Introduce a gdb_ref_ptr specialization for struct value
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
34 #include "bfd.h"
35 #include "elf-bfd.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "dwarf2.h"
40 #include "buildsym.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "bcache.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 /* The name_component table (a sorted vector). See name_component's
151 description above. */
152 std::vector<name_component> name_components;
153
154 /* How NAME_COMPONENTS is sorted. */
155 enum case_sensitivity name_components_casing;
156
157 /* Return the number of names in the symbol table. */
158 virtual size_t symbol_name_count () const = 0;
159
160 /* Get the name of the symbol at IDX in the symbol table. */
161 virtual const char *symbol_name_at (offset_type idx) const = 0;
162
163 /* Return whether the name at IDX in the symbol table should be
164 ignored. */
165 virtual bool symbol_name_slot_invalid (offset_type idx) const
166 {
167 return false;
168 }
169
170 /* Build the symbol name component sorted vector, if we haven't
171 yet. */
172 void build_name_components ();
173
174 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
175 possible matches for LN_NO_PARAMS in the name component
176 vector. */
177 std::pair<std::vector<name_component>::const_iterator,
178 std::vector<name_component>::const_iterator>
179 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
180
181 /* Prevent deleting/destroying via a base class pointer. */
182 protected:
183 ~mapped_index_base() = default;
184 };
185
186 /* A description of the mapped index. The file format is described in
187 a comment by the code that writes the index. */
188 struct mapped_index final : public mapped_index_base
189 {
190 /* A slot/bucket in the symbol table hash. */
191 struct symbol_table_slot
192 {
193 const offset_type name;
194 const offset_type vec;
195 };
196
197 /* Index data format version. */
198 int version;
199
200 /* The total length of the buffer. */
201 off_t total_size;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
448
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
452
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
456
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
462
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
465
466 /* How many compilation units ago was this CU last referenced? */
467 int last_used = 0;
468
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
472
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
475
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
480
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
489
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
493
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
496
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
505 is non-NULL). */
506 struct dwo_unit *dwo_unit = nullptr;
507
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
512
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
524
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
532
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
535
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
541
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
550
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
554
555 unsigned int processing_has_namespace_info : 1;
556
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
558 };
559
560 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
562
563 struct stmt_list_hash
564 {
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
567
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
570 };
571
572 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
574
575 struct type_unit_group
576 {
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
584
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
589
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
594
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
597
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
601
602 /* The symbol tables for this TU (obtained from the files listed in
603 DW_AT_stmt_list).
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
611 };
612
613 /* These sections are what may appear in a (real or virtual) DWO file. */
614
615 struct dwo_sections
616 {
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
628 };
629
630 /* CUs/TUs in DWP/DWO files. */
631
632 struct dwo_unit
633 {
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
636
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
640 ULONGEST signature;
641
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
644
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
647 unsigned int length;
648
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
651 };
652
653 /* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
656
657 enum dwp_v2_section_ids
658 {
659 DW_SECT_MIN = 1
660 };
661
662 /* Data for one DWO file.
663
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
672
673 struct dwo_file
674 {
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
680
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
683
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
686 bfd *dbfd;
687
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
692
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
697 htab_t cus;
698
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
701 htab_t tus;
702 };
703
704 /* These sections are what may appear in a DWP file. */
705
706 struct dwp_sections
707 {
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
712
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
729 };
730
731 /* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
733
734 struct virtual_v1_dwo_sections
735 {
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
745 };
746
747 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
751
752 struct virtual_v2_dwo_sections
753 {
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
756
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
759
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
762
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
765
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
768
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
771
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
776 };
777
778 /* Contents of DWP hash tables. */
779
780 struct dwp_hash_table
781 {
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
785 union
786 {
787 struct
788 {
789 const gdb_byte *indices;
790 } v1;
791 struct
792 {
793 /* This is indexed by column number and gives the id of the section
794 in that column. */
795 #define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
805 } v2;
806 } section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 /* Name of the file. */
814 const char *name;
815
816 /* File format version. */
817 int version;
818
819 /* The bfd. */
820 bfd *dbfd;
821
822 /* Section info for this file. */
823 struct dwp_sections sections;
824
825 /* Table of CUs in the file. */
826 const struct dwp_hash_table *cus;
827
828 /* Table of TUs in the file. */
829 const struct dwp_hash_table *tus;
830
831 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
832 htab_t loaded_cus;
833 htab_t loaded_tus;
834
835 /* Table to map ELF section numbers to their sections.
836 This is only needed for the DWP V1 file format. */
837 unsigned int num_sections;
838 asection **elf_sections;
839 };
840
841 /* This represents a '.dwz' file. */
842
843 struct dwz_file
844 {
845 /* A dwz file can only contain a few sections. */
846 struct dwarf2_section_info abbrev;
847 struct dwarf2_section_info info;
848 struct dwarf2_section_info str;
849 struct dwarf2_section_info line;
850 struct dwarf2_section_info macro;
851 struct dwarf2_section_info gdb_index;
852 struct dwarf2_section_info debug_names;
853
854 /* The dwz's BFD. */
855 bfd *dwz_bfd;
856 };
857
858 /* Struct used to pass misc. parameters to read_die_and_children, et
859 al. which are used for both .debug_info and .debug_types dies.
860 All parameters here are unchanging for the life of the call. This
861 struct exists to abstract away the constant parameters of die reading. */
862
863 struct die_reader_specs
864 {
865 /* The bfd of die_section. */
866 bfd* abfd;
867
868 /* The CU of the DIE we are parsing. */
869 struct dwarf2_cu *cu;
870
871 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
872 struct dwo_file *dwo_file;
873
874 /* The section the die comes from.
875 This is either .debug_info or .debug_types, or the .dwo variants. */
876 struct dwarf2_section_info *die_section;
877
878 /* die_section->buffer. */
879 const gdb_byte *buffer;
880
881 /* The end of the buffer. */
882 const gdb_byte *buffer_end;
883
884 /* The value of the DW_AT_comp_dir attribute. */
885 const char *comp_dir;
886
887 /* The abbreviation table to use when reading the DIEs. */
888 struct abbrev_table *abbrev_table;
889 };
890
891 /* Type of function passed to init_cutu_and_read_dies, et.al. */
892 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
893 const gdb_byte *info_ptr,
894 struct die_info *comp_unit_die,
895 int has_children,
896 void *data);
897
898 /* A 1-based directory index. This is a strong typedef to prevent
899 accidentally using a directory index as a 0-based index into an
900 array/vector. */
901 enum class dir_index : unsigned int {};
902
903 /* Likewise, a 1-based file name index. */
904 enum class file_name_index : unsigned int {};
905
906 struct file_entry
907 {
908 file_entry () = default;
909
910 file_entry (const char *name_, dir_index d_index_,
911 unsigned int mod_time_, unsigned int length_)
912 : name (name_),
913 d_index (d_index_),
914 mod_time (mod_time_),
915 length (length_)
916 {}
917
918 /* Return the include directory at D_INDEX stored in LH. Returns
919 NULL if D_INDEX is out of bounds. */
920 const char *include_dir (const line_header *lh) const;
921
922 /* The file name. Note this is an observing pointer. The memory is
923 owned by debug_line_buffer. */
924 const char *name {};
925
926 /* The directory index (1-based). */
927 dir_index d_index {};
928
929 unsigned int mod_time {};
930
931 unsigned int length {};
932
933 /* True if referenced by the Line Number Program. */
934 bool included_p {};
935
936 /* The associated symbol table, if any. */
937 struct symtab *symtab {};
938 };
939
940 /* The line number information for a compilation unit (found in the
941 .debug_line section) begins with a "statement program header",
942 which contains the following information. */
943 struct line_header
944 {
945 line_header ()
946 : offset_in_dwz {}
947 {}
948
949 /* Add an entry to the include directory table. */
950 void add_include_dir (const char *include_dir);
951
952 /* Add an entry to the file name table. */
953 void add_file_name (const char *name, dir_index d_index,
954 unsigned int mod_time, unsigned int length);
955
956 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
957 is out of bounds. */
958 const char *include_dir_at (dir_index index) const
959 {
960 /* Convert directory index number (1-based) to vector index
961 (0-based). */
962 size_t vec_index = to_underlying (index) - 1;
963
964 if (vec_index >= include_dirs.size ())
965 return NULL;
966 return include_dirs[vec_index];
967 }
968
969 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
970 is out of bounds. */
971 file_entry *file_name_at (file_name_index index)
972 {
973 /* Convert file name index number (1-based) to vector index
974 (0-based). */
975 size_t vec_index = to_underlying (index) - 1;
976
977 if (vec_index >= file_names.size ())
978 return NULL;
979 return &file_names[vec_index];
980 }
981
982 /* Const version of the above. */
983 const file_entry *file_name_at (unsigned int index) const
984 {
985 if (index >= file_names.size ())
986 return NULL;
987 return &file_names[index];
988 }
989
990 /* Offset of line number information in .debug_line section. */
991 sect_offset sect_off {};
992
993 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
994 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
995
996 unsigned int total_length {};
997 unsigned short version {};
998 unsigned int header_length {};
999 unsigned char minimum_instruction_length {};
1000 unsigned char maximum_ops_per_instruction {};
1001 unsigned char default_is_stmt {};
1002 int line_base {};
1003 unsigned char line_range {};
1004 unsigned char opcode_base {};
1005
1006 /* standard_opcode_lengths[i] is the number of operands for the
1007 standard opcode whose value is i. This means that
1008 standard_opcode_lengths[0] is unused, and the last meaningful
1009 element is standard_opcode_lengths[opcode_base - 1]. */
1010 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1011
1012 /* The include_directories table. Note these are observing
1013 pointers. The memory is owned by debug_line_buffer. */
1014 std::vector<const char *> include_dirs;
1015
1016 /* The file_names table. */
1017 std::vector<file_entry> file_names;
1018
1019 /* The start and end of the statement program following this
1020 header. These point into dwarf2_per_objfile->line_buffer. */
1021 const gdb_byte *statement_program_start {}, *statement_program_end {};
1022 };
1023
1024 typedef std::unique_ptr<line_header> line_header_up;
1025
1026 const char *
1027 file_entry::include_dir (const line_header *lh) const
1028 {
1029 return lh->include_dir_at (d_index);
1030 }
1031
1032 /* When we construct a partial symbol table entry we only
1033 need this much information. */
1034 struct partial_die_info : public allocate_on_obstack
1035 {
1036 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1037
1038 /* Disable assign but still keep copy ctor, which is needed
1039 load_partial_dies. */
1040 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1041
1042 /* Adjust the partial die before generating a symbol for it. This
1043 function may set the is_external flag or change the DIE's
1044 name. */
1045 void fixup (struct dwarf2_cu *cu);
1046
1047 /* Read a minimal amount of information into the minimal die
1048 structure. */
1049 const gdb_byte *read (const struct die_reader_specs *reader,
1050 const struct abbrev_info &abbrev,
1051 const gdb_byte *info_ptr);
1052
1053 /* Offset of this DIE. */
1054 const sect_offset sect_off;
1055
1056 /* DWARF-2 tag for this DIE. */
1057 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1058
1059 /* Assorted flags describing the data found in this DIE. */
1060 const unsigned int has_children : 1;
1061
1062 unsigned int is_external : 1;
1063 unsigned int is_declaration : 1;
1064 unsigned int has_type : 1;
1065 unsigned int has_specification : 1;
1066 unsigned int has_pc_info : 1;
1067 unsigned int may_be_inlined : 1;
1068
1069 /* This DIE has been marked DW_AT_main_subprogram. */
1070 unsigned int main_subprogram : 1;
1071
1072 /* Flag set if the SCOPE field of this structure has been
1073 computed. */
1074 unsigned int scope_set : 1;
1075
1076 /* Flag set if the DIE has a byte_size attribute. */
1077 unsigned int has_byte_size : 1;
1078
1079 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1080 unsigned int has_const_value : 1;
1081
1082 /* Flag set if any of the DIE's children are template arguments. */
1083 unsigned int has_template_arguments : 1;
1084
1085 /* Flag set if fixup has been called on this die. */
1086 unsigned int fixup_called : 1;
1087
1088 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1089 unsigned int is_dwz : 1;
1090
1091 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1092 unsigned int spec_is_dwz : 1;
1093
1094 /* The name of this DIE. Normally the value of DW_AT_name, but
1095 sometimes a default name for unnamed DIEs. */
1096 const char *name = nullptr;
1097
1098 /* The linkage name, if present. */
1099 const char *linkage_name = nullptr;
1100
1101 /* The scope to prepend to our children. This is generally
1102 allocated on the comp_unit_obstack, so will disappear
1103 when this compilation unit leaves the cache. */
1104 const char *scope = nullptr;
1105
1106 /* Some data associated with the partial DIE. The tag determines
1107 which field is live. */
1108 union
1109 {
1110 /* The location description associated with this DIE, if any. */
1111 struct dwarf_block *locdesc;
1112 /* The offset of an import, for DW_TAG_imported_unit. */
1113 sect_offset sect_off;
1114 } d {};
1115
1116 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1117 CORE_ADDR lowpc = 0;
1118 CORE_ADDR highpc = 0;
1119
1120 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1121 DW_AT_sibling, if any. */
1122 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1123 could return DW_AT_sibling values to its caller load_partial_dies. */
1124 const gdb_byte *sibling = nullptr;
1125
1126 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1127 DW_AT_specification (or DW_AT_abstract_origin or
1128 DW_AT_extension). */
1129 sect_offset spec_offset {};
1130
1131 /* Pointers to this DIE's parent, first child, and next sibling,
1132 if any. */
1133 struct partial_die_info *die_parent = nullptr;
1134 struct partial_die_info *die_child = nullptr;
1135 struct partial_die_info *die_sibling = nullptr;
1136
1137 friend struct partial_die_info *
1138 dwarf2_cu::find_partial_die (sect_offset sect_off);
1139
1140 private:
1141 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1142 partial_die_info (sect_offset sect_off)
1143 : partial_die_info (sect_off, DW_TAG_padding, 0)
1144 {
1145 }
1146
1147 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1148 int has_children_)
1149 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1150 {
1151 is_external = 0;
1152 is_declaration = 0;
1153 has_type = 0;
1154 has_specification = 0;
1155 has_pc_info = 0;
1156 may_be_inlined = 0;
1157 main_subprogram = 0;
1158 scope_set = 0;
1159 has_byte_size = 0;
1160 has_const_value = 0;
1161 has_template_arguments = 0;
1162 fixup_called = 0;
1163 is_dwz = 0;
1164 spec_is_dwz = 0;
1165 }
1166 };
1167
1168 /* This data structure holds the information of an abbrev. */
1169 struct abbrev_info
1170 {
1171 unsigned int number; /* number identifying abbrev */
1172 enum dwarf_tag tag; /* dwarf tag */
1173 unsigned short has_children; /* boolean */
1174 unsigned short num_attrs; /* number of attributes */
1175 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1176 struct abbrev_info *next; /* next in chain */
1177 };
1178
1179 struct attr_abbrev
1180 {
1181 ENUM_BITFIELD(dwarf_attribute) name : 16;
1182 ENUM_BITFIELD(dwarf_form) form : 16;
1183
1184 /* It is valid only if FORM is DW_FORM_implicit_const. */
1185 LONGEST implicit_const;
1186 };
1187
1188 /* Size of abbrev_table.abbrev_hash_table. */
1189 #define ABBREV_HASH_SIZE 121
1190
1191 /* Top level data structure to contain an abbreviation table. */
1192
1193 struct abbrev_table
1194 {
1195 explicit abbrev_table (sect_offset off)
1196 : sect_off (off)
1197 {
1198 m_abbrevs =
1199 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1200 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1201 }
1202
1203 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1204
1205 /* Allocate space for a struct abbrev_info object in
1206 ABBREV_TABLE. */
1207 struct abbrev_info *alloc_abbrev ();
1208
1209 /* Add an abbreviation to the table. */
1210 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1211
1212 /* Look up an abbrev in the table.
1213 Returns NULL if the abbrev is not found. */
1214
1215 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1216
1217
1218 /* Where the abbrev table came from.
1219 This is used as a sanity check when the table is used. */
1220 const sect_offset sect_off;
1221
1222 /* Storage for the abbrev table. */
1223 auto_obstack abbrev_obstack;
1224
1225 private:
1226
1227 /* Hash table of abbrevs.
1228 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1229 It could be statically allocated, but the previous code didn't so we
1230 don't either. */
1231 struct abbrev_info **m_abbrevs;
1232 };
1233
1234 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1235
1236 /* Attributes have a name and a value. */
1237 struct attribute
1238 {
1239 ENUM_BITFIELD(dwarf_attribute) name : 16;
1240 ENUM_BITFIELD(dwarf_form) form : 15;
1241
1242 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1243 field should be in u.str (existing only for DW_STRING) but it is kept
1244 here for better struct attribute alignment. */
1245 unsigned int string_is_canonical : 1;
1246
1247 union
1248 {
1249 const char *str;
1250 struct dwarf_block *blk;
1251 ULONGEST unsnd;
1252 LONGEST snd;
1253 CORE_ADDR addr;
1254 ULONGEST signature;
1255 }
1256 u;
1257 };
1258
1259 /* This data structure holds a complete die structure. */
1260 struct die_info
1261 {
1262 /* DWARF-2 tag for this DIE. */
1263 ENUM_BITFIELD(dwarf_tag) tag : 16;
1264
1265 /* Number of attributes */
1266 unsigned char num_attrs;
1267
1268 /* True if we're presently building the full type name for the
1269 type derived from this DIE. */
1270 unsigned char building_fullname : 1;
1271
1272 /* True if this die is in process. PR 16581. */
1273 unsigned char in_process : 1;
1274
1275 /* Abbrev number */
1276 unsigned int abbrev;
1277
1278 /* Offset in .debug_info or .debug_types section. */
1279 sect_offset sect_off;
1280
1281 /* The dies in a compilation unit form an n-ary tree. PARENT
1282 points to this die's parent; CHILD points to the first child of
1283 this node; and all the children of a given node are chained
1284 together via their SIBLING fields. */
1285 struct die_info *child; /* Its first child, if any. */
1286 struct die_info *sibling; /* Its next sibling, if any. */
1287 struct die_info *parent; /* Its parent, if any. */
1288
1289 /* An array of attributes, with NUM_ATTRS elements. There may be
1290 zero, but it's not common and zero-sized arrays are not
1291 sufficiently portable C. */
1292 struct attribute attrs[1];
1293 };
1294
1295 /* Get at parts of an attribute structure. */
1296
1297 #define DW_STRING(attr) ((attr)->u.str)
1298 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1299 #define DW_UNSND(attr) ((attr)->u.unsnd)
1300 #define DW_BLOCK(attr) ((attr)->u.blk)
1301 #define DW_SND(attr) ((attr)->u.snd)
1302 #define DW_ADDR(attr) ((attr)->u.addr)
1303 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1304
1305 /* Blocks are a bunch of untyped bytes. */
1306 struct dwarf_block
1307 {
1308 size_t size;
1309
1310 /* Valid only if SIZE is not zero. */
1311 const gdb_byte *data;
1312 };
1313
1314 #ifndef ATTR_ALLOC_CHUNK
1315 #define ATTR_ALLOC_CHUNK 4
1316 #endif
1317
1318 /* Allocate fields for structs, unions and enums in this size. */
1319 #ifndef DW_FIELD_ALLOC_CHUNK
1320 #define DW_FIELD_ALLOC_CHUNK 4
1321 #endif
1322
1323 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1324 but this would require a corresponding change in unpack_field_as_long
1325 and friends. */
1326 static int bits_per_byte = 8;
1327
1328 /* When reading a variant or variant part, we track a bit more
1329 information about the field, and store it in an object of this
1330 type. */
1331
1332 struct variant_field
1333 {
1334 /* If we see a DW_TAG_variant, then this will be the discriminant
1335 value. */
1336 ULONGEST discriminant_value;
1337 /* If we see a DW_TAG_variant, then this will be set if this is the
1338 default branch. */
1339 bool default_branch;
1340 /* While reading a DW_TAG_variant_part, this will be set if this
1341 field is the discriminant. */
1342 bool is_discriminant;
1343 };
1344
1345 struct nextfield
1346 {
1347 int accessibility = 0;
1348 int virtuality = 0;
1349 /* Extra information to describe a variant or variant part. */
1350 struct variant_field variant {};
1351 struct field field {};
1352 };
1353
1354 struct fnfieldlist
1355 {
1356 const char *name = nullptr;
1357 std::vector<struct fn_field> fnfields;
1358 };
1359
1360 /* The routines that read and process dies for a C struct or C++ class
1361 pass lists of data member fields and lists of member function fields
1362 in an instance of a field_info structure, as defined below. */
1363 struct field_info
1364 {
1365 /* List of data member and baseclasses fields. */
1366 std::vector<struct nextfield> fields;
1367 std::vector<struct nextfield> baseclasses;
1368
1369 /* Number of fields (including baseclasses). */
1370 int nfields = 0;
1371
1372 /* Set if the accesibility of one of the fields is not public. */
1373 int non_public_fields = 0;
1374
1375 /* Member function fieldlist array, contains name of possibly overloaded
1376 member function, number of overloaded member functions and a pointer
1377 to the head of the member function field chain. */
1378 std::vector<struct fnfieldlist> fnfieldlists;
1379
1380 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1381 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1382 std::vector<struct decl_field> typedef_field_list;
1383
1384 /* Nested types defined by this class and the number of elements in this
1385 list. */
1386 std::vector<struct decl_field> nested_types_list;
1387 };
1388
1389 /* One item on the queue of compilation units to read in full symbols
1390 for. */
1391 struct dwarf2_queue_item
1392 {
1393 struct dwarf2_per_cu_data *per_cu;
1394 enum language pretend_language;
1395 struct dwarf2_queue_item *next;
1396 };
1397
1398 /* The current queue. */
1399 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1400
1401 /* Loaded secondary compilation units are kept in memory until they
1402 have not been referenced for the processing of this many
1403 compilation units. Set this to zero to disable caching. Cache
1404 sizes of up to at least twenty will improve startup time for
1405 typical inter-CU-reference binaries, at an obvious memory cost. */
1406 static int dwarf_max_cache_age = 5;
1407 static void
1408 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1409 struct cmd_list_element *c, const char *value)
1410 {
1411 fprintf_filtered (file, _("The upper bound on the age of cached "
1412 "DWARF compilation units is %s.\n"),
1413 value);
1414 }
1415 \f
1416 /* local function prototypes */
1417
1418 static const char *get_section_name (const struct dwarf2_section_info *);
1419
1420 static const char *get_section_file_name (const struct dwarf2_section_info *);
1421
1422 static void dwarf2_find_base_address (struct die_info *die,
1423 struct dwarf2_cu *cu);
1424
1425 static struct partial_symtab *create_partial_symtab
1426 (struct dwarf2_per_cu_data *per_cu, const char *name);
1427
1428 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1429 const gdb_byte *info_ptr,
1430 struct die_info *type_unit_die,
1431 int has_children, void *data);
1432
1433 static void dwarf2_build_psymtabs_hard
1434 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1435
1436 static void scan_partial_symbols (struct partial_die_info *,
1437 CORE_ADDR *, CORE_ADDR *,
1438 int, struct dwarf2_cu *);
1439
1440 static void add_partial_symbol (struct partial_die_info *,
1441 struct dwarf2_cu *);
1442
1443 static void add_partial_namespace (struct partial_die_info *pdi,
1444 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1445 int set_addrmap, struct dwarf2_cu *cu);
1446
1447 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1448 CORE_ADDR *highpc, int set_addrmap,
1449 struct dwarf2_cu *cu);
1450
1451 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1452 struct dwarf2_cu *cu);
1453
1454 static void add_partial_subprogram (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int need_pc, struct dwarf2_cu *cu);
1457
1458 static void dwarf2_read_symtab (struct partial_symtab *,
1459 struct objfile *);
1460
1461 static void psymtab_to_symtab_1 (struct partial_symtab *);
1462
1463 static abbrev_table_up abbrev_table_read_table
1464 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1465 sect_offset);
1466
1467 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1468
1469 static struct partial_die_info *load_partial_dies
1470 (const struct die_reader_specs *, const gdb_byte *, int);
1471
1472 static struct partial_die_info *find_partial_die (sect_offset, int,
1473 struct dwarf2_cu *);
1474
1475 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1476 struct attribute *, struct attr_abbrev *,
1477 const gdb_byte *);
1478
1479 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1480
1481 static int read_1_signed_byte (bfd *, const gdb_byte *);
1482
1483 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1484
1485 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1486
1487 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1488
1489 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1490 unsigned int *);
1491
1492 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1493
1494 static LONGEST read_checked_initial_length_and_offset
1495 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1496 unsigned int *, unsigned int *);
1497
1498 static LONGEST read_offset (bfd *, const gdb_byte *,
1499 const struct comp_unit_head *,
1500 unsigned int *);
1501
1502 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1503
1504 static sect_offset read_abbrev_offset
1505 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1506 struct dwarf2_section_info *, sect_offset);
1507
1508 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1509
1510 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static const char *read_indirect_string
1513 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1514 const struct comp_unit_head *, unsigned int *);
1515
1516 static const char *read_indirect_line_string
1517 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1518 const struct comp_unit_head *, unsigned int *);
1519
1520 static const char *read_indirect_string_at_offset
1521 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1522 LONGEST str_offset);
1523
1524 static const char *read_indirect_string_from_dwz
1525 (struct objfile *objfile, struct dwz_file *, LONGEST);
1526
1527 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1530 const gdb_byte *,
1531 unsigned int *);
1532
1533 static const char *read_str_index (const struct die_reader_specs *reader,
1534 ULONGEST str_index);
1535
1536 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1537
1538 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1539 struct dwarf2_cu *);
1540
1541 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1542 unsigned int);
1543
1544 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1545 struct dwarf2_cu *cu);
1546
1547 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1548 struct dwarf2_cu *cu);
1549
1550 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1551
1552 static struct die_info *die_specification (struct die_info *die,
1553 struct dwarf2_cu **);
1554
1555 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1556 struct dwarf2_cu *cu);
1557
1558 static void dwarf_decode_lines (struct line_header *, const char *,
1559 struct dwarf2_cu *, struct partial_symtab *,
1560 CORE_ADDR, int decode_mapping);
1561
1562 static void dwarf2_start_subfile (const char *, const char *);
1563
1564 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1565 const char *, const char *,
1566 CORE_ADDR);
1567
1568 static struct symbol *new_symbol (struct die_info *, struct type *,
1569 struct dwarf2_cu *, struct symbol * = NULL);
1570
1571 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1572 struct dwarf2_cu *);
1573
1574 static void dwarf2_const_value_attr (const struct attribute *attr,
1575 struct type *type,
1576 const char *name,
1577 struct obstack *obstack,
1578 struct dwarf2_cu *cu, LONGEST *value,
1579 const gdb_byte **bytes,
1580 struct dwarf2_locexpr_baton **baton);
1581
1582 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1583
1584 static int need_gnat_info (struct dwarf2_cu *);
1585
1586 static struct type *die_descriptive_type (struct die_info *,
1587 struct dwarf2_cu *);
1588
1589 static void set_descriptive_type (struct type *, struct die_info *,
1590 struct dwarf2_cu *);
1591
1592 static struct type *die_containing_type (struct die_info *,
1593 struct dwarf2_cu *);
1594
1595 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1596 struct dwarf2_cu *);
1597
1598 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1599
1600 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1601
1602 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1603
1604 static char *typename_concat (struct obstack *obs, const char *prefix,
1605 const char *suffix, int physname,
1606 struct dwarf2_cu *cu);
1607
1608 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1609
1610 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1611
1612 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1613
1614 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1615
1616 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1617
1618 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1619
1620 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1621 struct dwarf2_cu *, struct partial_symtab *);
1622
1623 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1624 values. Keep the items ordered with increasing constraints compliance. */
1625 enum pc_bounds_kind
1626 {
1627 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1628 PC_BOUNDS_NOT_PRESENT,
1629
1630 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1631 were present but they do not form a valid range of PC addresses. */
1632 PC_BOUNDS_INVALID,
1633
1634 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1635 PC_BOUNDS_RANGES,
1636
1637 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1638 PC_BOUNDS_HIGH_LOW,
1639 };
1640
1641 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1642 CORE_ADDR *, CORE_ADDR *,
1643 struct dwarf2_cu *,
1644 struct partial_symtab *);
1645
1646 static void get_scope_pc_bounds (struct die_info *,
1647 CORE_ADDR *, CORE_ADDR *,
1648 struct dwarf2_cu *);
1649
1650 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1651 CORE_ADDR, struct dwarf2_cu *);
1652
1653 static void dwarf2_add_field (struct field_info *, struct die_info *,
1654 struct dwarf2_cu *);
1655
1656 static void dwarf2_attach_fields_to_type (struct field_info *,
1657 struct type *, struct dwarf2_cu *);
1658
1659 static void dwarf2_add_member_fn (struct field_info *,
1660 struct die_info *, struct type *,
1661 struct dwarf2_cu *);
1662
1663 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1664 struct type *,
1665 struct dwarf2_cu *);
1666
1667 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1668
1669 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1670
1671 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1672
1673 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1674
1675 static struct using_direct **using_directives (enum language);
1676
1677 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1678
1679 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1680
1681 static struct type *read_module_type (struct die_info *die,
1682 struct dwarf2_cu *cu);
1683
1684 static const char *namespace_name (struct die_info *die,
1685 int *is_anonymous, struct dwarf2_cu *);
1686
1687 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1688
1689 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1690
1691 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1692 struct dwarf2_cu *);
1693
1694 static struct die_info *read_die_and_siblings_1
1695 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1696 struct die_info *);
1697
1698 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1699 const gdb_byte *info_ptr,
1700 const gdb_byte **new_info_ptr,
1701 struct die_info *parent);
1702
1703 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1704 struct die_info **, const gdb_byte *,
1705 int *, int);
1706
1707 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1708 struct die_info **, const gdb_byte *,
1709 int *);
1710
1711 static void process_die (struct die_info *, struct dwarf2_cu *);
1712
1713 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1714 struct obstack *);
1715
1716 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1717
1718 static const char *dwarf2_full_name (const char *name,
1719 struct die_info *die,
1720 struct dwarf2_cu *cu);
1721
1722 static const char *dwarf2_physname (const char *name, struct die_info *die,
1723 struct dwarf2_cu *cu);
1724
1725 static struct die_info *dwarf2_extension (struct die_info *die,
1726 struct dwarf2_cu **);
1727
1728 static const char *dwarf_tag_name (unsigned int);
1729
1730 static const char *dwarf_attr_name (unsigned int);
1731
1732 static const char *dwarf_form_name (unsigned int);
1733
1734 static const char *dwarf_bool_name (unsigned int);
1735
1736 static const char *dwarf_type_encoding_name (unsigned int);
1737
1738 static struct die_info *sibling_die (struct die_info *);
1739
1740 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1741
1742 static void dump_die_for_error (struct die_info *);
1743
1744 static void dump_die_1 (struct ui_file *, int level, int max_level,
1745 struct die_info *);
1746
1747 /*static*/ void dump_die (struct die_info *, int max_level);
1748
1749 static void store_in_ref_table (struct die_info *,
1750 struct dwarf2_cu *);
1751
1752 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1753
1754 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1755
1756 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1757 const struct attribute *,
1758 struct dwarf2_cu **);
1759
1760 static struct die_info *follow_die_ref (struct die_info *,
1761 const struct attribute *,
1762 struct dwarf2_cu **);
1763
1764 static struct die_info *follow_die_sig (struct die_info *,
1765 const struct attribute *,
1766 struct dwarf2_cu **);
1767
1768 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1769 struct dwarf2_cu *);
1770
1771 static struct type *get_DW_AT_signature_type (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu *);
1774
1775 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1776
1777 static void read_signatured_type (struct signatured_type *);
1778
1779 static int attr_to_dynamic_prop (const struct attribute *attr,
1780 struct die_info *die, struct dwarf2_cu *cu,
1781 struct dynamic_prop *prop);
1782
1783 /* memory allocation interface */
1784
1785 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1786
1787 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1788
1789 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1790
1791 static int attr_form_is_block (const struct attribute *);
1792
1793 static int attr_form_is_section_offset (const struct attribute *);
1794
1795 static int attr_form_is_constant (const struct attribute *);
1796
1797 static int attr_form_is_ref (const struct attribute *);
1798
1799 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1800 struct dwarf2_loclist_baton *baton,
1801 const struct attribute *attr);
1802
1803 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1804 struct symbol *sym,
1805 struct dwarf2_cu *cu,
1806 int is_block);
1807
1808 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1809 const gdb_byte *info_ptr,
1810 struct abbrev_info *abbrev);
1811
1812 static hashval_t partial_die_hash (const void *item);
1813
1814 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1815
1816 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1817 (sect_offset sect_off, unsigned int offset_in_dwz,
1818 struct dwarf2_per_objfile *dwarf2_per_objfile);
1819
1820 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1821 struct die_info *comp_unit_die,
1822 enum language pretend_language);
1823
1824 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1825
1826 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1827
1828 static struct type *set_die_type (struct die_info *, struct type *,
1829 struct dwarf2_cu *);
1830
1831 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1832
1833 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1834
1835 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
1838 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1839 enum language);
1840
1841 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1842 enum language);
1843
1844 static void dwarf2_add_dependence (struct dwarf2_cu *,
1845 struct dwarf2_per_cu_data *);
1846
1847 static void dwarf2_mark (struct dwarf2_cu *);
1848
1849 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1850
1851 static struct type *get_die_type_at_offset (sect_offset,
1852 struct dwarf2_per_cu_data *);
1853
1854 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1855
1856 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1857 enum language pretend_language);
1858
1859 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1860
1861 /* Class, the destructor of which frees all allocated queue entries. This
1862 will only have work to do if an error was thrown while processing the
1863 dwarf. If no error was thrown then the queue entries should have all
1864 been processed, and freed, as we went along. */
1865
1866 class dwarf2_queue_guard
1867 {
1868 public:
1869 dwarf2_queue_guard () = default;
1870
1871 /* Free any entries remaining on the queue. There should only be
1872 entries left if we hit an error while processing the dwarf. */
1873 ~dwarf2_queue_guard ()
1874 {
1875 struct dwarf2_queue_item *item, *last;
1876
1877 item = dwarf2_queue;
1878 while (item)
1879 {
1880 /* Anything still marked queued is likely to be in an
1881 inconsistent state, so discard it. */
1882 if (item->per_cu->queued)
1883 {
1884 if (item->per_cu->cu != NULL)
1885 free_one_cached_comp_unit (item->per_cu);
1886 item->per_cu->queued = 0;
1887 }
1888
1889 last = item;
1890 item = item->next;
1891 xfree (last);
1892 }
1893
1894 dwarf2_queue = dwarf2_queue_tail = NULL;
1895 }
1896 };
1897
1898 /* The return type of find_file_and_directory. Note, the enclosed
1899 string pointers are only valid while this object is valid. */
1900
1901 struct file_and_directory
1902 {
1903 /* The filename. This is never NULL. */
1904 const char *name;
1905
1906 /* The compilation directory. NULL if not known. If we needed to
1907 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1908 points directly to the DW_AT_comp_dir string attribute owned by
1909 the obstack that owns the DIE. */
1910 const char *comp_dir;
1911
1912 /* If we needed to build a new string for comp_dir, this is what
1913 owns the storage. */
1914 std::string comp_dir_storage;
1915 };
1916
1917 static file_and_directory find_file_and_directory (struct die_info *die,
1918 struct dwarf2_cu *cu);
1919
1920 static char *file_full_name (int file, struct line_header *lh,
1921 const char *comp_dir);
1922
1923 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1924 enum class rcuh_kind { COMPILE, TYPE };
1925
1926 static const gdb_byte *read_and_check_comp_unit_head
1927 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1928 struct comp_unit_head *header,
1929 struct dwarf2_section_info *section,
1930 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1931 rcuh_kind section_kind);
1932
1933 static void init_cutu_and_read_dies
1934 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1935 int use_existing_cu, int keep,
1936 die_reader_func_ftype *die_reader_func, void *data);
1937
1938 static void init_cutu_and_read_dies_simple
1939 (struct dwarf2_per_cu_data *this_cu,
1940 die_reader_func_ftype *die_reader_func, void *data);
1941
1942 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1943
1944 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1945
1946 static struct dwo_unit *lookup_dwo_unit_in_dwp
1947 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1948 struct dwp_file *dwp_file, const char *comp_dir,
1949 ULONGEST signature, int is_debug_types);
1950
1951 static struct dwp_file *get_dwp_file
1952 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1953
1954 static struct dwo_unit *lookup_dwo_comp_unit
1955 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1956
1957 static struct dwo_unit *lookup_dwo_type_unit
1958 (struct signatured_type *, const char *, const char *);
1959
1960 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1961
1962 static void free_dwo_file (struct dwo_file *);
1963
1964 /* A unique_ptr helper to free a dwo_file. */
1965
1966 struct dwo_file_deleter
1967 {
1968 void operator() (struct dwo_file *df) const
1969 {
1970 free_dwo_file (df);
1971 }
1972 };
1973
1974 /* A unique pointer to a dwo_file. */
1975
1976 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1977
1978 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1979
1980 static void check_producer (struct dwarf2_cu *cu);
1981
1982 static void free_line_header_voidp (void *arg);
1983 \f
1984 /* Various complaints about symbol reading that don't abort the process. */
1985
1986 static void
1987 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1988 {
1989 complaint (&symfile_complaints,
1990 _("statement list doesn't fit in .debug_line section"));
1991 }
1992
1993 static void
1994 dwarf2_debug_line_missing_file_complaint (void)
1995 {
1996 complaint (&symfile_complaints,
1997 _(".debug_line section has line data without a file"));
1998 }
1999
2000 static void
2001 dwarf2_debug_line_missing_end_sequence_complaint (void)
2002 {
2003 complaint (&symfile_complaints,
2004 _(".debug_line section has line "
2005 "program sequence without an end"));
2006 }
2007
2008 static void
2009 dwarf2_complex_location_expr_complaint (void)
2010 {
2011 complaint (&symfile_complaints, _("location expression too complex"));
2012 }
2013
2014 static void
2015 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2016 int arg3)
2017 {
2018 complaint (&symfile_complaints,
2019 _("const value length mismatch for '%s', got %d, expected %d"),
2020 arg1, arg2, arg3);
2021 }
2022
2023 static void
2024 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2025 {
2026 complaint (&symfile_complaints,
2027 _("debug info runs off end of %s section"
2028 " [in module %s]"),
2029 get_section_name (section),
2030 get_section_file_name (section));
2031 }
2032
2033 static void
2034 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2035 {
2036 complaint (&symfile_complaints,
2037 _("macro debug info contains a "
2038 "malformed macro definition:\n`%s'"),
2039 arg1);
2040 }
2041
2042 static void
2043 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2044 {
2045 complaint (&symfile_complaints,
2046 _("invalid attribute class or form for '%s' in '%s'"),
2047 arg1, arg2);
2048 }
2049
2050 /* Hash function for line_header_hash. */
2051
2052 static hashval_t
2053 line_header_hash (const struct line_header *ofs)
2054 {
2055 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2056 }
2057
2058 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2059
2060 static hashval_t
2061 line_header_hash_voidp (const void *item)
2062 {
2063 const struct line_header *ofs = (const struct line_header *) item;
2064
2065 return line_header_hash (ofs);
2066 }
2067
2068 /* Equality function for line_header_hash. */
2069
2070 static int
2071 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2072 {
2073 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2074 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2075
2076 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2077 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2078 }
2079
2080 \f
2081
2082 /* Read the given attribute value as an address, taking the attribute's
2083 form into account. */
2084
2085 static CORE_ADDR
2086 attr_value_as_address (struct attribute *attr)
2087 {
2088 CORE_ADDR addr;
2089
2090 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2091 {
2092 /* Aside from a few clearly defined exceptions, attributes that
2093 contain an address must always be in DW_FORM_addr form.
2094 Unfortunately, some compilers happen to be violating this
2095 requirement by encoding addresses using other forms, such
2096 as DW_FORM_data4 for example. For those broken compilers,
2097 we try to do our best, without any guarantee of success,
2098 to interpret the address correctly. It would also be nice
2099 to generate a complaint, but that would require us to maintain
2100 a list of legitimate cases where a non-address form is allowed,
2101 as well as update callers to pass in at least the CU's DWARF
2102 version. This is more overhead than what we're willing to
2103 expand for a pretty rare case. */
2104 addr = DW_UNSND (attr);
2105 }
2106 else
2107 addr = DW_ADDR (attr);
2108
2109 return addr;
2110 }
2111
2112 /* See declaration. */
2113
2114 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2115 const dwarf2_debug_sections *names)
2116 : objfile (objfile_)
2117 {
2118 if (names == NULL)
2119 names = &dwarf2_elf_names;
2120
2121 bfd *obfd = objfile->obfd;
2122
2123 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2124 locate_sections (obfd, sec, *names);
2125 }
2126
2127 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2128
2129 dwarf2_per_objfile::~dwarf2_per_objfile ()
2130 {
2131 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2132 free_cached_comp_units ();
2133
2134 if (quick_file_names_table)
2135 htab_delete (quick_file_names_table);
2136
2137 if (line_header_hash)
2138 htab_delete (line_header_hash);
2139
2140 for (int ix = 0; ix < n_comp_units; ++ix)
2141 VEC_free (dwarf2_per_cu_ptr, all_comp_units[ix]->imported_symtabs);
2142
2143 for (int ix = 0; ix < n_type_units; ++ix)
2144 VEC_free (dwarf2_per_cu_ptr,
2145 all_type_units[ix]->per_cu.imported_symtabs);
2146 xfree (all_type_units);
2147
2148 VEC_free (dwarf2_section_info_def, types);
2149
2150 if (dwo_files != NULL)
2151 free_dwo_files (dwo_files, objfile);
2152 if (dwp_file != NULL)
2153 gdb_bfd_unref (dwp_file->dbfd);
2154
2155 if (dwz_file != NULL && dwz_file->dwz_bfd)
2156 gdb_bfd_unref (dwz_file->dwz_bfd);
2157
2158 if (index_table != NULL)
2159 index_table->~mapped_index ();
2160
2161 /* Everything else should be on the objfile obstack. */
2162 }
2163
2164 /* See declaration. */
2165
2166 void
2167 dwarf2_per_objfile::free_cached_comp_units ()
2168 {
2169 dwarf2_per_cu_data *per_cu = read_in_chain;
2170 dwarf2_per_cu_data **last_chain = &read_in_chain;
2171 while (per_cu != NULL)
2172 {
2173 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2174
2175 delete per_cu->cu;
2176 *last_chain = next_cu;
2177 per_cu = next_cu;
2178 }
2179 }
2180
2181 /* A helper class that calls free_cached_comp_units on
2182 destruction. */
2183
2184 class free_cached_comp_units
2185 {
2186 public:
2187
2188 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2189 : m_per_objfile (per_objfile)
2190 {
2191 }
2192
2193 ~free_cached_comp_units ()
2194 {
2195 m_per_objfile->free_cached_comp_units ();
2196 }
2197
2198 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2199
2200 private:
2201
2202 dwarf2_per_objfile *m_per_objfile;
2203 };
2204
2205 /* Try to locate the sections we need for DWARF 2 debugging
2206 information and return true if we have enough to do something.
2207 NAMES points to the dwarf2 section names, or is NULL if the standard
2208 ELF names are used. */
2209
2210 int
2211 dwarf2_has_info (struct objfile *objfile,
2212 const struct dwarf2_debug_sections *names)
2213 {
2214 if (objfile->flags & OBJF_READNEVER)
2215 return 0;
2216
2217 struct dwarf2_per_objfile *dwarf2_per_objfile
2218 = get_dwarf2_per_objfile (objfile);
2219
2220 if (dwarf2_per_objfile == NULL)
2221 {
2222 /* Initialize per-objfile state. */
2223 dwarf2_per_objfile
2224 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2225 names);
2226 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2227 }
2228 return (!dwarf2_per_objfile->info.is_virtual
2229 && dwarf2_per_objfile->info.s.section != NULL
2230 && !dwarf2_per_objfile->abbrev.is_virtual
2231 && dwarf2_per_objfile->abbrev.s.section != NULL);
2232 }
2233
2234 /* Return the containing section of virtual section SECTION. */
2235
2236 static struct dwarf2_section_info *
2237 get_containing_section (const struct dwarf2_section_info *section)
2238 {
2239 gdb_assert (section->is_virtual);
2240 return section->s.containing_section;
2241 }
2242
2243 /* Return the bfd owner of SECTION. */
2244
2245 static struct bfd *
2246 get_section_bfd_owner (const struct dwarf2_section_info *section)
2247 {
2248 if (section->is_virtual)
2249 {
2250 section = get_containing_section (section);
2251 gdb_assert (!section->is_virtual);
2252 }
2253 return section->s.section->owner;
2254 }
2255
2256 /* Return the bfd section of SECTION.
2257 Returns NULL if the section is not present. */
2258
2259 static asection *
2260 get_section_bfd_section (const struct dwarf2_section_info *section)
2261 {
2262 if (section->is_virtual)
2263 {
2264 section = get_containing_section (section);
2265 gdb_assert (!section->is_virtual);
2266 }
2267 return section->s.section;
2268 }
2269
2270 /* Return the name of SECTION. */
2271
2272 static const char *
2273 get_section_name (const struct dwarf2_section_info *section)
2274 {
2275 asection *sectp = get_section_bfd_section (section);
2276
2277 gdb_assert (sectp != NULL);
2278 return bfd_section_name (get_section_bfd_owner (section), sectp);
2279 }
2280
2281 /* Return the name of the file SECTION is in. */
2282
2283 static const char *
2284 get_section_file_name (const struct dwarf2_section_info *section)
2285 {
2286 bfd *abfd = get_section_bfd_owner (section);
2287
2288 return bfd_get_filename (abfd);
2289 }
2290
2291 /* Return the id of SECTION.
2292 Returns 0 if SECTION doesn't exist. */
2293
2294 static int
2295 get_section_id (const struct dwarf2_section_info *section)
2296 {
2297 asection *sectp = get_section_bfd_section (section);
2298
2299 if (sectp == NULL)
2300 return 0;
2301 return sectp->id;
2302 }
2303
2304 /* Return the flags of SECTION.
2305 SECTION (or containing section if this is a virtual section) must exist. */
2306
2307 static int
2308 get_section_flags (const struct dwarf2_section_info *section)
2309 {
2310 asection *sectp = get_section_bfd_section (section);
2311
2312 gdb_assert (sectp != NULL);
2313 return bfd_get_section_flags (sectp->owner, sectp);
2314 }
2315
2316 /* When loading sections, we look either for uncompressed section or for
2317 compressed section names. */
2318
2319 static int
2320 section_is_p (const char *section_name,
2321 const struct dwarf2_section_names *names)
2322 {
2323 if (names->normal != NULL
2324 && strcmp (section_name, names->normal) == 0)
2325 return 1;
2326 if (names->compressed != NULL
2327 && strcmp (section_name, names->compressed) == 0)
2328 return 1;
2329 return 0;
2330 }
2331
2332 /* See declaration. */
2333
2334 void
2335 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2336 const dwarf2_debug_sections &names)
2337 {
2338 flagword aflag = bfd_get_section_flags (abfd, sectp);
2339
2340 if ((aflag & SEC_HAS_CONTENTS) == 0)
2341 {
2342 }
2343 else if (section_is_p (sectp->name, &names.info))
2344 {
2345 this->info.s.section = sectp;
2346 this->info.size = bfd_get_section_size (sectp);
2347 }
2348 else if (section_is_p (sectp->name, &names.abbrev))
2349 {
2350 this->abbrev.s.section = sectp;
2351 this->abbrev.size = bfd_get_section_size (sectp);
2352 }
2353 else if (section_is_p (sectp->name, &names.line))
2354 {
2355 this->line.s.section = sectp;
2356 this->line.size = bfd_get_section_size (sectp);
2357 }
2358 else if (section_is_p (sectp->name, &names.loc))
2359 {
2360 this->loc.s.section = sectp;
2361 this->loc.size = bfd_get_section_size (sectp);
2362 }
2363 else if (section_is_p (sectp->name, &names.loclists))
2364 {
2365 this->loclists.s.section = sectp;
2366 this->loclists.size = bfd_get_section_size (sectp);
2367 }
2368 else if (section_is_p (sectp->name, &names.macinfo))
2369 {
2370 this->macinfo.s.section = sectp;
2371 this->macinfo.size = bfd_get_section_size (sectp);
2372 }
2373 else if (section_is_p (sectp->name, &names.macro))
2374 {
2375 this->macro.s.section = sectp;
2376 this->macro.size = bfd_get_section_size (sectp);
2377 }
2378 else if (section_is_p (sectp->name, &names.str))
2379 {
2380 this->str.s.section = sectp;
2381 this->str.size = bfd_get_section_size (sectp);
2382 }
2383 else if (section_is_p (sectp->name, &names.line_str))
2384 {
2385 this->line_str.s.section = sectp;
2386 this->line_str.size = bfd_get_section_size (sectp);
2387 }
2388 else if (section_is_p (sectp->name, &names.addr))
2389 {
2390 this->addr.s.section = sectp;
2391 this->addr.size = bfd_get_section_size (sectp);
2392 }
2393 else if (section_is_p (sectp->name, &names.frame))
2394 {
2395 this->frame.s.section = sectp;
2396 this->frame.size = bfd_get_section_size (sectp);
2397 }
2398 else if (section_is_p (sectp->name, &names.eh_frame))
2399 {
2400 this->eh_frame.s.section = sectp;
2401 this->eh_frame.size = bfd_get_section_size (sectp);
2402 }
2403 else if (section_is_p (sectp->name, &names.ranges))
2404 {
2405 this->ranges.s.section = sectp;
2406 this->ranges.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.rnglists))
2409 {
2410 this->rnglists.s.section = sectp;
2411 this->rnglists.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.types))
2414 {
2415 struct dwarf2_section_info type_section;
2416
2417 memset (&type_section, 0, sizeof (type_section));
2418 type_section.s.section = sectp;
2419 type_section.size = bfd_get_section_size (sectp);
2420
2421 VEC_safe_push (dwarf2_section_info_def, this->types,
2422 &type_section);
2423 }
2424 else if (section_is_p (sectp->name, &names.gdb_index))
2425 {
2426 this->gdb_index.s.section = sectp;
2427 this->gdb_index.size = bfd_get_section_size (sectp);
2428 }
2429 else if (section_is_p (sectp->name, &names.debug_names))
2430 {
2431 this->debug_names.s.section = sectp;
2432 this->debug_names.size = bfd_get_section_size (sectp);
2433 }
2434 else if (section_is_p (sectp->name, &names.debug_aranges))
2435 {
2436 this->debug_aranges.s.section = sectp;
2437 this->debug_aranges.size = bfd_get_section_size (sectp);
2438 }
2439
2440 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2441 && bfd_section_vma (abfd, sectp) == 0)
2442 this->has_section_at_zero = true;
2443 }
2444
2445 /* A helper function that decides whether a section is empty,
2446 or not present. */
2447
2448 static int
2449 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2450 {
2451 if (section->is_virtual)
2452 return section->size == 0;
2453 return section->s.section == NULL || section->size == 0;
2454 }
2455
2456 /* See dwarf2read.h. */
2457
2458 void
2459 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2460 {
2461 asection *sectp;
2462 bfd *abfd;
2463 gdb_byte *buf, *retbuf;
2464
2465 if (info->readin)
2466 return;
2467 info->buffer = NULL;
2468 info->readin = 1;
2469
2470 if (dwarf2_section_empty_p (info))
2471 return;
2472
2473 sectp = get_section_bfd_section (info);
2474
2475 /* If this is a virtual section we need to read in the real one first. */
2476 if (info->is_virtual)
2477 {
2478 struct dwarf2_section_info *containing_section =
2479 get_containing_section (info);
2480
2481 gdb_assert (sectp != NULL);
2482 if ((sectp->flags & SEC_RELOC) != 0)
2483 {
2484 error (_("Dwarf Error: DWP format V2 with relocations is not"
2485 " supported in section %s [in module %s]"),
2486 get_section_name (info), get_section_file_name (info));
2487 }
2488 dwarf2_read_section (objfile, containing_section);
2489 /* Other code should have already caught virtual sections that don't
2490 fit. */
2491 gdb_assert (info->virtual_offset + info->size
2492 <= containing_section->size);
2493 /* If the real section is empty or there was a problem reading the
2494 section we shouldn't get here. */
2495 gdb_assert (containing_section->buffer != NULL);
2496 info->buffer = containing_section->buffer + info->virtual_offset;
2497 return;
2498 }
2499
2500 /* If the section has relocations, we must read it ourselves.
2501 Otherwise we attach it to the BFD. */
2502 if ((sectp->flags & SEC_RELOC) == 0)
2503 {
2504 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2505 return;
2506 }
2507
2508 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2509 info->buffer = buf;
2510
2511 /* When debugging .o files, we may need to apply relocations; see
2512 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2513 We never compress sections in .o files, so we only need to
2514 try this when the section is not compressed. */
2515 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2516 if (retbuf != NULL)
2517 {
2518 info->buffer = retbuf;
2519 return;
2520 }
2521
2522 abfd = get_section_bfd_owner (info);
2523 gdb_assert (abfd != NULL);
2524
2525 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2526 || bfd_bread (buf, info->size, abfd) != info->size)
2527 {
2528 error (_("Dwarf Error: Can't read DWARF data"
2529 " in section %s [in module %s]"),
2530 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2531 }
2532 }
2533
2534 /* A helper function that returns the size of a section in a safe way.
2535 If you are positive that the section has been read before using the
2536 size, then it is safe to refer to the dwarf2_section_info object's
2537 "size" field directly. In other cases, you must call this
2538 function, because for compressed sections the size field is not set
2539 correctly until the section has been read. */
2540
2541 static bfd_size_type
2542 dwarf2_section_size (struct objfile *objfile,
2543 struct dwarf2_section_info *info)
2544 {
2545 if (!info->readin)
2546 dwarf2_read_section (objfile, info);
2547 return info->size;
2548 }
2549
2550 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2551 SECTION_NAME. */
2552
2553 void
2554 dwarf2_get_section_info (struct objfile *objfile,
2555 enum dwarf2_section_enum sect,
2556 asection **sectp, const gdb_byte **bufp,
2557 bfd_size_type *sizep)
2558 {
2559 struct dwarf2_per_objfile *data
2560 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2561 dwarf2_objfile_data_key);
2562 struct dwarf2_section_info *info;
2563
2564 /* We may see an objfile without any DWARF, in which case we just
2565 return nothing. */
2566 if (data == NULL)
2567 {
2568 *sectp = NULL;
2569 *bufp = NULL;
2570 *sizep = 0;
2571 return;
2572 }
2573 switch (sect)
2574 {
2575 case DWARF2_DEBUG_FRAME:
2576 info = &data->frame;
2577 break;
2578 case DWARF2_EH_FRAME:
2579 info = &data->eh_frame;
2580 break;
2581 default:
2582 gdb_assert_not_reached ("unexpected section");
2583 }
2584
2585 dwarf2_read_section (objfile, info);
2586
2587 *sectp = get_section_bfd_section (info);
2588 *bufp = info->buffer;
2589 *sizep = info->size;
2590 }
2591
2592 /* A helper function to find the sections for a .dwz file. */
2593
2594 static void
2595 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2596 {
2597 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2598
2599 /* Note that we only support the standard ELF names, because .dwz
2600 is ELF-only (at the time of writing). */
2601 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2602 {
2603 dwz_file->abbrev.s.section = sectp;
2604 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2605 }
2606 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2607 {
2608 dwz_file->info.s.section = sectp;
2609 dwz_file->info.size = bfd_get_section_size (sectp);
2610 }
2611 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2612 {
2613 dwz_file->str.s.section = sectp;
2614 dwz_file->str.size = bfd_get_section_size (sectp);
2615 }
2616 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2617 {
2618 dwz_file->line.s.section = sectp;
2619 dwz_file->line.size = bfd_get_section_size (sectp);
2620 }
2621 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2622 {
2623 dwz_file->macro.s.section = sectp;
2624 dwz_file->macro.size = bfd_get_section_size (sectp);
2625 }
2626 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2627 {
2628 dwz_file->gdb_index.s.section = sectp;
2629 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2630 }
2631 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2632 {
2633 dwz_file->debug_names.s.section = sectp;
2634 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2635 }
2636 }
2637
2638 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2639 there is no .gnu_debugaltlink section in the file. Error if there
2640 is such a section but the file cannot be found. */
2641
2642 static struct dwz_file *
2643 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2644 {
2645 const char *filename;
2646 struct dwz_file *result;
2647 bfd_size_type buildid_len_arg;
2648 size_t buildid_len;
2649 bfd_byte *buildid;
2650
2651 if (dwarf2_per_objfile->dwz_file != NULL)
2652 return dwarf2_per_objfile->dwz_file;
2653
2654 bfd_set_error (bfd_error_no_error);
2655 gdb::unique_xmalloc_ptr<char> data
2656 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2657 &buildid_len_arg, &buildid));
2658 if (data == NULL)
2659 {
2660 if (bfd_get_error () == bfd_error_no_error)
2661 return NULL;
2662 error (_("could not read '.gnu_debugaltlink' section: %s"),
2663 bfd_errmsg (bfd_get_error ()));
2664 }
2665
2666 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2667
2668 buildid_len = (size_t) buildid_len_arg;
2669
2670 filename = data.get ();
2671
2672 std::string abs_storage;
2673 if (!IS_ABSOLUTE_PATH (filename))
2674 {
2675 gdb::unique_xmalloc_ptr<char> abs
2676 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2677
2678 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2679 filename = abs_storage.c_str ();
2680 }
2681
2682 /* First try the file name given in the section. If that doesn't
2683 work, try to use the build-id instead. */
2684 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2685 if (dwz_bfd != NULL)
2686 {
2687 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2688 dwz_bfd.release ();
2689 }
2690
2691 if (dwz_bfd == NULL)
2692 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2693
2694 if (dwz_bfd == NULL)
2695 error (_("could not find '.gnu_debugaltlink' file for %s"),
2696 objfile_name (dwarf2_per_objfile->objfile));
2697
2698 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2699 struct dwz_file);
2700 result->dwz_bfd = dwz_bfd.release ();
2701
2702 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2703
2704 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2705 dwarf2_per_objfile->dwz_file = result;
2706 return result;
2707 }
2708 \f
2709 /* DWARF quick_symbols_functions support. */
2710
2711 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2712 unique line tables, so we maintain a separate table of all .debug_line
2713 derived entries to support the sharing.
2714 All the quick functions need is the list of file names. We discard the
2715 line_header when we're done and don't need to record it here. */
2716 struct quick_file_names
2717 {
2718 /* The data used to construct the hash key. */
2719 struct stmt_list_hash hash;
2720
2721 /* The number of entries in file_names, real_names. */
2722 unsigned int num_file_names;
2723
2724 /* The file names from the line table, after being run through
2725 file_full_name. */
2726 const char **file_names;
2727
2728 /* The file names from the line table after being run through
2729 gdb_realpath. These are computed lazily. */
2730 const char **real_names;
2731 };
2732
2733 /* When using the index (and thus not using psymtabs), each CU has an
2734 object of this type. This is used to hold information needed by
2735 the various "quick" methods. */
2736 struct dwarf2_per_cu_quick_data
2737 {
2738 /* The file table. This can be NULL if there was no file table
2739 or it's currently not read in.
2740 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2741 struct quick_file_names *file_names;
2742
2743 /* The corresponding symbol table. This is NULL if symbols for this
2744 CU have not yet been read. */
2745 struct compunit_symtab *compunit_symtab;
2746
2747 /* A temporary mark bit used when iterating over all CUs in
2748 expand_symtabs_matching. */
2749 unsigned int mark : 1;
2750
2751 /* True if we've tried to read the file table and found there isn't one.
2752 There will be no point in trying to read it again next time. */
2753 unsigned int no_file_data : 1;
2754 };
2755
2756 /* Utility hash function for a stmt_list_hash. */
2757
2758 static hashval_t
2759 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2760 {
2761 hashval_t v = 0;
2762
2763 if (stmt_list_hash->dwo_unit != NULL)
2764 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2765 v += to_underlying (stmt_list_hash->line_sect_off);
2766 return v;
2767 }
2768
2769 /* Utility equality function for a stmt_list_hash. */
2770
2771 static int
2772 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2773 const struct stmt_list_hash *rhs)
2774 {
2775 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2776 return 0;
2777 if (lhs->dwo_unit != NULL
2778 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2779 return 0;
2780
2781 return lhs->line_sect_off == rhs->line_sect_off;
2782 }
2783
2784 /* Hash function for a quick_file_names. */
2785
2786 static hashval_t
2787 hash_file_name_entry (const void *e)
2788 {
2789 const struct quick_file_names *file_data
2790 = (const struct quick_file_names *) e;
2791
2792 return hash_stmt_list_entry (&file_data->hash);
2793 }
2794
2795 /* Equality function for a quick_file_names. */
2796
2797 static int
2798 eq_file_name_entry (const void *a, const void *b)
2799 {
2800 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2801 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2802
2803 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2804 }
2805
2806 /* Delete function for a quick_file_names. */
2807
2808 static void
2809 delete_file_name_entry (void *e)
2810 {
2811 struct quick_file_names *file_data = (struct quick_file_names *) e;
2812 int i;
2813
2814 for (i = 0; i < file_data->num_file_names; ++i)
2815 {
2816 xfree ((void*) file_data->file_names[i]);
2817 if (file_data->real_names)
2818 xfree ((void*) file_data->real_names[i]);
2819 }
2820
2821 /* The space for the struct itself lives on objfile_obstack,
2822 so we don't free it here. */
2823 }
2824
2825 /* Create a quick_file_names hash table. */
2826
2827 static htab_t
2828 create_quick_file_names_table (unsigned int nr_initial_entries)
2829 {
2830 return htab_create_alloc (nr_initial_entries,
2831 hash_file_name_entry, eq_file_name_entry,
2832 delete_file_name_entry, xcalloc, xfree);
2833 }
2834
2835 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2836 have to be created afterwards. You should call age_cached_comp_units after
2837 processing PER_CU->CU. dw2_setup must have been already called. */
2838
2839 static void
2840 load_cu (struct dwarf2_per_cu_data *per_cu)
2841 {
2842 if (per_cu->is_debug_types)
2843 load_full_type_unit (per_cu);
2844 else
2845 load_full_comp_unit (per_cu, language_minimal);
2846
2847 if (per_cu->cu == NULL)
2848 return; /* Dummy CU. */
2849
2850 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2851 }
2852
2853 /* Read in the symbols for PER_CU. */
2854
2855 static void
2856 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2857 {
2858 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2859
2860 /* Skip type_unit_groups, reading the type units they contain
2861 is handled elsewhere. */
2862 if (IS_TYPE_UNIT_GROUP (per_cu))
2863 return;
2864
2865 /* The destructor of dwarf2_queue_guard frees any entries left on
2866 the queue. After this point we're guaranteed to leave this function
2867 with the dwarf queue empty. */
2868 dwarf2_queue_guard q_guard;
2869
2870 if (dwarf2_per_objfile->using_index
2871 ? per_cu->v.quick->compunit_symtab == NULL
2872 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2873 {
2874 queue_comp_unit (per_cu, language_minimal);
2875 load_cu (per_cu);
2876
2877 /* If we just loaded a CU from a DWO, and we're working with an index
2878 that may badly handle TUs, load all the TUs in that DWO as well.
2879 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2880 if (!per_cu->is_debug_types
2881 && per_cu->cu != NULL
2882 && per_cu->cu->dwo_unit != NULL
2883 && dwarf2_per_objfile->index_table != NULL
2884 && dwarf2_per_objfile->index_table->version <= 7
2885 /* DWP files aren't supported yet. */
2886 && get_dwp_file (dwarf2_per_objfile) == NULL)
2887 queue_and_load_all_dwo_tus (per_cu);
2888 }
2889
2890 process_queue (dwarf2_per_objfile);
2891
2892 /* Age the cache, releasing compilation units that have not
2893 been used recently. */
2894 age_cached_comp_units (dwarf2_per_objfile);
2895 }
2896
2897 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2898 the objfile from which this CU came. Returns the resulting symbol
2899 table. */
2900
2901 static struct compunit_symtab *
2902 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2903 {
2904 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2905
2906 gdb_assert (dwarf2_per_objfile->using_index);
2907 if (!per_cu->v.quick->compunit_symtab)
2908 {
2909 free_cached_comp_units freer (dwarf2_per_objfile);
2910 scoped_restore decrementer = increment_reading_symtab ();
2911 dw2_do_instantiate_symtab (per_cu);
2912 process_cu_includes (dwarf2_per_objfile);
2913 }
2914
2915 return per_cu->v.quick->compunit_symtab;
2916 }
2917
2918 /* Return the CU/TU given its index.
2919
2920 This is intended for loops like:
2921
2922 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2923 + dwarf2_per_objfile->n_type_units); ++i)
2924 {
2925 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2926
2927 ...;
2928 }
2929 */
2930
2931 static struct dwarf2_per_cu_data *
2932 dw2_get_cutu (struct dwarf2_per_objfile *dwarf2_per_objfile,
2933 int index)
2934 {
2935 if (index >= dwarf2_per_objfile->n_comp_units)
2936 {
2937 index -= dwarf2_per_objfile->n_comp_units;
2938 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2939 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2940 }
2941
2942 return dwarf2_per_objfile->all_comp_units[index];
2943 }
2944
2945 /* Return the CU given its index.
2946 This differs from dw2_get_cutu in that it's for when you know INDEX
2947 refers to a CU. */
2948
2949 static struct dwarf2_per_cu_data *
2950 dw2_get_cu (struct dwarf2_per_objfile *dwarf2_per_objfile, int index)
2951 {
2952 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2953
2954 return dwarf2_per_objfile->all_comp_units[index];
2955 }
2956
2957 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2958 objfile_obstack, and constructed with the specified field
2959 values. */
2960
2961 static dwarf2_per_cu_data *
2962 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2963 struct dwarf2_section_info *section,
2964 int is_dwz,
2965 sect_offset sect_off, ULONGEST length)
2966 {
2967 struct objfile *objfile = dwarf2_per_objfile->objfile;
2968 dwarf2_per_cu_data *the_cu
2969 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2970 struct dwarf2_per_cu_data);
2971 the_cu->sect_off = sect_off;
2972 the_cu->length = length;
2973 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2974 the_cu->section = section;
2975 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2976 struct dwarf2_per_cu_quick_data);
2977 the_cu->is_dwz = is_dwz;
2978 return the_cu;
2979 }
2980
2981 /* A helper for create_cus_from_index that handles a given list of
2982 CUs. */
2983
2984 static void
2985 create_cus_from_index_list (struct objfile *objfile,
2986 const gdb_byte *cu_list, offset_type n_elements,
2987 struct dwarf2_section_info *section,
2988 int is_dwz,
2989 int base_offset)
2990 {
2991 offset_type i;
2992 struct dwarf2_per_objfile *dwarf2_per_objfile
2993 = get_dwarf2_per_objfile (objfile);
2994
2995 for (i = 0; i < n_elements; i += 2)
2996 {
2997 gdb_static_assert (sizeof (ULONGEST) >= 8);
2998
2999 sect_offset sect_off
3000 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3001 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3002 cu_list += 2 * 8;
3003
3004 dwarf2_per_objfile->all_comp_units[base_offset + i / 2]
3005 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3006 sect_off, length);
3007 }
3008 }
3009
3010 /* Read the CU list from the mapped index, and use it to create all
3011 the CU objects for this objfile. */
3012
3013 static void
3014 create_cus_from_index (struct objfile *objfile,
3015 const gdb_byte *cu_list, offset_type cu_list_elements,
3016 const gdb_byte *dwz_list, offset_type dwz_elements)
3017 {
3018 struct dwz_file *dwz;
3019 struct dwarf2_per_objfile *dwarf2_per_objfile
3020 = get_dwarf2_per_objfile (objfile);
3021
3022 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3023 dwarf2_per_objfile->all_comp_units =
3024 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3025 dwarf2_per_objfile->n_comp_units);
3026
3027 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3028 &dwarf2_per_objfile->info, 0, 0);
3029
3030 if (dwz_elements == 0)
3031 return;
3032
3033 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3034 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3035 cu_list_elements / 2);
3036 }
3037
3038 /* Create the signatured type hash table from the index. */
3039
3040 static void
3041 create_signatured_type_table_from_index (struct objfile *objfile,
3042 struct dwarf2_section_info *section,
3043 const gdb_byte *bytes,
3044 offset_type elements)
3045 {
3046 offset_type i;
3047 htab_t sig_types_hash;
3048 struct dwarf2_per_objfile *dwarf2_per_objfile
3049 = get_dwarf2_per_objfile (objfile);
3050
3051 dwarf2_per_objfile->n_type_units
3052 = dwarf2_per_objfile->n_allocated_type_units
3053 = elements / 3;
3054 dwarf2_per_objfile->all_type_units =
3055 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3056
3057 sig_types_hash = allocate_signatured_type_table (objfile);
3058
3059 for (i = 0; i < elements; i += 3)
3060 {
3061 struct signatured_type *sig_type;
3062 ULONGEST signature;
3063 void **slot;
3064 cu_offset type_offset_in_tu;
3065
3066 gdb_static_assert (sizeof (ULONGEST) >= 8);
3067 sect_offset sect_off
3068 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3069 type_offset_in_tu
3070 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3071 BFD_ENDIAN_LITTLE);
3072 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3073 bytes += 3 * 8;
3074
3075 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3076 struct signatured_type);
3077 sig_type->signature = signature;
3078 sig_type->type_offset_in_tu = type_offset_in_tu;
3079 sig_type->per_cu.is_debug_types = 1;
3080 sig_type->per_cu.section = section;
3081 sig_type->per_cu.sect_off = sect_off;
3082 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3083 sig_type->per_cu.v.quick
3084 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3085 struct dwarf2_per_cu_quick_data);
3086
3087 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3088 *slot = sig_type;
3089
3090 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3091 }
3092
3093 dwarf2_per_objfile->signatured_types = sig_types_hash;
3094 }
3095
3096 /* Create the signatured type hash table from .debug_names. */
3097
3098 static void
3099 create_signatured_type_table_from_debug_names
3100 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3101 const mapped_debug_names &map,
3102 struct dwarf2_section_info *section,
3103 struct dwarf2_section_info *abbrev_section)
3104 {
3105 struct objfile *objfile = dwarf2_per_objfile->objfile;
3106
3107 dwarf2_read_section (objfile, section);
3108 dwarf2_read_section (objfile, abbrev_section);
3109
3110 dwarf2_per_objfile->n_type_units
3111 = dwarf2_per_objfile->n_allocated_type_units
3112 = map.tu_count;
3113 dwarf2_per_objfile->all_type_units
3114 = XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3115
3116 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3117
3118 for (uint32_t i = 0; i < map.tu_count; ++i)
3119 {
3120 struct signatured_type *sig_type;
3121 ULONGEST signature;
3122 void **slot;
3123 cu_offset type_offset_in_tu;
3124
3125 sect_offset sect_off
3126 = (sect_offset) (extract_unsigned_integer
3127 (map.tu_table_reordered + i * map.offset_size,
3128 map.offset_size,
3129 map.dwarf5_byte_order));
3130
3131 comp_unit_head cu_header;
3132 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3133 abbrev_section,
3134 section->buffer + to_underlying (sect_off),
3135 rcuh_kind::TYPE);
3136
3137 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3138 struct signatured_type);
3139 sig_type->signature = cu_header.signature;
3140 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3141 sig_type->per_cu.is_debug_types = 1;
3142 sig_type->per_cu.section = section;
3143 sig_type->per_cu.sect_off = sect_off;
3144 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3145 sig_type->per_cu.v.quick
3146 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3147 struct dwarf2_per_cu_quick_data);
3148
3149 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3150 *slot = sig_type;
3151
3152 dwarf2_per_objfile->all_type_units[i] = sig_type;
3153 }
3154
3155 dwarf2_per_objfile->signatured_types = sig_types_hash;
3156 }
3157
3158 /* Read the address map data from the mapped index, and use it to
3159 populate the objfile's psymtabs_addrmap. */
3160
3161 static void
3162 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3163 struct mapped_index *index)
3164 {
3165 struct objfile *objfile = dwarf2_per_objfile->objfile;
3166 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3167 const gdb_byte *iter, *end;
3168 struct addrmap *mutable_map;
3169 CORE_ADDR baseaddr;
3170
3171 auto_obstack temp_obstack;
3172
3173 mutable_map = addrmap_create_mutable (&temp_obstack);
3174
3175 iter = index->address_table.data ();
3176 end = iter + index->address_table.size ();
3177
3178 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3179
3180 while (iter < end)
3181 {
3182 ULONGEST hi, lo, cu_index;
3183 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3184 iter += 8;
3185 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3186 iter += 8;
3187 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3188 iter += 4;
3189
3190 if (lo > hi)
3191 {
3192 complaint (&symfile_complaints,
3193 _(".gdb_index address table has invalid range (%s - %s)"),
3194 hex_string (lo), hex_string (hi));
3195 continue;
3196 }
3197
3198 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3199 {
3200 complaint (&symfile_complaints,
3201 _(".gdb_index address table has invalid CU number %u"),
3202 (unsigned) cu_index);
3203 continue;
3204 }
3205
3206 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3207 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3208 addrmap_set_empty (mutable_map, lo, hi - 1,
3209 dw2_get_cutu (dwarf2_per_objfile, cu_index));
3210 }
3211
3212 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3213 &objfile->objfile_obstack);
3214 }
3215
3216 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3217 populate the objfile's psymtabs_addrmap. */
3218
3219 static void
3220 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3221 struct dwarf2_section_info *section)
3222 {
3223 struct objfile *objfile = dwarf2_per_objfile->objfile;
3224 bfd *abfd = objfile->obfd;
3225 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3226 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3227 SECT_OFF_TEXT (objfile));
3228
3229 auto_obstack temp_obstack;
3230 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3231
3232 std::unordered_map<sect_offset,
3233 dwarf2_per_cu_data *,
3234 gdb::hash_enum<sect_offset>>
3235 debug_info_offset_to_per_cu;
3236 for (int cui = 0; cui < dwarf2_per_objfile->n_comp_units; ++cui)
3237 {
3238 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, cui);
3239 const auto insertpair
3240 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3241 if (!insertpair.second)
3242 {
3243 warning (_("Section .debug_aranges in %s has duplicate "
3244 "debug_info_offset %s, ignoring .debug_aranges."),
3245 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3246 return;
3247 }
3248 }
3249
3250 dwarf2_read_section (objfile, section);
3251
3252 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3253
3254 const gdb_byte *addr = section->buffer;
3255
3256 while (addr < section->buffer + section->size)
3257 {
3258 const gdb_byte *const entry_addr = addr;
3259 unsigned int bytes_read;
3260
3261 const LONGEST entry_length = read_initial_length (abfd, addr,
3262 &bytes_read);
3263 addr += bytes_read;
3264
3265 const gdb_byte *const entry_end = addr + entry_length;
3266 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3267 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3268 if (addr + entry_length > section->buffer + section->size)
3269 {
3270 warning (_("Section .debug_aranges in %s entry at offset %zu "
3271 "length %s exceeds section length %s, "
3272 "ignoring .debug_aranges."),
3273 objfile_name (objfile), entry_addr - section->buffer,
3274 plongest (bytes_read + entry_length),
3275 pulongest (section->size));
3276 return;
3277 }
3278
3279 /* The version number. */
3280 const uint16_t version = read_2_bytes (abfd, addr);
3281 addr += 2;
3282 if (version != 2)
3283 {
3284 warning (_("Section .debug_aranges in %s entry at offset %zu "
3285 "has unsupported version %d, ignoring .debug_aranges."),
3286 objfile_name (objfile), entry_addr - section->buffer,
3287 version);
3288 return;
3289 }
3290
3291 const uint64_t debug_info_offset
3292 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3293 addr += offset_size;
3294 const auto per_cu_it
3295 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3296 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3297 {
3298 warning (_("Section .debug_aranges in %s entry at offset %zu "
3299 "debug_info_offset %s does not exists, "
3300 "ignoring .debug_aranges."),
3301 objfile_name (objfile), entry_addr - section->buffer,
3302 pulongest (debug_info_offset));
3303 return;
3304 }
3305 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3306
3307 const uint8_t address_size = *addr++;
3308 if (address_size < 1 || address_size > 8)
3309 {
3310 warning (_("Section .debug_aranges in %s entry at offset %zu "
3311 "address_size %u is invalid, ignoring .debug_aranges."),
3312 objfile_name (objfile), entry_addr - section->buffer,
3313 address_size);
3314 return;
3315 }
3316
3317 const uint8_t segment_selector_size = *addr++;
3318 if (segment_selector_size != 0)
3319 {
3320 warning (_("Section .debug_aranges in %s entry at offset %zu "
3321 "segment_selector_size %u is not supported, "
3322 "ignoring .debug_aranges."),
3323 objfile_name (objfile), entry_addr - section->buffer,
3324 segment_selector_size);
3325 return;
3326 }
3327
3328 /* Must pad to an alignment boundary that is twice the address
3329 size. It is undocumented by the DWARF standard but GCC does
3330 use it. */
3331 for (size_t padding = ((-(addr - section->buffer))
3332 & (2 * address_size - 1));
3333 padding > 0; padding--)
3334 if (*addr++ != 0)
3335 {
3336 warning (_("Section .debug_aranges in %s entry at offset %zu "
3337 "padding is not zero, ignoring .debug_aranges."),
3338 objfile_name (objfile), entry_addr - section->buffer);
3339 return;
3340 }
3341
3342 for (;;)
3343 {
3344 if (addr + 2 * address_size > entry_end)
3345 {
3346 warning (_("Section .debug_aranges in %s entry at offset %zu "
3347 "address list is not properly terminated, "
3348 "ignoring .debug_aranges."),
3349 objfile_name (objfile), entry_addr - section->buffer);
3350 return;
3351 }
3352 ULONGEST start = extract_unsigned_integer (addr, address_size,
3353 dwarf5_byte_order);
3354 addr += address_size;
3355 ULONGEST length = extract_unsigned_integer (addr, address_size,
3356 dwarf5_byte_order);
3357 addr += address_size;
3358 if (start == 0 && length == 0)
3359 break;
3360 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3361 {
3362 /* Symbol was eliminated due to a COMDAT group. */
3363 continue;
3364 }
3365 ULONGEST end = start + length;
3366 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3367 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3368 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3369 }
3370 }
3371
3372 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3373 &objfile->objfile_obstack);
3374 }
3375
3376 /* Find a slot in the mapped index INDEX for the object named NAME.
3377 If NAME is found, set *VEC_OUT to point to the CU vector in the
3378 constant pool and return true. If NAME cannot be found, return
3379 false. */
3380
3381 static bool
3382 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3383 offset_type **vec_out)
3384 {
3385 offset_type hash;
3386 offset_type slot, step;
3387 int (*cmp) (const char *, const char *);
3388
3389 gdb::unique_xmalloc_ptr<char> without_params;
3390 if (current_language->la_language == language_cplus
3391 || current_language->la_language == language_fortran
3392 || current_language->la_language == language_d)
3393 {
3394 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3395 not contain any. */
3396
3397 if (strchr (name, '(') != NULL)
3398 {
3399 without_params = cp_remove_params (name);
3400
3401 if (without_params != NULL)
3402 name = without_params.get ();
3403 }
3404 }
3405
3406 /* Index version 4 did not support case insensitive searches. But the
3407 indices for case insensitive languages are built in lowercase, therefore
3408 simulate our NAME being searched is also lowercased. */
3409 hash = mapped_index_string_hash ((index->version == 4
3410 && case_sensitivity == case_sensitive_off
3411 ? 5 : index->version),
3412 name);
3413
3414 slot = hash & (index->symbol_table.size () - 1);
3415 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3416 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3417
3418 for (;;)
3419 {
3420 const char *str;
3421
3422 const auto &bucket = index->symbol_table[slot];
3423 if (bucket.name == 0 && bucket.vec == 0)
3424 return false;
3425
3426 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3427 if (!cmp (name, str))
3428 {
3429 *vec_out = (offset_type *) (index->constant_pool
3430 + MAYBE_SWAP (bucket.vec));
3431 return true;
3432 }
3433
3434 slot = (slot + step) & (index->symbol_table.size () - 1);
3435 }
3436 }
3437
3438 /* A helper function that reads the .gdb_index from SECTION and fills
3439 in MAP. FILENAME is the name of the file containing the section;
3440 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3441 ok to use deprecated sections.
3442
3443 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3444 out parameters that are filled in with information about the CU and
3445 TU lists in the section.
3446
3447 Returns 1 if all went well, 0 otherwise. */
3448
3449 static int
3450 read_index_from_section (struct objfile *objfile,
3451 const char *filename,
3452 int deprecated_ok,
3453 struct dwarf2_section_info *section,
3454 struct mapped_index *map,
3455 const gdb_byte **cu_list,
3456 offset_type *cu_list_elements,
3457 const gdb_byte **types_list,
3458 offset_type *types_list_elements)
3459 {
3460 const gdb_byte *addr;
3461 offset_type version;
3462 offset_type *metadata;
3463 int i;
3464
3465 if (dwarf2_section_empty_p (section))
3466 return 0;
3467
3468 /* Older elfutils strip versions could keep the section in the main
3469 executable while splitting it for the separate debug info file. */
3470 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3471 return 0;
3472
3473 dwarf2_read_section (objfile, section);
3474
3475 addr = section->buffer;
3476 /* Version check. */
3477 version = MAYBE_SWAP (*(offset_type *) addr);
3478 /* Versions earlier than 3 emitted every copy of a psymbol. This
3479 causes the index to behave very poorly for certain requests. Version 3
3480 contained incomplete addrmap. So, it seems better to just ignore such
3481 indices. */
3482 if (version < 4)
3483 {
3484 static int warning_printed = 0;
3485 if (!warning_printed)
3486 {
3487 warning (_("Skipping obsolete .gdb_index section in %s."),
3488 filename);
3489 warning_printed = 1;
3490 }
3491 return 0;
3492 }
3493 /* Index version 4 uses a different hash function than index version
3494 5 and later.
3495
3496 Versions earlier than 6 did not emit psymbols for inlined
3497 functions. Using these files will cause GDB not to be able to
3498 set breakpoints on inlined functions by name, so we ignore these
3499 indices unless the user has done
3500 "set use-deprecated-index-sections on". */
3501 if (version < 6 && !deprecated_ok)
3502 {
3503 static int warning_printed = 0;
3504 if (!warning_printed)
3505 {
3506 warning (_("\
3507 Skipping deprecated .gdb_index section in %s.\n\
3508 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3509 to use the section anyway."),
3510 filename);
3511 warning_printed = 1;
3512 }
3513 return 0;
3514 }
3515 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3516 of the TU (for symbols coming from TUs),
3517 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3518 Plus gold-generated indices can have duplicate entries for global symbols,
3519 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3520 These are just performance bugs, and we can't distinguish gdb-generated
3521 indices from gold-generated ones, so issue no warning here. */
3522
3523 /* Indexes with higher version than the one supported by GDB may be no
3524 longer backward compatible. */
3525 if (version > 8)
3526 return 0;
3527
3528 map->version = version;
3529 map->total_size = section->size;
3530
3531 metadata = (offset_type *) (addr + sizeof (offset_type));
3532
3533 i = 0;
3534 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3535 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3536 / 8);
3537 ++i;
3538
3539 *types_list = addr + MAYBE_SWAP (metadata[i]);
3540 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3541 - MAYBE_SWAP (metadata[i]))
3542 / 8);
3543 ++i;
3544
3545 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3546 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3547 map->address_table
3548 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3549 ++i;
3550
3551 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3552 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3553 map->symbol_table
3554 = gdb::array_view<mapped_index::symbol_table_slot>
3555 ((mapped_index::symbol_table_slot *) symbol_table,
3556 (mapped_index::symbol_table_slot *) symbol_table_end);
3557
3558 ++i;
3559 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3560
3561 return 1;
3562 }
3563
3564 /* Read .gdb_index. If everything went ok, initialize the "quick"
3565 elements of all the CUs and return 1. Otherwise, return 0. */
3566
3567 static int
3568 dwarf2_read_index (struct objfile *objfile)
3569 {
3570 struct mapped_index local_map, *map;
3571 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3572 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3573 struct dwz_file *dwz;
3574 struct dwarf2_per_objfile *dwarf2_per_objfile
3575 = get_dwarf2_per_objfile (objfile);
3576
3577 if (!read_index_from_section (objfile, objfile_name (objfile),
3578 use_deprecated_index_sections,
3579 &dwarf2_per_objfile->gdb_index, &local_map,
3580 &cu_list, &cu_list_elements,
3581 &types_list, &types_list_elements))
3582 return 0;
3583
3584 /* Don't use the index if it's empty. */
3585 if (local_map.symbol_table.empty ())
3586 return 0;
3587
3588 /* If there is a .dwz file, read it so we can get its CU list as
3589 well. */
3590 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3591 if (dwz != NULL)
3592 {
3593 struct mapped_index dwz_map;
3594 const gdb_byte *dwz_types_ignore;
3595 offset_type dwz_types_elements_ignore;
3596
3597 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3598 1,
3599 &dwz->gdb_index, &dwz_map,
3600 &dwz_list, &dwz_list_elements,
3601 &dwz_types_ignore,
3602 &dwz_types_elements_ignore))
3603 {
3604 warning (_("could not read '.gdb_index' section from %s; skipping"),
3605 bfd_get_filename (dwz->dwz_bfd));
3606 return 0;
3607 }
3608 }
3609
3610 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3611 dwz_list_elements);
3612
3613 if (types_list_elements)
3614 {
3615 struct dwarf2_section_info *section;
3616
3617 /* We can only handle a single .debug_types when we have an
3618 index. */
3619 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3620 return 0;
3621
3622 section = VEC_index (dwarf2_section_info_def,
3623 dwarf2_per_objfile->types, 0);
3624
3625 create_signatured_type_table_from_index (objfile, section, types_list,
3626 types_list_elements);
3627 }
3628
3629 create_addrmap_from_index (dwarf2_per_objfile, &local_map);
3630
3631 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3632 map = new (map) mapped_index ();
3633 *map = local_map;
3634
3635 dwarf2_per_objfile->index_table = map;
3636 dwarf2_per_objfile->using_index = 1;
3637 dwarf2_per_objfile->quick_file_names_table =
3638 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3639
3640 return 1;
3641 }
3642
3643 /* die_reader_func for dw2_get_file_names. */
3644
3645 static void
3646 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3647 const gdb_byte *info_ptr,
3648 struct die_info *comp_unit_die,
3649 int has_children,
3650 void *data)
3651 {
3652 struct dwarf2_cu *cu = reader->cu;
3653 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3654 struct dwarf2_per_objfile *dwarf2_per_objfile
3655 = cu->per_cu->dwarf2_per_objfile;
3656 struct objfile *objfile = dwarf2_per_objfile->objfile;
3657 struct dwarf2_per_cu_data *lh_cu;
3658 struct attribute *attr;
3659 int i;
3660 void **slot;
3661 struct quick_file_names *qfn;
3662
3663 gdb_assert (! this_cu->is_debug_types);
3664
3665 /* Our callers never want to match partial units -- instead they
3666 will match the enclosing full CU. */
3667 if (comp_unit_die->tag == DW_TAG_partial_unit)
3668 {
3669 this_cu->v.quick->no_file_data = 1;
3670 return;
3671 }
3672
3673 lh_cu = this_cu;
3674 slot = NULL;
3675
3676 line_header_up lh;
3677 sect_offset line_offset {};
3678
3679 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3680 if (attr)
3681 {
3682 struct quick_file_names find_entry;
3683
3684 line_offset = (sect_offset) DW_UNSND (attr);
3685
3686 /* We may have already read in this line header (TU line header sharing).
3687 If we have we're done. */
3688 find_entry.hash.dwo_unit = cu->dwo_unit;
3689 find_entry.hash.line_sect_off = line_offset;
3690 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3691 &find_entry, INSERT);
3692 if (*slot != NULL)
3693 {
3694 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3695 return;
3696 }
3697
3698 lh = dwarf_decode_line_header (line_offset, cu);
3699 }
3700 if (lh == NULL)
3701 {
3702 lh_cu->v.quick->no_file_data = 1;
3703 return;
3704 }
3705
3706 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3707 qfn->hash.dwo_unit = cu->dwo_unit;
3708 qfn->hash.line_sect_off = line_offset;
3709 gdb_assert (slot != NULL);
3710 *slot = qfn;
3711
3712 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3713
3714 qfn->num_file_names = lh->file_names.size ();
3715 qfn->file_names =
3716 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3717 for (i = 0; i < lh->file_names.size (); ++i)
3718 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3719 qfn->real_names = NULL;
3720
3721 lh_cu->v.quick->file_names = qfn;
3722 }
3723
3724 /* A helper for the "quick" functions which attempts to read the line
3725 table for THIS_CU. */
3726
3727 static struct quick_file_names *
3728 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3729 {
3730 /* This should never be called for TUs. */
3731 gdb_assert (! this_cu->is_debug_types);
3732 /* Nor type unit groups. */
3733 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3734
3735 if (this_cu->v.quick->file_names != NULL)
3736 return this_cu->v.quick->file_names;
3737 /* If we know there is no line data, no point in looking again. */
3738 if (this_cu->v.quick->no_file_data)
3739 return NULL;
3740
3741 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3742
3743 if (this_cu->v.quick->no_file_data)
3744 return NULL;
3745 return this_cu->v.quick->file_names;
3746 }
3747
3748 /* A helper for the "quick" functions which computes and caches the
3749 real path for a given file name from the line table. */
3750
3751 static const char *
3752 dw2_get_real_path (struct objfile *objfile,
3753 struct quick_file_names *qfn, int index)
3754 {
3755 if (qfn->real_names == NULL)
3756 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3757 qfn->num_file_names, const char *);
3758
3759 if (qfn->real_names[index] == NULL)
3760 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3761
3762 return qfn->real_names[index];
3763 }
3764
3765 static struct symtab *
3766 dw2_find_last_source_symtab (struct objfile *objfile)
3767 {
3768 struct dwarf2_per_objfile *dwarf2_per_objfile
3769 = get_dwarf2_per_objfile (objfile);
3770 int index = dwarf2_per_objfile->n_comp_units - 1;
3771 dwarf2_per_cu_data *dwarf_cu = dw2_get_cutu (dwarf2_per_objfile, index);
3772 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu);
3773
3774 if (cust == NULL)
3775 return NULL;
3776
3777 return compunit_primary_filetab (cust);
3778 }
3779
3780 /* Traversal function for dw2_forget_cached_source_info. */
3781
3782 static int
3783 dw2_free_cached_file_names (void **slot, void *info)
3784 {
3785 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3786
3787 if (file_data->real_names)
3788 {
3789 int i;
3790
3791 for (i = 0; i < file_data->num_file_names; ++i)
3792 {
3793 xfree ((void*) file_data->real_names[i]);
3794 file_data->real_names[i] = NULL;
3795 }
3796 }
3797
3798 return 1;
3799 }
3800
3801 static void
3802 dw2_forget_cached_source_info (struct objfile *objfile)
3803 {
3804 struct dwarf2_per_objfile *dwarf2_per_objfile
3805 = get_dwarf2_per_objfile (objfile);
3806
3807 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3808 dw2_free_cached_file_names, NULL);
3809 }
3810
3811 /* Helper function for dw2_map_symtabs_matching_filename that expands
3812 the symtabs and calls the iterator. */
3813
3814 static int
3815 dw2_map_expand_apply (struct objfile *objfile,
3816 struct dwarf2_per_cu_data *per_cu,
3817 const char *name, const char *real_path,
3818 gdb::function_view<bool (symtab *)> callback)
3819 {
3820 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3821
3822 /* Don't visit already-expanded CUs. */
3823 if (per_cu->v.quick->compunit_symtab)
3824 return 0;
3825
3826 /* This may expand more than one symtab, and we want to iterate over
3827 all of them. */
3828 dw2_instantiate_symtab (per_cu);
3829
3830 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3831 last_made, callback);
3832 }
3833
3834 /* Implementation of the map_symtabs_matching_filename method. */
3835
3836 static bool
3837 dw2_map_symtabs_matching_filename
3838 (struct objfile *objfile, const char *name, const char *real_path,
3839 gdb::function_view<bool (symtab *)> callback)
3840 {
3841 int i;
3842 const char *name_basename = lbasename (name);
3843 struct dwarf2_per_objfile *dwarf2_per_objfile
3844 = get_dwarf2_per_objfile (objfile);
3845
3846 /* The rule is CUs specify all the files, including those used by
3847 any TU, so there's no need to scan TUs here. */
3848
3849 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3850 {
3851 int j;
3852 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
3853 struct quick_file_names *file_data;
3854
3855 /* We only need to look at symtabs not already expanded. */
3856 if (per_cu->v.quick->compunit_symtab)
3857 continue;
3858
3859 file_data = dw2_get_file_names (per_cu);
3860 if (file_data == NULL)
3861 continue;
3862
3863 for (j = 0; j < file_data->num_file_names; ++j)
3864 {
3865 const char *this_name = file_data->file_names[j];
3866 const char *this_real_name;
3867
3868 if (compare_filenames_for_search (this_name, name))
3869 {
3870 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3871 callback))
3872 return true;
3873 continue;
3874 }
3875
3876 /* Before we invoke realpath, which can get expensive when many
3877 files are involved, do a quick comparison of the basenames. */
3878 if (! basenames_may_differ
3879 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3880 continue;
3881
3882 this_real_name = dw2_get_real_path (objfile, file_data, j);
3883 if (compare_filenames_for_search (this_real_name, name))
3884 {
3885 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3886 callback))
3887 return true;
3888 continue;
3889 }
3890
3891 if (real_path != NULL)
3892 {
3893 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3894 gdb_assert (IS_ABSOLUTE_PATH (name));
3895 if (this_real_name != NULL
3896 && FILENAME_CMP (real_path, this_real_name) == 0)
3897 {
3898 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3899 callback))
3900 return true;
3901 continue;
3902 }
3903 }
3904 }
3905 }
3906
3907 return false;
3908 }
3909
3910 /* Struct used to manage iterating over all CUs looking for a symbol. */
3911
3912 struct dw2_symtab_iterator
3913 {
3914 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3915 struct dwarf2_per_objfile *dwarf2_per_objfile;
3916 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3917 int want_specific_block;
3918 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3919 Unused if !WANT_SPECIFIC_BLOCK. */
3920 int block_index;
3921 /* The kind of symbol we're looking for. */
3922 domain_enum domain;
3923 /* The list of CUs from the index entry of the symbol,
3924 or NULL if not found. */
3925 offset_type *vec;
3926 /* The next element in VEC to look at. */
3927 int next;
3928 /* The number of elements in VEC, or zero if there is no match. */
3929 int length;
3930 /* Have we seen a global version of the symbol?
3931 If so we can ignore all further global instances.
3932 This is to work around gold/15646, inefficient gold-generated
3933 indices. */
3934 int global_seen;
3935 };
3936
3937 /* Initialize the index symtab iterator ITER.
3938 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3939 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3940
3941 static void
3942 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3943 struct dwarf2_per_objfile *dwarf2_per_objfile,
3944 int want_specific_block,
3945 int block_index,
3946 domain_enum domain,
3947 const char *name)
3948 {
3949 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3950 iter->want_specific_block = want_specific_block;
3951 iter->block_index = block_index;
3952 iter->domain = domain;
3953 iter->next = 0;
3954 iter->global_seen = 0;
3955
3956 mapped_index *index = dwarf2_per_objfile->index_table;
3957
3958 /* index is NULL if OBJF_READNOW. */
3959 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3960 iter->length = MAYBE_SWAP (*iter->vec);
3961 else
3962 {
3963 iter->vec = NULL;
3964 iter->length = 0;
3965 }
3966 }
3967
3968 /* Return the next matching CU or NULL if there are no more. */
3969
3970 static struct dwarf2_per_cu_data *
3971 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3972 {
3973 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3974
3975 for ( ; iter->next < iter->length; ++iter->next)
3976 {
3977 offset_type cu_index_and_attrs =
3978 MAYBE_SWAP (iter->vec[iter->next + 1]);
3979 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3980 struct dwarf2_per_cu_data *per_cu;
3981 int want_static = iter->block_index != GLOBAL_BLOCK;
3982 /* This value is only valid for index versions >= 7. */
3983 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3984 gdb_index_symbol_kind symbol_kind =
3985 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3986 /* Only check the symbol attributes if they're present.
3987 Indices prior to version 7 don't record them,
3988 and indices >= 7 may elide them for certain symbols
3989 (gold does this). */
3990 int attrs_valid =
3991 (dwarf2_per_objfile->index_table->version >= 7
3992 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3993
3994 /* Don't crash on bad data. */
3995 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3996 + dwarf2_per_objfile->n_type_units))
3997 {
3998 complaint (&symfile_complaints,
3999 _(".gdb_index entry has bad CU index"
4000 " [in module %s]"),
4001 objfile_name (dwarf2_per_objfile->objfile));
4002 continue;
4003 }
4004
4005 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
4006
4007 /* Skip if already read in. */
4008 if (per_cu->v.quick->compunit_symtab)
4009 continue;
4010
4011 /* Check static vs global. */
4012 if (attrs_valid)
4013 {
4014 if (iter->want_specific_block
4015 && want_static != is_static)
4016 continue;
4017 /* Work around gold/15646. */
4018 if (!is_static && iter->global_seen)
4019 continue;
4020 if (!is_static)
4021 iter->global_seen = 1;
4022 }
4023
4024 /* Only check the symbol's kind if it has one. */
4025 if (attrs_valid)
4026 {
4027 switch (iter->domain)
4028 {
4029 case VAR_DOMAIN:
4030 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4031 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4032 /* Some types are also in VAR_DOMAIN. */
4033 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4034 continue;
4035 break;
4036 case STRUCT_DOMAIN:
4037 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4038 continue;
4039 break;
4040 case LABEL_DOMAIN:
4041 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4042 continue;
4043 break;
4044 default:
4045 break;
4046 }
4047 }
4048
4049 ++iter->next;
4050 return per_cu;
4051 }
4052
4053 return NULL;
4054 }
4055
4056 static struct compunit_symtab *
4057 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4058 const char *name, domain_enum domain)
4059 {
4060 struct compunit_symtab *stab_best = NULL;
4061 struct dwarf2_per_objfile *dwarf2_per_objfile
4062 = get_dwarf2_per_objfile (objfile);
4063
4064 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4065
4066 struct dw2_symtab_iterator iter;
4067 struct dwarf2_per_cu_data *per_cu;
4068
4069 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4070
4071 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4072 {
4073 struct symbol *sym, *with_opaque = NULL;
4074 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
4075 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4076 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4077
4078 sym = block_find_symbol (block, name, domain,
4079 block_find_non_opaque_type_preferred,
4080 &with_opaque);
4081
4082 /* Some caution must be observed with overloaded functions
4083 and methods, since the index will not contain any overload
4084 information (but NAME might contain it). */
4085
4086 if (sym != NULL
4087 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4088 return stab;
4089 if (with_opaque != NULL
4090 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4091 stab_best = stab;
4092
4093 /* Keep looking through other CUs. */
4094 }
4095
4096 return stab_best;
4097 }
4098
4099 static void
4100 dw2_print_stats (struct objfile *objfile)
4101 {
4102 struct dwarf2_per_objfile *dwarf2_per_objfile
4103 = get_dwarf2_per_objfile (objfile);
4104 int total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
4105 int count = 0;
4106
4107 for (int i = 0; i < total; ++i)
4108 {
4109 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4110
4111 if (!per_cu->v.quick->compunit_symtab)
4112 ++count;
4113 }
4114 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4115 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4116 }
4117
4118 /* This dumps minimal information about the index.
4119 It is called via "mt print objfiles".
4120 One use is to verify .gdb_index has been loaded by the
4121 gdb.dwarf2/gdb-index.exp testcase. */
4122
4123 static void
4124 dw2_dump (struct objfile *objfile)
4125 {
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128
4129 gdb_assert (dwarf2_per_objfile->using_index);
4130 printf_filtered (".gdb_index:");
4131 if (dwarf2_per_objfile->index_table != NULL)
4132 {
4133 printf_filtered (" version %d\n",
4134 dwarf2_per_objfile->index_table->version);
4135 }
4136 else
4137 printf_filtered (" faked for \"readnow\"\n");
4138 printf_filtered ("\n");
4139 }
4140
4141 static void
4142 dw2_relocate (struct objfile *objfile,
4143 const struct section_offsets *new_offsets,
4144 const struct section_offsets *delta)
4145 {
4146 /* There's nothing to relocate here. */
4147 }
4148
4149 static void
4150 dw2_expand_symtabs_for_function (struct objfile *objfile,
4151 const char *func_name)
4152 {
4153 struct dwarf2_per_objfile *dwarf2_per_objfile
4154 = get_dwarf2_per_objfile (objfile);
4155
4156 struct dw2_symtab_iterator iter;
4157 struct dwarf2_per_cu_data *per_cu;
4158
4159 /* Note: It doesn't matter what we pass for block_index here. */
4160 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4161 func_name);
4162
4163 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4164 dw2_instantiate_symtab (per_cu);
4165
4166 }
4167
4168 static void
4169 dw2_expand_all_symtabs (struct objfile *objfile)
4170 {
4171 struct dwarf2_per_objfile *dwarf2_per_objfile
4172 = get_dwarf2_per_objfile (objfile);
4173 int total_units = (dwarf2_per_objfile->n_comp_units
4174 + dwarf2_per_objfile->n_type_units);
4175
4176 for (int i = 0; i < total_units; ++i)
4177 {
4178 struct dwarf2_per_cu_data *per_cu
4179 = dw2_get_cutu (dwarf2_per_objfile, i);
4180
4181 dw2_instantiate_symtab (per_cu);
4182 }
4183 }
4184
4185 static void
4186 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4187 const char *fullname)
4188 {
4189 struct dwarf2_per_objfile *dwarf2_per_objfile
4190 = get_dwarf2_per_objfile (objfile);
4191
4192 /* We don't need to consider type units here.
4193 This is only called for examining code, e.g. expand_line_sal.
4194 There can be an order of magnitude (or more) more type units
4195 than comp units, and we avoid them if we can. */
4196
4197 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4198 {
4199 int j;
4200 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4201 struct quick_file_names *file_data;
4202
4203 /* We only need to look at symtabs not already expanded. */
4204 if (per_cu->v.quick->compunit_symtab)
4205 continue;
4206
4207 file_data = dw2_get_file_names (per_cu);
4208 if (file_data == NULL)
4209 continue;
4210
4211 for (j = 0; j < file_data->num_file_names; ++j)
4212 {
4213 const char *this_fullname = file_data->file_names[j];
4214
4215 if (filename_cmp (this_fullname, fullname) == 0)
4216 {
4217 dw2_instantiate_symtab (per_cu);
4218 break;
4219 }
4220 }
4221 }
4222 }
4223
4224 static void
4225 dw2_map_matching_symbols (struct objfile *objfile,
4226 const char * name, domain_enum domain,
4227 int global,
4228 int (*callback) (struct block *,
4229 struct symbol *, void *),
4230 void *data, symbol_name_match_type match,
4231 symbol_compare_ftype *ordered_compare)
4232 {
4233 /* Currently unimplemented; used for Ada. The function can be called if the
4234 current language is Ada for a non-Ada objfile using GNU index. As Ada
4235 does not look for non-Ada symbols this function should just return. */
4236 }
4237
4238 /* Symbol name matcher for .gdb_index names.
4239
4240 Symbol names in .gdb_index have a few particularities:
4241
4242 - There's no indication of which is the language of each symbol.
4243
4244 Since each language has its own symbol name matching algorithm,
4245 and we don't know which language is the right one, we must match
4246 each symbol against all languages. This would be a potential
4247 performance problem if it were not mitigated by the
4248 mapped_index::name_components lookup table, which significantly
4249 reduces the number of times we need to call into this matcher,
4250 making it a non-issue.
4251
4252 - Symbol names in the index have no overload (parameter)
4253 information. I.e., in C++, "foo(int)" and "foo(long)" both
4254 appear as "foo" in the index, for example.
4255
4256 This means that the lookup names passed to the symbol name
4257 matcher functions must have no parameter information either
4258 because (e.g.) symbol search name "foo" does not match
4259 lookup-name "foo(int)" [while swapping search name for lookup
4260 name would match].
4261 */
4262 class gdb_index_symbol_name_matcher
4263 {
4264 public:
4265 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4266 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4267
4268 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4269 Returns true if any matcher matches. */
4270 bool matches (const char *symbol_name);
4271
4272 private:
4273 /* A reference to the lookup name we're matching against. */
4274 const lookup_name_info &m_lookup_name;
4275
4276 /* A vector holding all the different symbol name matchers, for all
4277 languages. */
4278 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4279 };
4280
4281 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4282 (const lookup_name_info &lookup_name)
4283 : m_lookup_name (lookup_name)
4284 {
4285 /* Prepare the vector of comparison functions upfront, to avoid
4286 doing the same work for each symbol. Care is taken to avoid
4287 matching with the same matcher more than once if/when multiple
4288 languages use the same matcher function. */
4289 auto &matchers = m_symbol_name_matcher_funcs;
4290 matchers.reserve (nr_languages);
4291
4292 matchers.push_back (default_symbol_name_matcher);
4293
4294 for (int i = 0; i < nr_languages; i++)
4295 {
4296 const language_defn *lang = language_def ((enum language) i);
4297 symbol_name_matcher_ftype *name_matcher
4298 = get_symbol_name_matcher (lang, m_lookup_name);
4299
4300 /* Don't insert the same comparison routine more than once.
4301 Note that we do this linear walk instead of a seemingly
4302 cheaper sorted insert, or use a std::set or something like
4303 that, because relative order of function addresses is not
4304 stable. This is not a problem in practice because the number
4305 of supported languages is low, and the cost here is tiny
4306 compared to the number of searches we'll do afterwards using
4307 this object. */
4308 if (name_matcher != default_symbol_name_matcher
4309 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4310 == matchers.end ()))
4311 matchers.push_back (name_matcher);
4312 }
4313 }
4314
4315 bool
4316 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4317 {
4318 for (auto matches_name : m_symbol_name_matcher_funcs)
4319 if (matches_name (symbol_name, m_lookup_name, NULL))
4320 return true;
4321
4322 return false;
4323 }
4324
4325 /* Starting from a search name, return the string that finds the upper
4326 bound of all strings that start with SEARCH_NAME in a sorted name
4327 list. Returns the empty string to indicate that the upper bound is
4328 the end of the list. */
4329
4330 static std::string
4331 make_sort_after_prefix_name (const char *search_name)
4332 {
4333 /* When looking to complete "func", we find the upper bound of all
4334 symbols that start with "func" by looking for where we'd insert
4335 the closest string that would follow "func" in lexicographical
4336 order. Usually, that's "func"-with-last-character-incremented,
4337 i.e. "fund". Mind non-ASCII characters, though. Usually those
4338 will be UTF-8 multi-byte sequences, but we can't be certain.
4339 Especially mind the 0xff character, which is a valid character in
4340 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4341 rule out compilers allowing it in identifiers. Note that
4342 conveniently, strcmp/strcasecmp are specified to compare
4343 characters interpreted as unsigned char. So what we do is treat
4344 the whole string as a base 256 number composed of a sequence of
4345 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4346 to 0, and carries 1 to the following more-significant position.
4347 If the very first character in SEARCH_NAME ends up incremented
4348 and carries/overflows, then the upper bound is the end of the
4349 list. The string after the empty string is also the empty
4350 string.
4351
4352 Some examples of this operation:
4353
4354 SEARCH_NAME => "+1" RESULT
4355
4356 "abc" => "abd"
4357 "ab\xff" => "ac"
4358 "\xff" "a" "\xff" => "\xff" "b"
4359 "\xff" => ""
4360 "\xff\xff" => ""
4361 "" => ""
4362
4363 Then, with these symbols for example:
4364
4365 func
4366 func1
4367 fund
4368
4369 completing "func" looks for symbols between "func" and
4370 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4371 which finds "func" and "func1", but not "fund".
4372
4373 And with:
4374
4375 funcÿ (Latin1 'ÿ' [0xff])
4376 funcÿ1
4377 fund
4378
4379 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4380 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4381
4382 And with:
4383
4384 ÿÿ (Latin1 'ÿ' [0xff])
4385 ÿÿ1
4386
4387 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4388 the end of the list.
4389 */
4390 std::string after = search_name;
4391 while (!after.empty () && (unsigned char) after.back () == 0xff)
4392 after.pop_back ();
4393 if (!after.empty ())
4394 after.back () = (unsigned char) after.back () + 1;
4395 return after;
4396 }
4397
4398 /* See declaration. */
4399
4400 std::pair<std::vector<name_component>::const_iterator,
4401 std::vector<name_component>::const_iterator>
4402 mapped_index_base::find_name_components_bounds
4403 (const lookup_name_info &lookup_name_without_params) const
4404 {
4405 auto *name_cmp
4406 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4407
4408 const char *cplus
4409 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4410
4411 /* Comparison function object for lower_bound that matches against a
4412 given symbol name. */
4413 auto lookup_compare_lower = [&] (const name_component &elem,
4414 const char *name)
4415 {
4416 const char *elem_qualified = this->symbol_name_at (elem.idx);
4417 const char *elem_name = elem_qualified + elem.name_offset;
4418 return name_cmp (elem_name, name) < 0;
4419 };
4420
4421 /* Comparison function object for upper_bound that matches against a
4422 given symbol name. */
4423 auto lookup_compare_upper = [&] (const char *name,
4424 const name_component &elem)
4425 {
4426 const char *elem_qualified = this->symbol_name_at (elem.idx);
4427 const char *elem_name = elem_qualified + elem.name_offset;
4428 return name_cmp (name, elem_name) < 0;
4429 };
4430
4431 auto begin = this->name_components.begin ();
4432 auto end = this->name_components.end ();
4433
4434 /* Find the lower bound. */
4435 auto lower = [&] ()
4436 {
4437 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4438 return begin;
4439 else
4440 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4441 } ();
4442
4443 /* Find the upper bound. */
4444 auto upper = [&] ()
4445 {
4446 if (lookup_name_without_params.completion_mode ())
4447 {
4448 /* In completion mode, we want UPPER to point past all
4449 symbols names that have the same prefix. I.e., with
4450 these symbols, and completing "func":
4451
4452 function << lower bound
4453 function1
4454 other_function << upper bound
4455
4456 We find the upper bound by looking for the insertion
4457 point of "func"-with-last-character-incremented,
4458 i.e. "fund". */
4459 std::string after = make_sort_after_prefix_name (cplus);
4460 if (after.empty ())
4461 return end;
4462 return std::lower_bound (lower, end, after.c_str (),
4463 lookup_compare_lower);
4464 }
4465 else
4466 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4467 } ();
4468
4469 return {lower, upper};
4470 }
4471
4472 /* See declaration. */
4473
4474 void
4475 mapped_index_base::build_name_components ()
4476 {
4477 if (!this->name_components.empty ())
4478 return;
4479
4480 this->name_components_casing = case_sensitivity;
4481 auto *name_cmp
4482 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4483
4484 /* The code below only knows how to break apart components of C++
4485 symbol names (and other languages that use '::' as
4486 namespace/module separator). If we add support for wild matching
4487 to some language that uses some other operator (E.g., Ada, Go and
4488 D use '.'), then we'll need to try splitting the symbol name
4489 according to that language too. Note that Ada does support wild
4490 matching, but doesn't currently support .gdb_index. */
4491 auto count = this->symbol_name_count ();
4492 for (offset_type idx = 0; idx < count; idx++)
4493 {
4494 if (this->symbol_name_slot_invalid (idx))
4495 continue;
4496
4497 const char *name = this->symbol_name_at (idx);
4498
4499 /* Add each name component to the name component table. */
4500 unsigned int previous_len = 0;
4501 for (unsigned int current_len = cp_find_first_component (name);
4502 name[current_len] != '\0';
4503 current_len += cp_find_first_component (name + current_len))
4504 {
4505 gdb_assert (name[current_len] == ':');
4506 this->name_components.push_back ({previous_len, idx});
4507 /* Skip the '::'. */
4508 current_len += 2;
4509 previous_len = current_len;
4510 }
4511 this->name_components.push_back ({previous_len, idx});
4512 }
4513
4514 /* Sort name_components elements by name. */
4515 auto name_comp_compare = [&] (const name_component &left,
4516 const name_component &right)
4517 {
4518 const char *left_qualified = this->symbol_name_at (left.idx);
4519 const char *right_qualified = this->symbol_name_at (right.idx);
4520
4521 const char *left_name = left_qualified + left.name_offset;
4522 const char *right_name = right_qualified + right.name_offset;
4523
4524 return name_cmp (left_name, right_name) < 0;
4525 };
4526
4527 std::sort (this->name_components.begin (),
4528 this->name_components.end (),
4529 name_comp_compare);
4530 }
4531
4532 /* Helper for dw2_expand_symtabs_matching that works with a
4533 mapped_index_base instead of the containing objfile. This is split
4534 to a separate function in order to be able to unit test the
4535 name_components matching using a mock mapped_index_base. For each
4536 symbol name that matches, calls MATCH_CALLBACK, passing it the
4537 symbol's index in the mapped_index_base symbol table. */
4538
4539 static void
4540 dw2_expand_symtabs_matching_symbol
4541 (mapped_index_base &index,
4542 const lookup_name_info &lookup_name_in,
4543 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4544 enum search_domain kind,
4545 gdb::function_view<void (offset_type)> match_callback)
4546 {
4547 lookup_name_info lookup_name_without_params
4548 = lookup_name_in.make_ignore_params ();
4549 gdb_index_symbol_name_matcher lookup_name_matcher
4550 (lookup_name_without_params);
4551
4552 /* Build the symbol name component sorted vector, if we haven't
4553 yet. */
4554 index.build_name_components ();
4555
4556 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4557
4558 /* Now for each symbol name in range, check to see if we have a name
4559 match, and if so, call the MATCH_CALLBACK callback. */
4560
4561 /* The same symbol may appear more than once in the range though.
4562 E.g., if we're looking for symbols that complete "w", and we have
4563 a symbol named "w1::w2", we'll find the two name components for
4564 that same symbol in the range. To be sure we only call the
4565 callback once per symbol, we first collect the symbol name
4566 indexes that matched in a temporary vector and ignore
4567 duplicates. */
4568 std::vector<offset_type> matches;
4569 matches.reserve (std::distance (bounds.first, bounds.second));
4570
4571 for (; bounds.first != bounds.second; ++bounds.first)
4572 {
4573 const char *qualified = index.symbol_name_at (bounds.first->idx);
4574
4575 if (!lookup_name_matcher.matches (qualified)
4576 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4577 continue;
4578
4579 matches.push_back (bounds.first->idx);
4580 }
4581
4582 std::sort (matches.begin (), matches.end ());
4583
4584 /* Finally call the callback, once per match. */
4585 ULONGEST prev = -1;
4586 for (offset_type idx : matches)
4587 {
4588 if (prev != idx)
4589 {
4590 match_callback (idx);
4591 prev = idx;
4592 }
4593 }
4594
4595 /* Above we use a type wider than idx's for 'prev', since 0 and
4596 (offset_type)-1 are both possible values. */
4597 static_assert (sizeof (prev) > sizeof (offset_type), "");
4598 }
4599
4600 #if GDB_SELF_TEST
4601
4602 namespace selftests { namespace dw2_expand_symtabs_matching {
4603
4604 /* A mock .gdb_index/.debug_names-like name index table, enough to
4605 exercise dw2_expand_symtabs_matching_symbol, which works with the
4606 mapped_index_base interface. Builds an index from the symbol list
4607 passed as parameter to the constructor. */
4608 class mock_mapped_index : public mapped_index_base
4609 {
4610 public:
4611 mock_mapped_index (gdb::array_view<const char *> symbols)
4612 : m_symbol_table (symbols)
4613 {}
4614
4615 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4616
4617 /* Return the number of names in the symbol table. */
4618 virtual size_t symbol_name_count () const
4619 {
4620 return m_symbol_table.size ();
4621 }
4622
4623 /* Get the name of the symbol at IDX in the symbol table. */
4624 virtual const char *symbol_name_at (offset_type idx) const
4625 {
4626 return m_symbol_table[idx];
4627 }
4628
4629 private:
4630 gdb::array_view<const char *> m_symbol_table;
4631 };
4632
4633 /* Convenience function that converts a NULL pointer to a "<null>"
4634 string, to pass to print routines. */
4635
4636 static const char *
4637 string_or_null (const char *str)
4638 {
4639 return str != NULL ? str : "<null>";
4640 }
4641
4642 /* Check if a lookup_name_info built from
4643 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4644 index. EXPECTED_LIST is the list of expected matches, in expected
4645 matching order. If no match expected, then an empty list is
4646 specified. Returns true on success. On failure prints a warning
4647 indicating the file:line that failed, and returns false. */
4648
4649 static bool
4650 check_match (const char *file, int line,
4651 mock_mapped_index &mock_index,
4652 const char *name, symbol_name_match_type match_type,
4653 bool completion_mode,
4654 std::initializer_list<const char *> expected_list)
4655 {
4656 lookup_name_info lookup_name (name, match_type, completion_mode);
4657
4658 bool matched = true;
4659
4660 auto mismatch = [&] (const char *expected_str,
4661 const char *got)
4662 {
4663 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4664 "expected=\"%s\", got=\"%s\"\n"),
4665 file, line,
4666 (match_type == symbol_name_match_type::FULL
4667 ? "FULL" : "WILD"),
4668 name, string_or_null (expected_str), string_or_null (got));
4669 matched = false;
4670 };
4671
4672 auto expected_it = expected_list.begin ();
4673 auto expected_end = expected_list.end ();
4674
4675 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4676 NULL, ALL_DOMAIN,
4677 [&] (offset_type idx)
4678 {
4679 const char *matched_name = mock_index.symbol_name_at (idx);
4680 const char *expected_str
4681 = expected_it == expected_end ? NULL : *expected_it++;
4682
4683 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4684 mismatch (expected_str, matched_name);
4685 });
4686
4687 const char *expected_str
4688 = expected_it == expected_end ? NULL : *expected_it++;
4689 if (expected_str != NULL)
4690 mismatch (expected_str, NULL);
4691
4692 return matched;
4693 }
4694
4695 /* The symbols added to the mock mapped_index for testing (in
4696 canonical form). */
4697 static const char *test_symbols[] = {
4698 "function",
4699 "std::bar",
4700 "std::zfunction",
4701 "std::zfunction2",
4702 "w1::w2",
4703 "ns::foo<char*>",
4704 "ns::foo<int>",
4705 "ns::foo<long>",
4706 "ns2::tmpl<int>::foo2",
4707 "(anonymous namespace)::A::B::C",
4708
4709 /* These are used to check that the increment-last-char in the
4710 matching algorithm for completion doesn't match "t1_fund" when
4711 completing "t1_func". */
4712 "t1_func",
4713 "t1_func1",
4714 "t1_fund",
4715 "t1_fund1",
4716
4717 /* A UTF-8 name with multi-byte sequences to make sure that
4718 cp-name-parser understands this as a single identifier ("função"
4719 is "function" in PT). */
4720 u8"u8função",
4721
4722 /* \377 (0xff) is Latin1 'ÿ'. */
4723 "yfunc\377",
4724
4725 /* \377 (0xff) is Latin1 'ÿ'. */
4726 "\377",
4727 "\377\377123",
4728
4729 /* A name with all sorts of complications. Starts with "z" to make
4730 it easier for the completion tests below. */
4731 #define Z_SYM_NAME \
4732 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4733 "::tuple<(anonymous namespace)::ui*, " \
4734 "std::default_delete<(anonymous namespace)::ui>, void>"
4735
4736 Z_SYM_NAME
4737 };
4738
4739 /* Returns true if the mapped_index_base::find_name_component_bounds
4740 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4741 in completion mode. */
4742
4743 static bool
4744 check_find_bounds_finds (mapped_index_base &index,
4745 const char *search_name,
4746 gdb::array_view<const char *> expected_syms)
4747 {
4748 lookup_name_info lookup_name (search_name,
4749 symbol_name_match_type::FULL, true);
4750
4751 auto bounds = index.find_name_components_bounds (lookup_name);
4752
4753 size_t distance = std::distance (bounds.first, bounds.second);
4754 if (distance != expected_syms.size ())
4755 return false;
4756
4757 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4758 {
4759 auto nc_elem = bounds.first + exp_elem;
4760 const char *qualified = index.symbol_name_at (nc_elem->idx);
4761 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4762 return false;
4763 }
4764
4765 return true;
4766 }
4767
4768 /* Test the lower-level mapped_index::find_name_component_bounds
4769 method. */
4770
4771 static void
4772 test_mapped_index_find_name_component_bounds ()
4773 {
4774 mock_mapped_index mock_index (test_symbols);
4775
4776 mock_index.build_name_components ();
4777
4778 /* Test the lower-level mapped_index::find_name_component_bounds
4779 method in completion mode. */
4780 {
4781 static const char *expected_syms[] = {
4782 "t1_func",
4783 "t1_func1",
4784 };
4785
4786 SELF_CHECK (check_find_bounds_finds (mock_index,
4787 "t1_func", expected_syms));
4788 }
4789
4790 /* Check that the increment-last-char in the name matching algorithm
4791 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4792 {
4793 static const char *expected_syms1[] = {
4794 "\377",
4795 "\377\377123",
4796 };
4797 SELF_CHECK (check_find_bounds_finds (mock_index,
4798 "\377", expected_syms1));
4799
4800 static const char *expected_syms2[] = {
4801 "\377\377123",
4802 };
4803 SELF_CHECK (check_find_bounds_finds (mock_index,
4804 "\377\377", expected_syms2));
4805 }
4806 }
4807
4808 /* Test dw2_expand_symtabs_matching_symbol. */
4809
4810 static void
4811 test_dw2_expand_symtabs_matching_symbol ()
4812 {
4813 mock_mapped_index mock_index (test_symbols);
4814
4815 /* We let all tests run until the end even if some fails, for debug
4816 convenience. */
4817 bool any_mismatch = false;
4818
4819 /* Create the expected symbols list (an initializer_list). Needed
4820 because lists have commas, and we need to pass them to CHECK,
4821 which is a macro. */
4822 #define EXPECT(...) { __VA_ARGS__ }
4823
4824 /* Wrapper for check_match that passes down the current
4825 __FILE__/__LINE__. */
4826 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4827 any_mismatch |= !check_match (__FILE__, __LINE__, \
4828 mock_index, \
4829 NAME, MATCH_TYPE, COMPLETION_MODE, \
4830 EXPECTED_LIST)
4831
4832 /* Identity checks. */
4833 for (const char *sym : test_symbols)
4834 {
4835 /* Should be able to match all existing symbols. */
4836 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4837 EXPECT (sym));
4838
4839 /* Should be able to match all existing symbols with
4840 parameters. */
4841 std::string with_params = std::string (sym) + "(int)";
4842 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4843 EXPECT (sym));
4844
4845 /* Should be able to match all existing symbols with
4846 parameters and qualifiers. */
4847 with_params = std::string (sym) + " ( int ) const";
4848 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4849 EXPECT (sym));
4850
4851 /* This should really find sym, but cp-name-parser.y doesn't
4852 know about lvalue/rvalue qualifiers yet. */
4853 with_params = std::string (sym) + " ( int ) &&";
4854 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4855 {});
4856 }
4857
4858 /* Check that the name matching algorithm for completion doesn't get
4859 confused with Latin1 'ÿ' / 0xff. */
4860 {
4861 static const char str[] = "\377";
4862 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4863 EXPECT ("\377", "\377\377123"));
4864 }
4865
4866 /* Check that the increment-last-char in the matching algorithm for
4867 completion doesn't match "t1_fund" when completing "t1_func". */
4868 {
4869 static const char str[] = "t1_func";
4870 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4871 EXPECT ("t1_func", "t1_func1"));
4872 }
4873
4874 /* Check that completion mode works at each prefix of the expected
4875 symbol name. */
4876 {
4877 static const char str[] = "function(int)";
4878 size_t len = strlen (str);
4879 std::string lookup;
4880
4881 for (size_t i = 1; i < len; i++)
4882 {
4883 lookup.assign (str, i);
4884 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4885 EXPECT ("function"));
4886 }
4887 }
4888
4889 /* While "w" is a prefix of both components, the match function
4890 should still only be called once. */
4891 {
4892 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4893 EXPECT ("w1::w2"));
4894 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4895 EXPECT ("w1::w2"));
4896 }
4897
4898 /* Same, with a "complicated" symbol. */
4899 {
4900 static const char str[] = Z_SYM_NAME;
4901 size_t len = strlen (str);
4902 std::string lookup;
4903
4904 for (size_t i = 1; i < len; i++)
4905 {
4906 lookup.assign (str, i);
4907 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4908 EXPECT (Z_SYM_NAME));
4909 }
4910 }
4911
4912 /* In FULL mode, an incomplete symbol doesn't match. */
4913 {
4914 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4915 {});
4916 }
4917
4918 /* A complete symbol with parameters matches any overload, since the
4919 index has no overload info. */
4920 {
4921 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4922 EXPECT ("std::zfunction", "std::zfunction2"));
4923 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4924 EXPECT ("std::zfunction", "std::zfunction2"));
4925 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4926 EXPECT ("std::zfunction", "std::zfunction2"));
4927 }
4928
4929 /* Check that whitespace is ignored appropriately. A symbol with a
4930 template argument list. */
4931 {
4932 static const char expected[] = "ns::foo<int>";
4933 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4934 EXPECT (expected));
4935 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4936 EXPECT (expected));
4937 }
4938
4939 /* Check that whitespace is ignored appropriately. A symbol with a
4940 template argument list that includes a pointer. */
4941 {
4942 static const char expected[] = "ns::foo<char*>";
4943 /* Try both completion and non-completion modes. */
4944 static const bool completion_mode[2] = {false, true};
4945 for (size_t i = 0; i < 2; i++)
4946 {
4947 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4948 completion_mode[i], EXPECT (expected));
4949 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4950 completion_mode[i], EXPECT (expected));
4951
4952 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4953 completion_mode[i], EXPECT (expected));
4954 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4955 completion_mode[i], EXPECT (expected));
4956 }
4957 }
4958
4959 {
4960 /* Check method qualifiers are ignored. */
4961 static const char expected[] = "ns::foo<char*>";
4962 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4963 symbol_name_match_type::FULL, true, EXPECT (expected));
4964 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4965 symbol_name_match_type::FULL, true, EXPECT (expected));
4966 CHECK_MATCH ("foo < char * > ( int ) const",
4967 symbol_name_match_type::WILD, true, EXPECT (expected));
4968 CHECK_MATCH ("foo < char * > ( int ) &&",
4969 symbol_name_match_type::WILD, true, EXPECT (expected));
4970 }
4971
4972 /* Test lookup names that don't match anything. */
4973 {
4974 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4975 {});
4976
4977 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4978 {});
4979 }
4980
4981 /* Some wild matching tests, exercising "(anonymous namespace)",
4982 which should not be confused with a parameter list. */
4983 {
4984 static const char *syms[] = {
4985 "A::B::C",
4986 "B::C",
4987 "C",
4988 "A :: B :: C ( int )",
4989 "B :: C ( int )",
4990 "C ( int )",
4991 };
4992
4993 for (const char *s : syms)
4994 {
4995 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4996 EXPECT ("(anonymous namespace)::A::B::C"));
4997 }
4998 }
4999
5000 {
5001 static const char expected[] = "ns2::tmpl<int>::foo2";
5002 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5003 EXPECT (expected));
5004 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5005 EXPECT (expected));
5006 }
5007
5008 SELF_CHECK (!any_mismatch);
5009
5010 #undef EXPECT
5011 #undef CHECK_MATCH
5012 }
5013
5014 static void
5015 run_test ()
5016 {
5017 test_mapped_index_find_name_component_bounds ();
5018 test_dw2_expand_symtabs_matching_symbol ();
5019 }
5020
5021 }} // namespace selftests::dw2_expand_symtabs_matching
5022
5023 #endif /* GDB_SELF_TEST */
5024
5025 /* If FILE_MATCHER is NULL or if PER_CU has
5026 dwarf2_per_cu_quick_data::MARK set (see
5027 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5028 EXPANSION_NOTIFY on it. */
5029
5030 static void
5031 dw2_expand_symtabs_matching_one
5032 (struct dwarf2_per_cu_data *per_cu,
5033 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5034 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5035 {
5036 if (file_matcher == NULL || per_cu->v.quick->mark)
5037 {
5038 bool symtab_was_null
5039 = (per_cu->v.quick->compunit_symtab == NULL);
5040
5041 dw2_instantiate_symtab (per_cu);
5042
5043 if (expansion_notify != NULL
5044 && symtab_was_null
5045 && per_cu->v.quick->compunit_symtab != NULL)
5046 expansion_notify (per_cu->v.quick->compunit_symtab);
5047 }
5048 }
5049
5050 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5051 matched, to expand corresponding CUs that were marked. IDX is the
5052 index of the symbol name that matched. */
5053
5054 static void
5055 dw2_expand_marked_cus
5056 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5057 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5058 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5059 search_domain kind)
5060 {
5061 offset_type *vec, vec_len, vec_idx;
5062 bool global_seen = false;
5063 mapped_index &index = *dwarf2_per_objfile->index_table;
5064
5065 vec = (offset_type *) (index.constant_pool
5066 + MAYBE_SWAP (index.symbol_table[idx].vec));
5067 vec_len = MAYBE_SWAP (vec[0]);
5068 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5069 {
5070 struct dwarf2_per_cu_data *per_cu;
5071 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5072 /* This value is only valid for index versions >= 7. */
5073 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5074 gdb_index_symbol_kind symbol_kind =
5075 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5076 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5077 /* Only check the symbol attributes if they're present.
5078 Indices prior to version 7 don't record them,
5079 and indices >= 7 may elide them for certain symbols
5080 (gold does this). */
5081 int attrs_valid =
5082 (index.version >= 7
5083 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5084
5085 /* Work around gold/15646. */
5086 if (attrs_valid)
5087 {
5088 if (!is_static && global_seen)
5089 continue;
5090 if (!is_static)
5091 global_seen = true;
5092 }
5093
5094 /* Only check the symbol's kind if it has one. */
5095 if (attrs_valid)
5096 {
5097 switch (kind)
5098 {
5099 case VARIABLES_DOMAIN:
5100 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5101 continue;
5102 break;
5103 case FUNCTIONS_DOMAIN:
5104 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5105 continue;
5106 break;
5107 case TYPES_DOMAIN:
5108 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5109 continue;
5110 break;
5111 default:
5112 break;
5113 }
5114 }
5115
5116 /* Don't crash on bad data. */
5117 if (cu_index >= (dwarf2_per_objfile->n_comp_units
5118 + dwarf2_per_objfile->n_type_units))
5119 {
5120 complaint (&symfile_complaints,
5121 _(".gdb_index entry has bad CU index"
5122 " [in module %s]"),
5123 objfile_name (dwarf2_per_objfile->objfile));
5124 continue;
5125 }
5126
5127 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
5128 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5129 expansion_notify);
5130 }
5131 }
5132
5133 /* If FILE_MATCHER is non-NULL, set all the
5134 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5135 that match FILE_MATCHER. */
5136
5137 static void
5138 dw_expand_symtabs_matching_file_matcher
5139 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5140 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5141 {
5142 if (file_matcher == NULL)
5143 return;
5144
5145 objfile *const objfile = dwarf2_per_objfile->objfile;
5146
5147 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5148 htab_eq_pointer,
5149 NULL, xcalloc, xfree));
5150 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5151 htab_eq_pointer,
5152 NULL, xcalloc, xfree));
5153
5154 /* The rule is CUs specify all the files, including those used by
5155 any TU, so there's no need to scan TUs here. */
5156
5157 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5158 {
5159 int j;
5160 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5161 struct quick_file_names *file_data;
5162 void **slot;
5163
5164 QUIT;
5165
5166 per_cu->v.quick->mark = 0;
5167
5168 /* We only need to look at symtabs not already expanded. */
5169 if (per_cu->v.quick->compunit_symtab)
5170 continue;
5171
5172 file_data = dw2_get_file_names (per_cu);
5173 if (file_data == NULL)
5174 continue;
5175
5176 if (htab_find (visited_not_found.get (), file_data) != NULL)
5177 continue;
5178 else if (htab_find (visited_found.get (), file_data) != NULL)
5179 {
5180 per_cu->v.quick->mark = 1;
5181 continue;
5182 }
5183
5184 for (j = 0; j < file_data->num_file_names; ++j)
5185 {
5186 const char *this_real_name;
5187
5188 if (file_matcher (file_data->file_names[j], false))
5189 {
5190 per_cu->v.quick->mark = 1;
5191 break;
5192 }
5193
5194 /* Before we invoke realpath, which can get expensive when many
5195 files are involved, do a quick comparison of the basenames. */
5196 if (!basenames_may_differ
5197 && !file_matcher (lbasename (file_data->file_names[j]),
5198 true))
5199 continue;
5200
5201 this_real_name = dw2_get_real_path (objfile, file_data, j);
5202 if (file_matcher (this_real_name, false))
5203 {
5204 per_cu->v.quick->mark = 1;
5205 break;
5206 }
5207 }
5208
5209 slot = htab_find_slot (per_cu->v.quick->mark
5210 ? visited_found.get ()
5211 : visited_not_found.get (),
5212 file_data, INSERT);
5213 *slot = file_data;
5214 }
5215 }
5216
5217 static void
5218 dw2_expand_symtabs_matching
5219 (struct objfile *objfile,
5220 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5221 const lookup_name_info &lookup_name,
5222 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5223 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5224 enum search_domain kind)
5225 {
5226 struct dwarf2_per_objfile *dwarf2_per_objfile
5227 = get_dwarf2_per_objfile (objfile);
5228
5229 /* index_table is NULL if OBJF_READNOW. */
5230 if (!dwarf2_per_objfile->index_table)
5231 return;
5232
5233 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5234
5235 mapped_index &index = *dwarf2_per_objfile->index_table;
5236
5237 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5238 symbol_matcher,
5239 kind, [&] (offset_type idx)
5240 {
5241 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5242 expansion_notify, kind);
5243 });
5244 }
5245
5246 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5247 symtab. */
5248
5249 static struct compunit_symtab *
5250 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5251 CORE_ADDR pc)
5252 {
5253 int i;
5254
5255 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5256 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5257 return cust;
5258
5259 if (cust->includes == NULL)
5260 return NULL;
5261
5262 for (i = 0; cust->includes[i]; ++i)
5263 {
5264 struct compunit_symtab *s = cust->includes[i];
5265
5266 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5267 if (s != NULL)
5268 return s;
5269 }
5270
5271 return NULL;
5272 }
5273
5274 static struct compunit_symtab *
5275 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5276 struct bound_minimal_symbol msymbol,
5277 CORE_ADDR pc,
5278 struct obj_section *section,
5279 int warn_if_readin)
5280 {
5281 struct dwarf2_per_cu_data *data;
5282 struct compunit_symtab *result;
5283
5284 if (!objfile->psymtabs_addrmap)
5285 return NULL;
5286
5287 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5288 pc);
5289 if (!data)
5290 return NULL;
5291
5292 if (warn_if_readin && data->v.quick->compunit_symtab)
5293 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5294 paddress (get_objfile_arch (objfile), pc));
5295
5296 result
5297 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5298 pc);
5299 gdb_assert (result != NULL);
5300 return result;
5301 }
5302
5303 static void
5304 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5305 void *data, int need_fullname)
5306 {
5307 struct dwarf2_per_objfile *dwarf2_per_objfile
5308 = get_dwarf2_per_objfile (objfile);
5309
5310 if (!dwarf2_per_objfile->filenames_cache)
5311 {
5312 dwarf2_per_objfile->filenames_cache.emplace ();
5313
5314 htab_up visited (htab_create_alloc (10,
5315 htab_hash_pointer, htab_eq_pointer,
5316 NULL, xcalloc, xfree));
5317
5318 /* The rule is CUs specify all the files, including those used
5319 by any TU, so there's no need to scan TUs here. We can
5320 ignore file names coming from already-expanded CUs. */
5321
5322 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5323 {
5324 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
5325
5326 if (per_cu->v.quick->compunit_symtab)
5327 {
5328 void **slot = htab_find_slot (visited.get (),
5329 per_cu->v.quick->file_names,
5330 INSERT);
5331
5332 *slot = per_cu->v.quick->file_names;
5333 }
5334 }
5335
5336 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5337 {
5338 dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5339 struct quick_file_names *file_data;
5340 void **slot;
5341
5342 /* We only need to look at symtabs not already expanded. */
5343 if (per_cu->v.quick->compunit_symtab)
5344 continue;
5345
5346 file_data = dw2_get_file_names (per_cu);
5347 if (file_data == NULL)
5348 continue;
5349
5350 slot = htab_find_slot (visited.get (), file_data, INSERT);
5351 if (*slot)
5352 {
5353 /* Already visited. */
5354 continue;
5355 }
5356 *slot = file_data;
5357
5358 for (int j = 0; j < file_data->num_file_names; ++j)
5359 {
5360 const char *filename = file_data->file_names[j];
5361 dwarf2_per_objfile->filenames_cache->seen (filename);
5362 }
5363 }
5364 }
5365
5366 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5367 {
5368 gdb::unique_xmalloc_ptr<char> this_real_name;
5369
5370 if (need_fullname)
5371 this_real_name = gdb_realpath (filename);
5372 (*fun) (filename, this_real_name.get (), data);
5373 });
5374 }
5375
5376 static int
5377 dw2_has_symbols (struct objfile *objfile)
5378 {
5379 return 1;
5380 }
5381
5382 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5383 {
5384 dw2_has_symbols,
5385 dw2_find_last_source_symtab,
5386 dw2_forget_cached_source_info,
5387 dw2_map_symtabs_matching_filename,
5388 dw2_lookup_symbol,
5389 dw2_print_stats,
5390 dw2_dump,
5391 dw2_relocate,
5392 dw2_expand_symtabs_for_function,
5393 dw2_expand_all_symtabs,
5394 dw2_expand_symtabs_with_fullname,
5395 dw2_map_matching_symbols,
5396 dw2_expand_symtabs_matching,
5397 dw2_find_pc_sect_compunit_symtab,
5398 NULL,
5399 dw2_map_symbol_filenames
5400 };
5401
5402 /* DWARF-5 debug_names reader. */
5403
5404 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5405 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5406
5407 /* A helper function that reads the .debug_names section in SECTION
5408 and fills in MAP. FILENAME is the name of the file containing the
5409 section; it is used for error reporting.
5410
5411 Returns true if all went well, false otherwise. */
5412
5413 static bool
5414 read_debug_names_from_section (struct objfile *objfile,
5415 const char *filename,
5416 struct dwarf2_section_info *section,
5417 mapped_debug_names &map)
5418 {
5419 if (dwarf2_section_empty_p (section))
5420 return false;
5421
5422 /* Older elfutils strip versions could keep the section in the main
5423 executable while splitting it for the separate debug info file. */
5424 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5425 return false;
5426
5427 dwarf2_read_section (objfile, section);
5428
5429 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5430
5431 const gdb_byte *addr = section->buffer;
5432
5433 bfd *const abfd = get_section_bfd_owner (section);
5434
5435 unsigned int bytes_read;
5436 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5437 addr += bytes_read;
5438
5439 map.dwarf5_is_dwarf64 = bytes_read != 4;
5440 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5441 if (bytes_read + length != section->size)
5442 {
5443 /* There may be multiple per-CU indices. */
5444 warning (_("Section .debug_names in %s length %s does not match "
5445 "section length %s, ignoring .debug_names."),
5446 filename, plongest (bytes_read + length),
5447 pulongest (section->size));
5448 return false;
5449 }
5450
5451 /* The version number. */
5452 uint16_t version = read_2_bytes (abfd, addr);
5453 addr += 2;
5454 if (version != 5)
5455 {
5456 warning (_("Section .debug_names in %s has unsupported version %d, "
5457 "ignoring .debug_names."),
5458 filename, version);
5459 return false;
5460 }
5461
5462 /* Padding. */
5463 uint16_t padding = read_2_bytes (abfd, addr);
5464 addr += 2;
5465 if (padding != 0)
5466 {
5467 warning (_("Section .debug_names in %s has unsupported padding %d, "
5468 "ignoring .debug_names."),
5469 filename, padding);
5470 return false;
5471 }
5472
5473 /* comp_unit_count - The number of CUs in the CU list. */
5474 map.cu_count = read_4_bytes (abfd, addr);
5475 addr += 4;
5476
5477 /* local_type_unit_count - The number of TUs in the local TU
5478 list. */
5479 map.tu_count = read_4_bytes (abfd, addr);
5480 addr += 4;
5481
5482 /* foreign_type_unit_count - The number of TUs in the foreign TU
5483 list. */
5484 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5485 addr += 4;
5486 if (foreign_tu_count != 0)
5487 {
5488 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5489 "ignoring .debug_names."),
5490 filename, static_cast<unsigned long> (foreign_tu_count));
5491 return false;
5492 }
5493
5494 /* bucket_count - The number of hash buckets in the hash lookup
5495 table. */
5496 map.bucket_count = read_4_bytes (abfd, addr);
5497 addr += 4;
5498
5499 /* name_count - The number of unique names in the index. */
5500 map.name_count = read_4_bytes (abfd, addr);
5501 addr += 4;
5502
5503 /* abbrev_table_size - The size in bytes of the abbreviations
5504 table. */
5505 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5506 addr += 4;
5507
5508 /* augmentation_string_size - The size in bytes of the augmentation
5509 string. This value is rounded up to a multiple of 4. */
5510 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5511 addr += 4;
5512 map.augmentation_is_gdb = ((augmentation_string_size
5513 == sizeof (dwarf5_augmentation))
5514 && memcmp (addr, dwarf5_augmentation,
5515 sizeof (dwarf5_augmentation)) == 0);
5516 augmentation_string_size += (-augmentation_string_size) & 3;
5517 addr += augmentation_string_size;
5518
5519 /* List of CUs */
5520 map.cu_table_reordered = addr;
5521 addr += map.cu_count * map.offset_size;
5522
5523 /* List of Local TUs */
5524 map.tu_table_reordered = addr;
5525 addr += map.tu_count * map.offset_size;
5526
5527 /* Hash Lookup Table */
5528 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5529 addr += map.bucket_count * 4;
5530 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5531 addr += map.name_count * 4;
5532
5533 /* Name Table */
5534 map.name_table_string_offs_reordered = addr;
5535 addr += map.name_count * map.offset_size;
5536 map.name_table_entry_offs_reordered = addr;
5537 addr += map.name_count * map.offset_size;
5538
5539 const gdb_byte *abbrev_table_start = addr;
5540 for (;;)
5541 {
5542 unsigned int bytes_read;
5543 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5544 addr += bytes_read;
5545 if (index_num == 0)
5546 break;
5547
5548 const auto insertpair
5549 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5550 if (!insertpair.second)
5551 {
5552 warning (_("Section .debug_names in %s has duplicate index %s, "
5553 "ignoring .debug_names."),
5554 filename, pulongest (index_num));
5555 return false;
5556 }
5557 mapped_debug_names::index_val &indexval = insertpair.first->second;
5558 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5559 addr += bytes_read;
5560
5561 for (;;)
5562 {
5563 mapped_debug_names::index_val::attr attr;
5564 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5565 addr += bytes_read;
5566 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5567 addr += bytes_read;
5568 if (attr.form == DW_FORM_implicit_const)
5569 {
5570 attr.implicit_const = read_signed_leb128 (abfd, addr,
5571 &bytes_read);
5572 addr += bytes_read;
5573 }
5574 if (attr.dw_idx == 0 && attr.form == 0)
5575 break;
5576 indexval.attr_vec.push_back (std::move (attr));
5577 }
5578 }
5579 if (addr != abbrev_table_start + abbrev_table_size)
5580 {
5581 warning (_("Section .debug_names in %s has abbreviation_table "
5582 "of size %zu vs. written as %u, ignoring .debug_names."),
5583 filename, addr - abbrev_table_start, abbrev_table_size);
5584 return false;
5585 }
5586 map.entry_pool = addr;
5587
5588 return true;
5589 }
5590
5591 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5592 list. */
5593
5594 static void
5595 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5596 const mapped_debug_names &map,
5597 dwarf2_section_info &section,
5598 bool is_dwz, int base_offset)
5599 {
5600 sect_offset sect_off_prev;
5601 for (uint32_t i = 0; i <= map.cu_count; ++i)
5602 {
5603 sect_offset sect_off_next;
5604 if (i < map.cu_count)
5605 {
5606 sect_off_next
5607 = (sect_offset) (extract_unsigned_integer
5608 (map.cu_table_reordered + i * map.offset_size,
5609 map.offset_size,
5610 map.dwarf5_byte_order));
5611 }
5612 else
5613 sect_off_next = (sect_offset) section.size;
5614 if (i >= 1)
5615 {
5616 const ULONGEST length = sect_off_next - sect_off_prev;
5617 dwarf2_per_objfile->all_comp_units[base_offset + (i - 1)]
5618 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5619 sect_off_prev, length);
5620 }
5621 sect_off_prev = sect_off_next;
5622 }
5623 }
5624
5625 /* Read the CU list from the mapped index, and use it to create all
5626 the CU objects for this dwarf2_per_objfile. */
5627
5628 static void
5629 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5630 const mapped_debug_names &map,
5631 const mapped_debug_names &dwz_map)
5632 {
5633 struct objfile *objfile = dwarf2_per_objfile->objfile;
5634
5635 dwarf2_per_objfile->n_comp_units = map.cu_count + dwz_map.cu_count;
5636 dwarf2_per_objfile->all_comp_units
5637 = XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
5638 dwarf2_per_objfile->n_comp_units);
5639
5640 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5641 dwarf2_per_objfile->info,
5642 false /* is_dwz */,
5643 0 /* base_offset */);
5644
5645 if (dwz_map.cu_count == 0)
5646 return;
5647
5648 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5649 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5650 true /* is_dwz */,
5651 map.cu_count /* base_offset */);
5652 }
5653
5654 /* Read .debug_names. If everything went ok, initialize the "quick"
5655 elements of all the CUs and return true. Otherwise, return false. */
5656
5657 static bool
5658 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5659 {
5660 mapped_debug_names local_map (dwarf2_per_objfile);
5661 mapped_debug_names dwz_map (dwarf2_per_objfile);
5662 struct objfile *objfile = dwarf2_per_objfile->objfile;
5663
5664 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5665 &dwarf2_per_objfile->debug_names,
5666 local_map))
5667 return false;
5668
5669 /* Don't use the index if it's empty. */
5670 if (local_map.name_count == 0)
5671 return false;
5672
5673 /* If there is a .dwz file, read it so we can get its CU list as
5674 well. */
5675 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5676 if (dwz != NULL)
5677 {
5678 if (!read_debug_names_from_section (objfile,
5679 bfd_get_filename (dwz->dwz_bfd),
5680 &dwz->debug_names, dwz_map))
5681 {
5682 warning (_("could not read '.debug_names' section from %s; skipping"),
5683 bfd_get_filename (dwz->dwz_bfd));
5684 return false;
5685 }
5686 }
5687
5688 create_cus_from_debug_names (dwarf2_per_objfile, local_map, dwz_map);
5689
5690 if (local_map.tu_count != 0)
5691 {
5692 /* We can only handle a single .debug_types when we have an
5693 index. */
5694 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5695 return false;
5696
5697 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5698 dwarf2_per_objfile->types, 0);
5699
5700 create_signatured_type_table_from_debug_names
5701 (dwarf2_per_objfile, local_map, section, &dwarf2_per_objfile->abbrev);
5702 }
5703
5704 create_addrmap_from_aranges (dwarf2_per_objfile,
5705 &dwarf2_per_objfile->debug_aranges);
5706
5707 dwarf2_per_objfile->debug_names_table.reset
5708 (new mapped_debug_names (dwarf2_per_objfile));
5709 *dwarf2_per_objfile->debug_names_table = std::move (local_map);
5710 dwarf2_per_objfile->using_index = 1;
5711 dwarf2_per_objfile->quick_file_names_table =
5712 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
5713
5714 return true;
5715 }
5716
5717 /* Type used to manage iterating over all CUs looking for a symbol for
5718 .debug_names. */
5719
5720 class dw2_debug_names_iterator
5721 {
5722 public:
5723 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5724 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5725 dw2_debug_names_iterator (const mapped_debug_names &map,
5726 bool want_specific_block,
5727 block_enum block_index, domain_enum domain,
5728 const char *name)
5729 : m_map (map), m_want_specific_block (want_specific_block),
5730 m_block_index (block_index), m_domain (domain),
5731 m_addr (find_vec_in_debug_names (map, name))
5732 {}
5733
5734 dw2_debug_names_iterator (const mapped_debug_names &map,
5735 search_domain search, uint32_t namei)
5736 : m_map (map),
5737 m_search (search),
5738 m_addr (find_vec_in_debug_names (map, namei))
5739 {}
5740
5741 /* Return the next matching CU or NULL if there are no more. */
5742 dwarf2_per_cu_data *next ();
5743
5744 private:
5745 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5746 const char *name);
5747 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5748 uint32_t namei);
5749
5750 /* The internalized form of .debug_names. */
5751 const mapped_debug_names &m_map;
5752
5753 /* If true, only look for symbols that match BLOCK_INDEX. */
5754 const bool m_want_specific_block = false;
5755
5756 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5757 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5758 value. */
5759 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5760
5761 /* The kind of symbol we're looking for. */
5762 const domain_enum m_domain = UNDEF_DOMAIN;
5763 const search_domain m_search = ALL_DOMAIN;
5764
5765 /* The list of CUs from the index entry of the symbol, or NULL if
5766 not found. */
5767 const gdb_byte *m_addr;
5768 };
5769
5770 const char *
5771 mapped_debug_names::namei_to_name (uint32_t namei) const
5772 {
5773 const ULONGEST namei_string_offs
5774 = extract_unsigned_integer ((name_table_string_offs_reordered
5775 + namei * offset_size),
5776 offset_size,
5777 dwarf5_byte_order);
5778 return read_indirect_string_at_offset
5779 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5780 }
5781
5782 /* Find a slot in .debug_names for the object named NAME. If NAME is
5783 found, return pointer to its pool data. If NAME cannot be found,
5784 return NULL. */
5785
5786 const gdb_byte *
5787 dw2_debug_names_iterator::find_vec_in_debug_names
5788 (const mapped_debug_names &map, const char *name)
5789 {
5790 int (*cmp) (const char *, const char *);
5791
5792 if (current_language->la_language == language_cplus
5793 || current_language->la_language == language_fortran
5794 || current_language->la_language == language_d)
5795 {
5796 /* NAME is already canonical. Drop any qualifiers as
5797 .debug_names does not contain any. */
5798
5799 if (strchr (name, '(') != NULL)
5800 {
5801 gdb::unique_xmalloc_ptr<char> without_params
5802 = cp_remove_params (name);
5803
5804 if (without_params != NULL)
5805 {
5806 name = without_params.get();
5807 }
5808 }
5809 }
5810
5811 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5812
5813 const uint32_t full_hash = dwarf5_djb_hash (name);
5814 uint32_t namei
5815 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5816 (map.bucket_table_reordered
5817 + (full_hash % map.bucket_count)), 4,
5818 map.dwarf5_byte_order);
5819 if (namei == 0)
5820 return NULL;
5821 --namei;
5822 if (namei >= map.name_count)
5823 {
5824 complaint (&symfile_complaints,
5825 _("Wrong .debug_names with name index %u but name_count=%u "
5826 "[in module %s]"),
5827 namei, map.name_count,
5828 objfile_name (map.dwarf2_per_objfile->objfile));
5829 return NULL;
5830 }
5831
5832 for (;;)
5833 {
5834 const uint32_t namei_full_hash
5835 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5836 (map.hash_table_reordered + namei), 4,
5837 map.dwarf5_byte_order);
5838 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5839 return NULL;
5840
5841 if (full_hash == namei_full_hash)
5842 {
5843 const char *const namei_string = map.namei_to_name (namei);
5844
5845 #if 0 /* An expensive sanity check. */
5846 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5847 {
5848 complaint (&symfile_complaints,
5849 _("Wrong .debug_names hash for string at index %u "
5850 "[in module %s]"),
5851 namei, objfile_name (dwarf2_per_objfile->objfile));
5852 return NULL;
5853 }
5854 #endif
5855
5856 if (cmp (namei_string, name) == 0)
5857 {
5858 const ULONGEST namei_entry_offs
5859 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5860 + namei * map.offset_size),
5861 map.offset_size, map.dwarf5_byte_order);
5862 return map.entry_pool + namei_entry_offs;
5863 }
5864 }
5865
5866 ++namei;
5867 if (namei >= map.name_count)
5868 return NULL;
5869 }
5870 }
5871
5872 const gdb_byte *
5873 dw2_debug_names_iterator::find_vec_in_debug_names
5874 (const mapped_debug_names &map, uint32_t namei)
5875 {
5876 if (namei >= map.name_count)
5877 {
5878 complaint (&symfile_complaints,
5879 _("Wrong .debug_names with name index %u but name_count=%u "
5880 "[in module %s]"),
5881 namei, map.name_count,
5882 objfile_name (map.dwarf2_per_objfile->objfile));
5883 return NULL;
5884 }
5885
5886 const ULONGEST namei_entry_offs
5887 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5888 + namei * map.offset_size),
5889 map.offset_size, map.dwarf5_byte_order);
5890 return map.entry_pool + namei_entry_offs;
5891 }
5892
5893 /* See dw2_debug_names_iterator. */
5894
5895 dwarf2_per_cu_data *
5896 dw2_debug_names_iterator::next ()
5897 {
5898 if (m_addr == NULL)
5899 return NULL;
5900
5901 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5902 struct objfile *objfile = dwarf2_per_objfile->objfile;
5903 bfd *const abfd = objfile->obfd;
5904
5905 again:
5906
5907 unsigned int bytes_read;
5908 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5909 m_addr += bytes_read;
5910 if (abbrev == 0)
5911 return NULL;
5912
5913 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5914 if (indexval_it == m_map.abbrev_map.cend ())
5915 {
5916 complaint (&symfile_complaints,
5917 _("Wrong .debug_names undefined abbrev code %s "
5918 "[in module %s]"),
5919 pulongest (abbrev), objfile_name (objfile));
5920 return NULL;
5921 }
5922 const mapped_debug_names::index_val &indexval = indexval_it->second;
5923 bool have_is_static = false;
5924 bool is_static;
5925 dwarf2_per_cu_data *per_cu = NULL;
5926 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5927 {
5928 ULONGEST ull;
5929 switch (attr.form)
5930 {
5931 case DW_FORM_implicit_const:
5932 ull = attr.implicit_const;
5933 break;
5934 case DW_FORM_flag_present:
5935 ull = 1;
5936 break;
5937 case DW_FORM_udata:
5938 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5939 m_addr += bytes_read;
5940 break;
5941 default:
5942 complaint (&symfile_complaints,
5943 _("Unsupported .debug_names form %s [in module %s]"),
5944 dwarf_form_name (attr.form),
5945 objfile_name (objfile));
5946 return NULL;
5947 }
5948 switch (attr.dw_idx)
5949 {
5950 case DW_IDX_compile_unit:
5951 /* Don't crash on bad data. */
5952 if (ull >= dwarf2_per_objfile->n_comp_units)
5953 {
5954 complaint (&symfile_complaints,
5955 _(".debug_names entry has bad CU index %s"
5956 " [in module %s]"),
5957 pulongest (ull),
5958 objfile_name (dwarf2_per_objfile->objfile));
5959 continue;
5960 }
5961 per_cu = dw2_get_cutu (dwarf2_per_objfile, ull);
5962 break;
5963 case DW_IDX_type_unit:
5964 /* Don't crash on bad data. */
5965 if (ull >= dwarf2_per_objfile->n_type_units)
5966 {
5967 complaint (&symfile_complaints,
5968 _(".debug_names entry has bad TU index %s"
5969 " [in module %s]"),
5970 pulongest (ull),
5971 objfile_name (dwarf2_per_objfile->objfile));
5972 continue;
5973 }
5974 per_cu = dw2_get_cutu (dwarf2_per_objfile,
5975 dwarf2_per_objfile->n_comp_units + ull);
5976 break;
5977 case DW_IDX_GNU_internal:
5978 if (!m_map.augmentation_is_gdb)
5979 break;
5980 have_is_static = true;
5981 is_static = true;
5982 break;
5983 case DW_IDX_GNU_external:
5984 if (!m_map.augmentation_is_gdb)
5985 break;
5986 have_is_static = true;
5987 is_static = false;
5988 break;
5989 }
5990 }
5991
5992 /* Skip if already read in. */
5993 if (per_cu->v.quick->compunit_symtab)
5994 goto again;
5995
5996 /* Check static vs global. */
5997 if (have_is_static)
5998 {
5999 const bool want_static = m_block_index != GLOBAL_BLOCK;
6000 if (m_want_specific_block && want_static != is_static)
6001 goto again;
6002 }
6003
6004 /* Match dw2_symtab_iter_next, symbol_kind
6005 and debug_names::psymbol_tag. */
6006 switch (m_domain)
6007 {
6008 case VAR_DOMAIN:
6009 switch (indexval.dwarf_tag)
6010 {
6011 case DW_TAG_variable:
6012 case DW_TAG_subprogram:
6013 /* Some types are also in VAR_DOMAIN. */
6014 case DW_TAG_typedef:
6015 case DW_TAG_structure_type:
6016 break;
6017 default:
6018 goto again;
6019 }
6020 break;
6021 case STRUCT_DOMAIN:
6022 switch (indexval.dwarf_tag)
6023 {
6024 case DW_TAG_typedef:
6025 case DW_TAG_structure_type:
6026 break;
6027 default:
6028 goto again;
6029 }
6030 break;
6031 case LABEL_DOMAIN:
6032 switch (indexval.dwarf_tag)
6033 {
6034 case 0:
6035 case DW_TAG_variable:
6036 break;
6037 default:
6038 goto again;
6039 }
6040 break;
6041 default:
6042 break;
6043 }
6044
6045 /* Match dw2_expand_symtabs_matching, symbol_kind and
6046 debug_names::psymbol_tag. */
6047 switch (m_search)
6048 {
6049 case VARIABLES_DOMAIN:
6050 switch (indexval.dwarf_tag)
6051 {
6052 case DW_TAG_variable:
6053 break;
6054 default:
6055 goto again;
6056 }
6057 break;
6058 case FUNCTIONS_DOMAIN:
6059 switch (indexval.dwarf_tag)
6060 {
6061 case DW_TAG_subprogram:
6062 break;
6063 default:
6064 goto again;
6065 }
6066 break;
6067 case TYPES_DOMAIN:
6068 switch (indexval.dwarf_tag)
6069 {
6070 case DW_TAG_typedef:
6071 case DW_TAG_structure_type:
6072 break;
6073 default:
6074 goto again;
6075 }
6076 break;
6077 default:
6078 break;
6079 }
6080
6081 return per_cu;
6082 }
6083
6084 static struct compunit_symtab *
6085 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6086 const char *name, domain_enum domain)
6087 {
6088 const block_enum block_index = static_cast<block_enum> (block_index_int);
6089 struct dwarf2_per_objfile *dwarf2_per_objfile
6090 = get_dwarf2_per_objfile (objfile);
6091
6092 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6093 if (!mapp)
6094 {
6095 /* index is NULL if OBJF_READNOW. */
6096 return NULL;
6097 }
6098 const auto &map = *mapp;
6099
6100 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6101 block_index, domain, name);
6102
6103 struct compunit_symtab *stab_best = NULL;
6104 struct dwarf2_per_cu_data *per_cu;
6105 while ((per_cu = iter.next ()) != NULL)
6106 {
6107 struct symbol *sym, *with_opaque = NULL;
6108 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
6109 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6110 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6111
6112 sym = block_find_symbol (block, name, domain,
6113 block_find_non_opaque_type_preferred,
6114 &with_opaque);
6115
6116 /* Some caution must be observed with overloaded functions and
6117 methods, since the index will not contain any overload
6118 information (but NAME might contain it). */
6119
6120 if (sym != NULL
6121 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6122 return stab;
6123 if (with_opaque != NULL
6124 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6125 stab_best = stab;
6126
6127 /* Keep looking through other CUs. */
6128 }
6129
6130 return stab_best;
6131 }
6132
6133 /* This dumps minimal information about .debug_names. It is called
6134 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6135 uses this to verify that .debug_names has been loaded. */
6136
6137 static void
6138 dw2_debug_names_dump (struct objfile *objfile)
6139 {
6140 struct dwarf2_per_objfile *dwarf2_per_objfile
6141 = get_dwarf2_per_objfile (objfile);
6142
6143 gdb_assert (dwarf2_per_objfile->using_index);
6144 printf_filtered (".debug_names:");
6145 if (dwarf2_per_objfile->debug_names_table)
6146 printf_filtered (" exists\n");
6147 else
6148 printf_filtered (" faked for \"readnow\"\n");
6149 printf_filtered ("\n");
6150 }
6151
6152 static void
6153 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6154 const char *func_name)
6155 {
6156 struct dwarf2_per_objfile *dwarf2_per_objfile
6157 = get_dwarf2_per_objfile (objfile);
6158
6159 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6160 if (dwarf2_per_objfile->debug_names_table)
6161 {
6162 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6163
6164 /* Note: It doesn't matter what we pass for block_index here. */
6165 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6166 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6167
6168 struct dwarf2_per_cu_data *per_cu;
6169 while ((per_cu = iter.next ()) != NULL)
6170 dw2_instantiate_symtab (per_cu);
6171 }
6172 }
6173
6174 static void
6175 dw2_debug_names_expand_symtabs_matching
6176 (struct objfile *objfile,
6177 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6178 const lookup_name_info &lookup_name,
6179 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6180 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6181 enum search_domain kind)
6182 {
6183 struct dwarf2_per_objfile *dwarf2_per_objfile
6184 = get_dwarf2_per_objfile (objfile);
6185
6186 /* debug_names_table is NULL if OBJF_READNOW. */
6187 if (!dwarf2_per_objfile->debug_names_table)
6188 return;
6189
6190 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6191
6192 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6193
6194 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6195 symbol_matcher,
6196 kind, [&] (offset_type namei)
6197 {
6198 /* The name was matched, now expand corresponding CUs that were
6199 marked. */
6200 dw2_debug_names_iterator iter (map, kind, namei);
6201
6202 struct dwarf2_per_cu_data *per_cu;
6203 while ((per_cu = iter.next ()) != NULL)
6204 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6205 expansion_notify);
6206 });
6207 }
6208
6209 const struct quick_symbol_functions dwarf2_debug_names_functions =
6210 {
6211 dw2_has_symbols,
6212 dw2_find_last_source_symtab,
6213 dw2_forget_cached_source_info,
6214 dw2_map_symtabs_matching_filename,
6215 dw2_debug_names_lookup_symbol,
6216 dw2_print_stats,
6217 dw2_debug_names_dump,
6218 dw2_relocate,
6219 dw2_debug_names_expand_symtabs_for_function,
6220 dw2_expand_all_symtabs,
6221 dw2_expand_symtabs_with_fullname,
6222 dw2_map_matching_symbols,
6223 dw2_debug_names_expand_symtabs_matching,
6224 dw2_find_pc_sect_compunit_symtab,
6225 NULL,
6226 dw2_map_symbol_filenames
6227 };
6228
6229 /* See symfile.h. */
6230
6231 bool
6232 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6233 {
6234 struct dwarf2_per_objfile *dwarf2_per_objfile
6235 = get_dwarf2_per_objfile (objfile);
6236
6237 /* If we're about to read full symbols, don't bother with the
6238 indices. In this case we also don't care if some other debug
6239 format is making psymtabs, because they are all about to be
6240 expanded anyway. */
6241 if ((objfile->flags & OBJF_READNOW))
6242 {
6243 int i;
6244
6245 dwarf2_per_objfile->using_index = 1;
6246 create_all_comp_units (dwarf2_per_objfile);
6247 create_all_type_units (dwarf2_per_objfile);
6248 dwarf2_per_objfile->quick_file_names_table =
6249 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
6250
6251 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
6252 + dwarf2_per_objfile->n_type_units); ++i)
6253 {
6254 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
6255
6256 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6257 struct dwarf2_per_cu_quick_data);
6258 }
6259
6260 /* Return 1 so that gdb sees the "quick" functions. However,
6261 these functions will be no-ops because we will have expanded
6262 all symtabs. */
6263 *index_kind = dw_index_kind::GDB_INDEX;
6264 return true;
6265 }
6266
6267 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6268 {
6269 *index_kind = dw_index_kind::DEBUG_NAMES;
6270 return true;
6271 }
6272
6273 if (dwarf2_read_index (objfile))
6274 {
6275 *index_kind = dw_index_kind::GDB_INDEX;
6276 return true;
6277 }
6278
6279 return false;
6280 }
6281
6282 \f
6283
6284 /* Build a partial symbol table. */
6285
6286 void
6287 dwarf2_build_psymtabs (struct objfile *objfile)
6288 {
6289 struct dwarf2_per_objfile *dwarf2_per_objfile
6290 = get_dwarf2_per_objfile (objfile);
6291
6292 if (objfile->global_psymbols.capacity () == 0
6293 && objfile->static_psymbols.capacity () == 0)
6294 init_psymbol_list (objfile, 1024);
6295
6296 TRY
6297 {
6298 /* This isn't really ideal: all the data we allocate on the
6299 objfile's obstack is still uselessly kept around. However,
6300 freeing it seems unsafe. */
6301 psymtab_discarder psymtabs (objfile);
6302 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6303 psymtabs.keep ();
6304 }
6305 CATCH (except, RETURN_MASK_ERROR)
6306 {
6307 exception_print (gdb_stderr, except);
6308 }
6309 END_CATCH
6310 }
6311
6312 /* Return the total length of the CU described by HEADER. */
6313
6314 static unsigned int
6315 get_cu_length (const struct comp_unit_head *header)
6316 {
6317 return header->initial_length_size + header->length;
6318 }
6319
6320 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6321
6322 static inline bool
6323 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6324 {
6325 sect_offset bottom = cu_header->sect_off;
6326 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6327
6328 return sect_off >= bottom && sect_off < top;
6329 }
6330
6331 /* Find the base address of the compilation unit for range lists and
6332 location lists. It will normally be specified by DW_AT_low_pc.
6333 In DWARF-3 draft 4, the base address could be overridden by
6334 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6335 compilation units with discontinuous ranges. */
6336
6337 static void
6338 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6339 {
6340 struct attribute *attr;
6341
6342 cu->base_known = 0;
6343 cu->base_address = 0;
6344
6345 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6346 if (attr)
6347 {
6348 cu->base_address = attr_value_as_address (attr);
6349 cu->base_known = 1;
6350 }
6351 else
6352 {
6353 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6354 if (attr)
6355 {
6356 cu->base_address = attr_value_as_address (attr);
6357 cu->base_known = 1;
6358 }
6359 }
6360 }
6361
6362 /* Read in the comp unit header information from the debug_info at info_ptr.
6363 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6364 NOTE: This leaves members offset, first_die_offset to be filled in
6365 by the caller. */
6366
6367 static const gdb_byte *
6368 read_comp_unit_head (struct comp_unit_head *cu_header,
6369 const gdb_byte *info_ptr,
6370 struct dwarf2_section_info *section,
6371 rcuh_kind section_kind)
6372 {
6373 int signed_addr;
6374 unsigned int bytes_read;
6375 const char *filename = get_section_file_name (section);
6376 bfd *abfd = get_section_bfd_owner (section);
6377
6378 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6379 cu_header->initial_length_size = bytes_read;
6380 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6381 info_ptr += bytes_read;
6382 cu_header->version = read_2_bytes (abfd, info_ptr);
6383 info_ptr += 2;
6384 if (cu_header->version < 5)
6385 switch (section_kind)
6386 {
6387 case rcuh_kind::COMPILE:
6388 cu_header->unit_type = DW_UT_compile;
6389 break;
6390 case rcuh_kind::TYPE:
6391 cu_header->unit_type = DW_UT_type;
6392 break;
6393 default:
6394 internal_error (__FILE__, __LINE__,
6395 _("read_comp_unit_head: invalid section_kind"));
6396 }
6397 else
6398 {
6399 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6400 (read_1_byte (abfd, info_ptr));
6401 info_ptr += 1;
6402 switch (cu_header->unit_type)
6403 {
6404 case DW_UT_compile:
6405 if (section_kind != rcuh_kind::COMPILE)
6406 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6407 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6408 filename);
6409 break;
6410 case DW_UT_type:
6411 section_kind = rcuh_kind::TYPE;
6412 break;
6413 default:
6414 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6415 "(is %d, should be %d or %d) [in module %s]"),
6416 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6417 }
6418
6419 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6420 info_ptr += 1;
6421 }
6422 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6423 cu_header,
6424 &bytes_read);
6425 info_ptr += bytes_read;
6426 if (cu_header->version < 5)
6427 {
6428 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6429 info_ptr += 1;
6430 }
6431 signed_addr = bfd_get_sign_extend_vma (abfd);
6432 if (signed_addr < 0)
6433 internal_error (__FILE__, __LINE__,
6434 _("read_comp_unit_head: dwarf from non elf file"));
6435 cu_header->signed_addr_p = signed_addr;
6436
6437 if (section_kind == rcuh_kind::TYPE)
6438 {
6439 LONGEST type_offset;
6440
6441 cu_header->signature = read_8_bytes (abfd, info_ptr);
6442 info_ptr += 8;
6443
6444 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6445 info_ptr += bytes_read;
6446 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6447 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6448 error (_("Dwarf Error: Too big type_offset in compilation unit "
6449 "header (is %s) [in module %s]"), plongest (type_offset),
6450 filename);
6451 }
6452
6453 return info_ptr;
6454 }
6455
6456 /* Helper function that returns the proper abbrev section for
6457 THIS_CU. */
6458
6459 static struct dwarf2_section_info *
6460 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6461 {
6462 struct dwarf2_section_info *abbrev;
6463 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6464
6465 if (this_cu->is_dwz)
6466 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6467 else
6468 abbrev = &dwarf2_per_objfile->abbrev;
6469
6470 return abbrev;
6471 }
6472
6473 /* Subroutine of read_and_check_comp_unit_head and
6474 read_and_check_type_unit_head to simplify them.
6475 Perform various error checking on the header. */
6476
6477 static void
6478 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6479 struct comp_unit_head *header,
6480 struct dwarf2_section_info *section,
6481 struct dwarf2_section_info *abbrev_section)
6482 {
6483 const char *filename = get_section_file_name (section);
6484
6485 if (header->version < 2 || header->version > 5)
6486 error (_("Dwarf Error: wrong version in compilation unit header "
6487 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6488 filename);
6489
6490 if (to_underlying (header->abbrev_sect_off)
6491 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6492 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6493 "(offset %s + 6) [in module %s]"),
6494 sect_offset_str (header->abbrev_sect_off),
6495 sect_offset_str (header->sect_off),
6496 filename);
6497
6498 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6499 avoid potential 32-bit overflow. */
6500 if (((ULONGEST) header->sect_off + get_cu_length (header))
6501 > section->size)
6502 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6503 "(offset %s + 0) [in module %s]"),
6504 header->length, sect_offset_str (header->sect_off),
6505 filename);
6506 }
6507
6508 /* Read in a CU/TU header and perform some basic error checking.
6509 The contents of the header are stored in HEADER.
6510 The result is a pointer to the start of the first DIE. */
6511
6512 static const gdb_byte *
6513 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6514 struct comp_unit_head *header,
6515 struct dwarf2_section_info *section,
6516 struct dwarf2_section_info *abbrev_section,
6517 const gdb_byte *info_ptr,
6518 rcuh_kind section_kind)
6519 {
6520 const gdb_byte *beg_of_comp_unit = info_ptr;
6521
6522 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6523
6524 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6525
6526 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6527
6528 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6529 abbrev_section);
6530
6531 return info_ptr;
6532 }
6533
6534 /* Fetch the abbreviation table offset from a comp or type unit header. */
6535
6536 static sect_offset
6537 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6538 struct dwarf2_section_info *section,
6539 sect_offset sect_off)
6540 {
6541 bfd *abfd = get_section_bfd_owner (section);
6542 const gdb_byte *info_ptr;
6543 unsigned int initial_length_size, offset_size;
6544 uint16_t version;
6545
6546 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6547 info_ptr = section->buffer + to_underlying (sect_off);
6548 read_initial_length (abfd, info_ptr, &initial_length_size);
6549 offset_size = initial_length_size == 4 ? 4 : 8;
6550 info_ptr += initial_length_size;
6551
6552 version = read_2_bytes (abfd, info_ptr);
6553 info_ptr += 2;
6554 if (version >= 5)
6555 {
6556 /* Skip unit type and address size. */
6557 info_ptr += 2;
6558 }
6559
6560 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6561 }
6562
6563 /* Allocate a new partial symtab for file named NAME and mark this new
6564 partial symtab as being an include of PST. */
6565
6566 static void
6567 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6568 struct objfile *objfile)
6569 {
6570 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6571
6572 if (!IS_ABSOLUTE_PATH (subpst->filename))
6573 {
6574 /* It shares objfile->objfile_obstack. */
6575 subpst->dirname = pst->dirname;
6576 }
6577
6578 subpst->textlow = 0;
6579 subpst->texthigh = 0;
6580
6581 subpst->dependencies
6582 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6583 subpst->dependencies[0] = pst;
6584 subpst->number_of_dependencies = 1;
6585
6586 subpst->globals_offset = 0;
6587 subpst->n_global_syms = 0;
6588 subpst->statics_offset = 0;
6589 subpst->n_static_syms = 0;
6590 subpst->compunit_symtab = NULL;
6591 subpst->read_symtab = pst->read_symtab;
6592 subpst->readin = 0;
6593
6594 /* No private part is necessary for include psymtabs. This property
6595 can be used to differentiate between such include psymtabs and
6596 the regular ones. */
6597 subpst->read_symtab_private = NULL;
6598 }
6599
6600 /* Read the Line Number Program data and extract the list of files
6601 included by the source file represented by PST. Build an include
6602 partial symtab for each of these included files. */
6603
6604 static void
6605 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6606 struct die_info *die,
6607 struct partial_symtab *pst)
6608 {
6609 line_header_up lh;
6610 struct attribute *attr;
6611
6612 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6613 if (attr)
6614 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6615 if (lh == NULL)
6616 return; /* No linetable, so no includes. */
6617
6618 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6619 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6620 }
6621
6622 static hashval_t
6623 hash_signatured_type (const void *item)
6624 {
6625 const struct signatured_type *sig_type
6626 = (const struct signatured_type *) item;
6627
6628 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6629 return sig_type->signature;
6630 }
6631
6632 static int
6633 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6634 {
6635 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6636 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6637
6638 return lhs->signature == rhs->signature;
6639 }
6640
6641 /* Allocate a hash table for signatured types. */
6642
6643 static htab_t
6644 allocate_signatured_type_table (struct objfile *objfile)
6645 {
6646 return htab_create_alloc_ex (41,
6647 hash_signatured_type,
6648 eq_signatured_type,
6649 NULL,
6650 &objfile->objfile_obstack,
6651 hashtab_obstack_allocate,
6652 dummy_obstack_deallocate);
6653 }
6654
6655 /* A helper function to add a signatured type CU to a table. */
6656
6657 static int
6658 add_signatured_type_cu_to_table (void **slot, void *datum)
6659 {
6660 struct signatured_type *sigt = (struct signatured_type *) *slot;
6661 struct signatured_type ***datap = (struct signatured_type ***) datum;
6662
6663 **datap = sigt;
6664 ++*datap;
6665
6666 return 1;
6667 }
6668
6669 /* A helper for create_debug_types_hash_table. Read types from SECTION
6670 and fill them into TYPES_HTAB. It will process only type units,
6671 therefore DW_UT_type. */
6672
6673 static void
6674 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6675 struct dwo_file *dwo_file,
6676 dwarf2_section_info *section, htab_t &types_htab,
6677 rcuh_kind section_kind)
6678 {
6679 struct objfile *objfile = dwarf2_per_objfile->objfile;
6680 struct dwarf2_section_info *abbrev_section;
6681 bfd *abfd;
6682 const gdb_byte *info_ptr, *end_ptr;
6683
6684 abbrev_section = (dwo_file != NULL
6685 ? &dwo_file->sections.abbrev
6686 : &dwarf2_per_objfile->abbrev);
6687
6688 if (dwarf_read_debug)
6689 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6690 get_section_name (section),
6691 get_section_file_name (abbrev_section));
6692
6693 dwarf2_read_section (objfile, section);
6694 info_ptr = section->buffer;
6695
6696 if (info_ptr == NULL)
6697 return;
6698
6699 /* We can't set abfd until now because the section may be empty or
6700 not present, in which case the bfd is unknown. */
6701 abfd = get_section_bfd_owner (section);
6702
6703 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6704 because we don't need to read any dies: the signature is in the
6705 header. */
6706
6707 end_ptr = info_ptr + section->size;
6708 while (info_ptr < end_ptr)
6709 {
6710 struct signatured_type *sig_type;
6711 struct dwo_unit *dwo_tu;
6712 void **slot;
6713 const gdb_byte *ptr = info_ptr;
6714 struct comp_unit_head header;
6715 unsigned int length;
6716
6717 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6718
6719 /* Initialize it due to a false compiler warning. */
6720 header.signature = -1;
6721 header.type_cu_offset_in_tu = (cu_offset) -1;
6722
6723 /* We need to read the type's signature in order to build the hash
6724 table, but we don't need anything else just yet. */
6725
6726 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6727 abbrev_section, ptr, section_kind);
6728
6729 length = get_cu_length (&header);
6730
6731 /* Skip dummy type units. */
6732 if (ptr >= info_ptr + length
6733 || peek_abbrev_code (abfd, ptr) == 0
6734 || header.unit_type != DW_UT_type)
6735 {
6736 info_ptr += length;
6737 continue;
6738 }
6739
6740 if (types_htab == NULL)
6741 {
6742 if (dwo_file)
6743 types_htab = allocate_dwo_unit_table (objfile);
6744 else
6745 types_htab = allocate_signatured_type_table (objfile);
6746 }
6747
6748 if (dwo_file)
6749 {
6750 sig_type = NULL;
6751 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6752 struct dwo_unit);
6753 dwo_tu->dwo_file = dwo_file;
6754 dwo_tu->signature = header.signature;
6755 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6756 dwo_tu->section = section;
6757 dwo_tu->sect_off = sect_off;
6758 dwo_tu->length = length;
6759 }
6760 else
6761 {
6762 /* N.B.: type_offset is not usable if this type uses a DWO file.
6763 The real type_offset is in the DWO file. */
6764 dwo_tu = NULL;
6765 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6766 struct signatured_type);
6767 sig_type->signature = header.signature;
6768 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6769 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6770 sig_type->per_cu.is_debug_types = 1;
6771 sig_type->per_cu.section = section;
6772 sig_type->per_cu.sect_off = sect_off;
6773 sig_type->per_cu.length = length;
6774 }
6775
6776 slot = htab_find_slot (types_htab,
6777 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6778 INSERT);
6779 gdb_assert (slot != NULL);
6780 if (*slot != NULL)
6781 {
6782 sect_offset dup_sect_off;
6783
6784 if (dwo_file)
6785 {
6786 const struct dwo_unit *dup_tu
6787 = (const struct dwo_unit *) *slot;
6788
6789 dup_sect_off = dup_tu->sect_off;
6790 }
6791 else
6792 {
6793 const struct signatured_type *dup_tu
6794 = (const struct signatured_type *) *slot;
6795
6796 dup_sect_off = dup_tu->per_cu.sect_off;
6797 }
6798
6799 complaint (&symfile_complaints,
6800 _("debug type entry at offset %s is duplicate to"
6801 " the entry at offset %s, signature %s"),
6802 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6803 hex_string (header.signature));
6804 }
6805 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6806
6807 if (dwarf_read_debug > 1)
6808 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6809 sect_offset_str (sect_off),
6810 hex_string (header.signature));
6811
6812 info_ptr += length;
6813 }
6814 }
6815
6816 /* Create the hash table of all entries in the .debug_types
6817 (or .debug_types.dwo) section(s).
6818 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6819 otherwise it is NULL.
6820
6821 The result is a pointer to the hash table or NULL if there are no types.
6822
6823 Note: This function processes DWO files only, not DWP files. */
6824
6825 static void
6826 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6827 struct dwo_file *dwo_file,
6828 VEC (dwarf2_section_info_def) *types,
6829 htab_t &types_htab)
6830 {
6831 int ix;
6832 struct dwarf2_section_info *section;
6833
6834 if (VEC_empty (dwarf2_section_info_def, types))
6835 return;
6836
6837 for (ix = 0;
6838 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6839 ++ix)
6840 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6841 types_htab, rcuh_kind::TYPE);
6842 }
6843
6844 /* Create the hash table of all entries in the .debug_types section,
6845 and initialize all_type_units.
6846 The result is zero if there is an error (e.g. missing .debug_types section),
6847 otherwise non-zero. */
6848
6849 static int
6850 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6851 {
6852 htab_t types_htab = NULL;
6853 struct signatured_type **iter;
6854
6855 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6856 &dwarf2_per_objfile->info, types_htab,
6857 rcuh_kind::COMPILE);
6858 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6859 dwarf2_per_objfile->types, types_htab);
6860 if (types_htab == NULL)
6861 {
6862 dwarf2_per_objfile->signatured_types = NULL;
6863 return 0;
6864 }
6865
6866 dwarf2_per_objfile->signatured_types = types_htab;
6867
6868 dwarf2_per_objfile->n_type_units
6869 = dwarf2_per_objfile->n_allocated_type_units
6870 = htab_elements (types_htab);
6871 dwarf2_per_objfile->all_type_units =
6872 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
6873 iter = &dwarf2_per_objfile->all_type_units[0];
6874 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
6875 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
6876 == dwarf2_per_objfile->n_type_units);
6877
6878 return 1;
6879 }
6880
6881 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6882 If SLOT is non-NULL, it is the entry to use in the hash table.
6883 Otherwise we find one. */
6884
6885 static struct signatured_type *
6886 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6887 void **slot)
6888 {
6889 struct objfile *objfile = dwarf2_per_objfile->objfile;
6890 int n_type_units = dwarf2_per_objfile->n_type_units;
6891 struct signatured_type *sig_type;
6892
6893 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
6894 ++n_type_units;
6895 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
6896 {
6897 if (dwarf2_per_objfile->n_allocated_type_units == 0)
6898 dwarf2_per_objfile->n_allocated_type_units = 1;
6899 dwarf2_per_objfile->n_allocated_type_units *= 2;
6900 dwarf2_per_objfile->all_type_units
6901 = XRESIZEVEC (struct signatured_type *,
6902 dwarf2_per_objfile->all_type_units,
6903 dwarf2_per_objfile->n_allocated_type_units);
6904 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6905 }
6906 dwarf2_per_objfile->n_type_units = n_type_units;
6907
6908 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6909 struct signatured_type);
6910 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
6911 sig_type->signature = sig;
6912 sig_type->per_cu.is_debug_types = 1;
6913 if (dwarf2_per_objfile->using_index)
6914 {
6915 sig_type->per_cu.v.quick =
6916 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6917 struct dwarf2_per_cu_quick_data);
6918 }
6919
6920 if (slot == NULL)
6921 {
6922 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6923 sig_type, INSERT);
6924 }
6925 gdb_assert (*slot == NULL);
6926 *slot = sig_type;
6927 /* The rest of sig_type must be filled in by the caller. */
6928 return sig_type;
6929 }
6930
6931 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6932 Fill in SIG_ENTRY with DWO_ENTRY. */
6933
6934 static void
6935 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6936 struct signatured_type *sig_entry,
6937 struct dwo_unit *dwo_entry)
6938 {
6939 /* Make sure we're not clobbering something we don't expect to. */
6940 gdb_assert (! sig_entry->per_cu.queued);
6941 gdb_assert (sig_entry->per_cu.cu == NULL);
6942 if (dwarf2_per_objfile->using_index)
6943 {
6944 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6945 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6946 }
6947 else
6948 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6949 gdb_assert (sig_entry->signature == dwo_entry->signature);
6950 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6951 gdb_assert (sig_entry->type_unit_group == NULL);
6952 gdb_assert (sig_entry->dwo_unit == NULL);
6953
6954 sig_entry->per_cu.section = dwo_entry->section;
6955 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6956 sig_entry->per_cu.length = dwo_entry->length;
6957 sig_entry->per_cu.reading_dwo_directly = 1;
6958 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6959 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6960 sig_entry->dwo_unit = dwo_entry;
6961 }
6962
6963 /* Subroutine of lookup_signatured_type.
6964 If we haven't read the TU yet, create the signatured_type data structure
6965 for a TU to be read in directly from a DWO file, bypassing the stub.
6966 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6967 using .gdb_index, then when reading a CU we want to stay in the DWO file
6968 containing that CU. Otherwise we could end up reading several other DWO
6969 files (due to comdat folding) to process the transitive closure of all the
6970 mentioned TUs, and that can be slow. The current DWO file will have every
6971 type signature that it needs.
6972 We only do this for .gdb_index because in the psymtab case we already have
6973 to read all the DWOs to build the type unit groups. */
6974
6975 static struct signatured_type *
6976 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6977 {
6978 struct dwarf2_per_objfile *dwarf2_per_objfile
6979 = cu->per_cu->dwarf2_per_objfile;
6980 struct objfile *objfile = dwarf2_per_objfile->objfile;
6981 struct dwo_file *dwo_file;
6982 struct dwo_unit find_dwo_entry, *dwo_entry;
6983 struct signatured_type find_sig_entry, *sig_entry;
6984 void **slot;
6985
6986 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6987
6988 /* If TU skeletons have been removed then we may not have read in any
6989 TUs yet. */
6990 if (dwarf2_per_objfile->signatured_types == NULL)
6991 {
6992 dwarf2_per_objfile->signatured_types
6993 = allocate_signatured_type_table (objfile);
6994 }
6995
6996 /* We only ever need to read in one copy of a signatured type.
6997 Use the global signatured_types array to do our own comdat-folding
6998 of types. If this is the first time we're reading this TU, and
6999 the TU has an entry in .gdb_index, replace the recorded data from
7000 .gdb_index with this TU. */
7001
7002 find_sig_entry.signature = sig;
7003 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7004 &find_sig_entry, INSERT);
7005 sig_entry = (struct signatured_type *) *slot;
7006
7007 /* We can get here with the TU already read, *or* in the process of being
7008 read. Don't reassign the global entry to point to this DWO if that's
7009 the case. Also note that if the TU is already being read, it may not
7010 have come from a DWO, the program may be a mix of Fission-compiled
7011 code and non-Fission-compiled code. */
7012
7013 /* Have we already tried to read this TU?
7014 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7015 needn't exist in the global table yet). */
7016 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7017 return sig_entry;
7018
7019 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7020 dwo_unit of the TU itself. */
7021 dwo_file = cu->dwo_unit->dwo_file;
7022
7023 /* Ok, this is the first time we're reading this TU. */
7024 if (dwo_file->tus == NULL)
7025 return NULL;
7026 find_dwo_entry.signature = sig;
7027 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7028 if (dwo_entry == NULL)
7029 return NULL;
7030
7031 /* If the global table doesn't have an entry for this TU, add one. */
7032 if (sig_entry == NULL)
7033 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7034
7035 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7036 sig_entry->per_cu.tu_read = 1;
7037 return sig_entry;
7038 }
7039
7040 /* Subroutine of lookup_signatured_type.
7041 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7042 then try the DWP file. If the TU stub (skeleton) has been removed then
7043 it won't be in .gdb_index. */
7044
7045 static struct signatured_type *
7046 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7047 {
7048 struct dwarf2_per_objfile *dwarf2_per_objfile
7049 = cu->per_cu->dwarf2_per_objfile;
7050 struct objfile *objfile = dwarf2_per_objfile->objfile;
7051 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7052 struct dwo_unit *dwo_entry;
7053 struct signatured_type find_sig_entry, *sig_entry;
7054 void **slot;
7055
7056 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7057 gdb_assert (dwp_file != NULL);
7058
7059 /* If TU skeletons have been removed then we may not have read in any
7060 TUs yet. */
7061 if (dwarf2_per_objfile->signatured_types == NULL)
7062 {
7063 dwarf2_per_objfile->signatured_types
7064 = allocate_signatured_type_table (objfile);
7065 }
7066
7067 find_sig_entry.signature = sig;
7068 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7069 &find_sig_entry, INSERT);
7070 sig_entry = (struct signatured_type *) *slot;
7071
7072 /* Have we already tried to read this TU?
7073 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7074 needn't exist in the global table yet). */
7075 if (sig_entry != NULL)
7076 return sig_entry;
7077
7078 if (dwp_file->tus == NULL)
7079 return NULL;
7080 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7081 sig, 1 /* is_debug_types */);
7082 if (dwo_entry == NULL)
7083 return NULL;
7084
7085 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7086 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7087
7088 return sig_entry;
7089 }
7090
7091 /* Lookup a signature based type for DW_FORM_ref_sig8.
7092 Returns NULL if signature SIG is not present in the table.
7093 It is up to the caller to complain about this. */
7094
7095 static struct signatured_type *
7096 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7097 {
7098 struct dwarf2_per_objfile *dwarf2_per_objfile
7099 = cu->per_cu->dwarf2_per_objfile;
7100
7101 if (cu->dwo_unit
7102 && dwarf2_per_objfile->using_index)
7103 {
7104 /* We're in a DWO/DWP file, and we're using .gdb_index.
7105 These cases require special processing. */
7106 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7107 return lookup_dwo_signatured_type (cu, sig);
7108 else
7109 return lookup_dwp_signatured_type (cu, sig);
7110 }
7111 else
7112 {
7113 struct signatured_type find_entry, *entry;
7114
7115 if (dwarf2_per_objfile->signatured_types == NULL)
7116 return NULL;
7117 find_entry.signature = sig;
7118 entry = ((struct signatured_type *)
7119 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7120 return entry;
7121 }
7122 }
7123 \f
7124 /* Low level DIE reading support. */
7125
7126 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7127
7128 static void
7129 init_cu_die_reader (struct die_reader_specs *reader,
7130 struct dwarf2_cu *cu,
7131 struct dwarf2_section_info *section,
7132 struct dwo_file *dwo_file,
7133 struct abbrev_table *abbrev_table)
7134 {
7135 gdb_assert (section->readin && section->buffer != NULL);
7136 reader->abfd = get_section_bfd_owner (section);
7137 reader->cu = cu;
7138 reader->dwo_file = dwo_file;
7139 reader->die_section = section;
7140 reader->buffer = section->buffer;
7141 reader->buffer_end = section->buffer + section->size;
7142 reader->comp_dir = NULL;
7143 reader->abbrev_table = abbrev_table;
7144 }
7145
7146 /* Subroutine of init_cutu_and_read_dies to simplify it.
7147 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7148 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7149 already.
7150
7151 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7152 from it to the DIE in the DWO. If NULL we are skipping the stub.
7153 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7154 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7155 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7156 STUB_COMP_DIR may be non-NULL.
7157 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7158 are filled in with the info of the DIE from the DWO file.
7159 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7160 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7161 kept around for at least as long as *RESULT_READER.
7162
7163 The result is non-zero if a valid (non-dummy) DIE was found. */
7164
7165 static int
7166 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7167 struct dwo_unit *dwo_unit,
7168 struct die_info *stub_comp_unit_die,
7169 const char *stub_comp_dir,
7170 struct die_reader_specs *result_reader,
7171 const gdb_byte **result_info_ptr,
7172 struct die_info **result_comp_unit_die,
7173 int *result_has_children,
7174 abbrev_table_up *result_dwo_abbrev_table)
7175 {
7176 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7177 struct objfile *objfile = dwarf2_per_objfile->objfile;
7178 struct dwarf2_cu *cu = this_cu->cu;
7179 bfd *abfd;
7180 const gdb_byte *begin_info_ptr, *info_ptr;
7181 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7182 int i,num_extra_attrs;
7183 struct dwarf2_section_info *dwo_abbrev_section;
7184 struct attribute *attr;
7185 struct die_info *comp_unit_die;
7186
7187 /* At most one of these may be provided. */
7188 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7189
7190 /* These attributes aren't processed until later:
7191 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7192 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7193 referenced later. However, these attributes are found in the stub
7194 which we won't have later. In order to not impose this complication
7195 on the rest of the code, we read them here and copy them to the
7196 DWO CU/TU die. */
7197
7198 stmt_list = NULL;
7199 low_pc = NULL;
7200 high_pc = NULL;
7201 ranges = NULL;
7202 comp_dir = NULL;
7203
7204 if (stub_comp_unit_die != NULL)
7205 {
7206 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7207 DWO file. */
7208 if (! this_cu->is_debug_types)
7209 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7210 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7211 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7212 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7213 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7214
7215 /* There should be a DW_AT_addr_base attribute here (if needed).
7216 We need the value before we can process DW_FORM_GNU_addr_index. */
7217 cu->addr_base = 0;
7218 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7219 if (attr)
7220 cu->addr_base = DW_UNSND (attr);
7221
7222 /* There should be a DW_AT_ranges_base attribute here (if needed).
7223 We need the value before we can process DW_AT_ranges. */
7224 cu->ranges_base = 0;
7225 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7226 if (attr)
7227 cu->ranges_base = DW_UNSND (attr);
7228 }
7229 else if (stub_comp_dir != NULL)
7230 {
7231 /* Reconstruct the comp_dir attribute to simplify the code below. */
7232 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7233 comp_dir->name = DW_AT_comp_dir;
7234 comp_dir->form = DW_FORM_string;
7235 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7236 DW_STRING (comp_dir) = stub_comp_dir;
7237 }
7238
7239 /* Set up for reading the DWO CU/TU. */
7240 cu->dwo_unit = dwo_unit;
7241 dwarf2_section_info *section = dwo_unit->section;
7242 dwarf2_read_section (objfile, section);
7243 abfd = get_section_bfd_owner (section);
7244 begin_info_ptr = info_ptr = (section->buffer
7245 + to_underlying (dwo_unit->sect_off));
7246 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7247
7248 if (this_cu->is_debug_types)
7249 {
7250 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7251
7252 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7253 &cu->header, section,
7254 dwo_abbrev_section,
7255 info_ptr, rcuh_kind::TYPE);
7256 /* This is not an assert because it can be caused by bad debug info. */
7257 if (sig_type->signature != cu->header.signature)
7258 {
7259 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7260 " TU at offset %s [in module %s]"),
7261 hex_string (sig_type->signature),
7262 hex_string (cu->header.signature),
7263 sect_offset_str (dwo_unit->sect_off),
7264 bfd_get_filename (abfd));
7265 }
7266 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7267 /* For DWOs coming from DWP files, we don't know the CU length
7268 nor the type's offset in the TU until now. */
7269 dwo_unit->length = get_cu_length (&cu->header);
7270 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7271
7272 /* Establish the type offset that can be used to lookup the type.
7273 For DWO files, we don't know it until now. */
7274 sig_type->type_offset_in_section
7275 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7276 }
7277 else
7278 {
7279 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7280 &cu->header, section,
7281 dwo_abbrev_section,
7282 info_ptr, rcuh_kind::COMPILE);
7283 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7284 /* For DWOs coming from DWP files, we don't know the CU length
7285 until now. */
7286 dwo_unit->length = get_cu_length (&cu->header);
7287 }
7288
7289 *result_dwo_abbrev_table
7290 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7291 cu->header.abbrev_sect_off);
7292 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7293 result_dwo_abbrev_table->get ());
7294
7295 /* Read in the die, but leave space to copy over the attributes
7296 from the stub. This has the benefit of simplifying the rest of
7297 the code - all the work to maintain the illusion of a single
7298 DW_TAG_{compile,type}_unit DIE is done here. */
7299 num_extra_attrs = ((stmt_list != NULL)
7300 + (low_pc != NULL)
7301 + (high_pc != NULL)
7302 + (ranges != NULL)
7303 + (comp_dir != NULL));
7304 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7305 result_has_children, num_extra_attrs);
7306
7307 /* Copy over the attributes from the stub to the DIE we just read in. */
7308 comp_unit_die = *result_comp_unit_die;
7309 i = comp_unit_die->num_attrs;
7310 if (stmt_list != NULL)
7311 comp_unit_die->attrs[i++] = *stmt_list;
7312 if (low_pc != NULL)
7313 comp_unit_die->attrs[i++] = *low_pc;
7314 if (high_pc != NULL)
7315 comp_unit_die->attrs[i++] = *high_pc;
7316 if (ranges != NULL)
7317 comp_unit_die->attrs[i++] = *ranges;
7318 if (comp_dir != NULL)
7319 comp_unit_die->attrs[i++] = *comp_dir;
7320 comp_unit_die->num_attrs += num_extra_attrs;
7321
7322 if (dwarf_die_debug)
7323 {
7324 fprintf_unfiltered (gdb_stdlog,
7325 "Read die from %s@0x%x of %s:\n",
7326 get_section_name (section),
7327 (unsigned) (begin_info_ptr - section->buffer),
7328 bfd_get_filename (abfd));
7329 dump_die (comp_unit_die, dwarf_die_debug);
7330 }
7331
7332 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7333 TUs by skipping the stub and going directly to the entry in the DWO file.
7334 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7335 to get it via circuitous means. Blech. */
7336 if (comp_dir != NULL)
7337 result_reader->comp_dir = DW_STRING (comp_dir);
7338
7339 /* Skip dummy compilation units. */
7340 if (info_ptr >= begin_info_ptr + dwo_unit->length
7341 || peek_abbrev_code (abfd, info_ptr) == 0)
7342 return 0;
7343
7344 *result_info_ptr = info_ptr;
7345 return 1;
7346 }
7347
7348 /* Subroutine of init_cutu_and_read_dies to simplify it.
7349 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7350 Returns NULL if the specified DWO unit cannot be found. */
7351
7352 static struct dwo_unit *
7353 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7354 struct die_info *comp_unit_die)
7355 {
7356 struct dwarf2_cu *cu = this_cu->cu;
7357 ULONGEST signature;
7358 struct dwo_unit *dwo_unit;
7359 const char *comp_dir, *dwo_name;
7360
7361 gdb_assert (cu != NULL);
7362
7363 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7364 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7365 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7366
7367 if (this_cu->is_debug_types)
7368 {
7369 struct signatured_type *sig_type;
7370
7371 /* Since this_cu is the first member of struct signatured_type,
7372 we can go from a pointer to one to a pointer to the other. */
7373 sig_type = (struct signatured_type *) this_cu;
7374 signature = sig_type->signature;
7375 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7376 }
7377 else
7378 {
7379 struct attribute *attr;
7380
7381 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7382 if (! attr)
7383 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7384 " [in module %s]"),
7385 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7386 signature = DW_UNSND (attr);
7387 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7388 signature);
7389 }
7390
7391 return dwo_unit;
7392 }
7393
7394 /* Subroutine of init_cutu_and_read_dies to simplify it.
7395 See it for a description of the parameters.
7396 Read a TU directly from a DWO file, bypassing the stub. */
7397
7398 static void
7399 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7400 int use_existing_cu, int keep,
7401 die_reader_func_ftype *die_reader_func,
7402 void *data)
7403 {
7404 std::unique_ptr<dwarf2_cu> new_cu;
7405 struct signatured_type *sig_type;
7406 struct die_reader_specs reader;
7407 const gdb_byte *info_ptr;
7408 struct die_info *comp_unit_die;
7409 int has_children;
7410 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7411
7412 /* Verify we can do the following downcast, and that we have the
7413 data we need. */
7414 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7415 sig_type = (struct signatured_type *) this_cu;
7416 gdb_assert (sig_type->dwo_unit != NULL);
7417
7418 if (use_existing_cu && this_cu->cu != NULL)
7419 {
7420 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7421 /* There's no need to do the rereading_dwo_cu handling that
7422 init_cutu_and_read_dies does since we don't read the stub. */
7423 }
7424 else
7425 {
7426 /* If !use_existing_cu, this_cu->cu must be NULL. */
7427 gdb_assert (this_cu->cu == NULL);
7428 new_cu.reset (new dwarf2_cu (this_cu));
7429 }
7430
7431 /* A future optimization, if needed, would be to use an existing
7432 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7433 could share abbrev tables. */
7434
7435 /* The abbreviation table used by READER, this must live at least as long as
7436 READER. */
7437 abbrev_table_up dwo_abbrev_table;
7438
7439 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7440 NULL /* stub_comp_unit_die */,
7441 sig_type->dwo_unit->dwo_file->comp_dir,
7442 &reader, &info_ptr,
7443 &comp_unit_die, &has_children,
7444 &dwo_abbrev_table) == 0)
7445 {
7446 /* Dummy die. */
7447 return;
7448 }
7449
7450 /* All the "real" work is done here. */
7451 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7452
7453 /* This duplicates the code in init_cutu_and_read_dies,
7454 but the alternative is making the latter more complex.
7455 This function is only for the special case of using DWO files directly:
7456 no point in overly complicating the general case just to handle this. */
7457 if (new_cu != NULL && keep)
7458 {
7459 /* Link this CU into read_in_chain. */
7460 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7461 dwarf2_per_objfile->read_in_chain = this_cu;
7462 /* The chain owns it now. */
7463 new_cu.release ();
7464 }
7465 }
7466
7467 /* Initialize a CU (or TU) and read its DIEs.
7468 If the CU defers to a DWO file, read the DWO file as well.
7469
7470 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7471 Otherwise the table specified in the comp unit header is read in and used.
7472 This is an optimization for when we already have the abbrev table.
7473
7474 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7475 Otherwise, a new CU is allocated with xmalloc.
7476
7477 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7478 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7479
7480 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7481 linker) then DIE_READER_FUNC will not get called. */
7482
7483 static void
7484 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7485 struct abbrev_table *abbrev_table,
7486 int use_existing_cu, int keep,
7487 die_reader_func_ftype *die_reader_func,
7488 void *data)
7489 {
7490 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7491 struct objfile *objfile = dwarf2_per_objfile->objfile;
7492 struct dwarf2_section_info *section = this_cu->section;
7493 bfd *abfd = get_section_bfd_owner (section);
7494 struct dwarf2_cu *cu;
7495 const gdb_byte *begin_info_ptr, *info_ptr;
7496 struct die_reader_specs reader;
7497 struct die_info *comp_unit_die;
7498 int has_children;
7499 struct attribute *attr;
7500 struct signatured_type *sig_type = NULL;
7501 struct dwarf2_section_info *abbrev_section;
7502 /* Non-zero if CU currently points to a DWO file and we need to
7503 reread it. When this happens we need to reread the skeleton die
7504 before we can reread the DWO file (this only applies to CUs, not TUs). */
7505 int rereading_dwo_cu = 0;
7506
7507 if (dwarf_die_debug)
7508 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7509 this_cu->is_debug_types ? "type" : "comp",
7510 sect_offset_str (this_cu->sect_off));
7511
7512 if (use_existing_cu)
7513 gdb_assert (keep);
7514
7515 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7516 file (instead of going through the stub), short-circuit all of this. */
7517 if (this_cu->reading_dwo_directly)
7518 {
7519 /* Narrow down the scope of possibilities to have to understand. */
7520 gdb_assert (this_cu->is_debug_types);
7521 gdb_assert (abbrev_table == NULL);
7522 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7523 die_reader_func, data);
7524 return;
7525 }
7526
7527 /* This is cheap if the section is already read in. */
7528 dwarf2_read_section (objfile, section);
7529
7530 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7531
7532 abbrev_section = get_abbrev_section_for_cu (this_cu);
7533
7534 std::unique_ptr<dwarf2_cu> new_cu;
7535 if (use_existing_cu && this_cu->cu != NULL)
7536 {
7537 cu = this_cu->cu;
7538 /* If this CU is from a DWO file we need to start over, we need to
7539 refetch the attributes from the skeleton CU.
7540 This could be optimized by retrieving those attributes from when we
7541 were here the first time: the previous comp_unit_die was stored in
7542 comp_unit_obstack. But there's no data yet that we need this
7543 optimization. */
7544 if (cu->dwo_unit != NULL)
7545 rereading_dwo_cu = 1;
7546 }
7547 else
7548 {
7549 /* If !use_existing_cu, this_cu->cu must be NULL. */
7550 gdb_assert (this_cu->cu == NULL);
7551 new_cu.reset (new dwarf2_cu (this_cu));
7552 cu = new_cu.get ();
7553 }
7554
7555 /* Get the header. */
7556 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7557 {
7558 /* We already have the header, there's no need to read it in again. */
7559 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7560 }
7561 else
7562 {
7563 if (this_cu->is_debug_types)
7564 {
7565 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7566 &cu->header, section,
7567 abbrev_section, info_ptr,
7568 rcuh_kind::TYPE);
7569
7570 /* Since per_cu is the first member of struct signatured_type,
7571 we can go from a pointer to one to a pointer to the other. */
7572 sig_type = (struct signatured_type *) this_cu;
7573 gdb_assert (sig_type->signature == cu->header.signature);
7574 gdb_assert (sig_type->type_offset_in_tu
7575 == cu->header.type_cu_offset_in_tu);
7576 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7577
7578 /* LENGTH has not been set yet for type units if we're
7579 using .gdb_index. */
7580 this_cu->length = get_cu_length (&cu->header);
7581
7582 /* Establish the type offset that can be used to lookup the type. */
7583 sig_type->type_offset_in_section =
7584 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7585
7586 this_cu->dwarf_version = cu->header.version;
7587 }
7588 else
7589 {
7590 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7591 &cu->header, section,
7592 abbrev_section,
7593 info_ptr,
7594 rcuh_kind::COMPILE);
7595
7596 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7597 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7598 this_cu->dwarf_version = cu->header.version;
7599 }
7600 }
7601
7602 /* Skip dummy compilation units. */
7603 if (info_ptr >= begin_info_ptr + this_cu->length
7604 || peek_abbrev_code (abfd, info_ptr) == 0)
7605 return;
7606
7607 /* If we don't have them yet, read the abbrevs for this compilation unit.
7608 And if we need to read them now, make sure they're freed when we're
7609 done (own the table through ABBREV_TABLE_HOLDER). */
7610 abbrev_table_up abbrev_table_holder;
7611 if (abbrev_table != NULL)
7612 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7613 else
7614 {
7615 abbrev_table_holder
7616 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7617 cu->header.abbrev_sect_off);
7618 abbrev_table = abbrev_table_holder.get ();
7619 }
7620
7621 /* Read the top level CU/TU die. */
7622 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7623 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7624
7625 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7626 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7627 table from the DWO file and pass the ownership over to us. It will be
7628 referenced from READER, so we must make sure to free it after we're done
7629 with READER.
7630
7631 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7632 DWO CU, that this test will fail (the attribute will not be present). */
7633 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7634 abbrev_table_up dwo_abbrev_table;
7635 if (attr)
7636 {
7637 struct dwo_unit *dwo_unit;
7638 struct die_info *dwo_comp_unit_die;
7639
7640 if (has_children)
7641 {
7642 complaint (&symfile_complaints,
7643 _("compilation unit with DW_AT_GNU_dwo_name"
7644 " has children (offset %s) [in module %s]"),
7645 sect_offset_str (this_cu->sect_off),
7646 bfd_get_filename (abfd));
7647 }
7648 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7649 if (dwo_unit != NULL)
7650 {
7651 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7652 comp_unit_die, NULL,
7653 &reader, &info_ptr,
7654 &dwo_comp_unit_die, &has_children,
7655 &dwo_abbrev_table) == 0)
7656 {
7657 /* Dummy die. */
7658 return;
7659 }
7660 comp_unit_die = dwo_comp_unit_die;
7661 }
7662 else
7663 {
7664 /* Yikes, we couldn't find the rest of the DIE, we only have
7665 the stub. A complaint has already been logged. There's
7666 not much more we can do except pass on the stub DIE to
7667 die_reader_func. We don't want to throw an error on bad
7668 debug info. */
7669 }
7670 }
7671
7672 /* All of the above is setup for this call. Yikes. */
7673 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7674
7675 /* Done, clean up. */
7676 if (new_cu != NULL && keep)
7677 {
7678 /* Link this CU into read_in_chain. */
7679 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7680 dwarf2_per_objfile->read_in_chain = this_cu;
7681 /* The chain owns it now. */
7682 new_cu.release ();
7683 }
7684 }
7685
7686 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7687 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7688 to have already done the lookup to find the DWO file).
7689
7690 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7691 THIS_CU->is_debug_types, but nothing else.
7692
7693 We fill in THIS_CU->length.
7694
7695 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7696 linker) then DIE_READER_FUNC will not get called.
7697
7698 THIS_CU->cu is always freed when done.
7699 This is done in order to not leave THIS_CU->cu in a state where we have
7700 to care whether it refers to the "main" CU or the DWO CU. */
7701
7702 static void
7703 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7704 struct dwo_file *dwo_file,
7705 die_reader_func_ftype *die_reader_func,
7706 void *data)
7707 {
7708 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7709 struct objfile *objfile = dwarf2_per_objfile->objfile;
7710 struct dwarf2_section_info *section = this_cu->section;
7711 bfd *abfd = get_section_bfd_owner (section);
7712 struct dwarf2_section_info *abbrev_section;
7713 const gdb_byte *begin_info_ptr, *info_ptr;
7714 struct die_reader_specs reader;
7715 struct die_info *comp_unit_die;
7716 int has_children;
7717
7718 if (dwarf_die_debug)
7719 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7720 this_cu->is_debug_types ? "type" : "comp",
7721 sect_offset_str (this_cu->sect_off));
7722
7723 gdb_assert (this_cu->cu == NULL);
7724
7725 abbrev_section = (dwo_file != NULL
7726 ? &dwo_file->sections.abbrev
7727 : get_abbrev_section_for_cu (this_cu));
7728
7729 /* This is cheap if the section is already read in. */
7730 dwarf2_read_section (objfile, section);
7731
7732 struct dwarf2_cu cu (this_cu);
7733
7734 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7735 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7736 &cu.header, section,
7737 abbrev_section, info_ptr,
7738 (this_cu->is_debug_types
7739 ? rcuh_kind::TYPE
7740 : rcuh_kind::COMPILE));
7741
7742 this_cu->length = get_cu_length (&cu.header);
7743
7744 /* Skip dummy compilation units. */
7745 if (info_ptr >= begin_info_ptr + this_cu->length
7746 || peek_abbrev_code (abfd, info_ptr) == 0)
7747 return;
7748
7749 abbrev_table_up abbrev_table
7750 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7751 cu.header.abbrev_sect_off);
7752
7753 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7754 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7755
7756 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7757 }
7758
7759 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7760 does not lookup the specified DWO file.
7761 This cannot be used to read DWO files.
7762
7763 THIS_CU->cu is always freed when done.
7764 This is done in order to not leave THIS_CU->cu in a state where we have
7765 to care whether it refers to the "main" CU or the DWO CU.
7766 We can revisit this if the data shows there's a performance issue. */
7767
7768 static void
7769 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7770 die_reader_func_ftype *die_reader_func,
7771 void *data)
7772 {
7773 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7774 }
7775 \f
7776 /* Type Unit Groups.
7777
7778 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7779 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7780 so that all types coming from the same compilation (.o file) are grouped
7781 together. A future step could be to put the types in the same symtab as
7782 the CU the types ultimately came from. */
7783
7784 static hashval_t
7785 hash_type_unit_group (const void *item)
7786 {
7787 const struct type_unit_group *tu_group
7788 = (const struct type_unit_group *) item;
7789
7790 return hash_stmt_list_entry (&tu_group->hash);
7791 }
7792
7793 static int
7794 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7795 {
7796 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7797 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7798
7799 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7800 }
7801
7802 /* Allocate a hash table for type unit groups. */
7803
7804 static htab_t
7805 allocate_type_unit_groups_table (struct objfile *objfile)
7806 {
7807 return htab_create_alloc_ex (3,
7808 hash_type_unit_group,
7809 eq_type_unit_group,
7810 NULL,
7811 &objfile->objfile_obstack,
7812 hashtab_obstack_allocate,
7813 dummy_obstack_deallocate);
7814 }
7815
7816 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7817 partial symtabs. We combine several TUs per psymtab to not let the size
7818 of any one psymtab grow too big. */
7819 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7820 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7821
7822 /* Helper routine for get_type_unit_group.
7823 Create the type_unit_group object used to hold one or more TUs. */
7824
7825 static struct type_unit_group *
7826 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7827 {
7828 struct dwarf2_per_objfile *dwarf2_per_objfile
7829 = cu->per_cu->dwarf2_per_objfile;
7830 struct objfile *objfile = dwarf2_per_objfile->objfile;
7831 struct dwarf2_per_cu_data *per_cu;
7832 struct type_unit_group *tu_group;
7833
7834 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7835 struct type_unit_group);
7836 per_cu = &tu_group->per_cu;
7837 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7838
7839 if (dwarf2_per_objfile->using_index)
7840 {
7841 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7842 struct dwarf2_per_cu_quick_data);
7843 }
7844 else
7845 {
7846 unsigned int line_offset = to_underlying (line_offset_struct);
7847 struct partial_symtab *pst;
7848 char *name;
7849
7850 /* Give the symtab a useful name for debug purposes. */
7851 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7852 name = xstrprintf ("<type_units_%d>",
7853 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7854 else
7855 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7856
7857 pst = create_partial_symtab (per_cu, name);
7858 pst->anonymous = 1;
7859
7860 xfree (name);
7861 }
7862
7863 tu_group->hash.dwo_unit = cu->dwo_unit;
7864 tu_group->hash.line_sect_off = line_offset_struct;
7865
7866 return tu_group;
7867 }
7868
7869 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7870 STMT_LIST is a DW_AT_stmt_list attribute. */
7871
7872 static struct type_unit_group *
7873 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7874 {
7875 struct dwarf2_per_objfile *dwarf2_per_objfile
7876 = cu->per_cu->dwarf2_per_objfile;
7877 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7878 struct type_unit_group *tu_group;
7879 void **slot;
7880 unsigned int line_offset;
7881 struct type_unit_group type_unit_group_for_lookup;
7882
7883 if (dwarf2_per_objfile->type_unit_groups == NULL)
7884 {
7885 dwarf2_per_objfile->type_unit_groups =
7886 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7887 }
7888
7889 /* Do we need to create a new group, or can we use an existing one? */
7890
7891 if (stmt_list)
7892 {
7893 line_offset = DW_UNSND (stmt_list);
7894 ++tu_stats->nr_symtab_sharers;
7895 }
7896 else
7897 {
7898 /* Ugh, no stmt_list. Rare, but we have to handle it.
7899 We can do various things here like create one group per TU or
7900 spread them over multiple groups to split up the expansion work.
7901 To avoid worst case scenarios (too many groups or too large groups)
7902 we, umm, group them in bunches. */
7903 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7904 | (tu_stats->nr_stmt_less_type_units
7905 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7906 ++tu_stats->nr_stmt_less_type_units;
7907 }
7908
7909 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7910 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7911 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7912 &type_unit_group_for_lookup, INSERT);
7913 if (*slot != NULL)
7914 {
7915 tu_group = (struct type_unit_group *) *slot;
7916 gdb_assert (tu_group != NULL);
7917 }
7918 else
7919 {
7920 sect_offset line_offset_struct = (sect_offset) line_offset;
7921 tu_group = create_type_unit_group (cu, line_offset_struct);
7922 *slot = tu_group;
7923 ++tu_stats->nr_symtabs;
7924 }
7925
7926 return tu_group;
7927 }
7928 \f
7929 /* Partial symbol tables. */
7930
7931 /* Create a psymtab named NAME and assign it to PER_CU.
7932
7933 The caller must fill in the following details:
7934 dirname, textlow, texthigh. */
7935
7936 static struct partial_symtab *
7937 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7938 {
7939 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7940 struct partial_symtab *pst;
7941
7942 pst = start_psymtab_common (objfile, name, 0,
7943 objfile->global_psymbols,
7944 objfile->static_psymbols);
7945
7946 pst->psymtabs_addrmap_supported = 1;
7947
7948 /* This is the glue that links PST into GDB's symbol API. */
7949 pst->read_symtab_private = per_cu;
7950 pst->read_symtab = dwarf2_read_symtab;
7951 per_cu->v.psymtab = pst;
7952
7953 return pst;
7954 }
7955
7956 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7957 type. */
7958
7959 struct process_psymtab_comp_unit_data
7960 {
7961 /* True if we are reading a DW_TAG_partial_unit. */
7962
7963 int want_partial_unit;
7964
7965 /* The "pretend" language that is used if the CU doesn't declare a
7966 language. */
7967
7968 enum language pretend_language;
7969 };
7970
7971 /* die_reader_func for process_psymtab_comp_unit. */
7972
7973 static void
7974 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7975 const gdb_byte *info_ptr,
7976 struct die_info *comp_unit_die,
7977 int has_children,
7978 void *data)
7979 {
7980 struct dwarf2_cu *cu = reader->cu;
7981 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7982 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7983 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7984 CORE_ADDR baseaddr;
7985 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7986 struct partial_symtab *pst;
7987 enum pc_bounds_kind cu_bounds_kind;
7988 const char *filename;
7989 struct process_psymtab_comp_unit_data *info
7990 = (struct process_psymtab_comp_unit_data *) data;
7991
7992 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7993 return;
7994
7995 gdb_assert (! per_cu->is_debug_types);
7996
7997 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7998
7999 cu->list_in_scope = &file_symbols;
8000
8001 /* Allocate a new partial symbol table structure. */
8002 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8003 if (filename == NULL)
8004 filename = "";
8005
8006 pst = create_partial_symtab (per_cu, filename);
8007
8008 /* This must be done before calling dwarf2_build_include_psymtabs. */
8009 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8010
8011 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8012
8013 dwarf2_find_base_address (comp_unit_die, cu);
8014
8015 /* Possibly set the default values of LOWPC and HIGHPC from
8016 `DW_AT_ranges'. */
8017 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8018 &best_highpc, cu, pst);
8019 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8020 /* Store the contiguous range if it is not empty; it can be empty for
8021 CUs with no code. */
8022 addrmap_set_empty (objfile->psymtabs_addrmap,
8023 gdbarch_adjust_dwarf2_addr (gdbarch,
8024 best_lowpc + baseaddr),
8025 gdbarch_adjust_dwarf2_addr (gdbarch,
8026 best_highpc + baseaddr) - 1,
8027 pst);
8028
8029 /* Check if comp unit has_children.
8030 If so, read the rest of the partial symbols from this comp unit.
8031 If not, there's no more debug_info for this comp unit. */
8032 if (has_children)
8033 {
8034 struct partial_die_info *first_die;
8035 CORE_ADDR lowpc, highpc;
8036
8037 lowpc = ((CORE_ADDR) -1);
8038 highpc = ((CORE_ADDR) 0);
8039
8040 first_die = load_partial_dies (reader, info_ptr, 1);
8041
8042 scan_partial_symbols (first_die, &lowpc, &highpc,
8043 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8044
8045 /* If we didn't find a lowpc, set it to highpc to avoid
8046 complaints from `maint check'. */
8047 if (lowpc == ((CORE_ADDR) -1))
8048 lowpc = highpc;
8049
8050 /* If the compilation unit didn't have an explicit address range,
8051 then use the information extracted from its child dies. */
8052 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8053 {
8054 best_lowpc = lowpc;
8055 best_highpc = highpc;
8056 }
8057 }
8058 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
8059 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
8060
8061 end_psymtab_common (objfile, pst);
8062
8063 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8064 {
8065 int i;
8066 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8067 struct dwarf2_per_cu_data *iter;
8068
8069 /* Fill in 'dependencies' here; we fill in 'users' in a
8070 post-pass. */
8071 pst->number_of_dependencies = len;
8072 pst->dependencies =
8073 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8074 for (i = 0;
8075 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8076 i, iter);
8077 ++i)
8078 pst->dependencies[i] = iter->v.psymtab;
8079
8080 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8081 }
8082
8083 /* Get the list of files included in the current compilation unit,
8084 and build a psymtab for each of them. */
8085 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8086
8087 if (dwarf_read_debug)
8088 {
8089 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8090
8091 fprintf_unfiltered (gdb_stdlog,
8092 "Psymtab for %s unit @%s: %s - %s"
8093 ", %d global, %d static syms\n",
8094 per_cu->is_debug_types ? "type" : "comp",
8095 sect_offset_str (per_cu->sect_off),
8096 paddress (gdbarch, pst->textlow),
8097 paddress (gdbarch, pst->texthigh),
8098 pst->n_global_syms, pst->n_static_syms);
8099 }
8100 }
8101
8102 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8103 Process compilation unit THIS_CU for a psymtab. */
8104
8105 static void
8106 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8107 int want_partial_unit,
8108 enum language pretend_language)
8109 {
8110 /* If this compilation unit was already read in, free the
8111 cached copy in order to read it in again. This is
8112 necessary because we skipped some symbols when we first
8113 read in the compilation unit (see load_partial_dies).
8114 This problem could be avoided, but the benefit is unclear. */
8115 if (this_cu->cu != NULL)
8116 free_one_cached_comp_unit (this_cu);
8117
8118 if (this_cu->is_debug_types)
8119 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
8120 NULL);
8121 else
8122 {
8123 process_psymtab_comp_unit_data info;
8124 info.want_partial_unit = want_partial_unit;
8125 info.pretend_language = pretend_language;
8126 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
8127 process_psymtab_comp_unit_reader, &info);
8128 }
8129
8130 /* Age out any secondary CUs. */
8131 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8132 }
8133
8134 /* Reader function for build_type_psymtabs. */
8135
8136 static void
8137 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8138 const gdb_byte *info_ptr,
8139 struct die_info *type_unit_die,
8140 int has_children,
8141 void *data)
8142 {
8143 struct dwarf2_per_objfile *dwarf2_per_objfile
8144 = reader->cu->per_cu->dwarf2_per_objfile;
8145 struct objfile *objfile = dwarf2_per_objfile->objfile;
8146 struct dwarf2_cu *cu = reader->cu;
8147 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8148 struct signatured_type *sig_type;
8149 struct type_unit_group *tu_group;
8150 struct attribute *attr;
8151 struct partial_die_info *first_die;
8152 CORE_ADDR lowpc, highpc;
8153 struct partial_symtab *pst;
8154
8155 gdb_assert (data == NULL);
8156 gdb_assert (per_cu->is_debug_types);
8157 sig_type = (struct signatured_type *) per_cu;
8158
8159 if (! has_children)
8160 return;
8161
8162 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8163 tu_group = get_type_unit_group (cu, attr);
8164
8165 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8166
8167 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8168 cu->list_in_scope = &file_symbols;
8169 pst = create_partial_symtab (per_cu, "");
8170 pst->anonymous = 1;
8171
8172 first_die = load_partial_dies (reader, info_ptr, 1);
8173
8174 lowpc = (CORE_ADDR) -1;
8175 highpc = (CORE_ADDR) 0;
8176 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8177
8178 end_psymtab_common (objfile, pst);
8179 }
8180
8181 /* Struct used to sort TUs by their abbreviation table offset. */
8182
8183 struct tu_abbrev_offset
8184 {
8185 struct signatured_type *sig_type;
8186 sect_offset abbrev_offset;
8187 };
8188
8189 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8190
8191 static bool
8192 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8193 const struct tu_abbrev_offset &b)
8194 {
8195 return a.abbrev_offset < b.abbrev_offset;
8196 }
8197
8198 /* Efficiently read all the type units.
8199 This does the bulk of the work for build_type_psymtabs.
8200
8201 The efficiency is because we sort TUs by the abbrev table they use and
8202 only read each abbrev table once. In one program there are 200K TUs
8203 sharing 8K abbrev tables.
8204
8205 The main purpose of this function is to support building the
8206 dwarf2_per_objfile->type_unit_groups table.
8207 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8208 can collapse the search space by grouping them by stmt_list.
8209 The savings can be significant, in the same program from above the 200K TUs
8210 share 8K stmt_list tables.
8211
8212 FUNC is expected to call get_type_unit_group, which will create the
8213 struct type_unit_group if necessary and add it to
8214 dwarf2_per_objfile->type_unit_groups. */
8215
8216 static void
8217 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8218 {
8219 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8220 abbrev_table_up abbrev_table;
8221 sect_offset abbrev_offset;
8222 int i;
8223
8224 /* It's up to the caller to not call us multiple times. */
8225 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8226
8227 if (dwarf2_per_objfile->n_type_units == 0)
8228 return;
8229
8230 /* TUs typically share abbrev tables, and there can be way more TUs than
8231 abbrev tables. Sort by abbrev table to reduce the number of times we
8232 read each abbrev table in.
8233 Alternatives are to punt or to maintain a cache of abbrev tables.
8234 This is simpler and efficient enough for now.
8235
8236 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8237 symtab to use). Typically TUs with the same abbrev offset have the same
8238 stmt_list value too so in practice this should work well.
8239
8240 The basic algorithm here is:
8241
8242 sort TUs by abbrev table
8243 for each TU with same abbrev table:
8244 read abbrev table if first user
8245 read TU top level DIE
8246 [IWBN if DWO skeletons had DW_AT_stmt_list]
8247 call FUNC */
8248
8249 if (dwarf_read_debug)
8250 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8251
8252 /* Sort in a separate table to maintain the order of all_type_units
8253 for .gdb_index: TU indices directly index all_type_units. */
8254 std::vector<struct tu_abbrev_offset> sorted_by_abbrev
8255 (dwarf2_per_objfile->n_type_units);
8256 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8257 {
8258 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
8259
8260 sorted_by_abbrev[i].sig_type = sig_type;
8261 sorted_by_abbrev[i].abbrev_offset =
8262 read_abbrev_offset (dwarf2_per_objfile,
8263 sig_type->per_cu.section,
8264 sig_type->per_cu.sect_off);
8265 }
8266 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8267 sort_tu_by_abbrev_offset);
8268
8269 abbrev_offset = (sect_offset) ~(unsigned) 0;
8270
8271 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8272 {
8273 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
8274
8275 /* Switch to the next abbrev table if necessary. */
8276 if (abbrev_table == NULL
8277 || tu->abbrev_offset != abbrev_offset)
8278 {
8279 abbrev_offset = tu->abbrev_offset;
8280 abbrev_table =
8281 abbrev_table_read_table (dwarf2_per_objfile,
8282 &dwarf2_per_objfile->abbrev,
8283 abbrev_offset);
8284 ++tu_stats->nr_uniq_abbrev_tables;
8285 }
8286
8287 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table.get (),
8288 0, 0, build_type_psymtabs_reader, NULL);
8289 }
8290 }
8291
8292 /* Print collected type unit statistics. */
8293
8294 static void
8295 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8296 {
8297 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8298
8299 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8300 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
8301 dwarf2_per_objfile->n_type_units);
8302 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8303 tu_stats->nr_uniq_abbrev_tables);
8304 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8305 tu_stats->nr_symtabs);
8306 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8307 tu_stats->nr_symtab_sharers);
8308 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8309 tu_stats->nr_stmt_less_type_units);
8310 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8311 tu_stats->nr_all_type_units_reallocs);
8312 }
8313
8314 /* Traversal function for build_type_psymtabs. */
8315
8316 static int
8317 build_type_psymtab_dependencies (void **slot, void *info)
8318 {
8319 struct dwarf2_per_objfile *dwarf2_per_objfile
8320 = (struct dwarf2_per_objfile *) info;
8321 struct objfile *objfile = dwarf2_per_objfile->objfile;
8322 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8323 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8324 struct partial_symtab *pst = per_cu->v.psymtab;
8325 int len = VEC_length (sig_type_ptr, tu_group->tus);
8326 struct signatured_type *iter;
8327 int i;
8328
8329 gdb_assert (len > 0);
8330 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8331
8332 pst->number_of_dependencies = len;
8333 pst->dependencies =
8334 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8335 for (i = 0;
8336 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8337 ++i)
8338 {
8339 gdb_assert (iter->per_cu.is_debug_types);
8340 pst->dependencies[i] = iter->per_cu.v.psymtab;
8341 iter->type_unit_group = tu_group;
8342 }
8343
8344 VEC_free (sig_type_ptr, tu_group->tus);
8345
8346 return 1;
8347 }
8348
8349 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8350 Build partial symbol tables for the .debug_types comp-units. */
8351
8352 static void
8353 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8354 {
8355 if (! create_all_type_units (dwarf2_per_objfile))
8356 return;
8357
8358 build_type_psymtabs_1 (dwarf2_per_objfile);
8359 }
8360
8361 /* Traversal function for process_skeletonless_type_unit.
8362 Read a TU in a DWO file and build partial symbols for it. */
8363
8364 static int
8365 process_skeletonless_type_unit (void **slot, void *info)
8366 {
8367 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8368 struct dwarf2_per_objfile *dwarf2_per_objfile
8369 = (struct dwarf2_per_objfile *) info;
8370 struct signatured_type find_entry, *entry;
8371
8372 /* If this TU doesn't exist in the global table, add it and read it in. */
8373
8374 if (dwarf2_per_objfile->signatured_types == NULL)
8375 {
8376 dwarf2_per_objfile->signatured_types
8377 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8378 }
8379
8380 find_entry.signature = dwo_unit->signature;
8381 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8382 INSERT);
8383 /* If we've already seen this type there's nothing to do. What's happening
8384 is we're doing our own version of comdat-folding here. */
8385 if (*slot != NULL)
8386 return 1;
8387
8388 /* This does the job that create_all_type_units would have done for
8389 this TU. */
8390 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8391 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8392 *slot = entry;
8393
8394 /* This does the job that build_type_psymtabs_1 would have done. */
8395 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
8396 build_type_psymtabs_reader, NULL);
8397
8398 return 1;
8399 }
8400
8401 /* Traversal function for process_skeletonless_type_units. */
8402
8403 static int
8404 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8405 {
8406 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8407
8408 if (dwo_file->tus != NULL)
8409 {
8410 htab_traverse_noresize (dwo_file->tus,
8411 process_skeletonless_type_unit, info);
8412 }
8413
8414 return 1;
8415 }
8416
8417 /* Scan all TUs of DWO files, verifying we've processed them.
8418 This is needed in case a TU was emitted without its skeleton.
8419 Note: This can't be done until we know what all the DWO files are. */
8420
8421 static void
8422 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8423 {
8424 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8425 if (get_dwp_file (dwarf2_per_objfile) == NULL
8426 && dwarf2_per_objfile->dwo_files != NULL)
8427 {
8428 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8429 process_dwo_file_for_skeletonless_type_units,
8430 dwarf2_per_objfile);
8431 }
8432 }
8433
8434 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8435
8436 static void
8437 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8438 {
8439 int i;
8440
8441 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8442 {
8443 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8444 struct partial_symtab *pst = per_cu->v.psymtab;
8445 int j;
8446
8447 if (pst == NULL)
8448 continue;
8449
8450 for (j = 0; j < pst->number_of_dependencies; ++j)
8451 {
8452 /* Set the 'user' field only if it is not already set. */
8453 if (pst->dependencies[j]->user == NULL)
8454 pst->dependencies[j]->user = pst;
8455 }
8456 }
8457 }
8458
8459 /* Build the partial symbol table by doing a quick pass through the
8460 .debug_info and .debug_abbrev sections. */
8461
8462 static void
8463 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8464 {
8465 int i;
8466 struct objfile *objfile = dwarf2_per_objfile->objfile;
8467
8468 if (dwarf_read_debug)
8469 {
8470 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8471 objfile_name (objfile));
8472 }
8473
8474 dwarf2_per_objfile->reading_partial_symbols = 1;
8475
8476 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8477
8478 /* Any cached compilation units will be linked by the per-objfile
8479 read_in_chain. Make sure to free them when we're done. */
8480 free_cached_comp_units freer (dwarf2_per_objfile);
8481
8482 build_type_psymtabs (dwarf2_per_objfile);
8483
8484 create_all_comp_units (dwarf2_per_objfile);
8485
8486 /* Create a temporary address map on a temporary obstack. We later
8487 copy this to the final obstack. */
8488 auto_obstack temp_obstack;
8489
8490 scoped_restore save_psymtabs_addrmap
8491 = make_scoped_restore (&objfile->psymtabs_addrmap,
8492 addrmap_create_mutable (&temp_obstack));
8493
8494 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8495 {
8496 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8497
8498 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8499 }
8500
8501 /* This has to wait until we read the CUs, we need the list of DWOs. */
8502 process_skeletonless_type_units (dwarf2_per_objfile);
8503
8504 /* Now that all TUs have been processed we can fill in the dependencies. */
8505 if (dwarf2_per_objfile->type_unit_groups != NULL)
8506 {
8507 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8508 build_type_psymtab_dependencies, dwarf2_per_objfile);
8509 }
8510
8511 if (dwarf_read_debug)
8512 print_tu_stats (dwarf2_per_objfile);
8513
8514 set_partial_user (dwarf2_per_objfile);
8515
8516 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8517 &objfile->objfile_obstack);
8518 /* At this point we want to keep the address map. */
8519 save_psymtabs_addrmap.release ();
8520
8521 if (dwarf_read_debug)
8522 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8523 objfile_name (objfile));
8524 }
8525
8526 /* die_reader_func for load_partial_comp_unit. */
8527
8528 static void
8529 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8530 const gdb_byte *info_ptr,
8531 struct die_info *comp_unit_die,
8532 int has_children,
8533 void *data)
8534 {
8535 struct dwarf2_cu *cu = reader->cu;
8536
8537 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8538
8539 /* Check if comp unit has_children.
8540 If so, read the rest of the partial symbols from this comp unit.
8541 If not, there's no more debug_info for this comp unit. */
8542 if (has_children)
8543 load_partial_dies (reader, info_ptr, 0);
8544 }
8545
8546 /* Load the partial DIEs for a secondary CU into memory.
8547 This is also used when rereading a primary CU with load_all_dies. */
8548
8549 static void
8550 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8551 {
8552 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8553 load_partial_comp_unit_reader, NULL);
8554 }
8555
8556 static void
8557 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8558 struct dwarf2_section_info *section,
8559 struct dwarf2_section_info *abbrev_section,
8560 unsigned int is_dwz,
8561 int *n_allocated,
8562 int *n_comp_units,
8563 struct dwarf2_per_cu_data ***all_comp_units)
8564 {
8565 const gdb_byte *info_ptr;
8566 struct objfile *objfile = dwarf2_per_objfile->objfile;
8567
8568 if (dwarf_read_debug)
8569 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8570 get_section_name (section),
8571 get_section_file_name (section));
8572
8573 dwarf2_read_section (objfile, section);
8574
8575 info_ptr = section->buffer;
8576
8577 while (info_ptr < section->buffer + section->size)
8578 {
8579 struct dwarf2_per_cu_data *this_cu;
8580
8581 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8582
8583 comp_unit_head cu_header;
8584 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8585 abbrev_section, info_ptr,
8586 rcuh_kind::COMPILE);
8587
8588 /* Save the compilation unit for later lookup. */
8589 if (cu_header.unit_type != DW_UT_type)
8590 {
8591 this_cu = XOBNEW (&objfile->objfile_obstack,
8592 struct dwarf2_per_cu_data);
8593 memset (this_cu, 0, sizeof (*this_cu));
8594 }
8595 else
8596 {
8597 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8598 struct signatured_type);
8599 memset (sig_type, 0, sizeof (*sig_type));
8600 sig_type->signature = cu_header.signature;
8601 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8602 this_cu = &sig_type->per_cu;
8603 }
8604 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8605 this_cu->sect_off = sect_off;
8606 this_cu->length = cu_header.length + cu_header.initial_length_size;
8607 this_cu->is_dwz = is_dwz;
8608 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8609 this_cu->section = section;
8610
8611 if (*n_comp_units == *n_allocated)
8612 {
8613 *n_allocated *= 2;
8614 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
8615 *all_comp_units, *n_allocated);
8616 }
8617 (*all_comp_units)[*n_comp_units] = this_cu;
8618 ++*n_comp_units;
8619
8620 info_ptr = info_ptr + this_cu->length;
8621 }
8622 }
8623
8624 /* Create a list of all compilation units in OBJFILE.
8625 This is only done for -readnow and building partial symtabs. */
8626
8627 static void
8628 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8629 {
8630 int n_allocated;
8631 int n_comp_units;
8632 struct dwarf2_per_cu_data **all_comp_units;
8633 struct dwz_file *dwz;
8634 struct objfile *objfile = dwarf2_per_objfile->objfile;
8635
8636 n_comp_units = 0;
8637 n_allocated = 10;
8638 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
8639
8640 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8641 &dwarf2_per_objfile->abbrev, 0,
8642 &n_allocated, &n_comp_units, &all_comp_units);
8643
8644 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8645 if (dwz != NULL)
8646 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8647 1, &n_allocated, &n_comp_units,
8648 &all_comp_units);
8649
8650 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
8651 struct dwarf2_per_cu_data *,
8652 n_comp_units);
8653 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
8654 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
8655 xfree (all_comp_units);
8656 dwarf2_per_objfile->n_comp_units = n_comp_units;
8657 }
8658
8659 /* Process all loaded DIEs for compilation unit CU, starting at
8660 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8661 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8662 DW_AT_ranges). See the comments of add_partial_subprogram on how
8663 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8664
8665 static void
8666 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8667 CORE_ADDR *highpc, int set_addrmap,
8668 struct dwarf2_cu *cu)
8669 {
8670 struct partial_die_info *pdi;
8671
8672 /* Now, march along the PDI's, descending into ones which have
8673 interesting children but skipping the children of the other ones,
8674 until we reach the end of the compilation unit. */
8675
8676 pdi = first_die;
8677
8678 while (pdi != NULL)
8679 {
8680 pdi->fixup (cu);
8681
8682 /* Anonymous namespaces or modules have no name but have interesting
8683 children, so we need to look at them. Ditto for anonymous
8684 enums. */
8685
8686 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8687 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8688 || pdi->tag == DW_TAG_imported_unit
8689 || pdi->tag == DW_TAG_inlined_subroutine)
8690 {
8691 switch (pdi->tag)
8692 {
8693 case DW_TAG_subprogram:
8694 case DW_TAG_inlined_subroutine:
8695 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8696 break;
8697 case DW_TAG_constant:
8698 case DW_TAG_variable:
8699 case DW_TAG_typedef:
8700 case DW_TAG_union_type:
8701 if (!pdi->is_declaration)
8702 {
8703 add_partial_symbol (pdi, cu);
8704 }
8705 break;
8706 case DW_TAG_class_type:
8707 case DW_TAG_interface_type:
8708 case DW_TAG_structure_type:
8709 if (!pdi->is_declaration)
8710 {
8711 add_partial_symbol (pdi, cu);
8712 }
8713 if ((cu->language == language_rust
8714 || cu->language == language_cplus) && pdi->has_children)
8715 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8716 set_addrmap, cu);
8717 break;
8718 case DW_TAG_enumeration_type:
8719 if (!pdi->is_declaration)
8720 add_partial_enumeration (pdi, cu);
8721 break;
8722 case DW_TAG_base_type:
8723 case DW_TAG_subrange_type:
8724 /* File scope base type definitions are added to the partial
8725 symbol table. */
8726 add_partial_symbol (pdi, cu);
8727 break;
8728 case DW_TAG_namespace:
8729 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8730 break;
8731 case DW_TAG_module:
8732 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8733 break;
8734 case DW_TAG_imported_unit:
8735 {
8736 struct dwarf2_per_cu_data *per_cu;
8737
8738 /* For now we don't handle imported units in type units. */
8739 if (cu->per_cu->is_debug_types)
8740 {
8741 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8742 " supported in type units [in module %s]"),
8743 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8744 }
8745
8746 per_cu = dwarf2_find_containing_comp_unit
8747 (pdi->d.sect_off, pdi->is_dwz,
8748 cu->per_cu->dwarf2_per_objfile);
8749
8750 /* Go read the partial unit, if needed. */
8751 if (per_cu->v.psymtab == NULL)
8752 process_psymtab_comp_unit (per_cu, 1, cu->language);
8753
8754 VEC_safe_push (dwarf2_per_cu_ptr,
8755 cu->per_cu->imported_symtabs, per_cu);
8756 }
8757 break;
8758 case DW_TAG_imported_declaration:
8759 add_partial_symbol (pdi, cu);
8760 break;
8761 default:
8762 break;
8763 }
8764 }
8765
8766 /* If the die has a sibling, skip to the sibling. */
8767
8768 pdi = pdi->die_sibling;
8769 }
8770 }
8771
8772 /* Functions used to compute the fully scoped name of a partial DIE.
8773
8774 Normally, this is simple. For C++, the parent DIE's fully scoped
8775 name is concatenated with "::" and the partial DIE's name.
8776 Enumerators are an exception; they use the scope of their parent
8777 enumeration type, i.e. the name of the enumeration type is not
8778 prepended to the enumerator.
8779
8780 There are two complexities. One is DW_AT_specification; in this
8781 case "parent" means the parent of the target of the specification,
8782 instead of the direct parent of the DIE. The other is compilers
8783 which do not emit DW_TAG_namespace; in this case we try to guess
8784 the fully qualified name of structure types from their members'
8785 linkage names. This must be done using the DIE's children rather
8786 than the children of any DW_AT_specification target. We only need
8787 to do this for structures at the top level, i.e. if the target of
8788 any DW_AT_specification (if any; otherwise the DIE itself) does not
8789 have a parent. */
8790
8791 /* Compute the scope prefix associated with PDI's parent, in
8792 compilation unit CU. The result will be allocated on CU's
8793 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8794 field. NULL is returned if no prefix is necessary. */
8795 static const char *
8796 partial_die_parent_scope (struct partial_die_info *pdi,
8797 struct dwarf2_cu *cu)
8798 {
8799 const char *grandparent_scope;
8800 struct partial_die_info *parent, *real_pdi;
8801
8802 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8803 then this means the parent of the specification DIE. */
8804
8805 real_pdi = pdi;
8806 while (real_pdi->has_specification)
8807 real_pdi = find_partial_die (real_pdi->spec_offset,
8808 real_pdi->spec_is_dwz, cu);
8809
8810 parent = real_pdi->die_parent;
8811 if (parent == NULL)
8812 return NULL;
8813
8814 if (parent->scope_set)
8815 return parent->scope;
8816
8817 parent->fixup (cu);
8818
8819 grandparent_scope = partial_die_parent_scope (parent, cu);
8820
8821 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8822 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8823 Work around this problem here. */
8824 if (cu->language == language_cplus
8825 && parent->tag == DW_TAG_namespace
8826 && strcmp (parent->name, "::") == 0
8827 && grandparent_scope == NULL)
8828 {
8829 parent->scope = NULL;
8830 parent->scope_set = 1;
8831 return NULL;
8832 }
8833
8834 if (pdi->tag == DW_TAG_enumerator)
8835 /* Enumerators should not get the name of the enumeration as a prefix. */
8836 parent->scope = grandparent_scope;
8837 else if (parent->tag == DW_TAG_namespace
8838 || parent->tag == DW_TAG_module
8839 || parent->tag == DW_TAG_structure_type
8840 || parent->tag == DW_TAG_class_type
8841 || parent->tag == DW_TAG_interface_type
8842 || parent->tag == DW_TAG_union_type
8843 || parent->tag == DW_TAG_enumeration_type)
8844 {
8845 if (grandparent_scope == NULL)
8846 parent->scope = parent->name;
8847 else
8848 parent->scope = typename_concat (&cu->comp_unit_obstack,
8849 grandparent_scope,
8850 parent->name, 0, cu);
8851 }
8852 else
8853 {
8854 /* FIXME drow/2004-04-01: What should we be doing with
8855 function-local names? For partial symbols, we should probably be
8856 ignoring them. */
8857 complaint (&symfile_complaints,
8858 _("unhandled containing DIE tag %d for DIE at %s"),
8859 parent->tag, sect_offset_str (pdi->sect_off));
8860 parent->scope = grandparent_scope;
8861 }
8862
8863 parent->scope_set = 1;
8864 return parent->scope;
8865 }
8866
8867 /* Return the fully scoped name associated with PDI, from compilation unit
8868 CU. The result will be allocated with malloc. */
8869
8870 static char *
8871 partial_die_full_name (struct partial_die_info *pdi,
8872 struct dwarf2_cu *cu)
8873 {
8874 const char *parent_scope;
8875
8876 /* If this is a template instantiation, we can not work out the
8877 template arguments from partial DIEs. So, unfortunately, we have
8878 to go through the full DIEs. At least any work we do building
8879 types here will be reused if full symbols are loaded later. */
8880 if (pdi->has_template_arguments)
8881 {
8882 pdi->fixup (cu);
8883
8884 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8885 {
8886 struct die_info *die;
8887 struct attribute attr;
8888 struct dwarf2_cu *ref_cu = cu;
8889
8890 /* DW_FORM_ref_addr is using section offset. */
8891 attr.name = (enum dwarf_attribute) 0;
8892 attr.form = DW_FORM_ref_addr;
8893 attr.u.unsnd = to_underlying (pdi->sect_off);
8894 die = follow_die_ref (NULL, &attr, &ref_cu);
8895
8896 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8897 }
8898 }
8899
8900 parent_scope = partial_die_parent_scope (pdi, cu);
8901 if (parent_scope == NULL)
8902 return NULL;
8903 else
8904 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8905 }
8906
8907 static void
8908 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8909 {
8910 struct dwarf2_per_objfile *dwarf2_per_objfile
8911 = cu->per_cu->dwarf2_per_objfile;
8912 struct objfile *objfile = dwarf2_per_objfile->objfile;
8913 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8914 CORE_ADDR addr = 0;
8915 const char *actual_name = NULL;
8916 CORE_ADDR baseaddr;
8917 char *built_actual_name;
8918
8919 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8920
8921 built_actual_name = partial_die_full_name (pdi, cu);
8922 if (built_actual_name != NULL)
8923 actual_name = built_actual_name;
8924
8925 if (actual_name == NULL)
8926 actual_name = pdi->name;
8927
8928 switch (pdi->tag)
8929 {
8930 case DW_TAG_inlined_subroutine:
8931 case DW_TAG_subprogram:
8932 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8933 if (pdi->is_external || cu->language == language_ada)
8934 {
8935 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8936 of the global scope. But in Ada, we want to be able to access
8937 nested procedures globally. So all Ada subprograms are stored
8938 in the global scope. */
8939 add_psymbol_to_list (actual_name, strlen (actual_name),
8940 built_actual_name != NULL,
8941 VAR_DOMAIN, LOC_BLOCK,
8942 &objfile->global_psymbols,
8943 addr, cu->language, objfile);
8944 }
8945 else
8946 {
8947 add_psymbol_to_list (actual_name, strlen (actual_name),
8948 built_actual_name != NULL,
8949 VAR_DOMAIN, LOC_BLOCK,
8950 &objfile->static_psymbols,
8951 addr, cu->language, objfile);
8952 }
8953
8954 if (pdi->main_subprogram && actual_name != NULL)
8955 set_objfile_main_name (objfile, actual_name, cu->language);
8956 break;
8957 case DW_TAG_constant:
8958 {
8959 std::vector<partial_symbol *> *list;
8960
8961 if (pdi->is_external)
8962 list = &objfile->global_psymbols;
8963 else
8964 list = &objfile->static_psymbols;
8965 add_psymbol_to_list (actual_name, strlen (actual_name),
8966 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8967 list, 0, cu->language, objfile);
8968 }
8969 break;
8970 case DW_TAG_variable:
8971 if (pdi->d.locdesc)
8972 addr = decode_locdesc (pdi->d.locdesc, cu);
8973
8974 if (pdi->d.locdesc
8975 && addr == 0
8976 && !dwarf2_per_objfile->has_section_at_zero)
8977 {
8978 /* A global or static variable may also have been stripped
8979 out by the linker if unused, in which case its address
8980 will be nullified; do not add such variables into partial
8981 symbol table then. */
8982 }
8983 else if (pdi->is_external)
8984 {
8985 /* Global Variable.
8986 Don't enter into the minimal symbol tables as there is
8987 a minimal symbol table entry from the ELF symbols already.
8988 Enter into partial symbol table if it has a location
8989 descriptor or a type.
8990 If the location descriptor is missing, new_symbol will create
8991 a LOC_UNRESOLVED symbol, the address of the variable will then
8992 be determined from the minimal symbol table whenever the variable
8993 is referenced.
8994 The address for the partial symbol table entry is not
8995 used by GDB, but it comes in handy for debugging partial symbol
8996 table building. */
8997
8998 if (pdi->d.locdesc || pdi->has_type)
8999 add_psymbol_to_list (actual_name, strlen (actual_name),
9000 built_actual_name != NULL,
9001 VAR_DOMAIN, LOC_STATIC,
9002 &objfile->global_psymbols,
9003 addr + baseaddr,
9004 cu->language, objfile);
9005 }
9006 else
9007 {
9008 int has_loc = pdi->d.locdesc != NULL;
9009
9010 /* Static Variable. Skip symbols whose value we cannot know (those
9011 without location descriptors or constant values). */
9012 if (!has_loc && !pdi->has_const_value)
9013 {
9014 xfree (built_actual_name);
9015 return;
9016 }
9017
9018 add_psymbol_to_list (actual_name, strlen (actual_name),
9019 built_actual_name != NULL,
9020 VAR_DOMAIN, LOC_STATIC,
9021 &objfile->static_psymbols,
9022 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
9023 cu->language, objfile);
9024 }
9025 break;
9026 case DW_TAG_typedef:
9027 case DW_TAG_base_type:
9028 case DW_TAG_subrange_type:
9029 add_psymbol_to_list (actual_name, strlen (actual_name),
9030 built_actual_name != NULL,
9031 VAR_DOMAIN, LOC_TYPEDEF,
9032 &objfile->static_psymbols,
9033 0, cu->language, objfile);
9034 break;
9035 case DW_TAG_imported_declaration:
9036 case DW_TAG_namespace:
9037 add_psymbol_to_list (actual_name, strlen (actual_name),
9038 built_actual_name != NULL,
9039 VAR_DOMAIN, LOC_TYPEDEF,
9040 &objfile->global_psymbols,
9041 0, cu->language, objfile);
9042 break;
9043 case DW_TAG_module:
9044 add_psymbol_to_list (actual_name, strlen (actual_name),
9045 built_actual_name != NULL,
9046 MODULE_DOMAIN, LOC_TYPEDEF,
9047 &objfile->global_psymbols,
9048 0, cu->language, objfile);
9049 break;
9050 case DW_TAG_class_type:
9051 case DW_TAG_interface_type:
9052 case DW_TAG_structure_type:
9053 case DW_TAG_union_type:
9054 case DW_TAG_enumeration_type:
9055 /* Skip external references. The DWARF standard says in the section
9056 about "Structure, Union, and Class Type Entries": "An incomplete
9057 structure, union or class type is represented by a structure,
9058 union or class entry that does not have a byte size attribute
9059 and that has a DW_AT_declaration attribute." */
9060 if (!pdi->has_byte_size && pdi->is_declaration)
9061 {
9062 xfree (built_actual_name);
9063 return;
9064 }
9065
9066 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9067 static vs. global. */
9068 add_psymbol_to_list (actual_name, strlen (actual_name),
9069 built_actual_name != NULL,
9070 STRUCT_DOMAIN, LOC_TYPEDEF,
9071 cu->language == language_cplus
9072 ? &objfile->global_psymbols
9073 : &objfile->static_psymbols,
9074 0, cu->language, objfile);
9075
9076 break;
9077 case DW_TAG_enumerator:
9078 add_psymbol_to_list (actual_name, strlen (actual_name),
9079 built_actual_name != NULL,
9080 VAR_DOMAIN, LOC_CONST,
9081 cu->language == language_cplus
9082 ? &objfile->global_psymbols
9083 : &objfile->static_psymbols,
9084 0, cu->language, objfile);
9085 break;
9086 default:
9087 break;
9088 }
9089
9090 xfree (built_actual_name);
9091 }
9092
9093 /* Read a partial die corresponding to a namespace; also, add a symbol
9094 corresponding to that namespace to the symbol table. NAMESPACE is
9095 the name of the enclosing namespace. */
9096
9097 static void
9098 add_partial_namespace (struct partial_die_info *pdi,
9099 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9100 int set_addrmap, struct dwarf2_cu *cu)
9101 {
9102 /* Add a symbol for the namespace. */
9103
9104 add_partial_symbol (pdi, cu);
9105
9106 /* Now scan partial symbols in that namespace. */
9107
9108 if (pdi->has_children)
9109 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9110 }
9111
9112 /* Read a partial die corresponding to a Fortran module. */
9113
9114 static void
9115 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9116 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9117 {
9118 /* Add a symbol for the namespace. */
9119
9120 add_partial_symbol (pdi, cu);
9121
9122 /* Now scan partial symbols in that module. */
9123
9124 if (pdi->has_children)
9125 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9126 }
9127
9128 /* Read a partial die corresponding to a subprogram or an inlined
9129 subprogram and create a partial symbol for that subprogram.
9130 When the CU language allows it, this routine also defines a partial
9131 symbol for each nested subprogram that this subprogram contains.
9132 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9133 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9134
9135 PDI may also be a lexical block, in which case we simply search
9136 recursively for subprograms defined inside that lexical block.
9137 Again, this is only performed when the CU language allows this
9138 type of definitions. */
9139
9140 static void
9141 add_partial_subprogram (struct partial_die_info *pdi,
9142 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9143 int set_addrmap, struct dwarf2_cu *cu)
9144 {
9145 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9146 {
9147 if (pdi->has_pc_info)
9148 {
9149 if (pdi->lowpc < *lowpc)
9150 *lowpc = pdi->lowpc;
9151 if (pdi->highpc > *highpc)
9152 *highpc = pdi->highpc;
9153 if (set_addrmap)
9154 {
9155 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9157 CORE_ADDR baseaddr;
9158 CORE_ADDR highpc;
9159 CORE_ADDR lowpc;
9160
9161 baseaddr = ANOFFSET (objfile->section_offsets,
9162 SECT_OFF_TEXT (objfile));
9163 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9164 pdi->lowpc + baseaddr);
9165 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9166 pdi->highpc + baseaddr);
9167 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9168 cu->per_cu->v.psymtab);
9169 }
9170 }
9171
9172 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9173 {
9174 if (!pdi->is_declaration)
9175 /* Ignore subprogram DIEs that do not have a name, they are
9176 illegal. Do not emit a complaint at this point, we will
9177 do so when we convert this psymtab into a symtab. */
9178 if (pdi->name)
9179 add_partial_symbol (pdi, cu);
9180 }
9181 }
9182
9183 if (! pdi->has_children)
9184 return;
9185
9186 if (cu->language == language_ada)
9187 {
9188 pdi = pdi->die_child;
9189 while (pdi != NULL)
9190 {
9191 pdi->fixup (cu);
9192 if (pdi->tag == DW_TAG_subprogram
9193 || pdi->tag == DW_TAG_inlined_subroutine
9194 || pdi->tag == DW_TAG_lexical_block)
9195 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9196 pdi = pdi->die_sibling;
9197 }
9198 }
9199 }
9200
9201 /* Read a partial die corresponding to an enumeration type. */
9202
9203 static void
9204 add_partial_enumeration (struct partial_die_info *enum_pdi,
9205 struct dwarf2_cu *cu)
9206 {
9207 struct partial_die_info *pdi;
9208
9209 if (enum_pdi->name != NULL)
9210 add_partial_symbol (enum_pdi, cu);
9211
9212 pdi = enum_pdi->die_child;
9213 while (pdi)
9214 {
9215 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9216 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
9217 else
9218 add_partial_symbol (pdi, cu);
9219 pdi = pdi->die_sibling;
9220 }
9221 }
9222
9223 /* Return the initial uleb128 in the die at INFO_PTR. */
9224
9225 static unsigned int
9226 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9227 {
9228 unsigned int bytes_read;
9229
9230 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9231 }
9232
9233 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9234 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9235
9236 Return the corresponding abbrev, or NULL if the number is zero (indicating
9237 an empty DIE). In either case *BYTES_READ will be set to the length of
9238 the initial number. */
9239
9240 static struct abbrev_info *
9241 peek_die_abbrev (const die_reader_specs &reader,
9242 const gdb_byte *info_ptr, unsigned int *bytes_read)
9243 {
9244 dwarf2_cu *cu = reader.cu;
9245 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9246 unsigned int abbrev_number
9247 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9248
9249 if (abbrev_number == 0)
9250 return NULL;
9251
9252 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9253 if (!abbrev)
9254 {
9255 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9256 " at offset %s [in module %s]"),
9257 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9258 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9259 }
9260
9261 return abbrev;
9262 }
9263
9264 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9265 Returns a pointer to the end of a series of DIEs, terminated by an empty
9266 DIE. Any children of the skipped DIEs will also be skipped. */
9267
9268 static const gdb_byte *
9269 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9270 {
9271 while (1)
9272 {
9273 unsigned int bytes_read;
9274 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9275
9276 if (abbrev == NULL)
9277 return info_ptr + bytes_read;
9278 else
9279 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9280 }
9281 }
9282
9283 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9284 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9285 abbrev corresponding to that skipped uleb128 should be passed in
9286 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9287 children. */
9288
9289 static const gdb_byte *
9290 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9291 struct abbrev_info *abbrev)
9292 {
9293 unsigned int bytes_read;
9294 struct attribute attr;
9295 bfd *abfd = reader->abfd;
9296 struct dwarf2_cu *cu = reader->cu;
9297 const gdb_byte *buffer = reader->buffer;
9298 const gdb_byte *buffer_end = reader->buffer_end;
9299 unsigned int form, i;
9300
9301 for (i = 0; i < abbrev->num_attrs; i++)
9302 {
9303 /* The only abbrev we care about is DW_AT_sibling. */
9304 if (abbrev->attrs[i].name == DW_AT_sibling)
9305 {
9306 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9307 if (attr.form == DW_FORM_ref_addr)
9308 complaint (&symfile_complaints,
9309 _("ignoring absolute DW_AT_sibling"));
9310 else
9311 {
9312 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9313 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9314
9315 if (sibling_ptr < info_ptr)
9316 complaint (&symfile_complaints,
9317 _("DW_AT_sibling points backwards"));
9318 else if (sibling_ptr > reader->buffer_end)
9319 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9320 else
9321 return sibling_ptr;
9322 }
9323 }
9324
9325 /* If it isn't DW_AT_sibling, skip this attribute. */
9326 form = abbrev->attrs[i].form;
9327 skip_attribute:
9328 switch (form)
9329 {
9330 case DW_FORM_ref_addr:
9331 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9332 and later it is offset sized. */
9333 if (cu->header.version == 2)
9334 info_ptr += cu->header.addr_size;
9335 else
9336 info_ptr += cu->header.offset_size;
9337 break;
9338 case DW_FORM_GNU_ref_alt:
9339 info_ptr += cu->header.offset_size;
9340 break;
9341 case DW_FORM_addr:
9342 info_ptr += cu->header.addr_size;
9343 break;
9344 case DW_FORM_data1:
9345 case DW_FORM_ref1:
9346 case DW_FORM_flag:
9347 info_ptr += 1;
9348 break;
9349 case DW_FORM_flag_present:
9350 case DW_FORM_implicit_const:
9351 break;
9352 case DW_FORM_data2:
9353 case DW_FORM_ref2:
9354 info_ptr += 2;
9355 break;
9356 case DW_FORM_data4:
9357 case DW_FORM_ref4:
9358 info_ptr += 4;
9359 break;
9360 case DW_FORM_data8:
9361 case DW_FORM_ref8:
9362 case DW_FORM_ref_sig8:
9363 info_ptr += 8;
9364 break;
9365 case DW_FORM_data16:
9366 info_ptr += 16;
9367 break;
9368 case DW_FORM_string:
9369 read_direct_string (abfd, info_ptr, &bytes_read);
9370 info_ptr += bytes_read;
9371 break;
9372 case DW_FORM_sec_offset:
9373 case DW_FORM_strp:
9374 case DW_FORM_GNU_strp_alt:
9375 info_ptr += cu->header.offset_size;
9376 break;
9377 case DW_FORM_exprloc:
9378 case DW_FORM_block:
9379 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9380 info_ptr += bytes_read;
9381 break;
9382 case DW_FORM_block1:
9383 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9384 break;
9385 case DW_FORM_block2:
9386 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9387 break;
9388 case DW_FORM_block4:
9389 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9390 break;
9391 case DW_FORM_sdata:
9392 case DW_FORM_udata:
9393 case DW_FORM_ref_udata:
9394 case DW_FORM_GNU_addr_index:
9395 case DW_FORM_GNU_str_index:
9396 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9397 break;
9398 case DW_FORM_indirect:
9399 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9400 info_ptr += bytes_read;
9401 /* We need to continue parsing from here, so just go back to
9402 the top. */
9403 goto skip_attribute;
9404
9405 default:
9406 error (_("Dwarf Error: Cannot handle %s "
9407 "in DWARF reader [in module %s]"),
9408 dwarf_form_name (form),
9409 bfd_get_filename (abfd));
9410 }
9411 }
9412
9413 if (abbrev->has_children)
9414 return skip_children (reader, info_ptr);
9415 else
9416 return info_ptr;
9417 }
9418
9419 /* Locate ORIG_PDI's sibling.
9420 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9421
9422 static const gdb_byte *
9423 locate_pdi_sibling (const struct die_reader_specs *reader,
9424 struct partial_die_info *orig_pdi,
9425 const gdb_byte *info_ptr)
9426 {
9427 /* Do we know the sibling already? */
9428
9429 if (orig_pdi->sibling)
9430 return orig_pdi->sibling;
9431
9432 /* Are there any children to deal with? */
9433
9434 if (!orig_pdi->has_children)
9435 return info_ptr;
9436
9437 /* Skip the children the long way. */
9438
9439 return skip_children (reader, info_ptr);
9440 }
9441
9442 /* Expand this partial symbol table into a full symbol table. SELF is
9443 not NULL. */
9444
9445 static void
9446 dwarf2_read_symtab (struct partial_symtab *self,
9447 struct objfile *objfile)
9448 {
9449 struct dwarf2_per_objfile *dwarf2_per_objfile
9450 = get_dwarf2_per_objfile (objfile);
9451
9452 if (self->readin)
9453 {
9454 warning (_("bug: psymtab for %s is already read in."),
9455 self->filename);
9456 }
9457 else
9458 {
9459 if (info_verbose)
9460 {
9461 printf_filtered (_("Reading in symbols for %s..."),
9462 self->filename);
9463 gdb_flush (gdb_stdout);
9464 }
9465
9466 /* If this psymtab is constructed from a debug-only objfile, the
9467 has_section_at_zero flag will not necessarily be correct. We
9468 can get the correct value for this flag by looking at the data
9469 associated with the (presumably stripped) associated objfile. */
9470 if (objfile->separate_debug_objfile_backlink)
9471 {
9472 struct dwarf2_per_objfile *dpo_backlink
9473 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9474
9475 dwarf2_per_objfile->has_section_at_zero
9476 = dpo_backlink->has_section_at_zero;
9477 }
9478
9479 dwarf2_per_objfile->reading_partial_symbols = 0;
9480
9481 psymtab_to_symtab_1 (self);
9482
9483 /* Finish up the debug error message. */
9484 if (info_verbose)
9485 printf_filtered (_("done.\n"));
9486 }
9487
9488 process_cu_includes (dwarf2_per_objfile);
9489 }
9490 \f
9491 /* Reading in full CUs. */
9492
9493 /* Add PER_CU to the queue. */
9494
9495 static void
9496 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9497 enum language pretend_language)
9498 {
9499 struct dwarf2_queue_item *item;
9500
9501 per_cu->queued = 1;
9502 item = XNEW (struct dwarf2_queue_item);
9503 item->per_cu = per_cu;
9504 item->pretend_language = pretend_language;
9505 item->next = NULL;
9506
9507 if (dwarf2_queue == NULL)
9508 dwarf2_queue = item;
9509 else
9510 dwarf2_queue_tail->next = item;
9511
9512 dwarf2_queue_tail = item;
9513 }
9514
9515 /* If PER_CU is not yet queued, add it to the queue.
9516 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9517 dependency.
9518 The result is non-zero if PER_CU was queued, otherwise the result is zero
9519 meaning either PER_CU is already queued or it is already loaded.
9520
9521 N.B. There is an invariant here that if a CU is queued then it is loaded.
9522 The caller is required to load PER_CU if we return non-zero. */
9523
9524 static int
9525 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9526 struct dwarf2_per_cu_data *per_cu,
9527 enum language pretend_language)
9528 {
9529 /* We may arrive here during partial symbol reading, if we need full
9530 DIEs to process an unusual case (e.g. template arguments). Do
9531 not queue PER_CU, just tell our caller to load its DIEs. */
9532 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9533 {
9534 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9535 return 1;
9536 return 0;
9537 }
9538
9539 /* Mark the dependence relation so that we don't flush PER_CU
9540 too early. */
9541 if (dependent_cu != NULL)
9542 dwarf2_add_dependence (dependent_cu, per_cu);
9543
9544 /* If it's already on the queue, we have nothing to do. */
9545 if (per_cu->queued)
9546 return 0;
9547
9548 /* If the compilation unit is already loaded, just mark it as
9549 used. */
9550 if (per_cu->cu != NULL)
9551 {
9552 per_cu->cu->last_used = 0;
9553 return 0;
9554 }
9555
9556 /* Add it to the queue. */
9557 queue_comp_unit (per_cu, pretend_language);
9558
9559 return 1;
9560 }
9561
9562 /* Process the queue. */
9563
9564 static void
9565 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9566 {
9567 struct dwarf2_queue_item *item, *next_item;
9568
9569 if (dwarf_read_debug)
9570 {
9571 fprintf_unfiltered (gdb_stdlog,
9572 "Expanding one or more symtabs of objfile %s ...\n",
9573 objfile_name (dwarf2_per_objfile->objfile));
9574 }
9575
9576 /* The queue starts out with one item, but following a DIE reference
9577 may load a new CU, adding it to the end of the queue. */
9578 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9579 {
9580 if ((dwarf2_per_objfile->using_index
9581 ? !item->per_cu->v.quick->compunit_symtab
9582 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9583 /* Skip dummy CUs. */
9584 && item->per_cu->cu != NULL)
9585 {
9586 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9587 unsigned int debug_print_threshold;
9588 char buf[100];
9589
9590 if (per_cu->is_debug_types)
9591 {
9592 struct signatured_type *sig_type =
9593 (struct signatured_type *) per_cu;
9594
9595 sprintf (buf, "TU %s at offset %s",
9596 hex_string (sig_type->signature),
9597 sect_offset_str (per_cu->sect_off));
9598 /* There can be 100s of TUs.
9599 Only print them in verbose mode. */
9600 debug_print_threshold = 2;
9601 }
9602 else
9603 {
9604 sprintf (buf, "CU at offset %s",
9605 sect_offset_str (per_cu->sect_off));
9606 debug_print_threshold = 1;
9607 }
9608
9609 if (dwarf_read_debug >= debug_print_threshold)
9610 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9611
9612 if (per_cu->is_debug_types)
9613 process_full_type_unit (per_cu, item->pretend_language);
9614 else
9615 process_full_comp_unit (per_cu, item->pretend_language);
9616
9617 if (dwarf_read_debug >= debug_print_threshold)
9618 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9619 }
9620
9621 item->per_cu->queued = 0;
9622 next_item = item->next;
9623 xfree (item);
9624 }
9625
9626 dwarf2_queue_tail = NULL;
9627
9628 if (dwarf_read_debug)
9629 {
9630 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9631 objfile_name (dwarf2_per_objfile->objfile));
9632 }
9633 }
9634
9635 /* Read in full symbols for PST, and anything it depends on. */
9636
9637 static void
9638 psymtab_to_symtab_1 (struct partial_symtab *pst)
9639 {
9640 struct dwarf2_per_cu_data *per_cu;
9641 int i;
9642
9643 if (pst->readin)
9644 return;
9645
9646 for (i = 0; i < pst->number_of_dependencies; i++)
9647 if (!pst->dependencies[i]->readin
9648 && pst->dependencies[i]->user == NULL)
9649 {
9650 /* Inform about additional files that need to be read in. */
9651 if (info_verbose)
9652 {
9653 /* FIXME: i18n: Need to make this a single string. */
9654 fputs_filtered (" ", gdb_stdout);
9655 wrap_here ("");
9656 fputs_filtered ("and ", gdb_stdout);
9657 wrap_here ("");
9658 printf_filtered ("%s...", pst->dependencies[i]->filename);
9659 wrap_here (""); /* Flush output. */
9660 gdb_flush (gdb_stdout);
9661 }
9662 psymtab_to_symtab_1 (pst->dependencies[i]);
9663 }
9664
9665 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9666
9667 if (per_cu == NULL)
9668 {
9669 /* It's an include file, no symbols to read for it.
9670 Everything is in the parent symtab. */
9671 pst->readin = 1;
9672 return;
9673 }
9674
9675 dw2_do_instantiate_symtab (per_cu);
9676 }
9677
9678 /* Trivial hash function for die_info: the hash value of a DIE
9679 is its offset in .debug_info for this objfile. */
9680
9681 static hashval_t
9682 die_hash (const void *item)
9683 {
9684 const struct die_info *die = (const struct die_info *) item;
9685
9686 return to_underlying (die->sect_off);
9687 }
9688
9689 /* Trivial comparison function for die_info structures: two DIEs
9690 are equal if they have the same offset. */
9691
9692 static int
9693 die_eq (const void *item_lhs, const void *item_rhs)
9694 {
9695 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9696 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9697
9698 return die_lhs->sect_off == die_rhs->sect_off;
9699 }
9700
9701 /* die_reader_func for load_full_comp_unit.
9702 This is identical to read_signatured_type_reader,
9703 but is kept separate for now. */
9704
9705 static void
9706 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9707 const gdb_byte *info_ptr,
9708 struct die_info *comp_unit_die,
9709 int has_children,
9710 void *data)
9711 {
9712 struct dwarf2_cu *cu = reader->cu;
9713 enum language *language_ptr = (enum language *) data;
9714
9715 gdb_assert (cu->die_hash == NULL);
9716 cu->die_hash =
9717 htab_create_alloc_ex (cu->header.length / 12,
9718 die_hash,
9719 die_eq,
9720 NULL,
9721 &cu->comp_unit_obstack,
9722 hashtab_obstack_allocate,
9723 dummy_obstack_deallocate);
9724
9725 if (has_children)
9726 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9727 &info_ptr, comp_unit_die);
9728 cu->dies = comp_unit_die;
9729 /* comp_unit_die is not stored in die_hash, no need. */
9730
9731 /* We try not to read any attributes in this function, because not
9732 all CUs needed for references have been loaded yet, and symbol
9733 table processing isn't initialized. But we have to set the CU language,
9734 or we won't be able to build types correctly.
9735 Similarly, if we do not read the producer, we can not apply
9736 producer-specific interpretation. */
9737 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9738 }
9739
9740 /* Load the DIEs associated with PER_CU into memory. */
9741
9742 static void
9743 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9744 enum language pretend_language)
9745 {
9746 gdb_assert (! this_cu->is_debug_types);
9747
9748 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
9749 load_full_comp_unit_reader, &pretend_language);
9750 }
9751
9752 /* Add a DIE to the delayed physname list. */
9753
9754 static void
9755 add_to_method_list (struct type *type, int fnfield_index, int index,
9756 const char *name, struct die_info *die,
9757 struct dwarf2_cu *cu)
9758 {
9759 struct delayed_method_info mi;
9760 mi.type = type;
9761 mi.fnfield_index = fnfield_index;
9762 mi.index = index;
9763 mi.name = name;
9764 mi.die = die;
9765 cu->method_list.push_back (mi);
9766 }
9767
9768 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9769 "const" / "volatile". If so, decrements LEN by the length of the
9770 modifier and return true. Otherwise return false. */
9771
9772 template<size_t N>
9773 static bool
9774 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9775 {
9776 size_t mod_len = sizeof (mod) - 1;
9777 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9778 {
9779 len -= mod_len;
9780 return true;
9781 }
9782 return false;
9783 }
9784
9785 /* Compute the physnames of any methods on the CU's method list.
9786
9787 The computation of method physnames is delayed in order to avoid the
9788 (bad) condition that one of the method's formal parameters is of an as yet
9789 incomplete type. */
9790
9791 static void
9792 compute_delayed_physnames (struct dwarf2_cu *cu)
9793 {
9794 /* Only C++ delays computing physnames. */
9795 if (cu->method_list.empty ())
9796 return;
9797 gdb_assert (cu->language == language_cplus);
9798
9799 for (struct delayed_method_info &mi : cu->method_list)
9800 {
9801 const char *physname;
9802 struct fn_fieldlist *fn_flp
9803 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9804 physname = dwarf2_physname (mi.name, mi.die, cu);
9805 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9806 = physname ? physname : "";
9807
9808 /* Since there's no tag to indicate whether a method is a
9809 const/volatile overload, extract that information out of the
9810 demangled name. */
9811 if (physname != NULL)
9812 {
9813 size_t len = strlen (physname);
9814
9815 while (1)
9816 {
9817 if (physname[len] == ')') /* shortcut */
9818 break;
9819 else if (check_modifier (physname, len, " const"))
9820 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9821 else if (check_modifier (physname, len, " volatile"))
9822 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9823 else
9824 break;
9825 }
9826 }
9827 }
9828
9829 /* The list is no longer needed. */
9830 cu->method_list.clear ();
9831 }
9832
9833 /* Go objects should be embedded in a DW_TAG_module DIE,
9834 and it's not clear if/how imported objects will appear.
9835 To keep Go support simple until that's worked out,
9836 go back through what we've read and create something usable.
9837 We could do this while processing each DIE, and feels kinda cleaner,
9838 but that way is more invasive.
9839 This is to, for example, allow the user to type "p var" or "b main"
9840 without having to specify the package name, and allow lookups
9841 of module.object to work in contexts that use the expression
9842 parser. */
9843
9844 static void
9845 fixup_go_packaging (struct dwarf2_cu *cu)
9846 {
9847 char *package_name = NULL;
9848 struct pending *list;
9849 int i;
9850
9851 for (list = global_symbols; list != NULL; list = list->next)
9852 {
9853 for (i = 0; i < list->nsyms; ++i)
9854 {
9855 struct symbol *sym = list->symbol[i];
9856
9857 if (SYMBOL_LANGUAGE (sym) == language_go
9858 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9859 {
9860 char *this_package_name = go_symbol_package_name (sym);
9861
9862 if (this_package_name == NULL)
9863 continue;
9864 if (package_name == NULL)
9865 package_name = this_package_name;
9866 else
9867 {
9868 struct objfile *objfile
9869 = cu->per_cu->dwarf2_per_objfile->objfile;
9870 if (strcmp (package_name, this_package_name) != 0)
9871 complaint (&symfile_complaints,
9872 _("Symtab %s has objects from two different Go packages: %s and %s"),
9873 (symbol_symtab (sym) != NULL
9874 ? symtab_to_filename_for_display
9875 (symbol_symtab (sym))
9876 : objfile_name (objfile)),
9877 this_package_name, package_name);
9878 xfree (this_package_name);
9879 }
9880 }
9881 }
9882 }
9883
9884 if (package_name != NULL)
9885 {
9886 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9887 const char *saved_package_name
9888 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9889 package_name,
9890 strlen (package_name));
9891 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9892 saved_package_name);
9893 struct symbol *sym;
9894
9895 TYPE_TAG_NAME (type) = TYPE_NAME (type);
9896
9897 sym = allocate_symbol (objfile);
9898 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9899 SYMBOL_SET_NAMES (sym, saved_package_name,
9900 strlen (saved_package_name), 0, objfile);
9901 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9902 e.g., "main" finds the "main" module and not C's main(). */
9903 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9904 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9905 SYMBOL_TYPE (sym) = type;
9906
9907 add_symbol_to_list (sym, &global_symbols);
9908
9909 xfree (package_name);
9910 }
9911 }
9912
9913 /* Allocate a fully-qualified name consisting of the two parts on the
9914 obstack. */
9915
9916 static const char *
9917 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9918 {
9919 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9920 }
9921
9922 /* A helper that allocates a struct discriminant_info to attach to a
9923 union type. */
9924
9925 static struct discriminant_info *
9926 alloc_discriminant_info (struct type *type, int discriminant_index,
9927 int default_index)
9928 {
9929 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9930 gdb_assert (discriminant_index == -1
9931 || (discriminant_index >= 0
9932 && discriminant_index < TYPE_NFIELDS (type)));
9933 gdb_assert (default_index == -1
9934 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9935
9936 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9937
9938 struct discriminant_info *disc
9939 = ((struct discriminant_info *)
9940 TYPE_ZALLOC (type,
9941 offsetof (struct discriminant_info, discriminants)
9942 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9943 disc->default_index = default_index;
9944 disc->discriminant_index = discriminant_index;
9945
9946 struct dynamic_prop prop;
9947 prop.kind = PROP_UNDEFINED;
9948 prop.data.baton = disc;
9949
9950 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9951
9952 return disc;
9953 }
9954
9955 /* Some versions of rustc emitted enums in an unusual way.
9956
9957 Ordinary enums were emitted as unions. The first element of each
9958 structure in the union was named "RUST$ENUM$DISR". This element
9959 held the discriminant.
9960
9961 These versions of Rust also implemented the "non-zero"
9962 optimization. When the enum had two values, and one is empty and
9963 the other holds a pointer that cannot be zero, the pointer is used
9964 as the discriminant, with a zero value meaning the empty variant.
9965 Here, the union's first member is of the form
9966 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9967 where the fieldnos are the indices of the fields that should be
9968 traversed in order to find the field (which may be several fields deep)
9969 and the variantname is the name of the variant of the case when the
9970 field is zero.
9971
9972 This function recognizes whether TYPE is of one of these forms,
9973 and, if so, smashes it to be a variant type. */
9974
9975 static void
9976 quirk_rust_enum (struct type *type, struct objfile *objfile)
9977 {
9978 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9979
9980 /* We don't need to deal with empty enums. */
9981 if (TYPE_NFIELDS (type) == 0)
9982 return;
9983
9984 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9985 if (TYPE_NFIELDS (type) == 1
9986 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9987 {
9988 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9989
9990 /* Decode the field name to find the offset of the
9991 discriminant. */
9992 ULONGEST bit_offset = 0;
9993 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9994 while (name[0] >= '0' && name[0] <= '9')
9995 {
9996 char *tail;
9997 unsigned long index = strtoul (name, &tail, 10);
9998 name = tail;
9999 if (*name != '$'
10000 || index >= TYPE_NFIELDS (field_type)
10001 || (TYPE_FIELD_LOC_KIND (field_type, index)
10002 != FIELD_LOC_KIND_BITPOS))
10003 {
10004 complaint (&symfile_complaints,
10005 _("Could not parse Rust enum encoding string \"%s\""
10006 "[in module %s]"),
10007 TYPE_FIELD_NAME (type, 0),
10008 objfile_name (objfile));
10009 return;
10010 }
10011 ++name;
10012
10013 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
10014 field_type = TYPE_FIELD_TYPE (field_type, index);
10015 }
10016
10017 /* Make a union to hold the variants. */
10018 struct type *union_type = alloc_type (objfile);
10019 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10020 TYPE_NFIELDS (union_type) = 3;
10021 TYPE_FIELDS (union_type)
10022 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10023 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10024
10025 /* Put the discriminant must at index 0. */
10026 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10027 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10028 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10029 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10030
10031 /* The order of fields doesn't really matter, so put the real
10032 field at index 1 and the data-less field at index 2. */
10033 struct discriminant_info *disc
10034 = alloc_discriminant_info (union_type, 0, 1);
10035 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10036 TYPE_FIELD_NAME (union_type, 1)
10037 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10038 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10039 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10040 TYPE_FIELD_NAME (union_type, 1));
10041
10042 const char *dataless_name
10043 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10044 name);
10045 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10046 dataless_name);
10047 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10048 /* NAME points into the original discriminant name, which
10049 already has the correct lifetime. */
10050 TYPE_FIELD_NAME (union_type, 2) = name;
10051 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10052 disc->discriminants[2] = 0;
10053
10054 /* Smash this type to be a structure type. We have to do this
10055 because the type has already been recorded. */
10056 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10057 TYPE_NFIELDS (type) = 1;
10058 TYPE_FIELDS (type)
10059 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10060
10061 /* Install the variant part. */
10062 TYPE_FIELD_TYPE (type, 0) = union_type;
10063 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10064 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10065 }
10066 else if (TYPE_NFIELDS (type) == 1)
10067 {
10068 /* We assume that a union with a single field is a univariant
10069 enum. */
10070 /* Smash this type to be a structure type. We have to do this
10071 because the type has already been recorded. */
10072 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10073
10074 /* Make a union to hold the variants. */
10075 struct type *union_type = alloc_type (objfile);
10076 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10077 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10078 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10079 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10080
10081 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10082 const char *variant_name
10083 = rust_last_path_segment (TYPE_NAME (field_type));
10084 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10085 TYPE_NAME (field_type)
10086 = rust_fully_qualify (&objfile->objfile_obstack,
10087 TYPE_NAME (type), variant_name);
10088
10089 /* Install the union in the outer struct type. */
10090 TYPE_NFIELDS (type) = 1;
10091 TYPE_FIELDS (type)
10092 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10093 TYPE_FIELD_TYPE (type, 0) = union_type;
10094 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10095 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10096
10097 alloc_discriminant_info (union_type, -1, 0);
10098 }
10099 else
10100 {
10101 struct type *disr_type = nullptr;
10102 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10103 {
10104 disr_type = TYPE_FIELD_TYPE (type, i);
10105
10106 if (TYPE_NFIELDS (disr_type) == 0)
10107 {
10108 /* Could be data-less variant, so keep going. */
10109 }
10110 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10111 "RUST$ENUM$DISR") != 0)
10112 {
10113 /* Not a Rust enum. */
10114 return;
10115 }
10116 else
10117 {
10118 /* Found one. */
10119 break;
10120 }
10121 }
10122
10123 /* If we got here without a discriminant, then it's probably
10124 just a union. */
10125 if (disr_type == nullptr)
10126 return;
10127
10128 /* Smash this type to be a structure type. We have to do this
10129 because the type has already been recorded. */
10130 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10131
10132 /* Make a union to hold the variants. */
10133 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10134 struct type *union_type = alloc_type (objfile);
10135 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10136 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10137 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10138 TYPE_FIELDS (union_type)
10139 = (struct field *) TYPE_ZALLOC (union_type,
10140 (TYPE_NFIELDS (union_type)
10141 * sizeof (struct field)));
10142
10143 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10144 TYPE_NFIELDS (type) * sizeof (struct field));
10145
10146 /* Install the discriminant at index 0 in the union. */
10147 TYPE_FIELD (union_type, 0) = *disr_field;
10148 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10149 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10150
10151 /* Install the union in the outer struct type. */
10152 TYPE_FIELD_TYPE (type, 0) = union_type;
10153 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10154 TYPE_NFIELDS (type) = 1;
10155
10156 /* Set the size and offset of the union type. */
10157 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10158
10159 /* We need a way to find the correct discriminant given a
10160 variant name. For convenience we build a map here. */
10161 struct type *enum_type = FIELD_TYPE (*disr_field);
10162 std::unordered_map<std::string, ULONGEST> discriminant_map;
10163 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10164 {
10165 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10166 {
10167 const char *name
10168 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10169 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10170 }
10171 }
10172
10173 int n_fields = TYPE_NFIELDS (union_type);
10174 struct discriminant_info *disc
10175 = alloc_discriminant_info (union_type, 0, -1);
10176 /* Skip the discriminant here. */
10177 for (int i = 1; i < n_fields; ++i)
10178 {
10179 /* Find the final word in the name of this variant's type.
10180 That name can be used to look up the correct
10181 discriminant. */
10182 const char *variant_name
10183 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10184 i)));
10185
10186 auto iter = discriminant_map.find (variant_name);
10187 if (iter != discriminant_map.end ())
10188 disc->discriminants[i] = iter->second;
10189
10190 /* Remove the discriminant field. */
10191 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10192 --TYPE_NFIELDS (sub_type);
10193 ++TYPE_FIELDS (sub_type);
10194 TYPE_FIELD_NAME (union_type, i) = variant_name;
10195 TYPE_NAME (sub_type)
10196 = rust_fully_qualify (&objfile->objfile_obstack,
10197 TYPE_NAME (type), variant_name);
10198 }
10199 }
10200 }
10201
10202 /* Rewrite some Rust unions to be structures with variants parts. */
10203
10204 static void
10205 rust_union_quirks (struct dwarf2_cu *cu)
10206 {
10207 gdb_assert (cu->language == language_rust);
10208 for (struct type *type : cu->rust_unions)
10209 quirk_rust_enum (type, cu->per_cu->dwarf2_per_objfile->objfile);
10210 }
10211
10212 /* Return the symtab for PER_CU. This works properly regardless of
10213 whether we're using the index or psymtabs. */
10214
10215 static struct compunit_symtab *
10216 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10217 {
10218 return (per_cu->dwarf2_per_objfile->using_index
10219 ? per_cu->v.quick->compunit_symtab
10220 : per_cu->v.psymtab->compunit_symtab);
10221 }
10222
10223 /* A helper function for computing the list of all symbol tables
10224 included by PER_CU. */
10225
10226 static void
10227 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10228 htab_t all_children, htab_t all_type_symtabs,
10229 struct dwarf2_per_cu_data *per_cu,
10230 struct compunit_symtab *immediate_parent)
10231 {
10232 void **slot;
10233 int ix;
10234 struct compunit_symtab *cust;
10235 struct dwarf2_per_cu_data *iter;
10236
10237 slot = htab_find_slot (all_children, per_cu, INSERT);
10238 if (*slot != NULL)
10239 {
10240 /* This inclusion and its children have been processed. */
10241 return;
10242 }
10243
10244 *slot = per_cu;
10245 /* Only add a CU if it has a symbol table. */
10246 cust = get_compunit_symtab (per_cu);
10247 if (cust != NULL)
10248 {
10249 /* If this is a type unit only add its symbol table if we haven't
10250 seen it yet (type unit per_cu's can share symtabs). */
10251 if (per_cu->is_debug_types)
10252 {
10253 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10254 if (*slot == NULL)
10255 {
10256 *slot = cust;
10257 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10258 if (cust->user == NULL)
10259 cust->user = immediate_parent;
10260 }
10261 }
10262 else
10263 {
10264 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10265 if (cust->user == NULL)
10266 cust->user = immediate_parent;
10267 }
10268 }
10269
10270 for (ix = 0;
10271 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10272 ++ix)
10273 {
10274 recursively_compute_inclusions (result, all_children,
10275 all_type_symtabs, iter, cust);
10276 }
10277 }
10278
10279 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10280 PER_CU. */
10281
10282 static void
10283 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10284 {
10285 gdb_assert (! per_cu->is_debug_types);
10286
10287 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10288 {
10289 int ix, len;
10290 struct dwarf2_per_cu_data *per_cu_iter;
10291 struct compunit_symtab *compunit_symtab_iter;
10292 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10293 htab_t all_children, all_type_symtabs;
10294 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10295
10296 /* If we don't have a symtab, we can just skip this case. */
10297 if (cust == NULL)
10298 return;
10299
10300 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10301 NULL, xcalloc, xfree);
10302 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10303 NULL, xcalloc, xfree);
10304
10305 for (ix = 0;
10306 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10307 ix, per_cu_iter);
10308 ++ix)
10309 {
10310 recursively_compute_inclusions (&result_symtabs, all_children,
10311 all_type_symtabs, per_cu_iter,
10312 cust);
10313 }
10314
10315 /* Now we have a transitive closure of all the included symtabs. */
10316 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10317 cust->includes
10318 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10319 struct compunit_symtab *, len + 1);
10320 for (ix = 0;
10321 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10322 compunit_symtab_iter);
10323 ++ix)
10324 cust->includes[ix] = compunit_symtab_iter;
10325 cust->includes[len] = NULL;
10326
10327 VEC_free (compunit_symtab_ptr, result_symtabs);
10328 htab_delete (all_children);
10329 htab_delete (all_type_symtabs);
10330 }
10331 }
10332
10333 /* Compute the 'includes' field for the symtabs of all the CUs we just
10334 read. */
10335
10336 static void
10337 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10338 {
10339 int ix;
10340 struct dwarf2_per_cu_data *iter;
10341
10342 for (ix = 0;
10343 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10344 ix, iter);
10345 ++ix)
10346 {
10347 if (! iter->is_debug_types)
10348 compute_compunit_symtab_includes (iter);
10349 }
10350
10351 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10352 }
10353
10354 /* Generate full symbol information for PER_CU, whose DIEs have
10355 already been loaded into memory. */
10356
10357 static void
10358 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10359 enum language pretend_language)
10360 {
10361 struct dwarf2_cu *cu = per_cu->cu;
10362 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10363 struct objfile *objfile = dwarf2_per_objfile->objfile;
10364 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10365 CORE_ADDR lowpc, highpc;
10366 struct compunit_symtab *cust;
10367 CORE_ADDR baseaddr;
10368 struct block *static_block;
10369 CORE_ADDR addr;
10370
10371 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10372
10373 buildsym_init ();
10374 scoped_free_pendings free_pending;
10375
10376 /* Clear the list here in case something was left over. */
10377 cu->method_list.clear ();
10378
10379 cu->list_in_scope = &file_symbols;
10380
10381 cu->language = pretend_language;
10382 cu->language_defn = language_def (cu->language);
10383
10384 /* Do line number decoding in read_file_scope () */
10385 process_die (cu->dies, cu);
10386
10387 /* For now fudge the Go package. */
10388 if (cu->language == language_go)
10389 fixup_go_packaging (cu);
10390
10391 /* Now that we have processed all the DIEs in the CU, all the types
10392 should be complete, and it should now be safe to compute all of the
10393 physnames. */
10394 compute_delayed_physnames (cu);
10395
10396 if (cu->language == language_rust)
10397 rust_union_quirks (cu);
10398
10399 /* Some compilers don't define a DW_AT_high_pc attribute for the
10400 compilation unit. If the DW_AT_high_pc is missing, synthesize
10401 it, by scanning the DIE's below the compilation unit. */
10402 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10403
10404 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10405 static_block = end_symtab_get_static_block (addr, 0, 1);
10406
10407 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10408 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10409 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10410 addrmap to help ensure it has an accurate map of pc values belonging to
10411 this comp unit. */
10412 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10413
10414 cust = end_symtab_from_static_block (static_block,
10415 SECT_OFF_TEXT (objfile), 0);
10416
10417 if (cust != NULL)
10418 {
10419 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10420
10421 /* Set symtab language to language from DW_AT_language. If the
10422 compilation is from a C file generated by language preprocessors, do
10423 not set the language if it was already deduced by start_subfile. */
10424 if (!(cu->language == language_c
10425 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10426 COMPUNIT_FILETABS (cust)->language = cu->language;
10427
10428 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10429 produce DW_AT_location with location lists but it can be possibly
10430 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10431 there were bugs in prologue debug info, fixed later in GCC-4.5
10432 by "unwind info for epilogues" patch (which is not directly related).
10433
10434 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10435 needed, it would be wrong due to missing DW_AT_producer there.
10436
10437 Still one can confuse GDB by using non-standard GCC compilation
10438 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10439 */
10440 if (cu->has_loclist && gcc_4_minor >= 5)
10441 cust->locations_valid = 1;
10442
10443 if (gcc_4_minor >= 5)
10444 cust->epilogue_unwind_valid = 1;
10445
10446 cust->call_site_htab = cu->call_site_htab;
10447 }
10448
10449 if (dwarf2_per_objfile->using_index)
10450 per_cu->v.quick->compunit_symtab = cust;
10451 else
10452 {
10453 struct partial_symtab *pst = per_cu->v.psymtab;
10454 pst->compunit_symtab = cust;
10455 pst->readin = 1;
10456 }
10457
10458 /* Push it for inclusion processing later. */
10459 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10460 }
10461
10462 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10463 already been loaded into memory. */
10464
10465 static void
10466 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10467 enum language pretend_language)
10468 {
10469 struct dwarf2_cu *cu = per_cu->cu;
10470 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10471 struct objfile *objfile = dwarf2_per_objfile->objfile;
10472 struct compunit_symtab *cust;
10473 struct signatured_type *sig_type;
10474
10475 gdb_assert (per_cu->is_debug_types);
10476 sig_type = (struct signatured_type *) per_cu;
10477
10478 buildsym_init ();
10479 scoped_free_pendings free_pending;
10480
10481 /* Clear the list here in case something was left over. */
10482 cu->method_list.clear ();
10483
10484 cu->list_in_scope = &file_symbols;
10485
10486 cu->language = pretend_language;
10487 cu->language_defn = language_def (cu->language);
10488
10489 /* The symbol tables are set up in read_type_unit_scope. */
10490 process_die (cu->dies, cu);
10491
10492 /* For now fudge the Go package. */
10493 if (cu->language == language_go)
10494 fixup_go_packaging (cu);
10495
10496 /* Now that we have processed all the DIEs in the CU, all the types
10497 should be complete, and it should now be safe to compute all of the
10498 physnames. */
10499 compute_delayed_physnames (cu);
10500
10501 if (cu->language == language_rust)
10502 rust_union_quirks (cu);
10503
10504 /* TUs share symbol tables.
10505 If this is the first TU to use this symtab, complete the construction
10506 of it with end_expandable_symtab. Otherwise, complete the addition of
10507 this TU's symbols to the existing symtab. */
10508 if (sig_type->type_unit_group->compunit_symtab == NULL)
10509 {
10510 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10511 sig_type->type_unit_group->compunit_symtab = cust;
10512
10513 if (cust != NULL)
10514 {
10515 /* Set symtab language to language from DW_AT_language. If the
10516 compilation is from a C file generated by language preprocessors,
10517 do not set the language if it was already deduced by
10518 start_subfile. */
10519 if (!(cu->language == language_c
10520 && COMPUNIT_FILETABS (cust)->language != language_c))
10521 COMPUNIT_FILETABS (cust)->language = cu->language;
10522 }
10523 }
10524 else
10525 {
10526 augment_type_symtab ();
10527 cust = sig_type->type_unit_group->compunit_symtab;
10528 }
10529
10530 if (dwarf2_per_objfile->using_index)
10531 per_cu->v.quick->compunit_symtab = cust;
10532 else
10533 {
10534 struct partial_symtab *pst = per_cu->v.psymtab;
10535 pst->compunit_symtab = cust;
10536 pst->readin = 1;
10537 }
10538 }
10539
10540 /* Process an imported unit DIE. */
10541
10542 static void
10543 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10544 {
10545 struct attribute *attr;
10546
10547 /* For now we don't handle imported units in type units. */
10548 if (cu->per_cu->is_debug_types)
10549 {
10550 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10551 " supported in type units [in module %s]"),
10552 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10553 }
10554
10555 attr = dwarf2_attr (die, DW_AT_import, cu);
10556 if (attr != NULL)
10557 {
10558 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10559 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10560 dwarf2_per_cu_data *per_cu
10561 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10562 cu->per_cu->dwarf2_per_objfile);
10563
10564 /* If necessary, add it to the queue and load its DIEs. */
10565 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10566 load_full_comp_unit (per_cu, cu->language);
10567
10568 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10569 per_cu);
10570 }
10571 }
10572
10573 /* RAII object that represents a process_die scope: i.e.,
10574 starts/finishes processing a DIE. */
10575 class process_die_scope
10576 {
10577 public:
10578 process_die_scope (die_info *die, dwarf2_cu *cu)
10579 : m_die (die), m_cu (cu)
10580 {
10581 /* We should only be processing DIEs not already in process. */
10582 gdb_assert (!m_die->in_process);
10583 m_die->in_process = true;
10584 }
10585
10586 ~process_die_scope ()
10587 {
10588 m_die->in_process = false;
10589
10590 /* If we're done processing the DIE for the CU that owns the line
10591 header, we don't need the line header anymore. */
10592 if (m_cu->line_header_die_owner == m_die)
10593 {
10594 delete m_cu->line_header;
10595 m_cu->line_header = NULL;
10596 m_cu->line_header_die_owner = NULL;
10597 }
10598 }
10599
10600 private:
10601 die_info *m_die;
10602 dwarf2_cu *m_cu;
10603 };
10604
10605 /* Process a die and its children. */
10606
10607 static void
10608 process_die (struct die_info *die, struct dwarf2_cu *cu)
10609 {
10610 process_die_scope scope (die, cu);
10611
10612 switch (die->tag)
10613 {
10614 case DW_TAG_padding:
10615 break;
10616 case DW_TAG_compile_unit:
10617 case DW_TAG_partial_unit:
10618 read_file_scope (die, cu);
10619 break;
10620 case DW_TAG_type_unit:
10621 read_type_unit_scope (die, cu);
10622 break;
10623 case DW_TAG_subprogram:
10624 case DW_TAG_inlined_subroutine:
10625 read_func_scope (die, cu);
10626 break;
10627 case DW_TAG_lexical_block:
10628 case DW_TAG_try_block:
10629 case DW_TAG_catch_block:
10630 read_lexical_block_scope (die, cu);
10631 break;
10632 case DW_TAG_call_site:
10633 case DW_TAG_GNU_call_site:
10634 read_call_site_scope (die, cu);
10635 break;
10636 case DW_TAG_class_type:
10637 case DW_TAG_interface_type:
10638 case DW_TAG_structure_type:
10639 case DW_TAG_union_type:
10640 process_structure_scope (die, cu);
10641 break;
10642 case DW_TAG_enumeration_type:
10643 process_enumeration_scope (die, cu);
10644 break;
10645
10646 /* These dies have a type, but processing them does not create
10647 a symbol or recurse to process the children. Therefore we can
10648 read them on-demand through read_type_die. */
10649 case DW_TAG_subroutine_type:
10650 case DW_TAG_set_type:
10651 case DW_TAG_array_type:
10652 case DW_TAG_pointer_type:
10653 case DW_TAG_ptr_to_member_type:
10654 case DW_TAG_reference_type:
10655 case DW_TAG_rvalue_reference_type:
10656 case DW_TAG_string_type:
10657 break;
10658
10659 case DW_TAG_base_type:
10660 case DW_TAG_subrange_type:
10661 case DW_TAG_typedef:
10662 /* Add a typedef symbol for the type definition, if it has a
10663 DW_AT_name. */
10664 new_symbol (die, read_type_die (die, cu), cu);
10665 break;
10666 case DW_TAG_common_block:
10667 read_common_block (die, cu);
10668 break;
10669 case DW_TAG_common_inclusion:
10670 break;
10671 case DW_TAG_namespace:
10672 cu->processing_has_namespace_info = 1;
10673 read_namespace (die, cu);
10674 break;
10675 case DW_TAG_module:
10676 cu->processing_has_namespace_info = 1;
10677 read_module (die, cu);
10678 break;
10679 case DW_TAG_imported_declaration:
10680 cu->processing_has_namespace_info = 1;
10681 if (read_namespace_alias (die, cu))
10682 break;
10683 /* The declaration is not a global namespace alias: fall through. */
10684 case DW_TAG_imported_module:
10685 cu->processing_has_namespace_info = 1;
10686 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10687 || cu->language != language_fortran))
10688 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
10689 dwarf_tag_name (die->tag));
10690 read_import_statement (die, cu);
10691 break;
10692
10693 case DW_TAG_imported_unit:
10694 process_imported_unit_die (die, cu);
10695 break;
10696
10697 case DW_TAG_variable:
10698 read_variable (die, cu);
10699 break;
10700
10701 default:
10702 new_symbol (die, NULL, cu);
10703 break;
10704 }
10705 }
10706 \f
10707 /* DWARF name computation. */
10708
10709 /* A helper function for dwarf2_compute_name which determines whether DIE
10710 needs to have the name of the scope prepended to the name listed in the
10711 die. */
10712
10713 static int
10714 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10715 {
10716 struct attribute *attr;
10717
10718 switch (die->tag)
10719 {
10720 case DW_TAG_namespace:
10721 case DW_TAG_typedef:
10722 case DW_TAG_class_type:
10723 case DW_TAG_interface_type:
10724 case DW_TAG_structure_type:
10725 case DW_TAG_union_type:
10726 case DW_TAG_enumeration_type:
10727 case DW_TAG_enumerator:
10728 case DW_TAG_subprogram:
10729 case DW_TAG_inlined_subroutine:
10730 case DW_TAG_member:
10731 case DW_TAG_imported_declaration:
10732 return 1;
10733
10734 case DW_TAG_variable:
10735 case DW_TAG_constant:
10736 /* We only need to prefix "globally" visible variables. These include
10737 any variable marked with DW_AT_external or any variable that
10738 lives in a namespace. [Variables in anonymous namespaces
10739 require prefixing, but they are not DW_AT_external.] */
10740
10741 if (dwarf2_attr (die, DW_AT_specification, cu))
10742 {
10743 struct dwarf2_cu *spec_cu = cu;
10744
10745 return die_needs_namespace (die_specification (die, &spec_cu),
10746 spec_cu);
10747 }
10748
10749 attr = dwarf2_attr (die, DW_AT_external, cu);
10750 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10751 && die->parent->tag != DW_TAG_module)
10752 return 0;
10753 /* A variable in a lexical block of some kind does not need a
10754 namespace, even though in C++ such variables may be external
10755 and have a mangled name. */
10756 if (die->parent->tag == DW_TAG_lexical_block
10757 || die->parent->tag == DW_TAG_try_block
10758 || die->parent->tag == DW_TAG_catch_block
10759 || die->parent->tag == DW_TAG_subprogram)
10760 return 0;
10761 return 1;
10762
10763 default:
10764 return 0;
10765 }
10766 }
10767
10768 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10769 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10770 defined for the given DIE. */
10771
10772 static struct attribute *
10773 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10774 {
10775 struct attribute *attr;
10776
10777 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10778 if (attr == NULL)
10779 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10780
10781 return attr;
10782 }
10783
10784 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10785 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10786 defined for the given DIE. */
10787
10788 static const char *
10789 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10790 {
10791 const char *linkage_name;
10792
10793 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10794 if (linkage_name == NULL)
10795 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10796
10797 return linkage_name;
10798 }
10799
10800 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10801 compute the physname for the object, which include a method's:
10802 - formal parameters (C++),
10803 - receiver type (Go),
10804
10805 The term "physname" is a bit confusing.
10806 For C++, for example, it is the demangled name.
10807 For Go, for example, it's the mangled name.
10808
10809 For Ada, return the DIE's linkage name rather than the fully qualified
10810 name. PHYSNAME is ignored..
10811
10812 The result is allocated on the objfile_obstack and canonicalized. */
10813
10814 static const char *
10815 dwarf2_compute_name (const char *name,
10816 struct die_info *die, struct dwarf2_cu *cu,
10817 int physname)
10818 {
10819 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10820
10821 if (name == NULL)
10822 name = dwarf2_name (die, cu);
10823
10824 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10825 but otherwise compute it by typename_concat inside GDB.
10826 FIXME: Actually this is not really true, or at least not always true.
10827 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10828 Fortran names because there is no mangling standard. So new_symbol
10829 will set the demangled name to the result of dwarf2_full_name, and it is
10830 the demangled name that GDB uses if it exists. */
10831 if (cu->language == language_ada
10832 || (cu->language == language_fortran && physname))
10833 {
10834 /* For Ada unit, we prefer the linkage name over the name, as
10835 the former contains the exported name, which the user expects
10836 to be able to reference. Ideally, we want the user to be able
10837 to reference this entity using either natural or linkage name,
10838 but we haven't started looking at this enhancement yet. */
10839 const char *linkage_name = dw2_linkage_name (die, cu);
10840
10841 if (linkage_name != NULL)
10842 return linkage_name;
10843 }
10844
10845 /* These are the only languages we know how to qualify names in. */
10846 if (name != NULL
10847 && (cu->language == language_cplus
10848 || cu->language == language_fortran || cu->language == language_d
10849 || cu->language == language_rust))
10850 {
10851 if (die_needs_namespace (die, cu))
10852 {
10853 const char *prefix;
10854 const char *canonical_name = NULL;
10855
10856 string_file buf;
10857
10858 prefix = determine_prefix (die, cu);
10859 if (*prefix != '\0')
10860 {
10861 char *prefixed_name = typename_concat (NULL, prefix, name,
10862 physname, cu);
10863
10864 buf.puts (prefixed_name);
10865 xfree (prefixed_name);
10866 }
10867 else
10868 buf.puts (name);
10869
10870 /* Template parameters may be specified in the DIE's DW_AT_name, or
10871 as children with DW_TAG_template_type_param or
10872 DW_TAG_value_type_param. If the latter, add them to the name
10873 here. If the name already has template parameters, then
10874 skip this step; some versions of GCC emit both, and
10875 it is more efficient to use the pre-computed name.
10876
10877 Something to keep in mind about this process: it is very
10878 unlikely, or in some cases downright impossible, to produce
10879 something that will match the mangled name of a function.
10880 If the definition of the function has the same debug info,
10881 we should be able to match up with it anyway. But fallbacks
10882 using the minimal symbol, for instance to find a method
10883 implemented in a stripped copy of libstdc++, will not work.
10884 If we do not have debug info for the definition, we will have to
10885 match them up some other way.
10886
10887 When we do name matching there is a related problem with function
10888 templates; two instantiated function templates are allowed to
10889 differ only by their return types, which we do not add here. */
10890
10891 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10892 {
10893 struct attribute *attr;
10894 struct die_info *child;
10895 int first = 1;
10896
10897 die->building_fullname = 1;
10898
10899 for (child = die->child; child != NULL; child = child->sibling)
10900 {
10901 struct type *type;
10902 LONGEST value;
10903 const gdb_byte *bytes;
10904 struct dwarf2_locexpr_baton *baton;
10905 struct value *v;
10906
10907 if (child->tag != DW_TAG_template_type_param
10908 && child->tag != DW_TAG_template_value_param)
10909 continue;
10910
10911 if (first)
10912 {
10913 buf.puts ("<");
10914 first = 0;
10915 }
10916 else
10917 buf.puts (", ");
10918
10919 attr = dwarf2_attr (child, DW_AT_type, cu);
10920 if (attr == NULL)
10921 {
10922 complaint (&symfile_complaints,
10923 _("template parameter missing DW_AT_type"));
10924 buf.puts ("UNKNOWN_TYPE");
10925 continue;
10926 }
10927 type = die_type (child, cu);
10928
10929 if (child->tag == DW_TAG_template_type_param)
10930 {
10931 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
10932 continue;
10933 }
10934
10935 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10936 if (attr == NULL)
10937 {
10938 complaint (&symfile_complaints,
10939 _("template parameter missing "
10940 "DW_AT_const_value"));
10941 buf.puts ("UNKNOWN_VALUE");
10942 continue;
10943 }
10944
10945 dwarf2_const_value_attr (attr, type, name,
10946 &cu->comp_unit_obstack, cu,
10947 &value, &bytes, &baton);
10948
10949 if (TYPE_NOSIGN (type))
10950 /* GDB prints characters as NUMBER 'CHAR'. If that's
10951 changed, this can use value_print instead. */
10952 c_printchar (value, type, &buf);
10953 else
10954 {
10955 struct value_print_options opts;
10956
10957 if (baton != NULL)
10958 v = dwarf2_evaluate_loc_desc (type, NULL,
10959 baton->data,
10960 baton->size,
10961 baton->per_cu);
10962 else if (bytes != NULL)
10963 {
10964 v = allocate_value (type);
10965 memcpy (value_contents_writeable (v), bytes,
10966 TYPE_LENGTH (type));
10967 }
10968 else
10969 v = value_from_longest (type, value);
10970
10971 /* Specify decimal so that we do not depend on
10972 the radix. */
10973 get_formatted_print_options (&opts, 'd');
10974 opts.raw = 1;
10975 value_print (v, &buf, &opts);
10976 release_value (v);
10977 }
10978 }
10979
10980 die->building_fullname = 0;
10981
10982 if (!first)
10983 {
10984 /* Close the argument list, with a space if necessary
10985 (nested templates). */
10986 if (!buf.empty () && buf.string ().back () == '>')
10987 buf.puts (" >");
10988 else
10989 buf.puts (">");
10990 }
10991 }
10992
10993 /* For C++ methods, append formal parameter type
10994 information, if PHYSNAME. */
10995
10996 if (physname && die->tag == DW_TAG_subprogram
10997 && cu->language == language_cplus)
10998 {
10999 struct type *type = read_type_die (die, cu);
11000
11001 c_type_print_args (type, &buf, 1, cu->language,
11002 &type_print_raw_options);
11003
11004 if (cu->language == language_cplus)
11005 {
11006 /* Assume that an artificial first parameter is
11007 "this", but do not crash if it is not. RealView
11008 marks unnamed (and thus unused) parameters as
11009 artificial; there is no way to differentiate
11010 the two cases. */
11011 if (TYPE_NFIELDS (type) > 0
11012 && TYPE_FIELD_ARTIFICIAL (type, 0)
11013 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11014 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11015 0))))
11016 buf.puts (" const");
11017 }
11018 }
11019
11020 const std::string &intermediate_name = buf.string ();
11021
11022 if (cu->language == language_cplus)
11023 canonical_name
11024 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11025 &objfile->per_bfd->storage_obstack);
11026
11027 /* If we only computed INTERMEDIATE_NAME, or if
11028 INTERMEDIATE_NAME is already canonical, then we need to
11029 copy it to the appropriate obstack. */
11030 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11031 name = ((const char *)
11032 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11033 intermediate_name.c_str (),
11034 intermediate_name.length ()));
11035 else
11036 name = canonical_name;
11037 }
11038 }
11039
11040 return name;
11041 }
11042
11043 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11044 If scope qualifiers are appropriate they will be added. The result
11045 will be allocated on the storage_obstack, or NULL if the DIE does
11046 not have a name. NAME may either be from a previous call to
11047 dwarf2_name or NULL.
11048
11049 The output string will be canonicalized (if C++). */
11050
11051 static const char *
11052 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11053 {
11054 return dwarf2_compute_name (name, die, cu, 0);
11055 }
11056
11057 /* Construct a physname for the given DIE in CU. NAME may either be
11058 from a previous call to dwarf2_name or NULL. The result will be
11059 allocated on the objfile_objstack or NULL if the DIE does not have a
11060 name.
11061
11062 The output string will be canonicalized (if C++). */
11063
11064 static const char *
11065 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11066 {
11067 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11068 const char *retval, *mangled = NULL, *canon = NULL;
11069 int need_copy = 1;
11070
11071 /* In this case dwarf2_compute_name is just a shortcut not building anything
11072 on its own. */
11073 if (!die_needs_namespace (die, cu))
11074 return dwarf2_compute_name (name, die, cu, 1);
11075
11076 mangled = dw2_linkage_name (die, cu);
11077
11078 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11079 See https://github.com/rust-lang/rust/issues/32925. */
11080 if (cu->language == language_rust && mangled != NULL
11081 && strchr (mangled, '{') != NULL)
11082 mangled = NULL;
11083
11084 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11085 has computed. */
11086 gdb::unique_xmalloc_ptr<char> demangled;
11087 if (mangled != NULL)
11088 {
11089
11090 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11091 {
11092 /* Do nothing (do not demangle the symbol name). */
11093 }
11094 else if (cu->language == language_go)
11095 {
11096 /* This is a lie, but we already lie to the caller new_symbol.
11097 new_symbol assumes we return the mangled name.
11098 This just undoes that lie until things are cleaned up. */
11099 }
11100 else
11101 {
11102 /* Use DMGL_RET_DROP for C++ template functions to suppress
11103 their return type. It is easier for GDB users to search
11104 for such functions as `name(params)' than `long name(params)'.
11105 In such case the minimal symbol names do not match the full
11106 symbol names but for template functions there is never a need
11107 to look up their definition from their declaration so
11108 the only disadvantage remains the minimal symbol variant
11109 `long name(params)' does not have the proper inferior type. */
11110 demangled.reset (gdb_demangle (mangled,
11111 (DMGL_PARAMS | DMGL_ANSI
11112 | DMGL_RET_DROP)));
11113 }
11114 if (demangled)
11115 canon = demangled.get ();
11116 else
11117 {
11118 canon = mangled;
11119 need_copy = 0;
11120 }
11121 }
11122
11123 if (canon == NULL || check_physname)
11124 {
11125 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11126
11127 if (canon != NULL && strcmp (physname, canon) != 0)
11128 {
11129 /* It may not mean a bug in GDB. The compiler could also
11130 compute DW_AT_linkage_name incorrectly. But in such case
11131 GDB would need to be bug-to-bug compatible. */
11132
11133 complaint (&symfile_complaints,
11134 _("Computed physname <%s> does not match demangled <%s> "
11135 "(from linkage <%s>) - DIE at %s [in module %s]"),
11136 physname, canon, mangled, sect_offset_str (die->sect_off),
11137 objfile_name (objfile));
11138
11139 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11140 is available here - over computed PHYSNAME. It is safer
11141 against both buggy GDB and buggy compilers. */
11142
11143 retval = canon;
11144 }
11145 else
11146 {
11147 retval = physname;
11148 need_copy = 0;
11149 }
11150 }
11151 else
11152 retval = canon;
11153
11154 if (need_copy)
11155 retval = ((const char *)
11156 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11157 retval, strlen (retval)));
11158
11159 return retval;
11160 }
11161
11162 /* Inspect DIE in CU for a namespace alias. If one exists, record
11163 a new symbol for it.
11164
11165 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11166
11167 static int
11168 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11169 {
11170 struct attribute *attr;
11171
11172 /* If the die does not have a name, this is not a namespace
11173 alias. */
11174 attr = dwarf2_attr (die, DW_AT_name, cu);
11175 if (attr != NULL)
11176 {
11177 int num;
11178 struct die_info *d = die;
11179 struct dwarf2_cu *imported_cu = cu;
11180
11181 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11182 keep inspecting DIEs until we hit the underlying import. */
11183 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11184 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11185 {
11186 attr = dwarf2_attr (d, DW_AT_import, cu);
11187 if (attr == NULL)
11188 break;
11189
11190 d = follow_die_ref (d, attr, &imported_cu);
11191 if (d->tag != DW_TAG_imported_declaration)
11192 break;
11193 }
11194
11195 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11196 {
11197 complaint (&symfile_complaints,
11198 _("DIE at %s has too many recursively imported "
11199 "declarations"), sect_offset_str (d->sect_off));
11200 return 0;
11201 }
11202
11203 if (attr != NULL)
11204 {
11205 struct type *type;
11206 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11207
11208 type = get_die_type_at_offset (sect_off, cu->per_cu);
11209 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11210 {
11211 /* This declaration is a global namespace alias. Add
11212 a symbol for it whose type is the aliased namespace. */
11213 new_symbol (die, type, cu);
11214 return 1;
11215 }
11216 }
11217 }
11218
11219 return 0;
11220 }
11221
11222 /* Return the using directives repository (global or local?) to use in the
11223 current context for LANGUAGE.
11224
11225 For Ada, imported declarations can materialize renamings, which *may* be
11226 global. However it is impossible (for now?) in DWARF to distinguish
11227 "external" imported declarations and "static" ones. As all imported
11228 declarations seem to be static in all other languages, make them all CU-wide
11229 global only in Ada. */
11230
11231 static struct using_direct **
11232 using_directives (enum language language)
11233 {
11234 if (language == language_ada && context_stack_depth == 0)
11235 return &global_using_directives;
11236 else
11237 return &local_using_directives;
11238 }
11239
11240 /* Read the import statement specified by the given die and record it. */
11241
11242 static void
11243 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11244 {
11245 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11246 struct attribute *import_attr;
11247 struct die_info *imported_die, *child_die;
11248 struct dwarf2_cu *imported_cu;
11249 const char *imported_name;
11250 const char *imported_name_prefix;
11251 const char *canonical_name;
11252 const char *import_alias;
11253 const char *imported_declaration = NULL;
11254 const char *import_prefix;
11255 std::vector<const char *> excludes;
11256
11257 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11258 if (import_attr == NULL)
11259 {
11260 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11261 dwarf_tag_name (die->tag));
11262 return;
11263 }
11264
11265 imported_cu = cu;
11266 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11267 imported_name = dwarf2_name (imported_die, imported_cu);
11268 if (imported_name == NULL)
11269 {
11270 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11271
11272 The import in the following code:
11273 namespace A
11274 {
11275 typedef int B;
11276 }
11277
11278 int main ()
11279 {
11280 using A::B;
11281 B b;
11282 return b;
11283 }
11284
11285 ...
11286 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11287 <52> DW_AT_decl_file : 1
11288 <53> DW_AT_decl_line : 6
11289 <54> DW_AT_import : <0x75>
11290 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11291 <59> DW_AT_name : B
11292 <5b> DW_AT_decl_file : 1
11293 <5c> DW_AT_decl_line : 2
11294 <5d> DW_AT_type : <0x6e>
11295 ...
11296 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11297 <76> DW_AT_byte_size : 4
11298 <77> DW_AT_encoding : 5 (signed)
11299
11300 imports the wrong die ( 0x75 instead of 0x58 ).
11301 This case will be ignored until the gcc bug is fixed. */
11302 return;
11303 }
11304
11305 /* Figure out the local name after import. */
11306 import_alias = dwarf2_name (die, cu);
11307
11308 /* Figure out where the statement is being imported to. */
11309 import_prefix = determine_prefix (die, cu);
11310
11311 /* Figure out what the scope of the imported die is and prepend it
11312 to the name of the imported die. */
11313 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11314
11315 if (imported_die->tag != DW_TAG_namespace
11316 && imported_die->tag != DW_TAG_module)
11317 {
11318 imported_declaration = imported_name;
11319 canonical_name = imported_name_prefix;
11320 }
11321 else if (strlen (imported_name_prefix) > 0)
11322 canonical_name = obconcat (&objfile->objfile_obstack,
11323 imported_name_prefix,
11324 (cu->language == language_d ? "." : "::"),
11325 imported_name, (char *) NULL);
11326 else
11327 canonical_name = imported_name;
11328
11329 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11330 for (child_die = die->child; child_die && child_die->tag;
11331 child_die = sibling_die (child_die))
11332 {
11333 /* DWARF-4: A Fortran use statement with a “rename list” may be
11334 represented by an imported module entry with an import attribute
11335 referring to the module and owned entries corresponding to those
11336 entities that are renamed as part of being imported. */
11337
11338 if (child_die->tag != DW_TAG_imported_declaration)
11339 {
11340 complaint (&symfile_complaints,
11341 _("child DW_TAG_imported_declaration expected "
11342 "- DIE at %s [in module %s]"),
11343 sect_offset_str (child_die->sect_off),
11344 objfile_name (objfile));
11345 continue;
11346 }
11347
11348 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11349 if (import_attr == NULL)
11350 {
11351 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11352 dwarf_tag_name (child_die->tag));
11353 continue;
11354 }
11355
11356 imported_cu = cu;
11357 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11358 &imported_cu);
11359 imported_name = dwarf2_name (imported_die, imported_cu);
11360 if (imported_name == NULL)
11361 {
11362 complaint (&symfile_complaints,
11363 _("child DW_TAG_imported_declaration has unknown "
11364 "imported name - DIE at %s [in module %s]"),
11365 sect_offset_str (child_die->sect_off),
11366 objfile_name (objfile));
11367 continue;
11368 }
11369
11370 excludes.push_back (imported_name);
11371
11372 process_die (child_die, cu);
11373 }
11374
11375 add_using_directive (using_directives (cu->language),
11376 import_prefix,
11377 canonical_name,
11378 import_alias,
11379 imported_declaration,
11380 excludes,
11381 0,
11382 &objfile->objfile_obstack);
11383 }
11384
11385 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11386 types, but gives them a size of zero. Starting with version 14,
11387 ICC is compatible with GCC. */
11388
11389 static int
11390 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11391 {
11392 if (!cu->checked_producer)
11393 check_producer (cu);
11394
11395 return cu->producer_is_icc_lt_14;
11396 }
11397
11398 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11399 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11400 this, it was first present in GCC release 4.3.0. */
11401
11402 static int
11403 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11404 {
11405 if (!cu->checked_producer)
11406 check_producer (cu);
11407
11408 return cu->producer_is_gcc_lt_4_3;
11409 }
11410
11411 static file_and_directory
11412 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11413 {
11414 file_and_directory res;
11415
11416 /* Find the filename. Do not use dwarf2_name here, since the filename
11417 is not a source language identifier. */
11418 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11419 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11420
11421 if (res.comp_dir == NULL
11422 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11423 && IS_ABSOLUTE_PATH (res.name))
11424 {
11425 res.comp_dir_storage = ldirname (res.name);
11426 if (!res.comp_dir_storage.empty ())
11427 res.comp_dir = res.comp_dir_storage.c_str ();
11428 }
11429 if (res.comp_dir != NULL)
11430 {
11431 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11432 directory, get rid of it. */
11433 const char *cp = strchr (res.comp_dir, ':');
11434
11435 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11436 res.comp_dir = cp + 1;
11437 }
11438
11439 if (res.name == NULL)
11440 res.name = "<unknown>";
11441
11442 return res;
11443 }
11444
11445 /* Handle DW_AT_stmt_list for a compilation unit.
11446 DIE is the DW_TAG_compile_unit die for CU.
11447 COMP_DIR is the compilation directory. LOWPC is passed to
11448 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11449
11450 static void
11451 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11452 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11453 {
11454 struct dwarf2_per_objfile *dwarf2_per_objfile
11455 = cu->per_cu->dwarf2_per_objfile;
11456 struct objfile *objfile = dwarf2_per_objfile->objfile;
11457 struct attribute *attr;
11458 struct line_header line_header_local;
11459 hashval_t line_header_local_hash;
11460 void **slot;
11461 int decode_mapping;
11462
11463 gdb_assert (! cu->per_cu->is_debug_types);
11464
11465 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11466 if (attr == NULL)
11467 return;
11468
11469 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11470
11471 /* The line header hash table is only created if needed (it exists to
11472 prevent redundant reading of the line table for partial_units).
11473 If we're given a partial_unit, we'll need it. If we're given a
11474 compile_unit, then use the line header hash table if it's already
11475 created, but don't create one just yet. */
11476
11477 if (dwarf2_per_objfile->line_header_hash == NULL
11478 && die->tag == DW_TAG_partial_unit)
11479 {
11480 dwarf2_per_objfile->line_header_hash
11481 = htab_create_alloc_ex (127, line_header_hash_voidp,
11482 line_header_eq_voidp,
11483 free_line_header_voidp,
11484 &objfile->objfile_obstack,
11485 hashtab_obstack_allocate,
11486 dummy_obstack_deallocate);
11487 }
11488
11489 line_header_local.sect_off = line_offset;
11490 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11491 line_header_local_hash = line_header_hash (&line_header_local);
11492 if (dwarf2_per_objfile->line_header_hash != NULL)
11493 {
11494 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11495 &line_header_local,
11496 line_header_local_hash, NO_INSERT);
11497
11498 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11499 is not present in *SLOT (since if there is something in *SLOT then
11500 it will be for a partial_unit). */
11501 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11502 {
11503 gdb_assert (*slot != NULL);
11504 cu->line_header = (struct line_header *) *slot;
11505 return;
11506 }
11507 }
11508
11509 /* dwarf_decode_line_header does not yet provide sufficient information.
11510 We always have to call also dwarf_decode_lines for it. */
11511 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11512 if (lh == NULL)
11513 return;
11514
11515 cu->line_header = lh.release ();
11516 cu->line_header_die_owner = die;
11517
11518 if (dwarf2_per_objfile->line_header_hash == NULL)
11519 slot = NULL;
11520 else
11521 {
11522 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11523 &line_header_local,
11524 line_header_local_hash, INSERT);
11525 gdb_assert (slot != NULL);
11526 }
11527 if (slot != NULL && *slot == NULL)
11528 {
11529 /* This newly decoded line number information unit will be owned
11530 by line_header_hash hash table. */
11531 *slot = cu->line_header;
11532 cu->line_header_die_owner = NULL;
11533 }
11534 else
11535 {
11536 /* We cannot free any current entry in (*slot) as that struct line_header
11537 may be already used by multiple CUs. Create only temporary decoded
11538 line_header for this CU - it may happen at most once for each line
11539 number information unit. And if we're not using line_header_hash
11540 then this is what we want as well. */
11541 gdb_assert (die->tag != DW_TAG_partial_unit);
11542 }
11543 decode_mapping = (die->tag != DW_TAG_partial_unit);
11544 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11545 decode_mapping);
11546
11547 }
11548
11549 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11550
11551 static void
11552 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11553 {
11554 struct dwarf2_per_objfile *dwarf2_per_objfile
11555 = cu->per_cu->dwarf2_per_objfile;
11556 struct objfile *objfile = dwarf2_per_objfile->objfile;
11557 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11558 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11559 CORE_ADDR highpc = ((CORE_ADDR) 0);
11560 struct attribute *attr;
11561 struct die_info *child_die;
11562 CORE_ADDR baseaddr;
11563
11564 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11565
11566 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11567
11568 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11569 from finish_block. */
11570 if (lowpc == ((CORE_ADDR) -1))
11571 lowpc = highpc;
11572 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11573
11574 file_and_directory fnd = find_file_and_directory (die, cu);
11575
11576 prepare_one_comp_unit (cu, die, cu->language);
11577
11578 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11579 standardised yet. As a workaround for the language detection we fall
11580 back to the DW_AT_producer string. */
11581 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11582 cu->language = language_opencl;
11583
11584 /* Similar hack for Go. */
11585 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11586 set_cu_language (DW_LANG_Go, cu);
11587
11588 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11589
11590 /* Decode line number information if present. We do this before
11591 processing child DIEs, so that the line header table is available
11592 for DW_AT_decl_file. */
11593 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11594
11595 /* Process all dies in compilation unit. */
11596 if (die->child != NULL)
11597 {
11598 child_die = die->child;
11599 while (child_die && child_die->tag)
11600 {
11601 process_die (child_die, cu);
11602 child_die = sibling_die (child_die);
11603 }
11604 }
11605
11606 /* Decode macro information, if present. Dwarf 2 macro information
11607 refers to information in the line number info statement program
11608 header, so we can only read it if we've read the header
11609 successfully. */
11610 attr = dwarf2_attr (die, DW_AT_macros, cu);
11611 if (attr == NULL)
11612 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11613 if (attr && cu->line_header)
11614 {
11615 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11616 complaint (&symfile_complaints,
11617 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11618
11619 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11620 }
11621 else
11622 {
11623 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11624 if (attr && cu->line_header)
11625 {
11626 unsigned int macro_offset = DW_UNSND (attr);
11627
11628 dwarf_decode_macros (cu, macro_offset, 0);
11629 }
11630 }
11631 }
11632
11633 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11634 Create the set of symtabs used by this TU, or if this TU is sharing
11635 symtabs with another TU and the symtabs have already been created
11636 then restore those symtabs in the line header.
11637 We don't need the pc/line-number mapping for type units. */
11638
11639 static void
11640 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11641 {
11642 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11643 struct type_unit_group *tu_group;
11644 int first_time;
11645 struct attribute *attr;
11646 unsigned int i;
11647 struct signatured_type *sig_type;
11648
11649 gdb_assert (per_cu->is_debug_types);
11650 sig_type = (struct signatured_type *) per_cu;
11651
11652 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11653
11654 /* If we're using .gdb_index (includes -readnow) then
11655 per_cu->type_unit_group may not have been set up yet. */
11656 if (sig_type->type_unit_group == NULL)
11657 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11658 tu_group = sig_type->type_unit_group;
11659
11660 /* If we've already processed this stmt_list there's no real need to
11661 do it again, we could fake it and just recreate the part we need
11662 (file name,index -> symtab mapping). If data shows this optimization
11663 is useful we can do it then. */
11664 first_time = tu_group->compunit_symtab == NULL;
11665
11666 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11667 debug info. */
11668 line_header_up lh;
11669 if (attr != NULL)
11670 {
11671 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11672 lh = dwarf_decode_line_header (line_offset, cu);
11673 }
11674 if (lh == NULL)
11675 {
11676 if (first_time)
11677 dwarf2_start_symtab (cu, "", NULL, 0);
11678 else
11679 {
11680 gdb_assert (tu_group->symtabs == NULL);
11681 restart_symtab (tu_group->compunit_symtab, "", 0);
11682 }
11683 return;
11684 }
11685
11686 cu->line_header = lh.release ();
11687 cu->line_header_die_owner = die;
11688
11689 if (first_time)
11690 {
11691 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11692
11693 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11694 still initializing it, and our caller (a few levels up)
11695 process_full_type_unit still needs to know if this is the first
11696 time. */
11697
11698 tu_group->num_symtabs = cu->line_header->file_names.size ();
11699 tu_group->symtabs = XNEWVEC (struct symtab *,
11700 cu->line_header->file_names.size ());
11701
11702 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11703 {
11704 file_entry &fe = cu->line_header->file_names[i];
11705
11706 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11707
11708 if (current_subfile->symtab == NULL)
11709 {
11710 /* NOTE: start_subfile will recognize when it's been
11711 passed a file it has already seen. So we can't
11712 assume there's a simple mapping from
11713 cu->line_header->file_names to subfiles, plus
11714 cu->line_header->file_names may contain dups. */
11715 current_subfile->symtab
11716 = allocate_symtab (cust, current_subfile->name);
11717 }
11718
11719 fe.symtab = current_subfile->symtab;
11720 tu_group->symtabs[i] = fe.symtab;
11721 }
11722 }
11723 else
11724 {
11725 restart_symtab (tu_group->compunit_symtab, "", 0);
11726
11727 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11728 {
11729 file_entry &fe = cu->line_header->file_names[i];
11730
11731 fe.symtab = tu_group->symtabs[i];
11732 }
11733 }
11734
11735 /* The main symtab is allocated last. Type units don't have DW_AT_name
11736 so they don't have a "real" (so to speak) symtab anyway.
11737 There is later code that will assign the main symtab to all symbols
11738 that don't have one. We need to handle the case of a symbol with a
11739 missing symtab (DW_AT_decl_file) anyway. */
11740 }
11741
11742 /* Process DW_TAG_type_unit.
11743 For TUs we want to skip the first top level sibling if it's not the
11744 actual type being defined by this TU. In this case the first top
11745 level sibling is there to provide context only. */
11746
11747 static void
11748 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11749 {
11750 struct die_info *child_die;
11751
11752 prepare_one_comp_unit (cu, die, language_minimal);
11753
11754 /* Initialize (or reinitialize) the machinery for building symtabs.
11755 We do this before processing child DIEs, so that the line header table
11756 is available for DW_AT_decl_file. */
11757 setup_type_unit_groups (die, cu);
11758
11759 if (die->child != NULL)
11760 {
11761 child_die = die->child;
11762 while (child_die && child_die->tag)
11763 {
11764 process_die (child_die, cu);
11765 child_die = sibling_die (child_die);
11766 }
11767 }
11768 }
11769 \f
11770 /* DWO/DWP files.
11771
11772 http://gcc.gnu.org/wiki/DebugFission
11773 http://gcc.gnu.org/wiki/DebugFissionDWP
11774
11775 To simplify handling of both DWO files ("object" files with the DWARF info)
11776 and DWP files (a file with the DWOs packaged up into one file), we treat
11777 DWP files as having a collection of virtual DWO files. */
11778
11779 static hashval_t
11780 hash_dwo_file (const void *item)
11781 {
11782 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11783 hashval_t hash;
11784
11785 hash = htab_hash_string (dwo_file->dwo_name);
11786 if (dwo_file->comp_dir != NULL)
11787 hash += htab_hash_string (dwo_file->comp_dir);
11788 return hash;
11789 }
11790
11791 static int
11792 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11793 {
11794 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11795 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11796
11797 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11798 return 0;
11799 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11800 return lhs->comp_dir == rhs->comp_dir;
11801 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11802 }
11803
11804 /* Allocate a hash table for DWO files. */
11805
11806 static htab_t
11807 allocate_dwo_file_hash_table (struct objfile *objfile)
11808 {
11809 return htab_create_alloc_ex (41,
11810 hash_dwo_file,
11811 eq_dwo_file,
11812 NULL,
11813 &objfile->objfile_obstack,
11814 hashtab_obstack_allocate,
11815 dummy_obstack_deallocate);
11816 }
11817
11818 /* Lookup DWO file DWO_NAME. */
11819
11820 static void **
11821 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11822 const char *dwo_name,
11823 const char *comp_dir)
11824 {
11825 struct dwo_file find_entry;
11826 void **slot;
11827
11828 if (dwarf2_per_objfile->dwo_files == NULL)
11829 dwarf2_per_objfile->dwo_files
11830 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11831
11832 memset (&find_entry, 0, sizeof (find_entry));
11833 find_entry.dwo_name = dwo_name;
11834 find_entry.comp_dir = comp_dir;
11835 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11836
11837 return slot;
11838 }
11839
11840 static hashval_t
11841 hash_dwo_unit (const void *item)
11842 {
11843 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11844
11845 /* This drops the top 32 bits of the id, but is ok for a hash. */
11846 return dwo_unit->signature;
11847 }
11848
11849 static int
11850 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11851 {
11852 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11853 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11854
11855 /* The signature is assumed to be unique within the DWO file.
11856 So while object file CU dwo_id's always have the value zero,
11857 that's OK, assuming each object file DWO file has only one CU,
11858 and that's the rule for now. */
11859 return lhs->signature == rhs->signature;
11860 }
11861
11862 /* Allocate a hash table for DWO CUs,TUs.
11863 There is one of these tables for each of CUs,TUs for each DWO file. */
11864
11865 static htab_t
11866 allocate_dwo_unit_table (struct objfile *objfile)
11867 {
11868 /* Start out with a pretty small number.
11869 Generally DWO files contain only one CU and maybe some TUs. */
11870 return htab_create_alloc_ex (3,
11871 hash_dwo_unit,
11872 eq_dwo_unit,
11873 NULL,
11874 &objfile->objfile_obstack,
11875 hashtab_obstack_allocate,
11876 dummy_obstack_deallocate);
11877 }
11878
11879 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11880
11881 struct create_dwo_cu_data
11882 {
11883 struct dwo_file *dwo_file;
11884 struct dwo_unit dwo_unit;
11885 };
11886
11887 /* die_reader_func for create_dwo_cu. */
11888
11889 static void
11890 create_dwo_cu_reader (const struct die_reader_specs *reader,
11891 const gdb_byte *info_ptr,
11892 struct die_info *comp_unit_die,
11893 int has_children,
11894 void *datap)
11895 {
11896 struct dwarf2_cu *cu = reader->cu;
11897 sect_offset sect_off = cu->per_cu->sect_off;
11898 struct dwarf2_section_info *section = cu->per_cu->section;
11899 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11900 struct dwo_file *dwo_file = data->dwo_file;
11901 struct dwo_unit *dwo_unit = &data->dwo_unit;
11902 struct attribute *attr;
11903
11904 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11905 if (attr == NULL)
11906 {
11907 complaint (&symfile_complaints,
11908 _("Dwarf Error: debug entry at offset %s is missing"
11909 " its dwo_id [in module %s]"),
11910 sect_offset_str (sect_off), dwo_file->dwo_name);
11911 return;
11912 }
11913
11914 dwo_unit->dwo_file = dwo_file;
11915 dwo_unit->signature = DW_UNSND (attr);
11916 dwo_unit->section = section;
11917 dwo_unit->sect_off = sect_off;
11918 dwo_unit->length = cu->per_cu->length;
11919
11920 if (dwarf_read_debug)
11921 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11922 sect_offset_str (sect_off),
11923 hex_string (dwo_unit->signature));
11924 }
11925
11926 /* Create the dwo_units for the CUs in a DWO_FILE.
11927 Note: This function processes DWO files only, not DWP files. */
11928
11929 static void
11930 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11931 struct dwo_file &dwo_file, dwarf2_section_info &section,
11932 htab_t &cus_htab)
11933 {
11934 struct objfile *objfile = dwarf2_per_objfile->objfile;
11935 const gdb_byte *info_ptr, *end_ptr;
11936
11937 dwarf2_read_section (objfile, &section);
11938 info_ptr = section.buffer;
11939
11940 if (info_ptr == NULL)
11941 return;
11942
11943 if (dwarf_read_debug)
11944 {
11945 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11946 get_section_name (&section),
11947 get_section_file_name (&section));
11948 }
11949
11950 end_ptr = info_ptr + section.size;
11951 while (info_ptr < end_ptr)
11952 {
11953 struct dwarf2_per_cu_data per_cu;
11954 struct create_dwo_cu_data create_dwo_cu_data;
11955 struct dwo_unit *dwo_unit;
11956 void **slot;
11957 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11958
11959 memset (&create_dwo_cu_data.dwo_unit, 0,
11960 sizeof (create_dwo_cu_data.dwo_unit));
11961 memset (&per_cu, 0, sizeof (per_cu));
11962 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11963 per_cu.is_debug_types = 0;
11964 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11965 per_cu.section = &section;
11966 create_dwo_cu_data.dwo_file = &dwo_file;
11967
11968 init_cutu_and_read_dies_no_follow (
11969 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11970 info_ptr += per_cu.length;
11971
11972 // If the unit could not be parsed, skip it.
11973 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11974 continue;
11975
11976 if (cus_htab == NULL)
11977 cus_htab = allocate_dwo_unit_table (objfile);
11978
11979 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11980 *dwo_unit = create_dwo_cu_data.dwo_unit;
11981 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11982 gdb_assert (slot != NULL);
11983 if (*slot != NULL)
11984 {
11985 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11986 sect_offset dup_sect_off = dup_cu->sect_off;
11987
11988 complaint (&symfile_complaints,
11989 _("debug cu entry at offset %s is duplicate to"
11990 " the entry at offset %s, signature %s"),
11991 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11992 hex_string (dwo_unit->signature));
11993 }
11994 *slot = (void *)dwo_unit;
11995 }
11996 }
11997
11998 /* DWP file .debug_{cu,tu}_index section format:
11999 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12000
12001 DWP Version 1:
12002
12003 Both index sections have the same format, and serve to map a 64-bit
12004 signature to a set of section numbers. Each section begins with a header,
12005 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12006 indexes, and a pool of 32-bit section numbers. The index sections will be
12007 aligned at 8-byte boundaries in the file.
12008
12009 The index section header consists of:
12010
12011 V, 32 bit version number
12012 -, 32 bits unused
12013 N, 32 bit number of compilation units or type units in the index
12014 M, 32 bit number of slots in the hash table
12015
12016 Numbers are recorded using the byte order of the application binary.
12017
12018 The hash table begins at offset 16 in the section, and consists of an array
12019 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12020 order of the application binary). Unused slots in the hash table are 0.
12021 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12022
12023 The parallel table begins immediately after the hash table
12024 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12025 array of 32-bit indexes (using the byte order of the application binary),
12026 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12027 table contains a 32-bit index into the pool of section numbers. For unused
12028 hash table slots, the corresponding entry in the parallel table will be 0.
12029
12030 The pool of section numbers begins immediately following the hash table
12031 (at offset 16 + 12 * M from the beginning of the section). The pool of
12032 section numbers consists of an array of 32-bit words (using the byte order
12033 of the application binary). Each item in the array is indexed starting
12034 from 0. The hash table entry provides the index of the first section
12035 number in the set. Additional section numbers in the set follow, and the
12036 set is terminated by a 0 entry (section number 0 is not used in ELF).
12037
12038 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12039 section must be the first entry in the set, and the .debug_abbrev.dwo must
12040 be the second entry. Other members of the set may follow in any order.
12041
12042 ---
12043
12044 DWP Version 2:
12045
12046 DWP Version 2 combines all the .debug_info, etc. sections into one,
12047 and the entries in the index tables are now offsets into these sections.
12048 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12049 section.
12050
12051 Index Section Contents:
12052 Header
12053 Hash Table of Signatures dwp_hash_table.hash_table
12054 Parallel Table of Indices dwp_hash_table.unit_table
12055 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12056 Table of Section Sizes dwp_hash_table.v2.sizes
12057
12058 The index section header consists of:
12059
12060 V, 32 bit version number
12061 L, 32 bit number of columns in the table of section offsets
12062 N, 32 bit number of compilation units or type units in the index
12063 M, 32 bit number of slots in the hash table
12064
12065 Numbers are recorded using the byte order of the application binary.
12066
12067 The hash table has the same format as version 1.
12068 The parallel table of indices has the same format as version 1,
12069 except that the entries are origin-1 indices into the table of sections
12070 offsets and the table of section sizes.
12071
12072 The table of offsets begins immediately following the parallel table
12073 (at offset 16 + 12 * M from the beginning of the section). The table is
12074 a two-dimensional array of 32-bit words (using the byte order of the
12075 application binary), with L columns and N+1 rows, in row-major order.
12076 Each row in the array is indexed starting from 0. The first row provides
12077 a key to the remaining rows: each column in this row provides an identifier
12078 for a debug section, and the offsets in the same column of subsequent rows
12079 refer to that section. The section identifiers are:
12080
12081 DW_SECT_INFO 1 .debug_info.dwo
12082 DW_SECT_TYPES 2 .debug_types.dwo
12083 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12084 DW_SECT_LINE 4 .debug_line.dwo
12085 DW_SECT_LOC 5 .debug_loc.dwo
12086 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12087 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12088 DW_SECT_MACRO 8 .debug_macro.dwo
12089
12090 The offsets provided by the CU and TU index sections are the base offsets
12091 for the contributions made by each CU or TU to the corresponding section
12092 in the package file. Each CU and TU header contains an abbrev_offset
12093 field, used to find the abbreviations table for that CU or TU within the
12094 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12095 be interpreted as relative to the base offset given in the index section.
12096 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12097 should be interpreted as relative to the base offset for .debug_line.dwo,
12098 and offsets into other debug sections obtained from DWARF attributes should
12099 also be interpreted as relative to the corresponding base offset.
12100
12101 The table of sizes begins immediately following the table of offsets.
12102 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12103 with L columns and N rows, in row-major order. Each row in the array is
12104 indexed starting from 1 (row 0 is shared by the two tables).
12105
12106 ---
12107
12108 Hash table lookup is handled the same in version 1 and 2:
12109
12110 We assume that N and M will not exceed 2^32 - 1.
12111 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12112
12113 Given a 64-bit compilation unit signature or a type signature S, an entry
12114 in the hash table is located as follows:
12115
12116 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12117 the low-order k bits all set to 1.
12118
12119 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12120
12121 3) If the hash table entry at index H matches the signature, use that
12122 entry. If the hash table entry at index H is unused (all zeroes),
12123 terminate the search: the signature is not present in the table.
12124
12125 4) Let H = (H + H') modulo M. Repeat at Step 3.
12126
12127 Because M > N and H' and M are relatively prime, the search is guaranteed
12128 to stop at an unused slot or find the match. */
12129
12130 /* Create a hash table to map DWO IDs to their CU/TU entry in
12131 .debug_{info,types}.dwo in DWP_FILE.
12132 Returns NULL if there isn't one.
12133 Note: This function processes DWP files only, not DWO files. */
12134
12135 static struct dwp_hash_table *
12136 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12137 struct dwp_file *dwp_file, int is_debug_types)
12138 {
12139 struct objfile *objfile = dwarf2_per_objfile->objfile;
12140 bfd *dbfd = dwp_file->dbfd;
12141 const gdb_byte *index_ptr, *index_end;
12142 struct dwarf2_section_info *index;
12143 uint32_t version, nr_columns, nr_units, nr_slots;
12144 struct dwp_hash_table *htab;
12145
12146 if (is_debug_types)
12147 index = &dwp_file->sections.tu_index;
12148 else
12149 index = &dwp_file->sections.cu_index;
12150
12151 if (dwarf2_section_empty_p (index))
12152 return NULL;
12153 dwarf2_read_section (objfile, index);
12154
12155 index_ptr = index->buffer;
12156 index_end = index_ptr + index->size;
12157
12158 version = read_4_bytes (dbfd, index_ptr);
12159 index_ptr += 4;
12160 if (version == 2)
12161 nr_columns = read_4_bytes (dbfd, index_ptr);
12162 else
12163 nr_columns = 0;
12164 index_ptr += 4;
12165 nr_units = read_4_bytes (dbfd, index_ptr);
12166 index_ptr += 4;
12167 nr_slots = read_4_bytes (dbfd, index_ptr);
12168 index_ptr += 4;
12169
12170 if (version != 1 && version != 2)
12171 {
12172 error (_("Dwarf Error: unsupported DWP file version (%s)"
12173 " [in module %s]"),
12174 pulongest (version), dwp_file->name);
12175 }
12176 if (nr_slots != (nr_slots & -nr_slots))
12177 {
12178 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12179 " is not power of 2 [in module %s]"),
12180 pulongest (nr_slots), dwp_file->name);
12181 }
12182
12183 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12184 htab->version = version;
12185 htab->nr_columns = nr_columns;
12186 htab->nr_units = nr_units;
12187 htab->nr_slots = nr_slots;
12188 htab->hash_table = index_ptr;
12189 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12190
12191 /* Exit early if the table is empty. */
12192 if (nr_slots == 0 || nr_units == 0
12193 || (version == 2 && nr_columns == 0))
12194 {
12195 /* All must be zero. */
12196 if (nr_slots != 0 || nr_units != 0
12197 || (version == 2 && nr_columns != 0))
12198 {
12199 complaint (&symfile_complaints,
12200 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12201 " all zero [in modules %s]"),
12202 dwp_file->name);
12203 }
12204 return htab;
12205 }
12206
12207 if (version == 1)
12208 {
12209 htab->section_pool.v1.indices =
12210 htab->unit_table + sizeof (uint32_t) * nr_slots;
12211 /* It's harder to decide whether the section is too small in v1.
12212 V1 is deprecated anyway so we punt. */
12213 }
12214 else
12215 {
12216 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12217 int *ids = htab->section_pool.v2.section_ids;
12218 /* Reverse map for error checking. */
12219 int ids_seen[DW_SECT_MAX + 1];
12220 int i;
12221
12222 if (nr_columns < 2)
12223 {
12224 error (_("Dwarf Error: bad DWP hash table, too few columns"
12225 " in section table [in module %s]"),
12226 dwp_file->name);
12227 }
12228 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12229 {
12230 error (_("Dwarf Error: bad DWP hash table, too many columns"
12231 " in section table [in module %s]"),
12232 dwp_file->name);
12233 }
12234 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12235 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12236 for (i = 0; i < nr_columns; ++i)
12237 {
12238 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12239
12240 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12241 {
12242 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12243 " in section table [in module %s]"),
12244 id, dwp_file->name);
12245 }
12246 if (ids_seen[id] != -1)
12247 {
12248 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12249 " id %d in section table [in module %s]"),
12250 id, dwp_file->name);
12251 }
12252 ids_seen[id] = i;
12253 ids[i] = id;
12254 }
12255 /* Must have exactly one info or types section. */
12256 if (((ids_seen[DW_SECT_INFO] != -1)
12257 + (ids_seen[DW_SECT_TYPES] != -1))
12258 != 1)
12259 {
12260 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12261 " DWO info/types section [in module %s]"),
12262 dwp_file->name);
12263 }
12264 /* Must have an abbrev section. */
12265 if (ids_seen[DW_SECT_ABBREV] == -1)
12266 {
12267 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12268 " section [in module %s]"),
12269 dwp_file->name);
12270 }
12271 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12272 htab->section_pool.v2.sizes =
12273 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12274 * nr_units * nr_columns);
12275 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12276 * nr_units * nr_columns))
12277 > index_end)
12278 {
12279 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12280 " [in module %s]"),
12281 dwp_file->name);
12282 }
12283 }
12284
12285 return htab;
12286 }
12287
12288 /* Update SECTIONS with the data from SECTP.
12289
12290 This function is like the other "locate" section routines that are
12291 passed to bfd_map_over_sections, but in this context the sections to
12292 read comes from the DWP V1 hash table, not the full ELF section table.
12293
12294 The result is non-zero for success, or zero if an error was found. */
12295
12296 static int
12297 locate_v1_virtual_dwo_sections (asection *sectp,
12298 struct virtual_v1_dwo_sections *sections)
12299 {
12300 const struct dwop_section_names *names = &dwop_section_names;
12301
12302 if (section_is_p (sectp->name, &names->abbrev_dwo))
12303 {
12304 /* There can be only one. */
12305 if (sections->abbrev.s.section != NULL)
12306 return 0;
12307 sections->abbrev.s.section = sectp;
12308 sections->abbrev.size = bfd_get_section_size (sectp);
12309 }
12310 else if (section_is_p (sectp->name, &names->info_dwo)
12311 || section_is_p (sectp->name, &names->types_dwo))
12312 {
12313 /* There can be only one. */
12314 if (sections->info_or_types.s.section != NULL)
12315 return 0;
12316 sections->info_or_types.s.section = sectp;
12317 sections->info_or_types.size = bfd_get_section_size (sectp);
12318 }
12319 else if (section_is_p (sectp->name, &names->line_dwo))
12320 {
12321 /* There can be only one. */
12322 if (sections->line.s.section != NULL)
12323 return 0;
12324 sections->line.s.section = sectp;
12325 sections->line.size = bfd_get_section_size (sectp);
12326 }
12327 else if (section_is_p (sectp->name, &names->loc_dwo))
12328 {
12329 /* There can be only one. */
12330 if (sections->loc.s.section != NULL)
12331 return 0;
12332 sections->loc.s.section = sectp;
12333 sections->loc.size = bfd_get_section_size (sectp);
12334 }
12335 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12336 {
12337 /* There can be only one. */
12338 if (sections->macinfo.s.section != NULL)
12339 return 0;
12340 sections->macinfo.s.section = sectp;
12341 sections->macinfo.size = bfd_get_section_size (sectp);
12342 }
12343 else if (section_is_p (sectp->name, &names->macro_dwo))
12344 {
12345 /* There can be only one. */
12346 if (sections->macro.s.section != NULL)
12347 return 0;
12348 sections->macro.s.section = sectp;
12349 sections->macro.size = bfd_get_section_size (sectp);
12350 }
12351 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12352 {
12353 /* There can be only one. */
12354 if (sections->str_offsets.s.section != NULL)
12355 return 0;
12356 sections->str_offsets.s.section = sectp;
12357 sections->str_offsets.size = bfd_get_section_size (sectp);
12358 }
12359 else
12360 {
12361 /* No other kind of section is valid. */
12362 return 0;
12363 }
12364
12365 return 1;
12366 }
12367
12368 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12369 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12370 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12371 This is for DWP version 1 files. */
12372
12373 static struct dwo_unit *
12374 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12375 struct dwp_file *dwp_file,
12376 uint32_t unit_index,
12377 const char *comp_dir,
12378 ULONGEST signature, int is_debug_types)
12379 {
12380 struct objfile *objfile = dwarf2_per_objfile->objfile;
12381 const struct dwp_hash_table *dwp_htab =
12382 is_debug_types ? dwp_file->tus : dwp_file->cus;
12383 bfd *dbfd = dwp_file->dbfd;
12384 const char *kind = is_debug_types ? "TU" : "CU";
12385 struct dwo_file *dwo_file;
12386 struct dwo_unit *dwo_unit;
12387 struct virtual_v1_dwo_sections sections;
12388 void **dwo_file_slot;
12389 int i;
12390
12391 gdb_assert (dwp_file->version == 1);
12392
12393 if (dwarf_read_debug)
12394 {
12395 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12396 kind,
12397 pulongest (unit_index), hex_string (signature),
12398 dwp_file->name);
12399 }
12400
12401 /* Fetch the sections of this DWO unit.
12402 Put a limit on the number of sections we look for so that bad data
12403 doesn't cause us to loop forever. */
12404
12405 #define MAX_NR_V1_DWO_SECTIONS \
12406 (1 /* .debug_info or .debug_types */ \
12407 + 1 /* .debug_abbrev */ \
12408 + 1 /* .debug_line */ \
12409 + 1 /* .debug_loc */ \
12410 + 1 /* .debug_str_offsets */ \
12411 + 1 /* .debug_macro or .debug_macinfo */ \
12412 + 1 /* trailing zero */)
12413
12414 memset (&sections, 0, sizeof (sections));
12415
12416 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12417 {
12418 asection *sectp;
12419 uint32_t section_nr =
12420 read_4_bytes (dbfd,
12421 dwp_htab->section_pool.v1.indices
12422 + (unit_index + i) * sizeof (uint32_t));
12423
12424 if (section_nr == 0)
12425 break;
12426 if (section_nr >= dwp_file->num_sections)
12427 {
12428 error (_("Dwarf Error: bad DWP hash table, section number too large"
12429 " [in module %s]"),
12430 dwp_file->name);
12431 }
12432
12433 sectp = dwp_file->elf_sections[section_nr];
12434 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12435 {
12436 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12437 " [in module %s]"),
12438 dwp_file->name);
12439 }
12440 }
12441
12442 if (i < 2
12443 || dwarf2_section_empty_p (&sections.info_or_types)
12444 || dwarf2_section_empty_p (&sections.abbrev))
12445 {
12446 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12447 " [in module %s]"),
12448 dwp_file->name);
12449 }
12450 if (i == MAX_NR_V1_DWO_SECTIONS)
12451 {
12452 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12453 " [in module %s]"),
12454 dwp_file->name);
12455 }
12456
12457 /* It's easier for the rest of the code if we fake a struct dwo_file and
12458 have dwo_unit "live" in that. At least for now.
12459
12460 The DWP file can be made up of a random collection of CUs and TUs.
12461 However, for each CU + set of TUs that came from the same original DWO
12462 file, we can combine them back into a virtual DWO file to save space
12463 (fewer struct dwo_file objects to allocate). Remember that for really
12464 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12465
12466 std::string virtual_dwo_name =
12467 string_printf ("virtual-dwo/%d-%d-%d-%d",
12468 get_section_id (&sections.abbrev),
12469 get_section_id (&sections.line),
12470 get_section_id (&sections.loc),
12471 get_section_id (&sections.str_offsets));
12472 /* Can we use an existing virtual DWO file? */
12473 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12474 virtual_dwo_name.c_str (),
12475 comp_dir);
12476 /* Create one if necessary. */
12477 if (*dwo_file_slot == NULL)
12478 {
12479 if (dwarf_read_debug)
12480 {
12481 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12482 virtual_dwo_name.c_str ());
12483 }
12484 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12485 dwo_file->dwo_name
12486 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12487 virtual_dwo_name.c_str (),
12488 virtual_dwo_name.size ());
12489 dwo_file->comp_dir = comp_dir;
12490 dwo_file->sections.abbrev = sections.abbrev;
12491 dwo_file->sections.line = sections.line;
12492 dwo_file->sections.loc = sections.loc;
12493 dwo_file->sections.macinfo = sections.macinfo;
12494 dwo_file->sections.macro = sections.macro;
12495 dwo_file->sections.str_offsets = sections.str_offsets;
12496 /* The "str" section is global to the entire DWP file. */
12497 dwo_file->sections.str = dwp_file->sections.str;
12498 /* The info or types section is assigned below to dwo_unit,
12499 there's no need to record it in dwo_file.
12500 Also, we can't simply record type sections in dwo_file because
12501 we record a pointer into the vector in dwo_unit. As we collect more
12502 types we'll grow the vector and eventually have to reallocate space
12503 for it, invalidating all copies of pointers into the previous
12504 contents. */
12505 *dwo_file_slot = dwo_file;
12506 }
12507 else
12508 {
12509 if (dwarf_read_debug)
12510 {
12511 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12512 virtual_dwo_name.c_str ());
12513 }
12514 dwo_file = (struct dwo_file *) *dwo_file_slot;
12515 }
12516
12517 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12518 dwo_unit->dwo_file = dwo_file;
12519 dwo_unit->signature = signature;
12520 dwo_unit->section =
12521 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12522 *dwo_unit->section = sections.info_or_types;
12523 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12524
12525 return dwo_unit;
12526 }
12527
12528 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12529 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12530 piece within that section used by a TU/CU, return a virtual section
12531 of just that piece. */
12532
12533 static struct dwarf2_section_info
12534 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12535 struct dwarf2_section_info *section,
12536 bfd_size_type offset, bfd_size_type size)
12537 {
12538 struct dwarf2_section_info result;
12539 asection *sectp;
12540
12541 gdb_assert (section != NULL);
12542 gdb_assert (!section->is_virtual);
12543
12544 memset (&result, 0, sizeof (result));
12545 result.s.containing_section = section;
12546 result.is_virtual = 1;
12547
12548 if (size == 0)
12549 return result;
12550
12551 sectp = get_section_bfd_section (section);
12552
12553 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12554 bounds of the real section. This is a pretty-rare event, so just
12555 flag an error (easier) instead of a warning and trying to cope. */
12556 if (sectp == NULL
12557 || offset + size > bfd_get_section_size (sectp))
12558 {
12559 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12560 " in section %s [in module %s]"),
12561 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12562 objfile_name (dwarf2_per_objfile->objfile));
12563 }
12564
12565 result.virtual_offset = offset;
12566 result.size = size;
12567 return result;
12568 }
12569
12570 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12571 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12572 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12573 This is for DWP version 2 files. */
12574
12575 static struct dwo_unit *
12576 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12577 struct dwp_file *dwp_file,
12578 uint32_t unit_index,
12579 const char *comp_dir,
12580 ULONGEST signature, int is_debug_types)
12581 {
12582 struct objfile *objfile = dwarf2_per_objfile->objfile;
12583 const struct dwp_hash_table *dwp_htab =
12584 is_debug_types ? dwp_file->tus : dwp_file->cus;
12585 bfd *dbfd = dwp_file->dbfd;
12586 const char *kind = is_debug_types ? "TU" : "CU";
12587 struct dwo_file *dwo_file;
12588 struct dwo_unit *dwo_unit;
12589 struct virtual_v2_dwo_sections sections;
12590 void **dwo_file_slot;
12591 int i;
12592
12593 gdb_assert (dwp_file->version == 2);
12594
12595 if (dwarf_read_debug)
12596 {
12597 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12598 kind,
12599 pulongest (unit_index), hex_string (signature),
12600 dwp_file->name);
12601 }
12602
12603 /* Fetch the section offsets of this DWO unit. */
12604
12605 memset (&sections, 0, sizeof (sections));
12606
12607 for (i = 0; i < dwp_htab->nr_columns; ++i)
12608 {
12609 uint32_t offset = read_4_bytes (dbfd,
12610 dwp_htab->section_pool.v2.offsets
12611 + (((unit_index - 1) * dwp_htab->nr_columns
12612 + i)
12613 * sizeof (uint32_t)));
12614 uint32_t size = read_4_bytes (dbfd,
12615 dwp_htab->section_pool.v2.sizes
12616 + (((unit_index - 1) * dwp_htab->nr_columns
12617 + i)
12618 * sizeof (uint32_t)));
12619
12620 switch (dwp_htab->section_pool.v2.section_ids[i])
12621 {
12622 case DW_SECT_INFO:
12623 case DW_SECT_TYPES:
12624 sections.info_or_types_offset = offset;
12625 sections.info_or_types_size = size;
12626 break;
12627 case DW_SECT_ABBREV:
12628 sections.abbrev_offset = offset;
12629 sections.abbrev_size = size;
12630 break;
12631 case DW_SECT_LINE:
12632 sections.line_offset = offset;
12633 sections.line_size = size;
12634 break;
12635 case DW_SECT_LOC:
12636 sections.loc_offset = offset;
12637 sections.loc_size = size;
12638 break;
12639 case DW_SECT_STR_OFFSETS:
12640 sections.str_offsets_offset = offset;
12641 sections.str_offsets_size = size;
12642 break;
12643 case DW_SECT_MACINFO:
12644 sections.macinfo_offset = offset;
12645 sections.macinfo_size = size;
12646 break;
12647 case DW_SECT_MACRO:
12648 sections.macro_offset = offset;
12649 sections.macro_size = size;
12650 break;
12651 }
12652 }
12653
12654 /* It's easier for the rest of the code if we fake a struct dwo_file and
12655 have dwo_unit "live" in that. At least for now.
12656
12657 The DWP file can be made up of a random collection of CUs and TUs.
12658 However, for each CU + set of TUs that came from the same original DWO
12659 file, we can combine them back into a virtual DWO file to save space
12660 (fewer struct dwo_file objects to allocate). Remember that for really
12661 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12662
12663 std::string virtual_dwo_name =
12664 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12665 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12666 (long) (sections.line_size ? sections.line_offset : 0),
12667 (long) (sections.loc_size ? sections.loc_offset : 0),
12668 (long) (sections.str_offsets_size
12669 ? sections.str_offsets_offset : 0));
12670 /* Can we use an existing virtual DWO file? */
12671 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12672 virtual_dwo_name.c_str (),
12673 comp_dir);
12674 /* Create one if necessary. */
12675 if (*dwo_file_slot == NULL)
12676 {
12677 if (dwarf_read_debug)
12678 {
12679 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12680 virtual_dwo_name.c_str ());
12681 }
12682 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12683 dwo_file->dwo_name
12684 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12685 virtual_dwo_name.c_str (),
12686 virtual_dwo_name.size ());
12687 dwo_file->comp_dir = comp_dir;
12688 dwo_file->sections.abbrev =
12689 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12690 sections.abbrev_offset, sections.abbrev_size);
12691 dwo_file->sections.line =
12692 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12693 sections.line_offset, sections.line_size);
12694 dwo_file->sections.loc =
12695 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12696 sections.loc_offset, sections.loc_size);
12697 dwo_file->sections.macinfo =
12698 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12699 sections.macinfo_offset, sections.macinfo_size);
12700 dwo_file->sections.macro =
12701 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12702 sections.macro_offset, sections.macro_size);
12703 dwo_file->sections.str_offsets =
12704 create_dwp_v2_section (dwarf2_per_objfile,
12705 &dwp_file->sections.str_offsets,
12706 sections.str_offsets_offset,
12707 sections.str_offsets_size);
12708 /* The "str" section is global to the entire DWP file. */
12709 dwo_file->sections.str = dwp_file->sections.str;
12710 /* The info or types section is assigned below to dwo_unit,
12711 there's no need to record it in dwo_file.
12712 Also, we can't simply record type sections in dwo_file because
12713 we record a pointer into the vector in dwo_unit. As we collect more
12714 types we'll grow the vector and eventually have to reallocate space
12715 for it, invalidating all copies of pointers into the previous
12716 contents. */
12717 *dwo_file_slot = dwo_file;
12718 }
12719 else
12720 {
12721 if (dwarf_read_debug)
12722 {
12723 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12724 virtual_dwo_name.c_str ());
12725 }
12726 dwo_file = (struct dwo_file *) *dwo_file_slot;
12727 }
12728
12729 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12730 dwo_unit->dwo_file = dwo_file;
12731 dwo_unit->signature = signature;
12732 dwo_unit->section =
12733 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12734 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12735 is_debug_types
12736 ? &dwp_file->sections.types
12737 : &dwp_file->sections.info,
12738 sections.info_or_types_offset,
12739 sections.info_or_types_size);
12740 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12741
12742 return dwo_unit;
12743 }
12744
12745 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12746 Returns NULL if the signature isn't found. */
12747
12748 static struct dwo_unit *
12749 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12750 struct dwp_file *dwp_file, const char *comp_dir,
12751 ULONGEST signature, int is_debug_types)
12752 {
12753 const struct dwp_hash_table *dwp_htab =
12754 is_debug_types ? dwp_file->tus : dwp_file->cus;
12755 bfd *dbfd = dwp_file->dbfd;
12756 uint32_t mask = dwp_htab->nr_slots - 1;
12757 uint32_t hash = signature & mask;
12758 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12759 unsigned int i;
12760 void **slot;
12761 struct dwo_unit find_dwo_cu;
12762
12763 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12764 find_dwo_cu.signature = signature;
12765 slot = htab_find_slot (is_debug_types
12766 ? dwp_file->loaded_tus
12767 : dwp_file->loaded_cus,
12768 &find_dwo_cu, INSERT);
12769
12770 if (*slot != NULL)
12771 return (struct dwo_unit *) *slot;
12772
12773 /* Use a for loop so that we don't loop forever on bad debug info. */
12774 for (i = 0; i < dwp_htab->nr_slots; ++i)
12775 {
12776 ULONGEST signature_in_table;
12777
12778 signature_in_table =
12779 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12780 if (signature_in_table == signature)
12781 {
12782 uint32_t unit_index =
12783 read_4_bytes (dbfd,
12784 dwp_htab->unit_table + hash * sizeof (uint32_t));
12785
12786 if (dwp_file->version == 1)
12787 {
12788 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12789 dwp_file, unit_index,
12790 comp_dir, signature,
12791 is_debug_types);
12792 }
12793 else
12794 {
12795 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12796 dwp_file, unit_index,
12797 comp_dir, signature,
12798 is_debug_types);
12799 }
12800 return (struct dwo_unit *) *slot;
12801 }
12802 if (signature_in_table == 0)
12803 return NULL;
12804 hash = (hash + hash2) & mask;
12805 }
12806
12807 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12808 " [in module %s]"),
12809 dwp_file->name);
12810 }
12811
12812 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12813 Open the file specified by FILE_NAME and hand it off to BFD for
12814 preliminary analysis. Return a newly initialized bfd *, which
12815 includes a canonicalized copy of FILE_NAME.
12816 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12817 SEARCH_CWD is true if the current directory is to be searched.
12818 It will be searched before debug-file-directory.
12819 If successful, the file is added to the bfd include table of the
12820 objfile's bfd (see gdb_bfd_record_inclusion).
12821 If unable to find/open the file, return NULL.
12822 NOTE: This function is derived from symfile_bfd_open. */
12823
12824 static gdb_bfd_ref_ptr
12825 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12826 const char *file_name, int is_dwp, int search_cwd)
12827 {
12828 int desc;
12829 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12830 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12831 to debug_file_directory. */
12832 const char *search_path;
12833 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12834
12835 gdb::unique_xmalloc_ptr<char> search_path_holder;
12836 if (search_cwd)
12837 {
12838 if (*debug_file_directory != '\0')
12839 {
12840 search_path_holder.reset (concat (".", dirname_separator_string,
12841 debug_file_directory,
12842 (char *) NULL));
12843 search_path = search_path_holder.get ();
12844 }
12845 else
12846 search_path = ".";
12847 }
12848 else
12849 search_path = debug_file_directory;
12850
12851 openp_flags flags = OPF_RETURN_REALPATH;
12852 if (is_dwp)
12853 flags |= OPF_SEARCH_IN_PATH;
12854
12855 gdb::unique_xmalloc_ptr<char> absolute_name;
12856 desc = openp (search_path, flags, file_name,
12857 O_RDONLY | O_BINARY, &absolute_name);
12858 if (desc < 0)
12859 return NULL;
12860
12861 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12862 gnutarget, desc));
12863 if (sym_bfd == NULL)
12864 return NULL;
12865 bfd_set_cacheable (sym_bfd.get (), 1);
12866
12867 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12868 return NULL;
12869
12870 /* Success. Record the bfd as having been included by the objfile's bfd.
12871 This is important because things like demangled_names_hash lives in the
12872 objfile's per_bfd space and may have references to things like symbol
12873 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12874 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12875
12876 return sym_bfd;
12877 }
12878
12879 /* Try to open DWO file FILE_NAME.
12880 COMP_DIR is the DW_AT_comp_dir attribute.
12881 The result is the bfd handle of the file.
12882 If there is a problem finding or opening the file, return NULL.
12883 Upon success, the canonicalized path of the file is stored in the bfd,
12884 same as symfile_bfd_open. */
12885
12886 static gdb_bfd_ref_ptr
12887 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12888 const char *file_name, const char *comp_dir)
12889 {
12890 if (IS_ABSOLUTE_PATH (file_name))
12891 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12892 0 /*is_dwp*/, 0 /*search_cwd*/);
12893
12894 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12895
12896 if (comp_dir != NULL)
12897 {
12898 char *path_to_try = concat (comp_dir, SLASH_STRING,
12899 file_name, (char *) NULL);
12900
12901 /* NOTE: If comp_dir is a relative path, this will also try the
12902 search path, which seems useful. */
12903 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12904 path_to_try,
12905 0 /*is_dwp*/,
12906 1 /*search_cwd*/));
12907 xfree (path_to_try);
12908 if (abfd != NULL)
12909 return abfd;
12910 }
12911
12912 /* That didn't work, try debug-file-directory, which, despite its name,
12913 is a list of paths. */
12914
12915 if (*debug_file_directory == '\0')
12916 return NULL;
12917
12918 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12919 0 /*is_dwp*/, 1 /*search_cwd*/);
12920 }
12921
12922 /* This function is mapped across the sections and remembers the offset and
12923 size of each of the DWO debugging sections we are interested in. */
12924
12925 static void
12926 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12927 {
12928 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12929 const struct dwop_section_names *names = &dwop_section_names;
12930
12931 if (section_is_p (sectp->name, &names->abbrev_dwo))
12932 {
12933 dwo_sections->abbrev.s.section = sectp;
12934 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12935 }
12936 else if (section_is_p (sectp->name, &names->info_dwo))
12937 {
12938 dwo_sections->info.s.section = sectp;
12939 dwo_sections->info.size = bfd_get_section_size (sectp);
12940 }
12941 else if (section_is_p (sectp->name, &names->line_dwo))
12942 {
12943 dwo_sections->line.s.section = sectp;
12944 dwo_sections->line.size = bfd_get_section_size (sectp);
12945 }
12946 else if (section_is_p (sectp->name, &names->loc_dwo))
12947 {
12948 dwo_sections->loc.s.section = sectp;
12949 dwo_sections->loc.size = bfd_get_section_size (sectp);
12950 }
12951 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12952 {
12953 dwo_sections->macinfo.s.section = sectp;
12954 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12955 }
12956 else if (section_is_p (sectp->name, &names->macro_dwo))
12957 {
12958 dwo_sections->macro.s.section = sectp;
12959 dwo_sections->macro.size = bfd_get_section_size (sectp);
12960 }
12961 else if (section_is_p (sectp->name, &names->str_dwo))
12962 {
12963 dwo_sections->str.s.section = sectp;
12964 dwo_sections->str.size = bfd_get_section_size (sectp);
12965 }
12966 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12967 {
12968 dwo_sections->str_offsets.s.section = sectp;
12969 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12970 }
12971 else if (section_is_p (sectp->name, &names->types_dwo))
12972 {
12973 struct dwarf2_section_info type_section;
12974
12975 memset (&type_section, 0, sizeof (type_section));
12976 type_section.s.section = sectp;
12977 type_section.size = bfd_get_section_size (sectp);
12978 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12979 &type_section);
12980 }
12981 }
12982
12983 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12984 by PER_CU. This is for the non-DWP case.
12985 The result is NULL if DWO_NAME can't be found. */
12986
12987 static struct dwo_file *
12988 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12989 const char *dwo_name, const char *comp_dir)
12990 {
12991 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12992 struct objfile *objfile = dwarf2_per_objfile->objfile;
12993
12994 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12995 if (dbfd == NULL)
12996 {
12997 if (dwarf_read_debug)
12998 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12999 return NULL;
13000 }
13001
13002 /* We use a unique pointer here, despite the obstack allocation,
13003 because a dwo_file needs some cleanup if it is abandoned. */
13004 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
13005 struct dwo_file));
13006 dwo_file->dwo_name = dwo_name;
13007 dwo_file->comp_dir = comp_dir;
13008 dwo_file->dbfd = dbfd.release ();
13009
13010 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13011 &dwo_file->sections);
13012
13013 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13014 dwo_file->cus);
13015
13016 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13017 dwo_file->sections.types, dwo_file->tus);
13018
13019 if (dwarf_read_debug)
13020 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13021
13022 return dwo_file.release ();
13023 }
13024
13025 /* This function is mapped across the sections and remembers the offset and
13026 size of each of the DWP debugging sections common to version 1 and 2 that
13027 we are interested in. */
13028
13029 static void
13030 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13031 void *dwp_file_ptr)
13032 {
13033 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13034 const struct dwop_section_names *names = &dwop_section_names;
13035 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13036
13037 /* Record the ELF section number for later lookup: this is what the
13038 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13039 gdb_assert (elf_section_nr < dwp_file->num_sections);
13040 dwp_file->elf_sections[elf_section_nr] = sectp;
13041
13042 /* Look for specific sections that we need. */
13043 if (section_is_p (sectp->name, &names->str_dwo))
13044 {
13045 dwp_file->sections.str.s.section = sectp;
13046 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13047 }
13048 else if (section_is_p (sectp->name, &names->cu_index))
13049 {
13050 dwp_file->sections.cu_index.s.section = sectp;
13051 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13052 }
13053 else if (section_is_p (sectp->name, &names->tu_index))
13054 {
13055 dwp_file->sections.tu_index.s.section = sectp;
13056 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13057 }
13058 }
13059
13060 /* This function is mapped across the sections and remembers the offset and
13061 size of each of the DWP version 2 debugging sections that we are interested
13062 in. This is split into a separate function because we don't know if we
13063 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13064
13065 static void
13066 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13067 {
13068 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13069 const struct dwop_section_names *names = &dwop_section_names;
13070 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13071
13072 /* Record the ELF section number for later lookup: this is what the
13073 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13074 gdb_assert (elf_section_nr < dwp_file->num_sections);
13075 dwp_file->elf_sections[elf_section_nr] = sectp;
13076
13077 /* Look for specific sections that we need. */
13078 if (section_is_p (sectp->name, &names->abbrev_dwo))
13079 {
13080 dwp_file->sections.abbrev.s.section = sectp;
13081 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13082 }
13083 else if (section_is_p (sectp->name, &names->info_dwo))
13084 {
13085 dwp_file->sections.info.s.section = sectp;
13086 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13087 }
13088 else if (section_is_p (sectp->name, &names->line_dwo))
13089 {
13090 dwp_file->sections.line.s.section = sectp;
13091 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13092 }
13093 else if (section_is_p (sectp->name, &names->loc_dwo))
13094 {
13095 dwp_file->sections.loc.s.section = sectp;
13096 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13097 }
13098 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13099 {
13100 dwp_file->sections.macinfo.s.section = sectp;
13101 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13102 }
13103 else if (section_is_p (sectp->name, &names->macro_dwo))
13104 {
13105 dwp_file->sections.macro.s.section = sectp;
13106 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13107 }
13108 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13109 {
13110 dwp_file->sections.str_offsets.s.section = sectp;
13111 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13112 }
13113 else if (section_is_p (sectp->name, &names->types_dwo))
13114 {
13115 dwp_file->sections.types.s.section = sectp;
13116 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13117 }
13118 }
13119
13120 /* Hash function for dwp_file loaded CUs/TUs. */
13121
13122 static hashval_t
13123 hash_dwp_loaded_cutus (const void *item)
13124 {
13125 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13126
13127 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13128 return dwo_unit->signature;
13129 }
13130
13131 /* Equality function for dwp_file loaded CUs/TUs. */
13132
13133 static int
13134 eq_dwp_loaded_cutus (const void *a, const void *b)
13135 {
13136 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13137 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13138
13139 return dua->signature == dub->signature;
13140 }
13141
13142 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13143
13144 static htab_t
13145 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13146 {
13147 return htab_create_alloc_ex (3,
13148 hash_dwp_loaded_cutus,
13149 eq_dwp_loaded_cutus,
13150 NULL,
13151 &objfile->objfile_obstack,
13152 hashtab_obstack_allocate,
13153 dummy_obstack_deallocate);
13154 }
13155
13156 /* Try to open DWP file FILE_NAME.
13157 The result is the bfd handle of the file.
13158 If there is a problem finding or opening the file, return NULL.
13159 Upon success, the canonicalized path of the file is stored in the bfd,
13160 same as symfile_bfd_open. */
13161
13162 static gdb_bfd_ref_ptr
13163 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13164 const char *file_name)
13165 {
13166 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13167 1 /*is_dwp*/,
13168 1 /*search_cwd*/));
13169 if (abfd != NULL)
13170 return abfd;
13171
13172 /* Work around upstream bug 15652.
13173 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13174 [Whether that's a "bug" is debatable, but it is getting in our way.]
13175 We have no real idea where the dwp file is, because gdb's realpath-ing
13176 of the executable's path may have discarded the needed info.
13177 [IWBN if the dwp file name was recorded in the executable, akin to
13178 .gnu_debuglink, but that doesn't exist yet.]
13179 Strip the directory from FILE_NAME and search again. */
13180 if (*debug_file_directory != '\0')
13181 {
13182 /* Don't implicitly search the current directory here.
13183 If the user wants to search "." to handle this case,
13184 it must be added to debug-file-directory. */
13185 return try_open_dwop_file (dwarf2_per_objfile,
13186 lbasename (file_name), 1 /*is_dwp*/,
13187 0 /*search_cwd*/);
13188 }
13189
13190 return NULL;
13191 }
13192
13193 /* Initialize the use of the DWP file for the current objfile.
13194 By convention the name of the DWP file is ${objfile}.dwp.
13195 The result is NULL if it can't be found. */
13196
13197 static struct dwp_file *
13198 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13199 {
13200 struct objfile *objfile = dwarf2_per_objfile->objfile;
13201 struct dwp_file *dwp_file;
13202
13203 /* Try to find first .dwp for the binary file before any symbolic links
13204 resolving. */
13205
13206 /* If the objfile is a debug file, find the name of the real binary
13207 file and get the name of dwp file from there. */
13208 std::string dwp_name;
13209 if (objfile->separate_debug_objfile_backlink != NULL)
13210 {
13211 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13212 const char *backlink_basename = lbasename (backlink->original_name);
13213
13214 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13215 }
13216 else
13217 dwp_name = objfile->original_name;
13218
13219 dwp_name += ".dwp";
13220
13221 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13222 if (dbfd == NULL
13223 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13224 {
13225 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13226 dwp_name = objfile_name (objfile);
13227 dwp_name += ".dwp";
13228 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13229 }
13230
13231 if (dbfd == NULL)
13232 {
13233 if (dwarf_read_debug)
13234 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13235 return NULL;
13236 }
13237 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
13238 dwp_file->name = bfd_get_filename (dbfd.get ());
13239 dwp_file->dbfd = dbfd.release ();
13240
13241 /* +1: section 0 is unused */
13242 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13243 dwp_file->elf_sections =
13244 OBSTACK_CALLOC (&objfile->objfile_obstack,
13245 dwp_file->num_sections, asection *);
13246
13247 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
13248 dwp_file);
13249
13250 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 0);
13251
13252 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 1);
13253
13254 /* The DWP file version is stored in the hash table. Oh well. */
13255 if (dwp_file->cus && dwp_file->tus
13256 && dwp_file->cus->version != dwp_file->tus->version)
13257 {
13258 /* Technically speaking, we should try to limp along, but this is
13259 pretty bizarre. We use pulongest here because that's the established
13260 portability solution (e.g, we cannot use %u for uint32_t). */
13261 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13262 " TU version %s [in DWP file %s]"),
13263 pulongest (dwp_file->cus->version),
13264 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13265 }
13266
13267 if (dwp_file->cus)
13268 dwp_file->version = dwp_file->cus->version;
13269 else if (dwp_file->tus)
13270 dwp_file->version = dwp_file->tus->version;
13271 else
13272 dwp_file->version = 2;
13273
13274 if (dwp_file->version == 2)
13275 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
13276 dwp_file);
13277
13278 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13279 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13280
13281 if (dwarf_read_debug)
13282 {
13283 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13284 fprintf_unfiltered (gdb_stdlog,
13285 " %s CUs, %s TUs\n",
13286 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13287 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13288 }
13289
13290 return dwp_file;
13291 }
13292
13293 /* Wrapper around open_and_init_dwp_file, only open it once. */
13294
13295 static struct dwp_file *
13296 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13297 {
13298 if (! dwarf2_per_objfile->dwp_checked)
13299 {
13300 dwarf2_per_objfile->dwp_file
13301 = open_and_init_dwp_file (dwarf2_per_objfile);
13302 dwarf2_per_objfile->dwp_checked = 1;
13303 }
13304 return dwarf2_per_objfile->dwp_file;
13305 }
13306
13307 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13308 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13309 or in the DWP file for the objfile, referenced by THIS_UNIT.
13310 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13311 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13312
13313 This is called, for example, when wanting to read a variable with a
13314 complex location. Therefore we don't want to do file i/o for every call.
13315 Therefore we don't want to look for a DWO file on every call.
13316 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13317 then we check if we've already seen DWO_NAME, and only THEN do we check
13318 for a DWO file.
13319
13320 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13321 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13322
13323 static struct dwo_unit *
13324 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13325 const char *dwo_name, const char *comp_dir,
13326 ULONGEST signature, int is_debug_types)
13327 {
13328 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13329 struct objfile *objfile = dwarf2_per_objfile->objfile;
13330 const char *kind = is_debug_types ? "TU" : "CU";
13331 void **dwo_file_slot;
13332 struct dwo_file *dwo_file;
13333 struct dwp_file *dwp_file;
13334
13335 /* First see if there's a DWP file.
13336 If we have a DWP file but didn't find the DWO inside it, don't
13337 look for the original DWO file. It makes gdb behave differently
13338 depending on whether one is debugging in the build tree. */
13339
13340 dwp_file = get_dwp_file (dwarf2_per_objfile);
13341 if (dwp_file != NULL)
13342 {
13343 const struct dwp_hash_table *dwp_htab =
13344 is_debug_types ? dwp_file->tus : dwp_file->cus;
13345
13346 if (dwp_htab != NULL)
13347 {
13348 struct dwo_unit *dwo_cutu =
13349 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13350 signature, is_debug_types);
13351
13352 if (dwo_cutu != NULL)
13353 {
13354 if (dwarf_read_debug)
13355 {
13356 fprintf_unfiltered (gdb_stdlog,
13357 "Virtual DWO %s %s found: @%s\n",
13358 kind, hex_string (signature),
13359 host_address_to_string (dwo_cutu));
13360 }
13361 return dwo_cutu;
13362 }
13363 }
13364 }
13365 else
13366 {
13367 /* No DWP file, look for the DWO file. */
13368
13369 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13370 dwo_name, comp_dir);
13371 if (*dwo_file_slot == NULL)
13372 {
13373 /* Read in the file and build a table of the CUs/TUs it contains. */
13374 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13375 }
13376 /* NOTE: This will be NULL if unable to open the file. */
13377 dwo_file = (struct dwo_file *) *dwo_file_slot;
13378
13379 if (dwo_file != NULL)
13380 {
13381 struct dwo_unit *dwo_cutu = NULL;
13382
13383 if (is_debug_types && dwo_file->tus)
13384 {
13385 struct dwo_unit find_dwo_cutu;
13386
13387 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13388 find_dwo_cutu.signature = signature;
13389 dwo_cutu
13390 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13391 }
13392 else if (!is_debug_types && dwo_file->cus)
13393 {
13394 struct dwo_unit find_dwo_cutu;
13395
13396 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13397 find_dwo_cutu.signature = signature;
13398 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13399 &find_dwo_cutu);
13400 }
13401
13402 if (dwo_cutu != NULL)
13403 {
13404 if (dwarf_read_debug)
13405 {
13406 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13407 kind, dwo_name, hex_string (signature),
13408 host_address_to_string (dwo_cutu));
13409 }
13410 return dwo_cutu;
13411 }
13412 }
13413 }
13414
13415 /* We didn't find it. This could mean a dwo_id mismatch, or
13416 someone deleted the DWO/DWP file, or the search path isn't set up
13417 correctly to find the file. */
13418
13419 if (dwarf_read_debug)
13420 {
13421 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13422 kind, dwo_name, hex_string (signature));
13423 }
13424
13425 /* This is a warning and not a complaint because it can be caused by
13426 pilot error (e.g., user accidentally deleting the DWO). */
13427 {
13428 /* Print the name of the DWP file if we looked there, helps the user
13429 better diagnose the problem. */
13430 std::string dwp_text;
13431
13432 if (dwp_file != NULL)
13433 dwp_text = string_printf (" [in DWP file %s]",
13434 lbasename (dwp_file->name));
13435
13436 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13437 " [in module %s]"),
13438 kind, dwo_name, hex_string (signature),
13439 dwp_text.c_str (),
13440 this_unit->is_debug_types ? "TU" : "CU",
13441 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13442 }
13443 return NULL;
13444 }
13445
13446 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13447 See lookup_dwo_cutu_unit for details. */
13448
13449 static struct dwo_unit *
13450 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13451 const char *dwo_name, const char *comp_dir,
13452 ULONGEST signature)
13453 {
13454 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13455 }
13456
13457 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13458 See lookup_dwo_cutu_unit for details. */
13459
13460 static struct dwo_unit *
13461 lookup_dwo_type_unit (struct signatured_type *this_tu,
13462 const char *dwo_name, const char *comp_dir)
13463 {
13464 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13465 }
13466
13467 /* Traversal function for queue_and_load_all_dwo_tus. */
13468
13469 static int
13470 queue_and_load_dwo_tu (void **slot, void *info)
13471 {
13472 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13473 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13474 ULONGEST signature = dwo_unit->signature;
13475 struct signatured_type *sig_type =
13476 lookup_dwo_signatured_type (per_cu->cu, signature);
13477
13478 if (sig_type != NULL)
13479 {
13480 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13481
13482 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13483 a real dependency of PER_CU on SIG_TYPE. That is detected later
13484 while processing PER_CU. */
13485 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13486 load_full_type_unit (sig_cu);
13487 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13488 }
13489
13490 return 1;
13491 }
13492
13493 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13494 The DWO may have the only definition of the type, though it may not be
13495 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13496 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13497
13498 static void
13499 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13500 {
13501 struct dwo_unit *dwo_unit;
13502 struct dwo_file *dwo_file;
13503
13504 gdb_assert (!per_cu->is_debug_types);
13505 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13506 gdb_assert (per_cu->cu != NULL);
13507
13508 dwo_unit = per_cu->cu->dwo_unit;
13509 gdb_assert (dwo_unit != NULL);
13510
13511 dwo_file = dwo_unit->dwo_file;
13512 if (dwo_file->tus != NULL)
13513 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13514 }
13515
13516 /* Free all resources associated with DWO_FILE.
13517 Close the DWO file and munmap the sections. */
13518
13519 static void
13520 free_dwo_file (struct dwo_file *dwo_file)
13521 {
13522 /* Note: dbfd is NULL for virtual DWO files. */
13523 gdb_bfd_unref (dwo_file->dbfd);
13524
13525 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13526 }
13527
13528 /* Traversal function for free_dwo_files. */
13529
13530 static int
13531 free_dwo_file_from_slot (void **slot, void *info)
13532 {
13533 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13534
13535 free_dwo_file (dwo_file);
13536
13537 return 1;
13538 }
13539
13540 /* Free all resources associated with DWO_FILES. */
13541
13542 static void
13543 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13544 {
13545 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13546 }
13547 \f
13548 /* Read in various DIEs. */
13549
13550 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13551 Inherit only the children of the DW_AT_abstract_origin DIE not being
13552 already referenced by DW_AT_abstract_origin from the children of the
13553 current DIE. */
13554
13555 static void
13556 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13557 {
13558 struct die_info *child_die;
13559 sect_offset *offsetp;
13560 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13561 struct die_info *origin_die;
13562 /* Iterator of the ORIGIN_DIE children. */
13563 struct die_info *origin_child_die;
13564 struct attribute *attr;
13565 struct dwarf2_cu *origin_cu;
13566 struct pending **origin_previous_list_in_scope;
13567
13568 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13569 if (!attr)
13570 return;
13571
13572 /* Note that following die references may follow to a die in a
13573 different cu. */
13574
13575 origin_cu = cu;
13576 origin_die = follow_die_ref (die, attr, &origin_cu);
13577
13578 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13579 symbols in. */
13580 origin_previous_list_in_scope = origin_cu->list_in_scope;
13581 origin_cu->list_in_scope = cu->list_in_scope;
13582
13583 if (die->tag != origin_die->tag
13584 && !(die->tag == DW_TAG_inlined_subroutine
13585 && origin_die->tag == DW_TAG_subprogram))
13586 complaint (&symfile_complaints,
13587 _("DIE %s and its abstract origin %s have different tags"),
13588 sect_offset_str (die->sect_off),
13589 sect_offset_str (origin_die->sect_off));
13590
13591 std::vector<sect_offset> offsets;
13592
13593 for (child_die = die->child;
13594 child_die && child_die->tag;
13595 child_die = sibling_die (child_die))
13596 {
13597 struct die_info *child_origin_die;
13598 struct dwarf2_cu *child_origin_cu;
13599
13600 /* We are trying to process concrete instance entries:
13601 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13602 it's not relevant to our analysis here. i.e. detecting DIEs that are
13603 present in the abstract instance but not referenced in the concrete
13604 one. */
13605 if (child_die->tag == DW_TAG_call_site
13606 || child_die->tag == DW_TAG_GNU_call_site)
13607 continue;
13608
13609 /* For each CHILD_DIE, find the corresponding child of
13610 ORIGIN_DIE. If there is more than one layer of
13611 DW_AT_abstract_origin, follow them all; there shouldn't be,
13612 but GCC versions at least through 4.4 generate this (GCC PR
13613 40573). */
13614 child_origin_die = child_die;
13615 child_origin_cu = cu;
13616 while (1)
13617 {
13618 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13619 child_origin_cu);
13620 if (attr == NULL)
13621 break;
13622 child_origin_die = follow_die_ref (child_origin_die, attr,
13623 &child_origin_cu);
13624 }
13625
13626 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13627 counterpart may exist. */
13628 if (child_origin_die != child_die)
13629 {
13630 if (child_die->tag != child_origin_die->tag
13631 && !(child_die->tag == DW_TAG_inlined_subroutine
13632 && child_origin_die->tag == DW_TAG_subprogram))
13633 complaint (&symfile_complaints,
13634 _("Child DIE %s and its abstract origin %s have "
13635 "different tags"),
13636 sect_offset_str (child_die->sect_off),
13637 sect_offset_str (child_origin_die->sect_off));
13638 if (child_origin_die->parent != origin_die)
13639 complaint (&symfile_complaints,
13640 _("Child DIE %s and its abstract origin %s have "
13641 "different parents"),
13642 sect_offset_str (child_die->sect_off),
13643 sect_offset_str (child_origin_die->sect_off));
13644 else
13645 offsets.push_back (child_origin_die->sect_off);
13646 }
13647 }
13648 std::sort (offsets.begin (), offsets.end ());
13649 sect_offset *offsets_end = offsets.data () + offsets.size ();
13650 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13651 if (offsetp[-1] == *offsetp)
13652 complaint (&symfile_complaints,
13653 _("Multiple children of DIE %s refer "
13654 "to DIE %s as their abstract origin"),
13655 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13656
13657 offsetp = offsets.data ();
13658 origin_child_die = origin_die->child;
13659 while (origin_child_die && origin_child_die->tag)
13660 {
13661 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13662 while (offsetp < offsets_end
13663 && *offsetp < origin_child_die->sect_off)
13664 offsetp++;
13665 if (offsetp >= offsets_end
13666 || *offsetp > origin_child_die->sect_off)
13667 {
13668 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13669 Check whether we're already processing ORIGIN_CHILD_DIE.
13670 This can happen with mutually referenced abstract_origins.
13671 PR 16581. */
13672 if (!origin_child_die->in_process)
13673 process_die (origin_child_die, origin_cu);
13674 }
13675 origin_child_die = sibling_die (origin_child_die);
13676 }
13677 origin_cu->list_in_scope = origin_previous_list_in_scope;
13678 }
13679
13680 static void
13681 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13682 {
13683 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13684 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13685 struct context_stack *newobj;
13686 CORE_ADDR lowpc;
13687 CORE_ADDR highpc;
13688 struct die_info *child_die;
13689 struct attribute *attr, *call_line, *call_file;
13690 const char *name;
13691 CORE_ADDR baseaddr;
13692 struct block *block;
13693 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13694 std::vector<struct symbol *> template_args;
13695 struct template_symbol *templ_func = NULL;
13696
13697 if (inlined_func)
13698 {
13699 /* If we do not have call site information, we can't show the
13700 caller of this inlined function. That's too confusing, so
13701 only use the scope for local variables. */
13702 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13703 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13704 if (call_line == NULL || call_file == NULL)
13705 {
13706 read_lexical_block_scope (die, cu);
13707 return;
13708 }
13709 }
13710
13711 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13712
13713 name = dwarf2_name (die, cu);
13714
13715 /* Ignore functions with missing or empty names. These are actually
13716 illegal according to the DWARF standard. */
13717 if (name == NULL)
13718 {
13719 complaint (&symfile_complaints,
13720 _("missing name for subprogram DIE at %s"),
13721 sect_offset_str (die->sect_off));
13722 return;
13723 }
13724
13725 /* Ignore functions with missing or invalid low and high pc attributes. */
13726 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13727 <= PC_BOUNDS_INVALID)
13728 {
13729 attr = dwarf2_attr (die, DW_AT_external, cu);
13730 if (!attr || !DW_UNSND (attr))
13731 complaint (&symfile_complaints,
13732 _("cannot get low and high bounds "
13733 "for subprogram DIE at %s"),
13734 sect_offset_str (die->sect_off));
13735 return;
13736 }
13737
13738 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13739 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13740
13741 /* If we have any template arguments, then we must allocate a
13742 different sort of symbol. */
13743 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13744 {
13745 if (child_die->tag == DW_TAG_template_type_param
13746 || child_die->tag == DW_TAG_template_value_param)
13747 {
13748 templ_func = allocate_template_symbol (objfile);
13749 templ_func->subclass = SYMBOL_TEMPLATE;
13750 break;
13751 }
13752 }
13753
13754 newobj = push_context (0, lowpc);
13755 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13756 (struct symbol *) templ_func);
13757
13758 /* If there is a location expression for DW_AT_frame_base, record
13759 it. */
13760 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13761 if (attr)
13762 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13763
13764 /* If there is a location for the static link, record it. */
13765 newobj->static_link = NULL;
13766 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13767 if (attr)
13768 {
13769 newobj->static_link
13770 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13771 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13772 }
13773
13774 cu->list_in_scope = &local_symbols;
13775
13776 if (die->child != NULL)
13777 {
13778 child_die = die->child;
13779 while (child_die && child_die->tag)
13780 {
13781 if (child_die->tag == DW_TAG_template_type_param
13782 || child_die->tag == DW_TAG_template_value_param)
13783 {
13784 struct symbol *arg = new_symbol (child_die, NULL, cu);
13785
13786 if (arg != NULL)
13787 template_args.push_back (arg);
13788 }
13789 else
13790 process_die (child_die, cu);
13791 child_die = sibling_die (child_die);
13792 }
13793 }
13794
13795 inherit_abstract_dies (die, cu);
13796
13797 /* If we have a DW_AT_specification, we might need to import using
13798 directives from the context of the specification DIE. See the
13799 comment in determine_prefix. */
13800 if (cu->language == language_cplus
13801 && dwarf2_attr (die, DW_AT_specification, cu))
13802 {
13803 struct dwarf2_cu *spec_cu = cu;
13804 struct die_info *spec_die = die_specification (die, &spec_cu);
13805
13806 while (spec_die)
13807 {
13808 child_die = spec_die->child;
13809 while (child_die && child_die->tag)
13810 {
13811 if (child_die->tag == DW_TAG_imported_module)
13812 process_die (child_die, spec_cu);
13813 child_die = sibling_die (child_die);
13814 }
13815
13816 /* In some cases, GCC generates specification DIEs that
13817 themselves contain DW_AT_specification attributes. */
13818 spec_die = die_specification (spec_die, &spec_cu);
13819 }
13820 }
13821
13822 newobj = pop_context ();
13823 /* Make a block for the local symbols within. */
13824 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13825 newobj->static_link, lowpc, highpc);
13826
13827 /* For C++, set the block's scope. */
13828 if ((cu->language == language_cplus
13829 || cu->language == language_fortran
13830 || cu->language == language_d
13831 || cu->language == language_rust)
13832 && cu->processing_has_namespace_info)
13833 block_set_scope (block, determine_prefix (die, cu),
13834 &objfile->objfile_obstack);
13835
13836 /* If we have address ranges, record them. */
13837 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13838
13839 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13840
13841 /* Attach template arguments to function. */
13842 if (!template_args.empty ())
13843 {
13844 gdb_assert (templ_func != NULL);
13845
13846 templ_func->n_template_arguments = template_args.size ();
13847 templ_func->template_arguments
13848 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13849 templ_func->n_template_arguments);
13850 memcpy (templ_func->template_arguments,
13851 template_args.data (),
13852 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13853 }
13854
13855 /* In C++, we can have functions nested inside functions (e.g., when
13856 a function declares a class that has methods). This means that
13857 when we finish processing a function scope, we may need to go
13858 back to building a containing block's symbol lists. */
13859 local_symbols = newobj->locals;
13860 local_using_directives = newobj->local_using_directives;
13861
13862 /* If we've finished processing a top-level function, subsequent
13863 symbols go in the file symbol list. */
13864 if (outermost_context_p ())
13865 cu->list_in_scope = &file_symbols;
13866 }
13867
13868 /* Process all the DIES contained within a lexical block scope. Start
13869 a new scope, process the dies, and then close the scope. */
13870
13871 static void
13872 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13873 {
13874 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13875 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13876 struct context_stack *newobj;
13877 CORE_ADDR lowpc, highpc;
13878 struct die_info *child_die;
13879 CORE_ADDR baseaddr;
13880
13881 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13882
13883 /* Ignore blocks with missing or invalid low and high pc attributes. */
13884 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13885 as multiple lexical blocks? Handling children in a sane way would
13886 be nasty. Might be easier to properly extend generic blocks to
13887 describe ranges. */
13888 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13889 {
13890 case PC_BOUNDS_NOT_PRESENT:
13891 /* DW_TAG_lexical_block has no attributes, process its children as if
13892 there was no wrapping by that DW_TAG_lexical_block.
13893 GCC does no longer produces such DWARF since GCC r224161. */
13894 for (child_die = die->child;
13895 child_die != NULL && child_die->tag;
13896 child_die = sibling_die (child_die))
13897 process_die (child_die, cu);
13898 return;
13899 case PC_BOUNDS_INVALID:
13900 return;
13901 }
13902 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13903 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13904
13905 push_context (0, lowpc);
13906 if (die->child != NULL)
13907 {
13908 child_die = die->child;
13909 while (child_die && child_die->tag)
13910 {
13911 process_die (child_die, cu);
13912 child_die = sibling_die (child_die);
13913 }
13914 }
13915 inherit_abstract_dies (die, cu);
13916 newobj = pop_context ();
13917
13918 if (local_symbols != NULL || local_using_directives != NULL)
13919 {
13920 struct block *block
13921 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
13922 newobj->start_addr, highpc);
13923
13924 /* Note that recording ranges after traversing children, as we
13925 do here, means that recording a parent's ranges entails
13926 walking across all its children's ranges as they appear in
13927 the address map, which is quadratic behavior.
13928
13929 It would be nicer to record the parent's ranges before
13930 traversing its children, simply overriding whatever you find
13931 there. But since we don't even decide whether to create a
13932 block until after we've traversed its children, that's hard
13933 to do. */
13934 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13935 }
13936 local_symbols = newobj->locals;
13937 local_using_directives = newobj->local_using_directives;
13938 }
13939
13940 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13941
13942 static void
13943 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13944 {
13945 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13946 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13947 CORE_ADDR pc, baseaddr;
13948 struct attribute *attr;
13949 struct call_site *call_site, call_site_local;
13950 void **slot;
13951 int nparams;
13952 struct die_info *child_die;
13953
13954 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13955
13956 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13957 if (attr == NULL)
13958 {
13959 /* This was a pre-DWARF-5 GNU extension alias
13960 for DW_AT_call_return_pc. */
13961 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13962 }
13963 if (!attr)
13964 {
13965 complaint (&symfile_complaints,
13966 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
13967 "DIE %s [in module %s]"),
13968 sect_offset_str (die->sect_off), objfile_name (objfile));
13969 return;
13970 }
13971 pc = attr_value_as_address (attr) + baseaddr;
13972 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13973
13974 if (cu->call_site_htab == NULL)
13975 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13976 NULL, &objfile->objfile_obstack,
13977 hashtab_obstack_allocate, NULL);
13978 call_site_local.pc = pc;
13979 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13980 if (*slot != NULL)
13981 {
13982 complaint (&symfile_complaints,
13983 _("Duplicate PC %s for DW_TAG_call_site "
13984 "DIE %s [in module %s]"),
13985 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13986 objfile_name (objfile));
13987 return;
13988 }
13989
13990 /* Count parameters at the caller. */
13991
13992 nparams = 0;
13993 for (child_die = die->child; child_die && child_die->tag;
13994 child_die = sibling_die (child_die))
13995 {
13996 if (child_die->tag != DW_TAG_call_site_parameter
13997 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13998 {
13999 complaint (&symfile_complaints,
14000 _("Tag %d is not DW_TAG_call_site_parameter in "
14001 "DW_TAG_call_site child DIE %s [in module %s]"),
14002 child_die->tag, sect_offset_str (child_die->sect_off),
14003 objfile_name (objfile));
14004 continue;
14005 }
14006
14007 nparams++;
14008 }
14009
14010 call_site
14011 = ((struct call_site *)
14012 obstack_alloc (&objfile->objfile_obstack,
14013 sizeof (*call_site)
14014 + (sizeof (*call_site->parameter) * (nparams - 1))));
14015 *slot = call_site;
14016 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14017 call_site->pc = pc;
14018
14019 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14020 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14021 {
14022 struct die_info *func_die;
14023
14024 /* Skip also over DW_TAG_inlined_subroutine. */
14025 for (func_die = die->parent;
14026 func_die && func_die->tag != DW_TAG_subprogram
14027 && func_die->tag != DW_TAG_subroutine_type;
14028 func_die = func_die->parent);
14029
14030 /* DW_AT_call_all_calls is a superset
14031 of DW_AT_call_all_tail_calls. */
14032 if (func_die
14033 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14034 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14035 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14036 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14037 {
14038 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14039 not complete. But keep CALL_SITE for look ups via call_site_htab,
14040 both the initial caller containing the real return address PC and
14041 the final callee containing the current PC of a chain of tail
14042 calls do not need to have the tail call list complete. But any
14043 function candidate for a virtual tail call frame searched via
14044 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14045 determined unambiguously. */
14046 }
14047 else
14048 {
14049 struct type *func_type = NULL;
14050
14051 if (func_die)
14052 func_type = get_die_type (func_die, cu);
14053 if (func_type != NULL)
14054 {
14055 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14056
14057 /* Enlist this call site to the function. */
14058 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14059 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14060 }
14061 else
14062 complaint (&symfile_complaints,
14063 _("Cannot find function owning DW_TAG_call_site "
14064 "DIE %s [in module %s]"),
14065 sect_offset_str (die->sect_off), objfile_name (objfile));
14066 }
14067 }
14068
14069 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14070 if (attr == NULL)
14071 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14072 if (attr == NULL)
14073 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14074 if (attr == NULL)
14075 {
14076 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14077 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14078 }
14079 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14080 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14081 /* Keep NULL DWARF_BLOCK. */;
14082 else if (attr_form_is_block (attr))
14083 {
14084 struct dwarf2_locexpr_baton *dlbaton;
14085
14086 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14087 dlbaton->data = DW_BLOCK (attr)->data;
14088 dlbaton->size = DW_BLOCK (attr)->size;
14089 dlbaton->per_cu = cu->per_cu;
14090
14091 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14092 }
14093 else if (attr_form_is_ref (attr))
14094 {
14095 struct dwarf2_cu *target_cu = cu;
14096 struct die_info *target_die;
14097
14098 target_die = follow_die_ref (die, attr, &target_cu);
14099 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14100 if (die_is_declaration (target_die, target_cu))
14101 {
14102 const char *target_physname;
14103
14104 /* Prefer the mangled name; otherwise compute the demangled one. */
14105 target_physname = dw2_linkage_name (target_die, target_cu);
14106 if (target_physname == NULL)
14107 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14108 if (target_physname == NULL)
14109 complaint (&symfile_complaints,
14110 _("DW_AT_call_target target DIE has invalid "
14111 "physname, for referencing DIE %s [in module %s]"),
14112 sect_offset_str (die->sect_off), objfile_name (objfile));
14113 else
14114 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14115 }
14116 else
14117 {
14118 CORE_ADDR lowpc;
14119
14120 /* DW_AT_entry_pc should be preferred. */
14121 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14122 <= PC_BOUNDS_INVALID)
14123 complaint (&symfile_complaints,
14124 _("DW_AT_call_target target DIE has invalid "
14125 "low pc, for referencing DIE %s [in module %s]"),
14126 sect_offset_str (die->sect_off), objfile_name (objfile));
14127 else
14128 {
14129 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14130 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14131 }
14132 }
14133 }
14134 else
14135 complaint (&symfile_complaints,
14136 _("DW_TAG_call_site DW_AT_call_target is neither "
14137 "block nor reference, for DIE %s [in module %s]"),
14138 sect_offset_str (die->sect_off), objfile_name (objfile));
14139
14140 call_site->per_cu = cu->per_cu;
14141
14142 for (child_die = die->child;
14143 child_die && child_die->tag;
14144 child_die = sibling_die (child_die))
14145 {
14146 struct call_site_parameter *parameter;
14147 struct attribute *loc, *origin;
14148
14149 if (child_die->tag != DW_TAG_call_site_parameter
14150 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14151 {
14152 /* Already printed the complaint above. */
14153 continue;
14154 }
14155
14156 gdb_assert (call_site->parameter_count < nparams);
14157 parameter = &call_site->parameter[call_site->parameter_count];
14158
14159 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14160 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14161 register is contained in DW_AT_call_value. */
14162
14163 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14164 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14165 if (origin == NULL)
14166 {
14167 /* This was a pre-DWARF-5 GNU extension alias
14168 for DW_AT_call_parameter. */
14169 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14170 }
14171 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14172 {
14173 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14174
14175 sect_offset sect_off
14176 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14177 if (!offset_in_cu_p (&cu->header, sect_off))
14178 {
14179 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14180 binding can be done only inside one CU. Such referenced DIE
14181 therefore cannot be even moved to DW_TAG_partial_unit. */
14182 complaint (&symfile_complaints,
14183 _("DW_AT_call_parameter offset is not in CU for "
14184 "DW_TAG_call_site child DIE %s [in module %s]"),
14185 sect_offset_str (child_die->sect_off),
14186 objfile_name (objfile));
14187 continue;
14188 }
14189 parameter->u.param_cu_off
14190 = (cu_offset) (sect_off - cu->header.sect_off);
14191 }
14192 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14193 {
14194 complaint (&symfile_complaints,
14195 _("No DW_FORM_block* DW_AT_location for "
14196 "DW_TAG_call_site child DIE %s [in module %s]"),
14197 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14198 continue;
14199 }
14200 else
14201 {
14202 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14203 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14204 if (parameter->u.dwarf_reg != -1)
14205 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14206 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14207 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14208 &parameter->u.fb_offset))
14209 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14210 else
14211 {
14212 complaint (&symfile_complaints,
14213 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14214 "for DW_FORM_block* DW_AT_location is supported for "
14215 "DW_TAG_call_site child DIE %s "
14216 "[in module %s]"),
14217 sect_offset_str (child_die->sect_off),
14218 objfile_name (objfile));
14219 continue;
14220 }
14221 }
14222
14223 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14224 if (attr == NULL)
14225 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14226 if (!attr_form_is_block (attr))
14227 {
14228 complaint (&symfile_complaints,
14229 _("No DW_FORM_block* DW_AT_call_value for "
14230 "DW_TAG_call_site child DIE %s [in module %s]"),
14231 sect_offset_str (child_die->sect_off),
14232 objfile_name (objfile));
14233 continue;
14234 }
14235 parameter->value = DW_BLOCK (attr)->data;
14236 parameter->value_size = DW_BLOCK (attr)->size;
14237
14238 /* Parameters are not pre-cleared by memset above. */
14239 parameter->data_value = NULL;
14240 parameter->data_value_size = 0;
14241 call_site->parameter_count++;
14242
14243 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14244 if (attr == NULL)
14245 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14246 if (attr)
14247 {
14248 if (!attr_form_is_block (attr))
14249 complaint (&symfile_complaints,
14250 _("No DW_FORM_block* DW_AT_call_data_value for "
14251 "DW_TAG_call_site child DIE %s [in module %s]"),
14252 sect_offset_str (child_die->sect_off),
14253 objfile_name (objfile));
14254 else
14255 {
14256 parameter->data_value = DW_BLOCK (attr)->data;
14257 parameter->data_value_size = DW_BLOCK (attr)->size;
14258 }
14259 }
14260 }
14261 }
14262
14263 /* Helper function for read_variable. If DIE represents a virtual
14264 table, then return the type of the concrete object that is
14265 associated with the virtual table. Otherwise, return NULL. */
14266
14267 static struct type *
14268 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14269 {
14270 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14271 if (attr == NULL)
14272 return NULL;
14273
14274 /* Find the type DIE. */
14275 struct die_info *type_die = NULL;
14276 struct dwarf2_cu *type_cu = cu;
14277
14278 if (attr_form_is_ref (attr))
14279 type_die = follow_die_ref (die, attr, &type_cu);
14280 if (type_die == NULL)
14281 return NULL;
14282
14283 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14284 return NULL;
14285 return die_containing_type (type_die, type_cu);
14286 }
14287
14288 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14289
14290 static void
14291 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14292 {
14293 struct rust_vtable_symbol *storage = NULL;
14294
14295 if (cu->language == language_rust)
14296 {
14297 struct type *containing_type = rust_containing_type (die, cu);
14298
14299 if (containing_type != NULL)
14300 {
14301 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14302
14303 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14304 struct rust_vtable_symbol);
14305 initialize_objfile_symbol (storage);
14306 storage->concrete_type = containing_type;
14307 storage->subclass = SYMBOL_RUST_VTABLE;
14308 }
14309 }
14310
14311 new_symbol (die, NULL, cu, storage);
14312 }
14313
14314 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14315 reading .debug_rnglists.
14316 Callback's type should be:
14317 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14318 Return true if the attributes are present and valid, otherwise,
14319 return false. */
14320
14321 template <typename Callback>
14322 static bool
14323 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14324 Callback &&callback)
14325 {
14326 struct dwarf2_per_objfile *dwarf2_per_objfile
14327 = cu->per_cu->dwarf2_per_objfile;
14328 struct objfile *objfile = dwarf2_per_objfile->objfile;
14329 bfd *obfd = objfile->obfd;
14330 /* Base address selection entry. */
14331 CORE_ADDR base;
14332 int found_base;
14333 const gdb_byte *buffer;
14334 CORE_ADDR baseaddr;
14335 bool overflow = false;
14336
14337 found_base = cu->base_known;
14338 base = cu->base_address;
14339
14340 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14341 if (offset >= dwarf2_per_objfile->rnglists.size)
14342 {
14343 complaint (&symfile_complaints,
14344 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14345 offset);
14346 return false;
14347 }
14348 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14349
14350 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14351
14352 while (1)
14353 {
14354 /* Initialize it due to a false compiler warning. */
14355 CORE_ADDR range_beginning = 0, range_end = 0;
14356 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14357 + dwarf2_per_objfile->rnglists.size);
14358 unsigned int bytes_read;
14359
14360 if (buffer == buf_end)
14361 {
14362 overflow = true;
14363 break;
14364 }
14365 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14366 switch (rlet)
14367 {
14368 case DW_RLE_end_of_list:
14369 break;
14370 case DW_RLE_base_address:
14371 if (buffer + cu->header.addr_size > buf_end)
14372 {
14373 overflow = true;
14374 break;
14375 }
14376 base = read_address (obfd, buffer, cu, &bytes_read);
14377 found_base = 1;
14378 buffer += bytes_read;
14379 break;
14380 case DW_RLE_start_length:
14381 if (buffer + cu->header.addr_size > buf_end)
14382 {
14383 overflow = true;
14384 break;
14385 }
14386 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14387 buffer += bytes_read;
14388 range_end = (range_beginning
14389 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14390 buffer += bytes_read;
14391 if (buffer > buf_end)
14392 {
14393 overflow = true;
14394 break;
14395 }
14396 break;
14397 case DW_RLE_offset_pair:
14398 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14399 buffer += bytes_read;
14400 if (buffer > buf_end)
14401 {
14402 overflow = true;
14403 break;
14404 }
14405 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14406 buffer += bytes_read;
14407 if (buffer > buf_end)
14408 {
14409 overflow = true;
14410 break;
14411 }
14412 break;
14413 case DW_RLE_start_end:
14414 if (buffer + 2 * cu->header.addr_size > buf_end)
14415 {
14416 overflow = true;
14417 break;
14418 }
14419 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14420 buffer += bytes_read;
14421 range_end = read_address (obfd, buffer, cu, &bytes_read);
14422 buffer += bytes_read;
14423 break;
14424 default:
14425 complaint (&symfile_complaints,
14426 _("Invalid .debug_rnglists data (no base address)"));
14427 return false;
14428 }
14429 if (rlet == DW_RLE_end_of_list || overflow)
14430 break;
14431 if (rlet == DW_RLE_base_address)
14432 continue;
14433
14434 if (!found_base)
14435 {
14436 /* We have no valid base address for the ranges
14437 data. */
14438 complaint (&symfile_complaints,
14439 _("Invalid .debug_rnglists data (no base address)"));
14440 return false;
14441 }
14442
14443 if (range_beginning > range_end)
14444 {
14445 /* Inverted range entries are invalid. */
14446 complaint (&symfile_complaints,
14447 _("Invalid .debug_rnglists data (inverted range)"));
14448 return false;
14449 }
14450
14451 /* Empty range entries have no effect. */
14452 if (range_beginning == range_end)
14453 continue;
14454
14455 range_beginning += base;
14456 range_end += base;
14457
14458 /* A not-uncommon case of bad debug info.
14459 Don't pollute the addrmap with bad data. */
14460 if (range_beginning + baseaddr == 0
14461 && !dwarf2_per_objfile->has_section_at_zero)
14462 {
14463 complaint (&symfile_complaints,
14464 _(".debug_rnglists entry has start address of zero"
14465 " [in module %s]"), objfile_name (objfile));
14466 continue;
14467 }
14468
14469 callback (range_beginning, range_end);
14470 }
14471
14472 if (overflow)
14473 {
14474 complaint (&symfile_complaints,
14475 _("Offset %d is not terminated "
14476 "for DW_AT_ranges attribute"),
14477 offset);
14478 return false;
14479 }
14480
14481 return true;
14482 }
14483
14484 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14485 Callback's type should be:
14486 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14487 Return 1 if the attributes are present and valid, otherwise, return 0. */
14488
14489 template <typename Callback>
14490 static int
14491 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14492 Callback &&callback)
14493 {
14494 struct dwarf2_per_objfile *dwarf2_per_objfile
14495 = cu->per_cu->dwarf2_per_objfile;
14496 struct objfile *objfile = dwarf2_per_objfile->objfile;
14497 struct comp_unit_head *cu_header = &cu->header;
14498 bfd *obfd = objfile->obfd;
14499 unsigned int addr_size = cu_header->addr_size;
14500 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14501 /* Base address selection entry. */
14502 CORE_ADDR base;
14503 int found_base;
14504 unsigned int dummy;
14505 const gdb_byte *buffer;
14506 CORE_ADDR baseaddr;
14507
14508 if (cu_header->version >= 5)
14509 return dwarf2_rnglists_process (offset, cu, callback);
14510
14511 found_base = cu->base_known;
14512 base = cu->base_address;
14513
14514 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14515 if (offset >= dwarf2_per_objfile->ranges.size)
14516 {
14517 complaint (&symfile_complaints,
14518 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14519 offset);
14520 return 0;
14521 }
14522 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14523
14524 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14525
14526 while (1)
14527 {
14528 CORE_ADDR range_beginning, range_end;
14529
14530 range_beginning = read_address (obfd, buffer, cu, &dummy);
14531 buffer += addr_size;
14532 range_end = read_address (obfd, buffer, cu, &dummy);
14533 buffer += addr_size;
14534 offset += 2 * addr_size;
14535
14536 /* An end of list marker is a pair of zero addresses. */
14537 if (range_beginning == 0 && range_end == 0)
14538 /* Found the end of list entry. */
14539 break;
14540
14541 /* Each base address selection entry is a pair of 2 values.
14542 The first is the largest possible address, the second is
14543 the base address. Check for a base address here. */
14544 if ((range_beginning & mask) == mask)
14545 {
14546 /* If we found the largest possible address, then we already
14547 have the base address in range_end. */
14548 base = range_end;
14549 found_base = 1;
14550 continue;
14551 }
14552
14553 if (!found_base)
14554 {
14555 /* We have no valid base address for the ranges
14556 data. */
14557 complaint (&symfile_complaints,
14558 _("Invalid .debug_ranges data (no base address)"));
14559 return 0;
14560 }
14561
14562 if (range_beginning > range_end)
14563 {
14564 /* Inverted range entries are invalid. */
14565 complaint (&symfile_complaints,
14566 _("Invalid .debug_ranges data (inverted range)"));
14567 return 0;
14568 }
14569
14570 /* Empty range entries have no effect. */
14571 if (range_beginning == range_end)
14572 continue;
14573
14574 range_beginning += base;
14575 range_end += base;
14576
14577 /* A not-uncommon case of bad debug info.
14578 Don't pollute the addrmap with bad data. */
14579 if (range_beginning + baseaddr == 0
14580 && !dwarf2_per_objfile->has_section_at_zero)
14581 {
14582 complaint (&symfile_complaints,
14583 _(".debug_ranges entry has start address of zero"
14584 " [in module %s]"), objfile_name (objfile));
14585 continue;
14586 }
14587
14588 callback (range_beginning, range_end);
14589 }
14590
14591 return 1;
14592 }
14593
14594 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14595 Return 1 if the attributes are present and valid, otherwise, return 0.
14596 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14597
14598 static int
14599 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14600 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14601 struct partial_symtab *ranges_pst)
14602 {
14603 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14604 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14605 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14606 SECT_OFF_TEXT (objfile));
14607 int low_set = 0;
14608 CORE_ADDR low = 0;
14609 CORE_ADDR high = 0;
14610 int retval;
14611
14612 retval = dwarf2_ranges_process (offset, cu,
14613 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14614 {
14615 if (ranges_pst != NULL)
14616 {
14617 CORE_ADDR lowpc;
14618 CORE_ADDR highpc;
14619
14620 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14621 range_beginning + baseaddr);
14622 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14623 range_end + baseaddr);
14624 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14625 ranges_pst);
14626 }
14627
14628 /* FIXME: This is recording everything as a low-high
14629 segment of consecutive addresses. We should have a
14630 data structure for discontiguous block ranges
14631 instead. */
14632 if (! low_set)
14633 {
14634 low = range_beginning;
14635 high = range_end;
14636 low_set = 1;
14637 }
14638 else
14639 {
14640 if (range_beginning < low)
14641 low = range_beginning;
14642 if (range_end > high)
14643 high = range_end;
14644 }
14645 });
14646 if (!retval)
14647 return 0;
14648
14649 if (! low_set)
14650 /* If the first entry is an end-of-list marker, the range
14651 describes an empty scope, i.e. no instructions. */
14652 return 0;
14653
14654 if (low_return)
14655 *low_return = low;
14656 if (high_return)
14657 *high_return = high;
14658 return 1;
14659 }
14660
14661 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14662 definition for the return value. *LOWPC and *HIGHPC are set iff
14663 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14664
14665 static enum pc_bounds_kind
14666 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14667 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14668 struct partial_symtab *pst)
14669 {
14670 struct dwarf2_per_objfile *dwarf2_per_objfile
14671 = cu->per_cu->dwarf2_per_objfile;
14672 struct attribute *attr;
14673 struct attribute *attr_high;
14674 CORE_ADDR low = 0;
14675 CORE_ADDR high = 0;
14676 enum pc_bounds_kind ret;
14677
14678 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14679 if (attr_high)
14680 {
14681 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14682 if (attr)
14683 {
14684 low = attr_value_as_address (attr);
14685 high = attr_value_as_address (attr_high);
14686 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14687 high += low;
14688 }
14689 else
14690 /* Found high w/o low attribute. */
14691 return PC_BOUNDS_INVALID;
14692
14693 /* Found consecutive range of addresses. */
14694 ret = PC_BOUNDS_HIGH_LOW;
14695 }
14696 else
14697 {
14698 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14699 if (attr != NULL)
14700 {
14701 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14702 We take advantage of the fact that DW_AT_ranges does not appear
14703 in DW_TAG_compile_unit of DWO files. */
14704 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14705 unsigned int ranges_offset = (DW_UNSND (attr)
14706 + (need_ranges_base
14707 ? cu->ranges_base
14708 : 0));
14709
14710 /* Value of the DW_AT_ranges attribute is the offset in the
14711 .debug_ranges section. */
14712 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14713 return PC_BOUNDS_INVALID;
14714 /* Found discontinuous range of addresses. */
14715 ret = PC_BOUNDS_RANGES;
14716 }
14717 else
14718 return PC_BOUNDS_NOT_PRESENT;
14719 }
14720
14721 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14722 if (high <= low)
14723 return PC_BOUNDS_INVALID;
14724
14725 /* When using the GNU linker, .gnu.linkonce. sections are used to
14726 eliminate duplicate copies of functions and vtables and such.
14727 The linker will arbitrarily choose one and discard the others.
14728 The AT_*_pc values for such functions refer to local labels in
14729 these sections. If the section from that file was discarded, the
14730 labels are not in the output, so the relocs get a value of 0.
14731 If this is a discarded function, mark the pc bounds as invalid,
14732 so that GDB will ignore it. */
14733 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14734 return PC_BOUNDS_INVALID;
14735
14736 *lowpc = low;
14737 if (highpc)
14738 *highpc = high;
14739 return ret;
14740 }
14741
14742 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14743 its low and high PC addresses. Do nothing if these addresses could not
14744 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14745 and HIGHPC to the high address if greater than HIGHPC. */
14746
14747 static void
14748 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14749 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14750 struct dwarf2_cu *cu)
14751 {
14752 CORE_ADDR low, high;
14753 struct die_info *child = die->child;
14754
14755 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14756 {
14757 *lowpc = std::min (*lowpc, low);
14758 *highpc = std::max (*highpc, high);
14759 }
14760
14761 /* If the language does not allow nested subprograms (either inside
14762 subprograms or lexical blocks), we're done. */
14763 if (cu->language != language_ada)
14764 return;
14765
14766 /* Check all the children of the given DIE. If it contains nested
14767 subprograms, then check their pc bounds. Likewise, we need to
14768 check lexical blocks as well, as they may also contain subprogram
14769 definitions. */
14770 while (child && child->tag)
14771 {
14772 if (child->tag == DW_TAG_subprogram
14773 || child->tag == DW_TAG_lexical_block)
14774 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14775 child = sibling_die (child);
14776 }
14777 }
14778
14779 /* Get the low and high pc's represented by the scope DIE, and store
14780 them in *LOWPC and *HIGHPC. If the correct values can't be
14781 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14782
14783 static void
14784 get_scope_pc_bounds (struct die_info *die,
14785 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14786 struct dwarf2_cu *cu)
14787 {
14788 CORE_ADDR best_low = (CORE_ADDR) -1;
14789 CORE_ADDR best_high = (CORE_ADDR) 0;
14790 CORE_ADDR current_low, current_high;
14791
14792 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14793 >= PC_BOUNDS_RANGES)
14794 {
14795 best_low = current_low;
14796 best_high = current_high;
14797 }
14798 else
14799 {
14800 struct die_info *child = die->child;
14801
14802 while (child && child->tag)
14803 {
14804 switch (child->tag) {
14805 case DW_TAG_subprogram:
14806 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14807 break;
14808 case DW_TAG_namespace:
14809 case DW_TAG_module:
14810 /* FIXME: carlton/2004-01-16: Should we do this for
14811 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14812 that current GCC's always emit the DIEs corresponding
14813 to definitions of methods of classes as children of a
14814 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14815 the DIEs giving the declarations, which could be
14816 anywhere). But I don't see any reason why the
14817 standards says that they have to be there. */
14818 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14819
14820 if (current_low != ((CORE_ADDR) -1))
14821 {
14822 best_low = std::min (best_low, current_low);
14823 best_high = std::max (best_high, current_high);
14824 }
14825 break;
14826 default:
14827 /* Ignore. */
14828 break;
14829 }
14830
14831 child = sibling_die (child);
14832 }
14833 }
14834
14835 *lowpc = best_low;
14836 *highpc = best_high;
14837 }
14838
14839 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14840 in DIE. */
14841
14842 static void
14843 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14844 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14845 {
14846 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14847 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14848 struct attribute *attr;
14849 struct attribute *attr_high;
14850
14851 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14852 if (attr_high)
14853 {
14854 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14855 if (attr)
14856 {
14857 CORE_ADDR low = attr_value_as_address (attr);
14858 CORE_ADDR high = attr_value_as_address (attr_high);
14859
14860 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14861 high += low;
14862
14863 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14864 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14865 record_block_range (block, low, high - 1);
14866 }
14867 }
14868
14869 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14870 if (attr)
14871 {
14872 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14873 We take advantage of the fact that DW_AT_ranges does not appear
14874 in DW_TAG_compile_unit of DWO files. */
14875 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14876
14877 /* The value of the DW_AT_ranges attribute is the offset of the
14878 address range list in the .debug_ranges section. */
14879 unsigned long offset = (DW_UNSND (attr)
14880 + (need_ranges_base ? cu->ranges_base : 0));
14881 const gdb_byte *buffer;
14882
14883 /* For some target architectures, but not others, the
14884 read_address function sign-extends the addresses it returns.
14885 To recognize base address selection entries, we need a
14886 mask. */
14887 unsigned int addr_size = cu->header.addr_size;
14888 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14889
14890 /* The base address, to which the next pair is relative. Note
14891 that this 'base' is a DWARF concept: most entries in a range
14892 list are relative, to reduce the number of relocs against the
14893 debugging information. This is separate from this function's
14894 'baseaddr' argument, which GDB uses to relocate debugging
14895 information from a shared library based on the address at
14896 which the library was loaded. */
14897 CORE_ADDR base = cu->base_address;
14898 int base_known = cu->base_known;
14899
14900 dwarf2_ranges_process (offset, cu,
14901 [&] (CORE_ADDR start, CORE_ADDR end)
14902 {
14903 start += baseaddr;
14904 end += baseaddr;
14905 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14906 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14907 record_block_range (block, start, end - 1);
14908 });
14909 }
14910 }
14911
14912 /* Check whether the producer field indicates either of GCC < 4.6, or the
14913 Intel C/C++ compiler, and cache the result in CU. */
14914
14915 static void
14916 check_producer (struct dwarf2_cu *cu)
14917 {
14918 int major, minor;
14919
14920 if (cu->producer == NULL)
14921 {
14922 /* For unknown compilers expect their behavior is DWARF version
14923 compliant.
14924
14925 GCC started to support .debug_types sections by -gdwarf-4 since
14926 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14927 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14928 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14929 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14930 }
14931 else if (producer_is_gcc (cu->producer, &major, &minor))
14932 {
14933 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14934 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14935 }
14936 else if (producer_is_icc (cu->producer, &major, &minor))
14937 cu->producer_is_icc_lt_14 = major < 14;
14938 else
14939 {
14940 /* For other non-GCC compilers, expect their behavior is DWARF version
14941 compliant. */
14942 }
14943
14944 cu->checked_producer = 1;
14945 }
14946
14947 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14948 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14949 during 4.6.0 experimental. */
14950
14951 static int
14952 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14953 {
14954 if (!cu->checked_producer)
14955 check_producer (cu);
14956
14957 return cu->producer_is_gxx_lt_4_6;
14958 }
14959
14960 /* Return the default accessibility type if it is not overriden by
14961 DW_AT_accessibility. */
14962
14963 static enum dwarf_access_attribute
14964 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14965 {
14966 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14967 {
14968 /* The default DWARF 2 accessibility for members is public, the default
14969 accessibility for inheritance is private. */
14970
14971 if (die->tag != DW_TAG_inheritance)
14972 return DW_ACCESS_public;
14973 else
14974 return DW_ACCESS_private;
14975 }
14976 else
14977 {
14978 /* DWARF 3+ defines the default accessibility a different way. The same
14979 rules apply now for DW_TAG_inheritance as for the members and it only
14980 depends on the container kind. */
14981
14982 if (die->parent->tag == DW_TAG_class_type)
14983 return DW_ACCESS_private;
14984 else
14985 return DW_ACCESS_public;
14986 }
14987 }
14988
14989 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14990 offset. If the attribute was not found return 0, otherwise return
14991 1. If it was found but could not properly be handled, set *OFFSET
14992 to 0. */
14993
14994 static int
14995 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14996 LONGEST *offset)
14997 {
14998 struct attribute *attr;
14999
15000 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15001 if (attr != NULL)
15002 {
15003 *offset = 0;
15004
15005 /* Note that we do not check for a section offset first here.
15006 This is because DW_AT_data_member_location is new in DWARF 4,
15007 so if we see it, we can assume that a constant form is really
15008 a constant and not a section offset. */
15009 if (attr_form_is_constant (attr))
15010 *offset = dwarf2_get_attr_constant_value (attr, 0);
15011 else if (attr_form_is_section_offset (attr))
15012 dwarf2_complex_location_expr_complaint ();
15013 else if (attr_form_is_block (attr))
15014 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15015 else
15016 dwarf2_complex_location_expr_complaint ();
15017
15018 return 1;
15019 }
15020
15021 return 0;
15022 }
15023
15024 /* Add an aggregate field to the field list. */
15025
15026 static void
15027 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15028 struct dwarf2_cu *cu)
15029 {
15030 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15031 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15032 struct nextfield *new_field;
15033 struct attribute *attr;
15034 struct field *fp;
15035 const char *fieldname = "";
15036
15037 if (die->tag == DW_TAG_inheritance)
15038 {
15039 fip->baseclasses.emplace_back ();
15040 new_field = &fip->baseclasses.back ();
15041 }
15042 else
15043 {
15044 fip->fields.emplace_back ();
15045 new_field = &fip->fields.back ();
15046 }
15047
15048 fip->nfields++;
15049
15050 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15051 if (attr)
15052 new_field->accessibility = DW_UNSND (attr);
15053 else
15054 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15055 if (new_field->accessibility != DW_ACCESS_public)
15056 fip->non_public_fields = 1;
15057
15058 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15059 if (attr)
15060 new_field->virtuality = DW_UNSND (attr);
15061 else
15062 new_field->virtuality = DW_VIRTUALITY_none;
15063
15064 fp = &new_field->field;
15065
15066 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15067 {
15068 LONGEST offset;
15069
15070 /* Data member other than a C++ static data member. */
15071
15072 /* Get type of field. */
15073 fp->type = die_type (die, cu);
15074
15075 SET_FIELD_BITPOS (*fp, 0);
15076
15077 /* Get bit size of field (zero if none). */
15078 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15079 if (attr)
15080 {
15081 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15082 }
15083 else
15084 {
15085 FIELD_BITSIZE (*fp) = 0;
15086 }
15087
15088 /* Get bit offset of field. */
15089 if (handle_data_member_location (die, cu, &offset))
15090 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15091 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15092 if (attr)
15093 {
15094 if (gdbarch_bits_big_endian (gdbarch))
15095 {
15096 /* For big endian bits, the DW_AT_bit_offset gives the
15097 additional bit offset from the MSB of the containing
15098 anonymous object to the MSB of the field. We don't
15099 have to do anything special since we don't need to
15100 know the size of the anonymous object. */
15101 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15102 }
15103 else
15104 {
15105 /* For little endian bits, compute the bit offset to the
15106 MSB of the anonymous object, subtract off the number of
15107 bits from the MSB of the field to the MSB of the
15108 object, and then subtract off the number of bits of
15109 the field itself. The result is the bit offset of
15110 the LSB of the field. */
15111 int anonymous_size;
15112 int bit_offset = DW_UNSND (attr);
15113
15114 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15115 if (attr)
15116 {
15117 /* The size of the anonymous object containing
15118 the bit field is explicit, so use the
15119 indicated size (in bytes). */
15120 anonymous_size = DW_UNSND (attr);
15121 }
15122 else
15123 {
15124 /* The size of the anonymous object containing
15125 the bit field must be inferred from the type
15126 attribute of the data member containing the
15127 bit field. */
15128 anonymous_size = TYPE_LENGTH (fp->type);
15129 }
15130 SET_FIELD_BITPOS (*fp,
15131 (FIELD_BITPOS (*fp)
15132 + anonymous_size * bits_per_byte
15133 - bit_offset - FIELD_BITSIZE (*fp)));
15134 }
15135 }
15136 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15137 if (attr != NULL)
15138 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15139 + dwarf2_get_attr_constant_value (attr, 0)));
15140
15141 /* Get name of field. */
15142 fieldname = dwarf2_name (die, cu);
15143 if (fieldname == NULL)
15144 fieldname = "";
15145
15146 /* The name is already allocated along with this objfile, so we don't
15147 need to duplicate it for the type. */
15148 fp->name = fieldname;
15149
15150 /* Change accessibility for artificial fields (e.g. virtual table
15151 pointer or virtual base class pointer) to private. */
15152 if (dwarf2_attr (die, DW_AT_artificial, cu))
15153 {
15154 FIELD_ARTIFICIAL (*fp) = 1;
15155 new_field->accessibility = DW_ACCESS_private;
15156 fip->non_public_fields = 1;
15157 }
15158 }
15159 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15160 {
15161 /* C++ static member. */
15162
15163 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15164 is a declaration, but all versions of G++ as of this writing
15165 (so through at least 3.2.1) incorrectly generate
15166 DW_TAG_variable tags. */
15167
15168 const char *physname;
15169
15170 /* Get name of field. */
15171 fieldname = dwarf2_name (die, cu);
15172 if (fieldname == NULL)
15173 return;
15174
15175 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15176 if (attr
15177 /* Only create a symbol if this is an external value.
15178 new_symbol checks this and puts the value in the global symbol
15179 table, which we want. If it is not external, new_symbol
15180 will try to put the value in cu->list_in_scope which is wrong. */
15181 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15182 {
15183 /* A static const member, not much different than an enum as far as
15184 we're concerned, except that we can support more types. */
15185 new_symbol (die, NULL, cu);
15186 }
15187
15188 /* Get physical name. */
15189 physname = dwarf2_physname (fieldname, die, cu);
15190
15191 /* The name is already allocated along with this objfile, so we don't
15192 need to duplicate it for the type. */
15193 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15194 FIELD_TYPE (*fp) = die_type (die, cu);
15195 FIELD_NAME (*fp) = fieldname;
15196 }
15197 else if (die->tag == DW_TAG_inheritance)
15198 {
15199 LONGEST offset;
15200
15201 /* C++ base class field. */
15202 if (handle_data_member_location (die, cu, &offset))
15203 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15204 FIELD_BITSIZE (*fp) = 0;
15205 FIELD_TYPE (*fp) = die_type (die, cu);
15206 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15207 }
15208 else if (die->tag == DW_TAG_variant_part)
15209 {
15210 /* process_structure_scope will treat this DIE as a union. */
15211 process_structure_scope (die, cu);
15212
15213 /* The variant part is relative to the start of the enclosing
15214 structure. */
15215 SET_FIELD_BITPOS (*fp, 0);
15216 fp->type = get_die_type (die, cu);
15217 fp->artificial = 1;
15218 fp->name = "<<variant>>";
15219 }
15220 else
15221 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15222 }
15223
15224 /* Can the type given by DIE define another type? */
15225
15226 static bool
15227 type_can_define_types (const struct die_info *die)
15228 {
15229 switch (die->tag)
15230 {
15231 case DW_TAG_typedef:
15232 case DW_TAG_class_type:
15233 case DW_TAG_structure_type:
15234 case DW_TAG_union_type:
15235 case DW_TAG_enumeration_type:
15236 return true;
15237
15238 default:
15239 return false;
15240 }
15241 }
15242
15243 /* Add a type definition defined in the scope of the FIP's class. */
15244
15245 static void
15246 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15247 struct dwarf2_cu *cu)
15248 {
15249 struct decl_field fp;
15250 memset (&fp, 0, sizeof (fp));
15251
15252 gdb_assert (type_can_define_types (die));
15253
15254 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15255 fp.name = dwarf2_name (die, cu);
15256 fp.type = read_type_die (die, cu);
15257
15258 /* Save accessibility. */
15259 enum dwarf_access_attribute accessibility;
15260 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15261 if (attr != NULL)
15262 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15263 else
15264 accessibility = dwarf2_default_access_attribute (die, cu);
15265 switch (accessibility)
15266 {
15267 case DW_ACCESS_public:
15268 /* The assumed value if neither private nor protected. */
15269 break;
15270 case DW_ACCESS_private:
15271 fp.is_private = 1;
15272 break;
15273 case DW_ACCESS_protected:
15274 fp.is_protected = 1;
15275 break;
15276 default:
15277 complaint (&symfile_complaints,
15278 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15279 }
15280
15281 if (die->tag == DW_TAG_typedef)
15282 fip->typedef_field_list.push_back (fp);
15283 else
15284 fip->nested_types_list.push_back (fp);
15285 }
15286
15287 /* Create the vector of fields, and attach it to the type. */
15288
15289 static void
15290 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15291 struct dwarf2_cu *cu)
15292 {
15293 int nfields = fip->nfields;
15294
15295 /* Record the field count, allocate space for the array of fields,
15296 and create blank accessibility bitfields if necessary. */
15297 TYPE_NFIELDS (type) = nfields;
15298 TYPE_FIELDS (type) = (struct field *)
15299 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15300
15301 if (fip->non_public_fields && cu->language != language_ada)
15302 {
15303 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15304
15305 TYPE_FIELD_PRIVATE_BITS (type) =
15306 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15307 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15308
15309 TYPE_FIELD_PROTECTED_BITS (type) =
15310 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15311 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15312
15313 TYPE_FIELD_IGNORE_BITS (type) =
15314 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15315 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15316 }
15317
15318 /* If the type has baseclasses, allocate and clear a bit vector for
15319 TYPE_FIELD_VIRTUAL_BITS. */
15320 if (!fip->baseclasses.empty () && cu->language != language_ada)
15321 {
15322 int num_bytes = B_BYTES (fip->baseclasses.size ());
15323 unsigned char *pointer;
15324
15325 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15326 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15327 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15328 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15329 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15330 }
15331
15332 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15333 {
15334 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15335
15336 for (int index = 0; index < nfields; ++index)
15337 {
15338 struct nextfield &field = fip->fields[index];
15339
15340 if (field.variant.is_discriminant)
15341 di->discriminant_index = index;
15342 else if (field.variant.default_branch)
15343 di->default_index = index;
15344 else
15345 di->discriminants[index] = field.variant.discriminant_value;
15346 }
15347 }
15348
15349 /* Copy the saved-up fields into the field vector. */
15350 for (int i = 0; i < nfields; ++i)
15351 {
15352 struct nextfield &field
15353 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15354 : fip->fields[i - fip->baseclasses.size ()]);
15355
15356 TYPE_FIELD (type, i) = field.field;
15357 switch (field.accessibility)
15358 {
15359 case DW_ACCESS_private:
15360 if (cu->language != language_ada)
15361 SET_TYPE_FIELD_PRIVATE (type, i);
15362 break;
15363
15364 case DW_ACCESS_protected:
15365 if (cu->language != language_ada)
15366 SET_TYPE_FIELD_PROTECTED (type, i);
15367 break;
15368
15369 case DW_ACCESS_public:
15370 break;
15371
15372 default:
15373 /* Unknown accessibility. Complain and treat it as public. */
15374 {
15375 complaint (&symfile_complaints, _("unsupported accessibility %d"),
15376 field.accessibility);
15377 }
15378 break;
15379 }
15380 if (i < fip->baseclasses.size ())
15381 {
15382 switch (field.virtuality)
15383 {
15384 case DW_VIRTUALITY_virtual:
15385 case DW_VIRTUALITY_pure_virtual:
15386 if (cu->language == language_ada)
15387 error (_("unexpected virtuality in component of Ada type"));
15388 SET_TYPE_FIELD_VIRTUAL (type, i);
15389 break;
15390 }
15391 }
15392 }
15393 }
15394
15395 /* Return true if this member function is a constructor, false
15396 otherwise. */
15397
15398 static int
15399 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15400 {
15401 const char *fieldname;
15402 const char *type_name;
15403 int len;
15404
15405 if (die->parent == NULL)
15406 return 0;
15407
15408 if (die->parent->tag != DW_TAG_structure_type
15409 && die->parent->tag != DW_TAG_union_type
15410 && die->parent->tag != DW_TAG_class_type)
15411 return 0;
15412
15413 fieldname = dwarf2_name (die, cu);
15414 type_name = dwarf2_name (die->parent, cu);
15415 if (fieldname == NULL || type_name == NULL)
15416 return 0;
15417
15418 len = strlen (fieldname);
15419 return (strncmp (fieldname, type_name, len) == 0
15420 && (type_name[len] == '\0' || type_name[len] == '<'));
15421 }
15422
15423 /* Add a member function to the proper fieldlist. */
15424
15425 static void
15426 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15427 struct type *type, struct dwarf2_cu *cu)
15428 {
15429 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15430 struct attribute *attr;
15431 int i;
15432 struct fnfieldlist *flp = nullptr;
15433 struct fn_field *fnp;
15434 const char *fieldname;
15435 struct type *this_type;
15436 enum dwarf_access_attribute accessibility;
15437
15438 if (cu->language == language_ada)
15439 error (_("unexpected member function in Ada type"));
15440
15441 /* Get name of member function. */
15442 fieldname = dwarf2_name (die, cu);
15443 if (fieldname == NULL)
15444 return;
15445
15446 /* Look up member function name in fieldlist. */
15447 for (i = 0; i < fip->fnfieldlists.size (); i++)
15448 {
15449 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15450 {
15451 flp = &fip->fnfieldlists[i];
15452 break;
15453 }
15454 }
15455
15456 /* Create a new fnfieldlist if necessary. */
15457 if (flp == nullptr)
15458 {
15459 fip->fnfieldlists.emplace_back ();
15460 flp = &fip->fnfieldlists.back ();
15461 flp->name = fieldname;
15462 i = fip->fnfieldlists.size () - 1;
15463 }
15464
15465 /* Create a new member function field and add it to the vector of
15466 fnfieldlists. */
15467 flp->fnfields.emplace_back ();
15468 fnp = &flp->fnfields.back ();
15469
15470 /* Delay processing of the physname until later. */
15471 if (cu->language == language_cplus)
15472 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15473 die, cu);
15474 else
15475 {
15476 const char *physname = dwarf2_physname (fieldname, die, cu);
15477 fnp->physname = physname ? physname : "";
15478 }
15479
15480 fnp->type = alloc_type (objfile);
15481 this_type = read_type_die (die, cu);
15482 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15483 {
15484 int nparams = TYPE_NFIELDS (this_type);
15485
15486 /* TYPE is the domain of this method, and THIS_TYPE is the type
15487 of the method itself (TYPE_CODE_METHOD). */
15488 smash_to_method_type (fnp->type, type,
15489 TYPE_TARGET_TYPE (this_type),
15490 TYPE_FIELDS (this_type),
15491 TYPE_NFIELDS (this_type),
15492 TYPE_VARARGS (this_type));
15493
15494 /* Handle static member functions.
15495 Dwarf2 has no clean way to discern C++ static and non-static
15496 member functions. G++ helps GDB by marking the first
15497 parameter for non-static member functions (which is the this
15498 pointer) as artificial. We obtain this information from
15499 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15500 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15501 fnp->voffset = VOFFSET_STATIC;
15502 }
15503 else
15504 complaint (&symfile_complaints, _("member function type missing for '%s'"),
15505 dwarf2_full_name (fieldname, die, cu));
15506
15507 /* Get fcontext from DW_AT_containing_type if present. */
15508 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15509 fnp->fcontext = die_containing_type (die, cu);
15510
15511 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15512 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15513
15514 /* Get accessibility. */
15515 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15516 if (attr)
15517 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15518 else
15519 accessibility = dwarf2_default_access_attribute (die, cu);
15520 switch (accessibility)
15521 {
15522 case DW_ACCESS_private:
15523 fnp->is_private = 1;
15524 break;
15525 case DW_ACCESS_protected:
15526 fnp->is_protected = 1;
15527 break;
15528 }
15529
15530 /* Check for artificial methods. */
15531 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15532 if (attr && DW_UNSND (attr) != 0)
15533 fnp->is_artificial = 1;
15534
15535 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15536
15537 /* Get index in virtual function table if it is a virtual member
15538 function. For older versions of GCC, this is an offset in the
15539 appropriate virtual table, as specified by DW_AT_containing_type.
15540 For everyone else, it is an expression to be evaluated relative
15541 to the object address. */
15542
15543 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15544 if (attr)
15545 {
15546 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15547 {
15548 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15549 {
15550 /* Old-style GCC. */
15551 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15552 }
15553 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15554 || (DW_BLOCK (attr)->size > 1
15555 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15556 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15557 {
15558 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15559 if ((fnp->voffset % cu->header.addr_size) != 0)
15560 dwarf2_complex_location_expr_complaint ();
15561 else
15562 fnp->voffset /= cu->header.addr_size;
15563 fnp->voffset += 2;
15564 }
15565 else
15566 dwarf2_complex_location_expr_complaint ();
15567
15568 if (!fnp->fcontext)
15569 {
15570 /* If there is no `this' field and no DW_AT_containing_type,
15571 we cannot actually find a base class context for the
15572 vtable! */
15573 if (TYPE_NFIELDS (this_type) == 0
15574 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15575 {
15576 complaint (&symfile_complaints,
15577 _("cannot determine context for virtual member "
15578 "function \"%s\" (offset %s)"),
15579 fieldname, sect_offset_str (die->sect_off));
15580 }
15581 else
15582 {
15583 fnp->fcontext
15584 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15585 }
15586 }
15587 }
15588 else if (attr_form_is_section_offset (attr))
15589 {
15590 dwarf2_complex_location_expr_complaint ();
15591 }
15592 else
15593 {
15594 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15595 fieldname);
15596 }
15597 }
15598 else
15599 {
15600 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15601 if (attr && DW_UNSND (attr))
15602 {
15603 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15604 complaint (&symfile_complaints,
15605 _("Member function \"%s\" (offset %s) is virtual "
15606 "but the vtable offset is not specified"),
15607 fieldname, sect_offset_str (die->sect_off));
15608 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15609 TYPE_CPLUS_DYNAMIC (type) = 1;
15610 }
15611 }
15612 }
15613
15614 /* Create the vector of member function fields, and attach it to the type. */
15615
15616 static void
15617 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15618 struct dwarf2_cu *cu)
15619 {
15620 if (cu->language == language_ada)
15621 error (_("unexpected member functions in Ada type"));
15622
15623 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15624 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15625 TYPE_ALLOC (type,
15626 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15627
15628 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15629 {
15630 struct fnfieldlist &nf = fip->fnfieldlists[i];
15631 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15632
15633 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15634 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15635 fn_flp->fn_fields = (struct fn_field *)
15636 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15637
15638 for (int k = 0; k < nf.fnfields.size (); ++k)
15639 fn_flp->fn_fields[k] = nf.fnfields[k];
15640 }
15641
15642 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15643 }
15644
15645 /* Returns non-zero if NAME is the name of a vtable member in CU's
15646 language, zero otherwise. */
15647 static int
15648 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15649 {
15650 static const char vptr[] = "_vptr";
15651
15652 /* Look for the C++ form of the vtable. */
15653 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15654 return 1;
15655
15656 return 0;
15657 }
15658
15659 /* GCC outputs unnamed structures that are really pointers to member
15660 functions, with the ABI-specified layout. If TYPE describes
15661 such a structure, smash it into a member function type.
15662
15663 GCC shouldn't do this; it should just output pointer to member DIEs.
15664 This is GCC PR debug/28767. */
15665
15666 static void
15667 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15668 {
15669 struct type *pfn_type, *self_type, *new_type;
15670
15671 /* Check for a structure with no name and two children. */
15672 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15673 return;
15674
15675 /* Check for __pfn and __delta members. */
15676 if (TYPE_FIELD_NAME (type, 0) == NULL
15677 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15678 || TYPE_FIELD_NAME (type, 1) == NULL
15679 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15680 return;
15681
15682 /* Find the type of the method. */
15683 pfn_type = TYPE_FIELD_TYPE (type, 0);
15684 if (pfn_type == NULL
15685 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15686 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15687 return;
15688
15689 /* Look for the "this" argument. */
15690 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15691 if (TYPE_NFIELDS (pfn_type) == 0
15692 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15693 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15694 return;
15695
15696 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15697 new_type = alloc_type (objfile);
15698 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15699 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15700 TYPE_VARARGS (pfn_type));
15701 smash_to_methodptr_type (type, new_type);
15702 }
15703
15704
15705 /* Called when we find the DIE that starts a structure or union scope
15706 (definition) to create a type for the structure or union. Fill in
15707 the type's name and general properties; the members will not be
15708 processed until process_structure_scope. A symbol table entry for
15709 the type will also not be done until process_structure_scope (assuming
15710 the type has a name).
15711
15712 NOTE: we need to call these functions regardless of whether or not the
15713 DIE has a DW_AT_name attribute, since it might be an anonymous
15714 structure or union. This gets the type entered into our set of
15715 user defined types. */
15716
15717 static struct type *
15718 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15719 {
15720 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15721 struct type *type;
15722 struct attribute *attr;
15723 const char *name;
15724
15725 /* If the definition of this type lives in .debug_types, read that type.
15726 Don't follow DW_AT_specification though, that will take us back up
15727 the chain and we want to go down. */
15728 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15729 if (attr)
15730 {
15731 type = get_DW_AT_signature_type (die, attr, cu);
15732
15733 /* The type's CU may not be the same as CU.
15734 Ensure TYPE is recorded with CU in die_type_hash. */
15735 return set_die_type (die, type, cu);
15736 }
15737
15738 type = alloc_type (objfile);
15739 INIT_CPLUS_SPECIFIC (type);
15740
15741 name = dwarf2_name (die, cu);
15742 if (name != NULL)
15743 {
15744 if (cu->language == language_cplus
15745 || cu->language == language_d
15746 || cu->language == language_rust)
15747 {
15748 const char *full_name = dwarf2_full_name (name, die, cu);
15749
15750 /* dwarf2_full_name might have already finished building the DIE's
15751 type. If so, there is no need to continue. */
15752 if (get_die_type (die, cu) != NULL)
15753 return get_die_type (die, cu);
15754
15755 TYPE_TAG_NAME (type) = full_name;
15756 if (die->tag == DW_TAG_structure_type
15757 || die->tag == DW_TAG_class_type)
15758 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15759 }
15760 else
15761 {
15762 /* The name is already allocated along with this objfile, so
15763 we don't need to duplicate it for the type. */
15764 TYPE_TAG_NAME (type) = name;
15765 if (die->tag == DW_TAG_class_type)
15766 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15767 }
15768 }
15769
15770 if (die->tag == DW_TAG_structure_type)
15771 {
15772 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15773 }
15774 else if (die->tag == DW_TAG_union_type)
15775 {
15776 TYPE_CODE (type) = TYPE_CODE_UNION;
15777 }
15778 else if (die->tag == DW_TAG_variant_part)
15779 {
15780 TYPE_CODE (type) = TYPE_CODE_UNION;
15781 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15782 }
15783 else
15784 {
15785 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15786 }
15787
15788 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15789 TYPE_DECLARED_CLASS (type) = 1;
15790
15791 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15792 if (attr)
15793 {
15794 if (attr_form_is_constant (attr))
15795 TYPE_LENGTH (type) = DW_UNSND (attr);
15796 else
15797 {
15798 /* For the moment, dynamic type sizes are not supported
15799 by GDB's struct type. The actual size is determined
15800 on-demand when resolving the type of a given object,
15801 so set the type's length to zero for now. Otherwise,
15802 we record an expression as the length, and that expression
15803 could lead to a very large value, which could eventually
15804 lead to us trying to allocate that much memory when creating
15805 a value of that type. */
15806 TYPE_LENGTH (type) = 0;
15807 }
15808 }
15809 else
15810 {
15811 TYPE_LENGTH (type) = 0;
15812 }
15813
15814 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15815 {
15816 /* ICC<14 does not output the required DW_AT_declaration on
15817 incomplete types, but gives them a size of zero. */
15818 TYPE_STUB (type) = 1;
15819 }
15820 else
15821 TYPE_STUB_SUPPORTED (type) = 1;
15822
15823 if (die_is_declaration (die, cu))
15824 TYPE_STUB (type) = 1;
15825 else if (attr == NULL && die->child == NULL
15826 && producer_is_realview (cu->producer))
15827 /* RealView does not output the required DW_AT_declaration
15828 on incomplete types. */
15829 TYPE_STUB (type) = 1;
15830
15831 /* We need to add the type field to the die immediately so we don't
15832 infinitely recurse when dealing with pointers to the structure
15833 type within the structure itself. */
15834 set_die_type (die, type, cu);
15835
15836 /* set_die_type should be already done. */
15837 set_descriptive_type (type, die, cu);
15838
15839 return type;
15840 }
15841
15842 /* A helper for process_structure_scope that handles a single member
15843 DIE. */
15844
15845 static void
15846 handle_struct_member_die (struct die_info *child_die, struct type *type,
15847 struct field_info *fi,
15848 std::vector<struct symbol *> *template_args,
15849 struct dwarf2_cu *cu)
15850 {
15851 if (child_die->tag == DW_TAG_member
15852 || child_die->tag == DW_TAG_variable
15853 || child_die->tag == DW_TAG_variant_part)
15854 {
15855 /* NOTE: carlton/2002-11-05: A C++ static data member
15856 should be a DW_TAG_member that is a declaration, but
15857 all versions of G++ as of this writing (so through at
15858 least 3.2.1) incorrectly generate DW_TAG_variable
15859 tags for them instead. */
15860 dwarf2_add_field (fi, child_die, cu);
15861 }
15862 else if (child_die->tag == DW_TAG_subprogram)
15863 {
15864 /* Rust doesn't have member functions in the C++ sense.
15865 However, it does emit ordinary functions as children
15866 of a struct DIE. */
15867 if (cu->language == language_rust)
15868 read_func_scope (child_die, cu);
15869 else
15870 {
15871 /* C++ member function. */
15872 dwarf2_add_member_fn (fi, child_die, type, cu);
15873 }
15874 }
15875 else if (child_die->tag == DW_TAG_inheritance)
15876 {
15877 /* C++ base class field. */
15878 dwarf2_add_field (fi, child_die, cu);
15879 }
15880 else if (type_can_define_types (child_die))
15881 dwarf2_add_type_defn (fi, child_die, cu);
15882 else if (child_die->tag == DW_TAG_template_type_param
15883 || child_die->tag == DW_TAG_template_value_param)
15884 {
15885 struct symbol *arg = new_symbol (child_die, NULL, cu);
15886
15887 if (arg != NULL)
15888 template_args->push_back (arg);
15889 }
15890 else if (child_die->tag == DW_TAG_variant)
15891 {
15892 /* In a variant we want to get the discriminant and also add a
15893 field for our sole member child. */
15894 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15895
15896 for (struct die_info *variant_child = child_die->child;
15897 variant_child != NULL;
15898 variant_child = sibling_die (variant_child))
15899 {
15900 if (variant_child->tag == DW_TAG_member)
15901 {
15902 handle_struct_member_die (variant_child, type, fi,
15903 template_args, cu);
15904 /* Only handle the one. */
15905 break;
15906 }
15907 }
15908
15909 /* We don't handle this but we might as well report it if we see
15910 it. */
15911 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15912 complaint (&symfile_complaints,
15913 _("DW_AT_discr_list is not supported yet"
15914 " - DIE at %s [in module %s]"),
15915 sect_offset_str (child_die->sect_off),
15916 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15917
15918 /* The first field was just added, so we can stash the
15919 discriminant there. */
15920 gdb_assert (!fi->fields.empty ());
15921 if (discr == NULL)
15922 fi->fields.back ().variant.default_branch = true;
15923 else
15924 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15925 }
15926 }
15927
15928 /* Finish creating a structure or union type, including filling in
15929 its members and creating a symbol for it. */
15930
15931 static void
15932 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15933 {
15934 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15935 struct die_info *child_die;
15936 struct type *type;
15937
15938 type = get_die_type (die, cu);
15939 if (type == NULL)
15940 type = read_structure_type (die, cu);
15941
15942 /* When reading a DW_TAG_variant_part, we need to notice when we
15943 read the discriminant member, so we can record it later in the
15944 discriminant_info. */
15945 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15946 sect_offset discr_offset;
15947
15948 if (is_variant_part)
15949 {
15950 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15951 if (discr == NULL)
15952 {
15953 /* Maybe it's a univariant form, an extension we support.
15954 In this case arrange not to check the offset. */
15955 is_variant_part = false;
15956 }
15957 else if (attr_form_is_ref (discr))
15958 {
15959 struct dwarf2_cu *target_cu = cu;
15960 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15961
15962 discr_offset = target_die->sect_off;
15963 }
15964 else
15965 {
15966 complaint (&symfile_complaints,
15967 _("DW_AT_discr does not have DIE reference form"
15968 " - DIE at %s [in module %s]"),
15969 sect_offset_str (die->sect_off),
15970 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15971 is_variant_part = false;
15972 }
15973 }
15974
15975 if (die->child != NULL && ! die_is_declaration (die, cu))
15976 {
15977 struct field_info fi;
15978 std::vector<struct symbol *> template_args;
15979
15980 child_die = die->child;
15981
15982 while (child_die && child_die->tag)
15983 {
15984 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15985
15986 if (is_variant_part && discr_offset == child_die->sect_off)
15987 fi.fields.back ().variant.is_discriminant = true;
15988
15989 child_die = sibling_die (child_die);
15990 }
15991
15992 /* Attach template arguments to type. */
15993 if (!template_args.empty ())
15994 {
15995 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15996 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15997 TYPE_TEMPLATE_ARGUMENTS (type)
15998 = XOBNEWVEC (&objfile->objfile_obstack,
15999 struct symbol *,
16000 TYPE_N_TEMPLATE_ARGUMENTS (type));
16001 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16002 template_args.data (),
16003 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16004 * sizeof (struct symbol *)));
16005 }
16006
16007 /* Attach fields and member functions to the type. */
16008 if (fi.nfields)
16009 dwarf2_attach_fields_to_type (&fi, type, cu);
16010 if (!fi.fnfieldlists.empty ())
16011 {
16012 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16013
16014 /* Get the type which refers to the base class (possibly this
16015 class itself) which contains the vtable pointer for the current
16016 class from the DW_AT_containing_type attribute. This use of
16017 DW_AT_containing_type is a GNU extension. */
16018
16019 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16020 {
16021 struct type *t = die_containing_type (die, cu);
16022
16023 set_type_vptr_basetype (type, t);
16024 if (type == t)
16025 {
16026 int i;
16027
16028 /* Our own class provides vtbl ptr. */
16029 for (i = TYPE_NFIELDS (t) - 1;
16030 i >= TYPE_N_BASECLASSES (t);
16031 --i)
16032 {
16033 const char *fieldname = TYPE_FIELD_NAME (t, i);
16034
16035 if (is_vtable_name (fieldname, cu))
16036 {
16037 set_type_vptr_fieldno (type, i);
16038 break;
16039 }
16040 }
16041
16042 /* Complain if virtual function table field not found. */
16043 if (i < TYPE_N_BASECLASSES (t))
16044 complaint (&symfile_complaints,
16045 _("virtual function table pointer "
16046 "not found when defining class '%s'"),
16047 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
16048 "");
16049 }
16050 else
16051 {
16052 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16053 }
16054 }
16055 else if (cu->producer
16056 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16057 {
16058 /* The IBM XLC compiler does not provide direct indication
16059 of the containing type, but the vtable pointer is
16060 always named __vfp. */
16061
16062 int i;
16063
16064 for (i = TYPE_NFIELDS (type) - 1;
16065 i >= TYPE_N_BASECLASSES (type);
16066 --i)
16067 {
16068 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16069 {
16070 set_type_vptr_fieldno (type, i);
16071 set_type_vptr_basetype (type, type);
16072 break;
16073 }
16074 }
16075 }
16076 }
16077
16078 /* Copy fi.typedef_field_list linked list elements content into the
16079 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16080 if (!fi.typedef_field_list.empty ())
16081 {
16082 int count = fi.typedef_field_list.size ();
16083
16084 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16085 TYPE_TYPEDEF_FIELD_ARRAY (type)
16086 = ((struct decl_field *)
16087 TYPE_ALLOC (type,
16088 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16089 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16090
16091 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16092 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16093 }
16094
16095 /* Copy fi.nested_types_list linked list elements content into the
16096 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16097 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16098 {
16099 int count = fi.nested_types_list.size ();
16100
16101 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16102 TYPE_NESTED_TYPES_ARRAY (type)
16103 = ((struct decl_field *)
16104 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16105 TYPE_NESTED_TYPES_COUNT (type) = count;
16106
16107 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16108 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16109 }
16110 }
16111
16112 quirk_gcc_member_function_pointer (type, objfile);
16113 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16114 cu->rust_unions.push_back (type);
16115
16116 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16117 snapshots) has been known to create a die giving a declaration
16118 for a class that has, as a child, a die giving a definition for a
16119 nested class. So we have to process our children even if the
16120 current die is a declaration. Normally, of course, a declaration
16121 won't have any children at all. */
16122
16123 child_die = die->child;
16124
16125 while (child_die != NULL && child_die->tag)
16126 {
16127 if (child_die->tag == DW_TAG_member
16128 || child_die->tag == DW_TAG_variable
16129 || child_die->tag == DW_TAG_inheritance
16130 || child_die->tag == DW_TAG_template_value_param
16131 || child_die->tag == DW_TAG_template_type_param)
16132 {
16133 /* Do nothing. */
16134 }
16135 else
16136 process_die (child_die, cu);
16137
16138 child_die = sibling_die (child_die);
16139 }
16140
16141 /* Do not consider external references. According to the DWARF standard,
16142 these DIEs are identified by the fact that they have no byte_size
16143 attribute, and a declaration attribute. */
16144 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16145 || !die_is_declaration (die, cu))
16146 new_symbol (die, type, cu);
16147 }
16148
16149 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16150 update TYPE using some information only available in DIE's children. */
16151
16152 static void
16153 update_enumeration_type_from_children (struct die_info *die,
16154 struct type *type,
16155 struct dwarf2_cu *cu)
16156 {
16157 struct die_info *child_die;
16158 int unsigned_enum = 1;
16159 int flag_enum = 1;
16160 ULONGEST mask = 0;
16161
16162 auto_obstack obstack;
16163
16164 for (child_die = die->child;
16165 child_die != NULL && child_die->tag;
16166 child_die = sibling_die (child_die))
16167 {
16168 struct attribute *attr;
16169 LONGEST value;
16170 const gdb_byte *bytes;
16171 struct dwarf2_locexpr_baton *baton;
16172 const char *name;
16173
16174 if (child_die->tag != DW_TAG_enumerator)
16175 continue;
16176
16177 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16178 if (attr == NULL)
16179 continue;
16180
16181 name = dwarf2_name (child_die, cu);
16182 if (name == NULL)
16183 name = "<anonymous enumerator>";
16184
16185 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16186 &value, &bytes, &baton);
16187 if (value < 0)
16188 {
16189 unsigned_enum = 0;
16190 flag_enum = 0;
16191 }
16192 else if ((mask & value) != 0)
16193 flag_enum = 0;
16194 else
16195 mask |= value;
16196
16197 /* If we already know that the enum type is neither unsigned, nor
16198 a flag type, no need to look at the rest of the enumerates. */
16199 if (!unsigned_enum && !flag_enum)
16200 break;
16201 }
16202
16203 if (unsigned_enum)
16204 TYPE_UNSIGNED (type) = 1;
16205 if (flag_enum)
16206 TYPE_FLAG_ENUM (type) = 1;
16207 }
16208
16209 /* Given a DW_AT_enumeration_type die, set its type. We do not
16210 complete the type's fields yet, or create any symbols. */
16211
16212 static struct type *
16213 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16214 {
16215 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16216 struct type *type;
16217 struct attribute *attr;
16218 const char *name;
16219
16220 /* If the definition of this type lives in .debug_types, read that type.
16221 Don't follow DW_AT_specification though, that will take us back up
16222 the chain and we want to go down. */
16223 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16224 if (attr)
16225 {
16226 type = get_DW_AT_signature_type (die, attr, cu);
16227
16228 /* The type's CU may not be the same as CU.
16229 Ensure TYPE is recorded with CU in die_type_hash. */
16230 return set_die_type (die, type, cu);
16231 }
16232
16233 type = alloc_type (objfile);
16234
16235 TYPE_CODE (type) = TYPE_CODE_ENUM;
16236 name = dwarf2_full_name (NULL, die, cu);
16237 if (name != NULL)
16238 TYPE_TAG_NAME (type) = name;
16239
16240 attr = dwarf2_attr (die, DW_AT_type, cu);
16241 if (attr != NULL)
16242 {
16243 struct type *underlying_type = die_type (die, cu);
16244
16245 TYPE_TARGET_TYPE (type) = underlying_type;
16246 }
16247
16248 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16249 if (attr)
16250 {
16251 TYPE_LENGTH (type) = DW_UNSND (attr);
16252 }
16253 else
16254 {
16255 TYPE_LENGTH (type) = 0;
16256 }
16257
16258 /* The enumeration DIE can be incomplete. In Ada, any type can be
16259 declared as private in the package spec, and then defined only
16260 inside the package body. Such types are known as Taft Amendment
16261 Types. When another package uses such a type, an incomplete DIE
16262 may be generated by the compiler. */
16263 if (die_is_declaration (die, cu))
16264 TYPE_STUB (type) = 1;
16265
16266 /* Finish the creation of this type by using the enum's children.
16267 We must call this even when the underlying type has been provided
16268 so that we can determine if we're looking at a "flag" enum. */
16269 update_enumeration_type_from_children (die, type, cu);
16270
16271 /* If this type has an underlying type that is not a stub, then we
16272 may use its attributes. We always use the "unsigned" attribute
16273 in this situation, because ordinarily we guess whether the type
16274 is unsigned -- but the guess can be wrong and the underlying type
16275 can tell us the reality. However, we defer to a local size
16276 attribute if one exists, because this lets the compiler override
16277 the underlying type if needed. */
16278 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16279 {
16280 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16281 if (TYPE_LENGTH (type) == 0)
16282 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16283 }
16284
16285 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16286
16287 return set_die_type (die, type, cu);
16288 }
16289
16290 /* Given a pointer to a die which begins an enumeration, process all
16291 the dies that define the members of the enumeration, and create the
16292 symbol for the enumeration type.
16293
16294 NOTE: We reverse the order of the element list. */
16295
16296 static void
16297 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16298 {
16299 struct type *this_type;
16300
16301 this_type = get_die_type (die, cu);
16302 if (this_type == NULL)
16303 this_type = read_enumeration_type (die, cu);
16304
16305 if (die->child != NULL)
16306 {
16307 struct die_info *child_die;
16308 struct symbol *sym;
16309 struct field *fields = NULL;
16310 int num_fields = 0;
16311 const char *name;
16312
16313 child_die = die->child;
16314 while (child_die && child_die->tag)
16315 {
16316 if (child_die->tag != DW_TAG_enumerator)
16317 {
16318 process_die (child_die, cu);
16319 }
16320 else
16321 {
16322 name = dwarf2_name (child_die, cu);
16323 if (name)
16324 {
16325 sym = new_symbol (child_die, this_type, cu);
16326
16327 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16328 {
16329 fields = (struct field *)
16330 xrealloc (fields,
16331 (num_fields + DW_FIELD_ALLOC_CHUNK)
16332 * sizeof (struct field));
16333 }
16334
16335 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16336 FIELD_TYPE (fields[num_fields]) = NULL;
16337 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16338 FIELD_BITSIZE (fields[num_fields]) = 0;
16339
16340 num_fields++;
16341 }
16342 }
16343
16344 child_die = sibling_die (child_die);
16345 }
16346
16347 if (num_fields)
16348 {
16349 TYPE_NFIELDS (this_type) = num_fields;
16350 TYPE_FIELDS (this_type) = (struct field *)
16351 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16352 memcpy (TYPE_FIELDS (this_type), fields,
16353 sizeof (struct field) * num_fields);
16354 xfree (fields);
16355 }
16356 }
16357
16358 /* If we are reading an enum from a .debug_types unit, and the enum
16359 is a declaration, and the enum is not the signatured type in the
16360 unit, then we do not want to add a symbol for it. Adding a
16361 symbol would in some cases obscure the true definition of the
16362 enum, giving users an incomplete type when the definition is
16363 actually available. Note that we do not want to do this for all
16364 enums which are just declarations, because C++0x allows forward
16365 enum declarations. */
16366 if (cu->per_cu->is_debug_types
16367 && die_is_declaration (die, cu))
16368 {
16369 struct signatured_type *sig_type;
16370
16371 sig_type = (struct signatured_type *) cu->per_cu;
16372 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16373 if (sig_type->type_offset_in_section != die->sect_off)
16374 return;
16375 }
16376
16377 new_symbol (die, this_type, cu);
16378 }
16379
16380 /* Extract all information from a DW_TAG_array_type DIE and put it in
16381 the DIE's type field. For now, this only handles one dimensional
16382 arrays. */
16383
16384 static struct type *
16385 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16386 {
16387 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16388 struct die_info *child_die;
16389 struct type *type;
16390 struct type *element_type, *range_type, *index_type;
16391 struct attribute *attr;
16392 const char *name;
16393 struct dynamic_prop *byte_stride_prop = NULL;
16394 unsigned int bit_stride = 0;
16395
16396 element_type = die_type (die, cu);
16397
16398 /* The die_type call above may have already set the type for this DIE. */
16399 type = get_die_type (die, cu);
16400 if (type)
16401 return type;
16402
16403 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16404 if (attr != NULL)
16405 {
16406 int stride_ok;
16407
16408 byte_stride_prop
16409 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16410 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16411 if (!stride_ok)
16412 {
16413 complaint (&symfile_complaints,
16414 _("unable to read array DW_AT_byte_stride "
16415 " - DIE at %s [in module %s]"),
16416 sect_offset_str (die->sect_off),
16417 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16418 /* Ignore this attribute. We will likely not be able to print
16419 arrays of this type correctly, but there is little we can do
16420 to help if we cannot read the attribute's value. */
16421 byte_stride_prop = NULL;
16422 }
16423 }
16424
16425 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16426 if (attr != NULL)
16427 bit_stride = DW_UNSND (attr);
16428
16429 /* Irix 6.2 native cc creates array types without children for
16430 arrays with unspecified length. */
16431 if (die->child == NULL)
16432 {
16433 index_type = objfile_type (objfile)->builtin_int;
16434 range_type = create_static_range_type (NULL, index_type, 0, -1);
16435 type = create_array_type_with_stride (NULL, element_type, range_type,
16436 byte_stride_prop, bit_stride);
16437 return set_die_type (die, type, cu);
16438 }
16439
16440 std::vector<struct type *> range_types;
16441 child_die = die->child;
16442 while (child_die && child_die->tag)
16443 {
16444 if (child_die->tag == DW_TAG_subrange_type)
16445 {
16446 struct type *child_type = read_type_die (child_die, cu);
16447
16448 if (child_type != NULL)
16449 {
16450 /* The range type was succesfully read. Save it for the
16451 array type creation. */
16452 range_types.push_back (child_type);
16453 }
16454 }
16455 child_die = sibling_die (child_die);
16456 }
16457
16458 /* Dwarf2 dimensions are output from left to right, create the
16459 necessary array types in backwards order. */
16460
16461 type = element_type;
16462
16463 if (read_array_order (die, cu) == DW_ORD_col_major)
16464 {
16465 int i = 0;
16466
16467 while (i < range_types.size ())
16468 type = create_array_type_with_stride (NULL, type, range_types[i++],
16469 byte_stride_prop, bit_stride);
16470 }
16471 else
16472 {
16473 size_t ndim = range_types.size ();
16474 while (ndim-- > 0)
16475 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16476 byte_stride_prop, bit_stride);
16477 }
16478
16479 /* Understand Dwarf2 support for vector types (like they occur on
16480 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16481 array type. This is not part of the Dwarf2/3 standard yet, but a
16482 custom vendor extension. The main difference between a regular
16483 array and the vector variant is that vectors are passed by value
16484 to functions. */
16485 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16486 if (attr)
16487 make_vector_type (type);
16488
16489 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16490 implementation may choose to implement triple vectors using this
16491 attribute. */
16492 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16493 if (attr)
16494 {
16495 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16496 TYPE_LENGTH (type) = DW_UNSND (attr);
16497 else
16498 complaint (&symfile_complaints,
16499 _("DW_AT_byte_size for array type smaller "
16500 "than the total size of elements"));
16501 }
16502
16503 name = dwarf2_name (die, cu);
16504 if (name)
16505 TYPE_NAME (type) = name;
16506
16507 /* Install the type in the die. */
16508 set_die_type (die, type, cu);
16509
16510 /* set_die_type should be already done. */
16511 set_descriptive_type (type, die, cu);
16512
16513 return type;
16514 }
16515
16516 static enum dwarf_array_dim_ordering
16517 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16518 {
16519 struct attribute *attr;
16520
16521 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16522
16523 if (attr)
16524 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16525
16526 /* GNU F77 is a special case, as at 08/2004 array type info is the
16527 opposite order to the dwarf2 specification, but data is still
16528 laid out as per normal fortran.
16529
16530 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16531 version checking. */
16532
16533 if (cu->language == language_fortran
16534 && cu->producer && strstr (cu->producer, "GNU F77"))
16535 {
16536 return DW_ORD_row_major;
16537 }
16538
16539 switch (cu->language_defn->la_array_ordering)
16540 {
16541 case array_column_major:
16542 return DW_ORD_col_major;
16543 case array_row_major:
16544 default:
16545 return DW_ORD_row_major;
16546 };
16547 }
16548
16549 /* Extract all information from a DW_TAG_set_type DIE and put it in
16550 the DIE's type field. */
16551
16552 static struct type *
16553 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16554 {
16555 struct type *domain_type, *set_type;
16556 struct attribute *attr;
16557
16558 domain_type = die_type (die, cu);
16559
16560 /* The die_type call above may have already set the type for this DIE. */
16561 set_type = get_die_type (die, cu);
16562 if (set_type)
16563 return set_type;
16564
16565 set_type = create_set_type (NULL, domain_type);
16566
16567 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16568 if (attr)
16569 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16570
16571 return set_die_type (die, set_type, cu);
16572 }
16573
16574 /* A helper for read_common_block that creates a locexpr baton.
16575 SYM is the symbol which we are marking as computed.
16576 COMMON_DIE is the DIE for the common block.
16577 COMMON_LOC is the location expression attribute for the common
16578 block itself.
16579 MEMBER_LOC is the location expression attribute for the particular
16580 member of the common block that we are processing.
16581 CU is the CU from which the above come. */
16582
16583 static void
16584 mark_common_block_symbol_computed (struct symbol *sym,
16585 struct die_info *common_die,
16586 struct attribute *common_loc,
16587 struct attribute *member_loc,
16588 struct dwarf2_cu *cu)
16589 {
16590 struct dwarf2_per_objfile *dwarf2_per_objfile
16591 = cu->per_cu->dwarf2_per_objfile;
16592 struct objfile *objfile = dwarf2_per_objfile->objfile;
16593 struct dwarf2_locexpr_baton *baton;
16594 gdb_byte *ptr;
16595 unsigned int cu_off;
16596 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16597 LONGEST offset = 0;
16598
16599 gdb_assert (common_loc && member_loc);
16600 gdb_assert (attr_form_is_block (common_loc));
16601 gdb_assert (attr_form_is_block (member_loc)
16602 || attr_form_is_constant (member_loc));
16603
16604 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16605 baton->per_cu = cu->per_cu;
16606 gdb_assert (baton->per_cu);
16607
16608 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16609
16610 if (attr_form_is_constant (member_loc))
16611 {
16612 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16613 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16614 }
16615 else
16616 baton->size += DW_BLOCK (member_loc)->size;
16617
16618 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16619 baton->data = ptr;
16620
16621 *ptr++ = DW_OP_call4;
16622 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16623 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16624 ptr += 4;
16625
16626 if (attr_form_is_constant (member_loc))
16627 {
16628 *ptr++ = DW_OP_addr;
16629 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16630 ptr += cu->header.addr_size;
16631 }
16632 else
16633 {
16634 /* We have to copy the data here, because DW_OP_call4 will only
16635 use a DW_AT_location attribute. */
16636 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16637 ptr += DW_BLOCK (member_loc)->size;
16638 }
16639
16640 *ptr++ = DW_OP_plus;
16641 gdb_assert (ptr - baton->data == baton->size);
16642
16643 SYMBOL_LOCATION_BATON (sym) = baton;
16644 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16645 }
16646
16647 /* Create appropriate locally-scoped variables for all the
16648 DW_TAG_common_block entries. Also create a struct common_block
16649 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16650 is used to sepate the common blocks name namespace from regular
16651 variable names. */
16652
16653 static void
16654 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16655 {
16656 struct attribute *attr;
16657
16658 attr = dwarf2_attr (die, DW_AT_location, cu);
16659 if (attr)
16660 {
16661 /* Support the .debug_loc offsets. */
16662 if (attr_form_is_block (attr))
16663 {
16664 /* Ok. */
16665 }
16666 else if (attr_form_is_section_offset (attr))
16667 {
16668 dwarf2_complex_location_expr_complaint ();
16669 attr = NULL;
16670 }
16671 else
16672 {
16673 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16674 "common block member");
16675 attr = NULL;
16676 }
16677 }
16678
16679 if (die->child != NULL)
16680 {
16681 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16682 struct die_info *child_die;
16683 size_t n_entries = 0, size;
16684 struct common_block *common_block;
16685 struct symbol *sym;
16686
16687 for (child_die = die->child;
16688 child_die && child_die->tag;
16689 child_die = sibling_die (child_die))
16690 ++n_entries;
16691
16692 size = (sizeof (struct common_block)
16693 + (n_entries - 1) * sizeof (struct symbol *));
16694 common_block
16695 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16696 size);
16697 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16698 common_block->n_entries = 0;
16699
16700 for (child_die = die->child;
16701 child_die && child_die->tag;
16702 child_die = sibling_die (child_die))
16703 {
16704 /* Create the symbol in the DW_TAG_common_block block in the current
16705 symbol scope. */
16706 sym = new_symbol (child_die, NULL, cu);
16707 if (sym != NULL)
16708 {
16709 struct attribute *member_loc;
16710
16711 common_block->contents[common_block->n_entries++] = sym;
16712
16713 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16714 cu);
16715 if (member_loc)
16716 {
16717 /* GDB has handled this for a long time, but it is
16718 not specified by DWARF. It seems to have been
16719 emitted by gfortran at least as recently as:
16720 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16721 complaint (&symfile_complaints,
16722 _("Variable in common block has "
16723 "DW_AT_data_member_location "
16724 "- DIE at %s [in module %s]"),
16725 sect_offset_str (child_die->sect_off),
16726 objfile_name (objfile));
16727
16728 if (attr_form_is_section_offset (member_loc))
16729 dwarf2_complex_location_expr_complaint ();
16730 else if (attr_form_is_constant (member_loc)
16731 || attr_form_is_block (member_loc))
16732 {
16733 if (attr)
16734 mark_common_block_symbol_computed (sym, die, attr,
16735 member_loc, cu);
16736 }
16737 else
16738 dwarf2_complex_location_expr_complaint ();
16739 }
16740 }
16741 }
16742
16743 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16744 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16745 }
16746 }
16747
16748 /* Create a type for a C++ namespace. */
16749
16750 static struct type *
16751 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16752 {
16753 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16754 const char *previous_prefix, *name;
16755 int is_anonymous;
16756 struct type *type;
16757
16758 /* For extensions, reuse the type of the original namespace. */
16759 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16760 {
16761 struct die_info *ext_die;
16762 struct dwarf2_cu *ext_cu = cu;
16763
16764 ext_die = dwarf2_extension (die, &ext_cu);
16765 type = read_type_die (ext_die, ext_cu);
16766
16767 /* EXT_CU may not be the same as CU.
16768 Ensure TYPE is recorded with CU in die_type_hash. */
16769 return set_die_type (die, type, cu);
16770 }
16771
16772 name = namespace_name (die, &is_anonymous, cu);
16773
16774 /* Now build the name of the current namespace. */
16775
16776 previous_prefix = determine_prefix (die, cu);
16777 if (previous_prefix[0] != '\0')
16778 name = typename_concat (&objfile->objfile_obstack,
16779 previous_prefix, name, 0, cu);
16780
16781 /* Create the type. */
16782 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16783 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16784
16785 return set_die_type (die, type, cu);
16786 }
16787
16788 /* Read a namespace scope. */
16789
16790 static void
16791 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16792 {
16793 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16794 int is_anonymous;
16795
16796 /* Add a symbol associated to this if we haven't seen the namespace
16797 before. Also, add a using directive if it's an anonymous
16798 namespace. */
16799
16800 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16801 {
16802 struct type *type;
16803
16804 type = read_type_die (die, cu);
16805 new_symbol (die, type, cu);
16806
16807 namespace_name (die, &is_anonymous, cu);
16808 if (is_anonymous)
16809 {
16810 const char *previous_prefix = determine_prefix (die, cu);
16811
16812 std::vector<const char *> excludes;
16813 add_using_directive (using_directives (cu->language),
16814 previous_prefix, TYPE_NAME (type), NULL,
16815 NULL, excludes, 0, &objfile->objfile_obstack);
16816 }
16817 }
16818
16819 if (die->child != NULL)
16820 {
16821 struct die_info *child_die = die->child;
16822
16823 while (child_die && child_die->tag)
16824 {
16825 process_die (child_die, cu);
16826 child_die = sibling_die (child_die);
16827 }
16828 }
16829 }
16830
16831 /* Read a Fortran module as type. This DIE can be only a declaration used for
16832 imported module. Still we need that type as local Fortran "use ... only"
16833 declaration imports depend on the created type in determine_prefix. */
16834
16835 static struct type *
16836 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16837 {
16838 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16839 const char *module_name;
16840 struct type *type;
16841
16842 module_name = dwarf2_name (die, cu);
16843 if (!module_name)
16844 complaint (&symfile_complaints,
16845 _("DW_TAG_module has no name, offset %s"),
16846 sect_offset_str (die->sect_off));
16847 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16848
16849 /* determine_prefix uses TYPE_TAG_NAME. */
16850 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16851
16852 return set_die_type (die, type, cu);
16853 }
16854
16855 /* Read a Fortran module. */
16856
16857 static void
16858 read_module (struct die_info *die, struct dwarf2_cu *cu)
16859 {
16860 struct die_info *child_die = die->child;
16861 struct type *type;
16862
16863 type = read_type_die (die, cu);
16864 new_symbol (die, type, cu);
16865
16866 while (child_die && child_die->tag)
16867 {
16868 process_die (child_die, cu);
16869 child_die = sibling_die (child_die);
16870 }
16871 }
16872
16873 /* Return the name of the namespace represented by DIE. Set
16874 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16875 namespace. */
16876
16877 static const char *
16878 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16879 {
16880 struct die_info *current_die;
16881 const char *name = NULL;
16882
16883 /* Loop through the extensions until we find a name. */
16884
16885 for (current_die = die;
16886 current_die != NULL;
16887 current_die = dwarf2_extension (die, &cu))
16888 {
16889 /* We don't use dwarf2_name here so that we can detect the absence
16890 of a name -> anonymous namespace. */
16891 name = dwarf2_string_attr (die, DW_AT_name, cu);
16892
16893 if (name != NULL)
16894 break;
16895 }
16896
16897 /* Is it an anonymous namespace? */
16898
16899 *is_anonymous = (name == NULL);
16900 if (*is_anonymous)
16901 name = CP_ANONYMOUS_NAMESPACE_STR;
16902
16903 return name;
16904 }
16905
16906 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16907 the user defined type vector. */
16908
16909 static struct type *
16910 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16911 {
16912 struct gdbarch *gdbarch
16913 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16914 struct comp_unit_head *cu_header = &cu->header;
16915 struct type *type;
16916 struct attribute *attr_byte_size;
16917 struct attribute *attr_address_class;
16918 int byte_size, addr_class;
16919 struct type *target_type;
16920
16921 target_type = die_type (die, cu);
16922
16923 /* The die_type call above may have already set the type for this DIE. */
16924 type = get_die_type (die, cu);
16925 if (type)
16926 return type;
16927
16928 type = lookup_pointer_type (target_type);
16929
16930 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16931 if (attr_byte_size)
16932 byte_size = DW_UNSND (attr_byte_size);
16933 else
16934 byte_size = cu_header->addr_size;
16935
16936 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16937 if (attr_address_class)
16938 addr_class = DW_UNSND (attr_address_class);
16939 else
16940 addr_class = DW_ADDR_none;
16941
16942 /* If the pointer size or address class is different than the
16943 default, create a type variant marked as such and set the
16944 length accordingly. */
16945 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
16946 {
16947 if (gdbarch_address_class_type_flags_p (gdbarch))
16948 {
16949 int type_flags;
16950
16951 type_flags = gdbarch_address_class_type_flags
16952 (gdbarch, byte_size, addr_class);
16953 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16954 == 0);
16955 type = make_type_with_address_space (type, type_flags);
16956 }
16957 else if (TYPE_LENGTH (type) != byte_size)
16958 {
16959 complaint (&symfile_complaints,
16960 _("invalid pointer size %d"), byte_size);
16961 }
16962 else
16963 {
16964 /* Should we also complain about unhandled address classes? */
16965 }
16966 }
16967
16968 TYPE_LENGTH (type) = byte_size;
16969 return set_die_type (die, type, cu);
16970 }
16971
16972 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16973 the user defined type vector. */
16974
16975 static struct type *
16976 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16977 {
16978 struct type *type;
16979 struct type *to_type;
16980 struct type *domain;
16981
16982 to_type = die_type (die, cu);
16983 domain = die_containing_type (die, cu);
16984
16985 /* The calls above may have already set the type for this DIE. */
16986 type = get_die_type (die, cu);
16987 if (type)
16988 return type;
16989
16990 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16991 type = lookup_methodptr_type (to_type);
16992 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16993 {
16994 struct type *new_type
16995 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16996
16997 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16998 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16999 TYPE_VARARGS (to_type));
17000 type = lookup_methodptr_type (new_type);
17001 }
17002 else
17003 type = lookup_memberptr_type (to_type, domain);
17004
17005 return set_die_type (die, type, cu);
17006 }
17007
17008 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17009 the user defined type vector. */
17010
17011 static struct type *
17012 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17013 enum type_code refcode)
17014 {
17015 struct comp_unit_head *cu_header = &cu->header;
17016 struct type *type, *target_type;
17017 struct attribute *attr;
17018
17019 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17020
17021 target_type = die_type (die, cu);
17022
17023 /* The die_type call above may have already set the type for this DIE. */
17024 type = get_die_type (die, cu);
17025 if (type)
17026 return type;
17027
17028 type = lookup_reference_type (target_type, refcode);
17029 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17030 if (attr)
17031 {
17032 TYPE_LENGTH (type) = DW_UNSND (attr);
17033 }
17034 else
17035 {
17036 TYPE_LENGTH (type) = cu_header->addr_size;
17037 }
17038 return set_die_type (die, type, cu);
17039 }
17040
17041 /* Add the given cv-qualifiers to the element type of the array. GCC
17042 outputs DWARF type qualifiers that apply to an array, not the
17043 element type. But GDB relies on the array element type to carry
17044 the cv-qualifiers. This mimics section 6.7.3 of the C99
17045 specification. */
17046
17047 static struct type *
17048 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17049 struct type *base_type, int cnst, int voltl)
17050 {
17051 struct type *el_type, *inner_array;
17052
17053 base_type = copy_type (base_type);
17054 inner_array = base_type;
17055
17056 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17057 {
17058 TYPE_TARGET_TYPE (inner_array) =
17059 copy_type (TYPE_TARGET_TYPE (inner_array));
17060 inner_array = TYPE_TARGET_TYPE (inner_array);
17061 }
17062
17063 el_type = TYPE_TARGET_TYPE (inner_array);
17064 cnst |= TYPE_CONST (el_type);
17065 voltl |= TYPE_VOLATILE (el_type);
17066 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17067
17068 return set_die_type (die, base_type, cu);
17069 }
17070
17071 static struct type *
17072 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17073 {
17074 struct type *base_type, *cv_type;
17075
17076 base_type = die_type (die, cu);
17077
17078 /* The die_type call above may have already set the type for this DIE. */
17079 cv_type = get_die_type (die, cu);
17080 if (cv_type)
17081 return cv_type;
17082
17083 /* In case the const qualifier is applied to an array type, the element type
17084 is so qualified, not the array type (section 6.7.3 of C99). */
17085 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17086 return add_array_cv_type (die, cu, base_type, 1, 0);
17087
17088 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17089 return set_die_type (die, cv_type, cu);
17090 }
17091
17092 static struct type *
17093 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17094 {
17095 struct type *base_type, *cv_type;
17096
17097 base_type = die_type (die, cu);
17098
17099 /* The die_type call above may have already set the type for this DIE. */
17100 cv_type = get_die_type (die, cu);
17101 if (cv_type)
17102 return cv_type;
17103
17104 /* In case the volatile qualifier is applied to an array type, the
17105 element type is so qualified, not the array type (section 6.7.3
17106 of C99). */
17107 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17108 return add_array_cv_type (die, cu, base_type, 0, 1);
17109
17110 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17111 return set_die_type (die, cv_type, cu);
17112 }
17113
17114 /* Handle DW_TAG_restrict_type. */
17115
17116 static struct type *
17117 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17118 {
17119 struct type *base_type, *cv_type;
17120
17121 base_type = die_type (die, cu);
17122
17123 /* The die_type call above may have already set the type for this DIE. */
17124 cv_type = get_die_type (die, cu);
17125 if (cv_type)
17126 return cv_type;
17127
17128 cv_type = make_restrict_type (base_type);
17129 return set_die_type (die, cv_type, cu);
17130 }
17131
17132 /* Handle DW_TAG_atomic_type. */
17133
17134 static struct type *
17135 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17136 {
17137 struct type *base_type, *cv_type;
17138
17139 base_type = die_type (die, cu);
17140
17141 /* The die_type call above may have already set the type for this DIE. */
17142 cv_type = get_die_type (die, cu);
17143 if (cv_type)
17144 return cv_type;
17145
17146 cv_type = make_atomic_type (base_type);
17147 return set_die_type (die, cv_type, cu);
17148 }
17149
17150 /* Extract all information from a DW_TAG_string_type DIE and add to
17151 the user defined type vector. It isn't really a user defined type,
17152 but it behaves like one, with other DIE's using an AT_user_def_type
17153 attribute to reference it. */
17154
17155 static struct type *
17156 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17157 {
17158 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17159 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17160 struct type *type, *range_type, *index_type, *char_type;
17161 struct attribute *attr;
17162 unsigned int length;
17163
17164 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17165 if (attr)
17166 {
17167 length = DW_UNSND (attr);
17168 }
17169 else
17170 {
17171 /* Check for the DW_AT_byte_size attribute. */
17172 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17173 if (attr)
17174 {
17175 length = DW_UNSND (attr);
17176 }
17177 else
17178 {
17179 length = 1;
17180 }
17181 }
17182
17183 index_type = objfile_type (objfile)->builtin_int;
17184 range_type = create_static_range_type (NULL, index_type, 1, length);
17185 char_type = language_string_char_type (cu->language_defn, gdbarch);
17186 type = create_string_type (NULL, char_type, range_type);
17187
17188 return set_die_type (die, type, cu);
17189 }
17190
17191 /* Assuming that DIE corresponds to a function, returns nonzero
17192 if the function is prototyped. */
17193
17194 static int
17195 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17196 {
17197 struct attribute *attr;
17198
17199 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17200 if (attr && (DW_UNSND (attr) != 0))
17201 return 1;
17202
17203 /* The DWARF standard implies that the DW_AT_prototyped attribute
17204 is only meaninful for C, but the concept also extends to other
17205 languages that allow unprototyped functions (Eg: Objective C).
17206 For all other languages, assume that functions are always
17207 prototyped. */
17208 if (cu->language != language_c
17209 && cu->language != language_objc
17210 && cu->language != language_opencl)
17211 return 1;
17212
17213 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17214 prototyped and unprototyped functions; default to prototyped,
17215 since that is more common in modern code (and RealView warns
17216 about unprototyped functions). */
17217 if (producer_is_realview (cu->producer))
17218 return 1;
17219
17220 return 0;
17221 }
17222
17223 /* Handle DIES due to C code like:
17224
17225 struct foo
17226 {
17227 int (*funcp)(int a, long l);
17228 int b;
17229 };
17230
17231 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17232
17233 static struct type *
17234 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17235 {
17236 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17237 struct type *type; /* Type that this function returns. */
17238 struct type *ftype; /* Function that returns above type. */
17239 struct attribute *attr;
17240
17241 type = die_type (die, cu);
17242
17243 /* The die_type call above may have already set the type for this DIE. */
17244 ftype = get_die_type (die, cu);
17245 if (ftype)
17246 return ftype;
17247
17248 ftype = lookup_function_type (type);
17249
17250 if (prototyped_function_p (die, cu))
17251 TYPE_PROTOTYPED (ftype) = 1;
17252
17253 /* Store the calling convention in the type if it's available in
17254 the subroutine die. Otherwise set the calling convention to
17255 the default value DW_CC_normal. */
17256 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17257 if (attr)
17258 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17259 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17260 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17261 else
17262 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17263
17264 /* Record whether the function returns normally to its caller or not
17265 if the DWARF producer set that information. */
17266 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17267 if (attr && (DW_UNSND (attr) != 0))
17268 TYPE_NO_RETURN (ftype) = 1;
17269
17270 /* We need to add the subroutine type to the die immediately so
17271 we don't infinitely recurse when dealing with parameters
17272 declared as the same subroutine type. */
17273 set_die_type (die, ftype, cu);
17274
17275 if (die->child != NULL)
17276 {
17277 struct type *void_type = objfile_type (objfile)->builtin_void;
17278 struct die_info *child_die;
17279 int nparams, iparams;
17280
17281 /* Count the number of parameters.
17282 FIXME: GDB currently ignores vararg functions, but knows about
17283 vararg member functions. */
17284 nparams = 0;
17285 child_die = die->child;
17286 while (child_die && child_die->tag)
17287 {
17288 if (child_die->tag == DW_TAG_formal_parameter)
17289 nparams++;
17290 else if (child_die->tag == DW_TAG_unspecified_parameters)
17291 TYPE_VARARGS (ftype) = 1;
17292 child_die = sibling_die (child_die);
17293 }
17294
17295 /* Allocate storage for parameters and fill them in. */
17296 TYPE_NFIELDS (ftype) = nparams;
17297 TYPE_FIELDS (ftype) = (struct field *)
17298 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17299
17300 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17301 even if we error out during the parameters reading below. */
17302 for (iparams = 0; iparams < nparams; iparams++)
17303 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17304
17305 iparams = 0;
17306 child_die = die->child;
17307 while (child_die && child_die->tag)
17308 {
17309 if (child_die->tag == DW_TAG_formal_parameter)
17310 {
17311 struct type *arg_type;
17312
17313 /* DWARF version 2 has no clean way to discern C++
17314 static and non-static member functions. G++ helps
17315 GDB by marking the first parameter for non-static
17316 member functions (which is the this pointer) as
17317 artificial. We pass this information to
17318 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17319
17320 DWARF version 3 added DW_AT_object_pointer, which GCC
17321 4.5 does not yet generate. */
17322 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17323 if (attr)
17324 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17325 else
17326 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17327 arg_type = die_type (child_die, cu);
17328
17329 /* RealView does not mark THIS as const, which the testsuite
17330 expects. GCC marks THIS as const in method definitions,
17331 but not in the class specifications (GCC PR 43053). */
17332 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17333 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17334 {
17335 int is_this = 0;
17336 struct dwarf2_cu *arg_cu = cu;
17337 const char *name = dwarf2_name (child_die, cu);
17338
17339 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17340 if (attr)
17341 {
17342 /* If the compiler emits this, use it. */
17343 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17344 is_this = 1;
17345 }
17346 else if (name && strcmp (name, "this") == 0)
17347 /* Function definitions will have the argument names. */
17348 is_this = 1;
17349 else if (name == NULL && iparams == 0)
17350 /* Declarations may not have the names, so like
17351 elsewhere in GDB, assume an artificial first
17352 argument is "this". */
17353 is_this = 1;
17354
17355 if (is_this)
17356 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17357 arg_type, 0);
17358 }
17359
17360 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17361 iparams++;
17362 }
17363 child_die = sibling_die (child_die);
17364 }
17365 }
17366
17367 return ftype;
17368 }
17369
17370 static struct type *
17371 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17372 {
17373 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17374 const char *name = NULL;
17375 struct type *this_type, *target_type;
17376
17377 name = dwarf2_full_name (NULL, die, cu);
17378 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17379 TYPE_TARGET_STUB (this_type) = 1;
17380 set_die_type (die, this_type, cu);
17381 target_type = die_type (die, cu);
17382 if (target_type != this_type)
17383 TYPE_TARGET_TYPE (this_type) = target_type;
17384 else
17385 {
17386 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17387 spec and cause infinite loops in GDB. */
17388 complaint (&symfile_complaints,
17389 _("Self-referential DW_TAG_typedef "
17390 "- DIE at %s [in module %s]"),
17391 sect_offset_str (die->sect_off), objfile_name (objfile));
17392 TYPE_TARGET_TYPE (this_type) = NULL;
17393 }
17394 return this_type;
17395 }
17396
17397 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17398 (which may be different from NAME) to the architecture back-end to allow
17399 it to guess the correct format if necessary. */
17400
17401 static struct type *
17402 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17403 const char *name_hint)
17404 {
17405 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17406 const struct floatformat **format;
17407 struct type *type;
17408
17409 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17410 if (format)
17411 type = init_float_type (objfile, bits, name, format);
17412 else
17413 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17414
17415 return type;
17416 }
17417
17418 /* Find a representation of a given base type and install
17419 it in the TYPE field of the die. */
17420
17421 static struct type *
17422 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17423 {
17424 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17425 struct type *type;
17426 struct attribute *attr;
17427 int encoding = 0, bits = 0;
17428 const char *name;
17429
17430 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17431 if (attr)
17432 {
17433 encoding = DW_UNSND (attr);
17434 }
17435 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17436 if (attr)
17437 {
17438 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17439 }
17440 name = dwarf2_name (die, cu);
17441 if (!name)
17442 {
17443 complaint (&symfile_complaints,
17444 _("DW_AT_name missing from DW_TAG_base_type"));
17445 }
17446
17447 switch (encoding)
17448 {
17449 case DW_ATE_address:
17450 /* Turn DW_ATE_address into a void * pointer. */
17451 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17452 type = init_pointer_type (objfile, bits, name, type);
17453 break;
17454 case DW_ATE_boolean:
17455 type = init_boolean_type (objfile, bits, 1, name);
17456 break;
17457 case DW_ATE_complex_float:
17458 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17459 type = init_complex_type (objfile, name, type);
17460 break;
17461 case DW_ATE_decimal_float:
17462 type = init_decfloat_type (objfile, bits, name);
17463 break;
17464 case DW_ATE_float:
17465 type = dwarf2_init_float_type (objfile, bits, name, name);
17466 break;
17467 case DW_ATE_signed:
17468 type = init_integer_type (objfile, bits, 0, name);
17469 break;
17470 case DW_ATE_unsigned:
17471 if (cu->language == language_fortran
17472 && name
17473 && startswith (name, "character("))
17474 type = init_character_type (objfile, bits, 1, name);
17475 else
17476 type = init_integer_type (objfile, bits, 1, name);
17477 break;
17478 case DW_ATE_signed_char:
17479 if (cu->language == language_ada || cu->language == language_m2
17480 || cu->language == language_pascal
17481 || cu->language == language_fortran)
17482 type = init_character_type (objfile, bits, 0, name);
17483 else
17484 type = init_integer_type (objfile, bits, 0, name);
17485 break;
17486 case DW_ATE_unsigned_char:
17487 if (cu->language == language_ada || cu->language == language_m2
17488 || cu->language == language_pascal
17489 || cu->language == language_fortran
17490 || cu->language == language_rust)
17491 type = init_character_type (objfile, bits, 1, name);
17492 else
17493 type = init_integer_type (objfile, bits, 1, name);
17494 break;
17495 case DW_ATE_UTF:
17496 {
17497 gdbarch *arch = get_objfile_arch (objfile);
17498
17499 if (bits == 16)
17500 type = builtin_type (arch)->builtin_char16;
17501 else if (bits == 32)
17502 type = builtin_type (arch)->builtin_char32;
17503 else
17504 {
17505 complaint (&symfile_complaints,
17506 _("unsupported DW_ATE_UTF bit size: '%d'"),
17507 bits);
17508 type = init_integer_type (objfile, bits, 1, name);
17509 }
17510 return set_die_type (die, type, cu);
17511 }
17512 break;
17513
17514 default:
17515 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
17516 dwarf_type_encoding_name (encoding));
17517 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17518 break;
17519 }
17520
17521 if (name && strcmp (name, "char") == 0)
17522 TYPE_NOSIGN (type) = 1;
17523
17524 return set_die_type (die, type, cu);
17525 }
17526
17527 /* Parse dwarf attribute if it's a block, reference or constant and put the
17528 resulting value of the attribute into struct bound_prop.
17529 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17530
17531 static int
17532 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17533 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17534 {
17535 struct dwarf2_property_baton *baton;
17536 struct obstack *obstack
17537 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17538
17539 if (attr == NULL || prop == NULL)
17540 return 0;
17541
17542 if (attr_form_is_block (attr))
17543 {
17544 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17545 baton->referenced_type = NULL;
17546 baton->locexpr.per_cu = cu->per_cu;
17547 baton->locexpr.size = DW_BLOCK (attr)->size;
17548 baton->locexpr.data = DW_BLOCK (attr)->data;
17549 prop->data.baton = baton;
17550 prop->kind = PROP_LOCEXPR;
17551 gdb_assert (prop->data.baton != NULL);
17552 }
17553 else if (attr_form_is_ref (attr))
17554 {
17555 struct dwarf2_cu *target_cu = cu;
17556 struct die_info *target_die;
17557 struct attribute *target_attr;
17558
17559 target_die = follow_die_ref (die, attr, &target_cu);
17560 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17561 if (target_attr == NULL)
17562 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17563 target_cu);
17564 if (target_attr == NULL)
17565 return 0;
17566
17567 switch (target_attr->name)
17568 {
17569 case DW_AT_location:
17570 if (attr_form_is_section_offset (target_attr))
17571 {
17572 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17573 baton->referenced_type = die_type (target_die, target_cu);
17574 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17575 prop->data.baton = baton;
17576 prop->kind = PROP_LOCLIST;
17577 gdb_assert (prop->data.baton != NULL);
17578 }
17579 else if (attr_form_is_block (target_attr))
17580 {
17581 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17582 baton->referenced_type = die_type (target_die, target_cu);
17583 baton->locexpr.per_cu = cu->per_cu;
17584 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17585 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17586 prop->data.baton = baton;
17587 prop->kind = PROP_LOCEXPR;
17588 gdb_assert (prop->data.baton != NULL);
17589 }
17590 else
17591 {
17592 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17593 "dynamic property");
17594 return 0;
17595 }
17596 break;
17597 case DW_AT_data_member_location:
17598 {
17599 LONGEST offset;
17600
17601 if (!handle_data_member_location (target_die, target_cu,
17602 &offset))
17603 return 0;
17604
17605 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17606 baton->referenced_type = read_type_die (target_die->parent,
17607 target_cu);
17608 baton->offset_info.offset = offset;
17609 baton->offset_info.type = die_type (target_die, target_cu);
17610 prop->data.baton = baton;
17611 prop->kind = PROP_ADDR_OFFSET;
17612 break;
17613 }
17614 }
17615 }
17616 else if (attr_form_is_constant (attr))
17617 {
17618 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17619 prop->kind = PROP_CONST;
17620 }
17621 else
17622 {
17623 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17624 dwarf2_name (die, cu));
17625 return 0;
17626 }
17627
17628 return 1;
17629 }
17630
17631 /* Read the given DW_AT_subrange DIE. */
17632
17633 static struct type *
17634 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17635 {
17636 struct type *base_type, *orig_base_type;
17637 struct type *range_type;
17638 struct attribute *attr;
17639 struct dynamic_prop low, high;
17640 int low_default_is_valid;
17641 int high_bound_is_count = 0;
17642 const char *name;
17643 LONGEST negative_mask;
17644
17645 orig_base_type = die_type (die, cu);
17646 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17647 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17648 creating the range type, but we use the result of check_typedef
17649 when examining properties of the type. */
17650 base_type = check_typedef (orig_base_type);
17651
17652 /* The die_type call above may have already set the type for this DIE. */
17653 range_type = get_die_type (die, cu);
17654 if (range_type)
17655 return range_type;
17656
17657 low.kind = PROP_CONST;
17658 high.kind = PROP_CONST;
17659 high.data.const_val = 0;
17660
17661 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17662 omitting DW_AT_lower_bound. */
17663 switch (cu->language)
17664 {
17665 case language_c:
17666 case language_cplus:
17667 low.data.const_val = 0;
17668 low_default_is_valid = 1;
17669 break;
17670 case language_fortran:
17671 low.data.const_val = 1;
17672 low_default_is_valid = 1;
17673 break;
17674 case language_d:
17675 case language_objc:
17676 case language_rust:
17677 low.data.const_val = 0;
17678 low_default_is_valid = (cu->header.version >= 4);
17679 break;
17680 case language_ada:
17681 case language_m2:
17682 case language_pascal:
17683 low.data.const_val = 1;
17684 low_default_is_valid = (cu->header.version >= 4);
17685 break;
17686 default:
17687 low.data.const_val = 0;
17688 low_default_is_valid = 0;
17689 break;
17690 }
17691
17692 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17693 if (attr)
17694 attr_to_dynamic_prop (attr, die, cu, &low);
17695 else if (!low_default_is_valid)
17696 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
17697 "- DIE at %s [in module %s]"),
17698 sect_offset_str (die->sect_off),
17699 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17700
17701 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17702 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17703 {
17704 attr = dwarf2_attr (die, DW_AT_count, cu);
17705 if (attr_to_dynamic_prop (attr, die, cu, &high))
17706 {
17707 /* If bounds are constant do the final calculation here. */
17708 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17709 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17710 else
17711 high_bound_is_count = 1;
17712 }
17713 }
17714
17715 /* Dwarf-2 specifications explicitly allows to create subrange types
17716 without specifying a base type.
17717 In that case, the base type must be set to the type of
17718 the lower bound, upper bound or count, in that order, if any of these
17719 three attributes references an object that has a type.
17720 If no base type is found, the Dwarf-2 specifications say that
17721 a signed integer type of size equal to the size of an address should
17722 be used.
17723 For the following C code: `extern char gdb_int [];'
17724 GCC produces an empty range DIE.
17725 FIXME: muller/2010-05-28: Possible references to object for low bound,
17726 high bound or count are not yet handled by this code. */
17727 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17728 {
17729 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17730 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17731 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17732 struct type *int_type = objfile_type (objfile)->builtin_int;
17733
17734 /* Test "int", "long int", and "long long int" objfile types,
17735 and select the first one having a size above or equal to the
17736 architecture address size. */
17737 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17738 base_type = int_type;
17739 else
17740 {
17741 int_type = objfile_type (objfile)->builtin_long;
17742 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17743 base_type = int_type;
17744 else
17745 {
17746 int_type = objfile_type (objfile)->builtin_long_long;
17747 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17748 base_type = int_type;
17749 }
17750 }
17751 }
17752
17753 /* Normally, the DWARF producers are expected to use a signed
17754 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17755 But this is unfortunately not always the case, as witnessed
17756 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17757 is used instead. To work around that ambiguity, we treat
17758 the bounds as signed, and thus sign-extend their values, when
17759 the base type is signed. */
17760 negative_mask =
17761 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17762 if (low.kind == PROP_CONST
17763 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17764 low.data.const_val |= negative_mask;
17765 if (high.kind == PROP_CONST
17766 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17767 high.data.const_val |= negative_mask;
17768
17769 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17770
17771 if (high_bound_is_count)
17772 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17773
17774 /* Ada expects an empty array on no boundary attributes. */
17775 if (attr == NULL && cu->language != language_ada)
17776 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17777
17778 name = dwarf2_name (die, cu);
17779 if (name)
17780 TYPE_NAME (range_type) = name;
17781
17782 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17783 if (attr)
17784 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17785
17786 set_die_type (die, range_type, cu);
17787
17788 /* set_die_type should be already done. */
17789 set_descriptive_type (range_type, die, cu);
17790
17791 return range_type;
17792 }
17793
17794 static struct type *
17795 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17796 {
17797 struct type *type;
17798
17799 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17800 NULL);
17801 TYPE_NAME (type) = dwarf2_name (die, cu);
17802
17803 /* In Ada, an unspecified type is typically used when the description
17804 of the type is defered to a different unit. When encountering
17805 such a type, we treat it as a stub, and try to resolve it later on,
17806 when needed. */
17807 if (cu->language == language_ada)
17808 TYPE_STUB (type) = 1;
17809
17810 return set_die_type (die, type, cu);
17811 }
17812
17813 /* Read a single die and all its descendents. Set the die's sibling
17814 field to NULL; set other fields in the die correctly, and set all
17815 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17816 location of the info_ptr after reading all of those dies. PARENT
17817 is the parent of the die in question. */
17818
17819 static struct die_info *
17820 read_die_and_children (const struct die_reader_specs *reader,
17821 const gdb_byte *info_ptr,
17822 const gdb_byte **new_info_ptr,
17823 struct die_info *parent)
17824 {
17825 struct die_info *die;
17826 const gdb_byte *cur_ptr;
17827 int has_children;
17828
17829 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17830 if (die == NULL)
17831 {
17832 *new_info_ptr = cur_ptr;
17833 return NULL;
17834 }
17835 store_in_ref_table (die, reader->cu);
17836
17837 if (has_children)
17838 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17839 else
17840 {
17841 die->child = NULL;
17842 *new_info_ptr = cur_ptr;
17843 }
17844
17845 die->sibling = NULL;
17846 die->parent = parent;
17847 return die;
17848 }
17849
17850 /* Read a die, all of its descendents, and all of its siblings; set
17851 all of the fields of all of the dies correctly. Arguments are as
17852 in read_die_and_children. */
17853
17854 static struct die_info *
17855 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17856 const gdb_byte *info_ptr,
17857 const gdb_byte **new_info_ptr,
17858 struct die_info *parent)
17859 {
17860 struct die_info *first_die, *last_sibling;
17861 const gdb_byte *cur_ptr;
17862
17863 cur_ptr = info_ptr;
17864 first_die = last_sibling = NULL;
17865
17866 while (1)
17867 {
17868 struct die_info *die
17869 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17870
17871 if (die == NULL)
17872 {
17873 *new_info_ptr = cur_ptr;
17874 return first_die;
17875 }
17876
17877 if (!first_die)
17878 first_die = die;
17879 else
17880 last_sibling->sibling = die;
17881
17882 last_sibling = die;
17883 }
17884 }
17885
17886 /* Read a die, all of its descendents, and all of its siblings; set
17887 all of the fields of all of the dies correctly. Arguments are as
17888 in read_die_and_children.
17889 This the main entry point for reading a DIE and all its children. */
17890
17891 static struct die_info *
17892 read_die_and_siblings (const struct die_reader_specs *reader,
17893 const gdb_byte *info_ptr,
17894 const gdb_byte **new_info_ptr,
17895 struct die_info *parent)
17896 {
17897 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17898 new_info_ptr, parent);
17899
17900 if (dwarf_die_debug)
17901 {
17902 fprintf_unfiltered (gdb_stdlog,
17903 "Read die from %s@0x%x of %s:\n",
17904 get_section_name (reader->die_section),
17905 (unsigned) (info_ptr - reader->die_section->buffer),
17906 bfd_get_filename (reader->abfd));
17907 dump_die (die, dwarf_die_debug);
17908 }
17909
17910 return die;
17911 }
17912
17913 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17914 attributes.
17915 The caller is responsible for filling in the extra attributes
17916 and updating (*DIEP)->num_attrs.
17917 Set DIEP to point to a newly allocated die with its information,
17918 except for its child, sibling, and parent fields.
17919 Set HAS_CHILDREN to tell whether the die has children or not. */
17920
17921 static const gdb_byte *
17922 read_full_die_1 (const struct die_reader_specs *reader,
17923 struct die_info **diep, const gdb_byte *info_ptr,
17924 int *has_children, int num_extra_attrs)
17925 {
17926 unsigned int abbrev_number, bytes_read, i;
17927 struct abbrev_info *abbrev;
17928 struct die_info *die;
17929 struct dwarf2_cu *cu = reader->cu;
17930 bfd *abfd = reader->abfd;
17931
17932 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17933 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17934 info_ptr += bytes_read;
17935 if (!abbrev_number)
17936 {
17937 *diep = NULL;
17938 *has_children = 0;
17939 return info_ptr;
17940 }
17941
17942 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17943 if (!abbrev)
17944 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17945 abbrev_number,
17946 bfd_get_filename (abfd));
17947
17948 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17949 die->sect_off = sect_off;
17950 die->tag = abbrev->tag;
17951 die->abbrev = abbrev_number;
17952
17953 /* Make the result usable.
17954 The caller needs to update num_attrs after adding the extra
17955 attributes. */
17956 die->num_attrs = abbrev->num_attrs;
17957
17958 for (i = 0; i < abbrev->num_attrs; ++i)
17959 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17960 info_ptr);
17961
17962 *diep = die;
17963 *has_children = abbrev->has_children;
17964 return info_ptr;
17965 }
17966
17967 /* Read a die and all its attributes.
17968 Set DIEP to point to a newly allocated die with its information,
17969 except for its child, sibling, and parent fields.
17970 Set HAS_CHILDREN to tell whether the die has children or not. */
17971
17972 static const gdb_byte *
17973 read_full_die (const struct die_reader_specs *reader,
17974 struct die_info **diep, const gdb_byte *info_ptr,
17975 int *has_children)
17976 {
17977 const gdb_byte *result;
17978
17979 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17980
17981 if (dwarf_die_debug)
17982 {
17983 fprintf_unfiltered (gdb_stdlog,
17984 "Read die from %s@0x%x of %s:\n",
17985 get_section_name (reader->die_section),
17986 (unsigned) (info_ptr - reader->die_section->buffer),
17987 bfd_get_filename (reader->abfd));
17988 dump_die (*diep, dwarf_die_debug);
17989 }
17990
17991 return result;
17992 }
17993 \f
17994 /* Abbreviation tables.
17995
17996 In DWARF version 2, the description of the debugging information is
17997 stored in a separate .debug_abbrev section. Before we read any
17998 dies from a section we read in all abbreviations and install them
17999 in a hash table. */
18000
18001 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18002
18003 struct abbrev_info *
18004 abbrev_table::alloc_abbrev ()
18005 {
18006 struct abbrev_info *abbrev;
18007
18008 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18009 memset (abbrev, 0, sizeof (struct abbrev_info));
18010
18011 return abbrev;
18012 }
18013
18014 /* Add an abbreviation to the table. */
18015
18016 void
18017 abbrev_table::add_abbrev (unsigned int abbrev_number,
18018 struct abbrev_info *abbrev)
18019 {
18020 unsigned int hash_number;
18021
18022 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18023 abbrev->next = m_abbrevs[hash_number];
18024 m_abbrevs[hash_number] = abbrev;
18025 }
18026
18027 /* Look up an abbrev in the table.
18028 Returns NULL if the abbrev is not found. */
18029
18030 struct abbrev_info *
18031 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18032 {
18033 unsigned int hash_number;
18034 struct abbrev_info *abbrev;
18035
18036 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18037 abbrev = m_abbrevs[hash_number];
18038
18039 while (abbrev)
18040 {
18041 if (abbrev->number == abbrev_number)
18042 return abbrev;
18043 abbrev = abbrev->next;
18044 }
18045 return NULL;
18046 }
18047
18048 /* Read in an abbrev table. */
18049
18050 static abbrev_table_up
18051 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18052 struct dwarf2_section_info *section,
18053 sect_offset sect_off)
18054 {
18055 struct objfile *objfile = dwarf2_per_objfile->objfile;
18056 bfd *abfd = get_section_bfd_owner (section);
18057 const gdb_byte *abbrev_ptr;
18058 struct abbrev_info *cur_abbrev;
18059 unsigned int abbrev_number, bytes_read, abbrev_name;
18060 unsigned int abbrev_form;
18061 struct attr_abbrev *cur_attrs;
18062 unsigned int allocated_attrs;
18063
18064 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18065
18066 dwarf2_read_section (objfile, section);
18067 abbrev_ptr = section->buffer + to_underlying (sect_off);
18068 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18069 abbrev_ptr += bytes_read;
18070
18071 allocated_attrs = ATTR_ALLOC_CHUNK;
18072 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18073
18074 /* Loop until we reach an abbrev number of 0. */
18075 while (abbrev_number)
18076 {
18077 cur_abbrev = abbrev_table->alloc_abbrev ();
18078
18079 /* read in abbrev header */
18080 cur_abbrev->number = abbrev_number;
18081 cur_abbrev->tag
18082 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18083 abbrev_ptr += bytes_read;
18084 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18085 abbrev_ptr += 1;
18086
18087 /* now read in declarations */
18088 for (;;)
18089 {
18090 LONGEST implicit_const;
18091
18092 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18093 abbrev_ptr += bytes_read;
18094 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18095 abbrev_ptr += bytes_read;
18096 if (abbrev_form == DW_FORM_implicit_const)
18097 {
18098 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18099 &bytes_read);
18100 abbrev_ptr += bytes_read;
18101 }
18102 else
18103 {
18104 /* Initialize it due to a false compiler warning. */
18105 implicit_const = -1;
18106 }
18107
18108 if (abbrev_name == 0)
18109 break;
18110
18111 if (cur_abbrev->num_attrs == allocated_attrs)
18112 {
18113 allocated_attrs += ATTR_ALLOC_CHUNK;
18114 cur_attrs
18115 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18116 }
18117
18118 cur_attrs[cur_abbrev->num_attrs].name
18119 = (enum dwarf_attribute) abbrev_name;
18120 cur_attrs[cur_abbrev->num_attrs].form
18121 = (enum dwarf_form) abbrev_form;
18122 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18123 ++cur_abbrev->num_attrs;
18124 }
18125
18126 cur_abbrev->attrs =
18127 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18128 cur_abbrev->num_attrs);
18129 memcpy (cur_abbrev->attrs, cur_attrs,
18130 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18131
18132 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18133
18134 /* Get next abbreviation.
18135 Under Irix6 the abbreviations for a compilation unit are not
18136 always properly terminated with an abbrev number of 0.
18137 Exit loop if we encounter an abbreviation which we have
18138 already read (which means we are about to read the abbreviations
18139 for the next compile unit) or if the end of the abbreviation
18140 table is reached. */
18141 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18142 break;
18143 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18144 abbrev_ptr += bytes_read;
18145 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18146 break;
18147 }
18148
18149 xfree (cur_attrs);
18150 return abbrev_table;
18151 }
18152
18153 /* Returns nonzero if TAG represents a type that we might generate a partial
18154 symbol for. */
18155
18156 static int
18157 is_type_tag_for_partial (int tag)
18158 {
18159 switch (tag)
18160 {
18161 #if 0
18162 /* Some types that would be reasonable to generate partial symbols for,
18163 that we don't at present. */
18164 case DW_TAG_array_type:
18165 case DW_TAG_file_type:
18166 case DW_TAG_ptr_to_member_type:
18167 case DW_TAG_set_type:
18168 case DW_TAG_string_type:
18169 case DW_TAG_subroutine_type:
18170 #endif
18171 case DW_TAG_base_type:
18172 case DW_TAG_class_type:
18173 case DW_TAG_interface_type:
18174 case DW_TAG_enumeration_type:
18175 case DW_TAG_structure_type:
18176 case DW_TAG_subrange_type:
18177 case DW_TAG_typedef:
18178 case DW_TAG_union_type:
18179 return 1;
18180 default:
18181 return 0;
18182 }
18183 }
18184
18185 /* Load all DIEs that are interesting for partial symbols into memory. */
18186
18187 static struct partial_die_info *
18188 load_partial_dies (const struct die_reader_specs *reader,
18189 const gdb_byte *info_ptr, int building_psymtab)
18190 {
18191 struct dwarf2_cu *cu = reader->cu;
18192 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18193 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18194 unsigned int bytes_read;
18195 unsigned int load_all = 0;
18196 int nesting_level = 1;
18197
18198 parent_die = NULL;
18199 last_die = NULL;
18200
18201 gdb_assert (cu->per_cu != NULL);
18202 if (cu->per_cu->load_all_dies)
18203 load_all = 1;
18204
18205 cu->partial_dies
18206 = htab_create_alloc_ex (cu->header.length / 12,
18207 partial_die_hash,
18208 partial_die_eq,
18209 NULL,
18210 &cu->comp_unit_obstack,
18211 hashtab_obstack_allocate,
18212 dummy_obstack_deallocate);
18213
18214 while (1)
18215 {
18216 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18217
18218 /* A NULL abbrev means the end of a series of children. */
18219 if (abbrev == NULL)
18220 {
18221 if (--nesting_level == 0)
18222 return first_die;
18223
18224 info_ptr += bytes_read;
18225 last_die = parent_die;
18226 parent_die = parent_die->die_parent;
18227 continue;
18228 }
18229
18230 /* Check for template arguments. We never save these; if
18231 they're seen, we just mark the parent, and go on our way. */
18232 if (parent_die != NULL
18233 && cu->language == language_cplus
18234 && (abbrev->tag == DW_TAG_template_type_param
18235 || abbrev->tag == DW_TAG_template_value_param))
18236 {
18237 parent_die->has_template_arguments = 1;
18238
18239 if (!load_all)
18240 {
18241 /* We don't need a partial DIE for the template argument. */
18242 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18243 continue;
18244 }
18245 }
18246
18247 /* We only recurse into c++ subprograms looking for template arguments.
18248 Skip their other children. */
18249 if (!load_all
18250 && cu->language == language_cplus
18251 && parent_die != NULL
18252 && parent_die->tag == DW_TAG_subprogram)
18253 {
18254 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18255 continue;
18256 }
18257
18258 /* Check whether this DIE is interesting enough to save. Normally
18259 we would not be interested in members here, but there may be
18260 later variables referencing them via DW_AT_specification (for
18261 static members). */
18262 if (!load_all
18263 && !is_type_tag_for_partial (abbrev->tag)
18264 && abbrev->tag != DW_TAG_constant
18265 && abbrev->tag != DW_TAG_enumerator
18266 && abbrev->tag != DW_TAG_subprogram
18267 && abbrev->tag != DW_TAG_inlined_subroutine
18268 && abbrev->tag != DW_TAG_lexical_block
18269 && abbrev->tag != DW_TAG_variable
18270 && abbrev->tag != DW_TAG_namespace
18271 && abbrev->tag != DW_TAG_module
18272 && abbrev->tag != DW_TAG_member
18273 && abbrev->tag != DW_TAG_imported_unit
18274 && abbrev->tag != DW_TAG_imported_declaration)
18275 {
18276 /* Otherwise we skip to the next sibling, if any. */
18277 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18278 continue;
18279 }
18280
18281 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18282 abbrev);
18283
18284 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18285
18286 /* This two-pass algorithm for processing partial symbols has a
18287 high cost in cache pressure. Thus, handle some simple cases
18288 here which cover the majority of C partial symbols. DIEs
18289 which neither have specification tags in them, nor could have
18290 specification tags elsewhere pointing at them, can simply be
18291 processed and discarded.
18292
18293 This segment is also optional; scan_partial_symbols and
18294 add_partial_symbol will handle these DIEs if we chain
18295 them in normally. When compilers which do not emit large
18296 quantities of duplicate debug information are more common,
18297 this code can probably be removed. */
18298
18299 /* Any complete simple types at the top level (pretty much all
18300 of them, for a language without namespaces), can be processed
18301 directly. */
18302 if (parent_die == NULL
18303 && pdi.has_specification == 0
18304 && pdi.is_declaration == 0
18305 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18306 || pdi.tag == DW_TAG_base_type
18307 || pdi.tag == DW_TAG_subrange_type))
18308 {
18309 if (building_psymtab && pdi.name != NULL)
18310 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18311 VAR_DOMAIN, LOC_TYPEDEF,
18312 &objfile->static_psymbols,
18313 0, cu->language, objfile);
18314 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18315 continue;
18316 }
18317
18318 /* The exception for DW_TAG_typedef with has_children above is
18319 a workaround of GCC PR debug/47510. In the case of this complaint
18320 type_name_no_tag_or_error will error on such types later.
18321
18322 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18323 it could not find the child DIEs referenced later, this is checked
18324 above. In correct DWARF DW_TAG_typedef should have no children. */
18325
18326 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18327 complaint (&symfile_complaints,
18328 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18329 "- DIE at %s [in module %s]"),
18330 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18331
18332 /* If we're at the second level, and we're an enumerator, and
18333 our parent has no specification (meaning possibly lives in a
18334 namespace elsewhere), then we can add the partial symbol now
18335 instead of queueing it. */
18336 if (pdi.tag == DW_TAG_enumerator
18337 && parent_die != NULL
18338 && parent_die->die_parent == NULL
18339 && parent_die->tag == DW_TAG_enumeration_type
18340 && parent_die->has_specification == 0)
18341 {
18342 if (pdi.name == NULL)
18343 complaint (&symfile_complaints,
18344 _("malformed enumerator DIE ignored"));
18345 else if (building_psymtab)
18346 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18347 VAR_DOMAIN, LOC_CONST,
18348 cu->language == language_cplus
18349 ? &objfile->global_psymbols
18350 : &objfile->static_psymbols,
18351 0, cu->language, objfile);
18352
18353 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18354 continue;
18355 }
18356
18357 struct partial_die_info *part_die
18358 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18359
18360 /* We'll save this DIE so link it in. */
18361 part_die->die_parent = parent_die;
18362 part_die->die_sibling = NULL;
18363 part_die->die_child = NULL;
18364
18365 if (last_die && last_die == parent_die)
18366 last_die->die_child = part_die;
18367 else if (last_die)
18368 last_die->die_sibling = part_die;
18369
18370 last_die = part_die;
18371
18372 if (first_die == NULL)
18373 first_die = part_die;
18374
18375 /* Maybe add the DIE to the hash table. Not all DIEs that we
18376 find interesting need to be in the hash table, because we
18377 also have the parent/sibling/child chains; only those that we
18378 might refer to by offset later during partial symbol reading.
18379
18380 For now this means things that might have be the target of a
18381 DW_AT_specification, DW_AT_abstract_origin, or
18382 DW_AT_extension. DW_AT_extension will refer only to
18383 namespaces; DW_AT_abstract_origin refers to functions (and
18384 many things under the function DIE, but we do not recurse
18385 into function DIEs during partial symbol reading) and
18386 possibly variables as well; DW_AT_specification refers to
18387 declarations. Declarations ought to have the DW_AT_declaration
18388 flag. It happens that GCC forgets to put it in sometimes, but
18389 only for functions, not for types.
18390
18391 Adding more things than necessary to the hash table is harmless
18392 except for the performance cost. Adding too few will result in
18393 wasted time in find_partial_die, when we reread the compilation
18394 unit with load_all_dies set. */
18395
18396 if (load_all
18397 || abbrev->tag == DW_TAG_constant
18398 || abbrev->tag == DW_TAG_subprogram
18399 || abbrev->tag == DW_TAG_variable
18400 || abbrev->tag == DW_TAG_namespace
18401 || part_die->is_declaration)
18402 {
18403 void **slot;
18404
18405 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18406 to_underlying (part_die->sect_off),
18407 INSERT);
18408 *slot = part_die;
18409 }
18410
18411 /* For some DIEs we want to follow their children (if any). For C
18412 we have no reason to follow the children of structures; for other
18413 languages we have to, so that we can get at method physnames
18414 to infer fully qualified class names, for DW_AT_specification,
18415 and for C++ template arguments. For C++, we also look one level
18416 inside functions to find template arguments (if the name of the
18417 function does not already contain the template arguments).
18418
18419 For Ada, we need to scan the children of subprograms and lexical
18420 blocks as well because Ada allows the definition of nested
18421 entities that could be interesting for the debugger, such as
18422 nested subprograms for instance. */
18423 if (last_die->has_children
18424 && (load_all
18425 || last_die->tag == DW_TAG_namespace
18426 || last_die->tag == DW_TAG_module
18427 || last_die->tag == DW_TAG_enumeration_type
18428 || (cu->language == language_cplus
18429 && last_die->tag == DW_TAG_subprogram
18430 && (last_die->name == NULL
18431 || strchr (last_die->name, '<') == NULL))
18432 || (cu->language != language_c
18433 && (last_die->tag == DW_TAG_class_type
18434 || last_die->tag == DW_TAG_interface_type
18435 || last_die->tag == DW_TAG_structure_type
18436 || last_die->tag == DW_TAG_union_type))
18437 || (cu->language == language_ada
18438 && (last_die->tag == DW_TAG_subprogram
18439 || last_die->tag == DW_TAG_lexical_block))))
18440 {
18441 nesting_level++;
18442 parent_die = last_die;
18443 continue;
18444 }
18445
18446 /* Otherwise we skip to the next sibling, if any. */
18447 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18448
18449 /* Back to the top, do it again. */
18450 }
18451 }
18452
18453 partial_die_info::partial_die_info (sect_offset sect_off_,
18454 struct abbrev_info *abbrev)
18455 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18456 {
18457 }
18458
18459 /* Read a minimal amount of information into the minimal die structure.
18460 INFO_PTR should point just after the initial uleb128 of a DIE. */
18461
18462 const gdb_byte *
18463 partial_die_info::read (const struct die_reader_specs *reader,
18464 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18465 {
18466 struct dwarf2_cu *cu = reader->cu;
18467 struct dwarf2_per_objfile *dwarf2_per_objfile
18468 = cu->per_cu->dwarf2_per_objfile;
18469 unsigned int i;
18470 int has_low_pc_attr = 0;
18471 int has_high_pc_attr = 0;
18472 int high_pc_relative = 0;
18473
18474 for (i = 0; i < abbrev.num_attrs; ++i)
18475 {
18476 struct attribute attr;
18477
18478 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18479
18480 /* Store the data if it is of an attribute we want to keep in a
18481 partial symbol table. */
18482 switch (attr.name)
18483 {
18484 case DW_AT_name:
18485 switch (tag)
18486 {
18487 case DW_TAG_compile_unit:
18488 case DW_TAG_partial_unit:
18489 case DW_TAG_type_unit:
18490 /* Compilation units have a DW_AT_name that is a filename, not
18491 a source language identifier. */
18492 case DW_TAG_enumeration_type:
18493 case DW_TAG_enumerator:
18494 /* These tags always have simple identifiers already; no need
18495 to canonicalize them. */
18496 name = DW_STRING (&attr);
18497 break;
18498 default:
18499 {
18500 struct objfile *objfile = dwarf2_per_objfile->objfile;
18501
18502 name
18503 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18504 &objfile->per_bfd->storage_obstack);
18505 }
18506 break;
18507 }
18508 break;
18509 case DW_AT_linkage_name:
18510 case DW_AT_MIPS_linkage_name:
18511 /* Note that both forms of linkage name might appear. We
18512 assume they will be the same, and we only store the last
18513 one we see. */
18514 if (cu->language == language_ada)
18515 name = DW_STRING (&attr);
18516 linkage_name = DW_STRING (&attr);
18517 break;
18518 case DW_AT_low_pc:
18519 has_low_pc_attr = 1;
18520 lowpc = attr_value_as_address (&attr);
18521 break;
18522 case DW_AT_high_pc:
18523 has_high_pc_attr = 1;
18524 highpc = attr_value_as_address (&attr);
18525 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18526 high_pc_relative = 1;
18527 break;
18528 case DW_AT_location:
18529 /* Support the .debug_loc offsets. */
18530 if (attr_form_is_block (&attr))
18531 {
18532 d.locdesc = DW_BLOCK (&attr);
18533 }
18534 else if (attr_form_is_section_offset (&attr))
18535 {
18536 dwarf2_complex_location_expr_complaint ();
18537 }
18538 else
18539 {
18540 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18541 "partial symbol information");
18542 }
18543 break;
18544 case DW_AT_external:
18545 is_external = DW_UNSND (&attr);
18546 break;
18547 case DW_AT_declaration:
18548 is_declaration = DW_UNSND (&attr);
18549 break;
18550 case DW_AT_type:
18551 has_type = 1;
18552 break;
18553 case DW_AT_abstract_origin:
18554 case DW_AT_specification:
18555 case DW_AT_extension:
18556 has_specification = 1;
18557 spec_offset = dwarf2_get_ref_die_offset (&attr);
18558 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18559 || cu->per_cu->is_dwz);
18560 break;
18561 case DW_AT_sibling:
18562 /* Ignore absolute siblings, they might point outside of
18563 the current compile unit. */
18564 if (attr.form == DW_FORM_ref_addr)
18565 complaint (&symfile_complaints,
18566 _("ignoring absolute DW_AT_sibling"));
18567 else
18568 {
18569 const gdb_byte *buffer = reader->buffer;
18570 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18571 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18572
18573 if (sibling_ptr < info_ptr)
18574 complaint (&symfile_complaints,
18575 _("DW_AT_sibling points backwards"));
18576 else if (sibling_ptr > reader->buffer_end)
18577 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18578 else
18579 sibling = sibling_ptr;
18580 }
18581 break;
18582 case DW_AT_byte_size:
18583 has_byte_size = 1;
18584 break;
18585 case DW_AT_const_value:
18586 has_const_value = 1;
18587 break;
18588 case DW_AT_calling_convention:
18589 /* DWARF doesn't provide a way to identify a program's source-level
18590 entry point. DW_AT_calling_convention attributes are only meant
18591 to describe functions' calling conventions.
18592
18593 However, because it's a necessary piece of information in
18594 Fortran, and before DWARF 4 DW_CC_program was the only
18595 piece of debugging information whose definition refers to
18596 a 'main program' at all, several compilers marked Fortran
18597 main programs with DW_CC_program --- even when those
18598 functions use the standard calling conventions.
18599
18600 Although DWARF now specifies a way to provide this
18601 information, we support this practice for backward
18602 compatibility. */
18603 if (DW_UNSND (&attr) == DW_CC_program
18604 && cu->language == language_fortran)
18605 main_subprogram = 1;
18606 break;
18607 case DW_AT_inline:
18608 if (DW_UNSND (&attr) == DW_INL_inlined
18609 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18610 may_be_inlined = 1;
18611 break;
18612
18613 case DW_AT_import:
18614 if (tag == DW_TAG_imported_unit)
18615 {
18616 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18617 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18618 || cu->per_cu->is_dwz);
18619 }
18620 break;
18621
18622 case DW_AT_main_subprogram:
18623 main_subprogram = DW_UNSND (&attr);
18624 break;
18625
18626 default:
18627 break;
18628 }
18629 }
18630
18631 if (high_pc_relative)
18632 highpc += lowpc;
18633
18634 if (has_low_pc_attr && has_high_pc_attr)
18635 {
18636 /* When using the GNU linker, .gnu.linkonce. sections are used to
18637 eliminate duplicate copies of functions and vtables and such.
18638 The linker will arbitrarily choose one and discard the others.
18639 The AT_*_pc values for such functions refer to local labels in
18640 these sections. If the section from that file was discarded, the
18641 labels are not in the output, so the relocs get a value of 0.
18642 If this is a discarded function, mark the pc bounds as invalid,
18643 so that GDB will ignore it. */
18644 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18645 {
18646 struct objfile *objfile = dwarf2_per_objfile->objfile;
18647 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18648
18649 complaint (&symfile_complaints,
18650 _("DW_AT_low_pc %s is zero "
18651 "for DIE at %s [in module %s]"),
18652 paddress (gdbarch, lowpc),
18653 sect_offset_str (sect_off),
18654 objfile_name (objfile));
18655 }
18656 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18657 else if (lowpc >= highpc)
18658 {
18659 struct objfile *objfile = dwarf2_per_objfile->objfile;
18660 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18661
18662 complaint (&symfile_complaints,
18663 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18664 "for DIE at %s [in module %s]"),
18665 paddress (gdbarch, lowpc),
18666 paddress (gdbarch, highpc),
18667 sect_offset_str (sect_off),
18668 objfile_name (objfile));
18669 }
18670 else
18671 has_pc_info = 1;
18672 }
18673
18674 return info_ptr;
18675 }
18676
18677 /* Find a cached partial DIE at OFFSET in CU. */
18678
18679 struct partial_die_info *
18680 dwarf2_cu::find_partial_die (sect_offset sect_off)
18681 {
18682 struct partial_die_info *lookup_die = NULL;
18683 struct partial_die_info part_die (sect_off);
18684
18685 lookup_die = ((struct partial_die_info *)
18686 htab_find_with_hash (partial_dies, &part_die,
18687 to_underlying (sect_off)));
18688
18689 return lookup_die;
18690 }
18691
18692 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18693 except in the case of .debug_types DIEs which do not reference
18694 outside their CU (they do however referencing other types via
18695 DW_FORM_ref_sig8). */
18696
18697 static struct partial_die_info *
18698 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18699 {
18700 struct dwarf2_per_objfile *dwarf2_per_objfile
18701 = cu->per_cu->dwarf2_per_objfile;
18702 struct objfile *objfile = dwarf2_per_objfile->objfile;
18703 struct dwarf2_per_cu_data *per_cu = NULL;
18704 struct partial_die_info *pd = NULL;
18705
18706 if (offset_in_dwz == cu->per_cu->is_dwz
18707 && offset_in_cu_p (&cu->header, sect_off))
18708 {
18709 pd = cu->find_partial_die (sect_off);
18710 if (pd != NULL)
18711 return pd;
18712 /* We missed recording what we needed.
18713 Load all dies and try again. */
18714 per_cu = cu->per_cu;
18715 }
18716 else
18717 {
18718 /* TUs don't reference other CUs/TUs (except via type signatures). */
18719 if (cu->per_cu->is_debug_types)
18720 {
18721 error (_("Dwarf Error: Type Unit at offset %s contains"
18722 " external reference to offset %s [in module %s].\n"),
18723 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18724 bfd_get_filename (objfile->obfd));
18725 }
18726 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18727 dwarf2_per_objfile);
18728
18729 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18730 load_partial_comp_unit (per_cu);
18731
18732 per_cu->cu->last_used = 0;
18733 pd = per_cu->cu->find_partial_die (sect_off);
18734 }
18735
18736 /* If we didn't find it, and not all dies have been loaded,
18737 load them all and try again. */
18738
18739 if (pd == NULL && per_cu->load_all_dies == 0)
18740 {
18741 per_cu->load_all_dies = 1;
18742
18743 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18744 THIS_CU->cu may already be in use. So we can't just free it and
18745 replace its DIEs with the ones we read in. Instead, we leave those
18746 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18747 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18748 set. */
18749 load_partial_comp_unit (per_cu);
18750
18751 pd = per_cu->cu->find_partial_die (sect_off);
18752 }
18753
18754 if (pd == NULL)
18755 internal_error (__FILE__, __LINE__,
18756 _("could not find partial DIE %s "
18757 "in cache [from module %s]\n"),
18758 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18759 return pd;
18760 }
18761
18762 /* See if we can figure out if the class lives in a namespace. We do
18763 this by looking for a member function; its demangled name will
18764 contain namespace info, if there is any. */
18765
18766 static void
18767 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18768 struct dwarf2_cu *cu)
18769 {
18770 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18771 what template types look like, because the demangler
18772 frequently doesn't give the same name as the debug info. We
18773 could fix this by only using the demangled name to get the
18774 prefix (but see comment in read_structure_type). */
18775
18776 struct partial_die_info *real_pdi;
18777 struct partial_die_info *child_pdi;
18778
18779 /* If this DIE (this DIE's specification, if any) has a parent, then
18780 we should not do this. We'll prepend the parent's fully qualified
18781 name when we create the partial symbol. */
18782
18783 real_pdi = struct_pdi;
18784 while (real_pdi->has_specification)
18785 real_pdi = find_partial_die (real_pdi->spec_offset,
18786 real_pdi->spec_is_dwz, cu);
18787
18788 if (real_pdi->die_parent != NULL)
18789 return;
18790
18791 for (child_pdi = struct_pdi->die_child;
18792 child_pdi != NULL;
18793 child_pdi = child_pdi->die_sibling)
18794 {
18795 if (child_pdi->tag == DW_TAG_subprogram
18796 && child_pdi->linkage_name != NULL)
18797 {
18798 char *actual_class_name
18799 = language_class_name_from_physname (cu->language_defn,
18800 child_pdi->linkage_name);
18801 if (actual_class_name != NULL)
18802 {
18803 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18804 struct_pdi->name
18805 = ((const char *)
18806 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18807 actual_class_name,
18808 strlen (actual_class_name)));
18809 xfree (actual_class_name);
18810 }
18811 break;
18812 }
18813 }
18814 }
18815
18816 void
18817 partial_die_info::fixup (struct dwarf2_cu *cu)
18818 {
18819 /* Once we've fixed up a die, there's no point in doing so again.
18820 This also avoids a memory leak if we were to call
18821 guess_partial_die_structure_name multiple times. */
18822 if (fixup_called)
18823 return;
18824
18825 /* If we found a reference attribute and the DIE has no name, try
18826 to find a name in the referred to DIE. */
18827
18828 if (name == NULL && has_specification)
18829 {
18830 struct partial_die_info *spec_die;
18831
18832 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18833
18834 spec_die->fixup (cu);
18835
18836 if (spec_die->name)
18837 {
18838 name = spec_die->name;
18839
18840 /* Copy DW_AT_external attribute if it is set. */
18841 if (spec_die->is_external)
18842 is_external = spec_die->is_external;
18843 }
18844 }
18845
18846 /* Set default names for some unnamed DIEs. */
18847
18848 if (name == NULL && tag == DW_TAG_namespace)
18849 name = CP_ANONYMOUS_NAMESPACE_STR;
18850
18851 /* If there is no parent die to provide a namespace, and there are
18852 children, see if we can determine the namespace from their linkage
18853 name. */
18854 if (cu->language == language_cplus
18855 && !VEC_empty (dwarf2_section_info_def,
18856 cu->per_cu->dwarf2_per_objfile->types)
18857 && die_parent == NULL
18858 && has_children
18859 && (tag == DW_TAG_class_type
18860 || tag == DW_TAG_structure_type
18861 || tag == DW_TAG_union_type))
18862 guess_partial_die_structure_name (this, cu);
18863
18864 /* GCC might emit a nameless struct or union that has a linkage
18865 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18866 if (name == NULL
18867 && (tag == DW_TAG_class_type
18868 || tag == DW_TAG_interface_type
18869 || tag == DW_TAG_structure_type
18870 || tag == DW_TAG_union_type)
18871 && linkage_name != NULL)
18872 {
18873 char *demangled;
18874
18875 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18876 if (demangled)
18877 {
18878 const char *base;
18879
18880 /* Strip any leading namespaces/classes, keep only the base name.
18881 DW_AT_name for named DIEs does not contain the prefixes. */
18882 base = strrchr (demangled, ':');
18883 if (base && base > demangled && base[-1] == ':')
18884 base++;
18885 else
18886 base = demangled;
18887
18888 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18889 name
18890 = ((const char *)
18891 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18892 base, strlen (base)));
18893 xfree (demangled);
18894 }
18895 }
18896
18897 fixup_called = 1;
18898 }
18899
18900 /* Read an attribute value described by an attribute form. */
18901
18902 static const gdb_byte *
18903 read_attribute_value (const struct die_reader_specs *reader,
18904 struct attribute *attr, unsigned form,
18905 LONGEST implicit_const, const gdb_byte *info_ptr)
18906 {
18907 struct dwarf2_cu *cu = reader->cu;
18908 struct dwarf2_per_objfile *dwarf2_per_objfile
18909 = cu->per_cu->dwarf2_per_objfile;
18910 struct objfile *objfile = dwarf2_per_objfile->objfile;
18911 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18912 bfd *abfd = reader->abfd;
18913 struct comp_unit_head *cu_header = &cu->header;
18914 unsigned int bytes_read;
18915 struct dwarf_block *blk;
18916
18917 attr->form = (enum dwarf_form) form;
18918 switch (form)
18919 {
18920 case DW_FORM_ref_addr:
18921 if (cu->header.version == 2)
18922 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18923 else
18924 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18925 &cu->header, &bytes_read);
18926 info_ptr += bytes_read;
18927 break;
18928 case DW_FORM_GNU_ref_alt:
18929 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18930 info_ptr += bytes_read;
18931 break;
18932 case DW_FORM_addr:
18933 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18934 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18935 info_ptr += bytes_read;
18936 break;
18937 case DW_FORM_block2:
18938 blk = dwarf_alloc_block (cu);
18939 blk->size = read_2_bytes (abfd, info_ptr);
18940 info_ptr += 2;
18941 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18942 info_ptr += blk->size;
18943 DW_BLOCK (attr) = blk;
18944 break;
18945 case DW_FORM_block4:
18946 blk = dwarf_alloc_block (cu);
18947 blk->size = read_4_bytes (abfd, info_ptr);
18948 info_ptr += 4;
18949 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18950 info_ptr += blk->size;
18951 DW_BLOCK (attr) = blk;
18952 break;
18953 case DW_FORM_data2:
18954 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18955 info_ptr += 2;
18956 break;
18957 case DW_FORM_data4:
18958 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18959 info_ptr += 4;
18960 break;
18961 case DW_FORM_data8:
18962 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18963 info_ptr += 8;
18964 break;
18965 case DW_FORM_data16:
18966 blk = dwarf_alloc_block (cu);
18967 blk->size = 16;
18968 blk->data = read_n_bytes (abfd, info_ptr, 16);
18969 info_ptr += 16;
18970 DW_BLOCK (attr) = blk;
18971 break;
18972 case DW_FORM_sec_offset:
18973 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18974 info_ptr += bytes_read;
18975 break;
18976 case DW_FORM_string:
18977 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18978 DW_STRING_IS_CANONICAL (attr) = 0;
18979 info_ptr += bytes_read;
18980 break;
18981 case DW_FORM_strp:
18982 if (!cu->per_cu->is_dwz)
18983 {
18984 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18985 abfd, info_ptr, cu_header,
18986 &bytes_read);
18987 DW_STRING_IS_CANONICAL (attr) = 0;
18988 info_ptr += bytes_read;
18989 break;
18990 }
18991 /* FALLTHROUGH */
18992 case DW_FORM_line_strp:
18993 if (!cu->per_cu->is_dwz)
18994 {
18995 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18996 abfd, info_ptr,
18997 cu_header, &bytes_read);
18998 DW_STRING_IS_CANONICAL (attr) = 0;
18999 info_ptr += bytes_read;
19000 break;
19001 }
19002 /* FALLTHROUGH */
19003 case DW_FORM_GNU_strp_alt:
19004 {
19005 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19006 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19007 &bytes_read);
19008
19009 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19010 dwz, str_offset);
19011 DW_STRING_IS_CANONICAL (attr) = 0;
19012 info_ptr += bytes_read;
19013 }
19014 break;
19015 case DW_FORM_exprloc:
19016 case DW_FORM_block:
19017 blk = dwarf_alloc_block (cu);
19018 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19019 info_ptr += bytes_read;
19020 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19021 info_ptr += blk->size;
19022 DW_BLOCK (attr) = blk;
19023 break;
19024 case DW_FORM_block1:
19025 blk = dwarf_alloc_block (cu);
19026 blk->size = read_1_byte (abfd, info_ptr);
19027 info_ptr += 1;
19028 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19029 info_ptr += blk->size;
19030 DW_BLOCK (attr) = blk;
19031 break;
19032 case DW_FORM_data1:
19033 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19034 info_ptr += 1;
19035 break;
19036 case DW_FORM_flag:
19037 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19038 info_ptr += 1;
19039 break;
19040 case DW_FORM_flag_present:
19041 DW_UNSND (attr) = 1;
19042 break;
19043 case DW_FORM_sdata:
19044 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19045 info_ptr += bytes_read;
19046 break;
19047 case DW_FORM_udata:
19048 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19049 info_ptr += bytes_read;
19050 break;
19051 case DW_FORM_ref1:
19052 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19053 + read_1_byte (abfd, info_ptr));
19054 info_ptr += 1;
19055 break;
19056 case DW_FORM_ref2:
19057 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19058 + read_2_bytes (abfd, info_ptr));
19059 info_ptr += 2;
19060 break;
19061 case DW_FORM_ref4:
19062 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19063 + read_4_bytes (abfd, info_ptr));
19064 info_ptr += 4;
19065 break;
19066 case DW_FORM_ref8:
19067 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19068 + read_8_bytes (abfd, info_ptr));
19069 info_ptr += 8;
19070 break;
19071 case DW_FORM_ref_sig8:
19072 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19073 info_ptr += 8;
19074 break;
19075 case DW_FORM_ref_udata:
19076 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19077 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19078 info_ptr += bytes_read;
19079 break;
19080 case DW_FORM_indirect:
19081 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19082 info_ptr += bytes_read;
19083 if (form == DW_FORM_implicit_const)
19084 {
19085 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19086 info_ptr += bytes_read;
19087 }
19088 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19089 info_ptr);
19090 break;
19091 case DW_FORM_implicit_const:
19092 DW_SND (attr) = implicit_const;
19093 break;
19094 case DW_FORM_GNU_addr_index:
19095 if (reader->dwo_file == NULL)
19096 {
19097 /* For now flag a hard error.
19098 Later we can turn this into a complaint. */
19099 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19100 dwarf_form_name (form),
19101 bfd_get_filename (abfd));
19102 }
19103 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19104 info_ptr += bytes_read;
19105 break;
19106 case DW_FORM_GNU_str_index:
19107 if (reader->dwo_file == NULL)
19108 {
19109 /* For now flag a hard error.
19110 Later we can turn this into a complaint if warranted. */
19111 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19112 dwarf_form_name (form),
19113 bfd_get_filename (abfd));
19114 }
19115 {
19116 ULONGEST str_index =
19117 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19118
19119 DW_STRING (attr) = read_str_index (reader, str_index);
19120 DW_STRING_IS_CANONICAL (attr) = 0;
19121 info_ptr += bytes_read;
19122 }
19123 break;
19124 default:
19125 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19126 dwarf_form_name (form),
19127 bfd_get_filename (abfd));
19128 }
19129
19130 /* Super hack. */
19131 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19132 attr->form = DW_FORM_GNU_ref_alt;
19133
19134 /* We have seen instances where the compiler tried to emit a byte
19135 size attribute of -1 which ended up being encoded as an unsigned
19136 0xffffffff. Although 0xffffffff is technically a valid size value,
19137 an object of this size seems pretty unlikely so we can relatively
19138 safely treat these cases as if the size attribute was invalid and
19139 treat them as zero by default. */
19140 if (attr->name == DW_AT_byte_size
19141 && form == DW_FORM_data4
19142 && DW_UNSND (attr) >= 0xffffffff)
19143 {
19144 complaint
19145 (&symfile_complaints,
19146 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19147 hex_string (DW_UNSND (attr)));
19148 DW_UNSND (attr) = 0;
19149 }
19150
19151 return info_ptr;
19152 }
19153
19154 /* Read an attribute described by an abbreviated attribute. */
19155
19156 static const gdb_byte *
19157 read_attribute (const struct die_reader_specs *reader,
19158 struct attribute *attr, struct attr_abbrev *abbrev,
19159 const gdb_byte *info_ptr)
19160 {
19161 attr->name = abbrev->name;
19162 return read_attribute_value (reader, attr, abbrev->form,
19163 abbrev->implicit_const, info_ptr);
19164 }
19165
19166 /* Read dwarf information from a buffer. */
19167
19168 static unsigned int
19169 read_1_byte (bfd *abfd, const gdb_byte *buf)
19170 {
19171 return bfd_get_8 (abfd, buf);
19172 }
19173
19174 static int
19175 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19176 {
19177 return bfd_get_signed_8 (abfd, buf);
19178 }
19179
19180 static unsigned int
19181 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19182 {
19183 return bfd_get_16 (abfd, buf);
19184 }
19185
19186 static int
19187 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19188 {
19189 return bfd_get_signed_16 (abfd, buf);
19190 }
19191
19192 static unsigned int
19193 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19194 {
19195 return bfd_get_32 (abfd, buf);
19196 }
19197
19198 static int
19199 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19200 {
19201 return bfd_get_signed_32 (abfd, buf);
19202 }
19203
19204 static ULONGEST
19205 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19206 {
19207 return bfd_get_64 (abfd, buf);
19208 }
19209
19210 static CORE_ADDR
19211 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19212 unsigned int *bytes_read)
19213 {
19214 struct comp_unit_head *cu_header = &cu->header;
19215 CORE_ADDR retval = 0;
19216
19217 if (cu_header->signed_addr_p)
19218 {
19219 switch (cu_header->addr_size)
19220 {
19221 case 2:
19222 retval = bfd_get_signed_16 (abfd, buf);
19223 break;
19224 case 4:
19225 retval = bfd_get_signed_32 (abfd, buf);
19226 break;
19227 case 8:
19228 retval = bfd_get_signed_64 (abfd, buf);
19229 break;
19230 default:
19231 internal_error (__FILE__, __LINE__,
19232 _("read_address: bad switch, signed [in module %s]"),
19233 bfd_get_filename (abfd));
19234 }
19235 }
19236 else
19237 {
19238 switch (cu_header->addr_size)
19239 {
19240 case 2:
19241 retval = bfd_get_16 (abfd, buf);
19242 break;
19243 case 4:
19244 retval = bfd_get_32 (abfd, buf);
19245 break;
19246 case 8:
19247 retval = bfd_get_64 (abfd, buf);
19248 break;
19249 default:
19250 internal_error (__FILE__, __LINE__,
19251 _("read_address: bad switch, "
19252 "unsigned [in module %s]"),
19253 bfd_get_filename (abfd));
19254 }
19255 }
19256
19257 *bytes_read = cu_header->addr_size;
19258 return retval;
19259 }
19260
19261 /* Read the initial length from a section. The (draft) DWARF 3
19262 specification allows the initial length to take up either 4 bytes
19263 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19264 bytes describe the length and all offsets will be 8 bytes in length
19265 instead of 4.
19266
19267 An older, non-standard 64-bit format is also handled by this
19268 function. The older format in question stores the initial length
19269 as an 8-byte quantity without an escape value. Lengths greater
19270 than 2^32 aren't very common which means that the initial 4 bytes
19271 is almost always zero. Since a length value of zero doesn't make
19272 sense for the 32-bit format, this initial zero can be considered to
19273 be an escape value which indicates the presence of the older 64-bit
19274 format. As written, the code can't detect (old format) lengths
19275 greater than 4GB. If it becomes necessary to handle lengths
19276 somewhat larger than 4GB, we could allow other small values (such
19277 as the non-sensical values of 1, 2, and 3) to also be used as
19278 escape values indicating the presence of the old format.
19279
19280 The value returned via bytes_read should be used to increment the
19281 relevant pointer after calling read_initial_length().
19282
19283 [ Note: read_initial_length() and read_offset() are based on the
19284 document entitled "DWARF Debugging Information Format", revision
19285 3, draft 8, dated November 19, 2001. This document was obtained
19286 from:
19287
19288 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19289
19290 This document is only a draft and is subject to change. (So beware.)
19291
19292 Details regarding the older, non-standard 64-bit format were
19293 determined empirically by examining 64-bit ELF files produced by
19294 the SGI toolchain on an IRIX 6.5 machine.
19295
19296 - Kevin, July 16, 2002
19297 ] */
19298
19299 static LONGEST
19300 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19301 {
19302 LONGEST length = bfd_get_32 (abfd, buf);
19303
19304 if (length == 0xffffffff)
19305 {
19306 length = bfd_get_64 (abfd, buf + 4);
19307 *bytes_read = 12;
19308 }
19309 else if (length == 0)
19310 {
19311 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19312 length = bfd_get_64 (abfd, buf);
19313 *bytes_read = 8;
19314 }
19315 else
19316 {
19317 *bytes_read = 4;
19318 }
19319
19320 return length;
19321 }
19322
19323 /* Cover function for read_initial_length.
19324 Returns the length of the object at BUF, and stores the size of the
19325 initial length in *BYTES_READ and stores the size that offsets will be in
19326 *OFFSET_SIZE.
19327 If the initial length size is not equivalent to that specified in
19328 CU_HEADER then issue a complaint.
19329 This is useful when reading non-comp-unit headers. */
19330
19331 static LONGEST
19332 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19333 const struct comp_unit_head *cu_header,
19334 unsigned int *bytes_read,
19335 unsigned int *offset_size)
19336 {
19337 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19338
19339 gdb_assert (cu_header->initial_length_size == 4
19340 || cu_header->initial_length_size == 8
19341 || cu_header->initial_length_size == 12);
19342
19343 if (cu_header->initial_length_size != *bytes_read)
19344 complaint (&symfile_complaints,
19345 _("intermixed 32-bit and 64-bit DWARF sections"));
19346
19347 *offset_size = (*bytes_read == 4) ? 4 : 8;
19348 return length;
19349 }
19350
19351 /* Read an offset from the data stream. The size of the offset is
19352 given by cu_header->offset_size. */
19353
19354 static LONGEST
19355 read_offset (bfd *abfd, const gdb_byte *buf,
19356 const struct comp_unit_head *cu_header,
19357 unsigned int *bytes_read)
19358 {
19359 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19360
19361 *bytes_read = cu_header->offset_size;
19362 return offset;
19363 }
19364
19365 /* Read an offset from the data stream. */
19366
19367 static LONGEST
19368 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19369 {
19370 LONGEST retval = 0;
19371
19372 switch (offset_size)
19373 {
19374 case 4:
19375 retval = bfd_get_32 (abfd, buf);
19376 break;
19377 case 8:
19378 retval = bfd_get_64 (abfd, buf);
19379 break;
19380 default:
19381 internal_error (__FILE__, __LINE__,
19382 _("read_offset_1: bad switch [in module %s]"),
19383 bfd_get_filename (abfd));
19384 }
19385
19386 return retval;
19387 }
19388
19389 static const gdb_byte *
19390 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19391 {
19392 /* If the size of a host char is 8 bits, we can return a pointer
19393 to the buffer, otherwise we have to copy the data to a buffer
19394 allocated on the temporary obstack. */
19395 gdb_assert (HOST_CHAR_BIT == 8);
19396 return buf;
19397 }
19398
19399 static const char *
19400 read_direct_string (bfd *abfd, const gdb_byte *buf,
19401 unsigned int *bytes_read_ptr)
19402 {
19403 /* If the size of a host char is 8 bits, we can return a pointer
19404 to the string, otherwise we have to copy the string to a buffer
19405 allocated on the temporary obstack. */
19406 gdb_assert (HOST_CHAR_BIT == 8);
19407 if (*buf == '\0')
19408 {
19409 *bytes_read_ptr = 1;
19410 return NULL;
19411 }
19412 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19413 return (const char *) buf;
19414 }
19415
19416 /* Return pointer to string at section SECT offset STR_OFFSET with error
19417 reporting strings FORM_NAME and SECT_NAME. */
19418
19419 static const char *
19420 read_indirect_string_at_offset_from (struct objfile *objfile,
19421 bfd *abfd, LONGEST str_offset,
19422 struct dwarf2_section_info *sect,
19423 const char *form_name,
19424 const char *sect_name)
19425 {
19426 dwarf2_read_section (objfile, sect);
19427 if (sect->buffer == NULL)
19428 error (_("%s used without %s section [in module %s]"),
19429 form_name, sect_name, bfd_get_filename (abfd));
19430 if (str_offset >= sect->size)
19431 error (_("%s pointing outside of %s section [in module %s]"),
19432 form_name, sect_name, bfd_get_filename (abfd));
19433 gdb_assert (HOST_CHAR_BIT == 8);
19434 if (sect->buffer[str_offset] == '\0')
19435 return NULL;
19436 return (const char *) (sect->buffer + str_offset);
19437 }
19438
19439 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19440
19441 static const char *
19442 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19443 bfd *abfd, LONGEST str_offset)
19444 {
19445 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19446 abfd, str_offset,
19447 &dwarf2_per_objfile->str,
19448 "DW_FORM_strp", ".debug_str");
19449 }
19450
19451 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19452
19453 static const char *
19454 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19455 bfd *abfd, LONGEST str_offset)
19456 {
19457 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19458 abfd, str_offset,
19459 &dwarf2_per_objfile->line_str,
19460 "DW_FORM_line_strp",
19461 ".debug_line_str");
19462 }
19463
19464 /* Read a string at offset STR_OFFSET in the .debug_str section from
19465 the .dwz file DWZ. Throw an error if the offset is too large. If
19466 the string consists of a single NUL byte, return NULL; otherwise
19467 return a pointer to the string. */
19468
19469 static const char *
19470 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19471 LONGEST str_offset)
19472 {
19473 dwarf2_read_section (objfile, &dwz->str);
19474
19475 if (dwz->str.buffer == NULL)
19476 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19477 "section [in module %s]"),
19478 bfd_get_filename (dwz->dwz_bfd));
19479 if (str_offset >= dwz->str.size)
19480 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19481 ".debug_str section [in module %s]"),
19482 bfd_get_filename (dwz->dwz_bfd));
19483 gdb_assert (HOST_CHAR_BIT == 8);
19484 if (dwz->str.buffer[str_offset] == '\0')
19485 return NULL;
19486 return (const char *) (dwz->str.buffer + str_offset);
19487 }
19488
19489 /* Return pointer to string at .debug_str offset as read from BUF.
19490 BUF is assumed to be in a compilation unit described by CU_HEADER.
19491 Return *BYTES_READ_PTR count of bytes read from BUF. */
19492
19493 static const char *
19494 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19495 const gdb_byte *buf,
19496 const struct comp_unit_head *cu_header,
19497 unsigned int *bytes_read_ptr)
19498 {
19499 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19500
19501 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19502 }
19503
19504 /* Return pointer to string at .debug_line_str offset as read from BUF.
19505 BUF is assumed to be in a compilation unit described by CU_HEADER.
19506 Return *BYTES_READ_PTR count of bytes read from BUF. */
19507
19508 static const char *
19509 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19510 bfd *abfd, const gdb_byte *buf,
19511 const struct comp_unit_head *cu_header,
19512 unsigned int *bytes_read_ptr)
19513 {
19514 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19515
19516 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19517 str_offset);
19518 }
19519
19520 ULONGEST
19521 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19522 unsigned int *bytes_read_ptr)
19523 {
19524 ULONGEST result;
19525 unsigned int num_read;
19526 int shift;
19527 unsigned char byte;
19528
19529 result = 0;
19530 shift = 0;
19531 num_read = 0;
19532 while (1)
19533 {
19534 byte = bfd_get_8 (abfd, buf);
19535 buf++;
19536 num_read++;
19537 result |= ((ULONGEST) (byte & 127) << shift);
19538 if ((byte & 128) == 0)
19539 {
19540 break;
19541 }
19542 shift += 7;
19543 }
19544 *bytes_read_ptr = num_read;
19545 return result;
19546 }
19547
19548 static LONGEST
19549 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19550 unsigned int *bytes_read_ptr)
19551 {
19552 LONGEST result;
19553 int shift, num_read;
19554 unsigned char byte;
19555
19556 result = 0;
19557 shift = 0;
19558 num_read = 0;
19559 while (1)
19560 {
19561 byte = bfd_get_8 (abfd, buf);
19562 buf++;
19563 num_read++;
19564 result |= ((LONGEST) (byte & 127) << shift);
19565 shift += 7;
19566 if ((byte & 128) == 0)
19567 {
19568 break;
19569 }
19570 }
19571 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19572 result |= -(((LONGEST) 1) << shift);
19573 *bytes_read_ptr = num_read;
19574 return result;
19575 }
19576
19577 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19578 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19579 ADDR_SIZE is the size of addresses from the CU header. */
19580
19581 static CORE_ADDR
19582 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19583 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19584 {
19585 struct objfile *objfile = dwarf2_per_objfile->objfile;
19586 bfd *abfd = objfile->obfd;
19587 const gdb_byte *info_ptr;
19588
19589 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19590 if (dwarf2_per_objfile->addr.buffer == NULL)
19591 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19592 objfile_name (objfile));
19593 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19594 error (_("DW_FORM_addr_index pointing outside of "
19595 ".debug_addr section [in module %s]"),
19596 objfile_name (objfile));
19597 info_ptr = (dwarf2_per_objfile->addr.buffer
19598 + addr_base + addr_index * addr_size);
19599 if (addr_size == 4)
19600 return bfd_get_32 (abfd, info_ptr);
19601 else
19602 return bfd_get_64 (abfd, info_ptr);
19603 }
19604
19605 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19606
19607 static CORE_ADDR
19608 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19609 {
19610 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19611 cu->addr_base, cu->header.addr_size);
19612 }
19613
19614 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19615
19616 static CORE_ADDR
19617 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19618 unsigned int *bytes_read)
19619 {
19620 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19621 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19622
19623 return read_addr_index (cu, addr_index);
19624 }
19625
19626 /* Data structure to pass results from dwarf2_read_addr_index_reader
19627 back to dwarf2_read_addr_index. */
19628
19629 struct dwarf2_read_addr_index_data
19630 {
19631 ULONGEST addr_base;
19632 int addr_size;
19633 };
19634
19635 /* die_reader_func for dwarf2_read_addr_index. */
19636
19637 static void
19638 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19639 const gdb_byte *info_ptr,
19640 struct die_info *comp_unit_die,
19641 int has_children,
19642 void *data)
19643 {
19644 struct dwarf2_cu *cu = reader->cu;
19645 struct dwarf2_read_addr_index_data *aidata =
19646 (struct dwarf2_read_addr_index_data *) data;
19647
19648 aidata->addr_base = cu->addr_base;
19649 aidata->addr_size = cu->header.addr_size;
19650 }
19651
19652 /* Given an index in .debug_addr, fetch the value.
19653 NOTE: This can be called during dwarf expression evaluation,
19654 long after the debug information has been read, and thus per_cu->cu
19655 may no longer exist. */
19656
19657 CORE_ADDR
19658 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19659 unsigned int addr_index)
19660 {
19661 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19662 struct objfile *objfile = dwarf2_per_objfile->objfile;
19663 struct dwarf2_cu *cu = per_cu->cu;
19664 ULONGEST addr_base;
19665 int addr_size;
19666
19667 /* We need addr_base and addr_size.
19668 If we don't have PER_CU->cu, we have to get it.
19669 Nasty, but the alternative is storing the needed info in PER_CU,
19670 which at this point doesn't seem justified: it's not clear how frequently
19671 it would get used and it would increase the size of every PER_CU.
19672 Entry points like dwarf2_per_cu_addr_size do a similar thing
19673 so we're not in uncharted territory here.
19674 Alas we need to be a bit more complicated as addr_base is contained
19675 in the DIE.
19676
19677 We don't need to read the entire CU(/TU).
19678 We just need the header and top level die.
19679
19680 IWBN to use the aging mechanism to let us lazily later discard the CU.
19681 For now we skip this optimization. */
19682
19683 if (cu != NULL)
19684 {
19685 addr_base = cu->addr_base;
19686 addr_size = cu->header.addr_size;
19687 }
19688 else
19689 {
19690 struct dwarf2_read_addr_index_data aidata;
19691
19692 /* Note: We can't use init_cutu_and_read_dies_simple here,
19693 we need addr_base. */
19694 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
19695 dwarf2_read_addr_index_reader, &aidata);
19696 addr_base = aidata.addr_base;
19697 addr_size = aidata.addr_size;
19698 }
19699
19700 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19701 addr_size);
19702 }
19703
19704 /* Given a DW_FORM_GNU_str_index, fetch the string.
19705 This is only used by the Fission support. */
19706
19707 static const char *
19708 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19709 {
19710 struct dwarf2_cu *cu = reader->cu;
19711 struct dwarf2_per_objfile *dwarf2_per_objfile
19712 = cu->per_cu->dwarf2_per_objfile;
19713 struct objfile *objfile = dwarf2_per_objfile->objfile;
19714 const char *objf_name = objfile_name (objfile);
19715 bfd *abfd = objfile->obfd;
19716 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19717 struct dwarf2_section_info *str_offsets_section =
19718 &reader->dwo_file->sections.str_offsets;
19719 const gdb_byte *info_ptr;
19720 ULONGEST str_offset;
19721 static const char form_name[] = "DW_FORM_GNU_str_index";
19722
19723 dwarf2_read_section (objfile, str_section);
19724 dwarf2_read_section (objfile, str_offsets_section);
19725 if (str_section->buffer == NULL)
19726 error (_("%s used without .debug_str.dwo section"
19727 " in CU at offset %s [in module %s]"),
19728 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19729 if (str_offsets_section->buffer == NULL)
19730 error (_("%s used without .debug_str_offsets.dwo section"
19731 " in CU at offset %s [in module %s]"),
19732 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19733 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19734 error (_("%s pointing outside of .debug_str_offsets.dwo"
19735 " section in CU at offset %s [in module %s]"),
19736 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19737 info_ptr = (str_offsets_section->buffer
19738 + str_index * cu->header.offset_size);
19739 if (cu->header.offset_size == 4)
19740 str_offset = bfd_get_32 (abfd, info_ptr);
19741 else
19742 str_offset = bfd_get_64 (abfd, info_ptr);
19743 if (str_offset >= str_section->size)
19744 error (_("Offset from %s pointing outside of"
19745 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19746 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19747 return (const char *) (str_section->buffer + str_offset);
19748 }
19749
19750 /* Return the length of an LEB128 number in BUF. */
19751
19752 static int
19753 leb128_size (const gdb_byte *buf)
19754 {
19755 const gdb_byte *begin = buf;
19756 gdb_byte byte;
19757
19758 while (1)
19759 {
19760 byte = *buf++;
19761 if ((byte & 128) == 0)
19762 return buf - begin;
19763 }
19764 }
19765
19766 static void
19767 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19768 {
19769 switch (lang)
19770 {
19771 case DW_LANG_C89:
19772 case DW_LANG_C99:
19773 case DW_LANG_C11:
19774 case DW_LANG_C:
19775 case DW_LANG_UPC:
19776 cu->language = language_c;
19777 break;
19778 case DW_LANG_Java:
19779 case DW_LANG_C_plus_plus:
19780 case DW_LANG_C_plus_plus_11:
19781 case DW_LANG_C_plus_plus_14:
19782 cu->language = language_cplus;
19783 break;
19784 case DW_LANG_D:
19785 cu->language = language_d;
19786 break;
19787 case DW_LANG_Fortran77:
19788 case DW_LANG_Fortran90:
19789 case DW_LANG_Fortran95:
19790 case DW_LANG_Fortran03:
19791 case DW_LANG_Fortran08:
19792 cu->language = language_fortran;
19793 break;
19794 case DW_LANG_Go:
19795 cu->language = language_go;
19796 break;
19797 case DW_LANG_Mips_Assembler:
19798 cu->language = language_asm;
19799 break;
19800 case DW_LANG_Ada83:
19801 case DW_LANG_Ada95:
19802 cu->language = language_ada;
19803 break;
19804 case DW_LANG_Modula2:
19805 cu->language = language_m2;
19806 break;
19807 case DW_LANG_Pascal83:
19808 cu->language = language_pascal;
19809 break;
19810 case DW_LANG_ObjC:
19811 cu->language = language_objc;
19812 break;
19813 case DW_LANG_Rust:
19814 case DW_LANG_Rust_old:
19815 cu->language = language_rust;
19816 break;
19817 case DW_LANG_Cobol74:
19818 case DW_LANG_Cobol85:
19819 default:
19820 cu->language = language_minimal;
19821 break;
19822 }
19823 cu->language_defn = language_def (cu->language);
19824 }
19825
19826 /* Return the named attribute or NULL if not there. */
19827
19828 static struct attribute *
19829 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19830 {
19831 for (;;)
19832 {
19833 unsigned int i;
19834 struct attribute *spec = NULL;
19835
19836 for (i = 0; i < die->num_attrs; ++i)
19837 {
19838 if (die->attrs[i].name == name)
19839 return &die->attrs[i];
19840 if (die->attrs[i].name == DW_AT_specification
19841 || die->attrs[i].name == DW_AT_abstract_origin)
19842 spec = &die->attrs[i];
19843 }
19844
19845 if (!spec)
19846 break;
19847
19848 die = follow_die_ref (die, spec, &cu);
19849 }
19850
19851 return NULL;
19852 }
19853
19854 /* Return the named attribute or NULL if not there,
19855 but do not follow DW_AT_specification, etc.
19856 This is for use in contexts where we're reading .debug_types dies.
19857 Following DW_AT_specification, DW_AT_abstract_origin will take us
19858 back up the chain, and we want to go down. */
19859
19860 static struct attribute *
19861 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19862 {
19863 unsigned int i;
19864
19865 for (i = 0; i < die->num_attrs; ++i)
19866 if (die->attrs[i].name == name)
19867 return &die->attrs[i];
19868
19869 return NULL;
19870 }
19871
19872 /* Return the string associated with a string-typed attribute, or NULL if it
19873 is either not found or is of an incorrect type. */
19874
19875 static const char *
19876 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19877 {
19878 struct attribute *attr;
19879 const char *str = NULL;
19880
19881 attr = dwarf2_attr (die, name, cu);
19882
19883 if (attr != NULL)
19884 {
19885 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19886 || attr->form == DW_FORM_string
19887 || attr->form == DW_FORM_GNU_str_index
19888 || attr->form == DW_FORM_GNU_strp_alt)
19889 str = DW_STRING (attr);
19890 else
19891 complaint (&symfile_complaints,
19892 _("string type expected for attribute %s for "
19893 "DIE at %s in module %s"),
19894 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19895 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19896 }
19897
19898 return str;
19899 }
19900
19901 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19902 and holds a non-zero value. This function should only be used for
19903 DW_FORM_flag or DW_FORM_flag_present attributes. */
19904
19905 static int
19906 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19907 {
19908 struct attribute *attr = dwarf2_attr (die, name, cu);
19909
19910 return (attr && DW_UNSND (attr));
19911 }
19912
19913 static int
19914 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19915 {
19916 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19917 which value is non-zero. However, we have to be careful with
19918 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19919 (via dwarf2_flag_true_p) follows this attribute. So we may
19920 end up accidently finding a declaration attribute that belongs
19921 to a different DIE referenced by the specification attribute,
19922 even though the given DIE does not have a declaration attribute. */
19923 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19924 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19925 }
19926
19927 /* Return the die giving the specification for DIE, if there is
19928 one. *SPEC_CU is the CU containing DIE on input, and the CU
19929 containing the return value on output. If there is no
19930 specification, but there is an abstract origin, that is
19931 returned. */
19932
19933 static struct die_info *
19934 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19935 {
19936 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19937 *spec_cu);
19938
19939 if (spec_attr == NULL)
19940 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19941
19942 if (spec_attr == NULL)
19943 return NULL;
19944 else
19945 return follow_die_ref (die, spec_attr, spec_cu);
19946 }
19947
19948 /* Stub for free_line_header to match void * callback types. */
19949
19950 static void
19951 free_line_header_voidp (void *arg)
19952 {
19953 struct line_header *lh = (struct line_header *) arg;
19954
19955 delete lh;
19956 }
19957
19958 void
19959 line_header::add_include_dir (const char *include_dir)
19960 {
19961 if (dwarf_line_debug >= 2)
19962 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19963 include_dirs.size () + 1, include_dir);
19964
19965 include_dirs.push_back (include_dir);
19966 }
19967
19968 void
19969 line_header::add_file_name (const char *name,
19970 dir_index d_index,
19971 unsigned int mod_time,
19972 unsigned int length)
19973 {
19974 if (dwarf_line_debug >= 2)
19975 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19976 (unsigned) file_names.size () + 1, name);
19977
19978 file_names.emplace_back (name, d_index, mod_time, length);
19979 }
19980
19981 /* A convenience function to find the proper .debug_line section for a CU. */
19982
19983 static struct dwarf2_section_info *
19984 get_debug_line_section (struct dwarf2_cu *cu)
19985 {
19986 struct dwarf2_section_info *section;
19987 struct dwarf2_per_objfile *dwarf2_per_objfile
19988 = cu->per_cu->dwarf2_per_objfile;
19989
19990 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19991 DWO file. */
19992 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19993 section = &cu->dwo_unit->dwo_file->sections.line;
19994 else if (cu->per_cu->is_dwz)
19995 {
19996 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19997
19998 section = &dwz->line;
19999 }
20000 else
20001 section = &dwarf2_per_objfile->line;
20002
20003 return section;
20004 }
20005
20006 /* Read directory or file name entry format, starting with byte of
20007 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20008 entries count and the entries themselves in the described entry
20009 format. */
20010
20011 static void
20012 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20013 bfd *abfd, const gdb_byte **bufp,
20014 struct line_header *lh,
20015 const struct comp_unit_head *cu_header,
20016 void (*callback) (struct line_header *lh,
20017 const char *name,
20018 dir_index d_index,
20019 unsigned int mod_time,
20020 unsigned int length))
20021 {
20022 gdb_byte format_count, formati;
20023 ULONGEST data_count, datai;
20024 const gdb_byte *buf = *bufp;
20025 const gdb_byte *format_header_data;
20026 unsigned int bytes_read;
20027
20028 format_count = read_1_byte (abfd, buf);
20029 buf += 1;
20030 format_header_data = buf;
20031 for (formati = 0; formati < format_count; formati++)
20032 {
20033 read_unsigned_leb128 (abfd, buf, &bytes_read);
20034 buf += bytes_read;
20035 read_unsigned_leb128 (abfd, buf, &bytes_read);
20036 buf += bytes_read;
20037 }
20038
20039 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20040 buf += bytes_read;
20041 for (datai = 0; datai < data_count; datai++)
20042 {
20043 const gdb_byte *format = format_header_data;
20044 struct file_entry fe;
20045
20046 for (formati = 0; formati < format_count; formati++)
20047 {
20048 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20049 format += bytes_read;
20050
20051 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20052 format += bytes_read;
20053
20054 gdb::optional<const char *> string;
20055 gdb::optional<unsigned int> uint;
20056
20057 switch (form)
20058 {
20059 case DW_FORM_string:
20060 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20061 buf += bytes_read;
20062 break;
20063
20064 case DW_FORM_line_strp:
20065 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20066 abfd, buf,
20067 cu_header,
20068 &bytes_read));
20069 buf += bytes_read;
20070 break;
20071
20072 case DW_FORM_data1:
20073 uint.emplace (read_1_byte (abfd, buf));
20074 buf += 1;
20075 break;
20076
20077 case DW_FORM_data2:
20078 uint.emplace (read_2_bytes (abfd, buf));
20079 buf += 2;
20080 break;
20081
20082 case DW_FORM_data4:
20083 uint.emplace (read_4_bytes (abfd, buf));
20084 buf += 4;
20085 break;
20086
20087 case DW_FORM_data8:
20088 uint.emplace (read_8_bytes (abfd, buf));
20089 buf += 8;
20090 break;
20091
20092 case DW_FORM_udata:
20093 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20094 buf += bytes_read;
20095 break;
20096
20097 case DW_FORM_block:
20098 /* It is valid only for DW_LNCT_timestamp which is ignored by
20099 current GDB. */
20100 break;
20101 }
20102
20103 switch (content_type)
20104 {
20105 case DW_LNCT_path:
20106 if (string.has_value ())
20107 fe.name = *string;
20108 break;
20109 case DW_LNCT_directory_index:
20110 if (uint.has_value ())
20111 fe.d_index = (dir_index) *uint;
20112 break;
20113 case DW_LNCT_timestamp:
20114 if (uint.has_value ())
20115 fe.mod_time = *uint;
20116 break;
20117 case DW_LNCT_size:
20118 if (uint.has_value ())
20119 fe.length = *uint;
20120 break;
20121 case DW_LNCT_MD5:
20122 break;
20123 default:
20124 complaint (&symfile_complaints,
20125 _("Unknown format content type %s"),
20126 pulongest (content_type));
20127 }
20128 }
20129
20130 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20131 }
20132
20133 *bufp = buf;
20134 }
20135
20136 /* Read the statement program header starting at OFFSET in
20137 .debug_line, or .debug_line.dwo. Return a pointer
20138 to a struct line_header, allocated using xmalloc.
20139 Returns NULL if there is a problem reading the header, e.g., if it
20140 has a version we don't understand.
20141
20142 NOTE: the strings in the include directory and file name tables of
20143 the returned object point into the dwarf line section buffer,
20144 and must not be freed. */
20145
20146 static line_header_up
20147 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20148 {
20149 const gdb_byte *line_ptr;
20150 unsigned int bytes_read, offset_size;
20151 int i;
20152 const char *cur_dir, *cur_file;
20153 struct dwarf2_section_info *section;
20154 bfd *abfd;
20155 struct dwarf2_per_objfile *dwarf2_per_objfile
20156 = cu->per_cu->dwarf2_per_objfile;
20157
20158 section = get_debug_line_section (cu);
20159 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20160 if (section->buffer == NULL)
20161 {
20162 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20163 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
20164 else
20165 complaint (&symfile_complaints, _("missing .debug_line section"));
20166 return 0;
20167 }
20168
20169 /* We can't do this until we know the section is non-empty.
20170 Only then do we know we have such a section. */
20171 abfd = get_section_bfd_owner (section);
20172
20173 /* Make sure that at least there's room for the total_length field.
20174 That could be 12 bytes long, but we're just going to fudge that. */
20175 if (to_underlying (sect_off) + 4 >= section->size)
20176 {
20177 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20178 return 0;
20179 }
20180
20181 line_header_up lh (new line_header ());
20182
20183 lh->sect_off = sect_off;
20184 lh->offset_in_dwz = cu->per_cu->is_dwz;
20185
20186 line_ptr = section->buffer + to_underlying (sect_off);
20187
20188 /* Read in the header. */
20189 lh->total_length =
20190 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20191 &bytes_read, &offset_size);
20192 line_ptr += bytes_read;
20193 if (line_ptr + lh->total_length > (section->buffer + section->size))
20194 {
20195 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20196 return 0;
20197 }
20198 lh->statement_program_end = line_ptr + lh->total_length;
20199 lh->version = read_2_bytes (abfd, line_ptr);
20200 line_ptr += 2;
20201 if (lh->version > 5)
20202 {
20203 /* This is a version we don't understand. The format could have
20204 changed in ways we don't handle properly so just punt. */
20205 complaint (&symfile_complaints,
20206 _("unsupported version in .debug_line section"));
20207 return NULL;
20208 }
20209 if (lh->version >= 5)
20210 {
20211 gdb_byte segment_selector_size;
20212
20213 /* Skip address size. */
20214 read_1_byte (abfd, line_ptr);
20215 line_ptr += 1;
20216
20217 segment_selector_size = read_1_byte (abfd, line_ptr);
20218 line_ptr += 1;
20219 if (segment_selector_size != 0)
20220 {
20221 complaint (&symfile_complaints,
20222 _("unsupported segment selector size %u "
20223 "in .debug_line section"),
20224 segment_selector_size);
20225 return NULL;
20226 }
20227 }
20228 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20229 line_ptr += offset_size;
20230 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20231 line_ptr += 1;
20232 if (lh->version >= 4)
20233 {
20234 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20235 line_ptr += 1;
20236 }
20237 else
20238 lh->maximum_ops_per_instruction = 1;
20239
20240 if (lh->maximum_ops_per_instruction == 0)
20241 {
20242 lh->maximum_ops_per_instruction = 1;
20243 complaint (&symfile_complaints,
20244 _("invalid maximum_ops_per_instruction "
20245 "in `.debug_line' section"));
20246 }
20247
20248 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20249 line_ptr += 1;
20250 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20251 line_ptr += 1;
20252 lh->line_range = read_1_byte (abfd, line_ptr);
20253 line_ptr += 1;
20254 lh->opcode_base = read_1_byte (abfd, line_ptr);
20255 line_ptr += 1;
20256 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20257
20258 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20259 for (i = 1; i < lh->opcode_base; ++i)
20260 {
20261 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20262 line_ptr += 1;
20263 }
20264
20265 if (lh->version >= 5)
20266 {
20267 /* Read directory table. */
20268 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20269 &cu->header,
20270 [] (struct line_header *lh, const char *name,
20271 dir_index d_index, unsigned int mod_time,
20272 unsigned int length)
20273 {
20274 lh->add_include_dir (name);
20275 });
20276
20277 /* Read file name table. */
20278 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20279 &cu->header,
20280 [] (struct line_header *lh, const char *name,
20281 dir_index d_index, unsigned int mod_time,
20282 unsigned int length)
20283 {
20284 lh->add_file_name (name, d_index, mod_time, length);
20285 });
20286 }
20287 else
20288 {
20289 /* Read directory table. */
20290 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20291 {
20292 line_ptr += bytes_read;
20293 lh->add_include_dir (cur_dir);
20294 }
20295 line_ptr += bytes_read;
20296
20297 /* Read file name table. */
20298 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20299 {
20300 unsigned int mod_time, length;
20301 dir_index d_index;
20302
20303 line_ptr += bytes_read;
20304 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20305 line_ptr += bytes_read;
20306 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20307 line_ptr += bytes_read;
20308 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20309 line_ptr += bytes_read;
20310
20311 lh->add_file_name (cur_file, d_index, mod_time, length);
20312 }
20313 line_ptr += bytes_read;
20314 }
20315 lh->statement_program_start = line_ptr;
20316
20317 if (line_ptr > (section->buffer + section->size))
20318 complaint (&symfile_complaints,
20319 _("line number info header doesn't "
20320 "fit in `.debug_line' section"));
20321
20322 return lh;
20323 }
20324
20325 /* Subroutine of dwarf_decode_lines to simplify it.
20326 Return the file name of the psymtab for included file FILE_INDEX
20327 in line header LH of PST.
20328 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20329 If space for the result is malloc'd, *NAME_HOLDER will be set.
20330 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20331
20332 static const char *
20333 psymtab_include_file_name (const struct line_header *lh, int file_index,
20334 const struct partial_symtab *pst,
20335 const char *comp_dir,
20336 gdb::unique_xmalloc_ptr<char> *name_holder)
20337 {
20338 const file_entry &fe = lh->file_names[file_index];
20339 const char *include_name = fe.name;
20340 const char *include_name_to_compare = include_name;
20341 const char *pst_filename;
20342 int file_is_pst;
20343
20344 const char *dir_name = fe.include_dir (lh);
20345
20346 gdb::unique_xmalloc_ptr<char> hold_compare;
20347 if (!IS_ABSOLUTE_PATH (include_name)
20348 && (dir_name != NULL || comp_dir != NULL))
20349 {
20350 /* Avoid creating a duplicate psymtab for PST.
20351 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20352 Before we do the comparison, however, we need to account
20353 for DIR_NAME and COMP_DIR.
20354 First prepend dir_name (if non-NULL). If we still don't
20355 have an absolute path prepend comp_dir (if non-NULL).
20356 However, the directory we record in the include-file's
20357 psymtab does not contain COMP_DIR (to match the
20358 corresponding symtab(s)).
20359
20360 Example:
20361
20362 bash$ cd /tmp
20363 bash$ gcc -g ./hello.c
20364 include_name = "hello.c"
20365 dir_name = "."
20366 DW_AT_comp_dir = comp_dir = "/tmp"
20367 DW_AT_name = "./hello.c"
20368
20369 */
20370
20371 if (dir_name != NULL)
20372 {
20373 name_holder->reset (concat (dir_name, SLASH_STRING,
20374 include_name, (char *) NULL));
20375 include_name = name_holder->get ();
20376 include_name_to_compare = include_name;
20377 }
20378 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20379 {
20380 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20381 include_name, (char *) NULL));
20382 include_name_to_compare = hold_compare.get ();
20383 }
20384 }
20385
20386 pst_filename = pst->filename;
20387 gdb::unique_xmalloc_ptr<char> copied_name;
20388 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20389 {
20390 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20391 pst_filename, (char *) NULL));
20392 pst_filename = copied_name.get ();
20393 }
20394
20395 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20396
20397 if (file_is_pst)
20398 return NULL;
20399 return include_name;
20400 }
20401
20402 /* State machine to track the state of the line number program. */
20403
20404 class lnp_state_machine
20405 {
20406 public:
20407 /* Initialize a machine state for the start of a line number
20408 program. */
20409 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20410
20411 file_entry *current_file ()
20412 {
20413 /* lh->file_names is 0-based, but the file name numbers in the
20414 statement program are 1-based. */
20415 return m_line_header->file_name_at (m_file);
20416 }
20417
20418 /* Record the line in the state machine. END_SEQUENCE is true if
20419 we're processing the end of a sequence. */
20420 void record_line (bool end_sequence);
20421
20422 /* Check address and if invalid nop-out the rest of the lines in this
20423 sequence. */
20424 void check_line_address (struct dwarf2_cu *cu,
20425 const gdb_byte *line_ptr,
20426 CORE_ADDR lowpc, CORE_ADDR address);
20427
20428 void handle_set_discriminator (unsigned int discriminator)
20429 {
20430 m_discriminator = discriminator;
20431 m_line_has_non_zero_discriminator |= discriminator != 0;
20432 }
20433
20434 /* Handle DW_LNE_set_address. */
20435 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20436 {
20437 m_op_index = 0;
20438 address += baseaddr;
20439 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20440 }
20441
20442 /* Handle DW_LNS_advance_pc. */
20443 void handle_advance_pc (CORE_ADDR adjust);
20444
20445 /* Handle a special opcode. */
20446 void handle_special_opcode (unsigned char op_code);
20447
20448 /* Handle DW_LNS_advance_line. */
20449 void handle_advance_line (int line_delta)
20450 {
20451 advance_line (line_delta);
20452 }
20453
20454 /* Handle DW_LNS_set_file. */
20455 void handle_set_file (file_name_index file);
20456
20457 /* Handle DW_LNS_negate_stmt. */
20458 void handle_negate_stmt ()
20459 {
20460 m_is_stmt = !m_is_stmt;
20461 }
20462
20463 /* Handle DW_LNS_const_add_pc. */
20464 void handle_const_add_pc ();
20465
20466 /* Handle DW_LNS_fixed_advance_pc. */
20467 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20468 {
20469 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20470 m_op_index = 0;
20471 }
20472
20473 /* Handle DW_LNS_copy. */
20474 void handle_copy ()
20475 {
20476 record_line (false);
20477 m_discriminator = 0;
20478 }
20479
20480 /* Handle DW_LNE_end_sequence. */
20481 void handle_end_sequence ()
20482 {
20483 m_record_line_callback = ::record_line;
20484 }
20485
20486 private:
20487 /* Advance the line by LINE_DELTA. */
20488 void advance_line (int line_delta)
20489 {
20490 m_line += line_delta;
20491
20492 if (line_delta != 0)
20493 m_line_has_non_zero_discriminator = m_discriminator != 0;
20494 }
20495
20496 gdbarch *m_gdbarch;
20497
20498 /* True if we're recording lines.
20499 Otherwise we're building partial symtabs and are just interested in
20500 finding include files mentioned by the line number program. */
20501 bool m_record_lines_p;
20502
20503 /* The line number header. */
20504 line_header *m_line_header;
20505
20506 /* These are part of the standard DWARF line number state machine,
20507 and initialized according to the DWARF spec. */
20508
20509 unsigned char m_op_index = 0;
20510 /* The line table index (1-based) of the current file. */
20511 file_name_index m_file = (file_name_index) 1;
20512 unsigned int m_line = 1;
20513
20514 /* These are initialized in the constructor. */
20515
20516 CORE_ADDR m_address;
20517 bool m_is_stmt;
20518 unsigned int m_discriminator;
20519
20520 /* Additional bits of state we need to track. */
20521
20522 /* The last file that we called dwarf2_start_subfile for.
20523 This is only used for TLLs. */
20524 unsigned int m_last_file = 0;
20525 /* The last file a line number was recorded for. */
20526 struct subfile *m_last_subfile = NULL;
20527
20528 /* The function to call to record a line. */
20529 record_line_ftype *m_record_line_callback = NULL;
20530
20531 /* The last line number that was recorded, used to coalesce
20532 consecutive entries for the same line. This can happen, for
20533 example, when discriminators are present. PR 17276. */
20534 unsigned int m_last_line = 0;
20535 bool m_line_has_non_zero_discriminator = false;
20536 };
20537
20538 void
20539 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20540 {
20541 CORE_ADDR addr_adj = (((m_op_index + adjust)
20542 / m_line_header->maximum_ops_per_instruction)
20543 * m_line_header->minimum_instruction_length);
20544 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20545 m_op_index = ((m_op_index + adjust)
20546 % m_line_header->maximum_ops_per_instruction);
20547 }
20548
20549 void
20550 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20551 {
20552 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20553 CORE_ADDR addr_adj = (((m_op_index
20554 + (adj_opcode / m_line_header->line_range))
20555 / m_line_header->maximum_ops_per_instruction)
20556 * m_line_header->minimum_instruction_length);
20557 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20558 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20559 % m_line_header->maximum_ops_per_instruction);
20560
20561 int line_delta = (m_line_header->line_base
20562 + (adj_opcode % m_line_header->line_range));
20563 advance_line (line_delta);
20564 record_line (false);
20565 m_discriminator = 0;
20566 }
20567
20568 void
20569 lnp_state_machine::handle_set_file (file_name_index file)
20570 {
20571 m_file = file;
20572
20573 const file_entry *fe = current_file ();
20574 if (fe == NULL)
20575 dwarf2_debug_line_missing_file_complaint ();
20576 else if (m_record_lines_p)
20577 {
20578 const char *dir = fe->include_dir (m_line_header);
20579
20580 m_last_subfile = current_subfile;
20581 m_line_has_non_zero_discriminator = m_discriminator != 0;
20582 dwarf2_start_subfile (fe->name, dir);
20583 }
20584 }
20585
20586 void
20587 lnp_state_machine::handle_const_add_pc ()
20588 {
20589 CORE_ADDR adjust
20590 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20591
20592 CORE_ADDR addr_adj
20593 = (((m_op_index + adjust)
20594 / m_line_header->maximum_ops_per_instruction)
20595 * m_line_header->minimum_instruction_length);
20596
20597 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20598 m_op_index = ((m_op_index + adjust)
20599 % m_line_header->maximum_ops_per_instruction);
20600 }
20601
20602 /* Ignore this record_line request. */
20603
20604 static void
20605 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20606 {
20607 return;
20608 }
20609
20610 /* Return non-zero if we should add LINE to the line number table.
20611 LINE is the line to add, LAST_LINE is the last line that was added,
20612 LAST_SUBFILE is the subfile for LAST_LINE.
20613 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20614 had a non-zero discriminator.
20615
20616 We have to be careful in the presence of discriminators.
20617 E.g., for this line:
20618
20619 for (i = 0; i < 100000; i++);
20620
20621 clang can emit four line number entries for that one line,
20622 each with a different discriminator.
20623 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20624
20625 However, we want gdb to coalesce all four entries into one.
20626 Otherwise the user could stepi into the middle of the line and
20627 gdb would get confused about whether the pc really was in the
20628 middle of the line.
20629
20630 Things are further complicated by the fact that two consecutive
20631 line number entries for the same line is a heuristic used by gcc
20632 to denote the end of the prologue. So we can't just discard duplicate
20633 entries, we have to be selective about it. The heuristic we use is
20634 that we only collapse consecutive entries for the same line if at least
20635 one of those entries has a non-zero discriminator. PR 17276.
20636
20637 Note: Addresses in the line number state machine can never go backwards
20638 within one sequence, thus this coalescing is ok. */
20639
20640 static int
20641 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20642 int line_has_non_zero_discriminator,
20643 struct subfile *last_subfile)
20644 {
20645 if (current_subfile != last_subfile)
20646 return 1;
20647 if (line != last_line)
20648 return 1;
20649 /* Same line for the same file that we've seen already.
20650 As a last check, for pr 17276, only record the line if the line
20651 has never had a non-zero discriminator. */
20652 if (!line_has_non_zero_discriminator)
20653 return 1;
20654 return 0;
20655 }
20656
20657 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20658 in the line table of subfile SUBFILE. */
20659
20660 static void
20661 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20662 unsigned int line, CORE_ADDR address,
20663 record_line_ftype p_record_line)
20664 {
20665 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20666
20667 if (dwarf_line_debug)
20668 {
20669 fprintf_unfiltered (gdb_stdlog,
20670 "Recording line %u, file %s, address %s\n",
20671 line, lbasename (subfile->name),
20672 paddress (gdbarch, address));
20673 }
20674
20675 (*p_record_line) (subfile, line, addr);
20676 }
20677
20678 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20679 Mark the end of a set of line number records.
20680 The arguments are the same as for dwarf_record_line_1.
20681 If SUBFILE is NULL the request is ignored. */
20682
20683 static void
20684 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20685 CORE_ADDR address, record_line_ftype p_record_line)
20686 {
20687 if (subfile == NULL)
20688 return;
20689
20690 if (dwarf_line_debug)
20691 {
20692 fprintf_unfiltered (gdb_stdlog,
20693 "Finishing current line, file %s, address %s\n",
20694 lbasename (subfile->name),
20695 paddress (gdbarch, address));
20696 }
20697
20698 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20699 }
20700
20701 void
20702 lnp_state_machine::record_line (bool end_sequence)
20703 {
20704 if (dwarf_line_debug)
20705 {
20706 fprintf_unfiltered (gdb_stdlog,
20707 "Processing actual line %u: file %u,"
20708 " address %s, is_stmt %u, discrim %u\n",
20709 m_line, to_underlying (m_file),
20710 paddress (m_gdbarch, m_address),
20711 m_is_stmt, m_discriminator);
20712 }
20713
20714 file_entry *fe = current_file ();
20715
20716 if (fe == NULL)
20717 dwarf2_debug_line_missing_file_complaint ();
20718 /* For now we ignore lines not starting on an instruction boundary.
20719 But not when processing end_sequence for compatibility with the
20720 previous version of the code. */
20721 else if (m_op_index == 0 || end_sequence)
20722 {
20723 fe->included_p = 1;
20724 if (m_record_lines_p && m_is_stmt)
20725 {
20726 if (m_last_subfile != current_subfile || end_sequence)
20727 {
20728 dwarf_finish_line (m_gdbarch, m_last_subfile,
20729 m_address, m_record_line_callback);
20730 }
20731
20732 if (!end_sequence)
20733 {
20734 if (dwarf_record_line_p (m_line, m_last_line,
20735 m_line_has_non_zero_discriminator,
20736 m_last_subfile))
20737 {
20738 dwarf_record_line_1 (m_gdbarch, current_subfile,
20739 m_line, m_address,
20740 m_record_line_callback);
20741 }
20742 m_last_subfile = current_subfile;
20743 m_last_line = m_line;
20744 }
20745 }
20746 }
20747 }
20748
20749 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20750 bool record_lines_p)
20751 {
20752 m_gdbarch = arch;
20753 m_record_lines_p = record_lines_p;
20754 m_line_header = lh;
20755
20756 m_record_line_callback = ::record_line;
20757
20758 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20759 was a line entry for it so that the backend has a chance to adjust it
20760 and also record it in case it needs it. This is currently used by MIPS
20761 code, cf. `mips_adjust_dwarf2_line'. */
20762 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20763 m_is_stmt = lh->default_is_stmt;
20764 m_discriminator = 0;
20765 }
20766
20767 void
20768 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20769 const gdb_byte *line_ptr,
20770 CORE_ADDR lowpc, CORE_ADDR address)
20771 {
20772 /* If address < lowpc then it's not a usable value, it's outside the
20773 pc range of the CU. However, we restrict the test to only address
20774 values of zero to preserve GDB's previous behaviour which is to
20775 handle the specific case of a function being GC'd by the linker. */
20776
20777 if (address == 0 && address < lowpc)
20778 {
20779 /* This line table is for a function which has been
20780 GCd by the linker. Ignore it. PR gdb/12528 */
20781
20782 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20783 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20784
20785 complaint (&symfile_complaints,
20786 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20787 line_offset, objfile_name (objfile));
20788 m_record_line_callback = noop_record_line;
20789 /* Note: record_line_callback is left as noop_record_line until
20790 we see DW_LNE_end_sequence. */
20791 }
20792 }
20793
20794 /* Subroutine of dwarf_decode_lines to simplify it.
20795 Process the line number information in LH.
20796 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20797 program in order to set included_p for every referenced header. */
20798
20799 static void
20800 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20801 const int decode_for_pst_p, CORE_ADDR lowpc)
20802 {
20803 const gdb_byte *line_ptr, *extended_end;
20804 const gdb_byte *line_end;
20805 unsigned int bytes_read, extended_len;
20806 unsigned char op_code, extended_op;
20807 CORE_ADDR baseaddr;
20808 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20809 bfd *abfd = objfile->obfd;
20810 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20811 /* True if we're recording line info (as opposed to building partial
20812 symtabs and just interested in finding include files mentioned by
20813 the line number program). */
20814 bool record_lines_p = !decode_for_pst_p;
20815
20816 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20817
20818 line_ptr = lh->statement_program_start;
20819 line_end = lh->statement_program_end;
20820
20821 /* Read the statement sequences until there's nothing left. */
20822 while (line_ptr < line_end)
20823 {
20824 /* The DWARF line number program state machine. Reset the state
20825 machine at the start of each sequence. */
20826 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20827 bool end_sequence = false;
20828
20829 if (record_lines_p)
20830 {
20831 /* Start a subfile for the current file of the state
20832 machine. */
20833 const file_entry *fe = state_machine.current_file ();
20834
20835 if (fe != NULL)
20836 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20837 }
20838
20839 /* Decode the table. */
20840 while (line_ptr < line_end && !end_sequence)
20841 {
20842 op_code = read_1_byte (abfd, line_ptr);
20843 line_ptr += 1;
20844
20845 if (op_code >= lh->opcode_base)
20846 {
20847 /* Special opcode. */
20848 state_machine.handle_special_opcode (op_code);
20849 }
20850 else switch (op_code)
20851 {
20852 case DW_LNS_extended_op:
20853 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20854 &bytes_read);
20855 line_ptr += bytes_read;
20856 extended_end = line_ptr + extended_len;
20857 extended_op = read_1_byte (abfd, line_ptr);
20858 line_ptr += 1;
20859 switch (extended_op)
20860 {
20861 case DW_LNE_end_sequence:
20862 state_machine.handle_end_sequence ();
20863 end_sequence = true;
20864 break;
20865 case DW_LNE_set_address:
20866 {
20867 CORE_ADDR address
20868 = read_address (abfd, line_ptr, cu, &bytes_read);
20869 line_ptr += bytes_read;
20870
20871 state_machine.check_line_address (cu, line_ptr,
20872 lowpc, address);
20873 state_machine.handle_set_address (baseaddr, address);
20874 }
20875 break;
20876 case DW_LNE_define_file:
20877 {
20878 const char *cur_file;
20879 unsigned int mod_time, length;
20880 dir_index dindex;
20881
20882 cur_file = read_direct_string (abfd, line_ptr,
20883 &bytes_read);
20884 line_ptr += bytes_read;
20885 dindex = (dir_index)
20886 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20887 line_ptr += bytes_read;
20888 mod_time =
20889 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20890 line_ptr += bytes_read;
20891 length =
20892 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20893 line_ptr += bytes_read;
20894 lh->add_file_name (cur_file, dindex, mod_time, length);
20895 }
20896 break;
20897 case DW_LNE_set_discriminator:
20898 {
20899 /* The discriminator is not interesting to the
20900 debugger; just ignore it. We still need to
20901 check its value though:
20902 if there are consecutive entries for the same
20903 (non-prologue) line we want to coalesce them.
20904 PR 17276. */
20905 unsigned int discr
20906 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20907 line_ptr += bytes_read;
20908
20909 state_machine.handle_set_discriminator (discr);
20910 }
20911 break;
20912 default:
20913 complaint (&symfile_complaints,
20914 _("mangled .debug_line section"));
20915 return;
20916 }
20917 /* Make sure that we parsed the extended op correctly. If e.g.
20918 we expected a different address size than the producer used,
20919 we may have read the wrong number of bytes. */
20920 if (line_ptr != extended_end)
20921 {
20922 complaint (&symfile_complaints,
20923 _("mangled .debug_line section"));
20924 return;
20925 }
20926 break;
20927 case DW_LNS_copy:
20928 state_machine.handle_copy ();
20929 break;
20930 case DW_LNS_advance_pc:
20931 {
20932 CORE_ADDR adjust
20933 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20934 line_ptr += bytes_read;
20935
20936 state_machine.handle_advance_pc (adjust);
20937 }
20938 break;
20939 case DW_LNS_advance_line:
20940 {
20941 int line_delta
20942 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20943 line_ptr += bytes_read;
20944
20945 state_machine.handle_advance_line (line_delta);
20946 }
20947 break;
20948 case DW_LNS_set_file:
20949 {
20950 file_name_index file
20951 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20952 &bytes_read);
20953 line_ptr += bytes_read;
20954
20955 state_machine.handle_set_file (file);
20956 }
20957 break;
20958 case DW_LNS_set_column:
20959 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20960 line_ptr += bytes_read;
20961 break;
20962 case DW_LNS_negate_stmt:
20963 state_machine.handle_negate_stmt ();
20964 break;
20965 case DW_LNS_set_basic_block:
20966 break;
20967 /* Add to the address register of the state machine the
20968 address increment value corresponding to special opcode
20969 255. I.e., this value is scaled by the minimum
20970 instruction length since special opcode 255 would have
20971 scaled the increment. */
20972 case DW_LNS_const_add_pc:
20973 state_machine.handle_const_add_pc ();
20974 break;
20975 case DW_LNS_fixed_advance_pc:
20976 {
20977 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20978 line_ptr += 2;
20979
20980 state_machine.handle_fixed_advance_pc (addr_adj);
20981 }
20982 break;
20983 default:
20984 {
20985 /* Unknown standard opcode, ignore it. */
20986 int i;
20987
20988 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20989 {
20990 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20991 line_ptr += bytes_read;
20992 }
20993 }
20994 }
20995 }
20996
20997 if (!end_sequence)
20998 dwarf2_debug_line_missing_end_sequence_complaint ();
20999
21000 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21001 in which case we still finish recording the last line). */
21002 state_machine.record_line (true);
21003 }
21004 }
21005
21006 /* Decode the Line Number Program (LNP) for the given line_header
21007 structure and CU. The actual information extracted and the type
21008 of structures created from the LNP depends on the value of PST.
21009
21010 1. If PST is NULL, then this procedure uses the data from the program
21011 to create all necessary symbol tables, and their linetables.
21012
21013 2. If PST is not NULL, this procedure reads the program to determine
21014 the list of files included by the unit represented by PST, and
21015 builds all the associated partial symbol tables.
21016
21017 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21018 It is used for relative paths in the line table.
21019 NOTE: When processing partial symtabs (pst != NULL),
21020 comp_dir == pst->dirname.
21021
21022 NOTE: It is important that psymtabs have the same file name (via strcmp)
21023 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21024 symtab we don't use it in the name of the psymtabs we create.
21025 E.g. expand_line_sal requires this when finding psymtabs to expand.
21026 A good testcase for this is mb-inline.exp.
21027
21028 LOWPC is the lowest address in CU (or 0 if not known).
21029
21030 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21031 for its PC<->lines mapping information. Otherwise only the filename
21032 table is read in. */
21033
21034 static void
21035 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21036 struct dwarf2_cu *cu, struct partial_symtab *pst,
21037 CORE_ADDR lowpc, int decode_mapping)
21038 {
21039 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21040 const int decode_for_pst_p = (pst != NULL);
21041
21042 if (decode_mapping)
21043 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21044
21045 if (decode_for_pst_p)
21046 {
21047 int file_index;
21048
21049 /* Now that we're done scanning the Line Header Program, we can
21050 create the psymtab of each included file. */
21051 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21052 if (lh->file_names[file_index].included_p == 1)
21053 {
21054 gdb::unique_xmalloc_ptr<char> name_holder;
21055 const char *include_name =
21056 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21057 &name_holder);
21058 if (include_name != NULL)
21059 dwarf2_create_include_psymtab (include_name, pst, objfile);
21060 }
21061 }
21062 else
21063 {
21064 /* Make sure a symtab is created for every file, even files
21065 which contain only variables (i.e. no code with associated
21066 line numbers). */
21067 struct compunit_symtab *cust = buildsym_compunit_symtab ();
21068 int i;
21069
21070 for (i = 0; i < lh->file_names.size (); i++)
21071 {
21072 file_entry &fe = lh->file_names[i];
21073
21074 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
21075
21076 if (current_subfile->symtab == NULL)
21077 {
21078 current_subfile->symtab
21079 = allocate_symtab (cust, current_subfile->name);
21080 }
21081 fe.symtab = current_subfile->symtab;
21082 }
21083 }
21084 }
21085
21086 /* Start a subfile for DWARF. FILENAME is the name of the file and
21087 DIRNAME the name of the source directory which contains FILENAME
21088 or NULL if not known.
21089 This routine tries to keep line numbers from identical absolute and
21090 relative file names in a common subfile.
21091
21092 Using the `list' example from the GDB testsuite, which resides in
21093 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21094 of /srcdir/list0.c yields the following debugging information for list0.c:
21095
21096 DW_AT_name: /srcdir/list0.c
21097 DW_AT_comp_dir: /compdir
21098 files.files[0].name: list0.h
21099 files.files[0].dir: /srcdir
21100 files.files[1].name: list0.c
21101 files.files[1].dir: /srcdir
21102
21103 The line number information for list0.c has to end up in a single
21104 subfile, so that `break /srcdir/list0.c:1' works as expected.
21105 start_subfile will ensure that this happens provided that we pass the
21106 concatenation of files.files[1].dir and files.files[1].name as the
21107 subfile's name. */
21108
21109 static void
21110 dwarf2_start_subfile (const char *filename, const char *dirname)
21111 {
21112 char *copy = NULL;
21113
21114 /* In order not to lose the line information directory,
21115 we concatenate it to the filename when it makes sense.
21116 Note that the Dwarf3 standard says (speaking of filenames in line
21117 information): ``The directory index is ignored for file names
21118 that represent full path names''. Thus ignoring dirname in the
21119 `else' branch below isn't an issue. */
21120
21121 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21122 {
21123 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21124 filename = copy;
21125 }
21126
21127 start_subfile (filename);
21128
21129 if (copy != NULL)
21130 xfree (copy);
21131 }
21132
21133 /* Start a symtab for DWARF.
21134 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21135
21136 static struct compunit_symtab *
21137 dwarf2_start_symtab (struct dwarf2_cu *cu,
21138 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21139 {
21140 struct compunit_symtab *cust
21141 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21142 low_pc, cu->language);
21143
21144 record_debugformat ("DWARF 2");
21145 record_producer (cu->producer);
21146
21147 /* We assume that we're processing GCC output. */
21148 processing_gcc_compilation = 2;
21149
21150 cu->processing_has_namespace_info = 0;
21151
21152 return cust;
21153 }
21154
21155 static void
21156 var_decode_location (struct attribute *attr, struct symbol *sym,
21157 struct dwarf2_cu *cu)
21158 {
21159 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21160 struct comp_unit_head *cu_header = &cu->header;
21161
21162 /* NOTE drow/2003-01-30: There used to be a comment and some special
21163 code here to turn a symbol with DW_AT_external and a
21164 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21165 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21166 with some versions of binutils) where shared libraries could have
21167 relocations against symbols in their debug information - the
21168 minimal symbol would have the right address, but the debug info
21169 would not. It's no longer necessary, because we will explicitly
21170 apply relocations when we read in the debug information now. */
21171
21172 /* A DW_AT_location attribute with no contents indicates that a
21173 variable has been optimized away. */
21174 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21175 {
21176 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21177 return;
21178 }
21179
21180 /* Handle one degenerate form of location expression specially, to
21181 preserve GDB's previous behavior when section offsets are
21182 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21183 then mark this symbol as LOC_STATIC. */
21184
21185 if (attr_form_is_block (attr)
21186 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21187 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21188 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21189 && (DW_BLOCK (attr)->size
21190 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21191 {
21192 unsigned int dummy;
21193
21194 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21195 SYMBOL_VALUE_ADDRESS (sym) =
21196 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21197 else
21198 SYMBOL_VALUE_ADDRESS (sym) =
21199 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21200 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21201 fixup_symbol_section (sym, objfile);
21202 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21203 SYMBOL_SECTION (sym));
21204 return;
21205 }
21206
21207 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21208 expression evaluator, and use LOC_COMPUTED only when necessary
21209 (i.e. when the value of a register or memory location is
21210 referenced, or a thread-local block, etc.). Then again, it might
21211 not be worthwhile. I'm assuming that it isn't unless performance
21212 or memory numbers show me otherwise. */
21213
21214 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21215
21216 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21217 cu->has_loclist = 1;
21218 }
21219
21220 /* Given a pointer to a DWARF information entry, figure out if we need
21221 to make a symbol table entry for it, and if so, create a new entry
21222 and return a pointer to it.
21223 If TYPE is NULL, determine symbol type from the die, otherwise
21224 used the passed type.
21225 If SPACE is not NULL, use it to hold the new symbol. If it is
21226 NULL, allocate a new symbol on the objfile's obstack. */
21227
21228 static struct symbol *
21229 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21230 struct symbol *space)
21231 {
21232 struct dwarf2_per_objfile *dwarf2_per_objfile
21233 = cu->per_cu->dwarf2_per_objfile;
21234 struct objfile *objfile = dwarf2_per_objfile->objfile;
21235 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21236 struct symbol *sym = NULL;
21237 const char *name;
21238 struct attribute *attr = NULL;
21239 struct attribute *attr2 = NULL;
21240 CORE_ADDR baseaddr;
21241 struct pending **list_to_add = NULL;
21242
21243 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21244
21245 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21246
21247 name = dwarf2_name (die, cu);
21248 if (name)
21249 {
21250 const char *linkagename;
21251 int suppress_add = 0;
21252
21253 if (space)
21254 sym = space;
21255 else
21256 sym = allocate_symbol (objfile);
21257 OBJSTAT (objfile, n_syms++);
21258
21259 /* Cache this symbol's name and the name's demangled form (if any). */
21260 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21261 linkagename = dwarf2_physname (name, die, cu);
21262 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21263
21264 /* Fortran does not have mangling standard and the mangling does differ
21265 between gfortran, iFort etc. */
21266 if (cu->language == language_fortran
21267 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21268 symbol_set_demangled_name (&(sym->ginfo),
21269 dwarf2_full_name (name, die, cu),
21270 NULL);
21271
21272 /* Default assumptions.
21273 Use the passed type or decode it from the die. */
21274 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21275 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21276 if (type != NULL)
21277 SYMBOL_TYPE (sym) = type;
21278 else
21279 SYMBOL_TYPE (sym) = die_type (die, cu);
21280 attr = dwarf2_attr (die,
21281 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21282 cu);
21283 if (attr)
21284 {
21285 SYMBOL_LINE (sym) = DW_UNSND (attr);
21286 }
21287
21288 attr = dwarf2_attr (die,
21289 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21290 cu);
21291 if (attr)
21292 {
21293 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21294 struct file_entry *fe;
21295
21296 if (cu->line_header != NULL)
21297 fe = cu->line_header->file_name_at (file_index);
21298 else
21299 fe = NULL;
21300
21301 if (fe == NULL)
21302 complaint (&symfile_complaints,
21303 _("file index out of range"));
21304 else
21305 symbol_set_symtab (sym, fe->symtab);
21306 }
21307
21308 switch (die->tag)
21309 {
21310 case DW_TAG_label:
21311 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21312 if (attr)
21313 {
21314 CORE_ADDR addr;
21315
21316 addr = attr_value_as_address (attr);
21317 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21318 SYMBOL_VALUE_ADDRESS (sym) = addr;
21319 }
21320 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21321 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21322 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21323 add_symbol_to_list (sym, cu->list_in_scope);
21324 break;
21325 case DW_TAG_subprogram:
21326 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21327 finish_block. */
21328 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21329 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21330 if ((attr2 && (DW_UNSND (attr2) != 0))
21331 || cu->language == language_ada)
21332 {
21333 /* Subprograms marked external are stored as a global symbol.
21334 Ada subprograms, whether marked external or not, are always
21335 stored as a global symbol, because we want to be able to
21336 access them globally. For instance, we want to be able
21337 to break on a nested subprogram without having to
21338 specify the context. */
21339 list_to_add = &global_symbols;
21340 }
21341 else
21342 {
21343 list_to_add = cu->list_in_scope;
21344 }
21345 break;
21346 case DW_TAG_inlined_subroutine:
21347 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21348 finish_block. */
21349 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21350 SYMBOL_INLINED (sym) = 1;
21351 list_to_add = cu->list_in_scope;
21352 break;
21353 case DW_TAG_template_value_param:
21354 suppress_add = 1;
21355 /* Fall through. */
21356 case DW_TAG_constant:
21357 case DW_TAG_variable:
21358 case DW_TAG_member:
21359 /* Compilation with minimal debug info may result in
21360 variables with missing type entries. Change the
21361 misleading `void' type to something sensible. */
21362 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21363 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21364
21365 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21366 /* In the case of DW_TAG_member, we should only be called for
21367 static const members. */
21368 if (die->tag == DW_TAG_member)
21369 {
21370 /* dwarf2_add_field uses die_is_declaration,
21371 so we do the same. */
21372 gdb_assert (die_is_declaration (die, cu));
21373 gdb_assert (attr);
21374 }
21375 if (attr)
21376 {
21377 dwarf2_const_value (attr, sym, cu);
21378 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21379 if (!suppress_add)
21380 {
21381 if (attr2 && (DW_UNSND (attr2) != 0))
21382 list_to_add = &global_symbols;
21383 else
21384 list_to_add = cu->list_in_scope;
21385 }
21386 break;
21387 }
21388 attr = dwarf2_attr (die, DW_AT_location, cu);
21389 if (attr)
21390 {
21391 var_decode_location (attr, sym, cu);
21392 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21393
21394 /* Fortran explicitly imports any global symbols to the local
21395 scope by DW_TAG_common_block. */
21396 if (cu->language == language_fortran && die->parent
21397 && die->parent->tag == DW_TAG_common_block)
21398 attr2 = NULL;
21399
21400 if (SYMBOL_CLASS (sym) == LOC_STATIC
21401 && SYMBOL_VALUE_ADDRESS (sym) == 0
21402 && !dwarf2_per_objfile->has_section_at_zero)
21403 {
21404 /* When a static variable is eliminated by the linker,
21405 the corresponding debug information is not stripped
21406 out, but the variable address is set to null;
21407 do not add such variables into symbol table. */
21408 }
21409 else if (attr2 && (DW_UNSND (attr2) != 0))
21410 {
21411 /* Workaround gfortran PR debug/40040 - it uses
21412 DW_AT_location for variables in -fPIC libraries which may
21413 get overriden by other libraries/executable and get
21414 a different address. Resolve it by the minimal symbol
21415 which may come from inferior's executable using copy
21416 relocation. Make this workaround only for gfortran as for
21417 other compilers GDB cannot guess the minimal symbol
21418 Fortran mangling kind. */
21419 if (cu->language == language_fortran && die->parent
21420 && die->parent->tag == DW_TAG_module
21421 && cu->producer
21422 && startswith (cu->producer, "GNU Fortran"))
21423 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21424
21425 /* A variable with DW_AT_external is never static,
21426 but it may be block-scoped. */
21427 list_to_add = (cu->list_in_scope == &file_symbols
21428 ? &global_symbols : cu->list_in_scope);
21429 }
21430 else
21431 list_to_add = cu->list_in_scope;
21432 }
21433 else
21434 {
21435 /* We do not know the address of this symbol.
21436 If it is an external symbol and we have type information
21437 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21438 The address of the variable will then be determined from
21439 the minimal symbol table whenever the variable is
21440 referenced. */
21441 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21442
21443 /* Fortran explicitly imports any global symbols to the local
21444 scope by DW_TAG_common_block. */
21445 if (cu->language == language_fortran && die->parent
21446 && die->parent->tag == DW_TAG_common_block)
21447 {
21448 /* SYMBOL_CLASS doesn't matter here because
21449 read_common_block is going to reset it. */
21450 if (!suppress_add)
21451 list_to_add = cu->list_in_scope;
21452 }
21453 else if (attr2 && (DW_UNSND (attr2) != 0)
21454 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21455 {
21456 /* A variable with DW_AT_external is never static, but it
21457 may be block-scoped. */
21458 list_to_add = (cu->list_in_scope == &file_symbols
21459 ? &global_symbols : cu->list_in_scope);
21460
21461 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21462 }
21463 else if (!die_is_declaration (die, cu))
21464 {
21465 /* Use the default LOC_OPTIMIZED_OUT class. */
21466 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21467 if (!suppress_add)
21468 list_to_add = cu->list_in_scope;
21469 }
21470 }
21471 break;
21472 case DW_TAG_formal_parameter:
21473 /* If we are inside a function, mark this as an argument. If
21474 not, we might be looking at an argument to an inlined function
21475 when we do not have enough information to show inlined frames;
21476 pretend it's a local variable in that case so that the user can
21477 still see it. */
21478 if (context_stack_depth > 0
21479 && context_stack[context_stack_depth - 1].name != NULL)
21480 SYMBOL_IS_ARGUMENT (sym) = 1;
21481 attr = dwarf2_attr (die, DW_AT_location, cu);
21482 if (attr)
21483 {
21484 var_decode_location (attr, sym, cu);
21485 }
21486 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21487 if (attr)
21488 {
21489 dwarf2_const_value (attr, sym, cu);
21490 }
21491
21492 list_to_add = cu->list_in_scope;
21493 break;
21494 case DW_TAG_unspecified_parameters:
21495 /* From varargs functions; gdb doesn't seem to have any
21496 interest in this information, so just ignore it for now.
21497 (FIXME?) */
21498 break;
21499 case DW_TAG_template_type_param:
21500 suppress_add = 1;
21501 /* Fall through. */
21502 case DW_TAG_class_type:
21503 case DW_TAG_interface_type:
21504 case DW_TAG_structure_type:
21505 case DW_TAG_union_type:
21506 case DW_TAG_set_type:
21507 case DW_TAG_enumeration_type:
21508 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21509 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21510
21511 {
21512 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21513 really ever be static objects: otherwise, if you try
21514 to, say, break of a class's method and you're in a file
21515 which doesn't mention that class, it won't work unless
21516 the check for all static symbols in lookup_symbol_aux
21517 saves you. See the OtherFileClass tests in
21518 gdb.c++/namespace.exp. */
21519
21520 if (!suppress_add)
21521 {
21522 list_to_add = (cu->list_in_scope == &file_symbols
21523 && cu->language == language_cplus
21524 ? &global_symbols : cu->list_in_scope);
21525
21526 /* The semantics of C++ state that "struct foo {
21527 ... }" also defines a typedef for "foo". */
21528 if (cu->language == language_cplus
21529 || cu->language == language_ada
21530 || cu->language == language_d
21531 || cu->language == language_rust)
21532 {
21533 /* The symbol's name is already allocated along
21534 with this objfile, so we don't need to
21535 duplicate it for the type. */
21536 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21537 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21538 }
21539 }
21540 }
21541 break;
21542 case DW_TAG_typedef:
21543 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21544 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21545 list_to_add = cu->list_in_scope;
21546 break;
21547 case DW_TAG_base_type:
21548 case DW_TAG_subrange_type:
21549 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21550 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21551 list_to_add = cu->list_in_scope;
21552 break;
21553 case DW_TAG_enumerator:
21554 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21555 if (attr)
21556 {
21557 dwarf2_const_value (attr, sym, cu);
21558 }
21559 {
21560 /* NOTE: carlton/2003-11-10: See comment above in the
21561 DW_TAG_class_type, etc. block. */
21562
21563 list_to_add = (cu->list_in_scope == &file_symbols
21564 && cu->language == language_cplus
21565 ? &global_symbols : cu->list_in_scope);
21566 }
21567 break;
21568 case DW_TAG_imported_declaration:
21569 case DW_TAG_namespace:
21570 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21571 list_to_add = &global_symbols;
21572 break;
21573 case DW_TAG_module:
21574 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21575 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21576 list_to_add = &global_symbols;
21577 break;
21578 case DW_TAG_common_block:
21579 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21580 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21581 add_symbol_to_list (sym, cu->list_in_scope);
21582 break;
21583 default:
21584 /* Not a tag we recognize. Hopefully we aren't processing
21585 trash data, but since we must specifically ignore things
21586 we don't recognize, there is nothing else we should do at
21587 this point. */
21588 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
21589 dwarf_tag_name (die->tag));
21590 break;
21591 }
21592
21593 if (suppress_add)
21594 {
21595 sym->hash_next = objfile->template_symbols;
21596 objfile->template_symbols = sym;
21597 list_to_add = NULL;
21598 }
21599
21600 if (list_to_add != NULL)
21601 add_symbol_to_list (sym, list_to_add);
21602
21603 /* For the benefit of old versions of GCC, check for anonymous
21604 namespaces based on the demangled name. */
21605 if (!cu->processing_has_namespace_info
21606 && cu->language == language_cplus)
21607 cp_scan_for_anonymous_namespaces (sym, objfile);
21608 }
21609 return (sym);
21610 }
21611
21612 /* Given an attr with a DW_FORM_dataN value in host byte order,
21613 zero-extend it as appropriate for the symbol's type. The DWARF
21614 standard (v4) is not entirely clear about the meaning of using
21615 DW_FORM_dataN for a constant with a signed type, where the type is
21616 wider than the data. The conclusion of a discussion on the DWARF
21617 list was that this is unspecified. We choose to always zero-extend
21618 because that is the interpretation long in use by GCC. */
21619
21620 static gdb_byte *
21621 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21622 struct dwarf2_cu *cu, LONGEST *value, int bits)
21623 {
21624 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21625 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21626 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21627 LONGEST l = DW_UNSND (attr);
21628
21629 if (bits < sizeof (*value) * 8)
21630 {
21631 l &= ((LONGEST) 1 << bits) - 1;
21632 *value = l;
21633 }
21634 else if (bits == sizeof (*value) * 8)
21635 *value = l;
21636 else
21637 {
21638 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21639 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21640 return bytes;
21641 }
21642
21643 return NULL;
21644 }
21645
21646 /* Read a constant value from an attribute. Either set *VALUE, or if
21647 the value does not fit in *VALUE, set *BYTES - either already
21648 allocated on the objfile obstack, or newly allocated on OBSTACK,
21649 or, set *BATON, if we translated the constant to a location
21650 expression. */
21651
21652 static void
21653 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21654 const char *name, struct obstack *obstack,
21655 struct dwarf2_cu *cu,
21656 LONGEST *value, const gdb_byte **bytes,
21657 struct dwarf2_locexpr_baton **baton)
21658 {
21659 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21660 struct comp_unit_head *cu_header = &cu->header;
21661 struct dwarf_block *blk;
21662 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21663 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21664
21665 *value = 0;
21666 *bytes = NULL;
21667 *baton = NULL;
21668
21669 switch (attr->form)
21670 {
21671 case DW_FORM_addr:
21672 case DW_FORM_GNU_addr_index:
21673 {
21674 gdb_byte *data;
21675
21676 if (TYPE_LENGTH (type) != cu_header->addr_size)
21677 dwarf2_const_value_length_mismatch_complaint (name,
21678 cu_header->addr_size,
21679 TYPE_LENGTH (type));
21680 /* Symbols of this form are reasonably rare, so we just
21681 piggyback on the existing location code rather than writing
21682 a new implementation of symbol_computed_ops. */
21683 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21684 (*baton)->per_cu = cu->per_cu;
21685 gdb_assert ((*baton)->per_cu);
21686
21687 (*baton)->size = 2 + cu_header->addr_size;
21688 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21689 (*baton)->data = data;
21690
21691 data[0] = DW_OP_addr;
21692 store_unsigned_integer (&data[1], cu_header->addr_size,
21693 byte_order, DW_ADDR (attr));
21694 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21695 }
21696 break;
21697 case DW_FORM_string:
21698 case DW_FORM_strp:
21699 case DW_FORM_GNU_str_index:
21700 case DW_FORM_GNU_strp_alt:
21701 /* DW_STRING is already allocated on the objfile obstack, point
21702 directly to it. */
21703 *bytes = (const gdb_byte *) DW_STRING (attr);
21704 break;
21705 case DW_FORM_block1:
21706 case DW_FORM_block2:
21707 case DW_FORM_block4:
21708 case DW_FORM_block:
21709 case DW_FORM_exprloc:
21710 case DW_FORM_data16:
21711 blk = DW_BLOCK (attr);
21712 if (TYPE_LENGTH (type) != blk->size)
21713 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21714 TYPE_LENGTH (type));
21715 *bytes = blk->data;
21716 break;
21717
21718 /* The DW_AT_const_value attributes are supposed to carry the
21719 symbol's value "represented as it would be on the target
21720 architecture." By the time we get here, it's already been
21721 converted to host endianness, so we just need to sign- or
21722 zero-extend it as appropriate. */
21723 case DW_FORM_data1:
21724 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21725 break;
21726 case DW_FORM_data2:
21727 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21728 break;
21729 case DW_FORM_data4:
21730 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21731 break;
21732 case DW_FORM_data8:
21733 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21734 break;
21735
21736 case DW_FORM_sdata:
21737 case DW_FORM_implicit_const:
21738 *value = DW_SND (attr);
21739 break;
21740
21741 case DW_FORM_udata:
21742 *value = DW_UNSND (attr);
21743 break;
21744
21745 default:
21746 complaint (&symfile_complaints,
21747 _("unsupported const value attribute form: '%s'"),
21748 dwarf_form_name (attr->form));
21749 *value = 0;
21750 break;
21751 }
21752 }
21753
21754
21755 /* Copy constant value from an attribute to a symbol. */
21756
21757 static void
21758 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21759 struct dwarf2_cu *cu)
21760 {
21761 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21762 LONGEST value;
21763 const gdb_byte *bytes;
21764 struct dwarf2_locexpr_baton *baton;
21765
21766 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21767 SYMBOL_PRINT_NAME (sym),
21768 &objfile->objfile_obstack, cu,
21769 &value, &bytes, &baton);
21770
21771 if (baton != NULL)
21772 {
21773 SYMBOL_LOCATION_BATON (sym) = baton;
21774 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21775 }
21776 else if (bytes != NULL)
21777 {
21778 SYMBOL_VALUE_BYTES (sym) = bytes;
21779 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21780 }
21781 else
21782 {
21783 SYMBOL_VALUE (sym) = value;
21784 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21785 }
21786 }
21787
21788 /* Return the type of the die in question using its DW_AT_type attribute. */
21789
21790 static struct type *
21791 die_type (struct die_info *die, struct dwarf2_cu *cu)
21792 {
21793 struct attribute *type_attr;
21794
21795 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21796 if (!type_attr)
21797 {
21798 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21799 /* A missing DW_AT_type represents a void type. */
21800 return objfile_type (objfile)->builtin_void;
21801 }
21802
21803 return lookup_die_type (die, type_attr, cu);
21804 }
21805
21806 /* True iff CU's producer generates GNAT Ada auxiliary information
21807 that allows to find parallel types through that information instead
21808 of having to do expensive parallel lookups by type name. */
21809
21810 static int
21811 need_gnat_info (struct dwarf2_cu *cu)
21812 {
21813 /* Assume that the Ada compiler was GNAT, which always produces
21814 the auxiliary information. */
21815 return (cu->language == language_ada);
21816 }
21817
21818 /* Return the auxiliary type of the die in question using its
21819 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21820 attribute is not present. */
21821
21822 static struct type *
21823 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21824 {
21825 struct attribute *type_attr;
21826
21827 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21828 if (!type_attr)
21829 return NULL;
21830
21831 return lookup_die_type (die, type_attr, cu);
21832 }
21833
21834 /* If DIE has a descriptive_type attribute, then set the TYPE's
21835 descriptive type accordingly. */
21836
21837 static void
21838 set_descriptive_type (struct type *type, struct die_info *die,
21839 struct dwarf2_cu *cu)
21840 {
21841 struct type *descriptive_type = die_descriptive_type (die, cu);
21842
21843 if (descriptive_type)
21844 {
21845 ALLOCATE_GNAT_AUX_TYPE (type);
21846 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21847 }
21848 }
21849
21850 /* Return the containing type of the die in question using its
21851 DW_AT_containing_type attribute. */
21852
21853 static struct type *
21854 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21855 {
21856 struct attribute *type_attr;
21857 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21858
21859 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21860 if (!type_attr)
21861 error (_("Dwarf Error: Problem turning containing type into gdb type "
21862 "[in module %s]"), objfile_name (objfile));
21863
21864 return lookup_die_type (die, type_attr, cu);
21865 }
21866
21867 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21868
21869 static struct type *
21870 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21871 {
21872 struct dwarf2_per_objfile *dwarf2_per_objfile
21873 = cu->per_cu->dwarf2_per_objfile;
21874 struct objfile *objfile = dwarf2_per_objfile->objfile;
21875 char *message, *saved;
21876
21877 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21878 objfile_name (objfile),
21879 sect_offset_str (cu->header.sect_off),
21880 sect_offset_str (die->sect_off));
21881 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21882 message, strlen (message));
21883 xfree (message);
21884
21885 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21886 }
21887
21888 /* Look up the type of DIE in CU using its type attribute ATTR.
21889 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21890 DW_AT_containing_type.
21891 If there is no type substitute an error marker. */
21892
21893 static struct type *
21894 lookup_die_type (struct die_info *die, const struct attribute *attr,
21895 struct dwarf2_cu *cu)
21896 {
21897 struct dwarf2_per_objfile *dwarf2_per_objfile
21898 = cu->per_cu->dwarf2_per_objfile;
21899 struct objfile *objfile = dwarf2_per_objfile->objfile;
21900 struct type *this_type;
21901
21902 gdb_assert (attr->name == DW_AT_type
21903 || attr->name == DW_AT_GNAT_descriptive_type
21904 || attr->name == DW_AT_containing_type);
21905
21906 /* First see if we have it cached. */
21907
21908 if (attr->form == DW_FORM_GNU_ref_alt)
21909 {
21910 struct dwarf2_per_cu_data *per_cu;
21911 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21912
21913 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21914 dwarf2_per_objfile);
21915 this_type = get_die_type_at_offset (sect_off, per_cu);
21916 }
21917 else if (attr_form_is_ref (attr))
21918 {
21919 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21920
21921 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21922 }
21923 else if (attr->form == DW_FORM_ref_sig8)
21924 {
21925 ULONGEST signature = DW_SIGNATURE (attr);
21926
21927 return get_signatured_type (die, signature, cu);
21928 }
21929 else
21930 {
21931 complaint (&symfile_complaints,
21932 _("Dwarf Error: Bad type attribute %s in DIE"
21933 " at %s [in module %s]"),
21934 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21935 objfile_name (objfile));
21936 return build_error_marker_type (cu, die);
21937 }
21938
21939 /* If not cached we need to read it in. */
21940
21941 if (this_type == NULL)
21942 {
21943 struct die_info *type_die = NULL;
21944 struct dwarf2_cu *type_cu = cu;
21945
21946 if (attr_form_is_ref (attr))
21947 type_die = follow_die_ref (die, attr, &type_cu);
21948 if (type_die == NULL)
21949 return build_error_marker_type (cu, die);
21950 /* If we find the type now, it's probably because the type came
21951 from an inter-CU reference and the type's CU got expanded before
21952 ours. */
21953 this_type = read_type_die (type_die, type_cu);
21954 }
21955
21956 /* If we still don't have a type use an error marker. */
21957
21958 if (this_type == NULL)
21959 return build_error_marker_type (cu, die);
21960
21961 return this_type;
21962 }
21963
21964 /* Return the type in DIE, CU.
21965 Returns NULL for invalid types.
21966
21967 This first does a lookup in die_type_hash,
21968 and only reads the die in if necessary.
21969
21970 NOTE: This can be called when reading in partial or full symbols. */
21971
21972 static struct type *
21973 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21974 {
21975 struct type *this_type;
21976
21977 this_type = get_die_type (die, cu);
21978 if (this_type)
21979 return this_type;
21980
21981 return read_type_die_1 (die, cu);
21982 }
21983
21984 /* Read the type in DIE, CU.
21985 Returns NULL for invalid types. */
21986
21987 static struct type *
21988 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21989 {
21990 struct type *this_type = NULL;
21991
21992 switch (die->tag)
21993 {
21994 case DW_TAG_class_type:
21995 case DW_TAG_interface_type:
21996 case DW_TAG_structure_type:
21997 case DW_TAG_union_type:
21998 this_type = read_structure_type (die, cu);
21999 break;
22000 case DW_TAG_enumeration_type:
22001 this_type = read_enumeration_type (die, cu);
22002 break;
22003 case DW_TAG_subprogram:
22004 case DW_TAG_subroutine_type:
22005 case DW_TAG_inlined_subroutine:
22006 this_type = read_subroutine_type (die, cu);
22007 break;
22008 case DW_TAG_array_type:
22009 this_type = read_array_type (die, cu);
22010 break;
22011 case DW_TAG_set_type:
22012 this_type = read_set_type (die, cu);
22013 break;
22014 case DW_TAG_pointer_type:
22015 this_type = read_tag_pointer_type (die, cu);
22016 break;
22017 case DW_TAG_ptr_to_member_type:
22018 this_type = read_tag_ptr_to_member_type (die, cu);
22019 break;
22020 case DW_TAG_reference_type:
22021 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22022 break;
22023 case DW_TAG_rvalue_reference_type:
22024 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22025 break;
22026 case DW_TAG_const_type:
22027 this_type = read_tag_const_type (die, cu);
22028 break;
22029 case DW_TAG_volatile_type:
22030 this_type = read_tag_volatile_type (die, cu);
22031 break;
22032 case DW_TAG_restrict_type:
22033 this_type = read_tag_restrict_type (die, cu);
22034 break;
22035 case DW_TAG_string_type:
22036 this_type = read_tag_string_type (die, cu);
22037 break;
22038 case DW_TAG_typedef:
22039 this_type = read_typedef (die, cu);
22040 break;
22041 case DW_TAG_subrange_type:
22042 this_type = read_subrange_type (die, cu);
22043 break;
22044 case DW_TAG_base_type:
22045 this_type = read_base_type (die, cu);
22046 break;
22047 case DW_TAG_unspecified_type:
22048 this_type = read_unspecified_type (die, cu);
22049 break;
22050 case DW_TAG_namespace:
22051 this_type = read_namespace_type (die, cu);
22052 break;
22053 case DW_TAG_module:
22054 this_type = read_module_type (die, cu);
22055 break;
22056 case DW_TAG_atomic_type:
22057 this_type = read_tag_atomic_type (die, cu);
22058 break;
22059 default:
22060 complaint (&symfile_complaints,
22061 _("unexpected tag in read_type_die: '%s'"),
22062 dwarf_tag_name (die->tag));
22063 break;
22064 }
22065
22066 return this_type;
22067 }
22068
22069 /* See if we can figure out if the class lives in a namespace. We do
22070 this by looking for a member function; its demangled name will
22071 contain namespace info, if there is any.
22072 Return the computed name or NULL.
22073 Space for the result is allocated on the objfile's obstack.
22074 This is the full-die version of guess_partial_die_structure_name.
22075 In this case we know DIE has no useful parent. */
22076
22077 static char *
22078 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22079 {
22080 struct die_info *spec_die;
22081 struct dwarf2_cu *spec_cu;
22082 struct die_info *child;
22083 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22084
22085 spec_cu = cu;
22086 spec_die = die_specification (die, &spec_cu);
22087 if (spec_die != NULL)
22088 {
22089 die = spec_die;
22090 cu = spec_cu;
22091 }
22092
22093 for (child = die->child;
22094 child != NULL;
22095 child = child->sibling)
22096 {
22097 if (child->tag == DW_TAG_subprogram)
22098 {
22099 const char *linkage_name = dw2_linkage_name (child, cu);
22100
22101 if (linkage_name != NULL)
22102 {
22103 char *actual_name
22104 = language_class_name_from_physname (cu->language_defn,
22105 linkage_name);
22106 char *name = NULL;
22107
22108 if (actual_name != NULL)
22109 {
22110 const char *die_name = dwarf2_name (die, cu);
22111
22112 if (die_name != NULL
22113 && strcmp (die_name, actual_name) != 0)
22114 {
22115 /* Strip off the class name from the full name.
22116 We want the prefix. */
22117 int die_name_len = strlen (die_name);
22118 int actual_name_len = strlen (actual_name);
22119
22120 /* Test for '::' as a sanity check. */
22121 if (actual_name_len > die_name_len + 2
22122 && actual_name[actual_name_len
22123 - die_name_len - 1] == ':')
22124 name = (char *) obstack_copy0 (
22125 &objfile->per_bfd->storage_obstack,
22126 actual_name, actual_name_len - die_name_len - 2);
22127 }
22128 }
22129 xfree (actual_name);
22130 return name;
22131 }
22132 }
22133 }
22134
22135 return NULL;
22136 }
22137
22138 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22139 prefix part in such case. See
22140 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22141
22142 static const char *
22143 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22144 {
22145 struct attribute *attr;
22146 const char *base;
22147
22148 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22149 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22150 return NULL;
22151
22152 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22153 return NULL;
22154
22155 attr = dw2_linkage_name_attr (die, cu);
22156 if (attr == NULL || DW_STRING (attr) == NULL)
22157 return NULL;
22158
22159 /* dwarf2_name had to be already called. */
22160 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22161
22162 /* Strip the base name, keep any leading namespaces/classes. */
22163 base = strrchr (DW_STRING (attr), ':');
22164 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22165 return "";
22166
22167 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22168 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22169 DW_STRING (attr),
22170 &base[-1] - DW_STRING (attr));
22171 }
22172
22173 /* Return the name of the namespace/class that DIE is defined within,
22174 or "" if we can't tell. The caller should not xfree the result.
22175
22176 For example, if we're within the method foo() in the following
22177 code:
22178
22179 namespace N {
22180 class C {
22181 void foo () {
22182 }
22183 };
22184 }
22185
22186 then determine_prefix on foo's die will return "N::C". */
22187
22188 static const char *
22189 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22190 {
22191 struct dwarf2_per_objfile *dwarf2_per_objfile
22192 = cu->per_cu->dwarf2_per_objfile;
22193 struct die_info *parent, *spec_die;
22194 struct dwarf2_cu *spec_cu;
22195 struct type *parent_type;
22196 const char *retval;
22197
22198 if (cu->language != language_cplus
22199 && cu->language != language_fortran && cu->language != language_d
22200 && cu->language != language_rust)
22201 return "";
22202
22203 retval = anonymous_struct_prefix (die, cu);
22204 if (retval)
22205 return retval;
22206
22207 /* We have to be careful in the presence of DW_AT_specification.
22208 For example, with GCC 3.4, given the code
22209
22210 namespace N {
22211 void foo() {
22212 // Definition of N::foo.
22213 }
22214 }
22215
22216 then we'll have a tree of DIEs like this:
22217
22218 1: DW_TAG_compile_unit
22219 2: DW_TAG_namespace // N
22220 3: DW_TAG_subprogram // declaration of N::foo
22221 4: DW_TAG_subprogram // definition of N::foo
22222 DW_AT_specification // refers to die #3
22223
22224 Thus, when processing die #4, we have to pretend that we're in
22225 the context of its DW_AT_specification, namely the contex of die
22226 #3. */
22227 spec_cu = cu;
22228 spec_die = die_specification (die, &spec_cu);
22229 if (spec_die == NULL)
22230 parent = die->parent;
22231 else
22232 {
22233 parent = spec_die->parent;
22234 cu = spec_cu;
22235 }
22236
22237 if (parent == NULL)
22238 return "";
22239 else if (parent->building_fullname)
22240 {
22241 const char *name;
22242 const char *parent_name;
22243
22244 /* It has been seen on RealView 2.2 built binaries,
22245 DW_TAG_template_type_param types actually _defined_ as
22246 children of the parent class:
22247
22248 enum E {};
22249 template class <class Enum> Class{};
22250 Class<enum E> class_e;
22251
22252 1: DW_TAG_class_type (Class)
22253 2: DW_TAG_enumeration_type (E)
22254 3: DW_TAG_enumerator (enum1:0)
22255 3: DW_TAG_enumerator (enum2:1)
22256 ...
22257 2: DW_TAG_template_type_param
22258 DW_AT_type DW_FORM_ref_udata (E)
22259
22260 Besides being broken debug info, it can put GDB into an
22261 infinite loop. Consider:
22262
22263 When we're building the full name for Class<E>, we'll start
22264 at Class, and go look over its template type parameters,
22265 finding E. We'll then try to build the full name of E, and
22266 reach here. We're now trying to build the full name of E,
22267 and look over the parent DIE for containing scope. In the
22268 broken case, if we followed the parent DIE of E, we'd again
22269 find Class, and once again go look at its template type
22270 arguments, etc., etc. Simply don't consider such parent die
22271 as source-level parent of this die (it can't be, the language
22272 doesn't allow it), and break the loop here. */
22273 name = dwarf2_name (die, cu);
22274 parent_name = dwarf2_name (parent, cu);
22275 complaint (&symfile_complaints,
22276 _("template param type '%s' defined within parent '%s'"),
22277 name ? name : "<unknown>",
22278 parent_name ? parent_name : "<unknown>");
22279 return "";
22280 }
22281 else
22282 switch (parent->tag)
22283 {
22284 case DW_TAG_namespace:
22285 parent_type = read_type_die (parent, cu);
22286 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22287 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22288 Work around this problem here. */
22289 if (cu->language == language_cplus
22290 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22291 return "";
22292 /* We give a name to even anonymous namespaces. */
22293 return TYPE_TAG_NAME (parent_type);
22294 case DW_TAG_class_type:
22295 case DW_TAG_interface_type:
22296 case DW_TAG_structure_type:
22297 case DW_TAG_union_type:
22298 case DW_TAG_module:
22299 parent_type = read_type_die (parent, cu);
22300 if (TYPE_TAG_NAME (parent_type) != NULL)
22301 return TYPE_TAG_NAME (parent_type);
22302 else
22303 /* An anonymous structure is only allowed non-static data
22304 members; no typedefs, no member functions, et cetera.
22305 So it does not need a prefix. */
22306 return "";
22307 case DW_TAG_compile_unit:
22308 case DW_TAG_partial_unit:
22309 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22310 if (cu->language == language_cplus
22311 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22312 && die->child != NULL
22313 && (die->tag == DW_TAG_class_type
22314 || die->tag == DW_TAG_structure_type
22315 || die->tag == DW_TAG_union_type))
22316 {
22317 char *name = guess_full_die_structure_name (die, cu);
22318 if (name != NULL)
22319 return name;
22320 }
22321 return "";
22322 case DW_TAG_enumeration_type:
22323 parent_type = read_type_die (parent, cu);
22324 if (TYPE_DECLARED_CLASS (parent_type))
22325 {
22326 if (TYPE_TAG_NAME (parent_type) != NULL)
22327 return TYPE_TAG_NAME (parent_type);
22328 return "";
22329 }
22330 /* Fall through. */
22331 default:
22332 return determine_prefix (parent, cu);
22333 }
22334 }
22335
22336 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22337 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22338 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22339 an obconcat, otherwise allocate storage for the result. The CU argument is
22340 used to determine the language and hence, the appropriate separator. */
22341
22342 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22343
22344 static char *
22345 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22346 int physname, struct dwarf2_cu *cu)
22347 {
22348 const char *lead = "";
22349 const char *sep;
22350
22351 if (suffix == NULL || suffix[0] == '\0'
22352 || prefix == NULL || prefix[0] == '\0')
22353 sep = "";
22354 else if (cu->language == language_d)
22355 {
22356 /* For D, the 'main' function could be defined in any module, but it
22357 should never be prefixed. */
22358 if (strcmp (suffix, "D main") == 0)
22359 {
22360 prefix = "";
22361 sep = "";
22362 }
22363 else
22364 sep = ".";
22365 }
22366 else if (cu->language == language_fortran && physname)
22367 {
22368 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22369 DW_AT_MIPS_linkage_name is preferred and used instead. */
22370
22371 lead = "__";
22372 sep = "_MOD_";
22373 }
22374 else
22375 sep = "::";
22376
22377 if (prefix == NULL)
22378 prefix = "";
22379 if (suffix == NULL)
22380 suffix = "";
22381
22382 if (obs == NULL)
22383 {
22384 char *retval
22385 = ((char *)
22386 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22387
22388 strcpy (retval, lead);
22389 strcat (retval, prefix);
22390 strcat (retval, sep);
22391 strcat (retval, suffix);
22392 return retval;
22393 }
22394 else
22395 {
22396 /* We have an obstack. */
22397 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22398 }
22399 }
22400
22401 /* Return sibling of die, NULL if no sibling. */
22402
22403 static struct die_info *
22404 sibling_die (struct die_info *die)
22405 {
22406 return die->sibling;
22407 }
22408
22409 /* Get name of a die, return NULL if not found. */
22410
22411 static const char *
22412 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22413 struct obstack *obstack)
22414 {
22415 if (name && cu->language == language_cplus)
22416 {
22417 std::string canon_name = cp_canonicalize_string (name);
22418
22419 if (!canon_name.empty ())
22420 {
22421 if (canon_name != name)
22422 name = (const char *) obstack_copy0 (obstack,
22423 canon_name.c_str (),
22424 canon_name.length ());
22425 }
22426 }
22427
22428 return name;
22429 }
22430
22431 /* Get name of a die, return NULL if not found.
22432 Anonymous namespaces are converted to their magic string. */
22433
22434 static const char *
22435 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22436 {
22437 struct attribute *attr;
22438 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22439
22440 attr = dwarf2_attr (die, DW_AT_name, cu);
22441 if ((!attr || !DW_STRING (attr))
22442 && die->tag != DW_TAG_namespace
22443 && die->tag != DW_TAG_class_type
22444 && die->tag != DW_TAG_interface_type
22445 && die->tag != DW_TAG_structure_type
22446 && die->tag != DW_TAG_union_type)
22447 return NULL;
22448
22449 switch (die->tag)
22450 {
22451 case DW_TAG_compile_unit:
22452 case DW_TAG_partial_unit:
22453 /* Compilation units have a DW_AT_name that is a filename, not
22454 a source language identifier. */
22455 case DW_TAG_enumeration_type:
22456 case DW_TAG_enumerator:
22457 /* These tags always have simple identifiers already; no need
22458 to canonicalize them. */
22459 return DW_STRING (attr);
22460
22461 case DW_TAG_namespace:
22462 if (attr != NULL && DW_STRING (attr) != NULL)
22463 return DW_STRING (attr);
22464 return CP_ANONYMOUS_NAMESPACE_STR;
22465
22466 case DW_TAG_class_type:
22467 case DW_TAG_interface_type:
22468 case DW_TAG_structure_type:
22469 case DW_TAG_union_type:
22470 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22471 structures or unions. These were of the form "._%d" in GCC 4.1,
22472 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22473 and GCC 4.4. We work around this problem by ignoring these. */
22474 if (attr && DW_STRING (attr)
22475 && (startswith (DW_STRING (attr), "._")
22476 || startswith (DW_STRING (attr), "<anonymous")))
22477 return NULL;
22478
22479 /* GCC might emit a nameless typedef that has a linkage name. See
22480 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22481 if (!attr || DW_STRING (attr) == NULL)
22482 {
22483 char *demangled = NULL;
22484
22485 attr = dw2_linkage_name_attr (die, cu);
22486 if (attr == NULL || DW_STRING (attr) == NULL)
22487 return NULL;
22488
22489 /* Avoid demangling DW_STRING (attr) the second time on a second
22490 call for the same DIE. */
22491 if (!DW_STRING_IS_CANONICAL (attr))
22492 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22493
22494 if (demangled)
22495 {
22496 const char *base;
22497
22498 /* FIXME: we already did this for the partial symbol... */
22499 DW_STRING (attr)
22500 = ((const char *)
22501 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22502 demangled, strlen (demangled)));
22503 DW_STRING_IS_CANONICAL (attr) = 1;
22504 xfree (demangled);
22505
22506 /* Strip any leading namespaces/classes, keep only the base name.
22507 DW_AT_name for named DIEs does not contain the prefixes. */
22508 base = strrchr (DW_STRING (attr), ':');
22509 if (base && base > DW_STRING (attr) && base[-1] == ':')
22510 return &base[1];
22511 else
22512 return DW_STRING (attr);
22513 }
22514 }
22515 break;
22516
22517 default:
22518 break;
22519 }
22520
22521 if (!DW_STRING_IS_CANONICAL (attr))
22522 {
22523 DW_STRING (attr)
22524 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22525 &objfile->per_bfd->storage_obstack);
22526 DW_STRING_IS_CANONICAL (attr) = 1;
22527 }
22528 return DW_STRING (attr);
22529 }
22530
22531 /* Return the die that this die in an extension of, or NULL if there
22532 is none. *EXT_CU is the CU containing DIE on input, and the CU
22533 containing the return value on output. */
22534
22535 static struct die_info *
22536 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22537 {
22538 struct attribute *attr;
22539
22540 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22541 if (attr == NULL)
22542 return NULL;
22543
22544 return follow_die_ref (die, attr, ext_cu);
22545 }
22546
22547 /* Convert a DIE tag into its string name. */
22548
22549 static const char *
22550 dwarf_tag_name (unsigned tag)
22551 {
22552 const char *name = get_DW_TAG_name (tag);
22553
22554 if (name == NULL)
22555 return "DW_TAG_<unknown>";
22556
22557 return name;
22558 }
22559
22560 /* Convert a DWARF attribute code into its string name. */
22561
22562 static const char *
22563 dwarf_attr_name (unsigned attr)
22564 {
22565 const char *name;
22566
22567 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22568 if (attr == DW_AT_MIPS_fde)
22569 return "DW_AT_MIPS_fde";
22570 #else
22571 if (attr == DW_AT_HP_block_index)
22572 return "DW_AT_HP_block_index";
22573 #endif
22574
22575 name = get_DW_AT_name (attr);
22576
22577 if (name == NULL)
22578 return "DW_AT_<unknown>";
22579
22580 return name;
22581 }
22582
22583 /* Convert a DWARF value form code into its string name. */
22584
22585 static const char *
22586 dwarf_form_name (unsigned form)
22587 {
22588 const char *name = get_DW_FORM_name (form);
22589
22590 if (name == NULL)
22591 return "DW_FORM_<unknown>";
22592
22593 return name;
22594 }
22595
22596 static const char *
22597 dwarf_bool_name (unsigned mybool)
22598 {
22599 if (mybool)
22600 return "TRUE";
22601 else
22602 return "FALSE";
22603 }
22604
22605 /* Convert a DWARF type code into its string name. */
22606
22607 static const char *
22608 dwarf_type_encoding_name (unsigned enc)
22609 {
22610 const char *name = get_DW_ATE_name (enc);
22611
22612 if (name == NULL)
22613 return "DW_ATE_<unknown>";
22614
22615 return name;
22616 }
22617
22618 static void
22619 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22620 {
22621 unsigned int i;
22622
22623 print_spaces (indent, f);
22624 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22625 dwarf_tag_name (die->tag), die->abbrev,
22626 sect_offset_str (die->sect_off));
22627
22628 if (die->parent != NULL)
22629 {
22630 print_spaces (indent, f);
22631 fprintf_unfiltered (f, " parent at offset: %s\n",
22632 sect_offset_str (die->parent->sect_off));
22633 }
22634
22635 print_spaces (indent, f);
22636 fprintf_unfiltered (f, " has children: %s\n",
22637 dwarf_bool_name (die->child != NULL));
22638
22639 print_spaces (indent, f);
22640 fprintf_unfiltered (f, " attributes:\n");
22641
22642 for (i = 0; i < die->num_attrs; ++i)
22643 {
22644 print_spaces (indent, f);
22645 fprintf_unfiltered (f, " %s (%s) ",
22646 dwarf_attr_name (die->attrs[i].name),
22647 dwarf_form_name (die->attrs[i].form));
22648
22649 switch (die->attrs[i].form)
22650 {
22651 case DW_FORM_addr:
22652 case DW_FORM_GNU_addr_index:
22653 fprintf_unfiltered (f, "address: ");
22654 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22655 break;
22656 case DW_FORM_block2:
22657 case DW_FORM_block4:
22658 case DW_FORM_block:
22659 case DW_FORM_block1:
22660 fprintf_unfiltered (f, "block: size %s",
22661 pulongest (DW_BLOCK (&die->attrs[i])->size));
22662 break;
22663 case DW_FORM_exprloc:
22664 fprintf_unfiltered (f, "expression: size %s",
22665 pulongest (DW_BLOCK (&die->attrs[i])->size));
22666 break;
22667 case DW_FORM_data16:
22668 fprintf_unfiltered (f, "constant of 16 bytes");
22669 break;
22670 case DW_FORM_ref_addr:
22671 fprintf_unfiltered (f, "ref address: ");
22672 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22673 break;
22674 case DW_FORM_GNU_ref_alt:
22675 fprintf_unfiltered (f, "alt ref address: ");
22676 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22677 break;
22678 case DW_FORM_ref1:
22679 case DW_FORM_ref2:
22680 case DW_FORM_ref4:
22681 case DW_FORM_ref8:
22682 case DW_FORM_ref_udata:
22683 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22684 (long) (DW_UNSND (&die->attrs[i])));
22685 break;
22686 case DW_FORM_data1:
22687 case DW_FORM_data2:
22688 case DW_FORM_data4:
22689 case DW_FORM_data8:
22690 case DW_FORM_udata:
22691 case DW_FORM_sdata:
22692 fprintf_unfiltered (f, "constant: %s",
22693 pulongest (DW_UNSND (&die->attrs[i])));
22694 break;
22695 case DW_FORM_sec_offset:
22696 fprintf_unfiltered (f, "section offset: %s",
22697 pulongest (DW_UNSND (&die->attrs[i])));
22698 break;
22699 case DW_FORM_ref_sig8:
22700 fprintf_unfiltered (f, "signature: %s",
22701 hex_string (DW_SIGNATURE (&die->attrs[i])));
22702 break;
22703 case DW_FORM_string:
22704 case DW_FORM_strp:
22705 case DW_FORM_line_strp:
22706 case DW_FORM_GNU_str_index:
22707 case DW_FORM_GNU_strp_alt:
22708 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22709 DW_STRING (&die->attrs[i])
22710 ? DW_STRING (&die->attrs[i]) : "",
22711 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22712 break;
22713 case DW_FORM_flag:
22714 if (DW_UNSND (&die->attrs[i]))
22715 fprintf_unfiltered (f, "flag: TRUE");
22716 else
22717 fprintf_unfiltered (f, "flag: FALSE");
22718 break;
22719 case DW_FORM_flag_present:
22720 fprintf_unfiltered (f, "flag: TRUE");
22721 break;
22722 case DW_FORM_indirect:
22723 /* The reader will have reduced the indirect form to
22724 the "base form" so this form should not occur. */
22725 fprintf_unfiltered (f,
22726 "unexpected attribute form: DW_FORM_indirect");
22727 break;
22728 case DW_FORM_implicit_const:
22729 fprintf_unfiltered (f, "constant: %s",
22730 plongest (DW_SND (&die->attrs[i])));
22731 break;
22732 default:
22733 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22734 die->attrs[i].form);
22735 break;
22736 }
22737 fprintf_unfiltered (f, "\n");
22738 }
22739 }
22740
22741 static void
22742 dump_die_for_error (struct die_info *die)
22743 {
22744 dump_die_shallow (gdb_stderr, 0, die);
22745 }
22746
22747 static void
22748 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22749 {
22750 int indent = level * 4;
22751
22752 gdb_assert (die != NULL);
22753
22754 if (level >= max_level)
22755 return;
22756
22757 dump_die_shallow (f, indent, die);
22758
22759 if (die->child != NULL)
22760 {
22761 print_spaces (indent, f);
22762 fprintf_unfiltered (f, " Children:");
22763 if (level + 1 < max_level)
22764 {
22765 fprintf_unfiltered (f, "\n");
22766 dump_die_1 (f, level + 1, max_level, die->child);
22767 }
22768 else
22769 {
22770 fprintf_unfiltered (f,
22771 " [not printed, max nesting level reached]\n");
22772 }
22773 }
22774
22775 if (die->sibling != NULL && level > 0)
22776 {
22777 dump_die_1 (f, level, max_level, die->sibling);
22778 }
22779 }
22780
22781 /* This is called from the pdie macro in gdbinit.in.
22782 It's not static so gcc will keep a copy callable from gdb. */
22783
22784 void
22785 dump_die (struct die_info *die, int max_level)
22786 {
22787 dump_die_1 (gdb_stdlog, 0, max_level, die);
22788 }
22789
22790 static void
22791 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22792 {
22793 void **slot;
22794
22795 slot = htab_find_slot_with_hash (cu->die_hash, die,
22796 to_underlying (die->sect_off),
22797 INSERT);
22798
22799 *slot = die;
22800 }
22801
22802 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22803 required kind. */
22804
22805 static sect_offset
22806 dwarf2_get_ref_die_offset (const struct attribute *attr)
22807 {
22808 if (attr_form_is_ref (attr))
22809 return (sect_offset) DW_UNSND (attr);
22810
22811 complaint (&symfile_complaints,
22812 _("unsupported die ref attribute form: '%s'"),
22813 dwarf_form_name (attr->form));
22814 return {};
22815 }
22816
22817 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22818 * the value held by the attribute is not constant. */
22819
22820 static LONGEST
22821 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22822 {
22823 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22824 return DW_SND (attr);
22825 else if (attr->form == DW_FORM_udata
22826 || attr->form == DW_FORM_data1
22827 || attr->form == DW_FORM_data2
22828 || attr->form == DW_FORM_data4
22829 || attr->form == DW_FORM_data8)
22830 return DW_UNSND (attr);
22831 else
22832 {
22833 /* For DW_FORM_data16 see attr_form_is_constant. */
22834 complaint (&symfile_complaints,
22835 _("Attribute value is not a constant (%s)"),
22836 dwarf_form_name (attr->form));
22837 return default_value;
22838 }
22839 }
22840
22841 /* Follow reference or signature attribute ATTR of SRC_DIE.
22842 On entry *REF_CU is the CU of SRC_DIE.
22843 On exit *REF_CU is the CU of the result. */
22844
22845 static struct die_info *
22846 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22847 struct dwarf2_cu **ref_cu)
22848 {
22849 struct die_info *die;
22850
22851 if (attr_form_is_ref (attr))
22852 die = follow_die_ref (src_die, attr, ref_cu);
22853 else if (attr->form == DW_FORM_ref_sig8)
22854 die = follow_die_sig (src_die, attr, ref_cu);
22855 else
22856 {
22857 dump_die_for_error (src_die);
22858 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22859 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22860 }
22861
22862 return die;
22863 }
22864
22865 /* Follow reference OFFSET.
22866 On entry *REF_CU is the CU of the source die referencing OFFSET.
22867 On exit *REF_CU is the CU of the result.
22868 Returns NULL if OFFSET is invalid. */
22869
22870 static struct die_info *
22871 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22872 struct dwarf2_cu **ref_cu)
22873 {
22874 struct die_info temp_die;
22875 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22876 struct dwarf2_per_objfile *dwarf2_per_objfile
22877 = cu->per_cu->dwarf2_per_objfile;
22878 struct objfile *objfile = dwarf2_per_objfile->objfile;
22879
22880 gdb_assert (cu->per_cu != NULL);
22881
22882 target_cu = cu;
22883
22884 if (cu->per_cu->is_debug_types)
22885 {
22886 /* .debug_types CUs cannot reference anything outside their CU.
22887 If they need to, they have to reference a signatured type via
22888 DW_FORM_ref_sig8. */
22889 if (!offset_in_cu_p (&cu->header, sect_off))
22890 return NULL;
22891 }
22892 else if (offset_in_dwz != cu->per_cu->is_dwz
22893 || !offset_in_cu_p (&cu->header, sect_off))
22894 {
22895 struct dwarf2_per_cu_data *per_cu;
22896
22897 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22898 dwarf2_per_objfile);
22899
22900 /* If necessary, add it to the queue and load its DIEs. */
22901 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22902 load_full_comp_unit (per_cu, cu->language);
22903
22904 target_cu = per_cu->cu;
22905 }
22906 else if (cu->dies == NULL)
22907 {
22908 /* We're loading full DIEs during partial symbol reading. */
22909 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22910 load_full_comp_unit (cu->per_cu, language_minimal);
22911 }
22912
22913 *ref_cu = target_cu;
22914 temp_die.sect_off = sect_off;
22915 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22916 &temp_die,
22917 to_underlying (sect_off));
22918 }
22919
22920 /* Follow reference attribute ATTR of SRC_DIE.
22921 On entry *REF_CU is the CU of SRC_DIE.
22922 On exit *REF_CU is the CU of the result. */
22923
22924 static struct die_info *
22925 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22926 struct dwarf2_cu **ref_cu)
22927 {
22928 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22929 struct dwarf2_cu *cu = *ref_cu;
22930 struct die_info *die;
22931
22932 die = follow_die_offset (sect_off,
22933 (attr->form == DW_FORM_GNU_ref_alt
22934 || cu->per_cu->is_dwz),
22935 ref_cu);
22936 if (!die)
22937 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22938 "at %s [in module %s]"),
22939 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22940 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22941
22942 return die;
22943 }
22944
22945 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22946 Returned value is intended for DW_OP_call*. Returned
22947 dwarf2_locexpr_baton->data has lifetime of
22948 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22949
22950 struct dwarf2_locexpr_baton
22951 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22952 struct dwarf2_per_cu_data *per_cu,
22953 CORE_ADDR (*get_frame_pc) (void *baton),
22954 void *baton)
22955 {
22956 struct dwarf2_cu *cu;
22957 struct die_info *die;
22958 struct attribute *attr;
22959 struct dwarf2_locexpr_baton retval;
22960 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22961 struct dwarf2_per_objfile *dwarf2_per_objfile
22962 = get_dwarf2_per_objfile (objfile);
22963
22964 if (per_cu->cu == NULL)
22965 load_cu (per_cu);
22966 cu = per_cu->cu;
22967 if (cu == NULL)
22968 {
22969 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22970 Instead just throw an error, not much else we can do. */
22971 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22972 sect_offset_str (sect_off), objfile_name (objfile));
22973 }
22974
22975 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22976 if (!die)
22977 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22978 sect_offset_str (sect_off), objfile_name (objfile));
22979
22980 attr = dwarf2_attr (die, DW_AT_location, cu);
22981 if (!attr)
22982 {
22983 /* DWARF: "If there is no such attribute, then there is no effect.".
22984 DATA is ignored if SIZE is 0. */
22985
22986 retval.data = NULL;
22987 retval.size = 0;
22988 }
22989 else if (attr_form_is_section_offset (attr))
22990 {
22991 struct dwarf2_loclist_baton loclist_baton;
22992 CORE_ADDR pc = (*get_frame_pc) (baton);
22993 size_t size;
22994
22995 fill_in_loclist_baton (cu, &loclist_baton, attr);
22996
22997 retval.data = dwarf2_find_location_expression (&loclist_baton,
22998 &size, pc);
22999 retval.size = size;
23000 }
23001 else
23002 {
23003 if (!attr_form_is_block (attr))
23004 error (_("Dwarf Error: DIE at %s referenced in module %s "
23005 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23006 sect_offset_str (sect_off), objfile_name (objfile));
23007
23008 retval.data = DW_BLOCK (attr)->data;
23009 retval.size = DW_BLOCK (attr)->size;
23010 }
23011 retval.per_cu = cu->per_cu;
23012
23013 age_cached_comp_units (dwarf2_per_objfile);
23014
23015 return retval;
23016 }
23017
23018 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23019 offset. */
23020
23021 struct dwarf2_locexpr_baton
23022 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23023 struct dwarf2_per_cu_data *per_cu,
23024 CORE_ADDR (*get_frame_pc) (void *baton),
23025 void *baton)
23026 {
23027 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23028
23029 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23030 }
23031
23032 /* Write a constant of a given type as target-ordered bytes into
23033 OBSTACK. */
23034
23035 static const gdb_byte *
23036 write_constant_as_bytes (struct obstack *obstack,
23037 enum bfd_endian byte_order,
23038 struct type *type,
23039 ULONGEST value,
23040 LONGEST *len)
23041 {
23042 gdb_byte *result;
23043
23044 *len = TYPE_LENGTH (type);
23045 result = (gdb_byte *) obstack_alloc (obstack, *len);
23046 store_unsigned_integer (result, *len, byte_order, value);
23047
23048 return result;
23049 }
23050
23051 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23052 pointer to the constant bytes and set LEN to the length of the
23053 data. If memory is needed, allocate it on OBSTACK. If the DIE
23054 does not have a DW_AT_const_value, return NULL. */
23055
23056 const gdb_byte *
23057 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23058 struct dwarf2_per_cu_data *per_cu,
23059 struct obstack *obstack,
23060 LONGEST *len)
23061 {
23062 struct dwarf2_cu *cu;
23063 struct die_info *die;
23064 struct attribute *attr;
23065 const gdb_byte *result = NULL;
23066 struct type *type;
23067 LONGEST value;
23068 enum bfd_endian byte_order;
23069 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23070
23071 if (per_cu->cu == NULL)
23072 load_cu (per_cu);
23073 cu = per_cu->cu;
23074 if (cu == NULL)
23075 {
23076 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23077 Instead just throw an error, not much else we can do. */
23078 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23079 sect_offset_str (sect_off), objfile_name (objfile));
23080 }
23081
23082 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23083 if (!die)
23084 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23085 sect_offset_str (sect_off), objfile_name (objfile));
23086
23087 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23088 if (attr == NULL)
23089 return NULL;
23090
23091 byte_order = (bfd_big_endian (objfile->obfd)
23092 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23093
23094 switch (attr->form)
23095 {
23096 case DW_FORM_addr:
23097 case DW_FORM_GNU_addr_index:
23098 {
23099 gdb_byte *tem;
23100
23101 *len = cu->header.addr_size;
23102 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23103 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23104 result = tem;
23105 }
23106 break;
23107 case DW_FORM_string:
23108 case DW_FORM_strp:
23109 case DW_FORM_GNU_str_index:
23110 case DW_FORM_GNU_strp_alt:
23111 /* DW_STRING is already allocated on the objfile obstack, point
23112 directly to it. */
23113 result = (const gdb_byte *) DW_STRING (attr);
23114 *len = strlen (DW_STRING (attr));
23115 break;
23116 case DW_FORM_block1:
23117 case DW_FORM_block2:
23118 case DW_FORM_block4:
23119 case DW_FORM_block:
23120 case DW_FORM_exprloc:
23121 case DW_FORM_data16:
23122 result = DW_BLOCK (attr)->data;
23123 *len = DW_BLOCK (attr)->size;
23124 break;
23125
23126 /* The DW_AT_const_value attributes are supposed to carry the
23127 symbol's value "represented as it would be on the target
23128 architecture." By the time we get here, it's already been
23129 converted to host endianness, so we just need to sign- or
23130 zero-extend it as appropriate. */
23131 case DW_FORM_data1:
23132 type = die_type (die, cu);
23133 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23134 if (result == NULL)
23135 result = write_constant_as_bytes (obstack, byte_order,
23136 type, value, len);
23137 break;
23138 case DW_FORM_data2:
23139 type = die_type (die, cu);
23140 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23141 if (result == NULL)
23142 result = write_constant_as_bytes (obstack, byte_order,
23143 type, value, len);
23144 break;
23145 case DW_FORM_data4:
23146 type = die_type (die, cu);
23147 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23148 if (result == NULL)
23149 result = write_constant_as_bytes (obstack, byte_order,
23150 type, value, len);
23151 break;
23152 case DW_FORM_data8:
23153 type = die_type (die, cu);
23154 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23155 if (result == NULL)
23156 result = write_constant_as_bytes (obstack, byte_order,
23157 type, value, len);
23158 break;
23159
23160 case DW_FORM_sdata:
23161 case DW_FORM_implicit_const:
23162 type = die_type (die, cu);
23163 result = write_constant_as_bytes (obstack, byte_order,
23164 type, DW_SND (attr), len);
23165 break;
23166
23167 case DW_FORM_udata:
23168 type = die_type (die, cu);
23169 result = write_constant_as_bytes (obstack, byte_order,
23170 type, DW_UNSND (attr), len);
23171 break;
23172
23173 default:
23174 complaint (&symfile_complaints,
23175 _("unsupported const value attribute form: '%s'"),
23176 dwarf_form_name (attr->form));
23177 break;
23178 }
23179
23180 return result;
23181 }
23182
23183 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23184 valid type for this die is found. */
23185
23186 struct type *
23187 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23188 struct dwarf2_per_cu_data *per_cu)
23189 {
23190 struct dwarf2_cu *cu;
23191 struct die_info *die;
23192
23193 if (per_cu->cu == NULL)
23194 load_cu (per_cu);
23195 cu = per_cu->cu;
23196 if (!cu)
23197 return NULL;
23198
23199 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23200 if (!die)
23201 return NULL;
23202
23203 return die_type (die, cu);
23204 }
23205
23206 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23207 PER_CU. */
23208
23209 struct type *
23210 dwarf2_get_die_type (cu_offset die_offset,
23211 struct dwarf2_per_cu_data *per_cu)
23212 {
23213 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23214 return get_die_type_at_offset (die_offset_sect, per_cu);
23215 }
23216
23217 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23218 On entry *REF_CU is the CU of SRC_DIE.
23219 On exit *REF_CU is the CU of the result.
23220 Returns NULL if the referenced DIE isn't found. */
23221
23222 static struct die_info *
23223 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23224 struct dwarf2_cu **ref_cu)
23225 {
23226 struct die_info temp_die;
23227 struct dwarf2_cu *sig_cu;
23228 struct die_info *die;
23229
23230 /* While it might be nice to assert sig_type->type == NULL here,
23231 we can get here for DW_AT_imported_declaration where we need
23232 the DIE not the type. */
23233
23234 /* If necessary, add it to the queue and load its DIEs. */
23235
23236 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23237 read_signatured_type (sig_type);
23238
23239 sig_cu = sig_type->per_cu.cu;
23240 gdb_assert (sig_cu != NULL);
23241 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23242 temp_die.sect_off = sig_type->type_offset_in_section;
23243 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23244 to_underlying (temp_die.sect_off));
23245 if (die)
23246 {
23247 struct dwarf2_per_objfile *dwarf2_per_objfile
23248 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23249
23250 /* For .gdb_index version 7 keep track of included TUs.
23251 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23252 if (dwarf2_per_objfile->index_table != NULL
23253 && dwarf2_per_objfile->index_table->version <= 7)
23254 {
23255 VEC_safe_push (dwarf2_per_cu_ptr,
23256 (*ref_cu)->per_cu->imported_symtabs,
23257 sig_cu->per_cu);
23258 }
23259
23260 *ref_cu = sig_cu;
23261 return die;
23262 }
23263
23264 return NULL;
23265 }
23266
23267 /* Follow signatured type referenced by ATTR in SRC_DIE.
23268 On entry *REF_CU is the CU of SRC_DIE.
23269 On exit *REF_CU is the CU of the result.
23270 The result is the DIE of the type.
23271 If the referenced type cannot be found an error is thrown. */
23272
23273 static struct die_info *
23274 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23275 struct dwarf2_cu **ref_cu)
23276 {
23277 ULONGEST signature = DW_SIGNATURE (attr);
23278 struct signatured_type *sig_type;
23279 struct die_info *die;
23280
23281 gdb_assert (attr->form == DW_FORM_ref_sig8);
23282
23283 sig_type = lookup_signatured_type (*ref_cu, signature);
23284 /* sig_type will be NULL if the signatured type is missing from
23285 the debug info. */
23286 if (sig_type == NULL)
23287 {
23288 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23289 " from DIE at %s [in module %s]"),
23290 hex_string (signature), sect_offset_str (src_die->sect_off),
23291 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23292 }
23293
23294 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23295 if (die == NULL)
23296 {
23297 dump_die_for_error (src_die);
23298 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23299 " from DIE at %s [in module %s]"),
23300 hex_string (signature), sect_offset_str (src_die->sect_off),
23301 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23302 }
23303
23304 return die;
23305 }
23306
23307 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23308 reading in and processing the type unit if necessary. */
23309
23310 static struct type *
23311 get_signatured_type (struct die_info *die, ULONGEST signature,
23312 struct dwarf2_cu *cu)
23313 {
23314 struct dwarf2_per_objfile *dwarf2_per_objfile
23315 = cu->per_cu->dwarf2_per_objfile;
23316 struct signatured_type *sig_type;
23317 struct dwarf2_cu *type_cu;
23318 struct die_info *type_die;
23319 struct type *type;
23320
23321 sig_type = lookup_signatured_type (cu, signature);
23322 /* sig_type will be NULL if the signatured type is missing from
23323 the debug info. */
23324 if (sig_type == NULL)
23325 {
23326 complaint (&symfile_complaints,
23327 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23328 " from DIE at %s [in module %s]"),
23329 hex_string (signature), sect_offset_str (die->sect_off),
23330 objfile_name (dwarf2_per_objfile->objfile));
23331 return build_error_marker_type (cu, die);
23332 }
23333
23334 /* If we already know the type we're done. */
23335 if (sig_type->type != NULL)
23336 return sig_type->type;
23337
23338 type_cu = cu;
23339 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23340 if (type_die != NULL)
23341 {
23342 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23343 is created. This is important, for example, because for c++ classes
23344 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23345 type = read_type_die (type_die, type_cu);
23346 if (type == NULL)
23347 {
23348 complaint (&symfile_complaints,
23349 _("Dwarf Error: Cannot build signatured type %s"
23350 " referenced from DIE at %s [in module %s]"),
23351 hex_string (signature), sect_offset_str (die->sect_off),
23352 objfile_name (dwarf2_per_objfile->objfile));
23353 type = build_error_marker_type (cu, die);
23354 }
23355 }
23356 else
23357 {
23358 complaint (&symfile_complaints,
23359 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23360 " from DIE at %s [in module %s]"),
23361 hex_string (signature), sect_offset_str (die->sect_off),
23362 objfile_name (dwarf2_per_objfile->objfile));
23363 type = build_error_marker_type (cu, die);
23364 }
23365 sig_type->type = type;
23366
23367 return type;
23368 }
23369
23370 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23371 reading in and processing the type unit if necessary. */
23372
23373 static struct type *
23374 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23375 struct dwarf2_cu *cu) /* ARI: editCase function */
23376 {
23377 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23378 if (attr_form_is_ref (attr))
23379 {
23380 struct dwarf2_cu *type_cu = cu;
23381 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23382
23383 return read_type_die (type_die, type_cu);
23384 }
23385 else if (attr->form == DW_FORM_ref_sig8)
23386 {
23387 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23388 }
23389 else
23390 {
23391 struct dwarf2_per_objfile *dwarf2_per_objfile
23392 = cu->per_cu->dwarf2_per_objfile;
23393
23394 complaint (&symfile_complaints,
23395 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23396 " at %s [in module %s]"),
23397 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23398 objfile_name (dwarf2_per_objfile->objfile));
23399 return build_error_marker_type (cu, die);
23400 }
23401 }
23402
23403 /* Load the DIEs associated with type unit PER_CU into memory. */
23404
23405 static void
23406 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23407 {
23408 struct signatured_type *sig_type;
23409
23410 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23411 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23412
23413 /* We have the per_cu, but we need the signatured_type.
23414 Fortunately this is an easy translation. */
23415 gdb_assert (per_cu->is_debug_types);
23416 sig_type = (struct signatured_type *) per_cu;
23417
23418 gdb_assert (per_cu->cu == NULL);
23419
23420 read_signatured_type (sig_type);
23421
23422 gdb_assert (per_cu->cu != NULL);
23423 }
23424
23425 /* die_reader_func for read_signatured_type.
23426 This is identical to load_full_comp_unit_reader,
23427 but is kept separate for now. */
23428
23429 static void
23430 read_signatured_type_reader (const struct die_reader_specs *reader,
23431 const gdb_byte *info_ptr,
23432 struct die_info *comp_unit_die,
23433 int has_children,
23434 void *data)
23435 {
23436 struct dwarf2_cu *cu = reader->cu;
23437
23438 gdb_assert (cu->die_hash == NULL);
23439 cu->die_hash =
23440 htab_create_alloc_ex (cu->header.length / 12,
23441 die_hash,
23442 die_eq,
23443 NULL,
23444 &cu->comp_unit_obstack,
23445 hashtab_obstack_allocate,
23446 dummy_obstack_deallocate);
23447
23448 if (has_children)
23449 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23450 &info_ptr, comp_unit_die);
23451 cu->dies = comp_unit_die;
23452 /* comp_unit_die is not stored in die_hash, no need. */
23453
23454 /* We try not to read any attributes in this function, because not
23455 all CUs needed for references have been loaded yet, and symbol
23456 table processing isn't initialized. But we have to set the CU language,
23457 or we won't be able to build types correctly.
23458 Similarly, if we do not read the producer, we can not apply
23459 producer-specific interpretation. */
23460 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23461 }
23462
23463 /* Read in a signatured type and build its CU and DIEs.
23464 If the type is a stub for the real type in a DWO file,
23465 read in the real type from the DWO file as well. */
23466
23467 static void
23468 read_signatured_type (struct signatured_type *sig_type)
23469 {
23470 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23471
23472 gdb_assert (per_cu->is_debug_types);
23473 gdb_assert (per_cu->cu == NULL);
23474
23475 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
23476 read_signatured_type_reader, NULL);
23477 sig_type->per_cu.tu_read = 1;
23478 }
23479
23480 /* Decode simple location descriptions.
23481 Given a pointer to a dwarf block that defines a location, compute
23482 the location and return the value.
23483
23484 NOTE drow/2003-11-18: This function is called in two situations
23485 now: for the address of static or global variables (partial symbols
23486 only) and for offsets into structures which are expected to be
23487 (more or less) constant. The partial symbol case should go away,
23488 and only the constant case should remain. That will let this
23489 function complain more accurately. A few special modes are allowed
23490 without complaint for global variables (for instance, global
23491 register values and thread-local values).
23492
23493 A location description containing no operations indicates that the
23494 object is optimized out. The return value is 0 for that case.
23495 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23496 callers will only want a very basic result and this can become a
23497 complaint.
23498
23499 Note that stack[0] is unused except as a default error return. */
23500
23501 static CORE_ADDR
23502 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23503 {
23504 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23505 size_t i;
23506 size_t size = blk->size;
23507 const gdb_byte *data = blk->data;
23508 CORE_ADDR stack[64];
23509 int stacki;
23510 unsigned int bytes_read, unsnd;
23511 gdb_byte op;
23512
23513 i = 0;
23514 stacki = 0;
23515 stack[stacki] = 0;
23516 stack[++stacki] = 0;
23517
23518 while (i < size)
23519 {
23520 op = data[i++];
23521 switch (op)
23522 {
23523 case DW_OP_lit0:
23524 case DW_OP_lit1:
23525 case DW_OP_lit2:
23526 case DW_OP_lit3:
23527 case DW_OP_lit4:
23528 case DW_OP_lit5:
23529 case DW_OP_lit6:
23530 case DW_OP_lit7:
23531 case DW_OP_lit8:
23532 case DW_OP_lit9:
23533 case DW_OP_lit10:
23534 case DW_OP_lit11:
23535 case DW_OP_lit12:
23536 case DW_OP_lit13:
23537 case DW_OP_lit14:
23538 case DW_OP_lit15:
23539 case DW_OP_lit16:
23540 case DW_OP_lit17:
23541 case DW_OP_lit18:
23542 case DW_OP_lit19:
23543 case DW_OP_lit20:
23544 case DW_OP_lit21:
23545 case DW_OP_lit22:
23546 case DW_OP_lit23:
23547 case DW_OP_lit24:
23548 case DW_OP_lit25:
23549 case DW_OP_lit26:
23550 case DW_OP_lit27:
23551 case DW_OP_lit28:
23552 case DW_OP_lit29:
23553 case DW_OP_lit30:
23554 case DW_OP_lit31:
23555 stack[++stacki] = op - DW_OP_lit0;
23556 break;
23557
23558 case DW_OP_reg0:
23559 case DW_OP_reg1:
23560 case DW_OP_reg2:
23561 case DW_OP_reg3:
23562 case DW_OP_reg4:
23563 case DW_OP_reg5:
23564 case DW_OP_reg6:
23565 case DW_OP_reg7:
23566 case DW_OP_reg8:
23567 case DW_OP_reg9:
23568 case DW_OP_reg10:
23569 case DW_OP_reg11:
23570 case DW_OP_reg12:
23571 case DW_OP_reg13:
23572 case DW_OP_reg14:
23573 case DW_OP_reg15:
23574 case DW_OP_reg16:
23575 case DW_OP_reg17:
23576 case DW_OP_reg18:
23577 case DW_OP_reg19:
23578 case DW_OP_reg20:
23579 case DW_OP_reg21:
23580 case DW_OP_reg22:
23581 case DW_OP_reg23:
23582 case DW_OP_reg24:
23583 case DW_OP_reg25:
23584 case DW_OP_reg26:
23585 case DW_OP_reg27:
23586 case DW_OP_reg28:
23587 case DW_OP_reg29:
23588 case DW_OP_reg30:
23589 case DW_OP_reg31:
23590 stack[++stacki] = op - DW_OP_reg0;
23591 if (i < size)
23592 dwarf2_complex_location_expr_complaint ();
23593 break;
23594
23595 case DW_OP_regx:
23596 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23597 i += bytes_read;
23598 stack[++stacki] = unsnd;
23599 if (i < size)
23600 dwarf2_complex_location_expr_complaint ();
23601 break;
23602
23603 case DW_OP_addr:
23604 stack[++stacki] = read_address (objfile->obfd, &data[i],
23605 cu, &bytes_read);
23606 i += bytes_read;
23607 break;
23608
23609 case DW_OP_const1u:
23610 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23611 i += 1;
23612 break;
23613
23614 case DW_OP_const1s:
23615 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23616 i += 1;
23617 break;
23618
23619 case DW_OP_const2u:
23620 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23621 i += 2;
23622 break;
23623
23624 case DW_OP_const2s:
23625 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23626 i += 2;
23627 break;
23628
23629 case DW_OP_const4u:
23630 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23631 i += 4;
23632 break;
23633
23634 case DW_OP_const4s:
23635 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23636 i += 4;
23637 break;
23638
23639 case DW_OP_const8u:
23640 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23641 i += 8;
23642 break;
23643
23644 case DW_OP_constu:
23645 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23646 &bytes_read);
23647 i += bytes_read;
23648 break;
23649
23650 case DW_OP_consts:
23651 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23652 i += bytes_read;
23653 break;
23654
23655 case DW_OP_dup:
23656 stack[stacki + 1] = stack[stacki];
23657 stacki++;
23658 break;
23659
23660 case DW_OP_plus:
23661 stack[stacki - 1] += stack[stacki];
23662 stacki--;
23663 break;
23664
23665 case DW_OP_plus_uconst:
23666 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23667 &bytes_read);
23668 i += bytes_read;
23669 break;
23670
23671 case DW_OP_minus:
23672 stack[stacki - 1] -= stack[stacki];
23673 stacki--;
23674 break;
23675
23676 case DW_OP_deref:
23677 /* If we're not the last op, then we definitely can't encode
23678 this using GDB's address_class enum. This is valid for partial
23679 global symbols, although the variable's address will be bogus
23680 in the psymtab. */
23681 if (i < size)
23682 dwarf2_complex_location_expr_complaint ();
23683 break;
23684
23685 case DW_OP_GNU_push_tls_address:
23686 case DW_OP_form_tls_address:
23687 /* The top of the stack has the offset from the beginning
23688 of the thread control block at which the variable is located. */
23689 /* Nothing should follow this operator, so the top of stack would
23690 be returned. */
23691 /* This is valid for partial global symbols, but the variable's
23692 address will be bogus in the psymtab. Make it always at least
23693 non-zero to not look as a variable garbage collected by linker
23694 which have DW_OP_addr 0. */
23695 if (i < size)
23696 dwarf2_complex_location_expr_complaint ();
23697 stack[stacki]++;
23698 break;
23699
23700 case DW_OP_GNU_uninit:
23701 break;
23702
23703 case DW_OP_GNU_addr_index:
23704 case DW_OP_GNU_const_index:
23705 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23706 &bytes_read);
23707 i += bytes_read;
23708 break;
23709
23710 default:
23711 {
23712 const char *name = get_DW_OP_name (op);
23713
23714 if (name)
23715 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
23716 name);
23717 else
23718 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
23719 op);
23720 }
23721
23722 return (stack[stacki]);
23723 }
23724
23725 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23726 outside of the allocated space. Also enforce minimum>0. */
23727 if (stacki >= ARRAY_SIZE (stack) - 1)
23728 {
23729 complaint (&symfile_complaints,
23730 _("location description stack overflow"));
23731 return 0;
23732 }
23733
23734 if (stacki <= 0)
23735 {
23736 complaint (&symfile_complaints,
23737 _("location description stack underflow"));
23738 return 0;
23739 }
23740 }
23741 return (stack[stacki]);
23742 }
23743
23744 /* memory allocation interface */
23745
23746 static struct dwarf_block *
23747 dwarf_alloc_block (struct dwarf2_cu *cu)
23748 {
23749 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23750 }
23751
23752 static struct die_info *
23753 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23754 {
23755 struct die_info *die;
23756 size_t size = sizeof (struct die_info);
23757
23758 if (num_attrs > 1)
23759 size += (num_attrs - 1) * sizeof (struct attribute);
23760
23761 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23762 memset (die, 0, sizeof (struct die_info));
23763 return (die);
23764 }
23765
23766 \f
23767 /* Macro support. */
23768
23769 /* Return file name relative to the compilation directory of file number I in
23770 *LH's file name table. The result is allocated using xmalloc; the caller is
23771 responsible for freeing it. */
23772
23773 static char *
23774 file_file_name (int file, struct line_header *lh)
23775 {
23776 /* Is the file number a valid index into the line header's file name
23777 table? Remember that file numbers start with one, not zero. */
23778 if (1 <= file && file <= lh->file_names.size ())
23779 {
23780 const file_entry &fe = lh->file_names[file - 1];
23781
23782 if (!IS_ABSOLUTE_PATH (fe.name))
23783 {
23784 const char *dir = fe.include_dir (lh);
23785 if (dir != NULL)
23786 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23787 }
23788 return xstrdup (fe.name);
23789 }
23790 else
23791 {
23792 /* The compiler produced a bogus file number. We can at least
23793 record the macro definitions made in the file, even if we
23794 won't be able to find the file by name. */
23795 char fake_name[80];
23796
23797 xsnprintf (fake_name, sizeof (fake_name),
23798 "<bad macro file number %d>", file);
23799
23800 complaint (&symfile_complaints,
23801 _("bad file number in macro information (%d)"),
23802 file);
23803
23804 return xstrdup (fake_name);
23805 }
23806 }
23807
23808 /* Return the full name of file number I in *LH's file name table.
23809 Use COMP_DIR as the name of the current directory of the
23810 compilation. The result is allocated using xmalloc; the caller is
23811 responsible for freeing it. */
23812 static char *
23813 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23814 {
23815 /* Is the file number a valid index into the line header's file name
23816 table? Remember that file numbers start with one, not zero. */
23817 if (1 <= file && file <= lh->file_names.size ())
23818 {
23819 char *relative = file_file_name (file, lh);
23820
23821 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23822 return relative;
23823 return reconcat (relative, comp_dir, SLASH_STRING,
23824 relative, (char *) NULL);
23825 }
23826 else
23827 return file_file_name (file, lh);
23828 }
23829
23830
23831 static struct macro_source_file *
23832 macro_start_file (int file, int line,
23833 struct macro_source_file *current_file,
23834 struct line_header *lh)
23835 {
23836 /* File name relative to the compilation directory of this source file. */
23837 char *file_name = file_file_name (file, lh);
23838
23839 if (! current_file)
23840 {
23841 /* Note: We don't create a macro table for this compilation unit
23842 at all until we actually get a filename. */
23843 struct macro_table *macro_table = get_macro_table ();
23844
23845 /* If we have no current file, then this must be the start_file
23846 directive for the compilation unit's main source file. */
23847 current_file = macro_set_main (macro_table, file_name);
23848 macro_define_special (macro_table);
23849 }
23850 else
23851 current_file = macro_include (current_file, line, file_name);
23852
23853 xfree (file_name);
23854
23855 return current_file;
23856 }
23857
23858 static const char *
23859 consume_improper_spaces (const char *p, const char *body)
23860 {
23861 if (*p == ' ')
23862 {
23863 complaint (&symfile_complaints,
23864 _("macro definition contains spaces "
23865 "in formal argument list:\n`%s'"),
23866 body);
23867
23868 while (*p == ' ')
23869 p++;
23870 }
23871
23872 return p;
23873 }
23874
23875
23876 static void
23877 parse_macro_definition (struct macro_source_file *file, int line,
23878 const char *body)
23879 {
23880 const char *p;
23881
23882 /* The body string takes one of two forms. For object-like macro
23883 definitions, it should be:
23884
23885 <macro name> " " <definition>
23886
23887 For function-like macro definitions, it should be:
23888
23889 <macro name> "() " <definition>
23890 or
23891 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23892
23893 Spaces may appear only where explicitly indicated, and in the
23894 <definition>.
23895
23896 The Dwarf 2 spec says that an object-like macro's name is always
23897 followed by a space, but versions of GCC around March 2002 omit
23898 the space when the macro's definition is the empty string.
23899
23900 The Dwarf 2 spec says that there should be no spaces between the
23901 formal arguments in a function-like macro's formal argument list,
23902 but versions of GCC around March 2002 include spaces after the
23903 commas. */
23904
23905
23906 /* Find the extent of the macro name. The macro name is terminated
23907 by either a space or null character (for an object-like macro) or
23908 an opening paren (for a function-like macro). */
23909 for (p = body; *p; p++)
23910 if (*p == ' ' || *p == '(')
23911 break;
23912
23913 if (*p == ' ' || *p == '\0')
23914 {
23915 /* It's an object-like macro. */
23916 int name_len = p - body;
23917 char *name = savestring (body, name_len);
23918 const char *replacement;
23919
23920 if (*p == ' ')
23921 replacement = body + name_len + 1;
23922 else
23923 {
23924 dwarf2_macro_malformed_definition_complaint (body);
23925 replacement = body + name_len;
23926 }
23927
23928 macro_define_object (file, line, name, replacement);
23929
23930 xfree (name);
23931 }
23932 else if (*p == '(')
23933 {
23934 /* It's a function-like macro. */
23935 char *name = savestring (body, p - body);
23936 int argc = 0;
23937 int argv_size = 1;
23938 char **argv = XNEWVEC (char *, argv_size);
23939
23940 p++;
23941
23942 p = consume_improper_spaces (p, body);
23943
23944 /* Parse the formal argument list. */
23945 while (*p && *p != ')')
23946 {
23947 /* Find the extent of the current argument name. */
23948 const char *arg_start = p;
23949
23950 while (*p && *p != ',' && *p != ')' && *p != ' ')
23951 p++;
23952
23953 if (! *p || p == arg_start)
23954 dwarf2_macro_malformed_definition_complaint (body);
23955 else
23956 {
23957 /* Make sure argv has room for the new argument. */
23958 if (argc >= argv_size)
23959 {
23960 argv_size *= 2;
23961 argv = XRESIZEVEC (char *, argv, argv_size);
23962 }
23963
23964 argv[argc++] = savestring (arg_start, p - arg_start);
23965 }
23966
23967 p = consume_improper_spaces (p, body);
23968
23969 /* Consume the comma, if present. */
23970 if (*p == ',')
23971 {
23972 p++;
23973
23974 p = consume_improper_spaces (p, body);
23975 }
23976 }
23977
23978 if (*p == ')')
23979 {
23980 p++;
23981
23982 if (*p == ' ')
23983 /* Perfectly formed definition, no complaints. */
23984 macro_define_function (file, line, name,
23985 argc, (const char **) argv,
23986 p + 1);
23987 else if (*p == '\0')
23988 {
23989 /* Complain, but do define it. */
23990 dwarf2_macro_malformed_definition_complaint (body);
23991 macro_define_function (file, line, name,
23992 argc, (const char **) argv,
23993 p);
23994 }
23995 else
23996 /* Just complain. */
23997 dwarf2_macro_malformed_definition_complaint (body);
23998 }
23999 else
24000 /* Just complain. */
24001 dwarf2_macro_malformed_definition_complaint (body);
24002
24003 xfree (name);
24004 {
24005 int i;
24006
24007 for (i = 0; i < argc; i++)
24008 xfree (argv[i]);
24009 }
24010 xfree (argv);
24011 }
24012 else
24013 dwarf2_macro_malformed_definition_complaint (body);
24014 }
24015
24016 /* Skip some bytes from BYTES according to the form given in FORM.
24017 Returns the new pointer. */
24018
24019 static const gdb_byte *
24020 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24021 enum dwarf_form form,
24022 unsigned int offset_size,
24023 struct dwarf2_section_info *section)
24024 {
24025 unsigned int bytes_read;
24026
24027 switch (form)
24028 {
24029 case DW_FORM_data1:
24030 case DW_FORM_flag:
24031 ++bytes;
24032 break;
24033
24034 case DW_FORM_data2:
24035 bytes += 2;
24036 break;
24037
24038 case DW_FORM_data4:
24039 bytes += 4;
24040 break;
24041
24042 case DW_FORM_data8:
24043 bytes += 8;
24044 break;
24045
24046 case DW_FORM_data16:
24047 bytes += 16;
24048 break;
24049
24050 case DW_FORM_string:
24051 read_direct_string (abfd, bytes, &bytes_read);
24052 bytes += bytes_read;
24053 break;
24054
24055 case DW_FORM_sec_offset:
24056 case DW_FORM_strp:
24057 case DW_FORM_GNU_strp_alt:
24058 bytes += offset_size;
24059 break;
24060
24061 case DW_FORM_block:
24062 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24063 bytes += bytes_read;
24064 break;
24065
24066 case DW_FORM_block1:
24067 bytes += 1 + read_1_byte (abfd, bytes);
24068 break;
24069 case DW_FORM_block2:
24070 bytes += 2 + read_2_bytes (abfd, bytes);
24071 break;
24072 case DW_FORM_block4:
24073 bytes += 4 + read_4_bytes (abfd, bytes);
24074 break;
24075
24076 case DW_FORM_sdata:
24077 case DW_FORM_udata:
24078 case DW_FORM_GNU_addr_index:
24079 case DW_FORM_GNU_str_index:
24080 bytes = gdb_skip_leb128 (bytes, buffer_end);
24081 if (bytes == NULL)
24082 {
24083 dwarf2_section_buffer_overflow_complaint (section);
24084 return NULL;
24085 }
24086 break;
24087
24088 case DW_FORM_implicit_const:
24089 break;
24090
24091 default:
24092 {
24093 complaint (&symfile_complaints,
24094 _("invalid form 0x%x in `%s'"),
24095 form, get_section_name (section));
24096 return NULL;
24097 }
24098 }
24099
24100 return bytes;
24101 }
24102
24103 /* A helper for dwarf_decode_macros that handles skipping an unknown
24104 opcode. Returns an updated pointer to the macro data buffer; or,
24105 on error, issues a complaint and returns NULL. */
24106
24107 static const gdb_byte *
24108 skip_unknown_opcode (unsigned int opcode,
24109 const gdb_byte **opcode_definitions,
24110 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24111 bfd *abfd,
24112 unsigned int offset_size,
24113 struct dwarf2_section_info *section)
24114 {
24115 unsigned int bytes_read, i;
24116 unsigned long arg;
24117 const gdb_byte *defn;
24118
24119 if (opcode_definitions[opcode] == NULL)
24120 {
24121 complaint (&symfile_complaints,
24122 _("unrecognized DW_MACFINO opcode 0x%x"),
24123 opcode);
24124 return NULL;
24125 }
24126
24127 defn = opcode_definitions[opcode];
24128 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24129 defn += bytes_read;
24130
24131 for (i = 0; i < arg; ++i)
24132 {
24133 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24134 (enum dwarf_form) defn[i], offset_size,
24135 section);
24136 if (mac_ptr == NULL)
24137 {
24138 /* skip_form_bytes already issued the complaint. */
24139 return NULL;
24140 }
24141 }
24142
24143 return mac_ptr;
24144 }
24145
24146 /* A helper function which parses the header of a macro section.
24147 If the macro section is the extended (for now called "GNU") type,
24148 then this updates *OFFSET_SIZE. Returns a pointer to just after
24149 the header, or issues a complaint and returns NULL on error. */
24150
24151 static const gdb_byte *
24152 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24153 bfd *abfd,
24154 const gdb_byte *mac_ptr,
24155 unsigned int *offset_size,
24156 int section_is_gnu)
24157 {
24158 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24159
24160 if (section_is_gnu)
24161 {
24162 unsigned int version, flags;
24163
24164 version = read_2_bytes (abfd, mac_ptr);
24165 if (version != 4 && version != 5)
24166 {
24167 complaint (&symfile_complaints,
24168 _("unrecognized version `%d' in .debug_macro section"),
24169 version);
24170 return NULL;
24171 }
24172 mac_ptr += 2;
24173
24174 flags = read_1_byte (abfd, mac_ptr);
24175 ++mac_ptr;
24176 *offset_size = (flags & 1) ? 8 : 4;
24177
24178 if ((flags & 2) != 0)
24179 /* We don't need the line table offset. */
24180 mac_ptr += *offset_size;
24181
24182 /* Vendor opcode descriptions. */
24183 if ((flags & 4) != 0)
24184 {
24185 unsigned int i, count;
24186
24187 count = read_1_byte (abfd, mac_ptr);
24188 ++mac_ptr;
24189 for (i = 0; i < count; ++i)
24190 {
24191 unsigned int opcode, bytes_read;
24192 unsigned long arg;
24193
24194 opcode = read_1_byte (abfd, mac_ptr);
24195 ++mac_ptr;
24196 opcode_definitions[opcode] = mac_ptr;
24197 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24198 mac_ptr += bytes_read;
24199 mac_ptr += arg;
24200 }
24201 }
24202 }
24203
24204 return mac_ptr;
24205 }
24206
24207 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24208 including DW_MACRO_import. */
24209
24210 static void
24211 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24212 bfd *abfd,
24213 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24214 struct macro_source_file *current_file,
24215 struct line_header *lh,
24216 struct dwarf2_section_info *section,
24217 int section_is_gnu, int section_is_dwz,
24218 unsigned int offset_size,
24219 htab_t include_hash)
24220 {
24221 struct objfile *objfile = dwarf2_per_objfile->objfile;
24222 enum dwarf_macro_record_type macinfo_type;
24223 int at_commandline;
24224 const gdb_byte *opcode_definitions[256];
24225
24226 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24227 &offset_size, section_is_gnu);
24228 if (mac_ptr == NULL)
24229 {
24230 /* We already issued a complaint. */
24231 return;
24232 }
24233
24234 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24235 GDB is still reading the definitions from command line. First
24236 DW_MACINFO_start_file will need to be ignored as it was already executed
24237 to create CURRENT_FILE for the main source holding also the command line
24238 definitions. On first met DW_MACINFO_start_file this flag is reset to
24239 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24240
24241 at_commandline = 1;
24242
24243 do
24244 {
24245 /* Do we at least have room for a macinfo type byte? */
24246 if (mac_ptr >= mac_end)
24247 {
24248 dwarf2_section_buffer_overflow_complaint (section);
24249 break;
24250 }
24251
24252 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24253 mac_ptr++;
24254
24255 /* Note that we rely on the fact that the corresponding GNU and
24256 DWARF constants are the same. */
24257 DIAGNOSTIC_PUSH
24258 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24259 switch (macinfo_type)
24260 {
24261 /* A zero macinfo type indicates the end of the macro
24262 information. */
24263 case 0:
24264 break;
24265
24266 case DW_MACRO_define:
24267 case DW_MACRO_undef:
24268 case DW_MACRO_define_strp:
24269 case DW_MACRO_undef_strp:
24270 case DW_MACRO_define_sup:
24271 case DW_MACRO_undef_sup:
24272 {
24273 unsigned int bytes_read;
24274 int line;
24275 const char *body;
24276 int is_define;
24277
24278 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24279 mac_ptr += bytes_read;
24280
24281 if (macinfo_type == DW_MACRO_define
24282 || macinfo_type == DW_MACRO_undef)
24283 {
24284 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24285 mac_ptr += bytes_read;
24286 }
24287 else
24288 {
24289 LONGEST str_offset;
24290
24291 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24292 mac_ptr += offset_size;
24293
24294 if (macinfo_type == DW_MACRO_define_sup
24295 || macinfo_type == DW_MACRO_undef_sup
24296 || section_is_dwz)
24297 {
24298 struct dwz_file *dwz
24299 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24300
24301 body = read_indirect_string_from_dwz (objfile,
24302 dwz, str_offset);
24303 }
24304 else
24305 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24306 abfd, str_offset);
24307 }
24308
24309 is_define = (macinfo_type == DW_MACRO_define
24310 || macinfo_type == DW_MACRO_define_strp
24311 || macinfo_type == DW_MACRO_define_sup);
24312 if (! current_file)
24313 {
24314 /* DWARF violation as no main source is present. */
24315 complaint (&symfile_complaints,
24316 _("debug info with no main source gives macro %s "
24317 "on line %d: %s"),
24318 is_define ? _("definition") : _("undefinition"),
24319 line, body);
24320 break;
24321 }
24322 if ((line == 0 && !at_commandline)
24323 || (line != 0 && at_commandline))
24324 complaint (&symfile_complaints,
24325 _("debug info gives %s macro %s with %s line %d: %s"),
24326 at_commandline ? _("command-line") : _("in-file"),
24327 is_define ? _("definition") : _("undefinition"),
24328 line == 0 ? _("zero") : _("non-zero"), line, body);
24329
24330 if (is_define)
24331 parse_macro_definition (current_file, line, body);
24332 else
24333 {
24334 gdb_assert (macinfo_type == DW_MACRO_undef
24335 || macinfo_type == DW_MACRO_undef_strp
24336 || macinfo_type == DW_MACRO_undef_sup);
24337 macro_undef (current_file, line, body);
24338 }
24339 }
24340 break;
24341
24342 case DW_MACRO_start_file:
24343 {
24344 unsigned int bytes_read;
24345 int line, file;
24346
24347 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24348 mac_ptr += bytes_read;
24349 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24350 mac_ptr += bytes_read;
24351
24352 if ((line == 0 && !at_commandline)
24353 || (line != 0 && at_commandline))
24354 complaint (&symfile_complaints,
24355 _("debug info gives source %d included "
24356 "from %s at %s line %d"),
24357 file, at_commandline ? _("command-line") : _("file"),
24358 line == 0 ? _("zero") : _("non-zero"), line);
24359
24360 if (at_commandline)
24361 {
24362 /* This DW_MACRO_start_file was executed in the
24363 pass one. */
24364 at_commandline = 0;
24365 }
24366 else
24367 current_file = macro_start_file (file, line, current_file, lh);
24368 }
24369 break;
24370
24371 case DW_MACRO_end_file:
24372 if (! current_file)
24373 complaint (&symfile_complaints,
24374 _("macro debug info has an unmatched "
24375 "`close_file' directive"));
24376 else
24377 {
24378 current_file = current_file->included_by;
24379 if (! current_file)
24380 {
24381 enum dwarf_macro_record_type next_type;
24382
24383 /* GCC circa March 2002 doesn't produce the zero
24384 type byte marking the end of the compilation
24385 unit. Complain if it's not there, but exit no
24386 matter what. */
24387
24388 /* Do we at least have room for a macinfo type byte? */
24389 if (mac_ptr >= mac_end)
24390 {
24391 dwarf2_section_buffer_overflow_complaint (section);
24392 return;
24393 }
24394
24395 /* We don't increment mac_ptr here, so this is just
24396 a look-ahead. */
24397 next_type
24398 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24399 mac_ptr);
24400 if (next_type != 0)
24401 complaint (&symfile_complaints,
24402 _("no terminating 0-type entry for "
24403 "macros in `.debug_macinfo' section"));
24404
24405 return;
24406 }
24407 }
24408 break;
24409
24410 case DW_MACRO_import:
24411 case DW_MACRO_import_sup:
24412 {
24413 LONGEST offset;
24414 void **slot;
24415 bfd *include_bfd = abfd;
24416 struct dwarf2_section_info *include_section = section;
24417 const gdb_byte *include_mac_end = mac_end;
24418 int is_dwz = section_is_dwz;
24419 const gdb_byte *new_mac_ptr;
24420
24421 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24422 mac_ptr += offset_size;
24423
24424 if (macinfo_type == DW_MACRO_import_sup)
24425 {
24426 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24427
24428 dwarf2_read_section (objfile, &dwz->macro);
24429
24430 include_section = &dwz->macro;
24431 include_bfd = get_section_bfd_owner (include_section);
24432 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24433 is_dwz = 1;
24434 }
24435
24436 new_mac_ptr = include_section->buffer + offset;
24437 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24438
24439 if (*slot != NULL)
24440 {
24441 /* This has actually happened; see
24442 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24443 complaint (&symfile_complaints,
24444 _("recursive DW_MACRO_import in "
24445 ".debug_macro section"));
24446 }
24447 else
24448 {
24449 *slot = (void *) new_mac_ptr;
24450
24451 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24452 include_bfd, new_mac_ptr,
24453 include_mac_end, current_file, lh,
24454 section, section_is_gnu, is_dwz,
24455 offset_size, include_hash);
24456
24457 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24458 }
24459 }
24460 break;
24461
24462 case DW_MACINFO_vendor_ext:
24463 if (!section_is_gnu)
24464 {
24465 unsigned int bytes_read;
24466
24467 /* This reads the constant, but since we don't recognize
24468 any vendor extensions, we ignore it. */
24469 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24470 mac_ptr += bytes_read;
24471 read_direct_string (abfd, mac_ptr, &bytes_read);
24472 mac_ptr += bytes_read;
24473
24474 /* We don't recognize any vendor extensions. */
24475 break;
24476 }
24477 /* FALLTHROUGH */
24478
24479 default:
24480 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24481 mac_ptr, mac_end, abfd, offset_size,
24482 section);
24483 if (mac_ptr == NULL)
24484 return;
24485 break;
24486 }
24487 DIAGNOSTIC_POP
24488 } while (macinfo_type != 0);
24489 }
24490
24491 static void
24492 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24493 int section_is_gnu)
24494 {
24495 struct dwarf2_per_objfile *dwarf2_per_objfile
24496 = cu->per_cu->dwarf2_per_objfile;
24497 struct objfile *objfile = dwarf2_per_objfile->objfile;
24498 struct line_header *lh = cu->line_header;
24499 bfd *abfd;
24500 const gdb_byte *mac_ptr, *mac_end;
24501 struct macro_source_file *current_file = 0;
24502 enum dwarf_macro_record_type macinfo_type;
24503 unsigned int offset_size = cu->header.offset_size;
24504 const gdb_byte *opcode_definitions[256];
24505 void **slot;
24506 struct dwarf2_section_info *section;
24507 const char *section_name;
24508
24509 if (cu->dwo_unit != NULL)
24510 {
24511 if (section_is_gnu)
24512 {
24513 section = &cu->dwo_unit->dwo_file->sections.macro;
24514 section_name = ".debug_macro.dwo";
24515 }
24516 else
24517 {
24518 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24519 section_name = ".debug_macinfo.dwo";
24520 }
24521 }
24522 else
24523 {
24524 if (section_is_gnu)
24525 {
24526 section = &dwarf2_per_objfile->macro;
24527 section_name = ".debug_macro";
24528 }
24529 else
24530 {
24531 section = &dwarf2_per_objfile->macinfo;
24532 section_name = ".debug_macinfo";
24533 }
24534 }
24535
24536 dwarf2_read_section (objfile, section);
24537 if (section->buffer == NULL)
24538 {
24539 complaint (&symfile_complaints, _("missing %s section"), section_name);
24540 return;
24541 }
24542 abfd = get_section_bfd_owner (section);
24543
24544 /* First pass: Find the name of the base filename.
24545 This filename is needed in order to process all macros whose definition
24546 (or undefinition) comes from the command line. These macros are defined
24547 before the first DW_MACINFO_start_file entry, and yet still need to be
24548 associated to the base file.
24549
24550 To determine the base file name, we scan the macro definitions until we
24551 reach the first DW_MACINFO_start_file entry. We then initialize
24552 CURRENT_FILE accordingly so that any macro definition found before the
24553 first DW_MACINFO_start_file can still be associated to the base file. */
24554
24555 mac_ptr = section->buffer + offset;
24556 mac_end = section->buffer + section->size;
24557
24558 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24559 &offset_size, section_is_gnu);
24560 if (mac_ptr == NULL)
24561 {
24562 /* We already issued a complaint. */
24563 return;
24564 }
24565
24566 do
24567 {
24568 /* Do we at least have room for a macinfo type byte? */
24569 if (mac_ptr >= mac_end)
24570 {
24571 /* Complaint is printed during the second pass as GDB will probably
24572 stop the first pass earlier upon finding
24573 DW_MACINFO_start_file. */
24574 break;
24575 }
24576
24577 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24578 mac_ptr++;
24579
24580 /* Note that we rely on the fact that the corresponding GNU and
24581 DWARF constants are the same. */
24582 DIAGNOSTIC_PUSH
24583 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24584 switch (macinfo_type)
24585 {
24586 /* A zero macinfo type indicates the end of the macro
24587 information. */
24588 case 0:
24589 break;
24590
24591 case DW_MACRO_define:
24592 case DW_MACRO_undef:
24593 /* Only skip the data by MAC_PTR. */
24594 {
24595 unsigned int bytes_read;
24596
24597 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24598 mac_ptr += bytes_read;
24599 read_direct_string (abfd, mac_ptr, &bytes_read);
24600 mac_ptr += bytes_read;
24601 }
24602 break;
24603
24604 case DW_MACRO_start_file:
24605 {
24606 unsigned int bytes_read;
24607 int line, file;
24608
24609 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24610 mac_ptr += bytes_read;
24611 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24612 mac_ptr += bytes_read;
24613
24614 current_file = macro_start_file (file, line, current_file, lh);
24615 }
24616 break;
24617
24618 case DW_MACRO_end_file:
24619 /* No data to skip by MAC_PTR. */
24620 break;
24621
24622 case DW_MACRO_define_strp:
24623 case DW_MACRO_undef_strp:
24624 case DW_MACRO_define_sup:
24625 case DW_MACRO_undef_sup:
24626 {
24627 unsigned int bytes_read;
24628
24629 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24630 mac_ptr += bytes_read;
24631 mac_ptr += offset_size;
24632 }
24633 break;
24634
24635 case DW_MACRO_import:
24636 case DW_MACRO_import_sup:
24637 /* Note that, according to the spec, a transparent include
24638 chain cannot call DW_MACRO_start_file. So, we can just
24639 skip this opcode. */
24640 mac_ptr += offset_size;
24641 break;
24642
24643 case DW_MACINFO_vendor_ext:
24644 /* Only skip the data by MAC_PTR. */
24645 if (!section_is_gnu)
24646 {
24647 unsigned int bytes_read;
24648
24649 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24650 mac_ptr += bytes_read;
24651 read_direct_string (abfd, mac_ptr, &bytes_read);
24652 mac_ptr += bytes_read;
24653 }
24654 /* FALLTHROUGH */
24655
24656 default:
24657 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24658 mac_ptr, mac_end, abfd, offset_size,
24659 section);
24660 if (mac_ptr == NULL)
24661 return;
24662 break;
24663 }
24664 DIAGNOSTIC_POP
24665 } while (macinfo_type != 0 && current_file == NULL);
24666
24667 /* Second pass: Process all entries.
24668
24669 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24670 command-line macro definitions/undefinitions. This flag is unset when we
24671 reach the first DW_MACINFO_start_file entry. */
24672
24673 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24674 htab_eq_pointer,
24675 NULL, xcalloc, xfree));
24676 mac_ptr = section->buffer + offset;
24677 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24678 *slot = (void *) mac_ptr;
24679 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24680 abfd, mac_ptr, mac_end,
24681 current_file, lh, section,
24682 section_is_gnu, 0, offset_size,
24683 include_hash.get ());
24684 }
24685
24686 /* Check if the attribute's form is a DW_FORM_block*
24687 if so return true else false. */
24688
24689 static int
24690 attr_form_is_block (const struct attribute *attr)
24691 {
24692 return (attr == NULL ? 0 :
24693 attr->form == DW_FORM_block1
24694 || attr->form == DW_FORM_block2
24695 || attr->form == DW_FORM_block4
24696 || attr->form == DW_FORM_block
24697 || attr->form == DW_FORM_exprloc);
24698 }
24699
24700 /* Return non-zero if ATTR's value is a section offset --- classes
24701 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24702 You may use DW_UNSND (attr) to retrieve such offsets.
24703
24704 Section 7.5.4, "Attribute Encodings", explains that no attribute
24705 may have a value that belongs to more than one of these classes; it
24706 would be ambiguous if we did, because we use the same forms for all
24707 of them. */
24708
24709 static int
24710 attr_form_is_section_offset (const struct attribute *attr)
24711 {
24712 return (attr->form == DW_FORM_data4
24713 || attr->form == DW_FORM_data8
24714 || attr->form == DW_FORM_sec_offset);
24715 }
24716
24717 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24718 zero otherwise. When this function returns true, you can apply
24719 dwarf2_get_attr_constant_value to it.
24720
24721 However, note that for some attributes you must check
24722 attr_form_is_section_offset before using this test. DW_FORM_data4
24723 and DW_FORM_data8 are members of both the constant class, and of
24724 the classes that contain offsets into other debug sections
24725 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24726 that, if an attribute's can be either a constant or one of the
24727 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24728 taken as section offsets, not constants.
24729
24730 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24731 cannot handle that. */
24732
24733 static int
24734 attr_form_is_constant (const struct attribute *attr)
24735 {
24736 switch (attr->form)
24737 {
24738 case DW_FORM_sdata:
24739 case DW_FORM_udata:
24740 case DW_FORM_data1:
24741 case DW_FORM_data2:
24742 case DW_FORM_data4:
24743 case DW_FORM_data8:
24744 case DW_FORM_implicit_const:
24745 return 1;
24746 default:
24747 return 0;
24748 }
24749 }
24750
24751
24752 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24753 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24754
24755 static int
24756 attr_form_is_ref (const struct attribute *attr)
24757 {
24758 switch (attr->form)
24759 {
24760 case DW_FORM_ref_addr:
24761 case DW_FORM_ref1:
24762 case DW_FORM_ref2:
24763 case DW_FORM_ref4:
24764 case DW_FORM_ref8:
24765 case DW_FORM_ref_udata:
24766 case DW_FORM_GNU_ref_alt:
24767 return 1;
24768 default:
24769 return 0;
24770 }
24771 }
24772
24773 /* Return the .debug_loc section to use for CU.
24774 For DWO files use .debug_loc.dwo. */
24775
24776 static struct dwarf2_section_info *
24777 cu_debug_loc_section (struct dwarf2_cu *cu)
24778 {
24779 struct dwarf2_per_objfile *dwarf2_per_objfile
24780 = cu->per_cu->dwarf2_per_objfile;
24781
24782 if (cu->dwo_unit)
24783 {
24784 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24785
24786 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24787 }
24788 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24789 : &dwarf2_per_objfile->loc);
24790 }
24791
24792 /* A helper function that fills in a dwarf2_loclist_baton. */
24793
24794 static void
24795 fill_in_loclist_baton (struct dwarf2_cu *cu,
24796 struct dwarf2_loclist_baton *baton,
24797 const struct attribute *attr)
24798 {
24799 struct dwarf2_per_objfile *dwarf2_per_objfile
24800 = cu->per_cu->dwarf2_per_objfile;
24801 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24802
24803 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24804
24805 baton->per_cu = cu->per_cu;
24806 gdb_assert (baton->per_cu);
24807 /* We don't know how long the location list is, but make sure we
24808 don't run off the edge of the section. */
24809 baton->size = section->size - DW_UNSND (attr);
24810 baton->data = section->buffer + DW_UNSND (attr);
24811 baton->base_address = cu->base_address;
24812 baton->from_dwo = cu->dwo_unit != NULL;
24813 }
24814
24815 static void
24816 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24817 struct dwarf2_cu *cu, int is_block)
24818 {
24819 struct dwarf2_per_objfile *dwarf2_per_objfile
24820 = cu->per_cu->dwarf2_per_objfile;
24821 struct objfile *objfile = dwarf2_per_objfile->objfile;
24822 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24823
24824 if (attr_form_is_section_offset (attr)
24825 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24826 the section. If so, fall through to the complaint in the
24827 other branch. */
24828 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24829 {
24830 struct dwarf2_loclist_baton *baton;
24831
24832 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24833
24834 fill_in_loclist_baton (cu, baton, attr);
24835
24836 if (cu->base_known == 0)
24837 complaint (&symfile_complaints,
24838 _("Location list used without "
24839 "specifying the CU base address."));
24840
24841 SYMBOL_ACLASS_INDEX (sym) = (is_block
24842 ? dwarf2_loclist_block_index
24843 : dwarf2_loclist_index);
24844 SYMBOL_LOCATION_BATON (sym) = baton;
24845 }
24846 else
24847 {
24848 struct dwarf2_locexpr_baton *baton;
24849
24850 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24851 baton->per_cu = cu->per_cu;
24852 gdb_assert (baton->per_cu);
24853
24854 if (attr_form_is_block (attr))
24855 {
24856 /* Note that we're just copying the block's data pointer
24857 here, not the actual data. We're still pointing into the
24858 info_buffer for SYM's objfile; right now we never release
24859 that buffer, but when we do clean up properly this may
24860 need to change. */
24861 baton->size = DW_BLOCK (attr)->size;
24862 baton->data = DW_BLOCK (attr)->data;
24863 }
24864 else
24865 {
24866 dwarf2_invalid_attrib_class_complaint ("location description",
24867 SYMBOL_NATURAL_NAME (sym));
24868 baton->size = 0;
24869 }
24870
24871 SYMBOL_ACLASS_INDEX (sym) = (is_block
24872 ? dwarf2_locexpr_block_index
24873 : dwarf2_locexpr_index);
24874 SYMBOL_LOCATION_BATON (sym) = baton;
24875 }
24876 }
24877
24878 /* Return the OBJFILE associated with the compilation unit CU. If CU
24879 came from a separate debuginfo file, then the master objfile is
24880 returned. */
24881
24882 struct objfile *
24883 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24884 {
24885 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24886
24887 /* Return the master objfile, so that we can report and look up the
24888 correct file containing this variable. */
24889 if (objfile->separate_debug_objfile_backlink)
24890 objfile = objfile->separate_debug_objfile_backlink;
24891
24892 return objfile;
24893 }
24894
24895 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24896 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24897 CU_HEADERP first. */
24898
24899 static const struct comp_unit_head *
24900 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24901 struct dwarf2_per_cu_data *per_cu)
24902 {
24903 const gdb_byte *info_ptr;
24904
24905 if (per_cu->cu)
24906 return &per_cu->cu->header;
24907
24908 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24909
24910 memset (cu_headerp, 0, sizeof (*cu_headerp));
24911 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24912 rcuh_kind::COMPILE);
24913
24914 return cu_headerp;
24915 }
24916
24917 /* Return the address size given in the compilation unit header for CU. */
24918
24919 int
24920 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24921 {
24922 struct comp_unit_head cu_header_local;
24923 const struct comp_unit_head *cu_headerp;
24924
24925 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24926
24927 return cu_headerp->addr_size;
24928 }
24929
24930 /* Return the offset size given in the compilation unit header for CU. */
24931
24932 int
24933 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24934 {
24935 struct comp_unit_head cu_header_local;
24936 const struct comp_unit_head *cu_headerp;
24937
24938 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24939
24940 return cu_headerp->offset_size;
24941 }
24942
24943 /* See its dwarf2loc.h declaration. */
24944
24945 int
24946 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24947 {
24948 struct comp_unit_head cu_header_local;
24949 const struct comp_unit_head *cu_headerp;
24950
24951 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24952
24953 if (cu_headerp->version == 2)
24954 return cu_headerp->addr_size;
24955 else
24956 return cu_headerp->offset_size;
24957 }
24958
24959 /* Return the text offset of the CU. The returned offset comes from
24960 this CU's objfile. If this objfile came from a separate debuginfo
24961 file, then the offset may be different from the corresponding
24962 offset in the parent objfile. */
24963
24964 CORE_ADDR
24965 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24966 {
24967 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24968
24969 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24970 }
24971
24972 /* Return DWARF version number of PER_CU. */
24973
24974 short
24975 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24976 {
24977 return per_cu->dwarf_version;
24978 }
24979
24980 /* Locate the .debug_info compilation unit from CU's objfile which contains
24981 the DIE at OFFSET. Raises an error on failure. */
24982
24983 static struct dwarf2_per_cu_data *
24984 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24985 unsigned int offset_in_dwz,
24986 struct dwarf2_per_objfile *dwarf2_per_objfile)
24987 {
24988 struct dwarf2_per_cu_data *this_cu;
24989 int low, high;
24990 const sect_offset *cu_off;
24991
24992 low = 0;
24993 high = dwarf2_per_objfile->n_comp_units - 1;
24994 while (high > low)
24995 {
24996 struct dwarf2_per_cu_data *mid_cu;
24997 int mid = low + (high - low) / 2;
24998
24999 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25000 cu_off = &mid_cu->sect_off;
25001 if (mid_cu->is_dwz > offset_in_dwz
25002 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25003 high = mid;
25004 else
25005 low = mid + 1;
25006 }
25007 gdb_assert (low == high);
25008 this_cu = dwarf2_per_objfile->all_comp_units[low];
25009 cu_off = &this_cu->sect_off;
25010 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25011 {
25012 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25013 error (_("Dwarf Error: could not find partial DIE containing "
25014 "offset %s [in module %s]"),
25015 sect_offset_str (sect_off),
25016 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25017
25018 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25019 <= sect_off);
25020 return dwarf2_per_objfile->all_comp_units[low-1];
25021 }
25022 else
25023 {
25024 this_cu = dwarf2_per_objfile->all_comp_units[low];
25025 if (low == dwarf2_per_objfile->n_comp_units - 1
25026 && sect_off >= this_cu->sect_off + this_cu->length)
25027 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25028 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25029 return this_cu;
25030 }
25031 }
25032
25033 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25034
25035 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25036 : per_cu (per_cu_),
25037 mark (0),
25038 has_loclist (0),
25039 checked_producer (0),
25040 producer_is_gxx_lt_4_6 (0),
25041 producer_is_gcc_lt_4_3 (0),
25042 producer_is_icc_lt_14 (0),
25043 processing_has_namespace_info (0)
25044 {
25045 per_cu->cu = this;
25046 }
25047
25048 /* Destroy a dwarf2_cu. */
25049
25050 dwarf2_cu::~dwarf2_cu ()
25051 {
25052 per_cu->cu = NULL;
25053 }
25054
25055 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25056
25057 static void
25058 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25059 enum language pretend_language)
25060 {
25061 struct attribute *attr;
25062
25063 /* Set the language we're debugging. */
25064 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25065 if (attr)
25066 set_cu_language (DW_UNSND (attr), cu);
25067 else
25068 {
25069 cu->language = pretend_language;
25070 cu->language_defn = language_def (cu->language);
25071 }
25072
25073 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25074 }
25075
25076 /* Increase the age counter on each cached compilation unit, and free
25077 any that are too old. */
25078
25079 static void
25080 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25081 {
25082 struct dwarf2_per_cu_data *per_cu, **last_chain;
25083
25084 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25085 per_cu = dwarf2_per_objfile->read_in_chain;
25086 while (per_cu != NULL)
25087 {
25088 per_cu->cu->last_used ++;
25089 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25090 dwarf2_mark (per_cu->cu);
25091 per_cu = per_cu->cu->read_in_chain;
25092 }
25093
25094 per_cu = dwarf2_per_objfile->read_in_chain;
25095 last_chain = &dwarf2_per_objfile->read_in_chain;
25096 while (per_cu != NULL)
25097 {
25098 struct dwarf2_per_cu_data *next_cu;
25099
25100 next_cu = per_cu->cu->read_in_chain;
25101
25102 if (!per_cu->cu->mark)
25103 {
25104 delete per_cu->cu;
25105 *last_chain = next_cu;
25106 }
25107 else
25108 last_chain = &per_cu->cu->read_in_chain;
25109
25110 per_cu = next_cu;
25111 }
25112 }
25113
25114 /* Remove a single compilation unit from the cache. */
25115
25116 static void
25117 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25118 {
25119 struct dwarf2_per_cu_data *per_cu, **last_chain;
25120 struct dwarf2_per_objfile *dwarf2_per_objfile
25121 = target_per_cu->dwarf2_per_objfile;
25122
25123 per_cu = dwarf2_per_objfile->read_in_chain;
25124 last_chain = &dwarf2_per_objfile->read_in_chain;
25125 while (per_cu != NULL)
25126 {
25127 struct dwarf2_per_cu_data *next_cu;
25128
25129 next_cu = per_cu->cu->read_in_chain;
25130
25131 if (per_cu == target_per_cu)
25132 {
25133 delete per_cu->cu;
25134 per_cu->cu = NULL;
25135 *last_chain = next_cu;
25136 break;
25137 }
25138 else
25139 last_chain = &per_cu->cu->read_in_chain;
25140
25141 per_cu = next_cu;
25142 }
25143 }
25144
25145 /* Release all extra memory associated with OBJFILE. */
25146
25147 void
25148 dwarf2_free_objfile (struct objfile *objfile)
25149 {
25150 struct dwarf2_per_objfile *dwarf2_per_objfile
25151 = get_dwarf2_per_objfile (objfile);
25152
25153 delete dwarf2_per_objfile;
25154 }
25155
25156 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25157 We store these in a hash table separate from the DIEs, and preserve them
25158 when the DIEs are flushed out of cache.
25159
25160 The CU "per_cu" pointer is needed because offset alone is not enough to
25161 uniquely identify the type. A file may have multiple .debug_types sections,
25162 or the type may come from a DWO file. Furthermore, while it's more logical
25163 to use per_cu->section+offset, with Fission the section with the data is in
25164 the DWO file but we don't know that section at the point we need it.
25165 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25166 because we can enter the lookup routine, get_die_type_at_offset, from
25167 outside this file, and thus won't necessarily have PER_CU->cu.
25168 Fortunately, PER_CU is stable for the life of the objfile. */
25169
25170 struct dwarf2_per_cu_offset_and_type
25171 {
25172 const struct dwarf2_per_cu_data *per_cu;
25173 sect_offset sect_off;
25174 struct type *type;
25175 };
25176
25177 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25178
25179 static hashval_t
25180 per_cu_offset_and_type_hash (const void *item)
25181 {
25182 const struct dwarf2_per_cu_offset_and_type *ofs
25183 = (const struct dwarf2_per_cu_offset_and_type *) item;
25184
25185 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25186 }
25187
25188 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25189
25190 static int
25191 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25192 {
25193 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25194 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25195 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25196 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25197
25198 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25199 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25200 }
25201
25202 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25203 table if necessary. For convenience, return TYPE.
25204
25205 The DIEs reading must have careful ordering to:
25206 * Not cause infite loops trying to read in DIEs as a prerequisite for
25207 reading current DIE.
25208 * Not trying to dereference contents of still incompletely read in types
25209 while reading in other DIEs.
25210 * Enable referencing still incompletely read in types just by a pointer to
25211 the type without accessing its fields.
25212
25213 Therefore caller should follow these rules:
25214 * Try to fetch any prerequisite types we may need to build this DIE type
25215 before building the type and calling set_die_type.
25216 * After building type call set_die_type for current DIE as soon as
25217 possible before fetching more types to complete the current type.
25218 * Make the type as complete as possible before fetching more types. */
25219
25220 static struct type *
25221 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25222 {
25223 struct dwarf2_per_objfile *dwarf2_per_objfile
25224 = cu->per_cu->dwarf2_per_objfile;
25225 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25226 struct objfile *objfile = dwarf2_per_objfile->objfile;
25227 struct attribute *attr;
25228 struct dynamic_prop prop;
25229
25230 /* For Ada types, make sure that the gnat-specific data is always
25231 initialized (if not already set). There are a few types where
25232 we should not be doing so, because the type-specific area is
25233 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25234 where the type-specific area is used to store the floatformat).
25235 But this is not a problem, because the gnat-specific information
25236 is actually not needed for these types. */
25237 if (need_gnat_info (cu)
25238 && TYPE_CODE (type) != TYPE_CODE_FUNC
25239 && TYPE_CODE (type) != TYPE_CODE_FLT
25240 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25241 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25242 && TYPE_CODE (type) != TYPE_CODE_METHOD
25243 && !HAVE_GNAT_AUX_INFO (type))
25244 INIT_GNAT_SPECIFIC (type);
25245
25246 /* Read DW_AT_allocated and set in type. */
25247 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25248 if (attr_form_is_block (attr))
25249 {
25250 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25251 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25252 }
25253 else if (attr != NULL)
25254 {
25255 complaint (&symfile_complaints,
25256 _("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25257 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25258 sect_offset_str (die->sect_off));
25259 }
25260
25261 /* Read DW_AT_associated and set in type. */
25262 attr = dwarf2_attr (die, DW_AT_associated, cu);
25263 if (attr_form_is_block (attr))
25264 {
25265 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25266 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25267 }
25268 else if (attr != NULL)
25269 {
25270 complaint (&symfile_complaints,
25271 _("DW_AT_associated has the wrong form (%s) at DIE %s"),
25272 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25273 sect_offset_str (die->sect_off));
25274 }
25275
25276 /* Read DW_AT_data_location and set in type. */
25277 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25278 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25279 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25280
25281 if (dwarf2_per_objfile->die_type_hash == NULL)
25282 {
25283 dwarf2_per_objfile->die_type_hash =
25284 htab_create_alloc_ex (127,
25285 per_cu_offset_and_type_hash,
25286 per_cu_offset_and_type_eq,
25287 NULL,
25288 &objfile->objfile_obstack,
25289 hashtab_obstack_allocate,
25290 dummy_obstack_deallocate);
25291 }
25292
25293 ofs.per_cu = cu->per_cu;
25294 ofs.sect_off = die->sect_off;
25295 ofs.type = type;
25296 slot = (struct dwarf2_per_cu_offset_and_type **)
25297 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25298 if (*slot)
25299 complaint (&symfile_complaints,
25300 _("A problem internal to GDB: DIE %s has type already set"),
25301 sect_offset_str (die->sect_off));
25302 *slot = XOBNEW (&objfile->objfile_obstack,
25303 struct dwarf2_per_cu_offset_and_type);
25304 **slot = ofs;
25305 return type;
25306 }
25307
25308 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25309 or return NULL if the die does not have a saved type. */
25310
25311 static struct type *
25312 get_die_type_at_offset (sect_offset sect_off,
25313 struct dwarf2_per_cu_data *per_cu)
25314 {
25315 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25316 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25317
25318 if (dwarf2_per_objfile->die_type_hash == NULL)
25319 return NULL;
25320
25321 ofs.per_cu = per_cu;
25322 ofs.sect_off = sect_off;
25323 slot = ((struct dwarf2_per_cu_offset_and_type *)
25324 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25325 if (slot)
25326 return slot->type;
25327 else
25328 return NULL;
25329 }
25330
25331 /* Look up the type for DIE in CU in die_type_hash,
25332 or return NULL if DIE does not have a saved type. */
25333
25334 static struct type *
25335 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25336 {
25337 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25338 }
25339
25340 /* Add a dependence relationship from CU to REF_PER_CU. */
25341
25342 static void
25343 dwarf2_add_dependence (struct dwarf2_cu *cu,
25344 struct dwarf2_per_cu_data *ref_per_cu)
25345 {
25346 void **slot;
25347
25348 if (cu->dependencies == NULL)
25349 cu->dependencies
25350 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25351 NULL, &cu->comp_unit_obstack,
25352 hashtab_obstack_allocate,
25353 dummy_obstack_deallocate);
25354
25355 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25356 if (*slot == NULL)
25357 *slot = ref_per_cu;
25358 }
25359
25360 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25361 Set the mark field in every compilation unit in the
25362 cache that we must keep because we are keeping CU. */
25363
25364 static int
25365 dwarf2_mark_helper (void **slot, void *data)
25366 {
25367 struct dwarf2_per_cu_data *per_cu;
25368
25369 per_cu = (struct dwarf2_per_cu_data *) *slot;
25370
25371 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25372 reading of the chain. As such dependencies remain valid it is not much
25373 useful to track and undo them during QUIT cleanups. */
25374 if (per_cu->cu == NULL)
25375 return 1;
25376
25377 if (per_cu->cu->mark)
25378 return 1;
25379 per_cu->cu->mark = 1;
25380
25381 if (per_cu->cu->dependencies != NULL)
25382 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25383
25384 return 1;
25385 }
25386
25387 /* Set the mark field in CU and in every other compilation unit in the
25388 cache that we must keep because we are keeping CU. */
25389
25390 static void
25391 dwarf2_mark (struct dwarf2_cu *cu)
25392 {
25393 if (cu->mark)
25394 return;
25395 cu->mark = 1;
25396 if (cu->dependencies != NULL)
25397 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25398 }
25399
25400 static void
25401 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25402 {
25403 while (per_cu)
25404 {
25405 per_cu->cu->mark = 0;
25406 per_cu = per_cu->cu->read_in_chain;
25407 }
25408 }
25409
25410 /* Trivial hash function for partial_die_info: the hash value of a DIE
25411 is its offset in .debug_info for this objfile. */
25412
25413 static hashval_t
25414 partial_die_hash (const void *item)
25415 {
25416 const struct partial_die_info *part_die
25417 = (const struct partial_die_info *) item;
25418
25419 return to_underlying (part_die->sect_off);
25420 }
25421
25422 /* Trivial comparison function for partial_die_info structures: two DIEs
25423 are equal if they have the same offset. */
25424
25425 static int
25426 partial_die_eq (const void *item_lhs, const void *item_rhs)
25427 {
25428 const struct partial_die_info *part_die_lhs
25429 = (const struct partial_die_info *) item_lhs;
25430 const struct partial_die_info *part_die_rhs
25431 = (const struct partial_die_info *) item_rhs;
25432
25433 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25434 }
25435
25436 static struct cmd_list_element *set_dwarf_cmdlist;
25437 static struct cmd_list_element *show_dwarf_cmdlist;
25438
25439 static void
25440 set_dwarf_cmd (const char *args, int from_tty)
25441 {
25442 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25443 gdb_stdout);
25444 }
25445
25446 static void
25447 show_dwarf_cmd (const char *args, int from_tty)
25448 {
25449 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25450 }
25451
25452 int dwarf_always_disassemble;
25453
25454 static void
25455 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25456 struct cmd_list_element *c, const char *value)
25457 {
25458 fprintf_filtered (file,
25459 _("Whether to always disassemble "
25460 "DWARF expressions is %s.\n"),
25461 value);
25462 }
25463
25464 static void
25465 show_check_physname (struct ui_file *file, int from_tty,
25466 struct cmd_list_element *c, const char *value)
25467 {
25468 fprintf_filtered (file,
25469 _("Whether to check \"physname\" is %s.\n"),
25470 value);
25471 }
25472
25473 void
25474 _initialize_dwarf2_read (void)
25475 {
25476
25477 dwarf2_objfile_data_key = register_objfile_data ();
25478
25479 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25480 Set DWARF specific variables.\n\
25481 Configure DWARF variables such as the cache size"),
25482 &set_dwarf_cmdlist, "maintenance set dwarf ",
25483 0/*allow-unknown*/, &maintenance_set_cmdlist);
25484
25485 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25486 Show DWARF specific variables\n\
25487 Show DWARF variables such as the cache size"),
25488 &show_dwarf_cmdlist, "maintenance show dwarf ",
25489 0/*allow-unknown*/, &maintenance_show_cmdlist);
25490
25491 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25492 &dwarf_max_cache_age, _("\
25493 Set the upper bound on the age of cached DWARF compilation units."), _("\
25494 Show the upper bound on the age of cached DWARF compilation units."), _("\
25495 A higher limit means that cached compilation units will be stored\n\
25496 in memory longer, and more total memory will be used. Zero disables\n\
25497 caching, which can slow down startup."),
25498 NULL,
25499 show_dwarf_max_cache_age,
25500 &set_dwarf_cmdlist,
25501 &show_dwarf_cmdlist);
25502
25503 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25504 &dwarf_always_disassemble, _("\
25505 Set whether `info address' always disassembles DWARF expressions."), _("\
25506 Show whether `info address' always disassembles DWARF expressions."), _("\
25507 When enabled, DWARF expressions are always printed in an assembly-like\n\
25508 syntax. When disabled, expressions will be printed in a more\n\
25509 conversational style, when possible."),
25510 NULL,
25511 show_dwarf_always_disassemble,
25512 &set_dwarf_cmdlist,
25513 &show_dwarf_cmdlist);
25514
25515 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25516 Set debugging of the DWARF reader."), _("\
25517 Show debugging of the DWARF reader."), _("\
25518 When enabled (non-zero), debugging messages are printed during DWARF\n\
25519 reading and symtab expansion. A value of 1 (one) provides basic\n\
25520 information. A value greater than 1 provides more verbose information."),
25521 NULL,
25522 NULL,
25523 &setdebuglist, &showdebuglist);
25524
25525 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25526 Set debugging of the DWARF DIE reader."), _("\
25527 Show debugging of the DWARF DIE reader."), _("\
25528 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25529 The value is the maximum depth to print."),
25530 NULL,
25531 NULL,
25532 &setdebuglist, &showdebuglist);
25533
25534 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25535 Set debugging of the dwarf line reader."), _("\
25536 Show debugging of the dwarf line reader."), _("\
25537 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25538 A value of 1 (one) provides basic information.\n\
25539 A value greater than 1 provides more verbose information."),
25540 NULL,
25541 NULL,
25542 &setdebuglist, &showdebuglist);
25543
25544 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25545 Set cross-checking of \"physname\" code against demangler."), _("\
25546 Show cross-checking of \"physname\" code against demangler."), _("\
25547 When enabled, GDB's internal \"physname\" code is checked against\n\
25548 the demangler."),
25549 NULL, show_check_physname,
25550 &setdebuglist, &showdebuglist);
25551
25552 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25553 no_class, &use_deprecated_index_sections, _("\
25554 Set whether to use deprecated gdb_index sections."), _("\
25555 Show whether to use deprecated gdb_index sections."), _("\
25556 When enabled, deprecated .gdb_index sections are used anyway.\n\
25557 Normally they are ignored either because of a missing feature or\n\
25558 performance issue.\n\
25559 Warning: This option must be enabled before gdb reads the file."),
25560 NULL,
25561 NULL,
25562 &setlist, &showlist);
25563
25564 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25565 &dwarf2_locexpr_funcs);
25566 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25567 &dwarf2_loclist_funcs);
25568
25569 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25570 &dwarf2_block_frame_base_locexpr_funcs);
25571 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25572 &dwarf2_block_frame_base_loclist_funcs);
25573
25574 #if GDB_SELF_TEST
25575 selftests::register_test ("dw2_expand_symtabs_matching",
25576 selftests::dw2_expand_symtabs_matching::run_test);
25577 #endif
25578 }
This page took 0.96861 seconds and 5 git commands to generate.