UNSND (attr2) != 0))
10740 {
10741 /* Workaround gfortran PR debug/40040 - it uses
10742 DW_AT_location for variables in -fPIC libraries which may
10743 get overriden by other libraries/executable and get
10744 a different address. Resolve it by the minimal symbol
10745 which may come from inferior's executable using copy
10746 relocation. Make this workaround only for gfortran as for
10747 other compilers GDB cannot guess the minimal symbol
10748 Fortran mangling kind. */
10749 if (cu->language == language_fortran && die->parent
10750 && die->parent->tag == DW_TAG_module
10751 && cu->producer
10752 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
10753 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10754
10755 /* A variable with DW_AT_external is never static,
10756 but it may be block-scoped. */
10757 list_to_add = (cu->list_in_scope == &file_symbols
10758 ? &global_symbols : cu->list_in_scope);
10759 }
10760 else
10761 list_to_add = cu->list_in_scope;
10762 }
10763 else
10764 {
10765 /* We do not know the address of this symbol.
10766 If it is an external symbol and we have type information
10767 for it, enter the symbol as a LOC_UNRESOLVED symbol.
10768 The address of the variable will then be determined from
10769 the minimal symbol table whenever the variable is
10770 referenced. */
10771 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10772 if (attr2 && (DW_UNSND (attr2) != 0)
10773 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
10774 {
10775 /* A variable with DW_AT_external is never static, but it
10776 may be block-scoped. */
10777 list_to_add = (cu->list_in_scope == &file_symbols
10778 ? &global_symbols : cu->list_in_scope);
10779
10780 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10781 }
10782 else if (!die_is_declaration (die, cu))
10783 {
10784 /* Use the default LOC_OPTIMIZED_OUT class. */
10785 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
10786 if (!suppress_add)
10787 list_to_add = cu->list_in_scope;
10788 }
10789 }
10790 break;
10791 case DW_TAG_formal_parameter:
10792 /* If we are inside a function, mark this as an argument. If
10793 not, we might be looking at an argument to an inlined function
10794 when we do not have enough information to show inlined frames;
10795 pretend it's a local variable in that case so that the user can
10796 still see it. */
10797 if (context_stack_depth > 0
10798 && context_stack[context_stack_depth - 1].name != NULL)
10799 SYMBOL_IS_ARGUMENT (sym) = 1;
10800 attr = dwarf2_attr (die, DW_AT_location, cu);
10801 if (attr)
10802 {
10803 var_decode_location (attr, sym, cu);
10804 }
10805 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10806 if (attr)
10807 {
10808 dwarf2_const_value (attr, sym, cu);
10809 }
10810 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
10811 if (attr && DW_UNSND (attr))
10812 {
10813 struct type *ref_type;
10814
10815 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
10816 SYMBOL_TYPE (sym) = ref_type;
10817 }
10818
10819 list_to_add = cu->list_in_scope;
10820 break;
10821 case DW_TAG_unspecified_parameters:
10822 /* From varargs functions; gdb doesn't seem to have any
10823 interest in this information, so just ignore it for now.
10824 (FIXME?) */
10825 break;
10826 case DW_TAG_template_type_param:
10827 suppress_add = 1;
10828 /* Fall through. */
10829 case DW_TAG_class_type:
10830 case DW_TAG_interface_type:
10831 case DW_TAG_structure_type:
10832 case DW_TAG_union_type:
10833 case DW_TAG_set_type:
10834 case DW_TAG_enumeration_type:
10835 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10836 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
10837
10838 {
10839 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
10840 really ever be static objects: otherwise, if you try
10841 to, say, break of a class's method and you're in a file
10842 which doesn't mention that class, it won't work unless
10843 the check for all static symbols in lookup_symbol_aux
10844 saves you. See the OtherFileClass tests in
10845 gdb.c++/namespace.exp. */
10846
10847 if (!suppress_add)
10848 {
10849 list_to_add = (cu->list_in_scope == &file_symbols
10850 && (cu->language == language_cplus
10851 || cu->language == language_java)
10852 ? &global_symbols : cu->list_in_scope);
10853
10854 /* The semantics of C++ state that "struct foo {
10855 ... }" also defines a typedef for "foo". A Java
10856 class declaration also defines a typedef for the
10857 class. */
10858 if (cu->language == language_cplus
10859 || cu->language == language_java
10860 || cu->language == language_ada)
10861 {
10862 /* The symbol's name is already allocated along
10863 with this objfile, so we don't need to
10864 duplicate it for the type. */
10865 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
10866 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
10867 }
10868 }
10869 }
10870 break;
10871 case DW_TAG_typedef:
10872 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10873 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10874 list_to_add = cu->list_in_scope;
10875 break;
10876 case DW_TAG_base_type:
10877 case DW_TAG_subrange_type:
10878 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10879 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10880 list_to_add = cu->list_in_scope;
10881 break;
10882 case DW_TAG_enumerator:
10883 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10884 if (attr)
10885 {
10886 dwarf2_const_value (attr, sym, cu);
10887 }
10888 {
10889 /* NOTE: carlton/2003-11-10: See comment above in the
10890 DW_TAG_class_type, etc. block. */
10891
10892 list_to_add = (cu->list_in_scope == &file_symbols
10893 && (cu->language == language_cplus
10894 || cu->language == language_java)
10895 ? &global_symbols : cu->list_in_scope);
10896 }
10897 break;
10898 case DW_TAG_namespace:
10899 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10900 list_to_add = &global_symbols;
10901 break;
10902 default:
10903 /* Not a tag we recognize. Hopefully we aren't processing
10904 trash data, but since we must specifically ignore things
10905 we don't recognize, there is nothing else we should do at
10906 this point. */
10907 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
10908 dwarf_tag_name (die->tag));
10909 break;
10910 }
10911
10912 if (suppress_add)
10913 {
10914 sym->hash_next = objfile->template_symbols;
10915 objfile->template_symbols = sym;
10916 list_to_add = NULL;
10917 }
10918
10919 if (list_to_add != NULL)
10920 add_symbol_to_list (sym, list_to_add);
10921
10922 /* For the benefit of old versions of GCC, check for anonymous
10923 namespaces based on the demangled name. */
10924 if (!processing_has_namespace_info
10925 && cu->language == language_cplus)
10926 cp_scan_for_anonymous_namespaces (sym);
10927 }
10928 return (sym);
10929 }
10930
10931 /* A wrapper for new_symbol_full that always allocates a new symbol. */
10932
10933 static struct symbol *
10934 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10935 {
10936 return new_symbol_full (die, type, cu, NULL);
10937 }
10938
10939 /* Given an attr with a DW_FORM_dataN value in host byte order,
10940 zero-extend it as appropriate for the symbol's type. The DWARF
10941 standard (v4) is not entirely clear about the meaning of using
10942 DW_FORM_dataN for a constant with a signed type, where the type is
10943 wider than the data. The conclusion of a discussion on the DWARF
10944 list was that this is unspecified. We choose to always zero-extend
10945 because that is the interpretation long in use by GCC. */
10946
10947 static gdb_byte *
10948 dwarf2_const_value_data (struct attribute *attr, struct type *type,
10949 const char *name, struct obstack *obstack,
10950 struct dwarf2_cu *cu, long *value, int bits)
10951 {
10952 struct objfile *objfile = cu->objfile;
10953 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
10954 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
10955 LONGEST l = DW_UNSND (attr);
10956
10957 if (bits < sizeof (*value) * 8)
10958 {
10959 l &= ((LONGEST) 1 << bits) - 1;
10960 *value = l;
10961 }
10962 else if (bits == sizeof (*value) * 8)
10963 *value = l;
10964 else
10965 {
10966 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
10967 store_unsigned_integer (bytes, bits / 8, byte_order, l);
10968 return bytes;
10969 }
10970
10971 return NULL;
10972 }
10973
10974 /* Read a constant value from an attribute. Either set *VALUE, or if
10975 the value does not fit in *VALUE, set *BYTES - either already
10976 allocated on the objfile obstack, or newly allocated on OBSTACK,
10977 or, set *BATON, if we translated the constant to a location
10978 expression. */
10979
10980 static void
10981 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
10982 const char *name, struct obstack *obstack,
10983 struct dwarf2_cu *cu,
10984 long *value, gdb_byte **bytes,
10985 struct dwarf2_locexpr_baton **baton)
10986 {
10987 struct objfile *objfile = cu->objfile;
10988 struct comp_unit_head *cu_header = &cu->header;
10989 struct dwarf_block *blk;
10990 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
10991 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
10992
10993 *value = 0;
10994 *bytes = NULL;
10995 *baton = NULL;
10996
10997 switch (attr->form)
10998 {
10999 case DW_FORM_addr:
11000 {
11001 gdb_byte *data;
11002
11003 if (TYPE_LENGTH (type) != cu_header->addr_size)
11004 dwarf2_const_value_length_mismatch_complaint (name,
11005 cu_header->addr_size,
11006 TYPE_LENGTH (type));
11007 /* Symbols of this form are reasonably rare, so we just
11008 piggyback on the existing location code rather than writing
11009 a new implementation of symbol_computed_ops. */
11010 *baton = obstack_alloc (&objfile->objfile_obstack,
11011 sizeof (struct dwarf2_locexpr_baton));
11012 (*baton)->per_cu = cu->per_cu;
11013 gdb_assert ((*baton)->per_cu);
11014
11015 (*baton)->size = 2 + cu_header->addr_size;
11016 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11017 (*baton)->data = data;
11018
11019 data[0] = DW_OP_addr;
11020 store_unsigned_integer (&data[1], cu_header->addr_size,
11021 byte_order, DW_ADDR (attr));
11022 data[cu_header->addr_size + 1] = DW_OP_stack_value;
11023 }
11024 break;
11025 case DW_FORM_string:
11026 case DW_FORM_strp:
11027 /* DW_STRING is already allocated on the objfile obstack, point
11028 directly to it. */
11029 *bytes = (gdb_byte *) DW_STRING (attr);
11030 break;
11031 case DW_FORM_block1:
11032 case DW_FORM_block2:
11033 case DW_FORM_block4:
11034 case DW_FORM_block:
11035 case DW_FORM_exprloc:
11036 blk = DW_BLOCK (attr);
11037 if (TYPE_LENGTH (type) != blk->size)
11038 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11039 TYPE_LENGTH (type));
11040 *bytes = blk->data;
11041 break;
11042
11043 /* The DW_AT_const_value attributes are supposed to carry the
11044 symbol's value "represented as it would be on the target
11045 architecture." By the time we get here, it's already been
11046 converted to host endianness, so we just need to sign- or
11047 zero-extend it as appropriate. */
11048 case DW_FORM_data1:
11049 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 8);
11050 break;
11051 case DW_FORM_data2:
11052 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 16);
11053 break;
11054 case DW_FORM_data4:
11055 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 32);
11056 break;
11057 case DW_FORM_data8:
11058 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 64);
11059 break;
11060
11061 case DW_FORM_sdata:
11062 *value = DW_SND (attr);
11063 break;
11064
11065 case DW_FORM_udata:
11066 *value = DW_UNSND (attr);
11067 break;
11068
11069 default:
11070 complaint (&symfile_complaints,
11071 _("unsupported const value attribute form: '%s'"),
11072 dwarf_form_name (attr->form));
11073 *value = 0;
11074 break;
11075 }
11076 }
11077
11078
11079 /* Copy constant value from an attribute to a symbol. */
11080
11081 static void
11082 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11083 struct dwarf2_cu *cu)
11084 {
11085 struct objfile *objfile = cu->objfile;
11086 struct comp_unit_head *cu_header = &cu->header;
11087 long value;
11088 gdb_byte *bytes;
11089 struct dwarf2_locexpr_baton *baton;
11090
11091 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11092 SYMBOL_PRINT_NAME (sym),
11093 &objfile->objfile_obstack, cu,
11094 &value, &bytes, &baton);
11095
11096 if (baton != NULL)
11097 {
11098 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11099 SYMBOL_LOCATION_BATON (sym) = baton;
11100 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11101 }
11102 else if (bytes != NULL)
11103 {
11104 SYMBOL_VALUE_BYTES (sym) = bytes;
11105 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11106 }
11107 else
11108 {
11109 SYMBOL_VALUE (sym) = value;
11110 SYMBOL_CLASS (sym) = LOC_CONST;
11111 }
11112 }
11113
11114 /* Return the type of the die in question using its DW_AT_type attribute. */
11115
11116 static struct type *
11117 die_type (struct die_info *die, struct dwarf2_cu *cu)
11118 {
11119 struct attribute *type_attr;
11120
11121 type_attr = dwarf2_attr (die, DW_AT_type, cu);
11122 if (!type_attr)
11123 {
11124 /* A missing DW_AT_type represents a void type. */
11125 return objfile_type (cu->objfile)->builtin_void;
11126 }
11127
11128 return lookup_die_type (die, type_attr, cu);
11129 }
11130
11131 /* True iff CU's producer generates GNAT Ada auxiliary information
11132 that allows to find parallel types through that information instead
11133 of having to do expensive parallel lookups by type name. */
11134
11135 static int
11136 need_gnat_info (struct dwarf2_cu *cu)
11137 {
11138 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11139 of GNAT produces this auxiliary information, without any indication
11140 that it is produced. Part of enhancing the FSF version of GNAT
11141 to produce that information will be to put in place an indicator
11142 that we can use in order to determine whether the descriptive type
11143 info is available or not. One suggestion that has been made is
11144 to use a new attribute, attached to the CU die. For now, assume
11145 that the descriptive type info is not available. */
11146 return 0;
11147 }
11148
11149 /* Return the auxiliary type of the die in question using its
11150 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11151 attribute is not present. */
11152
11153 static struct type *
11154 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11155 {
11156 struct attribute *type_attr;
11157
11158 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11159 if (!type_attr)
11160 return NULL;
11161
11162 return lookup_die_type (die, type_attr, cu);
11163 }
11164
11165 /* If DIE has a descriptive_type attribute, then set the TYPE's
11166 descriptive type accordingly. */
11167
11168 static void
11169 set_descriptive_type (struct type *type, struct die_info *die,
11170 struct dwarf2_cu *cu)
11171 {
11172 struct type *descriptive_type = die_descriptive_type (die, cu);
11173
11174 if (descriptive_type)
11175 {
11176 ALLOCATE_GNAT_AUX_TYPE (type);
11177 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11178 }
11179 }
11180
11181 /* Return the containing type of the die in question using its
11182 DW_AT_containing_type attribute. */
11183
11184 static struct type *
11185 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
11186 {
11187 struct attribute *type_attr;
11188
11189 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
11190 if (!type_attr)
11191 error (_("Dwarf Error: Problem turning containing type into gdb type "
11192 "[in module %s]"), cu->objfile->name);
11193
11194 return lookup_die_type (die, type_attr, cu);
11195 }
11196
11197 /* Look up the type of DIE in CU using its type attribute ATTR.
11198 If there is no type substitute an error marker. */
11199
11200 static struct type *
11201 lookup_die_type (struct die_info *die, struct attribute *attr,
11202 struct dwarf2_cu *cu)
11203 {
11204 struct type *this_type;
11205
11206 /* First see if we have it cached. */
11207
11208 if (is_ref_attr (attr))
11209 {
11210 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11211
11212 this_type = get_die_type_at_offset (offset, cu->per_cu);
11213 }
11214 else if (attr->form == DW_FORM_sig8)
11215 {
11216 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11217 struct dwarf2_cu *sig_cu;
11218 unsigned int offset;
11219
11220 /* sig_type will be NULL if the signatured type is missing from
11221 the debug info. */
11222 if (sig_type == NULL)
11223 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11224 "at 0x%x [in module %s]"),
11225 die->offset, cu->objfile->name);
11226
11227 gdb_assert (sig_type->per_cu.from_debug_types);
11228 offset = sig_type->offset + sig_type->type_offset;
11229 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11230 }
11231 else
11232 {
11233 dump_die_for_error (die);
11234 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11235 dwarf_attr_name (attr->name), cu->objfile->name);
11236 }
11237
11238 /* If not cached we need to read it in. */
11239
11240 if (this_type == NULL)
11241 {
11242 struct die_info *type_die;
11243 struct dwarf2_cu *type_cu = cu;
11244
11245 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11246 /* If the type is cached, we should have found it above. */
11247 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11248 this_type = read_type_die_1 (type_die, type_cu);
11249 }
11250
11251 /* If we still don't have a type use an error marker. */
11252
11253 if (this_type == NULL)
11254 {
11255 char *message, *saved;
11256
11257 /* read_type_die already issued a complaint. */
11258 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11259 cu->objfile->name,
11260 cu->header.offset,
11261 die->offset);
11262 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11263 message, strlen (message));
11264 xfree (message);
11265
11266 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
11267 }
11268
11269 return this_type;
11270 }
11271
11272 /* Return the type in DIE, CU.
11273 Returns NULL for invalid types.
11274
11275 This first does a lookup in the appropriate type_hash table,
11276 and only reads the die in if necessary.
11277
11278 NOTE: This can be called when reading in partial or full symbols. */
11279
11280 static struct type *
11281 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
11282 {
11283 struct type *this_type;
11284
11285 this_type = get_die_type (die, cu);
11286 if (this_type)
11287 return this_type;
11288
11289 return read_type_die_1 (die, cu);
11290 }
11291
11292 /* Read the type in DIE, CU.
11293 Returns NULL for invalid types. */
11294
11295 static struct type *
11296 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11297 {
11298 struct type *this_type = NULL;
11299
11300 switch (die->tag)
11301 {
11302 case DW_TAG_class_type:
11303 case DW_TAG_interface_type:
11304 case DW_TAG_structure_type:
11305 case DW_TAG_union_type:
11306 this_type = read_structure_type (die, cu);
11307 break;
11308 case DW_TAG_enumeration_type:
11309 this_type = read_enumeration_type (die, cu);
11310 break;
11311 case DW_TAG_subprogram:
11312 case DW_TAG_subroutine_type:
11313 case DW_TAG_inlined_subroutine:
11314 this_type = read_subroutine_type (die, cu);
11315 break;
11316 case DW_TAG_array_type:
11317 this_type = read_array_type (die, cu);
11318 break;
11319 case DW_TAG_set_type:
11320 this_type = read_set_type (die, cu);
11321 break;
11322 case DW_TAG_pointer_type:
11323 this_type = read_tag_pointer_type (die, cu);
11324 break;
11325 case DW_TAG_ptr_to_member_type:
11326 this_type = read_tag_ptr_to_member_type (die, cu);
11327 break;
11328 case DW_TAG_reference_type:
11329 this_type = read_tag_reference_type (die, cu);
11330 break;
11331 case DW_TAG_const_type:
11332 this_type = read_tag_const_type (die, cu);
11333 break;
11334 case DW_TAG_volatile_type:
11335 this_type = read_tag_volatile_type (die, cu);
11336 break;
11337 case DW_TAG_string_type:
11338 this_type = read_tag_string_type (die, cu);
11339 break;
11340 case DW_TAG_typedef:
11341 this_type = read_typedef (die, cu);
11342 break;
11343 case DW_TAG_subrange_type:
11344 this_type = read_subrange_type (die, cu);
11345 break;
11346 case DW_TAG_base_type:
11347 this_type = read_base_type (die, cu);
11348 break;
11349 case DW_TAG_unspecified_type:
11350 this_type = read_unspecified_type (die, cu);
11351 break;
11352 case DW_TAG_namespace:
11353 this_type = read_namespace_type (die, cu);
11354 break;
11355 case DW_TAG_module:
11356 this_type = read_module_type (die, cu);
11357 break;
11358 default:
11359 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
11360 dwarf_tag_name (die->tag));
11361 break;
11362 }
11363
11364 return this_type;
11365 }
11366
11367 /* See if we can figure out if the class lives in a namespace. We do
11368 this by looking for a member function; its demangled name will
11369 contain namespace info, if there is any.
11370 Return the computed name or NULL.
11371 Space for the result is allocated on the objfile's obstack.
11372 This is the full-die version of guess_partial_die_structure_name.
11373 In this case we know DIE has no useful parent. */
11374
11375 static char *
11376 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11377 {
11378 struct die_info *spec_die;
11379 struct dwarf2_cu *spec_cu;
11380 struct die_info *child;
11381
11382 spec_cu = cu;
11383 spec_die = die_specification (die, &spec_cu);
11384 if (spec_die != NULL)
11385 {
11386 die = spec_die;
11387 cu = spec_cu;
11388 }
11389
11390 for (child = die->child;
11391 child != NULL;
11392 child = child->sibling)
11393 {
11394 if (child->tag == DW_TAG_subprogram)
11395 {
11396 struct attribute *attr;
11397
11398 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11399 if (attr == NULL)
11400 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11401 if (attr != NULL)
11402 {
11403 char *actual_name
11404 = language_class_name_from_physname (cu->language_defn,
11405 DW_STRING (attr));
11406 char *name = NULL;
11407
11408 if (actual_name != NULL)
11409 {
11410 char *die_name = dwarf2_name (die, cu);
11411
11412 if (die_name != NULL
11413 && strcmp (die_name, actual_name) != 0)
11414 {
11415 /* Strip off the class name from the full name.
11416 We want the prefix. */
11417 int die_name_len = strlen (die_name);
11418 int actual_name_len = strlen (actual_name);
11419
11420 /* Test for '::' as a sanity check. */
11421 if (actual_name_len > die_name_len + 2
11422 && actual_name[actual_name_len - die_name_len - 1] == ':')
11423 name =
11424 obsavestring (actual_name,
11425 actual_name_len - die_name_len - 2,
11426 &cu->objfile->objfile_obstack);
11427 }
11428 }
11429 xfree (actual_name);
11430 return name;
11431 }
11432 }
11433 }
11434
11435 return NULL;
11436 }
11437
11438 /* Return the name of the namespace/class that DIE is defined within,
11439 or "" if we can't tell. The caller should not xfree the result.
11440
11441 For example, if we're within the method foo() in the following
11442 code:
11443
11444 namespace N {
11445 class C {
11446 void foo () {
11447 }
11448 };
11449 }
11450
11451 then determine_prefix on foo's die will return "N::C". */
11452
11453 static char *
11454 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
11455 {
11456 struct die_info *parent, *spec_die;
11457 struct dwarf2_cu *spec_cu;
11458 struct type *parent_type;
11459
11460 if (cu->language != language_cplus && cu->language != language_java
11461 && cu->language != language_fortran)
11462 return "";
11463
11464 /* We have to be careful in the presence of DW_AT_specification.
11465 For example, with GCC 3.4, given the code
11466
11467 namespace N {
11468 void foo() {
11469 // Definition of N::foo.
11470 }
11471 }
11472
11473 then we'll have a tree of DIEs like this:
11474
11475 1: DW_TAG_compile_unit
11476 2: DW_TAG_namespace // N
11477 3: DW_TAG_subprogram // declaration of N::foo
11478 4: DW_TAG_subprogram // definition of N::foo
11479 DW_AT_specification // refers to die #3
11480
11481 Thus, when processing die #4, we have to pretend that we're in
11482 the context of its DW_AT_specification, namely the contex of die
11483 #3. */
11484 spec_cu = cu;
11485 spec_die = die_specification (die, &spec_cu);
11486 if (spec_die == NULL)
11487 parent = die->parent;
11488 else
11489 {
11490 parent = spec_die->parent;
11491 cu = spec_cu;
11492 }
11493
11494 if (parent == NULL)
11495 return "";
11496 else if (parent->building_fullname)
11497 {
11498 const char *name;
11499 const char *parent_name;
11500
11501 /* It has been seen on RealView 2.2 built binaries,
11502 DW_TAG_template_type_param types actually _defined_ as
11503 children of the parent class:
11504
11505 enum E {};
11506 template class <class Enum> Class{};
11507 Class<enum E> class_e;
11508
11509 1: DW_TAG_class_type (Class)
11510 2: DW_TAG_enumeration_type (E)
11511 3: DW_TAG_enumerator (enum1:0)
11512 3: DW_TAG_enumerator (enum2:1)
11513 ...
11514 2: DW_TAG_template_type_param
11515 DW_AT_type DW_FORM_ref_udata (E)
11516
11517 Besides being broken debug info, it can put GDB into an
11518 infinite loop. Consider:
11519
11520 When we're building the full name for Class<E>, we'll start
11521 at Class, and go look over its template type parameters,
11522 finding E. We'll then try to build the full name of E, and
11523 reach here. We're now trying to build the full name of E,
11524 and look over the parent DIE for containing scope. In the
11525 broken case, if we followed the parent DIE of E, we'd again
11526 find Class, and once again go look at its template type
11527 arguments, etc., etc. Simply don't consider such parent die
11528 as source-level parent of this die (it can't be, the language
11529 doesn't allow it), and break the loop here. */
11530 name = dwarf2_name (die, cu);
11531 parent_name = dwarf2_name (parent, cu);
11532 complaint (&symfile_complaints,
11533 _("template param type '%s' defined within parent '%s'"),
11534 name ? name : "<unknown>",
11535 parent_name ? parent_name : "<unknown>");
11536 return "";
11537 }
11538 else
11539 switch (parent->tag)
11540 {
11541 case DW_TAG_namespace:
11542 parent_type = read_type_die (parent, cu);
11543 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11544 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11545 Work around this problem here. */
11546 if (cu->language == language_cplus
11547 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11548 return "";
11549 /* We give a name to even anonymous namespaces. */
11550 return TYPE_TAG_NAME (parent_type);
11551 case DW_TAG_class_type:
11552 case DW_TAG_interface_type:
11553 case DW_TAG_structure_type:
11554 case DW_TAG_union_type:
11555 case DW_TAG_module:
11556 parent_type = read_type_die (parent, cu);
11557 if (TYPE_TAG_NAME (parent_type) != NULL)
11558 return TYPE_TAG_NAME (parent_type);
11559 else
11560 /* An anonymous structure is only allowed non-static data
11561 members; no typedefs, no member functions, et cetera.
11562 So it does not need a prefix. */
11563 return "";
11564 case DW_TAG_compile_unit:
11565 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11566 if (cu->language == language_cplus
11567 && dwarf2_per_objfile->types.asection != NULL
11568 && die->child != NULL
11569 && (die->tag == DW_TAG_class_type
11570 || die->tag == DW_TAG_structure_type
11571 || die->tag == DW_TAG_union_type))
11572 {
11573 char *name = guess_full_die_structure_name (die, cu);
11574 if (name != NULL)
11575 return name;
11576 }
11577 return "";
11578 default:
11579 return determine_prefix (parent, cu);
11580 }
11581 }
11582
11583 /* Return a newly-allocated string formed by concatenating PREFIX and
11584 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11585 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
11586 perform an obconcat, otherwise allocate storage for the result. The CU argument
11587 is used to determine the language and hence, the appropriate separator. */
11588
11589 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
11590
11591 static char *
11592 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11593 int physname, struct dwarf2_cu *cu)
11594 {
11595 const char *lead = "";
11596 const char *sep;
11597
11598 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
11599 sep = "";
11600 else if (cu->language == language_java)
11601 sep = ".";
11602 else if (cu->language == language_fortran && physname)
11603 {
11604 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11605 DW_AT_MIPS_linkage_name is preferred and used instead. */
11606
11607 lead = "__";
11608 sep = "_MOD_";
11609 }
11610 else
11611 sep = "::";
11612
11613 if (prefix == NULL)
11614 prefix = "";
11615 if (suffix == NULL)
11616 suffix = "";
11617
11618 if (obs == NULL)
11619 {
11620 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
11621
11622 strcpy (retval, lead);
11623 strcat (retval, prefix);
11624 strcat (retval, sep);
11625 strcat (retval, suffix);
11626 return retval;
11627 }
11628 else
11629 {
11630 /* We have an obstack. */
11631 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
11632 }
11633 }
11634
11635 /* Return sibling of die, NULL if no sibling. */
11636
11637 static struct die_info *
11638 sibling_die (struct die_info *die)
11639 {
11640 return die->sibling;
11641 }
11642
11643 /* Get name of a die, return NULL if not found. */
11644
11645 static char *
11646 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11647 struct obstack *obstack)
11648 {
11649 if (name && cu->language == language_cplus)
11650 {
11651 char *canon_name = cp_canonicalize_string (name);
11652
11653 if (canon_name != NULL)
11654 {
11655 if (strcmp (canon_name, name) != 0)
11656 name = obsavestring (canon_name, strlen (canon_name),
11657 obstack);
11658 xfree (canon_name);
11659 }
11660 }
11661
11662 return name;
11663 }
11664
11665 /* Get name of a die, return NULL if not found. */
11666
11667 static char *
11668 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
11669 {
11670 struct attribute *attr;
11671
11672 attr = dwarf2_attr (die, DW_AT_name, cu);
11673 if (!attr || !DW_STRING (attr))
11674 return NULL;
11675
11676 switch (die->tag)
11677 {
11678 case DW_TAG_compile_unit:
11679 /* Compilation units have a DW_AT_name that is a filename, not
11680 a source language identifier. */
11681 case DW_TAG_enumeration_type:
11682 case DW_TAG_enumerator:
11683 /* These tags always have simple identifiers already; no need
11684 to canonicalize them. */
11685 return DW_STRING (attr);
11686
11687 case DW_TAG_subprogram:
11688 /* Java constructors will all be named "<init>", so return
11689 the class name when we see this special case. */
11690 if (cu->language == language_java
11691 && DW_STRING (attr) != NULL
11692 && strcmp (DW_STRING (attr), "<init>") == 0)
11693 {
11694 struct dwarf2_cu *spec_cu = cu;
11695 struct die_info *spec_die;
11696
11697 /* GCJ will output '<init>' for Java constructor names.
11698 For this special case, return the name of the parent class. */
11699
11700 /* GCJ may output suprogram DIEs with AT_specification set.
11701 If so, use the name of the specified DIE. */
11702 spec_die = die_specification (die, &spec_cu);
11703 if (spec_die != NULL)
11704 return dwarf2_name (spec_die, spec_cu);
11705
11706 do
11707 {
11708 die = die->parent;
11709 if (die->tag == DW_TAG_class_type)
11710 return dwarf2_name (die, cu);
11711 }
11712 while (die->tag != DW_TAG_compile_unit);
11713 }
11714 break;
11715
11716 case DW_TAG_class_type:
11717 case DW_TAG_interface_type:
11718 case DW_TAG_structure_type:
11719 case DW_TAG_union_type:
11720 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
11721 structures or unions. These were of the form "._%d" in GCC 4.1,
11722 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
11723 and GCC 4.4. We work around this problem by ignoring these. */
11724 if (strncmp (DW_STRING (attr), "._", 2) == 0
11725 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
11726 return NULL;
11727 break;
11728
11729 default:
11730 break;
11731 }
11732
11733 if (!DW_STRING_IS_CANONICAL (attr))
11734 {
11735 DW_STRING (attr)
11736 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
11737 &cu->objfile->objfile_obstack);
11738 DW_STRING_IS_CANONICAL (attr) = 1;
11739 }
11740 return DW_STRING (attr);
11741 }
11742
11743 /* Return the die that this die in an extension of, or NULL if there
11744 is none. *EXT_CU is the CU containing DIE on input, and the CU
11745 containing the return value on output. */
11746
11747 static struct die_info *
11748 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
11749 {
11750 struct attribute *attr;
11751
11752 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
11753 if (attr == NULL)
11754 return NULL;
11755
11756 return follow_die_ref (die, attr, ext_cu);
11757 }
11758
11759 /* Convert a DIE tag into its string name. */
11760
11761 static char *
11762 dwarf_tag_name (unsigned tag)
11763 {
11764 switch (tag)
11765 {
11766 case DW_TAG_padding:
11767 return "DW_TAG_padding";
11768 case DW_TAG_array_type:
11769 return "DW_TAG_array_type";
11770 case DW_TAG_class_type:
11771 return "DW_TAG_class_type";
11772 case DW_TAG_entry_point:
11773 return "DW_TAG_entry_point";
11774 case DW_TAG_enumeration_type:
11775 return "DW_TAG_enumeration_type";
11776 case DW_TAG_formal_parameter:
11777 return "DW_TAG_formal_parameter";
11778 case DW_TAG_imported_declaration:
11779 return "DW_TAG_imported_declaration";
11780 case DW_TAG_label:
11781 return "DW_TAG_label";
11782 case DW_TAG_lexical_block:
11783 return "DW_TAG_lexical_block";
11784 case DW_TAG_member:
11785 return "DW_TAG_member";
11786 case DW_TAG_pointer_type:
11787 return "DW_TAG_pointer_type";
11788 case DW_TAG_reference_type:
11789 return "DW_TAG_reference_type";
11790 case DW_TAG_compile_unit:
11791 return "DW_TAG_compile_unit";
11792 case DW_TAG_string_type:
11793 return "DW_TAG_string_type";
11794 case DW_TAG_structure_type:
11795 return "DW_TAG_structure_type";
11796 case DW_TAG_subroutine_type:
11797 return "DW_TAG_subroutine_type";
11798 case DW_TAG_typedef:
11799 return "DW_TAG_typedef";
11800 case DW_TAG_union_type:
11801 return "DW_TAG_union_type";
11802 case DW_TAG_unspecified_parameters:
11803 return "DW_TAG_unspecified_parameters";
11804 case DW_TAG_variant:
11805 return "DW_TAG_variant";
11806 case DW_TAG_common_block:
11807 return "DW_TAG_common_block";
11808 case DW_TAG_common_inclusion:
11809 return "DW_TAG_common_inclusion";
11810 case DW_TAG_inheritance:
11811 return "DW_TAG_inheritance";
11812 case DW_TAG_inlined_subroutine:
11813 return "DW_TAG_inlined_subroutine";
11814 case DW_TAG_module:
11815 return "DW_TAG_module";
11816 case DW_TAG_ptr_to_member_type:
11817 return "DW_TAG_ptr_to_member_type";
11818 case DW_TAG_set_type:
11819 return "DW_TAG_set_type";
11820 case DW_TAG_subrange_type:
11821 return "DW_TAG_subrange_type";
11822 case DW_TAG_with_stmt:
11823 return "DW_TAG_with_stmt";
11824 case DW_TAG_access_declaration:
11825 return "DW_TAG_access_declaration";
11826 case DW_TAG_base_type:
11827 return "DW_TAG_base_type";
11828 case DW_TAG_catch_block:
11829 return "DW_TAG_catch_block";
11830 case DW_TAG_const_type:
11831 return "DW_TAG_const_type";
11832 case DW_TAG_constant:
11833 return "DW_TAG_constant";
11834 case DW_TAG_enumerator:
11835 return "DW_TAG_enumerator";
11836 case DW_TAG_file_type:
11837 return "DW_TAG_file_type";
11838 case DW_TAG_friend:
11839 return "DW_TAG_friend";
11840 case DW_TAG_namelist:
11841 return "DW_TAG_namelist";
11842 case DW_TAG_namelist_item:
11843 return "DW_TAG_namelist_item";
11844 case DW_TAG_packed_type:
11845 return "DW_TAG_packed_type";
11846 case DW_TAG_subprogram:
11847 return "DW_TAG_subprogram";
11848 case DW_TAG_template_type_param:
11849 return "DW_TAG_template_type_param";
11850 case DW_TAG_template_value_param:
11851 return "DW_TAG_template_value_param";
11852 case DW_TAG_thrown_type:
11853 return "DW_TAG_thrown_type";
11854 case DW_TAG_try_block:
11855 return "DW_TAG_try_block";
11856 case DW_TAG_variant_part:
11857 return "DW_TAG_variant_part";
11858 case DW_TAG_variable:
11859 return "DW_TAG_variable";
11860 case DW_TAG_volatile_type:
11861 return "DW_TAG_volatile_type";
11862 case DW_TAG_dwarf_procedure:
11863 return "DW_TAG_dwarf_procedure";
11864 case DW_TAG_restrict_type:
11865 return "DW_TAG_restrict_type";
11866 case DW_TAG_interface_type:
11867 return "DW_TAG_interface_type";
11868 case DW_TAG_namespace:
11869 return "DW_TAG_namespace";
11870 case DW_TAG_imported_module:
11871 return "DW_TAG_imported_module";
11872 case DW_TAG_unspecified_type:
11873 return "DW_TAG_unspecified_type";
11874 case DW_TAG_partial_unit:
11875 return "DW_TAG_partial_unit";
11876 case DW_TAG_imported_unit:
11877 return "DW_TAG_imported_unit";
11878 case DW_TAG_condition:
11879 return "DW_TAG_condition";
11880 case DW_TAG_shared_type:
11881 return "DW_TAG_shared_type";
11882 case DW_TAG_type_unit:
11883 return "DW_TAG_type_unit";
11884 case DW_TAG_MIPS_loop:
11885 return "DW_TAG_MIPS_loop";
11886 case DW_TAG_HP_array_descriptor:
11887 return "DW_TAG_HP_array_descriptor";
11888 case DW_TAG_format_label:
11889 return "DW_TAG_format_label";
11890 case DW_TAG_function_template:
11891 return "DW_TAG_function_template";
11892 case DW_TAG_class_template:
11893 return "DW_TAG_class_template";
11894 case DW_TAG_GNU_BINCL:
11895 return "DW_TAG_GNU_BINCL";
11896 case DW_TAG_GNU_EINCL:
11897 return "DW_TAG_GNU_EINCL";
11898 case DW_TAG_upc_shared_type:
11899 return "DW_TAG_upc_shared_type";
11900 case DW_TAG_upc_strict_type:
11901 return "DW_TAG_upc_strict_type";
11902 case DW_TAG_upc_relaxed_type:
11903 return "DW_TAG_upc_relaxed_type";
11904 case DW_TAG_PGI_kanji_type:
11905 return "DW_TAG_PGI_kanji_type";
11906 case DW_TAG_PGI_interface_block:
11907 return "DW_TAG_PGI_interface_block";
11908 default:
11909 return "DW_TAG_<unknown>";
11910 }
11911 }
11912
11913 /* Convert a DWARF attribute code into its string name. */
11914
11915 static char *
11916 dwarf_attr_name (unsigned attr)
11917 {
11918 switch (attr)
11919 {
11920 case DW_AT_sibling:
11921 return "DW_AT_sibling";
11922 case DW_AT_location:
11923 return "DW_AT_location";
11924 case DW_AT_name:
11925 return "DW_AT_name";
11926 case DW_AT_ordering:
11927 return "DW_AT_ordering";
11928 case DW_AT_subscr_data:
11929 return "DW_AT_subscr_data";
11930 case DW_AT_byte_size:
11931 return "DW_AT_byte_size";
11932 case DW_AT_bit_offset:
11933 return "DW_AT_bit_offset";
11934 case DW_AT_bit_size:
11935 return "DW_AT_bit_size";
11936 case DW_AT_element_list:
11937 return "DW_AT_element_list";
11938 case DW_AT_stmt_list:
11939 return "DW_AT_stmt_list";
11940 case DW_AT_low_pc:
11941 return "DW_AT_low_pc";
11942 case DW_AT_high_pc:
11943 return "DW_AT_high_pc";
11944 case DW_AT_language:
11945 return "DW_AT_language";
11946 case DW_AT_member:
11947 return "DW_AT_member";
11948 case DW_AT_discr:
11949 return "DW_AT_discr";
11950 case DW_AT_discr_value:
11951 return "DW_AT_discr_value";
11952 case DW_AT_visibility:
11953 return "DW_AT_visibility";
11954 case DW_AT_import:
11955 return "DW_AT_import";
11956 case DW_AT_string_length:
11957 return "DW_AT_string_length";
11958 case DW_AT_common_reference:
11959 return "DW_AT_common_reference";
11960 case DW_AT_comp_dir:
11961 return "DW_AT_comp_dir";
11962 case DW_AT_const_value:
11963 return "DW_AT_const_value";
11964 case DW_AT_containing_type:
11965 return "DW_AT_containing_type";
11966 case DW_AT_default_value:
11967 return "DW_AT_default_value";
11968 case DW_AT_inline:
11969 return "DW_AT_inline";
11970 case DW_AT_is_optional:
11971 return "DW_AT_is_optional";
11972 case DW_AT_lower_bound:
11973 return "DW_AT_lower_bound";
11974 case DW_AT_producer:
11975 return "DW_AT_producer";
11976 case DW_AT_prototyped:
11977 return "DW_AT_prototyped";
11978 case DW_AT_return_addr:
11979 return "DW_AT_return_addr";
11980 case DW_AT_start_scope:
11981 return "DW_AT_start_scope";
11982 case DW_AT_bit_stride:
11983 return "DW_AT_bit_stride";
11984 case DW_AT_upper_bound:
11985 return "DW_AT_upper_bound";
11986 case DW_AT_abstract_origin:
11987 return "DW_AT_abstract_origin";
11988 case DW_AT_accessibility:
11989 return "DW_AT_accessibility";
11990 case DW_AT_address_class:
11991 return "DW_AT_address_class";
11992 case DW_AT_artificial:
11993 return "DW_AT_artificial";
11994 case DW_AT_base_types:
11995 return "DW_AT_base_types";
11996 case DW_AT_calling_convention:
11997 return "DW_AT_calling_convention";
11998 case DW_AT_count:
11999 return "DW_AT_count";
12000 case DW_AT_data_member_location:
12001 return "DW_AT_data_member_location";
12002 case DW_AT_decl_column:
12003 return "DW_AT_decl_column";
12004 case DW_AT_decl_file:
12005 return "DW_AT_decl_file";
12006 case DW_AT_decl_line:
12007 return "DW_AT_decl_line";
12008 case DW_AT_declaration:
12009 return "DW_AT_declaration";
12010 case DW_AT_discr_list:
12011 return "DW_AT_discr_list";
12012 case DW_AT_encoding:
12013 return "DW_AT_encoding";
12014 case DW_AT_external:
12015 return "DW_AT_external";
12016 case DW_AT_frame_base:
12017 return "DW_AT_frame_base";
12018 case DW_AT_friend:
12019 return "DW_AT_friend";
12020 case DW_AT_identifier_case:
12021 return "DW_AT_identifier_case";
12022 case DW_AT_macro_info:
12023 return "DW_AT_macro_info";
12024 case DW_AT_namelist_items:
12025 return "DW_AT_namelist_items";
12026 case DW_AT_priority:
12027 return "DW_AT_priority";
12028 case DW_AT_segment:
12029 return "DW_AT_segment";
12030 case DW_AT_specification:
12031 return "DW_AT_specification";
12032 case DW_AT_static_link:
12033 return "DW_AT_static_link";
12034 case DW_AT_type:
12035 return "DW_AT_type";
12036 case DW_AT_use_location:
12037 return "DW_AT_use_location";
12038 case DW_AT_variable_parameter:
12039 return "DW_AT_variable_parameter";
12040 case DW_AT_virtuality:
12041 return "DW_AT_virtuality";
12042 case DW_AT_vtable_elem_location:
12043 return "DW_AT_vtable_elem_location";
12044 /* DWARF 3 values. */
12045 case DW_AT_allocated:
12046 return "DW_AT_allocated";
12047 case DW_AT_associated:
12048 return "DW_AT_associated";
12049 case DW_AT_data_location:
12050 return "DW_AT_data_location";
12051 case DW_AT_byte_stride:
12052 return "DW_AT_byte_stride";
12053 case DW_AT_entry_pc:
12054 return "DW_AT_entry_pc";
12055 case DW_AT_use_UTF8:
12056 return "DW_AT_use_UTF8";
12057 case DW_AT_extension:
12058 return "DW_AT_extension";
12059 case DW_AT_ranges:
12060 return "DW_AT_ranges";
12061 case DW_AT_trampoline:
12062 return "DW_AT_trampoline";
12063 case DW_AT_call_column:
12064 return "DW_AT_call_column";
12065 case DW_AT_call_file:
12066 return "DW_AT_call_file";
12067 case DW_AT_call_line:
12068 return "DW_AT_call_line";
12069 case DW_AT_description:
12070 return "DW_AT_description";
12071 case DW_AT_binary_scale:
12072 return "DW_AT_binary_scale";
12073 case DW_AT_decimal_scale:
12074 return "DW_AT_decimal_scale";
12075 case DW_AT_small:
12076 return "DW_AT_small";
12077 case DW_AT_decimal_sign:
12078 return "DW_AT_decimal_sign";
12079 case DW_AT_digit_count:
12080 return "DW_AT_digit_count";
12081 case DW_AT_picture_string:
12082 return "DW_AT_picture_string";
12083 case DW_AT_mutable:
12084 return "DW_AT_mutable";
12085 case DW_AT_threads_scaled:
12086 return "DW_AT_threads_scaled";
12087 case DW_AT_explicit:
12088 return "DW_AT_explicit";
12089 case DW_AT_object_pointer:
12090 return "DW_AT_object_pointer";
12091 case DW_AT_endianity:
12092 return "DW_AT_endianity";
12093 case DW_AT_elemental:
12094 return "DW_AT_elemental";
12095 case DW_AT_pure:
12096 return "DW_AT_pure";
12097 case DW_AT_recursive:
12098 return "DW_AT_recursive";
12099 /* DWARF 4 values. */
12100 case DW_AT_signature:
12101 return "DW_AT_signature";
12102 case DW_AT_linkage_name:
12103 return "DW_AT_linkage_name";
12104 /* SGI/MIPS extensions. */
12105 #ifdef MIPS /* collides with DW_AT_HP_block_index */
12106 case DW_AT_MIPS_fde:
12107 return "DW_AT_MIPS_fde";
12108 #endif
12109 case DW_AT_MIPS_loop_begin:
12110 return "DW_AT_MIPS_loop_begin";
12111 case DW_AT_MIPS_tail_loop_begin:
12112 return "DW_AT_MIPS_tail_loop_begin";
12113 case DW_AT_MIPS_epilog_begin:
12114 return "DW_AT_MIPS_epilog_begin";
12115 case DW_AT_MIPS_loop_unroll_factor:
12116 return "DW_AT_MIPS_loop_unroll_factor";
12117 case DW_AT_MIPS_software_pipeline_depth:
12118 return "DW_AT_MIPS_software_pipeline_depth";
12119 case DW_AT_MIPS_linkage_name:
12120 return "DW_AT_MIPS_linkage_name";
12121 case DW_AT_MIPS_stride:
12122 return "DW_AT_MIPS_stride";
12123 case DW_AT_MIPS_abstract_name:
12124 return "DW_AT_MIPS_abstract_name";
12125 case DW_AT_MIPS_clone_origin:
12126 return "DW_AT_MIPS_clone_origin";
12127 case DW_AT_MIPS_has_inlines:
12128 return "DW_AT_MIPS_has_inlines";
12129 /* HP extensions. */
12130 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
12131 case DW_AT_HP_block_index:
12132 return "DW_AT_HP_block_index";
12133 #endif
12134 case DW_AT_HP_unmodifiable:
12135 return "DW_AT_HP_unmodifiable";
12136 case DW_AT_HP_actuals_stmt_list:
12137 return "DW_AT_HP_actuals_stmt_list";
12138 case DW_AT_HP_proc_per_section:
12139 return "DW_AT_HP_proc_per_section";
12140 case DW_AT_HP_raw_data_ptr:
12141 return "DW_AT_HP_raw_data_ptr";
12142 case DW_AT_HP_pass_by_reference:
12143 return "DW_AT_HP_pass_by_reference";
12144 case DW_AT_HP_opt_level:
12145 return "DW_AT_HP_opt_level";
12146 case DW_AT_HP_prof_version_id:
12147 return "DW_AT_HP_prof_version_id";
12148 case DW_AT_HP_opt_flags:
12149 return "DW_AT_HP_opt_flags";
12150 case DW_AT_HP_cold_region_low_pc:
12151 return "DW_AT_HP_cold_region_low_pc";
12152 case DW_AT_HP_cold_region_high_pc:
12153 return "DW_AT_HP_cold_region_high_pc";
12154 case DW_AT_HP_all_variables_modifiable:
12155 return "DW_AT_HP_all_variables_modifiable";
12156 case DW_AT_HP_linkage_name:
12157 return "DW_AT_HP_linkage_name";
12158 case DW_AT_HP_prof_flags:
12159 return "DW_AT_HP_prof_flags";
12160 /* GNU extensions. */
12161 case DW_AT_sf_names:
12162 return "DW_AT_sf_names";
12163 case DW_AT_src_info:
12164 return "DW_AT_src_info";
12165 case DW_AT_mac_info:
12166 return "DW_AT_mac_info";
12167 case DW_AT_src_coords:
12168 return "DW_AT_src_coords";
12169 case DW_AT_body_begin:
12170 return "DW_AT_body_begin";
12171 case DW_AT_body_end:
12172 return "DW_AT_body_end";
12173 case DW_AT_GNU_vector:
12174 return "DW_AT_GNU_vector";
12175 case DW_AT_GNU_odr_signature:
12176 return "DW_AT_GNU_odr_signature";
12177 /* VMS extensions. */
12178 case DW_AT_VMS_rtnbeg_pd_address:
12179 return "DW_AT_VMS_rtnbeg_pd_address";
12180 /* UPC extension. */
12181 case DW_AT_upc_threads_scaled:
12182 return "DW_AT_upc_threads_scaled";
12183 /* PGI (STMicroelectronics) extensions. */
12184 case DW_AT_PGI_lbase:
12185 return "DW_AT_PGI_lbase";
12186 case DW_AT_PGI_soffset:
12187 return "DW_AT_PGI_soffset";
12188 case DW_AT_PGI_lstride:
12189 return "DW_AT_PGI_lstride";
12190 default:
12191 return "DW_AT_<unknown>";
12192 }
12193 }
12194
12195 /* Convert a DWARF value form code into its string name. */
12196
12197 static char *
12198 dwarf_form_name (unsigned form)
12199 {
12200 switch (form)
12201 {
12202 case DW_FORM_addr:
12203 return "DW_FORM_addr";
12204 case DW_FORM_block2:
12205 return "DW_FORM_block2";
12206 case DW_FORM_block4:
12207 return "DW_FORM_block4";
12208 case DW_FORM_data2:
12209 return "DW_FORM_data2";
12210 case DW_FORM_data4:
12211 return "DW_FORM_data4";
12212 case DW_FORM_data8:
12213 return "DW_FORM_data8";
12214 case DW_FORM_string:
12215 return "DW_FORM_string";
12216 case DW_FORM_block:
12217 return "DW_FORM_block";
12218 case DW_FORM_block1:
12219 return "DW_FORM_block1";
12220 case DW_FORM_data1:
12221 return "DW_FORM_data1";
12222 case DW_FORM_flag:
12223 return "DW_FORM_flag";
12224 case DW_FORM_sdata:
12225 return "DW_FORM_sdata";
12226 case DW_FORM_strp:
12227 return "DW_FORM_strp";
12228 case DW_FORM_udata:
12229 return "DW_FORM_udata";
12230 case DW_FORM_ref_addr:
12231 return "DW_FORM_ref_addr";
12232 case DW_FORM_ref1:
12233 return "DW_FORM_ref1";
12234 case DW_FORM_ref2:
12235 return "DW_FORM_ref2";
12236 case DW_FORM_ref4:
12237 return "DW_FORM_ref4";
12238 case DW_FORM_ref8:
12239 return "DW_FORM_ref8";
12240 case DW_FORM_ref_udata:
12241 return "DW_FORM_ref_udata";
12242 case DW_FORM_indirect:
12243 return "DW_FORM_indirect";
12244 case DW_FORM_sec_offset:
12245 return "DW_FORM_sec_offset";
12246 case DW_FORM_exprloc:
12247 return "DW_FORM_exprloc";
12248 case DW_FORM_flag_present:
12249 return "DW_FORM_flag_present";
12250 case DW_FORM_sig8:
12251 return "DW_FORM_sig8";
12252 default:
12253 return "DW_FORM_<unknown>";
12254 }
12255 }
12256
12257 /* Convert a DWARF stack opcode into its string name. */
12258
12259 const char *
12260 dwarf_stack_op_name (unsigned op, int def)
12261 {
12262 switch (op)
12263 {
12264 case DW_OP_addr:
12265 return "DW_OP_addr";
12266 case DW_OP_deref:
12267 return "DW_OP_deref";
12268 case DW_OP_const1u:
12269 return "DW_OP_const1u";
12270 case DW_OP_const1s:
12271 return "DW_OP_const1s";
12272 case DW_OP_const2u:
12273 return "DW_OP_const2u";
12274 case DW_OP_const2s:
12275 return "DW_OP_const2s";
12276 case DW_OP_const4u:
12277 return "DW_OP_const4u";
12278 case DW_OP_const4s:
12279 return "DW_OP_const4s";
12280 case DW_OP_const8u:
12281 return "DW_OP_const8u";
12282 case DW_OP_const8s:
12283 return "DW_OP_const8s";
12284 case DW_OP_constu:
12285 return "DW_OP_constu";
12286 case DW_OP_consts:
12287 return "DW_OP_consts";
12288 case DW_OP_dup:
12289 return "DW_OP_dup";
12290 case DW_OP_drop:
12291 return "DW_OP_drop";
12292 case DW_OP_over:
12293 return "DW_OP_over";
12294 case DW_OP_pick:
12295 return "DW_OP_pick";
12296 case DW_OP_swap:
12297 return "DW_OP_swap";
12298 case DW_OP_rot:
12299 return "DW_OP_rot";
12300 case DW_OP_xderef:
12301 return "DW_OP_xderef";
12302 case DW_OP_abs:
12303 return "DW_OP_abs";
12304 case DW_OP_and:
12305 return "DW_OP_and";
12306 case DW_OP_div:
12307 return "DW_OP_div";
12308 case DW_OP_minus:
12309 return "DW_OP_minus";
12310 case DW_OP_mod:
12311 return "DW_OP_mod";
12312 case DW_OP_mul:
12313 return "DW_OP_mul";
12314 case DW_OP_neg:
12315 return "DW_OP_neg";
12316 case DW_OP_not:
12317 return "DW_OP_not";
12318 case DW_OP_or:
12319 return "DW_OP_or";
12320 case DW_OP_plus:
12321 return "DW_OP_plus";
12322 case DW_OP_plus_uconst:
12323 return "DW_OP_plus_uconst";
12324 case DW_OP_shl:
12325 return "DW_OP_shl";
12326 case DW_OP_shr:
12327 return "DW_OP_shr";
12328 case DW_OP_shra:
12329 return "DW_OP_shra";
12330 case DW_OP_xor:
12331 return "DW_OP_xor";
12332 case DW_OP_bra:
12333 return "DW_OP_bra";
12334 case DW_OP_eq:
12335 return "DW_OP_eq";
12336 case DW_OP_ge:
12337 return "DW_OP_ge";
12338 case DW_OP_gt:
12339 return "DW_OP_gt";
12340 case DW_OP_le:
12341 return "DW_OP_le";
12342 case DW_OP_lt:
12343 return "DW_OP_lt";
12344 case DW_OP_ne:
12345 return "DW_OP_ne";
12346 case DW_OP_skip:
12347 return "DW_OP_skip";
12348 case DW_OP_lit0:
12349 return "DW_OP_lit0";
12350 case DW_OP_lit1:
12351 return "DW_OP_lit1";
12352 case DW_OP_lit2:
12353 return "DW_OP_lit2";
12354 case DW_OP_lit3:
12355 return "DW_OP_lit3";
12356 case DW_OP_lit4:
12357 return "DW_OP_lit4";
12358 case DW_OP_lit5:
12359 return "DW_OP_lit5";
12360 case DW_OP_lit6:
12361 return "DW_OP_lit6";
12362 case DW_OP_lit7:
12363 return "DW_OP_lit7";
12364 case DW_OP_lit8:
12365 return "DW_OP_lit8";
12366 case DW_OP_lit9:
12367 return "DW_OP_lit9";
12368 case DW_OP_lit10:
12369 return "DW_OP_lit10";
12370 case DW_OP_lit11:
12371 return "DW_OP_lit11";
12372 case DW_OP_lit12:
12373 return "DW_OP_lit12";
12374 case DW_OP_lit13:
12375 return "DW_OP_lit13";
12376 case DW_OP_lit14:
12377 return "DW_OP_lit14";
12378 case DW_OP_lit15:
12379 return "DW_OP_lit15";
12380 case DW_OP_lit16:
12381 return "DW_OP_lit16";
12382 case DW_OP_lit17:
12383 return "DW_OP_lit17";
12384 case DW_OP_lit18:
12385 return "DW_OP_lit18";
12386 case DW_OP_lit19:
12387 return "DW_OP_lit19";
12388 case DW_OP_lit20:
12389 return "DW_OP_lit20";
12390 case DW_OP_lit21:
12391 return "DW_OP_lit21";
12392 case DW_OP_lit22:
12393 return "DW_OP_lit22";
12394 case DW_OP_lit23:
12395 return "DW_OP_lit23";
12396 case DW_OP_lit24:
12397 return "DW_OP_lit24";
12398 case DW_OP_lit25:
12399 return "DW_OP_lit25";
12400 case DW_OP_lit26:
12401 return "DW_OP_lit26";
12402 case DW_OP_lit27:
12403 return "DW_OP_lit27";
12404 case DW_OP_lit28:
12405 return "DW_OP_lit28";
12406 case DW_OP_lit29:
12407 return "DW_OP_lit29";
12408 case DW_OP_lit30:
12409 return "DW_OP_lit30";
12410 case DW_OP_lit31:
12411 return "DW_OP_lit31";
12412 case DW_OP_reg0:
12413 return "DW_OP_reg0";
12414 case DW_OP_reg1:
12415 return "DW_OP_reg1";
12416 case DW_OP_reg2:
12417 return "DW_OP_reg2";
12418 case DW_OP_reg3:
12419 return "DW_OP_reg3";
12420 case DW_OP_reg4:
12421 return "DW_OP_reg4";
12422 case DW_OP_reg5:
12423 return "DW_OP_reg5";
12424 case DW_OP_reg6:
12425 return "DW_OP_reg6";
12426 case DW_OP_reg7:
12427 return "DW_OP_reg7";
12428 case DW_OP_reg8:
12429 return "DW_OP_reg8";
12430 case DW_OP_reg9:
12431 return "DW_OP_reg9";
12432 case DW_OP_reg10:
12433 return "DW_OP_reg10";
12434 case DW_OP_reg11:
12435 return "DW_OP_reg11";
12436 case DW_OP_reg12:
12437 return "DW_OP_reg12";
12438 case DW_OP_reg13:
12439 return "DW_OP_reg13";
12440 case DW_OP_reg14:
12441 return "DW_OP_reg14";
12442 case DW_OP_reg15:
12443 return "DW_OP_reg15";
12444 case DW_OP_reg16:
12445 return "DW_OP_reg16";
12446 case DW_OP_reg17:
12447 return "DW_OP_reg17";
12448 case DW_OP_reg18:
12449 return "DW_OP_reg18";
12450 case DW_OP_reg19:
12451 return "DW_OP_reg19";
12452 case DW_OP_reg20:
12453 return "DW_OP_reg20";
12454 case DW_OP_reg21:
12455 return "DW_OP_reg21";
12456 case DW_OP_reg22:
12457 return "DW_OP_reg22";
12458 case DW_OP_reg23:
12459 return "DW_OP_reg23";
12460 case DW_OP_reg24:
12461 return "DW_OP_reg24";
12462 case DW_OP_reg25:
12463 return "DW_OP_reg25";
12464 case DW_OP_reg26:
12465 return "DW_OP_reg26";
12466 case DW_OP_reg27:
12467 return "DW_OP_reg27";
12468 case DW_OP_reg28:
12469 return "DW_OP_reg28";
12470 case DW_OP_reg29:
12471 return "DW_OP_reg29";
12472 case DW_OP_reg30:
12473 return "DW_OP_reg30";
12474 case DW_OP_reg31:
12475 return "DW_OP_reg31";
12476 case DW_OP_breg0:
12477 return "DW_OP_breg0";
12478 case DW_OP_breg1:
12479 return "DW_OP_breg1";
12480 case DW_OP_breg2:
12481 return "DW_OP_breg2";
12482 case DW_OP_breg3:
12483 return "DW_OP_breg3";
12484 case DW_OP_breg4:
12485 return "DW_OP_breg4";
12486 case DW_OP_breg5:
12487 return "DW_OP_breg5";
12488 case DW_OP_breg6:
12489 return "DW_OP_breg6";
12490 case DW_OP_breg7:
12491 return "DW_OP_breg7";
12492 case DW_OP_breg8:
12493 return "DW_OP_breg8";
12494 case DW_OP_breg9:
12495 return "DW_OP_breg9";
12496 case DW_OP_breg10:
12497 return "DW_OP_breg10";
12498 case DW_OP_breg11:
12499 return "DW_OP_breg11";
12500 case DW_OP_breg12:
12501 return "DW_OP_breg12";
12502 case DW_OP_breg13:
12503 return "DW_OP_breg13";
12504 case DW_OP_breg14:
12505 return "DW_OP_breg14";
12506 case DW_OP_breg15:
12507 return "DW_OP_breg15";
12508 case DW_OP_breg16:
12509 return "DW_OP_breg16";
12510 case DW_OP_breg17:
12511 return "DW_OP_breg17";
12512 case DW_OP_breg18:
12513 return "DW_OP_breg18";
12514 case DW_OP_breg19:
12515 return "DW_OP_breg19";
12516 case DW_OP_breg20:
12517 return "DW_OP_breg20";
12518 case DW_OP_breg21:
12519 return "DW_OP_breg21";
12520 case DW_OP_breg22:
12521 return "DW_OP_breg22";
12522 case DW_OP_breg23:
12523 return "DW_OP_breg23";
12524 case DW_OP_breg24:
12525 return "DW_OP_breg24";
12526 case DW_OP_breg25:
12527 return "DW_OP_breg25";
12528 case DW_OP_breg26:
12529 return "DW_OP_breg26";
12530 case DW_OP_breg27:
12531 return "DW_OP_breg27";
12532 case DW_OP_breg28:
12533 return "DW_OP_breg28";
12534 case DW_OP_breg29:
12535 return "DW_OP_breg29";
12536 case DW_OP_breg30:
12537 return "DW_OP_breg30";
12538 case DW_OP_breg31:
12539 return "DW_OP_breg31";
12540 case DW_OP_regx:
12541 return "DW_OP_regx";
12542 case DW_OP_fbreg:
12543 return "DW_OP_fbreg";
12544 case DW_OP_bregx:
12545 return "DW_OP_bregx";
12546 case DW_OP_piece:
12547 return "DW_OP_piece";
12548 case DW_OP_deref_size:
12549 return "DW_OP_deref_size";
12550 case DW_OP_xderef_size:
12551 return "DW_OP_xderef_size";
12552 case DW_OP_nop:
12553 return "DW_OP_nop";
12554 /* DWARF 3 extensions. */
12555 case DW_OP_push_object_address:
12556 return "DW_OP_push_object_address";
12557 case DW_OP_call2:
12558 return "DW_OP_call2";
12559 case DW_OP_call4:
12560 return "DW_OP_call4";
12561 case DW_OP_call_ref:
12562 return "DW_OP_call_ref";
12563 case DW_OP_form_tls_address:
12564 return "DW_OP_form_tls_address";
12565 case DW_OP_call_frame_cfa:
12566 return "DW_OP_call_frame_cfa";
12567 case DW_OP_bit_piece:
12568 return "DW_OP_bit_piece";
12569 /* DWARF 4 extensions. */
12570 case DW_OP_implicit_value:
12571 return "DW_OP_implicit_value";
12572 case DW_OP_stack_value:
12573 return "DW_OP_stack_value";
12574 /* GNU extensions. */
12575 case DW_OP_GNU_push_tls_address:
12576 return "DW_OP_GNU_push_tls_address";
12577 case DW_OP_GNU_uninit:
12578 return "DW_OP_GNU_uninit";
12579 case DW_OP_GNU_implicit_pointer:
12580 return "DW_OP_GNU_implicit_pointer";
12581 default:
12582 return def ? "OP_<unknown>" : NULL;
12583 }
12584 }
12585
12586 static char *
12587 dwarf_bool_name (unsigned mybool)
12588 {
12589 if (mybool)
12590 return "TRUE";
12591 else
12592 return "FALSE";
12593 }
12594
12595 /* Convert a DWARF type code into its string name. */
12596
12597 static char *
12598 dwarf_type_encoding_name (unsigned enc)
12599 {
12600 switch (enc)
12601 {
12602 case DW_ATE_void:
12603 return "DW_ATE_void";
12604 case DW_ATE_address:
12605 return "DW_ATE_address";
12606 case DW_ATE_boolean:
12607 return "DW_ATE_boolean";
12608 case DW_ATE_complex_float:
12609 return "DW_ATE_complex_float";
12610 case DW_ATE_float:
12611 return "DW_ATE_float";
12612 case DW_ATE_signed:
12613 return "DW_ATE_signed";
12614 case DW_ATE_signed_char:
12615 return "DW_ATE_signed_char";
12616 case DW_ATE_unsigned:
12617 return "DW_ATE_unsigned";
12618 case DW_ATE_unsigned_char:
12619 return "DW_ATE_unsigned_char";
12620 /* DWARF 3. */
12621 case DW_ATE_imaginary_float:
12622 return "DW_ATE_imaginary_float";
12623 case DW_ATE_packed_decimal:
12624 return "DW_ATE_packed_decimal";
12625 case DW_ATE_numeric_string:
12626 return "DW_ATE_numeric_string";
12627 case DW_ATE_edited:
12628 return "DW_ATE_edited";
12629 case DW_ATE_signed_fixed:
12630 return "DW_ATE_signed_fixed";
12631 case DW_ATE_unsigned_fixed:
12632 return "DW_ATE_unsigned_fixed";
12633 case DW_ATE_decimal_float:
12634 return "DW_ATE_decimal_float";
12635 /* DWARF 4. */
12636 case DW_ATE_UTF:
12637 return "DW_ATE_UTF";
12638 /* HP extensions. */
12639 case DW_ATE_HP_float80:
12640 return "DW_ATE_HP_float80";
12641 case DW_ATE_HP_complex_float80:
12642 return "DW_ATE_HP_complex_float80";
12643 case DW_ATE_HP_float128:
12644 return "DW_ATE_HP_float128";
12645 case DW_ATE_HP_complex_float128:
12646 return "DW_ATE_HP_complex_float128";
12647 case DW_ATE_HP_floathpintel:
12648 return "DW_ATE_HP_floathpintel";
12649 case DW_ATE_HP_imaginary_float80:
12650 return "DW_ATE_HP_imaginary_float80";
12651 case DW_ATE_HP_imaginary_float128:
12652 return "DW_ATE_HP_imaginary_float128";
12653 default:
12654 return "DW_ATE_<unknown>";
12655 }
12656 }
12657
12658 /* Convert a DWARF call frame info operation to its string name. */
12659
12660 #if 0
12661 static char *
12662 dwarf_cfi_name (unsigned cfi_opc)
12663 {
12664 switch (cfi_opc)
12665 {
12666 case DW_CFA_advance_loc:
12667 return "DW_CFA_advance_loc";
12668 case DW_CFA_offset:
12669 return "DW_CFA_offset";
12670 case DW_CFA_restore:
12671 return "DW_CFA_restore";
12672 case DW_CFA_nop:
12673 return "DW_CFA_nop";
12674 case DW_CFA_set_loc:
12675 return "DW_CFA_set_loc";
12676 case DW_CFA_advance_loc1:
12677 return "DW_CFA_advance_loc1";
12678 case DW_CFA_advance_loc2:
12679 return "DW_CFA_advance_loc2";
12680 case DW_CFA_advance_loc4:
12681 return "DW_CFA_advance_loc4";
12682 case DW_CFA_offset_extended:
12683 return "DW_CFA_offset_extended";
12684 case DW_CFA_restore_extended:
12685 return "DW_CFA_restore_extended";
12686 case DW_CFA_undefined:
12687 return "DW_CFA_undefined";
12688 case DW_CFA_same_value:
12689 return "DW_CFA_same_value";
12690 case DW_CFA_register:
12691 return "DW_CFA_register";
12692 case DW_CFA_remember_state:
12693 return "DW_CFA_remember_state";
12694 case DW_CFA_restore_state:
12695 return "DW_CFA_restore_state";
12696 case DW_CFA_def_cfa:
12697 return "DW_CFA_def_cfa";
12698 case DW_CFA_def_cfa_register:
12699 return "DW_CFA_def_cfa_register";
12700 case DW_CFA_def_cfa_offset:
12701 return "DW_CFA_def_cfa_offset";
12702 /* DWARF 3. */
12703 case DW_CFA_def_cfa_expression:
12704 return "DW_CFA_def_cfa_expression";
12705 case DW_CFA_expression:
12706 return "DW_CFA_expression";
12707 case DW_CFA_offset_extended_sf:
12708 return "DW_CFA_offset_extended_sf";
12709 case DW_CFA_def_cfa_sf:
12710 return "DW_CFA_def_cfa_sf";
12711 case DW_CFA_def_cfa_offset_sf:
12712 return "DW_CFA_def_cfa_offset_sf";
12713 case DW_CFA_val_offset:
12714 return "DW_CFA_val_offset";
12715 case DW_CFA_val_offset_sf:
12716 return "DW_CFA_val_offset_sf";
12717 case DW_CFA_val_expression:
12718 return "DW_CFA_val_expression";
12719 /* SGI/MIPS specific. */
12720 case DW_CFA_MIPS_advance_loc8:
12721 return "DW_CFA_MIPS_advance_loc8";
12722 /* GNU extensions. */
12723 case DW_CFA_GNU_window_save:
12724 return "DW_CFA_GNU_window_save";
12725 case DW_CFA_GNU_args_size:
12726 return "DW_CFA_GNU_args_size";
12727 case DW_CFA_GNU_negative_offset_extended:
12728 return "DW_CFA_GNU_negative_offset_extended";
12729 default:
12730 return "DW_CFA_<unknown>";
12731 }
12732 }
12733 #endif
12734
12735 static void
12736 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
12737 {
12738 unsigned int i;
12739
12740 print_spaces (indent, f);
12741 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
12742 dwarf_tag_name (die->tag), die->abbrev, die->offset);
12743
12744 if (die->parent != NULL)
12745 {
12746 print_spaces (indent, f);
12747 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
12748 die->parent->offset);
12749 }
12750
12751 print_spaces (indent, f);
12752 fprintf_unfiltered (f, " has children: %s\n",
12753 dwarf_bool_name (die->child != NULL));
12754
12755 print_spaces (indent, f);
12756 fprintf_unfiltered (f, " attributes:\n");
12757
12758 for (i = 0; i < die->num_attrs; ++i)
12759 {
12760 print_spaces (indent, f);
12761 fprintf_unfiltered (f, " %s (%s) ",
12762 dwarf_attr_name (die->attrs[i].name),
12763 dwarf_form_name (die->attrs[i].form));
12764
12765 switch (die->attrs[i].form)
12766 {
12767 case DW_FORM_ref_addr:
12768 case DW_FORM_addr:
12769 fprintf_unfiltered (f, "address: ");
12770 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
12771 break;
12772 case DW_FORM_block2:
12773 case DW_FORM_block4:
12774 case DW_FORM_block:
12775 case DW_FORM_block1:
12776 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
12777 break;
12778 case DW_FORM_exprloc:
12779 fprintf_unfiltered (f, "expression: size %u",
12780 DW_BLOCK (&die->attrs[i])->size);
12781 break;
12782 case DW_FORM_ref1:
12783 case DW_FORM_ref2:
12784 case DW_FORM_ref4:
12785 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
12786 (long) (DW_ADDR (&die->attrs[i])));
12787 break;
12788 case DW_FORM_data1:
12789 case DW_FORM_data2:
12790 case DW_FORM_data4:
12791 case DW_FORM_data8:
12792 case DW_FORM_udata:
12793 case DW_FORM_sdata:
12794 fprintf_unfiltered (f, "constant: %s",
12795 pulongest (DW_UNSND (&die->attrs[i])));
12796 break;
12797 case DW_FORM_sec_offset:
12798 fprintf_unfiltered (f, "section offset: %s",
12799 pulongest (DW_UNSND (&die->attrs[i])));
12800 break;
12801 case DW_FORM_sig8:
12802 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
12803 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
12804 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
12805 else
12806 fprintf_unfiltered (f, "signatured type, offset: unknown");
12807 break;
12808 case DW_FORM_string:
12809 case DW_FORM_strp:
12810 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
12811 DW_STRING (&die->attrs[i])
12812 ? DW_STRING (&die->attrs[i]) : "",
12813 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
12814 break;
12815 case DW_FORM_flag:
12816 if (DW_UNSND (&die->attrs[i]))
12817 fprintf_unfiltered (f, "flag: TRUE");
12818 else
12819 fprintf_unfiltered (f, "flag: FALSE");
12820 break;
12821 case DW_FORM_flag_present:
12822 fprintf_unfiltered (f, "flag: TRUE");
12823 break;
12824 case DW_FORM_indirect:
12825 /* the reader will have reduced the indirect form to
12826 the "base form" so this form should not occur */
12827 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
12828 break;
12829 default:
12830 fprintf_unfiltered (f, "unsupported attribute form: %d.",
12831 die->attrs[i].form);
12832 break;
12833 }
12834 fprintf_unfiltered (f, "\n");
12835 }
12836 }
12837
12838 static void
12839 dump_die_for_error (struct die_info *die)
12840 {
12841 dump_die_shallow (gdb_stderr, 0, die);
12842 }
12843
12844 static void
12845 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
12846 {
12847 int indent = level * 4;
12848
12849 gdb_assert (die != NULL);
12850
12851 if (level >= max_level)
12852 return;
12853
12854 dump_die_shallow (f, indent, die);
12855
12856 if (die->child != NULL)
12857 {
12858 print_spaces (indent, f);
12859 fprintf_unfiltered (f, " Children:");
12860 if (level + 1 < max_level)
12861 {
12862 fprintf_unfiltered (f, "\n");
12863 dump_die_1 (f, level + 1, max_level, die->child);
12864 }
12865 else
12866 {
12867 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
12868 }
12869 }
12870
12871 if (die->sibling != NULL && level > 0)
12872 {
12873 dump_die_1 (f, level, max_level, die->sibling);
12874 }
12875 }
12876
12877 /* This is called from the pdie macro in gdbinit.in.
12878 It's not static so gcc will keep a copy callable from gdb. */
12879
12880 void
12881 dump_die (struct die_info *die, int max_level)
12882 {
12883 dump_die_1 (gdb_stdlog, 0, max_level, die);
12884 }
12885
12886 static void
12887 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
12888 {
12889 void **slot;
12890
12891 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
12892
12893 *slot = die;
12894 }
12895
12896 static int
12897 is_ref_attr (struct attribute *attr)
12898 {
12899 switch (attr->form)
12900 {
12901 case DW_FORM_ref_addr:
12902 case DW_FORM_ref1:
12903 case DW_FORM_ref2:
12904 case DW_FORM_ref4:
12905 case DW_FORM_ref8:
12906 case DW_FORM_ref_udata:
12907 return 1;
12908 default:
12909 return 0;
12910 }
12911 }
12912
12913 static unsigned int
12914 dwarf2_get_ref_die_offset (struct attribute *attr)
12915 {
12916 if (is_ref_attr (attr))
12917 return DW_ADDR (attr);
12918
12919 complaint (&symfile_complaints,
12920 _("unsupported die ref attribute form: '%s'"),
12921 dwarf_form_name (attr->form));
12922 return 0;
12923 }
12924
12925 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
12926 * the value held by the attribute is not constant. */
12927
12928 static LONGEST
12929 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
12930 {
12931 if (attr->form == DW_FORM_sdata)
12932 return DW_SND (attr);
12933 else if (attr->form == DW_FORM_udata
12934 || attr->form == DW_FORM_data1
12935 || attr->form == DW_FORM_data2
12936 || attr->form == DW_FORM_data4
12937 || attr->form == DW_FORM_data8)
12938 return DW_UNSND (attr);
12939 else
12940 {
12941 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
12942 dwarf_form_name (attr->form));
12943 return default_value;
12944 }
12945 }
12946
12947 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
12948 unit and add it to our queue.
12949 The result is non-zero if PER_CU was queued, otherwise the result is zero
12950 meaning either PER_CU is already queued or it is already loaded. */
12951
12952 static int
12953 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
12954 struct dwarf2_per_cu_data *per_cu)
12955 {
12956 /* We may arrive here during partial symbol reading, if we need full
12957 DIEs to process an unusual case (e.g. template arguments). Do
12958 not queue PER_CU, just tell our caller to load its DIEs. */
12959 if (dwarf2_per_objfile->reading_partial_symbols)
12960 {
12961 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
12962 return 1;
12963 return 0;
12964 }
12965
12966 /* Mark the dependence relation so that we don't flush PER_CU
12967 too early. */
12968 dwarf2_add_dependence (this_cu, per_cu);
12969
12970 /* If it's already on the queue, we have nothing to do. */
12971 if (per_cu->queued)
12972 return 0;
12973
12974 /* If the compilation unit is already loaded, just mark it as
12975 used. */
12976 if (per_cu->cu != NULL)
12977 {
12978 per_cu->cu->last_used = 0;
12979 return 0;
12980 }
12981
12982 /* Add it to the queue. */
12983 queue_comp_unit (per_cu, this_cu->objfile);
12984
12985 return 1;
12986 }
12987
12988 /* Follow reference or signature attribute ATTR of SRC_DIE.
12989 On entry *REF_CU is the CU of SRC_DIE.
12990 On exit *REF_CU is the CU of the result. */
12991
12992 static struct die_info *
12993 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
12994 struct dwarf2_cu **ref_cu)
12995 {
12996 struct die_info *die;
12997
12998 if (is_ref_attr (attr))
12999 die = follow_die_ref (src_die, attr, ref_cu);
13000 else if (attr->form == DW_FORM_sig8)
13001 die = follow_die_sig (src_die, attr, ref_cu);
13002 else
13003 {
13004 dump_die_for_error (src_die);
13005 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
13006 (*ref_cu)->objfile->name);
13007 }
13008
13009 return die;
13010 }
13011
13012 /* Follow reference OFFSET.
13013 On entry *REF_CU is the CU of the source die referencing OFFSET.
13014 On exit *REF_CU is the CU of the result.
13015 Returns NULL if OFFSET is invalid. */
13016
13017 static struct die_info *
13018 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
13019 {
13020 struct die_info temp_die;
13021 struct dwarf2_cu *target_cu, *cu = *ref_cu;
13022
13023 gdb_assert (cu->per_cu != NULL);
13024
13025 target_cu = cu;
13026
13027 if (cu->per_cu->from_debug_types)
13028 {
13029 /* .debug_types CUs cannot reference anything outside their CU.
13030 If they need to, they have to reference a signatured type via
13031 DW_FORM_sig8. */
13032 if (! offset_in_cu_p (&cu->header, offset))
13033 return NULL;
13034 }
13035 else if (! offset_in_cu_p (&cu->header, offset))
13036 {
13037 struct dwarf2_per_cu_data *per_cu;
13038
13039 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
13040
13041 /* If necessary, add it to the queue and load its DIEs. */
13042 if (maybe_queue_comp_unit (cu, per_cu))
13043 load_full_comp_unit (per_cu, cu->objfile);
13044
13045 target_cu = per_cu->cu;
13046 }
13047 else if (cu->dies == NULL)
13048 {
13049 /* We're loading full DIEs during partial symbol reading. */
13050 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13051 load_full_comp_unit (cu->per_cu, cu->objfile);
13052 }
13053
13054 *ref_cu = target_cu;
13055 temp_die.offset = offset;
13056 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13057 }
13058
13059 /* Follow reference attribute ATTR of SRC_DIE.
13060 On entry *REF_CU is the CU of SRC_DIE.
13061 On exit *REF_CU is the CU of the result. */
13062
13063 static struct die_info *
13064 follow_die_ref (struct die_info *src_die, struct attribute *attr,
13065 struct dwarf2_cu **ref_cu)
13066 {
13067 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13068 struct dwarf2_cu *cu = *ref_cu;
13069 struct die_info *die;
13070
13071 die = follow_die_offset (offset, ref_cu);
13072 if (!die)
13073 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13074 "at 0x%x [in module %s]"),
13075 offset, src_die->offset, cu->objfile->name);
13076
13077 return die;
13078 }
13079
13080 /* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13081 value is intended for DW_OP_call*. */
13082
13083 struct dwarf2_locexpr_baton
13084 dwarf2_fetch_die_location_block (unsigned int offset,
13085 struct dwarf2_per_cu_data *per_cu,
13086 CORE_ADDR (*get_frame_pc) (void *baton),
13087 void *baton)
13088 {
13089 struct dwarf2_cu *cu = per_cu->cu;
13090 struct die_info *die;
13091 struct attribute *attr;
13092 struct dwarf2_locexpr_baton retval;
13093
13094 dw2_setup (per_cu->objfile);
13095
13096 die = follow_die_offset (offset, &cu);
13097 if (!die)
13098 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13099 offset, per_cu->cu->objfile->name);
13100
13101 attr = dwarf2_attr (die, DW_AT_location, cu);
13102 if (!attr)
13103 {
13104 /* DWARF: "If there is no such attribute, then there is no effect.". */
13105
13106 retval.data = NULL;
13107 retval.size = 0;
13108 }
13109 else if (attr_form_is_section_offset (attr))
13110 {
13111 struct dwarf2_loclist_baton loclist_baton;
13112 CORE_ADDR pc = (*get_frame_pc) (baton);
13113 size_t size;
13114
13115 fill_in_loclist_baton (cu, &loclist_baton, attr);
13116
13117 retval.data = dwarf2_find_location_expression (&loclist_baton,
13118 &size, pc);
13119 retval.size = size;
13120 }
13121 else
13122 {
13123 if (!attr_form_is_block (attr))
13124 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13125 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13126 offset, per_cu->cu->objfile->name);
13127
13128 retval.data = DW_BLOCK (attr)->data;
13129 retval.size = DW_BLOCK (attr)->size;
13130 }
13131 retval.per_cu = cu->per_cu;
13132 return retval;
13133 }
13134
13135 /* Follow the signature attribute ATTR in SRC_DIE.
13136 On entry *REF_CU is the CU of SRC_DIE.
13137 On exit *REF_CU is the CU of the result. */
13138
13139 static struct die_info *
13140 follow_die_sig (struct die_info *src_die, struct attribute *attr,
13141 struct dwarf2_cu **ref_cu)
13142 {
13143 struct objfile *objfile = (*ref_cu)->objfile;
13144 struct die_info temp_die;
13145 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13146 struct dwarf2_cu *sig_cu;
13147 struct die_info *die;
13148
13149 /* sig_type will be NULL if the signatured type is missing from
13150 the debug info. */
13151 if (sig_type == NULL)
13152 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13153 "at 0x%x [in module %s]"),
13154 src_die->offset, objfile->name);
13155
13156 /* If necessary, add it to the queue and load its DIEs. */
13157
13158 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13159 read_signatured_type (objfile, sig_type);
13160
13161 gdb_assert (sig_type->per_cu.cu != NULL);
13162
13163 sig_cu = sig_type->per_cu.cu;
13164 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13165 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13166 if (die)
13167 {
13168 *ref_cu = sig_cu;
13169 return die;
13170 }
13171
13172 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
13173 "at 0x%x [in module %s]"),
13174 sig_type->type_offset, src_die->offset, objfile->name);
13175 }
13176
13177 /* Given an offset of a signatured type, return its signatured_type. */
13178
13179 static struct signatured_type *
13180 lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13181 {
13182 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13183 unsigned int length, initial_length_size;
13184 unsigned int sig_offset;
13185 struct signatured_type find_entry, *type_sig;
13186
13187 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13188 sig_offset = (initial_length_size
13189 + 2 /*version*/
13190 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13191 + 1 /*address_size*/);
13192 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13193 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13194
13195 /* This is only used to lookup previously recorded types.
13196 If we didn't find it, it's our bug. */
13197 gdb_assert (type_sig != NULL);
13198 gdb_assert (offset == type_sig->offset);
13199
13200 return type_sig;
13201 }
13202
13203 /* Read in signatured type at OFFSET and build its CU and die(s). */
13204
13205 static void
13206 read_signatured_type_at_offset (struct objfile *objfile,
13207 unsigned int offset)
13208 {
13209 struct signatured_type *type_sig;
13210
13211 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13212
13213 /* We have the section offset, but we need the signature to do the
13214 hash table lookup. */
13215 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13216
13217 gdb_assert (type_sig->per_cu.cu == NULL);
13218
13219 read_signatured_type (objfile, type_sig);
13220
13221 gdb_assert (type_sig->per_cu.cu != NULL);
13222 }
13223
13224 /* Read in a signatured type and build its CU and DIEs. */
13225
13226 static void
13227 read_signatured_type (struct objfile *objfile,
13228 struct signatured_type *type_sig)
13229 {
13230 gdb_byte *types_ptr;
13231 struct die_reader_specs reader_specs;
13232 struct dwarf2_cu *cu;
13233 ULONGEST signature;
13234 struct cleanup *back_to, *free_cu_cleanup;
13235
13236 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13237 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13238
13239 gdb_assert (type_sig->per_cu.cu == NULL);
13240
13241 cu = xmalloc (sizeof (*cu));
13242 init_one_comp_unit (cu, objfile);
13243
13244 type_sig->per_cu.cu = cu;
13245 cu->per_cu = &type_sig->per_cu;
13246
13247 /* If an error occurs while loading, release our storage. */
13248 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13249
13250 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13251 types_ptr, objfile->obfd);
13252 gdb_assert (signature == type_sig->signature);
13253
13254 cu->die_hash
13255 = htab_create_alloc_ex (cu->header.length / 12,
13256 die_hash,
13257 die_eq,
13258 NULL,
13259 &cu->comp_unit_obstack,
13260 hashtab_obstack_allocate,
13261 dummy_obstack_deallocate);
13262
13263 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13264 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13265
13266 init_cu_die_reader (&reader_specs, cu);
13267
13268 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13269 NULL /*parent*/);
13270
13271 /* We try not to read any attributes in this function, because not
13272 all objfiles needed for references have been loaded yet, and symbol
13273 table processing isn't initialized. But we have to set the CU language,
13274 or we won't be able to build types correctly. */
13275 prepare_one_comp_unit (cu, cu->dies);
13276
13277 do_cleanups (back_to);
13278
13279 /* We've successfully allocated this compilation unit. Let our caller
13280 clean it up when finished with it. */
13281 discard_cleanups (free_cu_cleanup);
13282
13283 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13284 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
13285 }
13286
13287 /* Decode simple location descriptions.
13288 Given a pointer to a dwarf block that defines a location, compute
13289 the location and return the value.
13290
13291 NOTE drow/2003-11-18: This function is called in two situations
13292 now: for the address of static or global variables (partial symbols
13293 only) and for offsets into structures which are expected to be
13294 (more or less) constant. The partial symbol case should go away,
13295 and only the constant case should remain. That will let this
13296 function complain more accurately. A few special modes are allowed
13297 without complaint for global variables (for instance, global
13298 register values and thread-local values).
13299
13300 A location description containing no operations indicates that the
13301 object is optimized out. The return value is 0 for that case.
13302 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13303 callers will only want a very basic result and this can become a
13304 complaint.
13305
13306 Note that stack[0] is unused except as a default error return. */
13307
13308 static CORE_ADDR
13309 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
13310 {
13311 struct objfile *objfile = cu->objfile;
13312 int i;
13313 int size = blk->size;
13314 gdb_byte *data = blk->data;
13315 CORE_ADDR stack[64];
13316 int stacki;
13317 unsigned int bytes_read, unsnd;
13318 gdb_byte op;
13319
13320 i = 0;
13321 stacki = 0;
13322 stack[stacki] = 0;
13323 stack[++stacki] = 0;
13324
13325 while (i < size)
13326 {
13327 op = data[i++];
13328 switch (op)
13329 {
13330 case DW_OP_lit0:
13331 case DW_OP_lit1:
13332 case DW_OP_lit2:
13333 case DW_OP_lit3:
13334 case DW_OP_lit4:
13335 case DW_OP_lit5:
13336 case DW_OP_lit6:
13337 case DW_OP_lit7:
13338 case DW_OP_lit8:
13339 case DW_OP_lit9:
13340 case DW_OP_lit10:
13341 case DW_OP_lit11:
13342 case DW_OP_lit12:
13343 case DW_OP_lit13:
13344 case DW_OP_lit14:
13345 case DW_OP_lit15:
13346 case DW_OP_lit16:
13347 case DW_OP_lit17:
13348 case DW_OP_lit18:
13349 case DW_OP_lit19:
13350 case DW_OP_lit20:
13351 case DW_OP_lit21:
13352 case DW_OP_lit22:
13353 case DW_OP_lit23:
13354 case DW_OP_lit24:
13355 case DW_OP_lit25:
13356 case DW_OP_lit26:
13357 case DW_OP_lit27:
13358 case DW_OP_lit28:
13359 case DW_OP_lit29:
13360 case DW_OP_lit30:
13361 case DW_OP_lit31:
13362 stack[++stacki] = op - DW_OP_lit0;
13363 break;
13364
13365 case DW_OP_reg0:
13366 case DW_OP_reg1:
13367 case DW_OP_reg2:
13368 case DW_OP_reg3:
13369 case DW_OP_reg4:
13370 case DW_OP_reg5:
13371 case DW_OP_reg6:
13372 case DW_OP_reg7:
13373 case DW_OP_reg8:
13374 case DW_OP_reg9:
13375 case DW_OP_reg10:
13376 case DW_OP_reg11:
13377 case DW_OP_reg12:
13378 case DW_OP_reg13:
13379 case DW_OP_reg14:
13380 case DW_OP_reg15:
13381 case DW_OP_reg16:
13382 case DW_OP_reg17:
13383 case DW_OP_reg18:
13384 case DW_OP_reg19:
13385 case DW_OP_reg20:
13386 case DW_OP_reg21:
13387 case DW_OP_reg22:
13388 case DW_OP_reg23:
13389 case DW_OP_reg24:
13390 case DW_OP_reg25:
13391 case DW_OP_reg26:
13392 case DW_OP_reg27:
13393 case DW_OP_reg28:
13394 case DW_OP_reg29:
13395 case DW_OP_reg30:
13396 case DW_OP_reg31:
13397 stack[++stacki] = op - DW_OP_reg0;
13398 if (i < size)
13399 dwarf2_complex_location_expr_complaint ();
13400 break;
13401
13402 case DW_OP_regx:
13403 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13404 i += bytes_read;
13405 stack[++stacki] = unsnd;
13406 if (i < size)
13407 dwarf2_complex_location_expr_complaint ();
13408 break;
13409
13410 case DW_OP_addr:
13411 stack[++stacki] = read_address (objfile->obfd, &data[i],
13412 cu, &bytes_read);
13413 i += bytes_read;
13414 break;
13415
13416 case DW_OP_const1u:
13417 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13418 i += 1;
13419 break;
13420
13421 case DW_OP_const1s:
13422 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13423 i += 1;
13424 break;
13425
13426 case DW_OP_const2u:
13427 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13428 i += 2;
13429 break;
13430
13431 case DW_OP_const2s:
13432 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13433 i += 2;
13434 break;
13435
13436 case DW_OP_const4u:
13437 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13438 i += 4;
13439 break;
13440
13441 case DW_OP_const4s:
13442 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13443 i += 4;
13444 break;
13445
13446 case DW_OP_constu:
13447 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
13448 &bytes_read);
13449 i += bytes_read;
13450 break;
13451
13452 case DW_OP_consts:
13453 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13454 i += bytes_read;
13455 break;
13456
13457 case DW_OP_dup:
13458 stack[stacki + 1] = stack[stacki];
13459 stacki++;
13460 break;
13461
13462 case DW_OP_plus:
13463 stack[stacki - 1] += stack[stacki];
13464 stacki--;
13465 break;
13466
13467 case DW_OP_plus_uconst:
13468 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13469 i += bytes_read;
13470 break;
13471
13472 case DW_OP_minus:
13473 stack[stacki - 1] -= stack[stacki];
13474 stacki--;
13475 break;
13476
13477 case DW_OP_deref:
13478 /* If we're not the last op, then we definitely can't encode
13479 this using GDB's address_class enum. This is valid for partial
13480 global symbols, although the variable's address will be bogus
13481 in the psymtab. */
13482 if (i < size)
13483 dwarf2_complex_location_expr_complaint ();
13484 break;
13485
13486 case DW_OP_GNU_push_tls_address:
13487 /* The top of the stack has the offset from the beginning
13488 of the thread control block at which the variable is located. */
13489 /* Nothing should follow this operator, so the top of stack would
13490 be returned. */
13491 /* This is valid for partial global symbols, but the variable's
13492 address will be bogus in the psymtab. */
13493 if (i < size)
13494 dwarf2_complex_location_expr_complaint ();
13495 break;
13496
13497 case DW_OP_GNU_uninit:
13498 break;
13499
13500 default:
13501 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
13502 dwarf_stack_op_name (op, 1));
13503 return (stack[stacki]);
13504 }
13505
13506 /* Enforce maximum stack depth of SIZE-1 to avoid writing
13507 outside of the allocated space. Also enforce minimum>0. */
13508 if (stacki >= ARRAY_SIZE (stack) - 1)
13509 {
13510 complaint (&symfile_complaints,
13511 _("location description stack overflow"));
13512 return 0;
13513 }
13514
13515 if (stacki <= 0)
13516 {
13517 complaint (&symfile_complaints,
13518 _("location description stack underflow"));
13519 return 0;
13520 }
13521 }
13522 return (stack[stacki]);
13523 }
13524
13525 /* memory allocation interface */
13526
13527 static struct dwarf_block *
13528 dwarf_alloc_block (struct dwarf2_cu *cu)
13529 {
13530 struct dwarf_block *blk;
13531
13532 blk = (struct dwarf_block *)
13533 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
13534 return (blk);
13535 }
13536
13537 static struct abbrev_info *
13538 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
13539 {
13540 struct abbrev_info *abbrev;
13541
13542 abbrev = (struct abbrev_info *)
13543 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
13544 memset (abbrev, 0, sizeof (struct abbrev_info));
13545 return (abbrev);
13546 }
13547
13548 static struct die_info *
13549 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
13550 {
13551 struct die_info *die;
13552 size_t size = sizeof (struct die_info);
13553
13554 if (num_attrs > 1)
13555 size += (num_attrs - 1) * sizeof (struct attribute);
13556
13557 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
13558 memset (die, 0, sizeof (struct die_info));
13559 return (die);
13560 }
13561
13562 \f
13563 /* Macro support. */
13564
13565
13566 /* Return the full name of file number I in *LH's file name table.
13567 Use COMP_DIR as the name of the current directory of the
13568 compilation. The result is allocated using xmalloc; the caller is
13569 responsible for freeing it. */
13570 static char *
13571 file_full_name (int file, struct line_header *lh, const char *comp_dir)
13572 {
13573 /* Is the file number a valid index into the line header's file name
13574 table? Remember that file numbers start with one, not zero. */
13575 if (1 <= file && file <= lh->num_file_names)
13576 {
13577 struct file_entry *fe = &lh->file_names[file - 1];
13578
13579 if (IS_ABSOLUTE_PATH (fe->name))
13580 return xstrdup (fe->name);
13581 else
13582 {
13583 const char *dir;
13584 int dir_len;
13585 char *full_name;
13586
13587 if (fe->dir_index)
13588 dir = lh->include_dirs[fe->dir_index - 1];
13589 else
13590 dir = comp_dir;
13591
13592 if (dir)
13593 {
13594 dir_len = strlen (dir);
13595 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13596 strcpy (full_name, dir);
13597 full_name[dir_len] = '/';
13598 strcpy (full_name + dir_len + 1, fe->name);
13599 return full_name;
13600 }
13601 else
13602 return xstrdup (fe->name);
13603 }
13604 }
13605 else
13606 {
13607 /* The compiler produced a bogus file number. We can at least
13608 record the macro definitions made in the file, even if we
13609 won't be able to find the file by name. */
13610 char fake_name[80];
13611
13612 sprintf (fake_name, "<bad macro file number %d>", file);
13613
13614 complaint (&symfile_complaints,
13615 _("bad file number in macro information (%d)"),
13616 file);
13617
13618 return xstrdup (fake_name);
13619 }
13620 }
13621
13622
13623 static struct macro_source_file *
13624 macro_start_file (int file, int line,
13625 struct macro_source_file *current_file,
13626 const char *comp_dir,
13627 struct line_header *lh, struct objfile *objfile)
13628 {
13629 /* The full name of this source file. */
13630 char *full_name = file_full_name (file, lh, comp_dir);
13631
13632 /* We don't create a macro table for this compilation unit
13633 at all until we actually get a filename. */
13634 if (! pending_macros)
13635 pending_macros = new_macro_table (&objfile->objfile_obstack,
13636 objfile->macro_cache);
13637
13638 if (! current_file)
13639 /* If we have no current file, then this must be the start_file
13640 directive for the compilation unit's main source file. */
13641 current_file = macro_set_main (pending_macros, full_name);
13642 else
13643 current_file = macro_include (current_file, line, full_name);
13644
13645 xfree (full_name);
13646
13647 return current_file;
13648 }
13649
13650
13651 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
13652 followed by a null byte. */
13653 static char *
13654 copy_string (const char *buf, int len)
13655 {
13656 char *s = xmalloc (len + 1);
13657
13658 memcpy (s, buf, len);
13659 s[len] = '\0';
13660 return s;
13661 }
13662
13663
13664 static const char *
13665 consume_improper_spaces (const char *p, const char *body)
13666 {
13667 if (*p == ' ')
13668 {
13669 complaint (&symfile_complaints,
13670 _("macro definition contains spaces in formal argument list:\n`%s'"),
13671 body);
13672
13673 while (*p == ' ')
13674 p++;
13675 }
13676
13677 return p;
13678 }
13679
13680
13681 static void
13682 parse_macro_definition (struct macro_source_file *file, int line,
13683 const char *body)
13684 {
13685 const char *p;
13686
13687 /* The body string takes one of two forms. For object-like macro
13688 definitions, it should be:
13689
13690 <macro name> " " <definition>
13691
13692 For function-like macro definitions, it should be:
13693
13694 <macro name> "() " <definition>
13695 or
13696 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
13697
13698 Spaces may appear only where explicitly indicated, and in the
13699 <definition>.
13700
13701 The Dwarf 2 spec says that an object-like macro's name is always
13702 followed by a space, but versions of GCC around March 2002 omit
13703 the space when the macro's definition is the empty string.
13704
13705 The Dwarf 2 spec says that there should be no spaces between the
13706 formal arguments in a function-like macro's formal argument list,
13707 but versions of GCC around March 2002 include spaces after the
13708 commas. */
13709
13710
13711 /* Find the extent of the macro name. The macro name is terminated
13712 by either a space or null character (for an object-like macro) or
13713 an opening paren (for a function-like macro). */
13714 for (p = body; *p; p++)
13715 if (*p == ' ' || *p == '(')
13716 break;
13717
13718 if (*p == ' ' || *p == '\0')
13719 {
13720 /* It's an object-like macro. */
13721 int name_len = p - body;
13722 char *name = copy_string (body, name_len);
13723 const char *replacement;
13724
13725 if (*p == ' ')
13726 replacement = body + name_len + 1;
13727 else
13728 {
13729 dwarf2_macro_malformed_definition_complaint (body);
13730 replacement = body + name_len;
13731 }
13732
13733 macro_define_object (file, line, name, replacement);
13734
13735 xfree (name);
13736 }
13737 else if (*p == '(')
13738 {
13739 /* It's a function-like macro. */
13740 char *name = copy_string (body, p - body);
13741 int argc = 0;
13742 int argv_size = 1;
13743 char **argv = xmalloc (argv_size * sizeof (*argv));
13744
13745 p++;
13746
13747 p = consume_improper_spaces (p, body);
13748
13749 /* Parse the formal argument list. */
13750 while (*p && *p != ')')
13751 {
13752 /* Find the extent of the current argument name. */
13753 const char *arg_start = p;
13754
13755 while (*p && *p != ',' && *p != ')' && *p != ' ')
13756 p++;
13757
13758 if (! *p || p == arg_start)
13759 dwarf2_macro_malformed_definition_complaint (body);
13760 else
13761 {
13762 /* Make sure argv has room for the new argument. */
13763 if (argc >= argv_size)
13764 {
13765 argv_size *= 2;
13766 argv = xrealloc (argv, argv_size * sizeof (*argv));
13767 }
13768
13769 argv[argc++] = copy_string (arg_start, p - arg_start);
13770 }
13771
13772 p = consume_improper_spaces (p, body);
13773
13774 /* Consume the comma, if present. */
13775 if (*p == ',')
13776 {
13777 p++;
13778
13779 p = consume_improper_spaces (p, body);
13780 }
13781 }
13782
13783 if (*p == ')')
13784 {
13785 p++;
13786
13787 if (*p == ' ')
13788 /* Perfectly formed definition, no complaints. */
13789 macro_define_function (file, line, name,
13790 argc, (const char **) argv,
13791 p + 1);
13792 else if (*p == '\0')
13793 {
13794 /* Complain, but do define it. */
13795 dwarf2_macro_malformed_definition_complaint (body);
13796 macro_define_function (file, line, name,
13797 argc, (const char **) argv,
13798 p);
13799 }
13800 else
13801 /* Just complain. */
13802 dwarf2_macro_malformed_definition_complaint (body);
13803 }
13804 else
13805 /* Just complain. */
13806 dwarf2_macro_malformed_definition_complaint (body);
13807
13808 xfree (name);
13809 {
13810 int i;
13811
13812 for (i = 0; i < argc; i++)
13813 xfree (argv[i]);
13814 }
13815 xfree (argv);
13816 }
13817 else
13818 dwarf2_macro_malformed_definition_complaint (body);
13819 }
13820
13821
13822 static void
13823 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
13824 char *comp_dir, bfd *abfd,
13825 struct dwarf2_cu *cu)
13826 {
13827 gdb_byte *mac_ptr, *mac_end;
13828 struct macro_source_file *current_file = 0;
13829 enum dwarf_macinfo_record_type macinfo_type;
13830 int at_commandline;
13831
13832 dwarf2_read_section (dwarf2_per_objfile->objfile,
13833 &dwarf2_per_objfile->macinfo);
13834 if (dwarf2_per_objfile->macinfo.buffer == NULL)
13835 {
13836 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
13837 return;
13838 }
13839
13840 /* First pass: Find the name of the base filename.
13841 This filename is needed in order to process all macros whose definition
13842 (or undefinition) comes from the command line. These macros are defined
13843 before the first DW_MACINFO_start_file entry, and yet still need to be
13844 associated to the base file.
13845
13846 To determine the base file name, we scan the macro definitions until we
13847 reach the first DW_MACINFO_start_file entry. We then initialize
13848 CURRENT_FILE accordingly so that any macro definition found before the
13849 first DW_MACINFO_start_file can still be associated to the base file. */
13850
13851 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
13852 mac_end = dwarf2_per_objfile->macinfo.buffer
13853 + dwarf2_per_objfile->macinfo.size;
13854
13855 do
13856 {
13857 /* Do we at least have room for a macinfo type byte? */
13858 if (mac_ptr >= mac_end)
13859 {
13860 /* Complaint is printed during the second pass as GDB will probably
13861 stop the first pass earlier upon finding DW_MACINFO_start_file. */
13862 break;
13863 }
13864
13865 macinfo_type = read_1_byte (abfd, mac_ptr);
13866 mac_ptr++;
13867
13868 switch (macinfo_type)
13869 {
13870 /* A zero macinfo type indicates the end of the macro
13871 information. */
13872 case 0:
13873 break;
13874
13875 case DW_MACINFO_define:
13876 case DW_MACINFO_undef:
13877 /* Only skip the data by MAC_PTR. */
13878 {
13879 unsigned int bytes_read;
13880
13881 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13882 mac_ptr += bytes_read;
13883 read_direct_string (abfd, mac_ptr, &bytes_read);
13884 mac_ptr += bytes_read;
13885 }
13886 break;
13887
13888 case DW_MACINFO_start_file:
13889 {
13890 unsigned int bytes_read;
13891 int line, file;
13892
13893 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13894 mac_ptr += bytes_read;
13895 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13896 mac_ptr += bytes_read;
13897
13898 current_file = macro_start_file (file, line, current_file, comp_dir,
13899 lh, cu->objfile);
13900 }
13901 break;
13902
13903 case DW_MACINFO_end_file:
13904 /* No data to skip by MAC_PTR. */
13905 break;
13906
13907 case DW_MACINFO_vendor_ext:
13908 /* Only skip the data by MAC_PTR. */
13909 {
13910 unsigned int bytes_read;
13911
13912 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13913 mac_ptr += bytes_read;
13914 read_direct_string (abfd, mac_ptr, &bytes_read);
13915 mac_ptr += bytes_read;
13916 }
13917 break;
13918
13919 default:
13920 break;
13921 }
13922 } while (macinfo_type != 0 && current_file == NULL);
13923
13924 /* Second pass: Process all entries.
13925
13926 Use the AT_COMMAND_LINE flag to determine whether we are still processing
13927 command-line macro definitions/undefinitions. This flag is unset when we
13928 reach the first DW_MACINFO_start_file entry. */
13929
13930 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
13931
13932 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
13933 GDB is still reading the definitions from command line. First
13934 DW_MACINFO_start_file will need to be ignored as it was already executed
13935 to create CURRENT_FILE for the main source holding also the command line
13936 definitions. On first met DW_MACINFO_start_file this flag is reset to
13937 normally execute all the remaining DW_MACINFO_start_file macinfos. */
13938
13939 at_commandline = 1;
13940
13941 do
13942 {
13943 /* Do we at least have room for a macinfo type byte? */
13944 if (mac_ptr >= mac_end)
13945 {
13946 dwarf2_macros_too_long_complaint ();
13947 break;
13948 }
13949
13950 macinfo_type = read_1_byte (abfd, mac_ptr);
13951 mac_ptr++;
13952
13953 switch (macinfo_type)
13954 {
13955 /* A zero macinfo type indicates the end of the macro
13956 information. */
13957 case 0:
13958 break;
13959
13960 case DW_MACINFO_define:
13961 case DW_MACINFO_undef:
13962 {
13963 unsigned int bytes_read;
13964 int line;
13965 char *body;
13966
13967 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13968 mac_ptr += bytes_read;
13969 body = read_direct_string (abfd, mac_ptr, &bytes_read);
13970 mac_ptr += bytes_read;
13971
13972 if (! current_file)
13973 {
13974 /* DWARF violation as no main source is present. */
13975 complaint (&symfile_complaints,
13976 _("debug info with no main source gives macro %s "
13977 "on line %d: %s"),
13978 macinfo_type == DW_MACINFO_define ?
13979 _("definition") :
13980 macinfo_type == DW_MACINFO_undef ?
13981 _("undefinition") :
13982 _("something-or-other"), line, body);
13983 break;
13984 }
13985 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
13986 complaint (&symfile_complaints,
13987 _("debug info gives %s macro %s with %s line %d: %s"),
13988 at_commandline ? _("command-line") : _("in-file"),
13989 macinfo_type == DW_MACINFO_define ?
13990 _("definition") :
13991 macinfo_type == DW_MACINFO_undef ?
13992 _("undefinition") :
13993 _("something-or-other"),
13994 line == 0 ? _("zero") : _("non-zero"), line, body);
13995
13996 if (macinfo_type == DW_MACINFO_define)
13997 parse_macro_definition (current_file, line, body);
13998 else if (macinfo_type == DW_MACINFO_undef)
13999 macro_undef (current_file, line, body);
14000 }
14001 break;
14002
14003 case DW_MACINFO_start_file:
14004 {
14005 unsigned int bytes_read;
14006 int line, file;
14007
14008 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14009 mac_ptr += bytes_read;
14010 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14011 mac_ptr += bytes_read;
14012
14013 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
14014 complaint (&symfile_complaints,
14015 _("debug info gives source %d included "
14016 "from %s at %s line %d"),
14017 file, at_commandline ? _("command-line") : _("file"),
14018 line == 0 ? _("zero") : _("non-zero"), line);
14019
14020 if (at_commandline)
14021 {
14022 /* This DW_MACINFO_start_file was executed in the pass one. */
14023 at_commandline = 0;
14024 }
14025 else
14026 current_file = macro_start_file (file, line,
14027 current_file, comp_dir,
14028 lh, cu->objfile);
14029 }
14030 break;
14031
14032 case DW_MACINFO_end_file:
14033 if (! current_file)
14034 complaint (&symfile_complaints,
14035 _("macro debug info has an unmatched `close_file' directive"));
14036 else
14037 {
14038 current_file = current_file->included_by;
14039 if (! current_file)
14040 {
14041 enum dwarf_macinfo_record_type next_type;
14042
14043 /* GCC circa March 2002 doesn't produce the zero
14044 type byte marking the end of the compilation
14045 unit. Complain if it's not there, but exit no
14046 matter what. */
14047
14048 /* Do we at least have room for a macinfo type byte? */
14049 if (mac_ptr >= mac_end)
14050 {
14051 dwarf2_macros_too_long_complaint ();
14052 return;
14053 }
14054
14055 /* We don't increment mac_ptr here, so this is just
14056 a look-ahead. */
14057 next_type = read_1_byte (abfd, mac_ptr);
14058 if (next_type != 0)
14059 complaint (&symfile_complaints,
14060 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
14061
14062 return;
14063 }
14064 }
14065 break;
14066
14067 case DW_MACINFO_vendor_ext:
14068 {
14069 unsigned int bytes_read;
14070 int constant;
14071 char *string;
14072
14073 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14074 mac_ptr += bytes_read;
14075 string = read_direct_string (abfd, mac_ptr, &bytes_read);
14076 mac_ptr += bytes_read;
14077
14078 /* We don't recognize any vendor extensions. */
14079 }
14080 break;
14081 }
14082 } while (macinfo_type != 0);
14083 }
14084
14085 /* Check if the attribute's form is a DW_FORM_block*
14086 if so return true else false. */
14087 static int
14088 attr_form_is_block (struct attribute *attr)
14089 {
14090 return (attr == NULL ? 0 :
14091 attr->form == DW_FORM_block1
14092 || attr->form == DW_FORM_block2
14093 || attr->form == DW_FORM_block4
14094 || attr->form == DW_FORM_block
14095 || attr->form == DW_FORM_exprloc);
14096 }
14097
14098 /* Return non-zero if ATTR's value is a section offset --- classes
14099 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14100 You may use DW_UNSND (attr) to retrieve such offsets.
14101
14102 Section 7.5.4, "Attribute Encodings", explains that no attribute
14103 may have a value that belongs to more than one of these classes; it
14104 would be ambiguous if we did, because we use the same forms for all
14105 of them. */
14106 static int
14107 attr_form_is_section_offset (struct attribute *attr)
14108 {
14109 return (attr->form == DW_FORM_data4
14110 || attr->form == DW_FORM_data8
14111 || attr->form == DW_FORM_sec_offset);
14112 }
14113
14114
14115 /* Return non-zero if ATTR's value falls in the 'constant' class, or
14116 zero otherwise. When this function returns true, you can apply
14117 dwarf2_get_attr_constant_value to it.
14118
14119 However, note that for some attributes you must check
14120 attr_form_is_section_offset before using this test. DW_FORM_data4
14121 and DW_FORM_data8 are members of both the constant class, and of
14122 the classes that contain offsets into other debug sections
14123 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14124 that, if an attribute's can be either a constant or one of the
14125 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14126 taken as section offsets, not constants. */
14127 static int
14128 attr_form_is_constant (struct attribute *attr)
14129 {
14130 switch (attr->form)
14131 {
14132 case DW_FORM_sdata:
14133 case DW_FORM_udata:
14134 case DW_FORM_data1:
14135 case DW_FORM_data2:
14136 case DW_FORM_data4:
14137 case DW_FORM_data8:
14138 return 1;
14139 default:
14140 return 0;
14141 }
14142 }
14143
14144 /* A helper function that fills in a dwarf2_loclist_baton. */
14145
14146 static void
14147 fill_in_loclist_baton (struct dwarf2_cu *cu,
14148 struct dwarf2_loclist_baton *baton,
14149 struct attribute *attr)
14150 {
14151 dwarf2_read_section (dwarf2_per_objfile->objfile,
14152 &dwarf2_per_objfile->loc);
14153
14154 baton->per_cu = cu->per_cu;
14155 gdb_assert (baton->per_cu);
14156 /* We don't know how long the location list is, but make sure we
14157 don't run off the edge of the section. */
14158 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14159 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
14160 baton->base_address = cu->base_address;
14161 }
14162
14163 static void
14164 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
14165 struct dwarf2_cu *cu)
14166 {
14167 if (attr_form_is_section_offset (attr)
14168 /* ".debug_loc" may not exist at all, or the offset may be outside
14169 the section. If so, fall through to the complaint in the
14170 other branch. */
14171 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
14172 {
14173 struct dwarf2_loclist_baton *baton;
14174
14175 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14176 sizeof (struct dwarf2_loclist_baton));
14177
14178 fill_in_loclist_baton (cu, baton, attr);
14179
14180 if (cu->base_known == 0)
14181 complaint (&symfile_complaints,
14182 _("Location list used without specifying the CU base address."));
14183
14184 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
14185 SYMBOL_LOCATION_BATON (sym) = baton;
14186 }
14187 else
14188 {
14189 struct dwarf2_locexpr_baton *baton;
14190
14191 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14192 sizeof (struct dwarf2_locexpr_baton));
14193 baton->per_cu = cu->per_cu;
14194 gdb_assert (baton->per_cu);
14195
14196 if (attr_form_is_block (attr))
14197 {
14198 /* Note that we're just copying the block's data pointer
14199 here, not the actual data. We're still pointing into the
14200 info_buffer for SYM's objfile; right now we never release
14201 that buffer, but when we do clean up properly this may
14202 need to change. */
14203 baton->size = DW_BLOCK (attr)->size;
14204 baton->data = DW_BLOCK (attr)->data;
14205 }
14206 else
14207 {
14208 dwarf2_invalid_attrib_class_complaint ("location description",
14209 SYMBOL_NATURAL_NAME (sym));
14210 baton->size = 0;
14211 baton->data = NULL;
14212 }
14213
14214 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
14215 SYMBOL_LOCATION_BATON (sym) = baton;
14216 }
14217 }
14218
14219 /* Return the OBJFILE associated with the compilation unit CU. If CU
14220 came from a separate debuginfo file, then the master objfile is
14221 returned. */
14222
14223 struct objfile *
14224 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14225 {
14226 struct objfile *objfile = per_cu->objfile;
14227
14228 /* Return the master objfile, so that we can report and look up the
14229 correct file containing this variable. */
14230 if (objfile->separate_debug_objfile_backlink)
14231 objfile = objfile->separate_debug_objfile_backlink;
14232
14233 return objfile;
14234 }
14235
14236 /* Return the address size given in the compilation unit header for CU. */
14237
14238 CORE_ADDR
14239 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14240 {
14241 if (per_cu->cu)
14242 return per_cu->cu->header.addr_size;
14243 else
14244 {
14245 /* If the CU is not currently read in, we re-read its header. */
14246 struct objfile *objfile = per_cu->objfile;
14247 struct dwarf2_per_objfile *per_objfile
14248 = objfile_data (objfile, dwarf2_objfile_data_key);
14249 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14250 struct comp_unit_head cu_header;
14251
14252 memset (&cu_header, 0, sizeof cu_header);
14253 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14254 return cu_header.addr_size;
14255 }
14256 }
14257
14258 /* Return the offset size given in the compilation unit header for CU. */
14259
14260 int
14261 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14262 {
14263 if (per_cu->cu)
14264 return per_cu->cu->header.offset_size;
14265 else
14266 {
14267 /* If the CU is not currently read in, we re-read its header. */
14268 struct objfile *objfile = per_cu->objfile;
14269 struct dwarf2_per_objfile *per_objfile
14270 = objfile_data (objfile, dwarf2_objfile_data_key);
14271 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14272 struct comp_unit_head cu_header;
14273
14274 memset (&cu_header, 0, sizeof cu_header);
14275 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14276 return cu_header.offset_size;
14277 }
14278 }
14279
14280 /* Return the text offset of the CU. The returned offset comes from
14281 this CU's objfile. If this objfile came from a separate debuginfo
14282 file, then the offset may be different from the corresponding
14283 offset in the parent objfile. */
14284
14285 CORE_ADDR
14286 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14287 {
14288 struct objfile *objfile = per_cu->objfile;
14289
14290 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14291 }
14292
14293 /* Locate the .debug_info compilation unit from CU's objfile which contains
14294 the DIE at OFFSET. Raises an error on failure. */
14295
14296 static struct dwarf2_per_cu_data *
14297 dwarf2_find_containing_comp_unit (unsigned int offset,
14298 struct objfile *objfile)
14299 {
14300 struct dwarf2_per_cu_data *this_cu;
14301 int low, high;
14302
14303 low = 0;
14304 high = dwarf2_per_objfile->n_comp_units - 1;
14305 while (high > low)
14306 {
14307 int mid = low + (high - low) / 2;
14308
14309 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14310 high = mid;
14311 else
14312 low = mid + 1;
14313 }
14314 gdb_assert (low == high);
14315 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14316 {
14317 if (low == 0)
14318 error (_("Dwarf Error: could not find partial DIE containing "
14319 "offset 0x%lx [in module %s]"),
14320 (long) offset, bfd_get_filename (objfile->obfd));
14321
14322 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14323 return dwarf2_per_objfile->all_comp_units[low-1];
14324 }
14325 else
14326 {
14327 this_cu = dwarf2_per_objfile->all_comp_units[low];
14328 if (low == dwarf2_per_objfile->n_comp_units - 1
14329 && offset >= this_cu->offset + this_cu->length)
14330 error (_("invalid dwarf2 offset %u"), offset);
14331 gdb_assert (offset < this_cu->offset + this_cu->length);
14332 return this_cu;
14333 }
14334 }
14335
14336 /* Locate the compilation unit from OBJFILE which is located at exactly
14337 OFFSET. Raises an error on failure. */
14338
14339 static struct dwarf2_per_cu_data *
14340 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
14341 {
14342 struct dwarf2_per_cu_data *this_cu;
14343
14344 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14345 if (this_cu->offset != offset)
14346 error (_("no compilation unit with offset %u."), offset);
14347 return this_cu;
14348 }
14349
14350 /* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
14351
14352 static void
14353 init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
14354 {
14355 memset (cu, 0, sizeof (*cu));
14356 cu->objfile = objfile;
14357 obstack_init (&cu->comp_unit_obstack);
14358 }
14359
14360 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
14361
14362 static void
14363 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
14364 {
14365 struct attribute *attr;
14366
14367 /* Set the language we're debugging. */
14368 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
14369 if (attr)
14370 set_cu_language (DW_UNSND (attr), cu);
14371 else
14372 set_cu_language (language_minimal, cu);
14373 }
14374
14375 /* Release one cached compilation unit, CU. We unlink it from the tree
14376 of compilation units, but we don't remove it from the read_in_chain;
14377 the caller is responsible for that.
14378 NOTE: DATA is a void * because this function is also used as a
14379 cleanup routine. */
14380
14381 static void
14382 free_one_comp_unit (void *data)
14383 {
14384 struct dwarf2_cu *cu = data;
14385
14386 if (cu->per_cu != NULL)
14387 cu->per_cu->cu = NULL;
14388 cu->per_cu = NULL;
14389
14390 obstack_free (&cu->comp_unit_obstack, NULL);
14391
14392 xfree (cu);
14393 }
14394
14395 /* This cleanup function is passed the address of a dwarf2_cu on the stack
14396 when we're finished with it. We can't free the pointer itself, but be
14397 sure to unlink it from the cache. Also release any associated storage
14398 and perform cache maintenance.
14399
14400 Only used during partial symbol parsing. */
14401
14402 static void
14403 free_stack_comp_unit (void *data)
14404 {
14405 struct dwarf2_cu *cu = data;
14406
14407 obstack_free (&cu->comp_unit_obstack, NULL);
14408 cu->partial_dies = NULL;
14409
14410 if (cu->per_cu != NULL)
14411 {
14412 /* This compilation unit is on the stack in our caller, so we
14413 should not xfree it. Just unlink it. */
14414 cu->per_cu->cu = NULL;
14415 cu->per_cu = NULL;
14416
14417 /* If we had a per-cu pointer, then we may have other compilation
14418 units loaded, so age them now. */
14419 age_cached_comp_units ();
14420 }
14421 }
14422
14423 /* Free all cached compilation units. */
14424
14425 static void
14426 free_cached_comp_units (void *data)
14427 {
14428 struct dwarf2_per_cu_data *per_cu, **last_chain;
14429
14430 per_cu = dwarf2_per_objfile->read_in_chain;
14431 last_chain = &dwarf2_per_objfile->read_in_chain;
14432 while (per_cu != NULL)
14433 {
14434 struct dwarf2_per_cu_data *next_cu;
14435
14436 next_cu = per_cu->cu->read_in_chain;
14437
14438 free_one_comp_unit (per_cu->cu);
14439 *last_chain = next_cu;
14440
14441 per_cu = next_cu;
14442 }
14443 }
14444
14445 /* Increase the age counter on each cached compilation unit, and free
14446 any that are too old. */
14447
14448 static void
14449 age_cached_comp_units (void)
14450 {
14451 struct dwarf2_per_cu_data *per_cu, **last_chain;
14452
14453 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14454 per_cu = dwarf2_per_objfile->read_in_chain;
14455 while (per_cu != NULL)
14456 {
14457 per_cu->cu->last_used ++;
14458 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14459 dwarf2_mark (per_cu->cu);
14460 per_cu = per_cu->cu->read_in_chain;
14461 }
14462
14463 per_cu = dwarf2_per_objfile->read_in_chain;
14464 last_chain = &dwarf2_per_objfile->read_in_chain;
14465 while (per_cu != NULL)
14466 {
14467 struct dwarf2_per_cu_data *next_cu;
14468
14469 next_cu = per_cu->cu->read_in_chain;
14470
14471 if (!per_cu->cu->mark)
14472 {
14473 free_one_comp_unit (per_cu->cu);
14474 *last_chain = next_cu;
14475 }
14476 else
14477 last_chain = &per_cu->cu->read_in_chain;
14478
14479 per_cu = next_cu;
14480 }
14481 }
14482
14483 /* Remove a single compilation unit from the cache. */
14484
14485 static void
14486 free_one_cached_comp_unit (void *target_cu)
14487 {
14488 struct dwarf2_per_cu_data *per_cu, **last_chain;
14489
14490 per_cu = dwarf2_per_objfile->read_in_chain;
14491 last_chain = &dwarf2_per_objfile->read_in_chain;
14492 while (per_cu != NULL)
14493 {
14494 struct dwarf2_per_cu_data *next_cu;
14495
14496 next_cu = per_cu->cu->read_in_chain;
14497
14498 if (per_cu->cu == target_cu)
14499 {
14500 free_one_comp_unit (per_cu->cu);
14501 *last_chain = next_cu;
14502 break;
14503 }
14504 else
14505 last_chain = &per_cu->cu->read_in_chain;
14506
14507 per_cu = next_cu;
14508 }
14509 }
14510
14511 /* Release all extra memory associated with OBJFILE. */
14512
14513 void
14514 dwarf2_free_objfile (struct objfile *objfile)
14515 {
14516 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14517
14518 if (dwarf2_per_objfile == NULL)
14519 return;
14520
14521 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14522 free_cached_comp_units (NULL);
14523
14524 if (dwarf2_per_objfile->using_index)
14525 {
14526 int i;
14527
14528 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
14529 {
14530 int j;
14531 struct dwarf2_per_cu_data *per_cu =
14532 dwarf2_per_objfile->all_comp_units[i];
14533
14534 if (!per_cu->v.quick->lines)
14535 continue;
14536
14537 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
14538 {
14539 if (per_cu->v.quick->file_names)
14540 xfree ((void *) per_cu->v.quick->file_names[j]);
14541 if (per_cu->v.quick->full_names)
14542 xfree ((void *) per_cu->v.quick->full_names[j]);
14543 }
14544
14545 free_line_header (per_cu->v.quick->lines);
14546 }
14547 }
14548
14549 /* Everything else should be on the objfile obstack. */
14550 }
14551
14552 /* A pair of DIE offset and GDB type pointer. We store these
14553 in a hash table separate from the DIEs, and preserve them
14554 when the DIEs are flushed out of cache. */
14555
14556 struct dwarf2_offset_and_type
14557 {
14558 unsigned int offset;
14559 struct type *type;
14560 };
14561
14562 /* Hash function for a dwarf2_offset_and_type. */
14563
14564 static hashval_t
14565 offset_and_type_hash (const void *item)
14566 {
14567 const struct dwarf2_offset_and_type *ofs = item;
14568
14569 return ofs->offset;
14570 }
14571
14572 /* Equality function for a dwarf2_offset_and_type. */
14573
14574 static int
14575 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14576 {
14577 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14578 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
14579
14580 return ofs_lhs->offset == ofs_rhs->offset;
14581 }
14582
14583 /* Set the type associated with DIE to TYPE. Save it in CU's hash
14584 table if necessary. For convenience, return TYPE.
14585
14586 The DIEs reading must have careful ordering to:
14587 * Not cause infite loops trying to read in DIEs as a prerequisite for
14588 reading current DIE.
14589 * Not trying to dereference contents of still incompletely read in types
14590 while reading in other DIEs.
14591 * Enable referencing still incompletely read in types just by a pointer to
14592 the type without accessing its fields.
14593
14594 Therefore caller should follow these rules:
14595 * Try to fetch any prerequisite types we may need to build this DIE type
14596 before building the type and calling set_die_type.
14597 * After building type call set_die_type for current DIE as soon as
14598 possible before fetching more types to complete the current type.
14599 * Make the type as complete as possible before fetching more types. */
14600
14601 static struct type *
14602 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14603 {
14604 struct dwarf2_offset_and_type **slot, ofs;
14605 struct objfile *objfile = cu->objfile;
14606 htab_t *type_hash_ptr;
14607
14608 /* For Ada types, make sure that the gnat-specific data is always
14609 initialized (if not already set). There are a few types where
14610 we should not be doing so, because the type-specific area is
14611 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14612 where the type-specific area is used to store the floatformat).
14613 But this is not a problem, because the gnat-specific information
14614 is actually not needed for these types. */
14615 if (need_gnat_info (cu)
14616 && TYPE_CODE (type) != TYPE_CODE_FUNC
14617 && TYPE_CODE (type) != TYPE_CODE_FLT
14618 && !HAVE_GNAT_AUX_INFO (type))
14619 INIT_GNAT_SPECIFIC (type);
14620
14621 if (cu->per_cu->from_debug_types)
14622 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14623 else
14624 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14625
14626 if (*type_hash_ptr == NULL)
14627 {
14628 *type_hash_ptr
14629 = htab_create_alloc_ex (127,
14630 offset_and_type_hash,
14631 offset_and_type_eq,
14632 NULL,
14633 &objfile->objfile_obstack,
14634 hashtab_obstack_allocate,
14635 dummy_obstack_deallocate);
14636 }
14637
14638 ofs.offset = die->offset;
14639 ofs.type = type;
14640 slot = (struct dwarf2_offset_and_type **)
14641 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
14642 if (*slot)
14643 complaint (&symfile_complaints,
14644 _("A problem internal to GDB: DIE 0x%x has type already set"),
14645 die->offset);
14646 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
14647 **slot = ofs;
14648 return type;
14649 }
14650
14651 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14652 table, or return NULL if the die does not have a saved type. */
14653
14654 static struct type *
14655 get_die_type_at_offset (unsigned int offset,
14656 struct dwarf2_per_cu_data *per_cu)
14657 {
14658 struct dwarf2_offset_and_type *slot, ofs;
14659 htab_t type_hash;
14660
14661 if (per_cu->from_debug_types)
14662 type_hash = dwarf2_per_objfile->debug_types_type_hash;
14663 else
14664 type_hash = dwarf2_per_objfile->debug_info_type_hash;
14665 if (type_hash == NULL)
14666 return NULL;
14667
14668 ofs.offset = offset;
14669 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
14670 if (slot)
14671 return slot->type;
14672 else
14673 return NULL;
14674 }
14675
14676 /* Look up the type for DIE in the appropriate type_hash table,
14677 or return NULL if DIE does not have a saved type. */
14678
14679 static struct type *
14680 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
14681 {
14682 return get_die_type_at_offset (die->offset, cu->per_cu);
14683 }
14684
14685 /* Add a dependence relationship from CU to REF_PER_CU. */
14686
14687 static void
14688 dwarf2_add_dependence (struct dwarf2_cu *cu,
14689 struct dwarf2_per_cu_data *ref_per_cu)
14690 {
14691 void **slot;
14692
14693 if (cu->dependencies == NULL)
14694 cu->dependencies
14695 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
14696 NULL, &cu->comp_unit_obstack,
14697 hashtab_obstack_allocate,
14698 dummy_obstack_deallocate);
14699
14700 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
14701 if (*slot == NULL)
14702 *slot = ref_per_cu;
14703 }
14704
14705 /* Subroutine of dwarf2_mark to pass to htab_traverse.
14706 Set the mark field in every compilation unit in the
14707 cache that we must keep because we are keeping CU. */
14708
14709 static int
14710 dwarf2_mark_helper (void **slot, void *data)
14711 {
14712 struct dwarf2_per_cu_data *per_cu;
14713
14714 per_cu = (struct dwarf2_per_cu_data *) *slot;
14715 if (per_cu->cu->mark)
14716 return 1;
14717 per_cu->cu->mark = 1;
14718
14719 if (per_cu->cu->dependencies != NULL)
14720 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
14721
14722 return 1;
14723 }
14724
14725 /* Set the mark field in CU and in every other compilation unit in the
14726 cache that we must keep because we are keeping CU. */
14727
14728 static void
14729 dwarf2_mark (struct dwarf2_cu *cu)
14730 {
14731 if (cu->mark)
14732 return;
14733 cu->mark = 1;
14734 if (cu->dependencies != NULL)
14735 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
14736 }
14737
14738 static void
14739 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
14740 {
14741 while (per_cu)
14742 {
14743 per_cu->cu->mark = 0;
14744 per_cu = per_cu->cu->read_in_chain;
14745 }
14746 }
14747
14748 /* Trivial hash function for partial_die_info: the hash value of a DIE
14749 is its offset in .debug_info for this objfile. */
14750
14751 static hashval_t
14752 partial_die_hash (const void *item)
14753 {
14754 const struct partial_die_info *part_die = item;
14755
14756 return part_die->offset;
14757 }
14758
14759 /* Trivial comparison function for partial_die_info structures: two DIEs
14760 are equal if they have the same offset. */
14761
14762 static int
14763 partial_die_eq (const void *item_lhs, const void *item_rhs)
14764 {
14765 const struct partial_die_info *part_die_lhs = item_lhs;
14766 const struct partial_die_info *part_die_rhs = item_rhs;
14767
14768 return part_die_lhs->offset == part_die_rhs->offset;
14769 }
14770
14771 static struct cmd_list_element *set_dwarf2_cmdlist;
14772 static struct cmd_list_element *show_dwarf2_cmdlist;
14773
14774 static void
14775 set_dwarf2_cmd (char *args, int from_tty)
14776 {
14777 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
14778 }
14779
14780 static void
14781 show_dwarf2_cmd (char *args, int from_tty)
14782 {
14783 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
14784 }
14785
14786 /* If section described by INFO was mmapped, munmap it now. */
14787
14788 static void
14789 munmap_section_buffer (struct dwarf2_section_info *info)
14790 {
14791 if (info->was_mmapped)
14792 {
14793 #ifdef HAVE_MMAP
14794 intptr_t begin = (intptr_t) info->buffer;
14795 intptr_t map_begin = begin & ~(pagesize - 1);
14796 size_t map_length = info->size + begin - map_begin;
14797
14798 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
14799 #else
14800 /* Without HAVE_MMAP, we should never be here to begin with. */
14801 gdb_assert_not_reached ("no mmap support");
14802 #endif
14803 }
14804 }
14805
14806 /* munmap debug sections for OBJFILE, if necessary. */
14807
14808 static void
14809 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
14810 {
14811 struct dwarf2_per_objfile *data = d;
14812
14813 /* This is sorted according to the order they're defined in to make it easier
14814 to keep in sync. */
14815 munmap_section_buffer (&data->info);
14816 munmap_section_buffer (&data->abbrev);
14817 munmap_section_buffer (&data->line);
14818 munmap_section_buffer (&data->loc);
14819 munmap_section_buffer (&data->macinfo);
14820 munmap_section_buffer (&data->str);
14821 munmap_section_buffer (&data->ranges);
14822 munmap_section_buffer (&data->types);
14823 munmap_section_buffer (&data->frame);
14824 munmap_section_buffer (&data->eh_frame);
14825 munmap_section_buffer (&data->gdb_index);
14826 }
14827
14828 \f
14829
14830 /* The contents of the hash table we create when building the string
14831 table. */
14832 struct strtab_entry
14833 {
14834 offset_type offset;
14835 const char *str;
14836 };
14837
14838 /* Hash function for a strtab_entry. */
14839
14840 static hashval_t
14841 hash_strtab_entry (const void *e)
14842 {
14843 const struct strtab_entry *entry = e;
14844 return mapped_index_string_hash (entry->str);
14845 }
14846
14847 /* Equality function for a strtab_entry. */
14848
14849 static int
14850 eq_strtab_entry (const void *a, const void *b)
14851 {
14852 const struct strtab_entry *ea = a;
14853 const struct strtab_entry *eb = b;
14854 return !strcmp (ea->str, eb->str);
14855 }
14856
14857 /* Create a strtab_entry hash table. */
14858
14859 static htab_t
14860 create_strtab (void)
14861 {
14862 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
14863 xfree, xcalloc, xfree);
14864 }
14865
14866 /* Add a string to the constant pool. Return the string's offset in
14867 host order. */
14868
14869 static offset_type
14870 add_string (htab_t table, struct obstack *cpool, const char *str)
14871 {
14872 void **slot;
14873 struct strtab_entry entry;
14874 struct strtab_entry *result;
14875
14876 entry.str = str;
14877 slot = htab_find_slot (table, &entry, INSERT);
14878 if (*slot)
14879 result = *slot;
14880 else
14881 {
14882 result = XNEW (struct strtab_entry);
14883 result->offset = obstack_object_size (cpool);
14884 result->str = str;
14885 obstack_grow_str0 (cpool, str);
14886 *slot = result;
14887 }
14888 return result->offset;
14889 }
14890
14891 /* An entry in the symbol table. */
14892 struct symtab_index_entry
14893 {
14894 /* The name of the symbol. */
14895 const char *name;
14896 /* The offset of the name in the constant pool. */
14897 offset_type index_offset;
14898 /* A sorted vector of the indices of all the CUs that hold an object
14899 of this name. */
14900 VEC (offset_type) *cu_indices;
14901 };
14902
14903 /* The symbol table. This is a power-of-2-sized hash table. */
14904 struct mapped_symtab
14905 {
14906 offset_type n_elements;
14907 offset_type size;
14908 struct symtab_index_entry **data;
14909 };
14910
14911 /* Hash function for a symtab_index_entry. */
14912
14913 static hashval_t
14914 hash_symtab_entry (const void *e)
14915 {
14916 const struct symtab_index_entry *entry = e;
14917 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
14918 sizeof (offset_type) * VEC_length (offset_type,
14919 entry->cu_indices),
14920 0);
14921 }
14922
14923 /* Equality function for a symtab_index_entry. */
14924
14925 static int
14926 eq_symtab_entry (const void *a, const void *b)
14927 {
14928 const struct symtab_index_entry *ea = a;
14929 const struct symtab_index_entry *eb = b;
14930 int len = VEC_length (offset_type, ea->cu_indices);
14931 if (len != VEC_length (offset_type, eb->cu_indices))
14932 return 0;
14933 return !memcmp (VEC_address (offset_type, ea->cu_indices),
14934 VEC_address (offset_type, eb->cu_indices),
14935 sizeof (offset_type) * len);
14936 }
14937
14938 /* Destroy a symtab_index_entry. */
14939
14940 static void
14941 delete_symtab_entry (void *p)
14942 {
14943 struct symtab_index_entry *entry = p;
14944 VEC_free (offset_type, entry->cu_indices);
14945 xfree (entry);
14946 }
14947
14948 /* Create a hash table holding symtab_index_entry objects. */
14949
14950 static htab_t
14951 create_symbol_hash_table (void)
14952 {
14953 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
14954 delete_symtab_entry, xcalloc, xfree);
14955 }
14956
14957 /* Create a new mapped symtab object. */
14958
14959 static struct mapped_symtab *
14960 create_mapped_symtab (void)
14961 {
14962 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
14963 symtab->n_elements = 0;
14964 symtab->size = 1024;
14965 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
14966 return symtab;
14967 }
14968
14969 /* Destroy a mapped_symtab. */
14970
14971 static void
14972 cleanup_mapped_symtab (void *p)
14973 {
14974 struct mapped_symtab *symtab = p;
14975 /* The contents of the array are freed when the other hash table is
14976 destroyed. */
14977 xfree (symtab->data);
14978 xfree (symtab);
14979 }
14980
14981 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
14982 the slot. */
14983
14984 static struct symtab_index_entry **
14985 find_slot (struct mapped_symtab *symtab, const char *name)
14986 {
14987 offset_type index, step, hash = mapped_index_string_hash (name);
14988
14989 index = hash & (symtab->size - 1);
14990 step = ((hash * 17) & (symtab->size - 1)) | 1;
14991
14992 for (;;)
14993 {
14994 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
14995 return &symtab->data[index];
14996 index = (index + step) & (symtab->size - 1);
14997 }
14998 }
14999
15000 /* Expand SYMTAB's hash table. */
15001
15002 static void
15003 hash_expand (struct mapped_symtab *symtab)
15004 {
15005 offset_type old_size = symtab->size;
15006 offset_type i;
15007 struct symtab_index_entry **old_entries = symtab->data;
15008
15009 symtab->size *= 2;
15010 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15011
15012 for (i = 0; i < old_size; ++i)
15013 {
15014 if (old_entries[i])
15015 {
15016 struct symtab_index_entry **slot = find_slot (symtab,
15017 old_entries[i]->name);
15018 *slot = old_entries[i];
15019 }
15020 }
15021
15022 xfree (old_entries);
15023 }
15024
15025 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
15026 is the index of the CU in which the symbol appears. */
15027
15028 static void
15029 add_index_entry (struct mapped_symtab *symtab, const char *name,
15030 offset_type cu_index)
15031 {
15032 struct symtab_index_entry **slot;
15033
15034 ++symtab->n_elements;
15035 if (4 * symtab->n_elements / 3 >= symtab->size)
15036 hash_expand (symtab);
15037
15038 slot = find_slot (symtab, name);
15039 if (!*slot)
15040 {
15041 *slot = XNEW (struct symtab_index_entry);
15042 (*slot)->name = name;
15043 (*slot)->cu_indices = NULL;
15044 }
15045 /* Don't push an index twice. Due to how we add entries we only
15046 have to check the last one. */
15047 if (VEC_empty (offset_type, (*slot)->cu_indices)
15048 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
15049 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
15050 }
15051
15052 /* Add a vector of indices to the constant pool. */
15053
15054 static offset_type
15055 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
15056 struct symtab_index_entry *entry)
15057 {
15058 void **slot;
15059
15060 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
15061 if (!*slot)
15062 {
15063 offset_type len = VEC_length (offset_type, entry->cu_indices);
15064 offset_type val = MAYBE_SWAP (len);
15065 offset_type iter;
15066 int i;
15067
15068 *slot = entry;
15069 entry->index_offset = obstack_object_size (cpool);
15070
15071 obstack_grow (cpool, &val, sizeof (val));
15072 for (i = 0;
15073 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15074 ++i)
15075 {
15076 val = MAYBE_SWAP (iter);
15077 obstack_grow (cpool, &val, sizeof (val));
15078 }
15079 }
15080 else
15081 {
15082 struct symtab_index_entry *old_entry = *slot;
15083 entry->index_offset = old_entry->index_offset;
15084 entry = old_entry;
15085 }
15086 return entry->index_offset;
15087 }
15088
15089 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15090 constant pool entries going into the obstack CPOOL. */
15091
15092 static void
15093 write_hash_table (struct mapped_symtab *symtab,
15094 struct obstack *output, struct obstack *cpool)
15095 {
15096 offset_type i;
15097 htab_t symbol_hash_table;
15098 htab_t str_table;
15099
15100 symbol_hash_table = create_symbol_hash_table ();
15101 str_table = create_strtab ();
15102
15103 /* We add all the index vectors to the constant pool first, to
15104 ensure alignment is ok. */
15105 for (i = 0; i < symtab->size; ++i)
15106 {
15107 if (symtab->data[i])
15108 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
15109 }
15110
15111 /* Now write out the hash table. */
15112 for (i = 0; i < symtab->size; ++i)
15113 {
15114 offset_type str_off, vec_off;
15115
15116 if (symtab->data[i])
15117 {
15118 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15119 vec_off = symtab->data[i]->index_offset;
15120 }
15121 else
15122 {
15123 /* While 0 is a valid constant pool index, it is not valid
15124 to have 0 for both offsets. */
15125 str_off = 0;
15126 vec_off = 0;
15127 }
15128
15129 str_off = MAYBE_SWAP (str_off);
15130 vec_off = MAYBE_SWAP (vec_off);
15131
15132 obstack_grow (output, &str_off, sizeof (str_off));
15133 obstack_grow (output, &vec_off, sizeof (vec_off));
15134 }
15135
15136 htab_delete (str_table);
15137 htab_delete (symbol_hash_table);
15138 }
15139
15140 /* Write an address entry to ADDR_OBSTACK. The addresses are taken
15141 from PST; CU_INDEX is the index of the CU in the vector of all
15142 CUs. */
15143
15144 static void
15145 add_address_entry (struct objfile *objfile,
15146 struct obstack *addr_obstack, struct partial_symtab *pst,
15147 unsigned int cu_index)
15148 {
15149 offset_type offset;
15150 char addr[8];
15151 CORE_ADDR baseaddr;
15152
15153 /* Don't bother recording empty ranges. */
15154 if (pst->textlow == pst->texthigh)
15155 return;
15156
15157 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15158
15159 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->textlow - baseaddr);
15160 obstack_grow (addr_obstack, addr, 8);
15161 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->texthigh - baseaddr);
15162 obstack_grow (addr_obstack, addr, 8);
15163 offset = MAYBE_SWAP (cu_index);
15164 obstack_grow (addr_obstack, &offset, sizeof (offset_type));
15165 }
15166
15167 /* Add a list of partial symbols to SYMTAB. */
15168
15169 static void
15170 write_psymbols (struct mapped_symtab *symtab,
15171 htab_t psyms_seen,
15172 struct partial_symbol **psymp,
15173 int count,
15174 offset_type cu_index,
15175 int is_static)
15176 {
15177 for (; count-- > 0; ++psymp)
15178 {
15179 void **slot, *lookup;
15180
15181 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15182 error (_("Ada is not currently supported by the index"));
15183
15184 /* We only want to add a given psymbol once. However, we also
15185 want to account for whether it is global or static. So, we
15186 may add it twice, using slightly different values. */
15187 if (is_static)
15188 {
15189 uintptr_t val = 1 | (uintptr_t) *psymp;
15190
15191 lookup = (void *) val;
15192 }
15193 else
15194 lookup = *psymp;
15195
15196 /* Only add a given psymbol once. */
15197 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15198 if (!*slot)
15199 {
15200 *slot = lookup;
15201 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15202 }
15203 }
15204 }
15205
15206 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
15207 exception if there is an error. */
15208
15209 static void
15210 write_obstack (FILE *file, struct obstack *obstack)
15211 {
15212 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15213 file)
15214 != obstack_object_size (obstack))
15215 error (_("couldn't data write to file"));
15216 }
15217
15218 /* Unlink a file if the argument is not NULL. */
15219
15220 static void
15221 unlink_if_set (void *p)
15222 {
15223 char **filename = p;
15224 if (*filename)
15225 unlink (*filename);
15226 }
15227
15228 /* A helper struct used when iterating over debug_types. */
15229 struct signatured_type_index_data
15230 {
15231 struct objfile *objfile;
15232 struct mapped_symtab *symtab;
15233 struct obstack *types_list;
15234 htab_t psyms_seen;
15235 int cu_index;
15236 };
15237
15238 /* A helper function that writes a single signatured_type to an
15239 obstack. */
15240
15241 static int
15242 write_one_signatured_type (void **slot, void *d)
15243 {
15244 struct signatured_type_index_data *info = d;
15245 struct signatured_type *entry = (struct signatured_type *) *slot;
15246 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15247 struct partial_symtab *psymtab = per_cu->v.psymtab;
15248 gdb_byte val[8];
15249
15250 write_psymbols (info->symtab,
15251 info->psyms_seen,
15252 info->objfile->global_psymbols.list + psymtab->globals_offset,
15253 psymtab->n_global_syms, info->cu_index,
15254 0);
15255 write_psymbols (info->symtab,
15256 info->psyms_seen,
15257 info->objfile->static_psymbols.list + psymtab->statics_offset,
15258 psymtab->n_static_syms, info->cu_index,
15259 1);
15260
15261 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15262 obstack_grow (info->types_list, val, 8);
15263 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15264 obstack_grow (info->types_list, val, 8);
15265 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15266 obstack_grow (info->types_list, val, 8);
15267
15268 ++info->cu_index;
15269
15270 return 1;
15271 }
15272
15273 /* A cleanup function for an htab_t. */
15274
15275 static void
15276 cleanup_htab (void *arg)
15277 {
15278 htab_delete (arg);
15279 }
15280
15281 /* Create an index file for OBJFILE in the directory DIR. */
15282
15283 static void
15284 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15285 {
15286 struct cleanup *cleanup;
15287 char *filename, *cleanup_filename;
15288 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15289 struct obstack cu_list, types_cu_list;
15290 int i;
15291 FILE *out_file;
15292 struct mapped_symtab *symtab;
15293 offset_type val, size_of_contents, total_len;
15294 struct stat st;
15295 char buf[8];
15296 htab_t psyms_seen;
15297
15298 if (!objfile->psymtabs)
15299 return;
15300 if (dwarf2_per_objfile->using_index)
15301 error (_("Cannot use an index to create the index"));
15302
15303 if (stat (objfile->name, &st) < 0)
15304 perror_with_name (_("Could not stat"));
15305
15306 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15307 INDEX_SUFFIX, (char *) NULL);
15308 cleanup = make_cleanup (xfree, filename);
15309
15310 out_file = fopen (filename, "wb");
15311 if (!out_file)
15312 error (_("Can't open `%s' for writing"), filename);
15313
15314 cleanup_filename = filename;
15315 make_cleanup (unlink_if_set, &cleanup_filename);
15316
15317 symtab = create_mapped_symtab ();
15318 make_cleanup (cleanup_mapped_symtab, symtab);
15319
15320 obstack_init (&addr_obstack);
15321 make_cleanup_obstack_free (&addr_obstack);
15322
15323 obstack_init (&cu_list);
15324 make_cleanup_obstack_free (&cu_list);
15325
15326 obstack_init (&types_cu_list);
15327 make_cleanup_obstack_free (&types_cu_list);
15328
15329 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15330 NULL, xcalloc, xfree);
15331 make_cleanup (cleanup_htab, psyms_seen);
15332
15333 /* The list is already sorted, so we don't need to do additional
15334 work here. Also, the debug_types entries do not appear in
15335 all_comp_units, but only in their own hash table. */
15336 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15337 {
15338 struct dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->all_comp_units[i];
15339 struct partial_symtab *psymtab = per_cu->v.psymtab;
15340 gdb_byte val[8];
15341
15342 write_psymbols (symtab,
15343 psyms_seen,
15344 objfile->global_psymbols.list + psymtab->globals_offset,
15345 psymtab->n_global_syms, i,
15346 0);
15347 write_psymbols (symtab,
15348 psyms_seen,
15349 objfile->static_psymbols.list + psymtab->statics_offset,
15350 psymtab->n_static_syms, i,
15351 1);
15352
15353 add_address_entry (objfile, &addr_obstack, psymtab, i);
15354
15355 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
15356 obstack_grow (&cu_list, val, 8);
15357 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
15358 obstack_grow (&cu_list, val, 8);
15359 }
15360
15361 /* Write out the .debug_type entries, if any. */
15362 if (dwarf2_per_objfile->signatured_types)
15363 {
15364 struct signatured_type_index_data sig_data;
15365
15366 sig_data.objfile = objfile;
15367 sig_data.symtab = symtab;
15368 sig_data.types_list = &types_cu_list;
15369 sig_data.psyms_seen = psyms_seen;
15370 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15371 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15372 write_one_signatured_type, &sig_data);
15373 }
15374
15375 obstack_init (&constant_pool);
15376 make_cleanup_obstack_free (&constant_pool);
15377 obstack_init (&symtab_obstack);
15378 make_cleanup_obstack_free (&symtab_obstack);
15379 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15380
15381 obstack_init (&contents);
15382 make_cleanup_obstack_free (&contents);
15383 size_of_contents = 6 * sizeof (offset_type);
15384 total_len = size_of_contents;
15385
15386 /* The version number. */
15387 val = MAYBE_SWAP (3);
15388 obstack_grow (&contents, &val, sizeof (val));
15389
15390 /* The offset of the CU list from the start of the file. */
15391 val = MAYBE_SWAP (total_len);
15392 obstack_grow (&contents, &val, sizeof (val));
15393 total_len += obstack_object_size (&cu_list);
15394
15395 /* The offset of the types CU list from the start of the file. */
15396 val = MAYBE_SWAP (total_len);
15397 obstack_grow (&contents, &val, sizeof (val));
15398 total_len += obstack_object_size (&types_cu_list);
15399
15400 /* The offset of the address table from the start of the file. */
15401 val = MAYBE_SWAP (total_len);
15402 obstack_grow (&contents, &val, sizeof (val));
15403 total_len += obstack_object_size (&addr_obstack);
15404
15405 /* The offset of the symbol table from the start of the file. */
15406 val = MAYBE_SWAP (total_len);
15407 obstack_grow (&contents, &val, sizeof (val));
15408 total_len += obstack_object_size (&symtab_obstack);
15409
15410 /* The offset of the constant pool from the start of the file. */
15411 val = MAYBE_SWAP (total_len);
15412 obstack_grow (&contents, &val, sizeof (val));
15413 total_len += obstack_object_size (&constant_pool);
15414
15415 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15416
15417 write_obstack (out_file, &contents);
15418 write_obstack (out_file, &cu_list);
15419 write_obstack (out_file, &types_cu_list);
15420 write_obstack (out_file, &addr_obstack);
15421 write_obstack (out_file, &symtab_obstack);
15422 write_obstack (out_file, &constant_pool);
15423
15424 fclose (out_file);
15425
15426 /* We want to keep the file, so we set cleanup_filename to NULL
15427 here. See unlink_if_set. */
15428 cleanup_filename = NULL;
15429
15430 do_cleanups (cleanup);
15431 }
15432
15433 /* The mapped index file format is designed to be directly mmap()able
15434 on any architecture. In most cases, a datum is represented using a
15435 little-endian 32-bit integer value, called an offset_type. Big
15436 endian machines must byte-swap the values before using them.
15437 Exceptions to this rule are noted. The data is laid out such that
15438 alignment is always respected.
15439
15440 A mapped index consists of several sections.
15441
15442 1. The file header. This is a sequence of values, of offset_type
15443 unless otherwise noted:
15444
15445 [0] The version number, currently 3. Versions 1 and 2 are
15446 obsolete.
15447 [1] The offset, from the start of the file, of the CU list.
15448 [2] The offset, from the start of the file, of the types CU list.
15449 Note that this section can be empty, in which case this offset will
15450 be equal to the next offset.
15451 [3] The offset, from the start of the file, of the address section.
15452 [4] The offset, from the start of the file, of the symbol table.
15453 [5] The offset, from the start of the file, of the constant pool.
15454
15455 2. The CU list. This is a sequence of pairs of 64-bit
15456 little-endian values, sorted by the CU offset. The first element
15457 in each pair is the offset of a CU in the .debug_info section. The
15458 second element in each pair is the length of that CU. References
15459 to a CU elsewhere in the map are done using a CU index, which is
15460 just the 0-based index into this table. Note that if there are
15461 type CUs, then conceptually CUs and type CUs form a single list for
15462 the purposes of CU indices.
15463
15464 3. The types CU list. This is a sequence of triplets of 64-bit
15465 little-endian values. In a triplet, the first value is the CU
15466 offset, the second value is the type offset in the CU, and the
15467 third value is the type signature. The types CU list is not
15468 sorted.
15469
15470 4. The address section. The address section consists of a sequence
15471 of address entries. Each address entry has three elements.
15472 [0] The low address. This is a 64-bit little-endian value.
15473 [1] The high address. This is a 64-bit little-endian value.
15474 Like DW_AT_high_pc, the value is one byte beyond the end.
15475 [2] The CU index. This is an offset_type value.
15476
15477 5. The symbol table. This is a hash table. The size of the hash
15478 table is always a power of 2. The initial hash and the step are
15479 currently defined by the `find_slot' function.
15480
15481 Each slot in the hash table consists of a pair of offset_type
15482 values. The first value is the offset of the symbol's name in the
15483 constant pool. The second value is the offset of the CU vector in
15484 the constant pool.
15485
15486 If both values are 0, then this slot in the hash table is empty.
15487 This is ok because while 0 is a valid constant pool index, it
15488 cannot be a valid index for both a string and a CU vector.
15489
15490 A string in the constant pool is stored as a \0-terminated string,
15491 as you'd expect.
15492
15493 A CU vector in the constant pool is a sequence of offset_type
15494 values. The first value is the number of CU indices in the vector.
15495 Each subsequent value is the index of a CU in the CU list. This
15496 element in the hash table is used to indicate which CUs define the
15497 symbol.
15498
15499 6. The constant pool. This is simply a bunch of bytes. It is
15500 organized so that alignment is correct: CU vectors are stored
15501 first, followed by strings. */
15502
15503 static void
15504 save_gdb_index_command (char *arg, int from_tty)
15505 {
15506 struct objfile *objfile;
15507
15508 if (!arg || !*arg)
15509 error (_("usage: save gdb-index DIRECTORY"));
15510
15511 ALL_OBJFILES (objfile)
15512 {
15513 struct stat st;
15514
15515 /* If the objfile does not correspond to an actual file, skip it. */
15516 if (stat (objfile->name, &st) < 0)
15517 continue;
15518
15519 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15520 if (dwarf2_per_objfile)
15521 {
15522 volatile struct gdb_exception except;
15523
15524 TRY_CATCH (except, RETURN_MASK_ERROR)
15525 {
15526 write_psymtabs_to_index (objfile, arg);
15527 }
15528 if (except.reason < 0)
15529 exception_fprintf (gdb_stderr, except,
15530 _("Error while writing index for `%s': "),
15531 objfile->name);
15532 }
15533 }
15534 }
15535
15536 \f
15537
15538 int dwarf2_always_disassemble;
15539
15540 static void
15541 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
15542 struct cmd_list_element *c, const char *value)
15543 {
15544 fprintf_filtered (file, _("\
15545 Whether to always disassemble DWARF expressions is %s.\n"),
15546 value);
15547 }
15548
15549 void _initialize_dwarf2_read (void);
15550
15551 void
15552 _initialize_dwarf2_read (void)
15553 {
15554 struct cmd_list_element *c;
15555
15556 dwarf2_objfile_data_key
15557 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
15558
15559 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
15560 Set DWARF 2 specific variables.\n\
15561 Configure DWARF 2 variables such as the cache size"),
15562 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
15563 0/*allow-unknown*/, &maintenance_set_cmdlist);
15564
15565 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
15566 Show DWARF 2 specific variables\n\
15567 Show DWARF 2 variables such as the cache size"),
15568 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
15569 0/*allow-unknown*/, &maintenance_show_cmdlist);
15570
15571 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
15572 &dwarf2_max_cache_age, _("\
15573 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
15574 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
15575 A higher limit means that cached compilation units will be stored\n\
15576 in memory longer, and more total memory will be used. Zero disables\n\
15577 caching, which can slow down startup."),
15578 NULL,
15579 show_dwarf2_max_cache_age,
15580 &set_dwarf2_cmdlist,
15581 &show_dwarf2_cmdlist);
15582
15583 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
15584 &dwarf2_always_disassemble, _("\
15585 Set whether `info address' always disassembles DWARF expressions."), _("\
15586 Show whether `info address' always disassembles DWARF expressions."), _("\
15587 When enabled, DWARF expressions are always printed in an assembly-like\n\
15588 syntax. When disabled, expressions will be printed in a more\n\
15589 conversational style, when possible."),
15590 NULL,
15591 show_dwarf2_always_disassemble,
15592 &set_dwarf2_cmdlist,
15593 &show_dwarf2_cmdlist);
15594
15595 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
15596 Set debugging of the dwarf2 DIE reader."), _("\
15597 Show debugging of the dwarf2 DIE reader."), _("\
15598 When enabled (non-zero), DIEs are dumped after they are read in.\n\
15599 The value is the maximum depth to print."),
15600 NULL,
15601 NULL,
15602 &setdebuglist, &showdebuglist);
15603
15604 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
15605 _("\
15606 Save a .gdb-index file.\n\
15607 Usage: save gdb-index DIRECTORY"),
15608 &save_cmdlist);
15609 set_cmd_completer (c, filename_completer);
15610 }
This page took 0.344354 seconds and 5 git commands to generate.